
 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

XML in a Nutshell, 3rd Edition

By Elliotte Rusty Harold, W. Scott Means

Publisher: O'Reilly

Pub Date: September 2004

ISBN: 0-596-00764-7

Pages: 712

There's a lot to know about XML, and it s constantly evolving. But you don't need to commit every
syntax, API, or XSLT transformation to memory; you only need to know where to find it. And if it's a
detail that has to do with XML or its companion standards, you'll find it--clear, concise, useful, and
well-organized--in the updated third edition of XML in a Nutshell.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

XML in a Nutshell, 3rd Edition

By Elliotte Rusty Harold, W. Scott Means

Publisher: O'Reilly

Pub Date: September 2004

ISBN: 0-596-00764-7

Pages: 712

 Copyright

 Preface

 What This Book Covers

 What's New in the Third Edition

 Organization of the Book

 Conventions Used in This Book

 Request for Comments

 Acknowledgments

 Part I: XML Concepts

 Chapter 1. Introducing XML

 Section 1.1. The Benefits of XML

 Section 1.2. What XML Is Not

 Section 1.3. Portable Data

 Section 1.4. How XML Works

 Section 1.5. The Evolution of XML

 Chapter 2. XML Fundamentals

 Section 2.1. XML Documents and XML Files

 Section 2.2. Elements, Tags, and Character Data

 Section 2.3. Attributes

 Section 2.4. XML Names

 Section 2.5. References

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 2.6. CDATA Sections

 Section 2.7. Comments

 Section 2.8. Processing Instructions

 Section 2.9. The XML Declaration

 Section 2.10. Checking Documents for Well-Formedness

 Chapter 3. Document Type Definitions (DTDs)

 Section 3.1. Validation

 Section 3.2. Element Declarations

 Section 3.3. Attribute Declarations

 Section 3.4. General Entity Declarations

 Section 3.5. External Parsed General Entities

 Section 3.6. External Unparsed Entities and Notations

 Section 3.7. Parameter Entities

 Section 3.8. Conditional Inclusion

 Section 3.9. Two DTD Examples

 Section 3.10. Locating Standard DTDs

 Chapter 4. Namespaces

 Section 4.1. The Need for Namespaces

 Section 4.2. Namespace Syntax

 Section 4.3. How Parsers Handle Namespaces

 Section 4.4. Namespaces and DTDs

 Chapter 5. Internationalization

 Section 5.1. Character-Set Metadata

 Section 5.2. The Encoding Declaration

 Section 5.3. Text Declarations

 Section 5.4. XML-Defined Character Sets

 Section 5.5. Unicode

 Section 5.6. ISO Character Sets

 Section 5.7. Platform-Dependent Character Sets

 Section 5.8. Converting Between Character Sets

 Section 5.9. The Default Character Set for XML Documents

 Section 5.10. Character References

 Section 5.11. xml:lang

 Part II: Narrative-Like Documents

 Chapter 6. XML as a Document Format

 Section 6.1. SGML's Legacy

 Section 6.2. Narrative Document Structures

 Section 6.3. TEI

 Section 6.4. DocBook

 Section 6.5. OpenOffice

 Section 6.6. WordprocessingML

 Section 6.7. Document Permanence

 Section 6.8. Transformation and Presentation

 Chapter 7. XML on the Web

 Section 7.1. XHTML

 Section 7.2. Direct Display of XML in Browsers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 7.3. Authoring Compound Documents with Modular XHTML

 Section 7.4. Prospects for Improved Web Search Methods

 Chapter 8. XSL Transformations (XSLT)

 Section 8.1. An Example Input Document

 Section 8.2. xsl:stylesheet and xsl:transform

 Section 8.3. Stylesheet Processors

 Section 8.4. Templates and Template Rules

 Section 8.5. Calculating the Value of an Element with xsl:value-of

 Section 8.6. Applying Templates with xsl:apply-templates

 Section 8.7. The Built-in Template Rules

 Section 8.8. Modes

 Section 8.9. Attribute Value Templates

 Section 8.10. XSLT and Namespaces

 Section 8.11. Other XSLT Elements

 Chapter 9. XPath

 Section 9.1. The Tree Structure of an XML Document

 Section 9.2. Location Paths

 Section 9.3. Compound Location Paths

 Section 9.4. Predicates

 Section 9.5. Unabbreviated Location Paths

 Section 9.6. General XPath Expressions

 Section 9.7. XPath Functions

 Chapter 10. XLinks

 Section 10.1. Simple Links

 Section 10.2. Link Behavior

 Section 10.3. Link Semantics

 Section 10.4. Extended Links

 Section 10.5. Linkbases

 Section 10.6. DTDs for XLinks

 Section 10.7. Base URIs

 Chapter 11. XPointers

 Section 11.1. XPointers on URLs

 Section 11.2. XPointers in Links

 Section 11.3. Shorthand Pointers

 Section 11.4. Child Sequences

 Section 11.5. Namespaces

 Section 11.6. Points

 Section 11.7. Ranges

 Chapter 12. XInclude

 Section 12.1. The include Element

 Section 12.2. Including Text Files

 Section 12.3. Content Negotiation

 Section 12.4. Fallbacks

 Section 12.5. XPointers

 Chapter 13. Cascading Style Sheets (CSS)

 Section 13.1. The Levels of CSS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 13.2. CSS Syntax

 Section 13.3. Associating Stylesheets with XML Documents

 Section 13.4. Selectors

 Section 13.5. The Display Property

 Section 13.6. Pixels, Points, Picas, and Other Units of Length

 Section 13.7. Font Properties

 Section 13.8. Text Properties

 Section 13.9. Colors

 Chapter 14. XSL Formatting Objects (XSL-FO)

 Section 14.1. XSL Formatting Objects

 Section 14.2. The Structure of an XSL-FO Document

 Section 14.3. Laying Out the Master Pages

 Section 14.4. XSL-FO Properties

 Section 14.5. Choosing Between CSS and XSL-FO

 Chapter 15. Resource Directory Description Language (RDDL)

 Section 15.1. What's at the End of a Namespace URL?

 Section 15.2. RDDL Syntax

 Section 15.3. Natures

 Section 15.4. Purposes

 Part III: Record-Like Documents

 Chapter 16. XML as a Data Format

 Section 16.1. Why Use XML for Data?

 Section 16.2. Developing Record-Like XML Formats

 Section 16.3. Sharing Your XML Format

 Chapter 17. XML Schemas

 Section 17.1. Overview

 Section 17.2. Schema Basics

 Section 17.3. Working with Namespaces

 Section 17.4. Complex Types

 Section 17.5. Empty Elements

 Section 17.6. Simple Content

 Section 17.7. Mixed Content

 Section 17.8. Allowing Any Content

 Section 17.9. Controlling Type Derivation

 Chapter 18. Programming Models

 Section 18.1. Common XML Processing Models

 Section 18.2. Common XML Processing Issues

 Section 18.3. Generating XML Documents

 Chapter 19. Document Object Model (DOM)

 Section 19.1. DOM Foundations

 Section 19.2. Structure of the DOM Core

 Section 19.3. Node and Other Generic Interfaces

 Section 19.4. Specific Node-Type Interfaces

 Section 19.5. The DOMImplementation Interface

 Section 19.6. DOM Level 3 Interfaces

 Section 19.7. Parsing a Document with DOM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 19.8. A Simple DOM Application

 Chapter 20. Simple API for XML (SAX)

 Section 20.1. The ContentHandler Interface

 Section 20.2. Features and Properties

 Section 20.3. Filters

 Part IV: Reference

 Chapter 21. XML Reference

 Section 21.1. How to Use This Reference

 Section 21.2. Annotated Sample Documents

 Section 21.3. XML Syntax

 Section 21.4. Constraints

 Section 21.5. XML 1.0 Document Grammar

 Section 21.6. XML 1.1 Document Grammar

 Chapter 22. Schemas Reference

 Section 22.1. The Schema Namespaces

 Section 22.2. Schema Elements

 Section 22.3. Built-in Types

 Section 22.4. Instance Document Attributes

 Chapter 23. XPath Reference

 Section 23.1. The XPath Data Model

 Section 23.2. Data Types

 Section 23.3. Location Paths

 Section 23.4. Predicates

 Section 23.5. XPath Functions

 Chapter 24. XSLT Reference

 Section 24.1. The XSLT Namespace

 Section 24.2. XSLT Elements

 Section 24.3. XSLT Functions

 Section 24.4. TrAX

 Chapter 25. DOM Reference

 Section 25.1. Object Hierarchy

 Section 25.2. Object Reference

 Chapter 26. SAX Reference

 Section 26.1. The org.xml.sax Package

 Section 26.2. The org.xml.sax.helpers Package

 Section 26.3. SAX Features and Properties

 Section 26.4. The org.xml.sax.ext Package

 Chapter 27. Character Sets

 Section 27.1. Character Tables

 Section 27.2. HTML4 Entity Sets

 Section 27.3. Other Unicode Blocks

 Colophon

 Index

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Copyright © 2004, 2002, 2001 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The In a Nutshell series designations, XML in a Nutshell, the image of a peafowl,
and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

 < Day Day Up >

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Preface
In the last few years, XML has been adopted in fields as diverse as law, aeronautics, finance,
insurance, robotics, multimedia, hospitality, travel, art, construction, telecommunications, software,
agriculture, physics, journalism, theology, retail, and comics. XML has become the syntax of choice
for newly designed document formats across almost all computer applications. It's used on Linux,
Windows, Macintosh, and many other computer platforms. Mainframes on Wall Street trade stocks
with one another by exchanging XML documents. Children playing games on their home PCs save
their documents in XML. Sports fans receive real-time game scores on their cell phones in XML. XML
is simply the most robust, reliable, and flexible document syntax ever invented.

XML in a Nutshell is a comprehensive guide to the rapidly growing world of XML. It covers all aspects
of XML, from the most basic syntax rules, to the details of DTD and schema creation, to the APIs you
can use to read and write XML documents in a variety of programming languages.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

What This Book Covers

There are thousands of formally established XML applications from the W3C and other standards
bodies, such as OASIS and the Object Management Group. There are even more informal,
unstandardized applications from individuals and corporations, such as Microsoft's Channel Definition
Format and John Guajardo's Mind Reading Markup Language. This book cannot cover them all, any
more than a book on Java could discuss every program that has ever been or might ever be written
in Java. This book focuses primarily on XML itself. It covers the fundamental rules that all XML
documents and authors must adhere to, from a web designer who uses SMIL to add animations to
web pages to a C++ programmer who uses SOAP to exchange serialized objects with a remote
database.

This book also covers generic supporting technologies that have been layered on top of XML and are
used across a wide range of XML applications. These technologies include:

XLink

An attribute-based syntax for hyperlinks between XML and non-XML documents that provide
the simple, one-directional links familiar from HTML, multidirectional links between many
documents, and links between documents to which you don't have write access.

XSLT

An XML application that describes transformations from one document to another in either the
same or different XML vocabularies.

XPointer

A syntax for URI fragment identifiers that selects particular parts of the XML document referred
to by the URI-often used in conjunction with an XLink.

XPath

A non-XML syntax used by both XPointer and XSLT for identifying particular pieces of XML
documents. For example, an XPath can locate the third address element in the document or all
elements with an email attribute whose value is elharo@metalab.unc.edu.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XInclude

A means of assembling large XML documents by combining other complete documents and
document fragments.

Namespaces

A means of distinguishing between elements and attributes from different XML vocabularies
that have the same name; for instance, the title of a book and the title of a web page in a web
page about books.

Schemas

An XML vocabulary for describing the permissible contents of XML documents from other XML
vocabularies.

SAX

The Simple API for XML, an event-based application programming interface implemented by
many XML parsers.

DOM

The Document Object Model, a language-neutral, tree-oriented API that treats an XML
document as a set of nested objects with various properties.

XHTML

An XMLized version of HTML that can be extended with other XML applications, such as MathML
and SVG.

RDDL

The Resource Directory Description Language, an XML application based on XHTML for
documents placed at the end of namespace URLs.

All these technologies, whether defined in XML (XLinks, XSLT, namespaces, schemas, XHTML,
XInclude, and RDDL) or in another syntax (XPointers, XPath, SAX, and DOM), are used in many
different XML applications.

This book does not provide in-depth coverage of XML applications that are relevant to only some
users of XML, such as:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SVG

Scalable Vector Graphics, a W3C-endorsed standard XML encoding of line art.

MathML

The Mathematical Markup Language, a W3C-endorsed standard XML application used for
embedding equations in web pages and other documents.

RDF

The Resource Description Framework, a W3C-standard XML application used for describing
resources, with a particular focus on the sort of metadata one might find in a library card
catalog.

Occasionally we use one or more of these applications in an example, but we do not cover all aspects
of the relevant vocabulary in depth. While interesting and important, these applications (and
thousands more like them) are intended primarily for use with special software that knows their
formats intimately. For instance, most graphic designers do not work directly with SVG. Instead, they
use their customary tools, such as Adobe Illustrator, to create SVG documents. They may not even
know they're using XML.

This book focuses on standards that are relevant to almost all developers working with XML. We
investigate XML technologies that span a wide range of XML applications, not those that are relevant
only within a few restricted domains.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

What's New in the Third Edition

XML has not stood still in the two years since the second edition of XML in a Nutshell was published.
The single most obvious change is that this edition now covers XML 1.1. However, the genuine
changes in XML 1.1 are not as large as a .1 version number increase would imply. In fact, if you don't
speak Mongolian, Burmese, Amharic, Cambodian, or a few other less common languages, there's
very little new material of interest in XML 1.1. In almost every way that practically matters, XML 1.0
and 1.1 are the same. Certainly there's a lot less difference between XML 1.0 and XML 1.1 than there
was between Java 1.0 and Java 1.1. Therefore, we will mostly discuss XML in this book as one unified
thing, and only refer specifically to XML 1.1 on those rare occasions where the two versions are in
fact different. Probably about 98% of this book applies equally well to both XML 1.0 and XML 1.1.

We have also added a new chapter covering XInclude, a recent W3C invention for assembling large
documents out of smaller documents and pieces thereof. Elliotte is responsible for almost half of the
early implementations of XInclude, as well as having written possibly the first book that used
XInclude as an integral part of the production process, so it's a subject of particular interest to us.
Other chapters throughout the book have been rewritten to reflect the impact of XML 1.1 on their
subject matter, as well as independent changes their technologies have undergone in the last two
years. Many topics have been upgraded to the latest versions of various specifications, including:

SAX 2.0.1

Namespaces 1.1

DOM Level 3

XPointer 1.0

Unicode 4.0.1

Finally, many small errors and omissions were corrected throughout the book.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Organization of the Book

Part I, introduces the fundamental standards that form the essential core of XML to which all XML
applications and software must adhere. It teaches you about well-formed XML, DTDs, namespaces,
and Unicode as quickly as possible.

Part II, explores technologies that are used mostly for narrative XML documents, such as web pages,
books, articles, diaries, and plays. You'll learn about XSLT, CSS, XSL-FO, XLinks, XPointers, XPath,
XInclude, and RDDL.

One of the most unexpected developments in XML was its enthusiastic adoption for data-heavy
structured documents such as spreadsheets, financial statistics, mathematical tables, and software
file formats. Part III, explores the use of XML for such applications. This part focuses on the tools and
APIs needed to write software that processes XML, including SAX, DOM, and schemas.

Finally, Part IV, is a series of quick-reference chapters that form the core of any Nutshell Handbook.
These chapters give you detailed syntax rules for the core XML technologies, including XML, DTDs,
schemas, XPath, XSLT, SAX, and DOM. Turn to this section when you need to find out the precise
syntax quickly for something you know you can do but don't remember exactly how to do.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Conventions Used in This Book

Constant width is used for:

Anything that might appear in an XML document, including element names, tags, attribute
values, entity references, and processing instructions.

Anything that might appear in a program, including keywords, operators, method names, class
names, and literals.

Constant width bold is used for:

User input.

Emphasis in code examples and fragments.

Constant width italic is used for:

Replaceable elements in code statements.

Italic is used for:

New terms where they are defined.

Emphasis in body text.

Pathnames, filenames, and program names. (However, if the program name is also the name of
a Java class, it is written in constant-width font, like other class names.)

Host and domain names (cafeconleche.org).

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

Significant code fragments, complete programs, and documents are generally placed into a separate
paragraph, like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<?xml version="1.0"?>

<?xml-stylesheet href="person.css" type="text/css"?>

<person>

 Alan Turing

</person>

XML is case-sensitive. The PERSON element is not the same thing as the person or Person element.

Case-sensitive languages do not always allow authors to adhere to standard English grammar. It is
usually possible to rewrite the sentence so the two do not conflict, and, when possible, we have
endeavored to do so. However, on rare occasions when there is simply no way around the problem,
we let standard English come up the loser.

Finally, although most of the examples used here are toy examples unlikely to be reused, a few have
real value. Please feel free to reuse them or any parts of them in your own code. No special
permission is required. As far as we are concerned, they are in the public domain (although the same
is definitely not true of the explanatory text).

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Request for Comments

We enjoy hearing from readers with general comments about how this book could be better, specific
corrections, or topics you would like to see covered. You can reach the authors by sending email to
elharo@metalab.unc.edu and smeans@ewm.biz. Please realize, however, that we each receive
several hundred pieces of email a day and cannot respond to everyone personally. For the best
chance of getting a personal response, please identify yourself as a reader of this book. Also, please
send the message from the account you want us to reply to and make sure that your reply-to
address is properly set. There's nothing so frustrating as spending an hour or more carefully
researching the answer to an interesting question and composing a detailed response, only to have it
bounce because the correspondent sent the message from a public terminal and neglected to set the
browser preferences to include their actual email address.

The information in this book has been tested and verified, but you may find that features have
changed (or you may even find mistakes). We believe the old saying, "If you like this book, tell your
friends. If you don't like it, tell us." We're especially interested in hearing about mistakes. As hard as
the authors and editors worked on this book, inevitably there are a few mistakes and typographical
errors that slipped by us. If you find a mistake or a typo, please let us know so we can correct it in a
future printing. Please send any errors you find directly to the authors at the previously listed email
addresses.

You can also address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web site for the book, where we list errata, examples, and any additional information. You
can access this site at:

http://www.cafeconleche.org/books/xian3/

Before reporting errors, please check this web site to see if we have already posted a fix. To ask
technical questions or comment on the book, you can send email to the authors directly or send your
questions to the publisher at:

bookquestions@oreilly.com

For more information about other O'Reilly books, conferences, software, Resource Centers, and the
O'Reilly Network, see the web sites at:

http://www.oreilly.com
http://xml.oreilly.com
http://www.xml.com

http://www.cafeconleche.org/books/xian3/
http://www.oreilly.com
http://xml.oreilly.com
http://www.xml.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Acknowledgments

Many people were involved in the production of this book. The original editor, John Posner, got this
book rolling and provided many helpful comments that substantially improved the book. When John
moved on, Laurie Petrycki shepherded this book to its completion. Simon St.Laurent took up the
mantle of editor for the second and third editions. The eagle-eyed Jeni Tennison read the entire
manuscript from start to finish and caught many errors, large and small. Without her attention, this
book would not be nearly as accurate. Stephen Spainhour deserves special thanks for his work on the
reference section. His efforts in organizing and reviewing material helped create a better book. We'd
like to thank Matt Sergeant, Didier P. H. Martin, Steven Champeon, and Norm Walsh for their
thorough technical review of the manuscript and thoughtful suggestions. James Kass's Code2000 and
Code2001 fonts were invaluable in producing Chapter 27.

We'd also like to thank everyone who has worked so hard to make XML such a success over the last
few years and thereby given us something to write about. There are so many of these people that we
can only list a few. In alphabetical order we'd like to thank Tim Berners-Lee, Jonathan Borden, Jon
Bosak, Tim Bray, David Brownell, Mike Champion, James Clark, John Cowan, Roy Fielding, Charles
Goldfarb, Jason Hunter, Arnaud Le Hors, Michael Kay, Deborah Lapeyre Keiron Liddle, Murato
Makoto, Eve Maler, Brett McLaughlin, David Megginson, David Orchard, Walter E. Perry, Paul Prescod,
Jonathan Robie, Arved Sandstrom, C. M. Sperberg-McQueen, James Tauber, Henry S. Thompson, B.
Tommie Usdin, Eric van der Vlist, Daniel Veillard, Lauren Wood, and Mark Wutka. Our apologies to
everyone we unintentionally omitted.

Elliotte would like to thank his agent, David Rogelberg, who convinced him that it was possible to
make a living writing books like this rather than working in an office. The entire IBiblio crew has also
helped him to communicate better with his readers in a variety of ways over the last several years.
All these people deserve much thanks and credit. Finally, as always, he offers his largest thanks to
his wife, Beth, without whose love and support this book would never have happened.

Scott would most like to thank his lovely wife, Celia, who has already spent way too much time as a
"computer widow." He would also like to thank his daughter Selene for understanding why Daddy
can't play with her when he's "working" and Skyler for just being himself. Also, he'd like to thank the
team at Enterprise Web Machines for helping him make time to write. Finally, he would like to thank
John Posner for getting him into this, Laurie Petrycki for working with him when things got tough, and
Simon St.Laurent for his overwhelming patience in dealing with an always-overcommitted author.

-Elliotte Rusty Harold
elharo@metalab.unc.edu

-W. Scott Means
smeans@ewm.biz

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Part I: XML Concepts

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 1. Introducing XML
XML, the Extensible Markup Language, is a W3C-endorsed standard for document markup. It defines
a generic syntax used to mark up data with simple, human-readable tags. It provides a standard
format for computer documents that is flexible enough to be customized for domains as diverse as
web sites, electronic data interchange, vector graphics, genealogy, real estate listings, object
serialization, remote procedure calls, voice mail systems, and more.

You can write your own programs that interact with, massage, and manipulate the data in XML
documents. If you do, you'll have access to a wide range of free libraries in a variety of languages
that can read and write XML so that you can focus on the unique needs of your program. Or you can
use off-the-shelf software, such as web browsers and text editors, to work with XML documents.
Some tools are able to work with any XML document. Others are customized to support a particular
XML application in a particular domain, such as vector graphics, and may not be of much use outside
that domain. But the same underlying syntax is used in all cases, even if it's deliberately hidden by
the more user-friendly tools or restricted to a single application.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

1.1 The Benefits of XML

XML is a metamarkup language for text documents. Data are included in XML documents as strings of
text. The data are surrounded by text markup that describes the data. XML's basic unit of data and
markup is called an element. The XML specification defines the exact syntax this markup must follow:
how elements are delimited by tags, what a tag looks like, what names are acceptable for elements,
where attributes are placed, and so forth. Superficially, the markup in an XML document looks a lot
like the markup in an HTML document, but there are some crucial differences.

Most importantly, XML is a metamarkup language. That means it doesn't have a fixed set of tags and
elements that are supposed to work for everybody in all areas of interest for all time. Any attempt to
create a finite set of such tags is doomed to failure. Instead, XML allows developers and writers to
invent the elements they need as they need them. Chemists can use elements that describe
molecules, atoms, bonds, reactions, and other items encountered in chemistry. Real estate agents
can use elements that describe apartments, rents, commissions, locations, and other items needed
for real estate. Musicians can use elements that describe quarter notes, half notes, G-clefs, lyrics,
and other objects common in music. The X in XML stands for Extensible. Extensible means that the
language can be extended and adapted to meet many different needs.

Although XML is quite flexible in the elements it allows, it is quite strict in many other respects. The
XML specification defines a grammar for XML documents that says where tags may be placed, what
they must look like, which element names are legal, how attributes are attached to elements, and so
forth. This grammar is specific enough to allow the development of XML parsers that can read any
XML document. Documents that satisfy this grammar are said to be well-formed. Documents that are
not well-formed are not allowed, any more than a C program that contains a syntax error is allowed.
XML processors reject documents that contain well-formedness errors.

For reasons of interoperability, individuals or organizations may agree to use only certain tags. These
tag sets are called XML applications . An XML application is not a software application that uses XML,
such as Mozilla or Microsoft Word. Rather, it's an application of XML in a particular domain, such as
vector graphics or cooking.

The markup in an XML document describes the structure of the document. It lets you see which
elements are associated with which other elements. In a well-designed XML document, the markup
also describes the document's semantics. For instance, the markup can indicate that an element is a
date or a person or a bar code. In well-designed XML applications, the markup says nothing about
how the document should be displayed. That is, it does not say that an element is bold or italicized or
a list item. XML is a structural and semantic markup language, not a presentation language.

A few XML applications, such as XSL Formatting Objects (XSL-FO), are
designed to describe the presentation of text. However, these are exceptions
that prove the rule. Although XSL-FO does describe presentation, you'd never
write an XSL-FO document directly. Instead, you'd write a more semantically
structured XML document, then use an XSL Transformations stylesheet to
change the structure-oriented XML into presentation-oriented XML.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The markup permitted in a particular XML application can be documented in a schema. Particular
document instances can be compared to the schema. Documents that match the schema are said to
be valid. Documents that do not match are invalid . Validity depends on the schema. That is, whether
a document is valid or invalid depends on which schema you compare it to. Not all documents need
to be valid. For many purposes it is enough that the document be well-formed.

There are many different XML schema languages with different levels of expressivity. The most
broadly supported schema language and the only one defined by the XML specification itself is the
document type definition (DTD). A DTD lists all the legal markup and specifies where and how it may
be included in a document. DTDs are optional in XML. On the other hand, DTDs may not always be
enough. The DTD syntax is quite limited and does not allow you to make many useful statements
such as "This element contains a number," or "This string of text is a date between 1974 and 2032."
The W3C XML Schema Language (which sometimes goes by the misleadingly generic label schemas)
does allow you to express constraints of this nature. Besides these two, there are many other
schema languages from which to choose, including RELAX NG, Schematron, Hook, and Examplotron,
and this is hardly an exhaustive list.

All current schema languages are purely declarative. However, there are always some constraints
that cannot be expressed in anything less than a Turing complete programming language. For
example, given an XML document that represents an order, a Turing complete language is required
to multiply the price of each order_item by its quantity, sum them all up, and verify that the sum
equals the value of the subtotal element. Today's schema languages are also incapable of verifying

extra-document constraints such as "Every SKU element matches the SKU field of a record in the
products table of the inventory database." If you're writing programs to read XML documents, you
can add code to verify statements like these, just as you would if you were writing code to read a
tab-delimited text file. The difference is that XML parsers present the data in a much more
convenient format and do more of the work for you so you have to write less custom code.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

1.2 What XML Is Not

XML is a markup language, and it is only a markup language. It's important to remember that. The
XML hype has gotten so extreme that some people expect XML to do everything up to and including
washing the family dog.

First of all, XML is not a programming language. There's no such thing as an XML compiler that reads
XML files and produces executable code. You might perhaps define a scripting language that used a
native XML format and was interpreted by a binary program, but even this application would be
unusual. XML can be used as a format for instructions to programs that do make things happen, just
like a traditional program may read a text config file and take different actions depending on what it
sees there. Indeed, there's no reason a config file can't be XML instead of unstructured text. Some
more recent programs use XML config files; but in all cases, it's the program taking action, not the
XML document itself. An XML document by itself simply is. It does not do anything.

At least one XML application, XSL Transformations (XSLT), has been proven to
be Turing complete by construction. See
http://www.unidex.com/turing/utm.htm for one universal Turing machine
written in XSLT.

Second, XML is not a network transport protocol. XML won't send data across the network, any more
than HTML will. Data sent across the network using HTTP, FTP, NFS, or some other protocol might be
encoded in XML; but again there has to be some software outside the XML document that actually
sends the document.

Finally, to mention the example where the hype most often obscures the reality, XML is not a
database. You're not going to replace an Oracle or MySQL server with XML. A database can contain
XML data, either as a VARCHAR or a BLOB or as some custom XML data type, but the database itself
is not an XML document. You can store XML data in a database on a server or retrieve data from a
database in an XML format, but to do this, you need to be running software written in a real
programming language such as C or Java. To store XML in a database, software on the client side will
send the XML data to the server using an established network protocol such as TCP/IP. Software on
the server side will receive the XML data, parse it, and store it in the database. To retrieve an XML
document from a database, you'll generally pass through some middleware product like Enhydra that
makes SQL queries against the database and formats the result set as XML before returning it to the
client. Indeed, some databases may integrate this software code into their core server or provide
plug-ins to do it, such as the Oracle XSQL servlet. XML serves very well as a ubiquitous, platform-
independent transport format in these scenarios. However, it is not the database, and it shouldn't be
used as one.

 < Day Day Up >

http://www.unidex.com/turing/utm.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

1.3 Portable Data

XML offers the tantalizing possibility of truly cross-platform, long-term data formats. It's long been
the case that a document written on one platform is not necessarily readable on a different platform,
or by a different program on the same platform, or even by a future or past version of the same
program on the same platform. When the document can be read, there's no guarantee that all the
information will come across. Much of the data from the original moon landings in the late 1960s and
early 1970s is now effectively lost. Even if you can find a tape drive that can read the now obsolete
tapes, nobody knows what format the data is stored in on the tapes!

XML is an incredibly simple, well-documented, straightforward data format. XML documents are text
and can be read with any tool that can read a text file. Not just the data, but also the markup is text,
and it's present right there in the XML file as tags. You don't have to wonder whether every eighth
byte is random padding, guess whether a four-byte quantity is a two's complement integer or an
IEEE 754 floating point number, or try to decipher which integer codes map to which formatting
properties. You can read the tag names directly to find out exactly what's in the document. Similarly,
since element boundaries are defined by tags, you aren't likely to be tripped up by unexpected line-
ending conventions or the number of spaces that are mapped to a tab. All the important details about
the structure of the document are explicit. You don't have to reverse-engineer the format or rely on
incomplete and often unavailable documentation.

A few software vendors may want to lock in their users with undocumented, proprietary, binary file
formats. However, in the long term, we're all better off if we can use the cleanly documented, well-
understood, easy to parse, text-based formats that XML provides. XML lets documents and data be
moved from one system to another with a reasonable hope that the receiving system will be able to
make sense out of it. Furthermore, validation lets the receiving side check that it gets what it
expects. Java promised portable code; XML delivers portable data. In many ways, XML is the most
portable and flexible document format designed since the ASCII text file.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

1.4 How XML Works

Example 1-1 shows a simple XML document. This particular XML document might be seen in an
inventory-control system or a stock database. It marks up the data with tags and attributes
describing the color, size, bar-code number, manufacturer, name of the product, and so on.

Example 1-1. An XML document

<?xml version="1.0"?>

<product barcode="2394287410">

 <manufacturer>Verbatim</manufacturer>

 <name>DataLife MF 2HD</name>

 <quantity>10</quantity>

 <size>3.5"</size>

 <color>black</color>

 <description>floppy disks</description>

</product>

This document is text and can be stored in a text file. You can edit this file with any standard text
editor such as BBEdit, jEdit, UltraEdit, Emacs, or vi. You do not need a special XML editor. Indeed, we
find most general-purpose XML editors to be far more trouble than they're worth and much harder to
use than simply editing documents in a text editor.

Programs that actually try to understand the contents of the XML document-that is, do more than
merely treat it as any other text file-will use an XML parser to read the document. The parser is
responsible for dividing the document into individual elements, attributes, and other pieces. It passes
the contents of the XML document to an application piece by piece. If at any point the parser detects
a violation of the well-formedness rules of XML, then it reports the error to the application and stops
parsing. In some cases, the parser may read further in the document, past the original error, so that
it can detect and report other errors that occur later in the document. However, once it has detected
the first well-formedness error, it will no longer pass along the contents of the elements and
attributes it encounters.

Individual XML applications normally dictate more precise rules about exactly which elements and
attributes are allowed where. For instance, you wouldn't expect to find a G_Clef element when

reading a biology document. Some of these rules can be precisely specified with a schema written in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

any of several languages, including the W3C XML Schema Language, RELAX NG, and DTDs. A
document may contain a URL indicating where the schema can be found. Some XML parsers will
notice this and compare the document to its schema as they read it to see if the document satisfies
the constraints specified there. Such a parser is called a validating parser . A violation of those
constraints is called a validity error, and the whole process of checking a document against a schema
is called validation. If a validating parser finds a validity error, it will report it to the application on
whose behalf it's parsing the document. This application can then decide whether it wishes to
continue parsing the document. However, validity errors are not necessarily fatal (unlike well-
formedness errors), and an application may choose to ignore them. Not all parsers are validating
parsers. Some merely check for well-formedness.

The application that receives data from the parser may be:

A web browser, such as Netscape Navigator or Internet Explorer, that displays the document to
a reader

A word processor, such as StarOffice Writer, that loads the XML document for editing

A database, such as Microsoft SQL Server, that stores the XML data in a new record

A drawing program, such as Adobe Illustrator, that interprets the XML as two-dimensional
coordinates for the contents of a picture

A spreadsheet, such as Gnumeric, that parses the XML to find numbers and functions used in a
calculation

A personal finance program, such as Microsoft Money, that sees the XML as a bank statement

A syndication program that reads the XML document and extracts the headlines for today's
news

A program that you yourself wrote in Java, C, Python, or some other language that does exactly
what you want it to do

Almost anything else

XML is an extremely flexible format for data. It is used for all of this and a lot more. These are real
examples. In theory, any data that can be stored in a computer can be stored in XML. In practice,
XML is suitable for storing and exchanging any data that can plausibly be encoded as text. It's only
really unsuitable for digitized data such as photographs, recorded sound, video, and other very large
bit sequences.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

1.5 The Evolution of XML

XML is a descendant of SGML, the Standard Generalized Markup Language. The language that would
eventually become SGML was invented by Charles F. Goldfarb, Ed Mosher, and Ray Lorie at IBM in
the 1970s and developed by several hundred people around the world until its eventual adoption as
ISO standard 8879 in 1986. SGML was intended to solve many of the same problems XML solves in
much the same way XML solves them. It is a semantic and structural markup language for text
documents. SGML is extremely powerful and achieved some success in the U.S. military and
government, in the aerospace sector, and in other domains that needed ways of efficiently managing
technical documents that were tens of thousands of pages long.

SGML's biggest success was HTML, which is an SGML application. However, HTML is just one SGML
application. It does not have or offer anywhere near the full power of SGML itself. Since it restricts
authors to a finite set of tags designed to describe web pages-and describes them in a fairly
presentation oriented way at that-it's really little more than a traditional markup language that has
been adopted by web browsers. It doesn't lend itself to use beyond the single application of web page
design. You would not use HTML to exchange data between incompatible databases or to send
updated product catalogs to retailer sites, for example. HTML does web pages, and it does them very
well, but it only does web pages.

SGML was the obvious choice for other applications that took advantage of the Internet but were not
simple web pages for humans to read. The problem was that SGML is complicated-very, very
complicated. The official SGML specification is over 150 very technical pages. It covers many special
cases and unlikely scenarios. It is so complex that almost no software has ever implemented it fully.
Programs that implemented or relied on different subsets of SGML were often incompatible with each
other. The special feature one program considered essential would be considered extraneous fluff and
omitted by the next program.

In 1996, Jon Bosak, Tim Bray, C. M. Sperberg-McQueen, James Clark, and several others began work
on a "lite" version of SGML that retained most of SGML's power while trimming a lot of the features
that had proven redundant, too complicated to implement, confusing to end users, or simply not
useful over the previous 20 years of experience with SGML. The result, in February of 1998, was XML
1.0, and it was an immediate success. Many developers who knew they needed a structural markup
language but hadn't been able to bring themselves to accept SGML's complexity adopted XML whole-
heartedly. It was used in domains ranging from legal court filings to hog farming.

However, XML 1.0 was just the beginning. The next standard out of the gate was Namespaces in
XML, an effort to allow markup from different XML applications to be used in the same document
without conflicting. Thus a web page about books could have a title element that referred to the
title of the page and title elements that referred to the title of a book, and the two would not

conflict.

Next up was the Extensible Stylesheet Language (XSL), an XML application for transforming XML
documents into a form that could be viewed in web browsers. This soon split into XSL
Transformations (XSLT) and XSL Formatting Objects (XSL-FO). XSLT has become a general-purpose
language for transforming one XML document into another, whether for web page display or some
other purpose. XSL-FO is an XML application for describing the layout of both printed pages and web

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pages that approaches PostScript for its power and expressiveness.

However, XSL is not the only option for styling XML documents. Cascading Style Sheets (CSS) were
already in use for HTML documents when XML was invented, and they proved to be a reasonable fit
to XML as well. With the advent of CSS Level 2, the W3C made styling XML documents an explicit
goal for CSS. The pre-existing Document Style Sheet and Semantics Language (DSSSL) was also
adopted from its roots in the SGML world to style XML documents for print and the Web.

The Extensible Linking Language, XLink, began by defining more powerful linking constructs that
could connect XML documents in a hypertext network that made HTML's A tag look like it is an

abbreviation for "anemic." It also split into two separate standards: XLink for describing the
connections between documents and XPointer for addressing the individual parts of an XML
document. At this point, it was noticed that both XPointer and XSLT were developing fairly
sophisticated yet incompatible syntaxes to do exactly the same thing: identify particular elements in
an XML document. Consequently, the addressing parts of both specifications were split off and
combined into a third specification, XPath. A little later yet another part of XLink budded off to
become XInclude, a syntax for building complex documents by combining individual documents and
document fragments.

Another piece of the puzzle was a uniform interface for accessing the contents of the XML document
from inside a Java, JavaScript, or C++ program. The simplest API was merely to treat the document
as an object that contained other objects. Indeed, work was already underway inside and outside the
W3C to define such a Document Object Model (DOM) for HTML. Expanding this effort to cover XML
was not hard.

Outside the W3C, David Megginson, Peter Murray-Rust, and other members of the xml-dev mailing
list recognized that third-party XML parsers, while all compatible in the documents they could parse,
were incompatible in their APIs. This led to the development of the Simple API for XML, or SAX. In
2000, SAX2 was released to add greater configurability and namespace support, and a cleaner API.

One of the surprises during the evolution of XML was that developers adopted it more for record-like
structures, such as serialized objects and database tables, than for the narrative structures for which
SGML had traditionally been used. DTDs worked very well for narrative structures, but they had some
limits when faced with the record-like structures developers were actually creating. In particular, the
lack of data typing and the fact that DTDs were not themselves XML documents were perceived as
major problems. A number of companies and individuals began working on schema languages that
addressed these deficiencies. Many of these proposals were submitted to the W3C, which formed a
working group to try to merge the best parts of all of these and come up with something greater than
the sum of its parts. In 2001, this group released Version 1.0 of the W3C XML Schema Language.
Unfortunately, this language proved overly complex and burdensome. Consequently, several
developers went back to the drawing board to invent cleaner, simpler, more elegant schema
languages, including RELAX NG and Schematron.

Eventually, it became apparent that XML 1.0, XPath, the W3C XML Schema Language, SAX, and DOM
all had similar but subtly different conceptual models of the structure of an XML document. For
instance, XPath and SAX don't consider CDATA sections to be anything more than syntax sugar, but

DOM does treat them differently than plain-text nodes. Thus, the W3C XML Core Working Group
began work on an XML Information Set that all these standards could rely on and refer to.

As more and more XML documents of higher and higher value began to be transmitted across the
Internet, a need was recognized to secure and authenticate these transactions. Besides using
existing mechanisms such as SSL and HTTP digest authentication built into the underlying protocols,
formats were developed to secure the XML documents themselves that operate over a document's

http://lib.ommolketab.ir
http://lib.ommolketab.ir

entire life span rather than just while it's in transit. XML encryption, a standard XML syntax for
encrypting digital content, including portions of XML documents, addresses the need for
confidentiality. XML Signature, a joint IETF and W3C standard for digitally signing content and
embedding those signatures in XML documents, addresses the problem of authentication. Because
digital signature and encryption algorithms are defined in terms of byte sequences rather than XML
data models, both XML Signature and XML Encryption are based on Canonical XML, a standard
serialization format that removes all insignificant differences between documents, such as whitespace
inside tags and whether single or double quotes delimit attribute values.

Through all this, the core XML 1.0 specification remained unchanged. All of this new functionality was
layered on top of XML 1.0 rather than modifying it at the foundation. This is a testament to the solid
design and strength of XML. However, XML 1.0 itself was based on Unicode 2.0, and as Unicode
continued to evolve and add new scripts such as Mongolian, Cambodian, and Burmese, XML was
falling behind. Primarily for this reason, XML 1.1 was released in early 2004. It should be noted,
however, that XML 1.1 offers little to interest developers working in English, Spanish, Japanese,
Chinese, Arabic, Russian, French, German, Dutch, or the many other languages already supported in
Unicode 2.0.

Doubtless, many new extensions of XML remain to be invented. And even this rich collection of
specifications only addresses technologies that are core to XML. Much more development has been
done and continues at an accelerating pace on XML applications, including SOAP, SVG, XHTML,
MathML, Atom, XForms, WordprocessingML, and thousands more. XML has proven itself a solid
foundation for many diverse technologies.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 2. XML Fundamentals
This chapter shows you how to write simple XML documents. You'll see that an XML document is built
from text content marked up with text tags such as <SKU>, <Record_ID>, and <author> that look

superficially like HTML tags. However, in HTML you're limited to about a hundred predefined tags that
describe web page formatting. In XML, you can create as many tags as you need. Furthermore, these
tags will mostly describe the type of content they contain rather than formatting or layout
information. In XML you don't say that something is italicized or indented or bold, you say that it's a
book or a biography or a calendar.

Although XML is looser than HTML in regard to which tags it allows, it is much stricter about where
those tags are placed and how they're written. In particular, all XML documents must be well-formed.
Well-formedness rules specify constraints such as "Every start-tag must have a matching end-tag,"
and "Attribute values must be quoted." These rules are unbreakable, which makes parsing XML
documents easier and writing them a little harder, but they still allow an almost unlimited flexibility of
expression.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.1 XML Documents and XML Files

An XML document contains text, never binary data. It can be opened with any program that knows
how to read a text file. Example 2-1 is close to the simplest XML document imaginable. Nonetheless,
it is a well-formed XML document. XML parsers can read it and understand it (at least as far as a
computer program can be said to understand anything).

Example 2-1. A very simple yet complete XML document

<person>

 Alan Turing

</person>

In the most common scenario, this document would be the entire contents of a file named
person.xml, or perhaps 2-1.xml. However, XML is not picky about the filename. As far as the parser
is concerned, this file could be called person.txt, person, or Hey you, there's some XML in this here
file! Your operating system may or may not like these names, but an XML parser won't care. The
document might not even be in a file at all. It could be a record or a field in a database. It could be
generated on the fly by a CGI program in response to a browser query. It could even be stored in
more than one file, although that's unlikely for such a simple document. If it is served by a web
server, it will probably be assigned the MIME media type application/xml or text/xml. However,

specific XML applications may use more specific MIME media types, such as
application/mathml+xml, application/xslt+xml, image/svg+xml, text/vnd.wap.wml, or even
text/html (in very special cases).

For generic XML documents, application/xml should be preferred to
text/xml, although many web servers come configured out of the box to use
text/xml. text/xml uses the ASCII character set as a default, which is

incorrect for most XML documents.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.2 Elements, Tags, and Character Data

The document in Example 2-1 is composed of a single element named person. The element is
delimited by the start-tag <person> and the end-tag </person>. Everything between the start-tag

and the end-tag of the element (exclusive) is called the element's content. The content of this
element is the text:

 Alan Turing

The whitespace is part of the content, although many applications will choose to ignore it. <person>
and </person> are markup. The string "Alan Turing" and its surrounding whitespace are character

data. The tag is the most common form of markup in an XML document, but there are other kinds
we'll discuss later.

2.2.1 Tag Syntax

Superficially, XML tags look like HTML tags. Start-tags begin with < and end-tags begin with </. Both
of these are followed by the name of the element and are closed by >. However, unlike HTML tags,
you are allowed to make up new XML tags as you go along. To describe a person, use <person> and
</person> tags. To describe a calendar, use <calendar> and </calendar> tags. The names of the

tags generally reflect the type of content inside the element, not how that content will be formatted.

2.2.1.1 Empty elements

There's also a special syntax for empty elements, elements that have no content. Such an element
can be represented by a single empty-element tag that begins with < but ends with />. For instance,

in XHTML, an XMLized reformulation of standard HTML, the line-break and horizontal-rule elements
are written as
 and <hr /> instead of
 and <hr>. These are exactly equivalent to

</br> and <hr></hr>, however. Which form you use for empty elements is completely up to

you. However, what you cannot do in XML and XHTML (unlike HTML) is use only the start-tag-for
instance
 or <hr>-without using the matching end-tag. That would be a well-formedness error.

2.2.1.2 Case-sensitivity

XML, unlike HTML, is case-sensitive. <Person> is not the same as <PERSON> or <person>. If you open
an element with a <person> tag, you can't close it with a </PERSON> tag. You're free to use upper- or

lowercase or both as you choose. You just have to be consistent within any one element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2.2 XML Trees

Let's look at a slightly more complicated XML document. Example 2-2 is a person element that

contains more information suitably marked up to show its meaning.

Example 2-2. A more complex XML document describing a person

<person>

 <name>

 <first_name>Alan</first_name>

 <last_name>Turing</last_name>

 </name>

 <profession>computer scientist</profession>

 <profession>mathematician</profession>

 <profession>cryptographer</profession>

</person>

2.2.2.1 Parents and children

The XML document in Example 2-2 is still composed of one person element. However, now this

element doesn't merely contain undifferentiated character data. It contains four child elements: a
name element and three profession elements. The name element contains two child elements of its
own, first_name and last_name.

The person element is called the parent of the name element and the three profession elements.
The name element is the parent of the first_name and last_name elements. The name element and
the three profession elements are sometimes called each other's siblings . The first_name and
last_name elements are also siblings.

As in human society, any one parent may have multiple children. However, unlike human society,
XML gives each child exactly one parent, not two or more. Each element (with one exception we'll
note shortly) has exactly one parent element. That is, it is completely enclosed by another element.
If an element's start-tag is inside some element, then its end-tag must also be inside that element.
Overlapping tags, as in this common example from HTML, are
prohibited in XML. Since the em element begins inside the strong element, it must also finish inside
the strong element.

2.2.2.2 The root element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Every XML document has one element that does not have a parent. This is the first element in the
document and the element that contains all other elements. In Examples Example 2-1 and Example
2-2, the person element filled this role. It is called the root element of the document . It is also

sometimes called the document element. Every well-formed XML document has exactly one root
element. Since elements may not overlap, and since all elements except the root have exactly one
parent, XML documents form a data structure programmers call a tree. Figure 2-1 diagrams this
relationship for Example 2-2. Each gray box represents an element. Each black box represents
character data. Each arrow represents a containment relationship.

Figure 2-1. A tree diagram for Example 2-2

2.2.3 Mixed Content

In Example 2-2, the contents of the first_name, last_name, and profession elements were
character data; that is, text that does not contain any tags. The contents of the person and name

elements were child elements and some whitespace that most applications will ignore. This dichotomy
between elements that contain only character data and elements that contain only child elements
(and possibly a little whitespace) is common in record-like documents. However, XML can also be
used for more free-form, narrative documents, such as business reports, magazine articles, student
essays, short stories, web pages, and so forth, as shown by Example 2-3.

Example 2-3. A narrative-organized XML document

<biography>

 <paragraph>

 <name><first_name>Alan</first_name> <last_name>Turing</last_name>

 </name> was one of the first people to truly deserve the name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <emphasize>computer scientist</emphasize>. Although his contributions

 to the field are too numerous to list, his best-known are the

 eponymous <emphasize>Turing Test</emphasize> and

 <emphasize>Turing Machine</emphasize>.

 </paragraph>

 <definition>The <term>Turing Test</term> is to this day the standard

 test for determining whether a computer is truly intelligent. This

 test has yet to be passed. </definition>

 <definition>A <term>Turing Machine</term> is an abstract finite

 state automaton with infinite memory that can be proven equivalent

 to any any other finite state automaton with arbitrarily large memory.

 Thus what is true for one Turing machine is true for all Turing

 machines no matter how implemented.

 </definition>

 <paragraph>

 <name><last_name>Turing</last_name></name> was also an accomplished

 <profession>mathematician</profession> and

 <profession>cryptographer</profession>. His assistance

 was crucial in helping the Allies decode the German Enigma

 cipher. He committed suicide on <date><month>June</month>

 <day>7</day>, <year>1954</year></date> after being

 convicted of homosexuality and forced to take female

 hormone injections.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </paragraph>

</biography>

The root element of this document is biography. The biography contains paragraph and
definition child elements. It also contains some whitespace. The paragraph and definition
elements contain still other elements, including term, emphasize, name, and profession. They also
contain some unmarked-up character data. Elements like paragraph and definition that contain

child elements and non-whitespace character data are said to have mixed content. Mixed content is
common in XML documents containing articles, essays, stories, books, novels, reports, web pages,
and anything else that's organized as a written narrative. Mixed content is less common and harder
to work with in computer-generated and processed XML documents used for purposes such as
database exchange, object serialization, persistent file formats, and so on. One of the strengths of
XML is the ease with which it can be adapted to the very different requirements of human-authored
and computer-generated documents.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.3 Attributes

XML elements can have attributes. An attribute is a name-value pair attached to the element's start-
tag. Names are separated from values by an equals sign and optional whitespace. Values are
enclosed in single or double quotation marks. For example, this person element has a born attribute
with the value 1912-06-23 and a died attribute with the value 1954-06-07:

<person born="1912-06-23" died="1954-06-07">

 Alan Turing

</person>

This next element is exactly the same, as far as an XML parser is concerned. It simply uses single
quotes instead of double quotes, puts some extra whitespace around the equals signs, and reorders
the attributes.

<person died = '1954-06-07' born = '1912-06-23' >

 Alan Turing

</person>

The whitespace around the equals signs is purely a matter of personal aesthetics. The single quotes
may be useful in cases where the attribute value itself contains a double quote. Attribute order is not
significant.

Example 2-4 shows how attributes might be used to encode much of the same information given in
the record-like document of Example 2-2.

Example 2-4. An XML document that describes a person using attributes

<person>

 <name first="Alan" last="Turing"/>

 <profession value="computer scientist"/>

 <profession value="mathematician"/>

 <profession value="cryptographer"/>

</person>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This raises the question of when and whether one should use child elements or attributes to hold
information. This is a subject of heated debate. Some informaticians maintain that attributes are for
metadata about the element while elements are for the information itself. Others point out that it's
not always so obvious what's data and what's metadata. Indeed, the answer may depend on where
the information is put to use.

What's undisputed is that each element may have no more than one attribute with a given name.
That's unlikely to be a problem for a birth date or a death date; it would be an issue for a profession,
name, address, or anything else of which an element might plausibly have more than one.
Furthermore, attributes are quite limited in structure. The value of the attribute is simply
undifferentiated text. The division of a date into a year, month, and day with hyphens in the earlier
code snippets is at the limits of the substructure that can reasonably be encoded in an attribute. An
element-based structure is a lot more flexible and extensible. Nonetheless, attributes are certainly
more convenient in some applications. Ultimately, if you're designing your own XML vocabulary, it's
up to you to decide when to use which.

Attributes are also useful in narrative documents, as Example 2-5 demonstrates. Here it's perhaps a
little more obvious what belongs to elements and what to attributes. The raw text of the narrative is
presented as character data inside elements. Additional information annotating that data is presented
as attributes. This includes source references, image URLs, hyperlinks, and birth and death dates.
Even here, however, there's more than one way to do it. For instance, the footnote numbers could be
attributes of the footnote element rather than character data.

Example 2-5. A narrative XML document that uses attributes

<biography xmlns:xlink="http://www.w3.org/1999/xlink/">

 <image source="http://www.turing.org.uk/turing/pi1/busgroup.jpg"

 width="152" height="345"/>

 <paragraph><person born='1912-06-23'

 died='1954-06-07'><first_name>Alan</first_name>

 <last_name>Turing</last_name> </person> was one of the first people

 to truly deserve the name <emphasize>computer scientist</emphasize>.

 Although his contributions to the field were too numerous to list,

 his best-known are the eponymous <emphasize xlink:type="simple"

 xlink:href="http://cogsci.ucsd.edu/~asaygin/tt/ttest.html">Turing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Test</emphasize> and <emphasize xlink:type="simple"

 xlink:href="http://mathworld.wolfram.com/TuringMachine.html">Turing

 Machine</emphasize>.</paragraph>

 <paragraph><last_name>Turing</last_name> was also an

 accomplished <profession>mathematician</profession> and

 <profession>cryptographer</profession>. His assistance

 was crucial in helping the Allies decode the German Enigma

 machine.<footnote source="The Ultra Secret, F.W. Winterbotham,

 1974">1</footnote></paragraph>

 <paragraph>

 <last_name>Turing</last_name> committed suicide on

 <date><month>June</month> <day>7</day>, <year>1954</year></date>

 after being convicted of homosexuality and forced to take female

 hormone injections.<footnote source="Alan Turing: the Enigma,

 Andrew Hodges, 1983">2</footnote>

 </paragraph>

</biography>

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.4 XML Names

The XML specification can be quite legalistic and picky at times. Nonetheless, it tries to be efficient
where possible. One way it does that is by reusing the same rules for different items where possible.
For example, the rules for XML element names are also the rules for XML attribute names, as well as
for the names of several less common constructs. Collectively, these are referred to simply as XML
names.

Element and other XML names may contain essentially any alphanumeric character. This includes the
standard English letters A through Z and a through z as well as the digits 0 through 9. XML names

may also include non-English letters, numbers, and ideograms, such as ö, ç, , . They may also
include these three punctuation characters:

_ The underscore
- The hyphen
. The period

XML names may not contain other punctuation characters such as quotation marks, apostrophes,
dollar signs, carets, percent symbols, and semicolons. The colon is allowed, but its use is reserved for
namespaces as discussed in Chapter 4. XML names may not contain whitespace of any kind, whether
a space, a carriage return, a line feed, a nonbreaking space, and so forth. Finally, all names
beginning with the string "XML" (in any combination of case) are reserved for standardization in W3C
XML-related specifications.

The primary new feature in XML 1.1 is that XML names may contain characters
only defined in Unicode 3.0 and later. XML 1.0 is limited to the characters
defined as of Unicode 2.0. Additional scripts enabled for names by XML 1.1
include Burmese, Mongolian, Thaana, Cambodian, Yi, and Amharic. (All of these
scripts are legal in text content in XML 1.0. You just can't use them to name
elements, attributes, and entities.) XML 1.1 offers little to no benefit to
developers who don't need to use these scripts in their markup.

XML 1.1 also allows names to contain some uncommon symbols such as the
musical symbol for a six-string fretboard and even a million or so code points
that aren't actually mapped to particular characters. However, taking
advantage of this is highly unwise. We strongly recommend that even in XML
1.1 you limit your names to letters, digits, ideographs, and the specifically
allowed ASCII punctuation marks.

XML names may only start with letters, ideograms, or the underscore character. They may not start
with a number, hyphen, or period. There is no limit to the length of an element or other XML name.
Thus these are all well-formed elements:

<Drivers_License_Number>98 NY 32</Drivers_License_Number>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<month-day-year>7/23/2001</month-day-year>

<first_name>Alan</first_name>

<_4-lane>I-610</_4-lane>

<téléphone>011 33 91 55 27 55 27</téléphone>

These are not acceptable elements:

<Driver's_License_Number>98 NY 32</Driver's_License_Number>

<month/day/year>7/23/2001</month/day/year>

<first name>Alan</first name>

<4-lane>I-610</4-lane>

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.5 References

The character data inside an element must not contain a raw unescaped opening angle bracket (<).

This character is always interpreted as beginning a tag. If you need to use this character in your text,
you can escape it using the entity reference <, the numeric character reference <, or the
hexadecimal numeric character reference <. When a parser reads the document, it replaces
any <, `, or < references it finds with the actual < character. However, it will not

confuse the references with the starts of tags. For example:

<SCRIPT LANGUAGE="JavaScript">

 if (location.host.toLowerCase().indexOf("ibiblio") < 0) {

 location.href="http://ibiblio.org/xml/";

 }

</SCRIPT>

Character data may not contain a raw unescaped ampersand (&) either. This is always interpreted as
beginning an entity reference. However, the ampersand may be escaped using the & entity

reference like this:

<company>W.L. Gore & Associates</company>

The ampersand is code point 38 so it could also be written with the numeric character reference
&:

<company>W.L. Gore & Associates</company>

Entity references such as & and character references such as < are markup. When an

application parses an XML document, it replaces this particular markup with the actual character or
characters the reference refers to.

XML predefines exactly five entity references. These are:

<

The less-than sign, a.k.a. the opening angle bracket (<)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

&

The ampersand (&)

>

The greater-than sign, a.k.a. the closing angle bracket (>)

"

The straight, double quotation marks (")

'

The apostrophe, a.k.a. the straight single quote (')

Only < and & must be used instead of the literal characters in element content. The others
are optional. " and ' are useful inside attribute values where a raw " or ' might be
misconstrued as ending the attribute value. For example, this image tag uses the ' entity

reference to fill in the apostrophe in "O'Reilly:"

<image source='oreilly_koala3.gif' width='122' height='66'

 alt='Powered by O'Reilly Books'

/>

Although there's no possibility of an unescaped greater-than sign (>) being misinterpreted as closing
a tag it wasn't meant to close, > is allowed mostly for symmetry with <.

There is one unusual case where the greater-than sign does need to be
escaped. The three-character sequence]]> cannot appear in character data.
Instead you have to write it as]]>.

In addition to the five predefined entity references, you can define others in the document type
definition. We'll discuss how to do this in Chapter 3.

Entity and character references can only be used in element content and attribute values. They
cannot be used in element names, attribute names, or other markup. Text like & or < may

appear inside a comment or a processing instruction. However, in these places it is not resolved. The
parser only replaces references in element content and attribute values. It does not recognize
references in other locations.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.6 CDATA Sections

When an XML document includes samples of XML or HTML source code, the < and & characters in
those samples must be encoded as < and &. The more sections of literal code a document

includes and the longer they are, the more tedious this encoding becomes. Instead you can enclose
each sample of literal code in a CDATA section. A CDATA section is set off by <![CDATA[and]]>.
Everything between the <![CDATA[and the]]> is treated as raw character data. Less-than signs

don't begin tags. Ampersands don't start entity references. Everything is simply character data, not
markup.

For example, in a Scalable Vector Graphics (SVG) tutorial written in XHTML, you might see something
like this:

<p>You can use a default <code>xmlns</code> attribute to avoid

having to add the svg prefix to all your elements:</p>

<pre><![CDATA[

 <svg xmlns="http://www.w3.org/2000/svg"

 width="12cm" height="10cm">

 <ellipse rx="110" ry="130" />

 <rect x="4cm" y="1cm" width="3cm" height="6cm" />

 </svg>

]]></pre>

The SVG source code has been included directly in the XHTML file without carefully replacing each <
with <. The result will be a sample SVG document, not an embedded SVG picture, as might
happen if this example were not placed inside a CDATA section.

The only thing that cannot appear in a CDATA section is the CDATA section end delimiter,]]>.

CDATA sections exist for the convenience of human authors, not for programs. Parsers are not
required to tell you whether a particular block of text came from a CDATA section, from normal
character data, or from character data that contained entity references such as < and &. By

the time you get access to the data, these differences will have been washed away. No code you
write should depend on the difference between them.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.7 Comments

XML documents can be commented so that coauthors can leave notes for each other and themselves,
documenting why they've done what they've done or items that remain to be done. XML comments
are syntactically similar to HTML comments. Just as in HTML, they begin with <!-- and end with the
first occurrence of -->. For example:

<!-- I need to verify and update these links when I get a chance. -->

The double hyphen -- must not appear anywhere inside the comment until the closing -->. In
particular, a three-hyphen close like ---> is specifically forbidden.

Comments may appear anywhere in the character data of a document. They may also appear before
or after the root element. (Comments are not elements, so this does not violate the tree structure or
the one-root element rules for XML.) However, comments may not appear inside a tag or inside
another comment.

Applications that read and process XML documents may or may not pass along information included
in comments. They are certainly free to drop them out if they choose. Do not write documents or
applications that depend on the contents of comments being available. Comments are strictly for
making the raw source code of an XML document more legible to human readers. They are not
intended for computer programs. For this purpose, you should use a processing instruction instead.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.8 Processing Instructions

In HTML, comments are sometimes abused to support nonstandard extensions. For instance, the
contents of the script element are sometimes enclosed in a comment to protect it from display by a

nonscript-aware browser. The Apache web server parses comments in .shtml files to recognize
server-side includes. Unfortunately, these documents may not survive being passed through various
HTML editors and processors with their comments and associated semantics intact. Worse yet, it's
possible for an innocent comment to be misconstrued as input to the application.

XML provides the processing instruction as an alternative means of passing information to particular
applications that may read the document. A processing instruction begins with <? and ends with ?>.
Immediately following the <? is an XML name called the target , possibly the name of the application

for which this processing instruction is intended or possibly just an identifier for this particular
processing instruction. The rest of the processing instruction contains text in a format appropriate for
the applications for which the instruction is intended.

For example, in HTML, a robots META tag is used to tell search-engine and other robots whether and

how they should index a page. The following processing instruction has been proposed as an
equivalent for XML documents:

<?robots index="yes" follow="no"?>

The target of this processing instruction is robots. The syntax of this particular processing instruction
is two pseudo-attributes, one named index and one named follow, whose values are either yes or
no. The semantics of this particular processing instruction are that if the index attribute has the
value yes, then search-engine robots should index this page. If index has the value no, then robots
should not index the page. Similarly, if follow has the value yes, then links from this document will
be followed; if it has the value no, they won't be.

Other processing instructions may have totally different syntaxes and semantics. For instance,
processing instructions can contain an effectively unlimited amount of text. PHP includes large
programs in processing instructions. For example:

<?php

 mysql_connect("database.unc.edu", "clerk", "password");

 $result = mysql("HR", "SELECT LastName, FirstName FROM Employees

 ORDER BY LastName, FirstName");

 $i = 0;

 while ($i < mysql_numrows ($result)) {

 $fields = mysql_fetch_row($result);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 echo "<person>$fields[1] $fields[0] </person>\r\n";

 $i++;

 }

 mysql_close();

?>

Processing instructions are markup, but they're not elements. Consequently, like comments,
processing instructions may appear anywhere in an XML document outside of a tag, including before
or after the root element. The most common processing instruction, xml-stylesheet, is used to

attach stylesheets to documents. It always appears before the root element, as Example 2-6
demonstrates. In this example, the xml-stylesheet processing instruction tells browsers to apply

the CSS stylesheet person.css to this document before showing it to the reader.

Example 2-6. An XML document with a processing instruction in its
prolog

<?xml-stylesheet href="person.css" type="text/css"?>

<person>

 Alan Turing

</person>

The processing instruction names xml, XML, XmL, etc., in any combination of case, are forbidden in

order to avoid confusion with the XML declaration. Otherwise, you're free to pick any legal XML name
for your processing instructions.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.9 The XML Declaration

XML documents should (but do not have to) begin with an XML declaration. The XML declaration looks
like a processing instruction with the name xml and with version, standalone, and encoding

pseudo-attributes. Technically, it's not a processing instruction, though; it's just the XML declaration,
nothing more, nothing less. Example 2-7 demonstrates.

Example 2-7. A very simple XML document with an XML declaration

<?xml version="1.0" encoding="ASCII" standalone="yes"?>

<person>

 Alan Turing

</person>

XML documents do not have to have an XML declaration. However, if an XML document does have an
XML declaration, then that declaration must be the first thing in the document. It must not be
preceded by any comments, whitespace, processing instructions, and so forth. The reason is that an
XML parser uses the first five characters (<?xml) to make some reasonable guesses about the

encoding, such as whether the document uses a single-byte or multibyte character set. The only
thing that may precede the XML declaration is an invisible Unicode byte-order mark. We'll discuss this
further in Chapter 5.

2.9.1 The version Attribute

The version attribute should have the value 1.0. Under very unusual circumstances, it may also
have the value 1.1. Since specifying version="1.1" limits the document to the most recent versions

of only a couple of parsers, and since all XML 1.1 parsers must also support XML 1.0, you don't want
to casually set the version to 1.1.

Don't believe us? First answer a couple of questions:

Do you speak Cambodian, Burmese, Amharic, Mongolian, or Divehi?1.

Does your data contain obsolete, nontext C0 control characters such as vertical tab, form feed,
or bell?

2.

If you answered no to both of these questions, you have absolutely nothing to gain by using XML 1.1.
If you answered yes to either one, then you may have cause to use XML 1.1. XML 1.0 allows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cambodian, Burmese, Amharic, etc. to be used in character data and attribute values. XML 1.1 also
allows these scripts to be used in element and attribute names, which XML 1.0 does not. XML 1.1 also
allows C0 control characters (except null) to be used in character data and attribute values (provided
they're escaped as numeric character references like), which XML 1.0 does not. If either of

these conditions applies to you, then you might want to use XML 1.1 (although realize you're limiting
your audience by doing so). Otherwise, you really should use XML 1.0 exclusively.

2.9.2 The encoding Attribute

So far, we've been a little cavalier about character sets and character encodings. We've said that XML
documents are composed of pure text, but we haven't said what encoding that text uses. Is it ASCII?
Latin-1? Unicode? Something else?

The short answer to this question is "Yes." The long answer is that, by default, XML documents are
assumed to be encoded in the UTF-8 variable-length encoding of the Unicode character set. This is a
strict superset of ASCII, so pure ASCII text files are also UTF-8 documents. However, most XML
processors, especially those written in Java, can handle a much broader range of character sets. All
you have to do is tell the parser which character encoding the document uses. Preferably, this is done
through metainformation, stored in the filesystem or provided by the server. However, not all
systems provide character-set metadata, so XML also allows documents to specify their own
character set with an encoding declaration inside the XML declaration. Example 2-8 shows how you'd
indicate that a document was written in the ISO-8859-1 (Latin-1) character set that includes letters
like ö and ç needed for many non-English Western European languages.

Example 2-8. An XML document encoded in Latin-1

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

<person>

 Erwin Schrödinger

</person>

The encoding attribute is optional in an XML declaration. If it is omitted and no metadata is available,

the Unicode character set is assumed. The parser may use the first several bytes of the file to try to
guess which encoding of Unicode is in use. If metadata is available and it conflicts with the encoding
declaration, then the encoding specified by the metadata wins. For example, if an HTTP header says
a document is encoded in ASCII but the encoding declaration says it's encoded in UTF-8, then the
parser will pick ASCII.

The different encodings and the proper handling of non-English XML documents will be discussed in
greater detail in Chapter 5.

2.9.3 The standalone Attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the standalone attribute has the value no, then an application may be required to read an external

DTD (that is, a DTD in a file other than the one it's reading now) to determine the proper values for
parts of the document. For instance, a DTD may provide default values for attributes that a parser is
required to report, even though they aren't actually present in the document.

Documents that do not have DTDs, like all the documents in this chapter, can have the value yes for
the standalone attribute. Documents that do have DTDs can also have the value yes for the
standalone attribute if the DTD doesn't change the content of the document in any way or if the

DTD is purely internal. Details for documents with DTDs are covered in Chapter 3.

The standalone attribute is optional in an XML declaration. If it is omitted, then the value no is

assumed.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.10 Checking Documents for Well-Formedness

Every XML document, without exception, must be well-formed. This means it must adhere to a
number of rules, including the following:

Every start-tag must have a matching end-tag.1.

Elements may nest but may not overlap.2.

There must be exactly one root element.3.

Attribute values must be quoted.4.

An element may not have two attributes with the same name.5.

Comments and processing instructions may not appear inside tags.6.

No unescaped < or & signs may occur in the character data of an element or attribute.7.

This is not an exhaustive list. There are many, many ways a document can be malformed. You'll find
a complete list in Chapter 21. Some of these involve constructs that we have not yet discussed, such
as DTDs. Others are extremely unlikely to occur if you follow the examples in this chapter (for
example, including whitespace between the opening < and the element name in a tag).

Whether the error is small or large, likely or unlikely, an XML parser reading a document is required
to report it. It may or may not report multiple well-formedness errors it detects in the document.
However, the parser is not allowed to try to fix the document and make a best-faith effort of
providing what it thinks the author really meant. It can't fill in missing quotes around attribute
values, insert an omitted end-tag, or ignore the comment that's inside a start-tag. The parser is
required to return an error. The objective here is to avoid the bug-for-bug compatibility wars that
plagued early web browsers and continue to this day. Consequently, before you publish an XML
document-whether that document is a web page, input to a database, or something else-you'll
want to check it for well-formedness.

The simplest way to do this is by loading the document into a web browser that understands XML
documents, such as Mozilla. If the document is well-formed, the browser will display it. If it isn't, then
it will show an error message.

Instead of loading the document into a web browser, you can use an XML parser directly. Most XML
parsers are not intended for end users. They are class libraries designed to be embedded into an
easier-to-use program, such as Mozilla. They provide a minimal command-line interface, if that; this
interface is often not particularly well documented. Nonetheless, it can sometimes be quicker to run a
batch of files through a command-line interface than loading each of them into a web browser.
Furthermore, once you learn about DTDs and schemas, you can use the same tools to validate
documents, which most web browsers won't do.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are many XML parsers available in a variety of languages. Here, we'll demonstrate checking for
well-formedness with the Gnome Project's libxml, which you can download from http://xmlsoft.org.
This open source package is written in fairly portable C and runs on most major platforms, including
Windows, Linux, and Mac OS X. (It's preinstalled in many Linux distros.) The procedure should be
similar for other parsers, although details will vary.

libxml is actually a library but it includes a program called xmllint that uses this library to check files
for well-formedness. xmllint is run from a Unix shell or DOS prompt like any other command-line
program. The arguments are the URLs to or filenames of the documents you want to check. Here's
the result of running xmllint against an early version of Example 2-5. The very first line of output tells
you where the first problem in the file is:

% xmllint 2-5.xml

2-5.xml:5: error: Unescaped '<' not allowed in attributes values

 <person born='1912/06/23'

 ^

2-5.xml:5: error: attributes construct error

 <person born='1912/06/23'

 ^

2-5.xml:5: error: error parsing attribute name

 <person born='1912/06/23'

 ^

2-5.xml:5: error: attributes construct error

 <person born='1912/06/23'

 ^

2-5.xml:5: error: xmlParseStartTag: problem parsing attributes

 <person born='1912/06/23'

 ^

2-5.xml:5: error: Couldn't find end of Start Tag image line 3

 <person born='1912/06/23'

 ^

As you can see, it found an error. In this case the error message wasn't particularly helpful. The

http://xmlsoft.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

actual problem wasn't that an attribute value contained a < character, it was that the closing quote
was missing from the height attribute value. Still, that was enough information to locate and fix the

problem. Despite the long list of output, xmllint only reports the first error in the document, so you
may have to run it multiple times until all the mistakes are found and fixed. Once we fixed Example
2-5 to make it well-formed, xmllint simply printed the file it read:

% xmllint 2-5.xml

<biography xmlns:xlink="http://www.w3.org/1999/xlink/">

 <image source="http://www.turing.org.uk/turing/pi1/busgroup.jpg"

 width="152" height="345"/>

 <paragraph><person born='1912-06-23'

 died='1954-06-07'><first_name>Alan</first_name>

...

Now that the document has been corrected to be well-formed, it can be passed to a web browser, a
database, or whatever other program is waiting to receive it. Almost any nontrivial document crafted
by hand will contain well-formedness mistakes, which makes it important to check your work before
publishing it.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 3. Document Type Definitions
(DTDs)
While XML is extremely flexible, not all the programs that read particular XML documents are so
flexible. Many programs can work with only some XML applications but not others. For example,
Adobe Illustrator can read and write Scalable Vector Graphics (SVG) files, but you wouldn't expect it
to understand a Platform for Privacy Preferences (P3P) document. And within a particular XML
application, it's often important to ensure that a given document adheres to the rules of that XML
application. For instance, in XHTML, li elements should only be children of ul or ol elements.
Browsers may not know what to do with them, or may act inconsistently, if li elements appear in
the middle of a blockquote or p element.

XML 1.0 provides a solution to this dilemma: a document type definition (DTD). DTDs are written in a
formal syntax that explains precisely which elements may appear where in the document and what
the elements' contents and attributes are. A DTD can make statements such as "A ul element only
contains li elements" or "Every employee element must have a social_security_number

attribute." Different XML applications can use different DTDs to specify what they do and do not
allow.

A validating parser compares a document to its DTD and lists any places where the document differs
from the constraints specified in the DTD. The program can then decide what it wants to do about
any violations. Some programs may reject the document. Others may try to fix the document or
reject just the invalid element. Validation is an optional step in processing XML. A validity error is not
necessarily a fatal error like a well-formedness error, although some applications may choose to treat
it as one.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.1 Validation

A valid document includes a document type declaration that identifies the DTD that the document
satisfies.[1] The DTD lists all the elements, attributes, and entities the document uses and the
contexts in which it uses them. The DTD may list items the document does not use as well. Validity
operates on the principle that everything not permitted is forbidden. Everything in the document
must match a declaration in the DTD. If a document has a document type declaration and the
document satisfies the DTD that the document type declaration indicates, then the document is said
to be valid. If it does not, it is said to be invalid.

[1] The document type declaration and the document type definition are two different things. The abbreviation
DTD is properly used only to refer to the document type definition.

There are many things the DTD does not say. In particular, it does not say the following:

What the root element of the document is

How many of instances of each kind of element appear in the document

What the character data inside the elements looks like

The semantic meaning of an element; for instance, whether it contains a date or a person's
name

DTDs allow you to place some constraints on the form an XML document takes, but there can be
quite a bit of flexibility within those limits. A DTD never says anything about the length, structure,
meaning, allowed values, or other aspects of the text content of an element or attribute.

Validity is optional. A parser reading an XML document may or may not check for validity. If it does
check for validity, the program receiving data from the parser may or may not care about validity
errors. In some cases, such as feeding records into a database, a validity error may be quite serious,
indicating that a required field is missing, for example. In other cases, rendering a web page perhaps,
a validity error may not be so important, and a program can work around it. Well-formedness is
required of all XML documents; validity is not. Your documents and your programs can use validation
as you find needful.

3.1.1 A Simple DTD Example

Recall Example 2-2 from the last chapter, which described a person. The person had a name and
three professions. The name had a first name and a last name. The particular person described in
that example was Alan Turing. However, that's not relevant for DTDs. A DTD only describes the
general type, not the specific instance. A DTD for person documents would say that a person
element contains one name child element followed by zero or more profession child elements. It
would further say that each name element contains exactly one first_name child element followed by
exactly one last_name child element. Finally it would state that the first_name, last_name, and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

profession elements all contain text. Example 3-1 is a DTD that describes such a person element.

Example 3-1. A DTD for the person

<!ELEMENT person (name, profession*)>

<!ELEMENT name (first_name, last_name)>

<!ELEMENT first_name (#PCDATA)>

<!ELEMENT last_name (#PCDATA)>

<!ELEMENT profession (#PCDATA)>

This DTD would probably be stored in a separate file from the documents it describes. This allows it
to be easily referenced from multiple XML documents. However, it can be included inside the XML
document if that's convenient, using the document type declaration we discuss later in this section. If
it is stored in a separate file, then that file would most likely be named person.dtd, or something
similar. The .dtd extension is fairly standard although not specifically required by the XML
specification. If this file were served by a web server, it would be given the MIME media type
application/xml-dtd.

Each line of Example 3-1 is an element declaration. The first line declares the person element, the
second line declares the name element, the third line declares the first_name element, and so on.

However, the line breaks aren't relevant except for legibility. Although it's customary to put only one
declaration on each line, it's not required. Long declarations can even span multiple lines.

The first element declaration in Example 3-1 states that each person element must contain exactly
one name child element followed by zero or more profession elements. The asterisk after profession

stands for "zero or more." Thus, every person must have a name and may or may not have a
profession or multiple professions. However, the name must come before all professions. For
example, this person element is valid:

<person>

 <name>

 <first_name>Alan</first_name>

 <last_name>Turing</last_name>

 </name>

 <profession>computer scientist</profession>

 <profession>mathematician</profession>

 <profession>cryptographer</profession>

</person>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This person element is also valid because profession elements are declared to be optional:

<person>

 <name>

 <first_name>Alan</first_name>

 <last_name>Turing</last_name>

 </name>

</person>

However, this person element is not valid because it omits the required name child element:

<person>

 <profession>computer scientist</profession>

 <profession>mathematician</profession>

 <profession>cryptographer</profession>

</person>

This person element is not valid because a profession element comes before the name:

<person>

 <profession>computer scientist</profession>

 <name>

 <first_name>Alan</first_name>

 <last_name>Turing</last_name>

 </name>

 <profession>mathematician</profession>

 <profession>cryptographer</profession>

</person>

The person element cannot contain any element not listed in its declaration. The only extra character

http://lib.ommolketab.ir
http://lib.ommolketab.ir

data it can contain is whitespace. For example, this is an invalid person element because it adds a
publication element:

<person>

 <name>

 <first_name>Alan</first_name>

 <last_name>Turing</last_name>

 </name>

 <profession>mathematician</profession>

 <profession>cryptographer</profession>

 <publication>On Computable Numbers...</publication>

</person>

This is an invalid person element because it adds some text outside the allowed children:

<person>

 <name>

 <first_name>Alan</first_name>

 <last_name>Turing</last_name>

 </name>

 was a <profession>computer scientist</profession>,

 a <profession>mathematician</profession>, and a

 <profession>cryptographer</profession>.

</person>

In all these examples of invalid elements, you could change the DTD to make these elements valid.
All the examples are well-formed, after all. However, with the DTD in Example 3-1, they are not
valid.

The name declaration says that each name element must contain exactly one first_name element
followed by exactly one last_name element. All other variations are forbidden.

The remaining three declarations-first_name, last_name, and profession-all say that their
elements must contain #PCDATA. This is a DTD keyword standing for parsed character data-that is,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

raw text possibly containing entity references such as & and <, but not containing any tags or

child elements.

Example 3-1 placed the most complicated and highest-level declaration at the top. However, that's
not required. For instance, Example 3-2 is an equivalent DTD that simply reorders the declarations.
DTDs allow forward, backward, and circular references to other declarations.

Example 3-2. An alternate DTD for the person element

<!ELEMENT first_name (#PCDATA)>

<!ELEMENT last_name (#PCDATA)>

<!ELEMENT profession (#PCDATA)>

<!ELEMENT name (first_name, last_name)>

<!ELEMENT person (name, profession*)>

3.1.2 The Document Type Declaration

A valid document includes a reference to the DTD to which it should be compared. This is given in the
document's single document type declaration. A document type declaration looks like this:

<!DOCTYPE person SYSTEM "http://www.cafeconleche.org/dtds/person.dtd">

This says that the root element of the document is person and that the DTD for this document can

be found at http://www.cafeconleche.org/dtds/person.dtd.

The document type declaration is included in the prolog of the XML document after the XML
declaration but before the root element. (The prolog is everything in the XML document before the
root element start-tag.) Example 3-3 demonstrates.

Example 3-3. A valid person document

<?xml version="1.0" standalone="no"?>

<!DOCTYPE person SYSTEM "http://www.cafeconleche.org/dtds/person.dtd">

<person>

 <name>

 <first_name>Alan</first_name>

 <last_name>Turing</last_name>

http://www.cafeconleche.org/dtds/person.dtd
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </name>

 <profession>computer scientist</profession>

 <profession>mathematician</profession>

 <profession>cryptographer</profession>

</person>

If the document resides at the same base site as the DTD, you can use a relative URL instead of the
absolute form. For example:

<!DOCTYPE person SYSTEM "/dtds/person.dtd">

You can even use just the filename if the DTD is in the same directory as the document:

<!DOCTYPE person SYSTEM "person.dtd">

3.1.2.1 Public IDs

Standard DTDs may actually be stored at multiple URLs. For example, if you're drawing an SVG
picture on your laptop at the beach, you probably want to validate the drawing without opening a
network connection to the W3C's web site where the official SVG DTD resides. Such DTDs may be
associated with public IDs. The name of the public ID uniquely identifies the XML application in use.
At the same time, a backup URL is also included in case the validator does not recognize the public
ID. To indicate that you're specifying a public ID, use the keyword PUBLIC in place of SYSTEM. For

example, this document type declaration refers to the Rich Site Summary DTD standardized by
Netscape:

<!DOCTYPE rss PUBLIC "-//Netscape Communications//DTD RSS 0.91//EN"

 "http://my.netscape.com/publish/formats/rss-0.91.dtd">

A local catalog server can convert the public IDs into the most appropriate URLs for the local
environment. The catalogs themselves can be written in XML, specifically the OASIS XML catalog
format (http://www.oasis-open.org/committees/entity/spec.html). In practice, however, PUBLIC IDs
aren't used very much. Most of the time, validators rely on the URL to actually validate the
document.

3.1.3 Internal DTD Subsets

When you're first developing a DTD, it's often useful to keep the DTD and the canonical example
document in the same file so you can modify and check them simultaneously. Therefore, the
document type declaration may contain the DTD between square brackets rather than referencing it
at an external URL. Example 3-4 demonstrates.

http://www.oasis-open.org/committees/entity/spec.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 3-4. A valid person document with an internal DTD

<?xml version="1.0"?>

<!DOCTYPE person [

 <!ELEMENT first_name (#PCDATA)>

 <!ELEMENT last_name (#PCDATA)>

 <!ELEMENT profession (#PCDATA)>

 <!ELEMENT name (first_name, last_name)>

 <!ELEMENT person (name, profession*)>

]>

<person>

 <name>

 <first_name>Alan</first_name>

 <last_name>Turing</last_name>

 </name>

 <profession>computer scientist</profession>

 <profession>mathematician</profession>

 <profession>cryptographer</profession>

</person>

Some document type declarations contain some declarations directly but link in others using a
SYSTEM or PUBLIC identifier. For example, this document type declaration declares the profession
and person elements itself but relies on the file name.dtd to contain the declaration of the name

element:

<!DOCTYPE person SYSTEM "name.dtd" [

 <!ELEMENT profession (#PCDATA)>

 <!ELEMENT person (name, profession*)>

]>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The part of the DTD between the brackets is called the internal DTD subset. All the parts that come
from outside this document are called the external DTD subset. Together they make up the complete
DTD. As a general rule, the two different subsets must be compatible. Neither can override the
element declarations the other makes. For example, name.dtd cannot declare the person element

because the internal DTD subset already declares it. However, entity declarations can be overridden
with some important consequences for DTD structure and design, which we'll see shortly when we
discuss entities.

When you use an external DTD subset, you should give the standalone attribute of the XML
declaration the value no. For example:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

Actually, the XML specification includes four very detailed rules about exactly
when the presence of an external DTD subset does and does not require the
standalone attribute to have the value no. However, the net effect of these

rules is that almost all XML documents that use external DTD subsets require
standalone to have the value no. Since setting standalone to no is always

permitted, even when it's not required, it's simply not worth worrying about the
uncommon cases.

A validating processor is required to read the external DTD subset. A nonvalidating processor may do
so, but is not required to, even if standalone has the value no. This means that if the external

subset makes declarations that have consequences for the content of a document (for instance,
providing default values for attributes), then the content of the document depends on which parser
you're using and how it's configured. This has led to no end of confusion. Although some of the
earliest XML parsers did not resolve external entities, most of the parsers still being used can do so
and generally will do so. You should read the external DTD subset unless efficiency is a major
concern, or you're very familiar with the structure of the documents you're parsing.

3.1.4 Validating a Document

As a general rule, web browsers do not validate documents but only check them for well-formedness.
If you're writing your own programs to process XML, you can use the parser's API to validate
documents. If you're writing documents by hand and you want to validate them, you can either use
one of the online validators or run a local program to validate the document.

The online validators are probably the easiest way to validate your documents. There are two of
note:

The Brown University Scholarly Technology Group's XML Validation Form at
http://www.stg.brown.edu/service/xmlvalid/

Richard Tobin's XML well-formedness checker and validator at
http://www.cogsci.ed.ac.uk/~richard/xml-check.html

http://www.stg.brown.edu/service/xmlvalid/
http://www.cogsci.ed.ac.uk/~richard/xml-check.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

First, you have to place the document and associated DTDs on a publicly accessible web server. Next,
load one of the previous URLs in a browser, and type the URL of the document you're checking into
the online form. The validating server will retrieve your document and tell you what, if any, errors it
found. Figure 3-1 shows the results of using the Brown validator on a simple invalid but well-formed
document.

Figure 3-1. Validity errors detected by the Brown University online
validator

Most XML parser class libraries include a simple program you can use to validate documents if you're
comfortable installing and using command-line programs. With xmllint, use the --valid flag to turn

on validation. (By default, xmllint only checks for well-formedness.) Then pass the URLs or filenames
of the documents you wish to validate on the command line like this:

% xmllint --valid invalidhotcop.xml

invalidhotcop.xml:3: validity error: Element SONG content does not follow the DTD

Expecting (TITLE , COMPOSER+ , PRODUCER* , PUBLISHER* , LENGTH? , YEAR? ,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ARTIST+), got (TITLE PRODUCER PUBLISHER LENGTH YEAR ARTIST)

</SONG>

 ^

You can see from this output that the document invalidhotcop.xml has a validity error that needs to
be fixed in line 3.

There are also some simple GUI programs for validating XML documents, including the Topologi
Schematron Validator for Windows (http://www.topologi.com), shown in Figure 3-2. Despite the
name, this product can actually validate documents against schemas written in multiple languages,
including DTDs, RELAX NG, and the W3C XML Schema Language, as well as Schematron.

Figure 3-2. Validity errors detected by the Topologi Schematron Validator

http://www.topologi.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.2 Element Declarations

Every element used in a valid document must be declared in the document's DTD with an element
declaration. Element declarations have this basic form:

<!ELEMENT name content_specification>

The name of the element can be any legal XML name. The content specification indicates what
children the element may or must have and in what order. Content specifications can be quite
complex. They can say, for example, that an element must have three child elements of a given type,
or two children of one type followed by another element of a second type, or any elements chosen
from seven different types interspersed with text.

3.2.1 #PCDATA

The simplest content specification is one that says an element may only contain parsed character
data, but may not contain any child elements of any type. In this case the content specification
consists of the keyword #PCDATA inside parentheses. For example, this declaration says that a
phone_number element may contain text but may not contain elements:

<!ELEMENT phone_number (#PCDATA)>

Such an element may also contain character references and CDATA sections (which are always parsed

into pure text) and comments, and processing instructions (which don't really count in validation). It
may contain entity references only if those entity references resolve to plain text without any child
elements.

3.2.2 Child Elements

Another simple content specification is one that says the element must have exactly one child of a
given type. In this case, the content specification consists of the name of the child element inside
parentheses. For example, this declaration says that a fax element must contain exactly one
phone_number element:

<!ELEMENT fax (phone_number)>

A fax element may not contain anything else except the phone_number element, and it may not

contain more or less than one of those.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2.3 Sequences

In practice, a content specification that lists exactly one child element is rare. Most elements contain
either parsed character data or (at least potentially) multiple child elements. The simplest way to
indicate multiple child elements is to separate them with commas. This is called a sequence. It
indicates that the named elements must appear in the specified order. For example, this element
declaration says that a name element must contain exactly one first_name child element followed by
exactly one last_name child element:

<!ELEMENT name (first_name, last_name)>

Given this declaration, this name element is valid:

<name>

 <first_name>Madonna</first_name>

 <last_name>Ciconne</last_name>

</name>

However, this one is not valid because it flips the order of two elements:

<name>

 <last_name>Ciconne</last_name>

 <first_name>Madonna</first_name>

</name>

This element is invalid because it omits the last_name element:

<name>

 <first_name>Madonna</first_name>

</name>

This one is invalid because it adds a middle_name element:

<name>

 <first_name>Madonna</first_name>

 <middle_name>Louise</middle_name>

 <last_name>Ciconne</last_name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</name>

3.2.4 The Number of Children

As the previous examples indicate, not all instances of a given element necessarily have exactly the
same children. You can affix one of three suffixes to an element name in a content specification to
indicate how many of that element are expected at that position. These suffixes are:

? Zero or one of the element is allowed.
* Zero or more of the element is allowed.
+ One or more of the element is required.

For example, this declaration says that a name element must contain exactly one first_name, may or
may not contain a middle_name, and may or may not contain a last_name:

<!ELEMENT name (first_name, middle_name?, last_name?)>

Given this declaration, all these name elements are valid:

<name>

 <first_name>Madonna</first_name>

 <last_name>Ciconne</last_name>

</name>

<name>

 <first_name>Madonna</first_name>

 <middle_name>Louise</middle_name>

 <last_name>Ciconne</last_name>

</name>

<name>

 <first_name>Madonna</first_name>

</name>

However, these are not valid:

<name>

 <first_name>George</first_name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- only one middle name is allowed -->

 <middle_name>Herbert</middle_name>

 <middle_name>Walker</middle_name>

 <last_name>Bush</last_name>

</name>

<name>

 <!-- first name must precede last name -->

 <last_name>Ciconne</last_name>

 <first_name>Madonna</first_name>

</name>

You can allow for multiple middle names by placing an asterisk after the middle_name:

<!ELEMENT name (first_name, middle_name*, last_name?)>

If you wanted to require a middle_name to be included, but still allow for multiple middle names,

you'd use a plus sign instead, like this:

<!ELEMENT name (first_name, middle_name+, last_name?)>

3.2.5 Choices

Sometimes one instance of an element may contain one kind of child, and another instance may
contain a different child. This can be indicated with a choice. A choice is a list of element names
separated by vertical bars. For example, this declaration says that a methodResponse element
contains either a params child or a fault child:

<!ELEMENT methodResponse (params | fault)>

However, it cannot contain both at once. Each methodResponse element must contain one or the

other.

Choices can be extended to an indefinite number of possible elements. For example, this declaration
says that each digit element can contain exactly one of the child elements named zero, one, two,
three, four, five, six, seven, eight, or nine:

<!ELEMENT digit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (zero | one | two | three | four | five | six | seven | eight | nine)

>

3.2.6 Parentheses

Individually, choices, sequences, and suffixes are fairly limited. However, they can be combined in
arbitrarily complex fashions to describe most reasonable content models. Either a choice or a
sequence can be enclosed in parentheses. When so enclosed, the choice or sequence can be suffixed
with a ?, *, or +. Furthermore, the parenthesized item can be nested inside other choices or

sequences.

For example, let's suppose you want to say that a circle element contains a center element and
either a radius or a diameter element, but not both. This declaration does that:

<!ELEMENT circle (center, (radius | diameter))>

To continue with a geometry example, suppose a center element can either be defined in terms of
Cartesian or polar coordinates. Then each center contains either an x and a y or an r and a . We

would declare this using two small sequences, each of which is parenthesized and combined in a
choice:

 <!ELEMENT center ((x, y) | (r,))>

Suppose you don't really care whether the x element comes before the y element or vice versa, nor
do you care whether r comes before . Then you can expand the choice to cover all four possibilities:

 <!ELEMENT center ((x, y) | (y, x) | (r,) | (, r))>

As the number of elements in the sequence grows, the number of permutations grows more than
exponentially. Thus, this technique really isn't practical past two or three child elements. DTDs are
not very good at saying you want n instances of A and m instances of B, but you don't really care
which order they come in.

Suffixes can be applied to parenthesized elements, too. For instance, let's suppose that a polygon is
defined by individual coordinates for each vertex, given in order. For example, this is a right triangle:

<polygon>

 <r>0</r> < >0</ >

 <x>0</x> <y>10</y>

 <x>10</x> <y>0</y>

</polygon>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What we want to say is that a polygon is composed of three or more pairs of x-y or r- coordinates.
An x is always followed by a y, and an r is always followed by a . This declaration does that:

<!ELEMENT polygon

 (((x, y) | (r,)), ((x, y) | (r,)), ((x, y) | (r,))+)>

The plus sign is applied to ((x, y) | (r,)).

To return to the name example, suppose you want to say that a name can contain just a first name,
just a last name, or a first name and a last name with an indefinite number of middle names. This
declaration achieves that:

<!ELEMENT name (last_name

 | (first_name, ((middle_name+, last_name) | (last_name?))

) >

3.2.7 Mixed Content

In narrative documents, it's common for a single element to contain both child elements and un-
marked up, nonwhitespace character data. For example, recall this definition element from

Chapter 2:

<definition>A <term>Turing Machine</term> refers to an abstract finite

state automaton with infinite memory that can be proven equivalent

to any any other finite state automaton with arbitrarily large memory.

Thus what is true for one Turing machine is true for all Turing

machines no matter how implemented.

</definition>

The definition element contains some nonwhitespace text and a term child. This is called mixed

content. An element that contains mixed content is declared like this:

<!ELEMENT definition (#PCDATA | term)*>

This says that a definition element may contain parsed character data and term children. It does

not specify in which order they appear, nor how many instances of each appear. This declaration
allows a definition to have 1 term child, 0 term children, or 23 term children.

You can add any number of other child elements to the list of mixed content, although #PCDATA must
always be the first child in the list. For example, this declaration says that a paragraph element may

http://lib.ommolketab.ir
http://lib.ommolketab.ir

contain any number of name, profession, footnote, emphasize, and date elements in any order,

interspersed with parsed character data:

<!ELEMENT paragraph

 (#PCDATA | name | profession | footnote | emphasize | date)*

>

This is the only way to indicate that an element contains mixed content. You cannot say, for example,
that there must be exactly one term child of the definition element, as well as parsed character
data. You cannot say that the parsed character data must all come after the term child. You cannot

use parentheses around a mixed-content declaration to make it part of a larger grouping. You can
only say that the element contains any number of any elements from a particular list in any order, as
well as undifferentiated parsed character data.

3.2.8 Empty Elements

Some elements do not have any content at all. These are called empty elements and are sometimes
written with a closing />. For example:

<image source="bus.jpg" width="152" height="345"

 alt="Alan Turing standing in front of a bus"

/>

These elements are declared by using the keyword EMPTY for the content specification. For example:

<!ELEMENT image EMPTY>

This merely says that the image element must be empty, not that it must be written with an empty-
element tag. Given this declaration, this is also a valid image element:

<image source="bus.jpg" width="152" height="345"

 alt="Alan Turing standing in front of a bus"></image>

If an element is empty, then it can contain nothing, not even whitespace. For instance, this is an
invalid image element:

<image source="bus.jpg" width="152" height="345"

 alt="Alan Turing standing in front of a bus">

</image>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2.9 ANY

Very loose DTDs occasionally want to say that an element exists without making any assertions about
what it may or may not contain. In this case, you can specify the keyword ANY as the content
specification. For example, this declaration says that a page element can contain any content,
including mixed content, child elements, and even other page elements:

<!ELEMENT page ANY>

The children that actually appear in the page elements' content in the document must still be
declared in element declarations of their own. ANY does not allow you to use undeclared elements.

ANY is sometimes useful when you're just beginning to design the DTD and document structure and

you don't yet have a clear picture of how everything fits together. However, it's extremely bad form
to use ANY in finished DTDs. About the only time you'll see it used is when external DTD subsets and

entities may change in uncontrollable ways. However, this is actually quite rare. You'd really only
need this if you were writing a DTD for an application like XSLT or RDF that wraps content from
arbitrary, unknown XML applications.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.3 Attribute Declarations

In addition to declaring its elements, a valid document must declare all the elements' attributes. This
is done with ATTLIST declarations. A single ATTLIST can declare multiple attributes for a single

element type. However, if the same attribute is repeated on multiple elements, then it must be
declared separately for each element where it appears. (Later in this chapter you'll see how to use
parameter entity references to make this repetition less burdensome.)

For example, ATTLIST declares the source attribute of the image element:

<!ATTLIST image source CDATA #REQUIRED>

It says that the image element has an attribute named source. The value of the source attribute is
character data, and instances of the image element in the document are required to provide a value
for the source attribute.

A single ATTLIST declaration can declare multiple attributes for the same element. For example, this
ATTLIST declaration not only declares the source attribute of the image element, but also the width,
height, and alt attributes:

<!ATTLIST image source CDATA #REQUIRED

 width CDATA #REQUIRED

 height CDATA #REQUIRED

 alt CDATA #IMPLIED

>

This declaration says the source, width, and height attributes are required. However, the alt
attribute is optional and may be omitted from particular image elements. All four attributes are

declared to contain character data, the most generic attribute type.

This declaration has the same effect and meaning as four separate ATTLIST declarations, one for
each attribute. Whether to use one ATTLIST declaration per attribute is a matter of personal

preference, but most experienced DTD designers prefer the multiple-attribute form. Given judicious
application of whitespace, it's no less legible than the alternative.

3.3.1 Attribute Types

In merely well-formed XML, attribute values can be any string of text. The only restrictions are that
any occurrences of < or & must be escaped as < and &, and whichever kind of quotation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mark, single or double, is used to delimit the value must also be escaped. However, a DTD allows you
to make somewhat stronger statements about the content of an attribute value. Indeed, these are
stronger statements than can be made about the contents of an element. For instance, you can say
that an attribute value must be unique within the document, that it must be a legal XML name token,
or that it must be chosen from a fixed list of values.

There are 10 attribute types in XML. They are:

CDATA

NMTOKEN

NMTOKENS

Enumeration

ENTITY

ENTITIES

ID

IDREF

IDREFS

NOTATION

These are the only attribute types allowed. A DTD cannot say that an attribute value must be an
integer or a date between 1966 and 2004, for example.

3.3.1.1 CDATA

A CDATA attribute value can contain any string of text acceptable in a well-formed XML attribute
value. This is the most general attribute type. For example, you would use this type for an alt
attribute of an image element because there's no particular form the text in such an attribute has to

follow.

<!ATTLIST image alt CDATA #IMPLIED>

You would also use this for other kinds of data such as prices, URLs, email and snail mail addresses,
citations, and other types that-while they have more structure than a simple string of text-don't
match any of the other attribute types. For example:

<!ATTLIST sku

 list_price CDATA #IMPLIED

 suggested_retail_price CDATA #IMPLIED

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 actual_price CDATA #IMPLIED

>

<!-- All three attributes should be in the form $XX.YY -->

3.3.1.2 NMTOKEN

An XML name token is very close to an XML name. It must consist of the same characters as an XML
name; that is, alphanumeric and/or ideographic characters and the punctuation marks _, -, ., and :.

Furthermore, like an XML name, an XML name token may not contain whitespace. However, a name
token differs from an XML name in that any of the allowed characters can be the first character in a
name token, while only letters, ideographs, and the underscore can be the first character of an XML
name. Thus 12 and .cshrc are valid XML name tokens although they are not valid XML names. Every

XML name is an XML name token, but not all XML name tokens are XML names.

The value of an attribute declared to have type NMTOKEN is an XML name token. For example, if you
knew that the year attribute of a journal element should contain an integer such as 1990 or 2015,
you might declare it to have NMTOKEN type, since all years are name tokens:

<!ATTLIST journal year NMTOKEN #REQUIRED>

This still doesn't prevent the document author from assigning the year attribute values like "99" or

"March", but at least it eliminates some possible wrong values, especially those that contain
whitespace such as "1990 C.E." or "Sally had a little lamb."

3.3.1.3 NMTOKENS

A NMTOKENS type attribute contains one or more XML name tokens separated by whitespace. For
example, you might use this to describe the dates attribute of a performances element, if the dates

were given in the form 08-26-2000, like this:

<performances dates="08-21-2001 08-23-2001 08-27-2001">

 Kat and the Kings

</performances>

The appropriate declaration is:

<!ATTLIST performances dates NMTOKENS #REQUIRED>

On the other hand, you could not use this for a list of dates in the form 08/27/2001 because the
forward slash is not a legal name character.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3.1.4 Enumeration

An enumeration is the only attribute type that is not an XML keyword. Rather, it is a list of all possible
values for the attribute, separated by vertical bars. Each possible value must be an XML name token.
For example, the following declarations say that the value of the month attribute of a date element
must be one of the 12 English month names, that the value of the day attribute must be a number
between 1 and 31, and that the value of the year attribute must be an integer between 1970 and

2009:

<!ATTLIST date month (January | February | March | April | May | June

 | July | August | September | October | November | December) #REQUIRED

>

<!ATTLIST date day (1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12

 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25

 | 26 | 27 | 28 | 29 | 30 | 31) #REQUIRED

>

<!ATTLIST date year (1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976

 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986

 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996

 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006

 | 2007 | 2008 | 2009) #REQUIRED

>

<!ELEMENT date EMPTY>

Given this DTD, this date element is valid:

<date month="January" day="22" year="2001"/>

However, these date elements are invalid:

<date month="01" day="22" year="2001"/>

<date month="Jan" day="22" year="2001"/>

<date month="January" day="02" year="2001"/>

<date month="January" day="2" year="1969"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<date month="Janvier" day="22" year="2001"/>

This trick works here because all the desired values happen to be legal XML name tokens. However,
we could not use the same trick if the possible values included whitespace or any punctuation besides
the underscore, hyphen, colon, and period.

3.3.1.5 ID

An ID type attribute must contain an XML name (not a name token but a name) that is unique within
the XML document. More precisely, no other ID type attribute in the document can have the same
value. (Attributes of non-ID type are not considered.) Each element may have no more than one ID

type attribute.

As the keyword suggests, ID type attributes assign unique identifiers to elements. ID type attributes

do not need to have the name "ID" or "id", although they very commonly do. For example, this
ATTLIST declaration says that every employee element must have a social_security_number ID

attribute:

<!ATTLIST employee social_security_number ID #REQUIRED>

ID numbers are tricky because a number is not an XML name and therefore not a legal XML ID. The

normal solution is to prefix the values with an underscore or a common letter. For example:

<employee social_security_number="_078-05-1120"/>

3.3.1.6 IDREF

An IDREF type attribute refers to the ID type attribute of some element in the document. Thus, it
must be an XML name. IDREF attributes are commonly used to establish relationships between

elements when simple containment won't suffice.

For example, imagine an XML document that contains a list of project and employee elements.
Every project has a project_id ID type attribute, and every employee has a
social_security_number ID type attribute. Furthermore, each project has team_member child

elements that identify who's working on the project. Since each project is assigned to multiple
employees and some employees are assigned to more than one project, it's not possible to make the
employees children of the projects or the projects children of the employees. The solution is to use
IDREF type attributes like this:

<project id="p1">

 <goal>Develop Strategic Plan</goal>

 <team_member person="ss078-05-1120"/>

 <team_member person="ss987-65-4320"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</project>

<project id="p2">

 <goal>Deploy Linux</goal>

 <team_member person="ss078-05-1120"/>

 <team_member person="ss9876-12-3456"/>

</project>

<employee social_security_number="ss078-05-1120">

 <name>Fred Smith</name>

</employee>

<employee social_security_number="ss987-65-4320">

 <name>Jill Jones</name>

</employee>

<employee social_security_number="ss9876-12-3456">

 <name>Sydney Lee</name>

</employee>

In this example, the id attribute of the project element and the social_security_number attribute
of the employee element would be declared to have type ID. The person attribute of the
team_member element would have type IDREF. The relevant ATTLIST declarations look like this:

<!ATTLIST employee social_security_number ID #REQUIRED>

<!ATTLIST project project_id ID #REQUIRED>

<!ATTLIST team_member person IDREF #REQUIRED>

These declarations constrain the person attribute of the team_member element to match the ID of
something in the document. However, they do not constrain the person attribute of the team_member

element to match only employee IDs. It would be valid (though not necessarily correct) for a
team_member to hold the ID of another project or even the same project.

3.3.1.7 IDREFS

An IDREFS type attribute contains a whitespace-separated list of XML names, each of which must be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the ID of an element in the document. This is used when one element needs to refer to multiple other
elements. For instance, the previous project example could be rewritten so that the team_member
children of the project element could be replaced by a team attribute like this:

<project project_id="p1" team="ss078-05-1120 ss987-65-4320">

 <goal>Develop Strategic Plan</goal>

</project>

<project project_id="p2" team="ss078-05-1120 ss9876-12-3456">

 <goal>Deploy Linux</goal>

</project>

<employee social_security_number="ss078-05-1120">

 <name>Fred Smith</name>

</employee>

<employee social_security_number="ss987-65-4320" >

 <name>Jill Jones</name>

</employee>

<employee social_security_number="ss9876-12-3456">

 <name>Sydney Lee</name>

</employee>

The appropriate declarations are:

<!ATTLIST employee social_security_number ID #REQUIRED

 fsteam IDREFS #REQUIRED>

<!ATTLIST project project_id ID #REQUIRED>

3.3.1.8 ENTITY

An ENTITY type attribute contains the name of an unparsed entity declared elsewhere in the DTD. For
instance, a movie element might have an entity attribute identifying the MPEG or QuickTime file to

play when the movie was activated:

<!ATTLIST movie source ENTITY #REQUIRED>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the DTD declared an unparsed entity named X-Men-trailer, then this movie element might be

used to embed that video file in the XML document:

<movie source="X-Men-trailer"/>

We'll discuss unparsed entities in more detail later in this chapter.

3.3.1.9 ENTITIES

An ENTITIES type attribute contains the names of one or more unparsed entities declared elsewhere
in the DTD, separated by whitespace. For instance, a slide_show element might have an ENTITIES

attribute identifying the JPEG files to show and the order in which to show them:

<!ATTLIST slide_show slides ENTITIES #REQUIRED>

If the DTD declared unparsed entities named slide1, slide2, slide3, and so on through slide10,
then this slide_show element might be used to embed the show in the XML document:

<slide_show slides="slide1 slide2 slide3 slide4 slide5 slide6

 slide7 slide8 slide9 slide10"/>

3.3.1.10 NOTATION

A NOTATION type attribute contains the name of a notation declared in the document's DTD. This is

perhaps the rarest attribute type and isn't much used in practice. In theory, it could be used to
associate types with particular elements, as well as limiting the types associated with the element.
For example, these declarations define four notations for different image types and then specify that
each image element must have a type attribute that selects exactly one of them:

<!NOTATION gif SYSTEM "image/gif">

<!NOTATION tiff SYSTEM "image/tiff">

<!NOTATION jpeg SYSTEM "image/jpeg">

<!NOTATION png SYSTEM "image/png">

<!ATTLIST image type NOTATION (gif | tiff | jpeg | png) #REQUIRED>

The type attribute of each image element can have one of the four values gif, tiff, jpeg, or png

but not any other value. This has a slight advantage over the enumerated type in that the actual
MIME media type of the notation is available, whereas an enumerated type could not specify
image/png or image/gif as an allowed value because the forward slash is not a legal character in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XML names.

3.3.2 Attribute Defaults

In addition to providing a data type, each ATTLIST declaration includes a default declaration for that

attribute. There are four possibilities for this default:

#IMPLIED

The attribute is optional. Each instance of the element may or may not provide a value for the
attribute. No default value is provided.

#REQUIRED

The attribute is required. Each instance of the element must provide a value for the attribute.
No default value is provided.

#FIXED

The attribute value is constant and immutable. This attribute has the specified value regardless
of whether the attribute is explicitly noted on an individual instance of the element. If it is
included, though, it must have the specified value.

Literal

The actual default value is given as a quoted string.

For example, this ATTLIST declaration says that person elements can but do not need to have born
and died attributes:

<!ATTLIST person born CDATA #IMPLIED

 died CDATA #IMPLIED

>

This ATTLIST declaration says that every circle element must have center_x, center_y, and
radius attributes:

<!ATTLIST circle center_x NMTOKEN #REQUIRED

 center_y NMTOKEN #REQUIRED

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 radius NMTOKEN #REQUIRED

>

This ATTLIST declaration says that every biography element has a version attribute and that the
value of that attribute is 1.0, even if the start-tag of the element does not explicitly include a
version attribute:

<!ATTLIST biography version CDATA #FIXED "1.0">

This ATTLIST declaration says that every web_page element has a protocol attribute. If a particular
web_page element doesn't have an explicit protocol attribute, then the parser will supply one with
the value http:

<!ATTLIST web_page protocol NMTOKEN "http">

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.4 General Entity Declarations

As you learned in Chapter 2, XML predefines five entities for your convenience:

<

The less-than sign, a.k.a. the opening angle bracket (<)

&

The ampersand (&)

>

The greater-than sign, a.k.a. the closing angle bracket (>)

"

The straight, double quotation marks (")

'

The apostrophe, a.k.a. the straight single quote (')

The DTD can define many more entities. This is useful not just in valid documents, but even in
documents you don't plan to validate.

Entity references are defined with an ENTITY declaration in the DTD. This gives the name of the

entity, which must be an XML name, and the replacement text of the entity. For example, this entity
declaration defines &super; as an abbreviation for supercalifragilisticexpialidocious:

<!ENTITY super "supercalifragilisticexpialidocious">

Once that's done, you can use &super; anywhere you'd normally have to type the entire word (and

probably misspell it).

Entities can contain markup as well as text. For example, this declaration defines &footer; as an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

abbreviation for a standard web page footer that will be repeated on many pages:

<!ENTITY footer '<hr size="1" noshade="true"/>

O'Reilly Home |

O'Reilly Bookstores |

How to Order |

O'Reilly Contacts

International |

About O'Reilly |

Affiliated Companies

<p>

Copyright 2004, O'Reilly Media, Inc.

webmaster@oreilly.com

</p>

'>

The entity replacement text must be well-formed. For instance, you cannot put a start-tag in one
entity and the corresponding end-tag in another entity.

The other thing you have to be careful about is that you need to use different quote marks inside the
replacement text from the ones that delimit it. Here we've chosen single quotes to surround the
replacement text and double quotes internally. However, we did have to change the single quote in
"O'Reilly" to the predefined general entity reference '. Replacement text may itself contain

entity references that are resolved before the text is replaced. Self-referential and circular references
are forbidden, however.

General entities insert replacement text into the body of an XML document. They can also be used
inside the DTD in places where they will eventually be included in the body of an XML document, for
instance in an attribute default value or in the replacement text of another entity. However, they
cannot be used to provide the text of the DTD itself. For instance, this is illegal:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!ENTITY coordinate "((x, y) | (y, x) | (, r) | (r,))" >

<!ELEMENT polygon (&coordinate;, &coordinate;, &coordinate;+)>

Shortly, we'll see how to use a different kind of entity-the parameter entity-to achieve the desired
result.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.5 External Parsed General Entities

The footer example is about at the limits of what you can comfortably fit in a DTD. In practice, web
sites prefer to store repeated content like this in external files and load it into their pages using PHP,
server-side includes, or some similar mechanism. XML supports this technique through external
general entity references, although in this case the client, rather than the server, is responsible for
integrating the different pieces of the document into a coherent whole.

An external parsed general entity reference is declared in the DTD using an ENTITY declaration.
However, instead of the actual replacement text, the SYSTEM keyword and a URL to the replacement

text is given. For example:

<!ENTITY footer SYSTEM "http://www.oreilly.com/boilerplate/footer.xml">

Of course, a relative URL will often be used instead. For example:

<!ENTITY footer SYSTEM "/boilerplate/footer.xml">

In either case, when the general entity reference &footer; is seen in the character data of an

element, the parser may replace it with the document found at
http://www.oreilly.com/boilerplate/footer.xml. References to external parsed entities are not allowed
in attribute values. Most of the time this shouldn't be too big a hassle because attribute values tend
to be small enough to be easily included in internal entities.

Notice we wrote that the parser may replace the entity reference with the document at the URL, not
that it must. This is an area where parsers have some leeway in just how much of the XML
specification they wish to implement. A validating parser must retrieve such an external entity.
However, a nonvalidating parser may or may not choose to retrieve the entity.

Furthermore, not all text files can serve as external entities. In order to be loaded in by a general
entity reference, the document must be potentially well-formed when inserted into an existing
document. This does not mean the external entity itself must be well-formed. In particular, the
external entity might not have a single root element. However, if such a root element were wrapped
around the external entity, then the resulting document should be well-formed. This means, for
example, that all elements that start inside the entity must finish inside the same entity. They cannot
finish inside some other entity. Furthermore, the external entity does not have a prolog and,
therefore, cannot have an XML declaration or a document type declaration.

3.5.1 Text Declarations

Instead of an XML declaration, an external entity may have a text declaration; this looks a lot like an
XML declaration. The main difference is that in a text declaration the encoding declaration is required,
while the version attribute is optional. Furthermore, there is no standalone declaration. The main

http://www.oreilly.com/boilerplate/footer.xml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

purpose of the text declaration is to tell the parser what character set the entity is encoded in. For
example, this is a common text declaration:

<?xml version="1.0" encoding="MacRoman"?>

However, you could also use this text declaration with no version attribute:

<?xml encoding="MacRoman"?>

Example 3-5 is a well-formed external entity that could be included from another document using an
external general entity reference.

Example 3-5. An external parsed entity

<?xml encoding="ISO-8859-1"?>

<hr size="1" noshade="true"/>

 O'Reilly Home |

 O'Reilly Bookstores |

 How to Order |

 O'Reilly Contacts

 International |

 About O'Reilly |

 Affiliated Companies

<p>

 Copyright 2004, O'Reilly Media, Inc.

 webmaster@oreilly.com

</p>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.6 External Unparsed Entities and Notations

Not all data is XML. There are a lot of ASCII text files in the world that don't give two cents about
escaping < as < or adhering to the other constraints by which an XML document is limited. There

are probably even more JPEG photographs, GIF line art, QuickTime movies, MIDI sound files, and so
on. None of these are well-formed XML, yet all of them are necessary components of many
documents.

The mechanism that XML suggests for embedding these things in documents is the external unparsed
entity. The DTD specifies a name and a URL for the entity containing the non-XML data. For example,
this ENTITY declaration associates the name turing_getting_off_bus with the JPEG image at

http://www.turing.org.uk/turing/pi1/busgroup.jpg:

<!ENTITY turing_getting_off_bus

 SYSTEM "http://www.turing.org.uk/turing/pi1/busgroup.jpg"

 NDATA jpeg>

3.6.1 Notations

Since the data in the previous code is not in XML format, the NDATA declaration specifies the type of
the data. Here the name jpeg is used. XML does not recognize this as meaning an image in a format

defined by the Joint Photographs Experts Group. Rather this is the name of a notation declared
elsewhere in the DTD using a NOTATION declaration like this:

<!NOTATION jpeg SYSTEM "image/jpeg">

Here we've used the MIME media type image/jpeg as the external identifier for the notation.

However, there is absolutely no standard or even a suggestion for exactly what this identifier should
be. Individual applications must define their own requirements for the contents and meaning of
notations.

3.6.2 Embedding Unparsed Entities in Documents

The DTD only declares the existence, location, and type of the unparsed entity. To actually include
the entity in the document at one or more locations, you insert an element with an ENTITY type

attribute whose value is the name of an unparsed entity declared in the DTD. You do not use an
entity reference like &turing_getting_off_bus;. Entity references can only refer to parsed entities.

Suppose the image element and its source attribute are declared like this:

http://www.turing.org.uk/turing/pi1/busgroup.jpg
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!ELEMENT image EMPTY>

<!ATTLIST image source ENTITY #REQUIRED>

Then, this image element would refer to the photograph at

http://www.turing.org.uk/turing/pi1/busgroup.jpg:

<image source="turing_getting_off_bus"/>

We should warn you that XML doesn't guarantee any particular behavior from an application that
encounters this type of unparsed entity. It very well may not display the image to the user. Indeed,
the parser may be running in an environment where there's no user to display the image to. It may
not even understand that this is an image. The parser might not load or make any sort of connection
with the server where the actual image resides. At most, it will tell the application on whose behalf
it's parsing that there is an unparsed entity at a particular URL with a particular notation and let the
application decide what, if anything, it wants to do with that information.

Unparsed general entities are not the only plausible way to embed non-XML
content in XML documents. In particular, a simple URL, possibly associated with
an XLink, does a fine job for many purposes, just as it does in HTML (which
gets along just fine without any unparsed entities). Including all the necessary
information in a single empty element such as <image source =
"http://www.turing.org.uk/turing/pi1/busgroup.jpg" /> is arguably

preferable to splitting the same information between the element where it's
used and the DTD of the document in which it's used. The only thing an
unparsed entity really adds is the notation, but that's too nonstandard to be of
much use.In fact, many experienced XML developers, including the authors of
this book, feel strongly that unparsed entities are a complicated, confusing
mistake that should never have been included in XML in the first place.
Nonetheless, they are a part of the specification, so we describe them here.

 < Day Day Up >

http://www.turing.org.uk/turing/pi1/busgroup.jpg
http://www.turing.org.uk/turing/pi1/busgroup.jpg
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.7 Parameter Entities

It is not uncommon for multiple elements to share all or part of the same attribute lists and content
specifications. For instance, any element that's a simple XLink will have xlink:type and xlink:href
attributes, and perhaps xlink:show and xlink:actuate attributes. In XHTML, a th element and a
td element contain more or less the same content. Repeating the same content specifications or

attribute lists in multiple element declarations is tedious and error-prone. It's entirely possible to add
a newly defined child element to the declaration of some of the elements but forget to include it in
others.

For example, consider an XML application for residential real estate listings that provides separate
elements for apartments, sublets, coops for sale, condos for sale, and houses for sale. The element
declarations might look like this:

<!ELEMENT apartment (address, footage, rooms, baths, rent)>

<!ELEMENT sublet (address, footage, rooms, baths, rent)>

<!ELEMENT coop (address, footage, rooms, baths, price)>

<!ELEMENT condo (address, footage, rooms, baths, price)>

<!ELEMENT house (address, footage, rooms, baths, price)>

There's a lot of overlap between the declarations, i.e., a lot of repeated text. And if you later decide
you need to add an additional element, available_date for instance, then you need to add it to all

five declarations. It would be preferable to define a constant that can hold the common parts of the
content specification for all five kinds of listings and refer to that constant from inside the content
specification of each element. Then to add or delete something from all the listings, you'd only need
to change the definition of the constant.

An entity reference is the obvious candidate here. However, general entity references are not allowed
to provide replacement text for a content specification or attribute list, only for parts of the DTD that
will be included in the XML document itself. Instead, XML provides a new construct exclusively for use
inside DTDs, the parameter entity, which is referred to by a parameter entity reference. Parameter
entities behave and are declared almost exactly like a general entity. However, they use a % instead
of an &, and they can only be used in a DTD, while general entities can only be used in the document

content.

3.7.1 Parameter Entity Syntax

A parameter entity reference is declared much like a general entity reference. However, an extra
percent sign is placed between the <!ENTITY and the name of the entity. For example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!ENTITY % residential_content "address, footage, rooms, baths">

<!ENTITY % rental_content "rent">

<!ENTITY % purchase_content "price">

Parameter entities are dereferenced in the same way as a general entity reference, only with a
percent sign instead of an ampersand:

<!ELEMENT apartment (%residential_content;, %rental_content;)>

<!ELEMENT sublet (%residential_content;, %rental_content;)>

<!ELEMENT coop (%residential_content;, %purchase_content;)>

<!ELEMENT condo (%residential_content;, %purchase_content;)>

<!ELEMENT house (%residential_content;, %purchase_content;)>

When the parser reads these declarations, it substitutes the entity's replacement text for the entity
reference. Now all you have to do to add an available_date element to the content specification of
all five listing types is add it to the residential_content entity like this:

<!ENTITY % residential_content "address, footage, rooms,

 baths, available_date">

The same technique works equally well for attribute types and element names. You'll see several
examples of this in the next chapter on namespaces and in Chapter 9.

This trick is limited to external DTDs. Internal DTD subsets do not allow parameter entity references
to be only part of a markup declaration. However, parameter entity references can be used in
internal DTD subsets to insert one or more entire markup declarations, typically through external
parameter entities.

3.7.2 Redefining Parameter Entities

What makes parameter entity references particularly powerful is that they can be redefined. If a
document uses both internal and external DTD subsets, then the internal DTD subset can specify new
replacement text for the entities. If ELEMENT and ATTLIST declarations in the external DTD subset

are written indirectly with parameter entity references, instead of directly with literal element names,
the internal DTD subset can change the DTD for the document. For instance, a single document could
add a bedrooms child element to the listings by redefining the residential_content entity like this:

<!ENTITY % residential_content "address, footage, rooms,

 bedrooms, baths, available_date">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the event of conflicting entity declarations, the first one encountered takes precedence. The parser
reads the internal DTD subset first. Thus, the internal definition of the residential_content entity

is used. When the parser reads the external DTD subset, every declaration that uses the
residential_content entity will contain a bedrooms child element it wouldn't otherwise have.

Modular XHTML, which we'll discuss in Chapter 7, makes heavy use of this technique to allow
particular documents to select only the subset of HTML that they actually need.

3.7.3 External DTD Subsets

Real-world DTDs can be quite complex. The SVG DTD is over 1,000 lines long. The XHTML 1.0 strict
DTD (the smallest of the three XHTML DTDs) is more than 1,500 lines long. And these are only
medium-sized DTDs. The DocBook XML DTD is over 11,000 lines long. It can be hard to work with,
comprehend, and modify such a large DTD when it's stored in a single monolithic file.

Fortunately, DTDs can be broken up into independent pieces. For instance, the DocBook DTD is
distributed in 28 separate pieces covering different parts of the spec: one for tables, one for
notations, one for entity declarations, and so on. These different pieces are then combined at
validation time using external parameter entity references.

An external parameter entity is declared using a normal ENTITY declaration with a % sign just like a

normal parameter entity. However, rather than including the replacement text directly, the
declaration contains the SYSTEM keyword, followed by a URL to the DTD piece it wants to include. For
example, the following ENTITY declaration defines an external entity called "names" whose content is
taken from the file at the relative URL names.dtd. Then the parameter entity reference %names;

inserts the contents of that file into the current DTD.

<!ENTITY % names SYSTEM "names.dtd">

%names;

You can use either relative or absolute URLs. In most situations, relative URLs are more practical.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.8 Conditional Inclusion

XML offers the IGNORE directive for the purpose of "commenting out" a section of declarations. For
example, a parser will ignore the following declaration of a production_note element, as if it weren't

in the DTD at all:

<![IGNORE[

 <!ELEMENT production_note (#PCDATA)>

]]>

This may not seem particularly useful. After all, you could always simply use an XML comment to
comment out the declarations you want to remove temporarily from the DTD. If you feel that way,
the INCLUDE directive is going to seem even more pointless. Its purpose is to indicate that the given

declarations are actually used in the DTD. For example:

<![INCLUDE[

 <!ELEMENT production_note (#PCDATA)>

]]>

This has exactly the same effect and meaning as if the INCLUDE directive were not present. However,
now consider what happens if we don't use INCLUDE and IGNORE directly. Instead, suppose we define

a parameter entity like this:

<!ENTITY % notes_allowed "INCLUDE">

Then we use a parameter entity reference instead of the keyword:

<![%notes_allowed;[

 <!ELEMENT production_note (#PCDATA)>

]]>

The notes_allowed parameter entity can be redefined from outside this DTD. In particular, it can be

redefined in the internal DTD subset of a document. This provides a switch individual documents can
use to turn the production_note declaration on or off. This technique allows document authors to

select only the functionality they need from the DTD.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.9 Two DTD Examples

Some of the best techniques for DTD design only become apparent when you look at larger
documents. In this section, we'll develop DTDs that cover the two different document formats for
describing people that were presented in Examples Example 2-4 and Example 2-5 of the last chapter.

3.9.1 DTDs for Record-Like Documents

DTDs for record-like documents are very straightforward. They make heavy use of sequences,
occasional use of choices, and almost no use of mixed content. Example 3-6 shows such a DTD. Since
this is a small example, and since it's easier to understand when both the document and the DTD are
on the same page, we've made this an internal DTD included in the document. However, it would be
easy to extract it and store it in a separate file.

Example 3-6. A DTD describing people

<?xml version="1.0"?>

<!DOCTYPE person [

 <!ELEMENT person (name+, profession*)>

 <!ELEMENT name EMPTY>

 <!ATTLIST name first CDATA #REQUIRED

 last CDATA #REQUIRED>

 <!-- The first and last attributes are required to be present

 but they may be empty. For example,

 <name first="Cher" last=""> -->

 <!ELEMENT profession EMPTY>

 <!ATTLIST profession value CDATA #REQUIRED>

]>

<person>

 <name first="Alan" last="Turing"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <profession value="computer scientist"/>

 <profession value="mathematician"/>

 <profession value="cryptographer"/>

</person>

The DTD here is contained completely inside the internal DTD subset. First a person ELEMENT
declaration states that each person must have one or more name children, and zero or more
profession children, in that order. This allows for the possibility that a person changes his name or

uses aliases. It assumes that each person has at least one name but may not have a profession.

This declaration also requires that all name elements precede all profession elements. Here the DTD

is less flexible than it ideally would be. There's no particular reason that the names have to come
first. However, if we were to allow more random ordering, it would be hard to say that there must be
at least one name. One of the weaknesses of DTDs is that it occasionally forces extra sequence order

on you when all you really need is a constraint on the number of some element.

Both name and profession elements are empty so their declarations are very simple. The attribute

declarations are a little more complex. In all three cases, the form of the attribute is open, so all
three attributes are declared to have type CDATA. All three are also required. However, note the use

of comments to suggest a solution for edge cases such as celebrities with no last names. Comments
are an essential tool for making sense of otherwise obfuscated DTDs.

3.9.2 DTDs for Narrative Documents

Narrative-oriented DTDs tend be a lot looser and make much heavier use of mixed content than do
DTDs that describe more database-like documents. Consequently, they tend to be written from the
bottom up, starting with the smallest elements and building up to the largest. They also tend to use
parameter entities to group together similar content specifications and attribute lists.

Example 3-7 is a standalone DTD for biographies like the one shown in Example 2-5 of the last
chapter. Notice that not everything it declares is actually present in Example 2-5. That's often the
case with narrative documents. For instance, not all web pages contain unordered lists, but the
XHTML DTD still needs to declare the ul element for those XHTML documents that do include them.

Also, notice that a few attributes present in Example 2-5 have been made into fixed defaults here.

Example 3-7. A narrative-oriented DTD for biographies

<!ATTLIST biography xmlns:xlink CDATA #FIXED

 "http://www.w3.org/1999/xlink">

<!ELEMENT person (first_name, last_name)>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!-- Birth and death dates are given in the form yyyy/mm/dd -->

<!ATTLIST person born CDATA #IMPLIED

 died CDATA #IMPLIED>

<!ELEMENT date (month, day, year)>

<!ELEMENT month (#PCDATA)>

<!ELEMENT day (#PCDATA)>

<!ELEMENT year (#PCDATA)>

<!-- xlink:href must contain a URL.-->

<!ATTLIST emphasize xlink:type (simple) #IMPLIED

 xlink:href CDATA #IMPLIED>

<!ELEMENT profession (#PCDATA)>

<!ELEMENT footnote (#PCDATA)>

<!-- The source is given according to the Chicago Manual of Style

 citation conventions -->

<!ATTLIST footnote source CDATA #REQUIRED>

<!ELEMENT first_name (#PCDATA)>

<!ELEMENT last_name (#PCDATA)>

<!ELEMENT image EMPTY>

<!ATTLIST image source CDATA #REQUIRED

 width NMTOKEN #REQUIRED

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 height NMTOKEN #REQUIRED

 ALT CDATA #IMPLIED

>

<!ENTITY % top_level "(#PCDATA | image | paragraph | definition

 | person | profession | emphasize | last_name

 | first_name | footnote | date)*">

<!ELEMENT paragraph %top_level; >

<!ELEMENT definition %top_level; >

<!ELEMENT emphasize %top_level; >

<!ELEMENT biography %top_level; >

The root biography element has a classic mixed-content declaration. Since there are several

elements that can contain other elements in a fairly unpredictable fashion, we group all the possible
top-level elements (elements that appear as immediate children of the root element) in a single
top_level entity reference. Then we can make all of them potential children of each other in a

straightforward way. This also makes it much easier to add new elements in the future. That's
important since this one small example is almost certainly not broad enough to cover all possible
biographies.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.10 Locating Standard DTDs

DTDs and validity are most important when you're exchanging data with others; they let you verify
that you're sending what the receiver expects and vice versa. Of course, this works best if both ends
of a conversation agree on which DTD and vocabulary they will use. There are many standard DTDs
for different professions and disciplines and more are created every day. It is often better to use an
established DTD and vocabulary than to design your own. However, there is no agreed-upon, central
repository that documents and links to such efforts. The largest list of DTDs online is probably Robin
Cover's list of XML applications at http://www.oasis-open.org/cover/siteIndex.html#toc-applications.

The W3C is one of the most prolific producers of standard XML DTDs. It has moved almost all of its
future development to XML, including SVG, the Platform for Internet Content Selection (PICS), the
Resource Description Framework (RDF), the Mathematical Markup Language (MathML), and even
HTML itself. DTDs for these XML applications are generally published as appendixes to the
specifications for the applications. The specifications are all found at http://www.w3.org/TR/.

However, XML isn't just for the Web, and far more activity is going on outside the W3C than inside it.
Generally, within any one field, you should look to that field's standards bodies for DTDs relating to
that area of interest. For example, the American Institute of Certified Public Accountants has
published a DTD for the Extensible Financial Reporting Markup Language (XFRML). The Object
Management Group (OMG) has published a DTD for describing Unified Modeling Language (UML)
diagrams in XML. The Society of Automotive Engineers has published an XML application for
emissions information as required by the 1990 U.S. Clean Air Act. Chances are that in any industry
that makes heavy use of information technology, some group or groups, either formal or informal,
are already working on DTDs that cover parts of that industry.

 < Day Day Up >

http://www.oasis-open.org/cover/siteIndex.html#toc-applications
http://www.w3.org/TR/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 4. Namespaces
Namespaces have two purposes in XML:

To distinguish between elements and attributes from different vocabularies with different
meanings that happen to share the same name

1.

To group all the related elements and attributes from a single XML application together so that
software can easily recognize them

2.

The first purpose is easier to explain and grasp, but the second purpose is more important in
practice.

Namespaces are implemented by attaching a prefix to each element and attribute. Each prefix is
mapped to a URI by an xmlns:prefix attribute. Default URIs can also be provided for elements that
don't have a prefix. Default namespaces are declared by xmlns attributes. Elements and attributes

that are attached to the same URI are in the same namespace. Elements from many XML
applications are identified by standard URIs.

In an XML 1.1 document, an Internationalized Resource Identifier (IRI) can be used instead of a URI.
An IRI is just like a URI except it can contain non-ASCII characters such as é and . In practice,
parsers don't check that namespace names are legal URIs in XML 1.0, so the distinction is mostly
academic.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

4.1 The Need for Namespaces

Some documents combine markup from multiple XML applications. For example, an XHTML document
may contain both SVG pictures and MathML equations. An XSLT stylesheet will contain both XSLT
instructions and elements from the result-tree vocabulary. And XLinks are always symbiotic with the
elements of the document in which they appear since XLink itself doesn't define any elements, only
attributes.

In some cases, these applications may use the same name to refer to different things. For example,
in SVG a set element sets the value of an attribute for a specified duration of time, while in MathML,
a set element represents a mathematical set such as the set of all positive even numbers. It's
essential to know when you're working with a MathML set and when you're working with an SVG
set. Otherwise, validation, rendering, indexing, and many other tasks will get confused and fail.

Consider Example 4-1. This is a simple list of paintings, including the title of each painting, the date
each was painted, the artist who painted it, and a description of the painting.

Example 4-1. A list of paintings

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

<catalog>

 <painting>

 <title>Memory of the Garden at Etten</title>

 <artist>Vincent Van Gogh</artist>

 <date>November, 1888</date>

 <description>

 Two women look to the left. A third works in her garden.

 </description>

 </painting>

 <painting>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <title>The Swing</title>

 <artist>Pierre-Auguste Renoir</artist>

 <date>1876</date>

 <description>

 A young girl on a swing. Two men and a toddler watch.

 </description>

 </painting>

 <!-- Many more paintings... -->

</catalog>

Now suppose that Example 4-1 is to be served as a web page and you want to make it accessible to
search engines. One possibility is to use the Resource Description Framework (RDF) to embed
metadata in the page. This describes the page for any search engines or other robots that might
come along. Using the Dublin Core metadata vocabulary (http://purl.oclc.org/dc/), a standard
vocabulary for library catalog-style information that can be encoded in XML or other syntaxes, an
RDF description of this page might look something like this:

<RDF>

 <Description

 about="http://www.cafeconleche.org/examples/impressionists.xml">

 <title> Impressionist Paintings </title>

 <creator> Elliotte Rusty Harold </creator>

 <description>

 A list of famous impressionist paintings organized

 by painter and date

 </description>

 <date>2000-08-22</date>

 </Description>

http://purl.oclc.org/dc/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

</RDF>

Here we've used the Description and RDF elements from RDF and the title, creator,
description, and date elements from the Dublin Core. We have no choice about these names; they

are established by their respective specifications. If we want software that understands RDF and the
Dublin Core to understand our documents, then we have to use these names. Example 4-2 combines
this description with the actual list of paintings.

Example 4-2. A list of paintings, including catalog information about the
list

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

<catalog>

 <RDF>

 <Description

 about="http://www.cafeconleche.org/examples/impressionists.xml">

 <title> Impressionist Paintings </title>

 <creator> Elliotte Rusty Harold </creator>

 <description>

 A list of famous impressionist paintings organized

 by painter and date

 </description>

 <date>2000-08-22</date>

 </Description>

 </RDF>

 <painting>

 <title>Memory of the Garden at Etten</title>

 <artist>Vincent Van Gogh</artist>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <date>November, 1888</date>

 <description>

 Two women look to the left. A third works in her garden.

 </description>

 </painting>

 <painting>

 <title>The Swing</title>

 <artist>Pierre-Auguste Renoir</artist>

 <date>1876</date>

 <description>

 A young girl on a swing. Two men and a toddler watch.

 </description>

 </painting>

 <!-- Many more paintings... -->

</catalog>

Now we have a problem. Several elements have been overloaded with different meanings in different
parts of the document. The title element is used for both the title of the page and the title of a
painting. The date element is used for both the date the page was written and the date the painting
was painted. One description element describes pages, while another describes paintings.

This presents all sorts of problems. Validation is difficult because catalog and Dublin Core elements
with the same name have different content specifications. Web browsers may want to hide the page
description while showing the painting description, but not all stylesheet languages can tell the
difference between the two. Processing software may understand the date format used in the Dublin
Core date element, but not the more free-form format used in the painting date element.

We could change the names of the elements from our vocabulary, painting_title instead of title,
date_painted instead of date, and so on. However, this is inconvenient if you already have a lot of

documents marked up in the old version of the vocabulary. And it may not be possible to do this in all
cases, especially if the name collisions occur not because of conflicts between your vocabulary and a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

standard vocabulary, but because of conflicts between two or more standard vocabularies. For
instance, RDF just barely avoids a collision with the Dublin Core over the Description and
description elements.

In other cases, there may not be any name conflicts, but it may still be important for software to
determine quickly and decisively which XML application a given element or attribute belongs to. For
instance, an XSLT processor needs to distinguish between XSLT instructions and literal result-tree
elements.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

4.2 Namespace Syntax

Namespaces disambiguate elements with the same name from each other by assigning elements and
attributes to URIs. Generally, all the elements from one XML application are assigned to one URI, and
all the elements from a different XML application are assigned to a different URI. These URIs are
called namespace names . The URIs partition the elements and attributes into disjoint sets. Elements
with the same name but different URIs are different types. Elements with the same name and the
same URIs are the same. Most of the time there's a one-to-one mapping between namespaces and
XML applications, although a few applications use multiple namespaces to subdivide different parts of
the application. For instance, XSL uses different namespaces for XSL Transformations (XSLT) and
XSL Formatting Objects (XSL-FO).

4.2.1 Qualified Names, Prefixes, and Local Parts

Since URIs frequently contain characters such as /, %, and ~ that are not legal in XML names, short
prefixes such as rdf and xsl stand in for them in element and attribute names. Each prefix is

associated with a URI. Names whose prefixes are associated with the same URI are in the same
namespace. Names whose prefixes are associated with different URIs are in different namespaces.
Prefixed elements and attributes in namespaces have names that contain exactly one colon. They
look like this:

rdf:description

xlink:type

xsl:template

Everything before the colon is called the prefix. Everything after the colon is called the local part. The
complete name, including the colon, is called the qualified name , QName, or raw name. The prefix
identifies the namespace to which the element or attribute belongs. The local part identifies the
particular element or attribute within the namespace.

In a document that contains both SVG and MathML set elements, one could be an svg:set element,
and the other could be a mathml:set element. Then there'd be no confusion between them. In an

XSLT stylesheet that transforms documents into XSL formatting objects, the XSLT processor would
recognize elements with the prefix xsl as XSLT instructions and elements with the prefix fo as literal

result elements.

Prefixes may be composed from any legal XML name character except the colon. The three-letter
prefix xml used for standard XML attributes such as xml:space, xml:lang, and xml:base is always
bound to the URI http://www.w3.org/XML/1998/namespace and need not be explicitly declared.
Other prefixes beginning with the three letters xml (in any combination of case) are reserved for use

by XML and its related specifications. Otherwise, you're free to name your prefixes in any way that's
convenient. One further restriction namespaces add to XML is that the local part may not contain any

http://www.w3.org/XML/1998/namespace
http://lib.ommolketab.ir
http://lib.ommolketab.ir

colons. In short, the only legal use of a colon in XML is to separate a namespace prefix from the local
part in a qualified name.

4.2.2 Binding Prefixes to URIs

Each prefix in a qualified name must be associated with a URI. For example, all XSLT elements are
associated with the http://www.w3.org/1999/XSL/Transform URI. The customary prefix xsl is
used in place of the longer URI http://www.w3.org/1999/XSL/Transform.

You can't use the URI in the name directly. For one thing, the slashes in most
URIs aren't legal characters in XML names. However, it's occasionally useful to
refer to the full name without assuming a particular prefix. One convention
used on many XML mailing lists and in XML documentation is to enclose the URI
in curly braces and prefix it to the name. For example, the qualified name
xsl:template might be written as the full name
{http://www.w3.org/1999/XSL/Transform}template. Another convention is

to append the local name to the namespace name after a sharp sign so that it
becomes a URI fragment identifier. For example,
http://www.w3.org/1999/XSL/Transform#template. However, both forms

are only conveniences for communication among human beings when the URI is
important but the prefix isn't. Neither an XML parser nor an XSLT processor will
accept or understand the long forms.

Prefixes are bound to namespace URIs by attaching an xmlns:prefix attribute to the prefixed

element or one of its ancestors. (The prefix should be replaced by the actual prefix used.) For
example, the xmlns:rdf attribute of this rdf:RDF element binds the prefix rdf to the namespace
URI http://www.w3.org/TR/REC-rdf-syntax#:

<rdf:RDF xmlns:rdf="http://www.w3.org/TR/REC-rdf-syntax#">

 <rdf:Description

 about="http://www.cafeconleche.org/examples/impressionists.xml">

 <title> Impressionist Paintings </title>

 <creator> Elliotte Rusty Harold </creator>

 <description>

 A list of famous impressionist paintings organized

 by painter and date

 </description>

 <date>2000-08-22</date>

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform#template
http://www.w3.org/TR/REC-rdf-syntax#
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </rdf:Description>

</rdf:RDF>

Bindings have scope within the element where they're declared and within its contents. The
xmlns:rdf attribute declares the rdf prefix for the rdf:RDF element, as well as its descendant
elements. An RDF processor will recognize rdf:RDF and rdf:Description as RDF elements because

both have prefixes bound to the particular URI specified by the RDF specification. It will not consider
the title, creator, description, and date elements to be RDF elements because they do not have
prefixes bound to the http://www.w3.org/TR/REC-rdf-syntax# URI.

The prefix can be declared in the topmost element that uses the prefix or in any ancestor thereof.
This may be the root element of the document, or it may be an element at a lower level. For
instance, the Dublin Core elements could be attached to the http://purl.org/dc/ namespace by
adding an xmlns:dc attribute to the rdf:Description element, as shown in Example 4-3, since all
Dublin Core elements in this document appear inside a single rdf:Description element. In other

documents that spread the elements out more, it might be more convenient to put the namespace
declaration on the root element. If necessary, a single element can include multiple namespace
declarations for different prefixes.

Example 4-3. A document containing both SVG and XLinks

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

<catalog>

 <rdf:RDF xmlns:rdf="http://www.w3.org/TR/REC-rdf-syntax#">

 <rdf:Description xmlns:dc="http://purl.org/dc/"

 about="http://www.cafeconleche.org/examples/impressionists.xml">

 <dc:title> Impressionist Paintings </dc:title>

 <dc:creator> Elliotte Rusty Harold </dc:creator>

 <dc:description>

 A list of famous impressionist paintings organized

 by painter and date

 </dc:description>

 <dc:date>2000-08-22</dc:date>

 </rdf:Description>

http://www.w3.org/TR/REC-rdf-syntax#
http://purl.org/dc/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </rdf:RDF>

 <painting>

 <title>Memory of the Garden at Etten</title>

 <artist>Vincent Van Gogh</artist>

 <date>November, 1888</date>

 <description>

 Two women look to the left. A third works in her garden.

 </description>

 </painting>

 <painting>

 <title>The Swing</title>

 <artist>Pierre-Auguste Renoir</artist>

 <date>1876</date>

 <description>

 A young girl on a swing. Two men and a toddler watch.

 </description>

 </painting>

 <!-- Many more paintings... -->

</catalog>

A DTD for this document can include different content specifications for the dc:description and
description elements. A stylesheet can attach different styles to dc:title and title. Software
that sorts the catalog by date can pay attention to the date elements and ignore the dc:date

elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this example, the elements without prefixes, such as catalog, painting, description, artist,
and title, are not in any namespace. Furthermore, unprefixed attributes (such as the about
attribute of rdf:Description in the previous example) are never in any namespace. Being an
attribute of an element in the http://www.w3.org/TR/REC-rdf-syntax# namespace is not sufficient
to put the attribute in the http://www.w3.org/TR/REC-rdf-syntax# namespace. The only way an
attribute belongs to a namespace is if it has a declared prefix, like rdf:about.

In XML 1.1 there's one exception to the rule that unprefixed attributes are never in a namespace. In
XML 1.1/Namespaces 1.1, the xmlns attribute is defined to be in the namespace
http://www.w3.org/2000/xmlns/. In XML 1.0/Namespaces 1.0, the xmlns attribute is not in any

namespace.

It is possible to redefine a prefix within a document so that in one element the prefix refers to one
namespace URI, while in another element it refers to a different namespace URI. In this case, the
closest ancestor element that declares the prefix takes precedence. However, in most cases,
redefining prefixes is a very bad idea that only leads to confusion and is not something you should
actually do.

In XML 1.1, you can also "undeclare" a namespace by defining it as having an
empty ("") value.

4.2.3 Namespace URIs

Many XML applications have customary prefixes. For example, SVG elements often use the prefix
svg, and RDF elements often have the prefix rdf. However, these prefixes are simply conventions

and can be changed based on necessity, convenience, or whim. Before a prefix can be used, it must
be bound to a URI like http://www.w3.org/2000/svg or http://www.w3.org/1999/02/22-rdf-
syntax-ns#. It is these URIs that are standardized, not the prefixes. The prefix can change as long

as the URI stays the same. An RDF processor looks for the RDF URI, not any particular prefix. As long
as nobody outside the w3.org domain uses namespace URIs in the w3.org domain, and as long as
the W3C keeps a careful eye on what its people are using for namespaces, all conflicts can be
avoided.

Namespace URIs do not necessarily point to any actual document or page. In fact, they don't have to
use the http scheme. They might even use some other protocol like mailto in which URIs don't even
point to documents. However, if you're defining your own namespace using an http URI, it would not

be a bad idea to place some documentation for the XML application at the namespace URI. The W3C
got tired of receiving broken-link reports for the namespace URIs in their specifications, so they
added some simple pages at their namespace URIs. For more formal purposes that offer some hope
of automated resolution and other features, you can place a Resource Directory Description Language
(RDDL) document at the namespace URI. This possibility will be discussed further in Chapter 15. You
are by no means required to do this, though. Many namespace URIs lead to 404-Not Found errors
when you actually plug them into a web browser. Namespace URIs are purely formal identifiers. They
are not the addresses of a page, and they are not meant to be followed as links.

Parsers compare namespace URIs on a character-by-character basis. If the URIs differ in even a
single normally insignificant place, then they define separate namespaces. For instance, the following
URLs all point to the same page:

http://www.w3.org/TR/REC-rdf-syntax#
http://www.w3.org/TR/REC-rdf-syntax#
http://www.w3.org/2000/xmlns/
http://www.w3.org/2000/svg
http://www.w3.org/1999/02/22-rdf-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://WWW.W3.ORG/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns/
http://www.w3.org/1999/02/22-rdf-syntax-ns/index.rdf

However, only the first is the correct namespace name for the RDF. These four URLs identify four
separate namespaces.

4.2.4 Setting a Default Namespace with the xmlns Attribute

You often know that all the content of a particular element will come from a particular XML
application. For instance, inside an SVG svg element, you're only likely to find other SVG elements.

You can indicate that an unprefixed element and all its unprefixed descendant elements belong to a
particular namespace by attaching an xmlns attribute with no prefix to the top element. For example:

<svg xmlns="http://www.w3.org/2000/svg"

 width="12cm" height="10cm">

 <ellipse rx="110" ry="130" />

 <rect x="4cm" y="1cm" width="3cm" height="6cm" />

</svg>

Here, although no elements have any prefixes, the svg, ellipse, and rect elements are in the
http://www.w3.org/2000/svg namespace.

The attributes are a different story. Default namespaces only apply to elements, not to attributes.
Thus, in the previous example, the width, height, rx, ry, x, and y attributes are not in any

namespace.

You can change the default namespace within a particular element by adding an xmlns attribute to

the element. Example 4-4 is an XML document that initially sets the default namespace to
http://www.w3.org/1999/xhtml for all the XHTML elements. This namespace declaration applies
within most of the document. However, the svg element has an xmlns attribute that resets the
default namespace to http://www.w3.org/2000/svg for itself and its content. The XLink information

is included in attributes, however, so these must be placed in the XLink namespace using explicit
prefixes.

Example 4-4. An XML document that uses default namespaces

<?xml version="1.0"?>

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:xlink="http://www.w3.org/1999/xlink">

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://WWW.W3.ORG/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns/
http://www.w3.org/1999/02/22-rdf-syntax-ns/index.rdf
http://www.w3.org/2000/svg
http://www.w3.org/1999/xhtml
http://www.w3.org/2000/svg
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <head><title>Three Namespaces</title></head>

 <body>

 <h1 align="center">An Ellipse and a Rectangle</h1>

 <svg xmlns="http://www.w3.org/2000/svg"

 width="12cm" height="10cm">

 <ellipse rx="110" ry="130" />

 <rect x="4cm" y="1cm" width="3cm" height="6cm" />

 </svg>

 <p xlink:type="simple" xlink:href="ellipses.html">

 More about ellipses

 </p>

 <p xlink:type="simple" xlink:href="rectangles.html">

 More about rectangles

 </p>

 <hr/>

 <p>Last Modified May 13, 2000</p>

 </body>

</html>

The default namespace does not apply to any elements or attributes with prefixes. These still belong
to whatever namespace their prefix is bound to. However, an unprefixed child element of a prefixed
element still belongs to the default namespace.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

4.3 How Parsers Handle Namespaces

Namespaces are not part of XML 1.0. They were invented about a year after the original XML
specification was released. However, care was taken to ensure backward compatibility. Thus, an XML
parser that does not know about namespaces should not have any trouble reading a document that
uses namespaces. Colons are legal characters in XML element and attribute names. The parser will
simply report that some of the names contain colons.

A namespace-aware parser does add a couple of checks to the normal well-formedness checks that a
parser performs. Specifically, it checks to see that all prefixes are mapped to URIs. It will reject
documents that use unmapped prefixes (except for xml and xmlns when used as specified in the XML

or "Namespaces in XML" specifications). It will further reject any element or attribute names that
contain more than one colon. Otherwise, it behaves almost exactly like a non-namespace-aware
parser. Other software that sits on top of the raw XML parser-an XSLT engine, for example-may
treat elements differently depending on which namespace they belong to. However, the XML parser
itself mostly doesn't care as long as all well-formedness and namespace constraints are met. Many
parsers let you turn namespace processing on or off as you see fit.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

4.4 Namespaces and DTDs

Namespaces are completely independent of DTDs and can be used in both valid and invalid
documents. A document can have a DTD but not use namespaces or use namespaces but not have a
DTD. It can use both namespaces and DTDs or neither namespaces nor DTDs. Namespaces do not in
any way change DTD syntax nor do they change the definition of validity. For instance, the DTD of a
valid document that uses an element named dc:title must include an ELEMENT declaration properly
specifying the content of the dc:title element. For example:

<!ELEMENT dc:title (#PCDATA)>

The name of the element in the document must exactly match the name of the element in the DTD,
including the prefix. The DTD cannot omit the prefix and simply declare a title element. The same
is true of prefixed attributes. For instance, if an element used in the document has xlink:type and
xlink:href attributes, then the DTD must declare the xlink:type and xlink:href attributes, not
simply type and href.

Conversely, if an element uses an xmlns attribute to set the default namespace and does not attach

prefixes to elements, then the names of the elements must be declared without prefixes in the DTD.
The validator neither knows nor cares about the existence of namespaces. All it sees is that some
element and attribute names happen to contain colons; as far as it's concerned, such names are
perfectly valid as long as they're declared.

4.4.1 Parameter Entity References for Namespace Prefixes

Requiring DTDs to declare the prefixed names, instead of the raw names or some combination of
local part and namespace URI, makes it difficult to change the prefix in valid documents. The problem
is that changing the prefix requires changing all declarations that use that prefix in the DTD.
However, with a little forethought, parameter entity references can alleviate the pain quite a bit.

The trick is to define both the namespace prefix and the colon that separates the prefix from the local
name as parameter entities, like this:

<!ENTITY % dc-prefix "dc">

<!ENTITY % dc-colon ":">

The second step is to define the qualified names as more parameter entity references, like these:

<!ENTITY % dc-title "%dc-prefix;%dc-colon;title">

<!ENTITY % dc-creator "%dc-prefix;%dc-colon;creator">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!ENTITY % dc-description "%dc-prefix;%dc-colon;description">

<!ENTITY % dc-date "%dc-prefix;%dc-colon;date">

Do not omit this step and try to use the dc-prefix and dc-colon parameter
entities directly in ELEMENT and ATTLIST declarations. This will fail because XML

parsers add extra space around the entity's replacement text when they're
used outside another entity's replacement text.

Then you use the entity references for the qualified name in all declarations, like this:

<!ELEMENT %dc-title; (#PCDATA)>

<!ELEMENT %dc-creator; (#PCDATA)>

<!ELEMENT %dc-description; (#PCDATA)>

<!ELEMENT %dc-date; (#PCDATA)>

<!ELEMENT rdf:Description

 ((%dc-title; | %dc-creator; | %dc-description; | %dc-date;)*)

>

Now a document that needs to change the prefix simply changes the parameter entity definitions. In
some cases, this will be done by editing the DTD directly. In others, it may be done by overriding the
definitions in the document's internal DTD subset. For example, to change the prefix from dc to
dublin, you'd add this entity definition somewhere in the DTD before the normal definition:

<!ENTITY % dc-prefix "dublin">

If you wanted to use the default namespace instead of explicit prefixes, you'd redefine both the dc-
prefix and dc-colon entities as the empty string, like this:

<!ENTITY % dc-prefix "">

<!ENTITY % dc-colon "">

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 5. Internationalization
We've told you that XML documents contain text, but we haven't yet told you what kind of text they
contain. In this chapter we rectify that omission. XML documents contain Unicode text. Unicode is a
character set large enough to include all the world's living languages and a few dead ones. It can be
written in a variety of encodings, including UCS-2 and the ASCII superset UTF-8. However, since
Unicode text editors are not ubiquitous, XML documents may also be written in other character sets
and encodings, which are converted to Unicode when the document is parsed. The encoding
declaration specifies which character set a document uses. You can use character references, such as
θ, to insert Unicode characters like that aren't available in the legacy character set in which a

document is written.

Computers don't really understand text. They don't recognize the Latin letter Z, the Greek letter ,

or the Han ideograph . All a computer understands are numbers such as 90, 947, or 40,821. A
character set maps particular characters, like Z, to particular numbers, like 90. These numbers are
called code points. A character encoding determines how those code points are represented in bytes.
For instance, the code point 90 can be encoded as a signed byte, a little-endian unsigned short, a 4-
byte, two's complement, a big-endian integer, or in some still more complicated fashion.

A human script like Cyrillic may be written in multiple character sets, such as KOI8-R, Unicode, or
ISO-8859-5. A character set like Unicode may then be encoded in multiple encodings, such as UTF-8,
UCS-2, or UTF-16. However, most simpler character sets, such as ASCII and KOI8-R, have only one
encoding.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.1 Character-Set Metadata

Some environments keep track of which encodings particular documents are written in. For instance,
web servers that transmit XML documents precede them with an HTTP header that looks something
like this:

HTTP/1.1 200 OK

Date: Sun, 28 Oct 2001 11:05:42 GMT

Server: Apache/1.3.19 (Unix) mod_jk mod_perl/1.25 mod_fastcgi/2.2.10 Connection: close

Transfer-Encoding: chunked

Content-Type: text/xml; charset=iso-8859-1

The Content-Type field of the HTTP header provides the MIME media type of the document. This may,
as shown here, specify which character set the document is written in. An XML parser reading this
document from a web server should use this information to determine the document's character
encoding.

Many web servers omit the charset parameter from the MIME media type. In this case, if the MIME
media type is text/xml , then the document is assumed to be in the US-ASCII encoding. If the MIME
media type is application/xml , then the parser attempts to guess the character set by reading the

first few bytes of the document.

Since ASCII is almost never an appropriate character set for an XML document,
application/xml is much preferred over text/xml . Unfortunately, most web
servers including Apache 2.0.36 and earlier are configured to use text/xml by

default. If you're running such a version you should probably upgrade before
serving XML files.[1]

[1] You could fix Apache's MIME types instead of upgrading, but you really should
upgrade. All versions of Apache that are old enough to have the wrong MIME type for
XML also have a number of security holes that have since been plugged.

We've focused on MIME types in HTTP headers because that's the most common place where character
set metadata is applied to XML documents. However, MIME types are also used in some filesystems
(e.g., the BeOS), in email, and in other environments. Other systems may provide other forms of
character set metadata. If such metadata is available for a document, whatever form it takes, the
parser should use it, although in practice this is an area where not all parsers and programs are as
conformant as they should be.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.2 The Encoding Declaration

Every XML document should have an encoding declaration as part of its XML declaration. The
encoding declaration tells the parser in which character set the document is written. It's used only
when other metadata from outside the file is not available. For example, this XML declaration says
that the document uses the character encoding US-ASCII:

<?xml version="1.0" encoding="US-ASCII" standalone="yes"?>

This one states that the document uses the Latin-1 character set, although it uses the more official
name ISO-8859-1:

<?xml version="1.0" encoding="ISO-8859-1"?>

Even if metadata is not available, the encoding declaration can be omitted if the document is written
in either the UTF-8 or UTF-16 encodings of Unicode. UTF-8 is a strict superset of ASCII, so ASCII files
can be legal XML documents without an encoding declaration. Note, however, that this only applies to
genuine, pure 7-bit ASCII files. It does not include the extended ASCII character sets that some
editors produce with characters like ©, ç, or ".

Even if character set metadata is available, many parsers ignore it. Thus, we highly recommend
including an encoding declaration in all your XML documents that are not written in UTF-8 or UTF-16.
It certainly never hurts to do so.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.3 Text Declarations

XML documents may be composed of multiple parsed entities, as you learned in Chapter 3. These
external parsed entities may be DTD fragments or chunks of XML that will be inserted into the master
document using external general entity references. In either case, the external parsed entity does
not necessarily use the same character set as the master document. Indeed, one external parsed
entity may be referenced in several different files, each of which is written in a different character
set. Therefore, it is important to specify the character set for an external parsed entity independently
of the character set that the including document uses.

To accomplish this task, each external parsed entity should have a text declaration. If present, the
text declaration must be the very first thing in the external parsed entity. For example, this text
declaration says that the entity is encoded in the KOI8-R character set:

<?xml version="1.0" encoding="KOI8-R"?>

The text declaration looks like an XML declaration. It has version info and an encoding declaration.
However, a text declaration must not have a standalone declaration. Furthermore, the version
information may be omitted. A legal text declaration that specifies the encoding as KOI8-R might look
like this:

<?xml encoding="KOI8-R"?>

However, this is not a legal XML declaration.

Example 5-1 shows an external parsed entity containing several verses from Pushkin's The Bronze
Horseman in a Cyrillic script. The text declaration identifies the encoding as KOI8-R. Example 5-1 is
not a well-formed XML document because it has no root element. It exists only for inclusion in other
documents.

Example 5-1. An external parsed entity with a text declaration
identifying the character set as KOI8-R

External DTD subsets reside in external parsed entities and, thus, may have text declarations.
Indeed, they should have text declarations if they're written in a character set other than one of the
Unicode's variants. Example 5-2 shows a DTD fragment written in KOI8-R that might be used to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

validate Example 5-1 after it is included as part of a larger document.

Example 5-2. A DTD with a text declaration identifying the character set
as KOI8-R

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.4 XML-Defined Character Sets

An XML parser is required to handle the UTF-16 and UTF-8 encodings or Unicode (about which more
follows). However, XML parsers are allowed to understand and process many other character sets. In
particular, the specification recommends that processors recognize and be able to read these
encodings:

UTF-8 UTF-16

ISO-10646-UCS-2 ISO-10646-UCS-4

ISO-8859-1 ISO-8859-2

ISO-8859-3 ISO-8859-4

ISO-8859-5 ISO-8859-6

ISO-8859-7 ISO-8859-8

ISO-8859-9 ISO-8859-JP

Shift_JIS EUC-JP

Many XML processors understand other legacy encodings. For instance, processors written in Java
often understand all character sets available in the Java virtual machine. For a list, see
http://java.sun.com/products/j2se/1.4.2/docs/guide/intl/encoding.doc.html. Furthermore, some
processors may recognize aliases for these encodings; both Latin-1 and 8859_1 are sometimes used
as synonyms for ISO-8859-1. However, using these names limits your document's portability. We
recommend that you use standard names for standard encodings. For encodings whose standard
name isn't given by the XML 1.0 specification, use one of the names registered with the Internet
Assigned Numbers Authority (IANA), listed at ftp://ftp.isi.edu/in-notes/iana/assignments/character-
sets. Knowing the name of a character set and saving a file in that set does not mean that your XML
parser can read such a file, however. XML parsers are only required to support UTF-8 and UTF-16.
They are not required to support the hundreds of different legacy encodings used around the world.

 < Day Day Up >

http://java.sun.com/products/j2se/1.4.2/docs/guide/intl/encoding.doc.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.5 Unicode

Unicode is an international standard character set that can be used to write documents in almost any
language you're likely to speak, learn, or encounter in your lifetime, barring alien abduction. Version
4.0.1, the current version as of June, 2004, contains 96,447 characters from most of Earth's living
languages as well as several dead ones. Unicode easily covers the Latin alphabet, in which most of
this book is written. Unicode also covers Greek-derived scripts, including ancient and modern Greek
and the Cyrillic scripts used in Serbia and much of the former Soviet Union. Unicode covers several
ideographic scripts, including the Han character set used for Chinese and Japanese, the Korean
Hangul syllabary, and phonetic representations of these languages, including Katakana and Hiragana.
It covers the right-to-left Arabic and Hebrew scripts. It covers various scripts native to the Indian
subcontinent, including Devanagari, Thai, Bengali, Tibetan, and many more. And that's still less than
half of the scripts in Unicode 4.0. Probably less than one person in a thousand today speaks a
language that cannot be reasonably represented in Unicode. In the future, Unicode will add still more
characters, making this fraction even smaller. Unicode can potentially hold more than a million
characters, but no one is willing to say in public where they think most of the remaining million
characters will come from.[2]

[2] After a few beers, some developers are willing to admit that they're preparing for a day when we're part of a
Galactic Federation of thousands of intelligent species.

The Unicode character set assigns characters to code points; that is, numbers. These numbers can
then be encoded in a variety of schemes, including:

UCS-2

UCS-4

UTF-8

UTF-16

5.5.1 UCS-2 and UTF-16

UCS-2, also known as ISO-10646-UCS-2, represents each character as a two-byte, unsigned integer
between 0 and 65,535. Thus the capital letter A, code point 65 in Unicode, is represented by the two
bytes 00 and 41 (in hexadecimal). The capital letter B, code point 66, is represented by the two bytes

00 and 42. The two bytes 03 and A3 represent the capital Greek letter , code point 931.

UCS-2 comes in two variations, big endian and little endian. In big-endian UCS-2, the most significant
byte of the character comes first. In little-endian UCS-2, the order is reversed. Thus, in big-endian
UCS-2, the letter A is #x0041.[3] In little-endian UCS-2, the bytes are swapped, and A is #x4100. In
big-endian UCS-2, the letter B is #x0042; in little-endian UCS-2, it's #x4200. In big-endian UCS-2,

the letter is #x03A3; in little-endian UCS-2, it's #xA303. In this book we use big-endian notation,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

but parsers cannot assume this. They must be able to determine the endianness from the document
itself.

[3] For reasons that will become apparent shortly, this book has adopted the convention that #x precedes

hexadecimal numbers. Every two hexadecimal digits map to one byte.

To distinguish between big-endian and little-endian UCS-2, a document encoded in UCS-2
customarily begins with Unicode character #xFEFF, the zero-width nonbreaking space, more

commonly called the byte-order mark. This character has the advantage of being invisible.
Furthermore, if its bytes are swapped, the resulting #xFFFE character doesn't actually exist. Thus, a

program can look at the first two bytes of a UCS-2 document and tell immediately whether the
document is big endian, depending on whether those bytes are #xFEFF or #xFFFE.

UCS-2 has three major disadvantages, however:

Files containing mostly Latin text are about twice as large in UCS-2 as they are in a single-byte
character set such as ASCII or Latin-1.

UCS-2 is not backward- or forward-compatible with ASCII. Tools that are accustomed to single-
byte character sets often can't process a UCS-2 file in a reasonable way, even if the file only
contains characters from the ASCII character set. For instance, a program written in C that
expects the zero byte to terminate strings will choke on a UCS-2 file containing mostly English
text because almost every other byte is zero.

UCS-2 is limited to 65,536 characters.

The last problem isn't so important in practice, since the first 65,536 code points of Unicode
nonetheless manage to cover most people's needs except for dead languages like Ugaritic, fictional
scripts like Tengwar, and musical and some mathematical symbols. Unicode does, however, provide a
means of representing code points beyond 65,535 by recognizing certain two-byte sequences as half
of a surrogate pair. A Unicode document that uses UCS-2 plus surrogate pairs is said to be in the
UTF-16 encoding.

The other two problems, however, are more likely to affect most developers. UTF-8 is an alternative
encoding for Unicode that addresses both.

5.5.2 UTF-8

UTF-8 is a variable-length encoding of Unicode. Characters 0 through 127, that is, the ASCII
character set, are encoded in one byte each, exactly as they would be in ASCII. In ASCII, the byte
with value 65 represents the letter A. In UTF-8, the byte with the value 65 also represents the letter
A. There is a one-to-one identity mapping from ASCII characters to UTF-8 bytes. Thus, pure ASCII
files are also acceptable UTF-8 files.

UTF-8 represents the characters from 128 to 2,047, a range that covers the most common non-
ideographic scripts, in two bytes each. Characters from 2,048 to 65,535-mostly from Chinese,
Japanese, and Korean-are represented in three bytes each. Characters with code points above
65,535 are represented in four bytes each. For a file that's mostly Latin text, this effectively halves
the file size from what it would be in UCS-2. However, for a file that's primarily Japanese, Chinese,
Korean, or one of the languages of the Indian subcontinent, the file size can grow by 50%. For most
other living languages, the file size is close to the same as it would be in UCS-2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UTF-8 is probably the most broadly supported encoding of Unicode. For instance, it's how Java .class
files store strings, it's the native encoding of the BeOS, and it's the default encoding an XML
processor assumes unless told otherwise by a byte-order mark or an encoding declaration. Chances
are pretty good that if a program tells you it's saving Unicode, it's really saving UTF-8.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.6 ISO Character Sets

Unicode has only recently become commonplace. Previously, the space and processing costs
associated with Unicode files caused vendors to prefer smaller, single-byte character sets that could
only handle English and a few other languages of interest, but not the full panoply of human
language. The International Standards Organization (ISO) has standardized 15 of these character
sets as ISO standard 8859. For all of these single-byte character sets, characters 0 through 127 are
identical to the ASCII character set, characters 128 through 159 are the C1 controls, and characters
160 through 255 are the additional characters needed for scripts such as Greek, Cyrillic, and Turkish.

ISO-8859-1 (Latin-1)

ASCII plus the accented letters and other characters needed for most Latin-alphabet Western
European languages, including Danish, Dutch, Finnish, French, German, Icelandic, Italian,
Norwegian, Portuguese, Spanish, and Swedish.

ISO-8859-2 (Latin-2)

ASCII plus the accented letters and other characters needed to write most Latin-alphabet
Central and Eastern European languages, including Czech, German, Hungarian, Polish,
Romanian, Croatian, Slovak, Slovenian, and Sorbian.

ISO-8859-3 (Latin-3)

ASCII plus the accented letters and other characters needed to write Esperanto, Maltese, and
Turkish.

ISO-8859-4 (Latin-4)

ASCII plus the accented letters and other characters needed to write most Baltic languages,
including Estonian, Latvian, Lithuanian, Greenlandic, and Lappish. Now deprecated. New
applications should use 8859-10 (Latin-6) or 8859-13 (Latin-7) instead.

ISO-8859-5

ASCII plus the Cyrillic alphabet used for Russian and many other languages of the former
Soviet Union and other Slavic countries, including Bulgarian, Byelorussian, Macedonian,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Serbian, and Ukrainian.

ISO-8859-6

ASCII plus basic Arabic. However, this character set doesn't have the extra letters needed for
non-Arabic languages written in the Arabic script, such as Farsi and Urdu.

ISO-8859-7

ASCII plus modern Greek. This set does not have the extra letters and accents necessary for
ancient and Byzantine Greek.

ISO-8859-8

ASCII plus the Hebrew script used for Hebrew and Yiddish.

ISO-8859-9 (Latin-5)

Essentially the same as Latin-1, except six Icelandic letters have been replaced by six Turkish
letters.

ISO-8859-10 (Latin-6)

ASCII plus accented letters and other characters needed to write most Baltic languages,
including Estonian, Icelandic, Latvian, Lithuanian, Greenlandic, and Lappish.

ISO-8859-11

ASCII plus Thai.

ISO-8859-13 (Latin-7)

Yet another attempt to cover the Baltic region properly. Very similar to Latin-6, except for
some question marks.

ISO-8859-14 (Latin-8)

ASCII plus the Celtic languages, including Gaelic and Welsh.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ISO-8859-15 (Latin-9, Latin-0)

A revised version of Latin-1 that replaces some unnecessary symbols, such as 1/4, with extra
French and Finnish letters. Instead of the international currency sign, these sets include the
Euro sign, .

ISO-8859-16, (Latin-10)

A revised version of Latin-2 that works better for Romanian. Other languages supported by this
character set include Albanian, Croatian, English, Finnish, French, German, Hungarian, Italian,
Polish, and Slovenian.

Various national standards bodies have produced other character sets to cover scripts and languages
of interest within their geographic and political boundaries. For example, the Korea Industrial
Standards Association developed the KS C 5601-1992 standard for encoding Korean. These national
standard character sets can be used in XML documents as well, provided that you include the proper
encoding declaration in the document and the parser knows how to translate these character sets
into Unicode.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.7 Platform-Dependent Character Sets

In addition to the standard character sets discussed previously, many vendors have at one time or
another produced proprietary character sets to meet the needs of their specific platform. Often, they

contain special characters the vendor saw a need for, such as Apple's trademarked open apple or

the box-drawing characters, such as and , used for cell boundaries in early DOS spreadsheets.
Microsoft, IBM, and Apple are the three most prolific inventors of character sets. The single most
common such set is probably Microsoft's Cp1252, a variant of Latin-1 that replaces the C1 controls
with more graphic characters. Hundreds of such platform-dependent character sets are in use today.
Documentation for these ranges from excellent to nonexistent.

Platform-specific character sets like these should be used only within a single system. They should
never be placed on the wire or used to transfer data between systems. Doing so can lead to nasty
surprises in unexpected places. For example, displaying a file that contains some of the extra Cp1252

characters , , ^, , ", , ..., , , , ·, ', ', ", ", -, -, , , ™, , and ~ on a VT-220

terminal can effectively disable the screen. Nonetheless, these character sets are in common use and
often seen on the Web, even when they don't belong there. There's no absolute rule that says you
can't use them for an XML document, provided that you include the proper encoding declaration and
your parser understands it. The one advantage to using these sets is that existing text editors are
likely to be much more comfortable with them than with Unicode and its friends. Nonetheless, we
strongly recommend that you don't use them and stick to the documented standards that are much
more broadly supported across platforms.

5.7.1 Cp1252

The most common platform-dependent character set, and the one you're most likely to encounter on
the Internet, is Cp1252, also (and incorrectly) known as Windows ANSI. This is the default character
set used by most American and Western European Windows PCs, which explains its ubiquity. Cp1252
is a single-byte character set almost identical to the standard ISO-8859-1 character set-indeed,
many Cp1252 documents are often incorrectly labeled as being Latin-1 documents. However, this set
replaces the C1 controls between code points 128 and 159 with additional graphics characters, such

as , , and . These characters won't cause problems on other Windows systems. However,

other platforms will have difficulty viewing them properly and may even crash in extreme cases.
Cp1252 (and its siblings used in non-Western Windows systems) should be avoided.

5.7.2 MacRoman

The Mac OS uses a different, nonstandard, single-byte character set that's a superset of ASCII. The
version used in the Americas and most of Western Europe is called MacRoman. Variants for other
countries include MacGreek, MacHebrew, MacIceland, and so forth. Most Java-based XML processors
can make sense out of these encodings if they're properly labeled, but most other non-Macintosh

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tools cannot.

For instance, if the French sentence "Au cours des dernières années, XML a été adapte dans des
domaines aussi diverse que l'aéronautique, le multimédia, la gestion de hôpitaux, les
télécommunications, la théologie, la vente au détail et la littérature médiévale" is written on a

Macintosh and then read on a PC, what the PC user will see is "Au cours des derni?res ann es, XML a

t adapte dans des domaines aussi diverse que l'a ronautique, le multim dia, la gestion de

h™pitaux, les t l communications, la th ologie, la vente au d tail et la litt rature m di vale," not
the same thing at all. Generally, the result is at least marginally intelligible if most of the text is
ASCII, but it certainly doesn't lend itself to high fidelity or quality. Mac-specific character sets should
also be avoided.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.8 Converting Between Character Sets

The ultimate solution to this character set morass is to use Unicode in either UTF-16 or UTF-8 format
for all your XML documents. An increasing number of tools support one of these two formats natively;
even the unassuming Notepad offers an option to save files in Unicode in Windows NT 4.0, 2000, and
XP. Microsoft Word 97 and later saves the text of its documents in Unicode, although unlike XML
documents, Word files are hardly pure text. Much of the binary data in a Word file is not Unicode or
any other kind of text. However, Word 2000 and later can actually save plain text files into Unicode.
To save as plain Unicode text in Word 2000, select the format Encoded Text from the Save As Type:
Choice menu in Word's Save As dialog box. Then select one of the four Unicode formats in the
resulting File Conversion dialog box. In Word 2003, select the plain text format. When you save,
Word will pop up a dialog box that prompts you for the encoding. Choose Other Encoding and then
select one of the four Unicode formats in the list box on the right.

Most current tools are still adapted primarily for vendor-specific character sets that can't handle more
than a few languages at one time. Thus, learning how to convert your documents from proprietary to
more standard character sets is crucial.

Some of the better XML and HTML editors let you choose the character set you wish to save in and
perform automatic conversions from the native character set you use for editing. On Unix, the native
character set is likely one of the standard ISO character sets, and you can save into that format
directly. On the Mac, you can avoid problems if you stick to pure ASCII documents. On Windows, you
can go a little further and use Latin-1, if you're careful to stay away from the extra characters that
aren't part of the official ISO-8859-1 specification. Otherwise, you'll have to convert your document
from its native, platform-dependent encoding to one of the standard platform-independent character
sets.

François Pinard has written an open source character-set conversion tool called recode for Linux and
Unix, which you can download from http://recode.progiciels-bpi.ca/, as well as GNU mirror sites.
Wojciech Galazka has ported recode to DOS. You can also use the Java Development Kit's
native2ascii tool at http://java.sun.com/j2se/1.4.2/docs/tooldocs/win32/native2ascii.html. First,
convert the file from its native encoding to Java's special ASCII-encoded Unicode format, then use
the same tool in reverse to convert from the Java format to the encoding you actually want. For
example, to convert the file myfile.xml from the Windows Cp1252 encoding to UTF-8, execute these
two commands in sequence:

% native2ascii -encoding Cp1252 myfile.xml myfile.jtx

% native2ascii -reverse -encoding UTF-8 myfile.jtx myfile.xml

 < Day Day Up >

http://recode.progiciels-bpi.ca/
http://java.sun.com/j2se/1.4.2/docs/tooldocs/win32/native2ascii.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.9 The Default Character Set for XML Documents

Before an XML parser can read a document, it must know which character set and encoding the
document uses. In some cases, external metainformation tells the parser what encoding the
document uses. For instance, an HTTP header may include a Content-type header like this:

Content-type: text/html; charset=ISO-8859-1

However, XML parsers generally can't count on the availability of such information. Even if they can,
they can't necessarily assume that it's accurate. Therefore, an XML parser will attempt to guess the
character set based on the first several bytes of the document. The main checks the parser makes
include the following:

If the first two bytes of the document are #xFEFF, then the parser recognizes the bytes as the

Unicode byte-order mark. It then guesses that the document is written in the big-endian, UTF-
16 encoding of Unicode. With that knowledge, it can read the rest of the document.

If the first two bytes of the document are #xFFFE, then the parser recognizes the little-endian

form of the Unicode byte-order mark. It now knows that the document is written in the little-
endian, UTF-16 encoding of Unicode, and with that knowledge it can read the rest of the
document.

If the first four bytes of the document are #x3C3F786D, that is, the ASCII characters <?xm, then

it guesses that the file is written in a superset of ASCII. In particular, it assumes that the file is
written in the UTF-8 encoding of Unicode. Even if it's wrong, this information is sufficient to
continue reading the document through the encoding declaration and find out what the
character set really is.

Parsers that understand EBCDIC or UCS-4 may also apply similar heuristics to detect those
encodings. However, UCS-4 isn't really used yet and is mostly of theoretical interest, and EBCDIC is a
legacy family of character sets that shouldn't be used in new documents. Neither of these sets are
important in practice.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.10 Character References

Unicode contains more than 96,000 different characters covering almost all of the world's written
languages. Predefining entity references for each of these characters, most of which will never be
used in any one document, would impose an excessive burden on XML parsers. Rather than pick and
choose which characters are worthy of being encoded as entities, XML goes to the other extreme. It
predefines entity references only for characters that have special meaning as markup in an XML
document: <, >, &, ", and '. All these are ASCII characters that are easy to type in any text editor.

For other characters that may not be accessible from an ASCII text editor, XML lets you use
character references. A character reference gives the number of the particular Unicode character it
stands for, in either decimal or hexadecimal. Decimal character references look like њ;
hexadecimal character references have an extra x after the &#;; that is, they look like њ. Both

of these references refer to the same character, , the Cyrillic small letter "nje" used in Serbian and

Macedonian. For example, suppose you want to include the Greek maxim " Ó Ó

 " ("The wise man knows himself") in your XML document. However, you only

have an ASCII text editor at your disposal. You can replace each Greek letter with the correct
character reference, like this:

<maxim>

 σοφός

 έαυτόν

 γιγνώσκει

</maxim>

To the XML processor, a document using character entity references referring to Unicode characters
that don't exist in the current encoding is equivalent to a Unicode document in which all character
references are replaced by the actual characters to which they refer. In other words, this XML
document is the same as the previous one:

<maxim> Ó Ó </maxim>

Character references are only recognized and replaced in element content and attribute values. They
may not be used in element and attribute names, processing instruction targets, or XML keywords,
such as DOCTYPE or ELEMENT. Character references can appear in comments and processing

instruction data, but the parser does not recognize them there. They may be used in the DTD in
attribute default values and entity replacement text. Tag and attribute names may be written in
languages such as Greek, Russian, Arabic, or Chinese, but you must use a character set that allows
you to include the appropriate characters natively. You can't insert these characters with character
references. For instance, this is well-formed:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

< > σοφός < >

This is not well-formed:

<λογος>

 σοφός

</λογος>

Chapter 27 provides character codes in both decimal and hexadecimal for some of the most useful
and widely used alphabetic scripts. The interested reader will find the complete set in The Unicode
Standard Version 4.0 by the Unicode Consortium (Addison Wesley, 2003). You can also view the code
charts online at http://www.unicode.org/charts/.

If you use a particular group of character references frequently, you may find it easier to define them
as entities and then refer to the entities instead. Example 5-3 shows a DTD defining the entities you
might use to spell out the Greek words in the previous several examples.

Example 5-3. A DTD defining general entity references for several Greek
letters

<!ENTITY sigma "σ">

<!ENTITY omicron_with_tonos "ό">

<!ENTITY phi "φ">

<!ENTITY omicron "ο">

<!ENTITY final_sigma "ς">

<!ENTITY epsilon_with_tonos "έ">

<!ENTITY alpha "α">

<!ENTITY lambda "σ">

<!ENTITY upsilon "υ">

<!ENTITY tau "τ">

<!ENTITY nu "ν">

<!ENTITY gamma "γ">

<!ENTITY iota "ι">

<!ENTITY omega_with_tonos "ώ">

http://www.unicode.org/charts/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!ENTITY kappa "κ">

<!ENTITY epsilon "ε">

These entities can even be used in invalid documents, provided that the declarations are made in the
document's internal DTD subset, which all XML parsers are required to process, or that the parser
reads the external DTD subset. By convention, DTD fragments that do nothing but define entities
have the three-letter suffix .ent. These fragments are imported into the document's DTD using
external parameter entity references. Example 5-4 shows how the maxim might be written using
these entities, assuming they can be found at the relative URL greek.ent.

Example 5-4. The maxim using entity references instead of character
references

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<!DOCTYPE maxim [

 <!ENTITY % greek_alphabet SYSTEM "greek.ent">

 %greek_alphabet;

]>

<maxim>

 σοφ&omicron_with_tonos;&final_sigma;

 &epsilon_with_tonos;αυτ&omicron_with_tonos;ν

 γιγν&omega_with_tonos;σκει

</maxim>

A few standard entity subsets are widely available for your own use. The XHTML 1.0 DTD includes
three useful entity sets you can adopt in your own work:

Latin-1 characters, http://www.w3.org/TR/xhtml1/DTD/xhtml-lat1.ent

The non-ASCII characters from 160 up in ISO-8859-1

Special characters, http://www.w3.org/TR/xhtml1/DTD/xhtml-special.ent

http://www.w3.org/TR/xhtml1/DTD/xhtml-lat1.ent
http://www.w3.org/TR/xhtml1/DTD/xhtml-special.ent
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Letters from ISO-8859-2 (Latin-2) that aren't also in Latin-1, such as and various

punctuation marks, including the dagger, the Euro sign, and the em dash

Symbols, http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent

The Greek alphabet (though accented characters are missing) and various punctuation marks,
mathematical operators, and other symbols commonly used in mathematics

Chapter 27 provides complete charts showing all characters in these entity sets. You can either use
these directly from their relatively stable URLs at the W3C or copy them onto your own systems. For
example, to use entities from the symbol set in a document, add the following to the document's
DTD:

<!ENTITY % HTMLsymbol PUBLIC

 "-//W3C//ENTITIES Symbols for XHTML//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent">

%HTMLsymbol;

Since these are fairly standard DTDs, they have both Public IDs and URLs. Other groups and
individuals have written entity sets you can use similarly, although no canonical collection of entity
sets that covers all of Unicode exists. SGML included almost 20 separate entity sets covering Greek,
Cyrillic, extended Latin, mathematical symbols, diacritical marks, box-drawing characters, and
publishing marks. These aren't a standard part of XML, but several applications including DocBook
(http://www.docbook.org/) and MathML
(http://www.w3.org/TR/MathML2/chapter6.html#chars_entity-tables) have ported them to XML.
MathML also has several useful entity sets containing more mathematical symbols.

 < Day Day Up >

http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent
http://www.docbook.org/
http://www.w3.org/TR/MathML2/chapter6.html#chars_entity-tables
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.11 xml:lang

Since XML documents are written in Unicode, XML is an excellent choice for multilingual documents,
such as an Arabic commentary on a Greek text (something that couldn't be done with almost any
other character set). In such multilingual documents, it's useful to identify in which language a
particular section of text is written. For instance, a spellchecker that only knows English shouldn't try
to check a French quote.

Each XML element may have an xml:lang attribute that specifies the language in which the content

of that element is written. For example, the previous maxim might look like this:

<maxim xml:lang="el">

 σόC6;BF;C2; έB1;C5;C4;όν

 γιγνώσκει

</maxim>

This identifies it as Greek. The specific code used, el, comes from the Greek word for Greek,

.

5.11.1 Language Codes

The value of the xml:lang language attribute should be one of the two-letter language codes defined

in ISO-639, "Codes for the Representation of Names of Languages," found at
http://lcweb.loc.gov/standards/iso639-2/langhome.html, if such a code exists for the language in
question.

For languages that aren't listed in ISO-639, you can use a language identifier registered with IANA;
currently, about 20 of these identifiers exist, including i-navajo, i-klingon, and i-lux. The

complete list can be found at ftp://ftp.isi.edu/in-notes/iana/assignments/languages. All identifiers
begin with i-. For example:

<maxim xml:lang="i-klingon">Heghlu'meH QaQ jajvam</maxim>

If the language you need still isn't present in these two lists, you can create your own language tag,
as long as it begins with the prefix x- or X- to identify it as a user-defined language code. For

example, the title of this journal is written in J. R. R. Tolkien's fictional Quenya language:

<journal xml:lang="x-quenya">Tyalië Tyelelliéva</journal>

http://lcweb.loc.gov/standards/iso639-2/langhome.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.11.2 Subcodes

For some purposes, knowing the language is not enough. You also need to know the region where the
language is spoken. For instance, French has slightly different vocabulary, spelling, and pronunciation
in France, Quebec, Belgium, and Switzerland. Although written identically with an ideographic
character set, Mandarin and Cantonese are actually quite different, mutually unintelligible dialects of
Chinese. The United States and the United Kingdom are jocularly referred to as "two countries
separated by a common language."

To handle these distinctions, the language code may be followed by any number of subcodes that
further specify the language. Hyphens separate the language code from the subcode and subcodes
from each other. If the language code is an ISO-639 code, the first subcode should be one of the
two-letter country codes defined by ISO-3166, "Codes for the Representation of Names of Countries,"
found at http://www.ics.uci.edu/pub/ietf/http/related/iso3166.txt. This xml:lang attribute indicates

Canadian French:

<p xml:lang="fr-CA">Marie vient pour le fin de semaine.</p>

The language code is usually written in lowercase, and the country code is written in uppercase.
However, this is just a convention, not a requirement.

5.11.3 ATTLIST Declarations of xml:lang

Although the XML 1.0 specification defines the xml:lang attribute, you still have to declare it in the
DTDs of valid documents. For example, this information declares the maxim element used several

times in this chapter:

<!ELEMENT maxim (#PCDATA)>

<!ATTLIST maxim xml:lang NMTOKEN #IMPLIED>

Here I've used the NMTOKEN type, since all legal language codes are well-formed XML name tokens.

You may declare the xml:lang attribute in any convenient way. For instance, if you want to require
its presence on the maxim element, you could make it #REQUIRED:

<!ATTLIST maxim xml:lang NMTOKEN #REQUIRED>

Or, if you wanted to allow only French and English text in your documents, you might specify it as an
enumerated type with a default of English like this:

<!ATTLIST maxim xml:lang (en | fr) 'en'>

Unless you use an enumerated type, the parser will not check that the value you give it follows the
rules outlined here. It's your responsibility to make sure you use appropriate language codes and
subcodes.

http://www.ics.uci.edu/pub/ietf/http/related/iso3166.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Part II: Narrative-Like Documents

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 6. XML as a Document Format
XML is first and foremost a document format. It was always intended for web pages, books, scholarly
articles, poems, short stories, reference manuals, tutorials, textbooks, legal pleadings, contracts,
instruction sheets, and other documents that human beings would read. Its use as a syntax for
computer data in applications such as order processing, object serialization, database exchange and
backup, and electronic data interchange is mostly a happy accident.

Most computer programmers are better trained in working with the rigid structures one encounters in
record-like applications than in the more free-form environment of an article or story. Most writers
are more accustomed to the more free-form format of a book, story, or article. XML is perhaps
unique in addressing the needs of both communities equally well. This chapter describes by both
elucidation and example the structures encountered in narrative documents that are meant to be
read by people instead of computers. Subsequent chapters will look at web pages in particular, then
address technologies-such as XSLT, XLinks, and stylesheets-that are primarily intended for use
with documents that will be read by human beings. Once we've done that, we'll look at XML as a
format for more or less transitory data meant to be read by computers, rather than semipermanent
documents intended for human consumption.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.1 SGML's Legacy

XML is a simplified form of the Standardized General Markup Language (SGML). The language that
would eventually become SGML was invented by Charles F. Goldfarb, Ed Mosher, and Ray Lorie at
IBM in the 1970s and developed by many people around the world until its eventual adoption as ISO
standard 8879 in 1986. SGML was intended to solve many of the same problems XML solves in much
the same way as XML solves them. It was and is a semantic and structural markup language for text
documents. SGML is extremely powerful and achieved some success in the U.S. military and
government, in the aerospace sector, and in other domains that needed ways of efficiently managing
technical documents that were tens of thousands of pages long.

SGML's biggest success was HTML, which was and is an SGML application. However, HTML is just one
SGML application. It does not have anything close to the full power of SGML itself. SGML has also
been used to define many other document formats, including DocBook and TEI, both of which we'll
discuss shortly.

However, SGML is complicated-very, very complicated. The official SGML specification is over 150
very technical pages. It covers many special cases and unlikely scenarios. It is so complex that
almost no software has ever implemented it fully. Programs that implement or rely on different
subsets of SGML are often incompatible. The special feature that one program considers essential is
all too often considered extraneous fluff and omitted by the next program. Nonetheless, experience
with SGML taught developers a lot about the proper design, implementation, and use of markup
languages for a wide variety of documents. Much of that general knowledge applies equally well to
XML.

One thing all this should make clear is that XML documents aren't just used on the Web. XML can
easily handle the needs of publishing in a variety of media, including books, magazines, journals,
newspapers, and pamphlets. XML is particularly useful when you need to publish the same
information in several of these formats. By applying different stylesheets to the same source
document, you can produce web pages, speaker's notes, camera-ready copy for printing, and more.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.2 Narrative Document Structures

All XML documents are trees. However, trees are very general-purpose data structures. If you've
been formally trained in computer science (and very possibly even if you haven't been), you've
encountered binary trees, red-black trees, balanced trees, B-trees, ordered trees, and more.
However, when working with XML, it's highly unlikely that any given document matches any of these
structures. Instead, XML documents are the most general sort of tree, with no particular restrictions
on how nodes are ordered or how or which nodes are connected to which other nodes. Narrative XML
documents are even less likely than record-like XML documents to have an identifiable structure
beyond their mere treeness.

So what does a narrative-oriented XML document look like? Of course, there's a root element. All XML
documents have one. Generally speaking, this root element represents the document itself. That is, if
the document is a book, the root element is book. If the document is an article, the root element is
article, and so on.

Beyond that, large documents are generally broken up into sections of some kind, perhaps chapters
for a book, parts for an article, or claims for a legal brief. Most of the document consists of these
primary sections. In some cases, there'll be several different kinds of sections; for instance, one for
the table of contents, one for the index, and one for the chapters of a book.

Generally, the root element also contains one or more elements providing metainformation about the
document-for example, the title of the work, the author of the document, the dates the document
was written and last modified, and so forth. One common pattern is to place the metainformation in
one child of the root element and the main content of the work in another. This is how HTML
documents are written. The root element is html. The metainformation goes in a head element, and
the main content goes in the body element. TEI and DocBook also follow this pattern.

Sections of the document can be further divided into subsections. The subsections themselves may
be further divided. How many levels of subsection appear generally depends on how large the
document is. An encyclopedia will have many levels of sectioning; a pamphlet or flier will have almost
none. Each section and subsection normally has a title. It may also have elements or attributes that
indicate metainformation about the section, such as the author or date it was last modified.

Up to this point, mixed content is mostly avoided. Elements contain child elements and whitespace,
and that's likely all they contain. However, at some level it becomes necessary to insert the actual
text of the document-the words that people will read. In most Western languages, these will
probably be divided into paragraphs and other block-level elements like headlines, figures, sidebars,
and footnotes. Generic document DTDs like DocBook won't be able to say more about these items
than this.

The paragraphs and other block-level items will mostly contain words in a row-that is, text. Some of
this text may be marked up with inline elements. For instance, you may wish to indicate that a
particular string of text inside the block-level element is a date, a person, or simply important.
However, most of the text will not be so annotated.

One area in which different XML applications diverge is the question of whether block-level items may

http://lib.ommolketab.ir
http://lib.ommolketab.ir

contain other block-level items. For instance, can a paragraph contain a list? Or can a list item
contain a paragraph? It's probably easier to work with more structured documents in which blocks
can't contain other blocks (particularly other instances of the same kind). However, it's very often the
case that a block has a very good reason to contain other blocks. For instance, a long list item or
quotation may contain several paragraphs.

For the most part, this entire structure from the root down to the most deeply nested inline item
tends to be quite linear; that is, you expect that a person will read the words in pretty much the
same order they appear in the document. If all the markup were suddenly removed and you were left
with nothing but the raw text, the result should be more or less legible. The markup can be used to
index or format the document, but it's not a fundamental part of the content.

Another important point about these sorts of XML documents: not only are they composed of words
in a row, they're composed of words. What they contain is text intended for human beings to read.
They're not numbers or dates or money, except insofar as these things occur as part of the normal
flow of the narrative. The #PCDATA content of the lowest-level elements of the tree mostly have one

type: string. If anything has a real type beyond string, it's likely metainformation about the
document (figure number, date last modified, and so on) rather than the content of the document
itself.

This explains why DTDs don't provide strong (or really any) data typing. The documents for which
SGML was designed didn't need it. XML documents that are doing jobs for which SGML wasn't
designed, such as tracking inventories or census data, do need data typing; that's why various
people and organizations have invented a plethora of schema languages. However, schemas really
don't improve on DTDs for narrative documents.

Not all XML documents are like those we've described here. Not even all narrative-oriented XML
documents are like this. However, a surprising number of narrative-oriented XML applications do
follow this basic pattern, perhaps with a nip here or a tuck there. The reason is that this is the basic
structure narratives follow, which has proven its usefulness in the thousands of years since writing
was invented. If you were to define your own DTDs for general narrative-oriented documents, you'd
probably come up with something a lot like this. If you define your own DTDs for more specialized
narrative-oriented documents, then the names of the elements may change to reflect your
domain-for instance, if you were writing the next edition of the Boy Scout handbook, one of your
subsections might be called MeritBadge-however, the basic hierarchy of document,

metainformation, sections and subsections, block-level elements, and marked-up text would likely
remain.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.3 TEI

The Text Encoding Initiative (TEI, http://www.tei-c.org/) is an XML (originally SGML) application
designed for the markup of classic literature, such as Vergil's Aeneid or the collected works of
Thomas Jefferson. It's a prime example of a narrative-oriented DTD. Since TEI is designed for
scholarly analysis of text rather than more casual reading or publishing, it includes elements not only
for common document structures (chapter, scene, stanza, etc.) but also for typographical elements,
grammatical structure, the position of illustrations on the page, and so forth. These aren't important
to most readers, but they are important to TEI's intended audience of humanities scholars. For many
academic purposes, one manuscript of the Aeneid is not necessarily the same as the next.
Transcription errors and emendations made by various monks in the Middle Ages can be crucial.

Example 6-1 shows a fairly simple TEI document that uses the "Lite" version of TEI, a subset of full
TEI that includes only the most commonly needed tags. The content comes from the book you're
reading now. Although a complete TEI-encoded copy of this manuscript would be much longer, this
simple example demonstrates the basic features of most TEI documents that represent books. (In
addition to prose, TEI can also be used for plays, poems, missals, and essentially any written form of
literature.)

Example 6-1. A TEI document

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE TEI.2 SYSTEM "xteilite.dtd">

<TEI.2>

 <teiHeader>

 <fileDesc>

 <titleStmt>

 <title>XML in a Nutshell</title>

 <author>Harold, Elliotte Rusty</author>

 <author>Means, W. Scott</author>

 </titleStmt>

 <publicationStmt><p></p></publicationStmt>

http://www.tei-c.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <sourceDesc><p>Early manuscript draft</p></sourceDesc>

 </fileDesc>

 </teiHeader>

 <text id="HarXMLi">

 <front>

 <div type='toc'>

 <head>Table Of Contents</head>

 <list>

 <item>Introducing XML</item>

 <item>XML as a Document Format</item>

 <item>XML on the Web</item>

 </list>

 </div>

 </front>

 <body>

 <div1 type="chapter">

 <head>Introducing XML</head>

 <p></p>

 </div1>

 <div1 type="chapter">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <head>XML as a Document Format</head>

 <p>

 XML is first and foremost a document format. It was always

 intended for web pages, books, scholarly articles, poems,

 short stories, reference manuals, tutorials, texts, legal

 pleadings, contracts, instruction sheets, and other documents

 that human beings would read. Its use as a syntax for computer

 data in applications like syndication, order processing,

 object serialization, database exchange and backup, electronic

 data interchange, and so forth is mostly a happy accident.

 </p>

 <div2 type="section">

 <head>SGML's Legacy</head>

 <p></p>

 </div2>

 <div2 type="section">

 <head>TEI</head>

 <p></p>

 </div2>

 <div2 type="section">

 <head>DocBook</head>

 <p>

 DocBook (<hi>http://www.docbook.org/</hi>) is an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SGML application designed for new documents, not old ones.

 It's especially common in computer documentation. Several

 O'Reilly books have been written in DocBook including

 <bibl><author>Norm Walsh</author>'s <title>DocBook: The

 Definitive Guide</title></bibl>. Much of the <abbr

 expan='Linux Documentation Project'>LDP</abbr>

 (<hi>http://www.linuxdoc.org/</hi>) corpus is written in

 DocBook.

 </p>

 </div2>

 </div1>

 <div1 type="chapter">

 <head>XML on the Web</head>

 <p></p>

 </div1>

 </body>

 <back>

 <div1 type="index">

 <list>

 <head>INDEX</head>

 <item>SGML, 8, 89</item>

 <item>DocBook, 95-98</item>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <item>TEI (Text Encoding Initiative), 92-95</item>

 <item>Text Encoding Initiative, See TEI</item>

 </list>

 </div1>

 </back>

 </text>

</TEI.2>

The root element of this and all TEI documents is TEI.2. This root element is always divided into two
parts: a header represented by a teiHeader element and the main content of the document
represented by a text element. The header contains information about the source document (for

instance, exactly which medieval manuscript the text was copied from), the encoding of the
document, some keywords describing the document, and so forth.

The text element is itself divided into three parts:

Front matter in the front element

The preface, table of contents, dedication page, pictures of the cover, and so forth. Each of
these is represented by a div element with a type attribute whose value identifies the division

as a table of contents, preface, title page, and so forth. Each of these divisions contains other
elements laying out the content of that division.

The body of the work in the body element

The individual chapters, acts, and so forth that make up the document. Each of these is
represented by a div1 element with a type attribute that identifies this particular division as a
volume, book, part, chapter, poem, act, and so forth. Each div1 element has a header child

giving the title of the volume, book, part, chapter, etc.

Back matter in the back element

The index, glossary, etc.

The divisions may be further subdivided; div1s can contain div2s, div2s can contain div3s, div3s
can contain div4s, and so on up to div7. However, for any given work, there is a smallest division.
This division contains paragraphs represented by p elements for prose or stanzas represented by lg

http://lib.ommolketab.ir
http://lib.ommolketab.ir

elements for poetry. Stanzas are further broken up into individual lines represented by l elements.

Both lines and paragraphs contain mixed content; that is, they contain plain text. However, parts of
this text may be marked up further by elements indicating that particular words or characters are
peoples' names (name), corrections (corr), illegible (unclear), misspellings (sic), and so on.

This structure fairly closely reflects the structure of the actual documents that are being encoded in
TEI. This is true of most narrative-oriented XML applications that need to handle fairly generic
documents. TEI is a very representative example of typical XML document structure.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.4 DocBook

DocBook (http://www.docbook.org/) is an SGML application designed for new documents, not old
ones. It's especially common in computer documentation. Several O'Reilly books have been written in
DocBook, including Norm Walsh and Leonard Muellner's DocBook: The Definitive Guide. No special
tools are required to author it. Much of the Linux Documentation Project (LDP,
http://www.linuxdoc.org/) corpus is written in DocBook. The current version of DocBook, 4.3, is
available as both an SGML and an XML application. Example 6-2 shows a simple DocBook XML
document based on the book you're reading now. Needless to say, the full version of this document
would be much longer.

Example 6-2. A DocBook document

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.3//EN"

 "docbook/docbookx.dtd">

<book>

 <title>XML in a Nutshell</title>

 <bookinfo>

 <author>

 <firstname>Elliotte Rusty</firstname>

 <surname>Harold</surname>

 </author>

 <author>

 <firstname>W. Scott</firstname>

 <surname>Means</surname>

 </author>

 </bookinfo>

http://www.docbook.org/
http://www.linuxdoc.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <toc>

 <tocchap><tocentry>Introducing XML</tocentry></tocchap>

 <tocchap><tocentry>XML as a Document Format</tocentry></tocchap>

 <tocchap><tocentry>XML as a "better" HTML</tocentry></tocchap>

 </toc>

 <chapter>

 <title>Introducing XML</title>

 <para></para>

 </chapter>

 <chapter>

 <title>XML as a Document Format</title>

 <para>

 XML is first and foremost a document format. It was always intended

 for web pages, books, scholarly articles, poems, short stories,

 reference manuals, tutorials, texts, legal pleadings, contracts,

 instruction sheets, and other documents that human beings would

 read. Its use as a syntax for computer data in applications like

 syndication, order processing, object serialization, database

 exchange and backup, electronic data interchange, and so forth is

 mostly a happy accident.

 </para>

 <sect1>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <title>SGML's Legacy</title>

 <para></para>

 </sect1>

 <sect1>

 <title>TEI</title>

 <para></para>

 </sect1>

 <sect1>

 <title>DocBook</title>

 <para>

 <ulink url="http://www.docbook.org/">DocBook</ulink>

 is an SGML application designed for new documents, not old ones.

 It's especially common in computer documentation. Several

 O'Reilly books have been written in DocBook including

 <citation>Norm Walsh and Leonard Muellner's

 <citetitle>DocBook: The Definitive

 Guide</citetitle></citation>. Much of the <ulink

 url="http://www.linuxdoc.org/">Linux Documentation Project

 (LDP)</ulink> corpus is written in DocBook. </para>

 </sect1>

 </chapter>

 <chapter>

 <title>XML on the Web</title>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <para></para>

 </chapter>

 <index>

 <indexentry>

 <primaryie>SGML, 8, 89</primaryie>

 </indexentry>

 <indexentry>

 <primaryie>DocBook, 95-98</primaryie>

 </indexentry>

 <indexentry>

 <primaryie>TEI (Text Encoding Initiative), 92-95</primaryie>

 </indexentry>

 <indexentry>

 <primaryie>Text Encoding Initiative</primaryie>

 <seeie>TEI</seeie>

 </indexentry>

 </index>

</book>

DocBook offers many advantages to technical authors. First and foremost, it's open, nonproprietary,
and can be created with any text editor. It would feel a little silly to write open source documentation
for open source software with closed and proprietary tools like Microsoft Word (which is not to say
this hasn't been done). If your documents are written in DocBook, they aren't tied to any one
platform, vendor, or application software. They're portable across essentially any plausible
environment you can imagine.

Not only is DocBook theoretically editable with basic text editors, it's simple enough that such editing
is practical as well. One of us (Harold) wrote an entire 1,200 page book in DocBook by hand in jEdit
(Processing XML with Java, Addison Wesley, 2002). Of course, if you'd like a little help, there are a
number of free tools available, including an Emacs major mode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(http://www.nwalsh.com/emacs/docbookide/index.html). Furthermore, like many good XML
applications, DocBook is modular. You can use the pieces you need and ignore the rest. If you need
tables, there's a very complete tables module. If you don't need tables, you don't need to know
about or use this module. Other modules cover various entity sets and equations.

DocBook is an authoring format, not a format for finished presentation. Before a DocBook document
is read by a person, it is converted to any of several formats, including the following:

HTML

XSL Formatting Objects

Rich Text Format (RTF)

TEX

For example, if you want high-quality printed documentation for a program, you can convert a
DocBook document to TEX, then use the standard TEX tools to convert the resulting TEX file to a DVI
and/or PostScript file and print that. If you just want to read it on your computer, then you'd
probably convert it to HTML and load it into your web browser. For other purposes, you'd pick
something else. With DocBook, all these formats come essentially for free. It's very easy to produce
multiple output documents in different formats from a single DocBook source document. Indeed, this
benefit isn't just limited to DocBook. Most well-thought-out XML input formats are just as easy to
publish in other formats.

 < Day Day Up >

http://www.nwalsh.com/emacs/docbookide/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.5 OpenOffice

While you can write markup by hand in a text editor, many non-programmers prefer a friendlier, more WYSIWYG
approach. There's no reason a standard word processor can't save its data in XML, and indeed several now do,
including Microsoft Word 2003 and OpenOffice.org Writer. Harold also wrote a much smaller book in XML using
OpenOffice.org Writer (Effective XML , Addison Wesley).

For what it's worth, in hindsight I regret that decision. If I were doing it again, I would write
the XML by hand in DocBook as I did with Processing XML with Java , rather than using
OpenOffice. As much as good GUI tools can improve productivity, bad GUI tools can hinder it.
A poorly designed GUI is no guarantee of ease of use.Scott and I wrote this book in Microsoft
Word, but mostly because the early editions predated the availability of high-quality XML
publishing tools. That decision is hurting us now. For instance, the complicated tables in
Chapter 27 are well beyond what Word can comfortably handle. In DocBook, they'd be a no-
brainer. If we were starting from scratch, we'd write in DocBook.

Example 6-3 shows a fairly simple OpenOffice document. Again, the content comes from the book you're reading
now. This differs from TEI and DocBook in several ways-for instance, it uses namespaces. TEI and DocBook don't.
The title of the book and the names of the authors are not included because they'd normally be stored in a separate
XML document containing only the metadata. Indexes and tables of contents are generated from the internal
structure, content, and markup rather than being added explicitly. Perhaps the most unusual distinction is the lack of
section elements of any kind. Instead, different chapters, sections, and subsections are identified by text:h elements
with different levels. The contents of the section are everything that follows the text:h element until the next text:h

element. Less obvious is that this format is more general because it's designed to handle several other OpenOffice
document formats, including charts and spreadsheets, besides simple narrative content.

Example 6-3. An OpenOffice document

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE office:document-content

 PUBLIC "-//OpenOffice.org//DTD OfficeDocument 1.0//EN" "office.dtd">

<office:document-content

 xmlns:office="http://openoffice.org/2000/office"

 xmlns:style="http://openoffice.org/2000/style"

 xmlns:text="http://openoffice.org/2000/text"

 xmlns:fo="http://www.w3.org/1999/XSL/Format"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 office:class="text"

 office:version="1.0">

<office:script/>

<office:font-decls>

 <style:font-decl style:name="Courier" fo:font-family="Courier"

 style:font-pitch="variable"/>

 <style:font-decl style:name="Times" fo:font-family="Times"

 style:font-pitch="variable"/>

 <style:font-decl style:name="Helvetica"

 fo:font-family="Helvetica" style:font-family-generic="swiss"

 style:font-pitch="variable"/>

</office:font-decls>

<office:automatic-styles>

 <style:style style:name="P1" style:family="paragraph"

 style:parent-style-name="ChapterLabel"

 style:master-page-name="First Page">

 <style:properties style:page-number="0"/>

 </style:style>

 <style:style style:name="T1" style:family="text"

 style:parent-style-name="WW-Comment Reference">

 <style:properties fo:color="#000000"/>

 </style:style>

 <style:style style:name="T2" style:family="text"

 style:parent-style-name="emphasis">

 <style:properties fo:language="none" fo:country="none"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </style:style>

 <style:style style:name="T3" style:family="text">

 <style:properties fo:language="none" fo:country="none"/>

 </style:style>

</office:automatic-styles>

<office:body>

<text:sequence-decls>

 <text:sequence-decl text:display-outline-level="0"

 text:name="Illustration"/>

 <text:sequence-decl text:display-outline-level="0" text:name="Table"/>

 <text:sequence-decl text:display-outline-level="0" text:name="Text"/>

 <text:sequence-decl text:display-outline-level="0"

 text:name="Drawing"/>

</text:sequence-decls>

<text:p text:style-name="ChapterTitle">Introducing XML</text:p>

<text:p text:style-name="Standard"></text:p>

<text:p text:style-name="ChapterTitle">XML as a Document Format</text:p>

<text:p text:style-name="Standard">XML is first and foremost a

document format.

It was always intended for web pages, books, scholarly articles, poems, short

stories, reference manuals, tutorials, textbooks, legal pleadings, contracts,

instruction sheets, and other documents that human beings would read. Its use as

a syntax for computer data in applications such as order processing, object

serialization, database exchange and backup, and electronic data interchange is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mostly a happy accident.</text:p>

<text:h text:style-name="Heading 1" text:level="1">SGML's Legacy</text:h>

<text:p text:style-name="Standard"></text:p>

<text:h text:style-name="Heading 1" text:level="1">TEI</text:h>

<text:p text:style-name="Standard"></text:p>

<text:h text:style-name="Heading 1" text:level="1">DocBook</text:h>

<text:p text:style-name="Standard">DocBook

(<text:span text:style-name="online item">http://www.docbook.org/</text:span>)

<text:alphabetical-index-mark text:string-value="DocBook"

text:key1="narrative-oriented XML documents"/><text:s/>

<text:alphabetical-index-mark text:string-value="DocBook"/>is an SGML

application designed for new documents, not old ones. It's especially common in

computer documentation. Several O'Reilly books have been written in DocBook,

including

<text:alphabetical-index-mark text:string-value="Walsh, Norman"/>Norm

Walsh and Leonard <text:alphabetical-index-mark text:string-value="Muellner, Leonard"/>Muellner's

<text:span text:style-name="emphasis">DocBook: The Definitive Guide</text:span>.

No special tools are required to author it. Much of the Linux Documentation

Project (LDP, <text:span text:style-name="online item">http://www.linuxdoc.org/</

text:span>) corpus is written in DocBook. </text:p>

<text:p text:style-name="ChapterTitle">XML on the Web</text:p>

<text:p text:style-name="Standard"></text:p>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</office:body>

</office:document-content>

This is actually only one piece of what OpenOffice saves (and it's been cleaned up some for display in this book).
OpenOffice bundles up several related XML documents into a zip file and saves that. Before you can work with the
raw XML, you'll need to unzip it. Once it is unzipped, the document like the one shown here is found in the file named
content.xml . Other XML documents are used to hold styles, metadata, and settings. These can all be bundled into a
single office:document element, but this is normally not done. The separation of content from presentation is a

very useful feature of this application.

Despite that, overall, OpenOffice is a much more presentationally oriented format than either DocBook or TEI. This
makes it more suitable as the file format for a WYSIWYG word processor, but less suitable for manipulation with XML
tools such as SAX, DOM, and XSLT. Certainly, you can process an OpenOffice document with these tools; it's just that
the markup has less semantics to lever off of. All a document really is a heading, paragraphs, lists, and tables (the
latter two are not seen in this example). The basic semantics are impoverished compared to either DocBook or TEI.
Much of the useful information in an OpenOffice document is tied up in style names rather than element names. If the
authors did not use named styles, but simply formatted their document with italics, bold, Helvetica, and the like, then
the semantics may well be irretrievable.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.6 WordprocessingML

Beginning with Microsoft Office 2003 for Windows (but not Office 2004 for the Mac), Microsoft gave
Word and the other Office components the ability to save all documents in XML, although by default it
still picks a binary format. The XML application saved by Microsoft Word is named WordprocessingML.
Unlike DocBook, TEI, and OpenOffice, all of which were designed from scratch without any legacy
issues, WordprocessingML was designed more as an XML representation of an existing binary file
format. This makes it a rather unusual example of a narrative document format. We would not
recommend that you emulate its design in your own applications. Nonetheless, it can be educational
to compare it to the other three formats.

Example 6-4 shows the same document as in the previous three examples, this time encoded in
WordprocessingML. The WordprocessingML version seems the most opaque and cryptic of the four
formats discussed in this chapter. This example makes it pretty obvious that XML is not magic pixie
dust you can sprinkle on an existing format to create clean, legible, maintainable data.

The root element of a WordprocessingML document is w:wordDocument. Here, the w prefix is mapped
to the namespace URI http://schemas.microsoft.com/office/word/2003/wordml. Several other

namespaces are declared for different content that can be embedded in a Word file.

This root element can contain several different chunks of metadata. Here I've used three:
o:DocumentProperties for basic metadata like author and title, a w:fonts element that lists the
fonts used in the document and their metrics, and a w:styles element that lists the styles

referenced in the document. All of these are optional. However, a document saved by Microsoft Word
itself would include all of these and several more.

The actual content of the document is stored in a w:body element. The body is divided into sections
(wx:sect elements), which can be further divided into subsections (wx:subsection elements).

Unusually, these are completely optional; removing them would have no effect. They're mainly
present for the convenience of humans. The real structure of the document is inferred not from the
sections and subsections but from paragraphs with outline levels.

There are three basic text elements in WordprocessingML that you'll find inside the body: w:t, w:r,
and w:p. w:t is for text; w:r is for a run of text, like a span in HTML; and w:p is for a paragraph. A
w:p contains w:r elements, each of which contains one w:t element. Neither a w:r nor a w:p can
contain text directly. Whitespace is significant within w:t elements, although not within most other

elements. However, line breaks are treated the same as spaces. The actual line breaks are indicated
by the paragraph boundaries. This matches the typical word-wrapping behavior of Word and most
other word processors.

Beyond these and a few other elements, there are almost no semantics in WordprocessingML
markup. Instead, many characters are expended on precisely reproducing the appearance of the
page, including fonts, font metrics, styles, line breaks, and so forth. In a document that's saved from
Word (as opposed to being written by hand as this one was), the style information can easily occupy
several dozen times the amount of space the content itself does. Headings are identified not by a
separate heading element of some kind, but by setting the outline level property using a preceding
sibling w:pPr element with a w:outlineLvl child. The use of sibling elements to set properties

http://schemas.microsoft.com/office/word/2003/wordml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

(instead of attributes or parent elements) is a very unusual pattern, one that's not well-supported by
most XML processing tools.

Example 6-4. A WordprocessingML document

<?xml version="1.0" encoding="UTF-8"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:wx="http://schemas.microsoft.com/office/word/2003/auxHint"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xml:space="preserve">

 <o:DocumentProperties>

 <o:Title>XML in a Nutshell</o:Title>

 <o:Author>W. Scott Means</o:Author>

 <o:LastAuthor>Elliotte Rusty Harold</o:LastAuthor>

 <o:Revision>2</o:Revision>

 <o:TotalTime>0</o:TotalTime>

 <o:LastPrinted>1601-01-01T04:00:00Z</o:LastPrinted>

 <o:Created>2004-05-25T00:40:00Z</o:Created>

 <o:LastSaved>2004-05-25T00:40:00Z</o:LastSaved>

 <o:Pages>1</o:Pages>

 <o:Words>162</o:Words>

 <o:Characters>925</o:Characters>

 <o:Company>Cafe au Lait</o:Company>

 <o:Lines>7</o:Lines>

 <o:Paragraphs>2</o:Paragraphs>

 <o:CharactersWithSpaces>1085</o:CharactersWithSpaces>

 <o:Version>11.4920</o:Version>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </o:DocumentProperties>

 <w:fonts>

 <w:defaultFonts w:ascii="Times New Roman"

 w:fareast="Times New Roman"

 w:h-ansi="Times New Roman" w:cs="Times New Roman"/>

 <w:font w:name="Helvetica"><w:panose-1 w:val="020B0604020202030204"/>

 <w:charset w:val="00"/>

 <w:family w:val="Swiss"/>

 <w:pitch w:val="variable"/>

 <w:sig w:usb-0="20003A87" w:usb-1="00000000" w:usb-2="00000000"

 w:usb-3="00000000" w:csb-0="000001FF" w:csb-1="00000000"/>

 </w:font>

 </w:fonts>

 <w:styles>

 <w:style w:type="character" w:styleId="emphasis" w:default="off"/>

 </w:styles>

 <w:body>

 <wx:sect>

 <w:p>

 <w:pPr>

 <w:outlineLvl w:val="0" />

 </w:pPr>

 <w:r>

 <w:t>Introducing XML</w:t>

 </w:r>

 </w:p>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <w:p></w:p>

 </wx:sect>

 <wx:sect>

 <w:p>

 <w:pPr>

 <w:outlineLvl w:val="0" />

 </w:pPr>

 <w:r>

 <w:t>XML as a Document Format</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:r>

 <w:t>XML is first and foremost a document format. It was always intended

for web pages, books, scholarly articles, poems, short stories,

reference manuals, tutorials, texts, legal pleadings, contracts,

instruction sheets, and other documents that human beings would

read. Its use as a syntax for computer data in applications like

syndication, order processing, object serialization, database

exchange and backup, electronic data interchange, and so forth is

mostly a happy accident.</w:t>

 </w:r>

 </w:p>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <wx:subsection>

 <w:p>

 <w:pPr>

 <w:outlineLvl w:val="1" />

 </w:pPr>

 <w:r>

 <w:t>SGML's Legacy</w:t>

 </w:r>

 </w:p>

 <w:p></w:p>

 </wx:subsection>

 <wx:subsection>

 <w:p>

 <w:pPr>

 <w:outlineLvl w:val="1" />

 </w:pPr>

 <w:r>

 <w:t>TEI</w:t>

 </w:r>

 </w:p>

 <w:p></w:p>

 </wx:subsection>

 <wx:subsection>

 <w:p>

 <w:pPr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <w:outlineLvl w:val="1" />

 </w:pPr>

 <w:r>

 <w:t>DocBook</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:hlink w:bookmark="http://www.docbook.org/">

 <w:r>

 <w:rPr>

 <w:rStyle w:val="Hyperlink" />

 </w:rPr>

 <w:t>DocBook</w:t>

 </w:r>

 </w:hlink>

 <w:r>

 <w:t>

is an SGML application designed for new documents, not old ones.

It's especially common in computer documentation. Several

O'Reilly books have been written in DocBook including </w:t>

 </w:r>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="emphasis"/>

 </w:rPr>

 <w:t>Norm Walsh and Leonard Muellner's DocBook: The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Definitive Guide</w:t>

 </w:r>

 <w:r>

 <w:t>. Much of the </w:t>

 </w:r>

 <w:hlink w:bookmark="http://www.linuxdoc.org/">

 <w:r>

 <w:rPr>

 <w:rStyle w:val="Hyperlink" />

 </w:rPr>

 <w:t>Linux Documentation Project (LDP)</w:t>

 </w:r>

 </w:hlink>

 <w:r>

 <w:t> corpus is written in DocBook. </w:t>

 </w:r>

 </w:p>

 </wx:subsection>

 </wx:sect>

 <wx:sect>

 <w:p>

 <w:pPr>

 <w:outlineLvl w:val="0" />

 </w:pPr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <w:r>

 <w:t>XML on the Web</w:t>

 </w:r>

 </w:p>

 <w:p></w:p>

 </wx:sect>

 </w:body>

</w:wordDocument>

Two things strike me about this format. The first is the cryptic nature of the short tag names such as
t, r, p, and the positively verbose rPr. The second is the large number of tags needed to mark up

this fairly simple document. The problem seems to be that Word bundles all style definitions into the
document, and then repeats styles for each paragraph, even if they're reused across the entire
document. XML doesn't have to be verbose, but this example certainly is; and it is far less verbose
than what I actually saw saved by Word 2003. DocBook and TEI are human legible, even in plain text
form. OpenOffice.org and WordprocessingML really aren't, especially in their natural states.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.7 Document Permanence

XML documents that are intended for computers to read are often transitory. For instance, a SOAP
document that represents a request to a Windows server running .NET exists for just as long as it
takes the client to send it to the server and for the server to parse it into its internal data structures.
After that's done, the document will be discarded. It probably won't be around for two minutes, much
less two years. It's an ephemeral communication between two systems, with no more permanence
than any of billions of other messages that computers exchange on a daily basis, most of which are
never even written to disk, much less archived for posterity.

Some applications do store more permanent computer-oriented data in XML. For instance, XML is the
native file format of the Gnumeric spreadsheet. On the other hand, this format is really only
understood by Gnumeric and perhaps the other Gnome applications. It's designed to meet the
specific needs of that one program. Exchanging data with other applications, including ones that
haven't even been invented yet, is a secondary concern.

XML documents meant for humans tend to be more permanent and less software bound, however. If
you encode the Declaration of Independence in XML, you want people to be able to read it in 2, 200,
or 2,000 years. You also want them to be able to read it with any convenient tool, including ones not
invented yet. These requirements have some important implications for both the XML applications
you design to hold the data and the tools you use to read and write them.

The first rule is that the format should be very well documented. There should be a schema, and that
schema should be very well commented. Furthermore, there should be a significant amount of prose
documentation as well. Prose documentation can't substitute for the formal documentation of a
schema, but it's an invaluable asset in understanding the schema.

Standard formats like DocBook and TEI should be preferred to custom, one-off XML applications.
Avoid proprietary schemas that are owned by any one person or company and whose future may
depend on the fortunes of that company or individual. Even schemas that come from nonprofit
consortia, like OASIS or TEI, should be licensed sufficiently liberally so that intellectual property
restrictions won't let anyone throw road blocks in your path. At least one XML purveyor has gone so
far as to file for patents on its DTDs. These applications should be avoided like the plague. Stick to
schemas that may be freely copied and shared and that can be retrieved from many different
locations.

Once you've settled on a standard application, try to avoid modifying it if you can. If you must modify
it, then document your changes in excruciating, redundant detail. Include comments in both the
schemas and documents, explaining what you've done. Use the parameter entities built into the DTDs
to add new element types or subtract old ones, rather than modifying the DTD files themselves.

Conversely, the format shouldn't be too hard to reverse engineer if the documentation and schemas
are lost. Make sure full names are used throughout for element and attribute names. DocBook's para
element is superior to TEI's p element. Paragraph would be better still.

All of the inherent structure of the document should be indicated by markup and markup alone. It
should not be left for the user to infer, nor should it be encoded using whitespace or other

http://lib.ommolketab.ir
http://lib.ommolketab.ir

separators. For instance, here's an example of what not to do from SVG:

<polygon style="fill: blue; stroke: green; stroke-width: 12"

 points="350,75 379,161 469,161 397,215 423,301 350,250

 277,301 303,215 231,161 321,161" />

The style attribute contains three separate and barely related items. Understanding this element
requires parsing the non-XML CSS format. The points attribute is even worse. It's a long list of

numbers, but there's no information about what each number is. You can't, for instance, see which
are the x and which are the y coordinates. An approach like this is preferable:

<polygon fill="blue" stroke="green" stroke-width="12">

 <point x="350" y="75"/>

 <point x="379" y="161"/>

 <point x="469" y="161"/>

 <point x="397" y="215"/>

 <point x="423" y="301"/>

 <point x="350" y="250"/>

 <point x="277" y="301"/>

 <point x="303" y="215"/>

 <point x="231" y="161"/>

 <point x="321" y="161"/>

</polygon>

The attribute-based style syntax is actually allowed in SVG. However, the debate over which form to
use for coordinates was quite heated in the W3C SVG working group. In the end, the working group
decided (wrongly, in our opinion) that the more verbose form would never be adopted because of its
size, even though most members felt it was more in keeping with the spirit of XML. We think the
working group overemphasized the importance of document size in an era of exponentially growing
hard disks and network bandwidth, not to mention ignoring the ease with which the second format
could be compressed for transport or storage.

Stylesheets are important. We're all familiar with the injunction to separate presentation from
content. You've heard enough warnings about not including mere style information like italics and
font choices in your XML documents. However, be careful not to go the other way and include content
in your stylesheets either. Author names, titles, copyrights and other such information that changes
from document to document belongs in the document, not the stylesheet, even if it's

http://lib.ommolketab.ir
http://lib.ommolketab.ir

metainformation about the document rather than the actual content of the document.

Always keep in mind that you're not just writing for the next couple months or years, but possibly for
the next couple thousand of years. Have pity on the poor historians who are going to have to
decipher your markup with limited tools to help them.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.8 Transformation and Presentation

The markup in a typical XML document describes the document's structure, but it tends not to
describe the document's presentation. That is, it says how the document is organized but not how it
looks. Although XML documents are text, and a person could read them in native form if they really
wanted to, much more commonly an XML document is rendered into some other format before being
presented to a human audience. One of the key ideas of markup languages in general and XML in
particular is that the input format need not be the same as the output format. To put it another way,
what you see is not what you get, nor is it what you want to get. The input markup language is
designed for the convenience of the writer. The output language is designed for the convenience of
the reader.

Of course this requires a means of transforming the input format into the output format. Most XML
documents undergo some kind of transformation before being presented to the reader. The
transformation may be to a different XML vocabulary like XHTML or XSL-FO, or it may be to a non-
XML format like PostScript or RTF.

XML's semiofficial transformation language is Extensible Stylesheet Language Transformations
(XSLT). An XSLT document contains a list of template rules. Each template rule has a pattern noting
which elements and other nodes it matches. An XSLT processor reads the input document. When it
sees something in the input document that matches a template rule in the stylesheet, it outputs the
template rule's template. The template can tell the processor which content from the input to include
in the output. This allows, for example, the text of the output document to be the same while all the
markup is changed. For instance, you could write a stylesheet that would transform DocBook
documents into TEI documents. XSLT will be discussed in much more detail in Chapter 8.

However, XSLT is not the only transformation language you can use with your XML documents. Other
stylesheet languages such as the Document Style Sheet and Semantics Language (DSSSL,
http://www.jclark.com/dsssl/) are also available. So are a variety of proprietary tools like OmniMark
(http://developers.omnimark.com/). Most of these have particular strengths and weaknesses for
particular kinds of documents. Custom programs written in a variety of programming
languages-such as Java, C++, Perl, and Python-can use a plethora of APIs, such as SAX, StAX,
DOM, JDOM, and XOM, to transform documents. This is sometimes useful when you need something
more than a mere transformation-for instance, interpreting certain elements as database queries
and actually inserting the results of those queries into the output document, or asking the user to
answer questions in the middle of the transformation. However, the biggest single factor when
choosing which tool to use is simply which language and syntax you're most comfortable with. De
linguis non disputandum est.

There are many different choices for the output format from a transformation. A PostScript file can be
printed on paper, overhead transparencies, slides, or even T-shirts. A PDF document can be viewed
in all these ways and shown on the screen as well. However, for screen display, PDF is vastly inferior
to simple HTML, which has the advantages of being very broadly accessible across platforms and
being very easy to generate via XSLT from source XML documents. Generating a PDF or a PostScript
file normally requires an additional conversion step in which special software converts some custom
XML output format like XSL-FO to what you actually want.

http://www.jclark.com/dsssl/
http://developers.omnimark.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

An alternative to a transformation-based presentation is to provide a descriptive stylesheet that
simply states how each element in the original document should be formatted. This is the realm of
Cascading Style Sheets (CSS). This works particularly well for narrative documents where all that's
needed is a list of the fonts, styles, sizes, and so on to apply to the content of each element. The key
is that when all markup is stripped from the document, what remains is more or less a plain text
version of what you want to see. No reordering or rearrangement is necessary. This approach works
less well for record-like documents where the raw content may be nothing more than an
undifferentiated mass of numbers, dates, or other information that's hard to understand without the
context and annotations provided by the markup. However, in this case, a combination of the two
approaches works well. First, a transformation can produce a new document containing rearranged
and annotated information. Then a CSS stylesheet can apply style rules to the elements in this
transformed document.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 7. XML on the Web
XML began as an effort to bring the full power and structure of SGML to the Web in a form that was
simple enough for nonexperts to use. Like most great inventions, XML turned out to have uses far
beyond what its creators originally envisioned. Indeed, there's a lot more XML off the Web than on it.
Nonetheless, XML is still a very attractive language in which to write and serve web pages. Since XML
documents must be well-formed and parsers must reject malformed documents, XML pages are less
likely to have annoying cross-browser incompatibilities. Since XML documents are highly structured,
they're much easier for robots to parse. Since XML element and attribute names reflect the nature of
the content they hold, search-engine robots can more easily determine the true meaning of a page.

XML on the Web comes in three flavors. The first is XHTML, an XMLized variant of HTML 4.0 that
tightens up HTML to match XML's syntax. For instance, XHTML requires that all start-tags correspond
to a matching end-tag and that all attribute values be quoted. XHTML also adds a few bits of syntax
to HTML, such as the XML declaration and empty-element tags that end with />. Most of XHTML can

be displayed quite well in legacy browsers, with a few notable exceptions.

The second flavor of XML on the Web is direct display of XML documents that use arbitrary
vocabularies in web browsers. Generally, the formatting of the document is supplied either by a CSS
stylesheet or by an XSLT stylesheet that transforms the document into HTML (perhaps XHTML). This
flavor requires an XML-aware browser and is not supported by older web browsers such as Netscape
4.0.

A third option is to mix raw XML vocabularies, such as MathML and SVG, with XHTML using Modular
XHTML. Modular XHTML lets you embed RDF cataloging information, MathML equations, SVG pictures,
and more inside your XHTML documents. Namespaces sort out which elements belong to which
applications.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

7.1 XHTML

XHTML is an official W3C recommendation. It defines an XML-compatible version of HTML, or rather it
redefines HTML as an XML application instead of as an SGML application. Just looking at an XHTML
document, you might not even realize that there's anything different about it. It still uses the same
<p>, , <table>, <h1>, and other tags you're familiar with. Elements and attributes have the

same, familiar names they have in HTML. The syntax is still basically the same.

The difference is not so much what's allowed but what's not allowed. <p> is a valid XHTML tag, but
<P> is not. <table border="0" width="515"> is legal XHTML; <table border=0 width=515> is not. A
paragraph prefixed with a <p> and suffixed with a </p> is legal XHTML, but a paragraph that omits
the closing </p> tag is not. Most existing HTML documents require substantial editing before they

become well-formed and valid XHTML documents. However, once they are valid XHTML documents,
they are automatically valid XML documents that can be manipulated with the same editors, parsers,
and other tools you use to work with any XML document.

7.1.1 Moving from HTML to XHTML

Most of the changes required to turn an existing HTML document into an XHTML document involve
making the document well-formed. For instance, given a legacy HTML document, you'll probably have
to make at least some of these changes to turn it into XHTML:

Add missing end-tags like </p> and .

Rewrite elements so that they nest rather than overlap. For example, change <p>an
emphasized paragraph</p> to <p>an emphasized paragraph</p>.

Put double or single quotes around attribute values. For example, change <p align=center> to
<p align="center">.

Add values (which are the same as the name) to all minimized Boolean attributes. For example,
change <input type="checkbox" checked> to <input type="checkbox"
checked="checked">.

Replace any occurrences of & or < in character data or attribute values with & and <.
For instance, change A&P to A&P and <a href="http://www.google.com/search?
client=googlet&q=Java%20XML"> to <a href="http://www.google.com/search?
client=googlet&q=Java%20XML">.

Make sure the document has a single root html element.

Change empty elements like <hr> to <hr /> or <hr></hr>.

Add hyphens to comments so that <! this is a comment> becomes <!-- this is a comment
-->.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Encode the document in UTF-8 or UTF-16, or add an XML declaration that specifies in which
character set it is encoded.

XHTML doesn't merely require well-formedness; it also requires validity. In order to create a valid
XHTML document, you'll need to make these changes as well:

Add a DOCTYPE declaration to the document pointing to one of the three XHTML DTDs.

Make all element and attribute names lowercase.

Adjust the markup so that the document validates against the DTD-for example, eliminating
nonstandard elements like marquee, adding required attributes like the alt attribute of img, or

moving child elements out from inside elements where they're not allowed, such as a
blockquote inside a p.

In addition, the XHTML specification imposes a couple of requirements that, strictly speaking, are not
required for either well-formedness or validity. However, they do make parsing XHTML documents a
little easier. These requirements are:

The root element of the document must be html.

There must be a DOCTYPE declaration that uses a PUBLIC ID to identify one of the three XHTML

DTDs.

Finally, if you wish, you may-but do not have to-add an XML declaration or an xml-stylesheet

processing instruction to the prolog of your document.

Example 7-1 shows an HTML document from the O'Reilly web site that exhibits many of the validity
problems you'll find on the Web today. In fact, this is a much neater page than most. Nonetheless,
not all attribute values are quoted. The noshade attribute of the HR element doesn't even have a

value. There's no document type declaration. Tags are a mix of upper- and lowercase, mostly
uppercase. The DD elements are missing end-tags, and there's some character data inside the second
definition that's not part of a DT or a DD.

Example 7-1. A typical HTML document

<HTML><HEAD>

 <TITLE>O'Reilly Shipping Information</TITLE>

</HEAD>

<BODY BGCOLOR="#ffffff" VLINK="#0000CC" LINK="#990000" TEXT="#000000">

<table border=0 width=515>

<tr>

<td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<H2>U.S. Shipping Information </H2>

<HR size="1" align=left noshade>

<DL>

<DT> UPS Ground Service (Continental US only -- 5-7 business

days):</DT>

<DD>

<PRE>

$ 5.95 - $ 49.99 $ 4.50

$ 50.00 - $ 99.99 $ 6.50

$100.00 - $149.99 $ 8.50

$150.00 - $199.99 $10.50

$200.00 - $249.99 $12.50

$250.00 - $299.99 $14.50

</PRE>

<DT> Federal Express:</DT>

(Shipping within 24 hours of receipt of order by O'Reilly)

<DD>

<PRE>

1 or 2 books:

Economy 2-day $ 8.75

Overnight Standard (Afternoon Delivery) ... $12.75

Overnight Priority (Morning Delivery) $16.50

</PRE>

</DL>

Alaska and Hawaii: add $10 to Federal Express rates.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<P>

International Shipping Information

<P>

<CENTER>

<HR SIZE="1" NOSHADE>

O'Reilly Home |

O'Reilly Bookstores |

How to Order |

O'Reilly Contacts

International |

About O'Reilly |

Affiliated Companies<p>

© 2000, O'Reilly Media, Inc.

</CENTER>

</td>

</tr>

</table>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</BODY>

</HTML>

Example 7-2 shows this document after it's been converted to XHTML. All the previously noted
problems, and a few more besides, have been fixed. A number of deprecated presentational
attributes, such as the size and noshade attributes of hr, had to be replaced with CSS styles. We've

also added the necessary document type and namespace declarations. This document can now be
read by both HTML and XML browsers and parsers.

Example 7-2. A valid XHTML document

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta name="generator" content="HTML Tidy, see www.w3.org" />

<style type="text/css">

 body {backgroundColor: #FFFFFF; color: #000000}

 a:visited {color: #0000CC}

 a:link {color: #990000}

</style>

<title>O'Reilly Shipping Information</title>

</head>

<body>

<table border="0" width="515">

<tr>

<td><img src="/www/graphics_new/generic_ora_header_wide.gif"

style="border-width: 0" alt="O'Reilly"/>

<h2>U.S. Shipping Information</h2>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<hr style="height: 1; text-align: left"/>

<dl>

<dt>UPS Ground Service (Continental US only -- 5-7 business

days):</dt>

<dd>

<pre>

$ 5.95 - $ 49.99 $ 4.50

$ 50.00 - $ 99.99 $ 6.50

$100.00 - $149.99 $ 8.50

$150.00 - $199.99 $10.50

$200.00 - $249.99 $12.50

$250.00 - $299.99 $14.50

</pre>

</dd>

<dt>Federal Express:</dt>

<dd>(Shipping within 24 hours of receipt of order by O'Reilly)</dd>

<dd>

<pre>

1 or 2 books:

Economy 2-day $ 8.75

Overnight Standard (Afternoon Delivery) ... $12.75

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Overnight Priority (Morning Delivery) $16.50

</pre>

</dd>

</dl>

Alaska and Hawaii: add $10 to Federal Express rates.

<p>International Shipping

Information</p>

<div style="font-size: xx-small; font-face: Verdana, Arial, Helvetica;

 text-align: center">

<hr style="height: 1"/>

O'Reilly Home | O'Reilly

Bookstores | How to Order

|

O'Reilly Contacts

International | About

O'Reilly | Affiliated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Companies</div>

<p style="font-size: xx-small;

 font-family: Verdana, Arial, Helvetica">© 2000,

O'Reilly Media, Inc.</p>

</td>

</tr>

</table>

</body>

</html>

Making all these changes can be quite tedious for large documents or
collections of many documents. Fortunately, there's an open source tool that
can do most of the work for you. Dave Ragget's Tidy,
http://tidy.sourceforge.net, is a C program that has been ported to most major
operating systems and can convert some pretty nasty HTML into valid XHTML.
For example, to convert the file bad.html to good.xml, you would type:

% tidy --output-xhtml yes bad.html good.xml

Tidy fixes as much as it can and warns you about what it can't fix so you can fix
it manually-for instance, telling you that a required alt attribute is missing
from an img element.

7.1.2 Three DTDs for XHTML

XHTML comes in three flavors, depending on which DTD you choose:

Strict

This is the W3C's recommended form of XHTML. This includes all the basic elements and
attributes such as p and class. However, it does not include deprecated elements and
attributes such as applet and center. It also forbids the use of presentational attributes such
as the body element's bgcolor, vlink, link, and text. These capabilities are provided by CSS
instead. Strict XHTML is identified with this DOCTYPE declaration:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

http://tidy.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "DTD/xhtml1-strict.dtd" >

Example 7-2 uses this DTD.

Transitional

This is a looser form of XHTML for when you can't easily do without deprecated elements and
attributes, such as applet and bgcolor. It is identified with this DOCTYPE declaration:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "DTD/xhtml1-transitional.dtd" >

Frameset

This is the same as the transitional DTD except that it also allows frame-related elements, such
as frameset and iframe. It is identified with this DOCTYPE declaration:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

 "DTD/xhtml1-frameset.dtd" >

All three DTDs use the same http://www.w3.org/1999/xhtml namespace. You should choose the
strict DTD unless you've got a specific reason to use another one.

7.1.3 Browser Support for XHTML

Many web browsers, especially Internet Explorer 5.0 and earlier and Netscape 4.79 and earlier, deal
inconsistently with XHTML. Certainly they don't require it, accepting as they do such a wide variety of
malformed, invalid, and out-and-out mistaken HTML. However, beyond that they do have some
problems when they encounter certain common XHTML constructs.

7.1.3.1 The XML declaration and processing instructions

Some browsers display processing instructions and the XML declaration inline. These should be
omitted if possible.

Few, if any, browsers recognize or respect the encoding declaration in the XML declaration.
Furthermore, many browsers won't automatically recognize UTF-8 or UCS-2 Unicode text. If you use
a non-ASCII character set, you should also include a meta element in the header identifying the

character set. For example:

<meta http-equiv="Content-type"

http://www.w3.org/1999/xhtml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 content='text/html; charset=UTF-8'></meta>

7.1.3.2 Empty elements

Browsers deal inconsistently with both forms of empty element syntax. That is, some browsers
understand <hr/> but not <hr></hr> (typically rendering it as two horizontal lines rather than one),
while others recognize <hr></hr> but not <hr/> (typically omitting the horizontal line completely).

The most consistent rendering seems to be achieved by using an empty-element tag with an optional
attribute such as class or id-for example, <hr class="empty" />. There's no real reason for the
class attribute here, except that its presence keeps browsers from choking on the />. Any other

attribute the DTD allows would serve equally well.

On the other hand, if a particular instance of an element happens to be empty, but not all instances
of the element have to be empty-for instance, a p that doesn't contain any text-you should use two
tags like <p></p> rather than one empty-element tag <p/>.

7.1.3.3 Entity references

Embedded scripts often contain reserved characters like & or < so the document that contains them is
not well-formed. However, most JavaScript and VBScript interpreters won't recognize & or <

in place of the operators they represent. If the script can't be rewritten without these operators (for
instance, by changing a less-than comparison to a greater-than-or-equal-to comparison with the
arguments flipped), then you should move to external scripts instead of embedded ones.

Furthermore, most non-XML-aware browsers don't recognize the ' predefined entity reference.

You should avoid this if possible and just use the literal ' character instead. The only place this might
be a problem is inside attribute values that are enclosed in single quotes because they contain double
quotes. However, most browsers do recognize the " entity reference for the " character so you

can enclose the attribute value in double quotes and escape the double quotes that are part of the
attribute value as ".

7.1.3.4 Other unsupported features

There are a few other subtle differences between how browsers handle XHTML and how XHTML
expects to be handled. For instance, XHTML allows character references and CDATA sections although

almost no current browsers understand these constructs. However, you're unlikely to encounter
these when converting from HTML to XHTML, and you can generally do without them if you're writing
XHTML from scratch.

Mozilla, Opera 5.0 and later, and Netscape 6.0 and later can parse and display valid XHTML without
any difficulties and without requiring page authors to jump through these hoops. Safari and Internet
Explorer 5.5 and later can mostly display it as long as the pages are mislabeled as text/html.

However, both get confused if the pages are labeled with the correct MIME type
application/xhtml+xml. Regardless, since many users have not upgraded their browsers to the

level XHTML requires, user-friendly web designers will be jumping through these hoops for some time
to come.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

7.2 Direct Display of XML in Browsers

Ultimately, one hopes that browsers will be able to display not just XHTML documents but any XML
document as well. Since it's too much to ask that browsers provide semantics for all XML applications
both current and yet-to-be-invented, stylesheets will be attached to each document to provide
instructions about how each element will be rendered.

The current major stylesheet languages are:

Cascading Style Sheets Level 1 (CSS1)

Cascading Style Sheets Level 2 (CSS2)

XSL Transformations 1.0

Eventually, there will be more versions of these, including at least CSS 2.1, CSS Level 3, and XSLT
2.0. However, let's begin by looking at how and how well existing style languages are supported by
existing browsers.

7.2.1 The xml-stylesheet Processing Instruction

The stylesheet associated with a document is indicated by an xml-stylesheet processing instruction

in the document's prolog, which comes after the XML declaration but before the root element start-
tag. This processing instruction uses pseudo-attributes to describe the stylesheet (that is, they look
like attributes but are not attributes because xml-stylesheet is a processing instruction and not an

element).

7.2.1.1 The required href and type pseudo-attributes

There are two required pseudo-attributes for xml-stylesheet processing instructions. The value of
the href pseudo-attribute gives the URL, possibly relative, where the stylesheet can be found. The
type pseudo-attribute value specifies the MIME media type of the stylesheet, text/css for cascading
stylesheets, application/xml for XSLT stylesheets. In Example 7-3, the xml-stylesheet

processing instruction tells browsers to apply the CSS stylesheet person.css to this document before
showing it to the reader.

Example 7-3. An XML document associated with a stylesheet

<?xml version="1.0"?>

<?xml-stylesheet href="person.css" type="text/css"?>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<person>

 Alan Turing

</person>

Microsoft Internet Explorer uses type="text/xsl" for XSLT stylesheets.
However, the text/xsl MIME media type has not been and will not be

registered with the IANA. It is a figment of Microsoft's imagination. In the
future, application/xslt+xml will be registered to identify XSLT stylesheets

specifically.

In addition to these two required pseudo-attributes, there are four optional pseudo-attributes:

media

charset

alternate

title

7.2.1.2 The media pseudo-attribute

The media pseudo-attribute contains a short string identifying the medium this stylesheet should be

used for-for example, paper, onscreen display, television, and so forth. It can specify either a single
medium or a comma-separated list of media. The recognized values include:

screen

Computer monitors

tty

Teletypes, terminals, xterms, and other monospaced, text-only devices

tv

Televisions, WebTVs, video game consoles, and the like

http://lib.ommolketab.ir
http://lib.ommolketab.ir

projection

Slides, transparencies, and direct-from-laptop presentations that will be shown to an audience
on a large screen

handheld

PDAs, cell phones, GameBoys, and the like

print

Paper

braille

Tactile feedback devices for the sight-impaired

aural

Screen readers and speech synthesizers

all

All of the previously mentioned plus any that haven't been invented yet

For example, this xml-stylesheet processing instruction says that the CSS stylesheet at

http://www.cafeconleche.org/style/titus.css should be used for television, projection, and print:

<?xml-stylesheet href="http://www.cafeconleche.org/style/titus.css"

 type="text/css" media="tv, projection, print"?>

7.2.1.3 The charset pseudo-attribute

The charset pseudo-attribute specifies in which character set the stylesheet is written, using the

same values as the encoding declaration. For example, to say that the CSS stylesheet koran.css is
written in the ISO-8859-6 character set, you'd use this processing instruction:

<?xml-stylesheet href="koran.css" type="text/css" charset="ISO-8859-6"?>

7.2.1.4 The alternate and title pseudo-attributes

http://www.cafeconleche.org/style/titus.css
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The alternate pseudo-attribute specifies whether this is the primary stylesheet for its media type or
an alternate one for special cases. The default value is no, which indicates that it is the primary
stylesheet. If alternate has the value yes, then the browser may (but does not have to) present the

user a choice from among the alternate stylesheets. If it does offer a choice, then it uses the value of
the title pseudo-attribute to tell the user how the stylesheets differ. For example, these three xml-
stylesheet processing instructions offer the user a choice between large, small, and medium text:

<?xml-stylesheet href="big.css" type="text/css"

 alternate="yes" title="Large fonts"?>

<?xml-stylesheet href="small.css" type="text/css"

 alternate="yes" title="Small fonts"?>

<?xml-stylesheet href="medium.css" type="text/css" title="Normal fonts"?>

Browsers that aren't able to ask the user to choose a stylesheet will simply pick the first nonalternate
sheet that most closely matches its media type (screen for a typical web browser).

7.2.2 Internet Explorer

Microsoft Internet Explorer 4.0 (IE4) and later includes an XML parser that can be accessed from
VBScript or JavaScript. This is used internally to support channels and the Active Desktop. Your own
JavaScript and VBScript programs can use this parser to read XML data and insert it into the web
page. However, anything more straightforward, like simply displaying a page of XML from a specified
URL, is beyond IE4's capabilities. Furthermore, IE4 doesn't understand any stylesheet language when
applied to XML.

Internet Explorer 5 (IE5) and 5.5 (IE 5.5) do understand XML, although their parser is more than a
little buggy; it rejects a number of documents it shouldn't reject, most embarrassingly the XML 1.0
specification itself. Internet Explorer 6 (IE6) has improved XML support somewhat, but it is still not
completely conformant.

IE5 and later can directly display XML files, with or without an associated stylesheet. If no stylesheet
is provided, then IE5 uses a default, built-in XSLT stylesheet that displays the tree structure of the
XML document along with a little DHTML to allow the user to collapse and expand nodes in the tree.
Figure 7-1 shows IE5 displaying Example 6-1 from the last chapter.

Figure 7-1. A document that uses IE5's built-in stylesheet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IE5 also supports parts of CSS Level 1 and a little of CSS Level 2. However, the support is spotty and
inconsistent. Even some aspects of CSS that work for HTML documents fail when applied to XML
documents. IE 5.5 and IE6 slightly improve coverage of CSS but don't support all CSS properties and
selectors. In fact, many CSS features that work in IE6 for HTML still don't work when applied to XML
documents.

IE5 and IE 5.5 support their own custom version of XSLT, based on a very early working draft of the
XSLT specification. They do not support XSLT 1.0. You can tell the difference by looking at the
namespace of the stylesheet. A stylesheet written for IE5 uses the http://www.w3.org/TR/WD-xsl
namespace, whereas a stylesheet designed for standard-compliant XSLT processors uses the
http://www.w3.org/1999/XSL/Transform namespace. Despite superficial similarities, these two
languages are not compatible. A stylesheet written for IE5 will not work with any other XSLT
processor, and a stylesheet written using standard XSLT 1.0 will not work in IE5. IE6 supports both
real XSLT and Microsoft's nonstandard dialect.

7.2.3 Netscape and Mozilla

Netscape 4.x and earlier do not provide any significant support for displaying XML in the browser.
Netscape 4.0.6 and later do use XML internally for some features such as "What's Related." However,
the parser used isn't accessible to the page author, even through JavaScript.

Mozilla 1.0 and Netscape 6.0 and later do fully support display of XML in the browser. CSS Level 2 is
almost completely supported, and XSLT support is pretty good too. Mozilla can read an XML web
page, download the associated CSS or XSLT stylesheet, apply it to the document, and display the

http://www.w3.org/TR/WD-xsl
http://www.w3.org/1999/XSL/Transform
http://lib.ommolketab.ir
http://lib.ommolketab.ir

result to the end user, all completely automatically and more or less exactly as XML on the Web was
always meant to work. Mozilla also partially supports MathML and SVG. The SVG support is not
switched on by default as of Mozilla 1.7, and the MathML support requires some extra fonts with
more mathematical symbols; neither of these is hard to add.

7.2.4 Alternative Approaches

Authoring your web pages in XML does not necessarily require serving them in XML. Fourth-
generation and earlier browsers that don't support XML in any significant way will be with us for some
time to come. Servicing users with these browsers requires standard, ordinary HTML that works in
any browser back to Mosaic 1.0.

One popular option is to write the pages in XML but serve them in HTML. When the server receives a
request for an XML document, it automatically converts the document to HTML and sends the
converted document instead. More sophisticated servers can cache the converted documents. They
can also recognize browsers that support XML and send them the raw XML instead.

The preferred way to perform the conversion is with an XSLT stylesheet and a Java servlet. Indeed,
most XSLT engines, such as Xalan-J and SAXON, include servlets that do exactly this. However, other
schemes are possible, for instance, using PHP or CGI instead of a servlet. The key is to make sure
that browsers only receive what they know how to read and display. We'll talk more about XSLT in
the next chapter.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

7.3 Authoring Compound Documents with Modular
XHTML

XHTML 1.1 divides the three XHTML DTDs into individual modules. Parameter entities connect the
modules by including or leaving out particular modules. Modules include:

Structure module, %xhtml-struct.module;

The absolute bare minimum of elements needed for an HTML document: html, head, title,
and body

Text module, %xhtml-text.module;

The basic elements that contain text and other inline elements: abbr, acronym, address,
blockquote, br, cite, code, dfn, div, em, h1, h2, h3, h4, h5, h6, kbd, p, pre, q, samp, span,
strong, and var

Hypertext module, %xhtml-hypertext.module;

Elements used for linking, that is, the a element

List module, %xhtml-list.module;

Elements used for the three kinds of lists: dl, dt, dd, ul, ol, and li

Applet module, %xhtml-applet.module;

Elements needed for Java applets: applet and param

Presentation module, %xhtml-pres.module;

Presentation oriented markup, that is, the b, big, hr, i, small, sub, sup, and tt elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Edit module, %xhtml-edit.module;

Elements for revision tracking: del and ins

Bi-Directional Text module, %xhtml-bdo.module;

An indication of directionality when text in left-to-right languages, like English and French, is
mixed with text in right-to-left languages, like Hebrew and Arabic

Basic Forms module, %xhtml-basic-form.module;

Forms as defined in HTML 3.2 using the form, input, select, option, and textarea elements

Forms module, %xhtml-form.module;

Forms as defined in HTML 4.0 using the form, input, select, option, textarea, button,
fieldset, label, legend, and optgroup elements

Basic Tables module, %xhtml-basic-table.module;

Minimal table support including only the table, caption, th, tr, and td elements

Tables module, %xhtml-table.module;

More complete table support including not only the table, caption, th, tr, and td elements,
but also the col, colgroup, tbody, thead, and tfoot elements

Image module, %xhtml-image.module;

The img element

Client-Side Image Map module, %xhtml-csismap.module;

The map and area elements, as well as extra attributes for several other elements needed to

support client-side image maps

Server-Side Image Map module, %xhtml-ssismap.module;

Doesn't provide any new elements, but adds the ismap attribute to the img element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Object module, %xhtml-object.module;

The object element used to embed executable content like Java applets and ActiveX controls

in web pages

Param module, %xhtml-param.module;

The param element used to pass parameters from web pages to their embedded executable

content, such as Java applets and ActiveX controls

Frames module, %xhtml-frames.module;

The elements needed to implement frames including frame, frameset, and noframes

Iframe module, %xhtml-iframe.mod;

The iframe element used for inline frames

Intrinsic Events module, %xhtml-events.module;

Attributes to support scripting like onsubmit and onfocus that are attached to elements

declared in other modules

Metainformation module, %xhtml-meta.module;

The meta element used in headers

Scripting module, %xhtml-script.module;

Elements that support JavaScript and VBScript: script and noscript

Stylesheet module, %xhtml-style.module;

The style element used to define Cascading Style Sheets

Link module, %xhtml-link.module;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The link element that specifies relationships to various external documents, such as

translations, glossaries, and previous and next pages

Base module, %xhtml-base.module;

The base element that specifies a URL against which relative URLs are resolved

Target module, %xhtml-target.module;

The target attribute that specifies the destination frame or window of a link

Style Attribute module, %xhtml-inlstyle.module;

The style attribute that applies CSS styles to individual elements in the document

Name Identification module, %xhtml-nameident.module;

The name attribute, a deprecated earlier version of the id attribute

Legacy module, %xhtml-legacy.module;

Deprecated elements and attributes including the basefont, center, font, s, strike, and u

elements

Ruby module, %xhtml11-ruby.module;

The ruby, rbc, rtc, rb, rt, and rp elements used in East Asian text to place small amounts of

text next to body text, generally indicating pronunciation

7.3.1 Mixing XHTML into Your Applications

The advantage to dividing HTML into all these different modules is that you can pick and choose the
pieces you want. If your documents use tables, include the Tables module. If your documents don't
use tables, then leave it out. You get only the functionality you actually need.

For example, let's suppose you're designing a DTD for a catalog. Each item in the catalog is a
catalog_entry element. Each catalog_entry contains a name, price, item_number, color, size,

and various other common elements you're likely to find in catalogs. Furthermore, each
catalog_entry contains a description of the item. The description contains formatted narrative

text. In other words, it looks something like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<catalog_entry>

 <name>Aluminum Duck Drainer</name>

 <price>34.99</price>

 <item_number>54X8</item_number>

 <color>silver</color>

 <size>XL</size>

 <description>

 <p>

 This sturdy silver colored

 sink stopper dignifies the finest

 kitchens. It makes a great gift for

 </p>

 Christmas

 Birthdays

 Mother's Day

 <p>and all other occasions!</p>

 </description>

</catalog_entry>

It's easy enough to write this markup. The tricky part is validating it. Rather than reinventing a
complete DTD to describe all the formatting that's needed in straightforward narrative descriptions,
you can reuse XHTML. The XHTML 1.1 DTD makes heavy use of parameter entity references to define
content specifications and attribute lists for the different elements. Three entity references are of
particular note:

%Inline.mix;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A choice containing all the elements that don't generally require a line break, such as em, a,
and q. That is, it resolves to:

br | span | em | strong | dfn | code | samp | kbd | var | cite | abbr |

acronym | q | tt | i | b | big | small | sub | sup | bdo | a | img | map

| applet | ruby | input | select | textarea | label | button | ins | del

| script | noscript

%Block.mix;

A choice containing all the elements that generally require a line break, like p, blockquote, and
ul. That is, it resolves to:

h1 | h2 | h3| h4 | h5 | h6| ul| ol| dl| p | div | pre| blockquote

| address | hr | table | form | fieldset | ins | del | script | noscript

%Flow.mix;

A choice containing both of the previous; that is, it resolves to:
h1 | h2 | h3 | h4 | h5 | h6 | ul | ol | dl | p | div | pre | blockquote

| address | hr | table | form | fieldset | br | span | em | strong | dfn

| code | samp | kbd | var | cite | abbr | acronym | q | tt | i | b | big

| small | sub | sup | bdo | a | img | map | applet | ruby | input |

select | textarea | label | button | ins | del | script | noscript

You can declare that the description element contains essentially any legal XHTML fragment, like

this:

<!ENTITY % xhtml PUBLIC "-//W3C//DTD XHTML 1.1//EN" "xhtml11.dtd">

%xhtml;

<!ELEMENT description (#PCDATA | %Flow.mix;)*>

If you wanted to require description to contain only block elements at the top level, you'd instead

declare it like this:

<!ENTITY % xhtml PUBLIC "-//W3C//DTD XHTML 1.1//EN" "xhtml11.dtd">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

%xhtml;

<!ELEMENT description ((%Block.mix;)*)>

The first two lines import the XHTML driver DTD from a relative URL. You can get this DTD and the
other local files it depends on from the zip archive at http://www.w3.org/TR/xhtml11/xhtml11.zip.
The second line uses an entity reference defined in that DTD to set the content specification for the
description element.

The XHTML 1.1 driver DTD imports modules from two other W3C specifications,
Modularization of XHTML (http://www.w3.org/TR/xhtml-modularization) and
Ruby Annotation (http://www.w3.org/TR/ruby), using absolute URLs that point
to the W3C's web site. If you're not reliably connected to the Internet at high
speed, you might want to use the flat version of this DTD, xhtml11-flat.dtd,
instead. This bundles all the different modules in a single file.

Unfortunately, this goes a little too far. It includes not only the pieces of HTML you want, such as p,
em, and ul, but also a lot of elements you don't want in a printed catalog, such as a, applet, map,

and a lot more. However, you can omit these. The main XHTML DTD imports each module inside an
INCLUDE/IGNORE block, such as this one for the hypertext module:

<!-- Hypertext Module (required) -->

<!ENTITY % xhtml-hypertext.module "INCLUDE" >

<![%xhtml-hypertext.module;[

<!ENTITY % xhtml-hypertext.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Hypertext 1.0//EN"

 "http://www.w3.org/TR/xhtml-modularization/DTD/xhtml-hypertext-1.mod" >

%xhtml-hypertext.mod;]]>

If the %xhtml-hypertext.module; parameter entity reference has previously been defined as
IGNORE instead of INCLUDE, that declaration takes precedence; all the elements and attributes
defined in the Hypertext module (specifically, the a element) are left out of the resulting DTD.

Let's say you just want the Structure, Basic Text, and List modules. Then you use a driver DTD that
redefines the parameter entity references for the other modules as IGNORE. Example 7-4

demonstrates.

Example 7-4. A catalog DTD that uses basic XHTML but omits a lot of
elements

<!ELEMENT catalog (catalog_entry*)>

http://www.w3.org/TR/xhtml11/xhtml11.zip
http://www.w3.org/TR/xhtml-modularization
http://www.w3.org/TR/ruby
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!ELEMENT catalog_entry (name, price, item_number, color, size, description)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT size (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ELEMENT item_number (#PCDATA)>

<!ELEMENT color (#PCDATA)>

<!-- throw away the modules we don't need -->

<!ENTITY % xhtml-hypertext.module "IGNORE" >

<!ENTITY % xhtml-ruby.module "IGNORE" >

<!ENTITY % xhtml-edit.module "IGNORE" >

<!ENTITY % xhtml-pres.module "IGNORE" >

<!ENTITY % xhtml-applet.module "IGNORE" >

<!ENTITY % xhtml-param.module "IGNORE" >

<!ENTITY % xhtml-bidi.module "IGNORE" >

<!ENTITY % xhtml-form.module "IGNORE" >

<!ENTITY % xhtml-table.module "IGNORE" >

<!ENTITY % xhtml-image.module "IGNORE" >

<!ENTITY % xhtml-csismap.module "IGNORE" >

<!ENTITY % xhtml-ssismap.module "IGNORE" >

<!ENTITY % xhtml-meta.module "IGNORE" >

<!ENTITY % xhtml-script.module "IGNORE" >

<!ENTITY % xhtml-style.module "IGNORE" >

<!ENTITY % xhtml-link.module "IGNORE" >

<!ENTITY % xhtml-base.module "IGNORE" >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!-- import the XHTML DTD, at least those parts we aren't ignoring.

 You will probably need to change the system ID to point to

 whatever directory you've stored the DTD in.

-->

<!ENTITY % xhtml11.mod PUBLIC "-//W3C//DTD XHTML 1.1//EN"

 "xhtml11/DTD/xhtml11.dtd">

%xhtml11.mod;

<!ELEMENT description (%Block.mix;)+>

7.3.2 Mixing Your Applications into XHTML

An even more important feature of Modular XHTML is the option to add new elements that HTML
doesn't support. For instance, to include SVG pictures in your documents, you just have to import the
SVG DTD and redefine the Misc.extra parameter entity to allow the SVG root element svg. (This

only lets you validate XHTML documents that contain SVG markup. It doesn't magically give the
browser the ability to render these pictures.) You accomplish this by redefining any of these three
parameter entity references:

%Inline.extra;

Place the root elements of your application here if you want them to be added to the content
specifications of inline elements, such as span, em, code, and textarea.

%Block.extra;

Place the root elements of your application here if you want them to be added to the content
specifications of block elements, such as div, h1, p, and pre.

%Misc.extra;

Place the root elements of your application here if you want them to be added to the content
specifications of both block and inline elements.

The definition of each of these parameter entities should be a list of the elements you want to add to
the content specification separated by vertical bars and beginning with a vertical bar. For instance, to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

include MathML equations as both inline and block elements, you'd import the MathML DTD and
redefine the Misc.extra parameter entity to include the MathML root element math like this:

<!ENTITY % Misc.extra "| math">

If you wanted to allow block-level MathML equations and SVG pictures, you'd import their respective
DTDs and redefine the Block.extra parameter entity like this:

<!ENTITY % Block.extra "| math | svg">

Order is important here. The MathML DTD and the Block.extra declaration both have to be parsed

before the XHTML DTD is parsed. Example 7-5 demonstrates with a DTD that mixes MathML 1.0 and
XHTML, throwing in a namespace declaration for good measure.

Example 7-5. A DTD that mixes MathML into XHTML and MathML

<!ENTITY % mathml SYSTEM "mathml/mathml.dtd">

%mathml;

<!ATTLIST math xmlns CDATA #FIXED "http://www.w3.org/1998/Math/MathML">

<!ENTITY % Misc.extra "| math">

<!ENTITY % xhtml PUBLIC "-//W3C//DTD XHTML 1.1//EN" "xhtml11/DTD/xhtml11.dtd">

%xhtml;

You can also mix new elements like math into individual elements like p without changing all the other

block elements. The content specification for each XHTML element is defined by a parameter entity
named Element.content, for example, %p.content;, %em.content;, %td.content; and so forth.
The standard definition of p.content looks like this:

<!ENTITY % p.content

 "(#PCDATA | %Inline.mix;)*" >

To allow the math element to be a child of p elements, but not of every other block element, you
would redefine p.content like this:

<!ENTITY % p.content "(#PCDATA | %Inline.mix; | math)*" >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The XHTML 1.1 DTD is quite sophisticated. There are a lot more tricks you can play by mixing and
matching different parts of the DTD, mostly by defining and redefining different parameter entity
references. The easiest way to learn about these is by reading the raw DTDs. In many cases, the
comments in the DTD are more descriptive and accurate than the prose specification.

7.3.3 Mixing Your Own XHTML

The XHTML 1.1 DTD does not include all of the modules that are available. For instance, frames and
the legacy presentational elements are deliberately omitted and cannot easily be turned on. This is
the W3C's not-so-subtle way of telling you that you shouldn't be using these elements in the first
place. If you do want to use them, you'll need to create your own complete DTD using the individual
modules you require.

To do this, you must first define the namespace URI and prefixed names for your elements and
attributes. The W3C provides a template you can adapt for this purpose at
http://www.w3.org/TR/xhtml-modularization/DTD/templates/template-qname-1.mod. Example 7-6
demonstrates with a DTD fragment that defines the names for the today and quoteoftheday

elements that one of the authors (Harold) uses on his web sites. The module is based on the W3C-
provided template.

Example 7-6. A DTD module to define the today and quoteoftheday
elements' names and namespaces

<!-- ... -->

<!-- CafeML Qualified Names Module -->

<!-- file: cafe-qname-1.mod

 This is an extension of XHTML, a reformulation of HTML as

 a modular XML application.

 This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//Elliotte Rusty Harold//ELEMENTS CafeML Qualified Names 1.0//EN"

 "cafe-qname-1.mod"

http://www.w3.org/TR/xhtml-modularization/DTD/templates/template-qname-1.mod
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ... -->

<!-- NOTES: Using the CafeML Qualified Names Extension

 This is a module for a markup language 'CafeML',

 which currently declares two extension elements, quoteoftheday

 and today. The parameter entity naming convention uses uppercase

 for the entity name and lowercase for namespace prefixes, hence

 this example uses 'CAFEML' and 'cafeml' respectively.

 Please note the three case variants:

 'CafeML' the human-readable markup language name

 'CAFEML' used as a parameter entity name prefix

 'cafeml' used as the default namespace prefix

 The %NS.prefixed; conditional section keyword must be declared

 as "INCLUDE" in order to allow prefixing to be used.

-->

<!-- :: -->

<!-- CafeML Qualified Names

 This module is contained in two parts, labeled Section 'A' and 'B':

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section A declares parameter entities to support namespace-

 qualified names, namespace declarations, and name prefixing

 for CafeML.

 Section B declares parameter entities used to provide

 namespace-qualified names for all CafeML element types.

 The recommended step-by-step program for creating conforming

 modules is enumerated below, and spans both the CafeML Qualified

 Names Template and CafeML Extension Template modules.

-->

<!-- Section A: CafeML XML Namespace Framework :::::::::::::::::::: -->

<!-- 1. Declare a %CAFEML.prefixed; conditional section keyword, used

 to activate namespace prefixing. The default value should

 inherit '%NS.prefixed;' from the DTD driver, so that unless

 overridden, the default behavior follows the overall DTD

 prefixing scheme.

-->

<!ENTITY % NS.prefixed "IGNORE" >

<!ENTITY % CAFEML.prefixed "%NS.prefixed;" >

<!-- 2. Declare a parameter entity (e.g., %CAFEML.xmlns;) containing

 the URI reference used to identify the Module namespace:

-->

<!ENTITY % CAFEML.xmlns "http://www.cafeconleche.org/xmlns/cafeml" >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!-- 3. Declare parameter entities (e.g., %CAFEML.prefix;) containing

 the default namespace prefix string(s) to use when prefixing

 is enabled. These may be overridden in the DTD driver or the

 internal subset of a document instance. If no default prefix

 is desired, this may be declared as an empty string.

 NOTE: As specified in [XMLNAMES], the namespace prefix serves

 as a proxy for the URI reference and is not in itself significant.

-->

<!ENTITY % CAFEML.prefix "cafeml" >

<!-- 4. Declare parameter entities (e.g., %CAFEML.pfx;) containing the

 colonized prefix(es) (e.g., '%CAFEML.prefix;:') used when

 prefixing is active, an empty string when it is not.

-->

<![%CAFEML.prefixed;[

<!ENTITY % CAFEML.pfx "%CAFEML.prefix;:" >

]]>

<!ENTITY % CAFEML.pfx "" >

<!-- 5. The parameter entity %CAFEML.xmlns.extra.attrib; may be

 redeclared to contain any non-CafeML namespace declaration

 attributes for namespaces embedded in CafeML. When prefixing

 is active it contains the prefixed xmlns attribute and any

 namespace declarations embedded in CafeML, otherwise an empty

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 string.

-->

<![%CAFEML.prefixed;[

<!ENTITY % CAFEML.xmlns.extra.attrib

 "xmlns:%CAFEML.prefix; %URI.datatype; #FIXED '%CAFEML.xmlns;'" >

]]>

<!ENTITY % CAFEML.xmlns.extra.attrib "" >

<!ENTITY % XHTML.xmlns.extra.attrib

 "%CAFEML.xmlns.extra.attrib;"

>

<!-- Section B: CafeML Qualified Names ::::::::::::::::::::::::::::: -->

<!-- This section declares parameter entities used to provide

 namespace-qualified names for all CafeML element types.

-->

<!-- module: cafe-1.mod -->

<!ENTITY % CAFEML.quoteoftheday.qname "%CAFEML.pfx;quoteoftheday" >

<!ENTITY % CAFEML.today.qname "%CAFEML.pfx;today" >

<!-- end of cafe-qname-1.mod -->

Next you have to define the elements and attributes with these names in a module of your own
creation. The W3C provides a template, which you can adapt for this purpose, at
http://www.w3.org/TR/xhtml-modularization/DTD/templates/template-1.mod. This template uses the
same techniques and follows the same patterns as XHTML's built-in modules, for example, parameter
entity references that resolve to INCLUDE or IGNORE.

Example 7-7 demonstrates with a DTD fragment that defines the today and quoteoftheday

http://www.w3.org/TR/xhtml-modularization/DTD/templates/template-1.mod
http://lib.ommolketab.ir
http://lib.ommolketab.ir

elements. The today element can contain any block-level content through the Block.mix parameter
entity and has a required date attribute. The quoteoftheday element always contains exactly one
blockquote element followed by exactly one p element with no attributes.

Example 7-7. A DTD module to define the today and quoteoftheday
elements

<!-- .. -->

<!-- CAFEML Extension Template Module -->

<!-- file: CafeML-1.mod

 This is an extension of XHTML, a reformulation of HTML as

 a modular XML application.

 This DTD module is identified by the PUBLIC and SYSTEM identifiers:

 PUBLIC "Elliotte Rusty Harold//ELEMENTS CafeML Qualified Names 1.0//EN"

 SYSTEM "CafeML-1.mod"

 Revisions:

 (none)

 ... -->

<!-- Extension Template

 This sample template module declares two extension elements,

 today and quoteoftheday. The parameter entity naming

 convention uses uppercase for the entity name and lowercase

 for namespace prefixes. Hence this example uses 'CAFEML' and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 'cafe' respectively.

 This module declares parameter entities used to provide

 namespace-qualified names for all CAFEML element types,

 as well as an extensible framework for attribute-based

 namespace declarations on all element types.

 The %NS.prefixed; conditional section keyword must be

 declared as "INCLUDE" in order to allow prefixing to be used.

 By default, foreign (i.e., non-XHTML) namespace modules should

 inherit %NS.prefixed; from XHTML, but this can be overridden

 when prefixing of only the non-XHTML markup is desired.

 XHTML's default value for the 'namespace prefix' is an empty

 string. The Prefix value can be redeclared either in a DTD

 driver or in a document's internal subset as appropriate.

 NOTE: As specified in [XMLNAMES], the namespace prefix serves as

 a proxy for the URI reference and is not in itself significant.

-->

<!-- .. -->

<!-- 1. Declare the xmlns attributes used by CAFEML dependent on whether

 CAFEML's prefixing is active. This should be used on all CAFEML

 element types as part of CAFEML's common attributes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If the entire DTD is namespace-prefixed, CAFEML should inherit

 %NS.decl.attrib;. Otherwise it should declare %NS.decl.attrib;

 plus a default xmlns attribute on its own element types.

-->

<![%CAFEML.prefixed;[

<!ENTITY % CAFEML.xmlns.attrib

 "%NS.decl.attrib;"

>

]]>

<!ENTITY % CAFEML.xmlns.attrib

 "xmlns %URI.datatype; #FIXED '%CAFEML.xmlns;'"

>

<!-- now include the module's various markup declarations -->

<!ENTITY % CAFEML.Common.attrib

 "%CAFEML.xmlns.attrib;

 id ID #IMPLIED"

>

<!-- 2. In the attribute list for each element, declare the XML Namespace

 declarations that are legal in the document instance by including

 the %NamespaceDecl.attrib; parameter entity in the ATTLIST of

 each element type.

-->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!ENTITY % CAFEML.today.qname "today" >

<!ELEMENT %CAFEML.today.qname; (%Flow.mix;)* >

<!ATTLIST %CAFEML.today.qname;

 %CAFEML.Common.attrib;

 date CDATA #REQUIRED

>

<!ENTITY % CAFEML.quoteoftheday.qname "quoteoftheday" >

<!ELEMENT %CAFEML.quoteoftheday.qname; (%blockquote.qname;,

 %p.qname;) >

<!ATTLIST %CAFEML.quoteoftheday.qname;

 %CAFEML.Common.attrib;

>

<!-- 3. If the module adds attributes to elements defined in modules that

 do not share the namespace of this module, declare those

 attributes so that they use the %CAFEML.pfx; prefix. For example:

<!ENTITY % CAFEML.img.myattr.qname "%CAFEML.pfx;myattr" >

<!ATTLIST %img.qname;

 %CAFEML.img.myattr.qname; CDATA #IMPLIED

>

 This would add a myattr attribute to the img element of the Image Module,

 but the attribute's name will be the qualified name, including prefix,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 when prefixes are selected for a document instance.

 We do not need to do this for this module.

-->

<!-- end of CafeML-1.mod -->

Next you need to write a document model module that defines the parameter entities used for
content specifications in the various modules-not only the CafeML modules, but the XHTML modules
as well. (This is how your elements become part of the various XHTML elements.) The W3C does not
provide a template for this purpose. However, it's normally easy to adapt the document model
module from either XHTML 1.1 or XHTML Basic to include your new elements. Example 7-8 is a
document model module based on the XHTML 1.1 document model module.

Example 7-8. A document model module for CafeML

<!-- .. -->

<!-- CafeML Model Module -->

<!-- file: CafeML-model-1.mod

 PUBLIC "-//Elliotte Rusty Harold//ELEMENTS XHTML CafeML Model 1.0//EN"

 SYSTEM "CafeML-model-1.mod"

 xmlns:cafeml="http://www.cafeconleche.org/xmlns/cafeml"

 .. -->

<!-- Define the content model for Misc.extra -->

<!ENTITY % Misc.extra

 "| %CAFEML.today.qname; | %CAFEML.quoteoftheday.qname; ">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!-- Inline Elements -->

<!ENTITY % HeadOpts.mix

 "(%meta.qname;)*" >

<!ENTITY % I18n.class "" >

<!ENTITY % InlStruct.class "%br.qname; | %span.qname;" >

<!ENTITY % InlPhras.class

 "| %em.qname; | %strong.qname; | %dfn.qname; | %code.qname;

 | %samp.qname; | %kbd.qname; | %var.qname; | %cite.qname;

 | %abbr.qname; | %acronym.qname; | %q.qname;" >

<!ENTITY % InlPres.class "" >

<!ENTITY % Anchor.class "| %a.qname;" >

<!ENTITY % InlSpecial.class "| %img.qname; " >

<!ENTITY % Inline.extra "" >

<!-- %Inline.class; includes all inline elements,

 used as a component in mixes

-->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!ENTITY % Inline.class

 "%InlStruct.class;

 %InlPhras.class;

 %InlPres.class;

 %Anchor.class;

 %InlSpecial.class;"

>

<!-- %InlNoAnchor.class; includes all non-anchor inlines,

 used as a component in mixes

-->

<!ENTITY % InlNoAnchor.class

 "%InlStruct.class;

 %InlPhras.class;

 %InlPres.class;

 %InlSpecial.class;"

>

<!-- %InlNoAnchor.mix; includes all non-anchor inlines

-->

<!ENTITY % InlNoAnchor.mix

 "%InlNoAnchor.class;

 %Misc.class;"

>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!-- %Inline.mix; includes all inline elements, including %Misc.class;

-->

<!ENTITY % Inline.mix

 "%Inline.class;

 %Misc.class;"

>

<!-- Block Elements -->

<!ENTITY % Heading.class

 "%h1.qname; | %h2.qname; | %h3.qname;

 | %h4.qname; | %h5.qname; | %h6.qname;" >

<!ENTITY % List.class "%ul.qname; | %ol.qname; | %dl.qname;" >

<!ENTITY % BlkStruct.class "%p.qname; | %div.qname;" >

<!ENTITY % BlkPhras.class

 "| %pre.qname; | %blockquote.qname; | %address.qname;" >

<!ENTITY % BlkPres.class "| %hr.qname;" >

<!ENTITY % Block.extra "" >

<!ENTITY % Table.class "| %table.qname;" >

<!ENTITY % BlkSpecial.class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "%Table.class;"

>

<!-- %Block.class; includes all block elements,

 used as an component in mixes

-->

<!ENTITY % Block.class

 "%BlkStruct.class;

 %BlkPhras.class;

 %BlkPres.class;

 %BlkSpecial.class;

 %Block.extra;"

>

<!-- %Block.mix; includes all block elements plus %Misc.class;

-->

<!ENTITY % Block.mix

 "%Heading.class;

 | %List.class;

 | %Block.class;

 %Misc.class;"

>

<!-- All Content Elements -->

<!-- %Flow.mix; includes all text content, block and inline

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-->

<!ENTITY % Flow.mix

 "%Heading.class;

 | %List.class;

 | %Block.class;

 | %Inline.class;

 %Misc.class;"

>

<!-- special content model for pre element -->

<!ENTITY % pre.content

 "(#PCDATA

 | %Inline.class;)*"

>

<!-- end of CafeML-model-1.mod -->

Finally, replace the standard XHTML DTD, which only imports the normal XHTML modules, with a new
one that imports the standard modules you want as well as any new modules you've defined. Again,
the W3C offers a template for this purpose, which you can download from
http://www.w3.org/TR/xhtml-modularization/DTD/templates/template.dtd. This template is a
minimal DTD that makes the necessary imports and declares the necessary parameter entity
references upon which all the other modules depend. Example 7-9 is a DTD based on this template. It
merges in the element module defined in Example 7-7, as well as the standard XHTML tables,
images, meta, and block presentation modules.

Example 7-9. An XHTML DTD that mixes in the Cafe DTD

<!-- ... -->

<!-- XHTML + CafeML DTD ... -->

<!-- file: CafeML.dtd -->

http://www.w3.org/TR/xhtml-modularization/DTD/templates/template.dtd
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!-- CafeML DTD -->

<!-- Please use this formal public identifier to identify it:

 "-//Elliotte Rusty Harold//DTD XHTML CafeDTD//EN"

-->

<!ENTITY % XHTML.version "-//W3C//DTD XHTML CafeDTD//EN" >

<!-- Bring in any qualified name modules outside of XHTML -->

<!ENTITY % CAFEML-qname.mod SYSTEM "cafe-qname-1.mod">

%CAFEML-qname.mod;

<!-- Define any extra prefixed namespaces that this DTD relies upon -->

<!ENTITY NS.prefixed.extras.attrib "" >

<!-- Define the Content Model file for the framework to use -->

<!ENTITY % xhtml-model.mod SYSTEM "CafeML-model-1.mod" >

<!-- reserved for future use with document profiles -->

<!ENTITY % XHTML.profile "" >

<!-- Bi-directional text support

 This feature-test entity is used to declare elements

 and attributes used for internationalization support.

 Set it to INCLUDE or IGNORE as appropriate for your markup language.

-->

<!ENTITY % XHTML.bidi "IGNORE" >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!-- ::: -->

<!-- Pre-Framework Redeclaration placeholder -->

<!-- This serves as a location to insert markup declarations

 into the DTD prior to the framework declarations.

-->

<!ENTITY % xhtml-prefw-redecl.module "IGNORE" >

<![%xhtml-prefw-redecl.module;[

%xhtml-prefw-redecl.mod;

<!-- end of xhtml-prefw-redecl.module -->]]>

<!-- The events module should be included here if you need it. In this

 skeleton it is IGNOREd.

-->

<!ENTITY % xhtml-events.module "IGNORE" >

<!-- Modular Framework Module -->

<!ENTITY % xhtml-framework.module "INCLUDE" >

<![%xhtml-framework.module;[

<!ENTITY % xhtml-framework.mod

 PUBLIC "-//W3C//ENTITIES XHTML 1.1 Modular Framework 1.0//EN"

 "xhtml-framework-1.mod" >

%xhtml-framework.mod;]]>

<!-- Post-Framework Redeclaration placeholder -->

<!-- This serves as a location to insert markup declarations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 into the DTD following the framework declarations.

-->

<!ENTITY % xhtml-postfw-redecl.module "IGNORE" >

<![%xhtml-postfw-redecl.module;[

%xhtml-postfw-redecl.mod;

<!-- end of xhtml-postfw-redecl.module -->]]>

<!-- Text Module (required) -->

<!ENTITY % xhtml-text.module "INCLUDE" >

<![%xhtml-text.module;[

<!ENTITY % xhtml-text.mod

 PUBLIC "-//W3C//ELEMENTS XHTML 1.1 Text 1.0//EN"

 "xhtml-text-1.mod" >

%xhtml-text.mod;]]>

<!-- Hypertext Module (required) -->

<!ENTITY % xhtml-hypertext.module "INCLUDE" >

<![%xhtml-hypertext.module;[

<!ENTITY % xhtml-hypertext.mod

 PUBLIC "-//W3C//ELEMENTS XHTML 1.1 Hypertext 1.0//EN"

 "xhtml-hypertext-1.mod" >

%xhtml-hypertext.mod;]]>

<!-- Lists Module (required) -->

<!ENTITY % xhtml-list.module "INCLUDE" >

<![%xhtml-list.module;[

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!ENTITY % xhtml-list.mod

 PUBLIC "-//W3C//ELEMENTS XHTML 1.1 Lists 1.0//EN"

 "xhtml-list-1.mod" >

%xhtml-list.mod;]]>

<!-- Your modules can be included here. Use the basic form defined above,

 and be sure to include the public FPI definition in your catalog file

 for each module that you define. You may also include W3C-defined

 modules at this point.

-->

<!-- CafeML Module (custom module) -->

<!ENTITY % cafeml.module "INCLUDE" >

<![%cafeml.module;[

<!ENTITY % cafeml.mod

 PUBLIC "-//Cafe con Leche//XHTML Extensions today 1.0//EN"

 "CafeML-1.mod" >

%cafeml.mod;]]>

<!-- Tables Module (optional) -->

<!ENTITY % xhtml-table.module "INCLUDE" >

<![%xhtml-table.module;[

<!ENTITY % xhtml-table.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Tables 1.0//EN"

 "xhtml-table-1.mod" >

%xhtml-table.mod;]]>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!-- Meta Module (optional) -->

<!ENTITY % xhtml-meta.module "INCLUDE" >

<![%xhtml-meta.module;[

<!ENTITY % xhtml-meta.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Meta 1.0//EN"

 "xhtml-meta-1.mod" >

%xhtml-meta.mod;]]>

<!-- Image Module (optional) -->

<!ENTITY % xhtml-image.module "INCLUDE" >

<![%xhtml-image.module;[

<!ENTITY % xhtml-image.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Images 1.0//EN"

 "xhtml-image-1.mod" >

%xhtml-image.mod;]]>

<!-- Block Presentation Module (optional) -->

<!ENTITY % xhtml-blkpres.module "INCLUDE" >

<![%xhtml-blkpres.module;[

<!ENTITY % xhtml-blkpres.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Block Presentation 1.0//EN"

 "xhtml-blkpres-1.mod" >

%xhtml-blkpres.mod;]]>

<!-- Document Structure Module (required) -->

<!ENTITY % xhtml-struct.module "INCLUDE" >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<![%xhtml-struct.module;[

<!ENTITY % xhtml-struct.mod

 PUBLIC "-//W3C//ELEMENTS XHTML 1.1 Document Structure 1.0//EN"

 "xhtml-struct-1.mod" >

%xhtml-struct.mod;]]>

<!-- end of CAFEML DTD .. -->

<!-- ... -->

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

7.4 Prospects for Improved Web Search Methods

Part of the hype of XML has been that web search engines will finally understand what a document
means by looking at its markup. For instance, you can search for the movie Sneakers and just get
back hits about the movie without having to sort through "Internet Wide Area `Tiger Teamers'
mailing list," "Children's Side Zip Sneakers Recalled by Reebok," "Infant's `Little Air Jordan' Sneakers
Recalled by Nike," "Sneakers.com-Athletic shoes from Nike, Reebok, Adidas, Fila, New," and the
32,395 other results that Google pulled up on this search that had nothing to do with the movie.[1]

[1] In fairness to Google, four of the first ten hits it returned were about the movie.

In practice, this is still vapor, mostly because few web pages are available on the frontend in XML,
even though more and more backends are XML. The search-engine robots only see the frontend
HTML. As this slowly changes, and as the search engines get smarter, we should see more and more
useful results. Meanwhile, it's possible to add some XML hints to your HTML pages that
knowledgeable search engines can take advantage of using the Resource Description Framework
(RDF), the Dublin Core, and the robots processing instruction.

7.4.1 RDF

The Resource Description Framework (RDF, http://www.w3.org/RDF/) can be understood as an XML
encoding for a particularly simple data model. An RDF document describes resources using triples.
Each triple says that a resource has a property with a value. Resources are identified by URIs.
Properties can be identified by URIs or by element-qualified names. The value can be a string of plain
text, a chunk of XML, or another resource identified by a URI.

The root element of an RDF document is an RDF element. Each resource the RDF element describes is
represented as a Description element whose about attribute contains a URI pointing to the
resource described. Each child element of the Description element represents a property of the
resource. The contents of that child element are the value of that property. All RDF elements like RDF
and Description are placed in the http://www.w3.org/1999/02/22-rdf-syntax-ns# namespace.

Property values generally come from other namespaces.

For example, suppose we want to say that the book XML in a Nutshell has the authors W. Scott
Means and Elliotte Rusty Harold. In other words, we want to say that the resource identified by the
URI urn:isbn:0596002920 has one author property with the value "W. Scott Means" and another

author property with the value "Elliotte Rusty Harold." Example 7-10 does this.

Example 7-10. A simple RDF document saying that W. Scott Means and
Elliotte Rusty Harold are the authors of XML in a Nutshell

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

http://www.w3.org/RDF/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <rdf:Description about="urn:isbn:0596002920">

 <author>Elliotte Rusty Harold</author>

 <author>W. Scott Means</author>

 </rdf:Description>

</rdf:RDF>

In this simple example, the values of the author properties are merely text. However, they could be
XML as well. Indeed, they could be other RDF elements.

There's more to RDF, including containers, schemas, and nested properties. However, this will be
sufficient description for web metadata.

7.4.2 Dublin Core

The Dublin Core, http://purl.org/dc/, is a standard set of 15 information items with specified
semantics that reflect the sort of data you'd be likely to find in a card catalog or annotated
bibliography. These are:

Title

Fairly self-explanatory; this is the name by which the resource is known. For instance, the title
of this book is XML in a Nutshell.

Creator

The person or organization who created the resource, e.g., a painter, author, illustrator,
composer, and so on. For instance, the creators of this book are W. Scott Means and Elliotte
Rusty Harold.

Subject

A list of keywords, very likely from some other vocabulary such as the Dewey Decimal System
or Yahoo categories, identifying the topics of the resource. For instance, using the Library of
Congress Subject Headings vocabulary, the subject of this book is "XML (Document markup
language)."

http://purl.org/dc/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description

Typically, a brief amount of text describing the content of the resource in prose, but it may also
include a picture, a table of contents, or any other description of the resource. For instance, a
description of this book might be "A brief tutorial on and quick reference to XML and related
technologies and specifications."

Publisher

The name of the person, company, or organization who makes the resource available. For
instance, the publisher of this book is "O'Reilly Media, Inc."

Contributor

A person or organization who made some contribution to the resource but is not the primary
creator of the resource. For example, the editors of this book, Laurie Petrycki, Simon
St.Laurent, and Jeni Tennison, might be identified as contributors, as would Susan Hart, the
artist who drew the picture on the cover.

Date

The date when the book was created or published, normally given in the form YYYY-MM-DD.
For instance, this book's date might be 2004-09-23.

Type

The abstract kind of resource such as image, text, sound, or software. For instance, a
description of this book would have the type "text."

Format

For hard objects like books, the physical dimensions of the resource. For instance, the paper
version of XML in a Nutshell has the dimensions 6" 9". For digital objects like web pages, this is
possibly the MIME media type. For instance, an online version of this book would have the
format text/html.

Identifier

A formal identifier for the resource, such as an ISBN number, a URI, or a Social Security
number. This book's identifier is "0596007647."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Source

The resource from which the present resource was derived. For instance, the French translation
of this book might reference the original English edition as its source.

Language

The language in which this resource is written, typically an ISO-639 language code, optionally
suffixed with a hyphen and an ISO-3166 country code. For instance, the language for this book
is "en-US." The language for the French translation of this book might be "fr-FR."

Relation

A reference to a resource that is in some way related to the current one, generally using a
formal identifier, such as a URI or an ISBN number. For instance, this might refer to the web
page for this book.

Coverage

The location, time, or jurisdiction the resource covers. For instance, the coverage of this book
might be the U.S., Canada, Australia, the U.K., and Ireland. The coverage of the French
translation of this book might be France, Canada, Haiti, Belgium, and Switzerland. Generally
these will be listed in some formal syntax such as country codes.

Rights

Information about copyright, patent, trademark and other restrictions on the content of the
resource. For instance, a rights statement about this book may say "Copyright 2004 O'Reilly
Media, Inc."

Dublin Core can be encoded in a variety of forms including HTML meta tags and RDF. Here we
concentrate on its encoding in RDF. Typically, each resource is described with an rdf:Description

element. This element contains child elements for as many of the Dublin Core information items as
are known about the resource. The name of each of these elements matches the name of one of the
14 Dublin Core properties. These are placed in the http://purl.org/dc/elements/1.1/

namespace. Example 7-11 shows an RDF-encoded Dublin Core description of this book.

Example 7-11. An RDF-encoded Dublin Core description for XML in a
Nutshell

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

http://purl.org/dc/elements/1.1/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xmlns:dc="http://purl.org/dc/elements/1.1/">

 <rdf:Description about="urn:isbn:0596002920">

 <dc:Title>XML in a Nutshell</dc:Title>

 <dc:Creator>W. Scott Means</dc:Creator>

 <dc:Creator>Elliotte Rusty Harold</dc:Creator>

 <dc:Subject>XML (Document markup language)</dc:Subject>.

 <dc:Description>

 A brief tutorial on and quick reference to XML and

 related technologies and specifications

 </dc:Description>

 <dc:Publisher>O'Reilly Media, Inc.</dc:Publisher>

 <dc:Contributor>Laurie Petrycki</dc:Contributor>

 <dc:Contributor>Simon St. Laurent</dc:Contributor>

 <dc:Contributor>Jeni Tennison</dc:Contributor>

 <dc:Contributor>Susan Hart</dc:Contributor>

 <dc:Date>2004-08-23</dc:Date>

 <dc:Type>text</dc:Type>

 <dc:Format>6" x 9"</dc:Format>

 <dc:Identifier>0596007647</dc:Identifier>

 <dc:Language>en-US</dc:Language>

 <dc:Relation>http://www.oreilly.com/catalog/xmlnut/</dc:Relation>

 <dc:Coverage>US UK ZA CA AU NZ</dc:Coverage>

 <dc:Rights>Copyright 2004 O'Reilly Media, Inc.</dc:Rights>

 </rdf:Description>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</rdf:RDF>

There is as yet no standard for how an RDF document should be associated with the XML document it
describes. One possibility is for the rdf:RDF element to be embedded in the document it describes,
for instance, as a child of the BookInfo element of the DocBook source for this book. Another

possibility is that servers provide this meta information through an extra-document channel. For
instance, a standard protocol could be defined that would allow search engines to request this
information for any page on the site. A convention could be adopted so that for any URL xyz on a
given web site, the URL xyz/meta.rdf would contain the RDF-encoded Dublin Core metadata for that
URL.

7.4.3 Robots

In HTML, the robots meta tag tells search engines and other robots whether they're allowed to index

a page. Walter Underwood has proposed the following processing instruction as an equivalent for XML
documents:

<?robots index="yes" follow="no"?>

Robots will look for this in the prolog of any XML document they encounter. The syntax of this
particular processing instruction is two pseudo-attributes, one named index and one named follow,
whose values are either yes or no. If the index attribute has the value yes, then this page will be
indexed by a search-engine robot. If index has the value no, then it won't be. Similarly, if follow
has the value yes, then links from this document will be followed. If follow has the value no, then

they won't be.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 8. XSL Transformations (XSLT)
The Extensible Stylesheet Language (XSL) is divided into two parts: XSL Transformations (XSLT) and
XSL Formatting Objects (XSL-FO). This chapter describes XSLT. Chapter 14 covers XSL-FO.

XSLT is an XML application for specifying rules by which one XML document is transformed into
another XML document. An XSLT document-that is, an XSLT stylesheet-contains template rules.
Each template rule has a pattern and a template. An XSLT processor compares the elements and
other nodes in an input XML document to the template-rule patterns in a stylesheet. When one
matches, it writes the template from that rule into the output tree. When it's done, it may further
serialize the output tree into an XML document or some other format like plain text or HTML.

This chapter describes the template rules and a few other elements that appear in an XSLT
stylesheet. XSLT uses the XPath syntax to identify matching nodes. We'll introduce a few pieces of
XPath here, but most of it will be covered in Chapter 9.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.1 An Example Input Document

To demonstrate XSL Transformations, we first need a document to transform. Example 8-1 shows the
document used in this chapter. The root element is people, which contains two person elements. The
person elements have roughly the same structure (a name followed by professions and hobbies) with

some differences. For instance, Alan Turing has three professions, but Richard Feynman only has
one. Feynman has a middle_initial and a hobby, but Turing doesn't. Still, these are clearly

variations on the same basic structure. A DTD that permitted both of these would be easy to write.

Example 8-1. An XML document describing two people

<?xml version="1.0"?>

<people>

 <person born="1912" died="1954">

 <name>

 <first_name>Alan</first_name>

 <last_name>Turing</last_name>

 </name>

 <profession>computer scientist</profession>

 <profession>mathematician</profession>

 <profession>cryptographer</profession>

 </person>

 <person born="1918" died="1988">

 <name>

 <first_name>Richard</first_name>

 <middle_initial>P</middle_initial>

 <last_name>Feynman</last_name>

 </name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <profession>physicist</profession>

 <hobby>Playing the bongoes</hobby>

 </person>

</people>

Example 8-1 is an XML document. For purposes of this example, it will be stored in a file called
people.xml. It doesn't have a DTD; however, this is tangential. XSLT works equally well with valid
and invalid (but well-formed) documents. This document doesn't use namespaces either, although it
could. XSLT works just fine with namespaces. Unlike DTDs, XSLT does pay attention to the
namespace URIs instead of the prefixes. Thus, it's possible to use one prefix for an element in the
input document and different prefixes for the same namespace in the stylesheet and output
documents.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.2 xsl:stylesheet and xsl:transform

An XSLT stylesheet is an XML document. It can and generally should have an XML declaration. It can
have a document type declaration, although most stylesheets do not. The root element of this
document is either stylesheet or transform; these are synonyms for each other, and you can use

either. They both have the same possible children and attributes. They both mean the same thing to
an XSLT processor.

The stylesheet and transform elements, like all other XSLT elements, are in the
http://www.w3.org/1999/XSL/Transform namespace. This namespace is customarily mapped to
the xsl prefix so that you write xsl:transform or xsl:stylesheet rather than simply transform or
stylesheet.

This namespace URI must be exactly correct. If even so much as a single
character is wrong, the stylesheet processor will output the stylesheet itself
instead of either the input document or the transformed input document.
There's a reason for this (see Section 2.3 of the XSLT 1.0 specification, Literal
Result Element as Stylesheet, if you really want to know), but the bottom line
is that this weird behavior looks very much like a bug in the XSLT processor if
you're not expecting it. If you ever do see your stylesheet processor spitting
your stylesheet back out at you, the problem is almost certainly an incorrect
namespace URI.

In addition to the xmlns:xsl attribute declaring this prefix mapping, the root element must have a
version attribute with the value 1.0. Thus, a minimal XSLT stylesheet, with only the root element

and nothing else, is as shown in Example 8-2.

Example 8-2. A minimal XSLT stylesheet

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

</xsl:stylesheet>

Perhaps a little surprisingly, this is a complete XSLT stylesheet; an XSLT processor can apply it to an
XML document to produce an output document. Example 8-3 shows the effect of applying this
stylesheet to Example 8-1.

http://www.w3.org/1999/XSL/Transform
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 8-3. people.xml transformed by the minimal XSLT stylesheet

<?xml version="1.0" encoding="utf-8"?>

 Alan

 Turing

 computer scientist

 mathematician

 cryptographer

 Richard

 P

 Feynman

 physicist

 Playing the bongoes

You can see that the output consists of a text declaration plus the text of the input document. In this
case, the output is a well-formed external parsed entity, but it is not itself a complete XML document.

Markup from the input document has been stripped. The net effect of applying an empty stylesheet,
like Example 8-2, to any XML document is to reproduce the content but not the markup of the input
document. To change that, we'll need to add template rules to the stylesheet telling the XSLT
processor how to handle the specific elements in the input document. In the absence of explicit
template rules, an XSLT processor falls back on built-in rules that have the effect shown here.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.3 Stylesheet Processors

An XSLT processor is a piece of software that reads an XSLT stylesheet, reads an XML document, and
builds an output document by applying the instructions in the stylesheet to the information in the
input document. An XSLT processor can be built into a web browser, just as MSXML is in Internet
Explorer 6. It can be built into a web or application server, as in the Apache XML Project's Cocoon
(http://xml.apache.org/cocoon). Or it can be a standalone program run from the command line like
Michael Kay's SAXON (http://saxon.sourceforge.net) or the Apache XML Project's Xalan
(http://xml.apache.org/xalan-j).

Internet Explorer 5.0 and 5.5 partially support a very old and out-of-date
working draft of XSLT, as well as various Microsoft extensions to this old
working draft. They do not support XSLT 1.0, and indeed no XSLT stylesheets in
this book work in IE5. Stylesheets that are meant for Microsoft XSLT can be
identified by their use of the http://www.w3.org/TR/WD-xsl namespace. IE6
supports both http://www.w3.org/1999/XSL/Transform and
http://www.w3.org/TR/WD-xsl. Good XSLT developers don't use
http://www.w3.org/TR/WD-xsl and don't associate with developers who do.

8.3.1 Command-Line Processors

The exact details of how to install, configure, and run the XSLT processor naturally vary from
processor to processor. Generally, you have to install the processor in your path, or add its jar file to
your class path if it's written in Java. Then you pass in the names of the input file, stylesheet file, and
output file on the command line. For example, using Xalan, Example 8-3 is created in this fashion:

% java org.apache.xalan.xslt.Process -IN people.xml -XSL minimal.xsl

 -OUT 8-3.txt

= = = = = = = = = Parsing file:D:/books/xian/examples/08/minimal.xsl = = = =
= = = = = = Parse of file:D:/books/xian/examples/08/minimal.xsl took 771
milliseconds = = = = = = = = = Parsing people.xml = = = = = = = = = = Parse
of people.xml took 90 milliseconds =
= = = = = = = = = Transforming... transform took 20 milliseconds
XSLProcessor: done

For exact details, you'll need to consult the documentation that comes with your XSLT processor.

8.3.2 The xml-stylesheet Processing Instruction

XML documents that will be served directly to web browsers can have an xml-stylesheet processing

http://xml.apache.org/cocoon
http://saxon.sourceforge.net
http://xml.apache.org/xalan-j
http://www.w3.org/TR/WD-xsl
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/TR/WD-xsl
http://www.w3.org/TR/WD-xsl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

instruction in their prolog telling the browser where to find the associated stylesheet for the
document, as discussed in the last chapter. If this stylesheet is an XSLT stylesheet, then the type
pseudo-attribute should have the value application/xml. For example, this xml-stylesheet

processing instruction says that browsers should apply the stylesheet found at the absolute URL
http://www.oreilly.com/styles/people.xsl. Relative URLs can also be used.

<?xml version="1.0"?>

<?xml-stylesheet type="application/xml"

 href="http://www.oreilly.com/styles/people.xsl"?>

<people>

 ...

Microsoft Internet Explorer uses type="text/xsl" for XSLT stylesheets.
However, the text/xsl MIME media type has not been and will not be

registered with the IANA. It is a figment of Microsoft's imagination. In the
future, application/xslt+xml will be registered to identify XSLT stylesheets

specifically.

 < Day Day Up >

http://www.oreilly.com/styles/people.xsl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.4 Templates and Template Rules

To control what output is created from what input, you add template rules to the XSLT stylesheet.
Each template rule is represented by an xsl:template element. This element has a match attribute

that contains a pattern identifying the input it matches; it also contains a template that is
instantiated and output when the pattern is matched. The terminology is a little tricky here: the
xsl:template element is a template rule that contains a template. An xsl:template element is not

itself the template.

The simplest match pattern is an element name. Thus, this template rule says that every time a
person element is seen, the stylesheet processor should emit the text "A Person":

<xsl:template match="person">A Person</xsl:template>

Example 8-4 is a complete stylesheet that uses this template rule.

Example 8-4. An XSLT stylesheet with a match pattern

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="person">A Person</xsl:template>

</xsl:stylesheet>

Applying this stylesheet to the document in Example 8-1 produces this output:

<?xml version="1.0" encoding="utf-8"?>

 A Person

 A Person

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There were two person elements in the input document. Each time the processor saw one, it emitted
the text "A Person". The whitespace outside the person elements was preserved, but everything
inside the person elements was replaced by the contents of the template rule, which is called the

template.

The text "A Person" is called literal data characters, which is a fancy way of saying plain text that is
copied from the stylesheet into the output document. A template may also contain literal result
elements, i.e., markup that is copied from the stylesheet to the output document. For instance,
Example 8-5 wraps the text "A Person" in between <p> and </p> tags.

Example 8-5. A simple XSLT stylesheet with literal result elements

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="person">

 <p>A Person</p>

 </xsl:template>

</xsl:stylesheet>

The output from this stylesheet is:

<?xml version="1.0" encoding="utf-8"?>

 <p>A Person</p>

 <p>A Person</p>

The <p> and </p> tags were copied from the input to the output. The only major restriction on the

markup you may output is that it must be well-formed XML because the stylesheet must be well-
formed XML. For instance, you cannot write a template rule like this:

<xsl:template match="person">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 A Person<p>

</xsl:template>

Here the <p> start-tag has no matching end-tag; therefore, the stylesheet is malformed. Any other
markup in the XSLT stylesheet must be similarly well-formed. Empty-element tags must end with />,
attribute values must be quoted, less-than signs must be escaped as <, all entity references must

be declared in a DTD except for the five predefined ones, and so forth. XSLT has no exceptions to the
rules of well-formedness.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.5 Calculating the Value of an Element with xsl:value-of

Most of the time, the text that is output is more closely related to the text that is input than it was in
the last couple of examples. Other XSLT elements can select particular content from the input
document and insert it into the output document.

One of the most generally useful elements of this kind is xsl:value-of . This element calculates the

string value of an XPath expression and inserts it into the output. The value of an element is the text
content of the element after all the tags have been removed and entity and character references
have been resolved. The element whose value is taken is identified by a select attribute containing

an XPath expression.

For example, suppose you just want to extract the names of all the people in the input document.
Then you might use a stylesheet like Example 8-6. Here the person template outputs only the value
of the name child element of the matched person in between <p> and </p> tags.

Example 8-6. A simple XSLT stylesheet that uses xsl:value-of

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="person">

 <p>

 <xsl:value-of select="name"/>

 </p>

 </xsl:template>

</xsl:stylesheet>

When an XSLT processor applies this stylesheet to Example 8-1, it outputs this text:

<?xml version="1.0" encoding="utf-8"?>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <p>

 Alan

 Turing

 </p>

 <p>

 Richard

 P

 Feynman

 </p>

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.6 Applying Templates with xsl:apply-templates

By default, an XSLT processor reads the input XML document from top to bottom, starting at the root
of the document and working its way down using preorder traversal. Template rules are activated in
the order in which they match elements encountered during this traversal. This means a template
rule for a parent will be activated before template rules matching the parent's children.

However, one of the things a template can do is change the order of traversal. That is, it can specify
which element(s) should be processed next. It can specify that an element(s) should be processed in
the middle of processing another element. It can even prevent particular elements from being
processed. In fact, Examples Example 8-4 through Example 8-6 all implicitly prevent the child
elements of each person element from being processed. Instead, they provided their own

instructions about what the XSLT processor was and was not to do with those children.

The xsl:apply-templates element makes the processing order explicit. Its select attribute

contains an XPath expression telling the XSLT processor which nodes to process at that point in the
output tree.

For example, suppose you wanted to list the names of the people in the input document; however,
you want to put the last names first, regardless of the order in which they occur in the input
document, and you don't want to output the professions or hobbies. First you need a name template
that looks like this:

<xsl:template match="name">

 <xsl:value-of select="last_name"/>,

 <xsl:value-of select="first_name"/>

</xsl:template>

However, this alone isn't enough; if this were all there was in the stylesheet, not only would the
output include the names, it would also include the professions and hobbies. You also need a person
template rule that says to apply templates to name children only, but not to any other child elements
like profession or hobby. This template rule does that:

<xsl:template match="person">

 <xsl:apply-templates select="name"/>

</xsl:template>

Example 8-7 shows the complete stylesheet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 8-7. A simple XSLT stylesheet that uses xsl:apply-templates

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="name">

 <xsl:value-of select="last_name"/>,

 <xsl:value-of select="first_name"/>

 </xsl:template>

 <xsl:template match="person">

 <xsl:apply-templates select="name"/>

 </xsl:template>

</xsl:stylesheet>

When an XSLT processor applies this stylesheet to Example 8-1, this is output:

<?xml version="1.0" encoding="utf-8"?>

 Turing,

 Alan

 Feynman,

 Richard

The order of the template rules in the stylesheet doesn't matter. It's only the order of the elements in
the input document that matters.

Applying templates is also important when the child elements have templates of their own, even if

http://lib.ommolketab.ir
http://lib.ommolketab.ir

you don't need to reorder the elements. For example, let's suppose you want a template rule for the
root people element that wraps the entire document in an HTML header and body. Its template will
need to use xsl:apply-templates to indicate where it wants the children of the root element to be

placed. That template rule might look like this:

<xsl:template match="people">

 <html>

 <head><title>Famous Scientists</title></head>

 <body>

 <xsl:apply-templates select="person"/>

 </body>

 </html>

</xsl:template>

This template tells the XSLT processor to replace every people element in the input document (of
which there is only one in Example 8-1) with an html element. This html element contains some
literal character data and several literal result elements of which one is a body element. The body
element contains an xsl:apply-templates element telling the XSLT processor to process all the
person children of the current people element and insert the output of any matched templates into
the body element of the output document.

If you'd rather apply templates to all types of children of the people element, rather than just
person children, you can omit the select attribute as demonstrated in Example 8-8. You can also

use more complex XPath expressions (discussed in the next chapter) to be more precise about which
elements you want to apply templates to.

Example 8-8. An XSLT stylesheet that generates a complete HTML
document

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="people">

 <html>

 <head><title>Famous Scientists</title></head>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <body>

 <xsl:apply-templates/>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="name">

 <p><xsl:value-of select="last_name"/>,

 <xsl:value-of select="first_name"/></p>

 </xsl:template>

 <xsl:template match="person">

 <xsl:apply-templates select="name"/>

 </xsl:template>

</xsl:stylesheet>

When an XSLT processor applies this stylesheet to Example 8-1, it outputs the well-formed HTML
document shown in Example 8-9. Look closely at this example, and you may spot an important
change that was not explicitly caused by the instructions in the stylesheet.

Example 8-9. The HTML document produced by applying Example 8-8 to
Example 8-1

<html>

<head>

<title>Famous Scientists</title>

</head>

<body>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <p>Turing,

 Alan</p>

 <p>Feynman,

 Richard</p>

</body>

</html>

The difference between Example 8-9 and all the previous output examples is that the text declaration
has disappeared! Although there is an XSLT element you can use to specify whether you want a text
declaration preceding your output (xsl:output), we haven't used that here. Instead, the XSLT
processor noted that the root output element was html, and it adjusted itself accordingly. Since

HTML output is such a common case, XSLT has special rules just to handle it. In addition to omitting
the text declaration, the processor will use HTML empty-element syntax like
, instead of XML
empty-element syntax like
, in the output document. (The input document and stylesheet must

still be well-formed XML.) There are about half a dozen other changes the XSLT processor may make
when it knows it's outputting HTML, all designed to make the output more acceptable to existing web
browsers than is well-formed XML.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.7 The Built-in Template Rules

There are seven kinds of nodes in an XML document: the root node, element nodes, attribute nodes,
text nodes, comment nodes, processing instruction nodes, and namespace nodes. XSLT provides a
default built-in template rule for each of these seven kinds of nodes that says what to do with that
node if the stylesheet author has not provided more specific instructions. These rules use special
wildcard patterns to match all nodes of a given type. Together these template rules have major
effects on which nodes are activated when.

8.7.1 The Default Template Rule for Text and Attribute Nodes

The most basic built-in template rule copies the value of text and attribute nodes into the output
document. It looks like this:

<xsl:template match="text()|@*">

 <xsl:value-of select="."/>

</xsl:template>

The text() node test is a pattern matching all text nodes, just as first_name is a pattern matching
all first_name element nodes. @* is a pattern matching all attribute nodes. The vertical bar

combines these two patterns so that the template rule matches both text and attribute nodes. The
rule's template says that whenever a text or attribute node is matched, the processor should output
the value of that node. For a text node, this value is simply the text in the node. For an attribute, this
value is the attribute value but not the name.

Example 8-10 is an XSLT stylesheet that pulls the birth and death dates out of the born and died

attributes in Example 8-1. The default template rule for attributes takes the value of the attributes,
but an explicit rule selects those values. The @ sign in @born and @died indicates that these are

attributes of the matched element rather than child elements.

Example 8-10. An XSLT stylesheet that reads born and died attributes

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <xsl:template match="people">

 <html>

 <head><title>Famous Scientists</title></head>

 <body>

 <dl>

 <xsl:apply-templates/>

 </dl>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="person">

 <dt><xsl:apply-templates select="name"/></dt>

 <dd>

 Born: <xsl:apply-templates select="@born"/>

 Died: <xsl:apply-templates select="@died"/>

 </dd>

 </xsl:template>

</xsl:stylesheet>

When an XSLT processor applies this stylesheet to Example 8-1, it outputs the HTML document
shown in Example 8-11.

Example 8-11. The HTML produced by applying Example 8-10 to Example
8-1

<html>

 <head>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <title>Famous Scientists</title>

 </head>

 <body>

 <dl>

 <dt>

 Alan

 Turing

 </dt>

 <dd>

 Born: 1912

 Died: 1954

 </dd>

 <dt>

 Richard

 P

 Feynman

 </dt>

 <dd>

 Born: 1918

 Died: 1988

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </dd>

 </dl>

 </body>

</html>

It's important to note that although this template rule says what should happen when an attribute
node is reached, by default, the XSLT processor never reaches attribute nodes and, therefore, never
outputs the value of an attribute. Attribute values are output according to this template only if a
specific rule applies templates to them, and none of the default rules do this because attributes are
not considered to be children of their parents. In other words, if element E has an attribute A, then E
is the parent of A, but A is not the child of E. (The biological metaphor breaks down here.) Applying
templates to the children of an element with <xsl:apply-templates/> does not apply templates to
attributes of the element. To do that, the xsl:apply-templates element must have a match pattern

specifically selecting attributes.

8.7.2 The Default Template Rule for Element and Root Nodes

The most important template rule is the one that guarantees that children are processed. Here is that
rule:

<xsl:template match="*|/">

 <xsl:apply-templates/>

</xsl:template>

The asterisk * is an XPath wildcard that matches all element nodes, regardless of what name they
have or what namespace they're in. The forward slash / is an XPath expression that matches the

root node. This is the first node the processor selects for processing, and, therefore, this is the first
template rule the processor executes (unless a nondefault template rule also matches the root node).
Again, the vertical bar combines these two expressions so that the rule matches both the root node
and element nodes. In isolation, this rule means that the XSLT processor eventually finds and applies
templates to all nodes except attribute and namespace nodes because every nonattribute, non-
namespace node is either the root node, a child of the root node, or a child of an element. Only
attribute and namespace nodes are not children of their parents. (You can think of them as
disinherited nodes.)

Of course, templates may override the default behavior. For example, when you include a template
rule matching person elements in your stylesheet, then children of the matched person elements are

not necessarily processed, unless one of your own template rules says to process them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.7.3 The Default Template Rule for Comment and Processing Instruction
Nodes

This is the default template rule for comments and processing instructions:

<xsl:template match="processing-instruction()|comment()"/>

It matches all comments and processing instructions. However, it does not output anything into the
result tree. That is, unless a stylesheet provides specific rules matching comments or processing
instructions, no part of these items will be copied from the input document to the output document.

8.7.4 The Default Template Rule for Namespace Nodes

A similar template rule matches namespace nodes and instructs the processor not to copy any part of
the namespace node to the output. This is truly a built-in rule that must be implemented in the XSLT
processor's source code; it can't even be written down in an XSLT stylesheet because there's no such
thing as an XPath pattern matching a namespace node. That is, there's no namespace() node test

in XPath. The XSLT processor inserts any necessary namespace declarations in the output document
automatically, without any special assistance from namespace templates.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.8 Modes

Sometimes the same input content needs to appear multiple times in the output document,
formatted according to a different template each time. For instance, the titles of the chapters in a
book would be formatted one way in the chapters themselves and a different way in the table of
contents. Both xsl:apply-templates and xsl:template elements can have optional mode attributes
that connect different template rules to different positions. A mode attribute on an xsl:template
element identifies in which mode that template rule should be activated. An xsl:apply-templates
element with a mode attribute only activates template rules with matching mode attributes. Example

8-12 demonstrates with a stylesheet that begins the output document with a list of people's names.
This is accomplished in the toc mode. Then a separate template rule, as well as a separate
xsl:apply-templates element in the default mode (really no mode at all), outputs the complete
contents of all person elements.

Example 8-12. A stylesheet that uses modes

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="people">

 <html>

 <head><title>Famous Scientists</title></head>

 <body>

 <xsl:apply-templates select="person" mode="toc"/>

 <xsl:apply-templates select="person"/>

 </body>

 </html>

 </xsl:template>

 <!-- Table of Contents Mode Templates -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <xsl:template match="person" mode="toc">

 <xsl:apply-templates select="name" mode="toc"/>

 </xsl:template>

 <xsl:template match="name" mode="toc">

 <xsl:value-of select="last_name"/>,

 <xsl:value-of select="first_name"/>

 </xsl:template>

 <!-- Normal Mode Templates -->

 <xsl:template match="person">

 <p><xsl:apply-templates/></p>

 </xsl:template>

</xsl:stylesheet>

Example 8-13 shows the output when this stylesheet is applied to people.xml. The people template in
Example 8-12 applies templates to its person children twice. The first time it does so in the toc

mode. This selects the first person template rule in the stylesheet that outputs each person in the
form Turing, Alan. The second time, it doesn't specify any mode. This selects the second
person template rule in the stylesheet, which outputs all the character data of the person wrapped in
a p element.

Example 8-13. Output from a stylesheet that uses modes to process each
person twice with different templates

<html>

<head>

<title>Famous Scientists</title>

</head>

<body>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Turing,

 Alan

Feynman,

 Richard

<p>

 Alan

 Turing

 computer scientist

 mathematician

 cryptographer

 </p>

<p>

 Richard

 P

 Feynman

 physicist

 Playing the bongoes

 </p>

</body>

</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For every mode in the stylesheet, the XSLT processor adds one default template rule to its set of
built-in rules. This applies to all element and root nodes in the specified mode and applies templates
to their children in the same mode (since the usual built-in template rule for element and root nodes
doesn't have a mode). For instance, the extra default rule for Example 8-10 looks like this:

<xsl:template match="*|/" mode="toc">

 <xsl:apply-templates mode="toc"/>

</xsl:template>

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.9 Attribute Value Templates

It's easy to include known attribute values in the output document as the literal content of a literal
result element. For example, this template rule wraps each input person element in an HTML span
element that has a class attribute with the value person:

<xsl:template match="person">

 <xsl:apply-templates/>

</xsl:template>

However, it's trickier if the value of the attribute is not known when the stylesheet is written, but
instead must be read from the input document. The solution is to use an attribute value template. An
attribute value template is an XPath expression enclosed in curly braces that's placed in the attribute
value in the stylesheet. When the processor outputs that attribute, it replaces the attribute value
template with its value. For example, suppose you want to write a name template that changes the
input name elements to empty elements with first, initial, and last attributes like this:

<name first="Richard" initial="P" last="Feynman"/>

This template accomplishes that task:

<xsl:template match="name">

 <name first="{first_name}"

 initial="{middle_initial}"

 last="{last_name}" />

</xsl:template>

The value of the first attribute in the stylesheet is replaced by the value of the first_name element
from the input document. The value of the initial attribute is replaced by the value of the
middle_initial element from the input document, the value of the last attribute is replaced by the
value of the last_name element from the input document.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.10 XSLT and Namespaces

Match patterns, as well as select expressions, identify elements based on their local part and
namespace URI. They do not consider the namespace prefix. Most commonly, the same namespace
prefix is mapped to the same URI in both the input XML document and the stylesheet. However, this
is not required. For instance, consider Example 8-14. This is exactly the same as Example 8-1, except
that now all the elements have been placed in the namespace
http://www.cafeconleche.org/namespaces/people.

Example 8-14. An XML document that uses a default namespace

<?xml version="1.0"?>

<people xmlns="http://www.cafeconleche.org/namespaces/people">

 <person born="1912" died="1954">

 <name>

 <first_name>Alan</first_name>

 <last_name>Turing</last_name>

 </name>

 <profession>computer scientist</profession>

 <profession>mathematician</profession>

 <profession>cryptographer</profession>

 </person>

 <person born="1918" died="1988">

 <name>

 <first_name>Richard</first_name>

 <middle_initial>P</middle_initial>

http://www.cafeconleche.org/namespaces/people
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <last_name>Feynman</last_name>

 </name>

 <profession>physicist</profession>

 <hobby>Playing the bongoes</hobby>

 </person>

</people>

Except for the built-in template rules, none of the rules in this chapter so far will work on this
document! For instance, consider this template rule from Example 8-8:

<xsl:template match="name">

 <p><xsl:value-of select="last_name"/>,

 <xsl:value-of select="first_name"/></p>

</xsl:template>

It's trying to match a name element in no namespace, but the name elements in Example 8-14 aren't
in no namespace. They're in the http://www.cafeconleche.org/namespaces/people namespace.
This template rule no longer applies. To make it fit, we map the prefix pe to the namespace URI
http://www.cafeconleche.org/namespaces/people. Then instead of matching name, we match
pe:name. That the input document doesn't use the prefix pe is irrelevant as long as the namespace

URIs match up. Example 8-15 demonstrates by rewriting Example 8-8 to work with Example 8-14
instead.

Example 8-15. An XSLT stylesheet for input documents using the
http://www.cafeconleche.org/namespaces/people

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:pe="http://www.cafeconleche.org/namespaces/people">

 <xsl:template match="pe:people">

http://www.cafeconleche.org/namespaces/people
http://www.cafeconleche.org/namespaces/people
http://www.cafeconleche.org/namespaces/people
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <html>

 <head><title>Famous Scientists</title></head>

 <body>

 <xsl:apply-templates/>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="pe:name">

 <p><xsl:value-of select="pe:last_name"/>,

 <xsl:value-of select="pe:first_name"/></p>

 </xsl:template>

 <xsl:template match="pe:person">

 <xsl:apply-templates select="pe:name"/>

 </xsl:template>

</xsl:stylesheet>

The output is essentially the same output you get by applying Example 8-8 to Example 8-1 except
that it will have an extra xmlns:pe attribute on the root element.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.11 Other XSLT Elements

This is hardly everything there is to say about XSLT. Indeed, XSLT does a lot more than the little
we've covered in this introductory chapter. Other features yet to be discussed include:

Named templates

Numbering and sorting output elements

Conditional processing

Iteration

Extension elements and functions

Importing other stylesheets

These and more will all be covered in Chapter 24. Since XSLT is itself Turing complete and since it can
invoke extension functions written in other languages like Java, chances are very good you can use
XSLT to make whatever transformations you need to make.

Furthermore, besides these additional elements, you can do a lot more simply by expanding the
XPath expressions and patterns used in the select and match attributes of the elements with which

you're already familiar. These techniques will be explored in Chapter 9.

However, the techniques outlined in this chapter do lay the foundation for all subsequent, more
advanced work with XSLT. The key to transforming XML documents with XSLT is to match templates
to elements in the input document. Those templates contain both literal result data and XSLT
elements that instruct the processor where to get more data. Everything you do with XSLT is based
on this one simple idea.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 9. XPath
XPath is a non-XML language for identifying particular parts of XML documents. XPath lets you write
expressions that refer to, for example, the first person element in a document, the seventh child
element of the third person element, the ID attribute of the first person element whose contents are
the string "Fred Jones", all xml-stylesheet processing instructions in the document's prolog, and so

forth. XPath indicates nodes by position, relative position, type, content, and several other criteria.
XSLT uses XPath expressions to match and select particular elements in the input document for
copying into the output document or further processing. XPointer uses XPath expressions to identify
the particular point in or part of an XML document to which an XLink links. The W3C XML Schema
Language uses XPath expressions to define uniqueness and identity constraints. XForms relies on
XPath to bind form controls to instance data, express constraints on user-entered values, and
calculate values that depend on other values.

XPath expressions can also represent numbers, strings, or Booleans. This lets XSLT stylesheets carry
out simple arithmetic for purposes such as numbering and cross-referencing figures, tables, and
equations. String manipulation in XPath lets XSLT perform tasks such as making the title of a chapter
uppercase in a headline or extracting the last two digits from a year.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.1 The Tree Structure of an XML Document

An XML document is a tree made up of nodes. Some nodes contain one or more other nodes. There is
exactly one root node, which ultimately contains all other nodes. XPath is a language for picking
nodes and sets of nodes out of this tree. From the perspective of XPath, there are seven kinds of
nodes:

The root node

Element nodes

Text nodes

Attribute nodes

Comment nodes

Processing-instruction nodes

Namespace nodes

One thing to note are the constructs not included in this list: CDATA sections, entity references, and

document type declarations. XPath operates on an XML document after all these items have been
merged into the document. For instance, XPath cannot identify the first CDATA section in a document

or tell whether a particular attribute value was directly included in the source element start-tag or
merely defaulted from the declaration of the element in a DTD.

Consider the document in Example 9-1 . This exhibits all seven kinds of nodes. Figure 9-1 is a
diagram of the tree structure of this document.

Example 9-1. The example XML document used in this chapter

<?xml version="1.0"?>

<?xml-stylesheet type="application/xml" href="people.xsl"?>

<!DOCTYPE people [

 <!ATTLIST homepage xlink:type CDATA #FIXED "simple"

 xmlns:xlink CDATA #FIXED "http://www.w3.org/1999/xlink">

 <!ATTLIST person id ID #IMPLIED>

]>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<people>

 <person born="1912" died="1954" id="p342">

 <name>

 <first_name>Alan</first_name>

 <last_name>Turing</last_name>

 </name>

 <!-- Did the word computer scientist exist in Turing's day? -->

 <profession>computer scientist</profession>

 <profession>mathematician</profession>

 <profession>cryptographer</profession>

 <homepage xlink:href="http://www.turing.org.uk/"/>

 </person>

 <person born="1918" died="1988" id="p4567">

 <name>

 <first_name>Richard</first_name>

 <middle_initial>P</middle_initial>

 <last_name>Feynman</last_name>

 </name>

 <profession>physicist</profession>

 <hobby>Playing the bongoes</hobby>

 </person>

</people>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 9-1. The tree structure of Example 9-1

The XPath data model has several nonobvious features. First of all, the root node of the tree is not
the same as the root element. The root node of the tree contains the entire document including the
root element, as well as any comments and processing instructions that occur before the root
element start-tag or after the root element end-tag. In Example 9-1 , this means the root node
contains the xml-stylesheet processing instruction, as well as the root element people .

However, the XPath data model does not include everything in the document. In particular, the XML
declaration, the DOCTYPE declaration, and the various parts of the DTD are not addressable via
XPath, although if the DTD provides default values for any attributes, then those attributes are noted
by XPath. The homepage element has an xlink:type attribute that was supplied by the DTD.

Similarly, any references to parsed entities are resolved. Entity references, character references, and
CDATA sections are not individually identifiable, although any data they contain is addressable. For
example, XSLT cannot make all the text in CDATA sections bold because XPath doesn't know which
text is and isn't part of a CDATA section.

Finally, xmlns and xmlns :prefix attributes are not considered attribute nodes. However,

namespace nodes are attached to every element node for which a declaration is in scope. They are
not attached to just the single element where the namespace is declared.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.2 Location Paths

The most useful XPath expression is a location path. A location path identifies a set of nodes in a
document. This set may be empty, may contain a single node, or may contain several nodes. These
can be element nodes, attribute nodes, namespace nodes, text nodes, comment nodes, processing-
instruction nodes, root nodes, or any combination of these. A location path is built out of successive
location steps. Each location step is evaluated relative to a particular node in the document called the
context node.

9.2.1 The Root Location Path

The simplest location path is the one that selects the root node of the document. This is simply the
forward slash /. (You'll notice that a lot of XPath syntax is deliberately similar to the syntax used by
the Unix shell. Here / is the root node of a Unix filesystem, and / is the root node of an XML
document.) For example, this XSLT template rule uses the XPath pattern / to match the entire input
document tree and wrap it in an html element:

<xsl:template match="/">

 <html><xsl:apply-templates/></html>

</xsl:template>

/ is an absolute location path because no matter what the context node is-that is, no matter where

the processor was in the input document when this template rule was applied-it always means the
same thing: the root node of the document. It is relative to which document you're processing, but
not to anything within that document.

9.2.2 Child Element Location Steps

The second simplest location path is a single element name. This path selects all child elements of the
context node with the specified name. For example, the XPath profession refers to all profession

child elements of the context node. Exactly which elements these are depends on what the context
node is, so this is a relative XPath. For example, if the context node is the Alan Turing person
element in Example 9-1, then the location path profession refers to these three profession child

elements of that element:

<profession>computer scientist</profession>

<profession>mathematician</profession>

<profession>cryptographer</profession>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, if the context node is the Richard Feynman person element in Example 9-1, then the XPath
profession refers to its single profession child element:

<profession>physicist</profession>

If the context node is the name child element of Richard Feynman or Alan Turing's person element,
then this XPath doesn't refer to anything at all because neither of those has any profession child

elements.

In XSLT, the context node for an XPath expression used in the select attribute of xsl:apply-
templates and similar elements is the node that is currently matched. For example, consider the
simple stylesheet in Example 9-2. In particular, look at the template rule for the person element. The
XSLT processor will activate this rule twice, once for each person node in the document. The first
time the context node is set to Alan Turing's person element. The second time the context node is
set to Richard Feynman's person element. When the same template is instantiated with a different
context node, the XPath expression in <xsl:value-of select="name"/> refers to a different

element, and the output produced is therefore different.

Example 9-2. A very simple stylesheet for Example 9-1

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="people">

 <xsl:apply-templates select="person"/>

 </xsl:template>

 <xsl:template match="person">

 <xsl:value-of select="name"/>

 </xsl:template>

</xsl:stylesheet>

When XPath is used in other systems, such as XPointer or XForms, other means are provided for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

determining what the context node is.

9.2.3 Attribute Location Steps

Attributes are also addressable by XPath. To select a particular attribute of an element, use an @ sign
followed by the name of the attribute you want. For example, the XPath expression @born selects the
born attribute of the context node. Example 9-3 is a simple XSLT stylesheet that generates an HTML

table of names and birth and death dates from documents like Example 9-1.

Example 9-3. An XSLT stylesheet that uses root element, child element,
and attribute location steps

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">

 <html>

 <xsl:apply-templates select="people"/>

 </html>

 </xsl:template>

 <xsl:template match="people">

 <table>

 <xsl:apply-templates select="person"/>

 </table>

 </xsl:template>

 <xsl:template match="person">

 <tr>

 <td><xsl:value-of select="name"/></td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td><xsl:value-of select="@born"/></td>

 <td><xsl:value-of select="@died"/></td>

 </tr>

 </xsl:template>

</xsl:stylesheet>

The stylesheet in Example 9-3 has three template rules. The first template rule has a match pattern
that matches the root node, /. The XSLT processor activates this template rule and sets the context
node to the root node. Then it outputs the start-tag <html>. This is followed by an xsl:apply-
templates element that selects nodes matching the XPath expression people. If the input document

is Example 9-1, then there is exactly one such node, the root element. This is selected and its
template rule, the one with the match pattern of people, is applied. The XSLT processor sets the
context node to the root people element and then begins processing the people template. It outputs
a <table> start-tag and then encounters an xsl:apply-templates element that selects nodes
matching the XPath expression person. Two child elements of this context node match the XPath
expression person, so they're each processed in turn using the person template rule. When the XSLT
processor begins processing each person element, it sets the context node to that element. It
outputs that element's name child element value and born and died attribute values wrapped in a

table row and three table cells. The net result is:

<html>

 <table>

 <tr>

 <td>

 Alan

 Turing

 </td>

 <td>1912</td>

 <td>1954</td>

 </tr>

 <tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>

 Richard

 P

 Feynman

 </td>

 <td>1918</td>

 <td>1988</td>

 </tr>

 </table>

</html>

9.2.4 The comment(), text(), and processing-instruction() Location
Steps

Although element, attribute, and root nodes account for 90% or more of what you need to do with
XML documents, this still leaves four kinds of nodes that need to be addressed: namespace nodes,
text nodes, processing-instruction nodes, and comment nodes. Namespace nodes are rarely handled
explicitly. The other three node types have special node tests to match them. These are as follows:

comment()

text()

processing-instruction()

Since comments and text nodes don't have names, the comment() and text() location steps

match any comment or text node child of the context node. Each comment is a separate comment
node. Each text node contains the maximum possible contiguous run of text not interrupted by any
tag. Entity references and CDATA sections are resolved into text and markup and do not interrupt text

nodes.

By default, XSLT stylesheets do process text nodes but do not process comment nodes. You can add
a comment template rule to an XSLT stylesheet so it will process comments too. For example, this
template rule replaces each comment with the text "Comment Deleted" in italic:

<xsl:template match="comment()">

 <i>Comment Deleted</i>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</xsl:template>

With no arguments, the processing-instruction() location step selects all processing-instruction

children of the context node. If it has an argument, then it only selects the processing-instruction
children with the specified target. For example, the XPath expression processing-
instruction('xml-stylesheet') selects all processing-instruction children of the context node
whose target is xml-stylesheet.

9.2.5 Wildcards

Wildcards match different element and node types at the same time. There are three wildcards: *,
node() , and @*.

The asterisk (*) matches any element node regardless of name. For example, this XSLT template rule

says that all elements should have their child elements processed but should not result in any output
in and of themselves:

<xsl:template match="*"><xsl:apply-templates select="*"/></xsl:template>

The * does not match attributes, text nodes, comments, or processing-instruction nodes. Thus, in the

previous example, output will only come from child elements that have their own template rules that
override this one.

You can put a namespace prefix in front of the asterisk. In this case, only elements in the same
namespace are matched. For example, svg:* matches all elements with the same namespace URI as
the svg prefix is mapped to. As usual, it's the URI that matters, not the prefix. The prefix can be

different in the stylesheet and the source document as long as the namespace URI is the same.

The node() wildcard matches not only all element types but also the root node, text nodes,

processing-instruction nodes, namespace nodes, attribute nodes, and comment nodes.

The @* wildcard matches all attribute nodes. For example, this XSLT template rule copies the values
of all attributes of a person element in the document into the content of an attributes element in

the output:

<xsl:template match="person">

 <attributes><xsl:apply-templates select="@*"/></attributes>

</xsl:template>

As with elements, you can attach a namespace prefix to the wildcard to match attributes in a specific
namespace. For instance, @xlink:* matches all XLink attributes provided that the prefix xlink is
mapped to the http://www.w3.org/1999/xlink URI. Again, it's the URI that matters, not the actual

prefix.

http://www.w3.org/1999/xlink
http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2.6 Multiple Matches with |

You often want to match more than one type of element or attribute but not all types. For example,
you may want an XSLT template that applies to the profession and hobby elements but not to the
name, person, or people elements. You can combine location paths and steps with the vertical bar
(|) to indicate that you want to match any of the named elements. For instance, profession|hobby
matches profession and hobby elements. first_name|middle_initial|last_name matches
first_name, middle_initial, and last_name elements. @id|@xlink:type matches id and
xlink:type attributes. *|@* matches elements and attributes but does not match text nodes,

comment nodes, or processing-instruction nodes. For example, this XSLT template rule applies to all
the nonempty leaf elements (elements that don't contain any other elements) of Example 9-1of
Example 9-1:

<xsl:template match="first_name|last_name|profession|hobby">

 <xsl:value-of select="text()"/>

</xsl:template>

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.3 Compound Location Paths

The XPath expressions you've seen so far-element names, @ plus an attribute name, /, comment(),
text(), and processing-instruction()-are all single location steps. You can combine these

with the forward slash to move around the hierarchy from the matched node to other nodes.
Furthermore, you can use a period to refer to the context node, a double period to refer to the parent
node, and a double forward slash to refer to descendants of the context node. With the exception of
//, these are all similar to Unix shell syntax for navigating a hierarchical filesystem.

9.3.1 Building Compound Location Paths from Location Steps with /

Location steps can be combined with a forward slash (/) to make a compound location path. Each
step in the path is relative to the one that preceded it. If the path begins with /, then the first step in

the path is relative to the root node. Otherwise, it's relative to the context node. For example,
consider the XPath expression /people/person/name/first_name. This begins at the root node,
then selects all people element children of the root node, then all person element children of those
nodes, then all name children of those nodes, and finally all first_name children of those nodes.

Applied to Example 9-1, it indicates these two elements:

<first_name>Alan</first_name>

<first_name>Richard</first_name>

To indicate only the textual content of those two nodes, we have to go one step further. The XPath
expression /people/person/name/first_name/text() selects the strings "Alan" and "Richard"

from Example 9-1.

These two XPath expressions both began with /, so they're absolute location paths that start at the

root. Relative location paths can also count down from the context node. For example, the XPath
expression person/@id selects the id attributes of the person child elements of the context node.

9.3.2 Selecting from Descendants with //

A double forward slash (//) selects from all descendants of the context node, as well as the context

node itself. At the beginning of an XPath expression, it selects from all of the nodes in the document.
For example, the XPath expression //name selects all name elements in the document. The expression
//@id selects all the id attributes of any element in the document. The expression person//@id
selects all the id attributes of any element contained in the person child elements of the context
node, as well as the id attributes of the person elements themselves.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3.3 Selecting the Parent Element with ..

A double period (..) indicates the parent of the current node. For example, the XPath expression
//@id identifies all id attributes in the document. Therefore, //@id/.. identifies all elements in the
document that have id attributes. The XPath expression //middle_initial/../first_name
identifies all first_name elements that are siblings of middle_initial elements in the document.
Applied to Example 9-1, this selects <first_name>Richard</first_name> but not
<first_name>Alan</first_name>.

9.3.4 Selecting the Context Node with .

Finally, the single period (.) indicates the context node. In XSLT this is most commonly used when

you need to take the value of the currently matched node. For example, this template rule copies the
content of each comment in the input document to a span element in the output document:

<xsl:template match="comment()">

 <xsl:value-of select=".">

</xsl:template>

The . given as the value of the select attribute of xsl:value-of stands for the matched node. This

works equally well for element nodes, attribute nodes, and all the other kinds of nodes. For example,
this template rule matches name elements from the input document and copies their value into

strongly emphasized text in the output document:

<xsl:template match="name">

 <xsl:value-of select=".">

</xsl:template>

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.4 Predicates

In general, an XPath expression may refer to more than one node. Sometimes this is what you want,
but sometimes you want to further winnow the node-set. You want to select only some of the nodes
the expression returns. Each step in a location path may (but does not have to) have a predicate that
selects from the node-set current at that step in the expression. The predicate contains a Boolean
expression, which is tested for each node in the context node list. If the expression is false, then that
node is deleted from the list. Otherwise, it's retained.

For example, suppose you want to find all profession elements whose value is "physicist". The
XPath expression //profession[. = "physicist"] does this. You can use single quotes around the

string instead of double quotes, which is often useful when the XPath expression appears inside a
double-quoted attribute value, for example, <xsl:apply-templates select="//profession[.=
'physicist']" />.

If you want to ask for all person elements that have a profession child element with the value
"physicist", you'd use the XPath expression //person [profession="physicist"]. If you want to
find the person element with id p4567, put an @ in front of the name of the attribute, as in
//person[@id="p4567"].

In addition to the equals sign, XPath supports a full complement of relational operators, including <,
>, >=, <=, and !=. For instance, the expression //person [@born<=1976] locates all person
elements in the document with a born attribute whose numeric value is less than or equal to 1976.

Note that if this expression is used inside an XML document, you still have to escape the less-than
sign as <, for example, <xsl:apply-templates select="//person[@born <= 1976]"/>.

XPath doesn't get any special exemptions from the normal well-formedness rules of XML. However, if
the XPath expression appears outside of an XML document, as it may in some uses of XPointer, you
may not need to escape the less-than sign.

XPath also provides Boolean and and or operators to combine expressions logically. For example, the
XPath expression //person[@born<=1920 and @born>=1910] selects all person elements with born
attribute values between 1910 and 1920, inclusive. //name[first_name="Richard" or
first_name="Dick"] selects all name elements that have a first_name child with the value of either

Richard or Dick.

In some cases, the predicate may not be a Boolean, but it can be converted to one in a
straightforward fashion. Predicates that evaluate to numbers are true if they're equal to the position
of the context node; otherwise, they're false. For instance, //name[2] selects the second name

element in the document. (XPath indices begin at 1 as in Fortran, not 0 as in Java and C.) Predicates
that indicate node-sets are true if the node-set is nonempty and false if it's empty. For example,
suppose you want to select only those name elements in the document that have a middle_initial
child element. The XPath expression //name selects all name elements. The XPath expression
//name[middle_initial] selects all name elements and then checks each one to see if it has a
middle_initial child element. Only those that do are retained. When applied to Example 9-1, this
expression indicates Richard P. Feynman's name element but not Alan Turing's. String values are true

if the string isn't the empty string, false if it is.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Any or all of the location steps in a location path can have predicates. For example, the XPath
expression /people/person[@born < 1950]/name[first_name = "Alan"] first selects all people

child elements of the root element (of which there's exactly one in Example 9-1). Then from those it
chooses all person elements whose born attribute has a value numerically less than 1950. Finally,
from that group of elements, it selects all name child elements that have a first_name child element

with the value "Alan".

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.5 Unabbreviated Location Paths

Up until this point, we've been using what are called abbreviated location paths . These are easy to
type, not usually verbose, and very familiar to most people. They're also the kind of XPath expression
that works best for XSLT match patterns. However, XPath also offers an unabbreviated syntax for
location paths, which is more verbose but perhaps less cryptic and definitely more flexible than
abbreviated location paths.

Every location step in a location path has two required parts, an axis and a node test, and one
optional part, the predicates. The axis tells you which direction to travel from the context node to
look for the next nodes. The node test tells you which nodes to include along that axis, and the
predicates further reduce the nodes according to some expression.

In an abbreviated location path, the axis and the node test are combined, while in an unabbreviated
location path, they're separated by a double colon (::). For example, the abbreviated location path
people/person/@id is composed of three location steps. The first step selects people element nodes
along the child axis. The second step selects person element nodes along the child axis. The third
step selects id attribute nodes along the attribute axis. When rewritten using the unabbreviated
syntax, the same location path is child::people/child::person/attribute::id.

These full, unabbreviated location paths may be absolute if they start from the root node, just as
abbreviated paths can be. The full form /child::people/child::person, for example, is equivalent
to the abbreviated form /people/person.

Unabbreviated location paths may be used in predicates as well. For example, the abbreviated path
/people/person[@born<1950]/name[first_name="Alan"] becomes
/child::people/child::person[attribute::born < 1950] /child::name[child::first_name
= "Alan"] in the full form.

Overall, the unabbreviated form is quite verbose and not used much in practice. However, it does
offer one crucial ability that makes it essential to know: it is the only way to access most of the axes
from which XPath expressions can choose nodes. The abbreviated syntax lets you walk along the
child, parent, self, attribute, and descendant-or-self axes. The unabbreviated syntax adds eight more
axes:

ancestor

All element nodes that contain the context node, that is, the parent node, the parent's parent,
the parent's parent's parent, and so on up through the root node in reverse document order.

following-sibling

All nodes that follow the context node and are children of the same parent node in document

http://lib.ommolketab.ir
http://lib.ommolketab.ir

order. Attribute and namespace nodes do not have any siblings.

preceding-sibling

All nodes that precede the context node and are children of the same parent node in reverse
document order.

following

All nodes that follow the end of the context node in document order except for descendant,
attribute, and namespace nodes.

preceding

All nodes that precede the start of the context node in reverse document order except for
ancestor, attribute, and namespace nodes.

namespace

If the context node is an element, all namespaces in scope on the context node, whether
declared on the context node or one of its ancestors. If the context node is not an element,
then the empty set.

descendant

All descendants of the context node but not the context node itself.

ancestor-or-self

All ancestors of the context node and the context node itself.

Example 9-4 demonstrates several of these axes using the full unabbreviated syntax. The goal is to
produce a list of person elements that look more or less like this (after accounting for whitespace):

<dt>Richard P Feynman</dt>

<dd>

 physicist

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Playing the bongoes

</dd>

Example 9-4. An XSLT stylesheet that uses unabbreviated XPath syntax

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">

 <dl>

 <xsl:apply-templates select="descendant::person"/>

 </dl>

 </xsl:template>

 <xsl:template match="person">

 <dt><xsl:value-of select="child::name"/></dt>

 <dd>

 <xsl:apply-templates select="child::name/following-sibling::*"/>

 </dd>

 </xsl:template>

 <xsl:template match="*">

 <xsl:value-of select="self::*"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </xsl:template>

 <xsl:template match="homepage"

 xmlns:xlink="http://www.w3.org/1999/xlink">

 <xsl:value-of select="attribute::xlink:href"/>

 </xsl:template>

</xsl:stylesheet>

The first template rule matches the root node. It applies templates to all descendants of the root
node that happen to be person elements. That is, it moves from the root node along the descendant
axis with a node test of person. This XPath expression could have been rewritten in the abbreviated
syntax as //person.

The second template rule matches person elements. It places the value of the name child of each
person element in a dt element. The location path used here, child::name, could have been
rewritten in the abbreviated syntax as the single word name. Then it applies templates to all elements
that follow the name element at the same level of the hierarchy. It begins at the context node person
element, then moves along the child axis to find the name element. From there it moves along the
following-sibling axis looking for elements with any name (*) after the name element that are
also children of the same person element. There is no abbreviated equivalent for the following-
sibling axis, so this really is the simplest way to make this statement.

The third template rule matches any element not matched by another template rule. It simply wraps
that element in an li element. The XPath expression self::* selects the value of the currently

matched element, that is, the context node. This expression could have been abbreviated as a single
period.

The fourth and final template rule matches homepage elements. In this case we need to select the
value of xlink:href attributes, so we move from the context homepage node along the attribute
axis. The node test is looking for the xlink:href attributes. (More properly, it's looking for an
attribute with the local name href whose prefix is mapped to the http://www.w3.org/1999/xlink

namespace URI.)

 < Day Day Up >

http://www.w3.org/1999/xlink
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.6 General XPath Expressions

So far we've focused on the very useful subset of XPath expressions called location paths. Location
paths identify a set of nodes in an XML document and are used in XSLT match patterns and select
expressions. However, location paths are not the only possible type of XPath expression. XPath
expressions can also return numbers, Booleans, and strings. For instance, these are all legal XPath
expressions:

3.141529

2+2

'Rosalind Franklin'

true()

32.5 < 76.2

position()=last()

XPath expressions that aren't node-sets can't be used in the match attribute of an xsl:template
element. However, they can be used as values for the select attribute of xsl:value-of elements,

as well as in the location path predicates.

9.6.1 Numbers

There are no pure integers in XPath. All numbers are 8-byte, IEEE 754 floating-point doubles, even if
they don't have an explicit decimal point. This format is identical to Java's double primitive type. In

addition to representing floating-point numbers ranging from 4.94065645841246544e-324 to
1.79769313486231570e+308 (positive or negative) and 0, this type includes special representations
of positive and negative infinity and a special not a number (NaN) value used as the result of
operations like dividing zero by zero.

XPath provides the five basic arithmetic operators that will be familiar to any programmer:

+ Addition
- Subtraction
* Multiplication
div Division
mod Taking the remainder

The more common forward slash couldn't be used for division because it's already used to separate
location steps in a location path. Consequently, a new operator had to be chosen, div. The word mod
was chosen instead of the more common % operator to calculate the remainder. Aside from these

minor differences in syntax, all five operators behave exactly as they do in Java. For instance, 2+2 is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4, 6.5 div 1.5 is 4.33333333, 6.5 mod 1.5 is 0.5, and so on. The element <xsl:value-of
select="6*7"/> inserts the string 42 into the output tree when the template is instantiated. More

often, a stylesheet performs some simple arithmetic on numbers read from the input document. For
instance, this template rule calculates the century in which a person was born:

<xsl:template match="person">

 <century>

 <xsl:value-of select="((@born - (@born mod 100)) div 100) + 1)"/>th

 </century>

</xsl:template>

9.6.2 Strings

XPath strings are ordered sequences of Unicode characters such as "Fred", "Ethel", " ", or "".
String literals may be enclosed in either single or double quotes as convenient. The quotes are not
themselves part of the string. The only restriction XPath places on a string literal is that it must not
contain the kind of quote that delimits it. That is, if the string contains single quotes, it has to be
enclosed in double quotes and vice versa. String literals may contain whitespace including tabs,
carriage returns, and line feeds, as well as backslashes and other characters that would be illegal in
many programming languages. However, if the XPath expression is part of an XML document, some
characters may need to be escaped to satisfy XML's well-formedness rules.

You can use the = and != comparison operators to check whether two strings are the same. You can
also use the relational <, >, <=, and >= operators to compare strings, but unless both strings clearly
represent numbers (e.g., "-7.5" or '54.2'), the results are unlikely to make sense. In general, you

can't define any real notion of string order in Unicode without detailed knowledge of the language in
which the string is written.

Other operations on strings are provided by XPath functions and will be discussed shortly.

9.6.3 Booleans

A Boolean is a value that has exactly two states, true or false. Every Boolean must have one of these
binary values. XPath does not provide any Boolean literals. If you use <xsl:value-of
select="true"/> in an XSLT stylesheet, then the XSLT processor looks for a child element of the
context node named true. However, the XPath functions true() and false() can substitute for the

missing literals quite easily.

Most of the time, however, Booleans are created by comparisons between other objects, most
commonly numbers. XPath provides all the usual relational operators including =, !=, <, >, >=, and
<=. In addition, the and and or operators can combine Boolean expressions according to the usual

rules of logic.

Booleans are most commonly used in predicates of location paths. For example, in the location step
person[profession="physicist"], profession="physicist" is a Boolean. It is either true or

http://lib.ommolketab.ir
http://lib.ommolketab.ir

false; there is no other possibility. Booleans are also commonly used in the test attribute of xsl:if
and xsl:when elements. For example, this XSLT template rule includes the profession element in

the output only if its contents are "physicist" or "computer scientist":

 <xsl:template match="profession">

 <xsl:if test=".='computer scientist' or .='physicist'">

 <xsl:value-of select="."/>

 </xsl:if>

</xsl:template>

This XSLT template rule italicizes the profession element if and only if its content is the string

"computer scientist":

<xsl:template match="profession">

 <xsl:choose>

 <xsl:when test=".='computer scientist'">

 <i><xsl:value-of select="."/></i>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise>

 </xsl:choose>

</xsl:template>

Finally, there's a not() function that reverses the sense of its Boolean argument. For example, if
.='computer scientist' is true, then not(.='computer scientist') is false and vice versa.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.7 XPath Functions

XPath provides many functions that you may find useful in predicates or raw expressions. All of these
are discussed in Chapter 23. For example, the position() function returns the position of the
current node in the context node list as a number. This XSLT template rule uses the position()
function to calculate the number of the person being processed, relative to other nodes in the

context node list:

<xsl:template match="person">

 Person <xsl:value-of select="position()"/>,

 <xsl:value-of select="name"/>

</xsl:template>

Each XPath function returns one of these four types:

Boolean

Number

Node-set

String

There are no void functions in XPath; it is not nearly as strongly typed as languages like Java or even
C. You can often use any of these types as a function argument regardless of which type the function
expects, and the processor will convert it as best it can. For example, if you insert a Boolean where a
string is expected, then the processor will substitute one of the two strings "true" or "false" for the
Boolean. The one exception is functions that expect to receive node-sets as arguments. XPath cannot
convert strings, Booleans, or numbers to node-sets.

Functions are identified by the parentheses at the end of the function name. Sometimes functions
take arguments between the parentheses. For instance, the round() function takes a single number
as an argument. It returns the number rounded to the nearest integer. For example, <xsl:value-of
select="round(3.14)"/> inserts 3 into the output tree.

Other functions take more than one argument. For instance, the starts-with() function takes two

arguments, both strings. It returns true if the first string starts with the second string. For example,
this XSLT apply-templates element selects all name elements whose last name begins with the letter

T:

<xsl:apply-templates select="name[starts-with(last_name, 'T')]"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this example the first argument to the starts-with() function is actually a node-set, not a string.

The XPath processor converts that node-set to its string value (the text content of the first element in
that node-set) before checking to see whether it starts with T.

Some XSLT functions have variable-length argument lists. For instance, the concat() function takes

as arguments any number of strings and returns one string formed by concatenating all those strings
together in order. For example, concat("a", "b", "c", "d") returns "abcd".

In addition to the functions defined in XPath and discussed in this chapter, most uses of XPath, such
as XSLT and XPointer, define many more functions that are useful in their particular context. You use
these extra functions just like the built-in functions when you're using those applications. XSLT even
lets you write extension functions in Java and other languages that can do almost anything, for
example, making SQL queries against a remote database server and returning the result of the query
as a node-set.

9.7.1 Node-Set Functions

The node-set functions operate on or return information about node-sets; that is, collections of XPath
nodes. You've already encountered the position() function. Two related functions are last() and
count(). The last() function returns the number of nodes in the context node list, which also
happens to be the same as the position of the last node in the list. The count() function is similar

except that it returns the number of nodes in its node-set argument rather than in the context node
list. For example, count(//name) returns the number of name elements in the document. Example 9-
5 uses the position() and count() functions to list the people in the document in the form "Person
1 of 10, Person 2 of 10, Person 3 of 10...". In the second template, the position() function
determines which person element is currently being processed, and the count() function
determines how many total person elements there are in the document.

Example 9-5. An XSLT stylesheet that uses the position() and count()
functions

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="people">

 <xsl:apply-templates select="person"/>

 </xsl:template>

 <xsl:template match="person">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Person <xsl:value-of select="position()"/>

 of <xsl:value-of select="count(//person)"/>:

 <xsl:value-of select="name"/>

 </xsl:template>

</xsl:stylesheet>

The id() function takes as an argument a string containing one or more IDs separated by

whitespace and returns a node-set containing all the nodes in the document that have those IDs.
These are attributes declared to have type ID in the DTD, not necessarily attributes named ID or id.
(A DTD must be present in order for the id() function to work.) Thus, in Example 9-1, id('p342')
indicates Alan Turing's person element; id('p342 p4567') indicates both Alan Turing and Richard
Feynman's person elements.

The id() allows you to form absolute location paths that don't start from the root. For example,
id('p342')/name refers to Alan Turing's name element, regardless of where Alan Turing's person

element is in the document, as long as it hasn't changed ID. This function is especially useful for
XPointers, where it takes the place of HTML's named anchors.

Finally, there are three node-set functions related to namespaces. The local-name() function

accepts a node-set as an argument and returns the local part of the first node in that set. The
namespace-uri() function takes a node-set as an argument and returns the namespace URI of the
first node in the set. Finally, the name() function takes a node-set as an argument and returns the

qualified name of the first node in that set. In all three functions, the argument may be omitted, in
which case the context node's namespace is evaluated. For instance, when applied to Example 9-1,
the XPath expression local-name(//homepage/@xlink:href) is href; namespace-
uri(//homepage/@xlink:href) is http://www.w3.org/1999/xlink; and
name(//homepage/@xlink:href) is xlink:href.

9.7.2 String Functions

XPath includes functions for basic string operations such as finding the length of a string or changing
letters from upper- to lowercase. It doesn't have the full power of the string libraries in Python or
Perl-for instance, there's no regular expression support-but it's sufficient for many simple
manipulations you need for XSLT or XPointer.

The string() function converts an argument of any type to a string in a reasonable fashion.

Booleans are converted to the string "true" or the string "false." Node-sets are converted to the
string value of the first node in the set. This is the same value calculated by the xsl:value-of

element. That is, the string value of the element is the complete text of the element after all entity
references are resolved and tags, comments, and processing instructions have been stripped out.
Numbers are converted to strings in the format used by most programming languages, such as
"1987," "299792500," or "2.71828."

http://www.w3.org/1999/xlink
http://lib.ommolketab.ir
http://lib.ommolketab.ir

In XSLT, the xsl:decimal-format element and format-number() function

provide more precise control over formatting so you can insert separators
between groups, change the decimal separator, use non-European digits, and
make similar adjustments.

The normal use of most of the rest of the string functions is to manipulate or address the text
content of XML elements or attributes. For instance, if date attributes were given in the format
MM/DD/YYYY, then the string functions would allow you to target the month, day, and year separately.

The starts-with() function takes two string arguments. It returns true if the first argument starts
with the second argument. For example, starts-with('Richard', 'Ric') is true, but starts-
with('Richard', 'Rick') is false. There is no corresponding ends-with() function.

The contains() function also takes two string arguments. However, it returns true if the first

argument contains the second argument-that is, if the second argument is a substring of the first
argument-regardless of position. For example, contains('Richard', 'ar') is true, but
contains('Richard', 'art') is false.

The substring-before() function takes two string arguments and returns the substring of the first

argument that precedes the initial appearance of the second argument. If the second string doesn't
appear in the first string, then substring-before() returns the empty string. For example,
substring-before('MM/DD/YYYY', '/') is MM. The substring-after() function also takes two

string arguments but returns the substring of the first argument that follows the initial appearance of
the second argument. If the second string doesn't appear in the first string, then substring-after(
) returns the empty string. For example, substring-after ('MM/DD/YYYY', '/') is 'DD/YYYY'.
substring-before(substring-after('MM/DD/YYYY', '/')', '/') is DD. substring-
after(substring-after('MM/DD/YYYY', '/')', '/') is YYYY.

If you know the position of the substring you want, you can use the substring() method instead.

This takes three arguments: the string from which the substring will be copied, the position in the
string from which to start extracting, and the number of characters to copy to the substring. The
third argument may be omitted, in which case the substring contains all characters from the specified
start position to the end of the string. For example, substring('MM/DD/YYYY', 1, 2) is MM;
substring('MM/DD/YYYY', 4, 2) is DD; and substring('MM/DD/YYYY', 7) is YYYY.

The string-length() function returns a number giving the length of its argument's string value or
the context node if no argument is included. In Example 9-1, string-length(//name[position(
)=1]) is 29. If that seems long to you, remember that all whitespace characters are included in the

count. If it seems short to you, remember that markup characters are not included in the count.

Theoretically, you could use these functions to trim and normalize whitespace in element content.
However, since this would be relatively complex and is such a common need, XPath provides the
normalize-space() function to do this. For instance, in Example 9-1, the value of
string(//name[position()=1]) is:

Alan

Turing

This contains a lot of extra whitespace that was inserted purely to make the XML document neater.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, normalize-space(string(//name[position()=1])) is much more reasonable:

Alan Turing

Although a more powerful string-manipulation library would be useful, XSLT is really designed for
transforming the element structure of an XML document. It's not meant to have the more general
power of a language like Perl, which can handle arbitrarily complicated and varying string formats.

9.7.3 Boolean Functions

The Boolean functions are few in number and quite straightforward. They all return a Boolean that
has the value true or false. The true() function always returns true. The false() function always

returns false. These substitute for Boolean literals in XPath.

The not() function reverses the sense of its Boolean argument. For example, not(@val>400) is
almost always equivalent to (@val<=400). (NaN is a special case.)

The boolean() function converts its single argument to a Boolean and returns the result. If the

argument is omitted, then it converts the context node. Numbers are converted to false if they're
zero or NaN. All other numbers are true. Node-sets are false if they're empty and true if they contain
at least one node. Strings are false if they have zero length, otherwise they're true. Note that
according to this rule, the string "false" is in fact true.

9.7.4 Number Functions

XPath includes a few simple numeric functions for summing groups of numbers and finding the
nearest integer to a number. It doesn't have the full power of the math libraries in Java or
Fortran-for instance, there's no square root or exponentiation function-but it's got enough to do
most of the basic math you need for XSLT or the even simpler requirements of XPointer.

The number() function can take any type as an argument and convert it to a number. If the

argument is omitted, then it converts the context node. Booleans are converted to 1 if true and 0 if
false. Strings are converted in a plausible fashion. For instance the string "7.5" will be converted to
the number 7.5. The string "Fred" will be converted to NaN. Node-sets are converted to numbers by
first converting them to their string value and then converting the resulting string to a number. The
detailed rules are a little more complex, but as long as the object you're converting can reasonably
be interpreted as a single number, chances are the number() function will do what you expect. If the
object you're converting can't be reasonably interpreted as a single number, then the number()

function will return NaN.

The round() , floor(), and ceiling() functions all take a single number as an argument. The
floor() function returns the greatest integer less than or equal to its argument. The ceiling()
function returns the smallest integer greater than or equal to its argument. The round() function

returns its argument rounded to the nearest integer. When rounding numbers like 1.5 and -3.5 that
are equally close to two integers, round() returns the greater of the two possibilities. (This means

that -1.5 rounds to -1, but 1.5 rounds to 2.)

The sum() function takes a node-set as an argument. It converts each node in the set to its string

http://lib.ommolketab.ir
http://lib.ommolketab.ir

value, then converts each of those strings to a number. It then adds up the numbers and returns the
result.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 10. XLinks
XLinks are an attribute-based syntax for attaching links to XML documents. XLinks can be simple
Point A-to-Point B links, like the links you're accustomed to from HTML's A element. XLinks can also

be bidirectional, linking two documents in both directions so you can go from A to B or B to A. XLinks
can even be multidirectional, presenting many different paths between any number of XML
documents. The documents don't have to be XML documents-XLinks can be placed in an XML
document that lists connections between other documents that may or may not be XML documents
themselves. Web graffiti artists take note: these third-party links let you attach links to pages you
don't even control, like the home page of the New York Times or the C.I.A. At its core, XLink is
nothing more and nothing less than an XML syntax for describing directed graphs, in which the
vertices are documents at particular URIs and the edges are the links between the documents. What
you put in that graph is up to you.

Current web browsers at most support simple XLinks that do little more than duplicate the
functionality of HTML's A element. Many browsers, including Internet Explorer, don't support XLinks

at all. However, custom applications may do a lot more. Since XLinks are so powerful, it shouldn't
come as a surprise that they can do more than make blue underlined links on web pages. XLinks can
describe tables of contents or indexes. They can connect textual emendations to the text they
describe. They can indicate possible paths through online courses or virtual worlds. Different
applications will interpret different sets of XLinks differently. Just as no one browser really
understands the semantics of all the various XML applications, so too no one program can process all
collections of XLinks.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.1 Simple Links

A simple link defines a one-way connection between two resources. The source or starting resource
of the connection is the link element itself. The target or ending resource of the connection is
identified by a Uniform Resource Identifier (URI). The link goes from the starting resource to the
ending resource. The starting resource is always an XML element. The ending resource may be an
XML document, a particular element in an XML document, a group of elements in an XML document,
a span of text in an XML document, or something that isn't a part of an XML document, such as an
MPEG movie or a PDF file. The URI may be something other than a URL, perhaps a book ISBN
number like urn:isbn:1565922247.

A simple XLink is encoded in an XML document as an element of arbitrary type that has an
xlink:type attribute with the value simple and an xlink:href attribute whose value is the URI of
the link target. The xlink prefix must be mapped to the http://www.w3.org/1999/xlink

namespace URI. As usual, the prefix can change as long as the URI stays the same. For example,
suppose this novel element appears in a list of children's literature and we want to link it to the

actual text of the novel available from the URL ftp://archive.org/pub/etext/etext93/wizoz10.txt:

<novel>

 <title>The Wonderful Wizard of Oz</title>

 <author>L. Frank Baum</author>

 <year>1900</year>

</novel>

We give the novel element an xlink:type attribute with the value simple, an xlink:href attribute
that contains the URL to which we're linking, and an xmlns:xlink attribute that associates the prefix
xlink with the namespace URI http://www.w3.org/1999/xlink like so:

<novel xmlns:xlink= "http://www.w3.org/1999/xlink"

 xlink:type = "simple"

 xlink:href = "ftp://archive.org/pub/etext/etext93/wizoz10.txt">

 <title>The Wonderful Wizard of Oz</title>

 <author>L. Frank Baum</author>

 <year>1900</year>

</novel>

http://www.w3.org/1999/xlink
http://www.w3.org/1999/xlink
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This establishes a simple link from this novel element to the plain text file found at

ftp://archive.org/pub/etext/etext93/wizoz10.txt. Browsers are free to interpret this link as they like.
However, the most natural interpretation, and the one implemented by the few browsers that do
support simple XLinks, is to make this a blue underlined phrase the user can click on to replace the
current page with the file being linked to. Other schemes are possible, however.

XLinks are fully namespace aware. The xlink prefix is customary, although it can be changed.
However, it must be mapped to the URI http://www.w3.org/1999/xlink. This can be done on the
XLink element itself, as in this novel example, or it can be done on any ancestor of that element up

to and including the root element of the document. Future examples in this chapter and the next use
the xlink prefix exclusively and assume that this prefix has been properly declared on some ancestor

element.

Every XLink element must have an xlink:type attribute indicating the kind of link (or part of a link)

it is. This attribute has six possible values:

simple

extended

locator

arc

title

resource

Simple XLinks are the only ones that are really similar to HTML links. The remaining five kinds of
XLink elements will be discussed in later sections.

The xlink:href attribute identifies the resource being linked to. It always contains a URI. Both

relative and absolute URLs can be used, as they are in HTML links. However, the URI need not be a
URL. For example, this link identifies, but does not locate, the print edition of The Wonderful Wizard
of Oz with the ISBN number 0688069444:

<novel xmlns:xlink= "http://www.w3.org/1999/xlink"

 xlink:type = "simple"

 xlink:href = "urn:isbn:0688069444">

 <title>The Wonderful Wizard of Oz</title>

 <author>L. Frank Baum</author>

 <year>1900</year>

</novel>

http://www.w3.org/1999/xlink
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.2 Link Behavior

So far, we've been careful to talk in the abstract. We've said that an XLink describes a connection
between two resources, but we haven't said much about how that connection is presented to the end
user or what it makes software reading the document do. That's because there isn't one answer to
these questions. For instance, when the browser encounters a novel element that uses an http URL,

clicking the link should probably load the text of the novel from the URL into the current window,
thereby replacing the document that contained the link. Then again, maybe it should open a new
window and show the user the new document in that window. The proper behavior for a browser
encountering the novel element that uses an isbn URN is even less clear. Perhaps it should reserve

the book with the specified ISBN at the local library for the user to walk in and pick up. Or perhaps it
should order the book from an online bookstore. In other cases something else entirely may be called
for. For instance, the content of some links are embedded directly in the linking document, as in this
image element:

<image width="248" height="173" xlink:type="simple"

 xlink:href="http://www.turing.org.uk/turing/pi1/sark.jpg" />

Here, the author most likely intends the browser to download and display the image as soon as it
finds the link. And rather than opening a new window for the image or replacing the current
document with the image, the image should be embedded into the current document.

Just as XML is more flexible than HTML in the documents it describes, so too is XLink more flexible in
the links it describes. An XLink indicates that there's a connection between two documents, but it's up
to the application reading the XLink to decide what that connection means. It's not necessarily a blue,
underlined phrase the user clicks in a browser to jump from the source document to the target. It
may indeed be that, just as an XML document may be a web page, but it may be something else,
too.

Page authors can offer suggestions to browsers about how links should be handled by using the
xlink:show and xlink:actuate attributes. The xlink:show attribute tells a browser or other

application what to do when the link is activated-for example, whether to show the linked content in
the same window or to open a new window to display it. The xlink:actuate attribute tells the

browser when to show the content-for example, whether it should follow the link as soon as it sees
it or whether it should wait for an explicit user request.

10.2.1 xlink:show

The optional xlink:show attribute has five possible values that suggest in what context the

application loading an XLinked resource should display that resource:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

new

Open a new window and show the content of the link's URI (the ending resource) in that
window.

replace

Show the ending resource in the current window, replacing the current document.

embed

Embed a picture of the ending resource in the current document at the location of the link
element.

other

Exhibit some behavior other than opening a new window, replacing the document in the
existing window, or graphically embedding the resource in the existing document. Exactly what
that behavior is may be specified by other, nonstandard markup that a particular application
understands.

none

Specify no behavior.

All five of these are only suggestions that browsers or other applications following XLinks are free to
ignore. For example, a web spider would not open a window for any link and might ignore embedded
links and treat the other four types identically. Mozilla might open a new tab in an existing window for
xlink:show="new" rather than creating a completely new window. This is all allowed as long as it

makes sense in the context of the application.

10.2.2 xlink:actuate

The optional xlink:actuate attribute has four possible values, which suggest when an application

that encounters an XLink should follow it:

onLoad

The link should be followed as soon as the application sees it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

onRequest

The link should be followed when the user asks to follow it.

other

When to follow the link is determined by other markup in the document not specified by XLink.

none

No details are available about when or whether to follow this link. Indeed, following the link
may not have any plausible meaning, as in the previous example where the link pointed to a
book's ISBN number rather than a URL where the book could be found.

All four of these are only suggestions, which browsers or other applications following XLinks are free
to ignore. For example, a web spider would use its own algorithms to decide when to follow and not
follow a link. Differing behavior when faced with the same attributes is allowed as long as it makes
sense for the application reading the document.

For example, a traditional link, such as is provided by HTML's A element and indicated by the first

novel example, would be encoded like this:

<novel xlink:type="simple"

 xlink:href="ftp://archive.org/pub/etext/etext93/wizoz10.txt"

 xlink:actuate="onRequest" xlink:show="replace">

 <title>The Wonderful Wizard of Oz</title>

 <author>L. Frank Baum</author>

 <year>1900</year>

</novel>

This says to wait for an explicit user request to follow the link (e.g., by clicking on the content of the
link) and then to replace the existing document with the document found at
ftp://archive.org/pub/etext/etext93/wizoz10.txt. On the other hand, if you were using XLinks to
embed images in documents, you'd want them traversed immediately and then embedded in the
originating document. The following syntax would be appropriate:

<image xlink:type="simple"

 xlink:actuate="onLoad" xlink:show="embed"

 xlink:href="http://www.turing.org.uk/turing/pi1/bus.jpg"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 width="152" height="345" />

Both xlink:show and xlink:actuate are optional. An application should be prepared to do

something reasonable if they're missing.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.3 Link Semantics

A link describes a connection between two resources. These resources may or may not be XML
documents; but even if they are XML documents, the relationships they have with each other can be
quite varied. For example, links can indicate parent-child relationships, previous-next relationships,
employer-employee relationships, customer-supplier relationships, and many more. XLink elements
can have xlink:title and xlink:role attributes to specify the meaning of the connection between
the resources. The xlink:title attribute contains a small amount of plain text describing the

remote resource such as might be shown in a tool tip when the user moves the cursor over the link.
The xlink:role attribute contains a URI that somehow indicates the meaning of the link. For
instance, the URI http://www.isi.edu/in-notes/iana/assignments/media-types/text/css

might be understood to mean that the link points to a CSS stylesheet for the document in which the
link is found. However, there are no standards for the meanings of role URIs. Applications are free to
assign their own meaning to their own URIs.

For example, this book element is a simple XLink that points to Scott's author page at O'Reilly. The
xlink:title attribute contains his name, while the xlink:role attribute points contains the URI for

the Dublin Core creator property, thereby indicating he's an author of this book.

<book xlink:type="simple"

 xlink:href="http://www.oreillynet.com/cs/catalog/view/au/751"

 xlink:title="W. Scott Means"

 xlink:role="http://purl.org/dc/elements/1.1/creator" >

 XML in a Nutshell

</book>

As with almost everything else related to XLink, exactly what browsers or other applications will do
with this information or how they'll present it to readers remains to be determined.

 < Day Day Up >

http://www.isi.edu/in-notes/iana/assignments/media-types/text/css
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.4 Extended Links

Whereas a simple link describes a single unidirectional connection between one XML element and one
remote resource, an extended link describes a collection of resources and a collection of paths
between those resources. Each path connects exactly two resources. Any individual resource may be
connected to one of the other resources, two of the other resources, zero of the other resources, all
of the other resources, or any subset of the other resources in the collection. It may even be
connected back to itself. In computer science terms, an extended link is a directed, labeled graph in
which the paths are arcs, the documents are vertices, and the URIs are labels.

Simple links are very easy to understand by analogy with HTML links. However, there's no obvious
analogy for extended links. What they look like, how applications treat them, what user interfaces
present them to people, is all up in the air. No simple visual metaphors like "click on the blue
underlined text to jump to a new page" have been invented for extended links, and no browsers
support them. How they'll be used and what user interfaces will be designed for them remains to be
seen.

In XML, an extended link is represented by an extended link element; that is, an element of arbitrary
type that has an xlink:type attribute with the value extended. For example, this is an extended link

element that refers to the novel The Wonderful Wizard of Oz:

<novel xlink:type="extended">

 <title>The Wonderful Wizard of Oz</title>

 <author>L. Frank Baum</author>

 <year>1900</year>

</novel>

Although this extended link is quite spartan, most extended links contain local resources, remote
resources, and arcs between those resources. A remote resource is represented by a locator element,
which is an element of any type that has an xlink:type attribute with the value locator. A local

resource is represented by a resource element, which is an element of any type that has an
xlink:type attribute with the value resource. And an arc between two resources, whether local or
remote, is represented by an arc element-that is, an element of any type that has an xlink:type
attribute with the value arc.

10.4.1 Locators

Each locator element has an xlink:type attribute with the value locator and an xlink:href
attribute containing a URI for the resource it locates. For example, this novel element for The

Wonderful Wizard of Oz contains three locator elements that identify particular editions of the book:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<novel xlink:type = "extended">

 <title>The Wonderful Wizard of Oz</title>

 <author>L. Frank Baum</author>

 <year>1900</year>

 <edition xlink:type="locator" xlink:href="urn:isbn:0688069444" />

 <edition xlink:type="locator" xlink:href="urn:isbn:0192839306" />

 <edition xlink:type="locator" xlink:href="urn:isbn:0700609857" />

</novel>

Most of the time each locator element also has an xlink:label attribute that serves as a name for

the element. The value of this attribute can be any XML name that does not contain a colon (i.e., that
does not have a namespace prefix). For instance, in the previous example, we could add labels based
on the ISBN number, like this:

<novel xlink:type = "extended">

 <title>The Wonderful Wizard of Oz</title>

 <author>L. Frank Baum</author>

 <year>1900</year>

 <edition xlink:type="locator" xlink:href="urn:isbn:0688069444"

 xlink:label="ISBN0688069444"/>

 <edition xlink:type="locator" xlink:href="urn:isbn:0192839306"

 xlink:label="ISBN0192839306"/>

 <edition xlink:type="locator" xlink:href="urn:isbn:0700609857"

 xlink:label="ISBN0700609857"/>

</novel>

The number alone cannot be used because XML names cannot start with digits. In this and most
cases, the labels are unique within the extended link, but they don't absolutely have to be.

Locators may also have the optional semantic attributes xlink:title and xlink:role to provide

more information about the remote resource and the link to it. These attributes have the same
meanings they have for simple XLinks. The xlink:title attribute contains a small amount of text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

describing the remote resource, and the xlink:role attribute contains an absolute URI that
somehow indicates the nature of the link. For instance, the edition elements could provide the

publisher's name in the title and use a Dublin Core URI to indicate that the link is a formal identifier
not meant to be traversed like this:

<novel xlink:type = "extended">

 <title>The Wonderful Wizard of Oz</title>

 <author>L. Frank Baum</author>

 <year>1900</year>

 <edition xlink:type="locator" xlink:href="urn:isbn:0688069444"

 xlink:title="William Morrow"

 xlink:role="http://purl.org/dc/elements/1.1/publisher "

 xlink:label="ISBN0688069444"/>

 <edition xlink:type="locator" xlink:href="urn:isbn:0192839306"

 xlink:title="Oxford University Press"

 xlink:role="http://purl.org/dc/elements/1.1/publisher "

 xlink:label="ISBN0192839306"/>

 <edition xlink:type="locator" xlink:href="urn:isbn:0700609857"

 xlink:title="University Press of Kansas"

 xlink:role="http://purl.org/dc/elements/1.1/publisher "

 xlink:label="ISBN0700609857"/>

</novel>

10.4.2 Arcs

Paths between resources are called arcs, and they are represented by arc elements; that is, elements
of arbitrary type that have an xlink:type attribute with the value arc. Each arc element should
have an xlink:from attribute and an xlink:to attribute. The xlink:from attribute identifies the
source of the link. The xlink:to attribute identifies the target of the link. These attributes do not

contain URIs as you might expect. Rather they contain a name matching the value of the
xlink:label attribute of one of the locator elements in the extended link.

Example 10-1 shows an extended link that contains the first three novels in the Wizard of Oz series:
The Wonderful Wizard of Oz, The Marvelous Land of Oz, and Ozma of Oz. Arcs connect the first book

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in the series to the second and the second to the third, and then back again. In this example, the
root series element is the extended link element, each novel element is a locator element, and the
next and previous elements are arc elements.

Example 10-1. An extended link with three locators and four arcs

<series xlink:type="extended" xmlns:xlink="http://www.w3.org/1999/xlink">

 <author>L. Frank Baum</author>

 <!-- locator elements -->

 <novel xlink:type="locator" xlink:label="oz1"

 xlink:href="ftp://archive.org/pub/etext/etext93/wizoz10.txt">

 <title>The Wonderful Wizard of Oz</title>

 <year>1900</year>

 </novel>

 <novel xlink:type="locator" xlink:label="oz2"

 xlink:href="ftp://archive.org/pub/etext/etext93/ozland10.txt">

 <title>The Marvelous Land of Oz</title>

 <year>1904</year>

 </novel>

 <novel xlink:type="locator" xlink:label="oz3"

 xlink:href="ftp://archive.org/pub/etext/etext93/wizoz10.txt">

 <title>Ozma of Oz</title>

 <year>1907</year>

 </novel>

 <!-- arcs -->

 <next xlink:type="arc" xlink:from="oz1" xlink:to="oz2" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <next xlink:type="arc" xlink:from="oz2" xlink:to="oz3" />

 <previous xlink:type="arc" xlink:from="oz2" xlink:to="oz1" />

 <previous xlink:type="arc" xlink:from="oz3" xlink:to="oz2" />

</series>

Figure 10-1 diagrams this extended link. Resources are represented by books. Arcs are represented
by arrows. However, although we can understand this link in this sort of abstract sense, it doesn't
really tell us anything about how a browser might present the link to a user and how users might
choose which links to follow. For instance, this extended link might be interpreted as nothing more
than a list of the order in which to print these documents. All details of interpretation are left up to
the application.

Figure 10-1. An extended link with three resources and four arcs
between them

10.4.2.1 Multiple arcs from one arc element

On occasion, a single arc element defines multiple arcs. If multiple elements share the same label,
then an arc element that uses that label in either its xlink:to or xlink:from attribute defines arcs

between all resources that share that label. Example 10-2 shows an extended link containing locator
elements for three different online bookstores and one edition of The Wonderful Wizard of Oz. Each
bookstore element has the label buy, and a single purchase arc element connects all of these.

Figure 10-2 shows the graph structure of this extended link.

Example 10-2. An extended link with one arc element but three arcs

<book xlink:type="extended" xmlns:xlink="http://www.w3.org/1999/xlink">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <author>L. Frank Baum</author>

 <title>The Wonderful Wizard of Oz</title>

 <!-- locator elements -->

 <edition xlink:type="locator" xlink:href="urn:isbn:0192839306"

 xlink:title="Oxford University Press"

 xlink:role="http://www.oup-usa.org/"

 xlink:label="ISBN0192839306"/>

 <store xlink:type="locator"

 xlink:href="http://www.amazon.com/exec/obidos/ASIN/0192839306"

 xlink:label="buy">Amazon</store>

 <store xlink:type="locator" xlink:href=

 "http://www.powells.com/cgi-bin/biblio?isbn=0192839306"

 xlink:label="buy">Powell's</store>

 <store xlink:type="locator" xlink:href=

"http://shop.bn.com/booksearch/isbninquiry.asp?isbn=0192839306"

 xlink:label="buy">Barnes & Noble</store>

 <!-- arcs -->

 <purchase xlink:type="arc" xlink:from="ISBN0192839306" xlink:to="buy" />

</book>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 10-2. One arc element can generate several arcs

If an arc element does not have an xlink:to attribute, then it uses all the resources in the extended
link as targets. If an arc element does not have an xlink:from attribute, then it uses all the

resources in the extended link as sources.

However, it is an error for more than one arc element to define an arc between the same two
resources, whether implicitly or explicitly. For example, if an extended link contains N resources and
an arc element, such as <edition xlink:type="arc"/>, with neither an xlink:to or xlink:from

attribute, then it cannot contain any other arc elements because this one arc element defines all N2
possible arcs between the resources in the extended link.

10.4.2.2 Arc titles

Each arc element may optionally have an xlink:title attribute, just like all other XLink elements.

This contains a small amount of text describing the arc, intended for humans to read. For instance, in
Example 10-1, we might give these titles to the arcs:

<next xlink:type="arc" xlink:from="oz1" xlink:to="oz2"

 xlink:title="Next" />

<next xlink:type="arc" xlink:from="oz2" xlink:to="oz3"

 xlink:title="Next" />

<previous xlink:type="arc" xlink:from="oz2" xlink:to="oz1"

 xlink:title="Previous" />

<previous xlink:type="arc" xlink:from="oz3" xlink:to="oz2"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xlink:title="Previous" />

When processing an extended link, a browser might show the title to the user as the contents of a
link so they could choose which arc they wanted to follow from their current position, or they might
appear in a pop-up menu when the user was on one of the referenced pages. XLink does not require
or suggest any specific user interface for arcs or arc titles.

10.4.2.3 Arc roles

Arc elements cannot have xlink:role attributes. However, an arc element can have an
xlink:arcrole attribute that contains an absolute URI identifying the nature of the arc. More

specifically, this URI should point to a resource that indicates which relationship the arc describes
(e.g., parent-child, employer-employee). However, there's really no way to validate this at all beyond
checking to see that xlink:arcrole does contain a legal URI (and even that is not strictly required).
For instance, in Example 10-2 we might add an xlink:arcrole attribute to the purchase arc that
pointed to http://www.example.com/purchase_details.txt.

<purchase xlink:type="arc" xlink:from="ISBN0192839306" xlink:to="buy"

 xlink:arcrole="http://www.example.com/purchase_details.txt" />

The file purchase_details.html might then contain the text "will be bought from." This would indicate
that the source of the link is bought from the target of the link; that is, "The Wonderful Wizard of Oz
will be bought from Amazon," or "The Wonderful Wizard of Oz will be bought from Powell's."
However, although this usage is possible, XLink processors do not require it, and indeed there's really
no way they could be asked to do this since that would require that they actually understand what
they read. The xlink:arcrole attribute is optional. You don't have to include it on your arcs, and

XLink processors don't have to do anything with it even if you do.

10.4.3 Local Resources

Locators represent remote resources; that is, resources that are not part of the document that
contains the extended link. Extended links can also contain local resources in which the data is
contained inside the extended link element. Each such resource is represented by a resource
element, which is an element of arbitrary type that has an xlink:type attribute with the value
resource. For instance, in Example 10-1, the series extended link element contains an author child
element. This can be made a local resource simply by giving it an xlink:type="resource" attribute:

<author xlink:type="resource">L. Frank Baum</author>

A resource element can and generally does have the same attributes as a locator element; that is,
xlink:label , xlink:role, and xlink:title. These all have the same semantics as they do for

locator elements. For instance, the label is a name that arcs use to connect resources. An arc can
connect a resource to a resource, a resource to a locator, a locator to a resource, or a locator to a
locator. Arcs really don't care whether resources are local or remote. To link to or from this resource,
an arc needs an xlink:label attribute, like this:

http://www.example.com/purchase_details.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<author xlink:type="resource" xlink:label="baum">L. Frank Baum</author>

To establish links from this local resource to all the books, we'd simply add these three arc elements:

<book xlink:type="arc" xlink:from="baum" xlink:to="oz1" />

<book xlink:type="arc" xlink:from="baum" xlink:to="oz2" />

<book xlink:type="arc" xlink:from="baum" xlink:to="oz3" />

To move in the other direction, you'd simply reverse the values of the xlink:from and xlink:to

attributes.

10.4.4 Title Elements

As you've seen, extended link elements, locator elements, arc elements, and resource elements can
all have xlink:title attributes that provide a short blurb of text identifying the link. However, this

isn't always enough. For instance, in a document that was a rather large extended link, you might
want to mark up the titles using XHTML or some other vocabulary. To this end, a title can instead (or
in addition) be provided as a title type child element, that is, an element whose xlink:type attribute
has the value title.

For example, suppose you wanted to provide a more complete description of each edition of The
Wonderful Wizard of Oz than simply who published it. Then you would give the edition element a

title type element containing any convenient markup, like this:

<edition xlink:type="locator" xlink:href="urn:isbn:0700609857"

 xlink:title="University Press of Kansas"

 xlink:role="http://purl.org/dc/elements/1.1/identifier"

 xlink:label="ISBN0700609857">

 <publisher_info xlink:type="title">

 The Kansas Centennial Edition

 Illustrated by Michael McCurdy

 Foreword by Ray Bradbury

 1999

 216 pages

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SRP: $24.95

 </publisher_info>

</edition>

What markup you use inside the title element is up to you as long as it's well-formed XML. XLink
doesn't constrain it in any way; how the application interprets that markup is its own business. Here
we've used basic HTML that a browser might perhaps be able to render. Once again, however, this is
far enough past the bleeding edge that exact browser behavior, even when browsers do support
extended XLinks, is hard to predict.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.5 Linkbases

One of the most revolutionary features of XLinks is the ability to define links between documents you
don't control. For instance, Example 10-1 is an extended link that describes and links three
documents that neither of the authors of this book has anything to do with. Links between purely
remote resources are called third-party links. A third-party link is created when an arc's xlink:from
and xlink:to attributes both contain labels for locator elements. Links from a remote resource to a
local resource are called inbound links. An inbound link is created when an arc's xlink:from attribute
contains the label of a locator element and its xlink:to attribute contains the label of a resource

element. Links from a local resource to a remote resource are called outbound links. An outbound link
is established when an arc's xlink:from attribute contains the label of a resource element and its
xlink:to attribute contains the label of a locator element. Simple links are also outbound links.

An XML document that contains any inbound or third-party links is called a linkbase. A linkbase
establishes links from documents other than the linkbase itself, perhaps documents that the author of
the linkbase does not own and cannot control. Exactly how a browser or other application will load a
linkbase and discover the links there is still an open question. It will probably involve visiting a web
site that provides the linkbase. When the browser sees the extended link that attempts to establish
links from a third web site, it should ask the user whether he wishes to accept the suggested links. It
might even use the xlink:role and xlink:title attributes to help the user make this decision,

although if past experience with cookies, Java applets, and ActiveX controls is any guide, the initial
user interfaces are likely to be quite poor and the choices offered quite limited.

Once a browser has loaded a linkbase and arrived at a page that's referenced as the starting
resource of one or more of the links in the linkbase, it should make this fact known to the user
somehow and give them a means to traverse the link. Once again, the user interface for this activity
remains to be designed. Perhaps it will be a pop-up window showing the third-party links associated
with a page. Or perhaps it will simply embed the links in the page but use a different color
underlining. The user could still activate them in exactly the same way they activate a normal HTML
link.

If this is the scheme that's adopted, then it would be useful if the starting resource of the link didn't
have to be an entire document, but could rather be just one part of it, such as a specific paragraph,
personal name, or book title. Indeed, you can attach an XPointer to the URI identifying the starting
resource of the link that chooses a particular part of or point in the starting document. This will be
the subject of Chapter 11.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.6 DTDs for XLinks

For a document that contains XLinks to be valid, all the XLink attributes that the document uses have
to be declared in a DTD just like any other attributes. In most cases some of the attributes can be
declared #FIXED. For example, this DTD fragment describes the novel element seen earlier:

<!ELEMENT novel (title, author, year)>

<!ATTLIST novel xmlns:xlink CDATA #FIXED 'http://www.w3.org/1999/xlink'

 xlink:type (simple) #FIXED 'simple'

 xlink:href CDATA #REQUIRED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT year (#PCDATA)>

Given this DTD to fill in the fixed attributes xmlns:xlink and xlink:type, a novel element only
needs an xlink:href attribute to be a complete simple XLink:

<novel xlink:href = "urn:isbn:0688069444">

 <title>The Wonderful Wizard of Oz</title>

 <author>L. Frank Baum</author>

 <year>1900</year>

</novel>

Documents that contain many XLink elements often use parameter entity references to define the
common attributes. For example, suppose novel, anthology, and nonfiction are all simple XLink

elements. Their XLink attributes could be declared in a DTD like this:

<!ENTITY % simplelink

 "xlink:type (simple) #FIXED 'simple'

 xlink:href CDATA #REQUIRED

 xmlns:xlink CDATA #FIXED 'http://www.w3.org/1999/xlink'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xlink:role CDATA #IMPLIED

 xlink:title CDATA #IMPLIED

 xlink:actuate (onRequest | onLoad | other | none) 'onRequest'

 xlink:show (new | replace | embed | other | none) 'new'"

>

<!ATTLIST anthology %simplelink;>

<!ATTLIST novel %simplelink;>

<!ATTLIST nonfiction %simplelink;>

Similar techniques can be applied to declarations of attributes for extended XLinks.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.7 Base URIs

Relative URL references such as sark.jpg, ../pi1/sark.jpg, and turing/pi1/sark.jpg must be resolved
relative to an absolute base URI before being retrieved. When relative URLs are found in XLinks, xml-
stylesheet processing instructions, system identifiers, and other locations in XML documents, they

are normally resolved relative to the absolute base URL of the document or entity that contains them.
For instance, if you find the element <image xlink:type="simple" xlink:href="pi1/sark.jpg" />

in a document at the URL http://www.turing.org.uk/turing/index.html, you would expect to find the
file sark.jpg at the URL http://www.turing.org.uk/turing/p1/sark.jpg. This isn't a surprise. It's pretty
much how links have worked in HTML for over a decade.

However, XML does add a couple of new wrinkles to this procedure. First, an XML document may be
composed of multiple entities loaded from multiple different URLs, even on different servers. If this is
the case, then a relative URL is resolved relative to the base URL of the specific entity in which it
appears, not the base URL of the entire document.

Secondly, the base URL may be reset or changed from within the document by using xml:base

attributes. Such an attribute may appear on the XLink element itself or on any ancestor element in
the same entity. For example, this XLink points to
ftp://ftp.knowtion.net/pub/mirrors/gutenberg/etext93/wizoz10.txt:

<novel xmlns:xlink = "http://www.w3.org/1999/xlink"

 xml:base="ftp://ftp.knowtion.net/pub/mirrors/gutenberg/etext93/"

 xlink:type = "simple"

 xlink:href = "wizoz10.txt">

 <title>The Wonderful Wizard of Oz</title>

 <author>L. Frank Baum</author>

 <year>1900</year>

</novel>

So does this one:

<novel xmlns:xlink = "http://www.w3.org/1999/xlink"

 xml:base="ftp://ftp.knowtion.net/"

 xlink:type = "simple"

 xlink:href = "/pub/mirrors/gutenberg/etext93/wizoz10.txt">

http://www.turing.org.uk/turing/index.html
http://www.turing.org.uk/turing/p1/sark.jpg
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <title>The Wonderful Wizard of Oz</title>

 <author>L. Frank Baum</author>

 <year>1900</year>

</novel>

And this one does too:

<series xml:base="ftp://ftp.knowtion.net/">

 <title>Oz Books</title>

 <author>L. Frank Baum</author>

 <novel xmlns:xlink = "http://www.w3.org/1999/xlink"

 xlink:type = "simple"

 xlink:href = "/pub/mirrors/gutenberg/etext93/">

 <title>The Wonderful Wizard of Oz</title>

 <year>1900</year>

</novel>

...

</series>

All of these link to the URL ftp://ftp.knowtion.net/pub/mirrors/gutenberg/etext93/wizoz10.txt
regardless of where the document containing the XLink actually came from. The base URL is taken
from the nearest xml:base attribute in the same entity, in preference to the base URL of the entity

that contains the element.

xml:base attributes can themselves contain relative URLs. In this case, the base URL is formed by
resolving this relative URL against the base URL specified by xml:base attributes higher up in the

tree and/or the base URL of the entity that contains the element. For example, resolving the URLs in
the xlink:href attributes in this authors element requires applying the URLs in three separate

ancestor elements:

<authors xml:base="http://www.literature.org/authors/"

 xmlns:xlink = "http://www.w3.org/1999/xlink">

 <author xml:base="baum-l-frank/">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <name>L. Frank Baum</name>

 <novel xml:base = "the-wonderful-wizard-of-oz/">

 <title>The Wonderful Wizard of Oz</title>

 <year>1900</year>

 <chapter xlink:type="simple"

 xlink:href="introduction.html">Introduction</chapter>

 <chapter xlink:type="simple"

 xlink:href="chapter-01.html">The Cyclone</chapter>

 <chapter xlink:type="simple"

 xlink:href="chapter-02.html">The Council with the

 Munchkins</chapter>

 ...

 </novel>

 </author>

</authors>

What if the top element has a relative base URL or no xml:base attribute? Then you apply the

absolute base URL of the entity that contains the root element. In theory, this entity should always
have an absolute base URL against which relative URLs can be resolved as a last resort. After all the
entity had to come from somewhere, right? Unfortunately, there are some corner cases where this
isn't true. In particular many APIs lose track of the base URLs or create documents in memory
without any base URLs, so full resolution isn't always possible. The relevant specifications are not
perfectly clear on what happens here, though one possible interpretation is to simply declare that the
base URI is the empty string. The URI specification defines this to mean the URI of the current
document, whatever it is. However, in the common case where a document is read from an actual file
or URL, it should always be possible to calculate an absolute base URL for every element.

There's one point we've made a couple of times, but it's worth calling out because it's not obvious
and quite tricky. All base URL resolutions are performed within the scope of a single entity, not a
single document. If a document is built from multiple entities, then it's the base URI of the entity that
matters, not the base URI of the document. Furthermore, xml:base attributes only have scope within

the entity from which they come. They do not apply in any other entities. That is, if entity A includes
entity B, no xml:base attributes in entity A will be used to resolve relative URLs in entity B. If the
base URL cannot be fully resolved using xml:base attributes from entity B, then the final absolute
URL is the URL from which entity B was loaded. xml:base attributes in ancestor elements from

different entities are not considered.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Although we've emphasized the application of xml:base attributes to xlink:href attributes in this

section, they also apply in many other contexts. For instance, they're used in XInclude and XHTML
2.0. However, xml:base is a relative latecomer to the XML table, so it's not universally applicable.
For instance, XHTML 1.0 and 1.1 do not consider xml:base attributes when resolving relative URLs in
a and img elements. Instead they use the traditional base element in the document's head.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 11. XPointers
XPointers are a non-XML syntax for identifying locations inside XML documents. An XPointer is
attached to the end of the URI as its fragment identifier to indicate a particular part of an XML
document rather than the entire document. XPointer syntax builds on the XPath syntax used by XSLT
and covered in Chapter 9. To the four fundamental XPath data types-Boolean, node-set, number,
and string-XPointer adds points and ranges, as well as the functions needed to work with these
types. It also adds some shorthand syntax for particularly useful and common forms of XPath
expressions.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.1 XPointers on URLs

A URL that identifies a document looks something like
http://java.sun.com:80/products/jndi/index.html. In this example, the scheme http tells you what
protocol the application should use to retrieve the document. The authority, java.sun.com:80 in this
example, tells you from which host the application should retrieve the document. The authority may
also contain the port to connect to that host and the username and password to use. The path,
/products/jndi/index.html in this example, tells you which file in which directory to ask the server for.
This may not always be a real file in a real filesystem, but it should be a complete document that the
server knows how to generate and return. You're already familiar with all of this, and XPointer
doesn't change any of it.

You probably also know that some URLs contain fragment identifiers that point to a particular named
anchor inside the document the URL locates. This is separated from the path by the octothorpe, #.
For example, if we added the fragment download to the previous URL, it would become
http://java.sun.com:80/products/jndi/index.html#download. When a web browser follows a link to
this URL, it looks for a named anchor in the document at
http://java.sun.com:80/products/jndi/index.html with the name download, such as this one:

It would then scroll the browser window to the position in the document where the anchor with that
name is found. This is a simple and straightforward system, and it works well for HTML's simple
needs. However, it has one major drawback: to link to a particular point of a particular document,
you must be able to modify the document to which you're linking in order to insert a named anchor
at the point to which you want to link. XPointer endeavors to eliminate this restriction by allowing
authors to specify where they want to link to using full XPath expressions as fragment identifiers.
Furthermore, XPointer expands on XPath by providing operations to select particular points in or
ranges of an XML document that do not necessarily coincide with any one node or set of nodes. For
instance, an XPointer can describe the range of text currently selected by the mouse.

The most basic form of XPointer is simply an XPath expression-often, although not necessarily, a
location path-enclosed in the parentheses of xpointer(). For example, these are all acceptable

XPointers:

xpointer(/)

xpointer(//first_name)

xpointer(id('sec-intro'))

xpointer(/people/person/name/first_name/text())

xpointer(//middle_initial[position()=1]/../first_name)

xpointer(//profession[.="physicist"])

http://java.sun.com:80/products/jndi/index.html
http://java.sun.com:80/products/jndi/index.html#download
http://java.sun.com:80/products/jndi/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

xpointer(/child::people/child::person[@index<4000])

xpointer(/child::people/child::person/attribute::id)

Not all of these XPointers necessarily refer to a single element. Depending on which document the
XPointer is evaluated relative to, an XPointer may identify zero, one, or more than one node. Most
commonly the nodes identified are elements, but they can also be attribute nodes or text nodes, as
well as points or ranges.

If you're uncertain whether a given XPointer will locate something, you can back it up with an
alternative XPointer. For example, this XPointer looks first for first_name elements. However, if it
doesn't find any, it looks for last_name elements instead:

xpointer(//first_name)xpointer(//last_name)

The last_name elements will be found only if there are no first_name elements. You can string as

many of these XPointer parts together as you like. For example, this XPointer looks first for
first_name elements. If it doesn't find any, it then seeks out last_name elements. If it doesn't find
any of those, it looks for middle_initial elements. If it doesn't find any of those, it returns an

empty node-set:

xpointer(//first_name)xpointer(//last_name)xpointer(//middle_initial)

No special separator character or whitespace is required between the individual xpointer() parts,

although whitespace is allowed. This XPointer means the same thing:

xpointer(//first_name) xpointer(//last_name) xpointer(//middle_initial)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.2 XPointers in Links

Obviously, what an XPointer points to depends on which document it's applied to. This document is
specified by the URL that the XPointer is attached to. For example, if you wanted a URL that pointed
to the first name element in the document at http://example.org/people.xml, you would type:

http://example.org/people.xml#xpointer(//name[position()=1])

If the XPointer uses any characters that are not allowed in URIs-for instance, the less than sign <,
the double quotation mark ", or non-ASCII letters like é-then these must be hexadecimally escaped

as specified by the URI specification before the XPointer is attached to the URI. That is, each such
character is replaced by a percent sign followed by the hexadecimal value of each byte in the
character in the UTF-8 encoding of Unicode. Thus, < would be written as %3C, " would be written as
%22, and é would be written as %C3%A9.

In HTML, the URLs used in a elements can contain an XPointer fragment identifier. For example:

 The name of a person

If a browser followed this link, it would likely load the entire document at
http://www.example.org/people.xml and then scroll the window to the beginning of the first name
element in the document. However, no browsers yet support the XPointer xpointer scheme, so the

exact behavior is open for debate. In some situations it might make sense for the browser to show
only the specific element node(s) the XPointer referred to rather than the entire document.

Mozilla 1.4 and later supports the xpath1() XPointer scheme proposed by
Simon St.Laurent. xpath1() is essentially the same as the xpointer()
scheme discussed here. However, xpath1() does not include the XPath
extensions for points and ranges that the xpointer() scheme does. It only

supports pure XPath 1.0 expressions, simplifying implementation.

Since XPath can only locate nodes in a well-formed XML document, XPointers can only point into XML
documents. You can't use them to link into non-well-formed HTML, plain text files, or other non-XML
documents. However, linking from HTML documents is perfectly fine, as is printing XPointers in
books, painting them on the sides of buildings, or communicating them by any means by which text
can be communicated.

XPointers are more frequently used in XLinks. For example, this simple link points to the first book
child of the bookcoll child of the testament root element in the document at the relative URL

http://example.org/people.xml
http://example.org/people.xml#xpointer(//name[position()=1])
http://www.example.org/people.xml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

ot.xml:

<In_the_beginning xlink:type="simple"

 xlink:href="ot.xml#xpointer(/testament/bookcoll/book[position()=1])">

 Genesis

</In_the_beginning>

In extended links, an XPointer can help identify both the starting and ending resources of an arc. For
example, this extended XLink establishes an arc between the last v element in the document at the
relative URL ot.xml and the first v element of the document at the relative URL nt.xml. Then it
establishes a link from the first v element of nt.xml to the last v element of ot.xml:

<Bible xlink:type="extended" xmlns:xlink="http://www.w3.org/1999/xlink">

 <testament xlink:type="locator" xlink:label="ot"

 xlink:href="ot.xml#xpointer(//v[position()=last()])"/>

 <testament xlink:type="locator" xlink:label="nt"

 xlink:href="nt.xml#xpointer(//v[position()=1])" />

 <next xlink:from="ot" xlink:to="nt"/>

 <previous xlink:from="nt" xlink:to="ot"/>

</Bible>

Links can even be purely internal; that is, they can link from one place in the document to another
place in the same document. The slide element shown in this example contains simple XLinks that
point to the first and last slide elements in the document:

<slide xmlns:xlink="http://www.w3.org/1999/xlink">

 <point>Acme Wonder Goo is a delicious dessert topping!</point>

 <point>Acme Wonder Goo is a powerful floor cleaner!</point>

 <point>It's two products in one!</point>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <first xlink:type="simple"

 xlink:href="#xpointer(//slide[position()=1])">

 Start

 </first>

 <last xlink:type="simple"

 xlink:href="#xpointer(//slide[position()=last()]))">

 End

 </last>

</slide>

When the XPath expressions used in an XPointer are themselves relative, the context node is the root
node of the entity that contains the XPointer.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.3 Shorthand Pointers

XPointers provide a number of convenient extensions to XPath. One of the simplest is the shorthand
pointer. A shorthand pointer is similar to an HTML named anchor; that is, a shorthand pointer
identifies the element it's pointing to by that element's ID. The ID is supplied by an ID type attribute
of the element being pointed at rather than by a special a element with a name attribute. To link to an

element with a shorthand pointer, append the usual fragment separator # to the URL followed by the
ID of the element to which you're linking. For example, http://www.w3.org/TR/1999/REC-xpath-
19991116.xml#NT-AbsoluteLocationPath links to the element in the XPath 1.0 specification that has
an ID type attribute with the value NT-AbsoluteLocationPath.

The ID attribute is an attribute declared to have an ID type in the document's DTD. It does not have
to be named ID or id. Shorthand pointers cannot be used to link to elements in documents that don't

have DTDs because such a document cannot have any ID type attributes.

The inability to use IDs in documents without DTDs is a major shortcoming of
XML. Work is ongoing to attempt to remedy this, perhaps by defining a generic
ID attribute such as xml:id or by defining a namespace that identifies ID type

attributes.

For example, suppose you wanted to link to the Motivation and Summary section of the Namespaces
in XML recommendation at http://www.w3.org/TR/1999/REC-xml-names-19990114/xml-names.xml.
A quick peek at the source code of this document reveals that it has an id attribute with the value
sec-intro and that indeed this attribute is declared to have an ID type in the associated DTD. Its

start-tag looks like this:

<div1 id='sec-intro'>

Thus, http://www.w3.org/TR/1999/REC-xml-names-19990114/xml-names.xml#sec-intro is a URL
that points to this section. The name does not need to be (and indeed should not be) enclosed in
xpointer() to make this work. Just the ID value is sufficient. This is basically just a convenient
shorthand for an XPointer built around an XPath expression using the id() function. The same URL

could have been written as http://www.w3.org/TR/1999/REC-xml-names-19990114/xml-
names.xml#xpointer(id(sec-intro)).

 < Day Day Up >

http://www.w3.org/TR/1999/REC-xpath-
http://www.w3.org/TR/1999/REC-xml-names-19990114/xml-names.xml
http://www.w3.org/TR/1999/REC-xml-names-19990114/xml-names.xml#sec-intro
http://www.w3.org/TR/1999/REC-xml-names-19990114/xml-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.4 Child Sequences

Another very common form of XPointer is one that descends exclusively along the child axis, selecting
elements by their positions relative to their siblings. For example, xpointer(/child::*[position(
) = 1]/child::*[position() = 2]/child::*[position() = 3]) selects the third child element of
the second child element of the root element of the document. The element() scheme allows you to

abbreviate this syntax by providing only the numbers of the child elements separated by forward
slashes. This is called a child sequence. For example, the previous XPointer could be rewritten using
the element scheme in the much more compact form element(/1/2/3).

For example, the aforementioned Motivation and Summary section of the "Namespaces in XML"
recommendation at http://www.w3.org/TR/1999/REC-xml-names-19990114/xml-names.xml is given
as a div element. It so happens that this div element is the first child element of the second child

element of the root element. Therefore, http://www.w3.org/TR/1999/REC-xml-names-
19990114/xml-names.xml#element(/1/2/1) points to this section.

 < Day Day Up >

http://www.w3.org/TR/1999/REC-xml-names-19990114/xml-names.xml
http://www.w3.org/TR/1999/REC-xml-names-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.5 Namespaces

Since XPointers may appear in places that are not XML documents (HTML documents, database
fields, magazine pages, etc.), they require their own mechanism for binding namespace prefixes to
namespace URIs. This is done by placing one or more xmlns parts before the xpointer part. The

syntax is xmlns(prefix=URI). For example, this XPointer maps the svg prefix to the
http://www.w3.org/2000/svg namespace and then searches out all rect elements in that

namespace:

xmlns(svg=http://www.w3.org/2000/svg) xpointer(//svg:rect)

As with most other uses of namespaces, only the URI matters in an XPointer, not the prefix. The
previous XPointer finds all rect elements in the namespace http://www.w3.org/2000/svg,

regardless of what prefix they use or whether they're in the default namespace.

There is no way to define a default, unprefixed namespace for an XPointer. However, prefixed names
in an XPointer can refer to unprefixed but namespace-qualified elements in the targeted document.
For example, this XPointer finds the third div element in an XHTML document:

xmlns(html=http://www.w3.org/1999/xhtml) xpointer(//html:div[3])

It uses the prefix html to identify the XHTML namespace, even though XHTML documents never use

prefixes themselves.

More than one namespace prefix can be used simply by adding extra xmlns parts. For example, this
XPointer seeks out svg elements in XHTML documents by declaring one prefix each for the SVG and

XHTML namespaces:

xmlns(svg=http://www.w3.org/2000/svg)

xmlns(h=http://www.w3.org/1999/xhtml) xpointer(/h:html//svg:svg)

If an XPointer is included in an XML document, the namespace bindings established by that document
do not apply to the XPointer. Only the bindings established by the xmlns parts apply to the XPointer.
If the xpointer parts contain XPath expressions that refer to elements or attributes in a namespace,
they must be preceded by xmlns parts declaring the namespaces.

 < Day Day Up >

http://www.w3.org/2000/svg
http://www.w3.org/2000/svg
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.6 Points

XPaths, shorthand pointers, and child sequences can only point to entire nodes or sets of nodes.
However, sometimes you want to point to something that isn't a node, such as the third word of the
second paragraph or the year in a date attribute that looks like date="01/03/1950". XPointer adds

points and ranges to the XPath data model to make this possible. A point is the position preceding or
following any tag, comment, processing instruction, or character in the #PCDATA. Points can also be
positions inside comments, processing instructions, or attribute values. Points cannot be located
inside an entity reference, although they can be located inside the entity's replacement text. A range
is the span of parsed character data between two points. Nodes, points, and ranges are collectively
called locations; a set that may contain nodes, points, and ranges is called a location set. In other
words, a location is a generalization of the XPath node that includes points and ranges, as well as
elements, attributes, namespaces, text nodes, comments, processing instructions, and the root node.

A point is identified by its container node and a non-negative index into that node. If the node
contains child nodes-that is, if it's a document or element node-then there are points before and
after each of its children (except at the ends, where the point after one child node will also be the
point before the next child node). If the node does not contain child nodes-that is, if it's a comment,
processing instruction, attribute, namespace, or text node-then there's a point before and after each
character in the string value of the node, and again the point after one character will be the same as
the point before the next character.

Consider the document in Example 11-1. It contains a novel element that has seven child nodes,

three of which are element nodes and four of which are text nodes containing only whitespace.

Example 11-1. A novel document

<?xml version="1.0"?>

<?xml-stylesheet type="text/css" value="novel.css"?>

<!-- You may recognize this from the last chapter -->

<novel copyright="public domain">

 <title>The Wonderful Wizard of Oz</title>

 <author>L. Frank Baum</author>

 <year>1900</year>

</novel>

There are eight points directly inside the novel element numbered from 0 to 7, one immediately after

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and one immediately before each tag. Figure 11-1 identifies these points.

Figure 11-1. The points inside the novel element

Inside the text node child of the year element, there are five points:

Point 0 between <year> and 1

Point 1 between 1 and 9

Point 2 between 9 and 0

Point 3 between 0 and 0

Point 4 between 0 and </year>

Notice that the points occur between the characters of the text rather than on the characters
themselves. Points are zero-dimensional. They identify a location, but they have no extension, not
even a single character. To indicate one or more characters, you need to specify a range between
two points.

XPointer adds two functions to XPath that make it very easy to select the first and last points inside a
node: start-point() and end-point(). For example, this XPointer identifies the first point inside
the title element-that is, the point between the title node and its text node child:

xpointer(start-point(//title))

This XPointer indicates the point immediately before the </author> tag:

xpointer(end-point(//author))

If there were multiple title and author elements in the document, then these functions would select

multiple points.

This XPointer points to the point immediately before the letter T in "The Wonderful Wizard of Oz":

xpointer(start-point(//title/text()))

This point falls immediately after the point indicated by xpointer(start-point(//title)). These
are two different points, even though they fall between the same two characters (> and T) in the

text.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To select points other than the start-point or end-point of a node, you first need to form a range that
begins or ends with the point of interest, using string-range(), and then use the start-point or
end-point function on that range. We take this up in the next section.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.7 Ranges

A range is the span of parsed character data between two points. It may or may not represent a well-
formed chunk of XML. For example, a range can include an element's start-tag but not its end-tag.
This makes ranges suitable for uses such as representing the text a user selected with the mouse.
Ranges are created with four functions XPointer adds to XPath:

range()

range-to()

range-inside()

string-range()

11.7.1 The range() Function

The range() function takes as an argument an XPath expression that returns a location set. For each
location in this set, the range() function returns a range exactly covering that location; that is, the

start-point of the range is the point immediately before the location, and the end-point of the range is
the point immediately after the location. If the location is an element node, then the range begins
right before the element's start-tag and finishes right after the element's end-tag. For example,
consider this XPointer:

xpointer(range(//title))

When applied to Example 11-1, it selects a range exactly covering the single title element. If there
were more than one title element in the document, it would return one range for each such title
element. If there were no title elements in the document, then it wouldn't return any ranges.

Now consider this XPointer:

xpointer(range(/novel/*))

If applied to Example 11-1, it returns three ranges, one covering each of the three child elements of
the novel root element.

11.7.2 The range-inside() Function

The range-inside() function takes as an argument an XPath expression that returns a location set.

For each location in this set, it returns a range exactly covering the contents of that location. This will

http://lib.ommolketab.ir
http://lib.ommolketab.ir

be the same as the range returned by range() for anything except an element node. For an

element node, this range includes everything inside the element, but not the element's start-tag or
end-tag. For example, when applied to Example 11-1, xpointer(range-inside(//title)) returns a
range covering The Wonderful Wizard of Oz but not <title>The Wonderful Wizard of
Oz</title>. For a comment, processing instruction, attribute, text, or namespace node, this range

covers the string value of that node. For a range, this range is the range itself. For a point, this range
begins and ends with that point.

11.7.3 The range-to() Function

The range-to() function is evaluated with respect to a context node. It takes a location set as an

argument that should return exactly one location. The start-points of the context nodes are the start-
points of the ranges it returns. The end-point of the argument is the end-point of the ranges. If the
context node set contains multiple nodes, then the range-to() function returns multiple ranges.

This function is underspecified in the XPointer specification. In particular, it is
not clear what should happen if the argument contains more or less than one
location.

For instance, suppose you want to produce a single range that covers everything between <title>
and </year> in Example 11-1. XPointer does this by starting with the start-point of the title
element and continuing to the end-point of the year element:

xpointer(//title/range-to(year))

Ranges do not necessarily have to cover well-formed fragments of XML. For instance, the start-tag of
an element can be included but the end-tag left out. This XPointer selects <title>The Wonderful
Wizard of Oz:

xpointer(//title/range-to(text()))

It starts at the start-point of the title element, but it finishes at the end-point of the title

element's text node child, thereby omitting the end-tag.

11.7.4 The string-range() Function

The string-range() function is unusual. Rather than operating on a location set-including various

tags, comments, processing instructions, and so forth-it operates on the text of a document after all
markup has been stripped from it. Tags are more or less ignored.

The string-range() function takes as arguments an XPath expression identifying locations and a

substring to try to match against the XPath string value of each of those locations. It returns one
range for each non-overlapping match, exactly covering the matched string. Matches are case
sensitive. For example, this XPointer produces ranges for all occurrences of the word "Wizard" in
title elements in the document:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xpointer(string-range(//title, "Wizard"))

If there are multiple matches, then multiple ranges are returned. For example, this XPointer returns
two ranges when applied to Example 11-1, one covering the W in "Wonderful" and one covering the
W in "Wizard":

xpointer(string-range(//title, "W"))

You can also specify an offset and a length to the function so that strings start a certain number of
characters from the beginning of the match and continue for a specified number of characters. The
point before the first character in the string to search is 1. For example, this XPointer selects the first
four characters after the word "Wizard" in title elements:

xpointer(string-range(//title, "Wizard", 7, 4))

Nonpositive indices work backward in the document before the beginning of the match. For example,
this XPointer selects the first four characters before the word "Wizard" in title elements:

xpointer(string-range(//title, "Wizard", -3, 4))

If the offset or length causes the range to fall outside the document, then no range is returned.

Since string ranges can begin and end at pretty much any character in the text content of a
document, they're the way to indicate points that don't fall on node boundaries. Simply create a
string range that either begins or ends at the position you want to point to, and then use start-
point() or end-point() on that range. For example, this XPointer returns the point immediately
before the word "Wizard" in the title element:

xpointer(start-point(string-range(//title, "Wizard")))

11.7.5 Relative XPointers

Normally, an XPointer is a fragment identifier attached to a URL. The root node of the document the
URL points to is the context location for the XPointer. However, XPointers can also be used by
themselves without explicit URLs in XML documents. By default, the context node for such an
XPointer is the root node of the document where the XPointer appears. However, either the here()
or the origin() function can change the context node for the XPointer's XPath expression.

11.7.6 here()

The here() function is only used inside XML documents. It refers to the node that contains the

XPointer or, if the node that contains the XPointer is a text node, the element node that contains that
text node. here() is useful in relative links. For example, these navigation elements link to the
page elements preceding and following the pages in which they're contained:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<page>

 content of the page...

 <navigation xlink:type="simple"

 xlink:href="#xpointer(here()/../../preceding-sibling::page[1])">

 Previous

 </navigation>

 <navigation xlink:type="simple"

 xlink:href="#xpointer(here()/../../following-sibling::page[1])">

 Next

 </navigation>

</page>

In these elements, the here() function refers to the xlink:href attribute nodes that contain the
XPointer. The first .. selects the navigation parent element. The second .. selects its parent page
element, and the final location step selects the previous or next page element.

11.7.7 origin()

The origin() function is useful when the document has been loaded from an out-of-line link. It

refers to the node from which the user is initiating traversal, even if that is not the node that defines
the link. For example, consider an extended link like this one. It has many novel elements, each of

which is a locator that shares the same label:

<series xlink:type="extended" xmlns:xlink="http://www.w3.org/1999/xlink">

 <!-- locator elements -->

 <novel xlink:type="locator" xlink:label="oz"

 xlink:href="ftp://archive.org/pub/etext/etext93/wizoz10.txt">

 <title>The Wonderful Wizard of Oz</title>

 <year>1900</year>

 </novel>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <novel xlink:type="locator" xlink:label="oz"

 xlink:href="ftp://archive.org/pub/etext/etext93/ozland10.txt">

 <title>The Marvelous Land of Oz</title>

 <year>1904</year>

 </novel>

 <novel xlink:type="locator" xlink:label="oz"

 xlink:href="ftp://archive.org/pub/etext/etext93/wizoz10.txt">

 <title>Ozma of Oz</title>

 <year>1907</year>

 </novel>

 <!-- many more novel elements... -->

 <sequel xlink:type="locator" xlink:label="next"

 xlink:href="#xpointer(origin()/following-sibling::novel[1])" />

 <next xlink:type="arc" xlink:from="oz" xlink:to="next" />

</series>

The sequel element uses an XPointer and the origin() function to define a locator that points to
the following novel in the series. If the user is reading The Wonderful Wizard of Oz, then the sequel

element locates The Marvelous Land of Oz. If the user is reading The Marvelous Land of Oz, then that
same sequel element locates Ozma of Oz, and so on. The next element defines links from each
novel (since they all share the label oz) to its sequel. The ending resource changes from one novel to

the next.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 12. XInclude
XInclude is a new technology developed at the W3C for combining multiple well-formed and optionally
valid documents and fragments thereof into a single document. It's similar in effect to using external
entity references to assemble a document from several component pieces. However, XInclude can
assemble a document from resources that are themselves fully well-formed documents that include
XML declarations and even document type declarations. It can also use XPointers to extract only a
piece of an external document, rather than including the entire thing.

XInclude defines two elements, xi:include and xi:fallback, both in the
http://www.w3.org/2001/XInclude namespace. An xi:include element has an href attribute that
points to a document. An XInclude processor replaces all the xi:include elements in a master

document with the documents they point to. These documents can be other XML documents or plain
text documents like Java source code. If the xi:include element has an xpointer attribute, then
the xi:include element is replaced by only those parts of the remote document that the XPointer
indicates. If the processor cannot find the external document the href attribute points to, then it
replaces the xi:include element with the contents of the element's xi:fallback child element

instead.

This chapter is based on the April 13, 2004 2nd Candidate Recommendation of
XInclude. We think this draft is pretty stable, but it's possible some of the
details described here may change before the final release. The most current
version of the XInclude specification can be found at
http://www.w3.org/TR/xinclude/.

 < Day Day Up >

http://www.w3.org/2001/XInclude
http://www.w3.org/TR/xinclude/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

12.1 The include Element

The key component of XInclude is the include element. This must be in the
http://www.w3.org/2001/XInclude namespace. The xi or xinclude prefixes are customary,

although, as always, the prefix can change as long as the URI remains the same. This element has an
href attribute that contains a URL pointing to the document to include. For example, this element

includes the document found at the relative URL AlanTuring.xml:

<xi:include xmlns:xi="http://www.w3.org/2001/XInclude"

 href="AlanTuring.xml"/>

Of course, you can use absolute URLs as well:

<xi:include xmlns:xi="http://www.w3.org/2001/XInclude"

 href="http://cafeconleche.org/books/xian3/examples/12/AlanTuring.xml"

/>

Technically, the href attribute contains an IRI rather than a URI or URL. An IRI

is like a URI except that it can contain non-ASCII characters such as é and .
These characters are normally encoded in UTF-8, and then each byte of the
UTF-8 sequence is percent escaped to convert the IRI to a URI before resolving
it. If you're working in English, and you're not writing an XInclude processor,
you can pretty much ignore this. All standard URLs are legal IRIs. If you are
working with non-English, non-ASCII IRIs, this just means you can use them
exactly as you'd expect without having to manually hex-encode the non-ASCII
characters yourself.

Normally, the namespace declaration is placed on the root element of the including document, and
not repeated on each individual xi:include element. Henceforth in this chapter, we will assume that
the namespace prefix xi is bound to the correct namespace URI.

Example 12-1 shows a document similar to Example 8-1 that contains two xi:include elements. The

first one loads the document found at the relative URL AlanTuring.xml. The second loads the
document found at the relative URL RichardPFeynman.xml.

Example 12-1. A document that uses XInclude to load two other
documents

http://www.w3.org/2001/XInclude
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<?xml version="1.0"?>

<people xmlns:xi="http://www.w3.org/2001/XInclude" >

 <xi:include href="AlanTuring.xml"/>

 <xi:include href="RichardPFeynman.xml"/>

</people>

When an XInclude processor reads this document, it will parse the XML documents found at the two
URLs and insert their contents (except for the XML and document type declarations, if any) into the
finished document at the positions indicated by the xi:include elements. The xi:include elements

are removed. XInclusion is not done by default, and many XML parsers do not understand or support
XInclude. You either need to use a filter that resolves the xi:include elements before processing the

documents further, or tell the parser that you want it to perform XInclusion. The exact details vary
from one processor to the next. For example, using xmllint from libxml, the --xinclude option tells it

to resolve XIncludes:

$ xmllint --xinclude http://cafeconleche.org/books/xian3/examples/12/12-1.xml

<?xml version="1.0"?>

<people xmlns:xi="http://www.w3.org/2001/XInclude">

 <person born="1912" died="1954"

 xml:base=

 "http://cafeconleche.org/books/xian3/examples/12/AlanTuring.xml">

 <name>

 <first_name>Alan</first_name>

 <last_name>Turing</last_name>

 </name>

 <profession>computer scientist</profession>

 <profession>mathematician</profession>

 <profession>cryptographer</profession>

 </person>

 <person born="1918" died="1988"

 xml:base=

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "http://cafeconleche.org/books/xian3/examples/12/RichardPFeynman.xml">

 <name>

 <first_name>Richard</first_name>

 <middle_initial>P</middle_initial>

 <last_name>Feynman</last_name>

 </name>

 <profession>physicist</profession>

 <hobby>Playing the bongoes</hobby>

 </person>

</people>

You'll notice that the processor has added xml:base attributes to attempt to preserve the base URIs

of the included elements. This is not so important here, where both the including document and the
two included documents all live in the same directory. However, when assembling a document from
different sources on different servers and different directories, this helps make sure the relative URLs
in the included text are properly resolved.

It's also important to note that the inclusion is based on the parsed documents. It's not done as if by
copying and pasting the raw text. XML declarations are not copied. Insignificant white space inside
tags may not be quite the same after inclusion as it was before. Whitespace in the prolog and epilog
is not copied at all. Document type declarations are not copied, but any default attribute values they
defined are copied.

libxml includes fairly complete support for XInclude. Xerces-J 2.7 includes incomplete support for
XInclude. Other parsers typically have none at all and will require the use of third-party libraries that
do support XInclude, such as XOM's nu.xom.xinclude package. This is still fairly bleeding edge

technology.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

12.2 Including Text Files

By default, the XInclude processor assumes the document pointed to by an href attribute is a well-

formed XML document. This document is parsed, and the content of the included document replaces
the xi:include element in the including document. However, it is also nice to be able to include

unparsed text when assembling a larger document. For instance, the program and XML examples in
this book could be included directly from their source form. If you add a parse attribute to an
xi:include element with the value text, then the document will be loaded as plain text and not

parsed. For example, this element includes Example 12-1 as plain text, without parsing it:

<xi:include

 href="http://cafeconleche.org/books/xian3/examples/12/12-1.xml"

 parse="text"

/>

When parse="text", it is no longer necessary for the referenced document to be well-formed.

Indeed, it need not be an XML document at all. It can be C source code, an email message, a classic
HTML document, or almost anything else. The only restriction is that the included document must not
contain any completely illegal characters, such as an ASCII NUL, or an unmatched half of a surrogate
pair.

XInclude processors make use of any protocol metadata such as HTTP headers to determine the
encoding of a referenced document so they can transcode it into Unicode before including it. If
external metadata is not available, but the MIME media type is text/xml, application/xml, or
some type that ends in +xml, then the processor will look inside the document for common signatures

like byte-order marks or XML declarations that help it guess the encoding. If these standard
mechanisms won't suffice, the document author can add an encoding attribute to the xi:include

element, indicating the expected encoding of the document. For example, this element tries to load
Example 12-1 using the Latin-1 encoding:

<xi:include

 href="http://cafeconleche.org/books/xian3/examples/12/12-1.xml"

 encoding="ISO-8859-1" parse="text"

/>

Finally, if all of those fail, the processor assumes the document is encoded in UTF-8. Any byte
sequences that are undefined in the document's encoding (or what the XInclude processor thinks is
the document's encoding) are a fatal error.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The parse attribute can also have the value xml to indicate that the referenced document should be
parsed. However, this is the default so most authors don't bother to write parse="xml". Any other

value is a fatal error.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

12.3 Content Negotiation

HTTP clients and servers support a variety of accept headers that indicate which kinds of content the
client is prepared to receive. For example, this browser request indicates that the client prefers
French but is willing to read English; can handle HTML, plain text, and JPEG images; knows how to
decode gzipped data; and recognizes the ASCII, Latin-1, and UTF-8 character sets:

GET /index.html HTTP/1.1

User-Agent: Mozilla/4.6 [en] (WinNT; I)

Host: www.cafeaulait.org

Accept: text/html, text/plain, image/jpeg

Accept-Encoding: gzip

Accept-Language: fr, en

Accept-Charset: us-ascii, iso-8859-1,utf-8

Connection: close

If-Modified-Since: Sun, 31 Oct 1999 19:22:07 GMT

The server that receives this request uses these headers to decide which version of a resource to
send to the client. The same URL can return different content depending on how these headers are
set. In browsers, this is normally controlled through preferences, but XInclude allows documents to
control two of these headers, Accept and Accept-language, by attributes. Each xi:include
element can have an accept and/or accept-language attribute. The values of these attributes

should be legal values for the corresponding HTTP header fields. If one or both of these attributes is
present, then the XInclude processor will add the relevant accept headers to the HTTP request it
sends to the server. For example, this xi:include element indicates you want to include the French

HTML version of Google's home page:

<xi:include href="http://www.google.com" parse="text"

 accept-language="fr" accept="text/html"

/>

This xi:include element indicates you want to include the English XML version of Google:

<xi:include href="http://www.google.com"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 accept-language="en" accept="application/xml"

/>

Both accept and accept-language can be used with parse="xml" and parse="text".

It's not necessarily true, of course, that any given URL will have a version with the language and
content type you request. Most servers simply return the same page in the same language regardless
of the accept headers. However, for those servers that do provide different translations and formats
of the same resource, these two attributes enable you to specify which is preferred.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

12.4 Fallbacks

Documents that reference resources on other sites are subject to all the usual problems of the Web:
documents are deleted, documents move, servers crash, DNS records aren't updated fast enough,
and more. The examples so far all fail completely if the resource at the end of an href attribute can't

be found. However, XInclude offers authors a means to provide alternate content in the face of a
missing document. Each XInclude element can contain a single xi:fallback child element. If the
remote document can't be loaded, the contents of the xi:fallback element replace the xi:include

element instead of the contents of the remote resource. For example:

<xi:include href="AlanTuring.xml">

 <xi:fallback>

 Oops! Could not find Alan Turing!

 </xi:fallback>

</xi:include>

There's no limit to what an xi:fallback element can contain. It can hold plain text, a child element,
mixed content, or even another xi:include element to be resolved if the top one can't be. For
example, this xi:include element tries to load the same document from three different sites:

<xi:include href="http://www.example.us/data.xml">

 <xi:fallback>

 <xi:include href="http://www.example.fr/data.xml">

 <xi:fallback>

 <xi:include href="http://www.example.cn/data.xml">

 <xi:fallback>

 Could not find the document in the U.S., France, or China.

 </xi:fallback>

 </xi:include>

 </xi:fallback>

 </xi:include>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </xi:fallback>

</xi:include>

An xi:include element may not contain more than one xi:fallback child, and may not contain any
xi:include or other child elements from the XInclude namespace. Otherwise, any children of the
xi:include element not in the XInclude namespace are ignored, and do not appear in the result
document after inclusion. The xi:fallback element is ignored if the resource specified by the parent
xi:include element's href attribute is successfully loaded. An xi:fallback element may only
appear as the child of an xi:include element. It is a fatal error for it to have any other parent.

Fallbacks are only processed for resource errors, mostly I/O errors that occur when loading the
remote resource. Other problems-the remote document is malformed when parse="xml", an

included text document contains characters that are illegal in XML, there is a syntax error in the
xi:include element-are fatal errors. If any of these things happen, the processor simply gives up

and reports the error.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

12.5 XPointers

For various obscure architectural reasons, the URLs used in XPointer href attributes must not have

fragment identifiers. Indeed, it is a fatal error if one does, in which case the XInclude processor will
simply throw up its hands and give up. Instead, each xi:include element may have an xpointer

attribute. This attribute contains an XPointer indicating what part of the document referenced by the
href attribute should be included. For example, this xi:include element loads today's news from
Cafe con Leche (which is delimited by a today element in the http://www.w3.org/1999/xhtml

namespace), but not the rest of the page:

<xi:include href="http://www.cafeconleche.org/"

 xpointer="xmlns(pre=http://www.w3.org/1999/xhtml)

 xpointer(//pre:today)"/>

You could also use the element() scheme:

<xi:include href="http://www.cafeconleche.org/"

 xpointer="element(/1/2/4/1/1/4)"/>

If the href attribute is absent, then the XPointer refers to the current document.

XInclude processors are not required to support all XPointer schemes. In particular, they are not
required to support the xpointer() or xmlns() schemes, although some processors, notably
libxml2, do support it. All processors are required to support the element() scheme as well as bare-

name XPointers, although in practice some implementations, especially those based on streaming
APIs like SAX, do not support XPointers at all.

A syntax error in the XPointer is a resource error, which will cause the xi:fallback child element to

be processed if present. It is not necessarily a fatal error.

Since XPointers only apply to XML documents, they may only be used when parse="xml". It is a fatal
error if an xi:include element has an xpointer attribute and parse="text".

 < Day Day Up >

http://www.w3.org/1999/xhtml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 13. Cascading Style Sheets (CSS)
The names of most elements describe the semantic meaning of the content they contain. Often,
however, this content needs to be formatted and displayed to users. For this to occur, there must be
a step where formatting information is applied to the XML document, and the semantic markup is
transformed into presentational markup. There is a variety of choices for the syntax of this
presentation layer. However, two are particularly noteworthy:

Cascading Style Sheets (CSS)

XSL Formatting Objects (XSL-FO)

CSS is a non-XML syntax for describing the appearance of particular elements in a document. CSS is
a very straightforward language; no transformation is performed. The parsed character data of the
document is presented more or less exactly as it appears in the XML document, although, of course,
you can always transform the document with XSLT and then apply a CSS stylesheet to it if you need
to rearrange the content of a document before showing it to the user. A CSS stylesheet does not
change the markup of an XML document at all; it merely applies styles to the content that already
exists.

By way of contrast, XSL-FO is a complete XML application for describing the layout of text on a page.
It has elements that represent pages, blocks of text on the pages, graphics, horizontal rules, and
more. You do not normally work with this application directly. Instead, you write an XSLT stylesheet
that transforms your document's native markup into XSL-FO. The application rendering the document
reads the XSL-FO and displays it to the user.

In this chapter and the next, we'll demonstrate the features of the two major stylesheet languages
by applying them to the simple well-formed XML document shown in Example 13-1. This document
does not have a document type declaration and is not valid, although a DTD or schema could be
added easily enough. In general, DTDs and schemas don't have any impact on stylesheets, except
insofar as they change the document content through entity declarations, default attribute values,
and the like.

Example 13-1. Marjorie Anderson's recipe for Southern Corn Bread

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<?xml-stylesheet type="text/css" href="recipe.css"?>

<recipe source="Marjorie Anderson">

 <dish>Southern Corn Bread</dish>

 <ingredients>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <ingredient>

 <quantity>1 cup</quantity>

 <component>flour</component>

 </ingredient>

 <ingredient>

 <quantity>4 tablespoons</quantity>

 <component>Royal Baking Powder</component>

 </ingredient>

 <ingredient>

 <quantity>1/2 teaspoon</quantity>

 <component>salt</component>

 </ingredient>

 <ingredient>

 <quantity>1 cup</quantity>

 <component>corn meal</component>

 </ingredient>

 <ingredient>

 <quantity>11/2 cups</quantity>

 <component>whole milk</component>

 </ingredient>

 <ingredient>

 <quantity>4 tablespoons</quantity>

 <component>melted butter</component>

 </ingredient>

 </ingredients>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <directions>

 <step>Sift flour, baking powder, sugar & salt together.</step>

 <step>Add 1 cup corn meal.</step>

 <step>

 Beat egg in cup and add beaten egg and 1 1/2 cups whole

 milk to make a batter. Stir well.

 </step>

 <step>

 Add melted shortening and beat until light and thoroughly mixed.

 </step>

 <step>

 Pour into greased shallow pan or greased muffin rings.

 </step>

 <step>

 Bake in hot oven at <temperature>425

 F</temperature> for

 <duration>25 minutes</duration>.

 </step>

 <step optional="yes">

 Cut into squares if cooked in shallow pan.

 </step>

 </directions>

 <story>

 After my mother-in-law <person>Marjorie Anderson</person> died,

 Beth and I found this recipe written on the "extra recipes"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 page in a local cookbook in her cupboard.

 This was published by The Episcopal Churchwomen,

 Church of Ascension, <city>Mt. Sterling</city>,

 <state>Kentucky</state>.

 </story>

</recipe>

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.1 The Levels of CSS

At the time of this writing, there are several versions of CSS. CSS Level 1 was an early W3C
Recommendation from 1996 for HTML only, although the extension to XML was obvious. The CSS
Level 1 specification was incomplete and led to inconsistent browser implementations.

The next version, CSS Level 2, added many additional style properties. It also placed XML on an
equal footing with HTML. Indeed, CSS Level 2 often works better with XML than with HTML because
CSS styles don't have to interact with any predefined rendering semantics. For the most part, CSS
Level 2 is a superset of CSS Level 1. That is, all CSS Level 1 stylesheets are also CSS Level 2
stylesheets that mean pretty much the same thing.

The current version is CSS 2.1. CSS 2.1 adds a few minor values to existing properties-for instance,
orange is now recognized as a color-but mostly it removes those features of CSS Level 2 that have

not been implemented by browsers. It also corrects a few bugs in the CSS2 specification.

The W3C is now working on CSS Level 3. When complete, it will modularize the CSS specification so
software can implement particular subsets of CSS functionality without having to implement
everything. For instance, an audio browser could implement audio stylesheets but ignore the visual
formatting model. Furthermore, CSS Level 3 adds a number of features to CSS, including multi-
column layouts, better support for non-Western languages-such as Arabic and Chinese-XML
namespace support, more powerful selectors, paged media, and more. However, CSS Level 3 is not
yet implemented by any browsers.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.2 CSS Syntax

CSS syntax isn't XML syntax, but the syntax is so trivial this hardly matters. A CSS stylesheet is
simply a list of the elements you want to apply the styles to, normally one to a line. If the element is
in a namespace, then the qualified name like recipe:dish must be used. The prefix must be the

same in the stylesheet as in the XML document. Each element name is followed by the list of styles
you want to apply to that element. Comments can be inserted using the /*...*/ format familiar to C

programmers. Whitespace isn't particularly significant, so it can be used to format the stylesheet.
Example 13-2 is a simple CSS stylesheet for the recipe document in Example 13-1. Figure 13-1 shows
the recipe document as rendered and displayed by the Opera 4.01 browser with this stylesheet.

Example 13-2. A CSS stylesheet for recipes

/* Defaults for the entire document */

recipe {font-family: "New York", "Times New Roman", serif;

 font-size: 12pt }

/* Make the dish look like a headline */

dish {

 display: block;

 font-family: Helvetica, Arial, sans-serif;

 font-size: 20pt;

 font-weight: bold;

 text-align: center

}

/* A bulleted list */

ingredient {display: list-item; list-style-position: inside }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/* Format these two items as paragraphs */

directions, story {

 display: block;

 margin-top: 12pt;

 margin-left: 4pt

}

Figure 13-1. A semantically tagged XML document after a CSS stylesheet
is applied

This stylesheet has four style rules. Each rule names the element(s) it formats and follows that with a
pair of curly braces containing the style properties to apply to those elements. Each property has a
name, such as font-family, and a value, such as "New York", "Times New Roman", serif.

Properties are separated from each other by semicolons. Neither the names nor the values are case-
sensitive. That is, font-family is the same as FONT-FAMILY or Font-Family. CSS 2.1 defines over

100 different style properties. However, you don't need to know all of these. Reasonable default
values are provided for all the properties you don't set.

For example, the first rule applies to the recipe element and says that it should be formatted using

the New York font at a 12-point size. If New York isn't available, then Times New Roman will be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

chosen instead; if that isn't available, then any convenient serif font will suffice. These styles also
apply to all descendants of the recipe element; that is, child elements inherit the styles of their

parents unless they specifically override them with different values for the same properties. Since
recipe is the root element, this sets the default font for the entire document.

The second rule makes the dish element look like a heading, as you can see in Figure 13-1. It's set
to a much larger sans-serif font and is made bold and centered. Furthermore, its display style is set
to block. This means there'll be a line break between the dish and its next and previous sibling

elements. The third rule formats the ingredients as a bulleted list, while the fourth rule formats both
the directions and story elements as more-or-less straightforward paragraphs with a little extra

whitespace around their top and lefthand sides.

Not all the elements in the document have style rules and not all need them. For example, the step

element is not specifically styled. Rather, it simply inherits a variety of styles from its ancestor
elements directions and recipe, and uses some defaults. A different stylesheet could add a rule for
the step element that overrides the styles it inherits. For example, this rule would set its font to 10-

point Palatino:

step {font-family: Palatino, serif; font-size: 10pt }

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.3 Associating Stylesheets with XML Documents

CSS stylesheets are primarily intended for use in web pages. Web browsers find the stylesheet for a
document by looking for xml-stylesheet processing instructions in the prolog of the XML document.
This processing instruction should have a type pseudo-attribute with the value text/css and an href

pseudo-attribute whose value is an absolute or relative URL locating the stylesheet document. For
example, this is the processing instruction that attaches the stylesheet in Example 13-2 (recipe.css)
to the file in Example 13-1 (cornbread.xml), if both are found in the same directory:

<?xml-stylesheet type="text/css" href="recipe.css"?>

Including the required type and href pseudo-attributes, the xml-stylesheet processing instruction

can have up to six pseudo-attributes:

type

This is the MIME media type of the stylesheet; text/css for CSS and application/xml (not
text/xsl!) for XSLT.

href

This is the absolute or relative URL where the stylesheet can be found.

charset

This names the character set in which the stylesheet is written, such as UTF-8 or ISO-8859-7.
There's no particular reason this has to be the same as the character set in which the
document is written. The names used are the same ones used for the encoding pseudo-

attribute of the XML declaration.

title

This pseudo-attribute names the stylesheet. If more than one stylesheet is available for a
document, the browser may (but is not required to) present readers with a list of the titles of
the available stylesheets and ask them to choose one.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

media

Printed pages, television screens, and computer displays are all fundamentally different media
that require different styles. For example, comfortable reading on screen requires much larger
fonts than on a printed page. This pseudo-attribute specifies the media types this stylesheet
should apply to. There are 10 predefined values:

screen print

tty braille

tv embossed

projection speech

handheld all

By including several xml-stylesheet processing instructions, each pointing to a different

stylesheet and each using a different media type, you can make a single document attractive in
many different environments.

alternate

This pseudo-attribute must be assigned one of the two values yes or no. yes means this is an
alternate stylesheet, not normally used. no means this is the stylesheet that will be chosen
unless the user indicates that she wants a different one. The default is no.

For example, this group of xml-stylesheet processing instructions could be placed in the prolog of

the recipe document to make it more accessible on a broader range of devices:

<?xml-stylesheet type="text/css" href="recipe.css" media="screen"

 alternate="no" title="For Web Browsers" charset="US-ASCII"?>

<?xml-stylesheet type="text/css" href="printable_recipe.css" media="print"

 alternate="no" title="For Printing" charset="ISO-8859-1"?>

<?xml-stylesheet type="text/css" href="big_recipe.css" media="projection"

 alternate="no" title="For presentations" charset="UTF-8"?>

<?xml-stylesheet type="text/css" href="tty_recipe.css" media="tty"

 alternate="no" title="For Lynx" charset="US-ASCII"?>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<?xml-stylesheet type="text/css" href="small_recipe.css" media="handheld"

 alternate="no" title="For Palm Pilots" charset="US-ASCII"?>

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.4 Selectors

CSS provides limited abilities to select the elements to which a given rule applies. Many stylesheets
only use element names and lists of element names separated by commas, as shown in Example 13-
2. However, CSS provides some other basic selectors you can use, although they're by no means as
powerful as the XPath syntax of XSLT.

13.4.1 The Universal Selector

The asterisk matches any element at all; that is, it applies the rule to everything in the document
that does not have a more specific, conflicting rule. For example, this rule says that all elements in
the document should use a large font:

* {font-size: large}

13.4.2 Matching Descendants, Children, and Siblings

An element name A followed by another element name B matches all B elements that are
descendants of A elements. For example, this rule matches quantity elements that are descendants
of ingredients elements, but not other ones that appear elsewhere in the document:

ingredients quantity {font-size: medium}

If the two element names are separated by a greater-than sign (>), then the second element must
be an immediate child of the first in order for the rule to apply. For example, this rule gives quantity
children of ingredient elements the same font-size as the ingredient element:

ingredient > quantity {font-size: inherit}

If the two element names are separated by a plus sign (+), then the second element must be the

next sibling element immediately after the first element. For example, this style rule sets the
border-top-style property for only the first story element following a directions element:

directions + story {border-top-style: solid}

13.4.3 Attribute Selectors

Square brackets allow you to select elements with particular attributes or attribute values. For
example, this rule hides all step elements that have an optional attribute:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

step[optional] {display: none}

This rule hides all elements that have an optional attribute regardless of the element's name:

*[optional] {display: none}

An equals sign selects an element by a given attribute's value. For example, this rule hides all step
elements that have an optional attribute with the value yes:

step[optional="yes"] {display: none}

The ~= operator selects elements that contain a given word as part of the value of a specified

attribute. The word must be complete and separated from other words in the attribute value by
whitespace, as in a NMTOKENS attribute. That is, this is not a substring match. For example, this rule
makes bold all recipe elements whose source attribute contains the word "Anderson":

recipe[source~="Anderson"] {font-weight: bold}

Finally, the |= operator matches against the first word in a hyphen-separated attribute value, such as
Anderson-Harold or fr-CA.

CSS also provides a special syntax for selecting elements with a given ID value, even when you don't
know exactly the name of the ID type attribute. Simply separate the ID from the element name with
a sharp sign (#). For example, this rule applies to the single step element whose ID type attribute

has the value P833:

step#P833 { font-weight: 800 }

13.4.4 Pseudo-Class Selectors

Pseudo-class selectors match elements according to a condition not involving their name. There are
seven of these separated from the element name by a colon.

first-child

This pseudo-class matches the first child element of the named element. When applied to
Example 13-1, this rule italicizes the first, and only the first, step element:

step:first-child {font-style: italic}

link

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This pseudo-class matches the named element if and only if that element is the source of an as
yet unvisited link. For example, this rule makes all links in the document blue and underlined:

*:link {color: blue; text-decoration: underline}

visited

This pseudo-class applies to all visited links of the specified type. For example, this rule marks
all visited links as purple and underlined:

*:visited {color: purple; text-decoration: underline}

active

This pseudo-class applies to all elements that the user is currently activating (for example, by
clicking the mouse on). Exactly what it means to activate an element depends on the context,
and indeed not all applications can activate elements. For example, this rule marks all active
elements as red:

*:active {color: red}

linking

These pseudo-classes are not yet well-supported for XML documents because most browsers
don't recognize XLinks. So far, only Mozilla and Netscape 6/7 recognize XLinks, and they are
the only browsers that will apply these pseudo-classes to XML.

hover

This pseudo-class applies to elements on which the cursor is currently positioned but has not
yet activated. For example, this rule marks all these elements as green and underlined:

*:hover {color: green; text-decoration: underline}

focus

This pseudo-class applies to the element that currently has the focus. For example, this rule
draws a one-pixel red border around the element with the focus, assuming there is such an
element:

*:focus {border: 1px solid red }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lang

This pseudo-class matches all elements in the specified language as determined by the
xml:lang attribute. For example, this rule uses the David New Hebrew font for all elements
written in Hebrew (more properly, all elements whose xml:lang attribute has the value he or

any subtype thereof):
*:lang(he) {font-family: "David New Hebrew"}

13.4.5 Pseudo-Element Selectors

Pseudo-element selectors match things that aren't actually elements. Like pseudo-class selectors,
they're attached to an element selector by a colon. There are four of these:

first-letter

first-line

before

after

The first-letter pseudo-element selects the first letter of an element. For example, this rule
makes the first letter of the story element a drop cap:

story:first-letter {

 font-size: 200%;

 font-weight: bold;

 float: left;

 padding-right: 3pt

}

The first-line pseudo-element applies formatting to all characters in the first line of a block-level

element. If the browser window is resized so that characters move into or out of the first line, then
the formatting changes to match. For example, this rule formats the first line of the story element in

small capitals instead of lowercase letters:

story:first-line {font-variant: small-caps}

The before and after pseudo-elements select the points immediately before and after the specified

element. You can't really apply font or text styles to a zero-width point, but you can insert text at
that point using the content property. For example, this rule inserts the string "Ingredients!" before
the ingredients element:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ingredients:before {content: "Ingredients! "}

This rule places the number of the step in front of each step element in the form 1., 2., 3., and so

on:

step:before {

 content: counter(step) ". ";

 counter-increment: step;

}

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.5 The Display Property

Display is one of the most important CSS properties. This property determines how the element will

be positioned on the page. There are 18 legal values for this property. However, the two primary
values are inline and block. The display property can also be used to create lists and tables, as

well as to hide elements completely.

13.5.1 Inline Elements

Setting the display to inline, the default value, places the element in the next available position

from left to right, much as each word in this paragraph is positioned. (The exact direction can change
for right-to-left languages like Hebrew or top-to-bottom languages like traditional Chinese.) The text
may be wrapped from one line to the next if necessary, but there won't be any hard line breaks
between each inline element. In Examples Example 13-1 and Example 13-2, the quantity, step,
person, city, and state elements were all formatted as inline. This didn't need to be specified

explicitly because it's the default.

13.5.2 Block Elements

In contrast to inline elements, an element set to display:block is separated from its siblings,

generally by a line break. For example, in HTML, paragraphs and headings are block elements. In
Examples Example 13-1 and Example 13-2, the dish, directions, and story elements were all
formatted with display:block.

CSS 2.1 adds an inline-block value that formats the element's contents as if it were a block-level

element, but formats the element itself as if it were an inline element. This normally just means
there's extra margins and padding around the element's content, but no line breaks before or after it.

13.5.3 List Elements

An element whose display property is set to list-item is also formatted as a block-level element.
However, a bullet is inserted at the beginning of the block. The list-style-type, list-style-
image, and list-style-position properties control which character or image is used for a bullet

and exactly how the list is indented. For example, this rule would format the steps as a numbered list
rather than rendering them as a single paragraph:

step {

 display: list-item;

 list-style-type: decimal;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 list-style-position: inside

}

13.5.4 Hidden Elements

An element whose display property is set to none is not included in the rendered document the

reader sees. It is invisible and does not occupy any space or affect the placement of other elements.
For example, this style rule hides the story element completely:

story {display: none}

13.5.5 Table Elements

There are 10 display values that identify elements as parts of a table. These are:

table table-row

inline-table table-column-group

table-row-group table-column

table-header-group table-cell

table-footer-group table-caption

These display values have the obvious meanings by analogy with HTML 4.0 table tags. Their use
should be consistent with each other and with other elements in the document. For instance, an
element formatted as a table-row element should have a parent element formatted as a table and
child elements formatted as table cells. For example, these three rules format the ingredients as a
simple table:

ingredients { display: table }

ingredient { display: table-row }

quantity, component { display: table-cell }

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.6 Pixels, Points, Picas, and Other Units of Length

Many CSS properties represent lengths. Some of the most important (though far from all) of these
include:

border-width margin-bottom

font-size left

line-height top

margin-left height

margin-top width

margin-right

CSS provides many different units to specify length. They fall into two groups:

Absolute units of length, such as inches, centimeters, millimeters, points, and picas

Relative units, such as ems, exes, pixels, and percentages

Absolute units of length are appropriate for printed media (that is, paper), but they should be
avoided in other media. Relative units should be used for all other media, except for pixels, which
probably shouldn't be used at all. For example, this style rule sets the dish element to be exactly 0.5

centimeters high:

dish { height: 0.5cm }

However, documents intended for display on screen media like television sets and computer monitors
should not be set to fixed sizes. For one thing, the size of an inch or other absolute unit can vary
depending on the resolution of the monitor. For another, not all users like the same defaults, and
what looks good on one monitor may be illegible on another. Instead, you should use units that are
relative to something, such as an em, which is relative to the width of the uppercase letter M, in the
current font, or ex, which is relative to the height of the lowercase letter x in the current font. For
example, this rule sets the line-height property of the story element to 1.5 times the height of the

letter x:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

story { line-height: 1.5ex}

Pixel is also a relative unit, although what it's relative to is the size of a pixel on the current display.
This is generally somewhere in the vicinity of a point, but it can vary from system to system. In
general, we don't recommend using pixels unless you need to line something up with a bitmapped
graphic displayed at exactly a 1:1 ratio. Web pages formatted with pixel lengths invariably look too
small or too large on most users' monitors.

One very useful technique is to specify lengths as percentages of some other length, which varies
from property to property. For instance, if the line-height is given as a percentage, then it's
calculated with respect to the font-height of the same element. These two rules set the font-
height of the dish element to 0.5 centimeters and the line-height of the dish element to 0.75

centimeters:

dish { font-height: 0.5cm }

dish { line-height: 150% }

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.7 Font Properties

Fonts are one of the most basic things designers want to set with CSS. Is the text italic? Is it bold?
What typeface and size are used? CSS provides properties to set all these basic characteristics of
text. In particular, you can set these properties:

font-family

This is a list of font names, separated by commas, in order of preference. The last name in the
list should always be one of the generic names: serif, sans-serif, monospace, cursive, or
fantasy. Multiword names like "Times New Roman" should be enclosed in quotes.

font-style

The value italic indicates that an italic version of the font should be used if one is available.
The value oblique suggests that the text should be algorithmically slanted, as opposed to
using a specially designed italic font. The default is normal (no italicizing or slanting). An
element can also be set to inherit the font-style of the parent element.

font-size

This is the size of the font. This should be specified as one of the values xx-small, x-small,
small, medium, large, x-large, or xx-large. Alternately, it can be given as a percentage of
the font-size of the parent element. It can also be specified as a length like 0.2cm or 12pt,

but this should only be done for print media.

font-variant

If this property is set to small-caps, then lowercase text is rendered in smaller capitals like

this instead of normal lowercase letters.

font-weight

This property determines how bold or light the text is. It's generally specified as one of the
keywords normal (the default), bold, bolder, or lighter. It can also be set to any multiple of
100 from 100 (lightest) to 900 (darkest). However, not all browsers provide nine different

levels of boldness.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

font-stretch

This property adjusts the space between letters to make the text more or less compact. Legal
values include normal (the default), wider, narrower, ultra-condensed, extra-condensed,
condensed, semi-condensed, semi-expanded, expanded, extra-expanded, and ultra-
expanded.

For example, this style rule uses all of the previous properties to make the dish element a suitably

impressive headline:

dish {

 font-family: Helvetica, Arial, sans-serif;

 font-size: x-large;

 font-style: italic;

 font-variant: small-caps;

 font-weight: 900;

 font-stretch: semi-expanded

}

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.8 Text Properties

Text properties cover those aspects of text formatting other than what can be adjusted merely by
changing the font. These include how far the text is indented, how the paragraph is aligned, and so
forth. The most common of these properties include:

text-indent

The text-indent property specifies how far in to indent the first line of the block. (Indents of

all lines are generally applied via margin properties.) Hanging indents can be specified by
making text-indent negative. This property only applies to block-level elements. For example,
this style rule indents the first line of the story element by 0.5 inches from the left side:

story { text-indent: 0.5in }

text-align

The text-align property can be set to left, right, center, or justify to align the text with

the left edge of the block or the right edge of the block, to center the text in the block, or to
spread the text out across the block. This property only applies to block-level elements.

text-decoration

The text-decoration property can be set to underline, overline, line-through, or blink

to produce the obvious effects. Note, however, that the CSS specification specifically allows
browsers to ignore the request to make elements blink. This is a good thing.

text-transform

The text-transform property has three main values: capitalize, uppercase, and
lowercase. Uppercase changes all the text to capital letters LIKE THIS. Lowercase changes all
the text to lowercase letters like this. Capitalize simply uppercases the first letter of each
word Like This, but leaves the other letters alone. The default value of this property is none,
which performs no transformation. It can also be set to inherit to indicate that the same

transform as used on the parent element should be used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Changing the case in English is fairly straightforward, but this isn't true of all
languages. In particular, software written by native English speakers tends to
do a very poor job of algorithmically changing the case in ligature-heavy
European languages, like Maltese, or context-sensitive languages, like Arabic.
Outside of English text, it's best to make the transformations directly in the
source document rather than relying on the stylesheet engine to make the
correct decisions about which letters to capitalize.

white-space

The white-space property determines whether text is wrapped. It has four legal values in
CSS2: normal, pre, nowrap, and inherit. CSS 2.1 adds pre-wrap and pre-line. normal is,

of course, the default and simply means to wrap the text wherever convenient, much as is
done in this paragraph. pre means to preserve all line breaks and whitespace in the document,
as does the pre element in HTML. nowrap means that runs of whitespace can be condensed,
but that line breaks will not be inserted. pre-wrap means that the text can be wrapped but

runs of whitespace will not be compressed to a single space. Furthermore, all line breaks in the
source will still be line breaks in the formatted document. Pre-line means runs of whitespace

will be compressed, but line breaks will not be changed to spaces. In other words, all line
breaks are preserved and others may be added as necessary. Finally, inherit simply takes on

the same behavior as the parent element.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.9 Colors

CSS has several properties for changing the color of various items:

color

The color of the text itself (black on this page)

background-color

The color of the background behind the text (white on this page)

border-color

The color of a visible box surrounding the text

CSS uses a 24-bit color space to specify colors, much as HTML does. Always keep in mind, however,
that just because you can specify a color doesn't mean any given device can render it. A black-and-
white printer isn't going to print red no matter how you identify it; it might give you some nice
shades of gray though. Like many other properties, color depends on the medium in which the
document is presented.

The simplest way to choose a color is through one of these 16 named constants: aqua, black, blue,
fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver, teal, white, and yellow.
CSS 2.1 adds orange to this list. There are also a number of colors that are defined to be the same
as some part of the user interface. For instance, WindowText is the same color as text in windows on

the local system.

Beyond this small list, you can specify the color of an item by specifying the three components-red,
green, and blue-of each color, much as you do for background colors on HTML pages. Each
component is given as a number between 0 and 255, with 255 being the maximum amount of the
color. Numbers can be given in decimal or hexadecimal. For example, these rules use hexadecimal
syntax to color the dish element pure red, the story element pure green, and the directions

element pure blue:

dish { color: #FF0000 }

story { color: #00FF00 }

directions { color: #0000FF }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you prefer, you can specify the color as decimals separated by commas inside an rgb() function.
For example, white is rgb(255,255,255); black is rgb(0,0,0). Colors in which each component is
equal form various shades of gray. These rules use decimal syntax to color the ingredient element
a light shade of gray but its quantity child element a darker shade of gray:

ingredient { color: rgb(43,43,43) }

quantity { color: rgb(21,21,21) }

You can also specify the color as percentages of each primary color from 0 to 100%. For example,
the previous rules can be rewritten like this:

ingredient { color: rgb(16.9%,16.9%,16.9%) }

quantity { color: rgb(8.2%,8.2%,8.2%) }

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 14. XSL Formatting Objects (XSL-
FO)
The previous chapter covered CSS; this chapter discusses XSL-FO. In distinct contrast to CSS, XSL-
FO is a complete XML application for describing the precise layout of text on a page. It has elements
that represent sequences of pages, blocks of text on the pages, graphics, horizontal rules, and more.
Most of the time, however, you don't write XSL-FO directly. Instead, you write an XSLT stylesheet
that transforms your document's native markup into XSL-FO. The application rendering the document
reads the XSL-FO and displays it to the user. Since no major browsers currently support direct
rendering of XSL-FO documents, there's normally a third step in which another processor transforms
the XSL-FO into a readable format, such as PDF or TEX.

Once again, we demonstrate the features of XSL-FO by applying it to the simple well-formed XML
document shown in Example 13-1 (in the last chapter) and repeated here in Example 14-1 for
convenience.

Example 14-1. Marjorie Anderson's recipe for Southern Corn Bread

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<recipe source="Marjorie Anderson">

 <dish>Southern Corn Bread</dish>

 <ingredients>

 <ingredient>

 <quantity>1 cup</quantity>

 <component>flour</component>

 </ingredient>

 <ingredient>

 <quantity>4 tablespoons</quantity>

 <component>Royal Baking Powder</component>

 </ingredient>

 <ingredient>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <quantity>1/2 teaspoon</quantity>

 <component>salt</component>

 </ingredient>

 <ingredient>

 <quantity>1 cup</quantity>

 <component>corn meal</component>

 </ingredient>

 <ingredient>

 <quantity>11/2 cups</quantity>

 <component>whole milk</component>

 </ingredient>

 <ingredient>

 <quantity>4 tablespoons</quantity>

 <component>melted butter</component>

 </ingredient>

 </ingredients>

 <directions>

 <step>Sift flour, baking powder, sugar & salt together.</step>

 <step>Add 1 cup corn meal.</step>

 <step>

 Beat egg in cup and add beaten egg and 1 1/2 cups whole

 milk to make a batter. Stir well.

 </step>

 <step>

 Add melted shortening and beat until light and thoroughly mixed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </step>

 <step>

 Pour into greased shallow pan or greased muffin rings.

 </step>

 <step>

 Bake in hot oven at <temperature>425

 F</temperature> for

 <duration>25 minutes</duration>.

 </step>

 <step optional="yes">

 Cut into squares if cooked in shallow pan.

 </step>

 </directions>

 <story>

 After my mother-in-law <person>Marjorie Anderson</person> died,

 Beth and I found this recipe written on the "extra recipes"

 page in a local cookbook in her cupboard.

 This was published by the The Episcopal Churchwomen,

 Church of Ascension, <city>Mt. Sterling</city>,

 <state>Kentucky</state>.

 </story>

</recipe>

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

14.1 XSL Formatting Objects

An XSL-FO document describes the layout of a series of nested rectangular areas (boxes, for short)
that are placed on one or more pages. These boxes contain text or occasionally other items, such as
an external image or a horizontal rule. There are four kinds of areas:

Block areas

Inline areas

Line areas

Glyph areas

Block and inline areas are created by particular elements in the formatting objects document. Line
and glyph areas are created by the formatter as necessary. For the most part, the rendering engine
decides exactly where to place the areas and how big to make them based on their contents.
However, you can specify properties for these areas that adjust both their relative and absolute
position, spacing, and size on a page. Most of the time, the individual areas don't overlap. However,
they can be forced to do so by setting the properties absolute-position, left, bottom, right, and
top.

Considered by itself, each box has a content area in which its content, generally text but possibly an
image or a rule, is placed. This content area is surrounded by a padding area of blank space. An
optional border can surround the padding. The size of the area is the combined size of the border,
padding, and content. The box may also have a margin that adds blank space outside the box's area,
as diagramed in Figure 14-1.

Figure 14-1. Content, padding, border, and margin of an XSL-FO area

Text properties-such as font-family, font-size, alignment, and font-weight-can be applied by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attaching the appropriate properties to one of the boxes that contains the text. Text takes on the
properties specified on the nearest enclosing box. Properties are set by attaching attributes to the
elements that generate the boxes. With the exception of a few XSL-FO extensions, these properties
have the same semantics as the CSS properties of the same name. Only the syntax for applying the
properties to particular ranges of text is different.

The elements in the XSL-FO document do not map in a one-to-one fashion to the areas on the page.
Instead, the XSL-FO document contains a slightly more abstract representation of the document. The
formatting software uses the XSL-FO elements to decide which areas to create and where to place
them. In the process, it will split the large blocks into smaller line and glyph areas. It may also split
single block areas that the XSL-FO document describes into multiple block areas if a page break is
required in the middle of a large block, although XSL-FO does let you prevent these breaks if
necessary. The formatter also generates the correct number of pages for the content that's found. In
short, the XSL-FO document contains hints and instructions that the formatter uses to decide where
to place items on which pages, but you do not need to specify the exact position of each and every
box.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

14.2 The Structure of an XSL-FO Document

The root element of all XSL-FO documents is fo:root. This element normally declares the fo prefix
mapped to the http://www.w3.org/1999/XSL/Format namespace URI. As always, the prefix can
change as long as the URI stays the same. In this chapter, we assume that the prefix fo has been
associated with http://www.w3.org/1999/XSL/Format. Thus, a typical FO document looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <!-- Formatting object elements -->

</fo:root>

Of course, normally this isn't written as directly as it is here. Instead, it's formed by an XSLT
template like this one:

<xsl:template match="/">

 <fo:root>

 <xsl:apply-templates/>

 </fo:root>

</xsl:template>

The fo:root element must contain two things: a fo:layout-master-set and one or more fo:page-
sequence s. The fo:layout-master-set contains elements describing the overall layout of the pages

themselves; that is, how large the pages are, whether they're in landscape or portrait mode, how
wide the margins are, and so forth. The fo:page-sequence contains the actual text that will be

placed on the pages, along with the instructions for formatting that text as italic, 20 points high,
justified, and so forth. It has a master-reference attribute identifying the particular page master

that will be used to layout this content. Adding these elements, a formatting objects document looks
like this:

<?xml version="1.0" encoding="UTF-8"?>

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <fo:layout-master-set>

 <!-- page masters -->

http://www.w3.org/1999/XSL/Format
http://www.w3.org/1999/XSL/Format
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </fo:layout-master-set>

 <fo:page-sequence master-reference="first">

 <!-- data to place on the page -->

 </fo:page-sequence>

</fo:root>

The formatting engine uses the layout master set to create a page. Then it adds content to the page
from the fo:page-sequence until the page is full. Then it creates the next page in the sequence and

places the next batch of content on that page. This process continues until all the content has been
positioned.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

14.3 Laying Out the Master Pages

XSL-FO 1.0 only defines one kind of master page, the fo:simple-page-master. This represents a

standard rectangular page with margins on all four sides. This page master also has a unique name
given by a master-name attribute. For example, this element describes a page master named first

that represents an 8.5 11-inch page with 1-inch margins on all four sides:

<fo:simple-page-master margin-right="1in" margin-left="1in"

 margin-bottom="1in" margin-top="1in"

 page-width="8.5in" page-height="11in"

 master-name="first">

 <!-- Separate parts of the page go here -->

</fo:simple-page-master>

The part of the page inside the margins is divided into five regions: the start region, the end region,
the before region, the after region, and the body region. Where these fall on a page depends on the
writing direction. In left-to-right, top-to-bottom languages like English, start is on the lefthand side,
end is on the righthand side, before is on top, and after is on bottom, as diagramed in Figure 14-2.
However, if the text were Hebrew, then the start region would be on the right-hand side of the page,
and the end region would be on the lefthand side of the page. If the text were traditional Chinese,
then the start would be on top, the end on bottom, the before on the righthand side, and the after on
the lefthand side. Other combinations are possible.

Figure 14-2. The five regions in a left-to-right, top-to-bottom writing
system

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These regions are represented by fo:region-start, fo:region-end, fo:region-before,
fo:region-after, and fo:region-body child elements of the fo:simple-page-master element.

You can place different content into each of the five regions. For instance, the after region often
contains a page number, and the before region may contain the title of the book or chapter.

The body region and the corresponding fo:region-body element are required. The other four are

optional. By default, the body region takes up the entire page, and the other four regions have zero
area. To specify this simplest page, you add an empty fo:region-body child element to the
fo:simple-page-master element like this:

<fo:simple-page-master margin-right="1in" margin-left="1in"

 margin-bottom="1in" margin-top="1in"

 page-width="8.5in" page-height="11in"

 master-name="first">

 <fo:region-body/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</fo:simple-page-master>

However, you can add extent attributes to the four nonbody regions to specify the height of the

before and after regions and the width of the start and end regions. Then the region body should
have margin properties that are at least as large as the extent of each region to push it out of the
way of each nonbody region. Otherwise, content placed in the body will be drawn on top of content
placed in the other four regions. For example, this fo:simple-page-master element has 0.5-inch

margins on each side, representing the unprintable area on many common printers. The start and
end regions are 0.5 inches wide. The before and after regions are 1 inch wide. The body has margins
that match the region sizes.

<fo:simple-page-master margin-right="0.5in" margin-left="0.5in"

 margin-bottom="0.5in" margin-top="0.5in"

 page-width="8.5in" page-height="11in"

 master-name="first">

 <fo:region-before extent="0.5in"/>

 <fo:region-after extent="0.5in"/>

 <fo:region-start extent="0.5in"/>

 <fo:region-end extent="0.5in"/>

 <fo:region-body margin-top="1.0in" margin-bottom="1.0in "

 margin-left="0.5in" margin-right="0.5in"/>

</fo:simple-page-master>

Most of the time, the details of the layout-master set are fixed in the stylesheet. For example, here's
the revised XSLT template that includes a full fo:layout-master-set:

<xsl:template match="/">

 <fo:root>

 <fo:layout-master-set>

 <fo:simple-page-master margin-right="1in" margin-left="1in"

 margin-bottom="1in" margin-top="1in"

 page-width="8.5in" page-height="11in"

 master-name="first">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <fo:region-body/>

 </fo:simple-page-master>

 </fo:layout-master-set>

 <fo:page-sequence master-reference="first">

 <!-- data to place on the page -->

 </fo:page-sequence>

 </fo:root>

</xsl:template>

14.3.1 Flowing Content into the Pages

Next, add an fo:flow child to the fo:page-sequence where the actual text of the transformed
document appears. This element has a flow-name attribute specifying which region of the page its
content will flow into. Possible values include xsl-region-body, xsl-region-start, xsl-region-
end, xsl-region-before, and xsl-region-after.

The formatter instantiates a page based on the page master named by the fo:page-sequence's
master-reference attribute, fills one of its regions with content from the fo:flow element until the
page is full, then instantiates a second page, fills it with more content from the fo:flow, instantiates
a third page, and continues this process until it's used up all the data in the fo:flow.

The fo:flow element must contain block-level formatting object elements. The most basic of these is
fo:block. Others include fo:block-container, fo:list-block, fo:table, and fo:table-and-
caption. We'll begin with the most basic, fo:block. A fo:block can contain a combination of raw
text and formatting objects, such as fo:external-graphic, fo:inline, fo:page-number,
fo:footnote, and even other fo:block elements. For the moment, we'll restrict ourselves to simple
text. For example, here's a basic fo:flow for the recipe:

<fo:flow flow-name="xsl-region-body">

 <fo:block>Southern Corn Bread</fo:block>

 <fo:block>1 cup flour</fo:block>

 <fo:block>4 tablespoons Royal Baking Powder</fo:block>

 <fo:block>1/2 teaspoon salt</fo:block>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <fo:block>1 cup corn meal</fo:block>

 <fo:block>11/2 cups whole milk</fo:block>

 <fo:block>4 tablespoons melted butter</fo:block>

 <fo:block>Sift flour, baking powder, sugar & salt together.

 Add 1 cup corn meal.

 Beat egg in cup and add beaten egg and 11/2 cups whole

 milk to make a batter. Stir well.

 Add melted shortening and beat until light and thoroughly mixed.

 Pour into greased shallow pan or greased muffin rings.

 Bake in hot oven at 425° F for 25 minutes!

 Cut into squares if cooked in shallow pan.</fo:block>

 <fo:block>After my mother-in-law Marjorie Anderson died,

 Beth and I found this recipe written on the "extra recipes"

 page in a local cookbook in her cupboard.

 This was published by the The Episcopal Churchwomen,

 Church of Ascension, Mt. Sterling, Kentucky.</fo:block>

</fo:flow>

Here's an XSLT template that produces the content of this fo:flow element (modulo insignificant

whitespace) from Example 14-1 through judicious use of the default template rules:

<xsl:template match="dish|ingredient|directions|story">

 <fo:block><xsl:apply-templates/></fo:block>

</xsl:template>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.3.2 Generating the Finished Document

We now have the minimum set of pieces needed to put together a full XSL-FO document. Example
14-2 is an XSLT stylesheet that transforms documents like Example 14-1 into XSL Formatting Objects
documents.

Example 14-2. An XSLT to XSL-FO transform

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <xsl:template match="/">

 <fo:root>

 <fo:layout-master-set>

 <fo:simple-page-master margin-right="1in" margin-left="1in"

 margin-bottom="1in" margin-top="1in"

 page-width="8.5in" page-height="11in"

 master-name="first">

 <fo:region-body/>

 </fo:simple-page-master>

 </fo:layout-master-set>

 <fo:page-sequence master-reference="first">

 <fo:flow flow-name="xsl-region-body">

 <xsl:apply-templates/>

 </fo:flow>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </fo:page-sequence>

 </fo:root>

 </xsl:template>

 <xsl:template match="dish|ingredient|directions|story">

 <fo:block><xsl:apply-templates/></fo:block>

 </xsl:template>

</xsl:stylesheet>

Example 14-3 shows the complete XSL-FO document produced by running the cornbread recipe
through an XSLT engine, such as Xalan, with this stylesheet. The whitespace is a little off because of
the way XSLT treats whitespace in the transform document. However, this won't be significant when
the document is rendered.

Example 14-3. An XSL-FO document describing a recipe for cornbread

<?xml version="1.0" encoding="utf-8"?>

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<fo:layout-master-set>

<fo:simple-page-master margin-right="1in" margin-left="1in"

margin-bottom="1in" margin-top="1in" page-width="8.5in" page-height="11in"

master-name="first"><fo:region-body/></fo:simple-page-master>

</fo:layout-master-set><fo:page-sequence master-reference="first">

<fo:flow flow-name="xsl-region-body">

 <fo:block>Southern Corn Bread</fo:block>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <fo:block>

 1 cup

 flour

 </fo:block>

 <fo:block>

 4 tablespoons

 Royal Baking Powder

 </fo:block>

 <fo:block>

 1/2 teaspoon

 salt

 </fo:block>

 <fo:block>

 1 cup

 corn meal

 </fo:block>

 <fo:block>

 11/2 cups

 whole milk

 </fo:block>

 <fo:block>

 4 tablespoons

 melted butter

 </fo:block>

 <fo:block>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Sift flour, baking powder, sugar & salt together.

 Add 1 cup corn meal.

 Beat egg in cup and add beaten egg and 1 1/2 cups whole

 milk to make a batter. Stir well.

 Add melted shortening and beat until light and thoroughly mixed.

 Pour into greased shallow pan or greased muffin rings.

 Bake in hot oven at 425

 F for

 25 minutes.

 Cut into squares if cooked in shallow pan.

 </fo:block>

 <fo:block>

 After my mother-in-law Marjorie Anderson died,

 Beth and I found this recipe written on the "extra recipes"

 page in a local cookbook in her cupboard.

 This was published by the The Episcopal Churchwomen,

 Church of Ascension, Mt. Sterling,

 Kentucky.

 </fo:block>

</fo:flow></fo:page-sequence></fo:root>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The final step in this process is to convert the formatting objects document into some other format
that can be viewed on screen or on paper. This requires running a formatting program such as the
Apache XML Project's open source FOP (http://xml.apache.org/fop/). FOP is a Java program. At the
time of this writing, it has some significant holes in its coverage, but it is making progress. It includes
shell scripts for DOS and Windows that set up the classpath and launch the Java program. For
example, on Windows, this command line transforms the file cornbread.fo into a PDF document:

C:\> fop -fo cornbread.fo -pdf cornbread.pdf

FOP can also transform XSL-FO documents into plain text, raw PostScript, a PCL file, SVG slides, or
display it on the screen using the Java 2D API. This command produces the window shown in Figure
14-3.

Figure 14-3. The XSL-FO recipe document in FOP's AWT preview

There are several other programs for working with XSL-FO documents:

RenderX's XEP (http://xep.xattic.com) is a payware Java XSL-FO-to-PDF converter program
much like FOP.

Sebastian Rahtz's PassiveTEX (http://www.hcu.ox.ac.uk/TEI/Software/passivetex/) is an open
source collection of TeX macros for converting XSL-FO documents to TeX. A reasonably modern
TeX distribution is required.

The Antenna House XSL Formatter (http://www.antennahouse.com) is a payware Windows
program that can print and display XSL-FO documents using the Windows GDI.

http://xml.apache.org/fop/
http://xep.xattic.com
http://www.hcu.ox.ac.uk/TEI/Software/passivetex/
http://www.antennahouse.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

IBM's XSL Formatting Objects Composer (http://www.alphaworks.ibm.com/tech/xfc) is a free-
as-in-beer Java program that implements a "substantial portion" of XSL Formatting Objects 1.0.
It can display XSL-FO documents on the screen or convert them to PDF.

 < Day Day Up >

http://www.alphaworks.ibm.com/tech/xfc
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

14.4 XSL-FO Properties

The finished document shown in Figure 14-3 is quite spartan. It simply breaks the original XML
document into a few separate paragraphs. After quite a lot of work, it still hasn't reached the polish
that was achieved much more simply with CSS (back in the last chapter in Example 13-2 and Figure
13-1). Adding the sparkle of different fonts, bold headlines, bulleted lists, and other desirable features
requires setting the relevant properties on the individual formatting objects. These are set through
optional attributes of the formatting object elements like fo:block. The good news is that most of

the property names and semantics are exactly the same as they are for CSS. For example, to make
the text in an fo:block element bold, add a font-weight attribute with the value bold, like this:

<fo:block font-weight="bold">Southern Corn Bread</fo:block>

The similarity with the equivalent CSS rule is obvious:

dish { font-weight: bold }

The property name is the same. The property value is the same. The meaning of the property is the
same. Similarly, you can use all the font-weight keywords and values that you learned for CSS, like
lighter and 100, 200, 300, 400, etc. Only the syntactic details of how the value bold is assigned to
the property font-weight and how that property is then attached to the dish element has changed.

When XSL-FO and CSS converge, they do so closely.

Many other properties come across from CSS by straight extrapolation. For instance, in Example 13-2
the dish element was formatted with this rule:

dish {

 display: block;

 font-family: Helvetica, Arial, sans-serif;

 font-size: 20pt;

 font-weight: bold;

 text-align: center

}

In XSL-FO, it will be formatted with this XSLT template:

<xsl:template match="dish">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <fo:block font-family="Helvetica, Arial, sans-serif" font-size="20pt"

 font-weight="bold" text-align="center">

 <xsl:apply-templates/>

 </fo:block>

</xsl:template>

Similarly, the margin properties set the margins on the various elements:

<xsl:template match="directions|story">

 <fo:block margin-top="12pt" margin-left="4pt">

 <xsl:apply-templates/>

 </fo:block>

</xsl:template>

In a few cases, CSS properties become XSL-FO elements rather than attributes. For instance, to
format the ingredients as a bulleted list, we have to use the fo:list-block, fo:list-item,
fo:list-item-label, and fo:list-item-body elements. This XSLT template does that:

<xsl:template match="ingredient">

 <fo:list-item>

 <!-- Unicode Bullet Character -->

 <fo:list-item-label>•</fo:list-item-label>

 <fo:list-item-body><xsl:apply-templates/></fo:list-item-body>

 </fo:list-item>

</xsl:template>

We now have the pieces needed to put together a more attractive XSL-FO document. Example 14-4
is an XSLT stylesheet that transforms documents like Example 14-1 into XSL-FO documents.

Example 14-4. An XSLT-to-XSL-FO transform

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <xsl:template match="/">

 <fo:root>

 <fo:layout-master-set>

 <fo:simple-page-master margin-right="1in" margin-left="1in"

 margin-bottom="1in" margin-top="1in"

 page-width="8.5in" page-height="11in"

 master-name="first">

 <fo:region-body/>

 </fo:simple-page-master>

 </fo:layout-master-set>

 <fo:page-sequence master-reference="first">

 <fo:flow flow-name="xsl-region-body">

 <xsl:apply-templates/>

 </fo:flow>

 </fo:page-sequence>

 </fo:root>

 </xsl:template>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <xsl:template match="recipe">

 <fo:block font-family="Times, 'Times New Roman', serif"

 font-size="12pt">

 <xsl:apply-templates/>

 </fo:block>

 </xsl:template>

 <xsl:template match="dish">

 <fo:block font-family="Helvetica, Arial, sans-serif" font-size="20pt"

 font-weight="bold" text-align="center">

 <xsl:apply-templates/>

 </fo:block>

 </xsl:template>

 <xsl:template match="directions|story">

 <fo:block margin-top="12pt" margin-left="4pt">

 <xsl:apply-templates/>

 </fo:block>

 </xsl:template>

 <xsl:template match="ingredients">

 <fo:list-block><xsl:apply-templates/></fo:list-block>

 </xsl:template>

 <xsl:template match="ingredient">

 <fo:list-item>

 <!-- Unicode Bullet Character -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <fo:list-item-label>

 <fo:block>•</fo:block>

 </fo:list-item-label>

 <fo:list-item-body>

 <fo:block><xsl:apply-templates/></fo:block>

 </fo:list-item-body>

 </fo:list-item>

 </xsl:template>

</xsl:stylesheet>

Example 14-5 shows the XSL-FO document produced by applying the previous transform to the
cornbread recipe in Example 14-1. The whitespace has been cleaned up a little by hand, although
that won't affect the final rendered result.

Example 14-5. An XSL-FO document describing a recipe for cornbread

<?xml version="1.0" encoding="utf-8"?>

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <fo:layout-master-set>

 <fo:simple-page-master margin-right="1in" margin-left="1in"

 margin-bottom="1in" margin-top="1in" page-width="8.5in"

 page-height="11in" master-name="first">

 <fo:region-body/>

 </fo:simple-page-master>

 </fo:layout-master-set>

 <fo:page-sequence master-reference="first">

 <fo:flow flow-name="xsl-region-body">

 <fo:block font-family="Times, 'Times New Roman', serif"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 font-size="12pt">

 <fo:block font-family="Helvetica, Arial, sans-serif"

 font-size="20pt" font-weight="bold"

 text-align="center">Southern Corn Bread</fo:block>

 <fo:list-block>

 <fo:list-item><fo:list-item-label><fo:block>·</fo:block>

 </fo:list-item-label><fo:list-item-body><fo:block>

 1 cup

 flour

 </fo:block></fo:list-item-body></fo:list-item>

 <fo:list-item><fo:list-item-label><fo:block>·</fo:block>

 </fo:list-item-label><fo:list-item-body><fo:block>

 4 tablespoons

 Royal Baking Powder

 </fo:block></fo:list-item-body></fo:list-item>

 <fo:list-item><fo:list-item-label><fo:block>·</fo:block>

 </fo:list-item-label><fo:list-item-body><fo:block>

 1/2 teaspoon

 salt

 </fo:block></fo:list-item-body></fo:list-item>

 <fo:list-item><fo:list-item-label><fo:block>·</fo:block>

 </fo:list-item-label><fo:list-item-body><fo:block>

 1 cup

 corn meal

 </fo:block></fo:list-item-body></fo:list-item>

 <fo:list-item><fo:list-item-label><fo:block>·</fo:block>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </fo:list-item-label><fo:list-item-body><fo:block>

 11/2 cups

 whole milk

 </fo:block></fo:list-item-body></fo:list-item>

 <fo:list-item><fo:list-item-label><fo:block>·</fo:block>

 </fo:list-item-label><fo:list-item-body><fo:block>

 4 tablespoons

 melted butter

 </fo:block></fo:list-item-body></fo:list-item>

 </fo:list-block>

 <fo:block margin-top="12pt" margin-left="4pt">

 Sift flour, baking powder, sugar & salt together.

 Add 1 cup corn meal.

 Beat egg in cup and add beaten egg and 1 1/2 cups whole

 milk to make a batter. Stir well.

 Add melted shortening and beat until light and thoroughly mixed.

 Pour into greased shallow pan or greased muffin rings.

 Bake in hot oven at 425

 F for

 25 minutes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Cut into squares if cooked in shallow pan.

 </fo:block>

 <fo:block margin-top="12pt" margin-left="4pt">

 After my mother-in-law Marjorie Anderson died,

 Beth and I found this recipe written on the "extra recipes"

 page in a local cookbook in her cupboard.

 This was published by the The Episcopal Churchwomen,

 Church of Ascension, Mt. Sterling,

 Kentucky.

 </fo:block>

</fo:block></fo:flow></fo:page-sequence></fo:root>

This document can be run through a formatter to produce a PDF file for viewing. Figure 14-4 shows
the final result of this process.

Figure 14-4. The recipe document after conversion from XSL-FO to PDF

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XSL-FO does add a number of properties that CSS 2.1 doesn't provide. To name just a few, XSL-FO
has properties to control hyphenation, insert leaders, specify the number of columns on a page, and
determine where page breaks occur and which paragraphs must be kept together. CSS has none of
these. For the most part, XSL-FO's properties are a superset of CSS's properties.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

14.5 Choosing Between CSS and XSL-FO

CSS is a very straightforward, easy-to-learn, easy-to-use language for formatting web pages. To the
extent that CSS has gotten a reputation as buggy and difficult to use, that's mostly because of
inconsistent, nonstandard browser implementations. Opera 4.0 and later, Netscape 6.0 and later,
Mozilla, and Safari provide extensive support for most features of CSS Level 2, with only a few minor
bugs. Internet Explorer's support is much weaker, but it borders on usable.

It's hard to imagine any text-based web site you can't produce by using XSLT to transform a
document into HTML and then applying a CSS stylesheet. Alternately, you can transform the XML
document into another XML document and apply the CSS stylesheet to that. If the element content in
the original XML document is exactly what you want to display in the output document, in the correct
order, you can even omit the XSLT transformation step, as we did in Examples Example 13-1 and
Example 13-2 in the previous chapter.

Perhaps most importantly, CSS is already well-understood by web designers and well-supported by
current browsers. XSL-FO is not directly supported by any browsers. To view an XSL-FO document,
you must first convert it into the inconvenient PDF format. PDF does not adjust as well as HTML to
the wide variety of monitors and screen sizes in use today. Viewing it inside a web browser requires a
special plug-in. The limited open source tools that support XSL-FO are beta quality at best.
Personally, we see little reason to use anything other than CSS on the Web.

On the other hand, XSL-FO does go beyond CSS in some respects that are important for high-quality
printing. For example, XSL-FO offers multiple column layouts; CSS doesn't. XSL-FO can condition
formatting on what's actually in the document; CSS can't. XSL-FO allows you to place footnotes,
running headers, and other information in the margins of a page; CSS doesn't. XSL-FO lets you insert
page numbers and automatically cross-reference particular pages by number; CSS doesn't. And for
printing, the requirement to render into PDF is much less limiting and annoying since the ultimate
delivery mechanism is paper anyway. CSS Level 3 will add some of these features, but it will still
focus on ease-of-use and web-based presentation rather than high-quality printing. Once the
software is more reliable and complete, XSL-FO should be the clear choice for professionally typeset
books, magazines, newspapers, and other printed matter that's rendered from XML documents. It
should be very competitive with other solutions like Quark XPress, TeX, troff, and FrameMaker. CSS
does not even attempt to compete in this area.

The bottom line is this: CSS is right for web pages; XSL-FO is right for printed matter. XSLT is a
crucial step in getting an input document ready for eventual presentation with either CSS or XSL-FO.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 15. Resource Directory Description
Language (RDDL)
RDDL, the Resource Directory Description Language, is an XML application invented by Jonathan
Borden, Tim Bray, and various other members of the xml-dev mailing list to describe XML
applications identified by namespace URLs. A RDDL document lives at the namespace URL for the
application it describes. RDDL is a hybrid of XHTML Basic and one custom element, rddl:resource .
A rddl:resource element is a simple XLink that points to a resource related to the application the

RDDL document describes. Humans with browsers can read the XHTML parts to learn about the
application. Software can read the rddl:resource elements.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

15.1 What's at the End of a Namespace URL?

The people who wrote the namespaces specification couldn't agree on what should be put at the end
of a namespace URL. Should it be a DTD, a schema, a specification document, a stylesheet, software
for processing the application, or something else? All of these are possible, but none of them are
required for any particular XML application. Some applications have DTDs; some don't. Some
applications have schemas; some don't. Some applications have stylesheets; some don't. Thus, for
the most part, namespaces have been purely formal identifiers. They do not actually locate or identify
anything.

"Namespaces in XML" specifically states that "The namespace name, to serve its intended purpose,
should have the characteristics of uniqueness and persistence. It is not a goal that it be directly
usable for retrieval of a schema (if any exists)." That is, it is not required that there be anything in
particular, such as a DTD or a schema, at the end of the namespace URL. Indeed, it's not even
required that the namespace name be potentially resolvable. It might be an irresolvable URN such as
urn:isbn:1565922247. On the other hand, this doesn't say that there can't be anything at the end of

a namespace URL, just that there doesn't have to be.

Nonetheless, this hasn't stopped numerous developers from typing namespace URLs into their web
browser location bars and filling the error logs at the W3C and elsewhere with 404 Not Found errors.
It hasn't stopped weekly questions on the xml-dev mailing list about whether it's possible to parse an
XML document on a system that's disconnected from the Net. Eventually, the membership of the
xml-dev mailing list reached consensus that it was time to put something at the end of namespace
URLs, even if they didn't have to.

However, the question still remained, what to put there? All the reasons for not choosing any one
thing to put at the end of a namespace URL still applied. Rick Jelliffe suggested fixing the problem by
introducing an additional layer of indirection, and Tim Bray proposed doing it with XHTML and XLinks.
Instead of putting just one of these at the end of the namespace URL, an XML document containing a
list of all the things related to the XML application identified by that particular URL could be put at the
end of the namespace URL.

Experience had proven that when presented with a string beginning with http, developers would type
it into a browser location bar.[1] Therefore, the basic syntax of RDDL had to be something that
looked reasonable when loaded into a browser: preferably, HTML. Furthermore, to make machine
processing simple, it also had to be well-formed, perhaps valid, XML. Naturally, XHTML came to mind,
and modular XHTML provided just enough extensibility to permit the extra syntax RDDL needed.

[1] In the immortal words of Claude L. Bullard, "All the handwaving about URN/URI/URL doesn't avoid the simple
fact that if one puts http:// anywhere in browser display space, the system colors it blue and puts up a finger.
The monkey expects a resource and when it doesn't get one, it shocks the monkey. Monkeys don't read specs to
find out why they should be shocked. They turn red and put up a finger."

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

15.2 RDDL Syntax

A RDDL document is an XHTML Basic document, plus one new element: rddl:resource . XHTML Basic is a

subset of XHTML that includes the Structure, Text, Hypertext, List, Basic Forms, Basic Tables, Image, Object,
Metainformation, Link, and Base modules. There are no frames or deprecated presentational elements like
font and bold . However, this is enough to write pretty much anything you'd reasonably want to write about

an XML application.

In addition, a RDDL document contains one new element, resource , which is placed in the
http://www.rddl.org/ namespace. This URL is normally mapped to the rddl prefix. The prefix can change
as long as the URL remains the same. However, the RDDL DTD declares the resource element with the
name rddl:resource , so a RDDL document will be valid only if it uses the prefix rddl .

A rddl:resource element is a simple XLink whose xlink:href attribute points to the related resource and
whose xlink:role and xlink:arcrole attributes identify the nature and purpose of that related resource.
The rddl:resource element can appear anywhere a p element can appear and contain anything a div
element can contain. Web browsers generally ignore the rddl:resource start- and end-tags, but will display
their content. Automated software searching for related resources only pays attention to the rddl:resource

elements and their attributes, while ignoring all the XHTML.

Recall the person vocabulary used several times in this book. When last seen in Chapter 8 , it looked as
shown in Example 15-1 . All elements in this document are in the default namespace
http://www.cafeconleche.org/namespaces/people .

Example 15-1. An XML document describing two people that uses a default
namespace

<?xml version="1.0"?>

<people xmlns="http://www.cafeconleche.org/namespaces/people">

 <person born="1912" died="1954">

 <name>

 <first_name>Alan</first_name>

 <last_name>Turing</last_name>

 </name>

 <profession>computer scientist</profession>

 <profession>mathematician</profession>

http://www.rddl.org/
http://www.cafeconleche.org/namespaces/people
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <profession>cryptographer</profession>

 </person>

 <person born="1918" died="1988">

 <name>

 <first_name>Richard</first_name>

 <middle_initial>P</middle_initial>

 <last_name>Feynman</last_name>

 </name>

 <profession>physicist</profession>

 <hobby>Playing the bongoes</hobby>

 </person>

</people>

Various chapters have developed stylesheets, DTDs, and (still-to-come) schemas for this application.
Example 15-2 is a very simple RDDL document that brings these all together. This document should be
placed at the namespace for that application, http://www.cafeconleche.org/namespaces/people . The
DOCTYPE declaration loads the RDDL DTD rather than the XHTML Basic DTD, but the difference is only in the
addition of the single rddl:resource element. This document is both valid and well-formed. Figure 15-1

shows this document in Mozilla, where it looks like any other HTML document.

Example 15-2. A RDDL document

<!DOCTYPE html PUBLIC "-//XML-DEV//DTD XHTML RDDL 1.0//EN"

 "http://www.rddl.org/rddl-xhtml.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:rddl="http://www.rddl.org/">

<head>

 <title>An XML Application Describing People</title>

http://www.cafeconleche.org/namespaces/people
http://lib.ommolketab.ir
http://lib.ommolketab.ir

</head>

<body>

<h1>An XML Application Describing People</h1>

<rddl:resource xlink:type="simple"

 xlink:href="urn:isbn:0596007647"

 xlink:role="http://dublincore.org/documents/dcmi-type-vocabulary/#text"

 xlink:arcrole="http://www.rddl.org/purposes#normative-reference">

 <p>

 http://www.cafeconleche.org/namespaces/people is the namespace URL

 for an XML application describing people in a record-like

 fashion used as an example in <cite>XML in a Nutshell</cite>, third

 edition by Elliotte Rusty Harold and W. Scott Means (O'Reilly Media,

 2004).

 </p>

</rddl:resource>

<h2>Related Resources</h2>

<p>

 Several examples in this book address this application in one way or

 another. These include:

</p>

 <rddl:resource xlink:type="simple"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xlink:href="http://www.cafeconleche.org/books/xian3/examples/03/3-5.dtd"

 xlink:role="http://www.isi.edu/in-notes/iana/assignments/media-types/application/xml-dtd"

 xlink:arcrole="http://www.rddl.org/purposes#validation">

 Example 3-1: A data oriented DTD describing people

 </rddl:resource>

<rddl:resource xlink:type="simple"

 xlink:href="http://www.cafeconleche.org/books/xian3/examples/08/8-15.xsl"

 xlink:role="http://www.w3.org/1999/XSL/Transform"

 xlink:arcrole="http://www.isi.edu/in-notes/iana/assignments/media-types/text/html">

 Example 8-15: An XSLT stylesheet for people documents

 </rddl:resource>

<p>

 This document itself is

 Example 15-2 from the RDDL chapter.

</p>

</body>

</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 15-1. To a web browser, a RDDL document is just another HTML
document

This document contains three rddl:resource elements indicating related resources. Two of them are inside

list items, and one of them contains a paragraph at the top of the page. The first one links to the unofficial
specification for the people application, this book itself. The xlink:href attribute uses an isbn URI to
identify the book. The xlink:role contains a URL from the Dublin Core that indicates that the nature of this
resource is text. The xlink:arcrole attribute contains a well-known URL defined in the RDDL specification

to indicate that the purpose of this resource is normative reference.

The second rddl:resource element points to the DTD first defined in Chapter 3 . Its nature is indicated by a
MIME media type URL, and its purpose is validation. The xlink:href attribute links to the actual location of
the DTD. However, a typical browser won't recognize this, so the rddl:resource element contains an
ordinary HTML a link that the browser will color blue and the user can click on. It's not uncommon to

duplicate markup in a RDDL document-one set of tags for the machines and another set of tags for the
humans-each of which say pretty much the same thing.

The final rddl:resource element points to the XSLT stylesheet defined in Chapter 8 . Here the xlink:role

attribute contains the namespace URI for XSLT, indicating that this resource is an XSLT stylesheet. The
xlink:arcrole attribute contains the MIME media type URL for HTML, indicating that this stylesheet will

transform documents into HTML.

This is a very simple example. A real-world RDDL document would contain a lot more HTML to tell people
reading it in a browser just what the application was about. Machines will ignore the HTML and look at the
xlink:role and xlink:arcrole attributes to figure out exactly what they can do with each related resource.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

15.3 Natures

The nature of a related resource says what the resource is. For example, the nature of a web page
might be HTML, and the nature of an image might be JPEG. The nature is indicated by a URL.
Normally, this nature URL is a namespace URL for XML applications and a MIME media type URL for
everything else. For instance, the XSLT nature is written as http://www.w3.org/1999/XSL/Transform.
The JPEG nature is written as http://www.isi.edu/in-notes/iana/assignments/media-
types/image/jpeg.

The RDDL specification specifies 24 natures that can be used in xlink:role attributes. In addition,

you are welcome to define your own, but, when possible, you should use the standard natures so
that automated software can understand your documents and locate the necessary related
resources. These are the standard natures and their URLs:

CSS stylesheet http://www.isi.edu/in-notes/iana/assignments/media-types/text/css

DTD
http://www.isi.edu/in-notes/iana/assignments/media-
types/application/xml-dtd

A mailbox http://www.rddl.org/natures#mailbox

Generic HTML
http://www.isi.edu/in-notes/iana/assignments/media-
types/text/html

HTML 4.0 http://www.w3.org/TR/html4/

HTML 4 Strict http://www.w3.org/TR/html4/strict

HTML 4 Transitional http://www.w3.org/TR/html4/transitional

HTML 4 Frameset http://www.w3.org/TR/html4/frameset

XHTML http://www.w3.org/1999/xhtml

XHTML 1.0 Strict http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict

XHTML 1.0 Transitional http://www.w3.org/TR/xhtml/1/DTD/xhtml/1-transitional

RDF schema http://www.w3.org/2000/01/rdf-schema#

RELAX core grammar http://www.xml.gr.jp/xmlns/relaxCore

RELAX namespace grammar http://www.xml.gr.jp/xmlns/relaxNamespace

Schematron schema http://www.ascc.net/xml/schematron

OASIS Open Catalog http://www.rddl.org/natures#SOCAT

W3C XML Schema Language
schema

http://www.w3.org/2001/XMLSchema

http://www.w3.org/1999/XSL/Transform
http://www.isi.edu/in-notes/iana/assignments/media-
http://www.isi.edu/in-notes/iana/assignments/media-types/text/css
http://www.isi.edu/in-notes/iana/assignments/media-
http://www.rddl.org/natures#mailbox
http://www.isi.edu/in-notes/iana/assignments/media-
http://www.w3.org/TR/html4/
http://www.w3.org/TR/html4/strict
http://www.w3.org/TR/html4/transitional
http://www.w3.org/TR/html4/frameset
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict
http://www.w3.org/TR/xhtml/1/DTD/xhtml/1-transitional
http://www.w3.org/2000/01/rdf-schema#
http://www.xml.gr.jp/xmlns/relaxCore
http://www.xml.gr.jp/xmlns/relaxNamespace
http://www.ascc.net/xml/schematron
http://www.rddl.org/natures#SOCAT
http://www.w3.org/2001/XMLSchema
http://lib.ommolketab.ir
http://lib.ommolketab.ir

XML character data http://www.w3.org/TR/REC-xml.html#dt-chardata

XML escaped text http://www.w3.org/TR/REC-xml.html#dt-escape

XML unparsed entity http://www.w3.org/TR/REC-xml.html#dt-unparsed

IETF RFC http://www.ietf.org/rfc/rfc2026.txt

ISO standard http://www.iso.ch/

Python software http://www.rddl.org/natures/software#python

Java software http://www.rddl.org/natures/software#java

Many other natures can be reasonably derived by following these examples. For instance, a PNG
image could be given the nature http://www.isi.edu/in-notes/iana/assignments/media-
types/image/png because PNG documents have the MIME media type image/png. Software written in

Ruby could be given the nature http://www.rddl.org/natures/software#ruby. An RDF document can
have the nature http://www.w3.org/1999/02/22-rdf-syntax-ns# taken from its namespace, and so
forth.

 < Day Day Up >

http://www.w3.org/TR/REC-xml.html#dt-chardata
http://www.w3.org/TR/REC-xml.html#dt-escape
http://www.w3.org/TR/REC-xml.html#dt-unparsed
http://www.ietf.org/rfc/rfc2026.txt
http://www.iso.ch/
http://www.rddl.org/natures/software#python
http://www.rddl.org/natures/software#java
http://www.isi.edu/in-notes/iana/assignments/media-
http://www.rddl.org/natures/software#ruby
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

15.4 Purposes

The purpose of a related resource indicates what the resource will be used for. Purposes distinguish
between resources with the same natures used for different things. For example, DocBook has
multiple XSLT stylesheets for transforming DocBook documents into HTML, XHTML, chunked HTML,
and XSL-FO. These are all related resources with the same nature but different purposes. Unlike
natures, purposes are optional. You don't have to use them if you don't need to distinguish between
resources with the same nature, but you can if you'd like.

Purpose names are URLs. These URLs are placed in xlink:arcrole attributes of a rddl:resource

element. The RDDL specification defines 21 different well-known purpose URLs, mostly in the form
http://www.rddl.org/purposes#purpose. In addition, you are welcome to define your own, but you
should use the standard URLs for the standard purposes so that automated software can understand
your documents and locate the necessary related resources. These are the well-known purposes:

Validation http://www.rddl.org/purposes#validation

Schema-validation http://www.rddl.org/purposes#schema-validation

DTD module http://www.rddl.org/purposes#module

Schema module http://www.rddl.org/purposes#schema-module

DTD notations module http://www.rddl.org/purposes#notations

DTD entities module http://www.rddl.org/purposes#entities

Software module http://www.rddl.org/purposes#software-module

Software package http://www.rddl.org/purposes#software-package

Software project http://www.rddl.org/purposes#software-project

JAR http://www.rddl.org/purposes#JAR

XSLT extension http://www.rddl.org/purposes/software#xslt-extension

Reference http://www.rddl.org/purposes#reference

Normative reference http://www.rddl.org/purposes#normative-reference

Non-normative reference http://www.rddl.org/purposes#non-normative-reference

Prior-version http://www.rddl.org/purposes#prior-version

Definition http://www.rddl.org/purposes#definition

Icon http://www.rddl.org/purposes#icon

Alternate http://www.rddl.org/purposes#alternate

Canonicalization http://www.rddl.org/purposes#canonicalization

http://www.rddl.org/purposes#purpose
http://www.rddl.org/purposes#validation
http://www.rddl.org/purposes#schema-validation
http://www.rddl.org/purposes#module
http://www.rddl.org/purposes#schema-module
http://www.rddl.org/purposes#notations
http://www.rddl.org/purposes#entities
http://www.rddl.org/purposes#software-module
http://www.rddl.org/purposes#software-package
http://www.rddl.org/purposes#software-project
http://www.rddl.org/purposes#JAR
http://www.rddl.org/purposes/software#xslt-extension
http://www.rddl.org/purposes#reference
http://www.rddl.org/purposes#normative-reference
http://www.rddl.org/purposes#non-normative-reference
http://www.rddl.org/purposes#prior-version
http://www.rddl.org/purposes#definition
http://www.rddl.org/purposes#icon
http://www.rddl.org/purposes#alternate
http://www.rddl.org/purposes#canonicalization
http://lib.ommolketab.ir
http://lib.ommolketab.ir

RDDL Directory http://www.rddl.org/purposes#directory

RDDL Target http://www.rddl.org/purposes#target

Furthermore, the purpose of an XSLT stylesheet is often the URI for the nature of the resource that is
produced by the transformation. For instance, the purpose of a stylesheet that converted documents
into strict XHTML would probably be http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.

 < Day Day Up >

http://www.rddl.org/purposes#directory
http://www.rddl.org/purposes#target
http://www.w3.org/TR/xhtml1/DTD/xhtml1-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Part III: Record-Like Documents

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 16. XML as a Data Format
Despite the intentions of XML's inventors, who mostly envisioned XML as a format for web pages and
other narrative documents to be read by people, the most common applications of XML today involve
the storage and transmission of information for use by different software applications and systems.
New technologies and frameworks (such as Web Services) depend heavily on XML content to
communicate and negotiate between dissimilar applications. The structures appropriate for such
applications differ from those used for the more traditional narrative documents in XML. They are
more rigid in some ways: for instance, they tend to favor strongly typed element content and rarely
allow mixed content; while being less rigid in others: the order of child elements rarely matters, for
example. Thus, in many applications, the elements tend to look more like database records and less
like web pages or books.

The appropriate techniques used to design, build, and maintain a record-like XML application vary
greatly, depending on the required functionality and intended audience. This chapter discusses a
variety of concerns, techniques, and technologies that should be considered when designing a new
record-like XML application.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

16.1 Why Use XML for Data?

Before XML, individual programmers had to invent a new data format every time they needed to save
a file or send a message. In most cases, the data was never intended for use outside the original
program, so programmers would store it in the most convenient format they could devise, which was
often very tightly coupled to the program's internal data structures. Indeed, the earliest versions of
Microsoft Word wrote at least part of their files by dumping memory straight to disk, and then
opened those files by reading the data back into memory. This made understanding the data format
and loading it into any other program extremely difficult. A few de facto file formats evolved over the
years (RTF, CSV, ASN.1, and the ubiquitous Windows .ini file format), but in too many cases, the
data written by one program could usually be read only by that same program. In fact, it was often
possible for only that specific version of the same program to read the data.

In recent years, however, XML has begun to solve this problem and make data a lot more portable.
The rapid proliferation of free XML tools throughout the programming community has made XML the
obvious choice when the time comes to select a data-storage or transmission format for their
application. For all but the most trivial applications, the benefits of using XML to store and retrieve
data far outweigh the additional overhead of including an XML parser in your application. The unique
strengths of using XML as a software data format include:

Simple syntax

Easy to generate and parse.

Support for nesting

Nested elements allow programs to represent complex structures easily.

Easy to debug

Human-readable data format is easy to explore and create with a basic text editor.

Language- and platform-independent

XML and Unicode guarantee that your data files will be portable across virtually every popular
computer architecture and language combination in use today.

Building on these basic strengths, XML makes possible new types of applications that would have
been previously impossible (or very costly) to implement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.1.1 Mixed Environments

Modern enterprise applications often involve software running on different computer platforms with a
variety of operating systems. Choosing a communication protocol involves finding the lowest common
denominator available on each system. Thanks to the enormous number of XML parsers that can be
freely integrated with applications in a wide variety of environments, XML has become a popular
format for data sharing.

Imagine an application server that needs to display data from a mainframe to users connected to a
corporate web site. In this case, XML acts as the "glue" to connect the web server with a legacy
application on a mainframe. The web server can send an XML request to the application server. The
application server converts the request to what the legacy server expects and calls the legacy
application. In the reverse direction, the application server converts the legacy server's response to
XML before passing it back to the web server. Using a technology like XSLT, the web server can then
transform the XML into a number of acceptable web formats for distribution to clients. By adopting
XML as the common language of your enterprise, it becomes easier to reuse existing data in new
ways.

Even on smaller systems, XML can be useful for sharing information between applications written in
different languages or running in different environments. If a Perl program and a Java program need
to communicate, generating and processing XML can be simpler than creating a custom format for
the conversation. The XML documents exchanged can also serve as a record of the communications.
Most importantly, the XML format provides a gateway to additional systems or programs that need to
join the conversation. Each new system only needs to understand how to read and write the common
XML format, rather than understanding every different format used by other participants.

16.1.2 Communications Protocols

Building flexible communications protocols that link disparate systems has always been a difficult
area in computing. With the proliferation of computer networking and the Internet, building
distributed systems has become even more important.

While XML itself is only a data format, not a protocol, XML's flexibility and platform agnosticism has
inspired some new developments on the protocol front. XML messaging started even before the XML
specification was finished and has continued to evolve since then.

16.1.2.1 XML as a part of the Web: REST

One of the earliest approaches, and still one of the best, is transmitting XML over HTTP. The server
assembles an XML document and sends it to a client just like it sends an HTML file or a GIF image.
For example, suppose a developer is building a service that takes a U.S. Zip Code and returns current
weather information such as temperature and barometric pressure. The browser or other client
application can encode the Zip Code as a query, producing a URL like
http://example.com/weatherNow.cgi?zip=95472.

It then sends a normal HTTP GET request to the server example.com requesting a representation of
the resource /weatherNow.cgi?zip=95472. The server constructs an XML document representing the

http://example.com/weatherNow.cgi?zip=95472
http://lib.ommolketab.ir
http://lib.ommolketab.ir

current weather for the Zip Code 95472, which might look something like Example 16-1.

Example 16-1. An XML document containing the weather in Sebastopol

<?xml version="1.0" encoding="UTF-8"?>

<weatherNow xmlns="http://example.com/weatherNow/" >

 <temperature>57</temperature>

 <pressure>29.97</pressure>

 <pressureChange>rising</pressureChange>

</weatherNow>

This simple web-based approach has been gathering supporters under the banner of Representational
State Transfer (REST, http://rest.blueoxen.net/cgi-bin/wiki.pl). In the REST model, XML exchanges
are treated in a very web-like way, using HTTP methods (GET, PUT, POST, DELETE) as verbs, XML
documents as messages, and URIs to identify the services. REST doesn't have all the APIs, $200 an
hour consultants, and six-figure middleware products that more complex web service-based
approaches like SOAP support. But that's because it really doesn't need them. REST is simple,
straightforward, and gets the job done with minimal effort.

16.1.2.2 XML for procedure calls over HTTP: XML-RPC

Other developers have chosen to use XML with more traditional programming approaches, like
remote procedure calls (RPC). XML-RPC (http://www.xmlrpc.com) is a very simple protocol that
encodes the method name and arguments as an XML document and transmits it using HTTP POST.
The remote server responds with another XML document encoding the method's return value or an
error message. The XML-RPC vocabulary defines elements representing six primitive data types (plus
arrays and structs) common in pre-object-oriented languages.

If our hypothetical weather service was implemented using XML-RPC, a client request might look like
Example 16-2.

Example 16-2. An XML-RPC request for the weather in Sebastopol

POST /weatherNow HTTP 1.0

User-Agent: myXMLRPCClient/1.0

Host: example.com

Content-Type: application/xml

Content-Length: 170

http://rest.blueoxen.net/cgi-bin/wiki.pl
http://www.xmlrpc.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<?xml version="1.0"?>

<methodCall>

 <methodName>weatherNow</methodName>

 <params>

 <param>

 <value><string>95472</string></value>

 </param>

 </params>

</methodCall>

Note that this example includes both an HTTP header and the XML document payload.

The XML is designed to represent a method call of the form weatherNow("95472"). XML-RPC

supports a variety of parameter types, but in this case, the method only requires one parameter, the
Zip Code. Parameter order matters as it does in programming languages, although it's also possible
(with a struct parameter) to send name-value pairs to the method. The reply from a service
providing the weatherNow method might look like Example 16-3.

Example 16-3. An XML-RPC response containing the weather in
Sebastopol

HTTP/1.0 200 OK

Date: Sat, 06 Oct 2001 23:20:04 GMT

Server: Apache.1.3.31 (Unix)

Connection: close

Content-Type: application/xml

Content-Length: 519

<?xml version="1.0"?>

<methodResponse>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <params>

 <param>

 <value>

 <struct>

 <member>

 <name>temperature</name>

 <value><int>57</int></value>

 </member>

 <member>

 <name>pressure</name>

 <value><double>29.96</double></value>

 </member>

 <member>

 <name>pressureChange</name>

 <value><boolean>1</boolean></value>

 </member>

 </struct>

 </value>

 </param>

 </params>

</methodResponse>

This response provides the temperature, pressure, and pressure change as a struct, a set of name-
value pairs. The values are of different types-an int for the temperature, a double for the pressure,
and a boolean to indicate whether the pressure is rising or falling. Responses are only allowed to
include one param element (despite its enclosing params element), so a struct or an array will be

necessary if a method needs to return more than a single value.

XML-RPC is limited by its strict adherence to the procedure call metaphor and its non-extensible
vocabulary, but the simplicity of that approach has meant that a lot of different implementations are
available for a wide array of environments. Developers using XML-RPC will rarely, if ever, see the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

actual XML underlying their procedure calls.

16.1.2.3 XML envelopes and messages: SOAP

SOAP offers much more flexibility than XML-RPC, but it is much more complex as well. SOAP
(formerly the Simple Object Access Protocol, but now an acronym without meaning) uses XML to
encapsulate information being sent between programs. Like XML-RPC, SOAP started out using HTTP
POST requests, and this is still the most common way to use SOAP, although other transport
protocols are allowed.

This discussion focuses on SOAP 1.1. A later specification, SOAP 1.2, is now a
W3C recommendation, but SOAP 1.1 still dominates in common use. You may
also want to explore the WS-I Basic Profile at http://ws-
i.org/Profiles/BasicProfile-1.0-2004-04-16.html, built on SOAP 1.1, for
suggestions for maximizing SOAP interoperability.

SOAP provides three features that differentiate it from plain XML messaging. The first is a structure
for messages containing a SOAP-ENV:Envelope, an optional SOAP-ENV:Header for metadata, and a
SOAP-ENV:Body. The second, now largely deprecated, is "SOAP Encoding" (or "Section 5 Encoding")

for RPC messages. It provides structure much like the XML-RPC format, though it leaves open the
choice of element names. The last feature is an explicit vocabulary for error messages, which are
called faults. A simple SOAP request for the Zip Code weather server might look like Example 16-4.

Example 16-4. A SOAP request for the weather in Sebastopol

<?xml version="1.0" ?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body xmlns="http://example.com/weatherNow/">

 <weatherForZip xsi:type="xsd:string">95472</weatherForZip>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The response to this request could be encoded as in Example 16-5.

http://ws-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 16-5. A SOAP response containing the weather in Sebastopol

<?xml version="1.0" ?>

<SOAP-ENV:Envelope

 xmlns:env="http://www.w3.org/2003/05/soap-envelope">

 <SOAP-ENV:Body xmlns="http://example.com/weatherNow/">

 <weatherStatus>

 <temperature xsi:type="xsd:int">57</temperature>

 <pressure xsi:type="xsd:double">29.97</pressure>

 <pressureChange xsi:type="xsd:boolean">1</pressureChange>

 </weatherStatus>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Most of what's gained in SOAP beyond ordinary XML is a wrapper structure that lets developers add
their own details to the messages. The SOAP-ENV:Header element, which can appear as the first child
element of SOAP-ENV:Envelope, may be used to add extra information to a request, appearing

before the body. Headers are used for a variety of tasks, from routing messages to the proper
recipient to ensuring that a recipient understands a particular request before attempting to process
the message.

When used in an HTTP environment, the request would typically be sent as a POST request from the
client, generating the response from the server. SOAP can be used over a variety of other protocols,
provided that all the senders and receivers understand both the protocol being used and as much of
the SOAP messages as they need to process the request.

SOAP is built on XML and uses XML technologies like XML Schema, but in practice, very few
developers actually work with the XML directly. Toolkits analyze existing objects or accept XML
Schemas describing formats and then generate the markup automatically.

The Web Services Description Language (WSDL) can somewhat automate this process. A WSDL
document is itself an XML document that describes a SOAP service. In many cases, it is easier to
focus on the WSDL document and related XML Schemas for a service than to work with the SOAP
messages themselves. A third vocabulary-Universal Description, Discovery, and Integration
(UDDI)- helps programs locate WSDL-described SOAP web services, although UDDI hasn't achieved
such a broad adoption as SOAP and WSDL.

A number of organizations are working on Web Service-based technologies, including the W3C
(http://www.w3.org/2002/ws/), OASIS (http://oasis-open.org), and the Web Services
Interoperability Organization (http://ws-i.org/). The field is developing rapidly, with vendors offering
a wide variety of sometimes conflicting proposals.

http://www.w3.org/2002/ws/
http://oasis-open.org
http://ws-i.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.1.2.4 Other options: BEEP and XMPP

Two other protocols, both from the Internet Engineering Task Force (IETF), may also be worth
considering. The Blocks Extensible Exchange Protocol, or BEEP (http://www.beepcore.org), solves a
different problem than SOAP, XML-RPC, and REST. Rather than building documents that travel over
existing protocols, BEEP uses XML as a foundation for protocols built on TCP sockets. BEEP supports
HTTP-style message-and-reply, as well as more complex synchronous and asychronous modes of
communication. SOAP messages can be transmitted over BEEP, and so can a wide variety of other
XML and binary information.

The IETF is also home to the Extensible Messaging and Presence Protocol (XMPP), the protocol used
by the Jabber instant messaging software. Jabber (http://jabber.org) has grown from its chat roots
to a toolkit frequently used by developers to allow computers, rather than people, to talk to each
other.

16.1.3 Object Serialization

Like the issue of communications, the question of where and how to store the state of persistent
objects has been answered in various ways over the years. In many popular object-oriented
languages, such as C++ and Java, the runtime environment frequently handles object-serialization
mechanics. Unfortunately, most of these technologies predate XML.

Most existing serialization methods are highly language- and architecture-specific. The serialized
object is most often stored in a binary format that is not human readable. These files break easily if
corrupted, and maintaining compatibility as the object's structure changes frequently requires custom
work on the part of the programmer.

The features that make XML popular as a communications protocol also make it popular as a format
for serializing objects. Viewing the object's contents, making manual modifications, and even
repairing damaged files is easy. XML's flexible nature allows the file format to expand ad infinitum
while maintaining backward compatibility with older file versions. XML's labeled hierarchies are a
clean fit for nested object structures, and conversions from objects to XML and back can be
reasonably transparent. Mapping arbitrary XML to object structures is a harder problem, but hardly
an insurmountable one.

A number of tools serialize objects written in various environments as XML documents and can
recreate the objects from the XML. Java 1.4, for example, adds an API for Long-Term Persistence
(http://java.sun.com/j2se/1.4/docs/guide/beans/changes14.html#ltp) to the java.beans package,

giving developers an alternative to its existing (and still supported) opaque binary serialization
format. Example 16-6 shows a simple applet persisted as XML.

Example 16-6. A Java frame serialized in XML

<?xml version="1.0" encoding="UTF-8"?>

<java version="1.4.2_03" class="java.beans.XMLDecoder">

http://www.beepcore.org
http://jabber.org
http://java.sun.com/j2se/1.4/docs/guide/beans/changes14.html#ltp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <object class="SwingCubScout">

 <void property="contentPane">

 <void method="add">

 <object class="javax.swing.JLabel">

 <void property="background">

 <object class="java.awt.Color">

 <int>255</int>

 <int>255</int>

 <int>0</int>

 <int>255</int>

 </object>

 </void>

 <void property="foreground">

 <object class="java.awt.Color">

 <int>0</int>

 <int>0</int>

 <int>255</int>

 <int>255</int>

 </object>

 </void>

 <void property="font">

 <object class="java.awt.Font">

 <string>Sans</string>

 <int>1</int>

 <int>24</int>

 </object>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </void>

 <void property="text">

 <string>Cub Scouts!</string>

 </void>

 </object>

 </void>

 </void>

 <void property="name">

 <string>panel0</string>

 </void>

 </object>

</java>

This XML vocabulary looks a lot like Java and is clearly designed for use within a Java framework,
although other environments may import and export the serialization. Microsoft's .NET Framework
includes similar capabilities but uses an XML Schema-based approach. There is an incredible number
of options for this kind of serialization process, available from many different vendors. Some depend
on XML Schema, while others have their own models or work directly from existing object structures.

16.1.4 File Formats

Many single-user desktop applications open and save files. Games store the current state of the
game. Word processors store text. Spreadsheets store numbers. Personal finance programs store
monetary transactions. What unites these applications is that the data is read and written only at
well-defined times, generally when the user selects Save or Open from the File menu. The formats
designed for such storage are rarely a simple dump of the objects in-memory. What's sensible for
storage on disk is rarely what makes sense for in-memory manipulation. Instead, special code is
written to load and save a custom format that represents the information to be saved.

Most such file formats should be based on XML. It is much easier to invent, define, and use an XML
format for such files than to devise some custom binary format. The first advantage is simply the
wide availability of tools to parse and write XML. Unlike a custom format, basing your own format on
XML means you don't have to test and debug parsers and serializers. Just use one of the well-tested,
well-established, and debugged standard tools like Xerces or MSXML. You write less code, which
translates into fewer bugs and faster time to market.

A second advantage to choosing XML for the format is that the files will be more accessible to other
tools and developers. They too can use standard parsers to read the files. It may not be immediately

http://lib.ommolketab.ir
http://lib.ommolketab.ir

obvious to such third parties what all the elements and attributes mean, but it's a lot easier for them
to reverse engineer XML than some undocumented, proprietary binary file format. If you include a
schema or DTD for the format, then it's even easier for third parties to understand the format and
write their own programs that can work with it. XML formats lead much more interoperable software
and expand the universe of tools that can work with your formats. They make interoperability of
independent software much easier to achieve.

The developers of OpenOffice.org have created a format that combines several
different standards for interoperability. They use ZIP files as containers for XML
and graphics files, making it easy to share compound documents as compact
files.

16.1.5 Databases

XML can play a role in the communications between databases and other software, providing
information in an easily reusable form. On the client side, XML data files can be used to offload some
nontransactional data search and retrieval applications from busy web servers down to the desktop
web browser. On the server side, XML can be used as an alternate delivery mechanism for query
results.

XML is also finding use as a supplement to information stored in relational databases, and more and
more relational databases include native support for XML, both as a data-retrieval format and a data
type. Native XML databases, which store XML documents and provide querying and retrieval tools,
are also becoming more widely available. These tools provide a more structured way of storing XML
information than collecting documents in a filesystem.

For more information on the wide variety of XML and data-management tools
available and ways to use XML with databases, see
http://www.rpbourret.com/xml/XMLDatabaseProds.htm.

16.1.6 RDF

In certain cases, especially where the data contained in the documents is metadata describing other
documents, you may want to look at the Resource Description Framework (RDF). RDF can be written
in an XML syntax, but its data model is built around more generic graphs instead of XML's strictly
hierarchical trees. When you process an XML document using XML tools, you get a tree-a collection
of nested containers holding information. When you process an RDF document using RDF tools-even
if the RDF is encoded as XML-you get a collection of "triples." In English, a triple takes the rather
stilted form "Subject has a Property whose value is Object." For example, "W. Scott Means has an
email address whose value is smeans@ewm.biz." However, to make the identification of subjects,
properties, and objects less ambiguous, these are all named with URIs, so we'd actually write
"http://www.oreillynet.com/cs/catalog/view/au/751?x-t=book.view&CMP=IL7015 has the property
http://www.w3.org/2000/10/swap/pim/contact#mailbox, whose value is mailto:smeans@ewm.biz."
In XML, this would be written as shown in Example 16-7.

http://www.rpbourret.com/xml/XMLDatabaseProds.htm
http://www.oreillynet.com/cs/catalog/view/au/751?x-t=book.view&CMP=IL7015
http://www.w3.org/2000/10/swap/pim/contact#mailbox
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 16-7. An RDF statement encoded in XML

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">

 <contact:Person rdf:about=

"http://www.oreillynet.com/cs/catalog/view/au/751?x-t=book.view&CMP=IL7015">

 <contact:mailbox rdf:resource="mailto:smeans@ewm.biz"/>

</rdf:RDF>

The advantage to this rather opaque approach is that, like XML itself, RDF is much easier for
computers to process than natural language. In particular, as long as all statements are written in
this restricted Subject-Property-Object triple form, computers can reason about statements and infer
new truths based on existing triples. For instance, by knowing that the book XML in a Nutshell has an
author property with the value W. Scott Means, and that W. Scott Means has an email property with
the value smeans@ewm.biz, an RDF inferencing engine can deduce that the email address of an
author of this book is smeans@ewm.biz. When many such triples are available from many different
sources with standardized URIs, RDF software should demonstrate knowledge (if not exactly
intelligence) that is greater than the sum of its parts. At least that's the theory. Honestly, we're a
little skeptical. RDF's approach does put an additional layer of abstraction between the serialization of
the data and the internal structure of the data, and that layer is useful if you have data that is
heavily self-referential or doesn't neatly fit into a nested container structure.

It's possible to create formats that can be processed either as XML or as RDF, giving consumers of
the document flexibility about how they would prefer to process it. RSS 1.0 is such a format
(although it does seem to be the least successful of several RSS variants). For a look at what is
involved in mixing RDF into an XML environment, see http://www.xml.com/pub/a/2002/10/30/rdf-
friendly.html.

 < Day Day Up >

http://www.xml.com/pub/a/2002/10/30/rdf-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

16.2 Developing Record-Like XML Formats

Despite the mature status of most of XML's core technologies, XML application development is only
now being recognized as a distinct discipline. Many architects and XML developers are attempting to
apply existing design methodologies (like UML) and design patterns to the problem of constructing
markup languages, but a widely accepted design process for creating XML applications still does not
exist.

The term "XML application" is often used in XML contexts to describe an XML
vocabulary for a particular domain rather than the software used to process it.
This may seem a little strange to developers who are used to creating software
applications, but it makes sense if you think about integrating a software
application with an XML application, for instance.

XML applications can range in scope from a proprietary vocabulary used to store a single computer
program's configuration settings to an industry-wide standard for storing consumer loan applications.
Although the specifics and sometimes the sequence will vary, the basic steps involved in creating a
new XML application are as follows:

Determine the requirements of the application.1.

Look for existing applications that might meet those requirements.2.

Choose a validation model.3.

Decide on a namespace structure.4.

Plan for expansion.5.

Consider the impact of the design on application developers.6.

Determine how old and new versions of the application will coexist.7.

The following sections explore each of these steps in greater depth.

16.2.1 Basic Application Requirements

The first step in designing a new XML application is like the first step in many design methodologies.
Before the application can be designed, it is important to determine exactly what needs the
application will fulfill. Some basic questions must be answered before proceeding.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.2.1.1 Where and how will new documents be created?

Documents that will be created automatically by a software application or database server can be
structured differently than those that need to be created by humans using an editor. While software
wouldn't have a problem generating 100 elements with attributes that indicate cross-references, a
human being probably would find those expectations frustrating.

If you have an application or a legacy format to which you're adding XML, you may already have data
structures you need to map to the XML. Depending on the other requirements for the application, you
may be able to base your XML format on the existing structures. If you're starting from scratch or
need to share the information with other programs that don't share those structures, you probably
need to look at the data itself and build the application creating the XML around the information.

16.2.1.2 How complex will the document be?

Obviously, the complexity of the data that will be modeled by the XML document has some impact on
how the application will be designed. A document containing a few simple element types is much
easier to describe than one that contains dozens of different elements with complex data type
requirements. The complexity of an application will affect what type of validation should be used and
how documents will be created and processed.

16.2.1.3 How will documents be consumed?

If the XML documents using this vocabulary will only pass between similar programs, it may make
sense to model the XML documents directly on the internal structures of the programs without much
concern for how easy or difficult that makes using the document for other programs or for humans. If
there's a substantial chance that this information needs to be reused by other applications, read by
humans (for debugging purposes or for direct access to information), or will be stored for unknown
future use, it probably makes sense to ensure that the document is easy to read and process even if
that makes creating the document a slightly more difficult task.

16.2.1.4 How widely will the resulting documents be distributed?

Generally, the audience for a new XML application is known in advance. Some documents are created
and read by the same application without ever leaving a single system. Other documents will be used
to transmit important business information between the IT systems of different organizations. Some
documents are created for publication on the Web to be viewed by hundreds or even thousands of
people around the world. XML formats that will be shared widely typically need comprehensive
documentation readily available to potential users. Formal validation models may also be more
important for documents that are shared outside of a small community of trusted participants.

16.2.1.5 Will others need to incorporate this document structure into their own

applications?

Some XML applications are never intended to be shared and are only useful when incorporated into

http://lib.ommolketab.ir
http://lib.ommolketab.ir

other XML applications. Others are useful standards on their own but are also suitable for inclusion in
other applications. Here are a few different methods that might be used to incorporate markup from
one application into another:

Simple inclusion

Markup from one application is included within a container element of another application.
Embedding XHTML content in another document is a common example of this.

Mixed element inclusion

Markup from one application is mixed inline with content from another application. This can
complicate validation and makes the including application sensitive to changes in the included
application. The Global Document Annotation (GDA, http://www.oasis-
open.org/cover/gda.html) Initiative provides an example of this type of application.

Mixed attribute inclusion

Some XML applications are comprised of attributes that may be attached to elements from the
host application. XLink is a prime example of this type of application, defining only attributes
that may be used in other vocabularies.

Answering these questions will provide a basic set of requirements to keep in mind when deciding
whether to build a new application, acquire an existing application, or some combination of the two.

16.2.2 Investigating Available Options

Before committing to designing and implementing a new XML application, it is a good idea to take a
few minutes to search the Internet for prior art. Since the first version of the XML Recommendation
was released in 1998, thousands of new XML applications have been developed and released around
the world. Although the quality and completeness of these applications vary greatly, it is often more
efficient to start with an existing DTD or schema (however imperfect) than to start from scratch. In
some cases, supporting software is already available, potentially saving software development work
as well.

16.2.2.1 XML vocabulary development

It is also possible that the work your application needs to do may fit into an existing generic
framework, such as XML-RPC or SOAP. If this is the case, you may or may not need to create your
own XML vocabulary. XML-RPC only uses its own vocabulary, while different styles of SOAP may
reduce the amount of work your vocabulary needs to perform.

Beyond the average search engine, XML Cover Pages (http://xml.coverpages.org) provides

http://www.oasis-
http://xml.coverpages.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

information about a wide variety of XML-related vocabularies, software, and projects. The search for
existing applications may also find potential collaborators, which is helpful if the XML format is
intended for use across multiple organizations.

16.2.3 Planning for Growth

Some applications may not need to evolve over time, but some thought should be given to how users
of the application will be able to extend it to meet their own needs. In DTD-based applications, this is
done by providing parameter entity "hooks" into the document type definition, which could either be
referenced or redefined by an instance document. Take the simple DTD shown in Example 16-8.

Example 16-8. extensible.dtd

<!ENTITY % varContent "(EMPTY)">

<!ELEMENT variable %varContent;>

This fragment is not a very interesting application by itself, but since it provides the capability for
extension, the document author can make it more useful by providing an alternative entity
declaration for the content of the variable element, as shown in Example 16-9.

Example 16-9. Document extending extensible.dtd

<?xml version="1.0"?>

<!DOCTYPE variable SYSTEM "extensible.dtd"

[

<!ENTITY % varContent "(#PCDATA)">

]>

<variable>Useful content.</variable>

The W3C XML Schema language provides more comprehensive and controlled support for extending
markup using the extension, include, redefine, and import elements. These mechanisms can be

used in conjunction to create very powerful, customizable application frameworks.

16.2.4 Choosing a Validation Method

The first major implementation decision when designing a new XML application is what type of
validation (if any) will be performed on instance documents. In many cases, prototyping a set of
instance documents is the best way to determine what level of validation must be performed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If your application is simply saving some internal program state between invocations (such as
window positions or menu configurations within a GUI application), the structure is fixed by the
program logic itself. Even though these configuration documents will always be written and read by
the same program, writing a schema and validating documents on input can detect file corruption,
not to mention bugs in the software itself. All too often we've watched our computers crash because
various software (most often Microsoft Word) went down in flames when it encountered content in a
document it had assumed could not possibly be present (most recently while working on Chapter 27
of this book). Validation may be a key defense against such attacks, intentional or otherwise.

Validation is even more important when XML documents are exchanged between different related
systems that are not maintained by the same development organization. In this case, a DTD or
schema can serve as a definitive blueprint to ensure that all systems are sending and receiving
information in the expected formats. If something does go wrong and one process begins rejecting
the other processes' inputs, validation can help assign the blame and the concomitant responsibility
for fixing the problem.

The most rigorous type of validation is required when developing a new XML standard that will be
implemented independently by many different vendors without any explicit control or restrictions. For
example, the XHTML 1.1 standard is enforced by a very explict and well-documented DTD that is
hosted by the W3C. This well-known public DTD allows tool and application vendors to ensure that
their systems will interoperate as long as instance documents conform to the standard.

After determining the level of validation for a particular application, it must be decided what
validation language will be used. DTDs are still the most widely supported standard, although they
lack the expressive power that is required by many record-like applications. The W3C XML Schema
language provides very rich type and content model expression, but brings with it a commensurate
level of complexity.

Developers can also provide both DTDs and XML Schemas for a given vocabulary, or even combine
them with other vocabularies for describing XML structures, notably RELAX NG (http://www.oasis-
open.org/committees/relax-ng/) and Schematron
(http://www.ascc.net/xml/resource/schematron/schematron.html). Some organizations, particularly
the W3C, are using RELAX NG as a base and generating DTDs and XML Schemas from the RELAX NG
schemas. RDDL, described in Chapter 15, provides a set of tools for supporting and explaining such
combinations for formats that use namespaces.

16.2.5 Namespace Support

Virtually every XML application that will be shared with the public should include at least a basic level
of namespace support. Even if there are no current plans to publish documents in a particular
vocabulary to the outside world, it is much simpler to implement namespaces from the ground up
than it is to retrofit an existing application with a namespace.

Namespaces affect everything from how the document is validated to how it is transformed (using a
stylesheet language such as XSLT). Here are a few namespace issues to consider before selecting a
URI and starting work.

16.2.5.1 Will instance documents need to be validated using a DTD?

http://www.oasis-
http://www.ascc.net/xml/resource/schematron/schematron.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

If so, some planning of how namespace prefixes will be assigned and incorporated into the DTD is
necessary. DTDs are not namespace aware, so strategic use of parameter entities can make
modification of prefixes much simpler down the road.

16.2.5.2 Will markup from this application need to be embedded in other applications?

If so, some thought needs to be given to potential name collisions. The safest approach is to force
every element and possibly every attribute from your application to be explicitly qualified with a
namespace. This can be done within an XML Schema by setting the elementFormDefault and
attributeFormDefault attributes of the schema element to qualified. If you expect to be mixing

the vocabulary only at the element level, you should probably leave your attributes unqualified.

16.2.5.3 Are there legacy XML document formats to support?

If an application will include existing XML documents, some thought should be given to the effort
involved in migrating them. In many cases, where the document didn't use namespaces at all, simply
adding a default namespace declaration will be sufficient to make the documents work with
applications that depend on namespaces to distinguish among vocabularies. Once documents and
document formats are out "in the wild," it's difficult to get people to change. It may be necessary to
keep programs around that handle both the original format and the new format or to create
transformations from the older format to the new format. These multiple levels of processing or
transformation are maintenance problems over time, so it's generally worth encouraging users to
switch to the new format, possibly turning off the old one at some point.

16.2.6 Maintaining Compatibility

Maintaining backward compatibility with existing documents and processing software is a primary
concern for XML applications that are widely used by diverse audiences. Standards organizations face
formidable difficulties when updating a popular application (such as HTML). While few applications will
become as widespread as HTML, some thought should be given in advance to how new versions of a
schema or DTD will interact with existing documents.

One possible, although problematic, approach to maintaining backward compatibility is to create a
new, distinct namespace that will be used to mark new element declarations or perhaps to change
the namespace of the entire document to reflect a substantially changed version. This has substantial
costs, however, and generally makes sense only when the new functionality is itself a separate
vocabulary. Working with documents that have parts written in different namespace-indicated
versions is a tough problem for developers.

A better strategy is only to extend existing applications without removing prior functionality. In this
case, it is a good idea to ensure that each instance document for an application has some readily
identifiable marker that associates it with a particular version of a DTD or schema. The good news is
that the highly transformable nature of XML makes it very easy to migrate old documents to new
document formats.

Removing functionality is possible, but frequently difficult, once a format is widely used. Deprecating
functionality-marking it as a likely target for removal a version or several before it is actually
removed-is one approach. While deprecated features often linger in implementations long after

http://lib.ommolketab.ir
http://lib.ommolketab.ir

they've been targeted for removal, they change the expectations of developers building new
applications and make it possible, if slow, to remove functionality.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

16.3 Sharing Your XML Format

Creating a data format is often only the first step in making it useful. If an XML vocabulary is used
only for a particular process inside a software application, there may not be much reason to publish
information about how it works, except for future developers who may work on that application. If,
on the other hand, the data format is intended for widespread use by people or organizations who
may not normally interact with each other beyond the exchange of messages, then it probably makes
sense to provide much more support for the format.

There is a variety of different kinds of information about a data format that are frequently worth
sharing:

Human-readable documentation, perhaps even in a variety of languages

Schemas and DTDs formally defining the structures and content

Stylesheets and transformations for presenting the data or converting it from one format to
another

Code for processing the data, perhaps even in a variety of languages or environments

The first two approaches-human-readable documentation and schemas-are typically the
foundations. Formal definitions and rough understandings of what goes where often work for formats
that are used by individual programmers or small groups, but sharing formats widely often requires
further explanation. Stylesheets and code are additional options that may simplify adoption for
developers.

The appropriate level of publicity for an XML vocabulary can vary widely, from no publicity at all to
publishing a RDDL document or a support site to registering the format in one of the XML application
registries, or to creating a working group at some kind of standards body or consortium.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 17. XML Schemas
Although document type definitions can enforce basic structural rules on documents, many
applications need a more powerful and expressive validation method. The W3C developed the XML
Schema Recommendation to address these needs. Schemas can describe complex restrictions on
elements and attributes. Multiple schemas can be combined to validate documents that use multiple
XML vocabularies. This chapter provides a rapid introduction to key W3C XML Schema concepts and
usage, starting with the fundamental structures that are common to all schemas. We begin with a
very simple schema and proceed to add more functionality to it until every major feature of XML
Schemas has been introduced.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.1 Overview

An XML Schema is an XML document containing a formal description of what comprises a valid XML
document. A W3C XML Schema Language schema is an XML Schema written in the particular syntax
recommended by the W3C.

In this chapter, when we use the word "schema" without further qualification,
we are referring specifically to a schema written in the W3C XML Schema
language. However, there are numerous other XML Schema languages,
including RELAX NG and Schematron, each with their own strengths and
weaknesses.

An XML document described by a schema is called an instance document. If a document satisfies all
the constraints specified by the schema, it is considered to be schema-valid. The schema document is
associated with an instance document through one of the following methods:

An xsi:schemaLocation attribute on an element contains a list of namespaces used within that

element and the URLs of the schemas with which to validate elements and attributes in those
namespaces.

An xsi:noNamespaceSchemaLocation attribute contains a URL for the schema used to validate

elements that are not in any namespace.

A validating parser may be instructed to validate a given document against an explicitly
provided schema, ignoring any hints that might be provided within the document itself.

17.1.1 Schemas Versus DTDs

DTDs provide the capability to do basic validation of the following items in XML documents:

Element nesting

Element occurrence constraints

Permitted attributes

Attribute types and default values

However, DTDs do not provide fine control over the format and data types of element and attribute
values. Other than the various special attribute types (ID, IDREF, ENTITY, NMTOKEN, and so forth),

once an element or attribute has been declared to contain character data, no limits may be placed on
the length, type, or format of that content. For narrative documents (such as web pages, book

http://lib.ommolketab.ir
http://lib.ommolketab.ir

chapters, newsletters, etc.), this level of control is probably good enough.

But as XML makes inroads into more record-like applications, such as remote procedure calls and
object serialization, more precise control over the text content of elements and attributes becomes
important. The W3C XML Schema standard includes the following features:

Simple and complex data types

Type derivation and inheritance

Element occurrence constraints

Namespace-aware element and attribute declarations

The most important of these features is the addition of simple data types for parsed character data
and attribute values. Schemas can enforce much more specific rules about the contents of elements
and attributes than DTDs can. In addition to a wide range of built-in simple types (such as string,
integer, decimal, and dateTime), the schema language provides a framework for declaring new

data types, deriving new types from old types, and reusing types from other schemas.

Besides simple data types, schemas can place more explicit restrictions on the number and sequence
of child elements that can appear in a given location. This is even true when elements are mixed with
character data, unlike the mixed content supported by DTDs.

There are a few things that DTDs do that XML Schema can't do, such as
defining general entities. XML Inclusions (XInclude) may be able to replace
some uses of general entities, but DTDs remain extremely convenient for short
entities.

17.1.2 Namespace Issues

As XML documents are exchanged between different people and organizations around the world,
proper use of namespaces becomes critical to prevent misunderstandings. Depending on what type of
document is being viewed, a simple element like <fullName>Zoe</fullName> could have widely

different meanings. It could be a person's name, a pet's name, or the name of a ship that recently
docked. By associating every element with a namespace URI, it is possible to distinguish between two
elements with the same local name.

Because the "Namespaces in XML" recommendation was released after the XML 1.0 recommendation,
DTDs do not provide explicit support for namespaces. Unlike DTDs (where element and attribute
declarations must include a namespace prefix), schemas validate against the combination of the
namespace URI and local name, rather than the prefixed name.

XML Schema uses namespaces internally for several purposes. The XML Schema vocabulary is in its
own namespace, the vocabulary being defined is in its namespace, and components used within the
schema (groups, attribute groups, and types) may also have namespaces. XML Schema processing
also uses namespaces within instance documents to include directives to the schema processor. For
example, the special attributes used to associate an element with a schema (schemaLocation and
noNamespaceSchemaLocation) must be associated with the official XML Schema instance namespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

URI (http://www.w3.org/2001/XMLSchema-instance) in order for the schema processor to

recognize it as an instruction to itself.

 < Day Day Up >

http://www.w3.org/2001/XMLSchema-instance
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.2 Schema Basics

This section will construct, step-by-step, a simple schema document representing a typical address
book entry, introducing different features of the XML Schema language as needed. Example 17-1
shows a very simple, well-formed XML document.

Example 17-1. addressdoc.xml

<?xml version="1.0"?>

<fullName>Scott Means</fullName>

Assuming that the fullName element can only contain a simple string value, the schema for this

document would look like Example 17-2.

Example 17-2. address-schema.xsd

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="fullName" type="xs:string"/>

</xs:schema>

It is also common to associate the sample instance document explicitly with the schema document.
Since the fullName element is not in any namespace, the xsi:noNamespaceSchemaLocation

attribute is used, as shown in Example 17-3.

Example 17-3. addressdoc.xml with schema reference

<?xml version="1.0"?>

<fullName xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="address-schema.xsd">Scott Means</fullName>

Validating the simple document against its schema requires a validating XML parser that supports
schemas such as the open source Xerces parser from the Apache XML Project

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(http://xml.apache.org/xerces2-j/). This is written in Java and includes a command-line program
called dom.Writer that can be used to validate addressdoc.xml, like this:

% java dom.Writer -V -S addressdoc.xml

Since the document is valid, dom.Writer will simply echo the input document to standard output. An
invalid document will cause the parser to generate an error message. For instance, adding b
elements to the contents of the fullName element violates the schema rules:

<?xml version="1.0"?>

<fullName xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="address-schema.xsd">Scott Means

</fullName>

If this document were validated with dom.Writer, the following validity errors would be detected by

Xerces:

[Error] addressdoc.xml:4:13: Element type "b" must be declared.

[Error] addressdoc.xml:4:31: Datatype error: In element 'fullName' : Can not

have element children within a simple type content.

17.2.1 Document Organization

Now that there is a basic schema and a valid document from which to work, it is time to examine the
structure of a schema document and its contents. Every schema document consists of a single root
xs:schema element. This element contains declarations for all elements and attributes that may

appear in a valid instance document.

The XML elements that make up an XML Schema must belong to the XML
Schema namespace (http://www.w3.org/2001/XMLSchema), which is
frequently associated with the xs: prefix. For the remainder of this chapter, all
schema elements will be written using the xs: prefix to indicate that they

belong to the Schema namespace.

Instance elements declared using top-level xs:element elements in the schema (immediate child
elements of the xs:schema element) are considered global elements. For example, the simple
schema in Example 17-2 globally declares one element: fullName. According to the rules of schema

construction, any element that is declared globally may appear as the root element of an instance
document.

In this case, since only one element has been declared, that shouldn't be a problem. But when
building more complex schemas, this side effect must be taken into consideration. If more than one

http://xml.apache.org/xerces2-j/
http://www.w3.org/2001/XMLSchema
http://lib.ommolketab.ir
http://lib.ommolketab.ir

element is declared globally, a schema-valid document may not contain the root element you expect.

Naming conflicts are another potential problem with multiple global declarations. When writing
schema declarations, it is an error to declare two things of the same type at the same scope. For
instance, trying to declare two global elements called fullName would generate an error. But

declaring an element and an attribute with the same name would not create a conflict because the
two names are not used in the same way.

17.2.2 Annotations

Now that there is a working schema, it's good practice to include some documentary material about
who authored it, what it was for, any copyright restrictions, etc. Since an XML Schema document is
an XML document in its own right, one simple option would be to use XML comments to include
documentary information.

The major drawback to using XML comments is that parsers are not obliged to keep comments intact
when parsing XML documents, and applications have to do a lot of work to negotiate their internal
structures. This increases the likelihood that, at some point, important documentation will be lost
during an otherwise harmless transformation or edit. Encoding documentation as markup inline with
the element and type declarations they refer to opens up endless possibilities for automatic
documentation generation.

To accommodate this extra information, most schema elements may contain an optional
xs:annotation element as their first child element. The annotation element may then, in turn,
contain any combination of xs:documentation and xs:appinfo elements, which are provided to

contain extra human-readable and machine-readable information, respectively.

17.2.2.1 The xs:documentation element

As a concrete example, let's add some authorship and copyright information to the simple schema
document, as shown in Example 17-4.

Example 17-4. address-schema.xsd with annotation

<xs:schema xmlns:xsi="http://www.w3.org/2001/XMLSchema">

 <xs:annotation>

 <xs:documentation xml:lang="en-US">

 Simple schema example from O'Reilly's

 XML in a Nutshell.

 Copyright 2004 O'Reilly Media, Inc.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </xs:documentation>

 </xs:annotation>

 <xs:element name="fullName" type="xs:string"/>

</xs:schema>

The xs:documentation element permits an xml:lang attribute to identify the language of the brief
message. This attribute can also be applied to the xs:schema element to set the default language for
the entire document. For more information about using the xml:lang attribute, see Chapter 5 and

Chapter 21.

Also, notice that the documentation element contains additional markup: an a element (à la HTML).
The xs:documentation element is allowed to contain any well-formed XML, not just schema

elements.

17.2.2.2 The xs:appinfo element

In reality, there is little difference between the xs:documentation element and the xs:appinfo

element. Either one can contain any combination of character data or markup the schema author
wants to include. But the developers of the schema specification intended the xs:documentation
element to contain human-readable content, while the xs:appinfo element would contain

application-specific extension information related to a particular schema element.

For example, let's say that it is necessary to encode context-sensitive help text with each of the
elements declared in a schema. This text might be used to generate tool-tips in a GUI or system
prompts in a voicemail system. Either way, it would be very convenient to associate this information
directly with the particular element in question using the xs:appinfo element, like this:

. . .

<xs:element name="fullName" type="xs:string">

 <xs:annotation>

 <xs:appinfo>

 <help-text>Enter the person's full name.</help-text>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

. . .

Although schemas allow very sophisticated and powerful rules to be expressed, they cannot possibly
encompass every conceivable need that a developer might face. That is why it is important to
remember that there is a facility that can be used to include your own application-specific information
directly within the actual schema declarations.

Schematron is especially well-suited to use in annotations and is capable of
checking a wide variety of conditions well beyond the bounds of XML Schema.
For more information about Schematron, see
http://www.ascc.net/xml/resource/schematron/schematron.html.

17.2.3 Element Declarations

XML documents are composed primarily of nested elements, and xs:element is one of the most often

used declarations in a typical schema. This simple example schema already includes a single global
element declaration that tells the schema processor that instance documents must consist of a single
element, fullName:

<xs:element name="fullName" type="xs:string">

This declaration uses two attributes to describe the element that can appear in the instance
document: name and type. The name attribute is self-explanatory, but the type attribute requires

some additional explanation.

17.2.3.1 Simple types

Schemas support two different types of content: simple and complex. Simple content consists of pure
text that does not contain nested elements.

In the previous example, the type="xs:string" attribute tells the schema processor that this
element can only contain simple content of the built-in type xs:string. Table 17-1 lists a

representative sample of the built-in simple types that are defined by the schema specification. See
Chapter 22 for a complete listing.

Table 17-1. Built-in simple schema types

Type Description

anyURI A Uniform Resource Identifier

base64Binary Base64-encoded binary data

boolean May contain either true or false, 0 or 1

http://www.ascc.net/xml/resource/schematron/schematron.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type Description

byte A signed byte quantity >= -128 and <= 127

dateTime An absolute date and time

duration
A length of time, expressed in units of years, months,
days, hours, etc.

ID, IDREF, IDREFS, ENTITY, ENTITIES,
NOTATION, NMTOKEN, NMTOKENS

Same values as defined in the attribute declaration
section of the XML 1.0 Recommendation

integer Any positive or negative integer

language
May contain same values as xml:lang attribute from

the XML 1.0 Recommendation

Name An XML name

string Unicode string

Since attribute values cannot contain elements, attributes must always be declared with simple
types. Also, an element that is declared to have a simple type cannot have any attributes. This
means that if an attribute must be added to the fullName element, some fairly significant changes to

the element declaration are required.

17.2.4 Attribute Declarations

To make the fullName element more informative, it would be nice to add a language attribute to

provide a hint as to how it should be pronounced. Although adding an attribute to an element sounds
like a fairly simple task, it is complicated by the fact that elements with simple types (like xs:string)

cannot have attribute values.

Attributes are declared using the xs:attribute element. Attributes may be declared globally by top-
level xs:attribute elements (which may be referenced from anywhere within the schema) or locally

as part of a complex type definition that is associated with a particular element.

To incorporate a language attribute into the fullName element declaration, a new complex type
based on the built-in xs:string type must be created. To do this, three new schema elements must
be used: xs:complexType , xs:simpleContent, and xs:extension:

<xs:element name="fullName">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="language" type="xs:language"/>

byte A signed byte quantity >= -128 and <= 127

dateTime An absolute date and time

duration
A length of time, expressed in units of years, months,
days, hours, etc.

ID, IDREF, IDREFS, ENTITY, ENTITIES,
NOTATION, NMTOKEN, NMTOKENS

Same values as defined in the attribute declaration
section of the XML 1.0 Recommendation

integer Any positive or negative integer

language
May contain same values as xml:lang attribute from

the XML 1.0 Recommendation

Name An XML name

string Unicode string

Since attribute values cannot contain elements, attributes must always be declared with simple
types. Also, an element that is declared to have a simple type cannot have any attributes. This
means that if an attribute must be added to the fullName element, some fairly significant changes to

the element declaration are required.

17.2.4 Attribute Declarations

To make the fullName element more informative, it would be nice to add a language attribute to

provide a hint as to how it should be pronounced. Although adding an attribute to an element sounds
like a fairly simple task, it is complicated by the fact that elements with simple types (like xs:string)

cannot have attribute values.

Attributes are declared using the xs:attribute element. Attributes may be declared globally by top-
level xs:attribute elements (which may be referenced from anywhere within the schema) or locally

as part of a complex type definition that is associated with a particular element.

To incorporate a language attribute into the fullName element declaration, a new complex type
based on the built-in xs:string type must be created. To do this, three new schema elements must
be used: xs:complexType , xs:simpleContent, and xs:extension:

<xs:element name="fullName">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="language" type="xs:language"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

</xs:element>

This declaration no longer has a type attribute. Instead, it has an xs:complexType child element.
This element tells the schema processor that the fullName element may have attributes, but the
xs:simpleContent element tells the processor that the content of the element is a simple type. To
specify what type of simple content, it uses the base attribute of the xs:extension element to derive
a new type from the built-in xs:string type. The xs:attribute element within the xs:extension
element indicates that this derived type may have an attribute called language that contains values
conforming to the built-in simple type xs:language (mentioned in Table 17-1). Type derivation is an

important part of schema creation and will be covered in more detail later in this chapter.

17.2.4.1 Attribute groups

In DTDs, parameter entities are used to encapsulate repeated groups of attribute declarations that
are shared between different element types. Schemas provide the same functionality in a more
formal fashion using the xs:attributeGroup element.

An attribute group is simply a named group of xs:attribute declarations (or references to other

attribute groups) that can be referenced from within a complex type definition. The attribute group
must be declared as a global xs:attributeGroup element with a unique name attribute. The group is
referenced within a complex type definition by including another xs:attributeGroup element with a
ref attribute that matches the desired top-level attribute group name.

Within the fullName schema, an attribute group could be used to create a package of attributes

related to a person's nationality. This package of attributes could be used on several elements,
including the fullName element, without repeating the same attribute declarations. Then, if it were

later necessary to extend this collection of attributes, it could be done in a single location:

<xs:element name="fullName">

. . .

 <xs:extension base="xs:string">

 <xs:attributeGroup ref="nationality"/>

 </xs:extension>

. . .

</xs:element>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<xs:attributeGroup name="nationality">

 <xs:attribute name="language" type="xs:language"/>

</xs:attributeGroup>

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.3 Working with Namespaces

So far, namespaces have only been dealt with as they relate to the schema processor and schema
language itself. But the schema specification was written with the intention that schemas could
support and describe XML namespaces.

17.3.1 Target Namespaces

Associating a schema with a particular XML namespace is extremely simple: add a targetNamespace
attribute to the root xs:schema element, like so:

<xs:schema xmlns:xsi="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://namespaces.oreilly.com/xmlnut/address">

It is important to remember that many XML 1.0 documents are not associated
with namespaces at all. To validate these documents, it is necessary to use a
schema that doesn't have a targetNamespace attribute. When developing

schemas that are not associated with a target namespace, you should always
explicitly qualify schema elements (like xs:element) to keep them from being

confused with global declarations for your application.

However, making that simple change impacts numerous other parts of the example application.
Trying to validate the addressdoc.xml document as it stands (with the
xsi:noNamespaceSchemaLocation attribute) causes the Xerces schema processor to report this

validity error:

General Schema Error: Schema in address-schema.xsd has a different target

namespace from the one specified in the instance document :.

To rectify this, it is necessary to change the instance document to reference the new, namespace-
enabled schema properly. This is done using the xsi:schemaLocation attribute, like so:

<fullName xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://namespaces.oreilly.com/xmlnut/address

 address-schema.xsd"

 language="en">Scott Means</fullName>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that the schemaLocation attribute value contains two tokens. The first is the target

namespace URI that matches the target namespace of the schema document. The second is the
physical location of the actual schema document.

Unfortunately, there are still problems. If this document is validated, the validator will report errors
like these two:

Element type "fullName" must be declared.

Attribute "language" must be declared for element type "fullName".

This is because, even though a schema location has been declared, the element still doesn't actually
belong to a namespace. Either a default namespace must be declared or a namespace prefix that
matches the target namespace of the schema must be used. The following document uses a default
namespace:

<fullName xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://namespaces.oreilly.com/xmlnut/address

 address-schema.xsd"

 xmlns="http://namespaces.oreilly.com/xmlnut/address"

 language="en">Scott Means</fullName>

But before this document can be successfully validated, it is necessary to fix one other problem that
was introduced when a target namespace was added to the schema. Within the element declaration
for the fullName element, there is a reference to the nationality attribute group. By associating

the schema with a target namespace, every global declaration has been implicitly associated with
that namespace. This means that the ref attribute of the attribute group element in the element

declaration must be updated to point to an attribute group that belongs to the new target
namespace.

The clearest way to do this is to declare a new namespace prefix in the schema that maps to the
target namespace, and use it to prefix any references to global declarations:

<xs:schema xmlns:xsi="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://namespaces.oreilly.com/xmlnut/address"

 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address">

. . .

 <xs:attributeGroup ref="addr:nationality"/>

. . .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now, having made these three simple changes, the document will once again validate cleanly against
the schema.

The obvious lesson from this is that namespaces should be incorporated into
your schema design as early as possible. If not, there will likely be a large
amount of cleanup involved as various assumptions that used to be true are no
longer valid.

17.3.2 Controlling Qualification

One of the major headaches with DTDs is that they have no explicit support for namespace prefixes
since they predate the "Namespaces in XML" recommendation. Although "Namespaces in XML" went
to great pains to explain that prefixes were only placeholders and only the namespace URIs really
matter, it was painful and awkward to design a DTD that could support arbitrary prefixes. Schemas
correct this by validating against namespace URIs and local names rather than prefixed names.

The elementFormDefault and attributeFormDefault attributes of the xs:schema element control

whether locally declared elements and attributes must be namespace-qualified within instance
documents. Suppose the attribute attributeFormDefault is set to qualified in the schema, like

this:

<xs:schema xmlns:xsi="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://namespaces.oreilly.com/xmlnut/address"

 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address"

 attributeFormDefault="qualified">

Now, if addressdoc.xml is validated against the schema, the validator reports the following error:

Attribute "language" must be declared for element type "fullName".

Since the default attribute form has been set to qualified, the schema processor doesn't recognize
the unqualified language attribute as belonging to the same schema as the fullName element. This
is because attributes, unlike elements, don't inherit the default namespace from the xmlns="..."

attribute. They must always be explicitly prefixed if they need to belong to a particular namespace.

The easiest way to fix the instance document is to declare an explicit namespace prefix and use it to
qualify the element and attribute, as shown in Example 17-5.

Example 17-5. addressdoc.xml with explicit namespace prefix

<?xml version="1.0"?>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<addr:fullName xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://namespaces.oreilly.com/xmlnut/address

 address-schema.xsd"

 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address"

 addr:language="en">Scott Means</addr:fullName>

The elementFormDefault attribute serves the same function in regards to namespace qualification of
nested elements. If it is set to qualified, which is normal practice, nested elements must belong to

the target namespace of the schema (either through a default namespace declaration or an explicit
prefix).

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.4 Complex Types

A schema assigns a type to each element and attribute it declares. In Example 17-5, the fullName

element has a complex type. Elements with complex types may contain nested elements and have
attributes. Only elements can contain complex types. Attributes always have simple types.

Since the type is declared using an xs:complexType element embedded directly in the element

declaration, it is also an anonymous type, rather than a named type.

New types are defined using xs:complexType or xs:simpleType elements. If a new type is declared

globally with a top-level element, it needs to be given a name so that it can be referenced from
element and attribute declarations within the schema. If a type is defined inline (inside an element or
attribute declaration), it does not need to be named. But since it has no name, it cannot be
referenced by other element or attribute declarations. When building large and complex schemas,
data types will need to be shared among multiple different elements. To facilitate this reuse, it is
necessary to create named types.

To show how named types and complex content interact, let's expand the example schema. A new
address element will contain the fullName element, and the person's name will be divided into a

first- and last-name component. A typical instance document would look like Example 17-6.

Example 17-6. addressdoc.xml after adding address, first, and last
elements

<?xml version="1.0"?>

<addr:address xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://namespaces.oreilly.com/xmlnut/address

 address-schema.xsd"

 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address"

 addr:language="en">

 <addr:fullName>

 <addr:first>Scott</addr:first>

 <addr:last>Means</addr:last>

 </addr:fullName>

</addr:address>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To accommodate this new format, fairly substantial structural changes to the schema are required,
as shown in Example 17-7.

Example 17-7. address-schema.xsd to support address element

<xs:schema xmlns:xsi="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://namespaces.oreilly.com/xmlnut/address"

 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address"

 elementFormDefault="qualified">

<xs:element name="address">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="fullName">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="first" type="addr:nameComponent"/>

 <xs:element name="last" type="addr:nameComponent"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="nameComponent">

 <xs:simpleContent>

 <xs:extension base="xs:string"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </xs:simpleContent>

 </xs:complexType>

</xs:schema>

The first major difference between this schema and the previous version is that the root element
name has been changed from fullName to address. The same result could have been accomplished
by creating a new top-level element declaration for the new address element, but that would have
opened a loophole allowing a valid instance document to contain only a fullName element and

nothing else.

The address element declaration defines a new anonymous complex type. Unlike the old definition,
this complex type is defined to contain complex content using the xs:sequence element. The

sequence element tells the schema processor that the contained list of elements must appear in the
target document in the exact order they are given. In this case, the sequence contains only one
element declaration.

The nested element declaration is for the fullName element, which then repeats the
xs:complexType and xs:sequence definition process. Within this nested sequence, two element
declarations appear for the first and last elements.

These two element declarations, unlike all prior element declarations, explicitly reference a new
complex type that's declared in the schema: the addr:nameComponent type. It is fully qualified to

differentiate it from possible conflicts with built-in schema data types.

The nameComponent type is declared by the xs:complexType element immediately following the
address element declaration. It is identified as a named type by the presence of the name attribute,

but in every other way it is constructed the same way it would have been as an anonymous type.

17.4.1 Occurrence Constraints

One feature of schemas that should be welcome to DTD developers is the ability to explicitly set the
minimum and maximum number of times an element may occur at a particular point in a document
using minOccurs and maxOccurs attributes of the xs:element element. For example, this declaration
adds an optional middle name to the fullName element:

<xs:element name="fullName">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="first" type="addr:nameComponent"/>

 <xs:element name="middle" type="addr:nameComponent"

 minOccurs="0"/>

 <xs:element name="last" type="addr:nameComponent"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </xs:sequence>

 </xs:complexType>

</xs:element>

Notice that the element declaration for the middle element has a minOccurs value of 0. The default
value for both minOccurs and maxOccurs is 1, if they are not provided explicitly. Therefore, setting
minOccurs to 0 means that the middle element may appear 0 to 1 times. This is equivalent to using
the ? operator in a DTD declaration. Another possible value for the maxOccurs attribute is
unbounded, which indicates that the element in question may appear an unlimited number of times.
This value is used to produce the same effect as the * and + operators in a DTD declaration. The
advantage over DTDs comes when you use values other than 0, 1, or unbounded, letting you specify

things like "this element must appear at least twice but no more than four times."

17.4.2 Types of Element Content

So far you have seen elements that only contain character data and elements that only contain other
elements. The next several sections cover each of the possible types of element content individually,
from most restrictive to least restrictive:

Empty

Simple content

Mixed content

Any type

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.5 Empty Elements

In many cases, it is useful to declare an element that cannot contain anything. Most of these
elements convey all of their information via attributes or simply by their position in relation to other
elements (e.g., the br element from XHTML).Let's add a contact-information element to the address

element that will be used to contain a list of ways to contact a person. Example 17-8 shows the
sample instance document after adding the new contacts element and a sample phone entry.

Example 17-8. addressdoc.xml with contact element

<?xml version="1.0"?>

<addr:address xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://namespaces.oreilly.com/xmlnut/address

 address-schema.xsd"

 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address"

 addr:language="en">

 <addr:fullName>

 <addr:first>William</addr:first>

 <addr:middle>Scott</addr:middle>

 <addr:last>Means</addr:last>

 </addr:fullName>

 <addr:contacts>

 <addr:phone addr:number="888.737.1752"/>

 </addr:contacts>

</addr:address>

Supporting this new content requires further modifications to the schema document. Although it
would be possible to declare the new element inline within the existing address-element declaration,
for clarity it makes sense to create a new global type and reference it by name:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<xs:element name="address">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="fullName">

. . .

 </xs:element>

 <xs:element name="contacts" type="addr:contactsType" minOccurs="0"/>

 </xs:sequence>

 <xs:attributeGroup ref="addr:nationality"/>

 </xs:complexType>

</xs:element>

The declaration for the new contactsType complex type looks like this:

<xs:complexType name="contactsType">

 <xs:sequence>

 <xs:element name="phone" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="number" type="xs:string"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

The syntax used to declare an empty element is actually very simple. Notice that the xs:element
declaration for the previous phone element contains a complex type definition that only includes a
single attribute declaration. This tells the schema processor that the phone element may only contain

complex content (elements), and since no additional nested element declarations are provided, it
must remain empty.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.5.1 The complexContent Element

The preceding example actually took a shortcut with the schema language. One of the early
fullName element declarations used the xs:simpleContent element to indicate that the element

could only contain simple content (no nested elements). There is a corresponding content-declaration
element that specifies that a complex type can only contain complex content (elements). This is the
xs:complexContent element.

When the phone element was declared using an xs:complexType element with no nested element

declarations, the schema processor automatically inferred that it should contain only complex
content. The phone element declaration could be rewritten like so, using the xs:complexContent

element:

<xs:element name="phone" minOccurs="0">

 <xs:complexType>

 <xs:complexContent>

 <xs:restriction base="xs:anyType">

 <xs:attribute name="number" type="xs:string"/>

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

</xs:element>

The most common reason to use the xs:complexContent element is to derive a complex type from
an existing type. This example derives a new type by restriction from the built-in xs:anyType type.
xs:anyType is the root of all of the built-in schema types and represents an unrestricted sequence of
characters and markup. Since the xs:complexType indicates that the element can only contain

element content, the effect of this restriction is to prevent the element from containing either
character data or markup.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.6 Simple Content

Earlier, the xs:simpleContent element was used to declare an element that could only contain

simple content:

<xs:element name="fullName">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="language" type="xs:language"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

The base type for the extension in this case was the built-in xs:string data type. But simple types
are not limited to the predefined types. The xs:simpleType element can define new simple data

types, which can be referenced by element and attribute declarations within the schema.

17.6.1 Defining New Simple Types

To show how new simple types can be defined, let's extend the phone element from the example
application to support a new attribute called location. This attribute will be used to differentiate

between work and home phone numbers. This attribute will have a new simple type called
locationType, which will be referenced from the contactsType definition:

<xs:complexType name="contactsType">

 <xs:sequence>

 <xs:element name="phone" minOccurs="0">

 <xs:complexType>

 <xs:attribute name="number" type="xs:string"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <xs:attribute name="location" type="addr:locationType"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

<xs:simpleType name="locationType">

 <xs:restriction base="xs:string"/>

</xs:simpleType>

Of course, a location type that just maps to the built-in xs:string type isn't particularly useful.

Fortunately, schemas can strictly control the possible values of simple types through a mechanism
called facets.

17.6.2 Facets

In schema-speak, a facet is an aspect of a possible value for a simple data type. Depending on the
base type, some facets make more sense than others. For example, a numeric data type can be
restricted by the minimum and maximum possible values it could contain. But these types of
restrictions wouldn't make sense for a boolean value. The following list covers the different facet

types that are supported by a schema processor:

length (or minLength and maxLength)

pattern

enumeration

whiteSpace

maxInclusive and maxExclusive

minInclusive and minExclusive

totalDigits

fractionDigits

Facets are applied to simple types using the xs:restriction element. Each facet is expressed as a

distinct element within the restriction block, and multiple facets can be combined to further restrict
potential values of the simple type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.6.2.1 Handling whitespace

The whiteSpace facet controls how the schema processor will deal with any whitespace within the

target data. Whitespace normalization takes place before any of the other facets are processed.
There are three possible values for the whiteSpace facet:

preserve

Keep all whitespace exactly as it was in the source document (basic XML 1.0 whitespace
handling for content within elements).

replace

Replace occurrences of #x9 (tab), #xA (line feed), and #xD (carriage return) characters with
#x20 (space) characters.

collapse

Perform the replace step first, then collapse multiple-space characters into a single space.

17.6.2.2 Restricting length

The length-restriction facets are fairly easy to understand. The length facet forces a value to be
exactly the length given. The minLength and maxLength facets can set a definite range for the
lengths of values of the type given. For example, take the nameComponent type from the schema.

What if a name component could not exceed 50 characters (because of a database limitation, for
instance)? This rule can be enforced by using the maxLength facet. Incorporating this facet requires a
new simple type to reference from within the nameComponent complex type definition:

<xs:complexType name="nameComponent">

 <xs:simpleContent>

 <xs:extension base="addr:nameString"/>

 </xs:simpleContent>

 </xs:complexType>

 <xs:simpleType name="nameString">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <xs:restriction base="xs:string">

 <xs:maxLength value="50"/>

 </xs:restriction>

 </xs:simpleType>

The new nameString simple type is derived from the built-in xs:string type, but it can contain no
more than 50 characters (the default is unlimited). The same approach can be used with the length
and minLength facets.

17.6.2.3 Enumerations

One of the more useful types of restriction is the simple enumeration. In many cases, it is sufficient
to restrict possible values for an element or attribute to a member of a predefined list. For example,
values of the new locationType simple type defined earlier could be restricted to a list of valid

options, like so:

<xs:simpleType name="locationType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="work"/>

 <xs:enumeration value="home"/>

 <xs:enumeration value="mobile"/>

 </xs:restriction>

</xs:simpleType>

Then, if the location attribute in any instance document contained a value not found in the list of

enumeration values, the schema processor would generate a validity error.

17.6.2.4 Numeric facets

Almost half of the of built-in data types defined by the schema specification represent numeric data
of one type or another. The following two sections cover all of the numeric facets available, but see
Chapter 22 for a comprehensive list of which of these facets are applicable to which data types.

17.6.2.4.1 Minimum and maximum values

Four facets control the minimum and maximum values of items:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

minInclusive

minExclusive

maxInclusive

maxExclusive

The primary difference between the inclusive and exclusive flavors of the min and max facets is
whether the value given is considered part of the set of allowable values. For example, the following
two facet declarations are equivalent when restricting xs:integer:

<xs:maxInclusive value="0"/>

<xs:maxExclusive value="1"/>

The difference between inclusive and exclusive becomes more significant when dealing with decimal
or floating-point values. For example, if minExclusive were set to 5.0, the equivalent minInclusive
value would require an infinite number of nines to the right of the decimal point (4.99999). These

facets can also be applied to date and time values.

17.6.2.4.2 Length and precision

There are two facets that control the length and precision of decimal numeric values: totalDigits
and fractionDigits. The totalDigits facet determines the total number of digits (only digits are
counted, not signs or decimal points) that are allowed in a complete number. fractionDigits

determines the number of those digits that must appear to the right of the decimal point in the
number.

17.6.2.5 Enforcing format

The xs:pattern facet can place very sophisticated restrictions on the format of string values. The

pattern facet compares the value in question against a regular expression, and if the value doesn't
conform to the expression, it generates a validation error. For example, this xs:simpleType element

declares a Social Security number simple type using the pattern facet:

<xs:simpleType name="ssn">

 <xs:restriction base="xs:string">

 <xs:pattern value="\d\d\d-\d\d-\d\d\d\d"/>

 </xs:restriction>

 </xs:simpleType>

This new simple type enforces the rule that a Social Security number consists of three digits, a dash

http://lib.ommolketab.ir
http://lib.ommolketab.ir

followed by two digits, another dash, and finally four more digits. The actual regular expression
language is very similar to that of the Perl programming language. See Chapter 22 for more
information on the full pattern-matching language.

17.6.2.6 Lists

XML 1.0 provided a few very simple list types that could be declared as possible attribute values:
IDREFS, ENTITIES, and NMTOKENS. Schemas have generalized the concept of lists and provide the

ability to declare lists of arbitrary types.

These list types are themselves simple types and may be used in the same places other simple types
are used. For example, if the fullName element were expanded to accommodate multiple middle
names, one approach would be to declare the middle element to contain a list of nameString values:

 <xs:element name="middle" type="addr:nameList" minOccurs="0"/>

. . .

<xs:complexType name="nameList">

 <xs:simpleContent>

 <xs:extension base="addr:nameListType"/>

 </xs:simpleContent>

 </xs:complexType>

 <xs:simpleType name="nameListType">

 <xs:list itemType="addr:nameString"/>

 </xs:simpleType>

After this change has been made, the middle element of an instance document can contain an

unlimited list of names, each of which can contain up to 50 characters separated by whitespace. The
use of xs:complexType here will greatly simplify adding attributes later.

17.6.2.7 Unions

In some cases, it is useful to allow potential values for elements and attributes to have any of several
types. The xs:union element allows a type to be declared that can draw from multiple type spaces.

For example, it might be useful to allow users to enter their own one-word descriptions into the
location attribute of the phone element, as well as to choose from a list. The location attribute
declaration could be modified to include a union that incorporated the locationType type and the
xs:NMTOKEN types:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<xs:attribute name="location">

 <xs:simpleType>

 <xs:union memberTypes="addr:locationType xs:NMTOKEN"/>

 </xs:simpleType>

</xs:attribute>

Now the location attribute can contain either addr:locationType or xs:NMTOKEN content.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.7 Mixed Content

XML 1.0 provided the ability to declare an element that could contain parsed character data
(#PCDATA) and unlimited occurrences of elements drawn from a provided list. Schemas provide the

same functionality plus the ability to control the number and sequence in which elements appear
within character data.

17.7.1 Allowing Mixed Content

The mixed attribute of the complexType element controls whether character data may appear within

the body of the element with which it is associated. To illustrate this concept, Example 17-9 gives us
a new schema that will be used to validate form-letter documents.

Example 17-9. formletter.xsd

<xs:schema xmlns:xsi="http://www.w3.org/2001/XMLSchema">

 <xs:element name="letter">

 <xs:complexType mixed="true"/>

 </xs:element>

</xs:schema>

This schema seems to declare a single element called letter that may contain character data and

nothing else. But attempting to validate the following document produces an error, as shown in
Example 17-10.

Example 17-10. formletterdoc.xml

<letter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="formletter.xsd">Hello!</letter>

The following error is generated:

The content of element type "letter" must match "EMPTY".

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is because there's no complex content for the letter element. Setting mixed to true is not the

same as declaring an element that may contain a string. The character data may only appear in
relation to other complex content, which leads to the subject of relative element positioning.

17.7.2 Controlling Element Placement

You have already seen the xs:sequence element, which dictates that the elements it contains must

appear in exactly the same order in which they appear within the sequence element. In addition to
xs:sequence, schemas also provide the xs:choice and xs:all elements to control the order in

which elements may appear. These elements may be nested to create sophisticated element
structures.

Expanding the form-letter example, a sequence adds support for various letter components to the
formletter.xsd schema:

<xs:element name="letter">

 <xs:complexType mixed="true">

 <xs:sequence>

 <xs:element name="greeting"/>

 <xs:element name="body"/>

 <xs:element name="closing"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

Now, thanks to the xs:sequence element, a letter must include a greeting element, a body
element, and a closing element, in that order. But, in some cases, what is desired is that one and
only one element appear from a collection of possibilities. The xs:choice element supports this. For
example, if the greeting element needed to be restricted to contain only one salutation out of a
permissible list, it could be declared to do so using xs:choice:

<xs:element name="greeting">

 <xs:complexType mixed="true">

 <xs:choice>

 <xs:element name="hello"/>

 <xs:element name="hi"/>

 <xs:element name="dear"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </xs:choice>

 </xs:complexType>

</xs:element>

Now one of the permitted salutations must appear in the greeting element for the letter to be

considered valid.

The remaining element-order enforcement construct is the xs:all element. Unlike the xs:sequence
and xs:choice elements, the xs:all element must appear at the top of the content model and can
only contain elements that are optional or appear only once. The xs:all construct tells the schema

processor that each of the contained elements must appear once in the target document, but can
appear in any order. This could be applied in the form letter example. If the form letter had certain
elements that had to appear in the body element, but not in any particular order, xs:all could be

used to control their appearance:

<xs:element name="body">

 <xs:complexType mixed="true">

 <xs:all>

 <xs:element name="item"/>

 <xs:element name="price"/>

 <xs:element name="arrivalDate"/>

 </xs:all>

 </xs:complexType>

</xs:element>

This would allow the letter author to mix these elements into the narrative without being restricted to
any particular order. Also, it would prevent the author from inserting multiple references to the same
value by accident. A valid document instance, including the new body content, might look like

Example 17-11.

Example 17-11. formletterdoc.xml

<letter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="formletter.xsd">

 <greeting><hello/> Bob!</greeting>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <body>

 Thank you for ordering the <item/> ($<price/>). It should arrive

 by <arrivalDate/>.

 </body>

 <closing/>

</letter>

The element order constructs are not just limited to complex types with mixed
content. If the mixed attribute is not present, the declared sequence of child

elements is still enforced, but no character data is permitted between them.

17.7.3 Using Groups

Just as the xs:attributeGroup element allows commonly used attributes to be grouped together
and referenced as a unit, the xs:group element allows sequences, choices, and model groups of

individual element declarations to be grouped together and given a unique name. These groups can
then be included in another element-content model using an xs:group element with the ref attribute
set to the same value as the name attribute of the source group. When you do this, any occurrence

constraints have to be specified on the reference to the group rather than on the definition of the
group.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.8 Allowing Any Content

It is often necessary to allow users to include any type of markup content they see fit. Also, it is
useful to tell the schema processor to validate the content of a particular element against another
application's schema. Incorporating XHTML content into another document is an example of this
usage.

These applications are supported by the xs:any element. This element accepts attributes that

indicate what level of validation should be performed on the included content, if any. Also, it accepts
a target namespace that can be used to limit the vocabulary of included content. For instance, going
back to the address-book example, to associate a rich-text notes element with an address entry, you
could add the following element declaration to the address element declaration:

<xs:element name="notes" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:any namespace="http://www.w3.org/1999/xhtml"

 minOccurs="0" maxOccurs="unbounded"

 processContents="skip"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

The attributes of the xs:any element tell the schema processor that zero or more elements belonging
to the XHTML namespace (http://www.w3.org/1999/xhtml) may occur at this location. Notice that
this is done by setting minOccurs to 0 and maxOccurs to unbounded. It also states that these

elements should be skipped. This means that no validation will be performed against the actual
XHTML namespace by the parser. Other possible values for the processContents attribute are lax
and strict. When set to lax, the processor will attempt to validate any element it can find a
declaration for and silently ignore any unrecognized elements. The strict option requires every

element to be declared and valid per the schema associated with the namespace given.

There is also support in schemas to declare that any attribute may appear within a given element.
The xs:anyAttribute element may include the namespace and processContents attributes, which
perform the same function as they do in the xs:any element. For example, adding the following
markup to the address element would allow any XLink attributes to appear in an instance document:

<xs:element name="address">

http://www.w3.org/1999/xhtml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <xs:complexType>

. . .

 <xs:attributeGroup ref="addr:nationality"/>

 <xs:attribute name="ssn" type="addr:ssn"/>

 <xs:anyAttribute namespace="http://www.w3.org/1999/xlink"

 processContents="skip"/>

 </xs:complexType>

 </xs:element>

This style of vocabulary mixing may seem strange given the effort that normally goes into creating
constraints with schemas, but it fits well with the architecture of XLink.

17.8.1 Using Multiple Documents

As an application grows and becomes more complex, it is important to take steps to maintain
readability and extensibility. Things like separating a large schema into multiple documents,
importing declarations from external schemas, and deriving new types from existing types are all
typical tasks that will face designers of real-world schemas.

Just as large computer programs are separated into multiple physical source files, large schemas can
be separated into smaller, self-contained schema documents. Although a single large schema could
be arbitrarily separated into multiple smaller documents, taking the time to group related
declarations into reusable modules can simplify future schema development.

There are three mechanisms that include declarations from external schemas for use within a given
schema: xs:include, xs:redefine, and xs:import. The next three sections will discuss the

differences between these methods and when and where they should be used.

17.8.1.1 Including external declarations

The xs:include element is the most straightforward way to bring content from an external schema
into your own schema. To demonstrate how xs:include might be used, Example 17-12 shows a new

schema document called physical-address.xsd that contains a declaration for a new complex type
called physicalAddressType.

Example 17-12. physical-address.xsd

<xs:schema xmlns:xsi="http://www.w3.org/2001/XMLSchema"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 targetNamespace="http://namespaces.oreilly.com/xmlnut/address"

 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address"

 attributeFormDefault="qualified" elementFormDefault="qualified">

 <xs:annotation>

 <xs:documentation xml:lang="en-us">

 Simple schema example from O'Reilly's

 XML in a

 Nutshell.

 Copyright 2004 O'Reilly Media, Inc.

 </xs:documentation>

 </xs:annotation>

 <xs:complexType name="physicalAddressType">

 <xs:sequence>

 <xs:element name="street" type="xs:string" maxOccurs="3"/>

 <xs:element name="city" type="xs:string"/>

 <xs:element name="state" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

The address-book.xsd schema document can include and reference this declaration:

<xs:schema xmlns:xsi="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://namespaces.oreilly.com/xmlnut/address"

 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 attributeFormDefault="qualified" elementFormDefault="qualified">

. . .

 <xs:include schemaLocation="physical-address.xsd"/>

 <xs:element name="address">

 <xs:complexType>

 <xs:sequence>

. . .

 <xs:element name="physicalAddress"

 type="addr:physicalAddressType"/>

. . .

 </xs:sequence>

. . .

 </xs:complexType>

 </xs:element>

Content that has been included using the xs:include element is treated as though it were actually a

part of the including schema document. But unlike external entities, the included document must be
a valid schema in its own right. That means that it must be a well-formed XML document and have
an xs:schema element as its root element. Also, the target namespace of the included schema must

match that of the including document. (It can include references to content defined in the including
schema, however.)

17.8.1.2 Modifying external declarations

The xs:include element allows external declarations to be included and used as-is by another

schema document. But, sometimes, it is useful to extend and modify types and declarations from
another schema, which is where the xs:redefine element comes in.

Functionally, the xs:redefine elements works very much like the xs:include element. The major
difference is that within the scope of the xs:redefine element, types from the included schema may
be redefined without generating an error from the schema processor. For example, the xs:redefine
element could extend the physicalAddressType type to include longitude and latitude attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

without modifying the original declaration in physical-address.xsd:

<xs:schema xmlns:xsi="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://namespaces.oreilly.com/xmlnut/address"

 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address"

 attributeFormDefault="qualified" elementFormDefault="qualified">

. . .

<xs:redefine schemaLocation="physical-address.xsd">

 <xs:complexType name="physicalAddressType">

 <xs:complexContent>

 <xs:extension base="addr:physicalAddressType">

 <xs:attribute name="latitude" type="xs:decimal"/>

 <xs:attribute name="longitude" type="xs:decimal"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:redefine>

. . .

</xs:schema>

17.8.1.3 Importing schemas for other namespaces

The xs:include and xs:redefine elements are useful when the declarations are all part of the same

application. But as more public schemas become available, incorporating declarations from external
sources into custom applications will be important. The xs:import element is provided for this

purpose.

Using xs:import, it is possible to make the global types and elements that are declared by a schema

belonging to another namespace accessible from within an arbitrary schema. The W3C has used this
functionality to create type libraries . A sample type library was developed by the schema working
group and can be viewed on the W3C web site at
http://www.w3.org/2001/03/XMLSchema/TypeLibrary.xsd. The library includes schema type
declarations for representing text, arrays, lists, mathematics, measured quantities, and binary data.

http://www.w3.org/2001/03/XMLSchema/TypeLibrary.xsd
http://lib.ommolketab.ir
http://lib.ommolketab.ir

To use some of the types from this library in a schema, include the following xs:import element as a

child of the root schema element:

<xs:import namespace="http://www.w3.org/2001/03/XMLSchema/TypeLibrary"

 schemaLocation="http://www.w3.org/2001/03/XMLSchema/TypeLibrary.xsd"/>

17.8.2 Derived Complex Types

We have been using the xs:extension and xs:restriction elements without going too deeply into

how or why they work. The schema language provides functionality for extending existing types,
which is conceptually similar to that of inheritance in object-oriented programming. The extension
and restriction elements allow new types to be defined either by expanding or limiting the potential
values of existing types.

17.8.2.1 Deriving by extension

When deriving a new type from an existing type, the resulting type is equivalent to appending the
contents of the new declaration to the contents of the base declaration. For instance, the following
example declares a new type called mailingAddressType that extends the physicalAddressType

type to include a Zip Code:

<xs:complexType name="mailingAddressType">

 <xs:complexContent>

 <xs:extension base="addr:physicalAddressType">

 <xs:sequence>

 <xs:element name="zipCode" type="xs:string"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

This declaration appends a required element, zipCode, to the existing physicalAddressType type.

The biggest benefit of this approach is that as new declarations are added to the underlying type, the
derived type will automatically inherit them.

17.8.2.2 Deriving by restriction

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When a new type is a logical subset of an existing type, the xs:restriction element allows this
relationship to be expressed directly. Like the xs:extension type, it allows a new type to be created

based on an existing type. In the case of simple types, this restriction is a straightforward application
of additional constraints on the value of that simple value.

In the case of complex types, it is not quite so straightforward. Unlike the extension process, it is
necessary to completely reproduce the parent type definition as part of the restriction definition. By
omitting parts of the parent definition, the restriction element creates a new, constrained type. As an
example, this xs:complexType element derives a new type from the physicalAddressType that only
allows a single street element to contain the street address. The original physicalAddressType

looks like:

<xs:complexType name="physicalAddressType">

 <xs:sequence>

 <xs:element name="street" type="xs:string" maxOccurs="3"/>

 <xs:element name="city" type="xs:string"/>

 <xs:element name="state" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

The restricted version looks like:

<xs:complexType name="simplePhysicalAddressType">

 <xs:complexContent>

 <xs:restriction base="addr:physicalAddressType">

 <xs:sequence>

 <xs:element name="street" type="xs:string"/>

 <xs:element name="city" type="xs:string"/>

 <xs:element name="state" type="xs:string"/>

 </xs:sequence>

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that this type very closely resembles the physicalAddressType, except the maxOccurs="3"
attribute has been removed from the street element declaration.

17.8.2.3 Using derived types

One of the chief benefits of creating derived types is that the derived type may appear in place of the
parent type within an instance document. (Applications that read the schema, like data binding
applications, can use its type hierarchy for processing the document as well.) The xsi:type attribute

tells the schema processor that the element on which it appears conforms to a type that is derived
from the normal type expected. For example, take the instance document in Example 17-13, which
conforms to the address schema.

Example 17-13. addressdoc.xml using a derived type

<?xml version="1.0"?>

<addr:address xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://namespaces.oreilly.com/xmlnut/address

 address-schema.xsd"

 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address"

 addr:language="en"

 addr:ssn="123-45-6789">

. . .

 <physicalAddress addr:latitude="34.003855" addr:longitude="-81.034808"

 xsi:type="addr:simplePhysicalAddressType">

 <street>1400 Main St.</street>

 <city>Columbia</city>

 <state>SC</state>

 </physicalAddress>

. . .

</addr:address>

Notice that the physicalAddress element has an xsi:type attribute that informs the validator that
the current element conforms to the simplePhysicalAddressType, rather than the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

physicalAddressType that would normally be expected. This feature is particularly useful when

developing internationalized applications, as distinct address types could be derived for each country
and then flagged in the instance document for proper validation.

17.8.3 Substitution Groups

A feature that is closely related to derived types is the substitution group. A substitution group is a
collection of elements that are all interchangeable with a particular element, called the head element,
within an instance document. To create a substitution group, all that is required is that an element
declaration include a substitutionGroup attribute that names the head element for that group.

Then, anywhere that the head element's declaration is referenced in the schema, any member of the
substitution group may also appear. Unlike derived types, it isn't necessary to use the xsi:type

attribute in an instance document to identify the type of the substituted element.

The primary restriction on substitution groups is that every element in the
group must be either of the same type as or derived from the head element's
type. Declaring a numeric element and trying to add it to a substitution group
based on a string element would generate an error from the schema processor.
The elements must also be declared globally and in the target namespace of
the schema.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.9 Controlling Type Derivation

Just as some object-oriented programming languages allow the creator of an object to dictate the
limits on how an object can be extended, the schema language allows schema authors to place
restrictions on type extension and restriction.

17.9.1 Abstract Elements and Types

The abstract attribute applies to type and element declarations. When it is set to true, that element

or type cannot appear directly in an instance document. If an element is declared as abstract, a
member of a substitution group based on that element must appear. If a type is declared as abstract,
no element declared with that type may appear in an instance document.

17.9.2 The Final Attribute

Until now, the schema has placed no restrictions on how other types or elements could be derived
from its elements and types. The final attribute can be added to a complex type definition and set
to either #all, extension, or restriction. On a simple type definition, it can be set to #all or to a
list containing any combination of the values list, union, and/or restriction, in any order. When a
type is derived from another type that has the final attribute set, the schema processor verifies that
the desired derivation is legal. For example, a final attribute could prevent the
physicalAddressType type from being extended:

<xs:complexType name="physicalAddressType" final="extension">

Since the main schema in address-schema.xsd attempts to redefine the physicalAddressType in an
xs:redefine block, the schema processor generates the following errors when it attempts to validate

the instance document:

ComplexType 'physicalAddressType': cos-ct-extends.1.1: Derivation by

extension is forbidden by either the base type physicalAddressType_redefined

or the schema.

Attribute "addr:latitude" must be declared for element type "physicalAddress".

Attribute "addr:longitude" must be declared for element type

"physicalAddress".

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first error is a result of trying to extend a type that has been marked to prevent extension. The
next two errors occur because the new, extended type was not parsed and applied to the content in
the document. Now that you've seen how this works, removing this particular "feature" from the
physicalAddressType definition gets the schema working again.

17.9.3 Setting fixed Facets

Similar to the final attribute, the fixed attribute is provided to mark certain facets of simple types
as immutable. Facets that have been marked as fixed="true" cannot be overridden in derived

types.

17.9.4 Uniqueness and Keys

Perhaps one of the most welcome features of schemas is the ability to express more sophisticated
relationships between values in elements and attributes of a document. The limitations of the
primitive index capability provided by the XML 1.0 ID and IDREF attributes became readily apparent

as documents began to include multiple distinct types of element data with complex data keys. The
two facilities for enforcing element uniqueness in schemas are the xs:unique and xs:key elements.

17.9.4.1 Forcing uniqueness

The xs:unique element enforces element and attribute value uniqueness for a specified set of

elements in a schema document. This uniqueness constraint is constructed in two phases. First, the
set of all of the elements to be evaluated is defined using a restricted XPath expression. Next, the
precise element and attribute values that must be unique are defined.

To illustrate, let's add logic to the address schema to prevent the same phone number from
appearing multiple times within a given contacts element. To add this restriction, the element
declaration for contacts includes a uniqueness constraint:

<xs:element name="contacts" type="addr:contactsType" minOccurs="0">

 <xs:unique name="phoneNums">

 <xs:selector xpath="addr:phone"/>

 <xs:field xpath="@addr:number"/>

 </xs:unique>

</xs:element>

Now, if a given contacts element contains two phone elements with the same value for their number

attributes, the schema processor will generate an error.

This is the basic algorithm that the schema processor follows to enforce these restrictions:

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use the xpath attribute of the single xs:selector element to build a set of all of the elements

to which the restriction will apply.

1.

Logically combine the values referenced by each xs:field element for each selected element.

Compare the combinations of values that you get for each of the elements.

2.

Report any conflicts as a validity error.3.

The very perceptive among you are right: the contactsType type definition
only permits a single phone child element. So this particular restriction would
not be very useful. Modifying the contactsType definition to permit multiple

child elements is not difficult.

17.9.4.2 Keys and references

The xs:key element is closely related to the xs:unique element. Logically, the xs:key element
functions exactly the same way the xs:unique element does. It uses the xs:selector element to
define a set of elements it applies to, then one or more xs:field elements are used to define which
values make up this particular key. The difference between these elements is that xs:key says that
every selected element must have a value for each of the fields specified, whereas with xs:unique, it

doesn't matter if some of the selected elements don't have values for the fields. Having created a
fairly full-featured address element, creating a collection of these elements called addressBook

would be an excellent way to show this feature in operation.

First, the new addressBook element is declared, including a key based on the ssn attribute of each
address entry:

<xs:element name="addressBook">

 <xs:complexType>

 <xs:sequence maxOccurs="unbounded">

 <xs:element ref="addr:address"/>

 </xs:sequence>

 </xs:complexType>

 <xs:key name="ssnKey">

 <xs:selector xpath="addr:address"/>

 <xs:field xpath="@addr:ssn"/>

 </xs:key>

 </xs:element>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(If the ssn attribute was optional, you'd need to use xs:unique rather than xs:key in this example.)

Now that the key is defined, you can add a new element to the address element declaration that

connects a particular address record with another record. For example, to list references to the
children of a particular person in the address book, add the following declaration for a kids element:

<xs:element name="address">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="fullName">

. . .

 </xs:element>

 <xs:element name="kids" minOccurs="0">

 <xs:complexType>

 <xs:sequence maxOccurs="unbounded">

 <xs:element name="kid">

 <xs:complexType>

 <xs:attribute name="ssn" type="addr:ssn"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

. . .

 </xs:sequence>

 <xs:attributeGroup ref="addr:nationality"/>

 <xs:attribute name="ssn" type="addr:ssn"/>

 <xs:anyAttribute namespace="http://www.w3.org/1999/xlink"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 processContents="skip"/>

 </xs:complexType>

 </xs:element>

Now, an xs:keyref element in the addressBook element declaration enforces the constraint that the
ssn attribute of a particular kid element must match an ssn attribute on an address element in the

current document:

<xs:element name="addressBook">

. . .

 <xs:key name="ssnKey">

 <xs:selector xpath="addr:address"/>

 <xs:field xpath="@addr:ssn"/>

 </xs:key>

 <xs:keyref name="kidSSN" refer="addr:ssnKey">

 <xs:selector xpath="addr:address/addr:kids/addr:kid"/>

 <xs:field xpath="@addr:ssn"/>

 </xs:keyref>

 </xs:element>

Now, if any kid element in an instance document refers to a nonexistent address record, the

schema validator will report an error.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 18. Programming Models
This chapter briefly explains the most popular programming techniques for parsing, manipulating,
and generating XML data. XML support is available for virtually every programming platform in use
today, from supercomputer to cell phone. If you can't find XML support built into your programming
environment, a quick Google search will likely locate a library.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

18.1 Common XML Processing Models

XML's structured and tagged text can be processed by developers in several ways. Programs can look
at XML as plain text, as a stream of events, as a tree, or as a serialization of some other structure.
Tools supporting all of these options are widely available.

18.1.1 Text-Based XML Processing

At their foundation, XML documents are text. The content and markup are both represented as text,
and text-editing tools can be extremely useful for XML document inspection, creation, and
modification. XML's textual foundations make it possible for developers to work with XML directly,
using XML-specific tools only when they choose to.

One of the original design goals of XML was for documents to be easy to parse. For very simple
documents that do not depend on features such as attribute defaulting and validation, it is possible to
parse tags, attributes, and text data using standard programming tools such as regular expressions
and tokenizers, but the complexity of processing grows rapidly as documents use more features.
Unless the application can completely control the content of incoming documents, it is almost always
preferable to use one of the many high-quality XML parsers that are freely available for most
programming languages.

Textual tools are a key part of the XML toolset, however. Many developers use text editors such as
vi, Emacs, NotePad, WordPad, BBEdit, and UltraEdit to create or modify XML documents. Regular
expressions-in environments such as sed, grep, Perl, and Python-can be used for search and
replace or for tweaking documents prior to XML parsing or XSLT processing. Various standards are
beginning to take advantage of regular expression matching after a particular document has been
parsed. The W3C's XML Schema recommendation, for instance, includes regular-expression matching
as one mechanism for validating data types, as discussed in Chapter 17.

Text-based processing can be performed in conjunction with other XML processing. Parsing and then
serializing XML documents after other processing has taken place doesn't always produce the desired
results. XSLT, for instance, will remove entity references and replace them with entity content.
Preserving entities requires replacing them in the original document with unique placeholders, and
then replacing the placeholder as it appears in the result. With regular expressions, this is quite easy
to do.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XML's dependence on Unicode means that developers need to be careful about
the text-processing tools they choose. Many development environments have
been upgraded to support Unicode, but there are still tools available that don't.
Before using text-processing tools on the results of an XML parse, make sure
they support Unicode. Text-processing tools being applied to raw XML
documents must support the character encoding used for the document. Most
modern languages (including Java, C#, Perl 5.6, and Python 2.2) and tools
support Unicode. The difficult cases tend to arise in C and C++ where you have
to worry about using wchar versus char and understand what a wchar actually

is on a particular platform.

18.1.2 Event-Driven XML Processing

As an XML parser reads a document, it moves from the beginning of the document to the end. It may
pause to retrieve external resources-for a DTD or an external entity, for instance-but it builds an
understanding of the document as it moves along. Tree-based XML technologies (such as the DOM)
combine these incremental parsing events into a monolithic image of an XML document once parsing
has been completed successfully.

Event-based parsers, on the other hand, report these interim events to their client applications as
they happen. Some common parsing events are element start-tag read, element content read, and
element end-tag read. For example, consider the document in Example 18-1.

Example 18-1. Simple XML document

<name><given>Keith</given><family>Johnson</family></name>

An event-based parser might report events such as this:

startElement:name

startElement:given

content: Keith

endElement:given

startElement:family

content:Johnson

endElement:family

endElement:name

The list and structure of events can become much more complex as features such as namespaces,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attributes, whitespace between elements, comments, processing instructions, and entities are added,
but the basic mechanism is quite simple and generally very efficient.

Event-based applications are generally more complex than tree-based applications. Processing events
typically means the creation of a state machine, code that understands the current context and can
route the information in the events to the proper consumer. Because events occur as the document
is read, applications must be prepared to discard results should a fatal error occur partway through
the document. Also, accessing a wide variety of data scattered throughout a document is much more
involved than it would be if the entire document were parsed into a tree structure.

The upside to an event-based API is speed and efficiency. Because event-based APIs stream the
document to the client application, your program can begin working with the data from the beginning
of the document before the end of the document is seen. It doesn't have to wait for the entire
document to be read before commencing. For instance, a brokerage program receiving a long list of
requests to buy individual stocks could execute the first trade before the parser reads the second
trade, execute the second trade before the parser reads the third trade, and so forth. This could save
crucial seconds on the initial trades if the document includes many separate orders.

Even more important than speed is size. XML documents can be quite large, sometimes ranging into
the gigabytes. An event-based API does not need to store all this data in memory at one time. It can
process the document in small, easily handled chunks, then reclaim that storage. In practice, even on
the largest, beefiest servers with gigabytes of RAM, XML documents larger than a couple of hundred
megabytes can't be processed with a tree-based API. In an embedded environment (like a cell
phone), memory limitations mandate streaming APIs.

Event-based parsers also more naturally fit certain tasks, such as content filtering. Filters can process
and modify events before passing them to another processor, efficiently performing a wide range of
transformations. Filters can be chained, providing a relatively simple means of building XML
processing pipelines, where the information from one processor flows directly into another.
Applications that want to feed information directly from XML documents into their own internal
structures may find events to be the most efficient means of doing that. Even parsers that report
XML documents as complete trees, as described in the next section, typically build those trees from a
stream of events.

The Simple API for XML (SAX), described in Chapter 20 and Chapter 26, is the
most commonly used event-based API. SAX2, the current version, is hosted at
http://sax.sourceforge.net/. Expat, a widely used XML parser written in C, also
uses an event-based API. For information on the expat parser and its API, see
http://expat.sourceforge.net.

18.1.3 Tree-based XML Processing

XML documents, because of the requirements for well-formedness, can be readily described using
tree structures. Elements are inherently hierarchical, as they may contain other elements, text
content, comments, and so forth.

There is a wide variety of tree models for XML documents. XPath (described in Chapter 9), used in
XSLT transformations, has a slightly different set of expectations than does the Document Object
Model (DOM) API, which is also different from the XML Information Set (Infoset), another W3C
project. XML Schema (described in Chapter 17 and Chapter 22) defines a Post-Schema Validation

http://sax.sourceforge.net/
http://expat.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Infoset (PSVI), which has more information in it (derived from the XML Schema) than any of the
others.

Developers who want to manipulate documents from their programs typically use APIs that provide
access to an object model representing the XML document. Tree-based APIs typically present a model
of an entire document to an application once parsing has successfully concluded. Applications don't
have to worry about manually maintaining parsing context or partial processing when a parse error is
encountered, as the tree-based parser generally handles errors on its own. Rather than following a
stream of events, an application can just navigate through the tree to find the desired pieces of a
document.

Working with a tree model has substantial advantages. The entire document is always available, and
moving well-balanced portions of a document from one place to another or modifying them is fairly
easy. The complete context for any given part of the document is always available. When using APIs
that support it, developers can use XPath expressions to locate content and make decisions based on
content anywhere in the document. (DOM Level 3 adds formal support for XPath, and various
implementations already provide their own nonstandard support.)

Tree models of documents have a few drawbacks. They can take up large amounts of memory,
typically three to ten times the original document's file size. Navigating documents can require
additional processing after the parse, as developers have more options available to them. (Tree
models don't impose the same kinds of discipline as event-based processing.) These issues can make
it difficult to scale and share applications that rely on tree models, although they may still be
appropriate where small numbers of documents or small documents are being used.

The Document Object Model (DOM), described in Chapter 19 and Chapter 25, is
the most common tree-based API. JDOM (http://jdom.org/), DOM4J
(http://dom4j.org/), and XOM (http://www.cafeconleche.org/XOM) are Java-
only alternatives. (XOM is an object model promoted by Elliotte Rusty Harold,
one of the authors.)

18.1.4 Pull-Based XML Processing

The most recent entrant into the XML processing arena is the so-called pull processing model. One of
the most widely used pull processors is the Microsoft .NET XMLReader class. The pull model is most

similar to the event-based model in that it makes the contents of the XML document available
progressively as the document is parsed.

Unlike the event model, the pull approach relies on the client application to request content from the
parser at its own pace. For example, a pull client might include the following code to parse the simple
document shown in Example 18-1:

reader.ReadStartElement("name")

reader.ReadStartElement("given")

givenName = reader.ReadString()

reader.ReadEndElement()

http://jdom.org/
http://dom4j.org/
http://www.cafeconleche.org/XOM
http://lib.ommolketab.ir
http://lib.ommolketab.ir

reader.ReadStartElement("family")

familyName = reader.ReadString()

reader.ReadEndElement()

reader.ReadEndElement()

The pull client requests the XML content it expects to see from the pull parser. In practice, this makes
pull client code easier to read and understand than the corresponding event-based code would be. It
also tends to reduce the need to create stacks and structures to contain document information, as
the code itself can be written to mirror recursive descent parsing.

In the Java world, BEA, Sun, and several individual developers have collaborated to create the
Streaming API for XML (StAX). StAX and other pull parsers share the advantages of streaming with
SAX such as speed, parallelism, and memory efficiency while offering an API that is more comfortable
to many developers. In essence, SAX and other push parsers are based on the Observer design
pattern. StAX, XMLReader, and other pull parsers are based on the Iterator design pattern.

18.1.5 Transformations

Another facility available to the XML programmer is document transformation. The Extensible
Stylesheet Language Transformation (XSLT) language, covered in Chapter 8, is the most popular tool
currently available for transforming XML to HTML, XML, or any other regular language that can be
expressed in XSLT. In some cases, using a transformation to perform pre- or post-processing on XML
data can reduce the complexity of a DOM or SAX application. For instance, XSLT could be used as a
preprocessor for a screen-scraping application that starts from XHTML documents. The complex
XHTML document could be transformed into a smaller, more accessible application-specific XML
format that could then be read by a script.

Transformations may be used by themselves, in browsers, or at the command line, but many XSLT
implementations and other transformation tools offer SAX or DOM interfaces, simplifying the task of
using them to build document processing pipelines.

18.1.6 Abstracting XML Away

Developers who want to take advantage of XML's cross-platform benefits but have no patience for
the details of markup can use various tools that rely on XML but don't require direct exposure to
XML's structures. Web Services, mentioned in Chapter 16, can be seen as a move in this direction.
You can still touch the XML directly if you need to, but toolkits make it easier to avoid doing so.

These kinds of applications are generally built as a layer on top of event- or tree-based processing,
presenting their own API to the underlying information. We feel that in most cases, the underlying
XML data is as clear and accessible as it can be. Additional layers of abstraction above the XML simply
add to the overall complexity and rigidity of the application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.1.7 Standards and Extensions

The SAX and DOM specifications, along with the various core XML specifications, provide a foundation
for XML processing. Implementations of these standards, especially implementations of the DOM,
sometimes vary from the specification. Some extensions are formally specified-Scalable Vector
Graphics (SVG), for instance, specifies extensions to the DOM that are specific to working with SVG.
Others are just kind of tacked on, adding functionality that a programmer or vendor felt was
important but wasn't in the original specification. The multiple levels and modules of the DOM have
also led to developers claiming support for the DOM but actually supporting particular subsets (or
extensions) of the available specifications.

Porting standards also leads to variations. SAX was developed for Java, and the core SAX project only
defines a Java API. The DOM uses Interface Definition Language (IDL) to define its API, but various
implementations have interpreted the IDL slightly differently. SAX2 and the DOM are somewhat
portable, but moving between environments may require some unlearning and relearning.

Some environments also offer libraries well outside the SAX and DOM interfaces. Perl and Python
both offer libraries that combine event and tree processing-for instance, permitting applications to
work on partial trees rather than SAX events or full DOM trees. These nonstandard approaches do
not make moving between environments easy, but they can be very useful.

18.1.8 Combining Approaches

While text, events, trees, and transformations may seem very different, it isn't unusual to combine
them. Most parsers that produce DOM trees also offer the option of SAX events, and there are a
number of tools that can create DOM trees from SAX events or vice versa. Some tools that accept
and generate SAX events actually build internal trees-many XSLT processors operate this way, using
optimized internal models for their trees rather than the generic DOM. XSLT processors themselves
often accept either SAX events or DOM trees as input and can produce these models (or text) for
their output.

Most programmers who want direct access to XML documents start with DOM trees, which are easier
to figure out initially. If they have problems that are better solved in event-based environments, they
can either rewrite their code for events-it's a big change-or mix and match event processing with
tree processing.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

18.2 Common XML Processing Issues

As with any technology, there are several ways to accomplish most design goals when developing a
new XML application, as well as a few potential problems worth knowing about ahead of time. An
understanding of the intended uses for these features can help ensure that new applications will be
compatible not only with their intended target audience, but also with other XML processing systems
that may not even exist yet.

18.2.1 What You Get Is Not What You Saw

The XML specification provides several loopholes that permit XML parsers to play fast and loose with
your document's literal contents, while retaining the semantic meaning. Comments can be omitted
and entity references silently replaced by the parser without any warning to the client application.
Non-validating parsers aren't required to retrieve external DTDs or entities, although the parser
should at least warn applications that this is happening. While reconstructing an XML document with
exactly the same logical structure and content is possible, guaranteeing that it will match the original
in a byte-by-byte comparison generally is not.

XML Canonicalization defines a more consistent form of XML and a process for
producing it that permits a much higher degree of predictability in
reconstructing a document from its logical model. For details, see
http://www.w3.org/TR/xml-c14n.

Authors of simple XML processing tools that act on data without storing or modifying it might not
consider these constraints particularly restrictive. The ability to reconstruct an XML document
precisely from in-memory data structures, however, becomes more critical for authors of XML editing
tools and content-management solutions. While no parser is required to make all comments,
whitespace, and entity references available from the parse stream, many do or can be made to do so
with the proper configuration options.

The only real option to ensure that a parser reports documents as you want, and not just the
minimum required by the XML specification, is to check its documentation and configure (or choose)
the parser accordingly.

18.2.2 To Read the DTD or Not To Read the DTD?

DTDs come in two forms: internal and external and sometimes both. The XML specification requires
all parsers to read the internal DTD subset. Validation requires reading the external DTD subset (if
any); but if you don't validate, this is optional. Reading the external DTD subset takes extra time,
especially if the DTD is large and/or stored on a remote network host, so you may not want to load it
if you're not validating. Most parsers provide options to specify whether the external DTD subset and

http://www.w3.org/TR/xml-c14n
http://lib.ommolketab.ir
http://lib.ommolketab.ir

other external entities should be resolved. If validation were all a DTD did, then the decision of
whether to load the DTD would be easy. Unfortunately, DTDs also augment a document's infoset with
several important properties, including:

Entity definitions

Default attribute values

Whether boundary whitespace is ignorable

At the extreme, since a document with a malformed DTD is itself malformed, a DTD can make a
document readable or unreadable. This means whether a parser reads the external DTD subset or
not can have a significant impact on what the parser reports. For maximum interoperability
documents should be served without external DTD subsets. In this case parser behavior is
deterministic and reproducible, regardless of configuration. On the flip side a consumer of XML
documents should attempt to read any external DTD subset the document references if they want to
be sure of receiving what the sender intended. Be conservative in what you send (don't use external
DTD subsets) and liberal in what you accept (do read any external DTD subsets for documents you
receive).

18.2.3 Whitespace

How parsers treat whitespace is one of the most commonly misunderstood areas of XML processing.
There are four basic rules you need to remember:

All whitespace in element content is always reported.1.

Whitespace in attribute values is normalized.2.

Whitespace in the prolog and epilog and within tags but outside attribute values is not reported.3.

All non-escaped line breaks (carriage returns, line feeds, carriage return-line feed pairs, and, in
XML 1.1, NEL and line separator) are converted to line feeds.

4.

Consider Example 18-2.

Example 18-2. Various kinds of whitespace

<?xml version="1.0"?>

<!DOCTYPE person SYSTEM "person.dtd ">

<person source="Alan Turing: the Enigma,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Andrew Hodges, 1983">

 <name>

 <first>Alan</first>

 <last>Turing</last>

 </name>

 <profession id="p1"

 value="computer scientist "

 source="" />

 <profession id="p2"

 value="mathematician"/>

 <profession id="p3"

 value="cryptographer"/>

</person>

When a parser reads this document, it will report all the whitespace in the element content to the
client application. This includes boundary whitespace like that between the <name> and <first>
start-tags and the </last> and </name> end-tags. If the DTD says that the name element cannot

contain mixed content, the whitespace is considered to be whitespace in element content, also called
ignorable whitespace. However, the parser still reports it. The client application receiving the content
from the parser may choose to ignore boundary whitespace, whether it's ignorable or not,
interpreting it as purely for the purpose of pretty printing; but that's up to the client application. The
parser always reports it all.

The parser does not report the line breaks and other whitespace in the prolog and epilog. Nor does it
report the line breaks and whitespace in the tags such as that between the id and value attributes in
the profession elements. Nothing in your program should depend on this.

The parser will normalize all the whitespace in attribute values. At a minimum, this means it will turn
line breaks like those in the source attribute into spaces. If the DTD says the attribute has type CDATA

or does not declare it, or if the DTD has not been read or does not exist, then that's all. However, if
the attribute has any other type such as ID, NMTOKENS, or an enumeration, then the parser will strip

all leading and trailing whitespace from the attribute and compress all remaining runs of whitespace
to a single space each. However, normalization is only performed on literal whitespace. Spaces, tabs,
line feeds, and carriage returns embedded with character or entity references are converted to their
replacement text and then retained. They are not normalized like literal whitespace.

18.2.4 Entity References

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are three kinds of references in XML instance documents (plus another couple in the DTD we
can ignore for the moment):

Numeric character references, such as and 1.

The five predefined entity references, &, >, ", ', and <2.

General entity references defined by the DTD, such as &chapter1; and 3.

The first two kinds are easy to handle. The parser always resolves them and never tells you anything
about them. As a parser client, you can simply ignore these and the right thing will happen. The
parser will report the replacement text in the same way it reports regular text. It won't ever tell you
that these entity references were used. On rare occasion you may be able to set a special property
on the parser to have it tell you about these things, but you almost never want to do that. The only
case where that might make sense is if you're writing an XML editor that tries to round-trip the
source form of a document.

The third case is trickier. These entity references may refer to external files on remote sites you don't
necessarily want to connect to for reasons of performance, availability, or security. Even if they're
internal entities, they may be defined in the external DTD subset in a remote document. Parsers vary
in whether they load such entities by default. Most parsers and APIs do provide a means of specifying
whether external entities should or should not be loaded, although this is not universal. For instance,
XOM always resolves external entities, while the XML parser in Mozilla never resolves them. Parsers
that do not resolve an external entity should nevertheless notify the client application that the entity
was not loaded-for instance, calling skippedEntity() in SAX or inserting an EntityReference

object into the tree in DOM. How the program responds to such notifications is a question that must
be answered in the context of each application. Sometimes it's a fatal problem. Other times it's
something you can work around or even ignore, but do be aware that you need to consider this
possibility unless the parser is configured to always resolve external entities.

Recently, a few parser vendors have become concerned about the so-called
billion laugh attacks. In brief, it works by defining entity references that
progressively double in size, especially in the internal DTD subset where the
entities must be resolved:

<!ENTITY ha1 "Ha! ">

<!ENTITY ha2 "&ha1; &ha1;">

<!ENTITY ha3 "&ha2; &ha2;">

<!ENTITY ha4 "&ha3; &ha3;">

<!ENTITY ha5 "&ha4; &ha4;">

<!ENTITY ha6 "&ha5; &ha5;">

...

<!ENTITY ha31 "&ha30; &ha30;">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!ENTITY ha32 "&ha31; &ha31;">

...

<root>&ha32;</root>

So far this attack is purely theoretical. Nonetheless, some parser vendors have
started adding options to their parsers not to resolve entities defined in the
internal DTD subset either (which is non-conformant to the XML
Recommendation). Other palliatives include setting maximum limits on entity
size or recursion depth in entity reference. In general these options are not
turned on by default, because they are nonconformant.

18.2.5 CDATA Sections

The golden rule of handling CDATA sections is this: ignore them. When writing code to process XML,
pretend CDATA sections do not exist, and everything will work just fine. The content of a CDATA

section is plain text. It will be reported to your application as plain text, just like any other text,
whether enclosed in a CDATA section, escaped with character references, or typed out literally when
escaping is not necessary. For example, these two example elements are exactly the same as far as

anything in your code should know or care:

<example><![CDATA[<?xml version="1.0"?>

<root>

 Hello!

</root>]]></example>

<example><?xml version="1.0"?>

<root>

 Hello!

</root></example>

Do not write programs or XML documents that depend on knowing the difference between the two.
Parsers rarely (and never reliably) inform you of the difference. Furthermore, passing such
documents through a processing chain often removes the CDATA sections completely, leaving only the

content intact but represented differently-for instance, with numeric character references
representing the unserializable characters. CDATA sections are a minor convenience for human

authors, nothing more. Do not treat them as markup.

This also means you should not attempt to nest one XML (or HTML) document inside another using
CDATA sections. XML documents are not designed to nest inside one another. The correct solution to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this problem is to use namespaces to sort out which markup is which, rather than trying to treat a
document as an envelope for other documents. Similarly do not use CDATA sections to escape

malformed markup such as is found in many HTML systems. Instead, use a tool such as Tidy to
correct the malformed HTML before embedding it in an XML document.

18.2.6 Comments

Despite a long history in HTML of using comments for tasks like Server-Side Includes (SSI) and for
hiding JavaScript code and Cascading Style Sheets, using comments for anything other than human-
readable notes is generally a bad idea in XML. XML parsers may (and frequently do) discard
comments entirely, keeping them from reaching an application at all. Transformations generally
discard comments as well.

18.2.7 Processing Instructions

XML parsers are required to provide client applications access to XML processing instructions.
Processing instructions provide a mechanism for document authors to communicate with XML-aware
applications behind the scenes in a way that doesn't interfere with the content of the document. DTD
and schema validation both ignore processing instructions, making it possible to use them anywhere
in a document structure without changing the DTD or schema. The processing instruction's most
widely recognized application is its ability to embed stylesheet references inside XML documents. The
following XML fragment shows a stylesheet reference:

<?xml-stylesheet type="text/css" href="test.css"?>

An XML-aware application, such as Internet Explorer 6.0, would be capable of recognizing the XML
author's intention to display the document using the test.css stylesheet. This processing instruction
can also be used to link to XSLT stylesheets or other kinds of stylesheets not yet developed, although
the client application needs to understand how to process them to make this work. Applications that
do not understand the processing instructions can still parse and use the information in the XML
document while ignoring the unfamiliar processing instruction.

The furniture example from Chapter 21 (see Figure 21-1) gives a hypothetical application of
processing instructions. A processing instruction in the bookcase.xml file signals the furniture
example's processor to verify the parts list from the document against the true list of parts required
to build the furniture item:

 <parts_list>

 <part_name id="A" count="1">END PANEL</part_name>

 <part_name id="B" count="2">SIDE PANEL</part_name>

 <part_name id="C" count="1">BACK PANEL</part_name>

 <part_name id="D" count="4">SHELF</part_name>

 <part_name id="E" count="8">HIDDEN CONNECTORS</part_name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <part_name id="F" count="8">CONNECTOR SCREWS</part_name>

 <part_name id="G" count="22">7/16" TACKS</part_name>

 <part_name id="H" count="16">SHELF PEGS</part_name>

 </parts_list>

<?furniture_app verify_parts_list?>

This processing instruction is meaningless unless the parsing application understands the given type
of processing instruction.

The XML specification also permits the association of the processing instruction's target-the XML
name immediately after the <? with a notation, as described in the next section-but this is not

required and is rarely used in XML.

18.2.8 Notations

The notation syntax of XML provides a way for the document author to specify an external unparsed
entity's type within the XML document's framework. If an application requires access to external data
that cannot be represented in XML, consider declaring a notation name and using it where
appropriate when declaring external unparsed entities. For example, if an XML application were an
annotated Java source-code format, the compiled bytecode could then be referenced as an external
unparsed entity.

Notations effectively provide metadata, identifiers that applications may apply to information. Using
notations requires making declarations in the DTD, as described in Chapter 3. One use of notations is
with NOTATION-type attributes. For example, if a document contained various scripts designed for
different environments, it might declare some notations and then use an attribute on a containing
element to identify what kind of script it contained:

<!NOTATION DOS PUBLIC "-//MS/DOS Batch File/">

<!NOTATION BASH PUBLIC "-//UNIX/BASH Shell Script/">

<!ELEMENT batch_code (#PCDATA)*>

<!ATTLIST batch_code

 lang NOTATION (DOS | BASH)>

. . .

<batch_code lang="DOS">

 echo Hello, world!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</batch_code>

Applications that read this document and recognized the public identifier could interpret the foreign
element data correctly, based on its type. (Notations can also have system identifiers, and
applications can use either approach.)

Categorizing processing instructions is the other use of notations. For instance, the previous
furniture_app processing-instruction example could have been declared as a notation in the DTD:

<!NOTATION furniture_app SYSTEM "http://namespaces.example.com/furniture">

Then the furniture-document processing application could verify that the processing instruction was
actually intended for itself and not for another application that used a processing instruction with the
same name.

18.2.9 Unparsed Entities

Unparsed entities combine attribute and notation declarations to define references to content that will
require further (unspecified) processing by the application. Unparsed entities are described in more
detail in Chapter 3, but although they are a feature available to applications, they are also rarely
used.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

18.3 Generating XML Documents

One area of XML development that isn't often addressed is that of generating XML documents for
consumption by other applications. Although there are several approaches for processing XML
documents, there are relatively few techniques currently used to create new documents.

One of the simplest (and most common) approaches is to use the string and/or file processing
facilities of your target development environment to construct the XML document directly. This
approach has the benefit of being easy to understand, efficient, and readily accessible to every
programmer. This Java statement emits a simple XML document to a file output stream:

FileWriter out = new FileWriter("message.xml");

out.write("<message>Hello, world!</message>");

It's not hard to see how this approach would be implemented in any other programming language.
For example, in C++, the following statement creates the desired result:

ofstream fout;

fout.open("message.xml", ios::app);

fout << "<message>Hello, world!</message>";

This is a completely valid approach, and it should be considered when the XML document is not overly
complex and the structure of the document will not change substantially over the lifetime of the
application. The disadvantage of this approach is that it is much easier to generate a document that
is not well-formed or is invalid, since no validation or verification of the structure of the document
occurs as it is generated. When using this technique, you of course have to make sure that both your
code and the data coming in will produce well-formed XML.

If all of that data validation sounds like a hassle, you may want to explore Genx
(http://www.tbray.org/ongoing/genx/docs/Guide.html), a C library created by
Tim Bray, one of the editors of the XML specification, that generates Canonical
XML.

Another common approach involves using a tree-based API, such as the DOM, to create an XML
document tree dynamically. The benefit of this approach is that the library enforces well-formedness
constraints, and in the case of DOM Level 3, it can be configured to enforce validity constraints as
well.

The disadvantage of the library approach is that it is frequently more complex and less efficient than
the simple string-processing approach. This code fragment creates the same document as before but

http://www.tbray.org/ongoing/genx/docs/Guide.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

with DOM:

DOMImplementation di;

...

di.createDocument(null, null, null);

Document doc;

Element elMsg = doc.createElement("message");

elMsg.appendChild(doc.createTextNode("Hello, world!"));

doc.appendChild(elMsg);

LSSerializer lss;

. . .

FileWriter out = new FileWriter("message.xml");

out.write(lss.writeToString(doc));

This is quite a bit more complex than the simple string-based approach shown previously.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 19. Document Object Model (DOM)
The Document Object Model (DOM) defines an API for accessing and manipulating XML documents as
tree structures. The DOM is defined by a set of W3C Recommendations that describe a programming
language-neutral object model used to store hierarchical documents in memory. The most recently
completed standard, DOM Level 3, provides models for manipulating XML documents, HTML
documents, and CSS stylesheets. This chapter covers only the parts of the DOM that are applicable to
processing XML documents.

This chapter is based on the DOM Level 3 Core Recommendation, which was released on April 7,
2004. This version of the recommendation, along with any errata that have been reported, is
available on the W3C web site (http://www.w3.org/TR/DOM-Level-3-Core/). Level 3 introduces
several key features that were lacking from earlier DOM Levels, including:

Validation-it is now possible to enforce validity constraints during programmatic manipulation
of the DOM tree.

Type information-post-validation element and attribute type information is now available
through standard DOM interfaces.

Support for XML 1.1-allows the developer to select which version of the XML recommendation a
given DOM document will conform to.

 < Day Day Up >

http://www.w3.org/TR/DOM-Level-3-Core/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.1 DOM Foundations

At its heart, the DOM is a set of abstract interfaces. Various DOM implementations use their own
objects to support the interfaces defined in the DOM specification. The DOM interfaces themselves
are specified in modules, making it possible for implementations to support parts of the DOM without
having to support all of it. XML parsers, for instance, aren't required to provide support for the HTML-
specific parts of the DOM, and modularization has provided a simple mechanism that allows software
developers to identify which parts of the DOM are supported or not supported by a particular
implementation.

Successive versions of the DOM are defined as levels. The Level 1 DOM was the W3C's first release,
and it focused on working with HTML and XML in a browser context. Effectively, it supported dynamic
HTML and provided a base for XML document processing. Because it expected documents to exist
already in a browser context, Level 1 only described an object structure and how to manipulate it,
not how to load a document into that structure or reserialize a document from that structure.

Subsequent levels have added functionality. DOM Level 2, which was published as a set of
specifications, one per module, includes updates for the Core and HTML modules of Level 1, as well
as new modules for Views, Events, Style, Traversal, and Range. DOM Level 3 added Abstract
Schemas, Load, Save, XPath, and updates to the Core and Events modules.

Other W3C specifications have defined extensions to the DOM particular to their own needs.
Mathematical Markup Language (MathML), Scalable Vector Graphics (SVG), Synchronized Multimedia
Integration Language (SMIL), and SMIL Animation have all defined DOMs that provide access to
details of their own vocabularies.

For a complete picture of the requirements these modules are supposed to
address, see http://www.w3.org/TR/DOM-Requirements. For a listing of all of
the DOM specifications, including those still under development, see
http://www.w3.org/DOM/DOMTR. The DOM has also been included by
reference in a variety of other specifications, notably the Java API for XML
Processing (JAXP).

Developers using the DOM for XML processing typically rely on the Core module as the foundation for
their work.

19.1.1 DOM Notation

The Document Object Model is intended to be operating system- and language- neutral; therefore, all
DOM interfaces are specified using the Interface Description Language (IDL) notation defined by the
Object Management Group. To conform to the language of the specification, this chapter and Chapter
25 will use IDL terminology when discussing interface specifics. For example, the word "attribute" in
IDL-speak refers to what would be a member variable in C++. This should not be confused with the

http://www.w3.org/TR/DOM-Requirements
http://www.w3.org/DOM/DOMTR
http://lib.ommolketab.ir
http://lib.ommolketab.ir

XML term "attribute," which is a name-value pair that appears within an element's start-tag.

The language-independent IDL interface must then be translated (according to the rules set down by
the OMG) into a specific language binding. Take the following interface, for example:

interface NodeList {

 Node item(in unsigned long index);

 readonly attribute unsigned long length;

};

This interface would be expressed as a Java interface like this:

package org.w3c.dom;

public interface NodeList {

 public Node item(int index);

 public int getLength();

}

The same interface would be described for ECMAScript this way:

Object NodeList

 The NodeList object has the following properties:

 length

 This read-only property is of type Number.

 The NodeList object has the following methods:

 item(index)

 This method returns a Node object.

 The index parameter is of type Number.

 Note: This object can also be dereferenced using square

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 bracket notation (e.g. obj[1]). Dereferencing with an

 integer index is equivalent to invoking the item method

 with that index.

The tables in this chapter represent the information DOM presents as IDL, conveying both the
available features and when they became available. DOM implementations vary in their
interpretations of these features-be sure to check the documentation of the implementation you
choose for details on how it maps the standard DOM interfaces to your particular language.

19.1.2 DOM Strengths and Weaknesses

Like all programming tools, the DOM is better for addressing some classes of problems than others.
Since the DOM object hierarchy stores references between the various nodes in a document, the
entire document must be read and parsed before it is available to a DOM application. This step also
demands that the entire document be stored in memory, often with a significant amount of overhead.
Some early DOM implementations required many times the original document's size when stored in
memory. This memory usage model makes DOM unsuitable for applications that deal with very large
documents or have a need to perform some intermediate processing on a document before it has
been completely parsed.

However, for applications that require random access to different portions of a document at different
times, or applications that need to modify the structure of an XML document on the fly, DOM is one of
the most mature and best-supported technologies available.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.2 Structure of the DOM Core

The DOM Core interfaces provide generic access to all supported document content types. The DOM
also defines a set of HTML-specific interfaces that expose specific document structures, such as
tables, paragraphs, and img elements, directly. Besides using these specialized interfaces, you can

access the same information using the generic interfaces defined in the core.

Since XML is designed as a venue for creating new, unique, structured markup languages, standards
bodies cannot define application-specific interfaces in advance. Instead, the DOM Core interfaces are
provided to manipulate document elements in a completely application-independent manner.

The DOM Core is further segregated into the Fundamental and Extended Interfaces. The
Fundamental Interfaces are relevant to both XML and HTML documents, whereas the Extended
Interfaces deal with XML-only document structures, such as entity declarations and processing
instructions. All DOM Core interfaces are derived from the Node interface, which provides a generic

set of methods for accessing a document or document fragment's tree structure and content.

19.2.1 Generic Versus Specific DOM Interfaces

To simplify different types of document processing and enable efficient implementation of DOM by
some programming languages, there are actually two distinct methods for accessing a document tree
from within the DOM Core: through the generic Node interface and through specific interfaces for

each node type. Although there are several distinct types of markup that may appear within an XML
document (elements, attributes, processing instructions, and so on), the relationships between these
different document features can be expressed as a typical hierarchical tree structure. Elements are
linked to both their predecessors and successors, as well as their parent and child nodes. Although
there are many different types of nodes, the basic parent, child, and sibling relationships are common
to everything in an XML document.

The generic Node interface captures the minimal set of attributes and methods that are required to
express this tree structure. A given Node contains all of the tree pointers required to locate its parent
node, child nodes, and siblings. The next section describes the Node interface in detail.

In addition to the generic Node interface, the DOM also defines a set of XML-specific interfaces that

represent distinct document features, such as elements, attributes, processing instructions, and so
on. All of the specific interfaces are derived from the generic Node interface, which means that a

particular application can switch methods for accessing data within a DOM tree at will by casting
between the generic Node interface and the actual specific object type it represents. Section 19.4
later in this chapter discusses the specific interfaces and their relationship to the generic Node

interface.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.3 Node and Other Generic Interfaces

The Node interface is the DOM Core class hierarchy's root. Though never instantiated directly, it is the

root interface of all specific interfaces, and you can use it to extract information from any object
within a DOM document tree without knowing its actual type. It is possible to access a document's
complete structure and content using only the methods and properties exposed by the Node

interface. As shown in Table 19-1, this interface contains information about the type, location, name,
and value of the corresponding underlying document data.

Table 19-1. The Node interface

Name Type Read-only 2.0 3.0

Attributes

attributes NamedNodeMap

baseURI DOMString

childNodes NodeList

firstChild Node

lastChild Node

localName DOMString

namespaceURI DOMString

nextSibling Node

nodeName DOMString

nodeType unsigned short

nodeValue DOMString

ownerDocument Document

parentNode Node

prefix DOMString

previousSibling Node

textContent DOMString

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Type Read-only 2.0 3.0

Methods

appendChild Node

cloneNode Node

compareDocumentPosition unsigned short

getFeature DOMObject

getUserData DOMUserData

hasAttributes boolean

hasChildNodes boolean

insertBefore Node

isDefaultNamespace boolean

isEqualNode boolean

isSameNode boolean

isSupported boolean

lookupNamespaceURI DOMString

lookupPrefix DOMString

normalize void

removeChild Node

replaceChild Node

setUserData DOMUserData

Since the Node interface is never instantiated directly, the nodeType attribute contains a value that
indicates the given instance's specific object type. Based on the nodeType, it is possible to cast a
generic Node reference safely to a specific interface for further processing. Table 19-2 shows the node

type values and their corresponding DOM interfaces, and Table 19-3 shows the values they provide
for nodeName , nodeValue, and attributes attributes.

Table 19-2. The DOM node types and interfaces

Node type DOM interface

ATTRIBUTE_NODE Attr

CDATA_SECTION_NODE CDATASection

Methods

appendChild Node

cloneNode Node

compareDocumentPosition unsigned short

getFeature DOMObject

getUserData DOMUserData

hasAttributes boolean

hasChildNodes boolean

insertBefore Node

isDefaultNamespace boolean

isEqualNode boolean

isSameNode boolean

isSupported boolean

lookupNamespaceURI DOMString

lookupPrefix DOMString

normalize void

removeChild Node

replaceChild Node

setUserData DOMUserData

Since the Node interface is never instantiated directly, the nodeType attribute contains a value that
indicates the given instance's specific object type. Based on the nodeType, it is possible to cast a
generic Node reference safely to a specific interface for further processing. Table 19-2 shows the node

type values and their corresponding DOM interfaces, and Table 19-3 shows the values they provide
for nodeName , nodeValue, and attributes attributes.

Table 19-2. The DOM node types and interfaces

Node type DOM interface

ATTRIBUTE_NODE Attr

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Node type DOM interface

CDATA_SECTION_NODE CDATASection

COMMENT_NODE Comment

DOCUMENT_FRAGMENT_NODE DocumentFragment

DOCUMENT_NODE Document

DOCUMENT_TYPE_NODE DocumentType

ELEMENT_NODE Element

ENTITY_NODE Entity

ENTITY_REFERENCE_NODE EntityReference

NOTATION_NODE Notation

PROCESSING_INSTRUCTION_NODE ProcessingInstruction

TEXT_NODE Text

Table 19-3. The DOM node types and method results

Node type nodeName nodeValue Attributes

ATTRIBUTE_NODE att name att value null

CDATA_SECTION_NODE #cdata-section content null

COMMENT_NODE #comment content null

DOCUMENT_FRAGMENT_NODE #document-fragment null null

DOCUMENT_NODE #document null null

DOCUMENT_TYPE_NODE document type name null null

ELEMENT_NODE tag name null NamedNodeMap

ENTITY_NODE entity name null null

ENTITY_REFERENCE_NODE
name of entity
referenced

null null

NOTATION_NODE notation name null null

PROCESSING_INSTRUCTION_NODE target
content excluding the
target

null

TEXT_NODE #text content null

Note that the nodeValue attribute returns the contents of simple text and comment nodes but

CDATA_SECTION_NODE CDATASection

COMMENT_NODE Comment

DOCUMENT_FRAGMENT_NODE DocumentFragment

DOCUMENT_NODE Document

DOCUMENT_TYPE_NODE DocumentType

ELEMENT_NODE Element

ENTITY_NODE Entity

ENTITY_REFERENCE_NODE EntityReference

NOTATION_NODE Notation

PROCESSING_INSTRUCTION_NODE ProcessingInstruction

TEXT_NODE Text

Table 19-3. The DOM node types and method results

Node type nodeName nodeValue Attributes

ATTRIBUTE_NODE att name att value null

CDATA_SECTION_NODE #cdata-section content null

COMMENT_NODE #comment content null

DOCUMENT_FRAGMENT_NODE #document-fragment null null

DOCUMENT_NODE #document null null

DOCUMENT_TYPE_NODE document type name null null

ELEMENT_NODE tag name null NamedNodeMap

ENTITY_NODE entity name null null

ENTITY_REFERENCE_NODE
name of entity
referenced

null null

NOTATION_NODE notation name null null

PROCESSING_INSTRUCTION_NODE target
content excluding the
target

null

TEXT_NODE #text content null

Note that the nodeValue attribute returns the contents of simple text and comment nodes but

http://lib.ommolketab.ir
http://lib.ommolketab.ir

returns nothing for elements. Prior to DOM Level 3, retrieving the text content of an element required
locating any child Text nodes it might contain, but DOM Level 3 introduced the getTextContent()
and setTextContent() convenience methods.

19.3.1 The NodeList Interface

The NodeList interface provides access to the ordered content of a node. Most frequently, it is used

to retrieve text nodes and child elements of element nodes. See Table 19-4 for a summary of the
NodeList interface.

Table 19-4. The NodeList interface

Name Type Read-only 2.0 3.0

Attribute

length Long

Method

item Node

The NodeList interface is extremely basic and is generally combined with a loop to iterate through

the children of a node, as in the following example:

NodeList nl = nd.getChildNodes();

for (int i = 0; i < nl.getLength(); i++) {

 Node ndChild = nl.item(i);

 if (ndChild.getNodeType() = = Node.COMMENT_NODE) {

 System.out.println("found comment: " + ndChild.getNodeValue());

 }

}

19.3.2 The NamedNodeMap Interface

The NamedNodeMap interface is used for unordered collections whose contents are identified by name.

In practice, this interface is used to access attributes of elements. See Table 19-5 for a summary of
the NamedNodeMap interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 19-5. The NamedNodeMap interface

Name Type Read-only 2.0 3.0

Attribute

length Long

Methods

getNamedItem Node

getNamedItemNS Node

removeNamedItem Node

removeNamedItemNS Node

setNamedItem Node

setNamedItemNS Node

19.3.3 Relating Document Structure to Nodes

Although the DOM doesn't specify an interface to cause a document to be parsed, it does specify how
the document's syntax structures are encoded as DOM objects. A document is stored as a
hierarchical tree structure, with each item in the tree linked to its parent, children, and siblings:

<sample bogus="value"><text_node>Test data.</text_node></sample>

Figure 19-1 shows how the preceding short sample document would be stored by a DOM parser.

Figure 19-1. Document storage and linkages

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each Node-derived object in a parsed DOM document contains references to its parent, child, and

sibling nodes. These references make it possible for applications to enumerate document data using
any number of standard tree-traversal algorithms. "Walking the tree" is a common approach to
finding information stored in a DOM and is demonstrated in Example 19-1 at the end of this chapter.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.4 Specific Node-Type Interfaces

Although it is possible to access the data from the original XML document using only the Node

interface, the DOM Core provides a number of specific node-type interfaces that simplify common
programming tasks. These specific node types can be divided into two broad types: structural nodes
and content nodes.

19.4.1 Structural Nodes

Within an XML document, a number of syntax structures exist that are not formally part of the
content. The following interfaces provide access to the portions of the document that are not related
to element data.

19.4.1.1 DocumentType

The DocumentType interface provides access to the XML document type definition's notations,
entities, internal subset, public ID, and system ID. Since a document can have only one DOCTYPE
declaration, only one DocumentType node can exist for a given document. It is accessed via the
doctype attribute of the Document interface. The definition of the DocumentType interface is shown in

Table 19-6.

Table 19-6. The DocumentType interface, derived from Node

Name Type Read-only

Attributes

entities NamedNodeMap

internalSubset DOMString

name DOMString

notations NamedNodeMap

publicId DOMString

systemId DOMString

Using additional fields available since DOM Level 2, it is now possible to fully reconstruct a parsed
document using only the information provided within the DOM framework. No programmatic way to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

modify DocumentType node contents currently exists.

19.4.1.2 ProcessingInstruction

The ProcessingInstruction node type provides direct access to a processing instruction's contents.

Though processing instructions appear in the document's text, they may also appear before or after
the root element, as well as in DTDs. Table 19-7 describes the ProcessingInstruction node's

attributes.

Table 19-7. The ProcessingInstruction interface, derived from Node

Name Type Read-only

Attributes

data DOMString

target DOMString

Remember that the only syntactically defined part is the target name, which is an XML name token.
The remaining data (up to the terminating >) is free-form. See Chapter 18 for more information

about uses (and potential misuses) of XML processing instructions.

19.4.1.3 Notation

XML notations formally declare the format for external unparsed entities and processing instruction
targets. The list of all available notations is stored in a NamedNodeMap within the document's DOCTYPE
node, which is accessed from the Document interface. The definition of the Notation interface is

shown in Table 19-8.

Table 19-8. The Notation interface, derived from Node

Name Type Read-only

Attributes

publicId DOMString

systemId DOMString

19.4.1.4 Entity

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The name of the Entity interface is somewhat ambiguous, but its meaning becomes clear when it is
connected with the EntityReference interface, which is also part of the DOM Core. The Entity

interface provides access to the entity declaration's notation name, public ID, and system ID. Parsed
entity nodes have childNodes, while unparsed entities have a notationName. The definition of this

interface is shown in Table 19-9.

Table 19-9. The Entity interface, derived from Node

Name Type Read-only 2.0 3.0

Attributes

inputEncoding DOMString

notationName DOMString

publicId DOMString

systemId DOMString

xmlEncoding DOMString

xmlVersion DOMString

DOM Level 3 introduces three new attributes that apply to external parsed entities: inputEncoding ,
xmlEncoding, and xmlVersion. This additional information makes it possible to properly enforce XML
well-formedness constraints for external parsed entities based on the value of the xmlVersion

attribute. The two encoding related attributes make it possible to precisely reconstruct external
parsed entity files from their DOM tree representation.

All members of this interface are read-only and cannot be modified at runtime.

19.4.2 Content Nodes

The actual data conveyed by an XML document is contained completely within the document element.
The following node types map directly to the XML document's nonstructural parts, such as character
data, elements, and attribute values.

19.4.2.1 Document

Each parsed document causes the creation of a single Document node in memory. (Empty Document
nodes can be created through the DOMImplementation interface.) This interface provides access to
the document type information and the single, top-level Element node that contains the entire body
of the parsed document (the documentElement). It also provides access to the class factory methods

that allow an application to create new content nodes that were not created by parsing a document.
Table 19-10 shows all attributes and methods of the Document interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 19-10. The Document interface, derived from Node

Name Type Read-only 2.0 3.0

Attributes

doctype DocumentType

documentElement Element

documentURI DOMString

domConfig DOMConfiguration

implementation DOMImplementation

inputEncoding DOMString

strictErrorChecking boolean

xmlEncoding DOMString

xmlStandalone boolean

xmlVersion DOMString

Methods

adoptNode Node

createAttribute Attr

createAttributeNS Attr

createCDATASection CDATASection

createComment Comment

createDocumentFragment DocumentFragment

createElement Element

createElementNS Element

createEntityReference EntityReference

createProcessingInstruction ProcessingInstruction

createTextNode Text

getElementById Element

getElementsByTagName NodeList

getElementsByTagNameNS NodeList

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Type Read-only 2.0 3.0

importNode Node

normalizeDocument void

renameNode Node

The various create...() methods are important for applications that wish to modify the structure
of a document that was previously parsed. Note that nodes created using one Document instance
may only be inserted into the document tree belonging to the Document that created them. DOM
Level 2 provided a new importNode() method that allows a node, and possibly its children, to be
essentially copied from one document to another. DOM Level 3 introduced the adoptNode() method

that actually moves an entire node subtree from one document to another.

Besides the various node-creation methods, some methods can locate specific XML elements or lists
of elements. The methods getElementsByTagName() and getElementsByTagNameNS() return a list
of all XML elements with the name, and possibly namespace, specified. The getElementById()
method returns the single element with the given ID attribute.

DOM Level 3 also introduced several attributes that are useful when an application wishes to
reconstruct an XML document to its original, pre-parsing format. The inputEncoding, xmlEncoding,
and xmlStandalone attributes preserve information about the values of the XML declaration from the

original document as well as the character encoding of the document before it was parsed (and
converted to Unicode).

One of the major additions to DOM in Level 3 was the inclusion of document validation support within
the DOM tree itself. The normalizeDocument() method provides the developer with a mechanism

for essentially "re-parsing" the XML document from the DOM tree in memory. Various parameters
available through the domConfig attribute control how this normalization will occur. It is also possible
to change the target version of XML by modifying the xmlVersion attribute before normalization. This

will cause the DOM to enforce the XML name construction rules associated with the selected XML
version. See Chapter 21 for more information about the differences between XML Versions 1.0 and
1.1.

19.4.2.2 DocumentFragment

Applications that allow real-time editing of XML documents sometimes need to temporarily park
document nodes outside the hierarchy of the parsed document. A visual editor that wants to provide
clipboard functionality is one example. When the time comes to implement the cut function, it is
possible to move the cut nodes temporarily to a DocumentFragment node without deleting them,

rather than having to leave them in place within the live document. Then, when they need to be
pasted back into the document, they can be reinserted using a method such as Node.appendChild(
) . The DocumentFragment interface, derived from Node, has no interface-specific attributes or

methods.

19.4.2.3 Element

importNode Node

normalizeDocument void

renameNode Node

The various create...() methods are important for applications that wish to modify the structure
of a document that was previously parsed. Note that nodes created using one Document instance
may only be inserted into the document tree belonging to the Document that created them. DOM
Level 2 provided a new importNode() method that allows a node, and possibly its children, to be
essentially copied from one document to another. DOM Level 3 introduced the adoptNode() method

that actually moves an entire node subtree from one document to another.

Besides the various node-creation methods, some methods can locate specific XML elements or lists
of elements. The methods getElementsByTagName() and getElementsByTagNameNS() return a list
of all XML elements with the name, and possibly namespace, specified. The getElementById()
method returns the single element with the given ID attribute.

DOM Level 3 also introduced several attributes that are useful when an application wishes to
reconstruct an XML document to its original, pre-parsing format. The inputEncoding, xmlEncoding,
and xmlStandalone attributes preserve information about the values of the XML declaration from the

original document as well as the character encoding of the document before it was parsed (and
converted to Unicode).

One of the major additions to DOM in Level 3 was the inclusion of document validation support within
the DOM tree itself. The normalizeDocument() method provides the developer with a mechanism

for essentially "re-parsing" the XML document from the DOM tree in memory. Various parameters
available through the domConfig attribute control how this normalization will occur. It is also possible
to change the target version of XML by modifying the xmlVersion attribute before normalization. This

will cause the DOM to enforce the XML name construction rules associated with the selected XML
version. See Chapter 21 for more information about the differences between XML Versions 1.0 and
1.1.

19.4.2.2 DocumentFragment

Applications that allow real-time editing of XML documents sometimes need to temporarily park
document nodes outside the hierarchy of the parsed document. A visual editor that wants to provide
clipboard functionality is one example. When the time comes to implement the cut function, it is
possible to move the cut nodes temporarily to a DocumentFragment node without deleting them,

rather than having to leave them in place within the live document. Then, when they need to be
pasted back into the document, they can be reinserted using a method such as Node.appendChild(
) . The DocumentFragment interface, derived from Node, has no interface-specific attributes or

methods.

19.4.2.3 Element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element nodes are the most frequently encountered node type in a typical XML document. These
nodes are parents for the Text, Comment, EntityReference, ProcessingInstruction,
CDATASection, and child Element nodes that comprise the document's body. They also allow access
to the Attr objects that contain the element's attributes. Table 19-11 shows all attributes and
methods supported by the Element interface.

Table 19-11. The Element interface, derived from Node

Name Type Read-only 2.0 3.0

Attributes

schemaTypeInfo TypeInfo

tagName DOMString

Methods

getAttribute DOMString

getAttributeNode Attr

getAttributeNodeNS Attr

getAttributeNS DOMString

getElementsByTagName NodeList

getElementsByTagNameNS NodeList

hasAttribute boolean

hasAttributeNS boolean

removeAttribute void

removeAttributeNode Attr

removeAttributeNS Attr

setAttribute void

setAttributeNode Attr

setAttributeNodeNS Attr

setAttributeNS Attr

setIdAttribute void

setIdAttributeNode void

setIdAttributeNS void

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.4.2.4 Attr

Since XML attributes may contain either text values or entity references, the DOM stores element
attribute values as Node subtrees. The following XML fragment shows an element with two attributes:

<!ENTITY bookcase_pic SYSTEM "bookcase.gif" NDATA gif>

<!ELEMENT picture EMPTY>

<!ATTLIST picture

 src ENTITY #REQUIRED

 alt CDATA #IMPLIED>

. . .

<picture src="bookcase_pic" alt="3/4 view of bookcase"/>

The first attribute contains a reference to an unparsed entity; the second contains a simple string.
Since the DOM framework stores element attributes as instances of the Attr interface, a few parsers
make the contents of attributes available as actual subtrees of Node objects. In this example, the src
attribute would contain an EntityReference object instance. Note that the nodeValue of the Attr
node gives the flattened text value from the Attr node's children. Table 19-12 shows the attributes
and methods supported by the Attr interface.

Table 19-12. The Attr interface, derived from Node

Name Type Read-only 2.0 3.0

Attributes

specified boolean

isId boolean

name DOMString

value DOMString

ownerElement Element

schemaTypeInfo TypeInfo

Besides the attribute name and value, the Attr interface exposes the specified flag that indicates

whether this particular attribute instance was included explicitly in the XML document or inherited
from the !ATTLIST declaration of the DTD. There is also a back pointer to the Element node that

owns this attribute object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.4.2.5 CharacterData

Several types of data within a DOM node tree represent blocks of character data that do not include
markup. CharacterData is an abstract interface that supports common text-manipulation methods,
which are used by the concrete interfaces Comment, Text, and CDATASection. Table 19-13 shows the
attributes and methods supported by the CharacterData interface.

Table 19-13. The CharacterData interface, derived from Node

Name Type Read-only DOM 2.0

Attributes

data DOMString

length unsigned long

Methods

appendData void

deleteData void

insertData void

replaceData void

19.4.2.6 Comment

DOM parsers are not required to make the contents of XML comments available after parsing, and
relying on comment data in your application is poor programming practice at best. If your application
requires access to metadata that should not be part of the basic XML document, consider using
processing instructions instead. The Comment interface, derived from CharacterData, has no

interface-specific attributes or methods, only those it inherits from its superinterfaces.

19.4.2.7 EntityReference

If an XML document contains references to general entities within the body of its elements, the DOM-
compliant parser may pass these references along as EntityReference nodes. This behavior is not

guaranteed because the parser is free to expand any entity or character reference included with the
actual Unicode character sequence it represents. The EntityReference interface, derived from Node,

has no interface-specific attributes or methods.

19.4.2.8 Text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The character data of an XML document is stored within Text nodes. Text nodes are children of
either Element or Attr nodes. After parsing, every contiguous block of character data from the
original XML document is translated directly into a single Text node. Once the document has been
parsed, however, it is possible that the client application may insert, delete, and split Text nodes so
that Text nodes may be side by side within the document tree. Table 19-14 describes the Text

interface.

Table 19-14. The Text interface, derived from CharacterData

Name Type Read-only 2.0 3.0

Attributes

isElementContentWhitespace boolean

wholeText DOMString

Methods

replaceWholeText Text

splitText Text

The splitText method provides a way to split a single Text node into two nodes at a given point.

This split would be useful if an editing application wished to insert additional markup nodes into an
existing island of character data. After the split, it is possible to insert additional nodes into the
resulting gap.

Another useful addition (introduced in Level 3) is the wholeText attribute. This attribute returns all of
the text contained in the selected Text node, as well as any adjacent Text nodes, in document order.

Prior to Level 3, it was necessary to enumerate all children of a given node and concatenate them
manually to get the entire text contained within a node.

19.4.2.9 CDATASection

CDATA sections provide a simplified way to include characters that would normally be considered

markup in an XML document. These sections are stored within a DOM document tree as
CDATASection nodes. The CDATASection interface, derived from Text, has no interface-specific

attributes or methods.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.5 The DOMImplementation Interface

The DOMImplementation interface could be considered the highest level interface in the DOM. It
exposes the hasFeature() method, which allows a programmer using a given DOM implementation

to detect if specific features are available. In DOM Level 2, it introduced facilities for creating new
DocumentType nodes, which can then be used to create new Document instances.

The only method added to the DOMImplementation interface for Level 3 was the getFeature()

method. This method allows DOM implementers to provide access to extended functionality, which is
not part of the DOM specification itself, through the use of extension objects. These objects
implement the DOMObject interface, which generally maps to the generic object (e.g., the Java
Object) type in the underlying programming language (if the language is object-oriented).Table 19-
15 describes the DomImplementation interface.

Table 19-15. The DOMImplementation interface

Name Type 2.0 3.0

Methods

createDocument Document

createDocumentType DocumentType

getFeature DOMObject

hasFeature boolean

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.6 DOM Level 3 Interfaces

DOM Level 3 includes several new interfaces that support features, such as:

XML Version 1.1

Dynamic DOM implementation selection

Generic post-validation document type information

Dynamic error handling

The following sections describe the new interfaces that were introduced in DOM Level 3.

19.6.1 DOMStringList

The DOMStringList interface models a simple utility class that contains an ordered list of DOMString
objects. Table 19-16 describes the DOMStringList interface.

Table 19-16. The DOMStringList interface

Name Type Read-only

Attribute

length unsigned long

Methods

contains boolean

item DOMString

19.6.1.1 NameList

The NameList interface models an ordered collection of names and corresponding namespace URIs.

One use of this interface is in modeling the linkage between namespace prefixes and namespace
URIs. Table 19-17 describes the NameList interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 19-17. The NameList interface

Name Type Read-only

Attribute

length unsigned long

Methods

contains boolean

containsNS boolean

getName DOMString

getNamespaceURI DOMString

19.6.1.2 DOMImplementationList

The DOMImplementationList interface models a list of DOMImplementation objects, as shown in

Table 19-18.

Table 19-18. The DOMImplementationList interface

Name Type Read-only

Attribute

length unsigned long

Method

item DOMImplementation

19.6.1.3 DOMImplementationSource

The DOMImplementationSource interface, shown in Table 19-19, allows a DOM client to dynamically

select a particular DOM implementation from a list of available implementations based on a requested
feature set. It also allows the client to retrieve a complete list of all DOMImplementation objects that

are available at runtime.

Table 19-19. The DOMImplementationSource interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Type Read-only

Methods

getDOMImplementation DOMImplementation

getDOMImplementationList DOMImplementationList

19.6.1.4 TypeInfo

One of the major enhancements provided by DOM Level 3 is the presence of type information within
the DOM tree after a document has been parsed and validated. The TypeInfo interface, described in

Table 19-20, provides a very simple interface that allows a DOM implementation to provide schema-
independent type information for elements and attributes within the DOM tree.

Table 19-20. The TypeInfo interface

Name Type Read-only

Attributes

typeName DOMString

typeNamespace DOMString

Method

isDerivedFrom boolean

19.6.1.5 UserDataHandler

DOM Level 3 provides the ability for developers to attach their own user-defined data to any Node
within a live DOM tree. The UserDataHandler interface is a callback interface that may be

implemented by the developer when he wishes to receive notifications regarding operations that
might be performed on various nodes (i.e., nodes are cloned, deleted, moved, and so forth). Its
method is listed in Table 19-21.

Table 19-21. The UserDataHandler interface

Name Type Read-only

Method

handle void

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.6.1.6 DOMError

Prior to Level 3, all error handling within the DOM was done through the DOMException mechanism.

Level 3 provides a new error handling facility that allows the developer to register a callback object
(which implements the DOMErrorHandler interface) that will be notified when an error occurs during
DOM operations. The DOMError interface describes an object that contains the details of such an
error. The DOMError interface is described in Table 19-22.

Table 19-22. The DOMError interface

Name Type Read-only

Attributes

location DOMLocator

message DOMString

relatedData DOMObject

relatedException DOMObject

severity unsigned short

type DOMString

19.6.1.7 DOMErrorHandler

Unlike earlier DOM Levels, Level 3 allows a DOM developer to create a callback object that may
receive notifications when errors occur during DOM processing. This is done by developing an object
that implements the DOMErrorHandler interface. Then, when an error occurs during a DOM operation
(such as a validity error during a node insert), the handleError() method will be called with

detailed error information. Its method is listed in Table 19-23.

Table 19-23. The DOMErrorHandler interface

Name Type Read-only

Method

handleError boolean

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.6.1.8 DOMLocator

The DOMLocator interface, shown in Table 19-24, describes a location within a DOM document. It is
primarily used by the new DOMError interface to provide detailed information about where a

particular error has occurred.

Table 19-24. The DOMLocator interface

Name Type Read-only

Attributes

byteOffset long

columnNumber long

lineNumber long

relatedNode Node

utf16Offset long

uri DOMString

19.6.1.9 DOMConfiguration

The DOMConfiguration interface, shown in Table 19-25, provides a generic container for configuring

various parameters that influence the processing of XML documents when they are first parsed or
when they are reprocessed using the Document.normalizeDocument() method. For a complete list
of parameters that are recognized by DOM Level 3 implementations, see the DOMConfiguration

reference section in Chapter 25.

Table 19-25. The DOMConfiguration interface

Name Type Read-only

Attribute

parameterNames DOMStringList

Methods

canSetParameter boolean

getParameter DOMUserData

setParameter void

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.7 Parsing a Document with DOM

Although DOM Level 2 doesn't specify an actual interface for parsing a document, most
implementations provide a simple parsing interface that accepts a reference to an XML document file,
stream, or URI. After this interface successfully parses and validates the document (if it is a
validating parser), it generally provides a mechanism for getting a reference to the Document

interface's instance for the parsed document. The following code fragment shows how to parse a
document using the Apache Xerces XML DOM parser:

// create a new parser

DOMParser dp = new DOMParser();

// parse the document and get the DOM Document interface

dp.parse("http://www.w3.org/TR/2000/REC-xml-20001006.xml");

Document doc = dp.getDocument();

DOM Level 3 adds standard mechanisms for loading XML documents and
reserializing (saving) DOM trees as XML. JAXP also provides standardized
approaches for these processes in Java, although JAXP and DOM Level 3 offer
different approaches.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.8 A Simple DOM Application

Example 19-1 illustrates how you might use the interfaces discussed in this chapter in a typical programming
situation. This application takes a document that uses the furniture.dtd sample DTD from Chapter 21 and
validates that the parts list included in the document matches the actual parts used within the document.

Example 19-1. Parts checker application

/**

 * PartsCheck.java

 *

 * DOM Usage example from the O'Reilly _XML in a Nutshell_ book.

 *

 */

// we'll use the Apache Software Foundation's Xerces parser.

import org.apache.xerces.parsers.*;

import org.apache.xerces.framework.*;

// import the DOM and SAX interfaces

import org.w3c.dom.*;

import org.xml.sax.*;

// get the necessary Java support classes

import java.io.*;

import java.util.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/**

 * This class is designed to check the parts list of an XML document that

 * represents a piece of furniture for validity. It uses the DOM to

 * analyze the actual furniture description and then check it against the

 * parts list that is embedded in the document.

 */

public class PartsCheck {

 // static constants

 public static final String FURNITURE_NS =

 "http://namespaces.oreilly.com/furniture/";

 // contains the true part count, keyed by part number

 HashMap m_hmTruePartsList = new HashMap();

 /**

 * The main function that allows this class to be invoked from the command

 * line. Check each document provided on the command line for validity.

 */

 public static void main(String[] args) {

 PartsCheck pc = new PartsCheck();

 try {

 for (int i = 0; i < args.length; i++) {

 pc.validatePartsList(args[i]);

 }

 } catch (Exception e) {

 System.err.println(e);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 }

 /**

 * Given a system identifier for an XML document, this function compares

 * the actual parts used to the declared parts list within the document. It

 * prints warnings to standard error if the lists don't agree.

 */

 public void validatePartsList(String strXMLSysID) throws IOException,

 SAXException

 {

 // create a new parser

 DOMParser dp = new DOMParser();

 // parse the document and get the DOM Document interface

 dp.parse(strXMLSysID);

 Document doc = dp.getDocument();

 // get an accurate parts list count

 countParts(doc.getDocumentElement(), 1);

 // compare it to the parts list in the document

 reconcilePartsList(doc);

 }

 /**

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * Updates the true parts list by adding the count to the current count

 * for the part number given.

 */

 private void recordPart(String strPartNum, int cCount)

 {

 if (!m_hmTruePartsList.containsKey(strPartNum)) {

 // this part isn't listed yet

 m_hmTruePartsList.put(strPartNum, new Integer(cCount));

 } else {

 // update the count

 Integer cUpdate = (Integer)m_hmTruePartsList.get(strPartNum);

 m_hmTruePartsList.put(strPartNum, new Integer(cUpdate.intValue() + cCount));

 }

 }

 /**

 * Counts the parts referenced by and below the given node.

 */

 private void countParts(Node nd, int cRepeat)

 {

 // start the local repeat count at 1

 int cLocalRepeat = 1;

 // make sure we should process this element

 if (FURNITURE_NS.equals(nd.getNamespaceURI())) {

 Node ndTemp;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if ((ndTemp = nd.getAttributes().getNamedItem("repeat")) != null) {

 // this node specifies a repeat count for its children

 cLocalRepeat = Integer.parseInt(ndTemp.getNodeValue());

 }

 if ((ndTemp = nd.getAttributes().getNamedItem("part_num")) != null) {

 // start the count at 1

 int cCount = 1;

 String strPartNum = ndTemp.getNodeValue();

 if ((ndTemp = nd.getAttributes().getNamedItem("count")) != null) {

 // more than one part needed by this node

 cCount = Integer.parseInt(ndTemp.getNodeValue());

 }

 // multiply the local count by the repeat passed in from the parent

 cCount *= cRepeat;

 // add the new parts count to the total

 recordPart(strPartNum, cCount);

 }

 }

 // now process the children

 NodeList nl = nd.getChildNodes();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Node ndCur;

 for (int i = 0; i < nl.getLength(); i++) {

 ndCur = nl.item(i);

 if (ndCur.getNodeType() = = Node.ELEMENT_NODE) {

 // recursively count the parts for the child, using the local repeat

 countParts(ndCur, cLocalRepeat);

 }

 }

 }

 /**

 * This method reconciles the true parts list against the list in the document.

 */

 private void reconcilePartsList(Document doc)

 {

 Iterator iReal = m_hmTruePartsList.keySet().iterator();

 String strPartNum;

 int cReal;

 Node ndCheck;

 // loop through all of the parts in the true parts list

 while (iReal.hasNext()) {

 strPartNum = (String)iReal.next();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 cReal = ((Integer)m_hmTruePartsList.get(strPartNum)).intValue();

 // find the part list element in the document

 ndCheck = doc.getElementById(strPartNum);

 if (ndCheck = = null) {

 // this part isn't even listed!

 System.err.println("missing <part_name> element for part #" +

 strPartNum + " (count " + cReal + ")");

 } else {

 Node ndTemp;

 if ((ndTemp = ndCheck.getAttributes().getNamedItem("count")) != null) {

 int cCheck = Integer.parseInt(ndTemp.getNodeValue());

 if (cCheck != cReal) {

 // counts don't agree

 System.err.println("<part_name> element for part #" +

 strPartNum + " is incorrect: true part count = " + cReal +

 " (count in document is " + cCheck + ")");

 }

 } else {

 // they didn't provide a count for this part!

 System.err.println("missing count attribute for part #" +

 strPartNum + " (count " + cReal + ")");

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 }

 }

}

When this application is run over the bookcase.xml sample document from Chapter 21 , it generates the
following output:

missing count attribute for part #HC (count 8)

<part_name> element for part #A is incorrect: true part count = 2 (count in document is 1)

To compile and use this sample application, download and install the Xerces Java Parser from the Apache-
XML project (http://xml.apache.org/xerces-j). The code was originally compiled and tested with Sun's JDK
Version 1.3.1.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 20. Simple API for XML (SAX)
The Simple API for XML (SAX) is an event-based API for reading XML documents. Many different XML
parsers implement the SAX API, including Xerces, Crimson, the Oracle XML Parser for Java, and
Ælfred. SAX was originally defined as a Java API and is primarily intended for parsers written in Java.
Therefore, this chapter focuses on the Java version of the API. However, SAX has been ported to
most other major object-oriented languages, including C++, Python, Perl, and Eiffel. The translation
from Java is usually fairly obvious.

The SAX API is unusual among XML APIs because it's an event-based push model rather than a tree-
based pull model. As the XML parser reads an XML document, it sends the program information from
the document in real time. Each time the parser sees a start-tag, an end-tag, character data, or a
processing instruction, it tells your program. The document is presented to your program one piece
at a time from beginning to end. You can either save the pieces you're interested in until the entire
document has been read, or process the information as soon as you receive it. You do not have to
wait for the entire document to be read before acting on the data at the beginning of the document.
Most importantly, the entire document does not have to reside in memory. This feature makes SAX
the API of choice for very large documents that do not fit into available memory.

This chapter covers SAX2 exclusively. In 2004, all major parsers that support
SAX also support SAX2. The major change in SAX2 from SAX1 is the addition of
namespace support, which necessitated changing the names and signatures of
almost every method and class in SAX. The old SAX1 methods and classes are
still available, but they're now deprecated, and you shouldn't use them.

SAX is primarily a collection of interfaces in the org.xml.sax package. One such interface is
XMLReader. This interface represents the XML parser. It declares methods to parse a document and

configure the parsing process, for instance, by turning validation on or off. To parse a document with
SAX, first create an instance of XMLReader with the XMLReaderFactory class in the
org.xml.sax.helpers package. This class has a static createXMLReader() factory method that
produces the parser-specific implementation of the XMLReader interface. The Java system property
org.xml.sax.driver specifies the concrete class to instantiate:

try {

 XMLReader parser = XMLReaderFactory.createXMLReader();

 // parse the document...

}

catch (SAXException ex) {

 // couldn't create the XMLReader

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

The call to XMLReaderFactory.createXMLReader() is wrapped in a try-catch block that catches
SAXException . This is the generic checked exception superclass for almost anything that can go
wrong while parsing an XML document. In this case, it means either that the org.xml.sax.driver

system property wasn't set, or that it was set to the name of a class that Java couldn't find in the
class path.

Do not use the SAXParserFactory and SAXParser classes included with JAXP.

These classes were designed by Sun to fill a gap in SAX1. They are unnecessary
and indeed actively harmful in SAX2. For instance, they are not namespace
aware by default. SAX2 applications should use XMLReaderFactory and
XMLReader instead.

You can choose which concrete class to instantiate by passing its name as a string to the
createXMLReader() method. This code fragment instantiates the Xerces parser by name:

try {

 XMLReader parser = XMLReaderFactory.createXMLReader(

 "org.apache.xerces.parsers.SAXParser");

 // parse the document...

}

catch (SAXException ex) {

 // couldn't create the XMLReader

}

Now that you've created a parser, you're ready to parse some documents with it. Pass the system ID
of the document you want to read to the parse() method. The system ID is either an absolute or a

relative URL encoded in a string. For example, this code fragment parses the document at
http://www.slashdot.org/slashdot.xml:

try {

 XMLReader parser = XMLReaderFactory.createXMLReader();

 parser.parse("http://www.slashdot.org/slashdot.xml");

}

catch (SAXParseException ex) {

http://www.slashdot.org/slashdot.xml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Well-formedness error

}

catch (SAXException ex) {

 // Could not find an XMLReader implementation class

}

catch (IOException ex) {

 // Some sort of I/O error prevented the document from being completely

 // downloaded from the server

}

The parse() method throws a SAXParseException if the document is malformed, an IOException
if an I/O error such as a broken socket occurs while the document is being read, and a SAXException
if anything else goes wrong. Otherwise, it returns void. To receive information from the parser as it
reads the document, you must configure it with a ContentHandler.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

20.1 The ContentHandler Interface

ContentHandler , shown in stripped-down form in Example 20-1 , is an interface in the org.xml.sax package.
You implement this interface in a class of your own devising. Next, you configure an XMLReader with an instance
of your implementation. As the XMLReader reads the document, it invokes the methods in this object to tell your

program what's in the XML document. You can respond to these method invocations in any way you see fit.

The ContentHandler class has no relation to the moribund java.net.ContentHandler
class. However, you may encounter a name conflict if you import both java.net.* and
org.xml.sax.* in the same class. It's better to import just the java.net classes you

actually need, rather than the entire package.

Example 20-1. The org.xml.sax.ContentHandler interface

package org.xml.sax;

public interface ContentHandler {

 public void setDocumentLocator(Locator locator);

 public void startDocument() throws SAXException;

 public void endDocument() throws SAXException;

 public void startPrefixMapping(String prefix, String uri)

 throws SAXException;

 public void endPrefixMapping(String prefix) throws SAXException;

 public void startElement(String namespaceURI, String localName,

 String qualifiedName, Attributes atts) throws SAXException;

 public void endElement(String namespaceURI, String localName,

 String qualifiedName) throws SAXException;

 public void characters(char[] text, int start, int length)

 throws SAXException;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void ignorableWhitespace(char[] text, int start, int length)

 throws SAXException;

 public void processingInstruction(String target, String data)

 throws SAXException;

 public void skippedEntity(String name) throws SAXException;

}

Every time the XMLReader reads a piece of the document, it calls a method in its ContentHandler . Suppose a

parser reads the simple document shown in Example 20-2 .

Example 20-2. A simple XML document

<?xml version="1.0" encoding="ISO-8859-1"?>

<?xml-stylesheet type='text/css' href='person.css'?>

<!DOCTYPE person SYSTEM "person.dtd">

<person xmlns="http://xml.oreilly.com/person">

 <name:name xmlns:name="http://xml.oreilly.com/name">

 <name:first>Sydney</name:first>

 <name:last>Lee</name:last>

 </name:name>

 <assignment project_id="p2"/>

</person>

The parser will call these methods in its ContentHandler with these arguments in this order. The values of the

arguments passed to each method are given after each method name:

setDocumentLocator(Locator locator)

 locator: org.apache.xerces.readers.DefaultEntityHandler@1f953d

1.

startDocument()2.

processingInstruction(String target, String data)3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

 target: "xml-stylesheet"

 data: "type='text/css' href='person.css'"

3.

startPrefixMapping(String prefix, String namespaceURI)

 prefix: ""

 namespaceURI: "http://xml.oreilly.com/person"

4.

startElement(String namespaceURI, String localName, String qualifiedName, Attributes atts)

 namespaceURI: "http://xml.oreilly.com/person"

 localName: "person"

 qualifiedName: "person"

 atts: {} (no attributes, an empty list)

5.

ignorableWhitespace(char[] text, int start, int length)

 text: <?xml version="1.0" encoding="ISO-8859-1"?>

 <?xml-stylesheet type='text/css' href='person.css'?>

 <!DOCTYPE person SYSTEM "person.dtd">

 <person xmlns="http://xml.oreilly.com/person">

 <name:name xmlns:name="http://xml.oreilly.com/name">

 <name:first>Sydney</name:first>

 <name:last>Lee</name:last>

 </name:name>

 <assignment project_id="p2"/>

 </person>

 start: 181

 length: 3

6.

startPrefixMapping(String prefix, String uri)

 prefix: "name"

 uri: "http://xml.oreilly.com/name")

7.

8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

startElement(String namespaceURI, String localName, String qualifiedName, Attributes atts)

 namespaceURI: "http://xml.oreilly.com/name"

 localName: "name"

 qualifiedName: "name:name"

 atts: {} (no attributes, an empty list)

8.

ignorableWhitespace(char[] text, int start, int length)

 text: <?xml version="1.0" encoding="ISO-8859-1"?>

 <?xml-stylesheet type='text/css' href='person.css'?>

 <!DOCTYPE person SYSTEM "person.dtd">

 <person xmlns="http://xml.oreilly.com/person">

 <name:name xmlns:name="http://xml.oreilly.com/name">

 <name:first>Sydney</name:first>

 <name:last>Lee</name:last>

 </name:name>

 <assignment project_id="p2"/>

 </person>

 start: 236

 length: 5

9.

startElement(String namespaceURI, String localName, String qualifiedName, Attributes atts)

 namespaceURI: "http://xml.oreilly.com/name"

 localName: "first"

 qualifiedName: "name:first"

 atts: {} (no attributes, an empty list)

10.

characters(char[] text, int start, int length)

 text: <?xml version="1.0" encoding="ISO-8859-1"?>

 <?xml-stylesheet type='text/css' href='person.css'?>

11.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!DOCTYPE person SYSTEM "person.dtd">

 <person xmlns="http://xml.oreilly.com/person">

 <name:name xmlns:name="http://xml.oreilly.com/name">

 <name:first>Sydney</name:first>

 <name:last>Lee</name:last>

 </name:name>

 <assignment project_id="p2"/>

 </person>

start: 253

length: 6

endElement(String namespaceURI, String localName, String qualifiedName)

 namespaceURI: "http://xml.oreilly.com/name"

 localName: "first"

 qualifiedName: "name:first"

12.

ignorableWhitespace(char[] text, int start, int length)

 text: <?xml version="1.0" encoding="ISO-8859-1"?>

 <?xml-stylesheet type='text/css' href='person.css'?>

 <!DOCTYPE person SYSTEM "person.dtd">

 <person xmlns="http://xml.oreilly.com/person">

 <name:name xmlns:name="http://xml.oreilly.com/name">

 <name:first>Sydney</name:first>

 <name:last>Lee</name:last>

 </name:name>

 <assignment project_id="p2"/>

 </person>

start: 272

13.

14.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

length: 5

startElement(String namespaceURI, String localName, String qualifiedName, Attributes atts)

 namespaceURI: "http://xml.oreilly.com/name"

 localName: "last"

 qualifiedName: "name:last"

 atts: {} (no attributes, an empty list)

14.

characters(char[] text, int start, int length)

 text: <?xml version="1.0" encoding="ISO-8859-1"?>

 <?xml-stylesheet type='text/css' href='person.css'?>

 <!DOCTYPE person SYSTEM "person.dtd">

 <person xmlns="http://xml.oreilly.com/person">

 <name:name xmlns:name="http://xml.oreilly.com/name">

 <name:first>Sydney</name:first>

 <name:last>Lee</name:last>

 </name:name>

 <assignment project_id="p2"/>

 </person>

start: 288

length: 3

15.

endElement(String namespaceURI, String localName, String qualifiedName)

 namespaceURI: "http://xml.oreilly.com/name"

 localName: "last"

 qualifiedName: "name:last"

16.

ignorableWhitespace(char[] text, int start, int length)

 text: <?xml version="1.0" encoding="ISO-8859-1"?>

 <?xml-stylesheet type='text/css' href='person.css'?>

17.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!DOCTYPE person SYSTEM "person.dtd">

 <person xmlns="http://xml.oreilly.com/person">

 <name:name xmlns:name="http://xml.oreilly.com/name">

 <name:first>Sydney</name:first>

 <name:last>Lee</name:last>

 </name:name>

 <assignment project_id="p2"/>

 </person>

start: 303

length: 3

endElement(String namespaceURI, String localName, String qualifiedName)

 namespaceURI: "http://xml.oreilly.com/name"

 localName: "name"

 qualifiedName: "name:name"

18.

endPrefixMapping(String prefix)

 prefix: "name"

19.

ignorableWhitespace(char[] text, int start, int length)

 text: <?xml version="1.0" encoding="ISO-8859-1"?>

 <?xml-stylesheet type='text/css' href='person.css'?>

 <!DOCTYPE person SYSTEM "person.dtd">

 <person xmlns="http://xml.oreilly.com/person">

 <name:name xmlns:name="http://xml.oreilly.com/name">

 <name:first>Sydney</name:first>

 <name:last>Lee</name:last>

 </name:name>

 <assignment project_id="p2"/>

20.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </person>

start: 318

length: 3

startElement(String namespaceURI, String localName, String qualifiedName, Attributes atts)

 namespaceURI: "http://xml.oreilly.com/person"

 localName: "assignment"

 qualifiedName: "assignment

 atts: {project_id="p2"}

21.

endElement(String namespaceURI, String localName, String qualifiedName)

 namespaceURI: "http://xml.oreilly.com/person"

 localName: "assignment"

 qualifiedName: "assignment"

22.

ignorableWhitespace(char[] text, int start, int length)

 text: <?xml version="1.0" encoding="ISO-8859-1"?>

 <?xml-stylesheet type='text/css' href='person.css'?>

 <!DOCTYPE person SYSTEM "person.dtd">

 <person xmlns="http://xml.oreilly.com/person">

 <name:name xmlns:name="http://xml.oreilly.com/name">

 <name:first>Sydney</name:first>

 <name:last>Lee</name:last>

 </name:name>

 <assignment project_id="p2"/>

 </person>

start: 350

length: 1

23.

endElement(String namespaceURI, String localName, String qualifiedName)24.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 namespaceURI: "http://xml.oreilly.com/person"

 localName: "person"

 qualifiedName: "person"

24.

endPrefixMapping(String prefix)

 prefix: ""

25.

endDocument()26.

Some pieces of this are not deterministic. Note that the char array passed to each call to characters() and
ignorableWhitespace() actually contains the entire document! The specific text block that the parser really

returns is indicated by the second two arguments. This is an optimization that Xerces-J performs. Other parsers
are free to pass different char arrays as long as they set the start and length arguments to match. Indeed, the
parser is also free to split a long run of plain text across multiple calls to characters() or
ignorableWhitespace() , so you cannot assume that these methods necessarily return the longest possible

contiguous run of plain text. Other details that may change from parser to parser include attribute order within a
tag and whether a Locator object is provided by calling setDocumentLocator() .

Suppose you want to count the number of elements, attributes, processing instructions, and characters of plain
text that exist in a given XML document. To do so, first write a class that implements the ContentHandler

interface. The current count of each of the four items of interest is stored in a field. The field values are initialized
to zero in the startDocument() method, which is called exactly once for each document parsed. Each callback
method in the class increments the relevant field. The endDocument() method reports the total for that

document. Example 20-3 is such a class.

Example 20-3. The XMLCounter ContentHandler

import org.xml.sax.*;

public class XMLCounter implements ContentHandler {

 private int numberOfElements;

 private int numberOfAttributes;

 private int numberOfProcessingInstructions;

 private int numberOfCharacters;

 public void startDocument() {

 numberOfElements = 0;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 numberOfAttributes = 0;

 numberOfProcessingInstructions = 0;

 numberOfCharacters = 0;

 }

 // We should count either the start-tag of the element or the end-tag,

 // but not both. Empty elements are reported by each of these methods.

 public void startElement(String namespaceURI, String localName,

 String qualifiedName, Attributes atts) {

 numberOfElements++;

 numberOfAttributes += atts.getLength();

 }

 public void endElement(String namespaceURI, String localName,

 String qualifiedName) { }

 public void characters(char[] text, int start, int length) {

 numberOfCharacters += length;

 }

 public void ignorableWhitespace(char[] text, int start, int length) {

 numberOfCharacters += length;

 }

 public void processingInstruction(String target, String data)

 throws SAXException {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 numberOfProcessingInstructions++;

 }

 // Now that the document is done, we can print out the final results

 public void endDocument() {

 System.out.println("Number of elements: " + numberOfElements);

 System.out.println("Number of attributes: " + numberOfAttributes);

 System.out.println("Number of processing instructions: "

 + numberOfProcessingInstructions);

 System.out.println("Number of characters of plain text: "

 + numberOfCharacters);

 }

 // Do-nothing methods we have to implement only to fulfill

 // the interface requirements:

 public void setDocumentLocator(Locator locator) { }

 public void startPrefixMapping(String prefix, String uri) { }

 public void endPrefixMapping(String prefix) { }

 public void skippedEntity(String name) { }

}

This class needs to override most methods in the ContentHandler interface. However, if
you really want to provide only one or two ContentHandler methods, you may want to
subclass the DefaultHandler class instead. This adapter class implements all methods in
the ContentHandler interface with do-nothing methods, so you only have to override

methods you're genuinely interested in.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, build an XMLReader , and configure it with an instance of this class. Finally, parse the documents you want

to count, as in Example 20-4 .

Example 20-4. The DocumentStatistics driver class

import org.xml.sax.*;

import org.xml.sax.helpers.*;

import java.io.IOException;

public class DocumentStatistics {

 public static void main(String[] args) {

 XMLReader parser;

 try {

 parser = XMLReaderFactory.createXMLReader();

 }

 catch (SAXException e) {

 // fall back on Xerces parser by name

 try {

 parser = XMLReaderFactory.createXMLReader(

 "org.apache.xerces.parsers.SAXParser");

 }

 catch (SAXException eex) {

 System.err.println("Couldn't locate a SAX parser");

 return;

 }

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (args.length = = 0) {

 System.out.println(

 "Usage: java DocumentStatistics URL1 URL2...");

 }

 // Install the Content Handler

 parser.setContentHandler(new XMLCounter());

 // start parsing...

 for (int i = 0; i < args.length; i++) {

 // command line should offer URIs or file names

 try {

 parser.parse(args[i]);

 }

 catch (SAXParseException ex) { // well-formedness error

 System.out.println(args[i] + " is not well formed.");

 System.out.println(ex.getMessage()

 + " at line " + ex.getLineNumber()

 + ", column " + ex.getColumnNumber());

 }

 catch (SAXException ex) { // some other kind of error

 System.out.println(ex.getMessage());

 }

 catch (IOException ex) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.println("Could not report on " + args[i]

 + " because of the IOException " + ex);

 }

 }

 }

}

Running the program in Example 20-4 across the document in Example 20-2 results in the following output:

D:\books\xian\examples\18>java DocumentStatistics 20-2.xml

Number of elements: 5

Number of attributes: 1

Number of processing instructions: 1

Number of characters of plain text: 29

This generic program of Example 20-4 works on any well-formed XML document. Most SAX programs are more
specific and only work with certain XML applications. They look for particular elements or attributes in particular
places and respond to them accordingly. They may rely on patterns that are enforced by a validating parser. Still,
this behavior comprises the fundamentals of SAX.

The complicated part of most SAX programs is the data structure you build to store information returned by the
parser until you're ready to use it. Sometimes, this information can be as complicated as the XML document
itself, in which case you may be better off using DOM, which at least provides a ready-made data structure for an
XML document. You usually want only some information, though, and the data structure you construct should be
less complex than the document itself.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

20.2 Features and Properties

SAX uses properties and features to control parser behavior. Each feature and property has a name
that's an absolute URI. Like namespace URIs, absolute URIs are only used to name things and do not
necessarily point to a real page you can load into a web browser. Features are either true or false;
that is, they're Booleans. Properties have values of an appropriate Object type. Different parsers

support different groups of features and properties, although there are a few standard ones most
parsers support.

The http://xml.org/sax/features/validation feature controls whether a parser validates. If this feature
is true, then the parser will report validity errors in the document to the registered ErrorHandler;

otherwise, it won't. This feature is turned off by default. To turn a feature on, pass the feature's
name and value to the XMLReader's setFeature() method:

try {

 parser.setFeature("http://xml.org/sax/features/validation", true);

}

catch (SAXNotSupportedException ex) {

 System.out.println("Cannot turn on validation right now.");

}

catch (SAXNotRecognizedException ex) {

 System.out.println("This is not a validating parser.");

}

Not all parsers can validate. If you try to turn on validation in a parser that doesn't validate or set
any other feature the parser doesn't provide, setFeature() throws a
SAXNotRecognizedException. If you try to set a feature the parser does recognize but cannot

change at the current time-e.g., you try to turn on validation when the parser has already read half
of the document-setFeature() throws a SAXNotSupportedException. Both are subclasses of
SAXException.

You can check a feature's current value using XMLReader's getFeature() method. This method
returns a boolean and throws the same exceptions for the same reasons as setFeature(). If you

want to know whether the parser validates, you can ask in the following manner:

try {

 boolean isValidating =

http://xml.org/sax/features/validation
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 parser.getFeature("http://xml.org/sax/features/validation");

}

catch (SAXException ex) {

 System.out.println("This is not a validating parser");

}

Properties are similar to features, but they allow a broader choice than a simple Boolean on/off,
true/false dichotomy. Each property value is an object of unspecified type. For example, to determine
the version of XML (1.0 or 1.1) used by the document, read the
http://xml.org/sax/properties/document-xml-version property with the getProperty()

method:

try {

 String version = (String) parser.getProperty(

 "http://xml.org/sax/properties/document-xml-version");

 if ("1.0".equals(version) {

 System.out.println("A good conservative document");

 }

 else if ("1.1".equals(version) {

 System.out.println("A dangerously radical document");

 }

 else {

 System.out.println("A very strange document: " + version);

 }

}

catch (SAXNotSupportedException ex) {

 System.out.println(

 "Cannot provide the version of XML used by the document right now.");

}

http://xml.org/sax/properties/document-xml-version
http://lib.ommolketab.ir
http://lib.ommolketab.ir

catch (SAXNotRecognizedException ex) {

 System.out.println("Parser does not recognize the " +

 "http://xml.org/sax/properties/document-xml-version property");

}

You can change a property value by invoking the setProperty() method with two arguments. The

first is the URI of the property to set. The second is the object specifying the value for the property.
For example, this code fragment attempts to set the
http://xml.org/sax/properties/LexicalHandler property to a new instance of the
MyLexicalHandlerClass. The parser reports lexical events (comments, CDATA sections, and entity
references) to the org.xml.sax.ext.LexicalHandler implementation object named by this

property:

try {

 parser.setProperty(

 "http://xml.org/sax/properties/LexicalHandler",

 new MyLexicalHandlerClass()

);

}

catch (SAXException ex) {

 System.out.println("This parser does not provide lexical events.");

}

If you pass in the wrong kind of object for a property (e.g., an object that does not implement the
LexicalHandler interface for the http://xml.org/sax/properties/LexicalHandler property),
then setProperty() throws a SAXNotSupportedException.

Not all features and properties can be set. Some features such as
http://xml.org/sax/properties/document-xml-version are read-only. Others can be set at

some times but not others. For example, you cannot turn on validation when the parser is already
halfway through a document. An attempt to do so will fail and throw a SAXNotSupportedException.

However, you can change a parser's features after parsing one document, but before parsing the
next. You can read most feature and property values at any time, although a few (such as
http://xml.org/sax/properties/document-xml-version) can only be read when the parser is

reading a document.

 < Day Day Up >

http://xml.org/sax/properties/LexicalHandler
http://xml.org/sax/properties/LexicalHandler
http://xml.org/sax/properties/document-xml-version
http://xml.org/sax/properties/document-xml-version
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

20.3 Filters

A SAX filter sits between the parser and the client application and intercepts the messages that these
two objects pass to each other. It can pass these messages unchanged or modify, replace, or block
them. To a client application, the filter looks like a parser, that is, an XMLReader. To the parser, the
filter looks like a client application, that is, a ContentHandler .

SAX filters are implemented by subclassing the org.xml.sax.helpers.XMLFilterImpl class.[1] This

class implements all the required interfaces of SAX for both parsers and client applications. That is,
its signature is as follows:

[1] There's also an org.xml.sax.XMLFilter interface. However, this interface is arranged exactly backward

for most use cases. It filters messages from the client application to the parser, but not the much more

important messages from the parser to the client application. Furthermore, implementing the XMLFilter
interface directly requires a lot more work than subclassing XMLFilterImpl. Experienced SAX programmers

almost never implement XMLFilter directly rather than subclassing XMLFilterImpl.

public class XMLFilterImpl implements XMLFilter, XMLReader,

 ContentHandler, DTDHandler, ErrorHandler

Your own filters will extend this class and override those methods that correspond to the messages
you want to filter. For example, if you wanted to filter out all processing instructions, you would write
a filter that would override the processingInstruction() method to do nothing, as shown in

Example 20-5.

Example 20-5. A SAX filter that removes processing instructions

import org.xml.sax.helpers.XMLFilterImpl;

public class ProcessingInstructionStripper extends XMLFilterImpl {

 public void processingInstruction(String target, String data) {

 // Because this does nothing, processing instructions read in the

 // document are *not* passed to client application

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

If instead you wanted to replace a processing instruction with an element whose name was the same
as the processing instruction's target and whose text content was the processing instruction's data,
you'd call the startElement(), characters(), and endElement() methods from inside the
processingInstruction() method after filling in the arguments with the relevant data from the

processing instruction, as shown in Example 20-6.

Example 20-6. A SAX filter that converts processing instructions to
elements

import org.xml.sax.*;

import org.xml.sax.helpers.*;

public class ProcessingInstructionConverter extends XMLFilterImpl {

 public void processingInstruction(String target, String data)

 throws SAXException {

 // AttributesImpl is an adapter class in the org.xml.sax.ext package

 // for precisely this case. We don't really want to add any attributes

 // here, but we need to pass something as the fourth argument to

 // startElement().

 Attributes emptyAttributes = new AttributesImpl();

 // We won't use any namespace for the element

 startElement("", target, target, emptyAttributes);

 // converts String data to char array

 char[] text = data.toCharArray();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 characters(text, 0, text.length);

 endElement("", target, target);

 }

}

We used this filter before passing Example 20-2 into a program that echoes an XML document onto
System.out and were a little surprised to see this come out:

<xml-stylesheet>type="text/css" href="person.css"</xml-stylesheet>

<person xmlns="http://xml.oreilly.com/person">

 <name:name xmlns:name="http://xml.oreilly.com/name">

 <name:first>Sydney</name:first>

 <name:last>Lee</name:last>

 </name:name>

 <assignment project_id="p2"></assignment>

</person>

This document is not well-formed! The specific problem is that there are two independent root
elements. However, on further consideration, that's really not too surprising. Well-formedness
checking is normally done by the underlying parser when it reads the text form of an XML document.
SAX filters should, but are not absolutely required to, provide well-formed XML data to client
applications. Indeed, they can produce substantially more malformed data than this by including
start-tags that are not matched by end-tags; text that contains illegal characters, such as the
formfeed or the vertical tab; and XML names that contain non-name characters, such as * and §. You
need to be very careful before assuming data you receive from a filter is valid or well-formed.

If you want to invoke a method without filtering it, or you want to invoke the same method in the
underlying handler, you can prefix a call to it with the super keyword. This invokes the variant of the
method from the superclass. By default, each method in XMLFilterImpl just passes the same

arguments to the equivalent method in the parent handler. Example 20-7 demonstrates with a filter
that changes all character data to uppercase by overriding the characters() method.

Example 20-7. A SAX filter that converts text to uppercase

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import org.xml.sax.*;

import org.xml.sax.helpers.*;

public class UpperCaseFilter extends XMLFilterImpl {

 public void characters(char[] text, int start, int length)

 throws SAXException {

 String temp = new String(text, start, length);

 temp = temp.toUpperCase();

 text = temp.toCharArray();

 super.characters(text, 0, text.length);

 }

}

Using a filter involves these steps:

Create a filter object, normally by invoking its own constructor.1.

Create the XMLReader that will actually parse the document, normally by calling
XMLReaderFactory.createXMLReader().

2.

Attach the filter to the parser using the filter's setParent() method.3.

Install a ContentHandler in the filter.4.

Parse the document by calling the filter's parse() method.5.

Details can vary a little from application to application. For instance, you might install other handlers
besides the ContentHandler or change the parent between documents. However, once the filter has
been attached to the underlying XMLReader, you should not directly invoke any methods on this

underlying parser; you should only talk to it through the filter. For example, this is how you'd use the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

filter in Example 20-7 to parse a document:

XMLFilter filter = new UpperCaseFilter();

filter.setParent(XMLReaderFactory.createXMLReader());

filter.setContentHandler(yourContentHandlerObject);

filter.parse(document);

Notice specifically that you invoke the filter's parse() method, not the underlying parser's parse()

method.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Part IV: Reference

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 21. XML Reference
This chapter is intended to serve as a comprehensive reference to the Extensible Markup Language
(XML) W3C recommendations for both XML 1.0 and 1.1. We have made every effort to cover the
contents of the official W3C document exhaustively. However, if you are implementing an XML
parser, editor, or other tool, you should also review the latest revision of these recommendations on
the Web at http://www.w3.org/TR/REC-xml and http://www.w3.org/TR/xml11/. This book refers to
the XML 1.0 Third Edition dated 04 February 2004 and the XML 1.1 Recommendation dated 04
February 2004, which was edited in place 15 April 2004.

The endorsement of the Extensible Markup Language (XML) 1.1
Recommendation in February of 2004 has introduced some challenges within
the XML community. The markup language described by 1.1 is not precisely a
superset of the language described by Version 1.0, which means that some
documents that are well-formed under 1.0 rules will not be well-formed under
1.1 rules. The main narrative of this chapter adheres to the rules laid out by the
1.0 Recommendation. Notes such as this one will appear when necessary to
outline the differences between XML 1.0 and XML 1.1.

When deciding which version of XML is appropriate for your application,
consider that unless you specifically need to use markup names that contain
characters not available in Unicode 2.0, XML 1.0 will most likely be the correct
choice.

 < Day Day Up >

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xml11/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

21.1 How to Use This Reference

This chapter consists of examples of XML documents and DTDs, followed by detailed reference
sections that describe every feature of the XML specification and a listing of possible well-formedness
and validity errors. The syntax items of XML are introduced in the rough order in which they appear
in an XML document. Each entry explains the syntactic structure, where it can be used, and the
applicable validity and well-formedness constraints. Each reference section contains a description of
the XML language structure, an informal syntax, and an example of the syntax's usage where
appropriate.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

21.2 Annotated Sample Documents

These examples are intended as a mnemonic aid for XML syntax and as a quick map from a specific
instance of an XML language construct to its corresponding XML syntax reference section. The sample
document and DTD incorporate features defined in the XML 1.0 and Namespaces in XML
recommendations.

The sample XML application describes the construction of a piece of furniture. Within the figures, each
distinct language construct is enclosed in a box, with the relevant reference section name provided as
a callout. By locating a construct in the sample, then locating the associated reference section, you
can quickly recognize and learn about unfamiliar XML syntax. Four files make up this sample
application:

bookcase.xml

The document shown in Figure 21-1 uses furniture.dtd to describe a simple bookcase.

Figure 21-1. bookcase.xml

http://lib.ommolketab.ir
http://lib.ommolketab.ir

furniture.dtd

The XML document type definition shown in Figure 21-2 provides a simple grammar for
describing components and assembly details for a piece of furniture.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 21-2. furniture.dtd

bookcase_ex.ent

The external entity file shown in Figure 21-3 contains additional bookcase-specific elements for
the bookcase.xml document.

Figure 21-3. bookcase_ex.ent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

parts_list.ent

Figure 21-4 contains an external parsed general entity example that contains the parts list for
the bookcase example document.

Figure 21-4. parts_list.ent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

21.3 XML Syntax

For each section of this reference that maps directly to an XML language structure, an informal syntax
reference describes that structure's form. The following conventions are used with these syntax blocks:

Format Meaning

DOCTYPE
Bold text indicates literal characters that must appear as written within the document (e.g.,
DOCTYPE).

encoding-

name

Italicized text indicates that the user must replace the text with real data. The item indicates
what type of data should be inserted (e.g., encoding-name = en-us).

| The vertical bar indicates that only one out of a list of possible values can be selected.

[] Square brackets indicate that a particular portion of the syntax is optional.

21.3.1 Global Syntax Structures

Every XML document is broken into two primary sections: the prolog and the document element. A few
documents may also have comments or processing instructions that follow the root element in a sort of epilog
(an unofficial term). The prolog contains structural information about the particular type of XML document you
are writing, including the XML declaration and document type declaration. The prolog is optional, and if a
document does not need to be validated against a DTD, it can be omitted completely. The only required
structure in a well-formed XML document is the top-level document element itself.

The following syntax structures are common to the entire XML document. Unless otherwise noted within a
subsequent reference item, the following structures can appear anywhere within an XML document.

Characters

XML documents are inherently text documents, which are composed of characters. To ensure that documents
are portable across disparate computer systems and can contain content in as many written human languages
as possible, XML parsers are required to implement the Unicode standard. This does not mean that all XML
documents must be saved and edited in Unicode, but it does mean that the XML parser must be able to
convert your document from its native character encoding to Unicode. All XML parsers are required to support
(as a minimum) either UTF-8 or UTF-16 as input encoding formats. For more information on encoding formats
and Unicode, see Chapter 27 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One of the primary differences between XML 1.0 and XML 1.1 is the definition of which
Unicode characters are valid within an XML document. In XML 1.0, many of the ASCII
control characters (such as BEL and NAK) were explicitly disallowed within XML
documents. XML 1.1 permits any Unicode character these 60 control characters (except
for null, x0000) as long as they're escaped with numeric character references. XML 1.1
also requires that the C1 controls between 0x0080 and 0x009F be escaped with

numeric character references, which XML 1.0 does not require.

Whitespace

XML 1.0 defines whitespace as a space, tab, carriage return, or line feed. XML 1.1 also includes the newline
character NEL (#x85) and Unicode line separator (#x2028) in whitespace. Whitespace serves the same

purpose in XML as it does in most programming and natural languages: to separate tokens and language
elements from one another. To an XML parser, all whitespace in element content is significant and will be
passed to the client application. Whitespace within tags-for instance, between attributes-is not significant.
Consider the following example:

<p> This sentence has extraneous

 line breaks.</p>

After parsing, the character data from this example element is passed to the underlying application as:

 This sentence has extraneous

line breaks.

Although XML specifies that all whitespace in element content be preserved for use by the client application,
an additional facility is available to the XML author to further hint that an element's character data's space
and formatting should be preserved. For more information, see the discussion of the xml:space attribute in

>Special Attributes later in this chapter.

To simplify the lives of software developers, parsers are expected to normalize all occurrences of the carriage
return (#xD) character to a single line feed (#xA) character. When the carriage return character appears

directly before a line feed, it is simply removed. This results in a document that contains only single line feed
characters to mark line ends. In XML 1.1, this normalization to a line feed character also occurs for the
Unicode characters #x85 (NEXT LINE, NEL) and #x2028 (LINE SEPARATOR).

Names

XML 1.0 names must adhere to the following lexical conventions:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Begin with a letter, ideograph, _ , or : character.

After the first character, be composed only of letters, digits, ., - , _ , and : characters.

In this context, a letter is any Unicode character that matches the Letter production from the XML 1.0 EBNF

grammar at the end of this chapter.

See the XML 1.1 EBNF grammar production for Name to see which characters are

permitted within XML 1.1 names.

According to the XML 1.0 specification, the : character may be used freely within names, although the
character is now officially reserved as part of the "Namespaces in XML" recommendation. Even if a document
does not use namespaces, the colon should still not be used within identifiers to maintain compatibility with
namespace-aware parsers. See the Section 21.3.4 in this chapter for more information about how
namespace-aware identifiers are formed.

Names should also avoid starting with the three-letter sequence X, M, L (in any case combination), unless
specifically sanctioned by an XML specification.

Character References

&# decimal-number ;

&#x hexadecimal-number ;

All XML parsers are based on the Unicode character set, no matter what the external encoding of the XML file
is. It is theoretically possible to author documents directly in Unicode, but many text-editing, storage, and
delivery systems do not fully support the Unicode character set. To allow XML authors to include Unicode
characters in their documents' content without forcing them to abandon their existing editing tools, XML
provides the character reference mechanism.

A character reference allows an author to insert a Unicode character by number (either decimal or
hexadecimal) into the output stream produced by the parser to an XML application. Consider an XML
document that includes the following character data:

© 2002 O'Reilly & Associates

In this example, the parser would replace the character reference with the actual Unicode character and pass
it to the client application:

© 2002 O'Reilly & Associates

Character references may not be used in element or attribute names, although they may be used in attribute
values. Note that hexadecimal character references are case-insensitive (i.e., &xa9; is equivalent to &xA9;).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Predefined Entities

Besides user-defined entity references, XML includes the five named entity references shown in Table 21-1
that can be used without being declared. These references are a subset of those available in HTML documents.

Table 21-1. Predefined entities

Entity Character XML declaration

< < <!ENTITY lt "&#60;">

> > <!ENTITY gt ">">

& & <!ENTITY amp "&#38;">

' ' <!ENTITY apos "'">

" " <!ENTITY quot """>

The < and & entities must be used wherever < or & appear in element content or attribute values. The
> entity is frequently used wherever > appears in document content, but it is only mandatory to avoid
putting the sequence]]> into content. ' and " are generally used only within attribute values to

avoid conflicts between the value and the quotes used to contain the value.

Although the parser must recognize these entities regardless of whether they have been declared, you can
declare them in your DTD without generating errors.

The presence of these "special" predefined entities creates a conundrum within an XML document. Because it
is possible to use these references without declaring them, it is possible to have a valid XML document that
includes references to entities that were never declared. The XML specification actually encourages document
authors to declare these entities to support older SGML parsers that don't predefine these entities. In practical
terms, declaring these entities only adds unnecessary complexity to your document.

CDATA (Character Data) Sections

<![CDATA[unescaped character & markup data]]>

XML documents consist of markup and character data. The < or & characters cannot be included inside normal
character data without using a character or entity reference, such as & or & . By using a reference,
the resulting < and & characters are not recognized as markup by the parser, but they will become part of the

data stream to the parser's client application.

For large blocks of character data-particularly if the data contains markup, such as an HTML or XML
fragment-the CDATA section can be used. Within a CDATA block, every character between the opening and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

closing strings is treated as character data. Thus, special characters can be included in a CDATA section with
impunity, except for the CDATA closing sequence,]]> .

CDATA sections are very useful for tasks such as enclosing XML or HTML documents inside of tutorials
explaining how to use markup, but it is difficult to process the contents of CDATA sections using XSLT, the

DOM, or SAX as anything other than text.

CDATA sections cannot be nested. The character sequence]]> cannot appear within
data that is being escaped, or the CDATA block will be closed prematurely. This situation

should not be a problem ordinarily, but if an application includes XML documents as
unparsed character data, it is important to be aware of this constraint. If it is necessary
to include the CDATA closing sequence in the data, close the open CDATA section, include

the closing characters using character references to escape them, then reopen the
CDATA section to contain the rest of the character data.

Entities

An XML entity can best be understood as a macro replacement facility, in which the replacement can be either
parsed (the text becomes part of the XML document) or unparsed. If unparsed, the entity declaration points
to external binary data that cannot be parsed. Additionally, the replacement text for parsed entities can come
from a string or the contents of an external file. During parsing, a parsed entity reference is replaced by the
substitution text that is specified in the entity declaration. The replacement text is then reparsed until no more
entity or character references remain.

To simplify document parsing, two distinct types of entities are used in different situations: general and
parameter. The basic syntax for referencing both entity types is almost identical, but specific rules apply to
where each type can be used.

Parameter Entity References

% name ;

When an XML parser encounters a parameter entity reference within a document's DTD, it replaces the
reference with the entity's text. Whether the replacement text is included as a literal or included from an
external entity, the parser continues parsing the replacement text as if it had always been a part of the
document. This parsing has interesting implications for nested entity references:

<!ENTITY % YEAR "2001">

<!ENTITY COPYRIGHT "© %YEAR;">

. . .

<copyright_notice>©RIGHT;</copyright_notice>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After the necessary entity replacements are made, the previous example would yield the following canonical
element:

<copyright_notice>Â© 2001</copyright_notice>

XML treats parameter entity references differently depending on where they appear
within the DTD. References within the literal value of an entity declaration (such as
Copyright © %YEAR;) are valid only as part of the external subset. Within the

internal subset, parameter entity references may occur only where a complete markup
declaration could exist. In other words, within the internal subset, parameter
references can be used only to include complete markup declarations.

Parameter entity references are recognized only within the DTD; therefore, the % character has no significance

within character data and does not need to be escaped.

General Entity References

& name ;

General entity references are recognized only within the parsed character data in the body of an XML
document. They may appear within the parsed character data contained between element start- and end-
tags, or within the value of an attribute. They are not recognized within a document's DTD (except inside
default values for attributes) or within CDATA sections.

The sequence of operations that occurs when a parsed general entity is included by the
XML parser can lead to interesting side effects. An entity's replacement text is, in turn,
read by the parser. If character or general entity replacements exist in the entity
replacement text, they are also parsed and included as parsing continues.

Comments

<!-- comment text -->

Comments can appear anywhere in a document or DTD, outside of other markup tags. XML parsers are not
required to preserve contents of comment blocks, so they should be used only to store information that is not
a part of your application. In reality, most information you might consider storing in a comment block
probably should be made an official part of your XML application. Rather than storing data that will be read
and acted on by an application in a comment, as is frequently done in HTML documents, you should store it
within the element structure of the actual XML document. Enhancing the readability of a complex DTD or
temporarily disabling blocks of markup are effective uses of comments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The character sequence -- cannot be included within a comment block, except as part of the tag closing text.

Because comments cannot be nested, commenting out a comment block is impossible.

Processing Instructions

<? target processing-instruction data ?>

Processing instructions provide an escape mechanism that allows an XML application to include instructions to
an XML processor that are not validated. The processing instruction target can be any legal XML name, except
xml in any combination of upper- and lowercase (see Chapter 2). Linking to a stylesheet to provide

formatting instructions for a document is a common use of this mechanism. According to the principles of
XML, formatting instructions should remain separate from the actual content of a document, but some
mechanism must associate the two. Processing instructions are significant only to applications that recognize
them.

The notation facility can indicate exactly what type of processing instruction is included, and each individual
XML application must decide what to do with the additional data. No action is required by an XML parser when
it recognizes that a particular processing instruction matches a declared notation. When this facility is used,
applications that do not recognize the public or system identifiers of a given processing instruction target
should realize that they could not properly interpret its data portion.

Character Encoding Autodetection

The XML declaration (possibly preceded by a Unicode byte-order mark) must be the very first
item in a document so that the XML parser can determine which character encoding was used to
store the document. A chicken-and-egg problem exists, involving the XML declaration's
encoding="... " clause: the parser can't parse the clause if it doesn't know what character

encoding the document uses. However, since the first five characters of the document must be
the string <?xml (if it includes an XML declaration), the parser can read the first few bytes of a
document and, in most cases, determine the character encoding before it has read the encoding

declaration.

XML Declaration

<?xml version=" version_number " [encoding=" encoding-name "][standalone=" yes |no "]?>

The XML declaration serves several purposes. It tells the parser what version of the specification was used,
how the document is encoded, and whether the document is completely self-contained or not.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you need to create an XML document that takes advantage of XML 1.1 features, you
need to set the version pseudo-attribute to 1.1:

<?xml version="1.1"?>

The XML declaration, if included, must be the first thing that appears in an XML document. Nothing, except
possibly a Unicode byte-order mark, may appear before this structure's initial < character. If no XML

declaration is present, the document is assumed to conform to the XML 1.0 Recommendation.

Version Information

... version=" version_number " ...

The version information attribute denotes which version of the XML specification was used to create the
current document. At this time, the only possible version numbers are 1.0 and 1.1 .

Encoding Declaration

... encoding=" encoding-name " ...

The encoding declaration, if present, indicates which character-encoding was used to store the document.
Although all XML documents are ultimately handled as Unicode by the parser, the external storage scheme
may be anything from an ASCII text file using the Latin-1 character set (ISO-8859-1) to a file with native
Japanese characters.

XML parsers may also recognize other encodings, but the XML specification only requires that they recognize
UTF-8 and UTF-16 encoded documents. Most parsers also support additional character encodings. For a
thorough discussion of character-encoding schemes, see Chapter 27 .

Standalone Declaration

... standalone=" yes |no " ...

If a document is completely self contained (the DTD, if there is one, is contained completely within the original
document), then the standalone="yes " declaration may be used. If this declaration is not given, the value
no is assumed, and all external entities are read and parsed.

From the standpoint of an XML application developer, this flag has no effect on how a document is parsed.
However, if it is given, it must be accurate. Setting standalone="yes " when a document does require DTD

http://lib.ommolketab.ir
http://lib.ommolketab.ir

declarations that are not present in the main document file is a violation of XML validity rules.

21.3.2 DTD (Document Type Definition)

Chapter 2 explained the difference between well-formed and valid documents. Well-formed documents that
include and conform to a given DTD are considered valid. Documents that include a DTD and violate the rules
of that DTD are invalid. The DTD is comprised of both the internal subset (declarations contained directly
within the document) and the external subset (declarations that are included from outside the main
document).

Parameter Entities

The parameter entity mechanism is a simple macro replacement facility that is only valid within the context of
the DTD. Parameter entities are declared and then referenced from within the DTD or possibly from within
other entity declarations. The source of the entity replacement text can be either a literal string or the
contents of an external file. Parameter entities simplify maintenance of large, complex documents by allowing
authors to build libraries of commonly used entity declarations.

Parameter Entity Declarations

<!ENTITY % name " Replacement text .">

<!ENTITY % name SYSTEM " system-literal ">

<!ENTITY % name PUBLIC " pubid-literal " " system-literal ">

Parameter entities are declared within the document's DTD and must be declared before they are used. The
declaration provides two key pieces of information:

The name of the entity, which is used when it is referenced

The replacement text, either directly or indirectly through a link to an external entity

Be aware that an XML parser performs some preprocessing on the replacement text before it is used in an
entity reference. Most importantly, parameter entity references in the replacement text are recursively
expanded before the final version of the replacement text is stored. Character references are also replaced
immediately with the specified character. This replacement can lead to unexpected side effects, particularly
when constructing parameter entities that declare other parameter entities. For full disclosure of how entity
replacement is implemented by an XML parser and what kinds of unexpected side effects can occur, see
Appendix D of the XML 1.0 specification. The specification is available on the World Wide Web Consortium web
site (http://www.w3.org/TR/REC-xml#sec-entexpand).

Parsed General Entities

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!ENTITY name " Replacement text .">

<!ENTITY name SYSTEM " system-literal ">

<!ENTITY name PUBLIC " pubid-literal " " system-literal ">

Parsed general entities are declared within the document type definition and then referenced within the
document's text and attribute content. When the document is parsed, the entity's replacement text is
substituted for the entity reference. The parser then resumes parsing, starting with the text that was just
replaced.

Parsed general entities are declared within the DTD using a superset of the syntax used to declare parameter
entities.

Internal entities store the replacement text inline as a literal string. The replacement text within an internal
entity is included completely in the entity declaration itself, obviating the need for an external file to contain
the replacement text. This situation closely resembles the string replacement macro facilities found in many
popular programming languages and environments:

<!ENTITY name " Replacement text ">

When a parsed general entity is referenced, the contents of the external entity are included in the document,
and the XML parser resumes parsing, starting with the newly included text.

There are actually two types of general entities permitted by the XML
Recommendation: parsed and unparsed. An unparsed entity is declared using the same
syntax as a general parsed external entity, but with the addition of an XML notation
name to the declaration:

<!ENTITY name SYSTEM " system-literal " notation-name >

<!ENTITY name PUBLIC " pubid-literal " " system-literal "

notation-name >

Unparsed general entities are not referenced using the & name ; syntax. To reference

unparsed external entities, it is necessary to declare an attribute using the attribute
type ENTITY or ENTITIES .Unparsed external general entities are one of the features of

XML that is poorly understood, poorly supported, and not generally used in practice. It
is our recommendation that alternative mechanisms be used to reference external non-
XML data (such as XLinks or simple URI strings).

Text Declarations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<?xml [version=" version_number "] encoding=" encoding-name "?>

Files that contain external parsed entities must include a text declaration if the entity file uses a character
encoding other than UTF-8 or UTF-16, or if its contents conform to the XML 1.1 Recommendation. This
declaration would be followed by the replacement text of the external parsed entity. Entities with no text
declaration are assumed to conform to the XML 1.0 Recommendation.

External parsed entities may contain only document content or a completely well-
formed subset of the DTD. This restriction is significant because it indicates that
external parameter entities cannot be used to play token-pasting games by splitting
XML syntax constructs into multiple files, then expecting the parser to reassemble
them.

External Subset

The document type declaration can include part or all of the document type definition from an external file.
This external portion of the DTD is referred to as the external DTD subset and may contain markup
declarations, conditional sections, and parameter entity references. It must include a text declaration if the
DTD requires features of XML 1.1 or if the character encoding is not UTF-8 or UTF-16:

<?xml [version=" version_number "] encoding=" encoding-name "?>

This declaration (if present) would then be followed by a series of complete DTD markup statements, including
ELEMENT , ATTLIST , ENTITY , and NOTATION declarations, as well as conditional sections, and processing

instructions. For example:

<!ELEMENT furniture_item (desc, %extra_tags; user_tags?, parts_list,

 assembly+)>

<!ATTLIST furniture_item

 xmlns CDATA #FIXED "http://namespaces.oreilly.com/furniture/"

>

...

Internal DTD Subset

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The internal DTD subset is the portion of the document type definition included directly within the document
type declaration between the [and] characters. The internal DTD subset can contain markup declarations

and parameter entity references, but not conditional sections. A single document may have both internal and
external DTD subsets, which, when taken together, form the complete document type definition. The following
example shows an internal subset, which appears between the [and] characters:

<!DOCTYPE furniture_item SYSTEM "furniture.dtd"

[

<!ENTITY % bookcase_ex SYSTEM "Bookcase_ex.ent">

%bookcase_ex;

<!ENTITY bookcase_pic SYSTEM "bookcase.gif" NDATA gif>

<!ENTITY parts_list SYSTEM "parts_list.ent">

]>

Element Type Declaration

Element type declarations provide a template for the actual element instances that appear within an XML
document. The declaration determines what type of content, if any, can be contained within elements with the
given name. The following sections describe the various element content options available.

Since namespaces are not explicitly included in the XML 1.0 Recommendation, element
and attribute declarations within a DTD must give the complete (qualified) name that
will be used in the target document. This means that if namespace prefixes will be used
in instance documents, the DTD must declare elements and attributes just as they will
appear, prefixes and all. While parameter entities may allow instance documents to use
different prefixes, this still makes complete and seamless integration of namespaces
into a DTD-based application very awkward.

Empty Element Type

<!ELEMENT name EMPTY>

Elements that are declared empty cannot contain content or nested elements. Within the document, empty
elements may use one of the following two syntax forms:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

< name [attribute = " value " ...] />

< name [attribute = " value " ...] ></ name >

Any Element Type

<!ELEMENT name ANY>

This content specifier acts as a wildcard, allowing elements of this type to contain character data or instances
of any valid element types that are declared in the DTD.

Mixed Content Element Type

<!ELEMENT name (#PCDATA [| name] +)*>

<!ELEMENT name (#PCDATA)>

Element declarations that include the #PCDATA token can include text content mixed with other nested
elements that are declared in the optional portion of the element declaration. If the #PCDATA token is used, it

is not possible to limit the number of times or sequence in which other nested elements are mixed with the
parsed character data. If only text content is desired, the asterisk is optional.

Constrained Child Nodes

<!ELEMENT name (child_node_regexp) [? | * | +] >

XML provides a simple regular-expression syntax that can be used to limit the order and number of child
elements within a parent element. This language includes the following operators:

Operator Meaning

Name Matches an element of the given name

()
Groups expressions for processing as sets of sequences (using the comma as a separator) or
choices (using | as a separator)

?
Indicates that the preceding name or expression can occur zero or one times at this point in the
document

*
Indicates that the preceding name or expression can occur zero or more times at this point in
the document

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operator Meaning

+
Indicates that the preceding name or expression must occur one or more times at this point in
the document

Attribute List Declaration

<!ATTLIST element_name [attribute_name attribute_type default_decl] *>

In a valid XML document, it is necessary to declare the attribute names, types, and default values that are
used with each element type.

The attribute name must obey the rules for XML names, and no duplicate attribute names may exist within a
single declaration.

Attributes are declared as having a specific type. Depending on the declared type, a validating XML parser will
constrain the values that appear in instances of those attributes within a document. The following table lists
the various attribute types and their meanings:

Attribute type Meaning

CDATA Simple character data.

ID
A unique ID value within the current XML document. No two ID attribute values within a
document can have the same value, and no element can have two attributes of type ID .

IDREF, IDREFS

A single reference to an element ID (IDREF) or a list of IDs (IDREFS), separated by
spaces. Every ID token must refer to a valid ID located somewhere within the document
that appears as the ID type attribute's value.

ENTITY,
ENTITIES

A single reference to a declared unparsed external entity (ENTITY) or a list of references
(ENTITIES), separated by whitespace.

NMTOKEN,
NMTOKENS

A single name token value (NMTOKEN) or a list of name tokens (NMTOKENS), separated by

spaces.

NOTATION Attribute Type

... NOTATION (notation [| notation] *) ...

The NOTATION attribute mechanism lets XML document authors indicate that the character content of some

elements obey the rules of some formal language other than XML. The following short sample document
shows how notations might be used to specify the type of programming language stored in the
code_fragment element:

<?xml version="1.0"?>

+
Indicates that the preceding name or expression must occur one or more times at this point in
the document

Attribute List Declaration

<!ATTLIST element_name [attribute_name attribute_type default_decl] *>

In a valid XML document, it is necessary to declare the attribute names, types, and default values that are
used with each element type.

The attribute name must obey the rules for XML names, and no duplicate attribute names may exist within a
single declaration.

Attributes are declared as having a specific type. Depending on the declared type, a validating XML parser will
constrain the values that appear in instances of those attributes within a document. The following table lists
the various attribute types and their meanings:

Attribute type Meaning

CDATA Simple character data.

ID
A unique ID value within the current XML document. No two ID attribute values within a
document can have the same value, and no element can have two attributes of type ID .

IDREF, IDREFS

A single reference to an element ID (IDREF) or a list of IDs (IDREFS), separated by
spaces. Every ID token must refer to a valid ID located somewhere within the document
that appears as the ID type attribute's value.

ENTITY,
ENTITIES

A single reference to a declared unparsed external entity (ENTITY) or a list of references
(ENTITIES), separated by whitespace.

NMTOKEN,
NMTOKENS

A single name token value (NMTOKEN) or a list of name tokens (NMTOKENS), separated by

spaces.

NOTATION Attribute Type

... NOTATION (notation [| notation] *) ...

The NOTATION attribute mechanism lets XML document authors indicate that the character content of some

elements obey the rules of some formal language other than XML. The following short sample document
shows how notations might be used to specify the type of programming language stored in the
code_fragment element:

<?xml version="1.0"?>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!DOCTYPE code_fragment

[

<!NOTATION java_code PUBLIC "Java source code">

<!NOTATION c_code PUBLIC "C source code">

<!NOTATION perl_code PUBLIC "Perl source code">

<!ELEMENT code_fragment (#PCDATA)>

<!ATTLIST code_fragment

 code_lang NOTATION (java_code | c_code | perl_code) #REQUIRED>

]>

<code_fragment code_lang="c_code">

 main() { printf("Hello, world."); }

</code_fragment>

Enumeration Attribute Type

... (name_token [| name_token] *) ...

This syntax limits the possible values of the given attribute to one of the name tokens from the provided list:

<!ELEMENT door EMPTY>

<!ATTLIST door

 state (open | closed | missing) "open">

. . .

<door state="closed"/>

Default Values

If an optional attribute is not present on a given element, a default value may be provided to be passed by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the XML parser to the client application. The following table shows various forms of the attribute default value
clause and their meanings:

Default value
clause

Explanation

#REQUIRED A value must be provided for this attribute.

#IMPLIED A value may or may not be provided for this attribute.

[#FIXED]

"default value "

If this attribute has no explicit value, the XML parser substitutes the given default value. If
the #FIXED token is provided, this attribute's value must match the given default value. In

either case, the parent element always has an attribute with this name.

The #FIXED modifier indicates that the attribute may contain only the value given in the attribute declaration.

Although redundant, it is possible to provide an explicit attribute value on an element when the attribute was
declared as #FIXED . The only restriction is that the attribute value must exactly match the value given in the
#FIXED declaration.

Special Attributes

Some attributes are significant to XML:

xml:space

The xml:space attribute tells an XML application whether the whitespace within the specified element is

significant:
<!ATTLIST element_name xml:space (default|preserve)

 default_decl>

<!ATTLIST element_name xml:space (default) #FIXED 'default' >

<!ATTLIST element_name xml:space (preserve) #FIXED 'preserve' >

xml:lang

The xml:lang attribute allows a document author to specify the human language for an element's

character content. If used in a valid XML document, the document type definition must include an
attribute type declaration with the xml:lang attribute name. See Chapter 5 for an explanation of

language support in XML.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notation Declaration

<!NOTATION notation_name SYSTEM " system-literal ">

<!NOTATION notation_name PUBLIC " pubid-literal ">

<!NOTATION notation_name

PUBLIC " pubid-literal " " system-literal ">

Notation declarations are used to provide information to an XML application about the format of the
document's unparsed content. Notations are used by unparsed external entities, processing instructions, and
some attribute values.

Notation information is not significant to the XML parser, but it is preserved for use by the client application.
The public and system identifiers are made available to the client application so that it may correctly interpret
non-XML data and processing instructions.

Conditional Sections

The conditional section markup provides support for conditionally including and excluding content at parse
time within an XML document's external subset. Conditional sections are not allowed within a document's
internal subset. The following example illustrates a likely application of conditional sections:

<!ENTITY % debug 'IGNORE' >

<!ENTITY % release 'INCLUDE' >

<!ELEMENT addend (#PCDATA)>

<!ELEMENT result (#PCDATA)>

<![%debug;[

<!ELEMENT sum (addend+, result)>

]]>

<![%release;[

<!ELEMENT sum (result)>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

]]>

21.3.3 Document Body

Elements are an XML document's lifeblood. They provide the structure for character data and attribute values
that make up a particular instance of an XML document type definition. The !ELEMENT and !ATTLIST

declarations from the DTD restrict the possible contents of an element within a valid XML document.
Combining elements and/or attributes that violate these restrictions generates an error in a validating parser.

Start-Tags and End-Tags

< element_name [attribute_name =" attribute value "] *> ... </ element_name >

Elements that have content (either character data, other elements, or both) must start with a start-tag and
end with an element end-tag.

Empty-Element Tags

< element_name [attribute_name =" attribute value "] *></ element_name >

< element_name [attribute_name =" attribute value "] * />

Empty elements have no content and are written using either the start- and end-tag syntax mentioned
previously or the empty-element syntax. The two forms are functionally identical, but the empty-element
syntax is more succinct and more frequently used.

Attributes

attribute_name =" attribute value "

attribute_name =' attribute value '

Elements may include attributes. The order of attributes within an element tag is not significant and is not
guaranteed to be preserved by an XML parser. Attribute values must appear within either single or double
quotations. Attribute values within a document must conform to the rules explained in the Section 21.4 of this
chapter.

Note that whitespace may appear around the = character.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The value that appears in the quoted string is tested for validity, depending on the attribute type provided in
the ATTLIST declaration for the element type. Attribute values can contain general entity references, but

cannot contain references to external parsed entities. See the Section 21.4 of this chapter for more
information about attribute-value restrictions.

21.3.4 Namespaces

Although namespace support was not part of the original XML 1.0 Recommendation, Namespaces in XML was
approved less than a year later (January 14, 1999). Namespaces are used to uniquely identify the element
and attribute names of a given XML application from those of other applications. See Chapter 4 for more
detailed information.

The following sections describe how namespaces impact the formation and interpretation of element and
attribute names within an XML document.

Unqualified Names

name

An unqualified name is an XML element or attribute name that is not associated with a namespace. This could
be because it has no namespace prefix and no default namespace has been declared. All unprefixed attribute
names are unqualified because they are never automatically associated with a default namespace. XML
parsers that do not implement namespace support (of which there are very few) or parsers that have been
configured to ignore namespaces will always return unqualified names to their client applications. Two
unqualified names are considered to be the same if they are lexically identical.

Qualified Names

[prefix :]local_part

A qualified name is an element or attribute name that is associated with an XML namespace. There are three
possible types of qualified names:

Unprefixed element names that are contained within the scope of a default namespace declaration

Prefixed element names

Prefixed attribute names

Unlike unqualified names, qualified names are considered the same only if their namespace URIs (from their
namespace declarations) and their local parts match.

Default Namespace Declaration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xmlns=" namespace_URI "

When this attribute is included in an element start-tag, it and any unprefixed elements contained within it are
automatically associated with the namespace URI given. If the xmlns attribute is set to the empty string, any

effective default namespace is ignored, and unprefixed elements are not associated with any namespace.

An important caveat about default namespace declarations is that they do not affect
unprefixed attributes. Unprefixed attributes are never explicitly named in any
namespace, even if their containing element is.

Namespace Prefix Declaration

xmlns: prefix = " namespace_URI "

This declaration associates the namespace URI given with the prefix name given. Once it has been declared,
the prefix may qualify the current element name, attribute names, or any other element or attribute name
within the scope of the element that declares it. Nested elements may redefine a given prefix, using a
different namespace URI if desired, and XML 1.1 documents may undefine a namespace prefix by setting it to
an empty string:

xmlns: prefix= ""

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

21.4 Constraints

In addition to defining the basic structures used in documents and DTDs, XML 1.0 defines a list of
rules regarding their usage. These constraints put limits on various aspects of XML usage, and
documents cannot in fact be considered to be "XML" unless they meet all of the well-formedness
constraints. Parsers are required to report violations of these constraints, although only well-
formedness constraint violations require that processing of the document halt completely.
Namespace constraints are defined in Namespaces in XML, not XML 1.0.

21.4.1 Well-Formedness Constraints

Well-formedness refers to an XML document's physical organization. Certain lexical rules must be
obeyed before an XML parser can consider a document well-formed. These rules should not be
confused with validity constraints, which determine whether a particular document is valid when
parsed using the document structure rules contained in its DTD. The Backus-Naur Form (BNF)
grammar rules must also be satisfied. The following sections contain all well-formedness constraints
recognized by XML Version 1.0 parsers, including actual text from the 1.0 specification.

PEs in Internal Subset

Text from specification

In the internal DTD subset, parameter entity references can occur only where markup declarations
can occur, not within markup declarations. (This does not apply to references that occur in external
parameter entities or to the external subset.)

Explanation

It is only legal to use parameter entity references to build markup declarations within the external
DTD subset. In other words, within the internal subset, parameter entities may only be used to
include complete markup declarations.

External Subset

Text from specification

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The external subset, if any, must match production for extSubset.

Explanation

The extSubset production constrains what type of declaration may be contained in the external

subset. This constraint generally means that the external subset of the DTD must only include whole
declarations or parameter entity references. See the extSubset production in the EBNF grammar at

the end of this chapter for specific limitations.

PE Between Declarations

Text from specification

The replacement text of a parameter entity reference in a DeclSep must match the production
extSubsetDecl.

Explanation

The replacement text of parameter entities may contain declarations that might not be allowed if the
replacement text appeared directly. Parameter entity references in the internal subset cannot appear
within declarations, but this rule does not apply to declarations that have been included via
parameter entities.

Element Type Match

Text from specification

The Name in an element's end-tag must match the element type in the start-tag.

Explanation

Proper element nesting is strictly enforced, and every open tag must be matched by a corresponding
close tag.

Unique Att Spec

Text from specification

http://lib.ommolketab.ir
http://lib.ommolketab.ir

No attribute name may appear more than once in the same start-tag or empty-element tag.

Explanation

Attribute names must be unique within a given element.

No External Entity References

Text from specification

Attribute values cannot contain direct or indirect entity references to external entities.

Explanation

XML parsers report an error when asked to replace references to external parsed entities within
attribute values.

No < in Attribute Values

Text from specification

The replacement text of any entity referred to directly or indirectly in an attribute value (other than
"<") must not contain a <.

Explanation

This restriction is meant to simplify the task of parsing XML data. Since attribute values can't even
appear to contain element data, simple parsers need not track literal strings. Just by matching < and
> characters, simple parsers can check for proper markup formation and nesting.

Legal Character

Text from specification

Characters referred to using character references must match the production for Char.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Explanation

Any characters that the XML parser generates must be real characters. A few character values in
Unicode are not valid standalone characters.

Entity Declared

Text from specification

In a document without any DTD, a document with only an internal DTD subset that contains no
parameter entity references, or a document with standalone='yes' for an entity reference that does
not occur within the external subset or a parameter entity, the Name given in the entity reference

must match that in an entity declaration that does not occur within the external subset or a
parameter entity, except that well-formed documents need not declare any of the following entities:
amp, lt, gt, apos, quot. The declaration of a parameter entity must precede any reference to it.

Similarly, the declaration of a general entity must precede any reference to it, which appears in a
default value in an attribute-list declaration. Note that if entities are declared in the external subset
or in external parameter entities, a non-validating processor is not obligated to read and process
their declarations; for such documents, the rule that an entity must be declared is a well-formedness
constraint only if standalone='yes'.

Explanation

This long constraint lists the only situations in which an entity reference may appear without a
corresponding entity declaration. Since a nonvalidating parser is not obliged to read and parse the
external subset, the parser must give the document the benefit of the doubt, if an entity could
possibly have been declared.

Parsed Entity

Text from specification

An entity reference must not contain the name of an unparsed entity. Unparsed entities may be
referred to only in attribute values declared to be of type ENTITY or ENTITIES.

Explanation

Since unparsed entities can't be parsed, don't try to force the parser to parse them.

No Recursion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Text from specification

A parsed entity must not contain a recursive reference to itself, either directly or indirectly.

Explanation

Be careful how you structure your entities; make sure you don't inadvertently create a circular
reference:

<!ENTITY a "&b;">

<!ENTITY b "&c;">

<!ENTITY c "&a;"> <!--wrong!-->

In DTD

Text from specification

Parameter entity references may only appear in the DTD.

Explanation

This constraint is self-evident because the % character has no significance outside of the DTD.

Therefore, it is perfectly legal to have an element like this in your document:

<ok>%noproblem;</ok>

The text %noproblem; is passed on by the parser without generating an error.

21.4.2 Validity Constraints

The following sections contain all validity constraints that are enforced by a validating parser. Each
includes actual text from the XML 1.0 specification and a short explanation of what the constraint
actually means.

Root Element Type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Text from specification

The Name in the document type declaration must match the element type of the root element.

Explanation

The name provided in the DOCTYPE declaration identifies the root element's name and must match

the name of the root element in the document.

Proper Declaration/PE Nesting

Text from specification

Parameter entity replacement text must be properly nested with markup declarations. That is to say,
if either the first character or the last character of a markup declaration is contained in the
replacement text for a parameter entity reference, both must be contained in the same replacement
text.

Explanation

This constraint means you can't create a parameter entity that completes one DTD declaration and
begins another; the following XML fragment would violate this constraint:

<!ENTITY % finish_it ">">

<!ENTITY % bad "won't work" %finish_it; <!--wrong!-->

Standalone Document Declaration

Text from specification

The standalone document declaration must have the value no if any external markup declarations

contain declarations of: attributes with default values, if elements to which these attributes apply
appear in the document without specifications of values for these attributes, or entities (other than
amp, lt, gt, apos, quot), if references to those entities appear in the document, or attributes with

values subject to normalization, where the attribute appears in the document with a value which will
change as a result of normalization, or element types with element content, if whitespace occurs
directly within any instance of those types.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Explanation

This laundry list of potential standalone flag violations can be read to mean, "If you have an external
subset in your DTD, ensure that your document doesn't depend on anything in it if you say
standalone='yes' in your XML declaration." A more succinct interpretation would be, "If your
document has an external DTD subset, just set standalone to no."

Element Valid

Text from specification

An element is valid if there is a declaration matching elementdecl where the Name matches the
element type and either the declaration matches EMPTY and the element has no content, or the

declaration matches children and the sequence of child elements belongs to the language generated
by the regular expression in the content model, with optional whitespace (characters matching the
nonterminal S) between the start-tag and the first child element, between child elements, or between
the last child element and the end-tag. Note that a CDATA section containing only whitespace does
not match the nonterminal S, and hence cannot appear in these positions. The declaration matches
Mixed and the content consists of character data and child elements whose types match names in the
content model. The declaration matches ANY, and the types of any child elements have been

declared.

Explanation

If a document includes a DTD with element declarations, make sure the actual elements in the
document match the rules set down in the DTD.

Attribute Value Type

Text from specification

The attribute must have been declared; the value must be of the type declared for it.

Explanation

All attributes used on elements in valid XML documents must have been declared in the DTD,
including the xml:space and xml:lang attributes. If you declare an attribute for an element, make

sure that every instance of that attribute has a value conforming to the type specified. (For attribute
types, see the Attribute List Declaration entry earlier in this chapter.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unique Element Type Declaration

Text from specification

No element type may be declared more than once.

Explanation

Unlike entity and attribute declarations, only one declaration may exist for a particular element type.

Proper Group/PE Nesting

Text from specification

Parameter entity replacement text must be properly nested with parenthesized groups. That is to
say, if either of the opening or closing parentheses in a choice, seq, or Mixed construct is contained

in the replacement text for a parameter entity, both must be contained in the same replacement
text.

For interoperability, if a parameter entity reference appears in a choice, seq, or Mixed construct, its

replacement text should contain at least one non-blank character, and neither the first nor last non-
blank character of the replacement text should be a connector (| or ,).

Explanation

This constraint restricts the way parameter entities can be used to construct element declarations. It
is similar to the Text from specification constraint in that parameter entities may not be used to
complete or open new parenthesized expressions. It prevents the XML author from hiding significant
syntax elements inside parameter entities.

No Duplicate Types

Text from specification

The same name must not appear more than once in a single mixed-content declaration.

Explanation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Don't list the same element type name more than once in the same mixed-content declaration.

ID

Text from specification

Values of type ID must match the Name production. A name must not appear more than once in an

XML document as a value of this type; i.e., ID values must uniquely identify the elements that bear
them.

Explanation

No two attribute values for attributes declared as type ID can have the same value. This constraint is

not restricted by element type, but it is global across the entire document.

One ID per Element Type

Text from specification

No element type may have more than one ID attribute specified.

Explanation

Each element can have at most one ID type attribute.

ID Attribute Default

Text from specification

An ID attribute must have a declared default of #IMPLIED or #REQUIRED.

Explanation

To avoid potential duplication, you can't declare an ID attribute to be #FIXED or provide a default

value for it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IDREF

Text from specification

Values of type IDREF must match the Name production, and values of type IDREFS must match
Names; each Name must match the value of an ID attribute on some element in the XML document;
i.e., IDREF values must match the value of some ID attribute.

Explanation

ID references must refer to actual ID attributes that exist within the document.

Entity Name

Text from specification

Values of type ENTITY must match the Name production, and values of type ENTITIES must match
Names; each Name must match the name of an unparsed entity declared in the DTD.

Explanation

Attributes declared to contain entity references must contain references to unparsed entities declared
in the DTD.

Name Token

Text from specification

Values of type NMTOKEN must match the Nmtoken production; values of type NMTOKENS must match
Nmtokens.

Explanation

If an attribute is declared to contain a name or list of names, the values must be legal XML name
tokens.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notation Attributes

Text from specification

Values of this type must match one of the notation names included in the declaration; all notation
names in the declaration must be declared.

Explanation

Attributes that must contain notation names must contain names that reference notations declared in
the DTD.

One Notation per Element Type

Text from specification

No element type may have more than one NOTATION attribute specified.

Explanation

A given element can have only one attribute declared with the NOTATION attribute type. This

constraint is provided for backward compatibility with SGML.

No Notation on Empty Element

Text from specification

For compatibility, an attribute of type NOTATION must not be declared on an element declared EMPTY.

Explanation

Empty elements cannot have NOTATION attributes in order to maintain compatibility with SGML.

Enumeration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Text from specification

Values of this type must match one of the Nmtoken tokens in the declaration.

Explanation

Assigning a value to an enumerated type attribute that isn't listed in the enumeration is illegal in the
DTD.

Required Attribute

Text from specification

If the default declaration is the keyword #REQUIRED, then the attribute must be specified for all

elements of the type in the attribute-list declaration.

Explanation

Required attributes must appear in the document and have a value assigned to them if they are
declared as #REQUIRED in the DTD.

Attribute Default Legal

Text from specification

The declared default value must meet the lexical constraints of the declared attribute type.

Explanation

If you provide a default attribute value, it must obey the same rules that apply to a normal attribute
value within the document.

Fixed Attribute Default

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Text from specification

If an attribute has a default value declared with the #FIXED keyword, instances of that attribute must

match the default value.

Explanation

If you choose to provide an explicit value for a #FIXED attribute in your document, it must match the

default value given in the attribute declaration.

Proper Conditional Section/PE Nesting

Text from specification

If any of the "<![", "[", or "]]>" of a conditional section is contained in the replacement text for a

parameter entity reference, all of them must be contained in the same replacement text.

Explanation

If you use a parameter entity to contain the beginning of a conditional section, the parameter entity
must also contain the end of the section.

Entity Declared

Text from specification

In a document with an external subset or external parameter entities with standalone='no', the
Name given in the entity reference must match that in an entity declaration. For interoperability, valid
documents should declare the entities amp, lt, gt, apos, quot. The declaration of a parameter entity

must precede any reference to it. Similarly, the declaration of a general entity must precede any
attribute-list declaration containing a default value with a direct or indirect reference to that general
entity.

Explanation

Parameter and general entity declarations must precede any references to these entities. All entity
references must refer to previously declared entities. The specification also states that declaring the
five predefined general entities (amp, lt, gt, apos, and quot) is a good idea. In reality, declaring the

predefined general entities adds unnecessary complexity to most applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notation Declared

Text from specification

The Name must match the declared name of a notation.

Explanation

External unparsed entities must use a notation that is declared in the document.

Unique Notation Name

Text from specification

Only one notation declaration can declare a given Name.

Explanation

Declaring two notations with the same name is illegal.

21.4.3 Namespace Constraints

The following list contains all constraints defined by the namespaces specification. Each includes
actual text from the Namespaces in XML specification and a short explanation of what the constraint
actually means.

Leading "XML"

Text from specification

Prefixes beginning with the three-letter sequence x, m, l, in any case combination, are reserved for

use by XML and XML-related specifications.

Explanation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Just like most other names in XML, namespace prefixes names can't begin with xml unless they've

been defined by the W3C.

Prefix Declared

Text from specification

The namespace prefix, unless it is xml or xmlns, must have been declared in a namespace

declaration attribute in either the start-tag of the element where the prefix is used or in an ancestor
element (i.e., an element in whose content the prefixed markup occurs). The prefix xml is by
definition bound to the namespace name http://www.w3.org/XML/1998/namespace. The prefix
xmlns is used only for namespace bindings and is not itself bound to any namespace name.

Explanation

You have to declare all namespaces before you can use them. The prefixes have no meaning without
the declarations, so using a prefix without a declaration context is an error. The namespace with the
prefix xml is permanently defined, so there is no need to redeclare it. The xmlns prefix used by

namespace declarations is not considered a namespace prefix itself, and no declaration is needed for
it.

 < Day Day Up >

http://www.w3.org/XML/1998/namespace
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

21.5 XML 1.0 Document Grammar

The Extended Backus-Naur Form (EBNF) grammar, shown in the following section, was collected
from the XML 1.0 Recommendation, Third Edition. It brings all XML language productions together in
a single location and describes the syntax that is understood by XML 1.0-compliant parsers. Each
production has been numbered and cross-referenced using superscripted numbers.

21.5.1 EBNF Grammar for XML 1.0 (Third Edition)

21.5.1.1 Document

[1] document ::= prolog22 element39 Misc27*

21.5.1.2 Character range

[2] Char ::= #x9 | #xA | #xD | [#x21-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]
/* any Unicode character, excluding the surrogate blocks, FFFE, and FFFF. */

21.5.1.3 Whitespace

[3] S ::= (#x20 | #x9 | #xD | #xA)+

21.5.1.4 Names and tokens

[4] NameChar ::= Letter84| Digit88 | '.' | '-' | '_' | ':' | CombiningChar87 |
Extender89

[5] Name ::= (Letter84| '_' | ':') (NameChar4)*

[6] Names ::= Name5(#x20 Name5)*

[7] Nmtoken ::= (NameChar4)+

[8] Nmtokens ::= Nmtoken7(#x20 Nmtoken7)*

21.5.1.5 Literals

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[9] EntityValue ::= '"' ([^%&"] | PEReference 69 | Reference67)* '"' | "'" ([^%&'] |
PEReference69 | Reference67)* "'"

[10] AttValue ::= '"' ([^<&"] | Reference67)* '"' | "'" ([^<&'] | Reference67)* "'"

[11] SystemLiteral ::= ('"' [^"]* '"') | ("'" [^']* "'")

[12] PubidLiteral ::= '"' PubidChar13* '"' | "'" (PubidChar13 - "'")* "'"

[13] PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9] | [-'()+,./:=?;!*#@$_%]

21.5.1.6 Character data

[14] CharData ::= [^<&]* - ([^<&]* ']]>' [^<&]*)

21.5.1.7 Comments

[15] Comment ::= '<!--' ((Char2 - '-') | ('-' (Char2 - '-')))* '-->'

21.5.1.8 Processing instructions

[16] PI ::= '<?' PITarget17(S(Char2* - (Char2* '?>' Char2*)))? '?>'

[17] PITarget ::= Name5- (('X' | 'x') ('M' | 'm') ('L' | 'l'))

21.5.1.9 CDATA sections

[18] CDSect ::= CDStart19 CData20 CDEnd21

[19] CDStart ::= '<![CDATA['

[20] CData ::= (Char2* - (Char2* ']]>' Char2*))

[21] CDEnd ::= ']]>'

21.5.1.10 Prolog

[22] prolog ::= XMLDecl23? Misc27* (doctypedecl28 Misc27*)?

[23] XMLDecl ::= '<?xml' VersionInfo24 EncodingDecl80? SDDecl32? S3? '?>'

[24] VersionInfo ::= S3'version' Eq("'" VersionNum26"'" | '"' VersionNum26'"')

[25] Eq ::= S3? '=' S3?

[26] VersionNum ::= '1.0'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[27] Misc ::= Comment15| PI16| S3

21.5.1.11 Document type definition

[28] doctypedecl ::= '<!DOCTYPE' S3 Name5(S3 ExternalID75)? S3? ('[' intSubset28b']'
S3?)? '>'

[28a] DeclSep ::= PEReference69 | S3

[28b] intSubset ::= (markupdecl29 | DeclSep28a)*

[29] markupdecl ::= elementdecl45 | AttlistDecl52 | EntityDecl70 | NotationDecl82 | PI16

| Comment15

21.5.1.12 External subset

[30] extSubset ::= TextDecl77? extSubsetDecl31

[31] extSubsetDecl ::= (markupdecl29 | conditionalSect61 | DeclSep28a)*

21.5.1.13 Standalone document declaration

[32] SDDecl ::= S3 'standalone' Eq(("'" ('yes' | 'no') "'") | ('"' ('yes' | 'no')
'"'))

21.5.1.14 Element

[39] element ::= EmptyElemTag44 | STag40 content43 ETag42

21.5.1.15 Start-tag

[40] STag ::= '<' Name5 (S3 Attribute41)* S3? '>'

[41] Attribute ::= Name5 Eq25 AttValue10

21.5.1.16 End-tag

[42] ETag ::= '</' Name5 S3? '>'

21.5.1.17 Content of elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[43] content ::= CharData14? ((element39 | Reference69 | CDSect18 | PI16 | Comment15)
CharData14?)*

21.5.1.18 Tags for empty elements

[44] EmptyElemTag ::= '<' Name5(S3 Attribute41)* S3? '/>'

21.5.1.19 Element type declaration

[45] elementdecl ::= '<!ELEMENT' S3 Name5 S3 contentspec46 S3? '>'

[46] contentspec ::= 'EMPTY' | 'ANY' | Mixed51 | children47

21.5.1.20 Element-content models

[47] children ::= (choice49 | seq50) ('?' | '*' | '+')?

[48] cp ::= (Name5 | choice49 | seq50) ('?' | '*' | '+')?

[49] choice ::= '(' S3? cp48 (S3? '|' S3? cp48)+ S3? ')'

[50] seq ::= '(' S3? cp48(S3? ',' S3? cp48)* S3? ')'

21.5.1.21 Mixed-content declaration

[51] Mixed ::= '(' S3? '#PCDATA' (S3? '|' S3? Name5)* S3? ')*' | '(' S3? '#PCDATA'
S3? ')'

21.5.1.22 Attribute-list declaration

[52] AttlistDecl ::= '<!ATTLIST' S3 Name5 AttDef53* S3? '>'

[53] AttDef ::= S3 Name5 S3 AttType54 S3 DefaultDecl60

21.5.1.23 Attribute types

[54] AttType ::= StringType55 | TokenizedType56 | EnumeratedType57

[55] StringType ::= 'CDATA '

[56] TokenizedType ::= 'ID '

| 'IDREF'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

| 'IDREFS'

| 'ENTITY'

| 'ENTITIES'

| 'NMTOKEN'

| 'NMTOKENS'

21.5.1.24 Enumerated attribute types

[57] EnumeratedType ::= NotationType58 | Enumeration59

[58] NotationType ::= 'NOTATION' S3'(' S3? Name5(S3? '|' S3? Name5)* S3? ')'

[59] Enumeration ::= '(' S3? Nmtoken7(S3? '|' S3? Nmtoken7)* S3? ')'

21.5.1.25 Attribute defaults

[60] DefaultDecl ::= '#REQUIRED' | '#IMPLIED' | (('#FIXED' S 3)? AttValue10)

21.5.1.26 Conditional section

[61] conditionalSect ::= includeSect62 | ignoreSect63

[62] includeSect ::= '<![' S3? 'INCLUDE' S3? '[' extSubsetDecl31']]>'

[63] ignoreSect ::= '<![' S3? 'IGNORE' S3? '[' ignoreSectContents64* ']]>'

[64] ignoreSectContents ::= Ignore65('<![' ignoreSectContents64']]>' Ignore65)*

[65] Ignore ::= Char2* - (Char2* ('<![' | ']]>') Char2*)

21.5.1.27 Character reference

[66] CharRef ::= '&#' [0-9]+ ';' | '&#x' [0-9a-fA-F]+ '; '

21.5.1.28 Entity reference

[67] Reference ::= EntityRef68 | CharRef66

[68] EntityRef ::= '&' Name5';'

[69] PEReference ::= '%' Name5';'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.5.1.29 Entity declaration

[70] EntityDecl ::= GEDecl71 | PEDecl72

[71] GEDecl ::= '<!ENTITY' S3 Name5 S3 EntityDef73 S3? '>'

[72] PEDecl ::= '<!ENTITY' S3'%' S3 Name5 S3 PEDef74 S3? '>'

[73] EntityDef ::= EntityValue9 | (ExternalID75 NDataDecl76?)

[74] PEDef ::= EntityValue9 | ExternalID76

21.5.1.30 External entity declaration

[75] ExternalID ::= 'SYSTEM' S3 SystemLiteral11 | 'PUBLIC' S3 PubidLiteral12 S3

SystemLiteral11

[76] NDataDecl ::= S3 'NDATA' S3 Name5

21.5.1.31 Text declaration

[77] TextDecl ::= '<?xml' VersionInfo24? EncodingDecl80 S3? '?>'

21.5.1.32 Well-formed external parsed entity

[78] extParsedEnt ::= TextDecl77? content43

21.5.1.33 Encoding declaration

[80] EncodingDecl ::= S3 'encoding' Eq25 ('"' EncName81'"' | "'" EncName81"'")

[81] EncName ::= [A-Za-z] ([A-Za-z0-9._] | '-')* /* Encoding name contains only
Latin characters */

21.5.1.34 Notation declarations

[82] NotationDecl ::= '<!NOTATION' S3 Name5 S3(ExternalID75 | PublicID83) S3? '>'

[83] PublicID ::= 'PUBLIC' S3 PubidLiteral12

21.5.1.35 Characters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[84] Letter ::= BaseChar85 | Ideographic86

[85] BaseChar ::= [#x0041-#x005A] | [#x0061-#x007A] | [#x00C0-#x00D6] | [#x00D8-
#x00F6] | [#x00F8-#x00FF] | [#x0100-#x0131] | [#x0134-#x013E] | [#x0141-#x0148] |
[#x014A-#x017E] | [#x0180-#x01C3] | [#x01CD-#x01F0] | [#x01F4-#x01F5] | [#x01FA-
#x0217] | [#x0250-#x02A8] | [#x02BB-#x02C1] | #x0386 | [#x0388-#x038A] | #x038C |
[#x038E-#x03A1] | [#x03A3-#x03CE] | [#x03D0-#x03D6] | #x03DA | #x03DC | #x03DE |
#x03E0 | [#x03E2-#x03F3] | [#x0401-#x040C] | [#x040E-#x044F] | [#x0451-#x045C] |
[#x045E-#x0481] | [#x0490-#x04C4] | [#x04C7-#x04C8] | [#x04CB-#x04CC] | [#x04D0-
#x04EB] | [#x04EE-#x04F5] | [#x04F8-#x04F9] | [#x0531-#x0556] | #x0559 | [#x0561-
#x0586] | [#x05D0-#x05EA] | [#x05F0-#x05F2] | [#x0621-#x063A] | [#x0641-#x064A] |
[#x0671-#x06B7] | [#x06BA-#x06BE] | [#x06C0-#x06CE] | [#x06D0-#x06D3] | #x06D5 |
[#x06E5-#x06E6] | [#x0905-#x0939] | #x093D | [#x0958-#x0961] | [#x0985-#x098C] |
[#x098F-#x0990] | [#x0993-#x09A8] | [#x09AA-#x09B0] | #x09B2 | [#x09B6-#x09B9] |
[#x09DC-#x09DD] | [#x09DF-#x09E1] | [#x09F0-#x09F1] | [#x0A05-#x0A0A] | [#x0A0F-
#x0A10] | [#x0A13-#x0A28] | [#x0A2A-#x0A30] | [#x0A32-#x0A33] | [#x0A35-#x0A36] |
[#x0A38-#x0A39] | [#x0A59-#x0A5C] | #x0A5E | [#x0A72-#x0A74] | [#x0A85-#x0A8B] |
#x0A8D | [#x0A8F-#x0A91] | [#x0A93-#x0AA8] | [#x0AAA-#x0AB0] | [#x0AB2-#x0AB3] |
[#x0AB5-#x0AB9] | #x0ABD | #x0AE0 | [#x0B05-#x0B0C] | [#x0B0F-#x0B10] | [#x0B13-
#x0B28] | [#x0B2A-#x0B30] | [#x0B32-#x0B33] | [#x0B36-#x0B39] | #x0B3D | [#x0B5C-
#x0B5D] | [#x0B5F-#x0B61] | [#x0B85-#x0B8A] | [#x0B8E-#x0B90] | [#x0B92-#x0B95] |
[#x0B99-#x0B9A] | #x0B9C | [#x0B9E-#x0B9F] | [#x0BA3-#x0BA4] | [#x0BA8-#x0BAA] |
[#x0BAE-#x0BB5] | [#x0BB7-#x0BB9] | [#x0C05-#x0C0C] | [#x0C0E-#x0C10] | [#x0C12-
#x0C28] | [#x0C2A-#x0C33] | [#x0C35-#x0C39] | [#x0C60-#x0C61] | [#x0C85-#x0C8C] |
[#x0C8E-#x0C90] | [#x0C92-#x0CA8] | [#x0CAA-#x0CB3] | [#x0CB5-#x0CB9] | #x0CDE |
[#x0CE0-#x0CE1] | [#x0D05-#x0D0C] | [#x0D0E-#x0D10] | [#x0D12-#x0D28] | [#x0D2A-
#x0D39] | [#x0D60-#x0D61] | [#x0E01-#x0E2E] | #x0E30 | [#x0E32-#x0E33] | [#x0E40-
#x0E45] | [#x0E81-#x0E82] | #x0E84 | [#x0E87-#x0E88] | #x0E8A | #x0E8D | [#x0E94-
#x0E97] | [#x0E99-#x0E9F] | [#x0EA1-#x0EA3] | #x0EA5 | #x0EA7 | [#x0EAA-#x0EAB] |
[#x0EAD-#x0EAE] | #x0EB0 | [#x0EB2-#x0EB3] | #x0EBD | [#x0EC0-#x0EC4] | [#x0F40-
#x0F47] | [#x0F49-#x0F69] | [#x10A0-#x10C5] | [#x10D0-#x10F6] | #x1100 | [#x1102-
#x1103] | [#x1105-#x1107] | #x1109 | [#x110B-#x110C] | [#x110E-#x1112] | #x113C |
#x113E | #x1140 | #x114C | #x114E | #x1150 | [#x1154-#x1155] | #x1159 | [#x115F-
#x1161] | #x1163 | #x1165 | #x1167 | #x1169 | [#x116D-#x116E] | [#x1172-#x1173] |
#x1175 | #x119E | #x11A8 | #x11AB | [#x11AE-#x11AF] | [#x11B7-#x11B8] | #x11BA |
[#x11BC-#x11C2] | #x11EB | #x11F0 | #x11F9 | [#x1E00-#x1E9B] | [#x1EA0-#x1EF9] |
[#x1F00-#x1F15] | [#x1F18-#x1F1D] | [#x1F21-#x1F45] | [#x1F48-#x1F4D] | [#x1F50-
#x1F57] | #x1F59 | #x1F5B | #x1F5D | [#x1F5F-#x1F7D] | [#x1F80-#x1FB4] | [#x1FB6-
#x1FBC] | #x1FBE | [#x1FC2-#x1FC4] | [#x1FC6-#x1FCC] | [#x1FD0-#x1FD3] | [#x1FD6-
#x1FDB] | [#x1FE0-#x1FEC] | [#x1FF2-#x1FF4] | [#x1FF6-#x1FFC] | #x2126 | [#x212A-
#x212B] | #x212E | [#x2180-#x2182] | [#x3041-#x3094] | [#x30A1-#x30FA] | [#x3105-
#x312C] | [#xAC00-#xD7A3]

[86] Ideographic ::= [#x4E00-#x9FA5] | #x3007 | [#x3021-#x3029]

[87] CombiningChar ::= [#x0300-#x0345] | [#x0360-#x0361] | [#x0483-#x0486] |
[#x0591-#x05A1] | [#x05A3-#x05B9] | [#x05BB-#x05BD] | #x05BF | [#x05C1-#x05C2] |
#x05C4 | [#x064B-#x0652] | #x0670 | [#x06D6-#x06DC] | [#x06DD-#x06DF] | [#x06E0-
#x06E4] | [#x06E7-#x06E8] | [#x06EA-#x06ED] | [#x0901-#x0903] | #x093C | [#x093E-
#x094C] | #x094D | [#x0951-#x0954] | [#x0962-#x0963] | [#x0981-#x0983] | #x09BC |
#x09BE | #x09BF | [#x09C0-#x09C4] | [#x09C7-#x09C8] | [#x09CB-#x09CD] | #x09D7 |
[#x09E2-#x09E3] | #x0A02 | #x0A3C | #x0A3E | #x0A3F | [#x0A40-#x0A42] | [#x0A47-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#x0A48] | [#x0A4B-#x0A4D] | [#x0A70-#x0A71] | [#x0A81-#x0A83] | #x0ABC | [#x0ABE-
#x0AC5] | [#x0AC7-#x0AC9] | [#x0ACB-#x0ACD] | [#x0B01-#x0B03] | #x0B3C | [#x0B3E-
#x0B43] | [#x0B47-#x0B48] | [#x0B4B-#x0B4D] | [#x0B56-#x0B57] | [#x0B82-#x0B83] |
[#x0BBE-#x0BC2] | [#x0BC6-#x0BC8] | [#x0BCA-#x0BCD] | #x0BD7 | [#x0C01-#x0C03] |
[#x0C3E-#x0C44] | [#x0C46-#x0C48] | [#x0C4A-#x0C4D] | [#x0C55-#x0C56] | [#x0C82-
#x0C83] | [#x0CBE-#x0CC4] | [#x0CC6-#x0CC8] | [#x0CCA-#x0CCD] | [#x0CD5-#x0CD6] |
[#x0D02-#x0D03] | [#x0D3E-#x0D43] | [#x0D46-#x0D48] | [#x0D4A-#x0D4D] | #x0D57 |
#x0E31 | [#x0E34-#x0E3A] | [#x0E47-#x0E4E] | #x0EB1 | [#x0EB4-#x0EB9] | [#x0EBB-
#x0EBC] | [#x0EC8-#x0ECD] | [#x0F18-#x0F19] | #x0F35 | #x0F37 | #x0F39 | #x0F3E |
#x0F3F | [#x0F71-#x0F84] | [#x0F86-#x0F8B] | [#x0F90-#x0F95] | #x0F97 | [#x0F99-
#x0FAD] | [#x0FB1-#x0FB7] | #x0FB9 | [#x20D0-#x20DC] | #x20E1 | [#x302A-#x302F] |
#x3099 | #x309A

[88] Digit ::= [#x0030-#x0039] | [#x0660-#x0669] | [#x06F0-#x06F9] | [#x0966-#x096F]
| [#x09E6-#x09EF] | [#x0A66-#x0A6F] | [#x0AE6-#x0AEF] | [#x0B66-#x0B6F] | [#x0BE7-
#x0BEF] | [#x0C66-#x0C6F] | [#x0CE6-#x0CEF] | [#x0D66-#x0D6F] | [#x0E50-#x0E59] |
[#x0ED0-#x0ED9] | [#x0F21-#x0F29]

[89] Extender ::= #x00B7 | #x02D0 | #x02D1 | #x0387 | #x0640 | #x0E46 | #x0EC6 |
#x3005 | [#x3031-#x3035] | [#x309D-#x309E] | [#x30FC-#x30FE]

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

21.6 XML 1.1 Document Grammar

The following grammar provides the EBNF productions for the XML 1.1 recommendation.

21.6.1 EBNF Grammar for XML 1.1

21.6.1.1 Document

[1] document ::= prolog22 element39 Misc27* - Char2* RestrictedChar2a Char2*

21.6.1.2 Character range

[2] Char ::= [#x1-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF] /* any Unicode
character, excluding the surrogate blocks, FFFE, and FFFF. */

[2a] RestrictedChar ::= [#x1-#x8] | [#xB-#xC] | [#xE-#x1F] | [#x7F-#x84] | [#x86-
#x9F]

21.6.1.3 Whitespace

[3] S ::= (#x20 | #x9 | #xD | #xA)+

21.6.1.4 Names and tokens

[4] NameStartChar ::= ":" | [A-Z] | "_" | [a-z] | [#xC0-#xD6] | [#xD8-#xF6] | [#xF8-
#x2FF] | [#x370-#x37D] | [#x37F-#x1FFF] | [#x200C-#x200D] | [#x2070-#x218F] |
[#x2C00-#x2FEF] | [#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD] | [#x10000-
#xEFFFF]

[4a] NameChar ::= NameStartChar4 | "-" | "." | [0-9] | #xB7 | [#x0300-#x036F] |
[#x203F-#x2040]

[5] Name ::= NameStartChar4 (NameChar4a)*

[6] Names ::= Name5 (#x20 Name5)*

[7] Nmtoken ::= (NameChar4a)+

[8] Nmtokens ::= Nmtoken7(#x20 Nmtoken7)*

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.6.1.5 Literals

[9] EntityValue ::= '"' ([^%&"] | PEReference 69 | Reference67)* '"' | "'" ([^%&'] |
PEReference69 | Reference67)* "'"

[10] AttValue ::= '"' ([^<&"] | Reference67)* '"' | "'" ([^<&'] | Reference67)* "'"

[11] SystemLiteral ::= ('"' [^"]* '"') | ("'" [^']* "'")

[12] PubidLiteral ::= '"' PubidChar13* '"' | "'" (PubidChar13 - "'")* "'"

[13] PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9] | [-'()+,./:=?;!*#@$_%]

21.6.1.6 Character data

[14] CharData ::= [^<&]* - ([^<&]* ']]>' [^<&]*)

21.6.1.7 Comments

[15] Comment ::= '<!--' ((Char2 - '-') | ('-' (Char2 - '-')))* '-->'

21.6.1.8 Processing instructions

[16] PI ::= '<?' PITarget17(S3(Char2* - (Char2* '?>' Char2*)))? '?>'

[17] PITarget ::= Name5 - (('X' | 'x') ('M' | 'm') ('L' | 'l'))

21.6.1.9 CDATA sections

[18] CDSect ::= CDStart19 CData20 CDEnd21

[19] CDStart ::= '<![CDATA['

[20] CData ::= (Char2* - (Char2* ']]>' Char2*))

[21] CDEnd ::= ']]>'

21.6.1.10 Prolog

[22] prolog ::= XMLDecl23 Misc27* (doctypedecl28 Misc27*)?

[23] XMLDecl ::= '<?xml' VersionInfo24 EncodingDecl80? SDDecl32? S3?'?>'

[24] VersionInfo ::= S3 'version' Eq25("'" VersionNum26 "'" | '"' VersionNum26 '"')

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[25] Eq ::= S3? '=' S3?

[26] VersionNum ::= '1.1'

[27] Misc ::= Comment15 | PI16 | S3

21.6.1.11 Document type definition

[28] doctypedecl ::= '<!DOCTYPE' S3 Name5(S3 ExternalID)? S3? ('[' intSubset28b']' S3?
)? '>'

[28a] DeclSep ::= PEReference69 | S3

[28b] intSubset ::= (markupdecl29 | DeclSep28a)*

[29] markupdecl ::= elementdecl45 | AttlistDecl52 | EntityDecl70 | NotationDecl82 | PI16

| Comment15

21.6.1.12 External subset

[30] extSubset ::= TextDecl77? extSubsetDecl31

[31] extSubsetDecl ::= (markupdecl29 | conditionalSect61 | DeclSep28a)*

21.6.1.13 Standalone document declaration

[32] SDDecl ::= #x20+ 'standalone' Eq25(("'" ('yes' | 'no') "'") | ('"' ('yes' |
'no') '"'))

21.6.1.14 Element

[39] element ::= EmptyElemTag44 | STag40 content43 ETag42

21.6.1.15 Start-tag

[40] STag ::= '<' Name5 (S3 Attribute41)* S3? '>'

[41] Attribute ::= Name Eq AttValue

21.6.1.16 End-tag

[42] ETag ::= '</' Name5 S3? '>'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.6.1.17 Content of elements

[43] content ::= CharData14? ((element39 | Reference67 | CDSect18 | PI16 | Comment15)
CharData14?)*

21.6.1.18 Tags for empty elements

[44] EmptyElemTag ::= '<' Name5(S3 Attribute41)* S3? '/>'

21.6.1.19 Element type declaration

[45] elementdecl ::= '<!ELEMENT' S3 Name5 S3 contentspec46 S3? '>'

[46] contentspec ::= 'EMPTY' | 'ANY' | Mixed51 | children47

21.6.1.20 Element-content models

[47] children ::= (choice49 | seq50) ('?' | '*' | '+')?

[48] cp ::= (Name5 | choice49 | seq50) ('?' | '*' | '+')?

[49] choice ::= '(' S3? cp48(S3? '|' S3? cp48)+ S3? ')'

[50] seq ::= '(' S3? cp48(S3? ',' S3? cp48)* S3? ')'

21.6.1.21 Mixed-content declaration

[51] Mixed ::= '(' S3? '#PCDATA' (S3? '|' S3? Name5)* S3? ')*' | '(' S3? '#PCDATA'
S3? ')'

21.6.1.22 Attribute-list declaration

[52] AttlistDecl ::= '<!ATTLIST' S3 Name5 AttDef53* S3? '>'

[53] AttDef ::= S3 Name3 S3 AttType3 S3 DefaultDecl3

21.6.1.23 Attribute types

[54] AttType ::= StringType55 | TokenizedType56 | EnumeratedType57

[55] StringType ::= 'CDATA '

[56] TokenizedType ::= 'ID '

http://lib.ommolketab.ir
http://lib.ommolketab.ir

| 'IDREF'

| 'IDREFS'

| 'ENTITY'

| 'ENTITIES'

| 'NMTOKEN'

| 'NMTOKENS'

21.6.1.24 Enumerated attribute types

[57] EnumeratedType ::= NotationType58 | Enumeration59

[58] NotationType ::= 'NOTATION' S3'(' S3? Name5(S3? '|' S3? Name5)* S3? ')'

[59] Enumeration ::= '(' S3? Nmtoken7(S3? '|' S3? Nmtoken7)* S3? ')'

21.6.1.25 Attribute defaults

[60] DefaultDecl ::= '#REQUIRED' | '#IMPLIED' | (('#FIXED' S 3)? AttValue10)

21.6.1.26 Conditional section

[61] conditionalSect ::= includeSect62 | ignoreSect63

[62] includeSect ::= '<![' S3? 'INCLUDE' S3? '[' extSubsetDecl31']]>'

[63] ignoreSect ::= '<![' S3? 'IGNORE' S3? '[' ignoreSectContents64* ']]>'

[64] ignoreSectContents ::= Ignore65('<![' ignoreSectContents64']]>' Ignore65)*

[65] Ignore ::= Char2* - (Char2* ('<![' | ']]>') Char2*)

21.6.1.27 Character reference

[66] CharRef ::= '&#' [0-9]+ ';' | '&#x' [0-9a-fA-F]+ '; '

21.6.1.28 Entity reference

[67] Reference ::= EntityRef68 | CharRef66

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[68] EntityRef ::= '&' Name5';'

[69] PEReference ::= '%' Name5';'

21.6.1.29 Entity declaration

[70] EntityDecl ::= GEDecl71 | PEDecl72

[71] GEDecl ::= '<!ENTITY' S3 Name5 S3 EntityDef73 S3? '>'

[72] PEDecl ::= '<!ENTITY' S3'%' S3 Name5 S3 PEDef74 S3? '>'

[73] EntityDef ::= EntityValue9 | (ExternalID75 NDataDecl76?)

[74] PEDef ::= EntityValue9 | ExternalID75

21.6.1.30 External entity declaration

[75] ExternalID ::= 'SYSTEM' S3 SystemLiteral11 | 'PUBLIC' S3 PubidLiteral12 S3

SystemLiteral11

[76] NDataDecl ::= S3 'NDATA' S3 Name5

21.6.1.31 Text declaration

[77] TextDecl ::= '<?xml' VersionInfo24? EncodingDecl80 S3? '?>'

21.6.1.32 Well-formed external parsed entity

[78] extParsedEnt ::= TextDecl77? content43 - Char2* RestrictedChar2a Char2*

21.6.1.33 Encoding declaration

[80] EncodingDecl ::= S3 'encoding' Eq25 ('"' EncName81'"' | "'" EncName81"'")

[81] EncName ::= [A-Za-z] ([A-Za-z0-9._] | '-')* /* Encoding name contains only
Latin characters */

21.6.1.34 Notation declarations

[82] NotationDecl ::= '<!NOTATION' S3 Name5 S3(ExternalID75 | PublicID83) S? '>'

[83] PublicID ::= 'PUBLIC' S3 PubidLiteral12

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 22. Schemas Reference
The W3C XML Schema Language (schemas) is a declarative language used to describe the allowed
contents of XML documents by assigning types to elements and attributes. The schema language
includes several dozen standard types and allows you to define your own custom types. The
combination of the information in an XML document instance and the types applied to that
information by the schema is sometimes called the Post Schema Validation Infoset (PSVI).

A schema processor reads both an input XML document and a schema (which is itself an XML
document because the W3C XML Schema Language is an XML application) and determines whether
the document adheres to the constraints in the schema. A document that satisfies all the schema's
constraints, and in which all the document's elements and attributes are declared, is said to be
schema-valid, although in this chapter we will mostly just call such documents valid. A document that
does not satisfy all of the constraints is said to be invalid.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

22.1 The Schema Namespaces

All standard schema elements are in the http://www.w3.org/2001/XMLSchema namespace. In this
chapter, we assume that this URI is mapped to the xs prefix using an appropriate xmlns:xs

declaration. This declaration is almost always placed on the root element start-tag:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

In addition, several attributes are used in instance documents to associate schema information with
them, including schemaLocation and type. These attributes are in the
http://www.w3.org/2001/XMLSchema-instance namespace. In this chapter, we assume that this
URI is mapped to the xsi prefix with an appropriate xmlns:xsi declaration on either the element

where this attribute appears or one of its ancestors.

In a few cases, schema elements may contain elements from other arbitrary namespaces or no
namespace at all. This occurs primarily inside xs:appinfo and xs:documentation elements, which

provide supplementary information about the schema itself, the documents the schema describes to
systems that are not schema validators, or to people reading the schema.

Finally, most schema elements can have arbitrary attributes from other namespaces. For instance,
this allows you to make an xs:attribute element a simple XLink by giving it xlink:type and
xlink:href attributes or to identify the language of an xs:notation using an xml:lang attribute.

However, this capability is not used much in practice.

 < Day Day Up >

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

22.2 Schema Elements

The W3C XML Schema Language defines 42 elements, which naturally divide into several categories:

One root element

xs:schema

Three declaration elements

xs:element, xs:attribute, and xs:notation

Eight elements for defining types

xs:complexContent, xs:complexType, xs:extension, xs:list, xs:restriction,
xs:simpleContent, xs:simpleType, and xs:union

Seven elements for defining content models

xs:all, xs:any, xs:anyAttribute, xs:attributeGroup, xs:choice, xs:group, and
xs:sequence

Five elements for specifying identity constraints

xs:field, xs:key, xs:keyref, xs:selector, and xs:unique

Three elements for assembling schemas out of component parts

xs:import, xs:include, and xs:redefine

Twelve facet elements for constraining simple types

xs:enumeration, xs:fractionDigits, xs:length, xs:maxExclusive, xs:maxInclusive,
xs:maxLength, xs:minExclusive, xs:minInclusive, xs:minLength, xs:pattern,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xs:totalDigits, and xs:whiteSpace

Three elements for documenting schemas

xs:appinfo, xs:annotation, and xs:documentation

Elements in this section are arranged alphabetically from xs:all to xs:whiteSpace. Each element

begins with a sample implementation in the following form:

<xs:elementName

 attribute1 = "allowed attribute values"

 attribute2 = "allowed attribute values"

>

 <!-- Content model -->

</xs:elementName>

Most attribute values can be expressed as one of the 44 XML Schema built-in simple types, such as
xs:string, xs:ID, or xs:integer. Values that should be replaced by an instance of the type are

italicized. Values that take a literal form are listed in regular type. Some attribute values are specified
as an enumeration of the legal values in the form (value1 | value2 | value3 | etc.). In this

case, the default value, if there is one, is given in boldface.

Element content models are given in a comment in the form they might appear in an ELEMENT
declaration in a DTD. For example, an xs:all element may contain a single optional xs:annotation
child element followed by zero or more xs:element elements. Thus, its content model is written like

this:

<!-- (xs:annotation?, xs:element*) -->

xs:all

<xs:all

 id = "ID "

 maxOccurs = "1 "

 minOccurs = "(0 | 1)">

 <!-- (xs:annotation?, xs:element*) -->

</xs:all>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The xs:all element indicates that every element represented by one of its child xs:element

elements must appear. However, the order of the child elements in the instance element does not
matter. For example, an xs:all element can require that each FullName element have exactly one
FirstName child and exactly one LastName child, but that the order of the two child elements does

not matter; the first name can come first or the last name can come first.

The xs:all element must be the top group in its content model (i.e., an xs:choice or xs:sequence
cannot contain an xs:all element). The complete group represented by the xs:all element can
occur either zero or one time as indicated by its minOccurs and maxOccurs attributes. By default, it
must occur exactly once. Furthermore, the minOccurs and maxOccurs attributes of each of the
individual xs:element elements inside the xs:all element must also be set to either 0 or 1. xs:all
cannot indicate, for example, that a FullName element must contain between zero and five
FirstNames and between one and three LastNames in any order.

xs:annotation

<xs:annotation

 id = "ID">

 <!-- (xs:appinfo | xs:documentation)* -->

</xs:annotation>

The xs:annotation element is ignored by schema validators. Its purpose is to provide

metainformation about the schema or schema element in which it appears. Information intended for
human readers is placed in xs:documentation child elements. Information intended for software
programs is placed in xs:appinfo child elements.

xs:any

<xs:any

 id = "ID "

 maxOccurs = "nonNegativeInteger | unbounded"

 minOccurs = "nonNegativeInteger "

 namespace = " ##any | ##other | anyURI * ##targetNamespace? ##local? "

 processContents = " lax | skip | strict ">

 <!-- xs:annotation? -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</xs:any>

The wildcard element xs:any is useful when writing schemas for languages such as XSLT that

routinely include markup from multiple vocabularies that are unknown when the schema is written. It
indicates that between minOccurs and maxOccurs elements from one or more namespaces identified
by the namespace attribute may appear at that position in a content model. As well as literal
namespace URIs, the special value ##targetNamespace can be included in the list to indicate that
any element from the schema's target namespace can be used. The special value ##local can be

included in the list to indicate that elements not in any namespace can be used. Instead of the list of
namespace URIs, you can use the special value ##any to indicate that all elements from any
namespace or no namespace are allowed, or the special value ##other to indicate that elements

from namespaces other than the schema's target namespace can be used.

The processContents attribute indicates whether the elements represented by xs:any have to be

declared or whether they can be completely unfamiliar to the schema. It has one of these three
values:

strict

Elements represented by this xs:any element must be declared or have an xsi:type attribute.

Furthermore, the element must be valid according to its declaration or type.

skip

Elements represented by this xs:any element need not be declared in the schema and need

not be valid even if they are declared.

lax

Elements represented by this xs:any element must be validated if they are declared or if they
have an xsi:type attribute, but must not be validated if they are neither declared nor have an
xsi:type attribute.

The default value is strict.

xs:anyAttribute

<xs:anyAttribute

 id = "ID "

 namespace = "##any | ##other | anyURI * ##targetNamespace? ##local?"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 processContents = "(lax | skip | strict)" >

 <!-- (xs:annotation?) -->

</xs:anyAttribute>

The xs:anyAttribute element appears inside xs:complexType elements, where it indicates that

elements of that type can have any attribute from one or more namespaces. It can also appear inside
xs:attributeGroup elements, where it adds attributes from one or more namespaces as potential
members of the group. The namespace attribute contains a whitespace-separated list of the

namespace URIs that are allowed for this element's attributes. As well as literal namespace URIs, the
special value ##targetNamespace can be included in the list to indicate that any attribute from the
schema's target namespace can be used. The special value ##local can be included in the list,

indicating that attributes not in any namespace (unprefixed attributes) may be used. Instead of the
list of namespace URIs, you can use the special value ##any to indicate that all attributes from any
namespace are allowed or the special value ##other to indicate that attributes from namespaces

other than the schema's target namespace can be used.

The processContents attribute indicates whether the attributes themselves have to be declared,

generally as top-level attributes. It has one of these three values:

strict

Attributes represented by this xs:anyAttribute element must be declared, and the attribute

must be valid according to its declaration. This is the default.

lax

Attributes represented by this xs:anyAttribute element must be valid if they are declared but

must not be validated if they are not declared.

skip

Attributes represented by this xs:anyAttribute element need not be declared in the schema

and need not be valid even if they are declared.

xs:appinfo

<xs:appinfo

 source = "anyURI">

 <!-- any well-formed XML markup -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</xs:appinfo>

The xs:appinfo element appears exclusively inside xs:annotation elements, where it provides

machine-readable information about the schema or schema element it's documenting. It has no
effect on schema validation. It can contain absolutely any XML markup: an XSLT stylesheet for the
schema, a schema for the schema, a schema in a different schema language such as Schematron, or
anything else you can imagine. The only restriction is that the contents must be well-formed.
Alternately, instead of or in addition to including this information directly, the source attribute can

point to it using a URI.

xs:attribute

<xs:attribute

 default = "string "

 fixed = "string "

 form = "(qualified | unqualified)

 id = "ID "

 name = "NCName "

 ref = "QName "

 type = "QName "

 use = "(optional | prohibited | required)">

 <!-- (xs:annotation?, xs:simpleType?) -->

</xs:attribute>

The xs:attribute element declares an attribute. Inside an xs:complexType element it indicates that

elements of that type can have an attribute with the specified name and type.

Attributes

default, optional

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The default value of the attribute reported for those elements in the instance document that do
not contain an explicit specification of this attribute.

fixed, optional

A default value for this attribute that may not be overridden in the instance document. An
xs:attribute element cannot have both fixed and default attributes.

form, optional

If this has the value qualified, then the attribute must be in the schema's target namespace.
If this has the value unqualified, then the attribute must not be in any namespace. The
default value for this is set by the attributeFormDefault attribute on the root xs:schema

element.

id, optional

An XML name unique among all of the ID-type attributes in this schema document.

name, optional

The local name of the attribute.

ref, optional

The qualified name of an attribute declared by a top-level xs:attribute element elsewhere in
the schema. Either the name or ref attribute should be provided, but not both.

type, optional

The qualified name of the type of the attribute, either a built-in simple type such as
xs:integer or a user-defined simple type.

use, optional

One of the three keywords-optional, prohibited, or required-which have the following

meanings:

optional

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Authors of instance documents may or may not include this attribute as they choose. This is
the default.

prohibited

Authors of instance documents must not include this attribute. This is typically used to remove
legal attribute values when defining a subtype that would otherwise inherit an attribute
declaration from its base type.

required

Authors of instance documents must include this attribute on all elements of the requisite type.

Contents

The xs:attribute element may contain a single xs:annotation element to describe itself. This has

no effect on the attribute type.

In place of a type attribute, the xs:attribute element may contain a single xs:simpleType

element that provides an anonymous type for the attribute derived from a base simple type.

xs:attributeGroup

<xs:attributeGroup

 id = "ID"

 name = "NCName"

 ref = "QName">

 <!--

 (xs:annotation?, (xs:attribute | xs:attributeGroup)*,

 xs:anyAttribute?)

 -->

</xs:attributeGroup>

The xs:attributeGroup element is used in two ways. At the top level of the schema, it has a name

attribute and defines a new attribute group. The attributes in the group are indicated by the child

http://lib.ommolketab.ir
http://lib.ommolketab.ir

elements of the xs:attributeGroup element. Inside an xs:complexType element or another
xs:attributeGroup, it has a ref attribute but no name and adds the attributes in the referenced

group to the type or group's list of attributes.

xs:choice

<xs:choice

 id = "ID"

 maxOccurs = "(nonNegativeInteger | unbounded)"

 minOccurs = "nonNegativeInteger">

 <!--

 (xs:annotation?, (xs:element | xs:group | xs:choice

 | xs:sequence | xs:any)*)

 -->

</xs:choice>

The xs:choice element indicates that any element or group represented by one of its child elements
may appear at that position in the instance document. At the least, minOccurs elements from the
choice must appear. At most, maxOccurs elements from the choice must appear. The default for both
minOccurs and maxOccurs is 1.

xs:complexContent

<xs:complexContent

 id = "ID"

 mixed = "(true | false)">

 <!-- (xs:annotation?, (xs:restriction | xs:extension)) -->

</xs:complexContent>

The xs:complexContent element is used inside xs:complexType elements to derive a new complex

type from an existing complex type by restriction or extension. When deriving by extension, the
mixed attribute must have the same value as the base type's mixed attribute. When deriving by
restriction, the mixed attribute can have the value false to disallow mixed content that would be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

allowed in the base type. It can have the value true only if the base type allows mixed content. In

other words, a derived type can disallow mixed content that's allowed in the base type, but cannot
allow it if the base type doesn't already allow it.

xs:complexType

<xs:complexType

 abstract = "(true | false)"

 block = "(#all | extension | restriction)"

 final = "(#all | extension | restriction)"

 id = "ID "

 mixed = "(true | false)"

 name = "NCName "

 >

 <!-- (xs:annotation?, (xs:simpleContent | xs:complexContent

 | ((xs:group | xs:all | xs:choice | xs:sequence)?,

 ((xs:attribute | xs:attributeGroup)*, xs:anyAttribute?)))) -->

</xs:complexType>

The xs:complexType element defines a new complex type, that is, an element type that can

potentially contain child elements, attributes, or both. The valid child elements and attributes for
elements of this type are specified by the contents of the xs:complexType element. The mixed

attribute specifies whether the complex type is allowed to contain text interspersed with its child
elements. If the xs:complexType element is a top-level element, then it has a name attribute and
defines a named type. Otherwise, if the xs:complexType element appears inside an xs:element
element, then it does not have a name attribute and defines an anonymous type for that element

alone.

If the abstract attribute has the value true, then no elements of this type can be included in

instance documents-only elements of subtypes derived from this type, which are marked as
elements of the subtype by an xsi:type attribute, can be included. If the final attribute has the
value restriction, then this type cannot be subtyped by restriction. If the final attribute has the
value extension, then this type cannot be subtyped by extension. If the final attribute has the
value #all, then this type cannot be subtyped by either restriction or extension. The default value of
the final attribute is set by the finalDefault attribute on the root xs:schema element. If the
block attribute has the value extension or restriction, then instances of this type cannot be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

replaced in instance documents by instances of subtypes derived from this type by extension or
restriction, respectively, although such subtypes may still be defined and used for other elements. If
the block attribute has the value #all, then this type cannot be replaced in instance documents by
instances of any subtype. The default value of the block attribute is set by the blockDefault
attribute on the root xs:schema element.

xs:documentation

<xs:documentation

 source = "anyURI"

 xml:lang = "language">

 <!-- any well-formed XML markup -->

</xs:documentation>

The xs:documentation element appears exclusively inside xs:annotation elements, where it

provides human-readable information about the schema or schema element it's annotating. It has no
effect on schema validation. It can contain absolutely any XML markup: XHTML, DocBook, or just
plain text. The only restriction is that the contents must be well-formed. Alternately, instead of or in
addition to including this information directly, the source attribute can point to it using a URI. The
xml:lang attribute can indicate the language in which the description is written. You could even
include multiple xs:documentation elements in different languages.

xs:element

<xs:element

 abstract = "(true | false)"

 block = "(#all | extension | restriction | substitution)"

 default = "string "

 final = "(#all | extension | restriction)"

 fixed = "string "

 form = "(qualified | unqualified)"

 id = "ID "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 maxOccurs = "(nonNegativeInteger | unbounded)"

 minOccurs = "nonNegativeInteger "

 name = "NCName "

 nillable = "(true | false)"

 ref = "QName "

 substitutionGroup = "QName "

 type = "QName ">

 <!-- (xs:annotation?,

 ((xs:simpleType | xs:complexType)?,

 (xs:unique | xs:key | xs:keyref)*)) -->

</xs:element>

The xs:element element declares an element, including its name and type. Used at the top level of
the schema, it indicates a potential root element. Used inside an xs:complexType element, it

indicates a potential child element of another element. Alternately, instead of specifying a name and
a type, it can have a ref attribute that points to a top-level element declaration elsewhere in the

schema.

Attributes

abstract, optional

If the abstract attribute has the value true, then only elements from this element's

substitution group are allowed in instance documents, not elements actually declared by this
declaration.

default, optional

default is the default value of the element reported for empty elements matching this

declaration in the instance document.

block, optional

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the block attribute contains the value extension or restriction, then this element cannot

be replaced in instance documents by instances of subtypes derived from this element's type
by extension or restriction, respectively. If the block attribute has the value substitution,

then this element cannot be replaced in instance documents by members of this element's
substitution group. If the block attribute has the value #all, then this element cannot be

replaced in instance documents by subtype instances or substitution group members.

final, optional

The final attribute controls which elements can refer to this element as the head of their
substitution group. If the value contains the keyword restriction, then restrictions of this
element's type cannot do so. If the value contains the keyword extension, then extensions of
this element's type cannot do so. If the value is #all, then neither extensions nor restrictions

of this type can do so.

form, optional

If the form attribute has the value qualified, then the element is in the schema's target
namespace. If it has the value unqualified, then the element is not in any namespace. The
default value is set by the elementFormDefault attribute on the root xs:schema element. This

attribute can only be used on locally declared elements. All globally declared elements are
always in the schema's target namespace.

id, optional

id is an XML name unique within ID-type attributes in this schema document.

maxOccurs, optional

This signifies the maximum number of times this element may be repeated in valid instance
documents.

minOccurs, optional

This signifies the minimum number of times this element must be repeated in valid instance
documents.

name, optional

This contains the required name of the element. If this is omitted, the xs:element should be
empty and must have a ref attribute that points to another element declaration.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

nillable, optional

If nillable has the value true, then this element can be specified as being "nil" using an
xsi:nil="true" attribute in the instance document.

ref, optional

The qualified name of an element declared by a top-level xs:element element.

substitutionGroup, optional

This is the qualified name of a globally declared element for which this element may substitute
in instance documents.

type, optional

This is the qualified name of the type of the element, either a built-in simple type such as
xs:integer, xs:anyType, or a user-defined type.

Contents

The xs:element element may contain an optional xs:annotation. If and only if the xs:element
element does not have a type attribute, then it must have either an xs:simpleType child element or
an xs:complexType child element that provides an anonymous type for this element. Finally, it may
have any number of xs:key, xs:keyref, and xs:unique elements that set uniqueness and identity

constraints.

xs:enumeration

<xs:enumeration

 id = "ID"

 value = "anySimpleType">

 <!-- (xs:annotation?) -->

</xs:enumeration>

The xs:enumeration facet element is used inside xs:restriction elements to derive new simple
types by listing all valid values. The value attribute contains a single valid value of the type specified

http://lib.ommolketab.ir
http://lib.ommolketab.ir

by the parent xs:restriction's base attribute. This xs:restriction element contains one
xs:enumeration child element for each valid value.

xs:extension

<xs:extension

 base = "QName"

 id = "ID">

 <!-- (xs:annotation?,

 ((xs:group | xs:all | xs:choice | xs:sequence)?,

 ((xs:attribute | xs:attributeGroup)*, xs:anyAttribute?))) -->

</xs:extension>

The xs:extension element is used inside xs:simpleContent and xs:complexContent elements to

derive a new complex type that adds attributes and/or child elements not present in the base type.
The base type being extended is given by the value of the base attribute. The child elements and
attributes added to the base type's content model are specified by the content of the xs:extension

element. An instance of such an extended type must have all the child elements required by the base
type followed by all the child elements required in the xs:extension.

xs:field

<xs:field

 id = "ID"

 xpath = "XPath expression">

 <!-- (xs:annotation?) -->

</xs:field>

One or more xs:field elements are placed inside each xs:unique, xs:key, and xs:keyref element
to define a value calculated by the XPath expression in the xpath attribute. The context node for this
expression is set in turn to each element in the node set selected by the xs:selector element.

Not all XPath expressions are allowed here. In particular, the XPath expression must limit itself to the
child axis, except for the last step, which may use the attribute axis. The only node tests used are
name tests (element and attribute names, the * wildcard, and the prefix:* wildcard). Abbreviated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

syntax must be used, and predicates are not allowed. Thus, person/name/first_name/@id is a legal
XPath expression for this attribute, but person//name/@id is not. Several instances of this restricted

form of XPath expression can be combined with the vertical bar so that
person/name/first_name/@id | person/name/last_name/@id is also an acceptable XPath
expression. Finally, the XPath expression may begin with .// so that .//name/@id is legal. However,

this is the only place the descendant-or-self axis can be used. No other forms of XPath expression are
allowed here.

xs:fractionDigits

<xs:fractionDigits

 fixed = "(true | false)"

 id = "ID "

 value = "nonNegativeInteger " >

 <!-- (xs:annotation?) -->

</xs:fractionDigits>

The xs:fractionDigits facet element is used when deriving from xs:decimal (and its subtypes) by

restriction. It limits the number of non-zero digits allowed after the decimal point to, at most, the
number specified by the value attribute. This sets only the maximum number of digits after the

decimal point. If you want to set the minimum number of digits required, you'll have to use the
xs:pattern element instead. If the fixed attribute has the value true, then types derived from this
type are not allowed to override the value of fractionDigits given here.

xs:group

<xs:group

 name = "NCName"

 ref = "NCName"

 minOccurs = "nonNegativeInteger"

 maxOccurs = "nonNegativeInteger | unbounded">

 <!-- (xs:annotation?, (xs:all | xs:choice | xs:sequence)) -->

</xs:group>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The xs:group element can be used in two ways. As a top-level element with a name attribute, it

defines a model group that can be referenced from complex types elsewhere in the schema. The
content model of the group is established by a child xs:all, xs:choice, or xs:sequence element.

The second use is inside an xs:complexType element. Here, the xs:group element indicates that the

contents of the group should appear at this point in the instance document at least as many times as
indicated by the minOccurs attribute and at most as many times as indicated by the maxOccurs
attribute. The default for both of these is 1. The group to be included is indicated by the ref attribute
that contains the name of a top-level xs:group element found elsewhere in the schema.

xs:import

<xs:import

 id = "ID"

 namespace = "anyURI"

 schemaLocation = "anyURI" >

 <!-- (xs:annotation?) -->

</xs:import>

Since each schema document has exactly one target namespace, the top-level xs:import element is
needed to create schemas for documents that involve multiple namespaces. The namespace attribute

contains the namespace URI for the application that the imported schema describes. If the imported
schema describes elements and types in no namespace, then the namespace attribute is omitted. The
optional schemaLocation attribute contains a relative or absolute URL pointing to the actual location

of the schema document to import.

There is no limit to import depth. Schema A can import schema B, which itself imports schema C and
schema D. In such a case, schema A can use definitions and declarations from all four schemas. Even
recursion (schema A imports schema B, which imports schema A) is not prohibited. Since the
imported schema must describe a different target namespace than the importing schema, conflicts
between definitions in the multiple schemas are normally not a problem. However, if conflicts do
arise, then the schema is in error and cannot be used. There are no precedence rules for choosing
between multiple conflicting definitions or declarations.

xs:include

<xs:include

 id = "ID"

 schemaLocation = "anyURI">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- (annotation?) -->

</xs:include>

The top-level xs:include element is used to divide a schema into multiple separate documents. The
schemaLocation attribute contains a relative or absolute URI pointing to the schema document to
include. It differs from xs:import in that all included files describe the same target namespace.

There is no limit to inclusion depth. Schema A can include schema B, which itself includes schema C
and schema D. In such a case, schema A can use definitions and declarations from all four
documents. Even recursion (schema A includes schema B, which includes schema A) is not
prohibited, although it is strongly discouraged. Instance documents would refer only to the top-level
schema A in their xsi:schemaLocation or xsi:noNamespaceSchemaLocation attribute.

Validation is performed after all includes are resolved. If there are any conflicts between the including
schema and an included schema-for instance, one schema declares that the FullName element has
a simple type, and another declares that the FullName element has a complex type-then the

schema is in error and cannot be used. Most of the time, schemas should be carefully managed so
that each element and type is defined in exactly one schema document.

xs:key

<xs:key

 id = "ID"

 name = "NCName" >

 <!-- (xs:annotation?, (xs:selector, xs:field+)) -->

</xs:key>

Keys establish uniqueness and co-occurrence constraints among various nodes in the document. For
example, you can define a key for an Employee element based on its EmployeeNumber child element
and then require that each Assignment element have a team attribute whose contents are a list of

employee keys.

The xs:key element defines a new key. It appears only as a child of an xs:element element following
the element's type. The name of the key is specified by the name attribute. The elements that have a
value for this key are identified by the xs:selector child element. The value of the key for each of
these nodes is given by the xs:field child element and must be unique within that set. If there is
more than one xs:field child element, then the key is formed by concatenating the value of each

field.

xs:keyref

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<xs:keyref

 id = "ID"

 name = "NCName"

 refer = "QName" >

 <!-- (xs:annotation?, (xs:selector, xs:field+)) -->

</xs:keyref>

The xs:keyref element is placed inside xs:element elements to require that the element selected by
the xs:selector must match an xs:key or xs:unique with the name given by the refer attribute.
The key that is referred to must be a child of one of the ancestors of this xs:keyref. The value that

is matched against the specified key is determined by the concatenation of the values of the
xs:field child elements.

xs:length

<xs:length

 fixed = "(true | false)"

 id = "ID "

 value = "nonNegativeInteger " >

 <!-- (xs:annotation?) -->

</xs:length>

The xs:length facet element specifies the exact number of characters in a type derived from
xs:string, xs:QName, xs:anyURI, or xs:NOTATION. When applied to a list type, such as
xs:ENTITIES, this facet specifies the number of items in the list. Finally, when applied to
xs:hexBinary and xs:base64Binary, it specifies the number of bytes in the decoded data, rather
than the number of characters in the encoded data. If the fixed attribute has the value true, then
types derived from this type are not allowed to override the value of length given here.

xs:list

<xs:list

 id = "ID"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 itemType = "QName" >

 <!-- (xs:annotation?, (xs:simpleType?)) -->

</xs:list>

The xs:list element is placed inside an xs:simpleType element to derive a new list simple type
from a base atomic type or union type identified by the itemType attribute. Alternately, instead of
referencing an existing simple type with itemType, a new anonymous atomic type for the list can be
created by an xs:simpleType child element. In either case, the newly defined simple type is a

whitespace-separated list of atomic values.

xs:maxExclusive

<xs:maxExclusive

 fixed = "(true | false)"

 id = "ID "

 value = "anySimpleType " >

 <!-- (xs:annotation?) -->

</xs:maxExclusive>

The xs:maxExclusive facet element applies to all ordered types, including xs:decimal, xs:float,
xs:double, xs:date, xs:duration, xs:dateTime, xs:time, xs:gDay, xs:gMonthYear, xs:gMonth,
xs:gYear, and their subtypes. The value attribute contains the maximum value in a form
appropriate for the type. For example, the maximum for a type derived from xs:integer might be
75; the maximum for a type derived from xs:double might be 1.61803; and the maximum for a
type derived from xs:date might be 2004-10-26. All instances of this type must be strictly less-than
the maximum value. They may not be equal to the maximum. If the fixed attribute has the value
true, then types derived from this type are not allowed to override the value of maxExclusive given

here.

xs:maxInclusive

<xs:maxInclusive

 fixed = "(true | false)"

 id = "ID "

 value = "anySimpleType " >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- (xs:annotation?) -->

</xs:maxInclusive>

The xs:maxInclusive facet element applies to all ordered types, including xs:decimal, xs:float,
xs:double, xs:date, xs:duration, xs:dateTime, xs:time, xs:gDay, xs:gMonthYear, xs:gMonth,
xs:gYear, and their subtypes. The value attribute contains the maximum value in a form
appropriate for the type. For example, the maximum for a type derived from xs:integer might be
75; the maximum for a type derived from xs:double might be 1.61803; and the maximum for a
type derived from xs:date might be 2004-10-26. All instances of this type must be less-than or
equal to the maximum value. If the fixed attribute has the value true, then types derived from this
type are not allowed to override the value of maxInclusive given here.

xs:maxLength

<xs:maxLength

 fixed = "(true | false)"

 id = "ID "

 value = "nonNegativeInteger " >

 <!-- (xs:annotation?) -->

</xs:maxLength>

The xs:maxLength facet element specifies the maximum number of characters in a type derived from
xs:string, xs:QName, xs:anyURI, or xs:NOTATION. It can also be used to restrict xs:hexBinary and
xs:base64Binary. However, in this case, it refers to the maximum number of bytes in the decoded

data rather than the maximum number of characters in the encoded data. Finally, when applied to a
list type, such as xs:IDREFS, it describes the maximum number of items in the list. If the fixed
attribute has the value true, then types derived from this type are not allowed to override the value
of maxLength given here.

xs:minExclusive

<xs:minExclusive

 fixed = "(true | false)"

 id = "ID "

 value = "anySimpleType " >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- (xs:annotation?) -->

</xs:minExclusive>

The xs:minExclusive facet element applies to all ordered types, including xs:decimal, xs:float,
xs:double, xs:date, xs:duration, xs:dateTime, xs:time, xs:gDay, xs:gMonthYear, xs:gMonth,
xs:gYear, and their subtypes. The value attribute contains the minimum value in a form appropriate
for the type. For example, the minimum for a type derived from xs:integer might be 75, the
minimum for a type derived from xs:double might be 1.61803, and the minimum for a type derived
from xs:date might be 2005-10-26. All instances of this type must be strictly greater-than the
minimum value. They may not be equal to the minimum. If the fixed attribute has the value true,
then types derived from this type are not allowed to override the value of minExclusive given here.

xs:minInclusive

<xs:minInclusive

 fixed = "(true | false)"

 id = "ID "

 value = "anySimpleType " >

 <!-- (xs:annotation?) -->

</xs:minInclusive>

The xs:minInclusive facet element applies to all ordered types, including xs:decimal, xs:float,
xs:double, xs:date, xs:duration, xs:dateTime, xs:time, xs:gDay, xs:gMonthYear, xs:gMonth,
xs:gYear, and their subtypes. The value attribute contains the minimum value in a form appropriate
for the type. For example, the minimum for a type derived from xs:integer might be 75; the
minimum for a type derived from xs:double might be 1.61803; and the minimum for a type derived
from xs:date might be 2005-10-26. All instances of this type must be greater-than or equal to the
minimum value. If the fixed attribute has the value true, then types derived from this type are not
allowed to override the value of minInclusive given here.

xs:minLength

<xs:minLength

 fixed = "(true | false)"

 id = "ID "

 value = "nonNegativeInteger " >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- (xs:annotation?) -->

</xs:minLength>

The xs:minLength facet element specifies the minimum number of characters in a type derived from
xs:string, xs:QName, xs:anyURI, or xs:NOTATION. It can also be used to restrict xs:hexBinary and
xs:base64Binary. However, in this case, it refers to the minimum number of bytes in the decoded

data, rather than the minimum number of characters in the encoded data. Finally, when applied to a
list type, such as xs:IDREFS, it describes the minimum number of items in the list. If the fixed
attribute has the value true, then types derived from this type are not allowed to override the value
of minLength given here.

xs:notation

<xs:notation

 id = "ID"

 name = "NCName"

 public = "PUBLIC identifier"

 system = "anyURI" >

 <!-- (xs:annotation?) -->

</xs:notation>

The top-level xs:notation element defines a notation. It's the schema equivalent of a <!NOTATION>

declaration in a DTD. Each notation has a name, a public ID, and a system ID identified by the
relevant attribute on this element.

xs:pattern

<xs:pattern

 id = "ID"

 value = "regular expression" >

 <!-- (xs:annotation?) -->

</xs:pattern>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The xs:pattern facet element is used to derive new simple types by specifying a regular expression

against which values of the type are compared. It applies to all simple types. The schema regular-
expression grammar is quite similar to that used in Perl 5.6 and later. (The big change from earlier
versions of Perl is support for Unicode character class-based regular expressions.) Most strings and
characters match themselves, but a few characters have special meanings, as summarized in Table
22-1. In this table, A and B are subexpressions; n and m are nonnegative integers; a, b, c, and d are

all single Unicode characters; and X is a name.

Table 22-1. XML Schema regular-expression syntax

Pattern Matches

(A) A string that matches A

A | B A string that matches A or a string that matches B

AB A string that matches A followed by a string that matches B

A? Zero or one repetitions of a string that matches A

A* Zero or more repetitions of a string that matches A

A+ One or more repetitions of a string that matches A

A{n,m} A sequence of between n and m strings, each of which matches A

A{n} A sequence of exactly n strings, each of which matches A

A{n,} A sequence of at least n strings, each of which matches A

[abcd] Exactly one of the characters listed inside the square brackets

[^abcd] Exactly one character not listed inside the square brackets

[a-z] Exactly one character with a Unicode value between a and z, inclusive

[a-z-

[d-h]]
Exactly one character included in the outer range but not in the inner range

\n The newline,

\r The carriage return, 

\t The tab, 	

\\ The backslash, \

\| The vertical bar, |

\. The period, .

\- The hyphen, -

\^ The caret, ^

\? The question mark, ?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pattern Matches

* The asterisk, *

\+ The plus sign, +

\{ The left curly brace, {

\} The right curly brace, }

\(The left parenthesis, (

\) The right parenthesis,)

\[The left square bracket, [

\] The right square bracket,]

. Any single character except a carriage return or line feed

\s A space, tab, carriage return, or line feed

\S Any single character except a space, tab, carriage return, or line feed

\i An XML name-start character

\c An XML name character

\d A decimal digit

\D Any single character except a decimal digit

\w
A "word character," that is, any single character that is not a punctuation mark, a
separator, or "other" (as defined by Unicode)

\W
Any single character that is a punctuation mark, a separator, or "other" (as defined by
Unicode)

\p{X}
Any single character from the Unicode character class X; character class names are listed

in Table 22-2

\P{X} Any single character not in the Unicode character class X

\p{IsX}

Any single character from the Unicode character block X. Block names include BasicLatin,

Latin-1Supplement, LatinExtended-A, LatinExtended-B, IPAExtensions,
SpacingModifierLetters, CombiningDiacriticalMarks, Greek, Cyrillic, Armenian, Hebrew,
Arabic, Syriac, Thaana, Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu,
Kannada, Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar, Georgian, HangulJamo,
Ethiopic, Cherokee, UnifiedCanadianAboriginalSyllabics, Ogham, Runic, Khmer,
Mongolian, LatinExtendedAdditional, GreekExtended, GeneralPunctuation,
SuperscriptsandSubscripts, CurrencySymbols, CombiningMarksforSymbols,
LetterlikeSymbols, NumberForms, Arrows, MathematicalOperators,
MiscellaneousTechnical, ControlPictures, OpticalCharacterRecognition,
EnclosedAlphanumerics, BoxDrawing, BlockElements, GeometricShapes,
MiscellaneousSymbols, Dingbats, BraillePatterns, CJKRadicalsSupplement,
KangxiRadicals, IdeographicDescriptionCharacters, CJKSymbolsandPunctuation,
Hiragana, Katakana, Bopomofo, HangulCompatibilityJamo, Kanbun, BopomofoExtended,
EnclosedCJKLettersandMonths, CJKCompatibility, CJKUnifiedIdeographsExtensionA,
CJKUnifiedIdeographs, YiSyllables, YiRadicals, HangulSyllables, HighSurrogates,

* The asterisk, *

\+ The plus sign, +

\{ The left curly brace, {

\} The right curly brace, }

\(The left parenthesis, (

\) The right parenthesis,)

\[The left square bracket, [

\] The right square bracket,]

. Any single character except a carriage return or line feed

\s A space, tab, carriage return, or line feed

\S Any single character except a space, tab, carriage return, or line feed

\i An XML name-start character

\c An XML name character

\d A decimal digit

\D Any single character except a decimal digit

\w
A "word character," that is, any single character that is not a punctuation mark, a
separator, or "other" (as defined by Unicode)

\W
Any single character that is a punctuation mark, a separator, or "other" (as defined by
Unicode)

\p{X}
Any single character from the Unicode character class X; character class names are listed

in Table 22-2

\P{X} Any single character not in the Unicode character class X

\p{IsX}

Any single character from the Unicode character block X. Block names include BasicLatin,

Latin-1Supplement, LatinExtended-A, LatinExtended-B, IPAExtensions,
SpacingModifierLetters, CombiningDiacriticalMarks, Greek, Cyrillic, Armenian, Hebrew,
Arabic, Syriac, Thaana, Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu,
Kannada, Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar, Georgian, HangulJamo,
Ethiopic, Cherokee, UnifiedCanadianAboriginalSyllabics, Ogham, Runic, Khmer,
Mongolian, LatinExtendedAdditional, GreekExtended, GeneralPunctuation,
SuperscriptsandSubscripts, CurrencySymbols, CombiningMarksforSymbols,
LetterlikeSymbols, NumberForms, Arrows, MathematicalOperators,
MiscellaneousTechnical, ControlPictures, OpticalCharacterRecognition,
EnclosedAlphanumerics, BoxDrawing, BlockElements, GeometricShapes,
MiscellaneousSymbols, Dingbats, BraillePatterns, CJKRadicalsSupplement,
KangxiRadicals, IdeographicDescriptionCharacters, CJKSymbolsandPunctuation,
Hiragana, Katakana, Bopomofo, HangulCompatibilityJamo, Kanbun, BopomofoExtended,
EnclosedCJKLettersandMonths, CJKCompatibility, CJKUnifiedIdeographsExtensionA,
CJKUnifiedIdeographs, YiSyllables, YiRadicals, HangulSyllables, HighSurrogates,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pattern Matches CJKUnifiedIdeographs, YiSyllables, YiRadicals, HangulSyllables, HighSurrogates,
HighPrivateUseSurrogates, LowSurrogates, PrivateUse, CJKCompatibilityIdeographs,
AlphabeticPresentationForms, ArabicPresentationForms-A, CombiningHalfMarks,
CJKCompatibilityForms, SmallFormVariants, ArabicPresentationForms-B, Specials,
HalfwidthandFullwidthForms, Specials, OldItalic, Gothic, Deseret,
ByzantineMusicalSymbols, MusicalSymbols, MathematicalAlphanumericSymbols,
CJKUnifiedIdeographsExtensionB, CJKCompatibilityIdeographsSupplement, Tags, and
PrivateUse. The characters from many of these blocks are shown in Chapter 27.

\P{IsX} Any single character not in the Unicode character block X

You can also include or exclude classes of Unicode characters using the \p{X} or \P{X} pattern and

the classes listed in Table 22-2.

Table 22-2. Unicode character classes

Unicode character class Includes

L Letters

Lu Uppercase letters

Ll Lowercase letters

Lt Titlecase letters

Lm Modifier letters

Lo Other letters

M All marks

Mn Nonspacing marks

Mc Spacing combining marks

Me Enclosing marks

N Numbers

Nd Decimal digits

Nl Number letters

No Other numbers

P Punctuation

Pc Connector punctuation

Pd Dashes

Ps Opening punctuation

CJKUnifiedIdeographs, YiSyllables, YiRadicals, HangulSyllables, HighSurrogates,
HighPrivateUseSurrogates, LowSurrogates, PrivateUse, CJKCompatibilityIdeographs,
AlphabeticPresentationForms, ArabicPresentationForms-A, CombiningHalfMarks,
CJKCompatibilityForms, SmallFormVariants, ArabicPresentationForms-B, Specials,
HalfwidthandFullwidthForms, Specials, OldItalic, Gothic, Deseret,
ByzantineMusicalSymbols, MusicalSymbols, MathematicalAlphanumericSymbols,
CJKUnifiedIdeographsExtensionB, CJKCompatibilityIdeographsSupplement, Tags, and
PrivateUse. The characters from many of these blocks are shown in Chapter 27.

\P{IsX} Any single character not in the Unicode character block X

You can also include or exclude classes of Unicode characters using the \p{X} or \P{X} pattern and

the classes listed in Table 22-2.

Table 22-2. Unicode character classes

Unicode character class Includes

L Letters

Lu Uppercase letters

Ll Lowercase letters

Lt Titlecase letters

Lm Modifier letters

Lo Other letters

M All marks

Mn Nonspacing marks

Mc Spacing combining marks

Me Enclosing marks

N Numbers

Nd Decimal digits

Nl Number letters

No Other numbers

P Punctuation

Pc Connector punctuation

Pd Dashes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unicode character class Includes

Ps Opening punctuation

Pe Closing punctuation

Pi Initial quotes

Pf Final quotes

Po Other punctuation

Z Separators

Zs Spaces

Zl Line breaks

Zp Paragraph breaks

S Symbols

Sm Mathematical symbols

Sc Currency symbols

Sk Modifier symbols

So Other symbols

C
Other characters (nonletters, nonsymbols, nonnumbers,
nonseparators)

Cc Control characters

Cf Format characters

Co Private use characters

Cn Unassigned code points

xs:redefine

<xs:redefine

 id = "ID"

 schemaLocation = "anyURI" >

 <!-- (annotation | (simpleType | complexType | group | attributeGroup))*

 -->

</xs:redefine>

Ps Opening punctuation

Pe Closing punctuation

Pi Initial quotes

Pf Final quotes

Po Other punctuation

Z Separators

Zs Spaces

Zl Line breaks

Zp Paragraph breaks

S Symbols

Sm Mathematical symbols

Sc Currency symbols

Sk Modifier symbols

So Other symbols

C
Other characters (nonletters, nonsymbols, nonnumbers,
nonseparators)

Cc Control characters

Cf Format characters

Co Private use characters

Cn Unassigned code points

xs:redefine

<xs:redefine

 id = "ID"

 schemaLocation = "anyURI" >

 <!-- (annotation | (simpleType | complexType | group | attributeGroup))*

 -->

</xs:redefine>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The xs:redefine element is used much like xs:include. That is, it inserts definitions and

declarations for the same target namespace from a schema document found at a URL specified by
the schemaLocation attribute. However, unlike xs:include, xs:redefine can override type, model

group, and attribute group definitions from the included schema. The new type and group definitions
are children of the xs:redefine element. They must extend or restrict the original definition of the
redefined type or group. Note, however, that xs:redefine cannot override element and attribute

declarations made in the included schema.

xs:restriction

<xs:restriction

 base = "QName"

 id = "ID">

 <!-- (xs:annotation?, (

 (xs:simpleType?,

 (xs:minExclusive | xs:minInclusive | xs:maxExclusive

 | xs:maxInclusive | xs:totalDigits | xs:fractionDigits

 | xs:length | xs:minLength | xs:maxLength | xs:enumeration

 | xs:whiteSpace | xs:pattern)*)

 | ((xs:group | xs:all | xs:choice | xs:sequence)?,

 ((xs:attribute | xs:attributeGroup)*, xs:anyAttribute?))

) -->

</xs:restriction>

The xs:restriction element derives a new type from an existing base type identified by either a
base attribute or an xs:simpleType child element. When deriving by restriction, all valid values of

the derived type must also be legal values of the base type. However, the reverse is not true. The
valid values of the derived type are a subset of the valid values of the base type. For derived simple
types, the allowed values are identified by the various facet child elements of the xs:restriction

element. For derived complex types, the allowed values are identified by the same elements you'd
find inside an xs:complexType element-that is, zero or one group elements such as xs:all,
xs:choice, or xs:sequence followed by attribute representation elements such as xs:attribute,
xs:attributeGroup, and xs:anyAttribute.

xs:schema

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<xs:schema

 attributeFormDefault = "(qualified | unqualified)"

 elementFormDefault = "(qualified | unqualified)"

 blockDefault = "(#all | extension | restriction | substitution)

 finalDefault = "(#all | extension | restriction)

 id = "ID "

 targetNamespace = "anyURI "

 version = "token"

 xml:lang = "language" >

 <!-- (

 (xs:include | xs:import | xs:redefine | xs:annotation)*,

 (((xs:simpleType | xs:complexType | xs:group

 | xs:attributeGroup) | xs:element | xs:attribute

 | xs:notation), xs:annotation*)*

) -->

</xs:schema>

xs:schema is the root element of all schema documents. It contains all the top-level elements

described elsewhere in this chapter. First come all the elements that somehow reference other
schema documents, including xs:include, xs:import, and xs:redefine. These are followed by the

various elements that define types and groups and declare elements and attributes. As usual,
xs:annotation elements can be placed anywhere that is convenient.

Attributes

attributeFormDefault, optional

This sets the default value for the form attribute of xs:attribute elements. This specifies

whether locally declared attributes are namespace qualified by the target namespace. If this
attribute is not used, locally declared attributes are unqualified unless the form attribute of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xs:attribute element has the value qualified.

elementFormDefault, optional

This sets the default for the form attribute of xs:element elements. This specifies whether

locally declared elements are namespace-qualified by the target namespace. By default, locally
declared elements are unqualified unless the form attribute of the xs:element element has the
value qualified.

blockDefault, optional

The blockDefault attribute establishes the default value for the block attributes of
xs:element and xs:complexType elements in this schema.

finalDefault, optional

The finalDefault attribute establishes the default value for the final attributes of
xs:element and xs:complexType elements in this schema.

id, optional

id is an XML name unique within ID-type attributes in this schema document.

targetNamespace, optional

The namespace URI for the XML application described by this schema. If not present, then this
schema describes elements in no namespace. If the XML application uses multiple namespaces,
then there must be a separate schema document for each different namespace. These
schemas can be connected with xs:import elements.

version, optional

You can use this attribute to specify the version of the schema, e.g., 1.0, 1.0.1, 1.1, 1.2,
1.3b1, 2.0, etc. This refers to the version of the specific schema, not the version of the W3C
XML Schema Language used in this document.

xml:lang, optional

This is the human language in which this schema is primarily written, such as en or fr-CA.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

elementFormDefault is part of a misguided effort to make child elements and

attributes equivalent. If you're using namespaces at all, just put all elements in
the target namespace of the schema and set elementFormDefault to
qualified.

xs:selector

<xs:selector

 id = "ID"

 xpath = "XPath expression" >

 <!-- (xs:annotation?) -->

</xs:selector>

A single xs:selector element is placed inside each xs:unique, xs:key, and xs:keyref element to

specify the element nodes for which the key or key reference is defined. The node set is selected by
an XPath expression contained in the value of the xpath attribute. The context node for this XPath
expression is the element matched by the xs:element declaration in which the xs:unique, xs:key,
or xs:keyref element appears.

Not all XPath expressions are allowed here. In particular, the XPath expression must be an
abbreviated location path that limits itself to the child axis. The only node tests used are element
name, the * wildcard, and the prefix:* wildcard. Abbreviated syntax must be used; predicates are
not allowed. Thus, person/name/first_name is a legal XPath expression for this attribute, but
person//name and name/first_name/@id are not. Several instances of this restricted form of XPath
expression can be combined with the vertical bar so that person/name/first_name |
person/name/last_name is also an acceptable XPath expression. Finally, the XPath expression may
begin with .// so that .//name is valid. However, this is the only place the descendant-or-self axis

can be used; no other forms of XPath expression are allowed here.

xs:sequence

<xs:sequence

 id = "ID"

 maxOccurs = "(nonNegativeInteger | unbounded)"

 minOccurs = "nonNegativeInteger" >

 <!-- (xs:annotation?,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (xs:element | xs:group | xs:choice | xs:sequence | xs:any)*

)

 -->

</xs:sequence>

The xs:sequence element indicates that the elements represented by its child elements should

appear at that position in the instance document in the order they're listed here. The sequence must
repeat at least minOccurs times and at most maxOccurs times. The default for both minOccurs and
maxOccurs is 1. The maxOccurs attribute can be set to unbounded to indicate that the sequence may

repeat indefinitely.

xs:simpleContent

<xs:simpleContent

 id = "ID" >

 <!-- (xs:annotation?, (xs:restriction | xs:extension)) -->

</xs:simpleContent>

The xs:simpleContent element is used inside xs:complexType elements whose content is a simple
type, such as xs:string or xs:integer, rather than child elements or mixed content. This is

customarily done when the only reason an element has a complex type instead of a simple type is
because it can have attributes.

xs:simpleType

<xs:simpleType

 final = "(#all | list | union | restriction)"

 id = "ID"

 name = "NCName" >

 <!-- (xs:annotation?, (xs:restriction | xs:list | xs:union)) -->

</xs:simpleType>

The xs:simpleType element defines a new simple type for elements and attributes. A simple type is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

composed purely of text but no child elements- #PCDATA, in DTD parlance. A top-level
xs:simpleType element has a name given in the name attribute by which it can be referred to from
the type attribute of xs:element and xs:attribute elements. Alternately, an xs:element or
xs:attribute element can have an xs:simpleType child without a name attribute that defines an

anonymous type for that element or attribute.

New types are derived from existing types in one of three ways: by restricting the range of a base
type using an xs:restriction child element, by combining multiple base types with an xs:union
child element, or by allowing multiple values of a base type separated by whitespace with an xs:list

child element.

The final attribute can be used to prevent a simple type from being subtyped. If final contains the
value list, the type cannot be extended by listing. If final contains the value restriction, the
type cannot be extended by restriction. If final contains the value union, the type cannot become a

member of a union. These three values can be combined in a whitespace-separated list. For instance,
final="list union" prevents derivation by list and union but not by restriction. If final has the
value #all, the type cannot be used as a base type in any way.

xs:totalDigits

<xs:totalDigits

 fixed = "(true | false)"

 id = "ID "

 value = "positiveInteger " >

 <!-- (xs:annotation?) -->

</xs:totalDigits>

The xs:totalDigits facet element is used when deriving from xs:decimal elements and its
descendants (xs:integer, xs:long, xs:nonNegativeInteger, xs:unsignedLong, etc.) by

restriction. It specifies the maximum number of non-zero digits allowed in the number, including both
the integer and fractional parts, but not counting the decimal point or the sign. This only sets the
maximum number of digits. If you want to specify a minimum number of digits, use the xs:pattern
element instead. If the fixed attribute has the value true, then types derived from this type are not
allowed to override the value of fractionDigits given here.

xs:union

<xs:union

 id = "ID"

 memberTypes = "List of QName" >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- (xs:annotation?, (xs:simpleType*)) -->

</xs:union>

The xs:union element is placed inside an xs:simpleType to indicate that an element or attribute can

contain any one of multiple types. For example, it can say that an element can contain either an
xs:integer or an xs:token. The names of the types that participate in the union are listed in the
memberTypes attribute separated by whitespace. Furthermore, the types defined in the
xs:simpleType children of the xs:union are also members of the union.

xs:unique

<xs:unique

 id = "ID"

 name = "NCName" >

 <!-- (xs:annotation?, xs:selector, xs:field+) -->

</xs:unique>

The xs:unique element requires that a specified subset of elements and/or attributes in the instance

document have unique values calculated from each of those elements/attributes. This is similar to the
constraint imposed by declaring an attribute to have type xs:ID, but it is much more flexible. The
xs:selector child element uses XPath to specify the subset of nodes from the instance document
over which uniqueness is calculated. The xs:field children use XPath expressions to specify what

properties of those nodes must be unique within the subset.

xs:whiteSpace

<xs:whiteSpace

 fixed = "(true | false)"

 id = "ID "

 value = "(collapse | preserve | replace)" >

 <!-- (xs:annotation?) -->

</xs:whiteSpace>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The xs:whiteSpace facet element is unusual because it does not constrain values. Instead, it tells

the validator how it should normalize whitespace before validating the value against other facets. The
value attribute has one of three values:

preserve

All whitespace is significant; this is conceptually similar to the pre element in HTML.

collapse

Before the value is validated, tabs, carriage returns, and line feeds are replaced by spaces;
leading and trailing whitespace is deleted; and runs of more than one consecutive space are
condensed to a single space.

replace

Tabs, carriage returns, and line feeds are replaced by spaces before the value is validated.

For schema purposes, whitespace consists of the characters defined as whitespace in XML 1.0: the
space, carriage return, tab, and line feed. It does not include the two new whitespace characters
added in XML 1.1: NEL (#x85) and the Unicode line separator (#x2028).

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

22.3 Built-in Types

The W3C XML Schema Language provides 44 built-in simple types for text strings. Each type has a
value space and a lexical space. The value space is the set of unique meanings for the type, which
may or may not be text. In some sense, the value space is composed of Platonic forms. The lexical
space is the set of text strings that correspond to particular points in the value space. For example,
the xs:boolean type has the value space true and false. However, its lexical space contains four
strings: true, false, 0, and 1. true and 1 both map to the same value true, while false and 0 map

to the single value false. In cases like this where multiple strings in the lexical space map to a single
value, then one of those strings is selected as the canonical lexical representation. For instance, the
canonical lexical representations of true and false are the strings true and false.

The primitive types are organized in a hierarchy. All simple types descend from an abstract ur-type
called xs:anySimpleType, which is itself a descendant of an abstract ur-type called xs:anyType that

includes both simple and complex types. Simple types are derived from other simple types by union,
restriction, or listing. For example, the xs:nonNegativeInteger type is derived from the xs:integer
type by setting its minInclusive facet to 0. The xs:integer type is derived from the xs:decimal
type by setting its fractionDigits facet to 0. Figure 22-1 diagrams the complete hierarchy of built-
in types. The xs:simpleType element allows you to apply facets to these types to create your own

derived types that extend this hierarchy.

Figure 22-1. The simple type hierarchy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The types are organized alphabetically in the following section. For each type, the value and lexical
spaces are described, and some examples of permissible instances are provided.

xs:anyURI

The xs:anyURI type indicates a Uniform Resource Identifier. This includes not only Uniform Resource

Locators (URLs), but also Uniform Resource Names (URNs). Both relative and absolute URLs are
allowed. Legal xs:anyURI values include the following:

http://www.cafeaulait.org/

http://[FEDC:BA98:7654:3210:FEDC:BA98:7654:3210]/

http://www.w3.org/TR/xmlschema-2/#anyURI

http://www.cafeaulait.org/
http://[FEDC:BA98:7654:3210:FEDC:BA98:7654:3210]/
http://www.w3.org/TR/xmlschema-2/#anyURI
http://lib.ommolketab.ir
http://lib.ommolketab.ir

#xpointer(/book/chapter%5B20%5D/sect1%5B2%5D)

gopher://spinaltap.micro.umn.edu/00/Weather/

mailto:elharo@metalab.unc.edu

chapters/ch03.html

http://ibiblio.org/nywc/compositions.phtml?category=Concertos

More specifically, elements of this type must be composed exclusively of the ASCII letters A-Z and a-
z and digits 0-9, as well as the ASCII punctuation marks -, _, ., !, ~, *, `, (, and). In addition, the
ASCII punctuation marks ;, /, ?, :, @, &, =, +, $, %, [,], and , may be used for their intended
purposes in URLs; e.g., the forward slash can be used as the path separator but not as part of a
filename. All other characters must be escaped by encoding each byte of their UTF-8 representation
as a percent sign followed by the hexadecimal value of the character. Although there are other
restrictions on what does and does not make a legal URI, in practice, the only conditions that schema
processors check are the limitations on the characters that may appear.

Constraining facets that apply to xs:anyURI are length, minLength, maxLength, pattern,
enumeration, and whiteSpace.

xs:base64Binary

The xs:base64Binary type represents an arbitrary sequence of bytes that has been encoded in

ASCII characters using the Base-64 algorithm defined in RFC 2045, Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies. The letters A-Z and a-z, the digits
0-9, and the punctuation marks + and / are used to encode data according to an algorithm that
maps four of these characters to three arbitrary bytes. The equals sign is used to pad data at the end
if necessary.

The constraining facets that apply to xs:base64Binary are length, minLength, maxLength,
pattern, enumeration, and whiteSpace. Unlike string types, the values specified by the length,
minLength, and maxLength facets refer to the number of bytes in the decoded data, not to the

number of characters in the encoded data.

xs:boolean

The xs:boolean type represents a logical Boolean whose value is either true or false. There are

exactly four legal values for elements and attributes whose type is Boolean:

true

false

0

http://ibiblio.org/nywc/compositions.phtml?category=Concertos
http://lib.ommolketab.ir
http://lib.ommolketab.ir

1

0is the same as false, and 1 is the same as true. Only two constraining facets apply to xs:boolean:
pattern and whiteSpace.

xs:byte

The xs:byte type represents an integer with a value between -128 and 127. It is a subtype of the
xs:short type. Legal values include any sequence of digits whose value is less than or equal to 127

and greater than or equal to -128. An optional leading plus or minus sign is allowed. For example,
these are legal bytes:

127

-128

0

52

+52

0000052

Constraining facets that apply to xs:byte are length, minInclusive, maxInclusive, minExclusive,
maxExclusive, pattern, enumeration, whiteSpace, and totalDigits.

xs:date

The xs:date type represents a specific day in history such as September 26, 2005. Dates are written

in the form CCYY-MM-DD. For example, September 26, 2005 is written as 2005-09-26. Dates in the far

future and distant past can be written with more than four digits in the year, but at least four digits
are required. Dates before year 1 are written with a preceding minus sign. (There was no year 0.) An
optional time zone indicator in the form hh:mm may be suffixed to provide a time zone as an offset
from Coordinated Universal Time (Greenwich Mean Time, UTC). For example, 2005-09-26-05:00 is
September 26, 2005 in the U.S. Eastern time zone. A Z can be used instead to indicate UTC. These
are all valid values of type xs:date:

2001-01-01

1999-12-31Z

0482-11-24

-0052-10-23

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2002-12-23+12:00

87500-01-01

Constraining facets that apply to xs:date are minInclusive, maxInclusive, minExclusive,
maxExclusive, pattern, enumeration, and whiteSpace. Note, however, that when the time zone is

not specified, it's not always possible to determine unambiguously whether one date begins after
another.

xs:dateTime

The xs:dateTime type represents a specific moment in history, such as 3:32 P.M., September 26,

2003. Date-times are written in the form CCYY-MM-DDThh:mm:ss. For example, 3:32 P.M., September
26, 2003 is written as 2003-09-26T15:32:00. Decimal fractions of a second can be indicated by

appending a period and any number of digits after the seconds. Dates in the far future and distant
past can be written with more than four digits in the year, but at least four digits are required. Dates
before year 1 are written with a preceding minus sign. (There was no year 0.) An optional time zone
indicator in the form hh:mm may be suffixed to provide a time zone as an offset from Coordinated
Universal Time (Greenwich Mean Time, UTC). For example, 2003-09-26T15:32:00-05:00 is 3:32
P.M., September 26, 2003 in the U.S. Eastern time zone. A Z can be used instead to indicate UTC.
These are all valid values of type xs:dateTime:

2001-01-01T03:32:00-05:00

1999-12-31T00:00:00Z

2002-12-23T17:08:30.121893632178

Constraining facets that apply to xs:dateTime are minInclusive, maxInclusive, minExclusive,
maxExclusive, pattern, enumeration, and whiteSpace. Note, however, that when the time zone is

not specified, it's not always possible to unambiguously determine whether one time falls after
another.

xs:decimal

xs:decimal is the base type for all numeric built-in schema types, except xs:float and xs:double.

It represents a base 10 number with any finite number of the digits 0-9 before and after the decimal
point. It may be prefixed with either a plus sign or a minus sign. These are all valid values of type
xs:decimal:

3.1415292

03.1415292

127

http://lib.ommolketab.ir
http://lib.ommolketab.ir

+127

-128

0.0

0.

.0

This type is not conducive to localization. Only European digits can be used, and only a period can be
used as a decimal point. Exponential and scientific notation are not supported.

Constraining facets that apply to xs:decimal are minInclusive, maxInclusive, minExclusive,
maxExclusive, pattern, enumeration, whiteSpace, fractionDigits, and totalDigits.

xs:double

The xs:double type is designed to represent eight-byte, binary floating-point numbers in IEEE 754
format, such as is used by the double type in Java and many C compilers. This includes the special
values INF for infinity and NaN for not a number, used for the results of unconventional operations

like dividing by zero and taking the square root of a negative number. Because not all binary
numbers can be precisely represented by decimal numbers, it is possible that two different decimal
representations in the lexical space map to the same value (and vice versa). In this case, the closest
approximation IEEE-754 value is chosen. These are all legal values of type xs:double:

3.1415292

-03.1415292

6.022E23

127E-13

+2.998E+10

-128e12

0.0

INF

NaN

-INF

Constraining facets that apply to xs:double are minInclusive, maxInclusive, minExclusive,
maxExclusive, pattern, enumeration, and whiteSpace.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xs:duration

The xs:duration type represents a length of time such as 15 minutes; 2 hours; or 3 years, 7

months, 2 days, 8 hours, 32 minutes, and 12 seconds. It does not have a specific beginning or end,
just a length. Durations are represented using the ISO-8601 standard format PnYnMnDTnHnMnS. nY

gives the number of years, nM the number of months, nD the number of days, nH the number of

hours, nM the number of minutes, and nS the number of seconds. The number of years, months,

days, hours, minutes, and seconds are all given as nonnegative integers. The number of seconds is a
decimal number with as many places after the decimal point as necessary. For example, in this
format, 3 years, 7 months, 2 days, 8 hours, 32 minutes, and 12 seconds is written as
P3Y7M2DT8H32M12S. Any values that are zero can be omitted. Thus, a duration of 2 years and 2
minutes can be written as P2YT2M. If there are no hours, minutes, or seconds, then the T is omitted.
Thus, a duration of two years is written as P2Y. A leading minus sign before the P indicates a

negative duration.

Constraining facets that apply to xs:duration are minInclusive, maxInclusive, minExclusive,
maxExclusive, pattern, enumeration, and whiteSpace. However, because the number of days in a

month varies from 28 to 31 and the number of days in a year varies from 365 to 366, durations are
not always perfectly ordered. For instance, whether P1M is greater than, equal to, or less than P30D

depends on which month it is.

xs:ENTITIES

The xs:ENTITIES type indicates that the value is a whitespace-separated list of XML 1.0 unparsed
entity names declared in the instance document's DTD. This is the same as the DTD ENTITIES

attribute type.

Constraining facets that apply to xs:ENTITIES are length, minLength, maxLength, enumeration,
pattern, and whiteSpace. The length, minLength, and maxLength facets all refer to the number of

entity names in the list.

xs:ENTITY

The xs:ENTITY type is a subtype of xs:NCNAME with the additional restriction that the value be
declared as an unparsed entity in the document's DTD. The legal lexical values of type xs:ENTITY are
exactly the same as for xs:NCNAME. Constraining facets that apply to xs:ENTITY are length,
minLength, maxLength, pattern, enumeration, and whiteSpace.

A schema cannot declare either parsed or unparsed entities. An XML document
that uses any entities other than the five predefined ones must have a
DOCTYPE declaration and a DTD.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xs:float

The xs:float type represents four-byte, binary floating-point numbers in IEEE-754 format, such as
is the float type in Java and many C compilers. This includes the special values INF for infinity and
NaN for not a number, used for the results of unconventional operations like dividing by zero and

taking the square root of a negative number. Because not all binary numbers can be precisely
represented by decimal numbers, it is possible that two different decimal representations in the
lexical space map to the same value (and vice versa). In this case, the closest approximation of the
IEEE-754 value is chosen. These are all legal values of type xs:float:

3.1415292

-03.1415292

6.022E23

127E-13

+2.998E+10

-128e12

0.0

INF

NaN

-INF

Constraining facets that apply to xs:float are minInclusive, maxInclusive, minExclusive,
maxExclusive, pattern, enumeration, and whiteSpace.

xs:gDay

The xs:gDay type represents a certain day of the month such as the 14th or the 23rd in no particular

month. The format used is - -DD plus an optional time zone suffix in the form hh:mm or Z to indicate
Coordinated Universal Time (UTC). These are all valid xs:gDay values:

---01

---28

---29Z

---31+02:00

http://lib.ommolketab.ir
http://lib.ommolketab.ir

---15-11:00

The g indicates that the day is given in the Gregorian calendar. Schema date types are not localizable
to non-Gregorian calendars. If you need a different calendar, you'll need to derive from xs:string
using the pattern facet.

Constraining facets that apply to xs:gDay are minInclusive, maxInclusive, minExclusive,
maxExclusive, pattern, enumeration, and whiteSpace. However, if the time zones are not

specified, it may not be possible to conclusively determine whether one day is greater than or less
than another. If time zones are specified, days are compared by when they start. Thus ---29-05:00
is greater than ---29Z, which is greater than ---29+02:00.

xs:gMonth

The xs:gMonth type represents a certain month of the year in the Gregorian calendar as an integer

between --01 and --12. An optional time zone suffix in the form hh:mm or Z to indicate Coordinated
Universal Time (UTC) can be added as well. These are all valid xs:gMonth values:

--01

--12

--12Z

--09+02:00

--03-11:00

The original release of XML Schema Part 2: Datatypes had a mistake here. It
specified extra hyphens after the month part; for instance, --01-- and --12--.

Some schema processors still allow or require this format.

The g indicates that the month is given using the Gregorian calendar. Schema date types are not
localizable to non-Gregorian calendars. If you need a different calendar, you'll need to derive from
xs:string using the pattern facet.

Constraining facets that apply to xs:gMonth are minInclusive, maxInclusive, minExclusive,
maxExclusive, pattern, enumeration, and whiteSpace. However, if the time zones are not

specified, it may not be possible to determine conclusively whether one month starts before another.
If time zones are specified, months are compared by their first moment. Thus, --12-05:00 is greater
than --12-Z, which is greater than --12+02:00.

xs:gMonthDay

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The xs:gMonthDay type represents a certain day of a certain month in no particular year. It is written

in the format - MM-DD, plus an optional time zone suffix in the form hh:mm or Z to indicate
Coordinated Universal Time (UTC). These are all valid xs:gMonthDay values:

--10-31

--12-25Z

--01-01+05:00

--07-04-02:00

The g indicates that the month and day are specified in the Gregorian calendar. Schema date types
are not localizable to non-Gregorian calendars. For a different calendar, you'll have to derive from
xs:string using the pattern facet.

Constraining facets that apply to xs:gMonthDay are minInclusive, maxInclusive, minExclusive,
maxExclusive, pattern, enumeration, and whiteSpace. However, if the time zones are not

specified, it is not always possible to determine conclusively whether one day starts before another. If
time zones are specified, days are compared by their first moment in the same year.

xs:gYear

The xs:gYear type represents a year in the Gregorian calendar. It is written in the format CCYY, plus

an optional time zone suffix in the form hh:mm or Z to indicate Coordinated Universal Time (UTC).

Dates before year 1 can be indicated by a preceding minus sign. At least four digits are used, but
additional digits can be added to indicate years after 9999 or before 9999 BCE. These are all valid
xs:gYear values in their order of occurrence:

-15000000000

0004

0600

1492

2002+10:00

2004Z

2004-04:30

100000

800000000

Constraining facets that apply to xs:gYear are minInclusive, maxInclusive, minExclusive,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

maxExclusive, pattern, enumeration, and whiteSpace. However, if the time zones are not

specified, it may not be possible to determine conclusively whether one year starts before another. If
time zones are specified, years are compared by their first moment.

xs:gYearMonth

The xs:gYearMonth type represents a month and year in the Gregorian calendar, such as March,

2005. It is written in the format CCYY-MM, plus an optional time zone suffix in the form Î·: Î¼ or Z

to indicate Coordinated Universal Time (UTC). Dates before year 1 can be indicated by a minus sign.
At least four digits are used, but additional digits can be added to indicate years after 9999 or before
9999 BCE. These are all valid xs:gYearMonth values in their order of occurrence:

-15000000000-05

0004-04

0600-10

1492-11

2005-03+10:00

2005-03Z

2005-03-04:30

100000-07

100000-08

Constraining facets that apply to xs:gYearMonth are minInclusive, maxInclusive, minExclusive,
maxExclusive, pattern, enumeration, and whiteSpace. However, if the time zones are not

specified, it may not be possible to determine conclusively whether one month and year starts before
another.

xs:hexBinary

The xs:hexBinary type represents an arbitrary sequence of bytes that has been encoded by

replacing each byte of data with two hexadecimal digits from 0 through F (A is 10, B is 11, C is 12,
etc.). Either upper- or lowercase letters may be used in whatever character set the document is
written. In UTF-8 or ASCII, this has the effect of exactly doubling the space used for the data.

The constraining facets that apply to xs:hexBinary are length, minLength, maxLength, pattern,
enumeration, and whiteSpace. Unlike string types, the values specified by the length, minLength,
and maxLength facets refer to the number of bytes in the decoded data, not to the number of

characters in the encoded data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xs:ID

xs:ID is a subtype of xs:NCName with the additional restriction that the value is unique among other
items of type xs:ID within the same document. The legal lexical values of type xs:ID are exactly the
same as for xs:NCName. Constraining facets that apply to xs:ID are length, minLength, maxLength,
pattern, enumeration, and whiteSpace.

xs:IDREF

xs:IDREF is a subtype of xs:NCName, with the additional restriction that the value is used elsewhere
in the instance document on an item with type xs:ID. The legal lexical values of type xs:IDREF are
exactly the same as for xs:NCName. Constraining facets that apply to xs:IDREF are length,
minLength, maxLength, pattern, enumeration, and whiteSpace.

xs:IDREFS

The xs:IDREFS type indicates that the value is a whitespace-separated list of xs:ID type values used
elsewhere in the instance document. This is similar to the DTD IDREFS attribute type.

Constraining facets that apply to xs:IDREFS are length, minLength, maxLength, enumeration,
pattern, and whiteSpace. The length, minLength, and maxLength facets all refer to the number of

IDREFs in the list.

xs:int

The xs:int type represents a signed integer small enough to be represented as a four-byte, two's
complement number, such as Java's int primitive data type. It is derived from xs:long by setting
the maxInclusive facet to 2147483647 and the minInclusive facet to -2147483648. These are all
legal values of type xs:int:

200

200000

-200000

+2147483647

-2147483648

http://lib.ommolketab.ir
http://lib.ommolketab.ir

0

Constraining facets that apply to xs:int are minInclusive, maxInclusive, minExclusive,
maxExclusive, pattern, enumeration, whiteSpace, and totalDigits.

xs:integer

The xs:integer type represents a mathematical integer of arbitrary size. The type is derived from
xs:double by fixing the fractionDigits facet at 0. It may be prefixed with either a plus sign or a
minus sign. If no sign is present, a plus is assumed. These are all legal values of type xs:integer:

3

3000

349847329847983261983264900732648326487324678346374

+127

-128

0

+0

-0

Constraining facets that apply to xs:integer are minInclusive, maxInclusive, minExclusive,
maxExclusive, pattern, enumeration, whiteSpace, and totalDigits.

xs:language

Elements and attributes with type xs:language contain a language code as defined in RFC 1766,

Tags for the Identification of Languages. These are essentially the acceptable values for the
xml:lang attribute described in Chapter 5. If possible, this should be one of the two-letter language

codes defined in ISO 639, possibly followed by a country code. For languages that aren't listed in ISO
639, you can use one of the i-codes registered with IANA. If the language you need isn't present in
either of these sets, you can make up your own language tag beginning with the prefix "x-" or "X-".
Thus, these are acceptable language values:

en

en-US

en-GB

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fr-CA

i-klingon

x-quenya

X-PigLatin

Constraining facets that apply to xs:language are length, minLength, maxLength, pattern,
enumeration, and whiteSpace.

xs:long

The xs:long type represents a signed integer that can be represented as an eight-byte, two's
complement number, such as Java's long primitive data type. It is derived from xs:integer by
setting the maxInclusive facet to 9223372036854775807 and the minInclusive facet to -
9223372036854775808. These are all legal values of type xs:long:

2

200

+9223372036854775807

-9223372036854775808

5000000000

0

Constraining facets that apply to xs:long are minInclusive, maxInclusive, minExclusive,
maxExclusive, pattern, enumeration, whiteSpace, and totalDigits.

xs:Name

xs:Name is a subtype of xs:token that is restricted to legal XML 1.0 names. In other words, the

value must consist exclusively of letters, digits, ideographs, and the underscore, hyphen, period, and
colon. Digits, the hyphen, and the period may not be used to start a name, although they may be
used inside the name. These are all legal values of type xs:Name:

G127

_128

Limit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xml-stylesheet

svg:rect

Constraining facets that apply to xs:Name are length, minLength, maxLength, pattern,
enumeration, and whiteSpace.

XML 1.1 names that are not legal XML 1.0 names are not allowed. At the time of this writing, the
schema working group has not yet decided how or when to update the schema specification to
account for the changes in name rules in XML 1.1. They may issue an erratum to the schemas
specification, or they may wait until Version 1.1 of the W3C XML Schema specification is published.

xs:NCName

An xs:NCName is a noncolonized name as defined in "Namespaces in XML" 1.0. This is a legal XML

name that does not contain a colon. The value must consist exclusively of letters, digits, ideographs,
and the underscore, hyphen, and period. Digits, the hyphen, and the period may not be used to start
a name, although they may be used inside the name. Name characters allowed in XML 1.1 but not in
XML 1.0, such as the Ethiopic alphabet, are not allowed. These are all legal values of type
xs:NCName:

I-10

_128

Limit

xml-stylesheet

Constraining facets that apply to xs:NCName are length, minLength, maxLength, pattern,
enumeration, and whiteSpace.

xs:negativeInteger

The xs:negativeInteger type represents a mathematical integer that is strictly less than zero. It is
derived from xs:integer by setting the maxInclusive facet to -1. These are all legal values of type
xs:negativeInteger:

-2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-200

-9223372036854775809

-9223372036854775808922337203685477580892233720368

-34

Constraining facets that apply to xs:negativeInteger are minInclusive, maxInclusive,
minExclusive, maxExclusive, pattern, enumeration, whiteSpace, and totalDigits.

xs:NMTOKEN

An xs:NMTOKEN is the schema equivalent of the DTD NMTOKEN attribute type. It is a subtype of
xs:token that is restricted to legal XML 1.0 name tokens. These are the same as XML 1.0 names

except that there are no restrictions on what characters may be used to start the name token. XML
1.1 names are only allowed if they are also XML 1.0 names. In other words, the value must consist of
one or more letters, digits, ideographs, and the underscore, hyphen, period, and colon. These are all
legal values of type xs:NMTOKEN:

127

-128

Limit

integration

svg:rect

Constraining facets that apply to xs:NMTOKEN are length, minLength, maxLength, pattern,
enumeration, and whiteSpace.

xs:NMTOKENS

The xs:NMTOKENS type is the schema equivalent of the DTD NMTOKENS attribute type. xs:NMTOKENS is
derived from xs:NMTOKEN by list. Thus, a value of type xs:NMTOKENS contains one or more
whitespace-separated XML 1.0 name tokens. These are all legal values of type xs:NMTOKENS:

127 126 125 124 123 122 121 120 119 118

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-128

Limit Integral Sum Sup Liminf Limsup

Jan Feb Mar Apr May June July Sept Nov Dec

svg:rect

Constraining facets that apply to xs:NMTOKENS are length, minLength, maxLength, enumeration,
pattern, and whiteSpace. The length, minLength, and maxLength facets all refer to the number of

name tokens in the list.

xs:nonNegativeInteger

The xs:nonNegativeInteger type represents a mathematical integer that is greater than or equal to
zero. It is derived from xs:integer by setting the minInclusive facet to 0. These are all legal
values of type xs:nonNegativeInteger:

2

+200

9223372036854775809

9223372036854775808922337203685477580892233720368

0

Constraining facets that apply to xs:nonNegativeInteger are minInclusive, maxInclusive,
minExclusive, maxExclusive, pattern, enumeration, whiteSpace, and totalDigits.

xs:nonPositiveInteger

The xs:nonPositiveInteger type represents a mathematical integer that is less than or equal to
zero. It is derived from xs:integer by setting the maxInclusive facet to 0. These are all legal
values of type xs:nonPositiveInteger:

-2

-200

-9223372036854775809

-9223372036854775808922337203685477580892233720368

0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constraining facets that apply to xs:nonPositiveInteger are minInclusive, maxInclusive,
minExclusive, maxExclusive, pattern, enumeration, whiteSpace, and totalDigits.

xs:normalizedString

xs:normalizedString is derived from xs:string by setting the whiteSpace facet to replace so

that the carriage return (#xD) and tab (#x9) characters are replaced by spaces in the normalized
value. (The new whitespace characters added in XML 1.1, NEL and line separator, are not affected.) A
normalized string can contain any characters that are allowed in XML, although depending on
context, special characters such as <, &, and " may have to be escaped with character or entity

references in the usual way. All legal strings are also legal lexical representations of type
xs:normalizedString. However, a schema-aware parser that presents the normalized value of an

element, instead of the literal characters in the document, will replace all carriage returns and tabs
with spaces before passing the string to the client application.

Constraining facets that apply to xs:normalizedString are length, minLength, maxLength,
pattern, enumeration, and whiteSpace.

xs:NOTATION

The xs:NOTATION type restricts a value to those qualified names declared as notations using an
xs:notation element in the schema. This is an abstract type. In other words, you cannot directly
declare that an element or attribute has type xs:NOTATION. Instead, you must first derive a new type
from xs:NOTATION, most commonly by enumeration, and then declare that your element or attribute
possesses the subtype. Constraining facets that apply to xs:NOTATION are length, minLength,
maxLength, pattern, enumeration, and whiteSpace.

xs:positiveInteger

The xs:positiveInteger type represents a mathematical integer that is strictly greater than zero. It
is derived from xs:integer by setting the minInclusive facet to 1. These are all legal values of type
xs:positiveInteger:

1

+2

9223372036854775809

9223372036854775808922337203685477580892233720368

34

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constraining facets that apply to xs:positiveInteger are minInclusive, maxInclusive,
minExclusive, maxExclusive, pattern, enumeration, whiteSpace, and totalDigits.

xs:QName

An xs:QName is a base type that is restricted to namespace-qualified names. The logical value of a

qualified name is a namespace URI, local part pair. Lexically, qualified names are the same as XML
1.0 names except that they may not contain more than one colon and that colon may not be the first
character in the name. A qualified name may or may not be prefixed. If it is prefixed, then the prefix
must be properly mapped to a namespace URI. If it is not prefixed, then the name must occur in the
scope of a default namespace. These are all legal values of type xs:QName, provided that this

condition is met in context:

xsl:apply-templates

svg:rect

limit

xml:lang

body

xlink:href

Constraining facets that apply to xs:QName are length, minLength, maxLength, pattern,
enumeration, and whiteSpace.

xs:short

The xs:short type indicates a signed integer small enough to be represented as a two-byte, two's
complement number such as Java's short primitive data type. It is derived from xs:int by setting
the maxInclusive facet to 32767 and the minInclusive facet to -32768. These are all legal values
of type xs:int:

2000

+2000

-2000

32767

-32768

http://lib.ommolketab.ir
http://lib.ommolketab.ir

0

Constraining facets that apply to xs:short are minInclusive, maxInclusive, minExclusive,
maxExclusive, pattern, enumeration, whiteSpace, and totalDigits.

xs:string

This is the most general simple type. Elements and attributes with type xs:string can contain any
sequence of characters allowed in XML, although depending on context, certain characters such as <,
&, and " may have to be escaped with character or entity references in the usual way.

Constraining facets that apply to xs:string are length, minLength, maxLength, pattern,
enumeration, and whiteSpace.

xs:time

The xs:time type represents a specific time of day on no particular day, such as 3:32 P.M. Times are

written in the form hh:mm:ss.xxx using a 24-hour clock and as many fractions of a second as
necessary. For example, 3:41 P.M. is written as 15:41:00. 3:41 A.M. and 0.5 seconds is written as
03:41:00.5. The Z suffix indicates Coordinated Universal Time (Greenwich Mean Time, UTC).

Otherwise, the time zone can be indicated as an offset in hours and minutes from UTC. For example,
15:41:00-05:00 is 3:41 P.M., in the U.S. Eastern time zone. The time zone may be omitted, in which
case the actual time is somewhat nondeterministic. These are all valid values of type xs:time:

03:32:00-05:00

00:00:00Z

08:30:34.121893632178

23:59:59

Constraining facets that apply to xs:time are minInclusive, maxInclusive, minExclusive,
maxExclusive, pattern, enumeration, and whiteSpace. Note, however, that when the time zone is

not specified, it's not always possible to determine unambiguously whether one time falls after
another.

xs:token

xs:token is a subtype of xs:normalizedString whose normalized value does not contain any line

feed (#xA) or tab (#x9) characters, does not have any leading or trailing whitespace (as whitespace
is defined by XML 1.0, not XML 1.1), and has no sequence of two or more spaces. All legal strings are
also legal lexical representations of type xs:token. However, a schema-aware parser that presents

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the normalized value of an element instead of the literal characters in the document will trim leading
and trailing whitespace and compress all other runs of whitespace characters with a single space
before passing the string to the client application.

Constraining facets that apply to xs:token are length, minLength, maxLength, pattern,
enumeration, and whiteSpace.

xs:unsignedByte

The xs:unsignedByte type represents a nonnegative integer that can be stored in one byte, such as
the unsigned char type used by some (but not all) C compilers. It is derived from xs:unsignedShort
by setting the maxInclusive facet to 255 (28-1). These are all legal values of type
xs:unsignedByte:

3

200

+255

50

0

Constraining facets that apply to xs:unsignedByte are minInclusive, maxInclusive,
minExclusive, maxExclusive, pattern, enumeration, whiteSpace, and totalDigits.

xs:unsignedInt

The xs:unsignedInt type represents a nonnegative integer that can be stored in four bytes, such as
the unsigned int type used by some C compilers. It is derived from xs:unsignedLong by setting the
maxInclusive facet to 4294967295 (232-1). These are all legal values of type xs:unsignedInt:

2

200

+4294967295

100000

0

Constraining facets that apply to xs:unsignedInt are minInclusive, maxInclusive, minExclusive,
maxExclusive, pattern, enumeration, whiteSpace, and totalDigits.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xs:unsignedLong

The xs:unsignedLong type represents a nonnegative integer that can be stored in eight bytes, such
as the unsigned long type used by some C compilers. It is derived from xs:nonNegativeInteger by
setting the maxInclusive facet to 18446744073709551615 (264-1). These are all legal values of type
xs:unsignedLong:

2

200

+9223372036854775807

18446744073709551615

5000000000

0

Constraining facets that apply to xs:unsignedLong are minInclusive, maxInclusive,
minExclusive, maxExclusive, pattern, enumeration, whiteSpace, and totalDigits.

xs:unsignedShort

The xs:unsignedShort type represents a nonnegative integer that can be stored in two bytes, such
as the unsigned short type used by some C compilers. It is derived from xs:unsignedInt by setting
the maxInclusive facet to 65535 (216-1). These are all legal values of type xs:unsignedShort:

3

300

+65535

50000

0

Constraining facets that apply to xs:unsignedShort are minInclusive, maxInclusive,
minExclusive, maxExclusive, pattern, enumeration, whiteSpace, and totalDigits.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

22.4 Instance Document Attributes

The W3C XML Schema Language defines four attributes in the
http://www.w3.org/2001/XMLSchema-instance namespace (here mapped to the xsi prefix), which

are attached to elements in the instance document rather than elements in the schema. These are as
follows: xsi:nil, xsi:type, xsi:schemaLocation, and xsi:noNamespaceSchemaLocation. All four

of these attributes are special because the schemas do not need to declare them.

xsi:nil

The xsi:nil attribute indicates that a certain element does not have a value or that the value is

unknown. This is not the same as having a value that is zero or the empty string. Semantically, it is
equivalent to SQL's null. For example, in this full_name element, the last_name child has a nil

value:

<full_name xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <first_name>Cher</first_name>

 <last_name xsi:nil="true"/>

</full_name>

It is not relevant whether an empty-element tag or a start-tag/end-tag pair is used to represent the
nil element. However, a nil element may not have any content.

In order for this document to be valid, the element declaration for the name element must explicitly
specify that nil values are allowed by setting the nillable attribute to true. For example:

<xs:element name="last_name" type="xs:string" nillable="true"/>

xsi:noNamespaceSchemaLocation

The xsi:noNamespaceSchemaLocation attribute locates the schema for elements that are not in any

namespace. (Attributes that are not in any namespace are assumed to be declared in the same
schema as their parent element.) Its value is a relative or absolute URL where the schema document
can be found. It is most commonly attached to the root element but can appear further down the
tree. For example, this person element claims that it should be validated against the schema found

at http://example.com/person.xsd:

http://www.w3.org/2001/XMLSchema-instance
http://example.com/person.xsd
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<person xsi:noNamespaceSchemaLocation="http://example.com/person.xsd">

 <name>

 <first_name>Alan</first_name>

 <last_name>Turing</last_name>

 </name>

 <profession>computer scientist</profession>

 <profession>mathematician</profession>

 <profession>cryptographer</profession>

</person>

These are only suggestions. Schema processors may use other means of locating the relevant
schemas and ignore the hint provided by xsi:noNamespaceSchemaLocation.

xsi:schemaLocation

The xsi:schemaLocation attribute locates schemas for elements and attributes that are in a

specified namespace. Its value is a namespace URI followed by a relative or absolute URL where the
schema for that namespace can be found. It is most commonly attached to the root element but can
appear further down the tree. For example, this person element in the
http://www.cafeconleche.org/namespaces/person namespace claims that it should be validated

against the schema found at http://www.elharo.com/person.xsd:

<person xmlns="http://www.cafeconleche.org/namespaces/person"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.cafeconleche.org/namespaces/person

 http://www.elharo.com/person.xsd">

 <name>

 <first_name>Alan</first_name>

 <last_name>Turing</last_name>

 </name>

 <profession>computer scientist</profession>

http://www.cafeconleche.org/namespaces/person
http://www.elharo.com/person.xsd
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <profession>mathematician</profession>

 <profession>cryptographer</profession>

</person>

If more than one namespace is used in a document, each namespace must have its own schema. The
namespace URIs and schema URLs can be listed in sequence in the same xsi:schemaLocation
attribute. For example, the xsi:schemaLocation attribute on this person element says that items
from the http://www.cafeconleche.org/namespaces/person namespace should be validated

against the schema found at http://www.elharo.com/person.xsd, while items from the
http://www.cafeconleche.org/namespaces/names namespace should be validated against the

schema found at the relative URL names.xsd:

<person xmlns="http://www.cafeconleche.org/namespaces/person"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.cafeconleche.org/namespaces/person

 http://www.elharo.com/person.xsd

 http://www.cafeconleche.org/namespaces/names

 names.xsd">

 <name xmlns="http://www.cafeconleche.org/namespaces/names">

 <first_name>Alan</first_name>

 <last_name>Turing</last_name>

 </name>

 <profession>computer scientist</profession>

 <profession>mathematician</profession>

 <profession>cryptographer</profession>

</person>

These are only suggestions. Schema processors are allowed to use other means of locating the
relevant schemas and to ignore the hints provided by xsi:schemaLocation.

xsi:type

http://www.cafeconleche.org/namespaces/person
http://www.elharo.com/person.xsd
http://www.cafeconleche.org/namespaces/names
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The xsi:type attribute may be used in instance documents to indicate the type of an element, even
when a full schema is not available. For example, this length element has type xs:decimal:

<length xsi:type="xs:decimal">23.5</length>

More importantly, the xsi:type attribute enables a limited form of polymorphism. That is, it allows

you to make an element an instance of a derived type where an instance of the base type would
normally be expected. The instance of the derived type must carry an xsi:type attribute identifying

it as an instance of the derived type.

For example, suppose a schema says that a ticket element has type TicketType. If the schema
also defines BusTicketType and AirplaneTicketType elements as subtypes of TicketType, then a
ticket element could also use the BusTicketType and AirplaneTicketType content models
provided it had an xsi:type="BusTicketType" or xsi:type="AirplaneTicketType" attribute.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 23. XPath Reference
XPath is a non-XML syntax for expressions that identifies particular nodes and groups of nodes in an
XML document. It is used by both XPointer and XSLT, as well as by some native XML databases and
query languages.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

23.1 The XPath Data Model

XPath views each XML document as a tree of nodes. Each node has one of seven types:

Root

Each document has exactly one root node, which is the root of the tree. This node contains one
comment node child for each comment outside the document element, one processing-
instruction node child for each processing instruction outside the root element, and exactly one
element node child for the root element. It does not contain any representation of the XML
declaration, the document type declaration, or any whitespace that occurs before or after the
root element. The root node has no parent node. The root node's value is the value of the root
element.

Element

An element node has a name, a namespace URI, a parent node, and a list of child nodes, which
may include other element nodes, comment nodes, processing-instruction nodes, and text
nodes. An element node also has a collection of attributes and a collection of in-scope
namespaces, none of which are considered to be children of the element. The string-value of
an element node is the complete, parsed text between the element's start- and end-tags that
remains after all tags, comments, and processing instructions are removed and all entity and
character references are resolved.

Attribute

An attribute node has a name, a namespace URI, a value, and a parent element. However,
although elements are parents of attributes, attributes are not children of their parent
elements. The biological metaphor breaks down here. xmlns and xmlns:prefix attributes are

not represented as attribute nodes. An attribute node's value is the normalized attribute value.

Text

Each text node represents the maximum possible contiguous run of text between tags,
processing instructions, and comments. A text node has a parent node but does not have
children. A text node's value is the text of the node.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Namespace

A namespace node represents a namespace in scope on an element. In general, each
namespace declaration by an xmlns or xmlns:prefix attribute produces a namespace node on

that element and on all of its descendant elements (unless overridden by another namespace
declaration). Like attribute nodes, each namespace node has a parent element but is not the
child of that parent. The name of a namespace node is the prefix. The value of a namespace
node is the namespace URI.

Processing instruction

A processing-instruction node has a target, data, a parent node, and no children. The name of
a processing-instruction node is its target. The value of a processing-instruction node is the
data of the processing instruction, not including any initial whitespace.

Comment

A comment node represents a comment. It has a parent node and no children. The value of a
comment is the string content of the comment, not including the <!-- and -->.

The XML declaration and the document type declaration are not included in XPath's view of an XML
document. All entity references, character references, and CDATA sections are resolved before the

XPath tree is built. The references themselves are not included as a separate part of the tree.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

23.2 Data Types

Each XPath expression evaluates to one of four types:

Boolean

A binary value that is either true or false. In XPath, Booleans are most commonly produced by
using the comparison operators =, !=, <, >, <=, and >=. Multiple conditions can be combined
using the and and or operators, which have their usual meaning in logic (e.g., 3>2 or 2>1 is
true). XPath does not offer Boolean literals. However, the true() and false() functions fill

that need.

Number

All numbers in XPath are IEEE 754-compliant, 64-bit floating-point numbers. This is the same
as the double type in Java. Numbers range from 4.94065645841246544e-324d to

1.79769313486231570e+308d, and are either positive or negative. Numbers also include the
special values Inf (positive infinity), -Inf (negative infinity), and NaN (not a number), which is

used for the results of illegal operations, such as dividing by zero. XPath provides all the
customary operators for working with numbers, including:

+

Addition

-

Subtraction; however, this operator should always be surrounded by whitespace to avoid
accidental misinterpretation as part of an XML name

*

Multiplication

http://lib.ommolketab.ir
http://lib.ommolketab.ir

div

Division

mod

Taking the remainder

String

Sequence of zero or more Unicode characters. String literals are enclosed in either single or
double quotes, as convenient. Unlike Java, XPath does not allow strings to be concatenated
with the plus sign. However, the concat() function serves this purpose.

Node-set

Collection of zero or more nodes from an XML document. Location paths produce most node-
sets. A single node-set can contain multiple types of nodes: root, element, attribute,
namespace, comment, processing instruction, and text.

Some standards that use XPath also define additional data types. For instance, XSLT defines a result
tree fragment type that represents the result of processing an XSLT instruction or instantiating a
template. XPointer defines a location set type that extends node-sets to include points and ranges.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

23.3 Location Paths

Node- sets are returned by location-path expressions. Location paths consist of location steps. Each
location step contains an axis and a node test separated by a double colon. That is, a location step
looks like this:

axis::node test

The axis specifies in which direction from the context node the processor searches for nodes. The
node test specifies which nodes along that axis are selected. These are some location steps with
different axes and node tests:

child::set

descendant-or-self::node()

ancestor-or-self::*

attribute::xlink:href

Each location step may be suffixed with predicates enclosed in square brackets that further winnow
the node-set. For example:

child::set[position()=2]

descendant-or-self::node()[.='Eunice']

ancestor-or-self::*[position()=2][.="Celeste"]

attribute::xlink:href[starts-with(., 'http')]

Each individual location step is itself a relative location path. The context node against which the
relative location path is evaluated is established by some means external to XPath-for example, by
the current matched node in an XSLT template.

Location steps can be combined by separating them with forward slashes. Each step in the resulting
location path sets the context node (or nodes) for the next path in the step. For example:

ancestor-or-self::*/child::*[position()=1]

child::document/child::set[position()=2]/following-sibling::*

descendant::node()[.='Eunice']/attribute::ID

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An absolute location path is formed by prefixing a forward slash to a relative location path. This sets
the context node for the first step in the location path to the root of the document. For example,
these are all absolute location paths:

/descendant::ship/ancestor-or-self::*/child::*[position()=1]

/child::document/child::set[position()=2]/following-sibling::*

/descendant::node()[.='Eunice']/attribute::ID

Multiple location paths can be combined with the union operator (|) to form an expression that

selects a node-set containing all the nodes identified by any of the location paths. For example, this
expression selects a node-set containing all the set children of the context node, all the vector
descendants of the context node, all ancestor elements of the context node, and all attributes of
the context node named href:

child::set | descendant::vector | ancestor::* | attribute::href

23.3.1 Abbreviated Syntax

An abbreviated syntax is available for particularly common location steps. In this syntax, five axes
may use this shorthand:

.

The context node

..

The parent node

name

The child element or elements with the specified name

//

All descendants of the context node, and the context node itself

http://lib.ommolketab.ir
http://lib.ommolketab.ir

@ name

The attribute of the context node with the specified name

Using the abbreviated syntax, the previous examples can be rewritten in the following manner:

set

.//.

ancestor-or-self::*

@xlink:href

set[position()=2]

.//.[.='Eunice']

ancestor-or-self::*[position()=2][.="Celeste"]

@xlink:href[starts-with('http')]

ancestor-or-self::*/*[position()=1]

document/set[position()=2]/following-sibling::*

.//.[.='Eunice']/@ID

//ship/ancestor-or-self::*/*[position()=1]

/document/set[position()=2]/following-sibling::*

/descendant::node()[.='Eunice']/@ID

set | ./*//vector | ancestor::* | @href

Not all location steps can be rewritten using the abbreviated syntax. In particular, only the child,
self, attribute, descendant-or-self, and parent axes can be abbreviated. The remaining axes

must be spelled out in full.

23.3.2 Axes

Each XPath location step moves along an axis from a context node. The context node is a particular
root, element, attribute, comment, processing-instruction, namespace, or text node in the XML
document. (In practice, it's almost always an element node or the root node.) The context node may
be a node selected by the previous location step in the location path, or it may be determined by
extra-XPath rules, such as which node is matched by an xsl:template element.

However the context node is determined, it has some relationship to every other node in the
document. The various axes divide the document into different overlapping sets, depending on their

http://lib.ommolketab.ir
http://lib.ommolketab.ir

relationship to the context node. There are exactly 13 axes you can use in an XPath location step:

child

All children of the context node. Only root and element nodes have children. Attribute and
namespace nodes are not children of any node, although they do have parent nodes.

descendant

All nodes contained inside the context node-that is, a child node, a child of a child node, a
child of a child of a child node, and so on. Only root and element nodes have descendants. Like
the child axis, the descendant axis never contains attribute or namespace nodes.

descendant-or-self

Any descendant of the context node or the context node itself. // is an abbreviation for
/descendant-or-self::node()/.

parent

The element or root node that immediately contains the context node. Only the root node does
not have a parent node. .. is an abbreviation for parent::node().

ancestor

The root node and all element nodes that contain the context node. The root node itself has no
ancestors.

ancestor-or-self

All ancestors of the context node, as well as the node itself.

following-sibling

All nodes that follow the end of the context node and have the same parent node. Attribute and
namespace nodes do not have siblings.

preceding-sibling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All nodes that precede the start of the context node and have the same parent node. Attribute
and namespace nodes do not have siblings.

following

All nodes that begin after the context node ends, except for attribute nodes and namespace
nodes; that is, all nodes after the context node except descendants.

preceding

All nodes that end before the context node begins, except for attribute nodes and namespace
nodes; that is, all nodes before the context node except ancestors.

attribute

All attributes of the context node; the axis is empty if the context node is not an element node.
This axis does not contain xmlns and xmlns:prefix attributes. @name is an abbreviation for

attribute::name.

namespace

All namespaces in scope (not merely declared) on the context node; this axis is empty if the
context node is not an element node.

self

The context node itself. A single period (.) is an abbreviation for self::node().

23.3.3 Node Tests

Each location step has at least an axis and a node test. The node test further refines the nodes
selected by the location step. In an unabbreviated location step, a double colon (::) separates the

axis from the node test. There are seven kinds of node tests:

name

An XML name matches all elements with the same name. However, along the attribute axis it
matches all attributes with the same name instead; along the namespace axis it matches all

namespaces with that prefix. As usual, if the element or attribute name is prefixed, only the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

URI to which the prefix is mapped matters, not the prefix itself. Unprefixed names always
match nodes in no namespace, never names in the default namespace.

prefix:*

Along most axes, this node test matches all element nodes whose namespace URIs are the
same as the namespace URI to which this prefix is mapped, regardless of name. However,
along the attribute axis, this node test matches all attribute nodes whose namespace URIs

are the same as the namespace URI to which this prefix is mapped.

comment()

This matches all comment nodes.

text()

This matches all text nodes. Each text node is a maximum contiguous run of text between
other types of nodes.

processing-instruction()

processing-instruction('target')

With no arguments, this node test selects all processing instructions. With a single string
argument, it selects all processing instructions that have the specified target.

node()

This node test selects all nodes, regardless of type: attribute, namespace, element, text,
comment, processing instruction, and root.

*

This test normally selects all element nodes, regardless of name. However, if the axis is the
attribute axis, then it selects all attribute nodes. If the axis is the namespace axis, then it

selects all namespace nodes.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

23.4 Predicates

Each location step may have zero or more predicates. A predicate is an XPath expression enclosed in
square brackets that follows the node test in the location step. This expression most commonly, but
not necessarily, returns a Boolean value. In the following location path:

/person[1]/profession[.="physicist"][position()<3]

[1], [.="physicist"], and [position()<3] are predicates. An XPath processor works from left to

right in an expression. After it has evaluated everything that precedes the predicate, it's left with a
context node list that may contain no nodes, one node, or more than one node. For most axes,
including child, following-sibling, following, and descendant, this list is in document order. For
the ancestor, preceding, and preceding-sibling axes, this list is in reverse document order.

The predicate is evaluated against each node in the context node list. If the expression returns true,
then that node is retained in the list. If the expression returns false, then the node is removed from
the list. If the expression returns a number, then the node being evaluated is left in the list if and
only if the number is the same as the position of that node in the context node list. If the expression
returns a non-Boolean, nonnumber type, then that return value is converted to a Boolean using the
boolean() function, described later, to determine whether it retains the node in the set.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

23.5 XPath Functions

XPath 1.0 defines 27 built-in functions for use in XPath expressions. Various technologies that use
XPath, such as XSLT and XPointer, also extend this list with functions they need. XSLT even allows
user-defined extension functions.

Every function is evaluated in the context of a particular node, called the context node. The higher-
level specification in which XPath is used, such as XSLT or XPointer, decides exactly how this context
node is determined. In some cases, the function operates on the context node. In other cases, it
operates on the argument, if present, and the context node, if no argument exists. The context node
is ignored in other cases.

In the following sections, each function is described with at least one signature in this form:

return-type function-name(type argument, type argument, ...)

Compared to languages like Java, XPath argument lists are quite loose. Some XPath functions take a
variable number of arguments and fill in the arguments that are omitted with default values or the
context node.

Furthermore, XPath is weakly typed. If you pass an argument of the wrong type to an XPath
function, it generally converts that argument to the appropriate type using the boolean(), string(
), or number() functions, described later. The exceptions to the weak-typing rule are the functions

that take a node-set as an argument. Standard XPath 1.0 provides no means of converting anything
that isn't a node-set into a node-set. In some cases, a function can operate equally well on multiple
argument types. In this case, its type is given simply as object.

boolean()

boolean boolean(object o)

The boolean() function converts its argument to a Boolean according to these rules:

Zero and NaN are false. All other numbers are true.

Empty node-sets are false. Nonempty node-sets are true.

Empty strings are false. Nonempty strings are true.

ceiling()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

number ceiling(number x)

The ceiling() function returns the smallest integer greater-than or equal to x. For example,
ceiling(3.141592) is 4. ceiling(-3.141592)is -3. Before the ceiling is calculated, nonnumber
types are converted to numbers as if by the number() function.

concat()

string concat(string s1, string s2)

string concat(string s1, string s2, string s3)

string concat(string s1, string s2, string s3, string s4, ...)

This function concatenates its arguments in order from left to right and returns the combined string.
It may take two or more arguments. Nonstrings may be passed to this function as well, in which case
they're converted to strings automatically as if by the string() function.

contains()

boolean contains(string s1, string s2)

This function returns true if s2 is a substring of s1-that is, if s1 contains s2. Otherwise, it is false.
For example, contains("A very Charming cat", "Charm") is true, but contains("A very
Charming cat", "Marjorie") is false. The test is case-sensitive. For example, contains("A very
charming cat", "Charm") is false. Nonstrings may also be passed to this function, in which case
they're automatically converted to strings as if by the string() function.

count()

number count(node-set set)

The count() function returns the number of nodes in the argument node-set, that is, the size of the

set.

false()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

boolean false()

The false() function always returns false. It makes up for the lack of Boolean literals in XPath.

floor()

number floor(number x)

The floor() function returns the greatest integer less-than or equal to x. For example,
floor(3.141592) is 3. floor(-3.141592)is -4. Before the floor of a non-number type is calculated,
it is converted to a number as if by the number() function.

id()

node-set id(string IDs)

node-set id(node-set IDs)

The id() function returns a node-set containing all elements in the document with any of the

specified IDs. (More specifically, those elements that have an attribute declared to be type ID in the
input document's DTD.) If the argument is a string, then this string is interpreted as a whitespace-
separated list of IDs, and the function returns a node-set containing any elements that have an ID
matching one of these IDs. If the argument is a node-set, then each node in the set is converted to a
string, which is in turn treated as a whitespace-separated list of IDs. The returned node-set contains
all the elements whose ID matches any ID in the string-value of any of these nodes. Finally, if the
argument is any other type, then it's converted to a string, as by the string() function, and it
returns the same result as passing that string-value to id() directly.

lang()

boolean lang(string languageCode)

The lang() function returns true if the context node is written in the language specified by the
languageCode argument; otherwise, it is false. The nearest xml:lang attribute on the context node
or one of its ancestors determines the language of any given node. If no such xml:lang attribute
exists, then lang() returns false.

The lang() function takes into account country and other subcodes before making its
determination. For example, lang('fr') returns true for elements whose language code is fr-FR,
fr-CA, or fr. However, lang('fr-FR') is not true for elements whose language code is fr-CA or fr.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

last()

number last()

The last() function returns the size of (i.e., the number of nodes in) the context node-set.

local-name()

string local-name()

string local-name(node-set nodes)

With no arguments, this function returns the context node's local name, that is, the part of the name
after the colon, or the entire name if it isn't prefixed. For a node-set argument, it returns the local
name of the first node in the node-set. If the node-set is empty or the first node in the set does not
have a name (e.g., it's a comment or root node), then it returns the empty string.

name()

string name()

string name(node-set nodes)

With no arguments, this function returns the qualified (prefixed) name of the context node or the
empty string if the context node does not have a name (e.g., it's a comment or root node). With a
node-set as an argument, it returns the qualified name of the first node in the node-set. If the node-
set is empty or if the set's first node does not have a name, then it returns the empty string.

namespace-uri()

string namespace-uri()

string namespace-uri(node-set nodes)

With no arguments, this function returns the namespace URI of the context node. With a node-set as
an argument, it returns the namespace URI of the first node in the node-set. If this node does not
have a namespace URI (i.e., it's not an element or an attribute node; it is an element or attribute
node, but is not in any namespace; or the node-set is empty), then it returns the empty string.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

normalize-space()

string normalize-space()

string normalize-space(string s)

The normalize-space() function strips all leading and trailing whitespace from its argument and

replaces each run of whitespace with a single space character. Among other effects, this removes all
line breaks. If the argument is omitted, it normalizes the string-value of the context node. A
nonstring may be passed to this function, in which case it's automatically converted to a string, as if
by the string() function, and that string is normalized and returned.

not()

boolean not(boolean b)

The not() function inverts its argument; that is, false becomes true and true becomes false. For
example, not(3 > 2) is false, and not(2+2=5) is true. Non-Booleans are converted as by the
boolean() function before being processed.

number()

number number()

number number(object o)

The number() function converts its argument to a number according to these rules:

A string is converted by first stripping leading and trailing whitespace and then picking the IEEE
754 value that is closest (according to the IEEE 754 round-to-nearest rule) to the mathematical
value represented by the string. If the string does not seem to represent a number, it is
converted to NaN. Exponential notation (e.g., 75.2E-12) is not recognized.

True Booleans are converted to 1; false Booleans are converted to 0.

Node-sets are first converted to the string-value of the first node in the set. This string is then
converted to a number.

If the argument is omitted, then it converts the context node.

position()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

number position()

The position() function returns a number equal to the position of the current node in the context

node-set. For most axes, it counts forward from the context node. However, if the axis in use is
ancestor, ancestor-or-self, preceding, or preceding-sibling, then it counts backward from the

context node instead.

round()

number round(number x)

The round() function returns the integer closest to x. For example, round(3.141592) returns 3.
round(-3.141592) returns -3. If two integers are equally close to x, then the one that is closer to
positive infinity is returned. For example, round(3.5) returns 4, and round(-3.5) returns -3.
Nonnumber types are converted to numbers as if by the number() function, before rounding.

starts-with()

boolean starts-with(string s1, string s2)

The starts-with() function returns true if s1 starts with s2; otherwise, it is false. For example,
starts-with("Charming cat", "Charm") is true, but starts-with ("Charming cat", "Marjorie")
is false. The test is case-sensitive. For example, starts-with("Charming cat", "charm") is false.

Nonstrings may be passed to this function as well, in which case they're automatically converted to
strings, as if by the string() function, before the test is made.

string()

string string()

string string(object o)

The string() function converts an object to a string according to these rules:

A node-set is converted to the string-value of the first node in the node-set. If the node-set is
empty, it's converted to the empty string.

A number is converted to a string as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-NaN is converted to the string NaN.

-Positive Inf is converted to the string Infinity.

-Negative Inf is converted to the string -Infinity.

Integers are converted to their customary English form with no decimal point and no leading
zeros. A minus sign is used if the number is negative, but no plus sign is used for positive
numbers.

Nonintegers (numbers with nonzero fractional parts) are converted to their customary English
form with a decimal point, with at least one digit before the decimal point and at least one digit
after the decimal point. A minus sign is used if the number is negative, but no plus sign is used
for positive numbers.

A Boolean with the value true is converted to the English word "true." A Boolean with the value
false is converted to the English word "false." Lowercase is always used.

The object to be converted is normally passed as an argument, but if omitted, the context node is
converted instead.

The XPath specification specifically notes that the "string function is not
intended for converting numbers into strings for presentation to users." The
primary problem is that it's not localizable and not attractive for large numbers.
If you intend to show a string to an end user, use the format-number()
function and/or xsl:number element in XSLT instead.

string-length()

number string-length(string s)

number string-length()

The string-length() function returns the number of characters in its argument. For example,
string-length("Charm") returns 5. If the argument is omitted, it returns the number of characters

in the string-value of the context node. A nonstring may be passed to this function, in which case it's
automatically converted to a string, as if by the string() function, and that string's length is

returned.

substring()

string substring(string s, number index, number length)

string substring(string s, number index)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The substring() function returns the substring of s starting at index and continuing for length

characters. The first character in the string is at position 1 (not 0, as in Java and JavaScript). For
example, substring('Charming cat', 1, 5) returns "Charm". If length is omitted, then the
substring to the end of the string is returned. For example, substring('Charming cat', 10) returns
"cat". As usual, any type of object may be passed to this function in place of the normal argument,

in which case it is automatically converted to a string before extracting the substring.

substring-after()

string substring-after(string s1, string s2)

The substring-after() function returns the substring of s1 that follows the first occurrence of s2 in
s1, or it returns the empty string, if s1 does not contain s2. For example, substring-
after('Charming cat', 'harm') returns "ing cat". The test is case-sensitive. As usual, nonstring

objects may be passed to this function, in which case they're automatically converted to strings, as if
by the string() function.

substring-before()

string substring-before(string s1, string s2)

The substring-before() function returns the substring of s1 that precedes the first occurrence of
the s2 in s1, or it returns the empty string if s1 does not contain s2. For example, substring-
before('Charming cat', 'ing') returns "Charm". The test is case-sensitive. Nonstring objects may

be passed to this function, in which case they're automatically converted to strings as if by the
string() function.

sum()

number sum(node-set nodes)

The sum() function converts each node in the node-set to a number, as if by the number()

function; then it adds up those numbers and returns the sum.

translate()

string translate(string s1, string s2, string s3)

The translate() function looks in s1 for any characters found in s2. It replaces each character

http://lib.ommolketab.ir
http://lib.ommolketab.ir

with the corresponding character from s3. For example, translate("XML in a Nutshell", " ", "_")
replaces the spaces with underscores and returns "XML_in_a_Nutshell". translate("XML in a
Nutshell", "XMLN", "xmln") replaces the uppercase letters with lowercase letters and returns "xml
in a nutshell". If s3 is shorter than s2, then characters in s1 and s2 with no corresponding
character in s3 are simply deleted. For example, translate("XML in a Nutshell", " ", "") deletes
the spaces and returns "XMLinaNutshell". Once again, nonstring objects may be passed to this
function, in which case they're automatically converted to strings, as if by the string() function.

true()

boolean true()

The true() function simply returns true. It makes up for the lack of Boolean literals in XPath.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 24. XSLT Reference
Extensible Stylesheet Language Transformations (XSLT) is a functional programming language used
to specify how an input XML document is converted into another text document-possibly, although
not necessarily, another XML document. An XSLT processor reads both an input XML document and
an XSLT stylesheet (which is itself an XML document because XSLT is an XML application) and
produces a result tree as output. This result tree may then be serialized into a file or written onto a
stream. Documents can be transformed using a standalone program or as part of a larger program
that communicates with the XSLT processor through its API.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

24.1 The XSLT Namespace

All standard XSLT elements are in the http://www.w3.org/1999/XSL/Transform namespace. In this
chapter, we assume that this URI is mapped to the xsl prefix using an appropriate xmlns:xsl

declaration somewhere in the stylesheet. This mapping is normally declared on the root element, like
this:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- XSLT top-level elements go here -->

</xsl:stylesheet>

 < Day Day Up >

http://www.w3.org/1999/XSL/Transform
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

24.2 XSLT Elements

XSLT defines 36 elements, which break down into three overlapping categories:

Two root elements:
xsl:stylesheet

xsl:transform

Twelve top-level elements, which may appear as immediate children of the root and are the
following:
xsl:attribute-set xsl:decimal-format

xsl:import xsl:include

xsl:key xsl:namespace-alias

xsl:output xsl:param

xsl:preserve-space xsl:strip-space

xsl:template xsl:variable

Twenty-two instruction elements, which appear in the content of elements that contain
templates. Here, we don't mean the xsl:template element. We mean the content of that and
several other elements, such as xsl:for-each and xsl:message, which are composed of literal

result elements, character data, and XSLT instructions that are processed to produce part of the
result tree. These elements are as follows:
xsl:apply-imports xsl:apply-templates

xsl:attribute xsl:call-template

xsl:choose xsl:comment

xsl:copy xsl:copy-of

xsl:element xsl:fallback

xsl:for-each xsl:if

xsl:message xsl:number

xsl:otherwise xsl:processing-instruction

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xsl:sort xsl:text

xsl:value-of xsl:variable

xsl:with-param xsl:when

Most XSLT processors also provide various nonstandard extension elements and allow you to write
your own extension elements in languages such as Java and JavaScript.

Elements in this section are arranged alphabetically from xsl:apply-imports to xsl:with-param.

Each element begins with a synopsis in the following form:

<xsl:elementName

 attribute1 = "allowed attribute values"

 attribute2 = "allowed attribute values"

>

 <!-- Content model -->

</xsl:elementName>

Most attribute values are one of the following types:

expression

An XPath expression. In cases where the expression is expected to return a value of a
particular type, such as node-set or number, it is prefixed with the type and a hyphen; for
example, node-set-expression or number-expression. However, XPath is weakly typed, and,

in most cases, any supplied type will be converted to the requested type. For instance, an
attribute that should evaluate to a string might in fact contain a number or a node-set. The
processor automatically converts this number or set to a string, according to the rules given in
the last chapter for XPath's string() function. The only exception to this rule is node-set-
expression. XSLT does not convert other types to node-sets automatically. If an attribute
requires a node-set-expression, then it is an error to set its value to another type of

expression such as a Boolean or string.

QualifiedName

An XML name, such as set or mathml:set. If the name is in a nondefault namespace, then it

has a prefix.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PrefixedName

An XML name that must have a prefix such as mathml:set but not set.

pattern

An XSLT match pattern; that is, a group of one or more XPath location-path expressions
separated by |., in which each location step uses only the child or attribute axis. The initial
step may be an id() or key() function call with a literal argument.

langcode

An RFC 1766 language code, such as en or fr-CA.

string

A literal string of text.

char

A single Unicode character.

enumerated type

One value in a finite list of values. The values shown here are separated by vertical bars, as in
an enumerated content model in an ATTLIST declaration.

URI

A relative or absolute URI. In practice, these are normally URLs. Relative URIs are relative to
the location of the stylesheet itself.

Some attributes can contain attribute value templates. This is an XPath expression enclosed in curly
braces, which is evaluated to provide the final value of the attribute. When this is the case, it is
indicated in the description of each attribute.

Potentially, nonempty elements have content models given in a comment in the form they might
appear in an ELEMENT declaration. If an element can contain a template, we use the word "template"

to stand in for all the possible elements that may appear.

It's worth noting that XSLT is unusually forgiving compared to most other XML specifications. First of
all, the stylesheet may contain top-level elements from any namespace except XSLT (although not
from no namespace at all). Elements defined here may contain any attribute from any non-XSLT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

namespace. And even though many conditions are defined as errors, XSLT processors are always
allowed to recover from them in a sensible way. For example, you're not allowed to put an
xsl:attribute element inside an xsl:comment element, which would attempt to add an attribute to

a comment. However, if you do that, the processor is allowed to simply ignore the offending
xsl:attribute element when creating the comment.

xsl:apply-imports

<xsl:apply-imports />

The xsl:apply-imports instruction processes the current node using only templates that were
imported into the stylesheet with xsl:import. A template rule that overrides a template rule in an
imported stylesheet can invoke the overridden template rule with xsl:apply-imports.

xsl:apply-templates

<xsl:apply-templates select="node-set-expression" mode="QualifiedName">

 <! -- (xsl:sort | xsl:with-param)* -- >

</xsl:apply-templates>

The xsl:apply-templates instruction tells the processor to search for and apply the highest-priority
template rule in the stylesheet that matches each node identified by the select attribute.

Attributes

select, optional

This is an XPath expression that returns a node-set. Each node in this set will be processed
further. If the select attribute is omitted, then all child nodes of the context node should be

processed.

mode, optional

If the mode attribute is present, then only templates that have a matching mode attribute will be
applied. If the mode attribute is absent, then only templates without a mode attribute will be

applied.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Contents

The xsl:apply-templates element may have xsl:sort child elements to specify the order in which
the selected nodes will be processed. Without any xsl:sort children, the default is to process nodes

in document order.

The xsl:apply-templates element may have xsl:with-param child elements to pass parameter

values to the matched templates.

xsl:attribute

<xsl:attribute

 name = "QualifiedName"

 namespace = "URI">

 <! -- template for the attribute value -- >

</xsl:attribute>

The xsl:attribute instruction adds an attribute to an element in the result tree. This element can
be a child of an xsl:attribute-set element, an xsl:element instruction, or a literal result element.
In each case, all xsl:attribute elements must precede all literal result elements and other

instructions that insert content into the output element.

Attributes

name, required, attribute value template

The name of the attribute this instruction creates.

namespace, optional, attribute value template

The namespace URI of the attribute. If a nonempty namespace URI is specified, then the
processor will pick an appropriate prefix for the attribute-probably, but not necessarily, the
one used in the name attribute.

Contents

The contents of this element are a template whose instantiation only produces text nodes. The value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of the attribute added to the result tree is determined by instantiating the template.

xsl:attribute-set

<xsl:attribute-set

 name = "QualifiedName"

 use-attribute-sets = "QualifiedName1 QualifiedName2...">

<! -- xsl:attribute* -- >

</xsl:attribute-set>

The xsl:attribute-set top-level element defines a collection of attributes that can be applied to

elements elsewhere in the stylesheet. For instance, you could define an attribute set that includes the
necessary attributes to create a simple XLink, and then you could attach the set to each simple XLink
element.

Attributes

name, required

The name attribute gives a name for the set, by which xsl:element and other xsl:attribute-
set elements can load this attribute set.

use-attribute-sets, optional

The use-attribute-sets attribute adds attributes from a different attribute set into this

attribute set. More than one attribute set can be loaded by separating multiple names with
whitespace. The attributes defined in all loaded sets and all attributes defined by child
xsl:attribute elements are merged so that no attribute appears in the set more than once.

It is an error if an attribute set uses itself directly or indirectly.

Contents

This element contains zero or more xsl:attribute elements. Each such element adds one attribute

to the set.

xsl:call-template

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<xsl:call-template name = "QualifiedName">

 <! -- xsl:with-param* -- >

</xsl:call-template>

The xsl:call-template instruction invokes a template by name. The current node and context node

list are the same for the called template as for the calling template. Templates may be called
recursively; an xsl:template element may contain an xsl:call-template element that calls that
very xsl:template element. This technique is useful for doing things you'd accomplish with loops in

a traditional procedural programming language.

Attribute

name, required

The name of the xsl:template element to call.

Contents

This element contains zero or more xsl:with-param elements that pass parameters to the named

template.

xsl:choose

<xsl:choose>

 <! -- (xsl:when+, xsl:otherwise?) -- >

</xsl:choose>

The xsl:choose element selects one (or none) of a sequence of alternatives.

Contents

This element contains one or more xsl:when elements, each of which has a test condition. The
contents of the first xsl:when child whose test condition is true are output.

The xsl:choose element may have an optional xsl:otherwise element whose contents are output

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only if none of the test conditions in any of the xsl:when elements is true.

If the xsl:choose does not have an xsl:otherwise child element, and none of the test conditions in
any of the xsl:when child elements is true, then this element does not produce output.

xsl:comment

<xsl:comment>

 <! -- template -- >

</xsl:comment>

The xsl:comment instruction inserts a comment into the result tree.

Contents

The content of xsl:comment is a template that will be instantiated to form the text of the comment

inserted into the result tree. The result of instantiating this template should only be text nodes that
do not contain the double hyphen (--) or end with a hyphen.

xsl:copy

<xsl:copy

 use-attribute-sets = "QualifiedName1 QualifiedName2...">

 <! -- template -- >

</xsl:copy>

The xsl:copy element copies the current node from the source document into the output document.

It copies the node itself and any namespace nodes the node possesses. However, it does not copy
the node's children or attributes.

Attribute

use-attribute-sets, optional

A whitespace-separated list of xsl:attribute-set names. These attribute sets are merged,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and all attributes in the merged set are added to the copied element.

Contents

If the current node is an element node, attributes can be added via xsl:attribute children. If the
current node is the root node or an element node (a node that can have children), then xsl:copy

may contain a template that specifies the content of the element inserted into the result tree. All
xsl:attribute elements must precede the output template.

xsl:copy-of

<xsl:copy-of

 select = "expression" />

The xsl:copy-of instruction inserts whatever is identified by the select attribute into the output

document. This instruction copies the specific nodes identified by the expression, as well as all those
nodes' children, attributes, namespaces, and descendants. This is how it differs from xsl:copy. If the

expression selects something other than a node-set, such as a number, then the expression is
converted to its string-value, and the string is output.

Attribute

select, required

An XPath expression identifying the object to copy into the result tree.

xsl:decimal-format

 <xsl:decimal-format

 name = "QualifiedName"

 decimal-separator = "char"

 grouping-separator = "char"

 infinity = "string"

 minus-sign = "char"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 NaN = "string"

 percent = "char"

 per-mille = "char"

 zero-digit = "char"

 digit = "char"

 pattern-separator = "char" />

The xsl:decimal-format top-level element defines a pattern by which the format-number()

function can convert floating-point numbers into text strings. The defaults work well for English, but
details may change for other languages and locales, such as French or Chinese.

Attributes

name, optional

The string by which the format-number() function identifies the xsl:decimal-format

element to use. If this attribute is omitted, then this element establishes the default decimal
format used by the format-number() function.

decimal-separator, optional

The character that separates the integer part from the fractional point in a floating-point
number. This character is a period (decimal point) in English and a comma in French. It may be
something else in other languages. If not specified, the default is a period.

grouping-separator, optional

The character that separates groups of digits; for example, the comma that separates every
three digits in English or the space in French. If this is not specified, the comma is the default.

infinity, optional

The string that represents IEEE 754 infinity; Infinity by default.

minus-sign, optional

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The character prefixed to negative numbers; a hyphen by default.

NaN, optional

The string that represents IEEE 754 Not a Number; NaN by default.

percent, optional

The character that represents a percent; % by default.

per-mille, optional

The character that represents a per mille; by default.

zero-digit, optional

The character that represents zero; 0 by default. Digits 1 through 9 will be represented by the
nine subsequent Unicode values after this one. For instance, setting zero-digit to A would set
1 to B, 2 to C, 3 to D, and so on. This is also the character used to represent 0 in format

patterns.

digit, optional

The character that represents a digit in a format pattern; # by default.

pattern-separator, optional

The character that separates positive and negative subpatterns in a format pattern; ; by

default.

xsl:element

<xsl:element

 name = "QualifiedName"

 namespace = "URI"

 use-attribute-sets = "QualifiedName1 QualifiedName2...">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <! -- template -- >

</xsl:element>

The xsl:element instruction inserts an element into the result tree. The element's name is given by
the name attribute. The element's namespace URI, if any, is given by the optional namespace
attribute. Attributes can be added via xsl:attribute children or by referencing an xsl:attribute-
set declared elsewhere in the stylesheet from the use-attribute-sets attribute. Finally, the
element's contents are determined by instantiating the template contained in the xsl:element

element's content.

Attributes

name, required, attribute value template

The name of the element this instruction creates.

namespace, optional, attribute value template

The namespace URI of the element this instruction creates. If this attribute is omitted, then the
namespace is determined by matching the name's prefix (or lack thereof) to the namespace
declarations in scope at this point in the stylesheet.

use-attribute-sets, optional

A whitespace-separated list of names of xsl:attribute-set elements declared as top-level

elements elsewhere in the stylesheet. These attribute sets are merged, and all attributes in the
merged set are added to the element.

Contents

The contents of this element are a template. Once instantiated, this template forms the content of
the element inserted into the result tree.

xsl:fallback

<xsl:fallback>

 <! -- template -- >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</xsl:fallback>

The xsl:fallback instruction normally appears as a child of an extension element. If the processor

does not recognize the extension element, then it instantiates the contents of all the element's
xsl:fallback children in order. If the processor does recognize the element in which the
xsl:fallback element appears, then the contents of the xsl:fallback element will not be output.

Contents

The contents of this element are a template that is instantiated and output if and only if the XSLT
processor does not recognize the xsl:fallback element's parent element.

xsl:for-each

<xsl:for-each select = "node-set-expression">

 <! -- (xsl:sort*, template) -- >

</xsl:for-each>

The xsl:for-each instruction iterates over the nodes identified by its select attribute and applies

templates to each one.

Attribute

select, required

An XPath node-set expression identifying which nodes to iterate over.

Contents

Normally, the selected nodes are processed in the order in which they appear in the document.
However, nodes can be sorted using xsl:sort child elements. The first such element is the primary

sort key, the second is the secondary sort key, and so on.

The xsl:for-each element must also contain a template that is instantiated once for each member
of the node-set returned by the node-set expression in the select attribute.

xsl:if

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<xsl:if test = "boolean-expression">

 <! -- template -- >

</xsl:if>

The xsl:if instruction contains a template that is instantiated if and only if the XPath expression
contained in its test attribute is true. There is no xsl:else or xsl:else-if element. For these
purposes, use xsl:choose instead.

Attribute

test, required

An XPath expression returning a Boolean. If this expression is true, the contents of the xsl:if
element are instantiated. If it's false, they're not.

Contents

A template is instantiated if the test attribute evaluates to true.

xsl:import

<xsl:import href = "URI" />

The xsl:import top-level element imports the XSLT stylesheet found at the URI given by the href

attribute. Source documents are processed using the combination of templates in the imported and
importing stylesheets. In the event of a conflict between templates in the two stylesheets, the ones in
the importing stylesheet take precedence. In the event of a conflict between imported stylesheets,
the last one imported takes precedence.

All xsl:import elements must be immediate children of the root xsl:stylesheet element.

Furthermore, they must appear before all other top-level elements.

An imported stylesheet may itself import another stylesheet. A stylesheet may not import a
stylesheet that was already imported, directly or indirectly. That is, it's an error if A imports B, which
imports A, thus creating a circular reference.

Attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

href, required

The relative or absolute URI of the stylesheet to import. Relative URIs are resolved relative to
the base URI of the importing stylesheet.

xsl:include

<xsl:include href = "URI" />

The xsl:include top-level element copies the contents of the xsl:stylesheet or xsl:transform
element found at the URI given by the href attribute. Unlike xsl:import, whether a template or

other element comes from the including or the included stylesheet has absolutely no effect on the
precedence of the various rules.

An included stylesheet may include another stylesheet. A stylesheet may not include a stylesheet that
was already included, directly or indirectly; it is an error if A includes B, which includes A.

Attribute

href, required

The relative or absolute URI of the stylesheet to include. Relative URIs are resolved relative to
the including stylesheet's base URI.

xsl:key

<xsl:key

 name = "QualifiedName"

 match = "pattern"

 use = "expression" />

The xsl:key top-level element defines one or more keys that can be referenced from elsewhere in
the stylesheet using the key() function. Each key has a name, a string-value, and a node.

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

name, required

The key's name.

match, required

An XSLT match pattern, like that used by xsl:template, specifying which nodes have this key.
If this pattern matches more than one node in the source document, then a single xsl:key

element may define many keys, all with the same name and possibly the same value, but with
different nodes.

use, required

An XPath expression that is converted to a string to give the value of keys defined by this
element. The expression is evaluated with respect to each key's node. If match identifies
multiple nodes, then use may produce different values for each key.

xsl:message

<xsl:message

 terminate = "yes" | "no">

 <! -- template -- >

</xsl:message>

The xsl:message instruction sends a message to the XSLT processor. Which messages the processor

understands and what it does with messages it understands is processor-dependent. Printing
debugging information on stderr or stdout is one common use of xsl:message.

Attribute

terminate, optional

If the attribute is present and has the value yes, then the XSLT processor should halt after the

message is delivered and acted on.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Contents

An xsl:message element's content is a template instantiated to create an XML fragment. The result

is then delivered to the XSLT processor as the message.

The XSLT specification does not define XML fragment, and various XSLT
processors interpret it differently. It may be a result tree fragment or an XML
fragment, as defined by the now moribund XML Fragment Interchange working
draft. It may be something else. Clarification from the W3C is necessary but
does not seem to be forthcoming.

xsl:namespace-alias

<xsl:namespace-alias

 stylesheet-prefix = "prefix"

 result-prefix = "prefix" />

The top-level xsl:namespace-alias element declares that one namespace URI in the stylesheet

should be replaced by a different namespace URI in the result tree. Aliasing is particularly useful
when transforming XSLT into XSLT using XSLT; consequently, it is not obvious which names belong
to the input, which belong to the output, and which belong to the stylesheet.

Attributes

stylesheet-prefix, required

The prefix bound to the namespace used inside the stylesheet itself. May be set to #default to

indicate that the nonprefixed default namespace should be used.

result-prefix, required

The prefix bound to the namespace used in the result tree. May be set to #default to indicate

that the nonprefixed default namespace should be used.

xsl:number

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <xsl:number

 value = "number-expression"

 count = "pattern"

 from = "pattern"

 level = "single" | "multiple" | "any"

 format = "letter or digit"

 lang = "langcode"

 letter-value = "alphabetic" | "traditional"

 grouping-separator = "char"

 grouping-size = "number" />

The xsl:number instruction inserts a formatted integer into the result tree.

Attributes

value, optional

This XPath expression returns the number to be formatted. If necessary, the result of the
expression is rounded to the nearest integer. The value attribute is often omitted, in which

case the number is calculated from the position of the current node in the source document.
The position is calculated as specified by the level, count, and from attributes.

count, optional

This attribute contains a pattern that specifies which nodes should be counted at those levels.
The default is to count all nodes with the same node type (element, text, attribute, etc.) and
name as the current node.

from, optional

This attribute contains a pattern identifying the node from which counting starts; that is, it
identifies a node that serves as a cutoff point. Any nodes that precede this node are not

http://lib.ommolketab.ir
http://lib.ommolketab.ir

counted, even if they match the count pattern.

level, optional

This attribute specifies which levels of the source tree should be considered in determining the
position of the current node. It can be set to single to count the preceding siblings of the
current node's ancestor that match the count pattern. It can be set to any to count all nodes in
the document that match the count pattern and precede the current node. It can be set to
multiple to produce hierarchical sequences of numbers such as 2.7.3, where each number in
the sequence is calculated from the preceding sibling's ancestor node that matches the count
pattern. The default is single.

format, optional, attribute value template

This attribute determines how the list is numbered. Format tokens and sequences they produce
include the following:

1

1, 2, 3, 4, 5, 6, . . .

01

01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, . . .

A

A, B, C, D, . . . , Z, AA, AB, AC, . . .

a

a, b, c, d, . . . , z, aa, ab, ac, . . .

i

i, ii, iii, iv, v, vi, vii, viii, ix, x, xi, . . .

I

http://lib.ommolketab.ir
http://lib.ommolketab.ir

I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, . . .

lang, optional, attribute value template

This is the RFC 1766 language code describing the language in which the number should be
formatted (e.g., en or fr-CA).

letter-value, optional, attribute value template

The default is traditional. However, you can set this attribute to alphabetic to indicate that
a format of I should start the sequence I, J, K, L, M, N, . . . rather than I, II, III, IV, V, VI, . . .

grouping-separator, optional, attribute value template

This is the character that separates groups of digits. For instance, in English, the comma
customarily separates every three digits, as in 2,987,667,342. In French, a space is used
instead, so this number would be formatted as 2 987 667 342.

grouping-size, optional, attribute value template

This is the number of digits in each group. In most languages, including English, digits are
divided into groups of three. However, a few languages use groups of four.

xsl:otherwise

<xsl:otherwise>

 <! -- template -- >

</xsl:otherwise>

The xsl:otherwise element only appears as the last child element of an xsl:choose element. It
serves as the default result if no xsl:when element in the same xsl:choose element is instantiated.

Contents

The contents are a template that is instantiated if and only if none of the xsl:choose element's
xsl:when sibling elements is true.

xsl:output

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<xsl:output

 method = "xml" | "html" | "text" | "PrefixedName"

 version = "NMTOKEN"

 encoding = "encoding_name"

 omit-xml-declaration = "yes" | "no"

 standalone = "yes" | "no"

 doctype-public = "PUBLIC_ID"

 doctype-system = "SYSTEM_ID"

 cdata-section-elements = "element_name_1 element_name_2..."

 indent = "yes" | "no"

 media-type = "string" />

The top-level xsl:output element helps determine the exact formatting of the XML document

produced when the result tree is stored in a file, written onto a stream, or otherwise serialized into a
sequence of bytes. It has no effect on the production of the result tree itself.

Attributes

method, optional

The default method is xml, which simply means that the serialized output document will be a
well-formed external parsed entity or XML document. If method is set to html, or if the method
attribute is not present and the root element of the output tree is html, in any combination of

case, then the processor attempts to generate HTML that is more compatible with existing
browsers. For example, empty-element tags like
 are converted to
. The text

method outputs only the contents of the text nodes in the output tree. It strips all markup.
XSLT processors may also recognize and support other values that are indicated by prefixed
names, such as saxon:xhtml and jd:canonical-xml.

version, optional

A name token that identifies the output method's version. In practice, this has no effect on the
output.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

encoding, optional

The encoding the serializer should use, such as ISO-8859-1 or UTF-16.

omit-xml-declaration, optional

If this attribute has the value yes, then no XML declaration is included. If it has the value no or

is not present, then an XML declaration is included.

standalone, optional

The value of the standalone attribute in the XML declaration. Like that attribute, it must have
the value yes or no.

doctype-public, optional

The public identifier used in the document type declaration.

doctype-system, optional

The system identifier used in the document type declaration.

cdata-section-elements, optional

A whitespace-separated list of qualified element names in the result tree whose contents
should be emitted using CDATA sections.

indent, optional

If this attribute has the value yes, then the processor is allowed (but not required) to insert
extra whitespace to attempt to "pretty-print" the output tree. The default is no.

media-type, optional

The output's MIME media type, such as text/html or application/xml.

xsl:param

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<xsl:param

 name = "QualifiedName"

 select = "expression">

 <! -- template -- >

</xsl:param>

Inside an xsl:template element, an xsl:param element receives a named argument passed to the
template by xsl:with-param. It also provides a default value that's used when the caller does not
provide a value for the parameter. A top-level xsl:param element defines a global variable that can
be set from the outside environment when invoking the stylesheet. If an xsl:apply-templates or
xsl:call-template passes in a parameter value using xsl:with-param when the template is
invoked, that value overrides any default value the xsl:param element may have. The parameter

can be dereferenced using the form $name in expressions.

Attributes

name, required

The parameter's name.

select, optional

An XPath expression that is evaluated to produce the parameter's value. If xsl:param has a
select attribute, then it must be an empty element. If a nonempty xsl:param element does
not have a select attribute, then the value is the result of instantiating the template in the
content. If an empty xsl:param element does not have a select attribute, then the value is

the empty string.

Contents

An xsl:param element's content is a template that is instantiated to produce a result-tree fragment.
This result-tree fragment then becomes the parameter's value. A nonempty xsl:param element must
not have a select attribute.

xsl:preserve-space

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<xsl:preserve-space

 elements="QualifiedName_1 QualifiedName_2..." />

The top-level xsl:preserve-space element specifies which elements in the source document will not

have whitespace stripped from them before they are transformed. Whitespace stripping removes text
nodes that contain only whitespace (the space character, the tab character, the carriage return, and
the line feed). By default, whitespace is preserved in an element unless its name is listed in the
elements attribute of an xsl:strip-space element. This element allows you to override the list
given in xsl:strip-space; if an element is listed in both xsl:strip-space and xsl:preserve-
space, then its whitespace is preserved.

Attribute

elements, required

A whitespace-separated list of elements in which space should be preserved. Besides element
names, the elements attribute can contain an asterisk to indicate that whitespace should be

preserved in all elements. It can also contain a namespace prefix followed by a colon and an
asterisk to indicate that whitespace should be preserved in all elements in the given
namespace.

xsl:processing-instruction

<xsl:processing-instruction

 name = "target">

 <! -- template -- >

</xsl:processing-instruction>

The xsl:processing-instruction element inserts a processing instruction into the result tree.

Attribute

name, required, attribute value template

The processing instruction's target.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Contents

The xsl:processing-instruction element's contents are a template that is instantiated to produce

the processing-instruction data. This template may include XSLT instructions, provided that the result
of instantiating this template is text that does not contain the two-character string ?>.

xsl:sort

<xsl:sort

 select = "string-expression"

 data-type = "text" | "number" | "PrefixedName"

 lang = "langcode"

 order = "ascending" | "descending"

 case-order = "upper-first" | "lower-first" />

The xsl:sort instruction appears as a child of either xsl:apply-templates or xsl:for-each. It

changes the order in which templates are applied to the context node list from document order to
another order, such as alphabetic. You can perform multiple key sorts (e.g., sort first by last name,
then by first name, then by middle name) using multiple xsl:sort elements in descending order of

the keys' importance.

Attributes

select, optional

The key to sort by. If select is omitted, then the sort key is set to the value of the current

node.

data-type, optional, attribute value template

By default, sorting is purely alphabetic. However, alphabetic sorting leads to strange results
with numbers. For instance, 10, 100, and 1,000 all sort before 2, 3, and 4. You can specify
numeric sorting by setting data-type to number.

lang, optional, attribute value template

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sorting is language dependent. Setting the lang attribute to an RFC 1766 language code

changes the language. The default language is system dependent.

order, optional, attribute value template

The order by which strings are sorted, either descending or ascending. The default is

ascending order.

case-order, optional, attribute value template

upper-first or lower-first to specify whether uppercase letters sort before lowercase

letters or vice versa. The default depends on the language.

xsl:strip-space

<xsl:strip-space

 elements="QualifiedName_1 QualifiedName_2..." />

The top-level xsl:strip-space element specifies which elements in the source document have

whitespace stripped from them before they are transformed. Whitespace stripping removes all text
nodes that contain only whitespace (the space character, the tab character, the carriage return, and
the line feed). By default, whitespace is not stripped from an element unless its name is listed in the
elements attribute of an xsl:strip-space element.

This element does not trim leading or trailing whitespace, or otherwise normalize whitespace in
elements that contain even a single nonwhitespace character.

Attribute

elements, required

A whitespace-separated list of elements in which space should be stripped. Besides element
names, the elements attribute can contain an asterisk to indicate that whitespace should be

stripped in all elements or contain a namespace prefix followed by a colon and asterisk to
indicate that whitespace should be stripped in all elements in the given namespace.

xsl:stylesheet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 id = "ID"

 extension-element-prefixes = "prefix1 prefix2..."

 exclude-result-prefixes = "prefix1 prefix2..."

 version = "1.0">

 <! -- (xsl:import*, top-level-elements) -- >

</xsl:stylesheet>

The xsl:stylesheet element is the root element for XSLT documents.

Attributes

xmlns:xsl, technically optional but de facto required

A standard namespace declaration that maps the prefix xsl to the namespace URI
http://www.w3.org/1999/XSL/Transform. The prefix can be changed if necessary.

id, optional

Any XML name that's unique within this document's ID type attributes.

extension-element-prefixes, optional

A whitespace-separated list of namespace prefixes used by this document's extension
elements.

exclude-result-prefixes, optional

A whitespace-separated list of namespace prefixes whose declarations should not be copied
into the output document.

version, required

http://www.w3.org/1999/XSL/Transform
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Currently, always the value 1.0. However, XSLT 2.0 may be released in the lifetime of this

edition with a concurrent updating of this number.

Contents

Any xsl:import elements, followed by any other top-level elements in any order.

xsl:template

<xsl:template

 match = "pattern"

 priority = "number"

 name = "QualifiedName"

 mode = "QualifiedName">

 <! -- (xsl:param*, template) -- >

</xsl:template>

The xsl:template top-level element is the key to all of XSLT. Confusingly, the xsl:template
element itself is not a template. Rather, it contains a template. The entire xsl:template element is
called a template rule. The match attribute contains a pattern against which nodes are compared as

they're processed. If the pattern matches a node, then the template (i.e., the contents of the
template rule) is instantiated and inserted into the output tree.

Attributes

match, optional

A pattern against which nodes can be compared. This pattern is a location path using only the
child, attribute, and descendant-or-self axes or a combination of several such location

paths.

priority, optional

A number. If more than one template rule with the same import precedence matches a given
node, the one with the highest priority is chosen. If this attribute is not present, then the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

template rule's priority is calculated in the following way:

Template rules with match patterns composed of just an element or attribute name (e.g.,
person or @profession) have priority 0.

Template rules with match patterns composed of just a processing-

instruction('target') node test have priority 0.

Template rules with match patterns in the form prefix:* have priority -0.25.

Template rules with match patterns that just have a wildcard node test (*, @*,
comment(), node(), text(), and processing-instruction()) have priority -0.5.

(This means that built-in template rules have priority -0.5. However, they are also
imported before all other template rules, and thus never override any explicit template
rule, regardless of priority.)

Template rules with any other patterns (person[name='Feynman'],
people/person/@profession, person/text(), etc.) have priority 0.5.

It is an error if two or more template rules match a node and have the same priority. However,
in this case, most XSLT processors choose the last template rule occurring in the stylesheet,
rather than signaling the error.

name, optional

A name by which this template rule can be invoked from an xsl:call-template element,

rather than by node matching.

mode, optional

If the xsl:template element has a mode, then this template rule is matched only when the
calling instruction's mode attribute matches this mode attribute's value.

Contents

The template that should be instantiated when this element is matched or called by name.

xsl:text

<xsl:text

 disable-output-escaping = "yes" | "no">

 <! -- #PCDATA -- >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</xsl:text>

The xsl:text instruction is used inside templates to indicate that its contents should be output as

text. Its contents are pure text, not elements. If the contents are composed exclusively of
whitespace, then that whitespace is copied literally into the output document, rather than being
stripped as it would be, by default, in most other elements.

Attribute

disable-output-escaping, optional

Setting the disable-output-escaping attribute to yes indicates that characters such as < and
&-which are normally replaced by entity or character references such as < or
<-should instead be output as the literal characters themselves. Note that the xsl:text
element's content in the stylesheet must still be well-formed, and any < or & characters must
be written as <, &, or the equivalent character references. However, when the output

document is serialized, these references are replaced by the actual represented characters
rather than references that represent them.

xsl:transform

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 id = "ID"

 extension-element-prefixes = "prefix1 prefix2..."

 exclude-result-prefixes = "prefix1 prefix2..."

 version = "1.0">

 <! -- (xsl:import*, top-level-elements) -- >

</xsl:transform>

The xsl:transform element is a seldom-used synonym for the xsl:stylesheet root element. It has
the same attributes and contents as xsl:stylesheet and is used in exactly the same way as
xsl:stylesheet. See the description of the xsl:stylesheet element for the discussion of its

attributes and content.

xsl:value-of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<xsl:value-of

 select = "expression"

 disable-output-escaping = "yes" | "no" />

The xsl:value-of element computes the string-value of an XPath expression and inserts it into the

result tree. The string-values of the seven different kinds of nodes are as follows:

element

The text content of the element after all entity references are resolved and all tags, comments,
and processing instructions are stripped

text

The text of the node

attribute

The normalized value of the attribute

root

The value of the root element

processing instruction

The processing instruction data (<?, ?>, and the target are not included)

comment

The text of the comment (<!-- and --> are not included)

namespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The namespace URI

You can compute values of things that aren't nodes. The value of a node-set is the value of the first
node in the set. The value of a string expression is the string. The value of a number expression is
the string form of the number. The value of a Boolean expression is the string true if the Boolean is
true or the string false if the Boolean is false.

Attributes

select, required

This is the XPath expression whose value is inserted into the result tree.

disable-output-escaping, optional

If this attribute has the value yes, then when the output document is serialized, characters
such as < and & in the value are not replaced with entity or character references. This may

result in a malformed document.

xsl:variable

<xsl:variable

 name = "QualifiedName"

 select = "expression">

 <! -- template -- >

</xsl:variable>

The xsl:variable element binds a name to a value of any type (string, number, node-set, etc.).
This variable can then be dereferenced elsewhere using the form $name in an expression.

The word "variable" is a little misleading. Once the value of an xsl:variable is
set, it cannot be changed. An xsl:variable is more like a named constant

than a traditional variable.

name, required

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The variable's name.

select, optional

An XPath expression that sets the value of the variable. If xsl:variable has a select

attribute, then it must be an empty element.

Contents

A template that is instantiated to produce the variable's value as a result-tree fragment. If an
xsl:variable is not an empty element, it must not have a select attribute. If xsl:variable is
empty and does not have a select attribute, then its value is the empty string.

xsl:when

<xsl:when

 test = "boolean-expression">

 <! -- template -- >

</xsl:when>

The xsl:when element only appears as a child of an xsl:choose element.

Attribute

test, required

An XPath expression that evaluates to either true or false. The xsl:when contents are inserted
into the result tree if and only if this is the first xsl:when element in the xsl:choose element
whose test attribute evaluates to true.

Contents

The template to be instantiated and inserted into the result tree if the test attribute is true.

xsl:with-param

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<xsl:with-param

 name = "QualifiedName"

 select = "expression">

 <! -- template -- >

</xsl:with-param>

The xsl:with-param element passes a named parameter to a template that expects it. This can
either be a child of xsl:apply-templates or xsl:call-template. An xsl:template element
receives the parameter via an xsl:param element with the same name. If a template expects to
receive a particular parameter and doesn't get it, then it can take the default from the xsl:param

element instead.

Attributes

name, required

The name of the parameter.

select, optional

An XPath expression evaluated to form the value of the parameter. If xsl:with-param has a
select attribute, then it must be an empty element. If xsl:with-param does not have a
select attribute, then the value is taken from the element's contents.

Contents

A template that is instantiated and passed as the parameter's value. If xsl:with-param is not an
empty element, it must not have a select attribute. If xsl:with-param is empty and does not have
a select attribute, then its value is the empty string.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

24.3 XSLT Functions

XSLT supports all functions defined in XPath. In addition, it defines 10 extra functions. Most XSLT
processors also make several extension functions available and allow you to write your own extension
functions in Java or other languages. The extension API is nonstandard and processor-dependent.

XPath and XSLT functions are weakly typed. Although one type or another is occasionally preferred,
the processor normally converts any type you pass in to the type the function expects. Functions that
only take node-sets as arguments are an exception to the weak-typing rule. Other data types,
including strings, numbers, and Booleans, cannot be converted to node-sets automatically.

XPath and XSLT functions also use optional arguments, which are filled in with defaults if omitted. In
the following sections, we list the most common and useful variations of each function.

current()

node-set current()

The current() function returns a node-set containing a single node, the current node. Outside of an

XPath predicate, the current node and the context node (represented by a period in the abbreviated
XPath syntax) are identical. However, in a location step predicate, the context node changes
according to the location path, while the current node stays the same.

document()

node-set document(string uri)

node-set document(node-set uris)

node-set document(string uri, node-set base)

node-set document(node-set uris, node-set base)

The document() function loads the XML document at the URI specified by the first argument and

returns a node-set containing that document's root node. The URI is normally given as a string, but it
may be given as another type that is converted to a string. If the URI is given as a node-set, then
each node in the set is converted to a string, and the returned node-set includes root nodes of all
documents referenced by the URI argument.

If the URI contains a fragment identifier, then the node-set returned may indicate something other

http://lib.ommolketab.ir
http://lib.ommolketab.ir

than the root node and thus contain more than one node. If an error occurs while retrieving a
document, most XSLT processors stop processing the stylesheet.

The document() function may also take a node-set as an optional second argument, in which case

the base URI of the first node (in document order) in this set is used to resolve relative URIs given in
the first argument. If the second argument is omitted, then base URIs are resolved relative to the
stylesheet's location.

element-available()

boolean element-available(string qualifiedName)

element-available() returns true if and only if the argument identifies an XSLT instruction element

the processor recognizes. If the qualified name maps to a non-XSLT namespace URI, then it refers to
an extension element. Assuming use of a fully conformant processor, you don't need to use this
function to test for standard elements; just use it for extension elements.

format-number()

string format-number(number x, string pattern)

string format-number(number x, string pattern, string decimalFormat)

The format-number() function converts the number x to a string using the pattern specified by the
second argument, as well as the xsl:decimal-format element named by the third argument (or the

default decimal format, if the third argument is omitted).

This function's behavior is modeled after the java.text.DecimalFormat class in Java 1.1 (not 1.2 or

later). The pattern specifies whether leading and trailing zeros should be printed, whether the
number's fractional part is printed, the number of digits in a group, and the leading and trailing
suffixes for negative and positive numbers. The patterns are described using an almost Backus-Naur
Form grammar, given here:

pattern -> subpattern{;subpattern}

subpattern -> {prefix}integer{.fraction}{suffix}

prefix -> '\\u0000'..'\\uFFFD' - specialCharacters

suffix -> '\\u0000'..'\\uFFFD' - specialCharacters

integer -> '#'* '0'* '0'

fraction -> '0'* '#'*

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first line is not pure BNF. The first subpattern is used for positive numbers. The second
subpattern, which may not be present, is used for negative numbers. If it's not present, negative
numbers use the positive format but are prefixed with a minus sign. Table 24-1 defines the symbols
used in the grammar.

Table 24-1. Symbols used in the pattern grammar

Symbol Meaning

0
A digit, including leading or trailing zeros; may be set to a different character using the
zero-digit attribute of xsl:decimal-format.

#
A digit, except for leading or trailing zeros; may be set to a different character using the
digit attribute of xsl:decimal-format.

.
A decimal separator; may be set to a different character using the decimal-separator
attribute of xsl:decimal-format.

,
A grouping separator; may be set to a different character using xsl:decimal-format's
grouping-separator attribute.

;
Separates the positive and negative format patterns in a format string; may be set to a
different character using the pattern-separator attribute of xsl:decimal-format.

-
A default negative prefix; may be set to a different character using xsl:decimal-
format's minus-sign attribute.

%
Multiplies by 100 and shows as percentage; may be set to a different character using
xsl:decimal-format's percent attribute.

Multiplies by 1,000 and shows as per mille; may be set to a different character using
xsl:decimal-format's permille attribute.

X Indicates that any other character can be used in the prefix or suffix.

` Used to quote special characters in a prefix or suffix.

For instance, #,##0.### is a common decimal-format pattern. The # mark indicates any digit
character except a leading or trailing zero. The comma is the grouping separator. The period is the
decimal separator. The 0 is a digit that is printed even if it's an insignificant zero. This pattern is
interpreted as follows:

The integer part contains as many digits as necessary.1.

The grouping separator separates every three digits.2.

If the integer part only contains zeros, a single zero is placed before the decimal separator.3.

Up to three digits are printed after the decimal point. However, any trailing zeros are not
printed.

4.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

No separate pattern is included for negative numbers. Thus, negative numbers are printed the
same as positive numbers, but they are prefixed with a minus sign.

5.

function-available()

boolean function-available(string qualifiedName)

function-available() returns true if the argument identifies a function in the processor's function

library; false otherwise. If the qualified name maps to a non-null namespace URI, then it refers to an
extension function. Otherwise, it refers to a built-in function from XPath or XSLT. Assuming you're
using a fully conformant processor, however, you don't need to test for standard functions, only for
extension functions.

generate-id()

string generate-id(node-set node)

string generate-id()

The generate-id() function returns a string that can be used as the value of an ID type attribute.

This function always produces the same string for the same node and a different string for a different
node. If the node-set contains more than one node, then only the first node in the set is considered.
If the argument is omitted, then the node-set is set to the context node. If the node-set is empty,
then the empty string is returned.

key()

node-set key(string keyName, string value)

node-set key(string keyName, node-set values)

The key() function returns a node-set containing all nodes in the source document that have a key

with the name given by the first argument and the value given by the second argument. If the
second argument is a node-set, then the node-set returned contains all nodes that have a key with
the specified name and a value that matches that of any node in the second argument. Otherwise,
the returned node-set contains all nodes that have a key with the specified name and a value that
matches the second argument's string-value. Key names and values are assigned to nodes using the
xsl:key element.

system-property()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

object system-property(string qualifiedPropertyName)

The system-property() function returns the value of the named property. The type of the returned

object is processor- and property-dependent. If the processor does not recognize the property name,
then it returns an empty string.

XSLT processors are required to recognize and return values for these three properties:

xsl:version

A number specifying the version of XSLT implemented by the processor; this is normally 1.0,
but it may become 2.0 during this book's life span.

xsl:vendor

A string identifying the XSLT processor's vendor; for instance, Apache Software Foundation for
Xalan or SAXON 6.5.3 from Michael Kay for SAXON.

xsl:vendor-url

A string containing a URL for the XSLT processor's vendor; for instance,
http://xml.apache.org/xalan for Xalan or http://saxon.sourceforge.net for SAXON.

Implementations may also recognize and return values for other processor-dependent properties.

unparsed-entity-uri()

string unparsed-entity-uri(string entityName)

The unparsed-entity-uri() function returns the URI of the unparsed entity with the specified name

declared in the source document's DTD or the empty string, if no unparsed entity with that name
exists.

 < Day Day Up >

http://xml.apache.org/xalan
http://saxon.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

24.4 TrAX

Unfortunately, there is no standard API for XSLT that works across languages and engines: each
vendor provides its own unique API. The closest thing to a standard XSLT API is the Transformations
API for XML (TrAX), included in JAXP. However, this is limited to Java and is not even supported by all
Java-based XSLT engines. Nonetheless, since it is the closest thing to a standard there is, we will
discuss it here.

Code that transforms an XML document using an XSLT stylesheet through TrAX follows these six
steps. All of the classes mentioned are in the javax.xml.transform package, a standard part of

Java 1.4 and later and a separately installable option in earlier versions.

Call the TransformerFactory.newInstance() factory method to create a new
TransformerFactory object.

1.

Construct a Source object from the XSLT stylesheet.2.

Pass this Source object to the TransformerFactory object's newTransform() method to
create a Transform object.

3.

Construct a Source object from the input XML document you wish to transform.4.

Construct a Result object into which the transformed XML document will be output.5.

Pass the Source and the Result to the Transform object's transform() method.6.

The source can be built from a DOM Document object, a SAX InputSource, or an
InputStream-represented by the javax.xml.transform.dom.DOMSource,
javax.xml.transform.sax.SAXSource, and javax.xml.transform.stream.StreamSource classes,
respectively. The result of the transform can be a DOM Document object, a SAX ContentHandler, or
an OutputStream. These are represented by the javax.xml.transform.dom.DOMResult,
javax.xml.transform.sax.SAXResult, and javax.xml.transform.stream.StreamResult classes,

respectively.

For example, this code fragment uses the XSLT stylesheet found at
http://www.cafeconleche.org/books/xian/examples/08/8-8.xsl to transform the file people.xml in the
current working directory onto System.out:

TransformerFactory factory = TransformerFactory.newInstance();

URL u = new URL(

 "http://www.cafeconleche.org/books/xian/examples/08/8-8.xsl");

InputStream in = u.openStream();

http://www.cafeconleche.org/books/xian/examples/08/8-8.xsl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Source stylesheet = new StreamSource(in);

Transformer xform = factory.newTransformer(stylesheet);

InputStream people = new FileInputStream("people.xml");

Source original = new StreamSource(people);

Result transformed = new StreamResult(System.out);

xform.transform(original, transformed);

The procedure is much the same when the source or result is a DOM Document object or a SAX event
stream. Just use the DOMSource, SAXSource, DOMResult, and/or SAXResult classes as appropriate.
For example, this code fragment transforms the DOM Document object doc according to the

stylesheet at http://www.cafeconleche.org/books/xian/examples/08/8-8.xsl and passes the result
through the SAX ContentHandler object named handler:

Document doc;

// Build the doc object in the usual way...

TransformerFactory factory = TransformerFactory.newInstance();

URL u = new URL(

 "http://www.cafeconleche.org/books/xian/examples/08/8-8.xsl");

InputStream in = u.openStream();

Source stylesheet = new StreamSource(in);

Transformer xform = factory.newTransformer(stylesheet);

ContentHandler handler = new XMLCounter(); // From Chapter 19

Source original = new DOMSource(doc);

Result transformed = new SAXResult(handler);

xform.transform(original, transformed);

 < Day Day Up >

http://www.cafeconleche.org/books/xian/examples/08/8-8.xsl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 25. DOM Reference

This reference section documents the W3C Document Object Model (DOM)
Level 3 Core Recommendation dated 07 April 2004. The latest version of this
recommendation, along with any errata that have been reported, is available on
the W3C DOM Activity's web site (http://www.w3.org/DOM/DOMTR). The
symbols (2) and (3) will be used throughout this chapter to indicate in which
DOM level a feature became available.

The Document Object Model (DOM) is a language- and platform-independent object framework for
manipulating structured documents (see Chapter 19 for additional information). Just as XML is a
generic specification for creating markup languages, the DOM Core defines a generic library for
manipulating markup-based documents. The W3C DOM is actually a family of related
recommendations that provide functionality for many types of document manipulation, including
event handling, styling, traversing trees, manipulating HTML documents, and so forth. But most of
these recommendations are built on the basic functionality provided by the Core DOM.

The DOM presents a programmer with a document stored as a hierarchy of Node objects. The Node

interface is the base interface for every member of a DOM document tree. It exposes attributes
common to every type of document object and provides a few simple methods to retrieve type-
specific information without resorting to downcasting. This interface also exposes all methods used to
query, insert, and remove objects from the document hierarchy. The Node interface makes it easier

to build general-purpose tree-manipulation routines that are not dependent on specific document
element types.

 < Day Day Up >

http://www.w3.org/DOM/DOMTR
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

25.1 Object Hierarchy

The following table shows the DOM object hierarchy:

Object Permitted child objects

Document

Element (one is the maximum)

ProcessingInstruction

Comment

DocumentType (one is the maximum)

DocumentFragment
Element ProcessingInstruction Comment Text CDATASection
EntityReference

DocumentType None (leaf node)

EntityReference
Element ProcessingInstruction Comment Text CDATASection
EntityReference

Element
Element Text Comment ProcessingInstruction CDATASection
EntityReference

Attr Text EntityReference

ProcessingInstruction None (leaf node)

Comment None (leaf node)

Text None (leaf node)

CDATASection None (leaf node)

Entity
Element ProcessingInstruction Comment Text CDATASection
EntityReference

Notation None (leaf node)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

25.2 Object Reference

This section details the XML DOM Level 3 Core objects. The reference sections detail the descriptions,
attributes, and methods of each object in the language- independent IDL specification. Java examples
and bindings are presented to illustrate usage.

Attr

The Attr interface represents the value assigned to an attribute of an XML element. The parentNode,
previousSibling, and nextSibling of an Attr are always null. Although the Attr interface
inherits the Node base interface, many basic Node methods are not applicable.

An XML element can acquire an attribute in several ways. An element has an attribute value if:

The XML document explicitly provides an attribute value.

The document DTD specifies a default attribute value.

An attribute is added programmatically using the setAttribute() or setAttributeNode()
methods of the Element interface.

An Attr object can have EntityReference objects as children. The value attribute provides the
expanded DOMString representation of this attribute.

//Get the element's size attribute as an Attr object

Attr attrName = elem.getAttributeNode("size");

Attributes

The following attributes are defined for the Attr object:

isId: boolean(3)

Returns true if this attribute contains a unique identifier for the parent element node. Attributes are
tagged as identifiers by the DTD, the schema, or by using one of the setIdAttribute() methods of
the Element interface. Read-only.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java binding

public boolean isId();

name: DOMString

The name of the attribute. Read-only.

Java binding

public String getName();

Java example

// Dump element attribute names

Attr attr;

for (int i = 0; i < elem.getAttributes().getLength(); i++) {

 // temporarily alias the attribute

 attr = (Attr)(elem.getAttributes().item(i));

 System.out.println(attr.getName());

 }

ownerElement: Element(2)

This property provides a link to the Element object that owns this attribute. If the attribute is
currently unowned, it equals null. Read-only.

Java binding

public Element getOwnerElement();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

schemaTypeInfo: TypeInfo(3)

This property provides a link to any type information that may be available for this attribute, based
the DTD or Schema associated with the parent document. May be unreliable if the node has been
moved from one element to another. Read-only.

Java binding

public TypeInfo getSchemaTypeInfo();

specified: boolean

This indicates whether this attribute was explicitly set in the XML source for the parent element or is
a default value specified in the DTD or schema. Read-only.

Java binding

public boolean getSpecified();

Java example

// Dump element attribute names

for (int i = 0; i < elem.getAttributes().getLength(); i++) {

 // temporarily alias the attribute

 attr = (Attr)elem.getAttributes().item(i);

 // only show attributes that were explicitly included in the XML

 //source file

 // (i.e. ignore default attributes from the DTD.)

 if (attr.getSpecified()) {

 System.out.println(attr.getName());

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

value: DOMString

This attribute provides a simple way to set and retreive the Attr object's text value. When used to

get the text value, the attribute includes the expanded value of any general entity references. When
used to set the value, it creates a child Text node that contains the string value. Attempting to set
the value on a read-only node raises the NO_MODIFICATION_ALLOWED_ERR DOM exception.

Java bindings

public String getValue();

public void setValue(String value);

Java example

// Make all attribute values lowercase

Attr attr;

for (int i = 0; i < elem.getAttributes().getLength(); i++) {

 attr = (Attr)(elem.getAttributes().item(i));

 attr.setValue(attr.getValue().toLowerCase());

}

Methods

The Attr object has no methods.

CDATASection

The CDATASection interface contains the unparsed, unescaped data contained within CDATA blocks in
an XML document. Although this interface inherits the Text interface, adjacent CDATASection blocks
are not merged by the normalize() method of the Element interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java example

// Open an XML source file

try {

 FileInputStream fis = new FileInputStream("phone_list.xml");

 StringBuffer sb = new StringBuffer();

 // read the XML source file into memory

 int ch;

 while ((ch = fis.read()) != -1) {

 sb.append((char)ch);

 }

 // now, create a CDATASection object to contain it within

 // an element of our document using the CDATA facility

 CDATASection ndCDATA = doc.createCDATASection(sb.toString());

} catch (IOException e) {

 ...

CDATASection is a pure subclass of the Text interface and has no attributes or methods of its own.

See the Text interface section of this chapter for a list of applicable methods for accessing character
data in nodes of this type.

CharacterData

The CharacterData interface is completely abstract, extending the basic Node interface only to

support manipulation of character data. Every DOM object type that deals with text data inherits,
directly or indirectly, from this interface.

This interface's string-handling facilities are similar to those found in most modern programming
languages. Like C/C++ string-processing routines, all CharacterData routines are zero-based.

Java example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Create a new, unattached Text node

Text ndText = doc.createTextNode("The truth is out there.");

// cast it to the CharacterData interface

CharacterData ndCD = (CharacterData)ndText;

Attributes

The following attributes are defined for CharacterData:

data: DOMString

This attribute allows access to the "raw" data of the CharacterData node. Although a given DOM

implementation cannot arbitrarily limit the amount of character data that can be stored in a
CharacterData node, you may need to use the substringData method to retrieve the data in

manageable sections because of implementation constraints.

Exceptions

NO_MODIFICATION_ALLOWED_ERR

Raised on a write attempt when the data attribute is read-only for this DOM object type.

DOMSTRING_SIZE_ERR

Raised if the read value that would be returned is too large to be contained by a DOMString

type in the given implementation.

Java bindings

public String getData() throws DOMException;

public void setData(String data) throws DOMException;

Java example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Quote the CharacterData node contents

CharacterData ndCD =

 doc.createTextNode("Unquoted text.");

...

ndCD.setData('\"' + ndCD.getData() + '\"');

length: unsigned long

The size of the DOMString stored in the data attribute. For all methods of this interface that take an
index parameter, the valid range for the index is 0 <= index < length. This value can be 0 since it
is possible to have an empty CharacterData node. Read-only.

Java binding

public long getLength();

Java example

// Display the contents of a CharacterData node

CharacterData ndCD = (CharacterData)doc.createTextNode("This string has

 30 characters.");

System.out.println("The string \'" + ndCD.getData() + "\' has "

 + Long.toString(ndCD.getLength()) + " characters.");

Methods

The following methods are defined for CharacterData:

appendData: arg

This method appends contents of the arg parameter to the current contents of the data attribute.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Argument

arg: DOMString

The string to append.

Exception

NO_MODIFICATION_ALLOWED_ERR

Raised if this node is read-only.

Java binding

public void appendData(String arg) throws DOMException;

Java example

// Append to an existing string

// Create a new Text object and reference the CharacterData interface

CharacterData ndCD = (CharacterData)doc.createTextNode("The truth is ");

// flip a coin

ndCD.appendData((Math.random() < 0.5) ? "out there." : "in here.");

System.out.println(ndCD.getData());

deleteData: offset, count

This truncates the DOMString in the data attribute. This method removes count characters, starting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

at the offset position.

Arguments

offset: unsigned long

The position in the data attribute to remove count characters.

count: unsigned long

The count of characters to remove. If the offset + count is >= the length attribute, the
remainder-starting at position offset-is deleted.

Exceptions

INDEX_SIZE_ERR

Raised if the offset parameter is not a valid zero-based index into the data DOMString.

NO_MODIFICATION_ALLOWED_ERR

Raised if the node is read-only.

Java binding

public void deleteData(long offset, long count)

 throws DOMException;

Java example

// Create a new Text object and reference the CharacterData interface

CharacterData ndCD = doc.createTextNode("The truth is not out there.");

// change of heart

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ndCD.deleteData(12, 4);

System.out.println(ndCD.getData());

insertData: offset, arg

This method takes a string, splits the data attribute's current contents at the given offset, then
inserts the string from the arg parameter between the two substrings.

Arguments

offset: unsigned long

The zero-based offset in the data attribute where the insertion is made.

arg: DOMString

The string to be inserted.

Exceptions

INDEX_SIZE_ERR

Raised if the offset parameter is not a valid, zero-based index into the data DOMString.

NO_MODIFICATION_ALLOWED_ERR

Raised if the node is read-only.

Java binding

public void insertData(long offset, String arg) throws

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DOMException;

Java example

// Insert data into a string

boolean fCynical = true;

// create a new Text object, and reference the CharacterData interface

CharacterData ndCD = doc.createTextNode("The truth is out there.");

...

// check for cynicism

if (fCynical) {

 ndCD.insertData(12, " not");

}

System.out.println(ndCD.getData());

replaceData: offset, count, arg

This replaces a substring within the data attribute with another string value arg, using the specified
offset and count parameters.

Arguments

offset: long

The offset of the beginning of the replacement region.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

count: long

The number of characters to replace. If offset + count is >= the length attribute, everything
beyond the offset character position is replaced.

arg: DOMString

The replacement string.

The replaceData operation is the equivalent of the following code fragment:

cdNode.deleteData(offset, count);

cdNode.insertData(offset, arg);

Exceptions

INDEX_SIZE_ERR

Raised if the offset parameter is not a valid, zero-based index into the data DOMString.

NO_MODIFICATION_ALLOWED_ERR

Raised if the node is read-only.

Java binding

public void replaceData(long offset, long count,

 String arg) throws DOMException;

Java example

 // Create a new Text object and reference the CharacterData interface

CharacterData ndCD = doc.createTextNode("The truth is not out there.");

// replace the truth

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String strFind = "truth";

String strReplace = "dog";

ndCD.replaceData(ndCD.getData().indexOf(strFind), strFind.length(),

 strReplace);

System.out.println(ndCD.getData());

substringData: offset, count

This returns a DOMString that contains a subset of the string stored in the data attribute. The
offset and count arguments define the substring. Although the offset argument must represent a
valid position within the node data, the end-point of the substring could fall past the end of the data
attribute. If this happens, the method returns everything between the offset position and the end of
the data string.

Arguments

offset: unsigned long

Zero-based, starting offset of the substring to return. A valid offset must be >= 0 and < the
length attribute of the node.

count: unsigned long

Count of characters to return.

Exceptions

INDEX_SIZE_ERR

Raised if the given offset is < 0, >= the length attribute, or if the count parameter is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

negative.

DOMSTRING_SIZE_ERR

Raised if the value that would be returned is too large to be contained by a DOMString type in

the given implementation.

Java binding

public String substringData(unsigned long offset, unsigned long count)

 throws DOMException;

Java example

// Get a reference to the CharacterData interface

CharacterData ndCD = doc.createTextNode("The truth is out there.");

// we only want the "truth"

String strTruth = ndCD.substringData(4, 5);

System.out.println("The substring is '" + strTruth + '\'');

Comment

This object contains the text of an XML comment (everything between the opening <!-- and closing
-->). It inherits from CharacterData.

The DOM specification does not require XML parsers to preserve the original
document comments after the document is parsed. Some implementations strip
comments as part of the parsing process.

Java example

// Create a comment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Comment ndComment = doc.createComment("Document was parsed by DOM utility.");

// and add it to the document

doc.appendChild(ndComment);

Document

The Document interface represents an entire, well-formed XML document. Once the Document object
is created via the DOMImplementation interface, you can access every aspect of the underlying XML
document through the various tree-navigation methods exposed by the Node interface, the parent of
the Document interface.

In DOM documents, document elements cannot exist outside of a parent document. For this reason,
the Document interface exposes several factory methods used to create new document elements.

Attributes

The following attributes are defined for the Document object:

doctype: DocumentType

This attribute returns an instance of the DocumentType interface representing the document type
declaration for this document. If no DOCTYPE declaration was in the document, this property is null.
Prior to DOM Level 3, the DocumentType node associated with a document was immutable and could
not be created directly. In Level 3 implementations, the doctype attribute is a shortcut to the
DocumentType node that is currently linked into the document node hierarchy. Read-only.

Java binding

public DocumentType getDoctype();

Java example

// Get the parsed DTD information for this document

DocumentType docType = docIn.getDoctype();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

if (docType = = null) {

 System.out.println("warning: no DTD provided");

}

documentElement: Element

This attribute points to the single Element node that is the root of the XML document tree. Read-

only.

Java binding

public Element getDocumentElement();

Java example

// Identify the root element

Element elRoot = docIn.getDocumentElement();

System.out.println("This is a '" + elRoot.getTagName() + "' document.");

documentURI: DOMString(3)

The location of the document, or null if the document was created using the createDocument()
method of the DOMImplementation interface. No lexical checking of the URI itself is done during the

set operation.

Java binding

public String getDocumentURI();

public void setDocumentURI(string documentURI);

domConfig: DOMConfiguration(3)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns the DOMConfiguration object instance associated with this document. The
DOMConfiguration controls the operation of the normalizeDocument() method. See the
DOMConfiguration interface for a detailed list of parameters and their effects on the behavior of
normalizeDocument(). Read-only.

Java binding

public DOMConfiguration getDomConfig();

implementation: DOMImplementation

This returns a reference to the DOMImplementation that is responsible for this document. It is

conceivable (using Adobe's SVG plug-in within Microsoft's Internet Explorer, for example) that a
single application might use DOM objects from multiple DOM implementations. Read-only.

Java binding

public DOMImplementation getImplementation();

Java example

// Ensure the support of DOM Level 1 XML

DOMImplementation di = doc.getImplementation();

if (!di.hasFeature("XML", "1.0")) {

 return false;

}

inputEncoding: DOMString(3)

Gives the character encoding detected when the document was parsed. See Chapter 5 for more
information about character encodings. Is null when encoding is not known. Read-only.

Java binding

public String getInputEncoding();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

strictErrorChecking: boolean(3)

When set to false, DOM implementations are free to ignore error conditions (such as invalid
characters in identifiers) that would ordinarily raise a DOMException. Although exceptions will not be

raised, the behavior of the implementation after encountering an error is undefined. The default value
of this attribute is true.

Java binding

public boolean getStrictErrorChecking();

public void setStrictErrorChecking(boolean strictErrorChecking);

xmlEncoding: DOMString(3)

Returns the character encoding specified in the encoding pseudo-attribute of the XML declaration
from the original document. See Chapter 5 for more information about character encodings. Is null

when encoding is not known. Read-only.

Java binding

public String getXmlEncoding();

xmlStandalone: boolean(3)

Returns the value of the standalone pseudo-attribute of the XML declaration from the original
document. Returns false when not specified in the declaration. Note that this value returns the
standalone value from the original declaration and may not be accurate.

Java binding

public boolean getXmlStandalone();

public void setXmlStandalone(boolean xmlStandalone) throws DOMException;

xmlVersion: DOMString(3)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns the value of the version pseudo-attribute of the XML declaration of the document. For
documents without an XML declaration, this value defaults to "1.0". Changing this value to "1.1"
changes how methods that check for invalid characters in XML names (createElement(),
setAttribute(), etc.) behave, per the XML 1.1 standard. For more information on the differences

between XML 1.0 and 1.1, see Chapter 2 and Chapter 21.

Java binding

public String getXmlVersion();

public void setXmlVersion(string xmlVersion) throws DOMException;

Methods

The following methods are defined for the Document object:

adoptNode: adoptNode, source(3)

Similar to importNode(), this method is used to migrate a DOM Node from one Document instance

to another. The source node is removed from the DOM tree of its parent document and prepared to
be inserted into the adopting document, unlike the importNode() method which creates a copy of

the source node and leaves the original in place. The following table explains the behavior of this
method for the individual node types:

Node type Result

ATTRIBUTE_NODE
Adopts the source attribute and all its children. The
ownerElement attribute is set to null, and the
specified flag is set to true.

DOCUMENT_FRAGMENT_NODE
Adopts the DocumentFragment node along with all of its

child nodes.

DOCUMENT_NODE Cannot be adopted.

DOCUMENT_TYPE_NODE Cannot be adopted.

ELEMENT_NODE

Adopts the element as well as all child nodes. Adopts the
attribute nodes that have their specified flag set, and

may insert additional attributes based on the DTD or
schema of the target document.

ENTITY_NODE Cannot be adopted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Node type Result

ENTITY_REFERENCE_NODE
Adopts only the EntityReference node. Its value, if any,

is taken from the DTD of the document doing the import.

NOTATION_NODE Cannot be adopted.

PROCESSING_INSTRUCTION_ NODE,
TEXT_NODE, CDATA_SECTION_NODE,
COMMENT_NODE

All adopted without restrictions.

Since the newly adopted node was not created by the target document, it is possible that the names
of elements, attributes, etc., may not conform to the XML version of the new document (see the
xmlVersion attribute). Consider using the normalizeDocument() method to ensure that adopted

nodes are well-formed.

Argument

source: Node

The node to be adopted.

Exceptions

NOT_SUPPORTED_ERR

Thrown if an attempt is made to import an unsupported Node type, such as a Document node.

NO_MODIFICATION_ALLOWED_ERR

Thrown if the source node is read-only.

Java binding

public Node adoptNode(Node source) throws DOMException;

createAttribute: name

ENTITY_REFERENCE_NODE
Adopts only the EntityReference node. Its value, if any,

is taken from the DTD of the document doing the import.

NOTATION_NODE Cannot be adopted.

PROCESSING_INSTRUCTION_ NODE,
TEXT_NODE, CDATA_SECTION_NODE,
COMMENT_NODE

All adopted without restrictions.

Since the newly adopted node was not created by the target document, it is possible that the names
of elements, attributes, etc., may not conform to the XML version of the new document (see the
xmlVersion attribute). Consider using the normalizeDocument() method to ensure that adopted

nodes are well-formed.

Argument

source: Node

The node to be adopted.

Exceptions

NOT_SUPPORTED_ERR

Thrown if an attempt is made to import an unsupported Node type, such as a Document node.

NO_MODIFICATION_ALLOWED_ERR

Thrown if the source node is read-only.

Java binding

public Node adoptNode(Node source) throws DOMException;

createAttribute: name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This function creates an Attr object with the given name. Attr nodes construct complex element
attributes that can include EntityReference objects and text data.

Argument

name: DOMString

The name of the XML attribute.

Return value

The new Attr object.

Exception

INVALID_CHARACTER_ERR

Indicates that the name you passed to createAttribute() is not a valid XML name. See

Chapter 2 for the XML restrictions on name construction.

Java binding

public Node adoptNode(Node source) throws DOMException;

createAttributeNS: namespaceURI, qualifiedName(2)

This method serves the same purpose as the createAttribute method, but is used when the

attribute is in a namespace.

Arguments

namespaceURI: DOMString

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The URI associated with the namespace prefix in the qualifiedName parameter.

qualifiedName: DOMString

The name of the attribute to instantiate; includes the namespace prefix associated with the
namespace URI given in the namespaceURI parameter.

Return values

The new Attr object is returned with the following attribute values:

Attribute Value

Node.nodeName
The complete, fully qualified name given in the qualifiedName parameter

Node.namespaceURI
The given namespace URI

Node.prefix
The namespace prefix, which is parsed from the qualifiedName parameter

Node.localName
The local part of the qualified name, located to the right of the : character

Attr.name
The qualifiedName

Exceptions

INVALID_CHARACTER_ERR

Indicates that the name passed to createAttributeNS() is not a valid XML name. See

Chapter 2 for the XML restrictions on name construction.

NAMESPACE_ERR

Raised if the qualifiedName is malformed or has a prefix but no namespaceURI, or if the
reserved xml namespace prefix was used incorrectly.

Java binding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public Attr createAttributeNS(String namespaceURI, String qualifiedName)

 throws DOMException;

createCDATASection: data

This creates a new CDATASection node that contains the data text.

Argument

data: DOMString

The text contained by the new CDATASection object.

Exception

NOT_SUPPORTED_ERR

Occurs if you try to call this method on an HTML document.

Java binding

public CDATASection createCDATASection(String data) throws DOMException;

Java example

// Use CDATASection to embed XML characters

CDATASection cds = doc.createCDATASection(

"<xml_example>This is sample text.</xml_example>");

createComment: data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This returns a new Comment node containing the specified string. See the Comment object reference
earlier in this chapter for special restrictions that apply to the contents of Comment nodes.

Argument

data: DOMString

The comment text.

Comment text restriction

The XML specification indicates that the -- characters must not appear in the comment text for

compatibility reasons. Despite this warning, some DOM implementations don't flag comments
containing double hyphens as syntax errors.

Java binding

public Comment createComment(String data);

Java example

// Create a timestamp comment

StringBuffer sb = new StringBuffer();

Date dtNow = new Date();

sb.append("\tModified " + dtNow.toString() + '\n');

Comment cmt = doc.createComment(sb.toString());

createDocumentFragment()

This returns an empty DocumentFragment object. See the DocumentFragment reference later in this

chapter for a discussion of a document fragment's uses and limitations.

Java binding

public DocumentFragment createDocumentFragment();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

createElement: tagName

This creates a new, empty Element node for use within the parent document. The element name is
given as an argument to the method. The resulting Element node belongs to the parent Document

object, but is not part of the document element hierarchy. See the NOT_SUPPORTED_ERR [unsigned
short, value: 9] reference later in this chapter for more information about how the document
hierarchy manipulation methods are used.

Argument

tagName: DOMString

The XML name used to create the new Element node. This name is assigned to the nodeName
attribute of the resulting Element node.

Return value

The new Element object.

Exception

INVALID_CHARACTER_ERR

Indicates that the name you passed to createElement() is not a legal XML name. See

Chapter 2 for the XML restrictions on name construction.

Java binding

public Element createElement(String tagName) throws DOMException;

Java example

// Create the new my_tag Element

Element elOut = doc.createElement("my_tag");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

createElementNS: namespaceURI, qualifiedName(2)

This method serves the same purpose as the createElement method but is used when the element

is in a namespace.

Arguments

namespaceURI: DOMString

The namespace URI.

qualifiedName: DOMString

The name of the element to instantiate, including the namespace prefix associated with the
namespace URI given in the namespaceURI parameter.

Return values

The new Element object is returned with the following attribute values:

Attribute Value

Node.nodeName
The complete, fully qualified name given in the qualifiedName parameter

Node.namespaceURI
The given namespace URI

Node.prefix
The namespace prefix, which is parsed from the qualifiedName parameter

Node.localName
The local part of the qualified name, located to the right of the : character

Element.tagName
The full element tag name, which is the same as the qualifiedName

Exceptions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INVALID_CHARACTER_ERR

Indicates that the name you passed to createElementNS() is not a legal XML name. See

Chapter 2 for the XML restrictions on name construction.

NAMESPACE_ERR

Raised if the qualifiedName is malformed, has a prefix but no namespaceURI, or if the
reserved xml namespace prefix was used incorrectly.

Java binding

public Element createElementNS(String namespaceURI,

 String qualifiedName)

 throws DOMException;

createEntityReference: name

This creates an EntityReference object.

Argument

name: DOMString

The name of the XML entity to be referenced. The name must match an XML entity declaration
that is valid in the current document.

Exceptions

INVALID_CHARACTER_ERR

Indicates that the name you passed to createEntityReference() is not a legal valid XML

name. See Chapter 2 for the XML restrictions on name construction.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NOT_SUPPORTED_ERR

Generated if you attempted to create an entity reference using an HTML document.

Java binding

public EntityReference createEntityReference(String name)

 throws DOMException;

Java example

// Create an entity reference

EntityReference er = doc.createEntityReference("name_entity");

createProcessingInstruction: target, data

This creates a new ProcessingInstruction node with the given target name and data values. The

processing instruction target name "xml" (case-insensitive) is reserved and can't be used by an
application.

Arguments

target: DOMString

The target name of the processing instruction.

data: DOMString

The application-specific data for the resulting ProcessingInstruction node.

Exceptions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INVALID_CHARACTER_ERR

Indicates that the name you passed in to createProcessingInstruction is not a legal XML

name. See Chapter 2 for the XML restrictions on name construction.

NOT_SUPPORTED_ERR

Generated if you attempt to create a ProcessingInstruction using an HTML document.

Java binding

public ProcessingInstruction createProcessingInstruction(String target,

 String data) throws DOMException;

Java example

// Add the application-specific processing instruction

ProcessingInstruction pi = doc.createProcessingInstruction("my_app",

 "action=\"save\"");

createTextNode: data

This creates a new Text node that contains the given data string.

Argument

data: DOMString

The string that will be the contents of the new node.

Java binding

public Text createTextNode(String data);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java example

// Create a new node that contains character data

Text txtDesc = doc.createTextNode(

"Character data contents for a new Element.");

getElementById: elementID(2)

This method returns the Element node with the given value for its ID attribute.

It is important not to confuse attributes that have the name ID with ID

attributes. ID attributes are attributes that were declared with the ID attribute
type within the document type definition. See the Attribute List Declaration
entry in Chapter 21 for more information about ID attributes.

Argument

elementID: DOMString

The unique ID value for the desired element.

Return value

A single Element object that has the requested ID attribute or null, if no match is found.

Java binding

public Element getElementById(String elementId);

getElementsByTagName: tagName

This function returns a list of Element nodes from the current document whose tagName attribute
matches the given tagName parameter. The nodes are returned in the same order in which they

appear in the source document.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Argument

tagName: DOMString

The name of the tag to use as a filter. The special name * matches any tag.

Java binding

public NodeList getElementsByTagName(String tagName);

Java example

// Get a list of all phone numbers in the document

NodeList nl = doc.getElementsByTagName("phone_number");

getElementsByTagNameNS: namespaceURI,
localName(2)

Like the getElementsByTagName() method, this method returns a list of Element nodes (a
NodeList object) that have the criteria given namespaceURI and localName. The resulting list

contains all elements matching the namespace URI and local name restrictions, as they would be
encountered in the original order of the document.

Arguments

namespaceURI: DOMString

The namespace URI of the elements to be matched. The special * value matches any
namespace.

localName: DOMString

The local name part of the elements to be matched. The special value * matches any local
name.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java binding

public NodeList getElementsByTagNameNS(String namespaceURI,

 String localName);

importNode: importedNode, deep(2)

This method's name is somewhat deceptive. It creates a copy of a Node object from another

document that can be inserted within the current document's node hierarchy. Specifics of this copy
operation vary, depending on the type of copied node, as described in this table:

Node type Result Effect of deep flag

ATTRIBUTE_NODE

Adopts the source attribute and all
its children. The ownerElement
attribute is set to null, and the
specified flag is set to true.

None.

DOCUMENT_FRAGMENT_NODE
Creates an empty
DocumentFragment node.

Fully copies the children
of the source
DocumentFragment node.

DOCUMENT_NODE Cannot be imported. N/A.

DOCUMENT_TYPE_NODE Cannot be imported. N/A.

ELEMENT_NODE
Adopts the attribute nodes with the
specified flag set to the new

element.

Recursively copies all the
source element's
children.

ENTITY_NODE
Adopts the publicId, systemId,
and notationName attributes.

Recursively copies all of
the Entity node's

children.

ENTITY_REFERENCE_NODE

Adopts only the EntityReference

node. Its value, if any, is taken
from the DTD of the document
doing the import.

None.

NOTATION_NODE

Imports the notation node, but
since the DocumentType interface is

read-only in Level 2, it cannot be
included in the target document.

None.

PROCESSING_INSTRUCTION_NODE
Adopts the target and data

values.
None.

The new (copied) node object is returned based on the arguments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Node type Result Effect of deep flag

TEXT_NODE,
CDATA_SECTION_NODE,
COMMENT_NODE

Adopts the data and length

attributes.
None.

The new (copied) node object is returned based on the arguments.

Arguments

importedNode: Node

The node duplicated for use in the current document hierarchy.

deep: boolean

Whether to copy the single node given or the entire subtree of its children. For details, see the
previous table.

Exception

NOT_SUPPORTED_ERR

Thrown if an attempt is made to import an unsupported Node type, such as a Document node.

Java binding

public Node importNode(Node importedNode, boolean deep)

 throws DOMException;

normalizeDocument() (3)

This method performs the equivalent of a load and save operation, returning the document to its
"normal" form. This includes coalescing Text nodes, possibly expanding EntityReference nodes,

etc. The types of operations that occur during the normalization process are controlled by the values

TEXT_NODE,
CDATA_SECTION_NODE,
COMMENT_NODE

Adopts the data and length

attributes.
None.

The new (copied) node object is returned based on the arguments.

Arguments

importedNode: Node

The node duplicated for use in the current document hierarchy.

deep: boolean

Whether to copy the single node given or the entire subtree of its children. For details, see the
previous table.

Exception

NOT_SUPPORTED_ERR

Thrown if an attempt is made to import an unsupported Node type, such as a Document node.

Java binding

public Node importNode(Node importedNode, boolean deep)

 throws DOMException;

normalizeDocument() (3)

This method performs the equivalent of a load and save operation, returning the document to its
"normal" form. This includes coalescing Text nodes, possibly expanding EntityReference nodes,

etc. The types of operations that occur during the normalization process are controlled by the values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of the parameters in the DOMConfiguration object (see the domConfig attribute). For a list of the
standard configuration parameters available, see the DOMConfiguration interface.

Java binding

public void normalizeDocument();

renameNode: n, namespaceURI, qualifiedName(3)

Allows Element and Attr type nodes to be renamed. Whenever possible, the nodeName attribute of
the target Node is modified directly. If simply changing the name is not possible, a node is created

with the new name and the child nodes of the old node are moved to the new node. If the node is an
Element node, renaming it will cause it to lose the default attributes of the old node name and gain

those corresponding to its new name.

Arguments

n: Node

The node to rename.

namespaceURI: DOMString

The namespace URI for the renamed node.

qualifiedName: DOMString

The new qualified name for the node.

Exceptions

NOT_SUPPORTED_ERR

Thrown if the target nodeType is not ELEMENT_NODE or ATTRIBUTE_NODE, or if the
implementation does not support renaming the documentElement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INVALID_CHARACTER_ERR

Thrown if the new qualified name is not a name according to the contents of the xmlVersion

attribute.

WRONG_DOCUMENT_ERR

Thrown if an attempt is made to rename a node from a different document.

NAMESPACE_ERR

Raised if the qualifiedName is malformed or has a prefix but no namespaceURI, or if the
reserved xml namespace prefix was used incorrectly.

Java binding

public Node renameNode(Node n, String namespaceURI,

String qualifiedName) throws DOMException;

DocumentFragment

The DocumentFragment is a lightweight container used to store XML document fragments

temporarily. Since it has no properties or methods of its own, it can only provide the same
functionality exposed by the Node object. It is intended to serve as a container for at least one well-

balanced XML subtree.

This object's most obvious application is in the case of clipboard or drag-and-drop operations in a
visual editor. The user may elect to select several subtrees that appear at the same level of the tree
to be copied:

<document>

 <parent>

 <child_1></child_1>

 <child_2></child_2>

 </parent>

 <parent>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </parent>

</document>

If the user decides to copy the two child nodes to the clipboard, the DOM application would do the
following:

Create a DocumentFragment object.

Attach copies of the child nodes to the new object using the cloneNode() and appendChild(
) methods.

Then, when the user decides to paste the copied nodes to a new location, the new
DocumentFragment node is passed to this target node's appendChild() method. During the copy
operation, the DocumentFragment node itself is ignored, and only the children are attached to the

target node.

Java example

// Create a Document Fragment object

DocumentFragment dfNorm = doc.createDocumentFragment();

DocumentType

The Document interface includes a single attribute, docType, that points either to a description of the
DTD for the current document or to null if none exists.

Java example

// get document type information

DocumentType dtDoc = doc.getDoctype();

Attributes

The DocumentType object contains the following attributes:

entities: NamedNodeMap

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This attribute provides a list of all general entities declared in the document's DTD. If the same entity
is declared more than once within a single document, only the first occurrence is preserved in this
NamedNodeMap. Note that parameter entity declarations are not available through the DocumentType
interface. Each member of this list implements the Entity interface. Read-only.

Java binding

public NamedNodeMap getEntities();

Java example

// Dump the document entities

NamedNodeMap nnm = doc.getDoctype().getEntities();

Entity ndEnt;

for (int i = 0; i < nnm.getLength(); i++) {

 ndEnt = (Entity)(nnm.item(i));

 System.out.println(ndEnt.getNodeName());

 if (ndEnt.getPublicId() != null) {

 System.out.println("\tPublic Identifier: " +

 ndEnt.getPublicId());

 }

 if (ndEnt.getSystemId() != null) {

 System.out.println("\tSystem Identifier: " +

 ndEnt.getSystemId());

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (ndEnt.getNotationName() != null) {

 System.out.println("\tNotation Name: " +

 ndEnt.getNotationName());

 }

}

internalSubset: DOMString

This attribute contains the document's internal subset as a string value. The content's actual format
depends on the level of support provided by a particular XML parser. Read-only.

Java binding

public String getInternalSubset();

name: DOMString

This is the name of the DTD, which is the XML name following the XML DOCTYPE keyword in the
source document. Read-only.

Java binding

public String getName();

Java example

// Display document type information

DocumentType dtDoc = doc.getDoctype();

System.out.println("This is a " + dtDoc.getName() + " document.");

notations: NamedNodeMap

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A NamedNodeMap contains a list of XML notation declarations for the current document. Each member
of this list implements the Notation interface, and the list itself is read-only.

Java binding

public NamedNodeMap getNotations();

Java example

// Dump the document notations

NamedNodeMap nnm = doc.getDoctype().getNotations();

Notation ndNotation;

for (int i = 0; i < nnm.getLength(); i++) {

 ndNotation = (Notation)nnm.item(i);

 System.out.println(ndNotation.getNodeName());

 if (ndNotation.getPublicId() != null) {

 System.out.println("\tPublic Identifier: " +

 ndNotation.getPublicId());

 }

 if (ndNotation.getSystemId() != null) {

 System.out.println("\tSystem Identifier: " +

 ndNotation.getSystemId());

 }

}

publicId: DOMString

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the public identifier of the external subset. Read-only.

Java binding

public String getPublicId();

systemId: DOMString

The system identifier (URI) of this document's external subset. Read-only.

Java binding

public String getSystemId();

Methods

The DocumentType object has no methods.

DOMConfiguration(3)

This interface is accessible through the domConfig attribute of a given DOM Document object. This

object is essentially a list of configuration options that affect how documents are loaded, saved, and
validated by the DOM implementation. By using the setParameter() method to modify these
options, it is possible to change the behavior of the Document.normalize() method. For example,
by setting the "entities" parameter to false, subsequent calls to the Document.normalize()
method would cause all EntityReference nodes to be replaced with their replacement text and
coalesced with adjacent Text nodes. The following table lists the valid parameters for the
DOMConfiguration object:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Parameter
name

Value Meaning

canonical-form true

Canonicalize the document per the Canonical XML specification.
Duplicate namespace declarations are removed, and other changes
are made to reduce the document to its simplest possible form.
Setting this parameter to true automatically sets the following

parameters:

cdata-sections: false

element-content-whitespace: true

entities: false

namespace-declarations: true

namespaces: true

normalize-characters: false

well-formed: true

 false[1] Do not canonicalize.

cdata-sections true[1] Keep CDataSection nodes intact.

 false
Transform CDataSection nodes into Text nodes and coalesce
redundant Text nodes as necessary.

check-
character-
normalization

true
Check that the characters in the document are fully normalized per
Appendix B of the XML 1.1 specification.

 false[1] Do not check for character normalization.

comments true[1] Keep Comment nodes in document.

 false Discard Comment nodes.

datatype-
normalization

true

Expose the normalized value of a node (i.e., strings with collapsed
whitespace) within the tree, per the information from the schema
used for validation. For this to occur, the validate parameter must
also be set to true.

 false[1] Do not perform schema normalization.

element-
content-
whitespace

true[1] Keep all whitespace from the original document.

 false

Discard Text nodes that contain element whitespace. See the
Text.isElementContentWhitespace attribute for more

information.

entities true[1] Keep EntityReference nodes in the document.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Parameter
name

Value Meaning

 false
Replace EntityReference nodes with their expansions as Text

nodes (which will be coalesced as necessary).

error-handler
DOMError-
Handler

This property may be set to an object instance that implements the
DOMErrorHandler interface. The DOMErrorHandler.handleError(
) method will then be called if errors occur during document

operations.

infoset true

This parameter is a shortcut to force the DOM processor to conform
to the XML Information Set specification. Setting this parameter to
true automatically sets the following parameters:

cdata-sections: false

comments: true

datatype-normalization: false

element-content-whitespace: true

entities: false

namespace-declarations: true

namespaces: true

validate-if-schema: false

well-formed: true

 false Setting the infoset parameter to false has no effect.

namespaces true[1]
Minimizes the number of namespace declarations throughout the
document by assigning elements and attributes to the "nearest"
namespace declaration that matches their namespace URI.

 false No namespace declaration processing is done.

namespace-
declarations

true[1]
Note that this parameter is only effective if the namespaces
parameter is set to true. Include all namespace declaration
attributes as Attr nodes within the document.

 false Discard namespace declaration nodes.

normalize-
characters

true
Fully normalize the characters in the document per Appendix B of
the XML 1.1 Recommendation.

 false[1] Do not perform character normalization.

schema-
location

DOMString

A space-separated list of URIs of schemas against which the
document will be validated. This parameter works in conjunction
with the schema-type parameter. The value of this parameter takes

precedence over the schema information specified in the document.

 false
Replace EntityReference nodes with their expansions as Text

nodes (which will be coalesced as necessary).

error-handler
DOMError-
Handler

This property may be set to an object instance that implements the
DOMErrorHandler interface. The DOMErrorHandler.handleError(
) method will then be called if errors occur during document

operations.

infoset true

This parameter is a shortcut to force the DOM processor to conform
to the XML Information Set specification. Setting this parameter to
true automatically sets the following parameters:

cdata-sections: false

comments: true

datatype-normalization: false

element-content-whitespace: true

entities: false

namespace-declarations: true

namespaces: true

validate-if-schema: false

well-formed: true

 false Setting the infoset parameter to false has no effect.

namespaces true[1]
Minimizes the number of namespace declarations throughout the
document by assigning elements and attributes to the "nearest"
namespace declaration that matches their namespace URI.

 false No namespace declaration processing is done.

namespace-
declarations

true[1]
Note that this parameter is only effective if the namespaces
parameter is set to true. Include all namespace declaration
attributes as Attr nodes within the document.

 false Discard namespace declaration nodes.

normalize-
characters

true
Fully normalize the characters in the document per Appendix B of
the XML 1.1 Recommendation.

 false[1] Do not perform character normalization.

schema-
location

DOMString

A space-separated list of URIs of schemas against which the
document will be validated. This parameter works in conjunction
with the schema-type parameter. The value of this parameter takes

precedence over the schema information specified in the document.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Parameter
name

Value Meaning

schema-type DOMString

An absolute URI representing what type of schema documents are
referenced by the schema-location parameter. The two schema

type URIs given in the DOM specification are:

XML Schema:http://www.w3.org/2001/XMLSchema

XML DTD:http://www.w3.org/TR/REC-xml

split-cdata-
sections

true[1]

Automatically splits a CDATA section whose text value contains the
]]> termination marker. The termination marker code will be
converted to text and another CDATA section created to follow the
new Text node.

 false Raise an error if a CDATASection contains unrepresentable content.

validate true

Require that the document be validated against a schema during
the Document.normalization() process. The schema may come
from the schema-location parameter or from within the document

itself.

 false[1] Do not validate, including the internal subset, unless the validate-
if-schema parameter is set to true.

validate-if-
schema

true Validate only if a schema can be found for the document element.

 false[1] Do not validate, unless the validate parameter is set to true.

well-formed true[1]

Ensure that the document is well-formed. This includes checking the
content of Attr, Element, Comment, Text, CDataSection, and
ProcessingInstruction nodes for characters that could not be
present in a well-formed XML document. For example, the]]>
CDATA termination sequence cannot be present in the text value of a
CDataSection node.

 false
Do not enforce character value restrictions within the DOM nodes.
This may result in a document that will not be well-formed when
saved and reparsed.

[1] Indicates the parameter's default value. Parameters without a default value are optional.

Attributes

The DOMConfiguration object contains the following attributes:

parameterNames: DOMStringList(3)

schema-type DOMString

An absolute URI representing what type of schema documents are
referenced by the schema-location parameter. The two schema

type URIs given in the DOM specification are:

XML Schema:http://www.w3.org/2001/XMLSchema

XML DTD:http://www.w3.org/TR/REC-xml

split-cdata-
sections

true[1]

Automatically splits a CDATA section whose text value contains the
]]> termination marker. The termination marker code will be
converted to text and another CDATA section created to follow the
new Text node.

 false Raise an error if a CDATASection contains unrepresentable content.

validate true

Require that the document be validated against a schema during
the Document.normalization() process. The schema may come
from the schema-location parameter or from within the document

itself.

 false[1] Do not validate, including the internal subset, unless the validate-
if-schema parameter is set to true.

validate-if-
schema

true Validate only if a schema can be found for the document element.

 false[1] Do not validate, unless the validate parameter is set to true.

well-formed true[1]

Ensure that the document is well-formed. This includes checking the
content of Attr, Element, Comment, Text, CDataSection, and
ProcessingInstruction nodes for characters that could not be
present in a well-formed XML document. For example, the]]>
CDATA termination sequence cannot be present in the text value of a
CDataSection node.

 false
Do not enforce character value restrictions within the DOM nodes.
This may result in a document that will not be well-formed when
saved and reparsed.

[1] Indicates the parameter's default value. Parameters without a default value are optional.

Attributes

The DOMConfiguration object contains the following attributes:

parameterNames: DOMStringList(3)

http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/REC-xml
http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/REC-xml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns the list of parameters supported by the DOMConfiguration object. May include parameters

that are not part of the DOM Recommendation. Read-only.

Java binding

public DOMStringList getParameterNames();

Methods

The DOMConfiguration object defines the following methods:

canSetParameter: name, value(3)

Returns true if the name parameter could accept the value given. Essentially the same as calling
setParameter() without actually modifying the value of the parameter.

Arguments

name: DOMString

The name of a valid parameter (from the parameterNames list) to verify.

value: DOMUserData

The potential value to verify.

Java binding

public boolean canSetParameter(String name, Object value);

getParameter: name(3)

Returns the value of the parameter given, if it is known. The return value is of the type DOMUserData,
and is null if the specified parameter has no value associated or is not recognized.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Argument

name: DOMString

The name of a valid parameter (from the parameterNames list) to verify.

Exception

NOT_FOUND_ERR

Raised if the given parameter name is not recognized.

Java binding

public Object getParameter(String name) throws DOMException;

setParameter: name, value(3)

Attempts to set the named parameter to the value given.

Arguments

name: DOMString

The name of a valid parameter (from the parameterNames list) to set.

value: DOMUserData

The new value of the parameter.

Exceptions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NOT_FOUND_ERR

Raised if the given parameter name is not recognized.

NOT_SUPPORTED_ERR

Raised if the given parameter name is recognized but not supported.

TYPE_MISMATCH_ERR

Raised if the value for this parameter is incompatible with the expected type (e.g., attempting
to set the error-handler parameter to an object that doesn't implement the
DOMErrorHandler interface).

Java binding

public void setParameter(String name, Object value) throws DOMException;

Methods

The DOMConfiguration object has no methods.

DOMError(3)

This interface defines an object that will contain information regarding errors that might occur during
DOM operations. It is used as a parameter to the DOMErrorHandler.handleError() callback

method.

Attributes

The DOMError object contains the following attributes:

location: DOMLocator(3)

Contains information regarding the location of the error within the original XML document as well as
within the DOM tree. Read-only.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java binding

public DOMLocator getLocation();

message: DOMString(3)

A message generated by the DOM implementation describing the error. Read-only.

Java binding

public String getMessage();

relatedData: DOMObject(3)

Based on the type attribute, this attribute will most likely contain a reference to the DOM Node object

that caused the error.

Java binding

public Object getRelatedData()

relatedException: DOMObject(3)

If the error is the result of a platform-dependent exception, this attribute will contain a reference to
the exception object in question.

Java binding

public Object getRelatedException()

severity: unsigned short(3)

This attribute indicates the severity of the error, which will be one of the constants from the following
table:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Severity constant Value Meaning

SEVERITY_WARNING 1
This is an "informational" error, and DOM processing may
proceed normally.

SEVERITY_ERROR 2
This is a possibly recoverable error (such as a schema validation
problem in an otherwise well-formed document).

SEVERITY_FATAL_ERROR 3
An unrecoverable error (such as a well-formedness problem) has
occurred.

Java binding

public short getSeverity()

type: DOMString(3)

The value of the type attribute determines what type of object reference will appear in the
relatedData attribute.

Java binding

public String getType()

Methods

The DOMError object has no methods.

DOMErrorHandler(3)

This is a callback interface that allows DOM programmers to register an object to receive notifications
when errors occur during DOM operations. The DOMConfiguration.setParameter() method is
used with the error-handler parameter name to register a DOMErrorHandler for a given

implementation.

Attributes

The DOMErrorHandler object has no attributes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Methods

The following method is defined for this object:

handleError: error(3)

This is the callback method that is invoked by the DOM when an error occurs. Programmers using the
DOM are responsible for implementing this method, processing errors, and determining whether
processing should continue or be aborted. If this method returns true, processing will continue
(unless an error of SEVERITY_FATAL_ERROR has occurred). If it returns false, processing will halt.

Argument

error: DOMError

The object that describes the error.

Java binding

public boolean handleError(DOMError error);

DOMException

For languages and runtime platforms that support them, structured exceptions provide a way to
separate the code that deals with abnormal or unexpected problems from the normal flow of
execution. For languages that don't support exceptions, such as ECMAScript or Perl, these conditions
are reported to your program as error codes from the method that recognized the condition.

The ExceptionCode is an integer value that indicates what type of exception was detected. The
following ExceptionCodes are defined, with unused numeric codes reserved for future use by the

W3C.

INDEX_SIZE_ERR [unsigned short, value: 1]

An index outside the expected range was passed to a method that accepts an index. The expected

http://lib.ommolketab.ir
http://lib.ommolketab.ir

range for most collections is 0 <= index < collection. length.

Java binding

public static final short INDEX_SIZE_ERR = 1;

DOMSTRING_SIZE_ERR [unsigned short, value: 2]

The DOMString that would be returned from a method is too large.

Java binding

public static final short DOMSTRING_SIZE_ERR = 2;

HIERARCHY_REQUEST_ERR [unsigned short, value: 3]

The node insertion you requested violates the document structure's integrity. For example, the
insertion would cause a node to become one of its own children.

Java binding

public static final short HIERARCHY_REQUEST_ERR = 3;

WRONG_DOCUMENT_ERR [unsigned short, value: 4]

An attempt to insert a node from one document directly into another.

Java binding

public static final short WRONG_DOCUMENT_ERR = 4;

INVALID_CHARACTER_ERR [unsigned short, value: 5]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An invalid character was used in a name-e.g., trying to create an element object with the name my
element, as spaces are not allowed.

Java binding

public static final short INVALID_CHARACTER_ERR = 5;

NO_DATA_ALLOWED_ERR [unsigned short, value: 6]

Data was assigned to a node that doesn't support data, like an Element node.

Java binding

public static final short NO_DATA_ALLOWED_ERR = 6;

NO_MODIFICATION_ALLOWED_ERR [unsigned short,
value: 7]

An attempt was made to modify a read-only node.

Java binding

public static final short NO_MODIFICATION_ALLOWED_ERR = 7;

NOT_FOUND_ERR [unsigned short, value: 8]

A node was modified in a context in which it could not be found.

Java binding

public static final short NOT_FOUND_ERR = 8;

NOT_SUPPORTED_ERR [unsigned short, value: 9]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the specific implementation of the DOM did not implement an optional feature, this exception would
be thrown.

Java binding

public static final short NOT_SUPPORTED_ERR = 9;

INUSE_ATTRIBUTE_ERR [unsigned short, value: 10]

An attempt was made to add an attribute that was already in use elsewhere. This error could occur if
you acquired an attribute via the getAttributeNode() method and tried to add the same object
instance to another element using the setAttributeNode() method. You would first need to create
a new Attr object, probably using the cloneNode() method.

Java binding

public static final short INUSE_ATTRIBUTE_ERR = 10;

INVALID_STATE_ERR [unsigned short, value: 11](2)

An attempt was made to use an object that is no longer usable.

Java binding

public static final short INVALID_STATE_ERR = 11;

SYNTAX_ERR [unsigned short, value: 12](2)

An invalid or illegal string was specified.

Java binding

public static final short SYNTAX_ERR = 12;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INVALID_MODIFICATION_ERR [unsigned short,
value: 13](2)

An attempt was made to change the type's underlying object.

Java binding

public static final short INVALID_MODIFICATION_ERR = 13;

NAMESPACE_ERR [unsigned short, value: 14](2)

An attempt was made to use a method that supports XML namespaces in a way that would violate
namespace rules. This error could occur if a qualified name were given to a method without a
corresponding namespace URI.

Java binding

public static final short NAMESPACE_ERR = 14;

INVALID_ACCESS_ERR [unsigned short, value: 15](2)

The underlying object does not support a parameter or operation.

Java binding

public static final short INVALID_ACCESS_ERR = 15;

VALIDATION_ERR [unsigned short, value: 16](3)

An attempted modification to the document tree would result in a validity error.

Java binding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public static final short VALIDITY_ERR = 16;

TYPE_MISMATCH_ERR [unsigned short, value: 17](3)

Raised if the type of a parameter is not compatible with the expected type.

Java binding

public static final short TYPE_MISMATCH_ERR = 17;

DOMImplementation

The DOMImplementation interface provides global information about the DOM implementation you
currently use. The only way to obtain a reference to the DOMImplementation interface is through the
getImplementation() method of the Document object.

Java example

// Check for DOM Level 1 support

DOMImplementation di = doc.getImplementation();

// make sure that DOM Level 1 XML is supported

if (!di.hasFeature("XML", "1.0")) {

 return null;

}

Attributes

The DOMImplementation object has no attributes.

Methods

The DOMImplementation object defines the following methods:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

createDocument: namespaceURI, qualifiedName,
doctype(2)

Creates a new, empty Document object with the given document type. It also creates the single, top-

level document element using the given qualified name and namespace URI.

Arguments

namespaceURI: DOMString

The namespace URI used to create the top-level document element. Can be null if no

namespace is used.

qualifiedName: DOMString

The namespace-aware qualified name of the top-level document element to be created. The
prefix given in this parameter is associated with the namespace URI given in the namespaceURI

parameter.

doctype: DOMString

The document type definition object to be associated with the new document. If this parameter
is not null, the DocumentType node's ownerDocument attribute is set to point to the new

document object.

Exceptions

INVALID_CHARACTER_ERR

Indicates that the qualifiedName parameter has a malformed XML identifier.

NAMESPACE_ERR

Raised if an inconsistency exists between the values given for the namespaceURI and the
qualifiedName parameters. Passing in a qualified name with a namespace prefix and not

passing in a namespace URI is illegal. This can also be generated if a reserved namespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

prefix, such as xml, is given with an incorrect namespace URI.

WRONG_DOCUMENT_ERR

Raised if the DocumentType node passed in the doctype parameter is already associated with
another document object. New DocumentType objects must be created using the new
createDocumentType method of the DOMImplementation interface.

Java binding

public Document createDocument(String namespaceURI,

 String qualifiedName, DocumentType doctype) throws DOMException;

createDocumentType: qualifiedName, publicId,
systemId(2)

Creates an empty DocumentType node that is not associated with any document. No entity
declarations or notations are available in this new, empty DocumentType object. No support currently

exists in the DOM to populate this object.

Arguments

qualifiedName: DOMString

The qualified name of the document type to be created.

publicId: DOMString

The external subset's public identifier.

systemId: DOMString

The system identifier (URI) of the external subset to be created.

Return value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A new DocumentType object with the ownerDocument attribute set to null.

Exceptions

INVALID_CHARACTER_ERR

Indicates that the qualifiedName parameter has a malformed XML identifier.

NAMESPACE_ERR

Raised if the qualified name is malformed.

Java binding

public DocumentType createDocumentType(String qualifiedName,

 String publicId, String systemId) throws DOMException;

getFeature: feature, version(3)

Provides a nonbinding-specific way to retrieve an object instance that implements a specific version
of a given feature. Primarily used to access features beyond the scope of the DOM Core.

Arguments

feature: DOMString

The package name of the feature to retrieve.

version: DOMString

The DOM version level of the specified feature to retrieve.

Return value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns an object that implements the APIs for the specified features, or null if no implementation is

available.

Java binding

public Object getFeature(String feature, String version);

hasFeature: feature, version

Tests to see if the DOM implementation supports a specific version of a named feature package.

Arguments

feature: DOMString

The package name of the feature to test. The following feature names (and others listed at
http://www.w3.org/TR/DOM-Level-2-Core/introduction.html-ID-Conformance) are valid:

XML

Supports DOM Level 1.0 or 2.0 Core objects.

HTML

Supports DOM Level 1.0 or 2.0 HTML objects.

version: DOMString

Represents the DOM version level of the specified feature to test. If no version number is
specified, the function returns true if any version is supported.

Return value

Returns true if the particular version of the specified feature is available; otherwise, it returns false.

Java binding

http://www.w3.org/TR/DOM-Level-2-Core/introduction.html-ID-Conformance
http://lib.ommolketab.ir
http://lib.ommolketab.ir

public boolean hasFeature(String feature, String version);

Java example

// Make sure that DOM Level 1 XML is supported

if (!di.hasFeature("XML", "1.0")) {

 return null;

}

The HTML-specific DOM objects are beyond the scope of this book, but they are
extremely useful tools for building applications that perform transformations on
HTML documents. An excellent reference to the HTML DOM objects can be
found in the book Dynamic HTML: The Definitive Reference, by Danny
Goodman (O'Reilly).

DOMImplementationRegistry(3)

One of the concepts introduced in the Level 3 Core is that of "bootstrapping" a DOM implementation.
Prior to Level 3, some language- and implementation-specific code was needed to initially create a
DOMImplementation that could be used to create documents and gain access to DOM functionality.
The DOMImplementationRegistry object has no formal IDL specification within the DOM

recommendation, but every implementation of the Level 3 Core is required to provide an object that
implements two methods: getDOMImplementation() and getDOMImplementationList(). These
methods are then used to locate a DOMImplementation object that supports the required features for

the application.

DOMImplementationSource(3)

This interface supplies an ordered list of DOMImplementation objects that can be accessed via a zero-

based index.

Attributes

The DOMImplementationSource object has no attributes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Methods

The following methods are defined for this object:

getDOMImplementation: features(3)

Used to retrieve a DOMImplementation object that matches the space-separated list of features (and

optional version numbers) provided. DOM implementers are free to provide multiple versions of the
various DOM components, which developers can query at runtime using this method. Most of the
available features are beyond the scope of this book; however, it is possible to request a specific
version of XML support by passing in a features string such as the following: "XML 3.0". This string
would request that a DOMImplementation object that supports Version 3.0 of the XML Core be
returned. If no matching implementation is available, the method returns null.

Argument

features: DOMString

The space-separated list of requested features and versions.

Java binding

public DOMImplementation getDOMImplementation(String features);

getDOMImplementationList: features(3)

Used to retrieve a list of DOMImplementation objects that matches the space-separated list of
features (and optional version numbers) provided. The list is returned as a DOMImplementationList.
For more information on the construction of the features argument, see the
getDOMImplementation() method.

Argument

features: DOMString

The space-separated list of requested features and versions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java binding

public DOMImplementationList getDOMImplementation(String features);

DOMLocator(3)

This interface describes an object that can identify a specific location within a document that is being
processed by a DOM implementation.

Attributes

The DOMLocator object contains the following attributes:

byteOffset: long(3)

The byte offset into the input source, or -1 if no byte offset is available. Read-only.

Java binding

public int getByteOffset();

columnNumber: long(3)

The column number within the line of the input source, or -1 if no column number is available. Read-
only.

Java binding

public int getColumnNumber();

lineNumber: long(3)

The line number within the line of the input source, or -1 if no line number is available. Read-only.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java binding

public int getLineNumber();

relatedNode: Node(3)

This attribute contains a reference to the DOM Node object that corresponds to the document location

in question. Read-only.

Java binding

public Node getRelatedNode()

uri: DOMString(3)

The URI of the source document if it is available; otherwise, it is null. Read-only.

Java binding

public String getUri();

utf16Offset: long(3)

Similar to the byte offset attribute, but instead of returning an absolute byte reference, it returns a
UTF character offset, per the Unicode specification. See Chapter 5 for more information about
character encodings and Unicode. Read-only.

Java binding

public int getUtf16Offset();

Methods

The DOMLocator object has no methods.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DOMObject(3)

Starting with DOM Level 3, some methods either accept or return a reference to a language-specific
object. The DOMObject type provides a generic placeholder to represent these objects in the DOM
IDL. For Java and ECMAScript, this type is bound to the Object type.

DOMString

The DOMString type serves as a generic placeholder within the DOM IDL for the native string

handling type for a given implementation language. For example, within the Java binding, the
DOMString type maps to the java.lang.String type.

DOMStringList(3)

This interface supplies a read-only, ordered list of DOMString objects that can be accessed via a

zero-based index.

Attribute

The DOMStringList object contains the following attribute:

length: unsigned long(3)

Gives the number of DOMString objects in the list. Read-only.

Java binding

public int getLength();

Methods

The following methods are defined for this object:

contains: str(3)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns true if the given string is contained in the list; otherwise, it returns false.

Argument

str: DOMString

The string value to locate.

Java binding

public boolean contains(String str);

item: index(3)

Used to retrieve strings from the list. Valid values for the index argument are 0 through length - 1.
If an invalid index is provided, this method returns null.

Argument

index: unsigned long

The index of the string to retrieve.

Java binding

public String item(int index);

DOMUserData(3)

The new Node.getUserData() and Node.setUserData() methods are intended to allow the
programmer to store application-specific information within the DOM tree. The DOMUserData type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

provides a generic placeholder for use within the DOM IDL descriptions. For Java and ECMAScript,
this type is bound to the Object type.

Element

The Element interface provides access to the XML document's structure and data. Every XML element
is translated into a single Element node. The document's root element is accessible through the
documentElement property of the Document object. From this node, it is possible to re-create the full

structure of the original XML document by traversing the element tree.

Java example

// Get the XML document's root element

Element elem = doc.getDocumentElement();

This interface extends the basic Node interface to allow access to the XML attributes of the document
element. Two sets of methods allow access to attribute values, either as Attr object trees or as
simple DOMStrings.

Attributes

The Element object contains the following attributes:

schemaTypeInfo: TypeInfo(3)

This property provides a link to any type information that may be available for this element, based on
the DTD or Schema associated with the parent document. Read-only.

Java binding

public TypeInfo getSchemaTypeInfo();

tagName: DOMString

The XML tag name from the original document.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java binding

public String getTagName();

// Show the name of the root element tag

Element elem = doc.getDocumentElement();

System.out.println("This is a " + elem.getTagName() + " document.");

Methods

The following methods are defined for this object:

getAttribute: name

Returns the attribute specified by the name parameter as a DOMString. See createElementNS:

namespaceURI, qualifiedName(2) for a complete explanation of how an attribute value is determined.
This returns an empty string if no attribute is set and if no default attribute value was specified in the
DTD.

Java binding

public String getAttribute(String name);

Java example

// Check for the name attribute

Element elem = doc.getDocumentElement();

if (elem.getAttribute("name") = = "") {

 System.out.println("warning: " + elem.getTagName() +

 " element: no name attribute");

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getAttributeNS: namespaceURI, localName(2)

Returns an attribute as a DOMString, based on the namespace URI and local part of the qualified

name.

Arguments

namespaceURI: DOMString

The namespace URI of the attribute to return.

localName: DOMString

The local name portion of the qualified attribute name to return.

Return value

Returns an empty string if no attribute is set and if no default attribute value was specified in the
DTD.

Java binding

public String getAttributeNS(String namespaceURI, String localName);

getAttributeNode: name

Retrieves the Attr with the given name. Returns a reference to the attribute object if it is found;
otherwise, it is null.

Argument

name: DOMString

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name of the attribute to retrieve.

Java binding

public Attr getAttributeNode(String name);

Java example

// Use the id attribute

Attr attr;

if ((attr = elem.getAttributeNode("id")) = = null) {

 System.out.println("warning: element " + elem.getTagName() +

 ": no id attribute provided.");

}

getAttributeNodeNS: namespaceURI, localName(2)

Retrieves the Attr object for the attribute specified by the given namespace URI and local name.
Returns a reference to the attribute object if it is found; otherwise, it returns null.

Arguments

namespaceURI: DOMString

Namespace URI of the target attribute.

localName: DOMString

Local name of the target attribute. The local name is the part of the name to the right of the :
in a qualified name.

Java binding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public Attr getAttributeNodeNS(String namespaceURI, String localName);

getElementsByTagName: name

Returns a NodeList of all descendant Element nodes whose tagName attribute matches the given
name parameter. The nodes are returned in the same order in which they would be encountered in a

preorder traversal of the document tree. A preorder traversal conforms to the order in which the XML
elements appear in the source document.

Argument

name: DOMString

The name of the tag to use as a filter. The special name * matches any tag.

Java binding

public NodeList getElementsByTagName(String name);

Java example

// Find every address element in the document

Element elem = doc.getDocumentElement();

NodeList nlAddrs = elem.getElementsByTagName("address");

getElementsByTagNameNS: namespaceURI,
localName(2)

Like the getElementsByTagName method, returns a list of Element nodes (descendants of the
Element node on which the method is called) that match the criteria given in the namespaceURI and
localName parameters. The resulting list contains all elements matching the namespace URI and

local name restrictions, as they would be encountered in a preorder traversal of the document tree.

Arguments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

namespaceURI: DOMString

The namespace URI of elements to be matched. The special * value matches any namespace.

localName: DOMString

The local name part of elements to be matched. The special value * matches any local name.

Java binding

public NodeList getElementsByTagNameNS(String namespaceURI,

 String localName);

hasAttribute: name(2)

Returns true if an attribute with the given name has been set or has a default value. Returns false

if the attribute isn't defined.

Argument

name: DOMString

The name of the attribute to be identified.

Java binding

public boolean hasAttribute(String name);

hasAttributeNS: namespaceURI, localName(2)

Returns true if an attribute with the given namespaceURI and localName has been set or has a
default value. Returns false if the attribute isn't defined.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Arguments

namespaceURI: DOMString

The namespace URI of the attribute to be identified.

localName: DOMString

The local name of the attribute to be identified.

Java binding

public boolean hasAttribute(String namespaceURI, String localName);

normalize

Traverses the subtree of the current Element, combining adjacent Text nodes into a single node.

This method was moved to the Node interface as part of the DOM Level 2
specification. It is still accessible from the Element interface, as it inherits from
the Node interface.

Java binding

public void normalize();

Java example

// Merge all adjacent text nodes below this element

elem.normalize();

removeAttribute: name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Removes the named attribute from this element's attributes collection. If the attribute to be

removed has a default value declared in the DTD, subsequent attempts to retrieve the attribute value
return the default value.

Argument

name: DOMString

Name of the attribute to remove.

Exception

NO_MODIFICATION_ALLOWED_ERR

Raised if the element is read-only.

Java binding

public void removeAttribute(String name) throws DOMException;

Java example

// Remove the unique ID

...

elem.removeAttribute("id");

...

removeAttributeNS: namespaceURI, localName(2)

Removes the attribute with the given namespace URI and local name from the element's attributes

collection.

Arguments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

namespaceURI: DOMString

Namespace URI of the target attribute.

localName: DOMString

Local name part of the target attribute. The local name is the part to the right of the final : in a
qualified name.

Exception

NO_MODIFICATION_ALLOWED_ERR

Raised if the element is read-only.

Java binding

public void removeAttributeNS(String namespaceURI, String localName)

 throws DOMException;

removeAttributeNode: oldAttr

Removes the referenced attribute node from this element's attributes collection. If the attribute to

be removed has a default value declared in the DTD, subsequent attempts to retrieve the attribute
value return the default value.

Argument

oldAttr: Attr

The attribute node to remove.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exceptions

NO_MODIFICATION_ALLOWED_ERR

Raised if the node is read-only.

NOT_FOUND_ERR

Raised if no attribute name matching the oldAttr parameter is found in the map.

Java binding

public Attr removeAttributeNode(Attr oldAttr) throws DOMException;

Java example

// Find and remove temporary attributes

Attr attr;

if ((attr = elem.getAttributeNode("temp")) != null) {

 // remove it

 elem.removeAttributeNode(attr);

}

setAttribute: name, value

Sets the attribute specified by the name parameter to the DOMString passed in the value argument.
The string is not parsed for entity references and is set as a Text node child of the corresponding
member of the attributes collection. If an attribute with the given name already exists, the value is
set to the value argument.

Arguments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

name: DOMString

The attribute name to set or modify.

value: DOMString

The new attribute value.

Exceptions

INVALID_CHARACTER_ERR

Indicates that the attribute name you passed in doesn't represent a valid XML attribute name.

NO_MODIFICATION_ALLOWED_ERR

Raised if the element is read-only.

Java binding

public void setAttribute(String name, String value) throws DOMException;

Java example

// Check for the name attribute

if (elem.getAttribute("name") = = "") {

 // oh well, set a reasonable default

 elem.setAttribute("name", elem.getTagName());

}

setAttributeNS: namespaceURI, qualifiedName,
value(2)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This method is the namespace-enabled version of the basic setAttribute method. The namespace
URI and the qualified name update the attributes collection of the element in question.

Arguments

namespaceURI: DOMString

The namespace URI of the attribute value to set.

qualifiedName: DOMString

The qualified name (including the namespace prefix) of the new value to set.

value: DOMString

The new attribute value.

Exceptions

INVALID_CHARACTER_ERR

Indicates that the attribute name you passed in is not a legal XML attribute name.

NO_MODIFICATION_ALLOWED_ERR

Raised if the element is read-only.

NAMESPACE_ERR

Raised if the namespaceURI and qualifiedName parameters would violate rules concerning
namespaces. If the qualified name includes a prefix, the namespace URI cannot be null or an
empty string. If the reserved xml or xmlns prefixes are used, the namespace URI must match

the corresponding specified system URI. See Chapter 4 for more information about
namespaces and prefixes.

Java binding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public void setAttributeNS(String namespaceURI, String qualifiedName,

 String value) throws DOMException;

setAttributeNode: newAttr

Sets or replaces the attribute in the Node interface's attributes collection with the given Attr

object. The attribute name is retrieved from the name attribute of the new attribute object. If an
Attr object with the given name already exists in the attributes collection, this method returns a
reference to the old Attr object. Otherwise, it returns null.

Argument

newAttr: Attr

The new Attr object to set.

Exceptions

WRONG_DOCUMENT_ERR

Raised if the newAttr node was created in a document different than the parent node.

NO_MODIFICATION_ALLOWED_ERR

Raised if the new parent node is read-only.

INUSE_ATTRIBUTE_ERR

Raised if another Element already uses the new Attr node. Each element must have a distinct
Attr object.

Java binding

public Attr setAttributeNode(Attr newAttr) throws DOMException;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java example

// Make sure you have an id attribute to work with

Attr attr;

if ((attr = elem.getAttributeNode("id")) = = null) {

 // add a default, unique id

 attr = doc.createAttribute("id");

 elem.setAttributeNode(attr);

 // continue processing

}

setAttributeNodeNS: newAttr(2)

Sets or replaces the attribute in the element's attributes collection that matches the namespace
URI and the given Attr object's local name. This operation is identical to the setAttributeNode
method, except that it considers namespace differences between attributes. If an Attr object with
the given name in the attributes collection already exists, this method returns a reference to the
old Attr object; otherwise, it returns null.

Argument

newAttr: Attr

The new Attr object to set.

Exceptions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WRONG_DOCUMENT_ERR

Raised if the newAttr node was created in a different document than the parent node.

NO_MODIFICATION_ALLOWED_ERR

Raised if the new parent node is read-only.

INUSE_ATTRIBUTE_ERR

Raised if another Element already uses the newAttr node. Each element must have a unique
Attr object.

Java binding

public Attr setAttributeNodeNS(Attr newAttr) throws DOMException;

setIdAttribute: name, isId(3)

This method provides a way to mark an attribute as a user-determined ID attribute. Although
attributes that are marked as ID attributes using this method will show up in searches conducted
using the Document.getElementById() method, it will not modify any of the type information
provided by the Attr.schemaTypeInfo attribute. To mark namespace-aware attributes, use the
setIdAttributeNS() method.

Arguments

name: DOMString

The attribute name to modify.

isId: boolean

Set to true if the attribute is to be an ID attribute; otherwise, set to false.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exceptions

NO_MODIFICATION_ALLOWED_ERR

Raised if the element is read-only.

NOT_FOUND_ERR

Raised if no attribute matching the name parameter is found in the attributes collection.

Java binding

public void setIdAttribute(String name, boolean isId)

throws DOMException;

setIdAttributeNS: namespaceURI, localName, isId(3)

This method provides a way to mark an attribute that belongs to a namespace as a user-determined
ID attribute. Although attributes that are marked as ID attributes using this method will show up in
searches conducted using the Document.getElementById() method, it will not modify any of the
type information provided by the Attr.schemaTypeInfo attribute.

Arguments

namespaceURI: DOMString

The namespace URI of the attribute to modify.

localName: DOMString

The local part of the name of the attribute to modify.

isId: boolean

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Set to true if the attribute is to be an ID attribute; otherwise, it is false.

Exceptions

NO_MODIFICATION_ALLOWED_ERR

Raised if the element is read-only.

NOT_FOUND_ERR

Raised if no attribute matching the name parameter is found in the attributes collection.

Java binding

public void setIdAttributeNS(String namespaceURI, String localName,

 boolean isId) throws DOMException;

setIdAttributeNode: idAttr, isId(3)

This method provides a way to mark an attribute as a user-determined ID attribute. Although
attributes that are marked as ID attributes using this method will show up in searches conducted
using the Document.getElementById() method, it will not modify any of the type information
provided by the Attr.schemaTypeInfo attribute. To mark namespace-aware attributes, use the
setIdAttributeNS() method.

Arguments

idAttr: Attr

The attribute to modify.

isId: boolean

Set to true if the attribute is to be an ID attribute; otherwise, set to false.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exceptions

NO_MODIFICATION_ALLOWED_ERR

Raised if the element is read-only.

NOT_FOUND_ERR

Raised if the specified attribute is not an attribute of the element in question.

Java binding

public void setIdAttributeNode(Attr idAttr, boolean isId)

throws DOMException;

Entity

The Entity object represents a given general XML entity's replacement value. Depending on whether

a given DOM implementation is validating or nonvalidating, and whether it chooses to expand entity
references inline during parsing, Entity objects may not be available to the DOM user.

Java example

// Locate the my_entity entity declaration

Entity ndEnt = (Entity)(doc.getDoctype().getEntities().

 getNamedItem("my_entity"));

Attributes

The following read-only attributes are defined for the Entity object:

inputEncoding: DOMString(3)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Gives the character encoding detected at parse time for external parsed entities. See Chapter 5 for
more information about character encodings. Is null for internal parsed entities or if the encoding is

not known. Read-only.

Java binding

public String getInputEncoding();

notationName: DOMString

If this entity is unparsed, the entity's notation name. For parsed entities, this attribute is null.

Java binding

public String getNotationName();

Java example

// Find out if it's a parsed entity

boolean fParsedEnt = ndEnt.getNotationName() = = null;

publicId: DOMString

The public identifier URL given for this entity, or null if none was specified.

Java binding

public String getPublicId();

systemId: DOMString

The system identifier URL (URI) given for this entity, or null if none was specified.

Java binding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public String getSystemId();

Java example

// Get the Public ID or System ID for this entity

Entity ndEnt = (Entity)doc.getDoctype().getEntities().getNamedItem("my_ entity");

String strURL = ndEnt.getPublicId();

// if can't find the public URL

if (strURL = = null) {

 // find the system URL

 strURL = ndEnt.getSystemId();

}

xmlEncoding: DOMString(3)

Returns the character encoding specified in the encoding pseudo-attribute of the text declaration for
an external parsed entity. See Chapter 5 for more information about character encodings. Is null if

no text declaration is present. Read-only.

Java binding

public String getXmlEncoding();

xmlVersion: DOMString(3)

Returns the value of the version pseudo-attribute of the text declaration of an external parsed
entity. Is null if no text declaration is present. Read-only.

Java binding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public String getXmlVersion();

Methods

The Entity object has no methods.

EntityReference

EntityReference nodes appear within the document hierarchy wherever an XML general entity

reference is embedded within the source document. Depending on the DOM implementation, a
corresponding Entity object may exist in the entities collection of the docType attribute of the
Document object. If such an entity exists, then the child nodes of both the Entity and
EntityReference represent the replacement text associated with the given entity.

Java example

// Create a new entity reference

EntityReference ndER = doc.createEntityReference("my_entity");

NameList(3)

This interface supplies a read-only, ordered list names and namespace values that can be accessed
via a zero-based index.

Attribute

The NameList object contains the following attributes:

length: unsigned long(3)

Gives the number of name/namespace pairs in the list. Read-only.

Java binding

public int getLength();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Methods

The following methods are defined for this object:

contains: str(3)

Returns true if the name given by the str parameter is contained in the list; otherwise, it returns
false.

Argument

str: DOMString

The name value to locate.

Java binding

public boolean contains(String str);

containsNS: namespaceURI, name(3)

Returns true if the given name/namespace pair is contained in the list; otherwise, returns false.

Argument

namespaceURI: DOMString

The namespace URI of the name to locate.

name: DOMString

The name value to locate.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java binding

public boolean containsNS(String namespaceURI, String name);

getName: index(3)

Used to retrieve names from the list. Valid values for the index argument are 0 through length - 1.
If an invalid index is provided, this method returns null.

Argument

index: unsigned long

The index of the name to retrieve.

Java binding

public String getName(int index);

getNamespaceURI: index(3)

Used to retrieve the namespace URI associated with a given name from the list. Valid values for the
index argument are through length - 1. If an invalid index is provided or the name has no
associated namespace URI, this method returns null.

Argument

index: unsigned long

The index of the name to retrieve.

Java binding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public String getNamespaceURI(int index);

NamedNodeMap

The NamedNodeMap interface provides a mechanism used to retrieve Node objects from a collection by
name. Although this interface exposes the same methods and attributes as the NodeList class, they
are not related. While it is possible to enumerate the nodes in a NamedNodeMap using the item()
method and length attribute, the nodes are not guaranteed to be in any particular order.

Java example

// Get an element's attributes

NamedNodeMap nnm = elem.getAttributes();

Attribute

The NamedNodeMap defines one attribute:

length: unsigned long

The total number of Node objects in the list.

Java binding

public long getLength();

Java example

// Iterate over the attribute list

for (int i = 0; i < nnm.getLength(); i++) {

 ...

}

Methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following methods are defined for the NamedNodeMap object:

getNamedItem: name

Returns a reference to the node with the given nodeName property specified by name.

Argument

name: DOMString

Name of the node to retrieve.

Java binding

public Node getNamedItem(String name);

Java example

// Check to see if an ID attribute exists

// in this map, and add it if necessary

// nnm was created by getting the attributes

// from an element

if (nnm.getNamedItem("id") = = null) {

 // get the document

 Document doc = elem.getOwnerDocument();

 // create a new attribute Node

 Attr attrID = doc.createAttribute("id");

 // set the attribute value

 attrID.appendChild(doc.createTextNode(makeUniqueID(elem)));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // ... and add it to the NamedNodeMap

 nnm.setNamedItem(attrID);

}

getNamedItemNS: namespaceURI, localName(2)

Extends the basic getNamedItem method to include support for namespaces. Instead of finding an

item in the list based only on the local part of the node name, it is possible to incorporate the
namespace URI into the search.

Arguments

namespaceURI: DOMString

Namespace URI of the node to retrieve.

localName: DOMString

Local name of the node to retrieve.

Java binding

public Node getNamedItemNS(String namespaceURI, String localName);

item: index

Returns a reference to the Node object at position index. If the given index is < 0 or >= the length
attribute of the NodeList, this function returns null.

Argument

index: unsigned long

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Zero-based index of the list of the node to return.

Java binding

public Node item(long index);

Java example

// Remove the last attribute from the list

if (nnm.getLength() > 0) {

 nnm.removeNamedItem(nnm.item(nnm.getLength()-1).getNodeName());

}

removeNamedItem: name

Removes the Node object with the nodeName property that matches the name parameter and returns
a reference to the removed object. If the node you plan to remove is an Attr node and if it has a
defined default value, the node will be replaced immediately with a new Node object set to the default

value.

Argument

name: DOMString

The nodeName value of the node to be removed.

Exception

NOT_FOUND_ERR

Raised if no node matching the name parameter is found in the map.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java binding

public Node removeNamedItem(String name) throws DOMException;

Java example

// Remove the ID node attribute

NamedNodeMap nnm = elem.getAttributes();

if (nnm.removeNamedItem("id") = = null) {

 System.err.println("no ID attribute found");

}

removeNamedItemNS: namespaceURI, localName(2)

Removes the Node object with the matching namespaceURI and localName properties and returns a
reference to the removed object. If the node you plan to remove is an Attr node and if it has a
defined default value, a new Node object set to the default value will replace the node immediately.

Arguments

namespaceURI: DOMString

Namespace URI of the node to retrieve.

localName: DOMString

Local name of the node to retrieve.

Exception

NOT_FOUND_ERR

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Raised if no node matching the namespaceURI and localName parameter is found in the map.

Java binding

public Node removeNamedItemNS(String namespaceURI, String localName);

setNamedItem: arg

Inserts the given Node object into the list, using its nodeName attribute. Since many DOM node types

expose the same, hardcoded value for this property, storing only one of them in a single
NamedNodeMap is possible. Each subsequent insertion overwrites the previous node entry. See the

nodeName: DOMString topic for a discussion of these special name values.

This method returns a reference to the Node object that the new node replaces. If no nodes with the
same nodeName value are currently in the map, this method returns null.

Argument

arg: Node

The Node object to be stored in the map. The value of the nodeName property is used as the
lookup key. A node with the same nodeName value as the new node is replaced with the node
referenced by arg.

Exceptions

WRONG_DOCUMENT_ERR

Raised if a document different than the creator of the target NamedNodeMap created the arg

node.

NO_MODIFICATION_ALLOWED_ERR

Raised if the NamedNodeMap is read-only.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INUSE_ATTRIBUTE_ERR

Raised if the arg node is an Attr node that is already in use by another element's attributes

map.

Java binding

public Node setNamedItem(Node arg) throws DOMException;

Java example

// Check to see if an ID attribute exists

// in this map, and add it if necessary

if (nnm.getNamedItem("id") = = null) {

 // get the document

 Document doc = elem.getOwnerDocument();

 // create a new attribute Node

 Attr attrID = doc.createAttribute("id");

 // set the attribute value

 attrID.appendChild(doc.createTextNode(makeUniqueID(elem)));

 // ... and add it to the NamedNodeMap

 nnm.setNamedItem(attrID);

}

setNamedItemNS: arg(2)

Identical in function to the basic setNamedItem method, except that it considers namespace
properties in the Node object. A reference to the replaced Node object is returned.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Argument

arg: Node

The Node object to be stored in the map. The values of the namespaceURI and localName

properties are used as the lookup key. If another node with identical values for these two
properties exists, the new node replaces it.

Exceptions

WRONG_DOCUMENT_ERR

Raised if a document different than the creator of the target NamedNodeMap created the arg

node.

NO_MODIFICATION_ALLOWED_ERR

Raised if the NamedNodeMap is read-only.

INUSE_ATTRIBUTE_ERR

Raised if the arg node is an Attr node already in use by another element's attributes map.

Java binding

public Node setNamedItemNS(Node arg) throws DOMException;

Node

The Node interface is the base interface for every member of a DOM document tree. It exposes

attributes common to every type of document object and provides simple methods to retrieve type-
specific information without resorting to downcasting. For instance, the attributes list provides
access to the Element object's attributes, but it would have no meaning for a
ProcessingInstruction node. (Extracting pseudo-attributes from a processing instruction requires

your application to parse the contents of the processing instruction.)

This interface also exposes all methods for querying, inserting, and removing objects from the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

document hierarchy. The Node interface makes it easier to build general-purpose tree-manipulation

routines that are not dependent on specific document element types.

Attributes

The following attributes provide information about where the Node object is located within the

document tree. These attributes are read-only, and methods are provided for inserting and removing
nodes within the document tree.

attributes: NamedNodeMap

Has meaning only for Element objects. It provides access to a list of Attr objects in a NamedNodeMap.
For all other object types, it returns null.

Java binding

public NamedNodeMap getAttributes();

Java example

// List the attributes of an Element node

NamedNodeMap nnm = doc.getDocumentElement().getAttributes();

if (nnm != null) {

 for (int i = 0; i < nnm.getLength(); i++) {

 // print the attribute and value

 System.out.println(nnm.item(i).getNodeName() + " = \"" +

 nnm.item(i).getNodeValue() + "\"");

 }

}

baseURI: DOMString(3)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns the effective base URI for the node in question, or null if none is available. The base URI is

the absolute URI that should be used to properly resolve relative links from within an XML document.

Java binding

public String getBaseURI();

childNodes: NodeList

Returns a NodeList containing a reference to every child of this Node.

Java binding

public NodeList getChildNodes();

Java example

// List the text contents of an element

NodeList nlChildren = elem.getChildNodes();

Node ndChild;

for (int iNode = 0; iNode < nlChildren.getLength(); iNode++) {

 ndChild = nlChildren.item(iNode);

 if (ndChild.getNodeType() = = Node.TEXT_NODE) {

 System.out.println(ndChild.getNodeValue());

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dynamic Tree References

Throughout the DOM, several places return lists or collections of nodes that represent the
current state of the document tree. These references are all live; any modifications to
the document hierarcy, made by inserting or removing nodes, are reflected in the list
immediately.

Whether due to multithreading or unforeseen side effects of procedure calls, the contents
of the list being used could change. To reduce the likelihood of difficult-to-find bugs
resulting from stale values, request values (such as the length of a list) directly from the
NodeList or NamedNodeMap objects. This option is safer than storing values in

intermediate variables.

firstChild: Node

Points to the head of the linked list of children of this node. If no child nodes exist, it returns null.

Java binding

public Node getFirstChild();

Java example

// List the contents of a node

for (Node nd = ndDump.getFirstChild(); nd != null;

 nd = nd.getNextSibling()) {

 if (nd.getNodeValue() != null) {

 System.out.println(nd.getNodeValue());

 }

}

lastChild: Node

Returns a pointer to the end of a given Node object's linked list of child nodes. If the node does not

http://lib.ommolketab.ir
http://lib.ommolketab.ir

have children, it returns null.

Java binding

public Node getLastChild();

Java example

// List the value of a node in reverse order

for (Node nd = ndDump.getLastChild(); nd != null;

 nd = nd.getPreviousSibling()) {

 if (nd.getNodeValue() != null) {

 System.out.println(nd.getNodeValue());

 }

}

localName: DOMString(2)

Returns the local part of the fully qualified node name. This part of the name is to the right of the
final : in a namespace-qualified name.

Java binding

public String getLocalName();

namespaceURI: DOMString(2)

Represents the namespace URI given to this Node object at creation time; returns null if no
namespace was given. The value is null if the node has been created by a createNodeType()
method rather than a createNodeTypeNS() method.

Java binding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public String getNamespaceURI();

nextSibling: Node

Returns the next node in the sibling list. If this node is the end of the list, nextSibling returns null.

Java binding

public Node getNextSibling();

Java example

// List the contents of a node

for (Node nd = ndDump.getFirstChild(); nd != null;

 nd = nd.getNextSibling()) {

 if (nd.getNodeValue() != null) {

 System.out.println(nd.getNodeValue());

 }

}

nodeName: DOMString

Intended to represent the underlying DOM object's name. Depending on the object type, this
attribute may map to another attribute of the object or a constant string, as listed in this table:

Object type nodeName

Element Tag name

Attr Attribute name

Text "#text"

CDATASection "#cdata-section"

EntityReference Name of entity referenced

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Object type nodeName

Entity Entity name

ProcessingInstruction Target

Comment "#comment"

Document "#document"

DocumentType Document type name

DocumentFragment "#document-fragment"

Notation Notation name

Java binding

public String getNodeName();

// Print the document root tag name

Node ndDoc = (Node)doc.getDocumentElement();

System.out.println("Document root element type: " + ndDoc.getNodeName());

nodeType: unsigned short

Contains a value that indicates the true type of the object referenced through the Node interface. The

following table lists this attribute's possible values, along with the actual object types they represent:

Constant name Object type Constant value

ELEMENT_NODE Element 1

ATTRIBUTE_NODE Attr 2

TEXT_NODE Text 3

CDATA_SECTION_NODE CDATASection 4

ENTITY_REFERENCE_NODE EntityReference 5

ENTITY_NODE Entity 6

PROCESSING_INSTRUCTION_NODE ProcessingInstruction 7

COMMENT_NODE Comment 8

Entity Entity name

ProcessingInstruction Target

Comment "#comment"

Document "#document"

DocumentType Document type name

DocumentFragment "#document-fragment"

Notation Notation name

Java binding

public String getNodeName();

// Print the document root tag name

Node ndDoc = (Node)doc.getDocumentElement();

System.out.println("Document root element type: " + ndDoc.getNodeName());

nodeType: unsigned short

Contains a value that indicates the true type of the object referenced through the Node interface. The

following table lists this attribute's possible values, along with the actual object types they represent:

Constant name Object type Constant value

ELEMENT_NODE Element 1

ATTRIBUTE_NODE Attr 2

TEXT_NODE Text 3

CDATA_SECTION_NODE CDATASection 4

ENTITY_REFERENCE_NODE EntityReference 5

ENTITY_NODE Entity 6

PROCESSING_INSTRUCTION_NODE ProcessingInstruction 7

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant name Object type Constant value

COMMENT_NODE Comment 8

DOCUMENT_NODE Document 9

DOCUMENT_TYPE_NODE DocumentType 10

DOCUMENT_FRAGMENT_NODE DocumentFragment 11

NOTATION_NODE Notation 12

The parent-child and sibling relationships between nodes can be visualized as two doubly linked lists.
One list links parents to children, while the other links nodes that exist at the same level.

Java binding

public short getNodeType();

Java example

// Check to see if a node is an Element type node

public boolean isElement(Node nd) {

 return nd.getNodeType() = = Node.ELEMENT_NODE;

}

nodeValue: DOMString

Intended to provide a reasonable string value for the underlying DOM object. Depending on the
nodeType, this property may be read-only, read/write, or null. This table lists the values for the

object types.

Object type nodeValue

Element null

Attr Attribute value

Text Text node content

CDATASection CDATA section content

EntityReference null

COMMENT_NODE Comment 8

DOCUMENT_NODE Document 9

DOCUMENT_TYPE_NODE DocumentType 10

DOCUMENT_FRAGMENT_NODE DocumentFragment 11

NOTATION_NODE Notation 12

The parent-child and sibling relationships between nodes can be visualized as two doubly linked lists.
One list links parents to children, while the other links nodes that exist at the same level.

Java binding

public short getNodeType();

Java example

// Check to see if a node is an Element type node

public boolean isElement(Node nd) {

 return nd.getNodeType() = = Node.ELEMENT_NODE;

}

nodeValue: DOMString

Intended to provide a reasonable string value for the underlying DOM object. Depending on the
nodeType, this property may be read-only, read/write, or null. This table lists the values for the

object types.

Object type nodeValue

Element null

Attr Attribute value

Text Text node content

CDATASection CDATA section content

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Object type nodeValue

EntityReference null

Entity null

ProcessingInstruction Entire content, excluding the target

Comment Comment content

Document null

DocumentType null

DocumentFragment null

Notation null

Exceptions

NO_MODIFICATION_ALLOWED_ERR

Indicates the nodeValue attribute is read-only for this DOM object type.

DOMSTRING_SIZE_ERR

This exception is raised if the value that would be returned is too large to be contained by a
DOMString type in the given implementation.

Java bindings

public String getNodeValue() throws DOMException;

public void setNodeValue(String nodeValue) throws DOMException;

Java example

// If this node is a text node, make the value lowercase

if (nd.getNodeType() = = Node.TEXT_NODE) {

 // make it lowercase

 nd.setNodeValue(nd.getNodeValue().toLowerCase());

EntityReference null

Entity null

ProcessingInstruction Entire content, excluding the target

Comment Comment content

Document null

DocumentType null

DocumentFragment null

Notation null

Exceptions

NO_MODIFICATION_ALLOWED_ERR

Indicates the nodeValue attribute is read-only for this DOM object type.

DOMSTRING_SIZE_ERR

This exception is raised if the value that would be returned is too large to be contained by a
DOMString type in the given implementation.

Java bindings

public String getNodeValue() throws DOMException;

public void setNodeValue(String nodeValue) throws DOMException;

Java example

// If this node is a text node, make the value lowercase

if (nd.getNodeType() = = Node.TEXT_NODE) {

 // make it lowercase

 nd.setNodeValue(nd.getNodeValue().toLowerCase());

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

ownerDocument: Document

Returns a reference to the Document used to create this Node object. Since the Document object is

the only mechanism exposed for creating new nodes, even these newly created, empty nodes have
the ownerDocument property set. This attribute can be null only for Document nodes and
DocumentType nodes that are not yet part of a document. You can't move a node directly to another

document; instead, you must import it. This property can be useful for checking where a node came
from.

Java binding

public Document getOwnerDocument();

Java example

// Add my two cents

Document doc = elem.getOwnerDocument();

Text txtAdd = doc.createTextNode("My $.02");

elem.appendChild(txtAdd);

parentNode: Node

Provides a reference to the parent of this node. All node types-except Document,
DocumentFragment, and Attr-may have a parent node. Every node within a Document hierarchy has

a parent. Nodes that are not part of the document tree, such as new nodes and nodes removed from
the document using the replaceChild() or removeChild() methods, have a parentNode attribute
of null.

Java binding

Node getParentNode();

Java example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Unlink an element from the document tree

elem.getParentNode().removeChild(elem);

prefix: DOMString(2)

Represents the namespace prefix of this node, used for nodes that support namespace prefixes. For
ELEMENT_NODE and ATTRIBUTE_NODE type nodes, changing the namespace prefix also affects the
nodeName, tagName, and name attributes. Since these properties hold the qualified name of the node,

changing the prefix also updates it.

Exceptions

INVALID_CHARACTER_ERR

Raised if the prefix includes an illegal character.

NO_MODIFICATION_ALLOWED_ERR

Indicates that the prefix attribute is read-only for this DOM object type.

NAMESPACE_ERR

Raised if the prefix is malformed, according to the rules of namespace identifier formation.
This exception is also raised if the namespaceURI attribute is null, or if an attempt was made
to violate the XML rules of identifier formation. Such an attempt includes invalid use of the xml
or xmlns identifier. For more information about namespaces, see Chapter 4.

Java bindings

public String getPrefix();

public void setPrefix(String prefix) throws DOMException;

previousSibling: Node

Returns the preceding node in the sibling list. If this node is the head of the sibling list, it returns

http://lib.ommolketab.ir
http://lib.ommolketab.ir

null.

Java binding

public Node getPreviousSibling();

Java example

// List the value of a node in reverse order

for (Node nd = ndDump.getLastChild(); nd != null;

 nd = nd.getPreviousSibling()) {

 if (nd.getNodeValue() != null) {

 System.out.println(nd.getNodeValue());

 }

}

textContent: DOMString(3)

This attribute provides a quick method to get and set the textual content of nodes within the
document tree. When used to retrieve text, it returns the contents of all descendant Text nodes
without any whitespace normalization. Markup nodes (Attr, Element, and so forth) are ignored.
When used to set text, it causes any child nodes to be removed and a single Text node to be created
and linked in as the only child of the target node. The following table shows how the textContent

attribute is constructed for the various node types:

Node type Value

ELEMENT_NODE

ATTRIBUTE_NODE

ENTITY_NODE

ENTITY_REFERENCE_NODE

DOCUMENT_FRAGMENT_NODE

Combines the textContent of all child nodes, excluding nodes of
type COMMENT_NODE and PROCESSING_INSTRUCTION_NODE, or an

empty string if no child nodes

TEXT_NODE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Node type Value

CDATA_SECTION_NODE

COMMENT_NODE

PROCESSING_INSTRUCTION_NODE

Returns the same value as the nodeValue attribute

DOCUMENT_NODE

DOCUMENT_TYPE_NODE

NOTATION_NODE

Returns null

Exceptions

NO_MODIFICATION_ALLOWED_ERR

Thrown on set if node is read-only.

DOMSTRING_SIZE_ERR

Thrown on get when length of text content would exceed the maximum allowable length of a
DOMString on the implementation platform.

Java binding

public String getTextContent();

public void setTextContent(String textContent) throws DOMException

Methods

The following methods are defined for Node interface objects:

appendChild: newChild

Appends the newChild node to the end of the child list. If newChild is already linked into the

document tree, it is unlinked before the append is performed. This method returns a reference to the
newChild node.

CDATA_SECTION_NODE

COMMENT_NODE

PROCESSING_INSTRUCTION_NODE

Returns the same value as the nodeValue attribute

DOCUMENT_NODE

DOCUMENT_TYPE_NODE

NOTATION_NODE

Returns null

Exceptions

NO_MODIFICATION_ALLOWED_ERR

Thrown on set if node is read-only.

DOMSTRING_SIZE_ERR

Thrown on get when length of text content would exceed the maximum allowable length of a
DOMString on the implementation platform.

Java binding

public String getTextContent();

public void setTextContent(String textContent) throws DOMException

Methods

The following methods are defined for Node interface objects:

appendChild: newChild

Appends the newChild node to the end of the child list. If newChild is already linked into the

document tree, it is unlinked before the append is performed. This method returns a reference to the
newChild node.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Argument

newChild: Node

The node to append. If the node is a DocumentFragment node, the children of newChild are

appended in sequence to the end of the node's child list.

Exceptions

HIERARCHY_REQUEST_ERR

Raised if the insert operation violates at least one document structure rule. For instance, the
node doesn't allow children or doesn't allow children of the newChild node type. This exception

is also raised if the operation creates a circular reference (i.e., it tries to insert a node's parent
as a node's child).

WRONG_DOCUMENT_ERR

Raised if the newChild node is created in a different document than that of the new parent

node.

NO_MODIFICATION_ALLOWED_ERR

Raised if the new parent node is read-only.

Java binding

public Node appendChild(Node newChild) throws DOMException;

Java example

// Move the first child to the end of the child node list

if (elem.getFirstChild() != null) {

 elem.appendChild(elem.getFirstChild());

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cloneNode: deep

Returns a copy of the node without a parent node. If the cloned node is specified as deep = true, the

subtree under the node is also copied. Otherwise, the cloned node does not contain child nodes.

Argument

deep: boolean

If true, child nodes are copied to the cloned node. If false, only the original node is copied.

Java binding

public Node cloneNode(boolean deep);

Java example

// Make a copy of this element and all children

elem.cloneNode(true);

compareDocumentPosition: other(3)

Compares the relative position of the node on which the method is invoked with the position of the
other node. The return value is a bit mask that indicates the relative position between the two nodes

in document order. The following table lists the bit mask members and their meanings:

Constant name Value Meaning

DOCUMENT_POSITION_DISCONNECTED 0x01
The two nodes are disconnected (do
not share a common container
ancestor) and cannot be compared.

DOCUMENT_POSITION_PRECEDING 0x02
The other node precedes the target

node within the document.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant name Value Meaning

DOCUMENT_POSITION_FOLLOWING 0x04
The other node follows the target

node.

DOCUMENT_POSITION_CONTAINS 0x08
The other node contains the target

node.

DOCUMENT_POSITION_CONTAINED_BY 0x010
The other node is contained by the

target node.

DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC 0x020
The relative positions are
implementation-specific, such as in
the case of disconnected nodes.

Argument

other: Node

The other node to use in the position comparison.

Exception

NOT_SUPPORTED_ERR

Raised if the two nodes are from incompatible DOM implementations and their relative positions
cannot be determined.

Java binding

public static final short DOCUMENT_POSITION_DISCONNECTED = 0x01;

public static final short DOCUMENT_POSITION_PRECEDING = 0x02;

public static final short DOCUMENT_POSITION_FOLLOWING = 0x04;

public static final short DOCUMENT_POSITION_CONTAINS = 0x08;

public static final short DOCUMENT_POSITION_CONTAINED_BY = 0x10;

public static final short DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC = 0x20;

public short compareDocumentPosition(Node other) throws DOMException;

DOCUMENT_POSITION_FOLLOWING 0x04
The other node follows the target

node.

DOCUMENT_POSITION_CONTAINS 0x08
The other node contains the target

node.

DOCUMENT_POSITION_CONTAINED_BY 0x010
The other node is contained by the

target node.

DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC 0x020
The relative positions are
implementation-specific, such as in
the case of disconnected nodes.

Argument

other: Node

The other node to use in the position comparison.

Exception

NOT_SUPPORTED_ERR

Raised if the two nodes are from incompatible DOM implementations and their relative positions
cannot be determined.

Java binding

public static final short DOCUMENT_POSITION_DISCONNECTED = 0x01;

public static final short DOCUMENT_POSITION_PRECEDING = 0x02;

public static final short DOCUMENT_POSITION_FOLLOWING = 0x04;

public static final short DOCUMENT_POSITION_CONTAINS = 0x08;

public static final short DOCUMENT_POSITION_CONTAINED_BY = 0x10;

public static final short DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC = 0x20;

public short compareDocumentPosition(Node other) throws DOMException;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getFeature: feature, version(3)

Provides a nonbinding-specific way to retrieve an object instance that implements a specific version
of a given feature. Primarily used to access features beyond the scope of the DOM Core.

Arguments

feature: DOMString

The package name of the feature to retrieve.

version: DOMString

The DOM version level of the specified feature to retrieve.

Return value

Returns an object that implements the APIs for the specified features, or null if no implementation is

available.

Java binding

public Object getFeature(String feature, String version);

getUserData: key(3)

This method is used to retrieve user-defined data from a node that was placed there using the
setUserData() method. If no user data with the given key is found, the method returns null.

Argument

key: DOMString

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The unique key associated with the user data to retrieve.

Java binding

public Object getUserData(String key);

hasAttributes()

Indicates whether an Element node has any attributes. Returns true if the node has attributes;
otherwise, it returns false.

Java binding

public boolean hasAttributes();

hasChildNodes()

Provides a quick way to determine if a node has children. Returns true if the node has any children;
otherwise, it returns false.

Java binding

public boolean hasChildNodes();

insertBefore: newChild, refChild

Inserts the Node object newChild into the child list of the parent node that invokes it. The refChild
parameter allows you to specify where to insert the new node in the list. If refChild is null, the
new node is inserted at the end of the child list. (This behavior is the same as appendChild.) If it is
not null, the new node is inserted into the list in front of the specified node. If the newChild node is

already part of the document tree, it is unlinked before it is inserted in its new position. Also, if the
newChild node references a DocumentFragment object, each of its children are inserted, in order,
before the refChild node. A reference to the newChild node is returned.

Arguments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

newChild: Node

The new node to insert.

refChild: Node

The node that follows the new node in the child list, or null if the new node is inserted at the

end of the child list.

Exceptions

HIERARCHY_REQUEST_ERR

Raised if the insert operation would violate at least one document structure rule. For instance,
the node doesn't allow children or doesn't allow children of the newChild node type. This

exception is also raised if the operation creates a circular reference (i.e., it tries to insert a
node's parent as a node's child).

WRONG_DOCUMENT_ERR

Raised if the newChild node was created in a document different than that of the new parent

node.

NO_MODIFICATION_ALLOWED_ERR

Raised if the new parent node is read-only.

NOT_FOUND_ERR

Raised if the node pointed to by refChild is not a child of the node performing the insert.

NOT_SUPPORTED_ERR

Raised if the DOM implementation in question doesn't support inserting DocumentType or
Element nodes into a Document node.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java binding

public Node insertBefore(Node newChild, Node refChild)

 throws DOMException;

Java example

// Insert a new node at the head of the child list of a parent node

ndParent.insertBefore(ndNew, ndParent.getFirstChild());

isDefaultNamespace: namespaceURI(3)

This method returns true if the namespace URI given is the default namespace for this node, false

if it is not.

Argument

namespaceURI: DOMString

The namespace URI to check against the default namespace URI.

Java binding

public boolean isDefaultNamespace(String namespaceURI);

isEqualNode: arg(3)

This method compares the node on which the method is invoked with the node referenced by the
other parameter. The two nodes are considered to be equal if:

They are of the same type

The following attributes are equal: nodeName, localName, namespaceURI, prefix, nodeValue

The attributes maps are equal (contain the same number of nodes that are equal to one

http://lib.ommolketab.ir
http://lib.ommolketab.ir

another)

The childNodes lists are equal (the child node trees are identical, and each child passes this

equality test with its counterpart in the other tree)

For DocumentType nodes only: the publicId, systemId, internalSubset, entities, and
notations attributes must be identical as well

The method returns true if the nodes pass all of the above tests; otherwise, it returns false.

Argument

arg: Node

The node to use in the comparison.

Java binding

public boolean isEqualNode(Node arg);

isSameNode: other(3)

This method returns true if the node on which the method is invoked and the node referred to by the
other parameter refer to the same Node object, false if they do not.

Argument

other: Node

The other node to use in the comparison.

Java binding

public boolean isSameNode(Node other);

isSupported: feature, version(2)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Checks to see if a particular DOM feature is available for this implementation. For more information
about the feature names, see the appendData: arg method of the CharacterData object earlier in this
chapter. This method returns true if the feature is available, false if it is not.

Arguments

feature: DOMString

The name of the feature to test for. See details of the appendData: arg method of the
CharacterData object for a list of this parameter's valid values.

version: DOMString

The version number of the feature to test. For example, for DOM Level 2, Version 1, this string
should be 2.0. If the version is not specified, this method tests for any version of the feature.

Java binding

public boolean supports(String feature, String version);

lookupNamespaceURI: prefix(3)

This method searches for the namespace URI associated with the given namespace prefix, starting
with the node on which it is invoked. It then recursively searches parent nodes until the prefix is
located. The return value is a DOMString containing the namespace URI associated with the prefix if
it is found; otherwise, the method returns null.

Argument

prefix: DOMString

The namespace prefix to be located.

Java binding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public String lookupNamespaceURI(String prefix);

lookupPrefix: namespaceURI(3)

This method searches for the namespace prefix assigned to the given namespace URI, starting with
the node on which it is invoked; it then recursively searches parent nodes until a suitable prefix is
located. The return value is a DOMString containing the prefix if it is found; otherwise, the method
returns null. If more than one suitable prefix is found, the returned prefix is implementation-specific.

Argument

namespaceURI: DOMString

The namespace URI of the prefix to be located.

Java binding

public String lookupPrefix(String namespaceURI);

normalize()(2)

Recursively combines all adjacent Text nodes into a single node. It also removes empty Text nodes

from the document tree. This operation is useful for operations that require absolute references
within a document or if two documents must be compared.

Java binding

public void normalize();

removeChild: oldchild

Unlinks the oldchild node from the child list of a given node and returns a reference to the now
detached Node object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Argument

oldchild: Node

The node to be removed.

Exceptions

NO_MODIFICATION_ALLOWED_ERR

Raised if the parent node is read-only.

NOT_FOUND_ERR

Raised if the oldchild node is not a child of this node.

NOT_SUPPORTED_ERR

Could be raised if the Document node of a DOM implementation in question doesn't support
removing DocumentType or Element nodes.

Java binding

public Node removeChild(Node oldChild) throws DOMException;

Java example

// Unlink an element and all its children

// from the document tree

elem.getParentNode().removeChild(elem);

replaceChild: newChild, oldchild

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Replaces the child node oldchild with newChild. If newChild is currently linked into the document
tree, it is removed before the replace is performed. The method returns a reference to the oldchild

node.

Arguments

newChild: Node

The node to be inserted.

oldchild: Node

The node being replaced.

Exceptions

HIERARCHY_REQUEST_ERR

Raised if the insert operation violates at least one document structure rule. For instance, the
node doesn't allow children or doesn't allow children of the newChild node type. This exception

is also raised if the operation creates a circular reference (i.e., it tries to insert a node's parent
as a node's child).

WRONG_DOCUMENT_ERR

Raised if the newChild node was created in a different document than the new parent node.

NO_MODIFICATION_ALLOWED_ERR

Raised if the new parent node is read-only.

NOT_FOUND_ERR

Raised if the node pointed to by oldchild is not a child of the node performing the

replacement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NOT_SUPPORTED_ERR

Could be raised if the Document node of a DOM implementation in question doesn't support
replacing DocumentType or Element nodes.

Java binding

public Node replaceChild(Node newChild, Node oldChild)

 throws DOMException;

Java example

// Replace an old node with a new one

ndOld.getParentNode().replaceChild(ndNew, ndOld);

setUserData: key, data, handler(3)

The setUserData() method (in conjunction with the getUserData() method) provides a facility

for attaching application-specific information to DOM nodes. By using distinct key values, it is possible
to attach multiple user objects to a single DOM node. The information to be attached must conform
to the DOMUserData type and may include a data handler object that implements the
UserDataHandler interface.

Arguments

key: DOMString

The unique key to associate with the data parameter in the node's list of user data.

data: DOMUserData

The user data to attach.

handler: UserDataHandler

An object that will receive notification when various operations are performed on the DOM node

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in question.

Java binding

public Object setUserData(String key, Object data,

UserDataHandler handler);

NodeList

The NodeList interface allows DOM classes to expose an ordered collection of nodes. A NodeList
represents a read-only, zero-based array of Node objects. Since no mechanism exists for creating,
adding, or removing nodes from a NodeList, DOM users cannot use this class as a general-purpose

utility class.

Java example

// List the text contents of an element

NodeList nlChildren = elem.getChildNodes();

Node ndChild;

for (int iNode = 0; iNode < nlChildren.getLength(); iNode++) {

 ndChild = nlChildren.item(iNode);

 if (ndChild.getNodeType() = = Node.TEXT_NODE) {

 System.out.println(ndChild.getNodeValue());

 }

}

Attribute

The NodeList interface defines one attribute:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

length: unsigned long

The total number of Node objects in the list.

Java binding

public long getLength();

Method

The NodeList interface defines one method:

item:index

Returns a reference to the Node object at position index or returns null if the index is invalid. If the
index given is < 0 or >= the length attribute of the NodeList, this function returns null.

Argument

index: unsigned long

Zero-based index into the list of the Node to return.

Java binding

public Node item(long index);

ProcessingInstruction

This interface provides access to the contents of an XML processing instruction. Processing
instructions provide a mechanism for embedding commands to an XML processing application that is
in line with the XML content.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java example

// Add an application-specific processing instruction

ProcessingInstruction pi = doc.createProcessingInstruction("my_app",

 "action=\"save\"");

Attributes

The interface defines two attributes:

data: DOMString

Returns the data portion of this processing instruction. The data portion is identified starting at the
first nonwhitespace character after the target token and ending at the closing ?>.

Write exception

NO_MODIFICATION_ALLOWED_ERR

Raised if the node is read-only.

Java bindings

public String getData();

public void setData(String data) throws DOMException;

Java example

// Check the application's data attribute

if (pi.getTarget() = = "MY_APPLICATION") {

 // check the data attribute for my own application-specific info

 if (pi.getData() = = "CHECK_SIBLINGS") {

 // check the siblings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ...

 }

 pi.setData("SIBLINGS_CHECKED");

}

target: DOMString

Returns the target portion of this processing instruction. The target is the first whitespace-delimited
token within the processing-instruction block.

Processing instructions are meant to embed application-specific instructions for automatic content
generation, parsing, etc., within the XML stream. The instruction's target portion is the flag that

allows different processing applications to coexist. Applications that use processing instructions for
formatting should ignore processing instructions they do not recognize.

Java binding

public String getTarget();

// Check to see if your application is targeted

if (pi.getTarget() = = "MY_APPLICATION") {

 // do my application-specific processing here

}

Methods

ProcessingInstruction has no methods.

Text

Text nodes contain the nonmarkup character data contained within the XML document. After the XML
document is parsed, exactly one Text node exists for each uninterrupted block of nonmarkup text.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

The Text interface defines the following attributes:

wholeText: DOMString(3)

This is a convenience attribute that returns all of the text from the target node as well as the text
from adjacent Text nodes, in document order. For the purposes of this attribute, Text nodes are

considered to be adjacent if they can be reached without exiting, entering, or skipping any of the
following node types: Element, Comment, and ProcessingInstruction. Read-only.

Java binding

public String getWholeText();

isElementContentWhitespace: boolean(3)

Returns true if the element contains only whitespace that XML validation has determined to be

insignificant. Whitespace is insignificant if it does not belong to an element that has been declared to
contain text or mixed content. Read-only.

Java binding

public boolean isElementContentWhitespace();

Methods

The following methods are defined for the Text interface:

replaceWholeText: content(3)

This is a convenience method for replacing multiple adjacent text nodes with a single node that will
contain the text passed in the content argument. The method returns a reference to the Text node
that received the new content, or null if content contained a zero-length string.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Argument

content: DOMString

New text content to be used for replacement.

Exceptions

NO_MODIFICATION_ALLOWED_ERR

Raised if the element is read-only.

splitText: offset

Splits a Text node into two adjacent Text nodes. The contents of the original node are divided at the

given split offset, with the second substring used as the new node's value. The first substring remains
in the original node. If the node is currently linked into the DOM tree, the new node with the split
content becomes the next sibling of the original node. A new Text node containing the second part of

the split data is returned.

Argument

offset (unsigned long)

Zero-based offset where the split occurs.

Exceptions

INDEX_SIZE_ERR

Raised if the offset given is < 0 and >= the length attribute.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NO_MODIFICATION_ALLOWED_ERR

Raised if the element is read-only.

Java binding

public Text splitText(long offset) throws DOMException;

Java example

// Make one Text node = doc.createTextNode("This text is split.");

// and split it

Text ndSplit = ndText.splitText(9);

Text is a subclass of the CharacterData interface. See the CharacterData

interface section in this chapter for a list of applicable methods for accessing
character data in nodes of this type.

TypeInfo(3)

Starting with the DOM Level 3, Element and Attr nodes include a schemaTypeInfo attribute that
may reference a TypeInfo object. For valid XML documents, this object is used to provide

information about the declared data type for a given element or attribute. Since the DOM is intended
to be parser-independent, the contents of this object will vary depending on the type of schema
validation that was performed (XML DTD, XML Schema, RELAX NG, and so forth). The DOM Level 3
Core specification includes detailed information about the significance of the typeName and
typeNamespace attributes for both DTDs and XML Schemas.

Attributes

The TypeInfo object contains the following attributes:

typeName: DOMString(3)

Returns the declared type name of the element or attribute (varies depending on the validation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

method used). Returns null if the type name is unknown. Read-only.

Java binding

public String getTypeName();

typeNamespace: DOMString(3)

Returns the namespace URI of the type given in by the typeName attribute. For example, an attribute
validated against the type xs:date will have a namespace of http://www.w3.org/2001/XMLSchema.

Read-only.

Java binding

public String getTypeNamespace();

Method

The following method is defined for this object:

isDerivedFrom: typeNamespaceArg, typeNameArg,
derivationMethod(3)

This method provides the capability to determine the relationship between the target data type and
another data type (given by the typeNameArg and typeNamespaceArg arguments). This method
returns true if the target type is derived from the given data type via one of the methods passed in
using the derivationMethod bitmask argument; otherwise, it returns false. Currently, this method

is only defined for use with XML Schema validation. For more information on type derivation methods
in XML Schema, see Chapter 17.

Arguments

typeNamespaceArg: DOMString

The namespace associated with the typeNameArg argument.

http://www.w3.org/2001/XMLSchema
http://lib.ommolketab.ir
http://lib.ommolketab.ir

typeNameArg: DOMString

The type name to be compared with the target type.

derivationMethod: unsigned long

A bitmask that restricts which types of derivation the method will recognize. The valid bitmask
values are listed below:

Constant name Value Meaning

DERIVATION_RESTRICTION 0x00000001

The target type is derived from the other type by
restricting its possible values (e.g., a positive integer is
derived from a signed integer by restricting it to
nonnegative values).

DERIVATION_EXTENSION 0x00000002
The target type is derived from the other type by
extending its possible values (e.g., a signed integer type
would be an extension of an unsigned integer).

DERIVATION_UNION 0x00000004
The target type is partially derived from the other type
by its inclusion in a union.

DERIVATION_LIST 0x00000008 The target type is a list of items of the other type.

Java binding

public boolean isDerivedFrom(String typeNamespaceArg,

 String typeNameArg, int derivationMethod);

UserDataHandler(3)

The Node.setUserData() method provides the capability for the programmer to register a callback

object that will be notified when various operations are performed on the node in question. These
callback objects must implement this interface to receive those notifications.

Attributes

The UserDataHandler interface has no attributes.

Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following method is defined for this interface:

handle: operation, key, data, src, dst(3)

This method is called whenever the Node object to which the parent UserDataHandler-derived object

is attached is imported or cloned. This method is to be implemented by users of the DOM who wish to
receive notifications when watched Node objects are manipulated.

When implementing the handle() method, it is important to catch any

exceptions that might be thrown so that they will not be raised within the
calling DOM code. The behavior within the DOM is undefined if an exception is
raised within this method.

Arguments

operation: unsigned short

The type of operation that occurred, based on the following values:

Constant name Value Meaning

NODE_CLONED 1 The watched node was cloned using Node.cloneNode().

NODE_IMPORTED 2 The watched node was imported using Document.importNode().

NODE_DELETED 3
The node was deleted, which is not necessarily reliable in environments
that have no explicit delete operator (such as Java).

NODE_RENAMED 4 The node was renamed using Document.renameNode().

NODE_ADOPTED 5 The watched node was adopted using Document.adoptNode().

key: DOMString

The user-defined key from the Node.setUserData() method for which the handle()

method is being called.

data: DOMUserData

The user data corresponding to the key argument that was originally set using the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Node.setUserData() method.

src: Node

The node being cloned, adopted, imported, or renamed. This argument will be null if the node

is being deleted.

dst: Node

The newly cloned or imported node, or null if no new node was created.

Java binding

public boolean isDerivedFrom(String typeNamespaceArg,

 String typeNameArg, int derivationMethod)

;

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 26. SAX Reference
SAX, the Simple API for XML, is an event-based API used to parse XML documents. David Megginson,
SAX's original author, placed SAX in the public domain. SAX is bundled with all parsers that
implement the API, including Xerces, MSXML, Crimson, the Oracle XML Parser for Java, and Ælfred.
However, you can also get it and the full source code from http://sax.sourceforge.net/.

SAX was originally defined as a Java API and is intended primarily for parsers written in Java, so this
chapter will focus on its Java implementation. However, its port to other object-oriented languages,
such as C++, C#, Python, Perl, and Eiffel, is common and usually quite similar.

This chapter covers SAX2 exclusively. In 2004, all major parsers that support
SAX support SAX2. The major change from SAX1 to SAX2 was the addition of
namespace support. This addition necessitated changing the names and
signatures of almost every method and class in SAX. The old SAX1 methods
and classes are still available, but they're now deprecated and shouldn't be
used.SAX 2.0.2 is a minor update to SAX2 that add a few extra optional
classes, features, and properties without really affecting the core API. They
were carefully designed to be backward compatible with SAX 2.0 and 2.0.1.
Some, but not all, current parsers support SAX 2.0.2. When something in this
chapter is only available in SAX 2.0.2, it will be clearly noted.

 < Day Day Up >

http://sax.sourceforge.net/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

26.1 The org.xml.sax Package

The org.xml.sax package contains the core interfaces and classes that comprise the Simple API for

XML.

The Attributes Interface

An object that implements the Attributes interface represents a list of attributes on a start-tag. The
order of attributes in the list is not guaranteed to match the order in the document itself. Attributes
objects are passed as arguments to the startElement() method of ContentHandler. You can

access particular attributes in three ways:

By number

By namespace URI and local name

By qualified name

This list does not include namespace declaration attributes (xmlns and xmlns:prefix) unless the
http://xml.org/sax/features/namespace-prefixes feature is true. It is false by default.

If the http://xml.org/sax/features/namespace-prefixes feature is false, qualified name access
may not be available; if the http://xml.org/sax/features/namespaces feature is false, local

names and namespace URIs may not be available.

package org.xml.sax;

public interface Attributes {

 public int getLength ();

 public String getURI (int index);

 public String getLocalName (int index);

 public String getQName (int index);

 public int getIndex (String uri , String localName);

http://xml.org/sax/features/namespace-prefixes
http://xml.org/sax/features/namespace-prefixes
http://xml.org/sax/features/namespaces
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public int getIndex (String qualifiedName);

 public String getType (int index);

 public String getType (String uri , String localName);

 public String getType (String qualifiedName);

 public String getValue (String uri , String localName);

 public String getValue (String qualifiedName);

 public String getValue (int index);

}

The ContentHandler Interface

ContentHandler is the key piece of SAX. Almost every SAX program needs to use this interface.
ContentHandler is a callback interface. An instance of this interface is passed to the parser via the
setContentHandler() method of XMLReader. As the parser reads the document, it invokes the
methods in its ContentHandler to tell the program what's in the document:

package org.xml.sax;

public interface ContentHandler {

 public void setDocumentLocator (Locator locator);

 public void startDocument () throws SAXException;

 public void endDocument () throws SAXException;

 public void startPrefixMapping (String prefix , String uri)

 throws SAXException;

 public void endPrefixMapping (String prefix) throws SAXException;

 public void startElement (String namespaceURI , String localName ,

 String qualifiedName , Attributes atts) throws SAXException;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void endElement (String namespaceURI , String localName ,

 String qualifiedName) throws SAXException;

 public void characters (char[] text , int start , int length)

 throws SAXException;

 public void ignorableWhitespace (char[] text , int start , int length)

 throws SAXException;

 public void processingInstruction (String target , String data)

 throws SAXException;

 public void skippedEntity (String name) throws SAXException;

}

The DTDHandler Interface

After passing an instance of the DTDHandler interface to the setDTDHandler() method of
XMLReader, the program will receive notification of notation and unparsed entity declarations in the

DTD. You can store this information and use it later to retrieve information about the unparsed
entities you encounter while reading the document:

package org.xml.sax;

public interface DTDHandler {

 public void notationDecl (String name , String publicID , String systemID)

 throws SAXException;

 public void unparsedEntityDecl (String name , String publicID ,

 String systemID , String notationName) throws SAXException;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

The EntityResolver Interface

By passing an instance of the EntityResolver interface to the setEntityResolver() method of
XMLReader, you can intercept parser requests for external entities, such as the external DTD subset

or external parameter entities, and redirect those requests in order to substitute different entities.
For example, you could replace a reference to a remote copy of a standard DTD with a local one or
find the sources for particular public IDs in a catalog.

package org.xml.sax;

public interface EntityResolver {

 public InputSource resolveEntity (String publicID , String systemID)

 throws SAXException, IOException;

}

The ErrorHandler Interface

By passing an instance of the ErrorHandler interface to the setErrorHandler() method of
XMLReader, you can provide custom handling for particular classes of errors detected by the parser.

For example, you can choose to stop parsing when a validity error is detected by throwing an
exception from the error() method. The SAXParseException passed to each of the three methods

in this interface provides details about the specific cause and location of the error:

package org.xml.sax;

public interface ErrorHandler {

 public void warning (SAXParseException exception) throws SAXException;

 public void error (SAXParseException exception) throws SAXException;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void fatalError (SAXParseException exception)

 throws SAXException;

}

Warnings represent possible problems noticed by the parser that are not technically violations of
XML's well-formedness or validity rules. For instance, a parser might issue a warning if an xml:lang

attribute's value was not a legal ISO-639 language code. The most common kind of error is a validity
problem. The parser should report it, but it should also continue processing. A fatal error violates
well-formedness. The parser should not continue parsing after reporting such an error. Some parsers
report violations of namespace well-formedness as fatal errors. Others report these as nonfatal
errors.

The Locator Interface

Unlike most other interfaces in the org.xml.sax package, the Locator interface does not have to be

implemented. Instead, the parser has the option to provide an implementation. If it does so, it passes
its implementation to the setDocumentLocator() method in the ContentHandler instance before it
calls startDocument(). You can save a reference to this object in a field in your ContentHandler

class, like this:

private Locator locator;

public void setDocumentLocator(Locator locator) {

 this.locator = locator;

}

Once you've found the locator, you can then use it inside any other ContentHandler method, such
as startElement() or characters(), to determine in exactly which document and at which line

and column the event took place. For instance, the locator allows you to determine that a particular
start-tag began on the third column of the document's seventeenth line at the URL
http://www.slashdot.org/slashdot.xml:

package org.xml.sax;

public interface Locator {

http://www.slashdot.org/slashdot.xml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public String getPublicId();

 public String getSystemId();

 public int getLineNumber();

 public int getColumnNumber();

}

The XMLFilter Interface

An XMLFilter is an XMLReader that obtains its events from another parent XMLReader, rather than
reading it from a text source such as InputStream. Filters can sit between the original source XML

and the application and modify data in the original source before passing it to the application.
Implementing this interface directly is unusual. It is almost always much easier to use the more
complete org.xml.sax.helpers.XMLFilterImpl class instead.

package org.xml.sax;

public interface XMLFilter extends XMLReader {

 public void setParent (XMLReader parent);

 public XMLReader getParent ();

}

The XMLReader Interface

The XMLReader interface represents the parser that reads XML documents. You generally do not
implement this interface yourself. Instead, use the org.xml.sax.helpers.XMLReaderFactory class

to build a parser-specific implementation. Then use this parser's various setter methods to configure
the parsing process. Finally, invoke the parse() method to read the document, while calling back to
methods in your own implementations of ContentHandler, ErrorHandler, EntityResolver, and
DTDHandler as the document is read:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package org.xml.sax;

public interface XMLReader {

 public boolean getFeature (String name)

 throws SAXNotRecognizedException, SAXNotSupportedException;

 public void setFeature (String name , boolean value)

 throws SAXNotRecognizedException, SAXNotSupportedException;

 public Object getProperty (String name)

 throws SAXNotRecognizedException, SAXNotSupportedException;

 public void setProperty (String name , Object value)

 throws SAXNotRecognizedException, SAXNotSupportedException;

 public void setEntityResolver (EntityResolver resolver);

 public EntityResolver getEntityResolver ();

 public void setDTDHandler (DTDHandler handler);

 public DTDHandler getDTDHandler ();

 public void setContentHandler (ContentHandler handler);

 public ContentHandler getContentHandler ();

 public void setErrorHandler (ErrorHandler handler);

 public ErrorHandler getErrorHandler ();

 public void parse (InputSource input) throws IOException, SAXException;

 public void parse (String systemID) throws IOException, SAXException;

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The InputSource Class

The InputSource class is an abstraction of a data source from which the raw bytes of an XML
document are read. It can wrap a system ID, a public ID, an InputStream, or a Reader. When given
an InputSource, the parser tries to read from the Reader. If the InputSource does not have a
Reader, the parser will try to read from the InputStream using the specified encoding. If no encoding

is specified, then it will try to autodetect the encoding by reading the XML declaration. Finally, if
neither a Reader nor an InputStream has been set, then the parser will open a connection to the

URL given by the system ID.

package org.xml.sax;

public class InputSource {

 public InputSource ();

 public InputSource (String systemID);

 public InputSource (InputStream byteStream);

 public InputSource (Reader reader);

 public void setPublicId (String publicID);

 public String getPublicId ();

 public void setSystemId (String systemID);

 public String getSystemId ();

 public void setByteStream (InputStream byteStream);

 public InputStream getByteStream ();

 public void setEncoding (String encoding);

 public String getEncoding ();

 public void setCharacterStream (Reader reader);

 public Reader getCharacterStrea m ();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

The SAXException Class

Most exceptions thrown by SAX methods are instances of the SAXException class or one of its
subclasses. The single exception to this rule is the parse() method of XMLReader, which may throw
a raw IOException if a purely I/O-related error occurs; for example, if a socket is broken before the

parser finishes reading the document from the network.

Besides the usual exception methods such as getMessage() and printStackTrace() that
SAXException inherits from or overrides in its superclasses, SAXException adds a getException()
method to return the nested exception that caused the SAXException to be thrown in the first place.

package org.xml.sax;

public class SAXException extends Exception {

 public SAXException (String message);

 public SAXException (Exception ex);

 public SAXException (String message , Exception ex);

 public String getMessage ();

 public Exception getException ();

 public String toString ();

}

SAXParseException

If the parser detects a well-formedness error while reading a document, it throws a
SAXParseException, a subclass of SAXException. SAXParseExceptions are also passed as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

arguments to the methods of the ErrorHandler interface, where you can decide whether you want

to throw them.

Besides the methods it inherits from its superclasses, this class adds methods to get the line number,
column number, system ID, and public ID of the document where the error was detected:

package org.xml.sax;

public class SAXParseException extends SAXException {

 public SAXParseException (String message , Locator locator);

 public SAXParseException (String message , Locator locator ,

 Exception e);

 public SAXParseException (String message , String publicID ,

 String systemID , int lineNumber , int columnNumber);

 public SAXParseException (String message , String publicID ,

 String systemID , int lineNumber , int columnNumber , Exception e);

 public String getPublicId ();

 public String getSystemId ();

 public int getLineNumber ();

 public int getColumnNumber ();

}

SAXNotRecognizedException

A SAXNotRecognizedException is thrown if you attempt to set a property or feature the parser does

not recognize. Besides the constructors, all its methods are inherited from superclasses:

package org.xml.sax;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class SAXNotRecognizedException extends SAXException {

 public SAXNotRecognizedException ();

 public SAXNotRecognizedException (String message);

}

SAXNotSupportedException

A SAXNotSupportedException is thrown if you attempt to set a property or feature that the parser

recognizes, but either cannot set or get or does not allow the particular value you're trying to set it
to. Besides the constructors, all of its methods are inherited from superclasses:

package org.xml.sax;

public class SAXNotSupportedException extends SAXException {

 public SAXNotSupportedException ();

 public SAXNotSupportedException (String message);

}

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

26.2 The org.xml.sax.helpers Package

The org.xml.sax.helpers package contains support classes for the core SAX classes. These include
factory classes used to build instances of particular org.xml.sax interfaces and default

implementations of those interfaces.

The AttributesImpl Class

AttributesImpl is a default implementation of the Attributes interface that SAX parsers and filters
may use. Besides the methods of the Attributes interface, this class offers manipulator methods so

the list of attributes can be modified or reused. These methods allow you to take a persistent
snapshot of an Attributes object in startElement() and construct or modify an Attributes

object in a SAX driver or filter:

package org.xml.sax.helpers;

public class AttributesImpl implements Attributes {

 public AttributesImpl ();

 public AttributesImpl (Attributes atts);

 public int getLength ();

 public String getURI (int index);

 public String getLocalName (int index);

 public String getQName (int index);

 public String getType (int index);

 public String getValue (int index);

 public int getIndex (String uri , String localName);

 public int getIndex (String qualifiedName);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public String getType (String uri , String localName);

 public String getType (String qualifiedName);

 public String getValue (String uri , String localName);

 public String getValue (String qualifiedName);

 public void clear ();

 public void setAttributes (Attributes atts);

 public void addAttribu te (String uri , String localName ,

 String qualifiedName , String type , String value);

 public void setAttribute (int index , String uri , String localName ,

 String qualifiedName , String type , String value);

 public void removeAttribute (int index)

 public void setURI (int index , String uri)

 public void setLocalName (int index , String localName)

 public void setQName (int index , String qualifiedName);

 public void setType (int index , String type);

 public void setValue (int index , String value);

}

The DefaultHandler Class

DefaultHandler is a convenience class that implements the EntityResolver, DTDHandler,
ContentHandler, and ErrorHandler interfaces with do-nothing methods. You can subclass
DefaultHandler and override methods for events to which you actually want to respond. You never

have to use this class. You can always implement the interfaces directly instead. The pattern is
similar to the adapter classes in the AWT, such as MouseAdapter and WindowAdapter:

package org.xml.sax.helpers;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class DefaultHandler

 implements EntityResolver, DTDHandler, ContentHandler, ErrorHandler {

 // Default implementation of the EntityResolver interface.

 public InputSource resolveEntity (String publicID , String systemID)

 throws SAXException {

 return null;

 }

 // Default implementation of the DTDHandler interface.

 public void notationDecl (String name , String publicID , String systemID)

 throws SAXException { }

 public void unparsedEntityDecl (String name , String publicID ,

 String systemID , String notationName) throws SAXException{ }

 // Default implementation of the ContentHandler interface.

 public void setDocumentLocator (Locator locator) { }

 public void startDocument () throws SAXException { }

 public void endDocument () throws SAXException { }

 public void startPrefixMapping (String prefix , String uri)

 throws SAXException { }

 public void endPrefixMapping (String prefix) throws SAXException { }

 public void startElement (String uri , String localName ,

 String qualifiedName, Attributes attributes) throws SAXException { }

 public void endElement (String uri , String localName ,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String qualifiedName) throws SAXException { }

 public void characters (char[] text , int start , int length)

 throws SAXException { }

 public void ignorableWhitespace (char[] whitespace , int start ,

 int length) throws SAXException { }

 public void processingInstruction (String target , String data)

 throws SAXException { }

 public void skippedEntity (String name) throws SAXException { }

 // Default implementation of the ErrorHandler interface.

 public void warning (SAXParseException ex) throws SAXException { }

 public void error (SAXParseException ex) throws SAXException { }

 public void fatalError (SAXParseException ex) throws SAXException {

 throw ex;

 }

}

The LocatorImpl Class

LocatorImpl is a default implementation of the Locator interface for the convenience of parser

writers. You probably won't need to use it directly. Besides the constructors, it adds setter methods
to set the public ID, system ID, line number, and column number returned by the getter methods
declared in Locator:

package org.xml.sax.helpers;

public class LocatorImpl implements Locator {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public LocatorImpl ();

 public LocatorImpl (Locator locator);

 public String getPublicId ();

 public String getSystemId ();

 public int getLineNumber ();

 public int getColumnNumber ();

 public void setPublicId (String publicID);

 public void setSystemId (String systemID);

 public void setLineNumber (int lineNumber);

 public void setColumnNumber (int columnNumber);

}

The NamespaceSupport Class

NamespaceSupport provides a stack that can track the namespaces in scope at various points in the

document. To use it, push a new context at the beginning of each element's namespace mappings,
and pop it at the end of each element. Each startPrefixMapping() invocation should call
declarePrefix() to add a new mapping to the NamespaceSupport object. Then at any point where
you need to figure out to which URI a prefix is bound, you can call getPrefix(). The empty string

indicates the default namespace. The getter methods can then tell you the prefix that is mapped to
any URI or the URI that is mapped to any prefix at each point in the document. If you reuse the
same NamespaceSupport object for multiple documents, be sure to call reset() between

documents.

package org.xml.sax.helpers;

public class NamespaceSupport {

 public final static String XMLNS ="http://www.w3.org/XML/1998/namespace";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public NamespaceSupport();

 public void reset ();

 public void pushContext ();

 public void popContext ();

 public boolean declarePrefix (String prefix , String uri);

 public String[] processName (String qualifiedName , String[] parts ,

 boolean isAttribute);

 public String getURI (String prefix);

 public Enumeration getPrefixes ();

 public String getPrefix (String uri);

 public Enumeration getPrefixes (String uri);

 public Enumeration getDeclaredPrefixes ();

}

The ParserAdapter Class

The ParserAdapter class uses the adapter design pattern to convert a SAX1 org.xml.sax.Parser
object into a SAX2 org.xml.sax.XMLReader object. As more parsers support SAX2, this class

becomes less necessary. Note that some SAX2 features are not available through an adapted SAX1
parser. For instance, a parser created with this adapter does not report skipped entities and does not
support most features and properties, not even the core features and properties:

package org.xml.sax.helpers;

public class ParserAdapter implements XMLReader, DocumentHandler {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public ParserAdapter () throws SAXException;

 public ParserAdapter (Parser parser);

 // Implementation of org.xml.sax.XMLReader.

 public void setFeature (String name , boolean state)

 throws SAXNotRecognizedException, SAXNotSupportedException;

 public boolean getFeature (String name)

 throws SAXNotRecognizedException, SAXNotSupportedException;

 public void setProperty (String name , Object value)

 throws SAXNotRecognizedException, SAXNotSupportedException;

 public Object getProperty (String name)

 throws SAXNotRecognizedException, SAXNotSupportedException;

 public void setEntityResolver (EntityResolver resolver);

 public EntityResolver getEntityResolver ();

 public void setDTDHandler (DTDHandler handler);

 public DTDHandler getDTDHandler ();

 public void setContentHandler (ContentHandler handler);

 public ContentHandler getContentHandler ();

 public void setErrorHandler (ErrorHandler handler);

 public ErrorHandler getErrorHandler ();

 public void parse (String systemID) throws IOException, SAXException;

 public void parse (InputSource input) throws IOException, SAXException;

 // Implementation of org.xml.sax.DocumentHandler.

 public void setDocumentLocator (Locator locator);

 public void startDocument () throws SAXException;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void endDocument () throws SAXException;

 public void startElement (String qualifiedName ,

 AttributeList qualifiedAttributes) throws SAXException;

 public void endElement (String qualifiedName) throws SAXException;

 public void characters(char[] text , int start , int length)

 throws SAXException;

 public void ignorableWhitespace (char[] text , int start , int length)

 throws SAXException;

 public void processingInstruction (String target , String data)

 throws SAXException;

}

The XMLFilterImpl Class

XMLFilterImpl is invaluable for implementing XML filters correctly. An instance of this class sits
between an XMLReader and the client application's event handlers. It receives messages from the

reader and passes them to the application unchanged, and vice versa. However, by subclassing this
class and overriding particular methods, you can change the events that are sent before the
application gets to see them. You chain a filter to an XMLReader by passing the reader as an
argument to the filter's constructor. When parsing, you invoke the filter's parse() method, not the
reader's parse() method.

package org.xml.sax.helpers;

public class XMLFilterImpl implements XMLFilter, EntityResolver,

 DTDHandler, ContentHandler, ErrorHandler {

 public XMLFilterImpl ();

 public XMLFilterImpl (XMLReader parent);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Implementation of org.xml.sax.XMLFilter

 public void setParent (XMLReader parent);

 public XMLReader getParent ();

 // Implementation of org.xml.sax.XMLReader

 public void setFeature (String name , boolean state)

 throws SAXNotRecognizedException, SAXNotSupportedException;

 public boolean getFeature (String name)

 throws SAXNotRecognizedException, SAXNotSupportedException;

 public void setProperty (String name , Object value)

 throws SAXNotRecognizedException, SAXNotSupportedException;

 public Object getProperty (String name)

 throws SAXNotRecognizedException, SAXNotSupportedException;

 public void setEntityResolver (EntityResolver resolver);

 public EntityResolver getEntityResolver ();

 public void setDTDHandler (DTDHandler handler);

 public DTDHandler getDTDHandler ();

 public void setContentHandler (ContentHandler handler);

 public ContentHandler getContentHandler ();

 public void setErrorHandler (ErrorHandler handler);

 public ErrorHandler getErrorHandler ();

 public void parse (InputSource input) throws SAXException, IOException;

 public void parse (String systemID) throws SAXException, IOException

 // Implementation of org.xml.sax.EntityResolver

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public InputSource resolveEntity (String publicID , String systemID)

 throws SAXException, IOException;

 // Implementation of org.xml.sax.DTDHandler

 public void notationDecl (String name , String publicID , String systemID)

 throws SAXException;

 public void unparsedEntityDecl (String name , String publicID ,

 String systemID , String notationName) throws SAXException;

 // Implementation of org.xml.sax.ContentHandler

 public void setDocumentLocator (Locator locator);

 public void startDocument () throws SAXException;

 public void endDocument () throws SAXException;

 public void startPrefixMapping (String prefix , String uri)

 throws SAXException;

 public void endPrefixMapping (String prefix) throws SAXException;

 public void startElement (String namespaceURI , String localName ,

 String qualifiedName , Attributes atts) throws SAXException;

 public void endElement (String namespaceURI , String localName ,

 String qualifiedName) throws SAXException;

 public void characters (char[] text , int start , int length)

 throws SAXException;

 public void ignorableWhitespace (char[] text , int start , int length)

 throws SAXException;

 public void processingInstruction (String target , String data)

 throws SAXException;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void skippedEntity (String name) throws SAXException;

 // Implementation of org.xml.sax.ErrorHandler

 public void warning (SAXParseException ex) throws SAXException;

 public void error (SAXParseException ex) throws SAXException;

 public void fatalError (SAXParseException ex) throws SAXException;

}

The XMLReaderAdapter Class

XMLReaderAdapter is the reverse of ParserAdapter; it uses the Adapter design pattern to adapt a
SAX2 XMLReader to a SAX1 Parser. This lets you use SAX2 parsers for legacy programs written to a

SAX1 interface:

package org.xml.sax.helpers;

public class XMLReaderAdapter implements Parser, ContentHandler {

 public XMLReaderAdapter () throws SAXException;

 public XMLReaderAdapter (XMLReader reader);

 // Implementation of org.xml.sax.Parser.

 public void setLocale (Locale locale) throws SAXException;

 public void setEntityResolver (EntityResolver resolver);

 public void setDTDHandler (DTDHandler handler);

 public void setDocumentHandler (DocumentHandler handler);

 public void setErrorHandler (ErrorHandler handler);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void parse (String systemID) throws IOException, SAXException;

 public void parse (InputSource input) throws IOException, SAXException

 // Implementation of org.xml.sax.ContentHandler.

 public void setDocumentLocator (Locator locator);

 public void startDocument () throws SAXException;

 public void endDocument () throws SAXException;

 public void startPrefixMapping (String prefix , String uri)

 throws SAXException;

 public void endPrefixMapping (String prefix) throws SAXException;

 public void startElement (String namespaceURI , String localName ,

 String qualifiedName , Attributes atts) throws SAXException;

 public void endElement (String namespaceURI , String localName ,

 String qualifiedName) throws SAXException;

 public void characters (char[] text , int start , int length)

 throws SAXException;

 public void ignorableWhitespace (char[] text , int start , int length)

 throws SAXException;

 public void processingInstruction (String target , String data)

 throws SAXException;

 public void skippedEntity (String name) throws SAXException;

}

The XMLReaderFactory Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XMLReaderFactory creates XMLReader instances in a parser-independent manner. The noargs
createXMLReader() method instantiates the class named by the org.xml.sax.driver system
property. The other createXMLReader() method instantiates the class named by its argument. This

argument should be a fully packaged qualified name, such as
org.apache.xerces.parsers.SAXParser:

package org.xml.sax.helpers;

public final class XMLReaderFactory {

 public static XMLReader createXMLReader () throws SAXException;

 public static XMLReader createXMLReader (String className)

 throws SAXException;

}

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

26.3 SAX Features and Properties

Absolute URIs are used to name a SAX parser's properties and features. Features have a Boolean
value; that is, for each parser, a recognized feature is either true or false. Properties have object
values. SAX 2.0 defines six core features and two core properties that parsers should recognize. SAX
2.0.2 adds nine more. In addition, most parsers add features and properties to this list.

SAX Core Features

All SAX parsers should recognize six core features. Of these six, two
(http://xml.org/sax/features/namespaces and http://xml.org/sax/features/namespace-
prefixes) must be implemented by all conformant processors. The other four are optional and may

not be implemented by all parsers:

http://xml.org/sax/features/namespaces

When true, this feature indicates that the startElement() and endElement() methods

provide namespace URIs and local names for elements and attributes. When false, the parser
provides prefixed element and attribute names to the startElement() and endElement()

methods. If a parser does not provide something it is not required to provide, then that value
will be set to the empty string. However, most parsers provide all three (URI, local name, and
prefixed name), regardless of the value of this feature. This feature is true by default.

http://xml.org/sax/features/namespace-prefixes

When true, this feature indicates that xmlns and xmlns:prefix attributes will be included in
the attributes list passed to startElement(). When false, these attributes are omitted.

Furthermore, if this feature is true, then the parser will provide the prefixed names for
elements and attributes. The default is false unless
http://xml.org/sax/features/namespaces is false, in which case this feature defaults to
true. You can set both http://xml.org/sax/features/namespaces and
http://xml.org/sax/features/namespace-prefixes to true to guarantee that local names,

namespace URIs, and prefixed names are all available.

http://xml.org/sax/features/string-interning

When this feature is true, all element names, prefixes, attribute names, namespace URIs, and

http://xml.org/sax/features/namespaces
http://xml.org/sax/features/namespace-
http://xml.org/sax/features/namespaces
http://xml.org/sax/features/namespace-prefixes
http://xml.org/sax/features/namespaces
http://xml.org/sax/features/namespaces
http://xml.org/sax/features/namespace-prefixes
http://xml.org/sax/features/string-interning
http://lib.ommolketab.ir
http://lib.ommolketab.ir

local names are internalized using the intern() method of java.lang.String; that is, equal
names compare equally when using = =.

http://xml.org/sax/features/validation

When true, the parser validates the documents against its DTD. When false, it doesn't. The
default is false for most parsers. If you turn on this feature, you'll probably also want to
register an ErrorHandler with the XMLReader to receive notice of any validity errors.

http://xml.org/sax/features/external-general-entities

When true, the parser resolves external parsed general entities. When false, it doesn't. The
default is true for most parsers that can resolve external entities. Turning on validation
automatically activates this feature because validation requires resolving external entities.

http://xml.org/sax/features/external-parameter-entities

When true, the parser resolves external parameter entities. When false, it doesn't. Turning on
validation automatically activates this feature because validation requires resolving external
entities.

SAX 2.0.2 adds eight more standard features, although as with the SAX 2.0 features, parsers are not
required to support any of these:

http://xml.org/sax/features/lexical-handler/parameter-entities

When true, the parser reports parameter entity boundaries to the LexicalHandler using the
startEntity() and endEntity() methods. The default behavior is implementation-

dependent.

http://xml.org/sax/features/is-standalone

Indicates whether the document's XML declaration specified standalone="yes". This feature is
read-only and can be inspected only after startDocument() has returned and before the

parser has finished reading the document.

http://xml.org/sax/features/resolve-dtd-uris

When true, relative URIs found in notation declarations, unparsed entity declarations, and
external entity declarations will be converted to absolute URIs before being reported to the
methods of DTDHandler and DeclHandler. When false, relative URIs are not absolutized. The

http://xml.org/sax/features/validation
http://xml.org/sax/features/external-general-entities
http://xml.org/sax/features/external-parameter-entities
http://xml.org/sax/features/lexical-handler/parameter-entities
http://xml.org/sax/features/is-standalone
http://xml.org/sax/features/resolve-dtd-uris
http://lib.ommolketab.ir
http://lib.ommolketab.ir

default is true. Relative URIs are never absolutized before being passed to the methods of
LexicalHandler or EntityResolver.

http://xml.org/sax/features/unicode-normalization-checking

When true, the parser checks that text content is in Unicode Normalization Form C, as
recommended by the XML 1.1 specification. Any normalization problems found are reported to
the registered ErrorHandler using the nonfatal error() method. The default is false, do not

check for normalization.

http://xml.org/sax/features/use-attributes2

When true, the Attributes object passed to startElement() can be cast to Attributes2, a
subclass of Attributes with extra methods to determine whether an attribute was declared in

the DTD, specified in the instance document, or both.

http://xml.org/sax/features/use-entityresolver2

When true, the parser will use the extra methods defined in EntityResolver2 if you pass an
EntityResolver2 object to setEntityResolver().

http://xml.org/sax/features/use-locator2

When true, the Locator object passed to setLocator() can be cast to Locator2, with extra

methods to determine the character encoding and XML version of the entity or document.

http://xml.org/sax/features/xmlns-uris

When true, this feature indicates that the parser adheres to a backward incompatible revision
of the namespaces specification that binds the xmlns prefix to the namespace URI
http://www.w3.org/2000/xmlns/. The default is false, do not bind the xmlns prefix to any

namespace URI.

SAX Core Properties

SAX defines four core properties, although implementations are not required to support them:

http://xml.org/sax/properties/declaration-handler

http://xml.org/sax/features/unicode-normalization-checking
http://xml.org/sax/features/use-attributes2
http://xml.org/sax/features/use-entityresolver2
http://xml.org/sax/features/use-locator2
http://xml.org/sax/features/xmlns-uris
http://www.w3.org/2000/xmlns/
http://xml.org/sax/properties/declaration-handler
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This property's value is an org.xml.sax.ext.DeclHandler object to which the parser will
report ELEMENT, ATTLIST, and parsed ENTITY declarations found in the document's DTD.

http://xml.org/sax/properties/lexical-handler

This property's value is an org.xml.sax.ext.LexicalHandler object to which the parser
reports comments, CDATA section boundaries, and entity boundaries.

http://xml.org/sax/properties/dom-node

This property's value is an org.w3c.dom.Node object that represents the current node the

parser is visiting.

http://xml.org/sax/properties/xml-string

This property's value is a java.lang.String object containing the characters that were the

source for the current event. As of mid-2004, no parsers are known to implement this
property.

SAX 2.0.2 adds one more standard property:

http://xml.org/sax/properties/document-xml-version

This property's value is a java.lang.String containing the version of the XML document. It

would normally be either 1.0 or 1.1. This is a read-only property.

 < Day Day Up >

http://xml.org/sax/properties/lexical-handler
http://xml.org/sax/properties/dom-node
http://xml.org/sax/properties/xml-string
http://xml.org/sax/properties/document-xml-version
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

26.4 The org.xml.sax.ext Package

The org.xml.sax.ext package provides optional interfaces that parsers may use to provide further

functionality. Not all parsers support these interfaces, although most major ones do.

The Attributes2 Interface

SAX 2.0.2 adds an Attributes2 subclass of Attributes that provides extra methods to determine

whether a given attribute was declared in the DTD and/or specified in the instance document (as
opposed to being defaulted in from the DTD). A parser that supports Attributes2 will pass an
Attributes2 object to startElement() instead of a plain Attributes object. Using the extra

methods requires a cast. Before casting, you may wish to check whether the cast will succeed by
getting the value of the http://xml.org/sax/features/use-attributes2 feature. If this feature is
true, the parser passes Attributes2 objects.

package org.xml.sax.ext;

public interface Attributes2 {

 public boolean isDeclared (int index);

 public boolean isDeclared (String qualifiedName);

 public boolean isSpecified (String namespaceURI , String localName);

 public boolean isSpecified (int index);

 public boolean isSpecified (String qualifiedName);

 public boolean isSpecified (String namespaceURI , String localName);

}

The DeclHandler Interface

http://xml.org/sax/features/use-attributes2
http://lib.ommolketab.ir
http://lib.ommolketab.ir

DeclHandler is a callback interface that provides information about the ELEMENT, ATTLIST, and
parsed ENTITY declarations in the document's DTD. To configure an XMLReader with a DeclHandler,
pass the name http://xml.org/sax/properties/DeclHandler and an instance of the handler to
the reader's setProperty() method:

try {

 parser.setProperty(

 "http://xml.org/sax/properties/DeclHandler",

 new YourDeclHandlerImplementationClass());

}

catch(SAXException ex) {

 System.out.println("This parser does not provide declarations.");

}

If the parser does not provide declaration events, it throws a SAXNotRecognizedException. If the
parser cannot install a DeclHandler at this moment (generally because it's in the middle of parsing a
document), then it throws a SAXNotSupportedException. If it doesn't throw one of these exceptions,
it will call back to the methods in your DeclHandler as it parses the DTD:

package org.xml.sax.ext;

public interface DeclHandler {

 public void elementDecl (String name , String model) throws SAXException;

 public void attributeDecl (String elementName , String attributeName ,

 String type , String defaultValue , String value) throws SAXException;

 public void internalEntityDecl (String name , String value)

 throws SAXException;

 public void externalEntityDecl (String name , String publicID ,

 String systemID) throws SAXException;

http://xml.org/sax/properties/DeclHandler
http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

The EntityResolver2 Interface

SAX 2.0.2 adds an EntityResolver2 subclass of EntityResolver that provides extra methods for

more flexible entity resolution. In particular, it lets a program provide an external DTD subset for a
document that does not have a document type declaration. It also lets entities be resolved based on
the root element name and base URL, as well as the public ID and system ID. Your code can always
pass an EntityResolver2 object to setEntityResolver(). A parser that does not supports
EntityResolver2 will simply ignore the extra methods. The http://xml.org/sax/features/use-
entity-resolver2 feature tells you whether the parser will use the extra methods in
EntityResolver2.

package org.xml.sax.ext;

public interface EntityResolver2 {

 public InputSource getExternalSubset (String name , String baseURI);

 public InputSource resolveEntity (

 String name , String publicID , String baseURI , String systemID);

}

The LexicalHandler Interface

LexicalHandler is a callback interface that provides information about aspects of the document that

are not normally relevant, specifically:

CDATA sections

Entity boundaries

DTD boundaries

Comments

http://xml.org/sax/features/use-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Without a LexicalHandler, the parser simply ignores comments and expands entity references and
CDATA sections. By using the LexicalHandler interface, however, you can read the comments and
learn which text came from regular character data, which came from a CDATA section, and which

came from which entity reference.

To configure an XMLReader with a LexicalHandler, pass an instance of your handler class to the
reader's setProperty() method with the name
http://xml.org/sax/properties/LexicalHandler:

try {

 parser.setProperty(

 "http://xml.org/sax/properties/LexicalHandler",

 new YourLexicalHandlerClass()

);

}

catch(SAXException ex) {

 System.out.println("This parser does not provide lexical events.");

}

If the parser does not provide lexical events, it throws a SAXNotRecognizedException. If the parser
cannot install a LexicalHandler at this moment (generally because it's in the middle of parsing a
document), then it throws a SAXNotSupportedException. If it doesn't throw one of these exceptions,
it calls back to the methods in the LexicalHandler as it encounters entity references, comments,
and CDATA sections. The basic content of the resolved entities and CDATA sections are still reported
through the ContentHandler interface, as normal:

package org.xml.sax.ext;

public interface LexicalHandler {

 public void startDTD (String name , String publicID , String systemID)

 throws SAXException;

 public void endDTD () throws SAXException;

 public void startEntity (String name) throws SAXException;

http://xml.org/sax/properties/LexicalHandler
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void endEntity (String name) throws SAXException;

 public void startCDATA () throws SAXException;

 public void endCDATA () throws SAXException;

 public void comment (char[] text , int start , int length)

 throws SAXException;

}

The Locator2 Interface

SAX 2.0.2 adds a Locator2 subclass of Locator that provides extra methods to determine the
character encoding and XML version used by the current entity. A parser that supports Locator2 will
simply pass a Locator2 object to setLocator() instead of a plain Locator object. Using the extra

methods requires a cast. Before casting, you may wish to check whether the cast will succeed by
getting the value of the http://xml.org/sax/features/use-locator2 feature. If this feature is
true, the parser passes Locator2 objects.

package org.xml.sax.ext;

public interface EntityResolver2 {

 public String getXMLVersion();

 public String getEncoding();

}

The getXMLVersion() method returns the version of the current entity. The
http://xml.org/sax/properties/document-xml-version property returns the version of the

current document. These may be but do not have to be the same.

 < Day Day Up >

http://xml.org/sax/features/use-locator2
http://xml.org/sax/properties/document-xml-version
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 27. Character Sets
By default, an XML parser assumes that XML documents are written in the UTF-8 encoding of
Unicode. However, documents may be written instead in any character set the XML processor
understands, provided that there's either some external metadata like an HTTP header or internal
metadata like a byte-order mark or an encoding declaration that specifies the character set. For
example, a document written in the Latin-5 character set would need this XML declaration:

<?xml version="1.0" encoding="ISO-8859-9"?>

Most good XML processors understand many common character sets. The XML specification
recommends the character names shown in Table 27-1. When using any of these character sets, you
should use these names. Of these character sets, only UTF-8 and UTF-16 must be supported by all
XML processors, although many XML processors support all character sets listed here, and many
support additional character sets besides. When using character sets not listed here, you should use
the names specified in the IANA character sets registry at
http://www.iana.org/assignments/character-sets.

Table 27-1. Character set names defined by the XML specification

Name Character set

UTF-8

The default encoding used in XML documents, unless an encoding declaration, byte-
order mark, or external metadata specifies otherwise; a variable-width encoding of
Unicode that uses one to four bytes per character. UTF-8 is designed such that all ASCII
documents are legal UTF-8 documents, which is not true for other character sets, such
as UTF-16 and Latin-1. This character set is normally the best encoding choice for XML
documents that don't contain a lot of Chinese, Japanese, or Korean.

UTF-16

A two-byte encoding of Unicode in which all Unicode characters defined in Unicode 3.0
and earlier (including the ASCII characters) occupy exactly two bytes. However,
characters from planes 1 through 14, added in Unicode 3.1 and later, are encoded using
surrogate pairs of four bytes each. This encoding is the best choice if your XML
documents contain substantial amounts of Chinese, Japanese, or Korean.

ISO-
10646-
UCS-2

The Basic Multilingual Plane of Unicode, i.e., plane 0. This character set is the same as
UTF-16, except that it does not allow surrogate pairs to represent characters with code
points beyond 65,535. The difference is only significant in Unicode 3.1 and later. Each
Unicode character is represented as exactly one two-byte, unsigned integer.
Determining endianness requires a byte-order mark at the beginning of the file.

http://www.iana.org/assignments/character-sets
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Character set

ISO-
10646-
UCS-4

A four-byte encoding of Unicode in which each Unicode character is represented as
exactly one four-byte, unsigned integer. Determining endianness requires a byte-order
mark at the beginning of the file.

ISO-
8859-1

Latin-1, ASCII plus the characters needed for most Western European languages,
including Danish, Dutch, English, Faroese, Finnish, Flemish, German, Icelandic, Irish,
Italian, Norwegian, Portuguese, Spanish, and Swedish. Some non-European languages,
such as Hawaiian, Indonesian, and Swahili, also use these characters.

ISO-
8859-2

Latin-2, ASCII plus the characters needed for most Central European languages,
including Croatian, Czech, Hungarian, Polish, Slovak, and Slovenian.

ISO-
8859-3

Latin-3, ASCII plus the characters needed for Esperanto, Maltese, Turkish, and Galician.
Latin-5, ISO-8859-9, however, is now preferred for Turkish.

ISO-
8859-4

Latin-4, ASCII plus the characters needed for the Baltic languages Latvian, Lithuanian,
Greenlandic, and Lappish. Now largely replaced by ISO-8859-10, Latin-6.

ISO-
8859-5

ASCII plus the Cyrillic characters used for Byelorussian, Bulgarian, Macedonian,
Russian, Serbian, and Ukrainian.

ISO-
8859-6

ASCII plus Arabic

ISO-
8859-7

ASCII plus modern Greek.

ISO-
8859-8

ASCII plus Hebrew.

ISO-
8859-9

Latin-5, which is essentially the same as Latin-1 (ASCII plus Western Europe), except

that the Turkish letters , 1, , , , and replace the less-commonly used

Icelandic letters , , , , , and .

ISO-
8859-10

Latin-6, which covers the characters needed for the Northern European languages
Estonian, Lithuanian, Greenlandic, Icelandic, Inuit, and Lappish. It's similar to Latin-4,

but drops some symbols and the Latvian letter, adds a few extra letters needed for

Inuit and Lappish, and moves various characters around. ISO-8859-13 now supersedes
this character set.

ISO-
8859-11

Adds the Thai alphabet to basic ASCII. However, it is not well supported by current XML
parsers, and you're probably better off using Unicode instead.

ISO-
8859-12

Not yet in existence and unlikely to exist in the foreseeable future. At one point, this
character set was considered for Devanagari, so the number was reserved. However,
this effort is not yet off the ground, and it now seems likely that the increasing
acceptance of Unicode will make such a character set unnecessary.

ISO-
8859-13

Another character set designed to cover the Baltic languages. This set adds back in the

Latvian letter and other symbols dropped from Latin-6.

ISO-
10646-
UCS-4

A four-byte encoding of Unicode in which each Unicode character is represented as
exactly one four-byte, unsigned integer. Determining endianness requires a byte-order
mark at the beginning of the file.

ISO-
8859-1

Latin-1, ASCII plus the characters needed for most Western European languages,
including Danish, Dutch, English, Faroese, Finnish, Flemish, German, Icelandic, Irish,
Italian, Norwegian, Portuguese, Spanish, and Swedish. Some non-European languages,
such as Hawaiian, Indonesian, and Swahili, also use these characters.

ISO-
8859-2

Latin-2, ASCII plus the characters needed for most Central European languages,
including Croatian, Czech, Hungarian, Polish, Slovak, and Slovenian.

ISO-
8859-3

Latin-3, ASCII plus the characters needed for Esperanto, Maltese, Turkish, and Galician.
Latin-5, ISO-8859-9, however, is now preferred for Turkish.

ISO-
8859-4

Latin-4, ASCII plus the characters needed for the Baltic languages Latvian, Lithuanian,
Greenlandic, and Lappish. Now largely replaced by ISO-8859-10, Latin-6.

ISO-
8859-5

ASCII plus the Cyrillic characters used for Byelorussian, Bulgarian, Macedonian,
Russian, Serbian, and Ukrainian.

ISO-
8859-6

ASCII plus Arabic

ISO-
8859-7

ASCII plus modern Greek.

ISO-
8859-8

ASCII plus Hebrew.

ISO-
8859-9

Latin-5, which is essentially the same as Latin-1 (ASCII plus Western Europe), except

that the Turkish letters , 1, , , , and replace the less-commonly used

Icelandic letters , , , , , and .

ISO-
8859-10

Latin-6, which covers the characters needed for the Northern European languages
Estonian, Lithuanian, Greenlandic, Icelandic, Inuit, and Lappish. It's similar to Latin-4,

but drops some symbols and the Latvian letter, adds a few extra letters needed for

Inuit and Lappish, and moves various characters around. ISO-8859-13 now supersedes
this character set.

ISO-
8859-11

Adds the Thai alphabet to basic ASCII. However, it is not well supported by current XML
parsers, and you're probably better off using Unicode instead.

ISO-
8859-12

Not yet in existence and unlikely to exist in the foreseeable future. At one point, this
character set was considered for Devanagari, so the number was reserved. However,
this effort is not yet off the ground, and it now seems likely that the increasing
acceptance of Unicode will make such a character set unnecessary.

ISO-
8859-13

Another character set designed to cover the Baltic languages. This set adds back in the

Latvian letter and other symbols dropped from Latin-6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Character set

ISO-
8859-14

Latin-8; a variant of Latin-1 with extra letters needed for Gaelic and Welsh, such as ,

, and . These letters mostly replace punctuation marks, such as x and |.

ISO-
8859-15

Known officially as Latin-9 and unofficially as Latin-0; a revision of Latin-1 that replaces
the international currency symbol ¤ with the Euro sign . It also replaces the seldom-

used fraction characters 1/4, 1/2, and 3/4 with the uncommon French letters , , ,

 and the ¬, , and ' symbols with the Finnish letters , , and . Otherwise, it's

identical to ISO-8859-1.

ISO-
8859-16

Latin-10; intended primarily for Romanian.

ISO-
2022-JP

A seven-bit encoding of the character set defined in the Japanese national standard JIS
X-0208-1997 used on web pages and in email; see RFC 1468.

Shift_JIS
The encoding of the Japanese national standard character set JIS X-0208-1997 used in
Microsoft Windows.

EUC-JP
The encoding of the Japanese national standard character set JIS X-0208-1997 used by
most Unixes.

Some parsers do not understand all these encodings. Specifically, parsers based on James Clark's
expat often support only UTF-8, UTF-16, ISO-8859-1, and US-ASCII encodings. Xerces-C supports
ASCII, UTF-8, UTF-16, UCS4, IBM037, IBM1140, ISO-8859-1, and Windows-1252. IBM's XML4C
parser, derived from the Xerces codebase, adds over 100 more encodings, including ISO-8859
character sets 1 through 9 and 15. However, for maximum cross-parser compatibility, you should
convert your documents to either UTF-8 or UTF-16 before publishing them, even if you author them
in another character set.

 < Day Day Up >

ISO-
8859-14

Latin-8; a variant of Latin-1 with extra letters needed for Gaelic and Welsh, such as ,

, and . These letters mostly replace punctuation marks, such as x and |.

ISO-
8859-15

Known officially as Latin-9 and unofficially as Latin-0; a revision of Latin-1 that replaces
the international currency symbol ¤ with the Euro sign . It also replaces the seldom-

used fraction characters 1/4, 1/2, and 3/4 with the uncommon French letters , , ,

 and the ¬, , and ' symbols with the Finnish letters , , and . Otherwise, it's

identical to ISO-8859-1.

ISO-
8859-16

Latin-10; intended primarily for Romanian.

ISO-
2022-JP

A seven-bit encoding of the character set defined in the Japanese national standard JIS
X-0208-1997 used on web pages and in email; see RFC 1468.

Shift_JIS
The encoding of the Japanese national standard character set JIS X-0208-1997 used in
Microsoft Windows.

EUC-JP
The encoding of the Japanese national standard character set JIS X-0208-1997 used by
most Unixes.

Some parsers do not understand all these encodings. Specifically, parsers based on James Clark's
expat often support only UTF-8, UTF-16, ISO-8859-1, and US-ASCII encodings. Xerces-C supports
ASCII, UTF-8, UTF-16, UCS4, IBM037, IBM1140, ISO-8859-1, and Windows-1252. IBM's XML4C
parser, derived from the Xerces codebase, adds over 100 more encodings, including ISO-8859
character sets 1 through 9 and 15. However, for maximum cross-parser compatibility, you should
convert your documents to either UTF-8 or UTF-16 before publishing them, even if you author them
in another character set.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

27.1 Character Tables

The XML specification divides Unicode into five overlapping sets:

Name characters

Characters that can appear in an element, attribute, or entity name. These characters are
letters, ideographs, digits, and the punctuation marks _, -, ., and :. In the tables that follow,

name characters are shown in bold type, such as A, Å, , , , 1, 2, 3, , , and _.

One of the major differences between XML 1.0 and 1.1 is in which characters are name
characters. All XML 1.0 name characters are also XML 1.1 name characters. However, XML 1.1
also promotes many other characters to name characters. Some of these, such as the Burmese
and Mongolian letters, reasonably deserve to be name characters. However, XML 1.1 also
allows many problematic characters including ligatures such as ij, currency symbols such as the
Greek drachma sign, letter-like symbols such as ©, number forms such as Roman numerals,
and presentation forms. Finally, it allows all characters not defined as of Unicode 3.1.1 and all
characters from beyond the basic multilingual plane, including such strange things as the
musical symbol for a six-string fretboard. Unless you are working in a language such as
Burmese or Mongolian that requires these new characters, it is recommended that you restrict
your markup to characters that are legal in XML 1.0. The tables that follow are based on XML
1.0 rules.

Name start characters

Characters that can be the first character of an element, attribute, or entity name. These
characters are letters, ideographs, and the underscore _. In the tables that follow, these

characters are shown with a gray background, such as A, Å, , , , , , and _. Because

name start characters are a subset of name characters, they are also shown in bold.

Character data characters

All characters that can be used anywhere in an XML document, including element and attribute
content, comments, and DTDs. This set includes almost all Unicode characters, except for
surrogates and most C0 control characters. These characters are shown in a normal typeface.
If they are name characters, they will be bold. If they are also name start characters, they'll
have a gray background.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Illegal characters

Characters that may not appear anywhere in an XML document, such as in part of a name,
character data, or comment text. These characters are shown in italic, such as NUL or BEL.
Most of these characters are either C0 control characters or half of a surrogate pair.

XML 1.1 does allow the C0 control characters, except for NUL, to be included with a character
reference such as . XML 1.0 does not allow this. XML 1.1 also requires C1 control

characters, except for NEL, to be escaped with character references. XML 1.0 does not require
this.

Unassigned code points

Bytes or byte sequences that are not assigned to a character as of Unicode 4.0.1. Theoretically,
a program could produce a file containing one of these byte sequences, but their meaning is
undefined and they should be avoided. They are represented in the following tables as n/a.

Figure 27-1 shows the relationship between these sets. Note that all name start characters are name
characters and that all name characters are character data characters.

Figure 27-1. XML's division of Unicode characters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In all the tables that follow, each cell's upper lefthand corner contains the character's two-digit
Unicode hexadecimal value, and the upper righthand corner contains the character's Unicode decimal
value. You can insert a character in an XML document by prefixing the decimal value with &# and

suffixing it with a semicolon. Thus, Unicode character 69, the capital letter E, can be written as
E. Hexadecimal values work the same way, except that you prefix them with &#x;. In
hexadecimal, the letter E is 45, so it can also be written as E.

27.1.1 ASCII

Most character sets in common use today are supersets of ASCII. That is, code points 0 through 127
are assigned to the same characters to which ASCII assigns them. Table 27-2 lists the ASCII
character set. The only notable exceptions are the EBCDIC-derived character sets. Specifically,
Unicode is a superset of ASCII, and code points 1 through 127 identify the same characters in
Unicode as they do in ASCII.

Table 27-2. The first 128 Unicode characters (the ASCII character set)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Characters 0 through 31 and character 127 are nonprinting control characters, sometimes called the
C0 controls to distinguish them from the C1 controls used in the ISO-8859 character sets. Of these
33 characters, only the carriage return, line feed, and horizontal tab may appear in XML documents.
The other 30 may not appear anywhere in an XML document, including in tags, comments, or parsed
character data. In XML 1.1 (but not XML 1.0), 29 of these 30 characters (all of them except NUL) can
be inserted with character references, such as .

27.1.2 ISO-8859-1, Latin-1

Character sets defined by the ISO-8859 standard comprise one popular superset of the ASCII
character sets. These characters all provide the normal ASCII characters from code points 0 through
127 and the C1 controls from 128 to 159. They provide different repertoires of characters in the
range from 160 to 255.

In particular, many Western European and American systems use a character set called Latin-1. This
set is the first code page defined in the ISO-8859 standard and is also called ISO-8859-1. Although
all common encodings of Unicode map code points 128 through 255 differently than Latin-1, code
points 128 through 255 map to the same characters in both Latin-1 and Unicode. This situation does
not occur in other character sets.

27.1.2.1 C1 controls

All ISO-8859 character sets begin with the same 32 extra nonprinting control characters in code
points 128 through 159. These sets are used on terminals like the DEC VT-320 to provide graphics
functionality not included in ASCII-for example, erasing the screen and switching it to inverse video
or graphics mode. These characters cause severe problems for anyone reading or editing an XML
document on a terminal or terminal emulator.

Fortunately, these characters are not necessary in XML documents. Their inclusion in XML 1.0 was an
oversight. They should have been banned like the C0 controls. Unfortunately, many editors and
documents incorrectly label documents written in the Cp1252 Windows character set as ISO-8859-1.
This character set does use the code points between 128 and 159 for noncontrol graphics characters.
When documents written with this character set are displayed or edited on a dumb terminal, they can

http://lib.ommolketab.ir
http://lib.ommolketab.ir

effectively disable the user's terminal. Similar problems exist with most other Windows code pages
for single-byte character sets. XML 1.1 corrects this by requiring all of these, except NEL, to be
escaped with character references such as š.

In the spirit of being liberal in what you accept and conservative in what you generate, you should
never use Cp1252, correctly labeled or otherwise. You should also avoid using other nonstandard
code pages for documents that move beyond a single system. On the other hand, if you receive a
document labeled as Cp1252 (or any other Windows code page), it can be displayed if you're careful
not to throw it at a terminal unfiltered. If you suspect that a document labeled as ISO-8859-1 that
uses characters between 128 and 159 is in fact a Cp1252 document, you should probably reject it.
This decision is difficult, however, given the prevalence of broken software that does not identify
documents sent properly.

27.1.2.2 Latin-1

Latin-1 covers most Western European languages that use some variant of the Latin alphabet.
Characters 0 through 127 in this set are identical to the ASCII characters with the same code points.
Characters 128 to 159 are the C1 control characters used only for dumb terminals. Character 160 is
the nonbreaking space. Characters 161 through 255 are accented characters, such as è, á, and ö,

non-U.S. punctuation marks, such as £ and ¿, and a few new letters, such as the Icelandic and ß.

Table 27-3 shows the upper half of this character set. The lower half is identical to the ASCII
character set shown in Table 27-2.

Table 27-3. Unicode characters between 160 and 255 and the second half
of the Latin-1, ISO-8859-1 character set

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

27.2 HTML4 Entity Sets

HTML 4.0 predefines several hundred named entities, many of which are quite useful. For instance,
the nonbreaking space is . XML, however, defines only five named entities:

&

The ampersand (&)

<

The less-than sign (<)

>

The greater-than sign (>)

"

The straight double quote (")

'

The straight single quote (')

Other needed characters can be inserted with character references in decimal or hexadecimal format.
For instance, the nonbreaking space is Unicode character 160 (decimal). Therefore, you can insert it
in your document as either or . If you really want to type it as , you can define

this entity reference in your DTD. Doing so requires you to use a character reference:

<!ENTITY nbsp " ">

The XHTML 1.0 specification includes three DTD fragments that define the familiar HTML character
references:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Latin-1 characters (http://www.w3.org/TR/xhtml1/DTD/xhtml-lat1.ent)

The non-ASCII, graphic characters included in ISO-8859-1 from code points 160 through 255,
shown in Table 27-3

Special characters (http://www.w3.org/TR/xhtml1/DTD/xhtml-special.ent)

A few useful letters and punctuation marks not included in Latin-1

Symbols (http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent)

The Greek alphabet, plus various arrows, mathematical operators, and other symbols used in
mathematics

Feel free to borrow these entity sets for your own use. They should be included in your document's
DTD with these parameter entity references and PUBLIC identifiers:

<!ENTITY % HTMLlat1 PUBLIC

 "-//W3C//ENTITIES Latin 1 for XHTML//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml-lat1.ent">

%HTMLlat1;

<!ENTITY % HTMLspecial PUBLIC

 "-//W3C//ENTITIES Special for XHTML//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml-special.ent">

%HTMLspecial;

<!ENTITY % HTMLsymbol PUBLIC

 "-//W3C//ENTITIES Symbols for XHTML//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent">

%HTMLsymbol;

However, we do recommend saving local copies and changing the system identifier to match the new
location, rather than downloading them from the http://www.w3.org every time you need to parse a
file. You may import just one, two, or all three of them, depending on what you need. There are no
interdependencies.

Instead, you can just use the character references shown in Tables Table 27-4, Table 27-5, and Table

http://www.w3.org/TR/xhtml1/DTD/xhtml-lat1.ent
http://www.w3.org/TR/xhtml1/DTD/xhtml-special.ent
http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent
http://www.w3.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

27-6.

Table 27-4. The HTML Latin-1 entity set

Character Meaning
XHTMLentity

reference
Hexadecimalcharacter

reference
Decimalcharacter

reference

 Nonbreaking space

¡
Inverted
exclamation mark

¡ ¡ ¡

¢ Cent sign
¢ ¢ ¢

£ Pound sign
£ £ £

¤ Currency sign
¤ ¤ ¤

¥ Yen sign, Yuan sign
¥ ¥ ¥

| Broken vertical bar
¦ ¦ ¦

§ Section sign
§ § §

Dieresis, spacing
dieresis

¨ ¨ ¨

© Copyright sign
© © ©

ª
Feminine ordinal
indicator

ª ª ª

«

Left-pointing
double angle
quotation mark,
left-pointing
guillemot

« « «

¬ Not sign
¬ ¬ ¬

-
Soft hyphen,
discretionary
hyphen

­ ­ ­

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Meaning
XHTMLentity

reference
Hexadecimalcharacter

reference
Decimalcharacter

reference

®
Registered
trademark sign

® ® ®

¯
Macron, overline,
APL overbar

¯ ¯ ¯

° Degree sign
° ° °

± Plus-or-minus sign
± ± ±

2 Superscript digit
two, squared

² ² ²

3 Superscript digit
three, cubed

³ ³ ³

´
Acute accent,
spacing acute

´ ´ ´

Micro sign
µ µ µ

¶
Pilcrow sign,
paragraph sign

¶ ¶ ¶

Middle dot,
Georgian comma,
Greek middle dot

· · ·

¸
Cedilla, spacing
cedilla

¸ ¸ ¸

1 Superscript digit
one

¹ ¹ ¹

º
Masculine ordinal
indicator

º º º

»

Right-pointing
double angle
quotation mark,
right-pointing
guillemot

» » »

1/4
Vulgar fraction one-
quarter

¼ ¼ ¼

1/2
Vulgar fraction one-
half

½ ½ ½

®
Registered
trademark sign

® ® ®

¯
Macron, overline,
APL overbar

¯ ¯ ¯

° Degree sign
° ° °

± Plus-or-minus sign
± ± ±

2 Superscript digit
two, squared

² ² ²

3 Superscript digit
three, cubed

³ ³ ³

´
Acute accent,
spacing acute

´ ´ ´

Micro sign
µ µ µ

¶
Pilcrow sign,
paragraph sign

¶ ¶ ¶

Middle dot,
Georgian comma,
Greek middle dot

· · ·

¸
Cedilla, spacing
cedilla

¸ ¸ ¸

1 Superscript digit
one

¹ ¹ ¹

º
Masculine ordinal
indicator

º º º

»

Right-pointing
double angle
quotation mark,
right-pointing
guillemot

» » »

1/4
Vulgar fraction one-
quarter

¼ ¼ ¼

1/2
Vulgar fraction one-
half

½ ½ ½

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Meaning
XHTMLentity

reference
Hexadecimalcharacter

reference
Decimalcharacter

reference

3/4
Vulgar fraction
three-quarters

¾ ¾ ¾

¿
Inverted question
mark

¿ ¿ ¿

À
Latin capital letter
A with grave

À À À

Á
Latin capital letter
A with acute

Á Á Á

Â
Latin capital letter
A with circumflex

Â Â Â

Ã
Latin capital letter
A with tilde

Ã Ã Ã

Ä
Latin capital letter
A with dieresis

Ä Ä Ä

Å

Latin capital letter
A with ring above,
Latin capital letter
A ring

Å Å Å

Æ
Latin capital letter
AE, Latin capital
ligature AE

Æ Æ Æ

Ç
Latin capital letter
C with cedilla

Ç Ç Ç

È
Latin capital letter
E with grave

È È È

É
Latin capital letter
E with acute

É É É

Ê
Latin capital letter
E with circumflex

Ê Ê Ê

Ë
Latin capital letter
E with dieresis

Ë Ë Ë

Ì
Latin capital letter I
with grave

Ì Ì Ì

Í
Latin capital letter I
with acute

Í Í Í

Î
Latin capital letter I
with circumflex

Î Î Î

3/4
Vulgar fraction
three-quarters

¾ ¾ ¾

¿
Inverted question
mark

¿ ¿ ¿

À
Latin capital letter
A with grave

À À À

Á
Latin capital letter
A with acute

Á Á Á

Â
Latin capital letter
A with circumflex

Â Â Â

Ã
Latin capital letter
A with tilde

Ã Ã Ã

Ä
Latin capital letter
A with dieresis

Ä Ä Ä

Å

Latin capital letter
A with ring above,
Latin capital letter
A ring

Å Å Å

Æ
Latin capital letter
AE, Latin capital
ligature AE

Æ Æ Æ

Ç
Latin capital letter
C with cedilla

Ç Ç Ç

È
Latin capital letter
E with grave

È È È

É
Latin capital letter
E with acute

É É É

Ê
Latin capital letter
E with circumflex

Ê Ê Ê

Ë
Latin capital letter
E with dieresis

Ë Ë Ë

Ì
Latin capital letter I
with grave

Ì Ì Ì

Í
Latin capital letter I
with acute

Í Í Í

Î
Latin capital letter I
with circumflex

Î Î Î

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Meaning
XHTMLentity

reference
Hexadecimalcharacter

reference
Decimalcharacter

reference

Ï
Latin capital letter I
with dieresis

Ï Ï Ï

Latin capital letter
eth

Ð Ð Ð

Ñ
Latin capital letter
N with tilde

Ñ Ñ Ñ

Ò
Latin capital letter
O with grave

Ò Ò Ò

Ó
Latin capital letter
O with acute

Ó Ó Ó

Ô
Latin capital letter
O with circumflex

Ô Ô Ô

Õ
Latin capital letter
O with tilde

Õ Õ Õ

Ö
Latin capital letter
O with dieresis

Ö Ö Ö

x Multiplication sign
× × ×

Ø
Latin capital letter
O with stroke

Ø Ø Ø

Ù
Latin capital letter
U with grave

Ù Ù Ù

Ú
Latin capital letter
U with acute

Ú Ú Ú

Û
Latin capital letter
U with circumflex

Û Û Û

Ü
Latin capital letter
U with dieresis

Ü Ü Ü

Latin capital letter
Y with acute

Ý Ý Ý

Latin capital letter
thorn

Þ Þ Þ

ß
Latin small letter
sharp s, ess-zett

ß ß ß

à
Latin small letter a
with grave

à à à

Ï
Latin capital letter I
with dieresis

Ï Ï Ï

Latin capital letter
eth

Ð Ð Ð

Ñ
Latin capital letter
N with tilde

Ñ Ñ Ñ

Ò
Latin capital letter
O with grave

Ò Ò Ò

Ó
Latin capital letter
O with acute

Ó Ó Ó

Ô
Latin capital letter
O with circumflex

Ô Ô Ô

Õ
Latin capital letter
O with tilde

Õ Õ Õ

Ö
Latin capital letter
O with dieresis

Ö Ö Ö

x Multiplication sign
× × ×

Ø
Latin capital letter
O with stroke

Ø Ø Ø

Ù
Latin capital letter
U with grave

Ù Ù Ù

Ú
Latin capital letter
U with acute

Ú Ú Ú

Û
Latin capital letter
U with circumflex

Û Û Û

Ü
Latin capital letter
U with dieresis

Ü Ü Ü

Latin capital letter
Y with acute

Ý Ý Ý

Latin capital letter
thorn

Þ Þ Þ

ß
Latin small letter
sharp s, ess-zett

ß ß ß

à
Latin small letter a
with grave

à à à

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Meaning
XHTMLentity

reference
Hexadecimalcharacter

reference
Decimalcharacter

reference

á
Latin small letter a
with acute

á á á

â
Latin small letter a
with circumflex

â â â

ã
Latin small letter a
with tilde

ã ã ã

ä
Latin small letter a
with dieresis

ä ä ä

å
Latin small letter a
with ring above

å å å

æ
Latin small letter
ae, Latin small
ligature ae

æ æ æ

ç
Latin small letter c
with cedilla

ç ç ç

è
Latin small letter e
with grave

è è è

é
Latin small letter e
with acute

é é é

ê
Latin small letter e
with circumflex

ê ê ê

ë
Latin small letter e
with dieresis

ë ë ë

ì
Latin small letter i
with grave

ì ì ì

í
Latin small letter i
with acute

í í í

î
Latin small letter i
with circumflex

î î î

ï
Latin small letter i
with dieresis

ï ï ï

Latin small letter
eth

ð ð ð

ñ
Latin small letter n
with tilde

ñ ñ ñ

á
Latin small letter a
with acute

á á á

â
Latin small letter a
with circumflex

â â â

ã
Latin small letter a
with tilde

ã ã ã

ä
Latin small letter a
with dieresis

ä ä ä

å
Latin small letter a
with ring above

å å å

æ
Latin small letter
ae, Latin small
ligature ae

æ æ æ

ç
Latin small letter c
with cedilla

ç ç ç

è
Latin small letter e
with grave

è è è

é
Latin small letter e
with acute

é é é

ê
Latin small letter e
with circumflex

ê ê ê

ë
Latin small letter e
with dieresis

ë ë ë

ì
Latin small letter i
with grave

ì ì ì

í
Latin small letter i
with acute

í í í

î
Latin small letter i
with circumflex

î î î

ï
Latin small letter i
with dieresis

ï ï ï

Latin small letter
eth

ð ð ð

ñ
Latin small letter n
with tilde

ñ ñ ñ

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Meaning
XHTMLentity

reference
Hexadecimalcharacter

reference
Decimalcharacter

reference

ò
Latin small letter o
with grave

ò ò ò

ó
Latin small letter o
with acute

ó ó ó

ô
Latin small letter o
with circumflex

ô ô ô

õ
Latin small letter o
with tilde

õ õ õ

ö
Latin small letter o
with dieresis

ö ö ö

÷ Division sign
÷ ÷ ÷

Latin small letter o
with stroke

ø ø ø

ù
Latin small letter u
with grave

ù ù ù

ú
Latin small letter u
with acute

ú ú ú

û
Latin small letter u
with circumflex

û û û

ü
Latin small letter u
with dieresis

ü ü ü

Latin small letter y
with acute

ý ý ý

Latin small letter
thorn

þ þ þ

ÿ
Latin small letter y
with dieresis

ÿ ÿ ÿ

Table 27-5. The HTML special characters entity set

Character Meaning
XHTML entity

reference
Hexadecimal

character reference

Decimal
character
reference

ò
Latin small letter o
with grave

ò ò ò

ó
Latin small letter o
with acute

ó ó ó

ô
Latin small letter o
with circumflex

ô ô ô

õ
Latin small letter o
with tilde

õ õ õ

ö
Latin small letter o
with dieresis

ö ö ö

÷ Division sign
÷ ÷ ÷

Latin small letter o
with stroke

ø ø ø

ù
Latin small letter u
with grave

ù ù ù

ú
Latin small letter u
with acute

ú ú ú

û
Latin small letter u
with circumflex

û û û

ü
Latin small letter u
with dieresis

ü ü ü

Latin small letter y
with acute

ý ý ý

Latin small letter
thorn

þ þ þ

ÿ
Latin small letter y
with dieresis

ÿ ÿ ÿ

Table 27-5. The HTML special characters entity set

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Meaning
XHTML entity

reference
Hexadecimal

character reference

Decimal
character
reference

"
Quotation mark,
APL quote

" " "

& Ampersand
& & &

' Apostrophe mark
' ' '

< Less-than sign
< < <

> Greater-than sign
> > >

Latin capital
ligature OE

Œ Œ Œ

Latin small ligature
oe

œ œ œ

Latin capital letter
S with caron

Š Š Š

Latin small letter s
with caron

š š š

Latin capital letter
Y with dieresis

Ÿ Ÿ Ÿ

~
Modifier letter
circumflex accent

ˆ ˆ ˆ

~ Small tilde
˜ ˜ ˜

 En space
     

 Em space
     

 Thin space
     

Nonprinting
character

Zero width
nonjoiner

‌ ‌ ‌

Nonprinting
character

Zero width joiner
‍ ‍ ‍

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Meaning
XHTML entity

reference
Hexadecimal

character reference

Decimal
character
reference

Nonprinting
character

Left-to-right mark
‎ ‎ ‎

Nonprinting
character

Right-to-left mark
‏ ‏ ‏

- En dash
– – –

- Em dash
— — —

`
Left single
quotation mark

‘ ‘ ‘

'
Right single
quotation mark

’ ’ ’

Single low-9
quotation mark

‚ ‚ ‚

"
Left double
quotation mark

“ “ “

"
Right double
quotation mark

” ” ”

Double low-9
quotation mark

„ „ „

Dagger
† † †

Double dagger
‡ ‡ ‡

Table 27-6. The HTML symbol entity set

Character Meaning
XHTML entity

reference

Hexadecimal
character
reference

Decimal
character
reference

Latin small f with hook,
function, florin

ƒ ƒ ƒ

A Greek capital letter alpha
Α Α Α

Nonprinting
character

Left-to-right mark
‎ ‎ ‎

Nonprinting
character

Right-to-left mark
‏ ‏ ‏

- En dash
– – –

- Em dash
— — —

`
Left single
quotation mark

‘ ‘ ‘

'
Right single
quotation mark

’ ’ ’

Single low-9
quotation mark

‚ ‚ ‚

"
Left double
quotation mark

“ “ “

"
Right double
quotation mark

” ” ”

Double low-9
quotation mark

„ „ „

Dagger
† † †

Double dagger
‡ ‡ ‡

Table 27-6. The HTML symbol entity set

Character Meaning
XHTML entity

reference

Hexadecimal
character
reference

Decimal
character
reference

Latin small f with hook,
function, florin

ƒ ƒ ƒ

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Meaning
XHTML entity

reference

Hexadecimal
character
reference

Decimal
character
reference

A Greek capital letter alpha
Α Α Α

B Greek capital letter beta
Β Β Β

Greek capital letter
gamma

Γ Γ Γ

Greek capital letter delta
Δ Δ Δ

E Greek capital letter epsilon
Ε Ε Ε

Z Greek capital letter zeta
Ζ Ζ Ζ

H Greek capital letter eta
Η Η Η

Greek capital letter theta
Θ Θ Θ

I Greek capital letter iota
Ι Ι Ι

K Greek capital letter kappa
Κ Κ Κ

Greek capital letter lambda
Λ Λ Λ

M Greek capital letter mu
Μ Μ Μ

N Greek capital letter nu
Ν Ν Ν

Greek capital letter xi
Ξ Ξ Ξ

O
Greek capital letter
omicron

Ο Ο Ο

Greek capital letter pi
Π Π Π

Greek capital letter rho
Ρ Ρ Ρ

A Greek capital letter alpha
Α Α Α

B Greek capital letter beta
Β Β Β

Greek capital letter
gamma

Γ Γ Γ

Greek capital letter delta
Δ Δ Δ

E Greek capital letter epsilon
Ε Ε Ε

Z Greek capital letter zeta
Ζ Ζ Ζ

H Greek capital letter eta
Η Η Η

Greek capital letter theta
Θ Θ Θ

I Greek capital letter iota
Ι Ι Ι

K Greek capital letter kappa
Κ Κ Κ

Greek capital letter lambda
Λ Λ Λ

M Greek capital letter mu
Μ Μ Μ

N Greek capital letter nu
Ν Ν Ν

Greek capital letter xi
Ξ Ξ Ξ

O
Greek capital letter
omicron

Ο Ο Ο

Greek capital letter pi
Π Π Π

Greek capital letter rho
Ρ Ρ Ρ

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Meaning
XHTML entity

reference

Hexadecimal
character
reference

Decimal
character
reference

Greek capital letter sigma
Σ Σ Σ

T Greek capital letter tau
Τ Τ Τ

Greek capital letter upsilon
Υ Υ Υ

Greek capital letter phi
Φ Φ Φ

Greek capital letter chi
Χ Χ Χ

Greek capital letter psi
Ψ Ψ Ψ

Greek capital letter omega
Ω Ω Ω

Greek small letter alpha
α α α

Greek small letter beta
β β β

Greek small letter gamma
γ γ γ

Greek small letter delta
δ δ δ

Greek small letter epsilon
ε ε ε

Greek small letter zeta
ζ ζ ζ

Greek small letter eta
η η η

Greek small letter theta
θ θ θ

Greek small letter iota
ι ι ι

Greek small letter kappa
κ κ κ

Greek capital letter sigma
Σ Σ Σ

T Greek capital letter tau
Τ Τ Τ

Greek capital letter upsilon
Υ Υ Υ

Greek capital letter phi
Φ Φ Φ

Greek capital letter chi
Χ Χ Χ

Greek capital letter psi
Ψ Ψ Ψ

Greek capital letter omega
Ω Ω Ω

Greek small letter alpha
α α α

Greek small letter beta
β β β

Greek small letter gamma
γ γ γ

Greek small letter delta
δ δ δ

Greek small letter epsilon
ε ε ε

Greek small letter zeta
ζ ζ ζ

Greek small letter eta
η η η

Greek small letter theta
θ θ θ

Greek small letter iota
ι ι ι

Greek small letter kappa
κ κ κ

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Meaning
XHTML entity

reference

Hexadecimal
character
reference

Decimal
character
reference

Greek small letter lambda
λ λ λ

Greek small letter mu
μ μ μ

Greek small letter nu
ν ν ν

Greek small letter xi
ξ ξ ξ

Greek small letter omicron
ο ο ο

Greek small letter pi
π π π

Greek small letter rho
ρ ρ ρ

Greek small letter final
sigma

ς ς ς

Greek small letter sigma
σ σ σ

Greek small letter tau
τ τ τ

Greek small letter upsilon
υ υ υ

Greek small letter phi
φ φ φ

Greek small letter chi
χ χ χ

Greek small letter psi
ψ ψ ψ

Greek small letter omega
ω ω ω

Greek small letter theta
symbol

ϑ ϑ ϑ

Greek upsilon with hook
symbol

ϒ ϒ ϒ

Greek small letter lambda
λ λ λ

Greek small letter mu
μ μ μ

Greek small letter nu
ν ν ν

Greek small letter xi
ξ ξ ξ

Greek small letter omicron
ο ο ο

Greek small letter pi
π π π

Greek small letter rho
ρ ρ ρ

Greek small letter final
sigma

ς ς ς

Greek small letter sigma
σ σ σ

Greek small letter tau
τ τ τ

Greek small letter upsilon
υ υ υ

Greek small letter phi
φ φ φ

Greek small letter chi
χ χ χ

Greek small letter psi
ψ ψ ψ

Greek small letter omega
ω ω ω

Greek small letter theta
symbol

ϑ ϑ ϑ

Greek upsilon with hook
symbol

ϒ ϒ ϒ

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Meaning
XHTML entity

reference

Hexadecimal
character
reference

Decimal
character
reference

Greek pi symbol
ϖ ϖ ϖ

· Bullet, black small circle
• • •

...
Horizontal ellipsis, three-
dot leader

… … …

´ Prime, minutes, feet
′ ′ ′

Double prime, seconds,
inches

″ ″ ″

¯
Overline, spacing
overscore

‾ ‾ ‾

/ Fraction slash
⁄ ⁄ ⁄

Black letter capital I,
imaginary part

ℑ ℑ ℑ

Script capital P, power set,
Weierstrass p

℘ ℘ ℘

Black letter capital R, real
part symbol

ℜ ℜ ℜ

™ Trademark sign
™ ™ ™

Aleph symbol, first
transfinite cardinal

ℵ ℵ ℵ

Leftward arrow
← ← ←

Upward arrow
↑ ↑ ↑

Rightward arrow
→ → →

Downward arrow
↓ ↓ ↓

Left-right arrow
↔ ↔ ↔

Greek pi symbol
ϖ ϖ ϖ

· Bullet, black small circle
• • •

...
Horizontal ellipsis, three-
dot leader

… … …

´ Prime, minutes, feet
′ ′ ′

Double prime, seconds,
inches

″ ″ ″

¯
Overline, spacing
overscore

‾ ‾ ‾

/ Fraction slash
⁄ ⁄ ⁄

Black letter capital I,
imaginary part

ℑ ℑ ℑ

Script capital P, power set,
Weierstrass p

℘ ℘ ℘

Black letter capital R, real
part symbol

ℜ ℜ ℜ

™ Trademark sign
™ ™ ™

Aleph symbol, first
transfinite cardinal

ℵ ℵ ℵ

Leftward arrow
← ← ←

Upward arrow
↑ ↑ ↑

Rightward arrow
→ → →

Downward arrow
↓ ↓ ↓

Left-right arrow
↔ ↔ ↔

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Meaning
XHTML entity

reference

Hexadecimal
character
reference

Decimal
character
reference

Downward arrow with
corner leftward, carriage
return

↵ ↵ ↵

Leftward double arrow
⇐ ⇐ ⇐

Upward double arrow
⇑ ⇑ ⇑

Rightward double arrow
⇒ ⇒ ⇒

Downward double arrow
⇓ ⇓ ⇓

Left-right double arrow
⇔ ⇔ ⇔

For all
∀ ∀ ∀

Partial differential
∂ ∂ ∂

There exists
∃ ∃ ∃

Empty set, null set,
diameter

∅ ∅ ∅

Nabla, backward difference
∇ ∇ ∇

Element of
∈ ∈ ∈

Not an element of
∉ ∉ ∉

Contains as member
∋ ∋ ∋

N-ary product, product
sign

∏ ∏ ∏

N-ary summation
∑ ∑ ∑

- Minus sign
− − −

Downward arrow with
corner leftward, carriage
return

↵ ↵ ↵

Leftward double arrow
⇐ ⇐ ⇐

Upward double arrow
⇑ ⇑ ⇑

Rightward double arrow
⇒ ⇒ ⇒

Downward double arrow
⇓ ⇓ ⇓

Left-right double arrow
⇔ ⇔ ⇔

For all
∀ ∀ ∀

Partial differential
∂ ∂ ∂

There exists
∃ ∃ ∃

Empty set, null set,
diameter

∅ ∅ ∅

Nabla, backward difference
∇ ∇ ∇

Element of
∈ ∈ ∈

Not an element of
∉ ∉ ∉

Contains as member
∋ ∋ ∋

N-ary product, product
sign

∏ ∏ ∏

N-ary summation
∑ ∑ ∑

- Minus sign
− − −

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Meaning
XHTML entity

reference

Hexadecimal
character
reference

Decimal
character
reference

* Asterisk operator
∗ ∗ ∗

Square root, radical sign
√ √ √

Proportional to
∝ ∝ ∝

Infinity
∞ ∞ ∞

Angle
∠ ∠ ∠

Logical and, wedge
∧ ∧ ∧

Logical or, vee
∨ ∨ ∨

Intersection, cap
∩ ∩ ∩

Union, cup
∪ ∪ ∪

Integral
∫ ∫ ∫

Therefore
∴ ∴ ∴

~
Tilde operator, varies with,
similar to

∼ ∼ ∼

Approximately equal to
≅ ≅ ≅

Almost equal to,
asymptotic to

≈ ≈ ≈

Not equal to
≠ ≠ ≠

Identical to
≡ ≡ ≡

Less than or equal to
≤ ≤ ≤

* Asterisk operator
∗ ∗ ∗

Square root, radical sign
√ √ √

Proportional to
∝ ∝ ∝

Infinity
∞ ∞ ∞

Angle
∠ ∠ ∠

Logical and, wedge
∧ ∧ ∧

Logical or, vee
∨ ∨ ∨

Intersection, cap
∩ ∩ ∩

Union, cup
∪ ∪ ∪

Integral
∫ ∫ ∫

Therefore
∴ ∴ ∴

~
Tilde operator, varies with,
similar to

∼ ∼ ∼

Approximately equal to
≅ ≅ ≅

Almost equal to,
asymptotic to

≈ ≈ ≈

Not equal to
≠ ≠ ≠

Identical to
≡ ≡ ≡

Less than or equal to
≤ ≤ ≤

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Meaning
XHTML entity

reference

Hexadecimal
character
reference

Decimal
character
reference

Greater than or equal to
≥ ≥ ≥

Subset of
⊂ ⊂ ⊂

Superset of
⊃ ⊃ ⊃

Not a subset of
⊄ ⊄ ⊄

Subset of or equal to
⊆ ⊆ ⊆

Superset of or equal to
⊇ ⊇ ⊇

Circled plus, direct sum
⊕ ⊕ ⊕

Circled times, vector
product

⊗ ⊗ ⊗

Up tack, orthogonal to,
perpendicular

⊥ ⊥ ⊥

Dot operator
⋅ ⋅ ⋅

Left ceiling, APL upstile
⌈ ⌈ ⌈

Right ceiling
⌉ ⌉ ⌉

Left floor, APL downstile
⌊ ⌊ ⌊

Right floor
⌋ ⌋ ⌋

Left-pointing angle
bracket, bra

⟨ 〈 〈

Right-pointing angle
bracket, ket

⟩ 〉 〉

Lozenge
◊ ◊ ◊

Greater than or equal to
≥ ≥ ≥

Subset of
⊂ ⊂ ⊂

Superset of
⊃ ⊃ ⊃

Not a subset of
⊄ ⊄ ⊄

Subset of or equal to
⊆ ⊆ ⊆

Superset of or equal to
⊇ ⊇ ⊇

Circled plus, direct sum
⊕ ⊕ ⊕

Circled times, vector
product

⊗ ⊗ ⊗

Up tack, orthogonal to,
perpendicular

⊥ ⊥ ⊥

Dot operator
⋅ ⋅ ⋅

Left ceiling, APL upstile
⌈ ⌈ ⌈

Right ceiling
⌉ ⌉ ⌉

Left floor, APL downstile
⌊ ⌊ ⌊

Right floor
⌋ ⌋ ⌋

Left-pointing angle
bracket, bra

⟨ 〈 〈

Right-pointing angle
bracket, ket

⟩ 〉 〉

Lozenge
◊ ◊ ◊

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Meaning
XHTML entity

reference

Hexadecimal
character
reference

Decimal
character
reference

Black spade suit
♠ ♠ ♠

Black club suit, shamrock
♣ ♣ ♣

Black heart suit, valentine
♥ ♥ ♥

Black diamond suit
♦ ♦

♦

 < Day Day Up >

Black spade suit
♠ ♠ ♠

Black club suit, shamrock
♣ ♣ ♣

Black heart suit, valentine
♥ ♥ ♥

Black diamond suit
♦ ♦

♦

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

27.3 Other Unicode Blocks

So far we've accounted for a little over 300 of the more than 90,000 Unicode characters. Many
thousands are still unaccounted for. Outside the ranges defined in XHTML and SGML, standard entity
names don't exist. You should either use an editor that can produce the characters you need in the
appropriate character set or you should use character references. Most of the 90,000-plus Unicode
characters are either Han ideographs, Hangul syllables, or rarely used characters. However, we do
list a few of the most useful blocks later in this chapter. Others can be found online at
http://www.unicode.org/charts/ or in The Unicode Standard 4.0 by the Unicode Consortium (Addison
Wesley).

In the tables that follow, the upper lefthand corner contains the character's hexadecimal Unicode
value, and the upper righthand corner contains the character's decimal Unicode value. You can use
either value to form a character reference so as to use these characters in element content and
attribute values, even without an editor or fonts that support them.

27.3.1 Latin Extended-A

The128 characters in the Latin Extended-A block of Unicode are used in conjunction with the normal
ASCII and Latin-1 characters. They cover most European Latin letters missing from Latin-1. The
block includes various characters you'll find in the upper halves of the other ISO-8859 Latin character
sets, including ISO-8859-2, ISO-8859-3, ISO-8859-4, and ISO-8859-9. When combined with ASCII
and Latin-1, this block lets you write Afrikaans, Basque, Breton, Catalan, Croatian, Czech, Esperanto,
Estonian, French, Frisian, Greenlandic, Hungarian, Latvian, Lithuanian, Maltese, Polish, Provençal,
Rhaeto-Romanic, Romanian, Romany, Sami, Slovak, Slovenian, Sorbian, Turkish, and Welsh. See
Table 27-7.

Table 27-7. Unicode's Latin Extended-A block

http://www.unicode.org/charts/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3.2 Latin Extended-B

The Latin Extended-B block of Unicode is used in conjunction with the normal ASCII and Latin-1
characters. It mostly contains characters used for transcription of non-European languages not
traditionally written in a Roman script. For instance, it's used for the Pinyin transcription of Chinese
and for many African languages. See Table 27-8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 27-8. The Latin Extended-B block of Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3.3 IPA Extensions

Linguists use the International Phonetic Alphabetic (IPA) to identify uniquely and unambiguously
particular sounds of various spoken languages. Besides the symbols listed in this block, the IPA
requires use of ASCII, various other extended Latin characters, the combining diacritical marks in
Table 27-11, and a few Greek letters. The block, shown in Table 27-9, only contains the characters
not used in more traditional alphabets.

Table 27-9. The IPA Extensions block of Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3.4 Spacing Modifier Letters

The Spacing Modifier Letters block, shown in Table 27-10, includes characters from multiple
languages and scripts that modify the preceding or following character, generally by changing its
pronunciation.

Table 27-10. The Spacing Modifier Letters block of Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3.5 Combining Diacritical Marks

The Combining Diacritical Marks block contains characters that are not used on their own, such as the
accent grave and circumflex. Instead, they are merged with the preceding character to form a single
glyph. For example, to write the character Ñ, you could type the ASCII letter N followed by the
combining tilde character, like this: Ñ. When rendered, this combination would produce the

single glyph Ñ. In Table 27-11, the character to which the diacritical mark is attached is a dotted

circle (Unicode code point &0x25CC;), but of course it could be any normal character.

For compatibility with legacy character sets, there is often more than one way to write accented
characters. For example the letter é, e with accent acute, can either be written as the single
character 0xE9 or as the letter e (0x65) followed by a combining accent acute (0x301). This can be a

problem for naïve algorithms for searching, sorting, indexing, and performing other operations on
text. It's also an issue for XML. For instance, the <resumé> start-tag cannot be matched with a
</resumé> end-tag if one uses character 0xE9 and the other uses 0x65 followed by 0x301. Where

such multiple ways of writing the same character exist, the W3C strongly recommends using the
precomposed form; that is, you should use the single character instead of the base character
followed by a combining diacritical mark. In XML, these marks are primarily intended for forming
characters that do not have precomposed forms.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 27-11. The Combining Diacritical Marks block of Unicode

27.3.6 Greek and Coptic

The Greek block of Unicode is used primarily for the modern Greek language. Currently, it's the only
option for the Greek-derived Coptic script, but it doesn't really serve that purpose very well, and a
separate Coptic block is a likely addition in the future. Extending coverage to classical and Byzantine
Greek requires many more accented characters, which are available in the Greek Extended block,
shown in Table 27-22, or by combining these characters with the Combining Diacritical Marks in Table
27-11. The Greek alphabet is also a fertile source of mathematical and scientific notation, although

http://lib.ommolketab.ir
http://lib.ommolketab.ir

some common letters, such as and , are encoded separately in the Mathematical Operators block in

Table 27-27 and the Mathematical Alphanumeric Symbols block in Table 27-28 for their use as
mathematical symbols. The Greek and Coptic block of Unicode is shown in Table 27-12.

Table 27-12. The Greek and Coptic block of Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3.7 Cyrillic

While the Cyrillic script, shown in Table 27-13, is most familiar to Western readers from Russian, it's
also used for other Slavic languages, including Serbian, Ukrainian, and Byelorussian, and for many
non-Slavic languages of the former Soviet Union, such as Azerbaijani, Tuvan, and Ossetian. Indeed,
many characters in this block are not actually found in Russian but exist only in other languages
written in the Cyrillic script. Following the breakup of the Soviet Union, some non-Slavic languages,
such as Moldavian and Azerbaijani, are now reverting to Latin-derived scripts.

Table 27-13. The Cyrillic block of Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3.8 Armenian

The Armenian script, shown in Table 27-14, is used for writing the Armenian language, currently
spoken by about seven million people around the world.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 27-14. The Armenian block of Unicode

27.3.9 Hebrew

The Hebrew abjad, shown in Table 27-15, is used for Hebrew, Yiddish, and Judezmo. It's commonly
used for Phoenician as well, but the Phoenician and Hebrew abjads are arguably different, and a
separate Phoenician block is a likely addition in the future. The Hebrew script is also occasionally used
for mathematical notation.

Table 27-15. The Hebrew block of Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3.10 Arabic

The Arabic script, shown in Table 27-16, is used for many languages besides Arabic, including
Kurdish, Pashto, Persian, Sindhi, and Urdu. Turkish was also written in the Arabic script until early in
the twentieth century when Turkey converted to a modified Latin alphabet.

Table 27-16. The Arabic block of Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3.11 Devanagari

The Devanagari script is used for many languages of the Indian subcontinent, including Awadhi,
Bagheli, Bhatneri, Bhili, Bihari, Braj Bhasa, Chhattisgarhi, Garhwali, Gondi, Harauti, Hindi, Ho,
Jaipuri, Kachchhi, Kanauji, Konkani, Kului, Kumaoni, Kurku, Kurukh, Marwari, Mundari, Newari,
Palpa, and Santali. It's also used for the classical language Sanskrit. See Table 27-17.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 27-17. The Devanagari block of Unicode

27.3.12 Thai

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Thai script is used for Thai and several other Southeast Asian languages, including Kuy, Lavna,
and Pali. See Table 27-18.

Table 27-18. The Thai block of Unicode

27.3.13 Tibetan

The Tibetan script is used to write the various dialects of Tibetan and Dzongkha, Bhutan's main
language. Like Chinese, Tibetan is divided into mutually unintelligible spoken languages, although the
written forms are identical. See Table 27-19.

Table 27-19. The Tibetan block of Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3.14 Ethiopic

The Ethiopic script is used by several languages in Ethiopia, including Amharic, Tigre, Oromo, and the
liturgical language Ge'ez. See Table 27-20.

Table 27-20. The Ethiopic block of Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3.15 Latin Extended Additional

The Latin Extended Additional characters are single code-point representations of letters combined
with diacritical marks. This block is particularly useful for modern Vietnamese. See Table 27-21.

Table 27-21. The Latin Extended Additional block of Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3.16 Greek Extended

The Greek Extended block, shown in Table 27-22, contains mostly archaic letters and accented letters
that are used in classical and Byzantine Greek but not in modern Greek.

Table 27-22. The Greek Extended block of Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3.17 General Punctuation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The General Punctuation block, shown in Table 27-23, contains punctuation characters used across a
variety of languages and scripts that are not already encoded in Latin-1. Characters 0x2000 through
0x200B are all varying amounts of whitespace ranging from zero width (0x200B) to six ems (0x2007).
0x200C through 0x200F and 0x206A through 0x206F are nonprinting format characters with no

graphical representation.

Table 27-23. The General Punctuation block of Unicode

27.3.18 Currency Symbols

The Currency Symbols block includes a few monetary symbols not already encoded in other blocks,
such as the Indian rupee, the Italian lira, and the Greek drachma. See Table 27-24.

Table 27-24. The Currency Symbols block of Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3.19 Letter-Like Symbols

The Letter-Like Symbols block covers characters that look like letters but really aren't, such as the
symbol used to represent a prescription. See Table 27-25.

Table 27-25. The Letter-Like Symbols block of Unicode

27.3.20 Arrows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Arrows block contains commonly needed arrow characters, as shown in Table 27-26.

Table 27-26. The Arrows block of Unicode

27.3.21 Mathematical Operators

The Mathematical Operators block, shown in Table 27-27, contains a wide variety of symbols used in
higher mathematics. A few of these symbols superficially resemble letters in other blocks. For
instance, in most fonts, character 2206, , is virtually identical to the Greek capital letter delta.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, using characters in this block is preferable for mathematical expressions, as it allows
software to distinguish between letters and mathematical symbols. Fonts may use the same glyph to
represent different code points in cases like this.

Table 27-27. The Mathematical Operators block of Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unicode 3.1 added one more block of mathematical alphanumeric symbols in Plane 1 between
0x1D400 and 0x1D7FF, as shown in Table 27-28. Mostly these are repetitions of the ASCII and Greek
letters and digits in what would normally be considered font variations. For instance, 0x1D400 is

mathematical bold capital A. The justification for these is that when used in an equation, they really
aren't the same characters as the equivalent glyphs in text.

Table 27-28. The Mathematical Alphanumeric Symbols block of Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3.22 Miscellaneous Technical

The Miscellaneous Technical block, shown in Table 27-29, contains an assortment of symbols taken
from electronics, quantum mechanics, the APL programming language, the ISO-9995-7 standard for
language-neutral keyboard pictograms, and other sources.

Table 27-29. The Miscellaneous Technical block of Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3.23 Optical Character Recognition

The Optical Character Recognition (OCR) block, shown in Table 27-30, includes the OCR-A characters
that are not already encoded as ASCII and magnetic-ink character-recognition symbols used on
checks.

Table 27-30. The Optical Character Recognition block of Unicode

27.3.24 Geometric Shapes

The Geometric Shapes block combines simple triangles, squares, circles, and other shapes found in
various character sets Unicode attempts to superset. See Table 27-31.

Table 27-31. The Geometric Shapes block of Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3.25 Miscellaneous Symbols

The Miscellaneous Symbols block contains mostly pictographic symbols found in vendor and national
character sets that preceded Unicode. See Table 27-32.

Table 27-32. The Miscellaneous Symbols block of Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3.26 Dingbats

The Dingbats block, shown in Table 27-33, is based on characters in the popular Adobe Zapf Dingbats
font.

Table 27-33. The Dingbats block of Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of XML in a Nutshell, Third Edition, is a peafowl, the largest bird in the
Phasianinae family, which also includes pheasants and turkeys. People often incorrectly call peafowl
peacocks. Peacocks are actually male peafowl; the females are called peahens. Two wild peafowl
species exist today: the Indian peafowl (Pavo cristatus) and the Green peafowl of Southeast Asia
(Pavo muticus), which may be endangered. These wild peafowl live in musters of 8 to 12 birds in
dense forest near water. Though they do not fly very well, and do so only for short distances, they do
manage to escape most predators and roost peacefully at night, high up in treetops.

The peafowl's most famous characteristic, of course, is its beautiful fan of feathers, known as a
"train." Each blue-green train feather has a dark spot on its tip that looks much like an eye. Peacocks
develop especially brilliant plumage, an indicator of sexual maturity, by age three. A healthy peacock
has a full and vibrant train each year during the spring mating season. During this period, peacocks
strut their stuff-display their "breeding plumage," as it is called-to attract peahens. Scientists theorize
that the peacock's performance plays upon the peahen's instinctive drives to find healthy mates in
the hope of producing hardy offspring. Each summer after the mating season, peafowl shed their
train feathers, which are often collected by humans as eye-catching souvenirs.

Marlowe Shaeffer was the production editor and copyeditor for XML in a Nutshell, Third Edition. Jane
Ellin was the proofreader. Sarah Sherman and Claire Cloutier provided quality control. James Quill
provided production assistance. Ellen Troutman-Zaig wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The
cover image is an original illustration created by Susan Hart. Clay Fernald produced the cover layout
with QuarkXPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. This book was
converted by Joe Wizda to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray,
Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is
Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed. The tables in Chapter 27 were produced using Code2000, Code2001, Arial
Unicode MS, Tibetan Machine Web, Tibetan Machine Uni, Doulos SIL, and PakType Naqsh fonts. The
illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by
Christopher Bing. This colophon was written by Sarah Jane Shangraw and Molly Shangraw.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

. (period), selecting context node 2nd

" (quotation marks, double)

 enclosing values in attribute name-value pairs

 entity reference for straight (") 2nd 3rd

 XML specification

 hexadecimal escape in URIs

(octothorpe)

 CSS attribute selector

 separating fragment identifier from document path in URLs

#FIXED attributes (XLink)

#FIXED default declaration 2nd

 explicit value must match default value

#IMPLIED default declaration 2nd

#PCDATA keyword 2nd

#REQUIRED default declaration 2nd

 value must be assigned to attributes

#x3C3F786D Unicode character

#xFEFF Unicode character 2nd

#xFFFE Unicode character

% (percent sign) in parameter entity references

%Block.extra; entity reference

%Block.mix; entity reference

%Flow.mix; entity reference

%Inline.extra; entity reference

%Inline.mix; entity reference

%Misc.extra; entity reference

& (ampersand)

 entity reference for (&) 2nd 3rd

 escaping in element character data

 in CDATA sections

> (greater-than sign)

 CSS child element selector

 entity reference for (>) 2nd 3rd 4th

 escaping, need for

< (angle bracket, left), escaping in element character data

< (less-than sign)

 entity reference for (<) 2nd 3rd 4th

 hexadecimal escape in URIs (%3C)

 in CDATA sections

 not allowed in attribute values

<!-- and -->, delimiting X ML comments

<? and ?>, delimiting processing instructions

' (apostrophe)

 entity reference for (') 2nd 3rd

 XML specification

' (quotation marks, single), enclosing values in attribute name-value pairs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

() (parentheses)

 in element declarations

 grouping operator

* (asterisk)

 CSS universal selector

 node test

 suffix for element names

 XPath wildcard

+ (plus sign)

 CSS sibling element selector

 suffix for element names

.. (double period)

 selecting parent element

 selecting parent node

// (double forward slash)

 building compound location paths

 selecting from context node descendants

: (colon), in XML names 2nd

:: (double colon), in unabbreviated location paths

= (equals sign)

 CSS attribute value selector

 separating attribute name-value pairs

? (question mark), suffix for element names

@ (at sign), selecting an attribute 2nd

@* (XPath wildcard)

@name (location path, abbreviated syntax)

]]> (CDATA end delimiter)

| (vertical bar)

 |= (CSS attribute selector)

 combining multiple location paths

 multiple XPath matches

~= (tilde equals sign), CSS attribute selector

64-bit floating-point numbers (XPath)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

abbreviated location paths 2nd

abjads, Hebrew and Phoenician

absolute location paths 2nd

 building compound location paths

 id() function and

absolute units of length (CSS properties)

abstract elements and types

Abstract Schemas module, DOM

accept and accept-language attribute (x\:include)

active pseudo-class, CSS

Adobe Zapf Dingbats Font

adoptNode() (Document)

after pseudo-element, CSS

after region (XSL-FO)

all element 2nd

alternate pseudo-attribute 2nd

ancestor axis 2nd

ancestor-or-self axis 2nd

annotation elements in schemas 2nd

 xs:appinfo

 xs:documentation

anonymous types

Antenna House XSL Formatter

any element 2nd

ANY element type 2nd

any type, element content

 derived complex types

 multiple documents, using

 substitution groups

anyAttribute element 2nd

anyURI type

Apache web server, MIME types for XML

Apache Xerces XML DOM parser

Apache XML Project

 Cocoon (XSLT processor)

 FOP (formatting program)

 Xalan XSLT processor

 Xerces-J (parser) 2nd

apostrophe ('), entity reference for (&apos:)

appendChild() (Node) 2nd

appendData() (CharacterData)

appinfo element 2nd

Apple Computer character sets

application/xml MIME type 2nd

applications, XML

apply-imports element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

apply-templates element

Arabic characters

Arabic Unicode block

arcs

 multiple arcs from one arc element

 role attributes

 title attributes

 XPointer identification of starter and ending resources

arithmetic operators in XPath 2nd

Armenian Unicode block

Arrows Unicode block

ASCII character set

ATTLIST declarations

 default declaration for attributes

 xml:lang attribute

Attr interface (DOM) 2nd

 nodeName attribute and

 nodeValue attribute and

attribute axis 2nd

attribute declarations 2nd [See also attribute types]

 attribute groups and

 attribute types

 defaults

 schemas and

attribute element 2nd

attribute names

 document permanence and

 prefixes and

attribute nodes

 @* wildcard match

 default template rule for

 template rules and

 XPath data model and

attribute types 2nd

 CDATA

 ENTITIES 2nd

 ENTITY 2nd

 enumeration

 ID

 default for

 in element type declarations

 generate-id()

 IDREF 2nd 3rd

 IDREFS 2nd

 NMTOKEN

 NMTOKENS

 NOTATION

attribute value templates

attribute values

 ensuring validity of

 external entities and

 no < allowed in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 XSLT elements, types of

attribute-set element

ATTRIBUTE_NODE (DOM node type)

 and nodeType attribute

 and textContent attribute

attributeFormDefault (schema element) 2nd

attributeGroup element 2nd

attributes 2nd

 abbreviated syntax for, location steps

 accessing with DOM NamedNodeMap interface

 acquisition by XML elements

 anyAttribute element, schemas

 child elements vs.

 CSS selectors for

 default declarations for

 normal attribute values and

 default namespaces and

 default values for

 deprecated, XHTML DTD legacy module

 of elements in schema instance documents

 formatting object elements (XSL-FO)

 IDL terminology

 in XML declarations

 encoding attribute

 standalone attribute

 version attribute

 location steps

 matching multiple

 notation

 qualifying with a namespace

 special

 unique names for

 unprefixed, namespaces and

 XLink, declaring in DTD

attributes attribute (Node) 2nd

Attributes interface (SAX)

Attributes2 interface (SAX)

AttributesImpl class (SAX)

axes 2nd 3rd

 abbreviated and unabbreviated location paths

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

background-color property (CSS)

Backus-Naur Form (BNF) grammar

Baltic languages

bare-name XPointers, support by processors

base attribute (xs\:extension element)

base URIs of included documents

base64Binary type

BEEP (Blocks Extensible Exchange Protocol)

before and after pseudo-elements, CSS

before region (XSL-FO)

big-endian UCS-2 2nd

billion laugh attacks

binding prefixes to URIs

block areas (XSL-FO)

 flowing content into pages

 splitting

block elements (CSS display property)

block-level items in XML documents

Blocks Extensible Exchange Protocol (BEEP)

BNF (Backus-Naur Form) grammar

body region (XSL-FO)

booleans

 SAX features 2nd

 XPath expressions 2nd 3rd 4th

 XPath, boolean() function 2nd

 xs:boolean type

Borden, Jonathan

border-color property (CSS)

Bosak, Jon

Bray, Tim 2nd

Brown University, XML Validation Form

Bulgarian language

bulleted list, formatting in XSL-FO

Byelorussian language

byte type

byte-order mark (Unicode) 2nd

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C0 controls in ASCII character sets

C1 controls in ISO-8859 character sets

call-template element

Canadian French (xml\:lang attribute)

Canonical XML 2nd

 Genx C library for

Cascading Style Sheets 2nd [See CSS]

case

 changing with CSS text-transform

 converting text to uppercase with SAX filter

case-sensitivity in XML 2nd

casting generic Node reference to specific interface

catalogs, XML

CDATA sections

 <![CDATA[and]]> delimiters

 attribute type 2nd

 processing of

 SAX LexicalHandler interface and

 in XHTML, browser handling of

 XML specification for

CDATA_SECTION_NODE (DOM)

 and nodeType attribute

 and textContent attribute

CDATASection interface (DOM) 2nd 3rd

 nodeName attribute and

ceiling() function (XPath) 2nd

character data

 comments in

 escaping special characters with references

 parsed

character data characters (Unicode)

character encodings 2nd 3rd [See also character sets; Unicode]

 autodetection of

 encoding declaration 2nd 3rd

 parser support of

 recommended, for processor recognition

 Unicode [See Unicode]

character references 2nd

 for HTML 4.0 entity sets

 predefined

 in XHTML

 XML specification

character sets 2nd

 converting between

 Cp1252

 in external parsed entities

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HTML 4.0 entity sets

 Latin-1 entity set

 special characters

 symbols

 ISO

 metadata

 names defined for XML specification, list of

 national standard

 platform-dependent

 Cp1252

 MacRoman

 Unicode [See Unicode]

 XML document default

 XML-defined

CharacterData interface (DOM) 2nd

charset pseudo-attribute 2nd

child axis 2nd

child elements

 attributes vs.

 CSS, selector for

 determining number of

 limiting order and number of

 location steps

 metainformation about narrative documents

 name specified for (location steps)

 specified in element declarations

 xi:fallback

child sequences (in XPointers)

childNodes attribute (Node)

Chinese characters

 using subcodes for dialects

 UTF-8/UTF-16 encodings 2nd

choice element 2nd

choices in element declarations

choose element

Clark, James 2nd

cloneNode() (Node)

Cocoon (Apache XML Project XSLT processor)

code points

 unassigned

colors, CSS properties for

Combining Diacritical Marks (Unicode block)

command-line programs

 for document validation

 XSLT processors

comment element

Comment interface (DOM) 2nd 3rd

 nodeName attribute and

 nodeValue attribute and

comment nodes

 default template rule for

 XPath data model and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

comment() location step

comment() node test

COMMENT_NODE (DOM node type)

 and nodeType attribute

 and textContent attribute

comments

 CSS style sheet

 DTDs, making sense of

 IGNORE directive acting as

 LexicalHandler interface and

 loopholes in XML specification

 processing issues with

 in schemas, annotations vs.

 in XML documents

 XML specification for

communications protocols and XML

 SOAP

 Web:REST

 XML-RPC

compareDocumentPosition() (Node)

comparison operators in XPath 2nd

complex types

 derived

 deriving by exension

 deriving by restriction

 element content, types of

 occurrence constraints

complexContent element 2nd

complexType element

 mixed attribute

concat() function (XPath) 2nd 3rd

conditional inclusion, declarations

conditional sections

 parameter entity nesting and

constrained child nodes

constraints

 namespace 2nd

 validity

 well-formedness

container nodes (XPointer points)

contains() function (XPath) 2nd

content negotiation, XInclude

content nodes (DOM Core)

content specifications (in element declarations)

content, element [See element content]

Content-Type field (HTTP header)

ContentHandler class (Java)

ContentHandler interface (SAX) 2nd

 filters and

 implementation class, writing

 methods called by parser

 overriding methods in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

context node 2nd

 axis from, XPath location steps

 changing for XPointer XPath expression

 selecting from all descendants, using //

 selecting, using a period (.) 2nd

 unabbreviated location paths

Coptic Unicode block

copy element

copy-of element

Core module, DOM

count() function (XPath) 2nd

country codes

Cp1252 character set 2nd

 converting to UTF-8 encoding

createAttribute() (Document)

createAttributeNS() (Document)

createCDATASection() (Document)

createComment() (Document)

createDocument() (DOMImplementation)

createDocumentFragment() (Document) 2nd

createDocumentType() (DOMImplementation)

createElement() (Document)

createElementNS() (Document)

createEntityReference() (Document)

createProcessingInstruction() (Document)

createTextNode() (Document)

createXMLReader() (XMLReaderFactory)

CSS (Cascading Style Sheets) 2nd

 associating with XML documents

 choosing between XSL-FO and

 color properties

 display property

 font properties

 Level 1 (CSS1) 2nd

 Level 2 (CSS2) 2nd

 Level 3 (CSS3)

 selectors

 attribute

 for child elements

 for descendants

 for sibling elements

 pseudo-class

 pseudo-element

 universal selector (*)

 style rules for

 syntax of

 text properties

 transformation-based presentation vs.

 units of length

 XHTML DTD style attribute module

Currency Symbols Unicode block

current() function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cyrillic characters

 Unicode block for

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

data attribute (ProcessingInstruction interface)

data format, XML as

 developing record-like XML formats

 backward compatibility

 namespace support

 reasons to use

 communications protocols

 databases

 file formats

 mixed environments

 object serialization

 RDF

 unique strengths of XML

 sharing your format

data types

 complex schema types

 element content

 occurrence constraints

 numbers in XPath

 schema type library

 schema, derivation of

 simple schema types 2nd

 defining new

 type derivation, controlling

 TypeInfo interface (DOM)

 XPath expressions

data typing in XML documents

databases

 XML data format

 XML vs.

date type

dateTime type

decimal character references

decimal format patterns

decimal type

decimal-format element

decimals numbers, CSS colors

declarations 2nd

 attribute

 default 2nd

 commenting out

 DeclHandler interface and

 default

 document type

 element 2nd

 element type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 encoding 2nd

 inside XML declaration

 external

 including

 modifying 2nd

 general entity 2nd

 notation

 names must be unique

 unparsed entities and

 parameter entity

 parameter entity references

 standalone 2nd

 standalone attribute

 text 2nd

 version attribute 2nd

 xml:lang attribute

DeclHandler interface (SAX)

default namespaces, setting 2nd

default values, XML specification for

DefaultHandler class (SAX) 2nd

deleteData() (CharacterData)

deprecating XML application features

dereferencing parameter entities

derived types

 controlling

 abstract elements and types

 final attribute

 fixed facets

 uniqueness and keys

 deriving by extension

 deriving by restriction

 using

descendant axis 2nd 3rd

descendant-or-self axis

descendants of CSS elements, matching

Devanagari

 Unicode block

diacritical marks

 Combining Diacritical Marks (Unicode block)

 letters combined with (Latin Extended Additional)

Dingbats Unicode block

disciplines and professions, standard DTDs for

display property (CSS)

DocBook

 entity sets and

 purposes for related resources (RDDL)

 structure of documents

doctype attribute (Document interface)

DOCTYPE declaration

document element

Document interface (DOM) 2nd 3rd

 attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 methods

 nodeName attribute and

 nodeValue attribute and

 normalizeDocument()

document model modules, defining parameter entity references

Document Object Model [See DOM]

Document Style Sheet and Semantics Language (DSSSL) 2nd

document type declaration

document type definitions [See DTDs]

document() function

DOCUMENT_FRAGMENT_NODE (DOM) and nodeType attribute

DOCUMENT_NODE (DOM)

 and nodeType attribute

 and textContent attribute

DOCUMENT_TYPE_NODE (DOM)

 and nodeType attribute

 and textContent attribute

documentation element 2nd 3rd

DocumentFragment interface (DOM) 2nd 3rd

 nodeName attribute and

 nodeValue attribute and

documents, XML 2nd

 associating CSS stylesheets with

 associating RDF document with

 attaching links to [See XLinks]

 body of

 converting to HTML for servers

 embedding non-XML content in

 generating for other applications

 grammar for XML 1.0 documents

 grammar for XML 1.1 documents

 identifying locations in [See XPointers]

 legacy formats

 narrative

 DocBook

 structure of

 TEI

 nodes in

 OpenOffice

 parsing with DOM

 permanence of

 record-like

 SGML's legacy

 stylesheet reference embedded in

 syntax structures

 transforming and presenting

 valid

 validating

 validity of

 well-formed

 valid vs.

 WordprocessingML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DocumentType interface (DOM) 2nd 3rd

 nodeName attribute and

 nodeValue attribute and

DOM (Document Object Model) 2nd 3rd 4th

 basics of

 Core, structure of

 generic vs. specific interfaces

 Node and other generic interfaces

 document structure, relating to nodes

 dynamic tree references

 example application

 generating XML documents

 IDL (Interface Definition Language) notation

 Level 1 2nd

 Level 2

 Level 3

 Core Recommendation 2nd

 interfaces

 loading XML documents and reserializing DOM trees as XML

 NamedNodeMap interface

 Node interface

 NodeList interface

 object hierarchy

 object reference (Level 3 Core objects)

 parsing a document with

 specific node-type interfaces

 content nodes

 structural nodes

 strengths and weaknesses

 TrAX and

DOMConfiguration interface 2nd

DOMError interface

DOMErrorHandler interface

DOMException interface

DOMImplementation interface 2nd

DOMImplementationList interface

DOMImplementationRegistry interface

DOMImplementationSource interface 2nd

DOMLocator interface 2nd

DOMObject interface 2nd

DOMString interface

DOMSTRING_SIZE_ERR exception

DOMStringList interface 2nd

DOMUserData interface

double type

DSSSL (Document Style Sheet and Semantics Language) 2nd

DTDHandler interface (SAX)

DTDs 2nd

 ATTLIST declarations of xml:lang attribute

 attribute declarations

 attribute types

 defaults

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 boundaries of, LexicalHandler interface and

 conditional inclusion of declarations

 document permanence and

 document type declaration vs.

 element declarations

 #PCDATA

 ANY keyword

 child elements

 choices

 empty elements

 mixed content

 number of children

 parentheses in

 sequences

 element type declarations

 external DTD subsets

 text declarations in

 XML processing and

 general entities

 external, parsed

 parsed

 general entity declarations

 ID attributes declared in

 internal DTD subsets

 namespaces and

 narrative XML documents 2nd 3rd

 parameter entities 2nd

 syntax of

 parameter entity references

 location in DTDs

 RDDL document

 record-like documents 2nd 3rd

 schemas vs.

 standalone attribute in XML declaration

 standard, locating

 stylesheets and

 TEI (Text Encoding Initiative)

 text declarations

 validation

 document type declaration

 example DTD

 internal subsets

 validating a document

 for XHTML

 division into modules

 XLinks

 XML specification for

Dublin Core metadata vocabulary

 binding prefixes to namespace URIs

 improving web searches

duration type

dynamic tree references (DOM)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

EBNF (Extended Backus-Naur Form) grammar

 for XML 1.1

ECMAScript, IDL interface in

electronics symbols, Unicode block for

element content

 any type

 derived complex types

 multiple documents, using

 substitution groups

 empty elements 2nd

 escaping special characters in

 mixed 2nd

 controlling element placement

 groups, using

 retrieving text content with DOM

 simple

 types of

 whitespace in

ELEMENT declaration

element declarations 2nd

 #PCDATA

 abstract attribute

 ANY (content specification)

 child elements

 choices

 constructing

 empty elements

 matching elements with DTD rules

 mixed content

 number of children

 occurrence constraints

 parentheses in

 schemas and

 sequences

 substitutionGroup attribute

element element 2nd 3rd

Element interface (DOM) 2nd 3rd

 attributes

 methods

 nodeName attribute and

 nodeValue attribute and

element names

 document permanence and

 in namespaces and DTDs

 prefixes and

 qualified

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 suffixes for

 unqualified

element nodes

 default template rule for

 XPath data model and

element type declarations

 attribute default values

 attribute list declaration

 conditional sections

 constrained child nodes

 duplicate types not allowed

 duplicates

 namespace qualification

 enumeration attribute type

 NOTATION attribute type

 notation declarations

 special attributes

 uniqueness required for

element() scheme (XPointer)

 support by all processors

element-available() function (XSLT)

ELEMENT_NODE (DOM)

 and node textContent attribute

 and nodeType attribute

elementFormDefault attribute (schema element) 2nd

elements 2nd

 arc (XLinks)

 attributes 2nd

 accessing with DOM NamedNodeMap

 acquisition of

 calculating the value of

 case-sensitivity in

 complex types

 controlling placement of

 CSS

 pseudo-element selectors

 deprecated, XHTML DTD legacy module

 empty [See empty elements]

 location steps

 matching multiple

 minOccurs/maxOccurs attributes

 mixed content [See mixed-content elements]

 in narrative-oriented documents

 order of traversal, changing with XSLT template

 overlapping not allowed

 parents and children

 qualifying with a namespace

 root element

 schema

 enforcing uniqueness of

 sibling

 start-tags and end-tags 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 unprefixed, namespaces and

 XLink (xlink:type attribute)

 XML Schema

 XML specification for

 XSL-FO

 XSLT

 attribute values, types of

 categories of

empty elements 2nd

 declaring

 NOTATION attributes not available for

 schemas and

 web browser problems with

 XML specification for

encoding attribute (xi\:include element)

encoding declaration 2nd

 XML specification for

encodings [See character encodings character sets Unicode]

end region (XSL-FO)

end-point() function (XPointer)

ending resource

enterprise applications and XML

entities

 DTD fragments that define

 external parsed

 text declarations and

 external unparsed

 declaring notations

 general

 external, parsed

 general entity declarations

 parameter

 syntax of

 unparsed, processing issues with

ENTITIES attribute type 2nd 3rd

ENTITIES type

ENTITY attribute type 2nd 3rd

 embedding unparsed entities in documents

 unparsed entities in DTD and

ENTITY declaration 2nd

 absent from entity references

Entity interface (DOM) 2nd 3rd

 nodeName attribute and

 nodeValue attribute and

entity references 2nd [See also parameter entity references]

 attribute values and external entities

 CDATA sections and

 general entities

 listing of

 loopholes in XML specification

 with no entity declarations

 places for allowed usage

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 predefined

 processing issues with

 SAX LexicalHandler interface and

 unparsed entity names not allowed

 web browser problems with

 XHTML 1.1 DTD

 XML specification for

entity sets

 HTML 4.0

 Latin-1

 special characters

 symbols

 XHTML 1.0 DTD 2nd

ENTITY type

ENTITY_NODE (DOM node type) and nodeType attribute

ENTITY_REFERENCE_NODE (DOM) and nodeType attribute

EntityReference interface (DOM) 2nd 3rd 4th

 nodeName attribute and

 nodeValue attribute and

EntityResolver interface (SAX)

EntityResolver2 interface (SAX)

enumeration attribute type 2nd

 assigning a value to

enumeration facet element

enumerations

errors

 DOM operations

 ErrorHandler interface (SAX)

 SAXException class and

 validity 2nd

 well-formedness 2nd

Ethiopic Unicode block

EUC-JP encoding

event-based XML processing

 push model

events (XHTML DTD module)

Events module, DOM

exceptions

 SAX

 features not provided by parser

 SAXException class

 SAXNotRecognizedException class

 SAXNotSupportedException class

 SAXParseException class

exclusive min and max facets

expat parser

expressions, XPath 2nd 3rd [See also location paths; location steps]

 Booleans

 data types

 numbers

 predicates

 strings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Extended Backus-Naur Form (EBNF) grammar

 for XML 1.1

Extended Interfaces (DOM Core)

extended links

 arcs

 multiple arcs from one arc element

 role attributes

 title attributes

 local resources 2nd

 locator elements

 title elements

 XPointers and

Extensible Linking Language [See XLinks]

Extensible Messaging and Presence Protocol (XMPP)

Extensible Stylesheet Language [See XSL XSL-FO XSLT]

Extensible Stylesheet Language Transformations [See XSLT]

extension element

 deriving new type from

extension elements in XSLT

extent attributes (XSL-FO nonbody regions)

external declarations

 including

 modifying

external DTD subsets

 general entity references and

 parameter entity references and

 text declarations and

 XML processing and

 XML specification for 2nd

external general entities

 parsed 2nd

 attribute values and

 no recursion allowed

 SAX core feature

 text declarations and

 text declarations of

 unparsed 2nd

 declaring notations

external parameter entity references

 SAX core feature

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

facet elements

 enforcing format

 enumeration 2nd

 fixed

 fractionDigits

 length

 length-restriction

 list

 maxExclusive

 maxInclusive

 maxLength

 minExclusive

 minInclusive

 minLength

 numeric

 pattern

 totalDigits

 union

 whiteSpace 2nd

fallback element 2nd

false() function (XPath) 2nd 3rd

features, DOM

 getFeature() (Node)

 support of, checking

features, SAX

 SAXCoreFeatures class

 turning on

Feynman, Richard 2nd 3rd

 XML document describing

field element

file formats, XML and

filesystems, MIME types in

filters

 event-based parsers and

 SAX

 for processing instructions

 steps in using

 well-formedness, problems with

 XMLFilter interface

 XMLFilterImpl class 2nd

final attribute

first-letter pseudo-element, CSS

first-line pseudo-element, CSS

firstChild attribute (Node)

fixed attribute

float type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

floating-point doubles (in XPath)

floating-point numbers (in XPath)

floor() function (XPath) 2nd

flow element (XSL-FO)

fo prefix (XSL-FO)

fo:page-sequence elements

fo:root element

fo\:flow element (XSL-FO)

fo\:layout-master-set element

focus pseudo-class, CSS

following axis 2nd

following-sibling axis 2nd

font properties

 CSS

 XSL-FO

for-each element

format-number() function (XSLT) 2nd

formatting objects

formatting program (FOP, Apache XML Project)

forms, XHTML DTD modules for

fractionDigits facet element 2nd

fragment identifiers

 XPointer href attributes and

frames modules (XHTML DTD)

frameset DTD (XHTML)

French language, subcodes for dialects

function-available() function

functionality, removing from XML applications

functions

 XPath 2nd

 Boolean

 node-set

 number

 string

 XSLT

Fundamental Interfaces (DOM Core)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

gDay type

general entities

 external parsed

 attribute values and

 no recursion allowed

 text declarations and

 external unparsed 2nd

 declaring notations

 internal

 parsed

 unparsed

general entity declarations 2nd

 declaring

general entity references

 XML specification for

General Punctuation Unicode block

generate-id() function

generating XML documents for other applications

Geometric Shapes Unicode block

getAttribute() (Element)

getAttributeNode() (Element)

getAttributeNodeNS() (Element)

getAttributeNS() (Element)

getElementById() (Document)

getElementsByTagName()

 Document interface

 Element interface

getElementsByTagNameNS()

 Document interface 2nd

 Element interface

getException() (SAXException)

getFeature()

 DOMImplementation

 Node

 XMLReader

getNamedItem() (NamedNodeMap)

getNamedItemNS() (NamedNodeMap)

getProperty() (SAX)

getTextContent() method (DOM)

getUserData (Node)

global elements in schemas

glyph areas (XSL-FO)

gMonth type

gMonthDay type

Goldfarb, Charles F. 2nd

Goodman, Danny

http://lib.ommolketab.ir
http://lib.ommolketab.ir

grammar for XML documents

 XML 1.0

 XML 1.1

Greek language

 Greek Extended Unicode block

 Greek Unicode block

Gregorian calendar

group element 2nd

GUI programs for XML document validation

gYear type

gYearMonth type

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

handle() (UserDataHandler)

handleError() (DOMErrorHandler)

hasAttribute() (Element)

hasAttributeNS() (Element)

hasAttributes() (Node)

hasChildNodes() (Node)

hasFeature() (DOMImplementation) 2nd

head element

Hebrew language

Hebrew Unicode block

here() function

hexadecimals

 character references 2nd

 CSS color numbers

 escaping XPointer characters not allowed in URIs

hexBinary type

hidden elements (CSS display property)

HIERARCHY_REQUEST_ERR exception (DOM)

hover pseudo-class, CSS

href attribute

 include element

 XPointer, URLs used in

href pseudo-attribute 2nd

HTML [See also XHTML]

 a link in rddl\:resource element

 converting document to XHTML

 entity sets (version 4.0)

 Latin-1

 special characters

 symbols

 malformed markup, correcting

 serving XML pages in

 SGML and

 structure of documents

 XPointer fragment identifiers in URLs used in elements

HTML forms, XHTML DTD modules

HTML module, DOM

HTTP

 Content-Type field in headers

 XML over

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

IANA (Internet Assigned Numbers Authority)

 character sets registered with

 MIME types for XSLT stylesheets

IBM

 character sets

 XSL Formatting Objects Composer

ID attribute type

 default for

 generate-id()

 in element type declarations

 only one per element type

 values must be unique

 in XPointer shorthand pointers

ID type

id() function (XPath) 2nd 3rd

IDL (Interface Definition Language) and DOM 2nd

IDREF attribute type

 in element type declarations

 matching IDs in document

IDREF type

IDREFS attribute type

 in element type declarations

IDREFS type

IE [See Internet Explorer]

if element

ignorable whitespace

IGNORE directive

illegal characters (Unicode)

image modules (XHTML DTD)

import element 2nd 3rd

importNode() (Document)

inbound links

INCLUDE directive

include elements

 example document containing

 xi:fallback child element

 xi:include

 encoding attribute

 href attribute

 xpointer attribute

 xs:include 2nd

 xsl:include

inclusive min and max facets

INDEX_SIZE_ERR exception (DOM)

Indian subcontinent, languages from

inline areas (XSL-FO)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inline elements (CSS display property)

inputEncoding attribute (DOM)

InputSource class (SAX)

insertBefore() (Node)

insertData() (CharacterData)

instance documents

 associating schema information with

 complex types and

 controlling namespace qualification

 derived types in

 empty elements and

 namespace issues with

 schema, attributes attached to elements in

 substitution groups and

int type

integer type

Interface Definition Language (IDL) and DOM 2nd

interfaces

 DOM

 mapping to specific languages

 DOM Core

 corresponding to node-type values

 generic vs. specific interfaces

 hierarchy of

 Node and other generic interfaces

 specific node-type

 DOM Level 3

 SAX 2nd

 extension package

internal DTD subsets 2nd

 general entity references and

 parameter entity references and 2nd

 XML specification for

internal general entities

International Phonetic Alphabet (IPA) Extensions Unicode block

internationalization

 character references

 character sets

 Unicode

 XML-defined

 character-set metadata

 converting between character sets

 default character set, XML documents

 encoding declaration

 ISO character sets

 platform-dependent character sets

 xml:lang attribute

Internationalized Resource Identifier (IRI)

 URIs and URLs vs.

Internet Assigned Numbers Authority [See IANA]

Internet Explorer (IE)

 direct display of XML in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MSXML XSLT processor

 support for XHTML

 text/xsl MIME type

 XHTML, support of

 XSLT, lack of support for

intrinsic events module (XHTML DTD)

INUSE_ATTRIBUTE_ERR exception (DOM)

invalid XML documents 2nd

INVALID_ACCESS_ERR exception (DOM)

INVALID_CHARACTER_ERR exception (DOM)

INVALID_MODIFICATION_ERR exception (DOM)

INVALID_STATE_ERR exception (DOM)

IOException class

IPA (International Phonetic Alphabet) Extensions Unicode block

IRI (Internationalized Resource Identifier)

 URIs and URLs vs.

isDerivedFrom() (TypeInfo)

ISO character sets

ISO-10646-UCS-2 encoding 2nd

ISO-10646-UCS-4 encoding

ISO-2022-JP encoding

ISO-3166 (Codes for the Representation of Names of Countries)

ISO-639 (Codes for the Representation of Names of Languages)

ISO-8859-1 encoding 2nd 3rd

 vs. Cp1252 Windows character set

ISO-8859-10 encoding 2nd

ISO-8859-11 encoding 2nd

ISO-8859-12 encoding

ISO-8859-13 encoding 2nd

ISO-8859-14 encoding 2nd

ISO-8859-15 encoding 2nd

ISO-8859-16 encoding 2nd

ISO-8859-2 encoding 2nd

ISO-8859-3 encoding 2nd

ISO-8859-4 encoding 2nd

ISO-8859-5 encoding 2nd

ISO-8859-6 encoding 2nd

ISO-8859-7 encoding 2nd

ISO-8859-8 encoding 2nd

ISO-8859-9 encoding 2nd

isSupported() (Node)

item()

 NamedNodeMap

 NodeList

Iterator design pattern

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Japanese characters

 national standard character sets for

 UTF-8/UTF-16 encodings 2nd

Java

 applet module (XHTML DTD)

 converting XML documents to HTML with servlets

 examples/bindings for DOM Core objects

 JAXP

 TrAX (Transformations API for XML)

 JDK's native2ascii tool

 language-specific bindings for IDL interface

java.net.ContentHandler class

JavaScript

 XHTML DTD scripting module

 XML parser accessed from

Jelliffe, Rick

Judezmo (Unicode block for)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

key element 2nd 3rd

keyref element 2nd

keys and references in schemas

Korean characters

 national standard character set for

 UTF-8/UTF-16 encodings 2nd

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

lang pseudo-class, CSS

lang() function (XPath)

language codes

 subcodes for geographic regions

language type (schemas)

languages (xml:lang attribute)

last() function (XPath) 2nd

lastChild attribute (Node)

Latin Extended Additional Unicode block 2nd

Latin Extended-A Unicode block

Latin Extended-B Unicode block

Latin-0 encoding 2nd 3rd

Latin-1 characters entity set

Latin-1 encoding 2nd 3rd 4th

 characters entity set

 HTML Latin-1 entity set

Latin-10 encoding

Latin-2 encoding 2nd

Latin-3 encoding 2nd

Latin-4 encoding 2nd

Latin-5 encoding 2nd

Latin-6 encoding 2nd

Latin-7 encoding 2nd

Latin-8 encoding 2nd

Latin-9 encoding 2nd 3rd

layout-master-set element (XSL-FO) 2nd 3rd

legacy encodings

legacy module (XHTML DTD)

legacy XML document formats

length

 CSS properties representing

 maxLength facet element

 minLength facet element

 restricting with length facet

 of strings

 of XML names

 xs\:length facet element

Letter-Like Symbols Unicode block

LexicalHandler interface (SAX)

libxml, support for XInclude

line areas (XSL-FO)

link pseudo-class (CSS)

linkbases

linking pseudo-classes (CSS)

links

 attaching to XML documents [See XLinks]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 following

 XHTML DTD link module

 XPointers in

list elements (CSS display property)

lists

 bulleted, formatting in XSL-FO

 schema facet elements for

literal data characters

literal default declaration (attributes)

literal result elements

 attribute value templates and

little-endian UCS-2 2nd

Load module, DOM

local parts

local resources (extended links)

local-name() function (XPath) 2nd

localName attribute (Node) 2nd

location paths 2nd

 abbreviated syntax 2nd

 absolute 2nd

 attribute location steps

 axes 2nd

 building compound

 child element location steps

 combining multiple with (|) 2nd

 compound

 node tests in

 predicates in 2nd 3rd

 relative

 root location path

 unabbreviated

location set (XPointer)

location steps

 attribute

 attribute of contex node with specified name

 axis, node test, and predicates

 child element 2nd

 combining with /

 combining with |

 comment()

 processing-instruction()

 text()

locations (XPointer)

locator elements

Locator interface (SAX)

Locator2 interface (SAX)

LocatorImpl class (SAX)

long type

lookupNamespaceURI() (Node)

lookupPrefix() (Node)

Lorie, Ray 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Mac-specific character sets

Macedonian language

Macintosh systems

 pure ASCII documents, use of

MacRoman character set

margin properties (XSL-FO elements)

markup

 describing a document's structure

 in entities

 input vs. output languages

 in narrative XML documents

markup languages, programming languages vs.

master pages (XSL-FO)

 laying out

 flowing content into pages

 generating finished document

matching [See pattern matching regular expressions]

Mathematical Operators Unicode block

MathML (Mathematical Markup Language)

 DOM extensions for

 entity sets

 namespaces

 need for

 syntax for

 support by Mozilla

maxExclusive facet element 2nd

maxInclusive facet element 2nd

maxLength facet element 2nd

media pseudo-attribute 2nd

Megginson, David 2nd

message element

metadata

 character set

 embedding in page with RDF

 WordprocessingML document

metainformation

 about narrative XML documents

 XHTML DTD module

metamarkup language

Microsoft

 character sets and

 Internet Explorer [See Internet Explorer]

 Word

 saving files as Unicode

 WordprocessingML

 XSLT namespaces

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft .NET XMLReader class

MIME types

 for XML applications[MIME types

 XML}

 specifying for stylesheets with type pseudo-attribute

 for stylesheets

 URL

 use by XInclude processors to determine document encoding

minExclusive facet element 2nd

minInclusive facet element 2nd 3rd

minLength facet element 2nd

Miscellaneous Symbols Unicode block

Miscellaneous Technical Unicode block

mixed environments, XML and

mixed-content elements 2nd 3rd 4th

 controlling element placement

 declaring

 groups, using

modes (XSLT)

Modular XHTML

 authoring compound documents with

Modularization of XHTML (W3C specification)

modules

 DOM

 XHTML

 XHTML DTDs

monetary symbols

Mosher, Ed 2nd

Mozilla [See also Netscape]

 direct display of XML in

 support of xpath1() XPointer scheme

 XHTML, support for

MSXML XSLT processor

Muellner, Leonard

multilingual documents

Murray-Rust, Peter

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

name (location path, abbreviated syntax)

name characters (Unicode)

name identification module (XHTML DTD)

name node test

name start characters (Unicode)

name tokens

Name type

name() function (XPath) 2nd

name-value pairs

NamedNodeMap interface (DOM) 2nd

NameList interface (DOM) 2nd

names

 case-sensitivity in

 element [See element names]

 namespace names

 qualified

 unqualified

 XML 2nd

 length of

 punctuation characters in

 starting character of

 target

 URIs, conventions for using

namespace axis 2nd

namespace names

namespace nodes

 default template rule for

 location paths and

 XPath

 XPath data model and

namespace prefixes [See namespaces prefixes]

namespace-alias element

namespace-uri() function (XPath) 2nd

NAMESPACE_ERR exception (DOM)

namespaces 2nd

 constraints for

 controlling qualification

 DTDs and

 element/attribute declarations

 how parsers handle

 importing schemas from other namespaces

 prefixes

 purposes of

 RDDL and namespace URLs

 reasons for using

 schemas 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 controlling qualification

 target namespaces

 setting default

 syntax of

 binding prefixes to URIs

 local part

 prefixes

 qualified name

 setting default

 URIs

 returned by SAX parsers

 WordprocessingML

 XInclude

 XML record-like formats

 XML specification for

 XPath, node set functions for

 XPointer

 XSL-FO

 XSLT 2nd 3rd 4th

 URIs for

NamespaceSupport class (SAX)

namespaceURI attribute (Node)

narrative XML documents

 attributes in

 DocBook

 DTDs for

 mixed-content elements

 structure of

 TEI (Text Encoding Initiative)

national standard character sets

native2ascii tool (Java Development Kit)

natures of related resources

NCName type

NDATA declaration

negativeInteger type

Netscape [See also Mozilla]

 direct display of XML in

 RSS DTD

 support for XHTML

 XHTML, support of

network transport protocols, XML versus

nextSibling attribute (Node)

nil attribute (schemas)

NMTOKEN attribute type 2nd

 values must be legal name tokens

NMTOKEN type

NMTOKENS attribute type 2nd

 values must be legal name tokens

NMTOKENS type

NO_DATA_ALLOWED_ERR exception (DOM)

NO_MODIFICATION_ALLOWED_ERR exception (DOM)

Node interface (DOM) 2nd 3rd 4th

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 appendChild()

 attributes

 DocumentType interface derived from

 methods

node sets (XPath)

node tests in location paths 2nd

node tests in location steps

node() (XPath wildcard)

node() node test

node-set functions, XPath

NodeList interface (DOM) 2nd

nodeName attribute (Node) 2nd

nodes in XML documents

 DOM Core specific node-type interfaces

 relating DOM document structure to

 XPath model 2nd

 XSLT and

nodeType attribute (Node) 2nd

nodeValue attribute (Node) 2nd

non-colonized name

noNamespaceSchemaLocation attribute 2nd

nonNegativeInteger type 2nd

nonPositiveInteger type

normalize()

 Element

 Node

normalize-space() function (XPath) 2nd

normalizeDocument() (Document)

normalizedString type

not() function (XPath) 2nd

NOT_FOUND_ERR exception (DOM)

NOT_SUPPORTED_ERR exception (DOM)

NOTATION attribute type 2nd

 not available for empty elements

 only one per element type

notation attributes

NOTATION declaration

 names must be unique

 unparsed entities and

notation declarations

notation element

Notation interface (DOM) 2nd

 nodeName attribute and

 nodeValue attribute and

NOTATION type

NOTATION-type attributes

NOTATION_NODE (DOM)

 and nodeType attribute

 and textContent attribute

notations, processing issues with

number element

number() function (XPath) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

numbers in XPath 2nd

numeric character references

 < (for <)

numeric facets

numeric functions (XPath)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

OASIS XML catalog format

Object Management Group (OMG), IDL defined by

object module (XHTML DTD)

object serialization

 reserializing DOM trees as XML

 XML and

objects [See also DOM]

 DOM Level 3 Core objects reference

 DOM, hierarchy of

 SOAP

Observer design pattern

OCR-A characters, Unicode block for

online DTDs, list of

online validators

OpenOffice

 file format developed by OpenOffice.org

Opera, support for XHTML

Optical Character Recognition Unicode block

org.xml.sax package

org.xml.sax.ext package

org.xml.sax.helpers package

origin() function (XPointer)

otherwise element

outbound links

output element

output formats for XML documents

ownerDocument attribute (Node)

ownerElement attribute (Attr interface) 2nd 3rd

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

page-sequence element (XSL-FO)

page-sequence elements (XSL-FO)

param element

param module (XHTML DTD)

parameter entities

 connecting XHTML DTD modules

 syntax of

 XML specification for

parameter entity references 2nd

 connecting XHTML modules

 defining, with document model modules

 in DTD only

 external DTD subsets and

 including declarations in

 internal subsets and

 mixing XHTML into applications

 for namespace prefixes

 preceding with parameter entity declarations

 proper nesting

 with conditional sections

 with markup declarations

 with parenthesized groups

 redefining

 XLink elements and

parent axis 2nd

parent elements

 selecting with .. (double period)

parentheses in element declarations

parentNode attribute (Node)

parse attribute (xi\:include)

parse() (XMLReader)

parsed character data (#PCDATA) 2nd

parsed general entities

 attribute values and

 no recursion allowed

 text declarations and

ParserAdapter class (SAX)

parsers 2nd [See also DOM; SAX]

 Apache Xerces XML DOM parser

 billion laugh attacks

 checking documents for well-formedness

 checking the character set

 comparing namespace URIs

 determining character encoding

 event-based

 handling of namespaces

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SAX XMLReader interface

 support for XInclude

 validating 2nd 3rd

 comparing document to its DTD

 validity constraints enforced

 whitespace, treatment of

 Xerces Java Parser

 XML-defined character sets

PassiveTeX library

pattern facet element 2nd

pattern matching

 match attribute (xsl:template)

 text() node test

PDF format for XSL-FO documents

permanence of XML documents

Phoenician (Unicode block for)

PHP, processing instructions in

pictographic symbols, Unicode block for

Pinard, Francois

pixels (CSS unit of length)

platform-dependent character sets

points

 in CSS stylesheets

 in XPointers

portability of XML data format

position() function (XPath) 2nd

positiveInteger type

Post Schema Validation Infoset (PSVI)

preceding axis 2nd

preceding-sibling axis 2nd

predefined character references

predicates

 in XPath location paths 2nd

 in XPath location steps 2nd 3rd

prefix attribute (Node)

prefix:* node test

prefixes

 binding to URIs

 XPointer

 changing with parameter entity references

 controlling namespace qualification

 default namespaces and

 element names and

 namespace constraints for

 namespace prefix declaration

 rddl

 XInclude namespace

 xlink, mapping to namespace URI

 XPath wildcards, attaching to 2nd

 xsl 2nd

preorder traversal

preserve-space element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

previousSibling attribute (Node)

printed media, CSS length units for

processing instructions 2nd

 parsers and

 robots

 SAX filters for

 web browser problems with

 xml-stylesheet 2nd 3rd

processing XML data 2nd [See also parsers]

 abstracting XML away

 combining processing models

 document transformations

 event-driven model

 extensions/standards

 issues with

 CDATA sections

 comments

 DTDs

 entity references

 notations

 processing instructions

 unparsed entities

 whitespace

 pull processing model

 text-based model

 tree-based model

processing-instruction element

processing-instruction nodes

 default template for

 XPath data model and

processing-instruction() location step

processing-instruction() node test

PROCESSING_INSTRUCTION_NODE (DOM)

 and nodeType attribute

 and textContent attribute

ProcessingInstruction interface (DOM) 2nd 3rd

 nodeName attribute and

 nodeValue attribute and

processingInstruction() (XMLFilterImpl)

professions and disciplines, standard DTDs for

programming languages

 document transformation programs

 Turing complete

 XML vs.

programming models used with XML

prolog (XML document) 2nd

properties

 CSS

 color

 display property

 font

 length, units of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 style

 text

 SAX 2nd

 SAXCoreProperties class

 system-property() function (XSLT)

 XSL-FO

 text

 XSLT to XSL-FO transform

proprietary character sets

proprietary schemas, document permanence and

pseudo-attributes (xml-stylesheet processing instructions) 2nd

pseudo-class selectors, CSS

pseudo-element selectors, CSS

PSVI (Post Schema Validation Infoset)

public IDs for DTDs

PUBLIC keyword (document type declaration)

pull processing model 2nd

punctuation characters

 allowed in XML names

 disallowed in XML names

 Unicode block for

purposes of related resources

push processing model (event-based)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

QName type

qualification (namespace), controlling 2nd

qualified names

 defining as parameter entity references

 XML specification for

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Ragget, Dave

Rahtz, Sebastian

Range module, DOM

ranges in XPointers

 here() function

 origin() function

 range() function

 range-inside() function

 range-to() function

 relative XPointers

 string-range() function

RDDL (Resource Directory Description Language) 2nd

 document (example)

 namespace URIs and

 natures of related resources

 purposes of related resources

 syntax

rddl prefix

rddl:resource element 2nd

 indicating related resources

 xlink:arcrole attributes, purpose names in

 xlink:role attribute

 natures in

RDF (Resource Description Framework) 2nd 3rd

 binding prefixes to namespace URIs

 embedding metadata in a page

 encoding Dublin Core in

recode (character-set conversion tool)

record-like documents

 DTDs for

 use of XML

 XML as data format

redefine element 2nd

references

 to other declarations in DTDs

 entity, listing of

 external parameter entity

 external parsed general entities

 parameter entity [See parameter entity references]

 places for allowed usage

 in XML instance documents

regions (XSL-FO master pages)

regular expressions

 use in XML data processing

 XML Schema

 including/excluding Unicode character classes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 XML syntax limiting child elements

related resources

 natures of

 purposes of

relational databases, XML and

relational operators in XPath 2nd

relative location paths

 building compound location paths

relative units of length (CSS properties)

relative XPointers 2nd

RELAX NG schema language 2nd

remote resources (extended links)

 third-party links

removeAttribute() (Element)

removeAttributeNode() (Element)

removeAttributeNS() (Element)

removeChild() (Node)

removeNamedItem() (NamedNodeMap)

removeNamedItemNS() (NamedNodeMap)

RenderX formatting program (XEP)

replaceChild() (Node)

replaceData() (CharacterData)

Resource Directory Description Language [See RDDL]

resource element (XLink)

resource elements

resource elements (RDDL) 2nd

 indicating related resources

 natures of related resources

 purpose name URLs for related resources

resources (missing), replacing with xi:fallback element

REST (Representational State Transfer)

restriction element 2nd

 deriving new type from

rgb, specifying for CSS colors

robots processing instruction

role attributes for arcs

Romanian language

root element 2nd

 comment placement and

 determining name of

 in narrative-oriented documents

 processing instruction placement and

 schema documents

 TEI documents

 WordprocessingML document

 XSL-FO documents

 XSLT stylesheets

root interface (DOM Core)

root location path

root node

 default template rule for

 paths beginning with /

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 root element vs. (XPath)

 XPath data model and

round() function (XPath) 2nd 3rd

RPC (remote procedure calls), XML-RPC

RSS

RSS DTD

ruby module (XHTML DTD)

Russian language

 Cyrillic script

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Safari, support for XHTML

Sanskrit language, Unicode block for

Save module, DOM

SAX (Simple API for XML) 2nd 3rd

 Attributes interface

 Attributes2 interface

 AttributesImpl class

 ContentHandler interface 2nd

 example implementation (XMLCounter)

 methods called by parser in

 controlling parser behavior with URIs 2nd

 DeclHandler interface 2nd

 DefaultHandler class

 development of parsers

 DOM vs.

 DTDHandler interface

 EntityResolver interface

 EntityResolver2 interface

 ErrorHandler interface

 event-based API

 features and properties 2nd

 features

 properties 2nd

 SAXCoreFeatures class

 SAXCoreProperties class

 filters

 steps in using

 well-formedness, problems with

 XMLFilterImpl class

 InputSource class

 IOException

 LexicalHandler interface

 Locator interface

 Locator2 interface

 LocatorImpl class

 NamespaceSupport class

 ParserAdapter class

 SAX 2.0.2

 SAX1 vs. SAX2 2nd

 SAXException class 2nd

 SAXNotRecognizedException class 2nd 3rd 4th

 SAXNotSupportedException class 2nd

 SAXParseException

 SAXParseException class

 XMLFilterImpl class

 XMLReader interface 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 XMLReaderAdapter class

 XMLReaderFactor class

SAXON 2nd

Scalable Vector Graphics [See SVG]

schema element 2nd

 qualifying every element with a namespace

schema languages 2nd 3rd

schema-valid XML documents 2nd

schemaLocation attribute 2nd

schemas 2nd 3rd

 annotation elements in

 xs\:appinfo

 xs\:documentation

 associating with instance document

 attribute declarations

 attribute groups

 complex types

 element content

 occurrence constraints

 constructing

 controlling namespace qualification

 document organization

 document permanence and

 document validity and

 DTDs versus

 element content

 any type

 empty elements

 mixed

 simple

 element declarations

 elements

 fixed attribute

 instance document attributes

 keys and references

 lists and

 namespaces 2nd

 controlling qualification

 issues with

 target namespaces

 simple types 2nd

 stylesheets and

 type derivation, controlling

 abstract elements and types

 final attribute

 fixed facets

 uniqueness and keys

Schematron schema language 2nd

 annotations and

 Validator for Windows

screen media, CSS length units for

scripting module (XHTML DTD)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

search methods for the Web

 Dublin Core

 RDF (Resource Description Framework)

 robots processing instruction

sections, narrative XML documents

 divided into subsections

security, XML documents transmitted over the Internet

selector element

selectors, CSS

 attribute

 for child elements

 for descendants

 for sibling elements

 pseudo-class

 pseudo-element

 universal selector (*)

self axis 2nd

sequence element 2nd

sequences in element declarations

 enclosed in parentheses

Serbian language

setAttribute() (Element)

setAttributeNode() (Element)

setAttributeNodeNS() (Element)

setAttributeNS() (Element)

setDTDHandler() (XMLReader)

setFeature() (XMLReader)

setNamedItem() (NamedNodeMap)

setNamedItemNS() (NamedNodeMap)

setProperty() (SAX)

setTextContent() method, DOM

setUserData() (Node) 2nd

SGML

 DocBook application

 HTML and

 legacy of

 XML and

shapes (geometric), Unicode block for

Shift_JIS encoding

short type

shorthand pointers (XPointer)

sibling elements

 CSS, selector for

Simple API for XML [See SAX]

simple links

Simple Object Access Protocol [See SOAP]

simple types, schema content 2nd 3rd

 defining new

 facets 2nd

 enforcing format

 enumerations

 length restriction

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 lists

 numeric

 unions

 whitespace

simpleContent element 2nd

simpleType element 2nd

 pattern facet, using

Slavic languages (Cyrillic script)

SOAP

sort element

source code samples and CDATA sections

Southeast Asian languages, Unicode block for

Spacing Modifier Letters (Unicode block)

special attributes

special characters entity set 2nd 3rd 4th

specific node-type interfaces, DOM Core

 content nodes

 structural nodes

Sperberg-McQueen, C.M.

splitText() (Text)

standalone attribute

 external DTD subsets and

standalone declaration

 setting value to no

 XML specification for

standard DTDs

Standard Generalized Markup Language [See SGML]

start region (XSL-FO)

start-point() function (XPointer)

starting resource

starts-with() function (XPath) 2nd 3rd

Streaming API for XML (StAX)

strict DTD (XHTML)

string type

string() function (XPath) 2nd

string-length() function (XPath) 2nd

string-range() function (XPointer)

strings

 internalized (SAX feature)

 normalizedString type

 in XPath 2nd 3rd

 functions for

strip-space element

structural nodes (DOM Core)

style attribute module (XHTML DTD)

Style module, DOM

style properties, CSS

style rules

stylesheet element (XSLT) 2nd

stylesheet reference in XML document

stylesheets

 attaching to XML documents

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 descriptive, formatting XML documents

 displaying XML in web browsers

 document permanence and

 major stylesheet languages

 XHTML DTD stylesheet module

subcodes (languages)

substitution groups

substring() function (XPath) 2nd

substring-after() function (XPath) 2nd

substring-before() function (XPath) 2nd

substringData() (CharacterData)

suffixes in element declarations

sum() function (XPath)

super keyword, prefixing SAX method calls

SVG (Scalable Vector Graphics)

 DOM extensions for

 namespaces

 need for

 syntax for

 prefixes and namespace URIs

 source code written in XHTML and enclosed in CDATA section

 support by Mozilla

symbols (miscellaneous), Unicode block for

symbols entity set 2nd 3rd

syntax structures of XML documents

SYNTAX_ERR exception (DOM)

system ID for XML document to parse

system-property() function (XSLT)

systemId attribute (DocumentType interface)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

table elements (CSS display property)

tables modules (XHTML DTD)

tag sets

tags

 empty-element

 matching

 overlapping not allowed

 start- and end-tags

 syntax of

 case-sensitivity

 empty elements

target

target attribute (ProcessingInstruction interface)

target module (XHTML DTD)

target namespaces

targetNamespace attribute

technical symbols, miscellaneous

TEI (Text Encoding Initiative)

teiHeader element

template element 2nd

template rules (XSLT)

 built-in 2nd

 for comment and processing instruction nodes

 for element and root nodes

 for namespace nodes

 for text and attribute nodes

templates (XSLT)

 adding to XSLT stylesheets

 apply-templates element

 applying

 applying different with modes

 attribute value

 modes

text

 converting to uppercase with SAX filter

 presentation of

text declarations

 external entities and

 XML declarations vs.

 XML specification for

text element (TEI documents)

text element (XSLT)

text elements, WordprocessingML

Text Encoding Initiative (TEI)

text files, including with XInclude

Text interface (DOM) 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 nodeName attribute and

 nodeValue attribute and

text nodes

 default template rule for

 XPath data model and

text properties

 CSS

 XSL-FO

text() location step

text() node test

text-based XML processing

text/css MIME type

text/xml MIME type 2nd

text/xsl MIME type (Microsoft IE)

TEXT_NODE (DOM)

 and nodeType attribute

 and textContent attribute

textContent attribute (Node)

textual tools for XML documents

Thai characters

 ISO-8859-11 encoding 2nd

 Unicode block for

third-party links

Tibetan Unicode block

Tidy (HTML to XHTML conversion tool)

time type

title attributes for arcs

title elements (extended links)

title pseudo-attribute 2nd

Tobin, Richard

token type

Topologi Schematron Validator for Windows

totalDigits facet element 2nd

transform element (XSLT) 2nd

transformations, XSL

transforming XML documents

transitional DTD (XHTML)

translate() function (XPath)

Traversal module, DOM

TrAX (Transformations API for XML)

tree models for XML documents

 DOM Node interface and

 narrative documents

tree references, dynamic (DOM)

tree-based pull model, XML processing

tree-traversal algorithms, DOM

true() function (XPath) 2nd 3rd

Turing complete programming languages

Turing, Alan 2nd 3rd

 JPEG image of

 XML document describing

type attribute 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

type derivation

 controlling

 abstract elements and types

 final attribute

 fixed facets

 uniqueness and keys

type information, available with DOM Level 3

type libraries

type pseudo-attribute 2nd

TYPE_MISMATCH_ERR exception (DOM)

TypeInfo interface (DOM) 2nd

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

UDDI (Universal Description, Discovery, and Integration)

Ukrainian language

unabbreviated location paths

unassigned code points (Unicode)

Unicode 2nd 3rd

 <Emphasis>The Unicode Standard 4.0<Default Para Font>

 character classes

 character references 2nd

 character set names

 character tables for

 ASCII

 ISO-8859-1, Latin-1

 encoding attribute in XML declaration

 encodings

 evolution of, XML and

 other blocks

 Arabic

 Armenian

 Arrows

 Combining Diacritical Marks

 Currency Symbols

 Cyrillic

 Devanagari

 Dingbats

 Ethiopic

 General Punctuation

 Geometric Shapes

 Greek and Coptic

 Greek Extended

 Hebrew

 IPA Extensions

 Latin Extended Additional

 Latin Extended-A

 Latin Extended-B

 Letter-Like Symbols

 Mathematical Operators

 Miscellaneous Symbols

 Miscellaneous Technical

 Optical Character Recognition

 Spacing Modifier Letters

 Thai

 Tibetan

 UCS-2 encoding 2nd

 UCS-4 encoding

 UTF-16 encoding 2nd

 encoding declaration and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 omitting encoding declaration

 required handling by XML parsers

 UTF-16 or UTF-8 format for all XML documents

 UTF-8 encoding 2nd 3rd

 converting Cp1252 encoding to

 encoding declaration and 2nd

 internationalization and

 required handling by XML parsers

Uniform Resource Identifiers [See URIs]

union element 2nd

union operator (|), combining multiple location paths

unique element 2nd

uniqueness of schema elements

Unix, EUC-JP encoding (Japanese characters)

unparsed entities

 notations and

 XML processing and

unparsed general entities

 declaring notations

 not allowed in entity references

unparsed text, including in XML documents

unparsed-entity-uri() function

unqualified names, XML specification for

unsignedByte type

unsignedInt type

unsignedLong type

unsignedShort type

URIs

 anyURI type

 assigning elements to

 base, of included documents

 binding prefixes to

 controlling parser behavior for SAX 2nd

 conventions for using with XML names

 identifying starting and ending resources for links

 IRIs vs.

 namespace

 XPointer

 XSLT processors and

 namespace prefixes, mapping to

 SAX features and properties

 XML Schema instance namespace

 XPointer fragment identifier syntax

 XPointer, escaping special characters

URLs

 absolute or relative for DTDs

 base module (XHTML DTD)

 in HTML elements, XPointer fragment identifiers in

 IRIs vs.

 namespace, RDDL description of XML application

 XPointers on

UserDataHandler interface (DOM) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

valid XML documents 2nd 3rd

 RDDL

 XHTML document

validating parsers 2nd

 comparing document to its DTD

 supporting schemas

validation 2nd

 document type declaration

 DOM Level 3

 example DTD

 internal DTD subsets

 validating a document

validation feature (SAX)

VALIDATION_ERR exception (DOM)

validators, online

validity constraints

 enforced by validating parser

validity errors 2nd 3rd

value of an element

value-of element 2nd 3rd

variable element

VBScript

 XHTML DTD scripting module

 XML parser accessed from

version attribute 2nd

Vietnamese language, Unicode block for

Views module, DOM

visited pseudo-class, CSS

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

w:body element

w:wordDocument element

W3C

 DOM Level 3 Core Recommendation 2nd

 entity sets

 recommended form of XHTML

 schema type library

 standard XML DTDs

 styling XML documents

 SVG standard

 templates for

 defining the namespace URI and prefix names

 importing standard modules

 naming attributes and elements

 XML 1.0 and 1.1, recommendations for

 XML Information Set

 XML Schema Language 2nd

 reference

 XML Schema Recommendation

Walsh, Norman

web browsers

 CSS stylesheets in 2nd

 direct display of XML in

 alternative approaches

 Internet Explorer

 xml-stylesheet processing instruction

 document validation and

 link behavior in

 linkbases and

 support for XHTML

 XLinks support

 XPointer xpointer scheme and

web search methods

 Dublin Core

 RDF (Resource Description Framework)

 robots processing instruction

Web Services Description Language (WSDL)

web site for this book

Web:REST

well-formed XML documents 2nd

well-formedness

 checking documents for

 constraints recognized by XML 1.0 parsers

 errors 2nd

 HTML document, editing for conversion to XHTML

 parsing XML documents for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Richard Tobin's checker and validator

 SAX filters, problems with

 SAXParseException and

 XML Versions 1.0 and 1.1

 XSLT stylesheets and

Western European languages, Latin-1 encoding

when element

white-space property (CSS)

whitespace

 CSS stylesheets

 in element contents

 in element content

 trimming and normalizing

 parsers' treatment of

 stripping 2nd

 in XML names

 XML specification for

 xml\:space attribute

 in XPointers

whiteSpace facet element 2nd

wildcards and location paths

Windows ANSI [See Cp1252 character set]

Windows systems [See also Microsoft]

 Cp1252 character set

 Latin-1 character set, use of

 saving files as Unicode

 Topologi Schematron Validator

with-param element

word processors, saving data in XML

WordprocessingML

 root element of document

 text elements

World Wide Web Consortium [See W3C]

WRONG_DOCUMENT_ERR exception (DOM)

WSDL (Web Services Description Language)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Xalan XSLT processor

Xalan-J (XSLT engine)

XEP (RenderX formatting program)

Xerces Java Parser (Apache-XML project)

Xerces-J parser

 support for XInclude

XHTML 2nd 3rd

 browsers' handling of

 converting HTML document to

 changes for well-formedness

 converted HTML document

 example HTML document

 DTDs for

 empty element tags

 Modular (XHTML 1.1), authoring compound documents with

 Modular XHTML

 replacing standard DTD

 valid document (example)

 web browser support for

XHTML 1.1

 creating your own XHTML

 list of modules

 mixing applications into

 mixing modules into applications

 Module-based XHTML (W3C specification)

XHTML Basic and RDDL

xi:fallback element

xi:include element

xi\:fallback element

XInclude 2nd 3rd

 alternate content for missing documents

 content negotiation

 include element

 text files, including

xlink:arcrole attribute

 rddl\:resource element

 purpose names

xlink:href attribute

 for locators

 rddl:resource element

xlink:label attribute

xlink:role attribute

 locator elements

 rddl\:resource element

 natures in

 resource elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xlink:show attribute

xlink:title attribute 2nd

 arc elements

 locator elements

 resource elements

xlink:to attribute (arc elements)

xlink:type attribute

 arc 2nd

 extended

 locator

 possible values of

 resource 2nd

 simple

xlink\:actuate attribute

xlink\:from attribute (arc elements)

xlink\:label attribute

 local resources and

xlink\:role attribute

xlink\:type attribute

 title

XLinks 2nd 3rd 4th

 definition of

 DTDs for 2nd

 embedding non-XML content in XML documents

 extended links

 arcs

 local resources

 locator elements

 link behavior

 xlink\:actuate attribute

 xlink\:show attribute

 link semantics

 linkbases

 simple links

 web browsers' support of

 XPointers, use in

XML

 benefits of

 case-sensitivity in

 character sets

 comments

 communications protocols and

 as data format [See data format, XML as]

 data format

 default character set for documents

 direct display in browsers

 alternative approaches

 Internet Explorer

 xml-stylesheet processing instruction

 documents [See documents, XML]

 elements

 enterprise applications and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 evolution of

 files

 how it works

 inability to use IDs in documents without DTDs

 invalid documents

 language reference

 name tokens

 names

 namespaces

 parsers [See parsers]

 processing instructions

 schema languages 2nd

 SGML and

 storing in a database

 trees

 valid documents

 Version 1.1 2nd 3rd

 IRI, use for namespaces

 namespaces

 support by DOM Level 3

 Versions 1.0 and 1.1, W3C recommendations for

 what it isn't

XML applications

 Robin Cover's list of

XML Canonicalization

XML declaration

 web browser problems with

XML Encryption

XML Information Set

XML Schema Language (W3C)

 reference

XML Signature

XML Validation Form (Brown University)

XML-RPC

xml-stylesheet processing instructions 2nd 3rd [See also processing instructions]

 pseudo-attributes in

 XSLT stylesheets and

xml:base attributes

xml:lang attribute

 ATTLIST declarations of

 language codes

 subcodes for regions

xml:space attribute

xml\:lang attribute

XMLCounter class (SAX, example class)

xmlEncoding attribute (DOM)

XMLFilter interface (SAX) 2nd

XMLFilterImpl class (SAX) 2nd

 UpperCaseFilter class (example)

xmllint

 --valid flag

 --xinclude option

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xmlns attribute 2nd

 SAX core feature

 setting default namespaces with 2nd

xmlns() scheme, XInclude processors and

xmlns:xsl attribute

xmlns\:prefix attribute

XMLReader class (Microsoft .NET)

XMLReader interface (SAX) 2nd

 counting elements/attributes in a document

 filters and

 getFeature()

 methods called in ContentHandler

 setFeature()

 validating parsers

XMLReaderAdapter class (SAX)

XMLReaderFactory class (SAX) 2nd

XMLSchema-instance namespace

xmlVersion attribute (DOM)

XMPP (Extensible Messaging and Presence Protocol)

XOM's nu.xom.xinclude package

XPath 2nd 3rd

 arithmetic operators in

 calculating string value of an expression

 data model 2nd

 data types

 node sets

 numbers

 strings

 expressions 2nd 3rd [See also location paths]

 Booleans

 data types for

 numbers

 strings

 functions 2nd

 Boolean

 node-set

 numeric

 string

 location paths 2nd

 abbreviated syntax

 axes

 child element location steps

 compound

 node tests in

 predicates in

 root

 predicates in

 predicates in location steps

 relational operators

 unabbreviated location paths

 XPointer extensions to

XPath module, DOM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xpointer attribute (xi:include)

xpointer() scheme, XInclude processors and

XPointers 2nd 3rd

 child sequences

 escaping characters not allowed in URIs

 href attributes in URLs

 in links

 namespaces and

 points in

 ranges in

 here() function

 origin() function

 range() function

 range-inside() function

 range-to() function

 relative XPointers

 string-range() function

 shorthand pointers

 syntax of

 on URLs

xs:all element 2nd

xs:annotation element

xs:any element 2nd

xs:anyAttribute element 2nd

xs:anySimpleType type

xs:anyURI type

xs:appinfo element 2nd

xs:attribute element 2nd

xs:attributeGroup element 2nd 3rd

xs:base64Binary type

xs:boolean type

xs:byte type

xs:choice element

xs:complexContent element 2nd

xs:complexType element 2nd 3rd

 mixed attribute

xs:date type

xs:dateTime type

xs:decimal type

xs:documentation element 2nd

xs:double type

xs:duration type

xs:element element 2nd

xs:ENTITIES type

xs:ENTITY type

xs:enumeration facet element

xs:extension element 2nd

 deriving new type from

xs:field element

xs:float type

xs:fractionDigits facet element

xs:gDay type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xs:gMonth type

xs:gMonthDay type

xs:group element 2nd

xs:gYear type

xs:gYearMonth type

xs:hexBinary type

xs:ID type

xs:IDREF type

xs:IDREFS type

xs:import element 2nd

xs:include element 2nd

xs:int type

xs:integer type

xs:key element 2nd

xs:keyref element 2nd

xs:language type

xs:long type

xs:maxExclusive facet element

xs:maxInclusive facet element

xs:maxLength facet element

xs:minExclusive facet element

xs:minInclusive facet element

xs:minLength facet element

xs:Name type

xs:NCName type

xs:negativeInteger type

xs:NMTOKEN type

xs:NMTOKENS type

xs:nonNegativeInteger type 2nd

xs:nonPositiveInteger type

xs:normalizedString type

xs:notation element

xs:NOTATION type

xs:pattern facet element

xs:positiveInteger type

xs:QName type

xs:redefine element 2nd

xs:restriction element 2nd 3rd

xs:schema element 2nd 3rd

xs:selector element

xs:sequence element 2nd

xs:short type

xs:simpleContent element 2nd

xs:simpleType element 2nd

 pattern facet, using

xs:string type

xs:time type

xs:token type

xs:totalDigits facet element

xs:union element 2nd

xs:unique element 2nd

xs:unsignedByte type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xs:unsignedInt type

xs:unsignedLong type

xs:unsignedShort type

xs:whiteSpace facet element

xs\:appinfo element

xs\:choice element

xs\:schema element

 targetNamespace attribute

xs\:simpleContent element

xsi prefix

xsi:nil attribute

xsi:noNamespaceSchemaLocation attribute 2nd

xsi:schemaLocation attribute 2nd

xsi:type attribute 2nd

XSL (Extensible Stylesheet Language) 2nd

 XSLT and XSL-FO

XSL Formatting Objects Composer (IBM)

xsl prefix 2nd

XSL-FO (XSL Formatting Objects) 2nd 3rd

 applied to XML document (example)

 boxes in

 choosing between CSS and

 CSS vs.

 generating

 laying out master pages

 flowing content into pages

 generating finished document

 programs for working with

 properties

 XSLT to XSL-FO transform

 structure of documents

xsl:apply-imports element

xsl:apply-templates element 2nd

 mode attribute

xsl:attribute element

xsl:attribute-set element

xsl:call-template element

xsl:choose element

xsl:comment element

xsl:copy element

xsl:copy-of element

xsl:decimal-format element 2nd

xsl:element element

xsl:fallback element

xsl:for-each element

xsl:if element

xsl:import element

xsl:include element

xsl:key element

xsl:message element

xsl:namespace-alias element

xsl:number element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xsl:otherwise element

xsl:output element

xsl:param element

xsl:preserve-space element

xsl:processing-instruction element

xsl:sort element

xsl:strip-space element

xsl:stylesheet element

xsl:template element 2nd

 mode attribute

xsl:text element

xsl:transform element

xsl:value-of element 2nd 3rd

xsl:variable element

xsl:when element

xsl:with-param element

XSLT 2nd 3rd 4th

 applying templates with xsl:apply-templates

 attribute value templates

 calculating element value with xsl:value-of

 elements

 flowing content into pages

 format-number() function

 functions

 input document, example of

 Internet Explorer and

 modes, applying different templates with

 namespaces 2nd

 other features

 RDDL nature URL for

 rddl\:resource element pointing to stylesheet

 stylesheet processors 2nd

 built-in template rules

 problems with incorrect namespace URIs

 stylesheet using unabbreviated XPath syntax

 template rules, built-in

 for comment and processing instruction nodes

 for element and root nodes

 for namespace nodes

 for text and attribute nodes

 templates and template rules

 transforming documents into XSL-FO

 transforming XML documents 2nd

 TrAX (Transformations API for XML)

 type pseudo-atttribute, specifying with

 Version 1.0

 xsl:decimal-format element

XSLT stylesheets

 XSL-FO and

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Yiddish language, Unicode block for

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zero-width nonbreaking space, UCS-2

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	XML in a Nutshell, 3rd Edition
	Table of Contents
	Copyright
	Preface
	What This Book Covers
	What's New in the Third Edition
	Organization of the Book
	Conventions Used in This Book
	Request for Comments
	Acknowledgments

	Part I: XML Concepts
	Chapter 1. Introducing XML
	1.1 The Benefits of XML
	1.2 What XML Is Not
	1.3 Portable Data
	1.4 How XML Works
	1.5 The Evolution of XML

	Chapter 2. XML Fundamentals
	2.1 XML Documents and XML Files
	2.2 Elements, Tags, and Character Data
	2.3 Attributes
	2.4 XML Names
	2.5 References
	2.6 CDATA Sections
	2.7 Comments
	2.8 Processing Instructions
	2.9 The XML Declaration
	2.10 Checking Documents for Well-Formedness

	Chapter 3. Document Type Definitions (DTDs)
	3.1 Validation
	3.2 Element Declarations
	3.3 Attribute Declarations
	3.4 General Entity Declarations
	3.5 External Parsed General Entities
	3.6 External Unparsed Entities and Notations
	3.7 Parameter Entities
	3.8 Conditional Inclusion
	3.9 Two DTD Examples
	3.10 Locating Standard DTDs

	Chapter 4. Namespaces
	4.1 The Need for Namespaces
	4.2 Namespace Syntax
	4.3 How Parsers Handle Namespaces
	4.4 Namespaces and DTDs

	Chapter 5. Internationalization
	5.1 Character-Set Metadata
	5.2 The Encoding Declaration
	5.3 Text Declarations
	5.4 XML-Defined Character Sets
	5.5 Unicode
	5.6 ISO Character Sets
	5.7 Platform-Dependent Character Sets
	5.8 Converting Between Character Sets
	5.9 The Default Character Set for XML Documents
	5.10 Character References
	5.11 xml:lang

	Part II: Narrative-Like Documents
	Chapter 6. XML as a Document Format
	6.1 SGML's Legacy
	6.2 Narrative Document Structures
	6.3 TEI
	6.4 DocBook
	6.5 OpenOffice
	6.6 WordprocessingML
	6.7 Document Permanence
	6.8 Transformation and Presentation

	Chapter 7. XML on the Web
	7.1 XHTML
	7.2 Direct Display of XML in Browsers
	7.3 Authoring Compound Documents with Modular XHTML
	7.4 Prospects for Improved Web Search Methods

	Chapter 8. XSL Transformations (XSLT)
	8.1 An Example Input Document
	8.2 xsl:stylesheet and xsl:transform
	8.3 Stylesheet Processors
	8.4 Templates and Template Rules
	8.5 Calculating the Value of an Element with xsl:value-of
	8.6 Applying Templates with xsl:apply-templates
	8.7 The Built-in Template Rules
	8.8 Modes
	8.9 Attribute Value Templates
	8.10 XSLT and Namespaces
	8.11 Other XSLT Elements

	Chapter 9. XPath
	9.1 The Tree Structure of an XML Document
	9.2 Location Paths
	9.3 Compound Location Paths
	9.4 Predicates
	9.5 Unabbreviated Location Paths
	9.6 General XPath Expressions
	9.7 XPath Functions

	Chapter 10. XLinks
	10.1 Simple Links
	10.2 Link Behavior
	10.3 Link Semantics
	10.4 Extended Links
	10.5 Linkbases
	10.6 DTDs for XLinks
	10.7 Base URIs

	Chapter 11. XPointers
	11.1 XPointers on URLs
	11.2 XPointers in Links
	11.3 Shorthand Pointers
	11.4 Child Sequences
	11.5 Namespaces
	11.6 Points
	11.7 Ranges

	Chapter 12. XInclude
	12.1 The include Element
	12.2 Including Text Files
	12.3 Content Negotiation
	12.4 Fallbacks
	12.5 XPointers

	Chapter 13. Cascading Style Sheets (CSS)
	13.1 The Levels of CSS
	13.2 CSS Syntax
	13.3 Associating Stylesheets with XML Documents
	13.4 Selectors
	13.5 The Display Property
	13.6 Pixels, Points, Picas, and Other Units of Length
	13.7 Font Properties
	13.8 Text Properties
	13.9 Colors

	Chapter 14. XSL Formatting Objects (XSL-FO)
	14.1 XSL Formatting Objects
	14.2 The Structure of an XSL-FO Document
	14.3 Laying Out the Master Pages
	14.4 XSL-FO Properties
	14.5 Choosing Between CSS and XSL-FO

	Chapter 15. Resource Directory Description Language (RDDL)
	15.1 What's at the End of a Namespace URL?
	15.2 RDDL Syntax
	15.3 Natures
	15.4 Purposes

	Part III: Record-Like Documents
	Chapter 16. XML as a Data Format
	16.1 Why Use XML for Data?
	16.2 Developing Record-Like XML Formats
	16.3 Sharing Your XML Format

	Chapter 17. XML Schemas
	17.1 Overview
	17.2 Schema Basics
	17.3 Working with Namespaces
	17.4 Complex Types
	17.5 Empty Elements
	17.6 Simple Content
	17.7 Mixed Content
	17.8 Allowing Any Content
	17.9 Controlling Type Derivation

	Chapter 18. Programming Models
	18.1 Common XML Processing Models
	18.2 Common XML Processing Issues
	18.3 Generating XML Documents

	Chapter 19. Document Object Model (DOM)
	19.1 DOM Foundations
	19.2 Structure of the DOM Core
	19.3 Node and Other Generic Interfaces
	19.4 Specific Node-Type Interfaces
	19.5 The DOMImplementation Interface
	19.6 DOM Level 3 Interfaces
	19.7 Parsing a Document with DOM
	19.8 A Simple DOM Application

	Chapter 20. Simple API for XML (SAX)
	20.1 The ContentHandler Interface
	20.2 Features and Properties
	20.3 Filters

	Part IV: Reference
	Chapter 21. XML Reference
	21.1 How to Use This Reference
	21.2 Annotated Sample Documents
	21.3 XML Syntax
	21.4 Constraints
	21.5 XML 1.0 Document Grammar
	21.6 XML 1.1 Document Grammar

	Chapter 22. Schemas Reference
	22.1 The Schema Namespaces
	22.2 Schema Elements
	22.3 Built-in Types
	22.4 Instance Document Attributes

	Chapter 23. XPath Reference
	23.1 The XPath Data Model
	23.2 Data Types
	23.3 Location Paths
	23.4 Predicates
	23.5 XPath Functions

	Chapter 24. XSLT Reference
	24.1 The XSLT Namespace
	24.2 XSLT Elements
	24.3 XSLT Functions
	24.4 TrAX

	Chapter 25. DOM Reference
	25.1 Object Hierarchy
	25.2 Object Reference

	Chapter 26. SAX Reference
	26.1 The org.xml.sax Package
	26.2 The org.xml.sax.helpers Package
	26.3 SAX Features and Properties
	26.4 The org.xml.sax.ext Package

	Chapter 27. Character Sets
	27.1 Character Tables
	27.2 HTML4 Entity Sets
	27.3 Other Unicode Blocks

	Colophon
	Index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X
	index_Y
	index_Z

