
XAML in a Nutshell

By Lori A. MacVittie

...

Publisher: O'Reilly

Pub Date: March 2006

Print ISBN-10: 0-596-52673-3

Print ISBN-13: 978-0-59-652673-3

Pages: 302

Table of Contents | Index

When Microsoft releases Windows Vista, the new operating system will support applications that
employ graphics now used by computer games-clear, stunning and active. The cornerstone for
building these new user interfaces is XAML ("Zammel"), the XML-based markup language that
works with Windows Presentation Foundation (WPF), Vista's new graphics subsystem.

An acronym for Extensible Application Markup Language, XAML offers a wealth of new controls and
elements with exciting capabilities, including animation and rendering of 3D graphics. Windows
developers are already jazzed by the possibilities of using XAML for fixed and flow format
documents like PDF and HTML, 2D and 3D vector-based graphics, form development, animation,
audio and video, transparent layering, and a lot more. Many feel that XAML will eliminate the need
for multiple file formats or plug-ins (read: Flash), while lowering development costs and reducing
time to market.

The problem is, most developers don't know XAML. While it is fairly easy to understand, you still
need a quick guide to bring you up to speed before Vista's release, and that's where this book's
simple, no nonsense approach comes in.

XAML in a Nutshell covers everything necessary to design user interfaces and .NET applications that
take advantage of WPF. Prerequisites such as Microsoft's new unified build system, MSBuild, and
core XAML constructs and syntax-including shortcuts-are all presented with plenty of examples to
get you started. The Core XAML Reference section lets you dig even deeper into syntax rules and
attributes for all XAML elements with a series of quick-reference chapters. This section divides XAML
elements into logical categories of elements, controls, shapes and geometry, layout, animations,
and transformations for easy reference.

XAML in a Nutshell helps you learn, firsthand, how to use this XML-based markup language to
implement the new generation of user interface graphics. As one reviewer noted, "Strong code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

examples and an efficient, conversational style take the tedium out of learning XAML and make the
subject understandable-even interesting."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XAML in a Nutshell

By Lori A. MacVittie

...

Publisher: O'Reilly

Pub Date: March 2006

Print ISBN-10: 0-596-52673-3

Print ISBN-13: 978-0-59-652673-3

Pages: 302

Table of Contents | Index

 Copyright

 Preface

 Who Should Read This Book

 What This Book Covers

 Organization

 Conventions Used in This Book

 Using Code Examples

 Comments and Questions

 Safari® Enabled

 Acknowledgments

 Part I: Introducing XAML

 Chapter 1. Introducing XAML

 Section 1.1. The Benefits of XAML

 Section 1.2. What XAML Is Not

 Section 1.3. XAML Development Resources

 Chapter 2. Getting Started with XAML

 Section 2.1. XAML Prerequisites

 Section 2.2. Defining XAML Applications

 Section 2.3. Building XAML Applications

 Section 2.4. XAML Applications and Visual Studio

 Part II: XAML Concepts

 Chapter 3. The Basics of XAML

 Section 3.1. Core XAML Syntax

 Section 3.2. Elements

 Section 3.3. Attributes

 Section 3.4. Attached Properties

 Section 3.5. Binding Properties

 Section 3.6. codebehind

 Chapter 4. Layout and Positioning

 Section 4.1. StackPanel and DockPanel

 Section 4.2. Using Width and Alignment

 Section 4.3. Margins and Padding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 4.4. Grid

 Section 4.5. Absolute Positioning

 Chapter 5. Resources

 Section 5.1. Using Resources

 Section 5.2. Using Styles

 Section 5.3. Triggers

 Chapter 6. Storyboards and Animations

 Section 6.1. Storyboards

 Section 6.2. Controlling Animations

 Section 6.3. Animation Using Key Frames

 Part III: Core XAML Reference

 Chapter 7. Elements

 Bold

 Brush

 Color

 Figure

 Floater

 Frame

 GradientStop

 Image

 ImageBrush

 Inline

 Italic

 Label

 LinearGradientBrush

 LineBreak

 List

 ListItem

 Paragraph

 Pen

 RadialGradientBrush

 Section

 SolidColorBrush

 TextBlock

 TextDecoration

 TextDecorationCollection

 TextEffect

 Thickness

 Underline

 Chapter 8. Controls

 Section 8.1. Base Control Reference

 Section 8.2. Common Event Reference

 Section 8.3. Core Control Reference

 Chapter 9. Shapes and Geometry

 ArcSegment

 BezierSegment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CloseSegment

 CombinedGeometry

 DrawingBrush

 DrawingGroup

 Ellipse

 EllipseGeometry

 GeometryDrawing

 GeometryGroup

 ImageDrawing

 Line

 LineGeometry

 LineSegment

 Path

 PathFigure

 PathFigureCollection

 PathGeometry

 PathSegmentCollection

 Point

 Point3D

 PointCollection

 PolyBezierSegment

 Polygon

 Polyline

 PolyLineSegment

 PolyQuadraticBezierSegment

 QuadraticBezierSegment

 Rect

 Rect3D

 Rectangle

 RectangleGeometry

 StartSegment

 Chapter 10. Layout

 Border

 Canvas

 ColumnDefinition

 DashStyle

 DockPanel

 FixedDocument

 FlowDocument

 Grid

 PageContent

 Panel

 RowDefinition

 Setter

 StackPanel

 Style

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Table

 TableCell

 TableColumn

 TableRow

 Trigger

 Chapter 11. Animations and Transformations

 AnimationTimeline

 BooleanKeyFrame

 CharKeyFrame

 ColorAnimation

 ColorKeyFrame

 DecimalAnimation

 DecimalKeyFrame

 DoubleAnimation

 DoubleAnimationUsingPath

 DoubleKeyFrame

 Int16KeyFrame

 Int32KeyFrame

 Int64KeyFrame

 KeySpline

 Matrix

 MatrixAnimationUsingPath

 MatrixKeyFrame

 MediaTimeline

 ParallelTimeline

 PointAnimationUsingPath

 Point3DKeyFrame

 PointKeyFrame

 RectAnimation

 Rect3DKeyFrame

 RectKeyFrame

 RotateTransform

 Rotation3D

 Rotation3DKeyFrame

 ScaleTransform

 SetterTimeline

 SkewTransform

 SizeAnimation

 Size3D

 Size3DKeyFrame

 SizeKeyFrame

 StringKeyFrame

 ThicknessKeyFrame

 Timeline

 TranslateTransform

 VectorAnimation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 VectorKeyFrame

 Vector3DKeyFrame

 Vector

 Vector3D

 Chapter 12. Events

 Section 12.1. Routing Strategies

 Section 12.2. Event Argument Reference

 Section 12.3. Event Reference

 Part IV: Appendixes

 Appendix A. System.Windows.Controls

 Appendix B. System.Windows.Documents

 Appendix C. System.Windows.Shapes

 Appendix D. System.Windows

 Appendix E. System.Windows.Media

 Appendix F. System.Windows.Input.ApplicationCommands

 Appendix G. Predefined Colors

 Appendix H. XAML Interface in Code

 About the Author

 Colophon

 Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Jeff Pepper

Production Editor: Matt Hutchinson

Copyeditor: Rachel Monaghan

Proofreader: Matt Hutchinson

Indexer: Ellen Troutman

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrators: Robert Romano, Jessamyn Read, and Lesley Borash

Printing History:

March 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarksof
O'Reilly Media, Inc. The In a Nutshell series designations, XAML in a Nutshell, the image of a kudu,
and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-52673-3

[M]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface
Windows Vista is on its way, and with it comes a brand-new mechanism for defining user interfaces.
XAML is one of many new technologies appearing in Windows Vista and promises to be a pervasive
part of core Windows programming across a variety of yet-to-be-introduced Windows frameworks.
XAML completely removes the need for user-interface designers to understand code. Third-party
visual layout applications can now generate valid XAML for use in building sophisticated Windows
Vista applications.

The Windows Presentation Foundation (WPF), and therefore XAML, offer many sophisticated user-
interface features that are not available in other declarative markup languages such as HTML or XUL.
Scaling and rotation of both text and graphics, animation, and extensibility are all core parts of WPF
and accessible to XAML developers. While HTML was developed primarily for displaying text and
graphics on the Web, XAML's primary target is native Windows applications (although it can also
target web-based deployments).

The close relationship between runtime objects and the elements in a XAML file make XAML an easy
choice for user-interface design on the Windows platform. It offers the means to create rich, or
"smart," clients that act more like a full-featured interface than a web-based application.

XAML can be used to design user interfaces without the need for code, or it can be used in
conjunction with supported .NET languages such as C# and VB.NET. XAML is the preferred method of
developing interfaces for applications on the Windows Vista platform because its powerful features
allow developers to create interfaces that go above and beyond traditional interface design. XAML
and the WPF open up endless possibilities for exciting new user interfaces, and this book will provide
an understanding of the language and the framework upon which those interfaces are developed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Who Should Read This Book

This book is intended for both .NET developers and user-interface designers familiar with HTML and
the basics of XML. Developers intending to write full applications should have a good understanding of
an existing .NET language such as C# or Visual Basic, as application logic requires development of
code in a .NET-supported language.

Familiarity with other declarative markup languages such as HTML or XUL will help you quickly grasp
the concepts and user-interface elements used to design interfaces with XAML.

Even if you are not familiar with a .NET language or other declarative markup languages, this book
will be invaluable in providing you with an understanding of XAML.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What This Book Covers

This book covers XAML as it exists in the WinFX SDK (Community Technology Preview, October
2005). It covers core XAML constructs and discusses syntax as it relates to interfacing with the WinFX
runtimethe WPF. The book provides examples and documentation of all core components and
presents detailed discussions on features such as animation, resources, and layout that will jump-
start you on your way to becoming a XAML developer.

There are already several flavors of XAML, each created to enable the design of user interfaces for a
specific Windows API, such as Windows Workflow Foundation. This book focuses on the core XAML
language as intended for use in building user interfaces for Avalon and will not explore API-specific
subsets.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Organization

This book is organized into four sections. Each section focuses on a particular set of topics that are
grouped together logically.

Part I, Introducing XAML

This part of the book introduces the basics of XAML. It details the prerequisites necessary to begin
building user interfaces in XAML and introduces MSBuild, Microsoft's new unified build system.

Because XAML supports many new features such as animation and resources, Part II has been
devoted to covering these unique concepts. The basics will be covered here, but new concepts such
as animation and transformations are given in-depth attention later on.

Chapter 1, Introducing XAML

This chapter provides you with a quick introduction to XAML and includes a list of references to
tools available for developing XAML applications.

Chapter 2, Getting Started with XAML

This chapter details the system prerequisites and basics necessary to begin developing and
building XAML applications. It introduces Microsoft's new unified build system, MSBuild, and
describes how to use it to build XAML applications. The chapter also walks you through an
example of using Microsoft's Visual Studio tools to create and build an application.

Part II, XAML Concepts

This part of the book delves into the details of XAML. You'll learn about elements, controls, styles,
and animations, and how to use them to create your own user interface.

There are many specific elements not discussed directly in other sections of this book. These
elements, in conjunction with all core XAML elements, are detailed here for quick and easy access.

Chapter 3, The Basics of XAML

This chapter describes the core XAML syntax and delves into the types of elements used to
create XAML applications. Attributes, attached properties, and event handler coding techniques
are explained and accompanied by examples of how to use them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4, Layout and Positioning

This chapter details how to position individual elements using a variety of techniques, including
panels and absolute positioning.

Chapter 5, Resources

This chapter provides an overview of resources, focusing on the use of global resources to
create a customized look and feel for your interface. It describes how to define and reference
resources and details the use of triggers to apply styles based on events.

Chapter 6, Storyboards and Animations

This chapter details the mechanisms available for animating XAML elements. It includes
examples of animating properties, such as position and size of elements.

Part III, Core XAML Reference

This part of the book details syntax rules and attributes for XAML in a series of quick-reference
chapters. This section divides XAML elements into logical categories of elements, controls, shapes and
geometry, layout, animations, and transformations.

Chapter 7, Elements

This reference chapter details and provides examples for the basic elements used within XAML,
including Brush and Pen, ListItem, and elements used for text decoration, such as Inline,
Bold, and Italic.

Chapter 8, Controls

This reference chapter details the control elements available within XAML, such as Button,
CheckBox, ImageViewer, and Expander. It also contains a reference to common events.

Chapter 9, Shapes and Geometry

This reference chapter explains the differences between shape and geometry classes and
details the Shape and Geometry elements available within XAML.

Chapter 10, Layout

This reference chapter details the XAML elements used to lay out user interfaces such as Grid
and Panel, and describes supporting elements such as trigger, Style, and Border.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 11, Animations and Transformations

This reference chapter details the types of animations and transformations available to XAML
elements.

Chapter 12, Events

This reference chapter explains the WPF event system and details the events available to XAML
elements.

Part IV, Appendixes

The appendixes detail the CLR classes in the WinFX runtime that are available through XAML, list all
of the predefined Color values supported by XAML, and present a complete code-only example of
building a XAML application.

Appendix A, System.Windows.Controls

Lists the elements found in the System.Windows.Control namespace

Appendix B, System.Windows.Documents

Lists the elements found in the System.Windows.Documents namespace

Appendix C, System.Windows.Shapes

Lists the elements found in the System.Windows.Shapes namespace

Appendix D, System.Windows

Lists the elements found in the System.Windows namespace

Appendix E, System.Windows.Media

Lists the elements found in the System.Windows.Media namespace

Appendix F, System.Windows.Input.ApplicationCommands

Lists the elements found in the System.Windows.Input.ApplicationCommands namespace

Appendix G, Predefined Colors

Lists the available predefined colors supported by XAML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix H, XAML Interface in Code

Contains a XAML declaration used to build a simple application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conventions Used in This Book

The following list details the font conventions used in the book:

Constant width

Indicates anything that might appear in a XAML document, including element names, tags,
attribute values, and entity references, or anything that might appear in a program, including
keywords, operators, method names, class names, and literals.

Constant width bold

Indicates user input or emphasis in code examples and fragments.

Constant width italic

Denotes replaceable elements in code statements.

Italic

Indicates emphasis in body text, new terms when they are defined, pathnames, filenames,
program names, and host and domain names.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Significant code fragments, complete applications, and documents generally appear in a separate
paragraph, like this:

 <Page xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005">
 <StackPanel>
 <TextBlock>Hello World</TextBlock>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </StackPanel>
 </Page>

When a property has a fixed set of values from which to choose, those choices will be displayed as a
pipe-separated list:

 SelectionMode="Single|Multiple|Extended" >

XAML, like XML, is case-sensitive. The Page element is not the same as the PAGE or page element.
Both are also character-encoding-sensitive, and the smart quotes found in a Microsoft Word
document or in the help files accompanying the WinFX SDK are not considered the same as the
double quotes produced by applications such as Microsoft's Visual Studio or Notepad. Smart quotes
are not valid within a XAML document, so it is important that you use the "Copy code" option in the
WinFX SDK help system or turn off smart quotes in Microsoft Word if you wish to use either program
to create XAML applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Code Examples

Most of the examples in this book have very little real-world value and are unlikely to be reused,
although they work well as templates to get you started in designing your own user interfaces with
XAML. In general, you may use the code in this book in your programs and documentation.
Permission is not required unless you're reproducing a significant portion of the code. For example,
writing a program that uses several blocks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering
a question by citing this book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product's documentation does require
permission.

Attribution is appreciated, but not required. An attribution usually includes the title, author, publisher,
and ISBN. For example: "XAML in a Nutshell, by Lori A. MacVittie. Copyright 2006 O'Reilly Media,
Inc., 0-596-52673-3."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book that lists errata, examples, or any additional information. You can
access this page at:

http://www.oreilly.com/catalog/xamlian

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/xamlian
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,
that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books: it's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Acknowledgments

Jeff Pepper, the editor who proposed the book and got things rolling.

Brad Shimmin, for bringing the opportunity to my attention in the first place.

My husband, Don, for encouraging me to agree to this undertaking and putting up with long hours
spent staring at the screen trying to figure out why something wasn't working the right way, and for
a second set of technically minded eyes.

The reviewers of early versions of the manuscript were invaluable in this effort. Thanks especially to
Tim Patrick and Filipe Fortes for their thorough reviews and helpful comments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part I: Introducing XAML
Chapter 1, Introducing XAML

Chapter 2, Getting Started with XAML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Introducing XAML
XAML (pronounced "Zamel") stands for eXtensible Application Markup Language. It is Microsoft's new
declarative language for defining application user interfaces. XAML provides an easily extensible and
localizable syntax for defining user interfaces separated from application logic, similar to the object-
oriented technique for developing n-tier applications with a MVC (Model-View-Controller) architecture.

XAML was created by Microsoft expressly for the purpose of interfacing with its .NET Framework on
its Windows Vista (formerly codenamed "Longhorn") operating system through the WinFX (codename
"Avalon") presentation subsystem runtime environment. XAML gives developers the ability to control
the layout of all .NET user-interface elements such as text, buttons, graphics, and listboxes, using
XML . Because XAML is XML-based, your code must be well-formed XML. Every XAML tag corresponds
directly to a .NET Framework class whose properties are controlled through the use of XML attributes.
For example, the <Button> tag corresponds directly to the System.Windows.Controls.Button class.
XAML elements represent a Common Language Runtime (CLR) class, the runtime engine for
Microsoft's .NET framework. The CLR is similar to the Java Virtual Machine (JVM), except that the
JVM can only run Java language programs, while the CLR can run applications written in a number of
.NET languages, such as C#, J#, and VB.NET.

Because XAML elements represent CLR objects (this book focuses on those in the Windows
Presentation Foundation [WPF]), anything that can be done with XAML can also be accomplished with
procedural code. There are some things, however, that can be done by manipulating the object
model programmatically that are not accessible through XAML. Properties that are read-only are not
exposed through XAML; only those properties that are public and have both a get and a set method
are accessible to XAML developers.

Events and handlers can also be specified by XAML attributes, and the necessary code behind the
handlers, codebehind, can be written in .NET-supported languagescurrently C# and VB.NET. This
code can be inlined in the XAML file or placed in the codebehind file, similar to what is done with
ASP.NET code. If procedural code is embedded in a XAML page, you must compile the application
before you can run it; if there is no procedural code in the XAML page, you can display it on a
Windows Vista system by double-clicking the page file (just as you would with HTML pages). On
Windows XP, however, the XAML pages must be "compiled" into an executable application before
they can be displayed or loaded into a browser.

XAML is similar to other markup languages designed for rendering in web browsers, such as XHTML
and HTML, and uses mechanisms similar to Cascading Style Sheets (CSS) for designating properties
of XAML elements . Just as HTML objects are parsed to build out a Document Object Model (DOM)
tree, XAML elements are parsed to build out an ElementTree .

XAML is inherently object-oriented since its elements represent CLR classes. This means that an
element derived from another XAML element inherits the attributes of its parent. For example, a
System.Windows.Controls.Button derives from System.Windows.Controls.ButtonBase, which derives
from System.Windows.Controls.ContentControl, which derives from
System.Windows.FrameworkElement, which derives from System.Windows.UIElement. Therefore, the
Button element has very few attributes of its own but still boasts a lengthy list of attributes that it
has inherited from classes above it in the hierarchy, such as Width and Height. It is necessary to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

understand the nature of inheritance in order to take advantage of XAML and its ability to be
extended. Custom controls can be created for XAML by creating subclasses in one of the supported
.NET languages (C# or VB.NET), for example, and then exposing the class to XAML developers for
use in user-interface design.

Some XAML elements require children and attributes to be of a specific type, usually one of the base
classes. Because of the nature of object-oriented programming, any element requiring that its
children be of type UIElement can be declared as an element derived from UIElement. The Brush
object is a very common attribute type for XAML elements, yet an instance of Brush is rarely used as
an attribute. Instead, one of Brush's subclasses, such as SolidColorBrush or LinearGradientBrush, is
often used. The nature of object-oriented programming allows an attribute to be broadly defined as a
base class and lets the designer choose which specialized subclass will be used.

Because of XAML's object-oriented nature, not all attributes will be listed with the element. It is
necessary to understand an element's hierarchy to fully understand all of the attributes available to
describe the element. In Part III, I have included each element's hierarchyas well as a description of
abstract elementsto facilitate this understanding. While abstract elements are rarely, if ever, declared
in XAML, their description and attributes are used by derived classes and will therefore be fully
described.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1. The Benefits of XAML

XAML offers similar benefits to other markup-based application interface mechanisms such as XUL
(eXtensible User-interface Language), HTML (HyperText Markup Language), and Flex. Markup-based
interfaces are quick to build and easily modifiable. They require less code than traditional structured
programming. For example, creating and defining the properties of a Button with XAML requires just
one line of syntax, as opposed to multiple lines in C# or VB.NET:

 <Button Click="OnClickHandler" Background="Green" Content="Submit" />

The same Button object created using C# requires four lines:

 Button myBtn = new Button();
 myBtn.Background = Brushes.Green;

 myBtn.Text="Submit";

 myBtn.Click += new System.EventHandler(OnClickHandler);

While HTML has limited programmatic functionality and control, XAML and other new-generation
declarative markup languages offer back-end scripting language support to circumvent this limitation.
While XAML separates the user interface from application logic, it still provides a mechanism by which
the two can easily interact. This separation offers several benefits, including easily localized user
interfaces and the ability for developers to modify application logic without affecting the user
interface, and vice versa.

XAML also opens up user-interface design to a wider group of developers, namely graphic designers
and markup developers. Anyone with experience using HTML or other web-oriented markup
languages will find XAML to be intuitive; they will be able to jump in and begin developing user
interfaces in a short period of time. This alleviates the burden placed on .NET developers and allows
them to focus on developing application logic, while others determine the look and feel of the user
interface.

XAML is toolable, which offers third-party developers opportunities to create applications that support
it. Several third-party applications already exist that offer visual environments for developing XAML.
Additional products are expected as Windows Vista begins to be generally deployed.

XAML is extensible, as its name implies. XAML can easily be extended by developers creating custom
controls, elements, and functionality. Because XAML is essentially the XML representation of objects
defined by the WPF, XAML elements can easily be extended by developers using object-oriented
programming techniques. Custom controls and composite elements can be developed and exposed to
user-interface designers or shared with other developers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, by using XAML, Windows applications can be delivered unchanged via the Web to Windows
clients. Smart clients, Microsoft's term for rich user interfaces with full Windows functionality, can be
delivered to any connected Windows machine over the Internet through a web browser without
requiring the overhead of a managed desktop to deploy full-featured thick-client applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2. What XAML Is Not

XAML is purely a markup language designed for describing user-interface components and arranging
them on the screen. Though there are components of XAML that appear to be programmatic in
nature, such as the TRigger and TRansform elements, XAML is not a procedural programming
language and is not designed to execute application logic.

XAML is interpreted, not compiledthough it can be compiled. Microsoft recommends that XAML be
compiled by compacting it into Binary Application Markup Language (BAML) . Both XAML and BAML
are interpreted by the WPF and then rendered on the screen in a manner similar to HTML. Unlike
HTML, however, XAML is strongly typed. HTML defaults to ignoring tags and attributes it doesn't
understand, while XAML requires that every tag and attribute be understood, including the typing of
attributes. Although all attributes initially appear to be strings, don't let that fool you. The string
represents an object, and because those objects must be understood by WPF, XAML is strongly
typed.

Finally, XAML is not HTML. Although there are similarities in the declaration of elements, application
of styles, and assignment of event handlers, XAML is an XML-based interface to the Windows
Presentation Framework, while HTML is a markup language that is rendered within the context of the
browser and operating system in which it is loaded. XAML is far more than a mechanism for
displaying information and soliciting basic user input. It is a complete user-interface design and
development markup language that reaches beyond the scope of simple HTML elements by including
advanced features such as 3-D element rendering and rich vector-based drawing capabilities.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3. XAML Development Resources

XAML can be developed in myriad ways. XAML can be written in any text editor. For example, all the
code included in this book was written in Notepad and then compiled using MSBuild.

There are much easier ways to develop a XAML user interface, however, and most of them involve a
visual layout tool. There are several third-party tools, as well as tools from Microsoft that support
XAML. Some are focused on only one aspect of XAML, such as development of 3-D interfaces, while
others are more generally applicable. Some popular tools available as of this writing include:

Electric Rain ZAM D XAML Tool (http://www.erain.com/products/zam3d/)

A tool that supports visual development of 3-D interface elements for XAML.

Xamlon Pro and XAML Converter (http://www.xamlon.com/)

Xamlon Pro supports development of XAML user interfaces in a visual environment. XAML
Converter converts other formats to XAML.

MyXAML (http://www.myxaml.com/)

An open source project dedicated to XAML development. Includes a mailing list and forums
focused on discussion of XAML and the sharing of tips, tricks, and techniques.

Mobiform Aurora XAML Editor (http://www.mobiform.com/2005/XAML/xamlhome.htm)

A visual editor for XAML from Mobiform.

XamlViewer (http://weblogs.asp.net/gmilano/archive/2004/11/24/269082.aspx)

A visual editor for XAML that integrates into Visual Studio 2005.

XamlPad

A simple, real-time visual editor for XAML. XamlPad does not support visual layout of elements,
but it does offer a visual representation, in real time, of XAML elements. XamlPad is included in
the WinFX SDK.

Microsoft's Visual Studio 2005 Extensions for WinFX

http://www.erain.com/products/zam3d/
http://www.xamlon.com/
http://www.myxaml.com/
http://www.mobiform.com/2005/XAML/xamlhome.htm
http://weblogs.asp.net/gmilano/archive/2004/11/24/269082.aspx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tools that include XAML Intellisense support through schema extensions for the editor and
project templates for the WPF, the Windows Communication Foundation (formerly known as
"Indigo"), and WinFX SDK documentation integration. These tools do not include a graphical
design surface for either the WPF or the Windows Communication Foundation.

Microsoft Expression Interactive Designer (formerly "Sparkle")
(http://www.microsoft.com/products/expression/en/interactive_designer/default.aspx)

A forthcoming Microsoft visual-design tool for developing WinFX applications.

http://www.microsoft.com/products/expression/en/interactive_designer/default.aspx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. Getting Started with XAML
As with most development-oriented tools, it's important to have the proper environment before you
can start developing user interfaces with XAML. This chapter discusses the prerequisites necessary to
define and run XAML applications and later details the basic structure of a XAML project, as well as
how to compile and run that application.

This chapter assumes that you have a working knowledge of XML and are at least somewhat familiar
with other user-interface markup languages, such as ASP.NET and HTML.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1. XAML Prerequisites

Although XAML is designed specifically for Windows Vista, it's also available on Windows XP and
Windows Server 2003, given that certain system requirements are met. This makes it possible for
developers to become familiar with XAML and the WinFX SDK before Windows Vista is officially
available.

XAML can be used to develop applications on the following operating systems:

Windows XP SP2

Windows Server 2003 SP1

Windows Vista

On Windows XP SP2 and Windows Server 2003 SP1, you will first need to install the WinFX runtime,
which contains, among other things, the Windows Presentation Foundation (Avalon). Regardless of
the operating system you choose, you'll need to install the WinFX SDK. The SDK contains the
libraries, build tools, and documentation necessary to begin developing user interfaces with XAML.
Depending on the operating system you choose, the WinFX SDK may also have prerequisites that
must be met.

If you plan on using the WinFX Extensions to Visual Studio 2005, you must
install Visual Studio 2005 before installing the WinFX SDK.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2. Defining XAML Applications

A XAML application comprises two types of elements: an application element and the set elements
that make up the user interface. The XAML files contain the user-interface definition for your
application. The codebehind files will contain the application logic and the code that handles event
processing. XAML does not provide a mechanism for handling events, but it can direct the runtime
engine to call event handlers written in C# or VB.NET. If you're a developer, you'll code the event
handlers and application logic just as you always have, but because the user-interface code is
separate, you'll have to pay a bit more attention to the names of the handlers and elements you
reference because you don't define themthey're declared and named in the XAML file.

You can define XAML applications completely using C# or VB.NET. The CLR
classes represented by XAML are all accessible through code, and you can write
applications just as you always have, if you so desire. XAML offers you the
ability to completely separate the presentation layer (user interface) from the
application logic, thus making it easier to split up development responsibilities
and isolate UI changes from the code. Appendix H provides an example of an
application declared in XAML, as well as entirely in C#.

The most common application element is of type NavigationApplication. NavigationApplication
defines an application that behaves like a web application or wizard in that it consists of pages
between which a user navigates using hyperlinks and forward and back buttons.

The application definition is generally declared in its own file. It requires two properties to be set, the
namespace and the startup URI, which is the URI of the first page that should be loaded when the
application starts. For our purposes in this chapter, the application definition file will be called
MyApp.xaml. It is detailed in Example 2-1.

Example 2-1. MyApp.xaml

 <NavigationWindow
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 StartupUri="Page1.xaml" />

In XAML, element names correspond to CLR object names, and attributes represent properties. The
exception to this rule is with standard XML elements, such as xmlns, which is used to declare the
namespace used within the XML file. The namespace used here is the default namespace for the
application and identifies the Avalon types. If we did not specify the Avalon namespace as the default,
all core XAML elements would need to include a reference to it. That's a lot of extra typing. It is much

http://lib.ommolketab.ir
http://lib.ommolketab.ir

easier to use the Avalon namespace as the default, unless you will be primarily using custom
elements defined in your own namespace, in which case, it is probably easier to specify your own
namespace as the default and explicitly identify XAML elements instead. All the examples in this book
will declare the Avalon namespace as the default. Every XAML element requires either explicit
references to the namespace on a per-element basis or the declaration of the Avalon namespace as
the default of the root element. Of course the latter is recommended, as it will alleviate the
requirement to explicitly reference the namespace for every XAML element in the file.

The first element declared in any XAML file is called the root element. The root element must contain
a reference to the namespace in which it is defined. For XAML elements, the namespace is
http://schemas.microsoft.com/winfx/avalon/2005.

The default namespace will change when WPF officially ships.

Root elements are containers that hold other XAML elements. The most common root element for the
application definition is NavigationWindow . The most common root elements for a page definition are
Panel and its subclasses, DockPanel and StackPanel, and Page. Window is also used, though less often
than the aforementioned elements.

In Example 2-1, the StartupUri attribute of the NavigationWindow specifies the XAML page that will
be loaded when the application starts, in this case Page1.xaml.Additional attributes of
NavigationWindow can be specified. For a complete description of NavigationWindow, see Chapter 8.

Page1.xaml will contain the actual definition for the user interface. Any subsequent pages will be
referenced through allowable mechanisms, such as the HyperLink element. Like all XAML files,
Page1.xaml requires a root element. The file is shown in Example 2-2.

Example 2-2. Page1.xaml

 <StackPanel xmlns="http://schemas.microsoft.com/winfx/avalon/2005">

 <TextBlock>Hello World</TextBlock>

 <Button Width="100">Click Me</Button>
 </StackPanel>

StackPanel is fully described in Chapter 7. Like DockPanel, it is used to hold elements, and that is all
you need to know for now. The TextBlock element holds text, and the Button element represents a
standard user-interface button. Interpreting the code in XamlPad produces the output shown in
Figure 2-1.

This is an extremely simple example of a XAML application with absolutely no attention paid to style,
layout, or usefulness. Refining these aspects of user-interface design is a subject for subsequent
chapters. For now, it is only important that the file declares the minimum requirements for a XAML
application. With a successfully defined application definition (MyApp.xaml) and a page definition
(Page1.xaml), it's time to build the application into a Windows executable.

http://schemas.microsoft.com/winfx/avalon/2005
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-1. A simple XAML page previewed in XamlPad

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3. Building XAML Applications

While XAML can be used to create libraries and modules that can be shared and used to build other
applications (in the same way that C# or VB.NET can be used to build DLLs or shared assemblies), it
is more likely that you will use XAML to generate an application. There are two types of XAML
applications: express and installed. Express applications are hosted in a web browser. Installed
applications are traditional desktop applications and can be either Windows applications or console
applications. The type of application generated is determined by a property value in the project file
MSBuild uses to assemble the application.

MSBuild is one of the new features in Windows Vista and Visual Studio 2005. With the release of
Visual Studio 2005, Microsoft has moved to a unified build environment. All projects now use MSBuild
facilities to generate CLR assemblies. The most exciting, and beneficial, aspect of this change is that
Visual Studio is no longer required to compile and build applications; builds can be completely
automated without it. MSBuild is distributed with the WinFX SDK.

If you're using Visual Studio to edit XAML and associated codebehind files, don't
worry about the details of MSBuild. The relevant files are generated
automatically by Visual Studio.

MSBuild is similar to ANT and Unix/Linux make facilities. MSBuild reads in XML-based project files,
conventionally named with a .proj extension, and executes the tasks contained in the project file to
produce the desired target.

There are a number of XML elements that can be used in a project file. This discussion covers only
the basic elements and the typical ways that they are used to create an Avalon project file. The
following list describes the key elements in an Avalon project file:

Project

Functions as the root element for all project files

PropertyGroup

Contains project property settings, such as the build configuration setting (Debug or Release)

ItemGroup

Contains the list of items, such as source or resource files, that make up the project

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Import

Allows you to import other project files, such as target files, into your project

There are a multitude of options that can be configured with MSBuild. It is a very rich schema
designed to handle building targets in a dynamic environment. The following code illustrates the
minimum requirements for a project file:

 <Project
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>

 <AssemblyName>MyFirstApplication</AssemblyName>
 <TargetType>winexe|exe|library|module</TargetType>

 <OutputPath>.\</OutputPath>
 </PropertyGroup>
 <Import Project="$(MSBuildBinPath)\Microsoft.CSharp.targets" />
 <Import Project="$(MSBuildBinPath)\Microsoft.WinFX.targets" />
 <ItemGroup>

 <ApplicationDefinition Include="MyApp.xaml" />

 <Page Include="Page1.xaml" />
 </ItemGroup>
 <ItemGroup>
 <Reference Include="System">
 <Private>false</Private>
 </Reference>
 <Reference Include="System.Xml">
 <Private>false</Private>
 </Reference>
 <Reference Include="System.Data">
 <Private>false</Private>
 </Reference>
 <Reference Include="WindowsBase">
 <Private>false</Private>
 </Reference>
 <Reference Include="PresentationCore">
 <Private>false</Private>
 </Reference>
 <Reference Include="PresentationFramework">
 <Private>false</Private>
 </Reference>
 <Reference Include="WindowsUIAutomation">
 <Private>false</Private>
 </Reference>
 <Reference Include="UIAutomationProvider">
 <Private>false</Private>
 </Reference>
 </ItemGroup>
 </Project>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The most important piece of the project file is the ItemGroup, which specifies the inclusion of the
XAML files that make up your project. You'll need one ApplicationDefinition file, identified by the
<ApplicationDefinition .../> element, and one or more page definition files, included through the
use of the <Page .../> element.

You can set a few optional attributes in the PropertyGroup element:

HostInBrowser

This Boolean value is set to TRue to generate express applications or false to generate an
installed application. The default value is false.

Install

This Boolean value determines the type of deployment file to generate. When set to true, a
deployment file for an installed application is generated. When set to false, a deployment file
for an express application is created. If HostInBrowser is set to true, the default value for this
property is false. If HostInBrowser is false, the default value for this property is TRue.

Configuration

This String-based value determines the type of configuration to build: Debug or Release. The
default is Release.

MSBuild relies on a number of environment variables related to the location of libraries and the
identification of the .NET Framework version used to build the application. The WinFX SDK includes a
batch file to appropriately set these environment variables. The necessary variables are:

 SET FrameworkVersion=v2.0.50215
 SET FrameworkDir=%windir%\Microsoft.NET\Framework
 SET WinFX=%ProgramFiles%\Reference Assemblies\Microsoft\WinFX\%FrameworkVersion%
 SET URT=%FrameworkDir%\%FrameworkVersion%
 SET WinFXSDK=C:\Program Files\Microsoft SDKs\WinFX
 SET FrameworkSDKDir=%WinFXSDK%\
 SET WinFXSDKTOOLPATH=%WinFXSDK%\bin
 SET PATH=%URT%;%WinFXSDKTOOLPATH%;%WinFXSDK%\vc\bin;%path%;
 SET INCLUDE=%WinFXSDK%\Include;%WinFXSDK%\vc\Include;
 SET LIB=%WinFXSDK%\Lib;%WinFXSDK%\vc\Lib;

After the environment variables have been set and the project file is appropriately configured for your
application target, execute MSBuild on the command line to generate your application. When
completed, you will see several files:

MyFirstApplication.exe

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The executable application . This file is always generated.

MyFirstApplication.xbap

The express application. This file is recognized by the Windows IE browser and can be run by
opening the file within IE. This file is generated only when HostInBrowser is set to true. (This
file extension was .xapp in previous CTP releases.)

MyFirstApplication.exe.manifest

This file is always generated.

MyFirstApplication.pdb

The program database file, used for debugging and incremental build purposes. This file is
always generated.

MyFirstApplication.application

The deployment file for the application. This file is generated only when Install is explicitly set
to TRue or when HostInBrowser is set to false.

When you run MSBuild, the files are parsed into two corresponding files: a C# generated file,
identified by the extension .g.cs (the g stands for generated, the cs for C#), and a BAML file,
identified by the .baml extension. These files are automatically placed into a created subdirectory that
is named according to the Configuration property located in the PropertyGroup section of the project
file. For a release configuration, the subdirectory is called obj\Release. Similarly, the obj\Debug
hierarchy is used for a Debug configuration.

The class files generated from markup are partial class files. A class file containing the
implementation of event handlers and other application logic will be merged with the generated
partial class file during compilation.

You must compile an Avalon application before running it, even if the pages
contain only markup.

The C# files are then compiled into an assembly. The assembly is named according to the
AssemblyName attribute and placed into the location referenced by the OutputPath attribute. All that
remains of the markup is the BAML, which is deserialized into CLR objects at runtime by the
System.Windows.Serialization.Parser class. This class can be used to (de)serialize any BAML or
XAML at runtime.

If you generated a Windows executable, you can now double-click on the name of the file or run it
from the command line. If you specified the creation of a hosted application, you'll need to load the
.xbap file from Microsoft Internet Explorer, which will launch the presentation manager and run the
application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Running the Windows executable defined in the previous section generates the application in Figure
2-2.

You'll note that there are similarities and differences between the preview shown in Figure 2-1 and
the application shown in Figure 2-2. XamlPad, one of the tools installed with XAML, is an excellent
real-time What You See Is What You Get (WYSIWYG) environment for playing around with XAML, but
it does not support the full definition of an application. Because NavigationWindow is used as the root
element for this application, the application automatically inherits a navigation "chrome" at the top of
the application, with forward and back buttons similar to those used in Internet Explorer to navigate
through web pages. Aside from this difference, the resulting page appears the same.

Figure 2-2. MyFirstApplication

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.4. XAML Applications and Visual Studio

Working in Visual Studio, you'll be able to select a number of WinFX Applications, and the project files
and application manifest will be generated automatically. You can choose to create a WinFX Windows
executable, a WinFX WebBrowser application, a WinFX Service Library (which creates a WinFX library
comprising the definition and implementation of a WinFX Service), or a WinFX Custom Control Library
(for extending WinFX controls). However, you'll still have to edit both the XAML and associated C# or
VB.NET codebehind files manually.

If you've downloaded and installed the WinFX extensions for Visual Studio 2005, fire up the IDE.
Choose Create Project and you'll be presented with a list of options, as illustrated in Figure 2-3.

Figure 2-3. WinFX application options in Visual Studio 2005

To create an application, choose either WinFX Windows Application or WinFX WebBrowser Application,
depending on whether you want to deploy the application as an executable or for use within a web
browser. Give the project a name and click OK. Visual Studio automatically generates the default
XAML and codebehind files. In Figure 2-4, you can see that it has generated Windows1.xaml
(Example 2-5) and Windows1.xaml.cs (Example 2-6). The language of the codebehind file depends on
your choice of .NET-supported languages. I have chosen C#, so the generated files will reflect that
choice.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-4. Default files generated by Visual C# 2005 Express Edition

There are some minor differences between creating a WinFX WebBrowser and
WinFX Windows application that occur whether or not you use Visual Studio. In
a WebBrowser application, the default start page's root element is Page. In a
WinFX Windows application, the default start page's root element is Window. The
Window class will not work in a WebBrowser application by design because
Avalon applications running in the browser are sandboxed and don't have the
appropriate permissions to open new windows.

If you look carefully in the SolutionExplorer, you'll note that Visual Studio generates additional XAML
and C# files to represent the application. Because you normally won't be working with the
application-level files and instead will work on individual pages, Visual Studio will only display the first
Window and its codebehind file after generating the appropriate code. You can see the relationship
between the two files in Examples 2-3 and 2-4. The StartupUri value for the Application element is
Window1.xaml, which is the XAML file that automatically opens for editing after Visual Studio
generates the files for the application.

Example 2-3. Default C# code generated for the application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using System;
 using System.Windows;
 using System.Data;
 using System.Xml;
 using System.Configuration;

 namespace MyApplication
 {
 /// <summary>
 /// Interaction logic for MyApp.xaml
 /// </summary>

 public partial class MyApp : Application
 {

 }
 }

Example 2-4. Default XAML code generated for the application

 <Application x:Class="MyApplication.MyApp"
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"
 StartupUri="Window1.xaml"
 >
 <Application.Resources>

 </Application.Resources>
 </Application>

The automatically generated XAML (Example 2-5) and codebehind file (Example 2-6) contain the shell
of a XAML definition and include, by default, the root Window element and an instance of the Panel-
derived Grid element. Microsoft is encouraging developers to use Grid for base user-interface design,
primarily for its flexibility in positioning elements on the page.

Example 2-5. Default XAML code generated by Visual Studio 2005

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <Window x:Class="MyApplication.Window1"
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"
 Title="MyApplication" >
 <Grid>

 </Grid>
 </Window>

Example 2-6. Default C# code generated by Visual Studio 2005

 using System;
 using System.Windows;
 using System.Windows.Controls;
 using System.Windows.Data;
 using System.Windows.Documents;
 using System.Windows.Media;
 using System.Windows.Shapes;

 namespace MyApplication
 {
 /// <summary>
 /// Interaction logic for Window1.xaml
 /// </summary>

 public partial class Window1 : Window
 {

 public Window1()
 {
 InitializeComponent();
 }

 }
 }

First, add a Button element with the name MyButton and a Click handler called ChangeMe to
Window1.xaml. Your code should look something like Example 2-7 when you have finished.

Example 2-7. Adding a Button with a handler to Window1.xaml

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <Window x:Class="MyApplication.Window1"
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"

 Title="MyApplication"
 >
 <Grid>
 <Button

 Grid.Row="0"

 Grid.Column="0"

 Background="Aqua"

 Content="This is a test"

 Name="MyButton"

 Click="ChangeMe"/>
 </Grid>
 </Window>

Next, open Window1.xaml.cs. Inside the partial class definition for Window1, you'll need to add an
event handler for the button you just added to the XAML file. Add the following code:

 void ChangeMe(object sender, RoutedEventArgs eventArgs)
 {
 count++;
 MyButton.Content = "You have clicked " + count + " times!";
 }

Don't forget to add the variable count as a member of the class. Your code should look something like
Example 2-8 when you have finished. When you reference the Button in Window1.xaml in code, make
sure that you use the Name you assigned to the Button in the XAML file (MyButton in this example).
There is no need to declare the element again; it already exists in the partial class generated when
the XAML file is "compiled." It will be joined with the partial class defined in the codebehind file when
the solution is built to form a cohesive class. This is why you can reference elements by the Name with
which they are declared in the XAML file within the codebehind file as well.

Example 2-8. Adding an event handler to Window1.xaml.cs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using System;
 using System.Windows;
 using System.Windows.Controls;
 using System.Windows.Data;
 using System.Windows.Documents;
 using System.Windows.Media;
 using System.Windows.Shapes;

 namespace MyApplication
 {
 /// <summary>
 /// Interaction logic for Window1.xaml
 /// </summary>

 public partial class Window1 : Window
 {
 int count = 0;
 public Window1()
 {
 InitializeComponent();
 }

 void ChangeMe(object sender, RoutedEventArgs eventArgs)
 {
 count++;
 MyButton.Content = "You have clicked " + count + " times!";
 }

 }
 }

After adding elements and the appropriate handlers, logic, etc., you'll build the solution the same way
you've always built applications using Visual Studio. Choose Build, then Build Solution (or just hit F6),
and wait for the application to compile. You can then test, debug (Figure 2-5), and deploy the
application just as you would any other application created using Visual Studio.

Save the changes to the files and build the solution, then run the application. The application will
appear as an aqua button filling the entire application (Figure 2-5). The text will initially read "This is
a test." Click on the button. You'll notice that the handler you implemented (ChangeMe) executed and
replaced the text with "You have clicked 5 times!".

Figure 2-5. Debugging a XAML application within Visual Studio

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This process should be familiar to .NET developers. The XAML file is akin to the visual representation
of a page or Windows application, and the codebehind file is the equivalent of the server-side code
necessary to handle events and process requests from users. The difference between developing
.NET applications and XAML applications is that at this time, there is no visual mechanism for
designing XAML applications. The XAML file is similar to the source view of a .NET page.

As mentioned earlier, when using Visual Studio, it is not necessary to generate the project files or
understand how the new unified build system operates. The necessary files are all generated
automatically for you by Visual Studio.

Now that you know how to define and build a basic XAML application, it's time to move on to
something a bit more interesting. The next chapter dives into the mechanics of XAML and explains
more about the language.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part II: XAML Concepts
Chapter 3, The Basics of XAML

Chapter 4, Layout and Positioning

Chapter 5, Resources

Chapter 6, Storyboards and Animations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. The Basics of XAML
XAML is an XML-based markup language. Given that, it shares many properties with other XML
documents, such as case sensitivity and having to be well-formed. XAML has some specific syntax
peculiarities designed for easing the declaration of specific types of elements. It provides abbreviated
markup syntax for specific types of elements that take advantage of the underlying Common
Language Runtime (CLR) class constructors.

This chapter will examine the core XAML syntax, as well as some of the peculiarities of its abbreviated
markup syntax, in preparation for understanding more complex concepts in later chapters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1. Core XAML Syntax

XAML generally follows XML syntax rules, just as any other XML-based markup language does. Each
XAML element has a name and one or more attributes. Attributes correspond directly to object
properties, and the name of the XAML element exactly matches the name of a CLR class definition.

XAML is pure markup, which means that while the names of event handlers are specified as
attributes, you must implement the actual logic of the event handler in code. If you're familiar with
ASP.NET programming techniques, then you'll be familiar with the term codebehind, which refers to
the code "behind" a XAML interface element that is responsible for providing application logic such as
event handlers. It can be implemented in either C# or VB.NET. In both cases, the code can be placed
inline in the XAML file, although this contradicts best practices in separating the presentation and
application logic layers.

How does this work? Every event in XAML can be assigned to a codebehind handler, which is
implemented in a supported .NET language. For example, it's a common task to do something when
a Button is clicked. So, first a Button is declared with the XAML code shown in Example 3-1.

Example 3-1. XAML Button declaration

 <Button

 OnClick="ButtonClickedHandler"

 Name="MyButton"

 Width="50"

 Content="Click Me!" />

Then, a corresponding codebehind handler is declared, and, when the Button is clicked, the handler is
automatically executed (Examples 3-2 and 3-3).

Example 3-2. Button OnClick handler in C#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 void ButtonClickedHandler(object sender, RoutedEventArgs eventArgs)
 {

 MyButton.Width = 100;

 MyButton.Content = "Thank you!";
 }

Example 3-3. Button OnClick handler in VB.NET

 Sub ButtonClickedHandler(ByVal sender As Object,
 ByVal eventArgs as RoutedEventArgs)

 MyButton.Width = 100

 MyButton.Content = "Thank you!"
 End Sub

In both Examples 3-2 and 3-3, the handler will change the width of the Button from 50 to 100 and
change the text displayed on it from "Click Me!" to "Thank you!". All XAML attributes can be
manipulated within code because they are simply XML representations of actual CLR class attributes.
You could just as easily change the button's background color, height, and even its position in code,
just as you could in a traditional Windows application.

It is also acceptable to inline code in the XAML file by specifying the <x:Code> element. All inline code
must be enclosed in the <CDATA[...]]> tag to ensure that the parser does not try to interpret the
code. The XAML code from Example 3-1 and the C# code from Example 3-2 yield Example 3-4.

Example 3-4. Inlining code within a XAML file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <Button

 OnClick="ButtonClickedHandler "

 Name="MyButton "

 Width="50 "

 Content="Click Me! " />

 <x:Code>
 <![CDATA
 void ButtonClickedHandler(object sender, RoutedEventArgs eventArgs)
 {

 MyButton.Width = 100 ;

 MyButton.Content = "Thank you! ";
 }
]]>
 </x:Code>

Application developers familiar with C# or VB.NET will immediately grasp the concept of codebehind
and inline code and will be able to apply their existing skills to develop the code that drives the
application.

XAML developers need to be aware that in order for application logic developers to access specific
XAML elements, the elements must be named using either the Name or ID attribute. Developers will
use one of these attributes to reference and manipulate the element directly from code. In Example
3-1, the Button's Name attribute was declared as MyButton. The same name was then used in both
code examples to reference and directly access the object.

There are three basic rules to follow when declaring XAML elements:

XAML is case-sensitive. Element and attribute names must be properly cased

All attribute values, regardless of data type, must be enclosed in double quotes

The resulting XML must be well-formed

The basic syntax for declaring XAML elements and attributes is:

 <ElementName AttributeName="Value" AttributeName="Value" ... />

A simple login user interface, as shown in Figure 3-1, could be described with the code in Example 3-
5, which illustrates these basic rules. Note the careful attention to case in declaring elements and
attributes, the enclosure of all attribute values (regardless of underlying data type) in double quotes,
and the fact that all elements are well-formed and closed with an end tag.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-1. A simple user-login XAML page

Example 3-5. A simple login user interface

 <StackPanel
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 HorizontalAlignment="Left"

 Margin="10">
 <Label

 Margin="5"

 Content="Username" />
 <TextBox

 Margin="5"

 BorderBrush="Blue"

 BorderThickness="1"

 Background="AliceBlue"

 Foreground="Black"

 Width="200"/>
 <Label

 Margin="5"

 Content="Password" />
 <PasswordBox

 Margin="5"

 BorderBrush="Blue"

 BorderThickness="1"

 Background="AliceBlue"

 Foreground="Black"

 Width="200" />
 <Button

 Margin="10"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Background="AliceBlue"

 Foreground="Black"

 Width="100"

 Height="20"

 Content="Submit" />
 </StackPanel>

Formatting is a matter of style and corporate standards. The format for the examples in this book
was chosen because it is readable and clearly displays the nesting of elements in more complex
markup. Elements can be declared all on one line, or attribute declarations can be split across lines;
formatting is completely up to you. Because XAML is compiled into BAML before deployment, the
amount of space taken up by elements in a XAML file is irrelevant. There are no advantages to using
less space by declaring elements on a single line and no disadvantages to the formatting used in this
book. The elements will become binary representations before deployment, and the whitespace will
have no impact on the footprint of finished applications.

Clearly, XAML is comprised of elements and their attributes. The rest of this chapter will examine
each of these concepts in depth.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2. Elements

All XAML elements are an XML representation of CLR classes, but not all CLR classes are represented
in XAML. Most of those represented are user-interface elements and are ultimately derived from
System.Windows.UIElement, which provides basic visual user-interface properties that are shared by
most XAML elements . A System.Windows.UIElement can render itself, receive input via the keyboard
and mouse, visually size and position its child elements, and raise events.

Not all XAML elements are derived from System.Windows.UIElement. Some, such as LineBreak,
TableColumn, and Document, are derived from System.Windows.Frame-workContentElement.
System.Windows.FrameworkContentElement elements cannot render themselves but are instead
rendered by another class, usually the container in which they have been placed.

Most XAML elements can be organized into five basic categories:

Root elements

Control elements

Panel elements

Shape and geometric elements

Document elements

3.2.1. Root Elements

Root elements function as the page's base container for all user-interface elements. A page is
required to have one root element. The most commonly used root elements are the panel
elementsStackPanel, DockPanel, Canvas, and Gridand Page, a root element that allows you to
declaratively control a number of the properties of the window containing the XAML page. To be
considered a root element, the element must be a container for at least one other element. (When
displaying XAML output in XamlPad, you don't have to include a root element because XamlPad
provides it on your behalf.) You can create custom root elements by deriving new classes from Page
or Window and exposing them as XAML elements.

The root element must contain a reference to the appropriate namespace (in most cases, the default
Avalon namespace, http://schemas.microsoft.com/winfx/avalon/2005). As with all XML documents,
unless otherwise specified, it is assumed that all elements in the page are associated with the default
namespace declared on the root element. The declaration in XAML is the same as in any XML
document.

 <Page xmlns="http://schemas.microsoft.com/winfx/avalon/2005" .../>

http://schemas.microsoft.com/winfx/avalon/2005
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2.2. Control Elements

Control elements handle user interaction. Controls are interactive and allow the user to enter data,
make choices, and perform other interactive tasks. They can be broken up into five categories:
simple controls, content controls, item controls, header item controls, and header content controls.
They are differentiated by the attributes they support, namely Content, Headers, and Items. Attribute
support is determined by the underlying CLR class represented by the XAML element. Even if you
don't use the Header attribute supported by a header item control, it doesn't become an item control
because the CLR class it represents still has a Header whether or not you assign it a value. Table 3-1
summarizes this information neatly.

Simple controls

Derive directly from the System.Windows.Control class and do not have Content, Items, or
Header attributes. Examples of simple controls are HorizontalScrollBar, VerticalScrollBar,
Frame, TextBox, and RichTextBox.

Content controls

Have a Content attribute, but no Items or Header attributes. Content controls are restricted to
only one element as its content, though that content may be an element (such as a Panel) that
can contain more than one element. Examples of content controls are Button, RepeatButton,
Label, RadioButton, CheckBox, ListBoxItem, GroupItem, StatusBarItem, ToolTip, ScrollViewer,
and Window.

Item controls

Have an Items attribute, but no Header or Content attributes. Item controls expose a list of
elements, usually offering you a choice. Item controls include ListBox, ComboBox, Menu,
ContextMenu, RadioButtonList, and TabControl.

Headeritem controls

Have an Items attribute and a Header attribute but no Content attribute. The Header attribute
determines the label for the Items, and the Items attribute contains child elements. The Items
attribute is implicitly declared as a sequence of child elements that are not assigned to it. The
following declaration of a MenuItem shows how this works:

 <MenuItem Header="First Menu Item">
 <MenuItem Header="First Child Item" />
 <MenuItem Header="Second Child Item" />
 </MenuItem>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Header item controls include MenuItem and ToolBar.

Headercontent controls

Have a Header attribute and a Content attribute, but no Items attribute. Like a content control,
the header content control may contain only one child element in its Content attribute. Header
content controls include Expander and TabItem.

Table 3-1. Attributes supported by control type

 Content Header Items

Simple N N N

Content Y N N

Item N N Y

Header item N Y Y

Header content Y Y N

3.2.3. Panel Elements

Panel elements handle page layout and act as containers for elements, such as controls or other
panels. Some panel -derived elements are used as root elements, but the primary purpose of the
panel is to provide support for layout and placement of elements on the page. Some panel classes
are intended for designing the user interface, while others are special panels designed specifically for
special layout scenarios. An example is the bullet panel, which is used specifically to display only two
child elements (usually a text element and a glyph representing a checkbox or a radio button), and is
used as a component of other elements such as RadioButton and CheckBox. When you declare a
RadioButton, a BulletPanel is one of the underlying components that is rendered on the screen.

The panel elements designed for user-interface design are DockPanel, StackPanel, Canvas, WrapPanel,
and Grid.

3.2.4. Shape and Geometric Elements

Shape and geometric elements represent 2-D vector graphics . Shapes derive from the Shape class
and represent predefined geometric shapes. WPF shapes available for use with XAML are Ellipse,
Line, Path, Polygon, Polyline, and Rectangle. Shapes are a type of UIElement, which means they can
be used inside panels and most other controls.

Geometric elements, while also representing 2-D vector graphics, are more flexible than shape
elements and can also be used for hit-testing and clipping purposes. Geometry elements can be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

simple vector graphics such as circles or polygons, or more complex elements comprised of Bezier
lines and arcs. Geometries cannot render themselves. They must be drawn by another element, such
as Drawing or Path. The attributes common to shapeFill, Stroke, and StrokeThicknessare attached
to the element that draws the geometries rather than the geometry element itself. Geometry
elements are CombinedGeometry, LineGeometry, EllipseGeometry, GeometryGroup, PathGeometry,
RectangleGeometry, PathSegment, ArcSegment, LineSegment, BezierSegment, QuadraticBezierSegment,
PolyQuadraticBezierSegment, PolyLineSegment, PolyBezierSegment, StartSegment, and CloseSegment.

There are some similarities between respective shape and geometric entities. For example, Ellipse
and EllipseGeometry provide the same basic functionality, i.e., both declare an ellipse. However, the
way in which these elements are interpreted differs. An Ellipse is a standalone element. Its
attributes provide all the information necessary to render a complete ellipse. EllipseGeometry,
however, does not. Because it is designed to be a part of an ordered collection of geometric types,
EllipseGeometry relies on attributes defined on the element appearing before it in the collection.
Similarly, attributes assigned to EllipseGeometry will be used to render the next geometry instance in
the collection. This trait is shared by all the geometry objects and differentiates them from their
Shape-based counterparts.

3.2.5. Document Elements

Document elements handle document presentation. Documents are categorized as either flow or
fixed. The FixedDocument element is designed to be What You See Is What You Get (WYSIWYG) and
is intended to appear in all formats (print, browser, application) with exactly the same layout.

A FlowDocument element provides more flexibility in appearance to enhance readability. Flow
documents dynamically reformat content based on a variety of factors, including screen and page
size, font size, and optional user preferences. Flow documents are comprised of one or more
elements derived from Block or Inline. Block elements such as Block, Figure, Floater, List,
ListItem, Paragraph, Section, Table, and TableCell are used to organize and format blocks of text.
Inline elements are used to format text within a block. Inline elements are Bold, AccessKey,
LineBreak, Hyperlink, Italic, Subscript, Superscript, and Underline.

Some of these elements might look familiar, such as Paragraph, Table, and Italic. Similar formatting
elements exist in other user-interface markup languages, such as <p>, <table>, and <i>, respectively,
in HTML. These elements are virtually identical in execution but have structural differences as well as
an abundance of attributes in XAML that do not exist in their HTML counterparts.

While the core syntax of XAML is very similar to markup languages such as HTML, XAML user-
interface elements are not restricted to containing traditional content. For example, a Button is not
required, nor restricted, to present text-based content as a prompt. The flexibility of XAML and its
object-oriented nature offer unlimited possibilities. You can just as easily decorate the face of a
Button with any UIElement-derived element. Example 3-6 declares three circlesdefined by an Ellipse
element with equivalent x- and y-axis radiias the content element of a Button. While content control-
derived classes may only have one child element, that child element may contain additional elements,
such as the DockPanel or StackPanel.

Example 3-6. Using alternate elements as the content of a Button

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <StackPanel xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 HorizontalAlignment="Center"

 Margin="10">
 <Button

 Width="50"

 Height="100">
 <DockPanel>

 <Ellipse Margin="5"

 DockPanel.Dock="Top"

 Stroke="Black"

 RadiusX="10"

 RadiusY="10"

 Fill="Red" />

 <Ellipse Margin="5"

 DockPanel.Dock="Top"

 Stroke="Black"

 RadiusX="10"

 RadiusY="10"

 Fill="Yellow" />

 <Ellipse Margin="5"

 DockPanel.Dock="Top"

 Stroke="Black"

 RadiusX="10"

 RadiusY="10"

 Fill="Green" />
 </DockPanel>
 </Button>
 </StackPanel>

The result of evaluating Example 3-6 is shown in Figure 3-2.

Figure 3-2. Defining a content control with multiple child elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3. Attributes

Attributes are the XML representation of the properties of an element's corresponding CLR class. The
Width attribute of the XAML Button element corresponds directly to the Width property of the
System.Windows.Button class. To show the correlation between XAML and CLR classes, Examples 3-7
and 3-8 declare a Button instance and its attributes in both XAML and C#.

Example 3-7. Button declared in XAML

 <Button

 Width="100"

 Name="myButton"

 Height="20"

 Content="This is my button" />

Example 3-8. Button declared in C#

 Button myButton;

 myButton.Width=100;

 myButton.Height=20;

 myButton.Content = "This is my button";

As with the XAML tags for elements, attributes are spelled exactly the same as their corresponding
CLR class properties. (Width = Width, Content = Content . . . You get the picture.)

There are two types of XAML attributes. The first, dependency properties, are public static read-only
fields on CLR classes that are derived from DependencyProperty and have declared CLR accessor
methods. In other words, the value of dependency properties can be dependent on (hence the name)
other variables in CLR classes and, therefore, can only be accessed with a public get or set accessor
method to be evaluated properly.

Dependency properties are like stock certificates. The stock certificate represents a value (money),
but the actual amount of money it is worth (its value) is determined by external calculations and can
change at nearly any time. To determine the value of your stock certificate, you must consult the
stock exchange and do some multiplication. Dependency properties can also be based on external
resources and often rely on calculations to determine their value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dependency property values are determined from a number of different places. The WPF property
system searches for the value from the following places in this order:

Storyboards or event triggers that start an animation; property values set by an animation
override even local values

Local value (i.e., <Object Property="value">)

Property triggers

TemplatedParent's template (i.e., that template includes <Setter>)

Style property

ThemeStyle

Inheritance (from your parent element, not your superclass)

DefaultValue specified when you registered the property (or override metadata)

These attributes provide support for value expressions, property invalidation, default values,
inheritance, data binding, animation, and styling. The property system is complex, so WPF provides
simple get and set accessor methods to manipulate these attributes.

The second type of attribute supported in XAML is the common language runtime property . Common
language runtime properties are standard read/write CLR class properties that can be accessed
directly and do not require get or set accessor methods, although they generally have them.

Both dependency properties and common runtime properties are accessed in XAML using the same
techniques. The difference between them is important only when you are using more advanced
techniques, such as defining styles or triggers that act upon a specific attribute. Some attributes of
elements must reference a dependency property, so you need to know which attributes are
dependency properties and which are not.

Regardless of their underlying types, all XAML attributes can be assigned in one of two ways. They
can be assigned inline, as part of the element declaration, or they can be explicitly declared as nested
elements within the element being described. As a general rule, complex attributes must be declared
explicitly, while simple attributes can be defined inline, as shown in Example 3-9. Simple attributes
are those whose data types are primitives, such as String, Integer, and Double. Enumerations are
also declared inline, using a String representation of the name of the enumerated value. All inline
attribute declarations must be enclosed in double quotes, regardless of the underlying data type of
the property being described. You don't have to enclose attributes of type String in two sets of
quotes. String is sort of the exception to the rule, because it is, after all, already a String.

Example 3-9. Inline declaration of a simple attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <Button
 Content="Click Me" />

Complex attributes are defined as a CLR class or are of type struct. They are declared explicitly, as
shown in Example 3-10. In this example, GeometryDrawing has two complex attributes: Pen and
Geometry. Neither attribute can be specified using abbreviated syntax, so it is necessary to explicitly
declare them. The exception to this rule is the specification of child elements, which are declared by
using standard XML mechanisms without the name of the attribute. This is illustrated in Example 3-
10, in which two instances of EllipseGeometry are implicitly declared as children of GeometryGroup. It
is not necessary to specify child elements as a complex attribute by name. Elements nested between
the opening and closing tags of an element are assumed to be the children of that element and are
automatically added to the appropriate container property according to the CLR class, usually the
Children or InternalChildren property of the parent element.

Example 3-10. Explicit declaration of a complex attribute

 <GeometryDrawing

 Brush="Blue" >
 <GeometryDrawing.Pen>
 <Pen

 Thickness="1"

 Brush="Black" />
 </GeometryDrawing.Pen>
 <GeometryDrawing.Geometry>
 <GeometryGroup>
 <EllipseGeometry

 RadiusX="0.2"

 RadiusY="0.45"

 Center="0.5,0.5" />
 <EllipseGeometry

 RadiusX="0.45"

 RadiusY="0.2"

 Center="0.5,0.5" />
 </GeometryGroup>
 </GeometryDrawing.Geometry>
 </GeometryDrawing>

Abbreviated syntax must sound like jabberwocky at this point, but it's really a pretty neat concept. It
uses a predefined format, such as CSV (comma-separated values), to essentially declare the
arguments that will be passed to the appropriate class constructor beneath the covers. You can think
of the String definition as the list of arguments you'd normally pass to a constructor, except that
sometimes you don't need a comma to separate the arguments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 3-11 first creates an EllipseGeometry in C# and then assigns a Point to be its Center
property by instantiating a new Point and passing the appropriate values to its constructor. The
XAML code in the same example creates an EllipseGeometry and then assigns a Point to be its
Center attribute using abbreviated syntax . The 0.5, 0.5 is parsed by the WPF engine, and the
values are passed to a Point constructor as its arguments.

Example 3-11. Abbreviated syntax and arguments in C#

C#

 EllipseGeometry ellipse;
 ellipse.Center=new Point(0.5, 0.5);

XAML

 <EllipseGeometry
 Center="0.5,0.5" />

A very common example of using abbreviated syntax to declare attribute values is the assignment of
predefined color names to an attribute declared as type Brush, such as the Background attribute.
Rather than forcing you to go through all the typing required to explicitly declare a Brush and set its
color, XAML allows you to just declare the attribute as Red or Green instead.

Figure 3-3 shows the result of declaring a Red SolidColorBrush as the background Brush for a Button
using both abbreviated markup and by explicitly declaring the complex attribute. Example 3-12
shows the code used to declare both elements.

Figure 3-3. Result of explicit declaration and abbreviated markup
declaration of a Brush attribute on a Button

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 3-12. Explicit declaration of a Brush versus abbreviated markup

 <StackPanel
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 Margin="10 10 10 10">
 <Button

 Width="350"

 Height="30"

 Content="Button with explicitly declared Background Brush">
 <Button.Background>

 <SolidColorBrush Color="Red" />
 </Button.Background>
 </Button>
 <Button

 Width="350"

 Height="30"

 Background="Red"

 Content="Button with a Background Brush declared using abbreviated

 markup"/>
 </StackPanel>

As you can see in Figure 3-3, both buttons are painted with the same background, regardless of the
method used to declare the Brush. Abbreviated syntax is typically used because it requires less
typing. There are no advantages to using explicit syntax in most cases where abbreviated syntax is
available, and it's less typing for you.

A more complex example is the common use of abbreviated markup syntax to declare elements of
the type Point. Point is a common, complex attribute that is used in the declaration of almost every
geometric XAML element. You can use the abbreviated markup syntax for a Point element wherever
an element of type Point is declared. You'll notice in Example 3-13 that EllipseGeometry has several

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attributes. While RadiusX and RadiusY are Double values, the Center attribute for an EllipseGeometry
is actually a complex attribute of type Point. In its abbreviated syntax, Point accepts two comma-
separated values representing the X and Y positions, respectively. Example 3-13 shows different
ways of using Point (in this case, it is used through the Center attribute).

Example 3-13. Example of abbreviated markup versus explicit syntax

 <GeometryGroup>
 <EllipseGeometry

 RadiusX="0.45"

 RadiusY="0.2"

 Center="0.5,0.5"/>
 <EllipseGeometry

 RadiusX="0.2"

 RadiusY="0.45">
 <EllipseGeometry.Center>
 <Point

 X="0.5"

 Y="0.5" />
 </EllipseGeometry.Center>
 </EllipseGeometry>
 </GeometryGroup>

Elements that can be declared using abbreviated markup syntax are specifically noted in Part III.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4. Attached Properties

A few XAML elements have attributes that are declared in other elements rather than in the element
itself. These attributes are called attached properties . Attached properties are generally used to
position elements within a parent element. Two elements with attached properties are Grid and
DockPanel. Grid uses attached properties to describe the row and column in which an element should
be contained. DockPanel uses attached properties to describe the location within the panel where an
element should be placed.

Attached properties can be set on any element that derives from
DependencyObject. UIElement derives from DependencyObject, so the
requirement is met by most XAML elements.

Attached properties are declared in an element by using a reference to the element and the attribute
being declared in the following manner: AttachPropertyProvider.PropertyName. For example, Grid
has two attached properties: Row and Column. An element contained within a specific row/column
combination in a grid would specify the row as an attribute with the name Grid.Row and the column
similarly as Grid.Column. Example 3-14 describes the use of these attached properties.

Example 3-14. Using the attached properties of Grid

 <Grid
 ShowGridLines="true">
 <ColumnDefinition

 Width="50 "/>
 <ColumnDefinition

 Width="50 "/>
 <RowDefinition

 Height="100 " />
 <RowDefinition

 Height="25 " />
 <RowDefinition

 Height="25 " />
 <TextBlock
 Grid.Column="0 "

 Grid.Row="0 ">Col 0, Row 0
 </TextBlock>
 <TextBlock
 Grid.Column="1 "

 Grid.Row="0 ">Col 1, Row 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </TextBlock>
 <TextBlock
 Grid.Column=" 0 "

 Grid.Row="1 ">Col 0, Row 1
 </TextBlock>
 <TextBlock
 Grid.Column="1 "

 Grid.Row="1 ">Col 1, Row 1
 </TextBlock>
 </Grid>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.5. Binding Properties

Another mechanism in XAML that can be used to declare the value of attributes is a bind declaration .
A bind declaration allows you to set an attribute's value by referencing the value of another element.
Bind declarations must be attached to a specific dependency property of a target element. Remember
that dependency properties are static read-only properties of a CLR class that are exposed only
through get and set accessor methods to support concepts such as binding. Properties are bound
together in a bind declaration using the Binding element.

Binding elements are used to bind the source to target elements. If the dependency properties in the
source elements change when the application runs, the dependency properties in the target elements
will change as well. Basically, you're telling an attribute that its value should always be determined by
evaluating some other attribute or data source. It's like assigning a value to one variable by assigning
it to another, as shown in the following example:

 int a = 1;
 int b;
 b = a;

The difference between code-based variable assignments and XAML binding is that in XAML, the
association is permanent. The assignment of b = a in the code example happens only once, and, if a
changes later, b doesn't follow suit. In XAML, the Binding keyword ties the values together
permanently.

The syntax for a Binding element is as follows:

 <ElementName Attribute="{Binding Path=SimpleProperty, Mode=OneTime} />

The curly braces are a general indicator to the parser that the value contained in the braces is not a
simple value. Instead, the first keyword within the braces indicates the type of special handling
needed. The Binding statement at the beginning of the string indicates a binding declaration.

An example of how binding works is when you are tying together the content of two different
elements, such as a Button and a TextBlock . In Example 3-15 , every time the Button is clicked, the
C# code (Example 3-16) in its codebehind handler will increment a static counter and change the
content of the Button to include that count. The TextBlock will bind its own content attribute to the
content attribute of the Button , so every time the Button is clicked, it too will change its
contentautomagically through the use of the Binding element.

Example 3-15. Binding attributes: XAML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"

 x:Class="BindExample.Page1">
 <StackPanel >
 <Button

 Width="150"

 Content="You have clicked 0 times!"

 Name="MyButton"

 Click="ButtonClicked"/>
 <TextBlock>
 <TextBlock.TextContent>
 <Binding

 ElementName="MyButton"

 Path="Content"/>
 </TextBlock.TextContent>
 </TextBlock>
 </StackPanel>
 </Page>

Example 3-16. Binding attributes: C#

 using System;
 using System.Windows;
 using System.Windows.Controls;
 using System.Windows.Navigation;
 using System.ComponentModel;

 namespace BindExample
 {
 public partial class Page1 : Page
 {
 static int clickCount = 0;
 void ButtonClicked(object sender, RoutedEventArgs e)
 {
 MyButton.Content="You have clicked " + ++clickCount + " times!";
 }
 }
 }

After compiling the application and running it, the content of MyButton is appropriately, "You have
clicked 0 times!" (Figure 3-4).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Clicking on the Button executes the ButtonClicked handler detailed in Example 3-16 . The counter
increments and the Content of the Button is changed to include the count. Notice that nowhere in the
code do you touch the TextBlock declared in Example 3-15 . The Content of that TextBlock is bound
to the Button 's Content attribute by the Binding element, and whenever it changes, so will the
content of the TextBlock . Clicking on the Button a few more times results in Figure 3-5 .

You might think that this isn't very useful. Binding content attributes of one element to another isn't
something you'll do very often, but the Binding element

Figure 3-4. Binding example on initial run

Figure 3-5. Binding example after a few clicks

can also be used for more common scenarios, such as binding a ListBox to an XML data source and
then binding the attribute of a TextBlock to the selected value in the ListBox . Example 3-17
demonstrates binding an element to an XML data source.

Example 3-17. Binding to an XML data source

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <Page xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005">
 <StackPanel >
 <StackPanel.Resources>
 <XmlDataSource
 x:Key="UserData"
 XPath="/Users">
 <Users xmlns="">
 <User ID="1">
 <Title>CEO</Title>
 <Name>Elisabeth</Name>
 </User>
 <User ID="2">
 <Title>CTO</Title>
 <Name>Galina</Name>
 </User>
 <User ID="3">
 <Title>CSO</Title>
 <Name>Donald</Name>
 </User>
 <User ID="4">
 <Title>CFO</Title>
 <Name>Victoria</Name>
 </User>
 <User ID="5">
 <Title>CIO</Title>
 <Name>Korey</Name>
 </User>
 </Users>
 </XmlDataSource>

 <DataTemplate x:Key="UserDataTemplate">

 <TextBlock FontSize="Small" Foreground="Red">
 <TextBlock.TextContent>

 <Binding XPath="Title"/>
 </TextBlock.TextContent>
 </TextBlock>
 </DataTemplate>
 </StackPanel.Resources>
 <ListBox

 HorizontalAlignment="Left"

 Margin="10"

 Width="100"

 Height="100"

 Name="MyListBox"

 SelectedValuePath="Name"

 ItemsSource="{Binding Source={StaticResource UserData}, XPath=User}"

 ItemTemplate="{StaticResource UserDataTemplate}"/>
 <TextBlock

 HorizontalAlignment="Left"

 Margin="10">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <TextBlock.TextContent>

 <Binding ElementName="MyListBox" Path="SelectedValue" />
 </TextBlock.TextContent>
 </TextBlock>
 </StackPanel>
 </Page>

In Example 3-17 , there are three uses of the Binding element. It is first used as the value of the
ListBox 's ItemsSource attribute. This declaration tells the ListBox that it should get its items from the
StaticResource UserData and to use the XPath User to determine what an item consists of. The

second use of the Binding element, the ItemTemplate value, tells the ListBox how to display the data.
The UserDataTemplate tells the ListBox that each item should be displayed as a text block with a
small, red font and that the value shown is the User attribute Title (specified by the XPath=" Title "

declaration).

The final use of the Binding attribute appears within the TextBlock declaration. It binds the content of
the TextBlock to the SelectedValue attribute of MyListBox . The great thing about this particular use

of the Binding attribute is that there's no code necessary. When a User is selected from the ListBox ,
the TextBlock Content will automatically update to reflect that user's Name (Figure 3-6). The
SelectedValuePath in the ListBox determines what value is displayed in the TextBlock when the
selection changes.

Figure 3-6. Result of evaluating Example 3-17 in XamlPad

Basically, the ability to bind the attributes of an element to other elements and even data sources
provides a non-coding method of manipulating data and display.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.6. codebehind

The concept of codebehind has been mentioned but not fully explored yet. You've already noted that
event handlers can be assigned to elements and implemented in code and that the attribute name
must exactly match the handler name in code. The event handlers specified by name as attributes for
controls are associated with the codebehind in a C# or VB.NET file during the compilation process.
The compiler generates a partial class for XAML and then assembles it with the code, which defines
the rest of the class in a codebehind file. This allows the two pieces to be tied together when the code
is interpreted within the runtime engine.

But there are other things that can be accomplished in code besides handling events. Many
applications require initialization of data sources, or automatically adding fields to the user interface
depending on the user's role. These things cannot be done in XAML; they must be done
programmatically.

Every XAML application represents the declaration of a partial CLR class. Part of the class is declared
using XAML, and the rest of it can be declared in a codebehind file using C# or Visual Basic. The
implementation can then programmatically modify the user interface or interact with other systems
such as a database or remote application to accomplish the application's designated task.

As with event handlers, the name of the class assigned as the implementation class for a XAML
application must exactly match, including the namespace. For example, the XAML class declaration in
Example 3-18 referencing the StartPage class with a namespace of MyNameSpace exactly matches the
name of the class in Example 3-19. Note that the Page element in the XAML file has no other
elements. The TextBlock and Button seen in Figure 3-7 are the result of programmatically adding the
two elements to the Page in the C# codebehind implementation.

Example 3-18. XAML declaration of StartPage.xaml

 <Page xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"

 x:Class="MyNameSpace.StartPage"

 Loaded="Init" />

Example 3-19. C# implementation of StartPage class within
StartPage.xaml.cs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using System;
 using System.Windows;
 using System.Windows.Controls;
 using System.Windows.Navigation;

 namespace MyNameSpace
 {
 public partial class StartPage : Page
 {
 TextBlock txtElement;
 StackPanel rootPanel;
 Button aButton;
 void Init(object sender, EventArgs args)
 {
 rootPanel = new StackPanel();
 txtElement = new TextBlock();
 aButton = new Button();

 txtElement.TextContent = "Some Text";

 aButton.Content = "Press me";
 Child = rootPanel;
 rootPanel.Children.Add(txtElement);
 rootPanel.Children.Add(aButton);
 }
 }
 }

In Example 3-19, you can see that a StackPanel is declared as rootPanel, indicating that it will be the
first (and only) child of Page. Page is only allowed a single child of type UIElement, so all other
elements to be displayed on the page will have to be added to the StackPanel. The C# code in this
example is equivalent to the XAML code in Example 3-20.

Figure 3-7. Programmatic creation of a XAML application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 3-20. XAML declaration to produce Figure 3-7

 <Page xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 xmlns:x=http://schemas.microsoft.com/winfx/xaml/2005 >
 <StackPanel>

 <TextBlock>Some Text</TextBlock>

 <Button Content="Press me" />
 </StackPanel>
 </Page>

If it can be done in XAML, it can be done programmatically. Every XAML element is accessible from
C# or Visual Basic and can be manipulated within event handlers or from within the class's
implementation. This provides you with the means to add or remove elements from the user
interface, allows for localization, and offers the ability to dynamically build a user interface based on
data-driven principles.

While XAML was designed to separate the presentation layer from the application logic, its
representative CLR classes are available to the programmer and can be used to build an application
in the same way traditional Windows Forms or .NET applications are built.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. Layout and Positioning
One of the most important facets of user-interface design is the layout and positioning of elements on
the page. The user interface must be pleasing to the eye without being cluttered, and it must
enhance productivity through ease of use. Elements should be paired with visual clues such that their
use is intuitive, which reduces the amount of learning time required.

One of the primary mechanisms for building an intuitive, usable user interface is layout elements.
Layout elements position elements on the screen and insure that they are grouped together in a way
that enhances readability. XAML offers a plethora of options for page layout and user-interface
construction. Margins, padding, and panels provide basic layout capabilities that can be combined to
position elements exactly where you want them on the page.

The largest hurdle to building a user-interface layout is the variation in screen resolution and size
among end users. This is especially true for applications loaded in a web browser. There are several
mechanisms available through scripting and CSS to counter the layout problems inherent in serving a
wide variety of screen resolutions and sizes .

XAML addresses these issues by dynamically sizing elements relative to the size of the page in which
they are placed. All XAML elements will stretch to fit their entire container, unless you indicate
otherwise. If the default container is a page 800 pixels wide, then all elements added to the page will
size themselves to be 800 pixels wide. Similarly, if the page is resized, the elements will dynamically
resize themselves to fit the page.

While this resizing behavior is needed to handle varying window sizes, it isn't necessary for elements
to take up the entire screen. This chapter examines the XAML elements and attributes that control
the layout and size of elements on the page while maintaining the flexibility that dynamic sizing
offers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1. StackPanel and DockPanel

The two most commonly used Panel subclasses are StackPanel and DockPanel. Both are used for
relative positioning of elements and automatically handle placement of elements based on the order
in which they are declared.

The differences between the two types of Panel can be summed up as follows:

StackPanel

Defaults to automatically rendering elements in the order in which they are declared in the
XAML file, from top to bottom.

DockPanel

Defaults to automatically rendering elements in the order in which they are declared in the
XAML file, from left to right.

The attached attributes of DockPanel can be used to alter the relative positioning of child
elements.

The concept is best illustrated by recreating the user login interface (from Chapter 3) using both
types of panels. The result is shown in Figure 4-1. The elements of this user login interface are each
added in the following order:

The Username Label element1.

The username TextBox2.

The Password Label element3.

The password PasswordBox4.

The Submit Button element5.

Figure 4-1. Positioning elements with StackPanel and DockPanel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The StackPanel, indicated by the black-bordered area in Figure 4-1, stacks elements from top to
bottom as they are added. The DockPanel, indicated by the lighter-bordered area in Figure 4-1,
positions them from left to right as they are added. There is no additional formatting nor any
positioning attributes specified, so the default values are active, which gives the interface a very
strange look (especially in the DockPanel).

The default Orientation for StackPanel is Vertical, but it can be set to Horizontal. Changing the
Orientation of the StackPanel to Horizontal will cause the elements to be stacked from left to right
rather than from top to bottom.

DockPanel can be further manipulated in terms of the way elements are stacked within the Panel. For
example, elements can be "docked" at the top, which will cause them to expand horizontally to fill the
width of the DockPanel. Elements can be docked at the left or right, which will cause them to expand
vertically to fill their allocated space and align either their left or right edges with the DockPanel.
Elements can also be docked at the bottom, which will cause them to align their bottom edges with
the bottom of the DockPanel and expand horizontally to fill their allocated space. Elements use the
attached property DockPanel.Dock to determine where they will be docked.

Because elements are rendered in the order in which they are added, using the positioning of
DockPanel's properties makes the values relative to the last element added. For example, if the first
element added specifies a DockPanel.Dock attribute as Top and the second also declares Top, the
second element docks itself at the bottom edge of the first element because that is the top of the
layout for the second element. Figure 4-2 illustrates this concept.

Figure 4-2. Effects of specifying DockPanel.Dock="Top"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you might expect, changing the value of DockPanel.Dock from Top to Bottom for all four elements
in Figure 4-2 does not change much but the order. When all elements specify
DockPanel.Dock="Bottom", Element #1 appears on the bottom, Element #2 above it, and so on. You

can probably guess what happens if all elements specify Left for DockPanel.Dock, as well as Right.
Elements are rendered in order from left to right and right to left, respectively.

The real fun begins when you start mixing and matching all four values to rearrange your user
interface. For example, specifying Left, Right, Top, and Bottom as DockPanel.Dock values for each of
the four elementsin orderresults in a fairly orderly interface, shown in Figure 4-3.

While it's orderly, it may be somewhat of a surprise to see that Element #3 is docked at the top of
the screen and does not appear to be docked relative to Element #1. It actually is relative to Element
#1 and Element #2, but both these elements have taken up all the layout space on the left and right
edges, according to their DockPanel.Dock values. That leaves only the area between the two elements
for Element #3 and Element #4 to occupy.

Figure 4-3. Mixing and matching DockPanel.Dock values

If the values of DockPanel.Dock are reversed so that Element #1 specifies Top and Element #2
specifies Bottom, then Element #3 declaring Left will touch the left side of the panel but between
Element #1 and Element #2. This leaves Element #4 to declare Right, which positions it against the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

right edge of the panel, but like Element #3, between Elements #1 and #2. Figure 4-4 shows the
results of switching the values.

Figure 4-4. Mixing and matching DockPanel.Dock values again

The last element added will occupy whatever space remains; that's why Element #4 always appears
bigger than Element #3, even though intuitively it seems that they should be the same size.

Example 4-1 uses Border elements around the user-login interface elements to illustrate the effects
of specifying the attached attribute DockPanel.Dock on elements added to the DockPanel. Figure 4-5
shows the result of evaluating Example 4-1 with XamlPad.

Example 4-1. Using DockPanel.Dock to position elements

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005">
 <Border

 BorderBrush="Black "

 BorderThickness="1 ">
 <DockPanel>
 <Border

 DockPanel.Dock ="Top "

 BorderBrush="Red "

 BorderThickness="1 ">

 <Label>Username Label </Label>
 </Border>
 <Border

 DockPanel.Dock ="Right "

 BorderBrush="Red "

 BorderThickness="1 ">

 <TextBox>username@example.com</TextBox>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </Border>
 <Border

 DockPanel.Dock ="Left "

 BorderBrush="Red "

 BorderThickness="1 ">

 <Label>Password Label </Label>
 </Border>
 <Border

 DockPanel.Dock ="Top "

 BorderBrush="Red "

 BorderThickness="1 ">

 <TextBox>This is the password box </TextBox>
 </Border>
 <Border

 DockPanel.Dock ="Bottom "

 BorderBrush="Red "

 BorderThickness="1 ">
 <Button

 Content="Submit " />
 </Border>
 </DockPanel>
 </Border>
</Page>

This user-login interface isn't looking quite like it should, however, even when using a DockPanel to
position elements. StackPanel and DockPanel are useful for the general positioning of elements, but
to fine-tune the layout of a user interface, you must specify additional attributes such as Width and
Alignment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2. Using Width and Alignment

By default, XAML renders elements on the screen in the order in which they are defined within the
XAML file. If the TextBox in Example 4-2 is added to the StackPanel before the first Label, then it will
appear as the first element and the Label will appear after it. By default, all elements have a width
equal to the container element of which they are children. Using the login page example from
Chapter 3 without specifying any kind of formatting or layout restrictions yields the user interface in
Figure 4-6.

Figure 4-5. Using DockPanel.Dock to position elements

Example 4-2. Example code for user login screen with no layout or
formatting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005">
 <StackPanel
>

 <Label>Username</Label>

 <TextBox>username@example.com</TextBox>

 <Label>Password</Label>
 <PasswordBox></PasswordBox>

 <Button Content="Submit" />
 </StackPanel>
</Page>

This is neither aesthetically pleasing nor is it particularly usable. There is no clear delineation between
elements, and it is hard on the eyes. The first thing to do is limit the width of the elements to make
them easier to read. There are three options to accomplish this: define the Width attribute on all the
elements added to the StackPanel, limit the width of the StackPanel itself, or change the
HorizontalAlignment of the StackPanel. The second option will force all the elements in the
StackPanel to be the same width. While this is a viable option, it may not be appropriate for every
situation, especially if you don't want all the elements to be the same width as the TextBox. The best
option in this case is to limit the width of each individual element. Note that specifying the Width of an
element will change its resizing behavior. When a width is set, the element no longer automatically
resizes when its container changes size. Example 4-3 shows how to use Width to constrain the size of
an element.

Figure 4-6. User login screen with no layout or formatting

Example 4-3. Using Width to constrain the size of elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005">
 <StackPanel>
 <Label
 Width="100">Username</Label>
 <TextBox
 Width="150">username@example.com</TextBox>
 <Label
 Width="100">Password</Label>
 <PasswordBox
 Width="150"></PasswordBox>
 <Button
 Width="100"
 Content="Submit" />
 </StackPanel>
</Page>

As you can see from Figure 4-7, it is now possible to clearly delineate between elements, but the
result is still not acceptable. The elements are centered on the page when they really should be left-
justified. That's easy enoughyou can align elements within a container using the HorizontalAlignment
and VerticalAlignment attributes.

Alignment can be a tricky subject because there's more than just left, right, and center, and
alignment interacts with width in strange and mysterious ways. Traditional alignment values act as
you'd expect. StackPanel will align elements on its left edge, its right edge, or centered, based on the
value of HorizontalAlignment. The default value for HorizontalAlignment is Stretch. This forces all
contained elements to stretch themselves (appropriate, isn't it?) to fill the entire width of the panel.

Using a HorizontalAlignment of Stretch and specifying widths on individual elements has interesting
effects. In Figure 4-8, the first element added is a border with a width of 200 and a TextBlock. The
element's width has been rendered correctly, but it is centered in the panel. Elements in a StackPanel
using Stretch as its HorizontalAlignment are positioned centrally in the panel and then stretched
equally to the left and right according to their width. In the third element ("I have no width"), you
can see that if no width is specified, the element stretches to fill the entire panel.

Figure 4-7. Result of using Width to constrain element sizes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 4-8. Specifying widths and HorizontalAlignment=Stretch

The second element added is a Border with no width, so it appropriately fills the width of the panel,
but the TextBlock contained within the Border element has a set width of 100. The TextBlock is
therefore centered and stretched equally to the left and right to fill the specified width of 100. When
using Stretch, remember that elements are stretched from a center point in the StackPanel, not
anchored to the left and stretched across the width of the panel.

There are also some odd effects when specifying a width for only one element using alignments other
than Stretch. Elements with no width will automatically size themselves to their content or to the size
of the element with a specified width, whichever is larger.

The Height and Width of an element take precedence over HorizontalAlignment
and VerticalAlignment. For example, explicitly setting the Width of an element
in conjunction with Stretch as its HorizontalAlignment will result in the Stretch
value being ignored.

Returning to the example interface and applying a Left HorizontalAlignment, as well as specifying
widths for the elements, produces Figure 4-9. While this is certainly closer to the original, the
elements are still bumping up against one another, and the TextBox and PasswordBox are too close to
the left edge of the page. To fine-tune this interface further, you must use the Margin and Padding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attributes.

Figure 4-9. Result of setting HorizontalAlignment to Left

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3. Margins and Padding

If you're familiar at all with CSS, then you're familiar with the concept of padding and margins.
Padding and margins assist user-interface designers in positioning elements and content in elements.
The two attributes are both described by a Thickness element but serve different purposes in layout.

Margin describes the distance between the element and its children or peers. It is used to position
elements relative to other elements. Using abbreviated markup syntax, you can specify its thickness
as a uniform distance around the element, e.g., Margin="20", or as the distance in each individual
direction in terms of left, top, right, and bottom (in that order), e.g., Margin="20, 10, 20, 10".

Margin is one of the elements that does not require commas in its abbreviated
markup. It can be described using either comma- or space-separated values.

Specifying a Margin value on the StackPanel in our user-login example will only change the distance
between the StackPanel and the edges of the Page. To illustrate the concept of Margin, examine
Figure 4-10. A second StackPanel has been added, containing the same elements for the user-login
interface as well as borders to illustrate the Margin property at work. (In order to produce a side-by-
side comparison of two StackPanel elements, both were enclosed in a DockPanel.) The black-bordered
StackPanel has no Margin at all, while the lighter-bordered StackPanel has a uniform Margin of 20
device-independent pixels. You can see the difference in the positioning of the elements in relation to
their children. The Margin of 20 has offset all the elements by 20 pixels, moving them away from the
edge of the StackPanel.

Figure 4-10. Using Margin versus no Margin to lay out elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 4-4 shows the code used to produce Figure 4-10.

Example 4-4. Using Margin to position elements

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005">
 <DockPanel>
 <Border

 BorderBrush="Black "

 BorderThickness="5 ">
 <StackPanel

 HorizontalAlignment="Left ">
 <Label

 HorizontalAlignment="Left "

 Width="100 ">Username </Label>
 <TextBox

 Width="150 ">username@example.com</TextBox>
 <Label

 HorizontalAlignment="Left "

 Width="100 ">Password </Label>
 <PasswordBox

 Width="150 "></PasswordBox>
 <Button

 Content="Submit " />
 </StackPanel>
 </Border>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <Border

 BorderBrush="Red "

 BorderThickness="5 ">
 <StackPanel

 HorizontalAlignment="Left "

 Margin ="20 ">
 <Label

 HorizontalAlignment="Left "

 Width="100 ">Username </Label>
 <TextBox

 Margin ="0 0 0 10 "

 Width="150 ">username@example.com</TextBox>
 <Label

 HorizontalAlignment="Left "

 Width="100 ">Password </Label>
 <PasswordBox

 Margin ="0 0 0 10 "

 Width="150 "></PasswordBox>
 <Button

 Margin ="0 0 0 10 "

 Content="Submit " />
 </StackPanel>
 </Border>
 </DockPanel>
</Page>

Setting the Margin on the StackPanel did nothing for the crowded appearance of its child elements.
That's because the margin of the StackPanel only affects the StackPanel itself, not elements
contained within it. The Margin must be set on every element you wish to reposition in order to
achieve a less-crowded appearance (Figure 4-11).

The disadvantage of specifying a Width for elements is that it can be
detrimental to localization efforts. The word "submit" in English is fairly short,
but in another language it may consist of several words or a much longer
string. Specifying a Width means that the Button will likely need to be sized
according to the longest possible content it will contain; it may look awkward
when using other languages with shorter or longer content strings.

Padding is similar to Margin in most respects, except that it is only exposed on three elements: Block,
Border, and Control. Since Control is the base class for almost all user-input elements, it can be
used on most user-interface elements. The Padding attribute determines the distance between the
outer edge of the control and its child elements. Like Margin, Padding is defined as a Thickness and
can be declared using abbreviated markup syntax. Setting the Padding attribute effectively changes
the element's size to accommodate the additional space separating the edge of the element and its
content.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 4-11. User-login page after applying a Margin to input elements

Figure 4-12 duplicates the user-login panel and uses a border to accentuate the difference between
the elements on the left, which have no Padding attribute specified, and the elements on the right,
which do. The Padding for the elements on the first Label, TextBox, and Button has been specified as
a uniform thickness of 10 (Padding="10").

Figure 4-12. Applying the Padding attribute to the user-login page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Padding attribute increases the size of the elements on the right to accommodate a 10-pixel
distance between the outer edge of the elements and their content.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4. Grid

The Grid element is useful for relative, automatic positioning strategies in which some control over
element placement is required. Grid is similar to Table (just like the HTML Table) and provides
individual cells in which elements can be positioned. Grid is more complex than Table, however, and
should not be treated as a simple Table element. Grid cell sizes can be explicitly declared as a
number of device-independent pixels, as a percentage of the overall available Width and Height, or as
auto-size factors based on their content by using the enumeration Auto.

Grid, like DockPanel, uses attached attributes to position child elements. Grid uses two attached
attributes, Row and Column, to determine placement of child elements within its cells.

Grid uses zero-based indexing when specifying Row and Column placement.

A sample Grid might appear as follows:

Column 0, Row 0 Column 1, Row 0 Column 2, Row 0

Column 0, Row 1 Column 1, Row 1 Column 2, Row 1

To add elements to the Grid, specify which row and column the element is being added to. For
example, to add an element to the cell in Column 1, Row 1, you would declare the element like this:
<ElementName Grid.Column="1" Grid.Row="1" ... />. Example 4-5 shows the positioning of elements

in our user-login interface using a Grid.

Example 4-5. Positioning elements using a Grid

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005">
 <Grid

 ShowGridLines="true " >
 <ColumnDefinition

 Width="Auto " />
 <RowDefinition

 Height="Auto " />
 <RowDefinition

 Height="Auto " />
 <RowDefinition

 Height="Auto " />
 <RowDefinition

 Height="Auto " />
 <RowDefinition

 Height="Auto " />
 <RowDefinition

 Height="Auto " />
 <Label

 Grid.Row ="0 "

 Grid.Column ="0 "

 Width="100 ">Username </Label>
 <TextBox

 Grid.Row ="1 "

 Grid.Column ="0 "

 Width="150 ">username@example.com</TextBox>
 <Label

 Grid.Row ="2 "

 Grid.Column ="0 "

 Width="100 ">Password </Label>
 <PasswordBox

 Grid.Row ="3 "

 Grid.Column ="0 "

 Width="150 "></PasswordBox>
 <Button

 Grid.Row ="4 "

 Grid.Column ="0 "

 Width="100 "

 Content="Submit " />
 </Grid>
</Page>

It's not a very exciting layout because there aren't many child elements, but you can see how to
specify the attached attributes of a Grid, Row, and Column to position elements within a Grid. There is
no need to declare specific cells within the Grid, but elements contained in the Grid must be declared
within the opening and closing tags for the Grid element. Though the elements have been declared in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

order here, there is actually no need to do so. The elements are added based on the declaration of
the Grid's Row and Column attached attributes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.5. Absolute Positioning

Thus far, StackPanel, DockPanel, and Grid elements have been used to position elements on the
Page. Positioning with these Panel elements is a purely relative positioning strategy and offers no
control over the x- and y-coordinate values of the element's position. Like CSS, relative positioning is
used to allow elements to flow and reposition in the event that the page size changes. There are
times, however, when absolute positioning is desired. XAML supports absolute positioning through the
use of the Canvas element.

All elements on a Canvas element must be absolutely positioned or they will stack on top of one
another. Absolute positioning is accomplished using the attached attributes of Canvas, namely Top,
Left, Bottom, and Right.

If specified, the attached attributes Top or Left take priority over Bottom or
Right.

The coordinate system used to position elements places 0,0 in the upper-left corner of the Canvas.
Values specified for Top, Left, Bottom, and Right are relative to the Canvas, not the Page. If the Page
contains only a single Canvas, then the value is relative to both, but only because the Canvas ends up
positioned with 0,0 in the same place as 0,0 on the Page.

So, absolute positioning is actually relative, in an absolute kind of way. An example is probably in
order after that mouthful. Figure 4-13 shows the relativity of absolute positioning. A Canvas has been
added to a Canvas, specifying Top and Left values of 100 and 200, respectively. The unboxed
coordinates are Label elements added to the parent Canvas, while the boxed coordinates are those
added to the second Canvas. The Labels were added with the same Top and Left coordinates, but you
can see that the Labels added to the second (the child) Canvas are offset. The code producing Figure
4-13 is shown in Example 4-6.

Figure 4-13. Canvas inside canvas, illustrating absolute positioning

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 4-6. Canvas inside canvas, showing relative absolute positioning

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005">
 <Canvas>
 <Canvas

 Canvas.Top="100"

 Canvas.Left="200">

 <Label Canvas.Top="0" Canvas.Left="0" Background="Red">0,0</Label>

 <Label Canvas.Top="0" Canvas.Left="100" Background="Red">0,100</Label>

 <Label Canvas.Left="50" Canvas.Top="50" Background="Red">50,50</Label>

 <Label Canvas.Left="100" Canvas.Top="100" Background="Red">100,100</Label>

 <Label Canvas.Left="0" Canvas.Top="100" Background="Red">0,100</Label>
 </Canvas>

 <Label Canvas.Top="0" Canvas.Left="0">0,0</Label>

 <Label Canvas.Top="0" Canvas.Left="100">0,100</Label>

 <Label Canvas.Left="50" Canvas.Top="50">50,50</Label>

 <Label Canvas.Left="100" Canvas.Top="100">100,100</Label>

 <Label Canvas.Left="0" Canvas.Top="100">0,100</Label>
 </Canvas>
</Page>

The rule is that even when using absolute coordinate values to specify the position of an element, the
positioning is relative to its immediate parent element. An element considers its parent's layout area
to be the whole world. Therefore, the positioning is absolute from the viewpoint of the element but
could be relative from the view of the XAML developer. Didn't realize you were going to have to study
philosophy to become a XAML developer, did you?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 4-7 shows how to use a Canvas element to position the elements required for the user-login
interface. Each element must specify at least one of the attached attributes of Canvas in order to
position itself correctly within the Canvas element. An element references an attached attribute by
using the syntax ElementName.AttachedAttribute. In our example, Canvas.Top is declared for each
element, assigning an appropriate value to position the elements on the canvas. The result, shown in
Figure 4-14, is strikingly similar to the one defined using relative positioning with StackPanel.

Example 4-7. Using a Canvas to absolutely position elements

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005">
 <Canvas

 Margin="20 "

 HorizontalAlignment="Left "

 VerticalAlignment="Top ">
 <Label

 Canvas.Top ="10 "

 HorizontalAlignment="Left "

 Width="100 ">Username </Label>
 <TextBox

 Canvas.Top ="30 "

 Margin="0 0 0 10"

 Width="150 ">username@example.com</TextBox>
 <Label

 Canvas.Top ="80 "

 HorizontalAlignment="Left "

 Width="100 ">Password </Label>
 <PasswordBox

 Canvas.Top ="100 "

 Margin="0 0 0 10 "

 Width="150 "></PasswordBox>
 <Button

 Canvas.Top ="150 "

 Margin="0 0 0 10 "

 Content="Submit " />
 </Canvas>
</Page>

Figure 4-14. User-login interface created using Canvas and absolute
positioning

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can mix and match the attached properties of Canvas to position elements exactly where you
want them. By specifying Canvas.Top and Canvas.Left for the text field elements in the user interface
(Example 4-8), the fields will line up, presenting a more typical user interface.

Example 4-8. Aligning elements using multiple attached properties of
Canvas

<TextBox

 Canvas.Top ="10 "
 Canvas.Left="70"

 Margin="0 0 0 10"

 Width="150 ">username@example.com</TextBox>
<PasswordBox

 Canvas.Top ="80 "
 Cavas.Left="70"

 Margin="0 0 0 10 "

 Width="150 "></PasswordBox>

Setting Canvas.Top for each text field element to the same value as that specified for its Label lines
up the elements vertically. Changing Canvas.Left modifies the anchor point of the left edge of the
elements and lines the elements up with their respective labels (Figure 4-15).

Another way to accomplish this task is to group the label and field together in a StackPanel using a
horizontal Orientation and then add the panel to the parent Canvas. This method has the benefit of
aligning the elements in the StackPanel automatically and keeping them together as you move the
panel around the Canvas. Don't forget that the stack panels must specify an absolute location on the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Canvas or they'll stack on top of each other.

Figure 4-15. User interface with labels and elements aligned

Example 4-9 shows possible XAML code for this technique. Notice that the absolute position is not
specified for each element; only the StackPanel has a Canvas.Top declaration.

Example 4-9. Using StackPanel to group elements for absolute
positioning

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005">
 <Canvas

 Margin="20"

 HorizontalAlignment="Left"

 VerticalAlignment="Top">

 <StackPanel Orientation="Horizontal">
 <Label

 HorizontalAlignment="Left"

 Width="100">Username
 </Label>
 <TextBox

 Margin="0 0 0 10"

 Width="150">username@example.com
 </TextBox>
 </StackPanel>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <StackPanel Orientation="Horizontal" Canvas.Top="50">
 <Label

 HorizontalAlignment="Left"

 Width="100">Password
 </Label>
 <PasswordBox

 Margin="0 0 0 10"

 Width="150">
 </PasswordBox>
 </StackPanel>
 <Button

 Canvas.Top="150"

 Margin="0 0 0 10"

 Content="Submit" />
 </Canvas>
</Page>

Unlike most fat-client programming models, individual elements cannot be absolutely positioned on
their own. There are no Left or Right values for controls and elements such as Button, so the only
way they can be positioned on the screen is by adding them to a container such as Canvas that offers
a mechanism for absolute positioning.

Remember that although absolute positioning with elements such as Canvas can aid in designing your
user interface, it can hamper localization efforts (as with hardcoding String values).

Next on the list of topics is styles and how to apply them globally, rather than locally, on each
individual element. Chapter 5 will explore how to harness the power of XAML resources.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. Resources
Every XAML element has a collection of resources . Resources provide a mechanism for defining
common styles or elements that can be reused throughout the user interface. They also configure the
actions that are carried out when a user interacts with a display element.

The benefit of using resources to define reusable, common styles is that modifications can be applied
to one element, but they will take effect throughout the entire application. This reduces the chance of
error and the possibility that an element might be missed when changes are applied. For example,
you may want to define a specific Point from which all geometric shapes will originate. By defining
the Point as a resource and referencing it as the appropriate attribute value of geometric elements,
the origination point can easily be changed in one placethe resource declarationwithout concern for
mistakes made in multiple places throughout the user interface.

Local resources are defined on the element, while global resources are defined on the root element.
Global resources can be used by all elements in the page while local resources are reserved for use
by the element in which they are declared. Regardless of the type of resource (local or global), the
syntax used to declare the resources is the same.

Although every element has a collection of resources, they are usually declared
only on the root element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1. Using Resources

When adding resources, you must add the appropriate namespace to the root element. You'll also
need to give it a name to differentiate it from the default namespace. The default namespace, which
references Avalon, contains the definitions of Avalon elements, such as Button, Page, and StackPanel.
The namespace that must be added to define resources is the XAML namespace and describes the
language itself.

Because resource definitions require the use of XAML-specific tagswhich are not described by the
default namespaceyou must declare a reference to the XAML namespace and use it to prefix those
attributes found only there, such as Key.

The key is a fully qualified attribute comprising the namespace, a colon, and the keyword Key.
Elements defined as a resource must have a declared "key name" to be referenced by other
elements. The value of the attribute is the name by which the resource will be referenced by other
elements.

Resources are added by explicitly declaring elements as children of the Resources attribute of an
element.

In Example 5-1, there are two instances of SolidColorBrush defined as resources: RedBrush and
BlueBrush.

Example 5-1. Using resources to define global styles

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"
 <Page.Resources>
 <SolidColorBrush

 x:Key="RedBrush"

 Color="red"/>
 <SolidColorBrush

 x:Key="BlueBrush"

 Color="blue"/>
 </Page.Resources>
 <StackPanel>
 <Button

 Background="{StaticResource RedBrush}" />
 <Ellipse

 Fill="{StaticResource BlueBrush}"

 Margin="40"

 Width="15"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Height="25"/>
 </StackPanel>
</Page>

Resources must be declared in the file before they can be accessed. This is because the runtime
engine interprets XAML as a stream of binary input and doesn't understand that a resource might be
defined later in the stream. It can't render an element if a resource is required but hasn't yet been
declared. In Example 5-2, the resource RedBrush is referenced before it is declared.

Example 5-2. Illegal use of a local resource

<Button

 Content="Click Me"

 Background="{StaticResource RedBrush}" >
 <Button.Resources>
 <SolidColorBrush

 x:Key="RedBrush"

 Color="Red" />
 </Button.Resources>
</Button>

This will result in an error in XamlPad and, although it will compile using MSBuild, it will raise a
runtime exception. If you absolutely must declare a local resource, you'll have to declare it first, then
explicitly declare the attribute that references the resource. Example 5-3 shows an example of
declaring a local resource and then referencing it from within an explicitly declared attribute.

Example 5-3. Legal use of a resource

<Button Content="Click Me">
 <Button.Resources>
 <SolidColorBrush

 x:Key="RedBrush"

 Color="Red" />
 </Button.Resources>
 <Button.Background>

 {StaticResource RedBrush}
 </Button.Background>
</Button>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are two ways to access a resource: statically and dynamically. An element references the
resource by specifying either the keyword StaticResource or DynamicResource, followed by the key
name of the resource. The two methods differ in how the resource in question behaves during the
course of the application. If the resource can change through an outside source, it should be
accessed dynamically because it will be reloaded and changes will be applied to it. Conversely, static
resources assume that the resource in question will not change and therefore will not be reloaded
during the application's execution.

In Example 5-1, the Button element declared its background color as the resource RedBrush.

Similarly, the Ellipse element specified that its fill attribute should be defined by the resource
BlueBrush.

Resources are hierarchical. Locally defined resourcesthose resources defined with the
elementoverride resources defined for its parent, and so on. When the XAML processor encounters
{StaticResource RedBrush} on the Button, it first checks the Button resources collection. Because
Button does not have a definition of RedBrush (its resource collection is empty), it checks the parent

of the Button, the StackPanel. When it does not find the definition in StackPanel, it checks its parent,
Page, and finds the resource defined. The nature of resources allows you to apply a resource to all
elements in the application simply by defining it on the root element.

The closest resource declaration of the same name for any given attribute will
be the one applied. If RedBrush is declared as a global resource (in

Page.Resources) as a red brush and then declared again locally on a button as
a blue brush, the button will have a blue background. The rule is that local
resources override global resources with the same key.

The most common use of resources is in defining styles and triggers to dynamically alter the
appearance of user-interface elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2. Using Styles

A Style is a set of properties applied to an element that can be used to describe the appearance of
an element. It is used in a similar manner as styles declared in CSS. A style can be applied locally to
a single element, or it can be declared globally and referenced from the element. Styles can also be
declared such that they affect all instances of a given type, such as Button.

A XAML Style is a collection of one or more Setter elements that act upon a specified dependency
property, such as Background or Foreground. Remember that a Key value is required if the style will
be applied by reference to an element. In Example 5-4, the Style MyStyle is declared as the value of

the Style element on the Button, which sets the background, foreground, and width attributes to the
values specified by the Style declaration.

Example 5-4. Example style applied to a Button element

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005">
 <Page.Resources>
 <Style

 x:Key="MyStyle">
 <Setter

 Property="Control.Background"

 Value="Red" />
 <Setter

 Property="Control.Foreground"

 Value="White" />
 <Setter

 Property="Control.Width"

 Value="100" />
 </Style>
 </Page.Resources>
 <StackPanel>
 <Button

 Style="{StaticResource MyStyle}"

 Content="A Red Button"/>
 </StackPanel>
</Page>

Figure 5-1 shows the result of evaluating Example 5-4 in XamlPad.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-1. Application of a global style to a Button

Styles can also be applied to a class of elements by assigning the TargetType attribute of Style to the
desired element type. Example 5-5 shows an example of applying a defined width and height to all
elements of type Button.

Example 5-5. Example Style targeting a specific type of element

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005">
 <Page.Resources>
 <Style

 TargetType="{x:Type Button}">
 <Setter

 Property="Width"

 Value="200" />
 <Setter

 Property="Height"

 Value="50" />
 </Style>
 </Page.Resources>
 <StackPanel>
 <Button

 Content="A Button"/>
 <Button

 Content="Another Button"/>
 </StackPanel>
</Page>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this example, we have omitted the Control prefix from the declared
properties. This is because the style is targeting a specific type, namely Button,
which inherits both properties used in the style (Background and Foreground)
from Control. It is not necessary to prefix the property values when targeting a
specific element type because of scoping rules, unless the property derives
from a class outside the targeted element's hierarchy.

The result of evaluating Example 5-5 is shown in Figure 5-2.

Figure 5-2. Result of evaluating Example 5-5 in XamlPad

In Example 5-5, neither Button element specifies its width or height. As discussed in Chapter 4,
StackPanel defaults to a horizontal alignment value of Stretch. That means that elements added to
the StackPanel with no specified width should fill the width of the panel. Yet when the XAML code in
this example is interpreted, it will display both Button elements as though they have a specified
height and width because the style is applied to all Button elements. Using the Style declared in
Example 5-5 has the same effect as specifying the Width and Height attributes inline on both Button
elements but saves space and makes changes to their appearance faster and with less margin for
error.

Style is an extremely flexible element and, like all XAML elements, it can be extended to suit your
needs. While other elements require code to be extended, Style can be extended purely within XAML
by using the BasedOn attribute.

Extending Style using the BasedOn mechanism is like customizing a new car. You start with a "base"
style and then specify changes such as color, heated seats, power windows, etc., that change the
appearance of the final product. The plant that customizes your car applies all the base attributes to
it but also makes the changes you specified, essentially assigning a new "style" to your car.

This technique is useful when you're given a standard corporate style to work with but are allowed to
modify certain aspects of the style or to define previously undefined attributes. BasedOn allows you to
essentially subclass a Style, much like using the Inherits VB.NET keyword to define a subclass.
Example 5-6 demonstrates the use of BasedOn to extend a Style.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 5-6. Extending a Style using the BasedOn attribute

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005">
 <Page.Resources>
 <Style

 x:Key="MyStyle">
 <Setter

 Property="Control.Width"

 Value="200" />
 <Setter

 Property="Control.Height"

 Value="50" />
 </Style>
 <Style

 x:Key="MyStyle2"

 BasedOn="{StaticResource MyStyle}">
 <Setter

 Property="Control.Width"

 Value="300"/>
 <Setter

 Property="Control.FontWeight"

 Value="Bold" />
 </Style>
 </Page.Resources>
 <StackPanel>
 <Button

 Style="{StaticResource MyStyle}"

 Content="I use MyStyle"/>
 <Button

 Style="{StaticResource MyStyle2}"

 Content="I use MyStyle2"/>
 </StackPanel>
</Page>

As with polymorphism in object-oriented languages, overriding a Property value in a new Style that
has been defined in its BasedOn style applies the new Style's property whenever it is used. If the base
style has not defined the property, then the new property is automatically used when it is referenced.

In Example 5-6, the width of the Button that references MyStyle2 is 300, while the background of the
Button referencing the style MyStyle has a width of 200. However, only the text on the Button that
references MyStyle2 will be bold, because the property Control.FontWeight has not been declared as
part of MyStyle. Figure 5-3 shows the result of evaluating Example 5-6 with XamlPad.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-3. Using the BasedOn attribute to extend a style

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3. Triggers

Triggers allow you to change attributes of an element when a specific action occurs. For example, you
can change the font color of text when the mouse hovers over it, or change the width of a button
once it has been clicked. Triggers can act on single instances of an element, or affect an entire class
of elements.

Triggers are conditional. They are essentially a way to implement standard if...then logic without
writing external code. In other words, a trigger evaluates an attribute and if the current value of that
attribute matches the value specified by the trigger, then the style is applied. If the cursor moves
over a Button, then change the background to green.

Example 5-7 defines a style that targets all elements of type Button. The code adds a TRigger that
will fire when the property Button.IsMouseOver is TRue. Two Setter elements define the attributes we
wish to change when the condition of the trigger is met. In this case, it changes the foreground of
the Button to green and the background to red.

Example 5-7. Using a Trigger to modify the appearance of Button
elements

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005">
 <Page.Resources>
 <Style

 TargetType="{x:Type Button}">
 <Style.Triggers>
 <Trigger

 Property="Button.IsMouseOver"

 Value="true">
 <Setter

 Property = "Foreground"

 Value="Green"/>
 <Setter

 Property = "Background"

 Value="Red"/>
 </Trigger>
 </Style.Triggers>
 </Style>
 </Page.Resources>
 <StackPanel>
 <Button

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Content="My Button" />
 </StackPanel>
</Page>

Example 5-7 will modify the appearance of all Button elements declared in the page. To target only a
specific Button, you must reference the style from the Button element. To do this, you must add a
key name to the trigger and declare it as the Style attribute of the Button. The resulting code is
shown in Example 5-8.

Example 5-8. Using a Trigger to modify the appearance of a single Button

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005">
 <Page.Resources>
 <Style

 x:Key="ButtonTriggers"

 TargetType="{x:Type Button}">
 <Style.Triggers>
 <Trigger

 Property="Button.IsMouseOver"

 Value="true">
 <Setter

 Property = "Control.Foreground"

 Value="Green"/>
 <Setter

 Property = "Control.Background"

 Value="Red"/>
 </Trigger>
 </Style.Triggers>
 </Style>
 </Page.Resources>
 <StackPanel>
 <Button

 Style="{StaticResource ButtonTriggers}"

 Content="My Button" />
 </StackPanel>
</Page>

Example 5-9 demonstrates how to declare TRiggers local to an element by defining the TRiggers
within the local element's Resources attribute. As mentioned previously, local resources override
global resources, so these resources will be applied to the element in which they are defined, but not
to any others.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 5-9. Declaring a local Trigger

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005">
 <Page.Resources>
 <Style

 TargetType="{x:Type Button}">
 <Style.Triggers>
 <Trigger

 Property="Button.IsPressed"

 Value="true">
 <Setter

 Property = "Width"

 Value="300"/>
 </Trigger>
 </Style.Triggers>
 </Style>
 </Page.Resources>
 <StackPanel>
 <Button

 Content="Button with global style" >
 <Button.Resources>
 <Style

 TargetType="{x:Type Button}">
 <Style.Triggers>
 <Trigger

 Property="IsMouseOver"

 Value="true">
 <Setter

 Property="Background"

 Value="Green" />
 </Trigger>
 </Style.Triggers>
 </Style>
 </Button.Resources>
 </Button>
 <Button

 Content="Button with no local style" />
 </StackPanel>
</Page>

Triggers can be used to modify the styles of specific elements, or they can be more generalized. By
defining the TRigger's Property attribute as Control.IsMouseOver, the trigger can target any element
that derives from Control. Assigning the Style attribute of controls as ButtonTriggers will then apply

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the conditional styling to any control. Example 5-10 shows how this use of trigger can be applied to
multiple control elements. All three elements (Button, ComboBox, and TextBox) assign the value of
their Style attribute to the global Style Triggers. As these elements are ultimately derived from

Control, the style is appropriately applied to all of them.

Example 5-10. Using a Trigger to modify the appearance of any Control

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005">
 <Page.Resources>
 <Style

 x:Key="Triggers">
 <Style.Triggers>
 <Trigger

 Property="Control.IsMouseOver"
 Value="true">
 <Setter

 Property = "Control.Foreground"

 Value="Green"/>
 <Setter

 Property = "Control.Background"

 Value="Red"/>
 </Trigger>
 </Style.Triggers>
 </Style>
 </Page.Resources>
 <StackPanel>
 <Button

 Style="{StaticResource Triggers}"

 Content="My Button" />
 <ComboBox

 Style="{StaticResource Triggers}">

 <ComboBoxItem>Item One</ComboBoxItem>

 <ComboBoxItem>Item Two</ComboBoxItem>

 <ComboBoxItem>Item Three</ComboBoxItem>
 </ComboBox>
 <TextBox

 Style="{StaticResource Triggers}">My Text
 </TextBox>
 </StackPanel>
</Page>

Thus far, the examples have concentrated on modifying color attributes for elements, but you can
change other attributes as well, such as Width, Height, or even Content. Changing the content of an
element might be useful if it is image-based, or if you want to provide more detailed information to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the user when the mouse hovers over the element.

Example 5-11 modifies the background color, width, and content of a Button when the mouse hovers
over the element. When the mouse is not over the element, a trigger again modifies the content of
the Button.

Example 5-11. Using a Trigger to modify multiple attributes of a Button

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005">
 <Page.Resources>
 <Style

 x:Key="Triggers" >
 <Style.Triggers>
 <Trigger

 Property="Button.IsMouseOver"

 Value="true">
 <Setter

 Property = "Control.Width"

 Value="150"/>
 <Setter

 Property = "Control.Background"

 Value="Red"/>
 <Setter

 Property = "Button.Content"

 Value="Mouse Over" />
 </Trigger>
 <Trigger

 Property="Button.IsMouseOver"

 Value="false">
 <Setter

 Property = "Button.Content"

 Value="Mouse Out" />
 </Trigger>
 </Style.Triggers>
 </Style>
 </Page.Resources>
 <StackPanel>
 <Button

 Style="{StaticResource Triggers}" />
 </StackPanel>
</Page>

This example includes a direct reference to the Content attribute as Button.Content, not one through

Control as is done with Width and Background. This is because the base class Control does not have a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Content attribute. As discussed in Chapter 3, only specific types of controls have a Content attribute.
We could have made this example even more generic by specifying the property of the Setter as
ContentControl.Content instead, because Button derives from ContentControl. This would allow this
style to be applied to other classes derived from ContentControl (such as Label) as well as to all
controls derived from HeaderedContentControl, which is a subclass of ContentControl. We would also
need to change the trigger property to ContentControl.IsMouseOver in order to apply the trigger
style to elements other than Button.

This flexibility allows you to define conditional styling in a variety of ways, either by targeting a
specific class of elements or individual elements. When used in conjunction with templated styles,
triggers provide a powerful mechanism for designing rich, interactive user interfaces.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. Storyboards and Animations
In the past, animations in user interfaces have been left to specialized developers and graphic
designers. Most animations used in web applications require expertise in technologies such as Flash
or GIF (Graphics Interchange Format). While these technologies vastly differ in how animations are
created, they both utilize the basic building block of animationframes.

The new presentation subsystem in Windows Vista (provided through the WinFX runtimes for
Windows 2003 and XP) also supports the concept of animation using frames. In frame-based
animation, each frame contains an object to be animated. That animation might be a change of color
over time or movement from one point to another. Each frame specifies the state of the object at a
given point in time. In frame 1, the circle is blue; in frame 2, it is blue-green; in frame 3, it is green,
etc.

Flash developers have long been able to apply common animations to objects such as color changes,
fades, and movement. Windows developers, however, had no such mechanism, so the task of coding
such animations was time-consuming and difficult. XAML offers the ability to animate elements with
the same ease as other technologies, making standard animations a breeze to create while providing
the framework for more complex animations.

XAML uses storyboards to create animations. Standard animations, including fades, color changes,
transforms, and even position changes, are easily accomplished through XAMLwithout any codeby
using storyboards.

One of the hardest pieces of animations to nail down is timing . Timing involves determining how long
an animation will last and how long each frame within it should take. If an object is being changed
from green to blue, how long should each stage of the color change take? At what point does the
object start looking more blue than green? And even more difficult, how many color changes
(frames) will it take to go from blue to green in the time allotted for the total animation?

Thankfully, Avalon provides an efficient timing system that no longer requires a developer to manage
timers himself. Instead, timing and redrawing the screen is handled by Avalon and defined in XAML.
Like all XAML elements, Animation elements can be extended to create custom animations.

Animations in XAML are primarily created through the declaration of storyboards . A Storyboard is a
collection of animations, each of which animates a specific property of an element (such as Opacity),
which can be manipulated to make an element appear to fade in or out of view. So, you aren't really
animating an element per se; you're animating an attribute of the target element.

A Storyboard accomplishes this by specifying one or more SetterTimeline elements. A
SetterTimeline describes the target of the animation (a XAML element) and the attribute being
animated. The attribute might be the Background color of an element, its position on a Canvas, its
Width, or its Height.

The SetterTimeline element also declares one or more animation types to be applied to the
element's attribute. As you might expect, common animations are already defined and ready for use,
such as ColorAnimation and DoubleAnimation. The animation element really does all the work in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

animation. It tells WPF everything it needs to know to perform the animationthe initial value of the
attribute, the ending value of the attribute, and the length of the animation. From the animation
declaration, WPF can determine how long each frame must be to accommodate the animation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1. Storyboards

Storyboards can only be defined on root elements or as part of a style, even though every framework
element has a Storyboard collection. The difference between setting the Storyboard attribute of the
root element and setting the Storyboard attribute of a style can be summed up as follows:

A style-based Storyboard can be applied to any element, not just the root element.

The target of each SetterTimeline is assumed to be the element for which the style is defined,
so you do not specify the SetterTimeline object's TargetName.

Every Storyboard must have at least one SetterTimeline. A SetterTimeline describes the target of
the animation and the attribute being animated. In order to animate an attribute, it must be a
dependency property. Animation in XAML is accomplished by modifying the value of an attribute over
time. A Path indicates the element and the attribute to modify. The Path is another name for the
target of an animation . An example of this is (Button.Width) or (Button.Height).

The target is declared using the following syntax:

 (ElementName.AttributeName)

Example 6-1 shows the XAML for targeting the width of a button with an animation.

Example 6-1. Targeting an element in a SetterTimeline

<SetterTimeline

 TargetName="myButton "
 Path="Button.Width " />

Only framework elements can be targeted. Freezableselements deriving from the
System.Windows.Freezable classcan only be targeted if they are used as an attribute value for
another element. Brush is a freezable and is used to describe how to paint many attributes of
elements, such as the Foreground and Background. Because Brush is used as the value of an attribute
on an element, it can be targeted through the element, using syntax as follows:

 (ElementName.AttributeName).(FreezableElementName.AttributeName)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An example of this is (Button.Background).(SolidColorBrush.Red), shown in Example 6-2.

Example 6-2. Targeting a Freezable in a SetterTimeline

<SetterTimeline

 TargetName="myButton "
 Path="(Button.Background).(SolidColorBrush. Red) " />

If you are trying to target the attribute of an element that is part of a collection, you'll need to push
the path even deeper:

 (ElementName.AttributeName).(CollectionTypeName.Children)[CollectionIndex].

 (FreezableElementName.AttributeName)

An example of this is targeting a single transform inside the RenderTransform collection of a
Rectangle. (Rectangle.RenderTransform).(TransformGroup.Children)[0].(ScaleTransform.ScaleX)
(Example 6-3).

Example 6-3. Targeting an element in a collection in a SetterTimeline

<SetterTimeline

 TargetName="myRectangle"
 Path="Rectangle.(Rectangle.RenderTransform).(TransformGroup.Children)[0].
(ScaleTransform.ScaleX) />

XAML collections are zero-based, so the first element in the collection is
referenced by the index 0.

The type of the animation you add to the SetterTimeline must match the type of the attribute you
are targeting. If you target a Color, then you must use a ColorAnimation. If the attribute is a Double,
you must use a DoubleAnimation, and so on. If the attribute on the target is not declared, the
animation has no effect. If you do not specify the Background color for Button, the animation does not

http://lib.ommolketab.ir
http://lib.ommolketab.ir

appear to work.

In Example 6-4, a SetterTimeline that targets the Button myButton is declared. The Path of the

SetterTimeline is set to the SolidColorBrush used to paint the Background of the Button. A
ColorAnimation that changes the background color from blue to yellow is then added to the
SetterTimeline. The Color begins as blue and, as specified by the Duration attribute of the
ColorAnimation, will change to yellow within five seconds of the animation starting. The
RepeatBehavior of the animation is declared as Forever, which means that once the animation ends,
it will begin again, resetting the color to blue and continuing to iterate until the application closes.

Example 6-4. Animating the Background Color of a Button

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 xmlns:x ="http://schemas.microsoft.com/winfx/xaml/2005">
 <Page.Storyboards>
 <SetterTimeline

 TargetName="myButton "
 Path="(Button.Background).(SolidColorBrush.Color) ">
 <ColorAnimation

 From="Blue "

 To="Yellow "

 Duration="0:0:5 "

 RepeatBehavior="Forever " />
 </SetterTimeline>
 </Page.Storyboards>
 <StackPanel >
 <Button

 Name="myButton "

 Width="120 "

 Background="White ">A Button
 </Button>
 </StackPanel>
</Page>

All elements of TypeAnimation have a From, To, By, Duration, and RepeatBehavior attribute. The value

of From, To, and By varies according to the type. A DoubleAni-mation, for example, requires Double
values for these attributes . A RectAnimation requires a Rect, and so on. The animation starts at the
value From and changes according to the To or By values. Setting the To attribute means that the
animation value will move from the From value to the To value in the time period specified by
Duration. Setting the By attribute means that the value will change by the By value during the time
period specified by Duration. You are not allowed to set both the To and By attributes at the same
time.

You determine the type of animation to use based on the attribute you are trying to animate. If
you're animating the width of an element, use a DoubleAnimation because the data type of the Width

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attribute is a Double.

Example 6-5 shows the code used to animate the width of a Button using a DoubleAnimation. Over
the course of five seconds, the Button will change width from 100 pixels to 200 pixels. Figures 6-1
through 6-4 illustrate the animation in effect at different times.

Example 6-5. Animating the width of a Button using DoubleAnimation

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005">
 <Page.Storyboards>
 <SetterTimeline

 TargetName="myButton"
 Path="(Button.Width)">
 <DoubleAnimation

 From="100"

 To="200"

 Duration="0:0:5"

 RepeatBehavior="Forever" />
 </SetterTimeline>
 </Page.Storyboards>
 <StackPanel >
 <Button

 Name="myButton">A Button
 </Button>
 </StackPanel>
</Page>

Figure 6-1. Animation of Button width at time 0:0:0

Figure 6-2. Animation of Button width at time 0:0:1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 6-3. Animation of Button width at time 0:0:3

Figure 6-4. Animation of Button width at time 0:0:5

Once the animation completes (Figure 6-4), it returns to the beginning (Figure 6-1) and starts again,
its width suddenly dropping from 200 to 100 in the process. There are mechanisms that allow you to
change this behavior. Using attributes of the animation, you can expand the button's width and then
reverse the animation so that it decreases its width gradually instead of returning to its original size.
The next section discusses how to control different aspects of animations, such as speed and
behavior.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2. Controlling Animations

Animation elements inherit several attributes from Timeline that control the speed and behavior of
the animation. One of the more useful attributes is SpeedRatio, which controls the speed at which the
animation moves. The attribute AutoReverse is also noteworthy. AutoReverse controls the behavior of
the Timeline when it reaches the end of its Duration. Setting this value to TRue will cause the
animation to reverse itself when it reaches the end of its iteration. Setting it to false will cause the
animation to begin againif RepeatBehavior indicates that it should continueeither for a specified
number of iterations through the animation, for a specified period of time, or forever.

Example 6-6 shows the same animation from Example 6-4, but RepeatBehavior is now declared as 2x
and AutoReverse has been added and set to true. This animation will repeat twice, reversing itself
each time. Although the animation declaration makes it appear that the Button will have a yellow
background at the end of the animation, the background will actually be blue because we have set
AutoReverse to true.

Example 6-6. Modifying the behavior of an Animation using AutoReverse
and RepeatDuration

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005">
 <Page.Storyboards>
 <SetterTimeline

 TargetName="myButton"
 Path="(Button.Background).(SolidColorBrush.Color)">
 <ColorAnimation

 From="Blue"

 To="Yellow"

 Duration="0:0:5"
 AutoReverse="true"

 RepeatBehavior="2x" />
 </SetterTimeline>
 </Page.Storyboards>
 <StackPanel >
 <Button

 Name="myButton"

 Width="120"

 Background="White">A Button
 </Button>
 </StackPanel>
</Page>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can mix and match animations within a SetterTimeline to create more interesting effects. For
example, to yield the code in Example 6-7, modify Example 6-4 by adding a second animation that
animates the width of the Button using a DoubleAnimation. Then, coordinate the Duration of the
DoubleAnimation with the Duration of the ColorAnimation and, for both animations, set the
AutoReverse to true and the RepeatBehavior to Forever. This creates a Button that begins with a
width of 100 and a background color of blue and then slowly expands to a width of 200 and changes
its background color to yellow. Both animations then reverse themselves and repeat.

Example 6-7. Coordinating multiple animations for a Button

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005">
 <Page.Storyboards>
 <SetterTimeline

 TargetName="myButton"
 Path="(Button.Background).(SolidColorBrush.Color)">
 <ColorAnimation

 From="Blue"

 To="Yellow"

 Duration="0:0:5"

 RepeatBehavior="Forever"

 AutoReverse="true"/>
 </SetterTimeline>
 <SetterTimeline

 TargetName="myButton"
 Path="(Button.Width)">
 <DoubleAnimation

 From="100"

 To="200"

 Duration="0:0:5"

 RepeatBehavior="Forever"

 AutoReverse="true"/>
 </SetterTimeline>
 </Page.Storyboards>
 <StackPanel >
 <Button

 Name="myButton"

 Width="120"

 Background="White">A Button</Button>
 </StackPanel>
</Page>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XAML also includes elements that can transform the position of other elements. RotateTransform,
SkewTransform, translateTransform, and ScaleTransform provide basic 2-D transformation
capabilities that can easily be used within animations to change the position and size of other
elements.

Example 6-8 shows the code to rotate a rectangle in a circle around a specified point. The unnamed
Rectangle is placed in the background with an Opacity of 0.25 to illustrate its starting position. The
RotateTransform does not actually rotate the rectangle, because the Angle of the rotation is set to 0
degrees. It exists only to provide a way for the SetterTimeline to direct the DoubleAnimation to
animate its Angle attribute from 0 degrees to 360 degrees over the course of four seconds (as
indicated by the Duration attribute on the DoubleAnimation). Figures 6-5 through 6-7 show a few of
the frames from this animation.

Example 6-8. Animating the RotateTransform of a Rectangle

<Page xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005" >
 <Page.Storyboards>
 <SetterTimeline

 TargetName="MyRectangle "
 Path="(Rectangle.RenderTransform).(RotateTransform.Angle) ">
 <DoubleAnimation

 From="0 "

 To="360 "

 RepeatBehavior="Forever "

 Duration="0:0:4 " />
 </SetterTimeline>
 </Page.Storyboards>
 <StackPanel>
 <Canvas

 Width="400 "

 Height="550 ">
 <Rectangle

 Canvas.Top="100 "

 Canvas.Left="100 "

 Fill="Blue "

 Width="100 "

 Height="100 "

 Stroke="black "

 StrokeThickness="5 "

 Opacity="0.25 " />
 <Rectangle

 Name="MyRectangle "

 Canvas.Top="100 "

 Canvas.Left="100 "

 Fill="blue "

 Width="100 "

 Height="100 "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Stroke="black "

 StrokeThickness="5 ">
 <Rectangle.RenderTransform>
 <RotateTransform

 Angle="0 "

 Center="50,50 " />
 </Rectangle.RenderTransform>
 </Rectangle>
 </Canvas>
 </StackPanel>
</Page>

Figure 6-5. Animated Rectangle transform

As with animations involving attributes of elements, you can mix and match the animations to create
interesting effects. Using a ParallelTimeline to manage multiple SetterTimeline elements allows
different aspects of the Rectangle to be animated. A ParallelTimeline allows child timelines to
overlap and use their Begin attribute, if specified, to determine when they begin animating. Without
using ParallelTimeline, each animation would become active in the order it was added, and the
Begin attribute would be evaluated relative to the end time of the previous animation. (This is useful
for performing animations in a specific sequence rather than as a combination of effects.) A
ColorAnimation has been added to change the color from blue to yellow with the same Duration as
the DoubleAnimation. Evaluating Example 6-9 in XamlPad will produce a rotating rectangle with a
changing fill color. It may not be very useful, but it sure is fun to watch.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 6-6. Animated rectangle at 40 degrees

Figure 6-7. Animated rectangle at 60 degrees

Example 6-9. Animating multiple attributes of an element with
ParallelTimeline

<Page xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005">
 <Page.Storyboards>
 <ParallelTimeline >
 <SetterTimeline

 TargetName="MyRectangle "
 Path="(Rectangle.Fill).(SolidColorBrush.Color) ">
 <ColorAnimation

 From="Blue "

 To="Yellow "

 Duration="0:0:4 "

 RepeatBehavior="Forever "

 AutoReverse="true " />
 </SetterTimeline>
 <SetterTimeline

 TargetName="MyRectangle "
 Path="(Rectangle.RenderTransform).(RotateTransform.Angle) ">
 <DoubleAnimation

 From="0 "

 To="360 "

 RepeatBehavior="Forever "

 Duration="0:0:4 " />
 </SetterTimeline>
 </ParallelTimeline >
 </Page.Storyboards>
 <StackPanel>
 <Canvas

 Width="400 "

 Height="550 ">
 <Rectangle

 Canvas.Top="100 "

 Canvas.Left="100 "

 Fill="Blue "

 Width="100 "

 Height="100 "

 Stroke="black "

 StrokeThickness="5 "

 Opacity="0.25 " />
 <Rectangle

 Name="MyRectangle "

 Canvas.Top="100 "

 Canvas.Left="100 "

 Fill="blue "

 Width="100 "

 Height="100 "

 Stroke="black "

 StrokeThickness="5 ">
 <Rectangle.RenderTransform>
 <RotateTransform

 Angle="0 "

 Center="50,50 " />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </Rectangle.RenderTransform>
 </Rectangle>
 </Canvas>
 </StackPanel>
</Page>

Adding DoubleAnimation elements that target the Height and Width of the rectangle can make it
seem to disappear and reappear as the animation progresses. The flexibility of Avalon's animation
system means that you are generally limited only by your imagination.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3. Animation Using Key Frames

KeyFrame animations are another method for animating elements in XAML. They differ from non-key
animations in that they use a number of key frames (values) as the destination rather than allowing
the system to iterate through the values. KeyFrame animations allow you to control the specific
valuesand the interpolation methods used to arrive at themacross a number of key frames that make
up the animation.

KeyFrame animations use different classes than non-key frame animations, but they are easily
recognizable because each one uses the term "KeyFrame" in its name. As with non-key animations,
there are KeyFrame animations for almost every primitive data type and some XAML elements.

Creating a KeyFrame animation requires the following steps:

Set a Duration for the animation.1.

For each key frame, select its appropriate type, set its value and key time, and add it to the
animation's KeyFrame collection.

2.

Associate the animation with an element's attribute, just as you would for a non-key animation.3.

Recreating the animation from Example 6-8 using KeyFrame animations instead of a non-key
animation is a good way to illustrate the concept of a KeyFrame. The first step is to understand
KeyTime, which is required for each key frame added to the animation's KeyFrames collection.

A KeyTime specifies when the key frame will end, as illustrated in the following example. It is tempting
to view KeyTime as the amount of time the key frame will play, but this is incorrect. That value is
determined by when the key frame ends, when the previous key frame ended, and the animation's
duration.

 <DoubleAnimationUsingKeyFrames Duration="0:0:10">
 <LinearDoubleKeyFrame Value="0" KeyTime="0:0:3" />
 <LinearDoubleKeyFrame Value="100" KeyTime="0:0:10" />

In this XAML fragment, the animation has a Duration of 10 seconds. The first key frame's KeyTime is
set to 0:0:3, which means it will end three seconds into the animation. The second key frame's
KeyTime is set to 0:0:10, which means it will end when the animation ends. Because the previous key
frame ends at 3 seconds, and the second key frame is set to end at 10 seconds, the second key
frame will play for a total of 7 seconds.

The KeyTime attribute can be specified using other values. It is most commonly specified as a
duration, but you can also express the key time as a percentage of the total duration, or you can

http://lib.ommolketab.ir
http://lib.ommolketab.ir

allow the interpreter to allocate time based on a distribution pattern that either spreads the duration
equally over all frames or distributes it across key frames such that the animation will progress at a
steady pace.

The possible values for KeyTime are:

KeyTime

This value can be specified as a duration (hours:minutes:seconds) or as a percentage of the
total duration, e.g., 20%.

Uniform

This value automatically distributes the duration across all key frames based on how many
there are. If the Duration is set to 10 seconds and there are five key frames, each key frame
will play for 2 seconds (10/5 = 2). This can result in non-uniform speed because it is based on
the number of key frames, not the change in values!

Paced

This value automatically distributes the duration based on the number of key frames and value
changes to ensure a smooth, even speed.

Example 6-10 uses key frame animation to construct the same animation created in Example 6-8
using non-key animation. The only real difference between the two examples is the declaration of the
animation type. Using LinearDoubleKeyFrame elements produces a similar result to the one produced
by using DoubleAnimation to animate the rotation angle value linearly from the previous value to the
destination value.

Example 6-10. Animating a Rectangle using key frame animation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<Page xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"
 <Page.Storyboards>
 <SetterTimeline

 TargetName="MyRectangle "
 Path="(Rectangle.RenderTransform).(RotateTransform.Angle)">

 <DoubleAnimationUsingKeyFrames Duration="0:0:20 " >

 <LinearDoubleKeyFrame Value="90 " KeyTime="0:0:5 " />

 <LinearDoubleKeyFrame Value="180 " KeyTime="0:0:10 " />

 <LinearDoubleKeyFrame Value="270 " KeyTime="0:0:15 " />

 <LinearDoubleKeyFrame Value="360 " KeyTime="0:0:20 " />
 </DoubleAnimationUsingKeyFrames >
 </SetterTimeline>
 </Page.Storyboards>
 <StackPanel>
 <Canvas

 Width="400 "

 Height="550 ">
 <Rectangle

 Canvas.Top="100 "

 Canvas.Left="100 "

 Fill="Blue "

 Width="100 "

 Height="100 "

 Stroke="black "

 StrokeThickness="5 "

 Opacity="0.25 " />
 <Rectangle

 Name="MyRectangle "

 Canvas.Top="100 "

 Canvas.Left="100 "

 Fill="blue "

 Width="100 "

 Height="100 "

 Stroke="black "

 StrokeThickness="5 ">
 <Rectangle.RenderTransform>
 <RotateTransform

 Angle="0 "

 Center="50,50 " />
 </Rectangle.RenderTransform>
 </Rectangle>
 </Canvas>
 </StackPanel>
</Page>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Most KeyFrame elements have three distinct types: linear, discrete, and spline . Each uses a different
interpolation technique to move from the previous value to the destination value. The interpolation
technique used can be determined from the name of the KeyFrame, e.g., SplineDoubleKeyFrame uses a
spline interpolation technique, while LinearDoubleKeyFrame uses a linear interpolation technique.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part III: Core XAML Reference
Chapter 7, Elements

Chapter 8, Controls

Chapter 9, Shapes and Geometry

Chapter 10, Layout

Chapter 11, Animations and Transformations

Chapter 12, Events

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. Elements
XAML elements are components whose primary purpose is to display information either graphically or
textually. They are used to create and display text and graphics either as standalone elements or as
ones nested within controls.Users do not generally interact with elements unless they are nested
within a control, such as using an Image to paint the foreground of a Button or defining a Hyperlink
within a TextBlock.

Many of the elements in XAML, particularly those such as Brush and Color, are used as attributes for
other elements and derive from System.Windows.DependencyObject . DependencyObject is a standard
.NET object and can be used by developers to create their own custom attributes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bold
Hierarchy: DependencyObject ContentElement

FrameworkContentElement TextElement Inline

<Bold>Text to be bold</Bold>

<Bold .../> is an Inline-derived class that is applied to text-based elements. Bold makes the font
appear darker, increasing its weight. Its only properties are those inherited from Inline. (See Figure
7-1.)

Figure 7-1. Bold text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Brush Hierarchy: DependencyObject Freezable Animatable

<Brush .../> is an abstract component that defines how an area is painted. SolidColorBrush is most
commonly referenced by other components through the use of the predefined colors in the Colors
class (see Appendix G).

When a Brush is referenced as one of the colors from Colors, no explicit declaration is required and
the element may be referenced simply by its predefined color name. (See Example 7-1.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Color Color is a structure and has no class hierarchy.

<Color

 ScA="1.0"

 ScR="0.0"

 ScG="0.0"

 ScB="1.0" />

<Color .../> defines a color.

Attributes

ScA (required)

Defines the alpha channel of this Color. The alpha channel of a Color structure determines the
amount of transparency the color has. An alpha value of 1 indicates the color is completely
opaque, and a value of 0 indicates that it is completely transparent.

ScB (required)

The blue component of this Color. The value is a single precision floating-point number. The
range of this value is 0-1, inclusive.

ScG (required)

The green component of this Color. The value is a single precision floating-point number. The
range of this value is 0-1, inclusive.

ScR (required)

The red component of this Color. The value is a single precision floating-point number. The
range of this value is 0-1, inclusive.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure
DependencyObject ContentElement

FrameworkContentElement TextElement Block

<Figure
 CanDelayPlacement="true|false"

 Height="200"
 HorizontalAnchor="ContentCenter|ContentLeft|ContentRight|
 PageCenter|PageLeft|PageRight|ParagraphCenter|
 ParagraphLeft|ParagraphRight"

 HorizontalOffset="10"

VerticalAnchor="ContentBottom|ContentTop|ContentCenter|PageBottom|PageTop|
 PageCenter|ParagraphTop"

 VerticalOffset="10"

 Width="200"
 WrapDirection="Both|Left|None|Right" />

<Figure .../> is used to display inline content within a FlowDocument with special placement
properties. Figure 7-2 shows a Figure that displays both an image and text and is placed in the
paragraph according to its declared anchor attributes.

Figure 7-2. Using Figure to display an image and text within a
FlowDocument

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

CanDelayPlacement (optional)

Specifies whether the Figure can wait to place itself into the layout until after other elements
have been rendered in the FlowDocument.

true

Placement can be delayed.

false

Placement cannot be delayed.

Height (optional)

A Double value specifying the height of the element.

HorizontalAnchor (optional)

Specifies the position that content is anchored horizontally.

ContentCenter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The figure is anchored to the center of the page content area.

ContentLeft

The figure is anchored to the left of the page content area.

ContentRight

The figure is anchored to the right of the page content area.

PageCenter

The figure is anchored to the center of the page area.

PageLeft

The figure is anchored to the left of the page area.

PageRight

The figure is anchored to the right of the page area.

ParagraphCenter

The figure is anchored to the center of the current paragraph.

ParagraphLeft

The figure is anchored to the left of the current paragraph.

ParagraphRight

The figure is anchored to the right of the current paragraph.

HorizontalOffset (optional)

A Double value representing the distance this Figure is offset from its horizontal baseline.

VerticalAnchor (optional)

Specifies the position that content is anchored vertically.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ContentBottom

The figure is anchored to the bottom of the page content area.

ContentCenter

The figure is anchored to the center of the page content area.

ContentTop

The figure is anchored to the top of the page content area.

PageBottom

The figure is anchored to the bottom of the page area.

PageCenter

The figure is anchored to the center of the page area.

PageTop

The figure is anchored to the top of the page area.

ParagraphTop

The figure is anchored to the top of the current paragraph.

VerticalOffset (optional)

A Double value representing the distance this Figure is offset from its vertical baseline.

Width (optional)

A Double value specifying the width of the element.

WrapDirection (optional)

Specifies the allowable directions in which content can wrap about the Figure.

Both

Content may flow around both sides of the element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

None

Content may not flow around this element.

Left

Content only flows around the left side of the element.

Right

Content only flows around the right side of the element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Floater
Hierarchy: DependencyObject ContentElement

FrameworkContentElement TextElement Block

<Floater
 HorizontalAlignment="Center|Right|Left|Stretch"

 Width="100" />

<Floater .../> displays images and other content parallel to the main content flow within a
container. Floaters are always positioned parallel to the main flow of content. Unlike Figure, Floater
may not span multiple columns. (See Figure 7-3.)

Figure 7-3. Floater with image and text positioned in a paragraph

Attributes

HorizontalAlignment (optional)

Indicates where the Floater should be aligned relative to its parent's layout slot.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Center

Align the element at the center of its parent's layout slot.

Left

Align the element to the left of its parent's layout slot.

Right

Align the element to the right of its parent's layout slot.

Stretch

Stretch the element to fit to the width of its parent's layout slot.

Width (optional)

A Double value indicating the width of the element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Frame
Hierarchy: UIElement FrameworkElement

ContentControl

<Frame

 Source="Page1.xaml" />

<Frame .../> implements an area that can load the contents of another markup tree. It is similar to
the <Frame> tag in HTML. Frame uses the application navigation model; therefore, its content model is
determined by the navigation service pointing to the URI to be loaded.

Attributes

Source (optional)

The URI of the document containing the XAML markup to be displayed. The default value is
null.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GradientStop
Hierarchy: DependencyObject Freezable

Animatable

<GradientStop

 Color="Yellow"

 Offset="0.5" />

<GradientStop .../> describes the location and Color of the transitional point in a gradient. It is used
by RadialGradientBrush and LinearGradientBrush.

Attributes

Color (optional)

Describes the color of the transitional point in a gradient. The Color may be predefined in the
Color class (see Appendix G) or described as a Color element. The default value is
transparent.

Offset (optional)

This Double value represents the stop location in a gradient vector.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Image
Hierarchy: DependencyObject Freezable Animatable

 Brush

<Image

 Source="filename"
 Stretch="None|Uniform|UniformFill|Fill"
/>

<Image . . . /> provides a means for displaying an image in a document or application. Image
supports bitmaps of the following types: BMP, GIF, JPG, ICO, PNG, and TIFF.

Attributes

Source (required)

The source URI for the image. It may be relative to the XAML application (e.g.,
/images/myimage.png), or it may be a remote image (e.g.,

http://www.example.com/myimage.png).

Stretch (optional)

Defines how the image should be stretched to fill the destination rectangle. If defined, this
attribute must be one of the following:

Fill

Resizes the content to fit the destination. The aspect ratio is not preserved.

None

The original size is preserved; the image is not stretched.

Uniform

Resizes the original content to fit the destination and preserves the native aspect ratio.

http://www.example.com/myimage.png
http://lib.ommolketab.ir
http://lib.ommolketab.ir

UniformToFill

Resizes the original content to fit the destination and preserves the native aspect ratio. If
the aspect ratio of the destination is different than the original image, the image will be
clipped to fit into the destination.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ImageBrush
Hierarchy: DependencyObject ContentElement

FrameworkContentElement Brush

<ImageBrush

 Viewport="0,0,0.5,0.5"
 ViewportUnits="Absolute|RelativeToBoundingBox"
 Viewbox="0,0 10 10"
 ViewboxUnits="Absolute|RelativeToBoundingBox"
 TileMode="FlipX|FlipXY|FlipY|None|Tile"
 AlignmentX="Center|Left|Right"
 AlignmentY="Center|Top|Bottom"

 ImageSource="sampleImages\cherries_larger.jpg"
 Stretch="Fill|None|Uniform|UniformFill"
/>

<ImageBrush .../> allows you to paint an area using an image. Using the attributes, you can modify
how the image is used to paint the area. For example, the TileMode attribute allows you to modify
the view of the image itself, flipping it horizontally or vertically if desired. Figure 7-4 shows the result
of evaluating Example 7-2, which uses an ImageBrush to paint the rectangle indicated by the outlined
area.

Figure 7-4. Using ImageBrush to paint a Rectangle

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AlignmentX (optional)

Describes how the image is aligned horizontally.

AlignmentY (optional)

Describes how the image is aligned vertically.

ImageSource (required)

Defines the source of the image used to paint the area.

Stretch (optional)

Specifies how the brush's selected content is displayed in the brush's tiles.

Fill

Resizes the content to fit the destination. The aspect ratio is not preserved.

None

The original size is preserved; the image is not stretched.

Uniform

Resizes the original content to fit the destination and preserves the native aspect ratio.

UniformToFill

Resizes the original content to fit the destination and preserves the native aspect ratio. If
the aspect ratio of the destination is different than the original image, the image will be
clipped to fit into the destination.

TileMode (optional)

Specifies how the tile fills out the object.

FlipX

The same as Tile, but alternate columns of tiles are flipped horizontally. The base tile is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

drawn untransformed.

FlipXY

The combination of FlipX and FlipY. The base tile is drawn untransformed.

FlipY

The same as Tile, but alternate rows of tiles are flipped vertically. The base tile is drawn
untransformed.

None

Do not tile. Only the base tile is drawn; the remaining area is left transparent.

Tile

The basic tile mode. The base tile is drawn, and the remaining area is filled by repeating
the base tile such that the right edge of one tile abuts the left edge of the next, and
likewise for bottom and top.

Viewbox (optional)

Sets the position and dimensions of the Brush content in terms of the top-left corner, width,
and height. The default is (0,0) with a width and height of 1, and it is defined as a Rect.

ViewboxUnits (optional)

Sets the units for the Viewbox.

Absolute

The coordinate system is not relative to the Brush output area. Values are interpreted
directly in local space.

Viewport (optional)

Sets the position and dimensions of the brush's tiles in terms of the top-left corner, width, and
height. The default is (0,0) with a width and height of 1, and it is defined as a Rect.

ViewportUnits (optional)

Sets the units for the ViewPort.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Absolute

The coordinate system is not relative to the Brush output area. Values are interpreted
directly in local space.

RelativeToBoundingBox

The coordinate system is relative to the Brush output area, with 0 indicating 0 percent of
the output area and 1 indicating 100 percent of the output area.

RelativeToBoundingBox

The coordinate system is relative to the Brush output area, with 0 indicating 0 percent of
the output area and 1 indicating 100 percent of the output area.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Inline
Hierarchy: DependencyObject ContentElement

FrameworkContentElement TextElement

<Inline
 BaselineAlignment="Baseline|Bottom|Center|Superscript|
 Subscript|TextTop|Top|TextBottom"

 TextDecorations="Collection of TextDecoration" />

<Inline .../> defines an inline element with no inherent rendering properties. Inline is the base
class for several inline elements designed to apply formatting to text and text-based elements.
Derived classes are:

AccessKey

Bold

Italic

Underline

Attributes

BaselineAlignment (optional)

Baseline

Aligns the text at the baseline

Bottom

Aligns the bottom toward the bottom of the container

Center

Centers the text vertically

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Subscript

Aligns the baseline to the subscript position of the container

Superscript

Aligns the baseline to the superscript position of the container

TextBottom

Aligns toward text's bottom of container

TextTop

Aligns toward text's top of container

Top

Aligns toward the top of the container

TextDecorations (optional)

Specifies a collection of Textdecoration elements that will be applied to the content of Inline.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Italic
Hierarchy: DependencyObject ContentElement

FrameworkContentElement TextElement Inline

<Italic>Text to be italicized</Italic>

<Italic .../> is an inline element that is applied to italicize text-based elements. Its only properties
are those inherited from Inline. (See Figure 7-5.)

Figure 7-5. Italicized text using the Italic element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Label
Hierarchy: UIElement FrameworkControl Control

ContentControl

<Label

 Content="Text"

 Target="{Binding ElementName=UIElement}" />

or:

<Label

 Target="UIElement">

 Label Text
</Label>

<Label .../> defines a component that can be a text label for a control as well as providing
mnemonic support.

Attributes

Content (optional)

The text that will be displayed by the label. This attribute can be omitted if the second
declaration syntax is used.

Target (optional)

Defines the target element of the Label. The target element must be of type UIElement and
must exist in the XAML document. Assigning a Target to the Label keeps the label grouped with
the element during the rendering process.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LinearGradientBrush
Hierarchy: DependencyObject Freezable

 Animatable Brush GradientBrush

<LinearGradientBrush

 StartPoint="0,0"

 EndPoint="5,5"
 <LinearGradientBrush.GradientStops>

 <GradientStop Color="Yellow" Offset="0" />

 <GradientStop Color="Green" Offset="0.5" />
 </LinearGradientBrush.GradientStops>
</LinearGradientBrush>

or:

<LinearGradientBrush>
 <LinearGradientBrush.StartPoint>

 <Point X="0" Y="0" />
 </LinearGradientBrush.StartPoint>
 <LinearGradientBrush.EndPoint>

 <Point X="5" Y="5" />
 </LinearGradientBrush.EndPoint>
 <LinearGradientBrush.GradientStops>

 <GradientStop Color="Yellow" Offset="0" />

 <GradientStop Color="Green" Offset="0.5" />
 </LinearGradientBrush.GradientStops>
</LinearGradientBrush>

<LinearGradientBrush .../> paints an area with a linear gradient. Colors in the gradient are
interpolated along a diagonal path. LinearGradientBrush can be specified as an attribute on XAML
elements using abbreviated markup syntax (Example 7-3). Figure 7-6 shows an example of using a
LinearGradientBrush to paint a Rectangle element.

Figure 7-6. Painting a Rectangle with a LinearGradientBrush

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

EndPoint (optional)

The ending Point of the linear gradient. Specified either as a Point through abbreviated
markup or explicitly declared as a Point. The default is the lower-right corner (1,1).

GradientStops (optional)

A collection of GradientStop elements specifying the location and color of each change in the
gradient.

To simplify the creation of linear gradients, two gradient types can be quickly created through
abbreviated markup syntax: HorizontalGradient and VerticalGradient:

<element attribute="HorizontalGradient StartColor EndColor" />

<element attribute="VerticalGradient UpperColor LowerColor" />

These gradients are assumed to encompass the entire layout region of the element to which they are
attached. HorizontalGradient paints the region with a gradient from left (StartColor) to right
(EndColor), while VerticalGradient paints the region with a gradient from top (UpperColor) to
bottom (LowerColor). An example of each is shown in Figure 7-7.

StartPoint (optional)

The starting Point of the linear gradient. Specified either as a Point through abbreviated
markup or explicitly declared as a Point. The default is the upper-left corner (0,0).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 7-7. Example of Horizontal and Vertical linear gradient brushes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LineBreak
Hierarchy: DependencyObject ContentElement

FrameworkContentElement

<Paragraph>

 Lorem ipsum dolor sit amet, consecteteur adipscing elit.
 <LineBreak/>
</Paragraph>

<LineBreak .../> forces a line break. This element cannot be a root-level element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

List
Hierarchy: DependencyObject FrameworkContentElement

 TextElement Block

<List

 MarkerOffset="2"
 MarkerStyle="Box|Circle|Decimal|Disc|LowerLatin|LowerRoman|None|
 Square|UpperLatin|UpperRoman"

 StartIndex="1" />

<List .../> implements an element that presents child content in the form of an ordered or
unordered list. List may contain only ListItem elements as children.

Attributes

MarkerOffset (optional)

The desired distance, as a Double, between the ListElement and the edge of the marker.

MarkerStyle (optional)

The desired style of marker for the list.

Box

A solid square box

Circle

A hollow disc circle

Decimal

A numeric value, starting at 1

Disc

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A solid disc circle

LowerLatin

Lowercase ASCII characters in alphabetic sequence, i.e., a, b, c, d, etc.

LowerRoman

Lowercase Roman numerals, i.e., i, ii, iii, iv, etc.

None

No marker

Square

A hollow square shape

UpperLatin

Uppercase ASCII characters in alphabetic sequence, i.e., A, B, C, D, etc.

UpperRoman

Uppercase Roman numerals, i.e., I, II, III, IV, etc.

StartIndex (optional)

The index, as an Integer, of the first ListItem child for this List.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ListItem
Hierarchy: DependencyObject

FrameworkContentElement TextElement Block

<ListItem />

<ListItem .../> is similar to Section but has features to support bullets and numbering. ListItem
cannot directly contain text, so it must contain other elements that can. It is used with List to format
information into ordered or unordered lists. (See Example 7-4.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Paragraph
Hierarchy: DependencyObject

FrameworkContentElement TextElement Block

<Paragraph

 MinOrphanLines="1"

 MinWidowLines="1"

 TextIndent="1.0"
 Texttrimming="WordEllipsis|CharacterEllipsis|None"

 TextDecorations="Collection"
 KeepTogether="true|false"
 KeepWithNext="true|false"
 />

<Paragraph .../> implements a block-level element that is analogous to an HTML paragraph, except
that Paragraph can contain only inline elements. Unlike HTML, you cannot nest Paragraph elements
within other Paragraph elements. This element cannot be a root-level element.

Attributes

KeepTogether (optional)

This attribute determines how text should be handled in the case of page breaks.

true

Text in this paragraph should be kept together, even if it means moving the entire
paragraph to the next logical section.

false

Text can be separated.

KeepWithNext (optional)

This attribute determines how text should be handled in the case of page breaks.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

true

Indicates that this block should be kept with the next block in the track. (This also
implies that the paragraph itself will not be broken.)

false

Text can be separated.

MinOrphanLines (optional)

Designates the minimum number of lines that can be left behind when a paragraph is broken
on a page or column break.

MinWidowLines (optional)

Specifies the minimum number of lines after a break that can be put on the next page or
column.

TextDecorations (optional)

Specifies a collection of Textdecoration elements that are applied to the Paragraph.

TextIndent (optional)

Specifies the indentation of the first line of a paragraph.

TextTrimming (optional)

Determines how text that flows past the end of the element is treated. Must be one of:

CharacterEllipsis

Text is trimmed at a character boundary. Remaining text is replaced with an ellipsis (. . .
).

None

Text is not trimmed.

WordEllipsis

Text is trimmed at a word boundary. Remaining text is replaced with an ellipsis (. . .).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pen Hierarchy: DependencyObject Freezable Animatable

<Pen

 Brush="Blue"

 Thickness="1"
 DashCap="Flat|Round|Square|Triangle"
 EndLineCap="Flat|Round|Square|Triangle"
 LineJoin="Bevel|Miter|Round"

 MiterLimit="1"
 StartLineCap="Flat|Round|Square|Triangle" />

<Pen .../> describes how an element is outlined. Figure 7-8 shows two drawings, each drawn with a
different Pen. The first Pen is black with a thickness of 2 and uses triangle and Round as start and
end line caps. The second Pen is blue with a thickness of 1 and uses Square and Flat as start and end
line caps. The code to produce this figure is shown in Example 7-5.

Figure 7-8. Different styles of Pen

Attributes

Brush (optional)

Describes how the object is filled. The value of this attribute may be a reference to a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

predefined Color (see Appendix G) or it may be a defined Brush. Although the Brush attribute is
optional, no outline will be shown if it is not set to something other than the default,
transparent.

DashCap (optional)

Describes how the ends of a dash are drawn.

Flat

No line cap. This is the default.

Round

The line is capped with a semicircle equal in diameter to the line thickness.

Square

The line is capped with a square whose sides are equal in length to the line thickness.

Triangle

The line is capped with a triangle equal in height to the line thickness.

EndLineCap (optional)

Sets the shape used to end a stroke.

Flat

No line cap. This is the default.

Round

The line is capped with a semicircle equal in diameter to the line thickness.

Square

The line is capped with a square whose sides are equal in length to the line thickness.

Triangle

The line is capped with a triangle equal in height to the line thickness.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LineJoin (optional)

Sets the type of joint used at the vertices of a shape's outline.

Bevel

Beveled vertices

Miter

Regular angular vertices

Round

Rounded vertices

MiterLimit (optional)

A miter is created when the ends of two surfaces with angles other than 90 degrees are joined
to form a corner. This attribute sets the limit on the ratio of the miter length to the thickness of
the Pen. This value must be a positive number greater than or equal to 1.0 and is expressed as
a Double.

StartLineCap (optional)

Sets the type of shape to be used at the beginning of a line.

Flat

No line cap. This is the default.

Round

The line is capped with a semicircle equal in diameter to the line thickness.

Square

The line is capped with a square whose sides are equal in length to the line thickness.

Triangle

The line is capped with a triangle equal in height to the line thickness.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Thickness (optional)

The width of the stroke. The default is 1.0. This attribute is expressed as a Double.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RadialGradientBrush
Hierarchy: DependencyObject Freezable

 Animatable Brush GradientBrush

<RadialGradientBrush

 RadiusX="20"

 RadiusY="20"

 Center="0,0"

 GradientOrigin="0,0" >
 RadialGradientBrush.GradientStops>

 <GradientStop Color="Red" Offset="5" />

 <GradientStop Color="Orange" Offset="10" />
 </RadialGradientBrush.GradientStops>
</RadialGradientBrush>

or:

<RadialGradientBrush

 RadiusX="20"

 RadiusY="20" >
 <RadialGradientBrush.Center>

 <Point X="0" Y="0" />
 </RadialGradientBrush.Center>
 <RadialGradientBrush.GradientOrigin>

 <Point X="0" Y="0" />
 </RadialGradientBrush.GradientOrigin>
 RadialGradientBrush.GradientStops>

 <GradientStop Color="Red" Offset="5" />

 <GradientStop Color="Orange" Offset="10" />
 </RadialGradientBrush.GradientStops>
</RadialGradientBrush>

<RadialGradientBrush .../> paints an area with a radial gradient. The focal point is the beginning of
the gradient, and a circle defines the outer boundary. RadialGradientBrush can be declared using
abbreviated markup syntax as an attribute of an element:

<element attribute="RadialGradientBrush InnerColor OuterColor" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 7-9 shows the result of evaluating Example 7-6, which uses a RadialGradientBrush.

Figure 7-9. A RadialGradientBrush filling an Ellipse

Attributes

Center (optional)

A Point describing the location of the center of the radial gradient. The default is (0.5,0.5).
Center may be described using abbreviated markup syntax or explicitly declared as a Point.

GradientOrigin (optional)

A Point describing the focal point of the gradient. The default is (0.5,0.5). GradientOrigin may
be described using abbreviated markup syntax or explicitly declared as a Point. This value is
between 0 and 1.0, inclusive.

RadialGradientStops (optional)

A collection of GradientStop elements specifying the location and color of each change in the
gradient. This value is between 0 and 1.0, inclusive.

RadiusX (optional)

A Double value describing the horizontal outermost radius of the gradient. The default value is
0.5. This value is between 0 and 1.0, inclusive.

RadiusY (optional)

A Double value describing the vertical outermost radius of the gradient. The default value is
0.5. This value is between 0 and 1.0, inclusive.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Section
Hierarchy: DependencyObject

FrameworkContentElement TextElement Block

<Section>Lorem ipsum dolar sit amet, consecteteur adipscing elit.</Section>

<Section .../> is intended to group block elements. It does not generate any specific rendering
other than grouping elements together. Section must have at least one child element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SolidColorBrush
Hierarchy: DependencyObject Freezable

Animatable Brush

<SolidColorBrush>
 <SolidColorBrush.Color>
 <Color

 ScA="1.0"

 ScR="0.0"

 ScG="0.0"

 ScB="1.0" />
 </SolidColorBrush.Color>
</SolidColorBrush>

<SolidColorBrush .../> defines a Brush that paints an object or region in a solid color.

Attributes

Color (required)

Defines the color of the Brush either using one of the predefined colors or one described by
using ScRGB values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TextBlock Hierarchy: UIElement FrameworkElement

<TextBlock
 TextAlignment="Center|End|Justify|Left|Right|Start"
 TextWrap="Wrap|NoWrap|Emergency"
 TextTrimming="CharacterEllipsis|WordEllipsis|None"

 TextEffects="Collection"

 TextContent="Lorem ipsum dolar sit amet, consecteteur adipscing elit."

 BaselineOffset="10" />

or:

<TextBlock
 TextAlignment="Center|End|Justify|Left|Right|Start"
 TextWrap="Wrap|NoWrap|Emergency"
 TextTrimming="CharacterEllipsis|WordEllipsis|None"

 TextEffects="Collection"

 BaselineOffset="10">

 Lorem ipsum dolar sit amet, consecteteur adipscing elit.
</TextBlock>

<TextBlock .../> displays a block of text. TextBlock is similar to Paragraph in terms of formatting
and display, but TextBlock is a UIElement, which means that it can be used outside the context of
documents. This element is optimized for UI display.

Attributes

BaselineOffset (optional)

The amount to adjust the baseline offset position. Essentially, this drops the text down the
specified distance. This attribute is attached to inline children of TextBlock. The following code
fragment raises the baseline of the inline TextBlock so that the text appears above the
surrounding text:

<TextBlock>
 This text is normal.
 <TextBlock BaselineOffset="20">This text is raised</TextBlock>
 This text is normal again.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</TextBlock>

TextAlignment (optional)

Describes how text is aligned horizontally.

Center

Text is center-aligned.

End

Text is aligned on the end of the inline progression, as determined by the current text
advance direction.

Justify

Text is justified. This will increase spacing between words if necessary to keep text
justified across the width of the TextBox.

Left

In horizontal inline progression, the text is aligned on the left.

Right

In horizontal inline progression, the text is aligned on the right.

Start

The text is aligned on the start of the inline progression, as determined by the current
text advance direction.

TextContent (optional)

This attribute contains the text being displayed.

TextEffects (optional)

A collection of TextEffect elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TextTrimming (optional)

Determines how to treat text that flows past the end of the element.

CharacterEllipsis

Text is trimmed at a character boundary. Remaining text is replaced with an ellipsis (. . .
).

None

Text is not trimmed.

WordEllipsis

Text is trimmed at a word boundary. Remaining text is replaced with an ellipsis (. . .).

TextWrap (optional)

Determines the behavior of text when it reaches the boundary of its containing box.

Emergency

Text is wrapped even if the line-breaking algorithm cannot determine an optimal
wrapping opportunity. This is the default behavior.

NoWrap

Text is not wrapped.

Wrap

Text is wrapped.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TextDecoration
Hierarchy: DependencyObject Freezable

Animatable

<TextDecoration
 Location="Baseline|Overline|Underline|Strikethrough"
 PenThicknessUnit="FontRecommended|FontRenderingEmSize|Pixel"

 PenOffset="1.0"
 PenOffsetUnit="FontRecommended|FontRenderingEmSize|Pixel">
 <TextDecoration.Pen>
 <Pen .../>
 </TextDecoration.Pen>
</TextDecoration>

<TextDecoration .../> specifies a decoration to be applied to text, such as underlining or
strikethrough.

Attributes

Location (optional)

Specifies the vertical location at which the decoration will appear. Must be one of the following:

Baseline

Decoration appears at the vertical position of baseline.

Overline

Decoration appears at the vertical position of overline.

Strikethrough

Decoration appears at the vertical position of strikethrough.

Underline

Decoration appears at the vertical position of underline.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PenOffset (optional)

Specifies the decoration's offset from its Location, expressed as a Double and interpreted
based on the PenOffsetUnit.

PenOffsetUnit (optional)

Defines the thickness unit of the PenOffset.

FontRecommended

The value is relative to the Avalon-calculated recommended value. This is the default
value.

FontRenderingEmSize

The value is relative to the font em size. The effective value is the thickness or offset
multiplied by the font em size.

Pixel

The value is expressed in pixels.

PenThicknessUnit (optional)

Defines the thickness unit of the Pen.

FontRecommended

The value is relative to the Avalon-calculated recommended value. This is the default
value.

FontRenderingEmSize

The value is relative to the font em size. The effective value is the thickness or offset
multiplied by the font em size.

Pixel

The value is expressed in pixels.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TextDecoration.Pen (optional)

Specifies the Pen to be used to draw the Textdecoration.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TextDecorationCollection
Hierarchy: DependencyObject

Freezable Animatable

<TextDecorationCollection>
 <TextDecoration .../>
 ...
 <TextDecoration .../>
</TextDecorationCollection>

<TextDecorationCollection .../> specifies a collection of Textdecoration elements. Multiple
Textdecoration elements are used to specify formatting for text-based elements. If you want text to
have an overline and underline, use a collection of Textdecoration elements (Example 7-7).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TextEffect
Hierarchy: DependencyObject Freezable

Animatable

<TextEffect
 Location="Baseline|Overline|Strikethrough|Underline"

 CharacterIndex="0"
 Count="999">
 <TextEffect.Transform>
 <TranslateTransform|ScaleTransform|SkewTransform|RotateTransform />
 </TextEffect.Transform>
</TextEffect>

<TextEffect .../> defines a text effect such as an animation. A TextEffect can be placed in the
same location (underline, overline, etc.) as a Textdecoration. TextEffect performs a transformation
(essentially animating the text effect), while a TexTDecoration is a static entity.

Attributes

CharacterIndex (optional)

Count (optional)

Location (optional)

Specifies the vertical location at which the decoration will appear.

Baseline

Decoration appears at the vertical position of baseline.

Overline

Decoration appears at the vertical position of overline.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Strikethrough

Decoration appears at the vertical position of strikethrough.

Underline

Decoration appears at the vertical position of underline.

Transform (optional)

Specifies the type of TRansform that will be applied. Must be the name of a class that inherits
from the abstract class TRansform. TRansforms are discussed further in Chapter 11. Built-in
transforms are:

RotateTransform

ScaleTransform

SkewTransform

translateTransform

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Thickness Thickness is a structure and has no class hierarchy.

<Object AttributeName="Left, Top, Right, Bottom" />

<Thickness . . . /> is used to describe the size of the outline of an element. It is also commonly
used to describe the size of a Pen used to draw an element, as well as the border of an element such
as Rectangle or Ellipse. Furthermore, it describes the Margin and Padding attributes of elements
deriving from UIElement (see Chapter 8).

Thickness can be declared either explicitly or through the use of abbreviated markup syntax.
Example 7-8 demonstrates the explicit declaration of a Thickness. The Button will have a uniform
margin of 10. The same result can be achieved by using the abbreviated markup syntax shown in
Example 7-9.

If you are declaring a uniform thickness (meaning all four sides are equal), you can shorten the
syntax even further. Example 7-10 shows the declaration of a Thickness with only one value, 10.
When declaring a Thickness using a single value, that value is applied to all four attributes (Left,
Top, Right, and Bottom). All three examples will produce the same Margin.

Attributes

Left

This Double value describes the thickness of the left side of the element's associated rectangle.

Right

This Double value describes the thickness of the right side of the element's associated
rectangle.

Top

This Double value describes the thickness of the top side of the element's associated rectangle.

Bottom

This Double value describes the thickness of the bottom side of the element's associated
rectangle.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Underline
Hierarchy: DependencyObject

FrameworkContentElement TextElement Inline

<Underline>Text to be underlined</Underline>

<Underline .../> is an inline element that formats text-based elements with an underline. Its only
properties are those inherited from Inline.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. Controls
With the exception of Hyperlink, which is included because it is unique among non-control elements
in its support of the Click event, all controls in this chapter belong to the System.Windows.Controls
namespace and are ultimately children of the same base class, Control. This gives them a common
set of properties and events, but this chapter will detail those specific to each control. Two controls,
Grid and StackPanel, are not detailed in this chapter because they provide layout control and are
therefore documented in Chapter 10.

Because XAML controls represent .NET CLR controls, they share a common hierarchy (UIElement
FrameworkElement Control). For the most part, these base classes are abstract and will never be
explicitly declared as XAML elements. Their attributes are inherited by subclasses and have been
included to avoid redundancy. Each element description contains a hierarchy so that you can easily
reference the inherited attributes.

Attributes that have both a get and set method are generally accessible through XAML, and these
values are set in exactly the same way as the properties detailed below. Although an attribute's data
type may be type Boolean or Integer, XAML requires that the attribute value be specified as a String.
Some elements have attached attributes. These are specifically designated as such, and the concept
behind them is discussed in depth in Chapter 3.

There are several structures and elements, detailed in other chapters, that are commonly used to
declare attributes. For example, Thickness, detailed in Chapter 7, is the data type for several
common Control attributes, such as Margin and Padding. Similarly, Brush is used to describe how to
fill the Background attribute of elements. Brush is most often described as a simple, predefined Color
(see Appendix G). Table 8-1 lists these common structures/elements, as well as where they are
detailed.

Table 8-1. Structures and elements commonly used as attribute types

Structure/element Description Where detailed

Brush
Used to fill a region, such as the background area of an
element

Chapter 7

Pen Used to render text or draw outlines Chapter 7

Thickness The size of a specific edge of an element Chapter 7

Color
Describes a color using ScA values or by referencing a pre-
defined Color

Chapter 7 and
Appendix G

Style
Describes a specific set of attributes such as Color,
Thickness, Pen, etc., to be applied to one or more elements

Chapter 10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This chapter also includes a brief reference to common events. A detailed explanation of all events
can be found in Chapter 12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1. Base Control Reference

This section details the attributes associated with the hierarchy common to controls. It includes the
attributes for UIElement, FrameworkElement, and the Control classes (ContentControl, ItemsControl,
HeaderedItemsControl, and HeaderedContentControl).

UIElement

UIElement is the base class for most XAML controls. It provides attributes that determine how
elements are displayed.

Attributes

AllowDrop

This Boolean value determines whether the element can be the target of a drag-and-drop
operation.

true

The element may be targeted.

false

The element may not be targeted. This is the default.

Opacity

This Double value describes the opacity factor applied to the element when it is rendered. The
range for this value is 0.0-1.0. The default value is 1.0.

OpacityMask

This Brush is applied to any alpha-channel masking for the rendered control.

RenderTransform

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This property specifies a transform (detailed in Chapter 11) to apply to the element.

Visibility

This attribute determines the visibility of the control.

Collapsed

The element is not displayed and does not occupy layout space.

Hidden

The element is not displayed but does occupy layout space.

Visible

The element is displayed.

FrameworkElement

FrameworkElement is the base class for elements in the core presentation set. It also implements
many of the virtual methods defined in its parent class, UIElement.

Attributes

Focusable

This Boolean value determines whether the element is focusable.

true

The element is focusable. The default for controls is true.

false

The element is not focusable.

Height

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This attribute determines the height of the control.

Margin

This Thickness (detailed in Chapter 7) describes the margin of an element.

Name

This attribute sets the name of the object and must be used if codebehind routines will
reference the object.

Style

This attribute allows a Style (detailed in Chapter 10) to be applied through a StaticResource
or DynamicResource or to be described inline.

ToolTip

This attribute describes the prompt displayed when the mouse hovers over the element. If the
ToolTip is a String, then it can be declared inline; otherwise, it must be declared explicitly.

Width

This attribute determines the width of the control.

Control Hierarchy: UIElement FrameworkElement

Control is the base class for all interactive XAML elements.

Attributes

Background

This attribute sets the Brush used to paint the control's background. This can be one of the
colors from the Color class (see Appendix G). This attribute defaults to TRansparent.

BorderBrush

This attribute sets the Brush used to paint the control's border. This attribute defaults to
transparent.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BorderThickness

This Thickness determines the thickness of the control's border. The default is 0. This attribute
is not applicable to RadioButton controls.

FontFamily

This String describes the font used in this control. Examples are Arial and Times New Roman.

FontSize

This Double value describes the size of the font. The default is the system dialog font size.

FontStyle

This attribute describes the style of the font. Options are italic, normal, and oblique.

FontWeight

This attribute describes the weight of the font. Options are bold and normal.

Foreground

This Brush describes the foreground color.

HorizontalContentAlignment

This enumeration determines how the control's content should be aligned horizontally.

Center

The content is aligned to the center of the control's layout slot.

Left

The content is aligned to the left of the control's layout slot.

Right

The content is aligned to the right of the control's layout slot.

Stretch

The content is stretched to fill the entirety of the control's layout slot.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Padding

This Thickness describes the amount of padding around a control.

TabIndex

This Integer determines the order in which a control will receive focus. Lower index controls
receive focus before higher index controls. The default value is 1.

TextDecorations

This TexTDecorationCollection describes any Textdecoration elements (detailed in Chapter 7)
to be added to the control's text. Textdecoration elements specify formatting, such as
underlines and overlines, and provide details of the color and placement of such decorations.

TextTrimming

This enumeration determines how text will be treated if it runs off the edge of the control.

CharacterEllipsis

Text is trimmed at a character boundary. Remaining text is replaced with an ellipsis (. . .
).

None

Text is not trimmed.

WordEllipsis

Text is trimmed at a word boundary. Remaining text is replaced with an ellipsis (. . .).

VerticalContentAlignment

This enumeration determines how the control's content should be aligned vertically.

Bottom

The content is aligned at the bottom of the control's layout slot.

Center

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The content is aligned at the center of the control's layout slot.

Stretch

The content is stretched to fill the entirety of the control's layout slot.

Top

The content is aligned at the top of the control's layout slot.

ContentControl
Hierarchy: UIElement FrameworkElement

Control

ContentControl is the base class for all elements that display a single piece of content, such as
ListBoxItem and Label.

Attributes

Content

Content may be an element of any type. When used to describe the text displayed in or on a
control, it is declared inline. When used to hold other types of elements, Content is assumed to
comprise those elements declared between the element's beginning and ending tags.

<Button Content="This is content" /> is equivalent to declaring <Button>This is
content</Button>. Complex attribute types must be declared explicitly between the beginning
and end tags of the ContentControl-derived element. Example 8-1 demonstrates the explicit
declaration of a non-text element as the single piece of content for a Button.

Example 8-1. Explicit declaration of an element within a ContentControl

<Button Height="100" Width="100">

 <Ellipse CenterX="25" CenterY="25" Fill="Blue" />
</Button>

HeaderedItemsControl
Hierarchy: UIElement

FrameworkElement ItemsControl

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HeaderedItemsControl is the base class for all elements that have multiple items as well as a Header.
Examples of a HeaderedItemsControl are MenuItem and ToolBar.

Header

The Header attribute acts as a label for all HeaderedItemsControl-derived classes, such as
MenuItem and ToolBar.

HeaderedContentControl
Hierarchy: UIElement

FrameworkElement Control

ContentControl

HeaderedContentControl is the base class for all elements that have a single content element and a
header. Examples of HeaderedContentControl classes are Expander and TabItem.

Attributes

Header

The Header attribute acts as a label for all HeaderedContentControl-derived classes, such as
Expander and TabItem.

ItemsControl
Hierarchy: UIElement FrameworkElement

Control

ItemsControl is the base class for all elements that hold multiple elements. Examples of ItemsControl
classes are ComboBox, ListBox, and RadioButtonList.

Attributes

Items

This implicitly declared attribute is common to all child elements of ItemsControl, which include
HeaderedItemsControl, Selector, MenuBase, and StatusBar.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2. Common Event Reference

Elements deriving from UIElement inherit a set of common events. Events are used in XAML to specify
the codebehind handler that will be executed when the specified event is raised. All events can be
assigned a codebehind handler using the following syntax:

<Element Name="ElementName" EventName="CodeBehindHandler" />

Elements specifying a codebehind handler must declare the Name attribute in order to be referenced in
the codebehind class. Examples 8-2 and 8-3 demonstrate the event-handling code in C# and
VisualBasic, respectively, which is executed when the mouse cursor enters or leaves the Button
declared in Example 8-4.

Example 8-2. C# implementation of event handlers

public partial class MouseEnterMouseLeave
{
 void MouseEnterHandler (object sender, MouseEventArgs e)
 {
 MyButton .Background=Brushes.Red;

 MyButton .Content="Mouse is over me ";
 }
 void MouseLeaveHandler (object sender, MouseEventArgs e)
 {
 MyButton .Background=Brushes.White;

 MyButton .Content="Mouse is not over me ";
 }
}

Example 8-3. VisualBasic implementation of event handlers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Partial Public Class MouseEnterMouseLeave
 Sub MouseEnterHandler (ByVal sender as Object, ByVal e As MouseEventArgs
 MyButton .Background = Brushes.Red

 MyButton .Content = "Mouse is over me "
 End Sub
 Sub MouseLeaveHandler (ByVal sender As Object, ByVal e as MouseEventArgs
 MyButton .Background = Brushes.White

 MyButton .Content = "Mouse is not over me "
 End Sub
End Class

Example 8-4. XAML declaration of event handlers for Button

<StackPanel
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"

 x :Class="ButtonExample.MouseEnterMouseLeave "
 <Button

 Content="Mouse is not over me "
 MouseEnter="MouseEnterHandler "
 MouseLeave="MouseLeaveHandler "
 Name="MyButton " />
</StackPanel>

The following events are common to all UIElement-derived elements. Events specific to the element
are listed with the element description. Events are fully detailed in Chapter 12, along with a more
thorough exploration of the event subsystem.

DragEnter

DragLeave

DragOver

Drop

GotFocus

IsVisibleChanged

IsEnableChanged

IsFocusChanged

http://lib.ommolketab.ir
http://lib.ommolketab.ir

KeyUp

KeyDown

LayoutUpdated

LostFocus

MouseEnter

MouseLeave

MouseMove

MouseLeftButtonDown

MouseLeftButtonUp

MouseRightButtonDown

MouseRightButtonUp

PreviewDragOver

PreviewDragEnter

PreviewDragLeave

PreviewDrop

PreviewKeyUp

PreviewKeyDown

PreviewMouseLeftButtonDown

PreviewMouseLeftButtonUp

PreviewMouseRightButtonDown

PreviewMouseRightButtonUp

PreviewMouseMove

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3. Core Control Reference

Button
Hierarchy: UIElement FrameworkElement Control

 ContentControl ButtonBase

<Button

 Click="OnSubmitButtonClicked">
 Button Label
</Button>

or:

<Button

 Click="OnSubmitButtonClicked"

 Content="Button Label" />

<Button .../> displays a push button.

Attributes

Click (optional)

This attribute sets the name of the codebehind handler that executes when the button is
clicked.

Content (optional)

This attribute sets the value that is displayed on the button.

Events

Click

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CheckBox
Hierarchy: UIElement FrameworkElement

Control ContentControl ButtonBase

ToggleButton

<CheckBox
 IsChecked="true|false"

 Content="This box is checked"

 IsCheckedChanged="OnCheckedChangedEvent" />

or:

<CheckBox
 IsChecked="true|false"

 IsCheckedChanged="OnCheckedChangedEvent">
 This is a checkbox label
</CheckBox>

<CheckBox .../> displays a checkbox.

Attributes

Click (optional)

This attribute sets the name of the codebehind handler that executes when the button is
clicked.

Content (optional)

This attribute describes the element that is displayed next to the CheckBox. This is usually a
text-based value, but can be any single UIElement.

IsChecked (optional)

This attribute sets the initial state of the checkbox.

true

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The CheckBox is checked.

false

The CheckBox is not checked. This is the default.

IsCheckedChanged (optional)

This attribute sets the name of the codebehind handler that executes when the checkbox
changes state.

Events

Click IsCheckedChanged

ComboBox
Hierarchy: UIElement FrameworkElement

Control ItemsControl Selector

<ComboBox
 IsEditable="true|false"
 IsSelectionRequired="true|false"

 SelectionChanged="SelectionChangedHandler">
</ComboBox>

<ComboBox .../> displays a selection control in a drop-down list form. A ComboBox is a container for
ComboBoxItems.

Attributes

IsEditable (optional)

This attribute determines whether users can edit the ComboBoxItems. If it is true, the user can
type in the ComboBox as though it were a text field.

true

The items are editable by the user.

false

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The items are not editable.

IsSelectedRequired (optional)

This attribute determines whether the first ComboBoxItem will be selected when the control is
initially drawn.

true

The ComboBox will be displayed with an empty selection.

false

The first ComboBoxItem will be initially selected.

SelectionChanged (optional)

This attribute sets the name of the codebehind handler that executes when the selection
changes.

Events

SelectionChanged

ContextMenu
Hierarchy: UIElement FrameworkElement

Control ItemsControl MenuBase

<ContextMenu

 Opened="OpenedHandler"

 Closed="ClosedHandler"
/>

<ContextMenu .../> represents a menu control containing a contextually accurate pop-up menu for
the control to which it is attached. ContextMenu is a container for a collection of MenuItem elements
and must be nested within another control. ContextMenu is automatically placed inside a Popup
element.

Example of a fully defined ContextMenu:

ContextMenu Opened="OpenedHandler Closed="ClosedHandler">

 <MenuItem Header="File"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <MenuItem Header="Save"/>

 <MenuItem Header="SaveAs"/>

 <MenuItem Header="Recent Files">

 <MenuItem Header="Readme.txt"/>

 <MenuItem Header="Schedule.xls"/>
 </MenuItem>
</ContextMenu>

Attributes

Closed (optional)

This attribute sets the name of the codebehind handler that executes when the ContextMenu
closes.

Opened (optional)

This attribute sets the name of the codebehind handler that executes when the ContextMenu
opens.

Events

Closed Opened

DocumentViewer
Hierarchy: UIElement FrameworkElement

Control

<DocumentViewer

 FirstVisiblePage="0" // 0 based integer

 GridColumnCount="1" // sets the number of columns in the viewer

 HorizontalOffset="0.5" // Double, ele scrolls to value
 HorizontalPageSpacing="2" // Double, space between pages
 IsToolBarMaximized="true|false"
 ShowPageBorders="true|false"
 VerticalOffset="2" // double, sets vert scroll
 VerticalPageSpacing="10" // vert page spacing
 ZoomPercentage="5.0 ... 5000.0" //default 100.0
/>

<DocumentViewer .../> implements a control that allows users to view paginated documents in a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fixed or flow format. It may contain only child elements of either FlowDocument or FixedDocument.

Attributes

FirstVisiblePage (optional)

This attribute is a zero-based Integer indicating the first visible page of content. This value
must be non-negative. Setting this value causes the DocumentViewer to load the specified page
and scroll to the top if necessary.

GridColumnCount (optional)

This Integer value represents the number of grid columns in the DocumentViewer. The value
must be non-negative and cannot be greater than the total page count.

HorizontalOffset (optional)

This Double value represents the horizontal scroll position in 1/96". It must be non-negative.

HorizontalPageSpacing (optional)

This Double value specifies the amount of horizontal space between pages. It must be non-
negative. The default value is 10.0.

IsToolBarMaximized (optional)

This attribute determines whether the DocumentViewer toolbar is visible or hidden.

true

The toolbar is visible. This is the default.

false

The toolbar is hidden.

ShowPageBorders (optional)

VerticalOffset (optional)

This Double value represents the vertical scroll position in 1/96". It must be non-negative.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VerticalPageSpacing (optional)

This Double value specifies the amount of vertical space between pages. It must be non-
negative. The default value is 10.0.

ZoomPercentage (optional)

This attribute is a Double value between 5.0 and 5000.0 that represents the zoom percentage.
The default value is 100.0.

Attached Attributes

ContentHost

The ContentHost for a DocumentViewer must be a ScrollViewer. The attribute is a Boolean that
marks the ScrollViewer as the ContentHost:

<ScrollViewer DocumentViewer.ContentHost="true|false" />

Expander
Hierarchy: UIElement FrameworkElement Control

 ContentControl HeaderedContentControl

<Expander
 IsExpanded="true|false"

 Header="this is an Expander" Content="content"/>

or:

<Expander
 IsExpanded="true|false"

 Header="this is an Expander">
 Content string
</Expander>

<Expander . . . /> allows a user to collapse an element to show only the header, or to expand it to
show more content. An Expander object may contain only one child element, but there are no
limitations on how many children that element may have. Figure 8-1 shows the result of evaluating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 8-5 in XamlPad and shows the Expander both closed (on the left) and open (on the right).

Figure 8-1. An Expander in collapsed state and fully expanded

Attributes

Content (optional)

The value of this attribute will be displayed when the Expander state is expanded and hidden
when the Expander state is collapsed.

IsExpanded (optional)

This attribute sets the initial state of the Expander.

true

The initial state is open.

false

The initial state is closed.

Header (optional)

The value of this attribute will be displayed in the header area.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hyperlink
Hierarchy: DependencyObject

FrameworkContentElement TextElement Inline

<Hyperlink

 NavigateUri="Page2.xaml">Next Page
</Hyperlink>

<Hyperlink .../> displays a hyperlink. A Hyperlink is a mechanism used to load a new page or to
navigate to an inline section of a document. This element can only be included where text is allowed,
e.g., within a TextBlock or Label object. It cannot be defined as a standalone or root element.

Navigating to an inline section of a document uses the same syntax as linking to an anchor in an
HTML document:

<Hyperlink NavigateUri="#paragraph3">Paragraph 3</Hyperlink>

Attributes

Click (optional)

This attribute sets the name of the codebehind handler that executes when the element is
clicked.

NavigateUri (required)

This attribute loads the page designated by the hyperlink or navigates to the appropriate place
within a document.

Events

Click

ListBox
Hierarchy: UIElement FrameworkElement Control

 ItemsControl Selector

<ListBox

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SelectionChanged="SelectionChangedHandler"
 SelectionMode="Single|Multiple|Extended" />

<ListBox .../> is a control that implements a list of selectable items. Like ComboBox, ListBox is a
container for other elements, namely ListBoxItem. (See Example 8-6.)

Attributes

SelectionChanged (optional)

This attribute sets the name of the codebehind handler that executes when the selection
changes.

SelectionMode (optional)

This attribute determines how items are selected.

Extended

Multiple items may be selected in groups by using the Shift key with either the mouse or
the arrow keys.

Multiple

Multiple items may be selected.

Single

A single item may be selected.

Events

SelectionChanged

MediaElement Hierarchy: UIElement FrameworkElement

<MediaElement
 Source="c:\\media
\\mymedia.wmv"
 Stretch="Fill|None|Uniform|UniformFill"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 StretchDirection="Both|DownOnly|UpOnly"/>

<MediaElement .../> provides a mechanism for including media resources, such as video, in a XAML
interface.

Attributes

Source (optional)

A MediaTimeline (detailed in Chapter 11) describing the source video.

MediaTimeline requires an absolute path to the media source.

Stretch (optional)

Determines how the MediaElement will be drawn.

Fill

The content is stretched to fill the destination. Aspect ratio is not preserved.

None

The content's original size is preserved.

Uniform

Content is resized to fit the destination. Aspect ratio is preserved.

UniformFill

Content is resized to fit the destination. Aspect ratio is preserved. If the resized content
overflows the destination, it is clipped.

StretchDirection (optional)

Determines how content is stretched to fit the Viewbox.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Both

Content is stretched to fit the Viewbox according to the Stretch attribute.

DownOnly

Content is scaled downward if it is larger than the parent Viewbox.

UpOnly

Content is scaled upward if it is smaller than the parent Viewbox.

Menu
Hierarchy: UIElement FrameworkElement Control

ItemsControl MenuBase

<Menu />

<Menu .../> defines a control that allows you to hierarchically represent commands. On its own, Menu
has very little meaning and must contain child elements of type MenuItem to be useful.

MenuItem
Hierarchy: UIElement FrameworkElement Control

 ItemsControl HeaderedItemsControl

<MenuItem

 Header="File"

 IsCheckedChanged="CheckedChangedHandler"

 Click="ClickHandler"
 IsChecked="true|false"

 InputGestureText="Ctrl+X"

 Command="ApplicationCommand"
 Mode="Default|Separator|Checked" />

In the previous code block, Header is used to represent text. To use other
elements for display, define the desired elements between the tags instead of
using Header, e.g., <MenuItem ...><element .../></MenuItem>.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<MenuItem .../> is used by both Menu and ContextMenu as a child element that represents menu
options. MenuItem headers may be defined inline using the Header attribute or in context. MenuItem
can be:

Checked or unchecked

Selected to invoke commands

Used as a header for submenus

Used as a separator

Attributes

Click (optional)

This attribute sets the name of the codebehind handler that executes when the MenuItem is
clicked.

Command (optional)

This attribute is used to assign an application command to the menu item, which automatically
assigns the command's associated input gesture to the object. This attribute must be one of
the commands defined by the System.Windows.Input.ApplicationCommands class. For a full
listing of these commands, see Appendix F.

Header (optional)

This attribute defines the visible text of the menu item that is displayed.

InputGestureText (optional)

This attribute describes the sequence of keystrokes that accesses this menu item. An example
is Ctrl-X or Ctrl-Z. This text is displayed on the right side of the menu item as a user prompt.
Figure 8-2 shows an example of declaring InputGestureText="Ctrl+N" and
InputGestureText="Ctrl+X" for two separate instances of MenuItem.

IsChecked (optional)

This attribute sets the initial state of the MenuItem.

true

The MenuItem is checked.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

false

The MenuItem is not checked.

Figure 8-2 shows the result of declaring <MenuItem Header= "Open" IsChecked= "true"
/>.

IsCheckedChanged (optional)

This attribute sets the name of the codebehind handler that executes when the MenuItem state
changes from checked to unchecked, or vice versa.

Mode (optional)

This attribute defines the operational mode of the menu item.

Checkable

The menu item can be clicked, which toggles its checked state.

Default

The menu item can be clicked. This is the default mode and is assigned if a mode is not
explicitly declared.

Separator

The menu item is a separator and cannot be clicked.

Figure 8-2. A Menu with InputGestureText and IsChecked declared

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Events

ClickIsCheckedChanged

NavigationWindow
Hierarchy: UIElement FrameworkElement

 Control ContentControl Window

<NavigationWindow

 StartupUri="StartPage.xaml" />

<NavigationWindow .../> extends Window and adds standard back and forward web navigation
capabilities. NavigationWindow is always created with a navigation "chrome," which contains the
controls that allow a user to move forward and backward through the navigation stack. The
navigation chrome is indicated in Figure 8-3 by the space containing the back and forward navigation
arrows.

Figure 8-3. Navigation chrome

Attributes

StartUri (required)

Specifies the URI of the starting page

Page Hierarchy: UIElement FrameworkElement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"

 x:Class="Page_API.Page1"

 Name="myWindow"
 WindowHeight="400"
 WindowWidth="400"

 Text="Title of the Page"
 WindowState="Maximized|Minimized|Normal"
 <Page.Resources>
 ...
 </Page.Resources>
</Page>

Note that x is replaceable both for Class and the namespace declaration. It

refers to the XAML namespace
(http://schemas.microsoft.com/winfx/xaml/2005), which must be included
when using this method of reference .

<Page .../> is a root-level element that can be used to set window properties and event handlers.

Attributes

Name (optional)

This attribute determines the name of the Page. Name must be set in order to access the
element instance from codebehind functions.

Resources (optional)

This attribute determines a collection of Style, TRigger, and Storyboard.

Text (optional)

Sets the title of the Page. The default value is null; no title is displayed.

WindowHeight (optional)

This Double value specifies the height of the Page.

WindowState (optional)

http://schemas.microsoft.com/winfx/xaml/2005
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This attribute determines the initial state of the window.

Maximized

The Page starts maximized.

Minimized

The Page starts minimized.

Normal

The Page starts at its specified dimensions.

WindowWidth (optional)

This Double value specifies the width of the Page.

x:Class (optional)

This attribute defines the name of the codebehind class responsible for implementing event
handlers. The namespace for this class is determined by the declaration of the WinFX XAML
namespace. x may be replaced with any namespace reference you desire, as long as it matches

the declaration of the codebehind class in which event handlers and other application logic will
be implemented. If the declaration in XAML for the Page codebehind class is
x:Class="Page_API.Page1", then the associated C# codebehind file would appear as shown in

Example 8-7.

Example 8-7. Declaring a codebehind class for Page

namespace XAML_Space
{
 public partial class Page1 : Page
 {
 // code goes here for page level event handlers
 }
}

PasswordBox
Hierarchy: UIElement FrameworkElement

Control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<PasswordBox
 MaxLength="0"
 PasswordTextChanged="PasswordChangedHandler"
 PasswordChar="*"
 Password="MyPassword" />

<PasswordBox . . . /> implements a TextBox with special provisions for handling passwords.

Attributes

MaxLength (optional)

This attribute is an Integer value specifying the maximum length of the password. A 0
indicates there is no maximum. The default value is 0.

Password (optional)

This attribute is a SecureString representing the password to be displayed.

PasswordChar (optional)

This attribute is the Char displayed in place of typed characters in the password box. The
default value is *.

PasswordTextChanged (optional)

This attribute describes the codebehind handler that executes when the Password-TextChanged
event is raised.

Events

PasswordTextChanged

Popup Hierarchy: UIElement FrameworkElement

<Popup

 Child="MyChild"
 HasDropShadow="true|false"

 HorizontalOffset="3"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 IsOpen="true|false"
 Placement="Absolute|AbsolutePoint|Top|Bottom|Right|Center|Left|Relative|
 RelativePoint|Mouse|MousePoint"
 PlacementRectangle="0,0 5 10"

 PlacementTarget="Target"
 PopupAnimation="None|Fade|Scroll|Slide"
 StaysOpen="true|false"

 VerticalOffset="5"

 CustomPopupPlacementCallback="CustomCallback"

 Opened="OpenedHandler"

 Closed="ClosedHandler"
/>

<Popup .../> creates a top-level window that displays content. It is not affected by styles or
properties in the existing tree unless it is specifically bound to them.

Attributes

Child (optional)

This attribute sets the child element. Child elements can also be defined between the tags.

Closed (optional)

This attribute sets the name of the codebehind handler that executes when the Popup is closed.

CustomPopupPlacementCallback (optional)

This attribute identifies a codebehind callback function, which returns the placement for this
element.

HasDropShadow (optional)

This attribute determines whether the Popup has a drop shadow.

true

The element has a drop shadow.

false

The element does not have a drop shadow. This is the default.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HorizontalOffset (optional)

This attribute determines the offset of the Popup from the left. It is of type Double.

IsOpen (optional)

This attribute determines whether the Popup is visible.

true

The element is visible.

false

The element is not visible.

Opened (optional)

This attribute sets the name of the codebehind handler that executes when the Popup is
opened.

Placement (optional)

This attribute determines where the PopUp appears.

Absolute

Uses HorizontalOffset and VerticalOffset to position the Popup relative to the upper-
left corner of the screen.

AbsolutePoint

Uses HorizontalOffset and VerticalOffset to position the Popup relative to the upper-
left corner of the screen. If the Popup extends beyond the edges of the screen, it flips to
the other side of the point.

Bottom

Positions the Popup on the bottom edge of its parent, aligning left edges.

Center

Centers the Popup over the parent.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Left

Positions the Popup on the left side of the parent, aligning upper edges.

Mouse

Behaves the same way as Bottom but uses the bounding box of the mouse cursor.

MousePoint

Behaves the same way as RelativePoint, but its reference point is the tip of the mouse
cursor.

Relative

Uses HorizontalOffset and VerticalOffset to position the Popup relative to the upper-
left corner of the parent element.

RelativePoint

Uses HorizontalOffset and VerticalOffset to position the Popup relative to the upper-
left corner of the parent element. If the popup extends beyond the edges of the screen,
it flips to the other side of the point.

Right

Positions the Popup on the right side of the parent, aligning upper edges.

Top

Positions the Popup on the top edge of the parent, aligning left edges.

PlacementRectangle (optional)

If this attribute is null, then the Popup will be placed relative to its visual parent. If this
attribute is set, then the Popup will be placed relative to the rectangle it describes.
PlacementRectangle is of type Rect and can be expressed through markup as the top-left
coordinate pair, height, and width, e.g., 5,5 10 10.

PlacementTarget (optional)

This attribute specifies the element used to calculate the position of the Popup as though it were
the parent element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PopupAnimation (optional)

This attribute specifies the animation used when the element opens.

Fade

Animates the opacity. The element appears to fade in.

None

No animation is used.

Scroll

Animates the height of the element.

Slide

Animates the width and height at the same time.

StaysOpen (optional)

This attribute determines the automatic closure behavior of the Popup.

true

The element stays open and must be closed programmatically.

false

The element automatically closes.

VerticalOffset (optional)

This attribute determines the offset of the Popup from the bottom. It is of type Double.

Events

OpenedClosed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RadioButton
Hierarchy: UIElement FrameworkElement

Control ContentControl ButtonBase

ToggleButton

<RadioButton
 IsChecked="true|false"

 Content="Checked Radio Button"

 IsCheckedChanged="CheckedChangedHandler"

 Click="ClickHandler"/>

or:

<RadioButton
 IsChecked="true|false"

 IsCheckedChanged="CheckedChangedHandler"

 Click="ClickHandler">

 Checked Radio Button
</RadioButton>

<RadioButton .../> displays a single button that can be selected but not deselected. To display a
group of RadioButton elements, use RadioButtonList.

Although the content of a RadioButton is usually text, any UIElement can be used, as demonstrated in
Example 8-8. Figure 8-4 shows an example of several RadioButton elements using text, Button, and
Ellipse as content.

Figure 8-4. RadioButton using non-text content

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

Click (optional)

This attribute sets the name of the codebehind handler that executes when the RadioButton is
clicked.

Content (optional)

This attribute's value will be displayed as the RadioButton label.

IsChecked (optional)

This attribute sets the initial state of the RadioButton.

true

Sets the initial state to selected

false

Sets the initial state to unselected

IsCheckedChanged (optional)

This attribute sets the name of the codebehind handler that executes when the RadioButton
changes state.

Events

ClickIsCheckedChanged

RadioButtonList
Hierarchy: UIElement FrameworkElement

Control ItemsControl Selector

<RadioButtonList

 SelectionChanged="RadioButtonSelectionChangedHandler">

 <RadioButton Name="rb1">Radio Button 1</RadioButton>

 <RadioButton Name="rb2">Radio Button 2</RadioButton>

 <RadioButton Name="rb3">Radio Button 3</RadioButton>
</RadioButtonList>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<RadioButtonList .../> is a selector containing a group of RadioButton elements and is limited to a
single selection mode. RadioButtonList can contain any type of element, but all elements declared
within its beginning and ending tags will be interpreted as a RadioButton and displayed as the
RadioButton's label. If you declare a Button in the middle of the list, the user interface will display a
typical RadioButton with a Button next to it instead of a text-based prompt.

Attributes

SelectionChanged (optional)

This attribute sets the name of the codebehind handler that executes when the selection
changes.

Events

SelectionChanged

RepeatButton
Hierarchy: UIElement FrameworkElement

Control ContentControl ButtonBase

<RepeatButton

 Delay="500"

 Interval="100"

 Click="ClickHandler"

 Content="Increment Counter" />

<RepeatButton .../> is a button that continually raises its Click event until it is released. The
interval between Click events is controlled through the event's properties. RepeatButton is used to
implement the composite components HorizontalSlider and VerticalSlider.

Attributes

Click (optional)

This attribute sets the name of the codebehind handler that executes when the RepeatButton is
clicked.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Content (optional)

This attribute's value will be displayed as the RepeatButton label.

Delay (optional)

This attribute sets the amount of time, in milliseconds, that the RepeatButton waits before it
starts repeating. This value must be a non-negative Integer.

Interval (optional)

This attribute sets the amount of time, in milliseconds, between repeats. This value must be a
non-negative Integer.

Events

Click

ScrollViewer
Hierarchy: UIElement FrameworkElement

Control ContentControl

ScrollViewer
 HorizontalScrollBarVisibility="Auto|Visible|Hidden|Disabled"
 VerticalScrollBarVisibility=" Auto|Visible|Hidden|Disabled"

 ScrollChanged="ScrollChangedHandler"
 CanContentScroll="true|false" >
 ...
</ScrollViewer>

<ScrollViewer .../> represents a scrollable area that contains other visible elements. The visible
area of the content is called the viewport. The viewport for the ScrollViewer is defined by the Height
and Width properties.

Attributes

CanContentScroll (optional)

Determines whether content is scrollable

true

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The content is scrollable.

false

The content is not scrollable.

HorizontalScrollBarVisibility (optional)

Determines the properties of the horizontal scrollbar

Auto

The scrollbar will be visible only if there is more content than can fit in the viewport.

Disabled

No scrolling is allowed.

Hidden

The scrollbar should never be visible or have space reserved for it.

Visible

The scrollbar should always be visible and have space reserved for it.

ScrollChanged (optional)

Sets the name of the codebehind handler that executes when a scrollbar changes position

VerticalScrollBarVisibility (optional)

Determines the properties of the vertical scrollbar

Auto

The scrollbar will be visible only if there is more content than can fit in the viewport.

Disabled

No scrolling is allowed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hidden

The scrollbar should never be visible or have space reserved for it.

Visible

The scrollbar should always be visible and have space reserved for it.

Events

ScrollChanged

Slider
Hierarchy: UIElement FrameworkElement Control

RangeBase

Slider controls provide a thumb that slides from side to side to change a value, usually a number
with a large range or a percentage. Slider is the parent of two objects: HorizontalSlider and
VerticalSlider. These elements are controlled in a like fashion and have the same attributes.
Attributes are applied based on whether the slider is displayed vertically or horizontally, but the two
components are identical in all other respects.

HorizontalSlider

Hierarchy: UIElement FrameworkElement Control RangeBase Slider
<HorizontalSlider
 IsSnapToTickEnabled="true|false"

 Minimum="0"

 Maximum="3"

 Delay="100"

 Interval="100"
 TickPlacement=" Both|BottomRight|TopLeft|None"
 AutoToolTipPlacement="BottomRight|TopLeft|None"

 AutoToolTipPrecision="2"

 SmallChange="0.5"

 LargeChange="1"

 Ticks="0, 1, 2, 3"

 TickFrequency="1"

 Value="2" />

<HorizontalSlider .../> is a composite component that allows the user to select a range of values
using a sliding control displayed horizontally.

VerticalSlider

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hierarchy: UIElement FrameworkElement Control RangeBase Slider
<VerticalSlider
 IsSnapToTickEnabled="true|false"

 Minimum="0"

 Maximum="3"

 Delay="100"

 Interval="100"
 TickPlacement="Both|BottomRight|TopLeft|None"
 AutoToolTipPlacement="BottomRight|TopLeft|None"

 AutoToolTipPrecision="2"

 SmallChange="0.5"

 LargeChange="1"

 Ticks="0, 1, 2, 3"

 TickFrequency="1"

 Value="2" />

<VerticalSlider .../> is a composite component that allows the user to select a range of values
using a sliding control displayed vertically.

Attributes

AutoToolTipPlacement (optional)

Determines whether an auto-generated ToolTip will be shown and where it will appear.

BottomRight

Shows the auto ToolTip at the bottom edge of the Thumb in a HorizontalSlider and at
the right edge in a VerticalSlider.

None

Auto ToolTips will not be shown.

TopLeft

Shows the auto ToolTip at the top edge of the Thumb in a HorizontalSlider and at the
left edge in a VerticalSlider.

AutoToolTipPrecision (optional)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Determines the number of decimal places shown in the auto-generated ToolTip.

Delay (optional)

The amount of time, in milliseconds, that the object's RepeatButton waits before processing an
increase or decrease command.

Interval (optional)

Sets the amount of time, in milliseconds, between repeats. This value must be non-negative.

IsSnapToTickEnabled (optional)

Determines whether the Thumb will snap to tick marks. Snap describes the behavior of a thumb
control when the mouse is clicked either to its left or right.

true

Thumb will snap.

false

Thumb will not snap.

LargeChange (optional)

The amount added or subtracted from the Value when the scrollbar is clicked. The default is 1.

Maximum (optional)

Determines the maximum value for this object. The Value attribute will not be allowed to
increase beyond this value.

Minimum (optional)

Determines the minimum value for this object. The Value attribute will not be allowed to
decrease beyond this value.

SmallChange (optional)

The amount added or subtracted from the Value when the Thumb is moved. The default is 0.1.

TickFrequency (optional)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sets the distance between Ticks. The default value for this attribute is 1.0. Ticks start at
Minimum and end at Maximum.

TickPlacement (optional)

Determines where Ticks should be displayed relative to the slidebar.

Both

Displays tick marks on both sides of the slidebar.

BottomRight

Displays tick marks below the track in a HorizontalSlider and to the right in a
VerticalSlider.

None

No tick marks are shown.

TopLeft

Displays tick marks above the track in a HorizontalSlider and to the left in a
VerticalSlider.

Ticks (required)

A collection of Double values that indicates the values of displayed tick marks.

Value (optional)

The initial value of the control.

TabControl
Hierarchy: UIElement FrameworkElement

Control ItemsControl Selector

<TabControl
 TabStripPlacement="Bottom|Top|Right|Left"

 SelectionChanged="SelectionChangedHandler" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<TabControl .../> allows content to be organized in tabbed panes. It must contain at least one
TabItem to be useful.

Attributes

SelectionChanged (optional)

Sets the name of the codebehind handler that executes when the selected TabItem changes

TabStripPlacement (optional)

Determines where individual TabItem objects will be placed

Bottom

Tabs are placed at the bottom of content.

Left

Tabs are placed to the left of content.

Right

Tabs are placed to the right of content.

Top

Tabs are placed at the top of content.

Events

SelectionChanged

TabItem
Hierarchy: UIElement FrameworkElement Control

 ContentControl HeaderedItemsControl

<TabItem

 Header="Tab 1"
 IsSelected="true|false"

 Content="Content" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<TabItem .../> is a child of TabControl and defines individual tabs. Content may be omitted if
elements other than text will be included.

Figure 8-5 shows a TabControl with three TabItem declarations.

Figure 8-5. A TabControl with three elements

Attributes

Content (optional)

This attribute determines the text-based content of the TabItem.

Header (optional)

This attribute sets the title of the TabItem.

IsSelected (optional)

This Boolean determines whether a TabItem is initially selected.

true

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The TabItem is initially selected.

false

The TabItem is not selected.

TextBox
Hierarchy: UIElement FrameworkElement Control

 TextBoxBase

<TextBox

 MaxLength="10"
 AcceptsDigitsOnly="true|false"

 TextChanged="TextChangedHandler"

 CaretIndex="3"
 CharacterCasing="Upper|Normal|Lower"
 AcceptsReturn="true|false"
 AcceptsTab="true|false"
 TextTrimming="CharacterEllipsis|WordEllipsis|None"

 Text="123" />

<TextBox .../> defines an editable region in which a user can enter text.

Attributes

AcceptsDigitsOnly (optional)

Determines whether this element will accept alphanumeric characters or numeric only.

true

This element accepts only numeric input.

false

This element accepts alphanumeric input.

AcceptsReturn (optional)

Determines the element's behavior when the Enter key is pressed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

true

The Enter key inserts a new line at the current cursor position. This is the default
behavior.

false

Enter is ignored.

AcceptsTab (optional)

Determines the element's behavior when the Tab key is pressed.

true

The Tab key inserts a tab character at the current cursor position. This is the default
behavior.

false

The Tab key moves to the next control in the tab order; no tab character is inserted.

CaretIndex (optional)

Determines the position of the caret. The value is of type Integer and is zero-based.

CharacterCasing (optional)

Determines the casing of characters during input. Typed characters are automatically
converted according to this attribute.

Lower

Converts typed characters to lowercase

Normal

Does not convert typed characters

Upper

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Converts typed characters to uppercase

MaxLength (optional)

Determines the maximum length of the string that this element will accept. The default is 0 and
is of type Integer. The string can be set to a longer value programmatically.

Text (optional)

Sets the initial content of the TextBox.

TextChanged (optional)

Sets the name of the codebehind handler that executes when the text changes.

TextTrimming (optional)

Determines how text that flows past the end of the element is treated.

CharacterEllipsis

Text is trimmed at a character boundary. Remaining text is replaced with an ellipsis (. . .
).

None

Text is not trimmed.

WordEllipsis

Text is trimmed at a word boundary. Remaining text is replaced with an ellipsis (. . .).

Events

TextChanged

ToolBar
Hierarchy: UIElement FrameworkElement Control

 ItemsControl HeaderedItemsControl

<ToolBar
 BandIndex="0"
 Band="0"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 OverflowMode="Always|Never|AsNeeded|Never" />

<ToolBar . . . /> represents a standard UI toolbar with facilities to handle the overflow of items.
ToolBar holds objects of type UIElement. Figure 8-6 shows the result of evaluating Example 8-9,
which builds a ToolBar out of Button elements. Each Button contains an Image elementa common
mechanism for building toolbars.

Figure 8-6. ToolBar containing Buttons with images

The Band and BandIndex attributes are useful only when more than one ToolBarPanel is contained
within a ToolBar. Example 8-9 contains example code and figures that demonstrate the usefulness of
these two attributes.

Attributes

Band (optional)

This Integer value determines which band, or row, in the ToolBarTray this ToolBar should
occupy.

BandIndex (optional)

This Integer value determines which band, or row, in the ToolBarTray this ToolBar should
occupy.

IsOverFlowOpen (optional)

This Boolean determines the initial state of the ToolBarOverflowPanel.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

true

The overflow panel is open.

false

The overflow panel is closed.

Attached Attributes

ToolBar.OverflowMode

Determines how an element should be added to the overflow panel, if ever

Always

This element should always be added to the overflow panel.

AsNeeded

This element should be added to the overflow panel if necessary.

Never

This element should never be added to the overflow panel.

ToolBarOverflowPanel
Hierarchy: UIElement

FrameworkElement Panel

<ToolBarOverflowPanel
 WrapWidth="100" />

<ToolBarOverflowPanel .../> describes the overflow panel for a ToolBar. It is used in conjunction
with a ToolBarPanel to determine which elements are automatically placed into the overflow panel
when there is not enough room in the ToolBar to display all of them. If there is not enough room for
even one element in the ToolBar, then all elements declared in the ToolBarOverflowPanel will appear
there. If there is enough room for all the elements declared in the ToolbarOverflowPanel to be
displayed on the ToolBarPanel, then they will appear there.

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WrapWidth (optional)

This Integer value sets the width at which items will begin to flow into the overflow panel.

ToolBarPanel
Hierarchy: UIElement FrameworkElement

Panel StackPanel

<ToolBarPanel />

<ToolBarPanel .../> is responsible for arranging items in a ToolBar and determining which elements
will fit there and which will be placed into the ToolBarOverflowPanel. Example 8-10 describes a
ToolBarPanel with two ToolBar elements, one of which is always an overflow item and one that is not.
The result is shown in Figure 8-7.

Figure 8-7. A ToolBarPanel with overflow

ToolBarTray
Hierarchy: UIElement FrameworkElement

Panel Canvas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<ToolBarTray
 IsLocked="true|false"
 Orientation="Vertical|Horizontal" >

<ToolBarTray .../> defines a toolbar tray that holds a group of ToolBar elements. The BandIndex and
Band attributes indicate the order of these elements in the ToolBarTray.

Figure 8-8 shows the result of specifying Band="0" for both ToolBar elements. Specifying the same
Band for both ToolBar elements lines them up horizontally. Changing the first value to Band="1"
results in Figure 8-9, in which the ToolBar elements line up vertically. Example 8-11 demonstrates
the code for a ToolBarTray with multiple ToolBars.

Figure 8-8. Specifying the same value for Band in a ToolBarTray

Figure 8-9. Specifying two different values for Band in a ToolBarTray

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsLocked (optional)

Specifies whether child instances of ToolBar can be moved within the ToolBarTray

true

ToolBar elements may not be moved.

false

ToolBar elements may be moved. This is the default behavior.

Orientation (optional)

Determines the orientation of the ToolBarTray

Horizontal

The element is oriented horizontally.

Vertical

The element is oriented vertically.

ToolTip
Hierarchy: UIElement FrameworkElement Control

 ContentControl

<ToolTip
 Placement="Absolute|AbsolutePoint|Top|Bottom|Right|Center|Left|Relative|
 RelativePoint|Mouse|MousePoint"
 HorizontalOffset="50"
 VerticalOffset="20"
 StaysOpen="true|false"
 Opened="OpenedHandler"
 Closed="ClosedHandler"
 PlacementTarget="Target"
 HasDropShadow="true|false" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<ToolTip .../> displays a small pop-up window after particular events are raised or when the mouse
hovers over a control. Assigning a ToolTip to a control requires the explicit declaration of the ToolTip
attribute, which is inherited from FrameworkElement. ToolTip can be declared inline as a String, in
which case the system automatically displays the tool tip with its default style. ToolTip can also be
explicitly declared, as shown in Example 8-12, as any derivative of UIElement.

Attributes

Closed (optional)

Sets the name of the codebehind handler that executes when the ToolTip closes.

HasDropShadow (optional)

Determines whether the ToolTip has a drop shadow.

true

ToolTip has a drop shadow.

false

ToolTip does not have a drop shadow. This is the default value.

HorizontalOffset (optional)

Determines the offset of the pop up from the left. It is of type Double.

Opened (optional)

Sets the name of the codebehind handler that executes when the ToolTip opens.

Placement (optional)

Determines where the ToolTip appears.

Absolute

Uses HorizontalOffset and VerticalOffset to position the ToolTip relative to the upper-
left corner of the screen.

AbsolutePoint

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Uses HorizontalOffset and VerticalOffset to position the ToolTip relative to the upper-
left corner of the screen. If the pop up extends beyond the edges of the screen, it flips to
the other side of the point.

Bottom

Positions the pop up on the bottom edge of its parent, aligning left edges.

Center

Centers the pop up over the parent.

Left

Positions the pop up on the left side of the parent, aligning upper edges.

Mouse

Behaves the same way as Bottom but uses the bounding box of the mouse cursor.

MousePoint

Behaves the same way as RelativePoint, but its reference point is the tip of the mouse
cursor.

Relative

Uses HorizontalOffset and VerticalOffset to position the ToolTip relative to the upper-
left corner of the parent element.

RelativePoint

Uses HorizontalOffset and VerticalOffset to position the ToolTip relative to the upper-
left corner of the parent element. If the pop up extends beyond the edges of the screen,
it flips to the other side of the point.

Right

Positions the pop up on the right side of the parent, aligning upper edges.

Top

Positions the pop up on the top edge of the parent, aligning left edges.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PlacementTarget (optional)

Determines the element relative to which the ToolTip is displayed. This element is used to
calculate placement. If null, the parent element is used.

StaysOpen (optional)

Determines the behavior of the ToolTip when opened.

true

The ToolTip stays open.

false

The ToolTip automatically closes after a specified period of time. This is the default
behavior.

VerticalOffset (optional)

Determines the offset of the pop up from the top. It is of type Double.

Events

ClosedOpened

Window
Hierarchy: UIElement FrameworkElement Control

 ContentControl

<Window
 Left="10"
 ResizeMode="CanMinimize|CanResize|CanResizeWithGrip|NoResize"
 ShowInTaskbar="true|false"
 StatusBarContent="My Status Bar Content"
 Text="Window Title"
 Topmost="true|false"
 WindowState="Maximized|Minimized|Normal"
 WindowStyle="None|SingleBorderWindow|ThreeDBorderWindow|ToolWindow" />

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HasStatusBar (optional)

A Boolean value determining whether the Window has a status bar.

true

The Window has a status bar.

false

The Window has no status bar. This is the default.

Left (optional)

An Integer value that describes the location of the left edge of the window in logical units
(1/96").

ResizeMode (optional)

Determines how, if at all, the user can resize the Window.

CanMinimize

The user can only minimize the window and restore it from the task bar. Only the
minimize box is enabled, even though the maximize box is shown.

CanResize

The user can resize the window.

CanResizeWithGrip

The user can resize the window, and a resize grip is displayed in the window's lower-right
corner.

NoResize

The user cannot resize the window. The maximize and minimize boxes are not displayed.

ShowInTaskbar (optional)

A Boolean value that determines whether the window shows up in the task bar.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

true

The window shows up in the task bar and can be accessed through Alt-Tab.

false

The window does not show up in the task bar.

StatusBarContent (optional)

The content shown in the status bar. This attribute is meaningless if HasStatusBar is set to
false.

Text (optional)

The title of the Window.

Top (optional)

An Integer value that describes the location of the top edge of the window in logical units
(1/96").

Topmost (optional)

A Boolean value determining whether this window should be on top at all times.

true

The window always appears on top.

false

The window behaves normally.

WindowState (optional)

Determines the initial state of the window.

Maximized

The Window starts maximized.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Minimized

The Window starts minimized.

Normal

The Window starts at its specified dimensions.

WindowStyle (optional)

Determines the core style for the Window.

None

The Window has no border or caption.

SingleBorderWindow

The Window will have a single border. This is the default.

ThreeDBorderWindow

The Window will have a 3-D border.

ToolWindow

The Window will appear as a fixed-tool window.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. Shapes and Geometry
Shape and Geometry are both used to render 2-D objects. While the two have much in common, there
are important differences between the two sets of drawing objects. The most important is that
instances of Geometry cannot draw themselves; they must be drawn by another class. There are
other differences, but the easiest way to differentiate the two is to remember that Geometry is used
to describe a region and Shape determines how that region is drawn and filled. Because Shapes are UI
elements, they can be used inside panels and most controls. Geometry elements cannot.

Geometry elements are also used to define clipping regions . A clipping region defines the visible area
of another element, such as an Image. For example, if you have a large image but only want to
display part of it, you could use a Geometry element to clip it. You could also use Geometry elements
to clip the image to simulate a frame, as Example 9-1 and Figure 9-1 illustrate.

Example 9-1. Clipping an image with EllipseGeometry

<StackPanel
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 Margin="20">
 <Image

 Source="c:\image.jpg"

 HorizontalAlignment="Left">
 <Image.Clip>
 <EllipseGeometry

 RadiusX="100"

 RadiusY="75"

 Center="100,75"/>
 </Image.Clip>
 </Image>
</StackPanel>

Figure 9-1. Using EllipseGeometry to clip an image

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Geometries are categorized as either simple or path. A simple geometry is used to describe basic
geometric shapes, such as line, ellipse, and rectangle. Path geometry describes more complex
geometric figures, such as ones created by tracing a path.

Although shapes are most commonly drawn on a Canvas, they may be used with any Panel or control
that supports non-text elements. This chapter details the shapes and geometry available for use in
XAML.

All shapes derive from the base class Shape and therefore share a common set of attributes, which is
detailed in Table 9-1.

Table 9-1. Attributes common to all Shape elements

Property name Data type Purpose

Fill Brush Describes how the shape's interior is filled. The default is
null. A list of pre-defined Brush colors is in Appendix G.

StrokeDashArray DoubleCollection Describes the series of dashes and gaps used to outline the
shape. Each Double in the collection specifies the length of a
dash or gap relative to the thickness of the pen. For
example, a value of 1 creates a dash or gap with the same
length as the thickness of the pen (a square). The first item
in the collection, located at index 0, specifies the length of a
dash; the second item, located at index 1, specifies the
length of a gap; and so on. Objects with an even index
value specify dashes, and objects with an odd index value
specify gaps.

StrokeDashCap Enumeration Describes how the ends of a dash are drawn. Must be one of
the following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property name Data type Purpose

Flat

No line cap.

Round

The line is capped with a semicircle equal in diameter
to the line thickness.

Square

The line is capped with a square whose sides are
equal in length to the line thickness.

Triangle

The line is capped with a triangle equal in height to
the line thickness.

The default is Flat.

StrokeDashOffset Double Describes the distance in the dash pattern at which the dash
will start.

StrokeEndLineCap Enumeration Describes the shape used at the end of the element's
stroke. Must be one of the following:

Flat

No line cap.

Round

The line is capped with a semicircle equal in diameter
to the line thickness.

Square

The line is capped with a square whose sides are
equal in length to the line thickness.

Triangle

The line is capped with a triangle equal in height to

Flat

No line cap.

Round

The line is capped with a semicircle equal in diameter
to the line thickness.

Square

The line is capped with a square whose sides are
equal in length to the line thickness.

Triangle

The line is capped with a triangle equal in height to
the line thickness.

The default is Flat.

StrokeDashOffset Double Describes the distance in the dash pattern at which the dash
will start.

StrokeEndLineCap Enumeration Describes the shape used at the end of the element's
stroke. Must be one of the following:

Flat

No line cap.

Round

The line is capped with a semicircle equal in diameter
to the line thickness.

Square

The line is capped with a square whose sides are
equal in length to the line thickness.

Triangle

The line is capped with a triangle equal in height to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property name Data type Purpose The line is capped with a triangle equal in height to
the line thickness.

The default is Flat.

StrokeLineJoin Enumeration Sets the type of joint used at the vertices of a shape's
outline. Must be one of the following:

Bevel

Beveled vertices

Miter

Regular angular vertices

Round

Rounded vertices

StrokeMiterLimit Double Specifies a limit on the ratio of the miter length to the
StrokeThickness of a Shape element. The value is always
greater than or equal to 1.

Stroke Brush Describes how the outline of the shape will be drawn. The
default is null.

StrokeStartLineCap Enumeration Describes the shape used to draw the start of a line. Must
be one of:

Flat

No line cap.

Round

The line is capped with a semicircle equal in diameter
to the line thickness.

Square

The line is capped with a square whose sides are
equal in length to the line thickness.

Triangle

The line is capped with a triangle equal in height to

The line is capped with a triangle equal in height to
the line thickness.

The default is Flat.

StrokeLineJoin Enumeration Sets the type of joint used at the vertices of a shape's
outline. Must be one of the following:

Bevel

Beveled vertices

Miter

Regular angular vertices

Round

Rounded vertices

StrokeMiterLimit Double Specifies a limit on the ratio of the miter length to the
StrokeThickness of a Shape element. The value is always
greater than or equal to 1.

Stroke Brush Describes how the outline of the shape will be drawn. The
default is null.

StrokeStartLineCap Enumeration Describes the shape used to draw the start of a line. Must
be one of:

Flat

No line cap.

Round

The line is capped with a semicircle equal in diameter
to the line thickness.

Square

The line is capped with a square whose sides are
equal in length to the line thickness.

Triangle

The line is capped with a triangle equal in height to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property name Data type Purpose The line is capped with a triangle equal in height to
the line thickness.

The default is Flat.

StrokeThickness Double Sets the width of the shape's outline.

Height Double Describes the height of the element.

Width Double Describes the width of the element.

Most Shape and Geometry elements use instances of the structure Point, which is detailed in this
chapter.

The line is capped with a triangle equal in height to
the line thickness.

The default is Flat.

StrokeThickness Double Sets the width of the shape's outline.

Height Double Describes the height of the element.

Width Double Describes the width of the element.

Most Shape and Geometry elements use instances of the structure Point, which is detailed in this
chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ArcSegment

Type: Geometry

Hierarchy: Freezable Animatable PathSegment

 <ArcSegment
 LargeArc="true|false"

 Point="5,5"

 Size="10,10"
 SweepFlag="true|false"

 XRotation="45" />

or:

 <ArcSegment
 LargeArc="true|false"

 Size="10,10"
 SweepFlag="true|false"

 XRotation="45">
 <ArcSegment.Point>

 <Point X="5" Y="5" />
 </ArcSegment.Point>

 </ArcSegment>

<ArcSegment .../> should be a child of PathFigure. It represents an elliptical arc between two
instances of Point (Figure 9-2). ArcSegment does not contain its start point location because the start
point is assumed to be the current Point of the parent PathFigure.

Figure 9-2. ArcSegment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

LargeArc (optional)

This Boolean value determines whether the arc should be drawn with an angle of 180 degrees
or greater.

true

The arc will be drawn with an angle greater than 180 degrees.

false

The arc will be drawn with an angle less than 180 degrees.

Point (required)

This attribute describes the end point of the arc. This attribute can be described as a Point
either explicitly or using abbreviated markup syntax.

Size (required)

This attribute describes the x- and y-radius of the arc as a Size.

SweepFlag (optional)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This Boolean value determines whether the angle of the arc is drawn in a positive-angle or
negative-angle direction.

true

The angle is drawn in a positive-angle direction.

false

The angle is drawn in a negative-angle direction.

XRotation (optional)

This Double value indicates how the arc should be rotated relative to the current coordinate
system.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BezierSegment
Hierarchy: Freezable Animatable

PathSegment

Type: Geometry

<BezierSegment

 Point1="1,1"

 Point2="150,50"

 Point3="140,10" />

<BezierSegment .../> describes a Bezier curve between two points. Like ArcSegment, BezierSegment
must be the child of a PathFigure. Point1 affects the beginning segment of the curve, while Point2
affects the ending segment of the curve. Control points act like magnets, pulling the curve toward
them. Figure 9-3 shows the BezierSegment described above.

Figure 9-3. BezierSegment

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Point1 (required)

Describes the first control point on the curve

Point2 (required)

Describes the second control point on the curve

Point3 (required)

Describes the end point of the curve

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CloseSegment
Hierarchy: Freezable Animatable

PathSegment

Type: Geometry

 <CloseSegment />

<CloseSegment .../> represents the final line of a PathFigure, which joins the figure's last Point to
its first Point.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CombinedGeometry
Hierarchy: Freezable Animatable

Geometry

Type: Geometry

 <CombinedGeometry
 CombineMode="Union|Xor|Exclude|Intersect" />

<CombinedGeometry.../> combines two Geometry elements as specified by the CombineMode attribute.

Attributes

CombineMode (optional)

Determines how the two child Geometry elements will be combined

Exclude

The two regions described by the child elements will be combined by excluding the area
in the second geometry from the area in the first geometry. The result is Geometry A -
Geometry B.

Intersect

The two regions described by the child elements will be combined by taking the area that
exists in both regions. This is the opposite of Xor mode. The result is (Geometry A -
Geometry B) - ((Geometry B - Geometry A) + (Geometry A - Geometry B)).

Union

The two regions described by the child elements will be combined by including the union
of both regions. The result is Geometry A + Geometry B.

Xor

The two regions described by the child elements will be combined by including the area

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that exists in the first region but not the second and the area that exists in the second
region but not the first. The result is (Geometry A - Geometry B) + (Geometry B -
Geometry A). This is the opposite of the Intersect mode.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DrawingBrush
Hierarchy: Freezeable Animatable Brush

TileBrush

 <DrawingBrush>
 <Drawing>
 </Drawing>
 </DrawingBrush>

<DrawingBrush .../> paints an area with a Drawing. It derives from TileBrush.

Attributes

Drawing (optional)

A collection of elements to be drawn. It can comprise images, shapes, video, text, and other
instances of Drawing. The default value is null.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DrawingGroup Hierarchy: Freezable Animatable Drawing

 <DrawingGroup>
 <Drawing .../>
 <Drawing .../>
 </DrawingGroup>

<DrawingGroup .../> comprises one or more Drawing elements that are drawn as a group.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ellipse Hierarchy: UIElement FrameworkElement Shape

Type: Shape

 <Ellipse
 Height="50"
 Width="100" />

<Ellipse .../> is used to draw ellipses and circles on a Canvas. The radii of an ellipse are specified
using the Height and Width properties. Using equivalent Height/Width combinations will result in a
circle. Figure 9-4 shows an example of an Ellipse with a longer width (x-radius) than height (y-
radius).

Figure 9-4. Ellipse

http://lib.ommolketab.ir
http://lib.ommolketab.ir

EllipseGeometry
Hierarchy: Freezable Animatable

Geometry

Type: Simple Geometry

 <EllipseGeometry

 Center="50,50"

 RadiusX="20"

 RadiusY="20" />

or:

 <EllipseGeometry

 RadiusX="20"

 RadiusY="20">
 <EllipseGeometry.Center>
 <Point

 X="50"

 Y="50" />
 </EllipseGeometry.Center>
 </EllipseGeometry>

<EllipseGeometry .../> represents the geometry of an ellipse or a circle. The Center attribute can be
specified either as inline markup or by declaring a Point. A circle can be defined with equivalent
values in RadiusX and RadiusY (Figure 9-5).

Figure 9-5. Drawing a circle with EllipseGeometry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

Center (required)

Describes the center of the ellipse using inline markup as a comma-separated x-, y-coordinate
pair or by explicitly declaring a Point element

RadiusX (required)

A Double value representing the x-radius of the ellipse

RadiusY (required)

A Double value representing the y-radius of the ellipse

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GeometryDrawing
Hierarchy: Freezable Animatable

Drawing

 <GeometryDrawing

 Brush="Blue"
 <GeometryDrawing.Pen>

 <Pen Thickness="1" Brush="Black" />
 </GeometryDrawing.Pen>
 <GeometryDrawing.Geometry>
 <GeometryGroup>

 <EllipseGeometry RadiusX="0.2" RadiusY="0.45" Center="0.5,0.5" />

 <EllipseGeometry RadiusX="0.45" RadiusY="0.2" Center="0.5,0.5" />
 </GeometryGroup>
 </GeometryDrawing.Geometry>

 </GeometryDrawing>

<GeometryDrawing .../> draws a Geometry with the specified Brush and Pen.

Attributes

Brush (optional)

Specifies the Brush used to paint the Geometry.

Pen (optional)

Specifies the Pen used to outline the Geometry.

Geometry (required)

Specifies the Geometry to be drawn. This attribute may be a single Geometry or a
GeometryGroup.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GeometryGroup
Hierarchy: Freezable Animatable

Geometry

 <GeometryGroup>
 <LineGeometry StartPoint="50,50" EndPoint="100,100" />
 <EllipseGeometry Center="40,80" RadiusX="20" RadiusY="20" />
 <RectangleGeometry Rect="20,20 100 50" />

</GeometryGroup>

<GeometryGroup .../> describes a group of geometric shapes used to render a Path or that will be
drawn by a GeometryDrawing. GeometryGroup is a container for one or more geometries.

Attributes

Children (required)

A collection of Geometry elements. This attribute is generally not set directly but is created by
adding nested instances of varying Geometry elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ImageDrawing Hierarchy: Freezable Animatable Drawing

 <ImageDrawing

 ImageSource="c:\\r.gif"
 Rect="0,0 50 50" />

<ImageDrawing .../> draws an image in the region specified by Rect.

Attributes

ImageSource (optional)

The source of the image used for the drawing

Rect (optional)

The dimensions of the drawing area in terms of top-left corner, width, and height

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Line
Hierarchy: UIElement FrameworkElement Shape

StretchableShape

Type: Shape

 <Line

 X1="10"

 Y1="10"

 X2="50"

 Y2="50"

 Stroke="Red"

 StrokeThickness="2" />

<Line.../> represents a geometric line drawn between two distinct points (Figure 9-6). If you do not
specify a Stroke, the line will not be visible to the end user.

Figure 9-6. Line

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

X1 (required)

A Double value representing the x-coordinate of the start point

X2 (required)

A Double value representing the x-coordinate of the end point

Y1 (required)

A Double value representing the y-coordinate of the start point

Y2(required)

A Double value representing the y-coordinate of the end point

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LineGeometry Hierarchy: Freezable Animatable Geometry

Type: Simple Geometry

 <LineGeometry

 StartPoint="50,50"

 EndPoint="100,100" />

or:

 <LineGeometry>
 <LineGeometry.StartPoint>

 <Point X="50" Y="50" />
 </LineGeometry.StartPoint>
 <LineGeometry.EndPoint>

 <Point X="100" Y="100" />
 </LineGeometry.EndPoint>
</LineGeometry>

<LineGeometry.../> represents the geometry of a line (Figure 9-7). The StartPoint and EndPoint
properties can be specified either as inline markup or by declaring Point elements.

Figure 9-7. LineGeometry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

EndPoint (required)

Describes the end point of the line using inline markup as a comma-separated x-, y-coordinate
pair or by explicitly declaring a Point element

StartPoint (required)

Describes the starting point of the line using inline markup as a comma-separated x-, y-
coordinate pair or by explicitly declaring a Point element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LineSegment
Hierarchy: Freezable Animatable

PathSegment

Type: Path Geometry

 <LineSegment
 Point="5,5" />

or:

 <LineSegment>
 <LineSegment.Point>
 <Point X="5" Y="5" />
 </LineSegment.Point>
 </LineSegment>

<LineSegment.../> represents a line between two instances of Point (Figure 9-8). It must be
contained within a PathFigure. LineSegment describes the end point, assuming that the start point is
the last point added before the LineSegment in the PathFigure.

Attributes

Point (required)

Describes the end point of the line segment

Figure 9-8. LineSegment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Path
Hierarchy: UIElement FrameworkElement Shape

StretchableShape

 <Path

 Stroke="Black"

 Data="M 100 100 L 300 100 L 200 300 z"></Path>

or:

 <Path

 Stroke="Black">
 <Path.Data>
 <GeometryGroup>

 <LineGeometry StartPoint="100,100" EndPoint="300,100"/>

 <LineGeometry StartPoint="300,100" EndPoint="200,300"/>

 <LineGeometry StartPoint="200,300" EndPoint="100,100"/>
 </GeometryGroup>
 </Path.Data>
 </Path>

<Path .../> is used to draw a series of lines and curves. Path can use abbreviated inline markup
commands (described in Table 9-2) to designate the geometry used when drawing the path, or the
geometry can be explicitly declared using a GeometryGroup.

Table 9-2. Abbreviated syntax for subpath declarations

Command Syntax Description

Move M x,y or m
x,y

Establishes a new current point. Each path segment must begin with a
move command; subsequent move commands indicate the start of a
new subpath.

Line L x,y or l x,y Draws a straight line from the current point to the specified point.

Horizontal

Line
H x or h x Draws a horizontal line from the current point to the specified x-

coordinate.

Vertical

Line
V y or v y Draws a vertical line from the current point to the specified y-

coordinate.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Command Syntax Description

Cubic

Bezier

Curve

C x1,y1
x2,y2 x3,y3
or c x1,y1
x2,y2 x3,y3

Draws a cubic Bezier curve from the current point to the specified point
(x3,y3) using the two specified control points (x1,y1 and x2,y2). The
first control point determines the beginning of the curve, and the
second control point determines the end of the curve.

Quadratic

Bezier

Curve

Q x1,y1
x2,y2 or q
x1,y1 x2,y2

Draws a quadratic Bezier curve from the current point to the specified
point (x2,y2) using the specified control point (x1,y1).

Smooth

Cubic

Bezier

Curve

S x1,y1
x2,y2 or s
x1,y1 x2,y2

Draws a cubic Bezier curve from the current point to the specified point
(x2,y2). The first control point is assumed to be the reflection (relative
to the current point) of the previous command's second control point. If
there is no previous command or if the previous command was neither
a cubic Bezier curve command nor a smooth cubic Bezier curve
command, assume the first control point coincides with the current
point. The second control pointthe control point for the end of the
curveis specified by x1,y1.

Elliptical

Arc
A xr,yr rx
flag1 flag2
x,y or a
xr,yr rx
flag1 flag2
x,y

Draws an elliptical arc from the current point to the specified point
(x,y). The size and orientation of the ellipse are defined by xr, yr, and
rx. xr defines the x-radius, yr defines the y-radius, and rx defines the
x-axis rotation in degrees, which indicates how the ellipse is rotated
relative to the current coordinate system. The center of the ellipse is
calculated automatically.

In most situations, four different arcs satisfy the specified constraints;
flag1 and flag2 indicate which arc to use.

Of the four candidate arc sweeps, two represent large arcs with sweeps
of 180 degrees or greater, and two represent smaller arcs with sweeps
of 180 degrees or less. If flag1 is 1, one of the two larger arc sweeps is
chosen; if flag1 is 0, one of the smaller arc sweeps is chosen.

If flag2 is 1, the arc is drawn in a positive-angle direction. If flag2 is 0,
the arc is drawn in a negative-angle direction.

Close Path Z or z Ends the current subpath and draws a straight line from the current
point to the initial point of the current subpath. If a Move command (an
M or an m) follows the ClosePath command, the Move command
identifies the next subpath's start point. Otherwise, the next subpath
starts at the same initial point as the current subpath.

Attributes

Data (required)

Describes the path to be drawn. In XAML, Data can be declared either by declaring instances of
specific Geometry types or by using abbreviated syntax to describe subpaths.

Cubic

Bezier

Curve

C x1,y1
x2,y2 x3,y3
or c x1,y1
x2,y2 x3,y3

Draws a cubic Bezier curve from the current point to the specified point
(x3,y3) using the two specified control points (x1,y1 and x2,y2). The
first control point determines the beginning of the curve, and the
second control point determines the end of the curve.

Quadratic

Bezier

Curve

Q x1,y1
x2,y2 or q
x1,y1 x2,y2

Draws a quadratic Bezier curve from the current point to the specified
point (x2,y2) using the specified control point (x1,y1).

Smooth

Cubic

Bezier

Curve

S x1,y1
x2,y2 or s
x1,y1 x2,y2

Draws a cubic Bezier curve from the current point to the specified point
(x2,y2). The first control point is assumed to be the reflection (relative
to the current point) of the previous command's second control point. If
there is no previous command or if the previous command was neither
a cubic Bezier curve command nor a smooth cubic Bezier curve
command, assume the first control point coincides with the current
point. The second control pointthe control point for the end of the
curveis specified by x1,y1.

Elliptical

Arc
A xr,yr rx
flag1 flag2
x,y or a
xr,yr rx
flag1 flag2
x,y

Draws an elliptical arc from the current point to the specified point
(x,y). The size and orientation of the ellipse are defined by xr, yr, and
rx. xr defines the x-radius, yr defines the y-radius, and rx defines the
x-axis rotation in degrees, which indicates how the ellipse is rotated
relative to the current coordinate system. The center of the ellipse is
calculated automatically.

In most situations, four different arcs satisfy the specified constraints;
flag1 and flag2 indicate which arc to use.

Of the four candidate arc sweeps, two represent large arcs with sweeps
of 180 degrees or greater, and two represent smaller arcs with sweeps
of 180 degrees or less. If flag1 is 1, one of the two larger arc sweeps is
chosen; if flag1 is 0, one of the smaller arc sweeps is chosen.

If flag2 is 1, the arc is drawn in a positive-angle direction. If flag2 is 0,
the arc is drawn in a negative-angle direction.

Close Path Z or z Ends the current subpath and draws a straight line from the current
point to the initial point of the current subpath. If a Move command (an
M or an m) follows the ClosePath command, the Move command
identifies the next subpath's start point. Otherwise, the next subpath
starts at the same initial point as the current subpath.

Attributes

Data (required)

Describes the path to be drawn. In XAML, Data can be declared either by declaring instances of
specific Geometry types or by using abbreviated syntax to describe subpaths.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PathFigure Hierarchy: Freezable Animatable

 <PathFigure
 IsFilled="true|false">
 <PathFigure.Segments>
 <PathSegmentCollection />
 </PathFigure.Segments>
 </PathFigure>

<PathFigure.../> represents a single interconnected series of 2-D figures. Example 9-2 shows a
PathFigure that combines multiple segments to form the 2-D figure in Figure 9-9. The starting point
of each segment element is the last point of the previous segment.

Attributes

IsFilled (optional)

This Boolean determines whether the region contained by the PathFigure should be used for
rendering, hit-testing, and clipping.

true

The region will be used.

false

The region will not be used; only the outline of the PathFigure will be considered.

Segments (required)

This attribute describes a PathSegmentCollection.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PathFigureCollection Hierarchy: Freezable Animatable

 <PathFigureCollection>
 <PathFigure ... />
 ...
 <PathFigure ... />
 </PathFigureCollection>

<PathFigureCollection .../> is a container for one or more instances of PathFigure.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PathGeometry Hierarchy: Freezable Animatable Geometry

 <PathGeometry FillRule="NonZero|EvenOdd" >
 <PathGeometry.Figures>
 <PathFigureCollection>
 <PathFigure>
 <PathFigure.Segments>

 <PathSegmentCollection
>
 </PathSegmentCollection>
 </PathFigure.Segments>
 </PathFigure>
 </PathFigureCollection>
 </PathGeometry.Figures>
 </PathGeometry>

<PathGeometry.../> describes a series of connected ellipses, arcs, line segments, curves, and
rectangles.

Attributes

Figures (optional)

A PathFigureCollection

FillRule (optional)

Describes the rule used to determine if a Point is inside the shape and should therefore be
painted according to the Fill attribute value

EvenOdd

After the Point is examined, a ray is drawn from it to infinity in any direction. If the
number of path segments the ray crosses is even, the Point is outside the shape. If the
number of path segments the ray crosses is odd, the Point is inside the shape and is
painted according to the Fill attribute value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NonZero

After the Point is examined, a ray is drawn from it to infinity in any direction. Starting
from zero, the count increases by one every time a path segment crosses the ray from
left to right and decreases by one every time a path segment crosses the ray from right
to left. If the resulting value is 0, then the Point is outside the shape; otherwise, it is
inside the shape and will be painted accordingly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PathSegmentCollection Hierarchy: Freezable Animatable

 <PathSegmentCollection>
 ...
 </PathSegmentCollection>

<PathSegmentCollection .../> is a container for segments. It may contain LineSegment,
EllipseSegment, BezierSegment, PolyBezierSegment, PolyQuadraticBezierSegment,
QuadraticBezierSegment, StartSegment, or CloseSegment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Point Point is a structure and has no class hierarchy.

 <Point X="50" Y="100" />

<Point .../> describes a point in x- and y-coordinates. Point is used primarily to describe more
complex shapes such as Polygon and Polyline.

Point is often declared through the use of abbreviated markup syntax. Wherever an attribute is
specified as a Point, it can be declared as a comma-separated pair of Double values representing the
x-coordinate and the y-coordinate, respectively:

 <Element SomePointAttribute="0,0" />

Attributes

X (required)

A Double value representing the x-coordinate of the point

Y (required)

A Double value representing the y-coordinate of the point

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Point3D Point3D is a structure and has no class hierarchy.

 <Point X="50" Y="100" Z="50" />

<Point3D .../> describes a point in x-, y-, and z-coordinates. Point3D is used primarily to describe
more complex 3-D shapes.

Point3D is often declared through the use of abbreviated markup syntax. Wherever an attribute is
specified as a Point, it can be declared as a comma-separated triplet of Double values representing
the x-coordinate, y-coordinate, and z-coordinate, respectively:

<Element SomePoint3DAttribute="0,0,0" />

Attributes

X (required)

A Double value representing the x-coordinate of the point

Y (required)

A Double value representing the y-coordinate of the point

Z (required)

A Double value representing the z-coordinate of the point

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PointCollection Hierarchy: Freezable

 <PointCollection>
 ...
 </PointCollection>

<PointCollection .../> is a container for Point.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PolyBezierSegment
Hierarchy: Freezable Animatable

PathSegment

Type: Path Geometry

 <PolyBezierSegment>
 <PolyBezierSegment.Points>
 <PointCollection>
 ...
 </PointCollection>
 </PolyBezierSegment.Points>
 </PolyBezierSegment>

or:

 <PolyBezierSegment

 Points="10,100 50,110 100,200" />

<PolyBezierSegment .../> represents a series of Bezier lines (Figure 9-10).

Figure 9-10. PolyBezierSegment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

Points (optional)

An ordered PointCollection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Polygon
Hierarchy: UIElement FrameworkElement Shape

 StretchableShape

Type: Shape

 <Polygon

 Points="10,110 60,10 110,110"

 Fill="Red"
 FillRule="EvenOdd|NonZero" />

or:

 <Polygon

 Fill="Red"
 FillRule="EvenOdd|NonZero" >
 <Polygon.Points>

 <Point X="10" Y="110" />

 <Point X="60" Y="10" />

 <Point X="110" Y="110" />
 </Polygon.Points>
 </Polygon>

<Polygon .../> draws a series of connected lines as a closed shape (Figure 9-11). If you do not
specify a value for the Fill attribute, the shape will be filled with the default color, transparent.

Figure 9-11. Polygon

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

FillRule (optional)

Describes the rule used to determine if a Point is inside the shape and should therefore be
painted according to the Fill attribute value.

EvenOdd

After the Point is examined, a ray is drawn from it to infinity in any direction. If the
number of path segments the ray crosses is even, the Point is outside the shape. If the
number of path segments the ray crosses is odd, the Point is inside the shape and is
painted according to the Fill attribute value.

NonZero

After the Point is examined, a ray is drawn from the point to infinity in any direction.
Starting from zero, the count increases by one every time a path segment crosses the
ray from left to right and decreases by one every time a path segment crosses the ray
from right to left. If the resulting value is 0, then the Point is outside the shape;
otherwise, it is inside the shape and will be painted accordingly.

Points (required)

A series of points describing the vertices of the Polygon. In XAML, Points can be described as a
space-delimited list of comma-separated x- and y-coordinate pairs using inline markup or as a
series of Point elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Polyline
Hierarchy: UIElement FrameworkElement Shape

 StretchableShape

Type: Shape

 <Polyline

 Points="10,100 50,10 100,150"

 Stroke="Black"

 StrokeThickness="4" />

or:

 <Polyline

 Stroke="Black"

 StrokeThickness="4">
 <Polyline.Points>

 <Point X="10" Y="100" />

 <Point X="50" Y="10" />

 <Point X="100" Y="50" />
 </Polyline.Points>
 </Polyline>

<Polyline .../> draws a series of connected lines (Figure 9-12). Because Polyline is not a closed
shape, the Fill attribute has no effect, even if you close the shape. To draw a closed series of lines
you can fill, use the Polygon shape.

Figure 9-12. Polyline

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

Points (required)

A series of points describing the vertices of the Polyline. Points can be described in XAML as a
space-delimited list of comma-separated x- and y-coordinate pairs as inline markup or as a
series of Point elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PolyLineSegment
Hierarchy: Freezable Animatable

PathSegment

Type: Path Geometry

 <PolyLineSegment>
 <PolyLineSegment.Points>
 <PointCollection>
 </PointCollection>
 </PolyLineSegment.Points>
 </PolyLineSegment>

<PolyLineSegment .../> describes a Polyline comprised of an ordered list of Points, each of which
represents the end point in a LineTo operation (Figure 9-13).

Figure 9-13. PolyLineSegment

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Points (optional)

A PointCollection comprising an ordered collection of Point elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PolyQuadraticBezierSegment
Hierarchy: Freezable Animatable

 PathSegment

Type: Path Geometry

 <PolyQuadraticBezierSegment

 Points="10,10 50,50 100,100" />

or:

 <PolyQuadraticBezierSegment>
 <PolyQuadraticBezierSegment.Points>
 <PointCollection>
 </PointCollection>
 </PolyQuadraticBezierSegment>
 </PolyQuadraticBezierSegment>

<PolyQuadraticBezierSegment .../> defines a series of quadratic Bezier segments (Figure 9-14).

Attributes

Points (optional)

A PointCollection containing the points used to generate the segment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

QuadraticBezierSegment
Hierarchy: Freezable Animatable

PathSegment

Type: Path Geometry

 <QuadraticBezierSegment

 Point1="10,10"

 Point2="50,50" />

Figure 9-14. PolyQuadraticBezierSegment

or:

 <QuadraticBezierSegment>
 <QuadraticBezierSegment.Point1>

 <Point X="10" Y="10" />
 </QuadraticBezierSegment.Point1>
 <QuadraticBezierSegment.Point2>

 <Point X="50" Y="50" />
 </QuadraticBezierSegment.Point2>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </QuadraticBezierSegment>

<QuadraticBezierSegment .../> draws a quadratic Bezier between two points (Figure 9-15).

Figure 9-15. QuadraticBezierSegment

Attributes

Point1 (required)

The control point on the curve

Point2 (required)

The end point of the segment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rect Rect is a structure and has no class hierarchy.

 <Rect
 Location="0,0"
 Width="100"
 Height="100" />

or:

 <Rect
 X="0"
 Y="0"
 Width="100"
 Height="100" />

<Rect .../> represents a rectangle and is most commonly used in other elements to describe
rectangular regions for hit-testing or filling a region. Rect is generally set through abbreviated
markup syntax using a space-delimited list of parameters, beginning with the Location and followed
by Width and Height:

 <Element RectangleAttribute="0,0 100 100" />

Attributes

Height (optional)

This Double value describes the height of the rectangle.

Location (optional)

This Point describes the top-left corner of the rectangle. It can be described using abbreviated
markup syntax or explicitly using the X and Y attributes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Width (optional)

This Double value describes the width of the rectangle.

X (optional)

This Double value describes the x-coordinate of the top-left corner of the rectangle.

Y (optional)

This Double value describes the y-coordinate of the top-left corner of the rectangle.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rect3D Rect3D is a structure and has no class hierarchy.

 <Rect3D
 Location="0,0,0"
 Size="10 10 10"/>

or:

 <Rect3D
 X="0"
 Y="0"
 Z="0"
 SizeX="10"
 SizeY="10"
 SizeZ="10" />

<Rect3D .../> represents a rectangle and is most commonly used in other elements to describe
rectangular regions for hit-testing or filling a region.

Attributes

Location (optional)

This Point3D describes the top-left corner of the rectangle. It can be described using
abbreviated markup syntax or explicitly using the X, Y, and Z attributes.

SizeX (optional)

This Double value describes the size of the rectangle in the x-dimension.

SizeY (optional)

This Double value describes the size of the rectangle in the y-dimension.

SizeZ (optional)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This Double value describes the size of the rectangle in the z-dimension.

X (optional)

This Double value describes the x-coordinate of the top-left corner of the rectangle.

Y (optional)

This Double value describes the y-coordinate of the top-left corner of the rectangle.

Z (optional)

This Double value describes the z-coordinate of the top-left corner of the rectangle.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rectangle
Hierarchy: UIElement FrameworkElement Shape

 StretchableShape

Type: Shape

 <Rectangle

 Fill="Blue"

 Height="50"

 Width="100"

 RadiusX="20"

 RadiusY="20" />

<Rectangle .../> draws a rectangle. The Width and Height properties inherited from
FrameworkElement are necessary to describe the rectangle's geometry. Figure 9-16 shows the
Rectangle defined above when evaluated in XamlPad.

Attributes

RadiusX (optional)

Describes the x-radius of an ellipse used to round the Rectangle's corners

RadiusY (optional)

Describes the y-radius of an ellipse used to round the Rectangle's corners

Figure 9-16. Rectangle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RectangleGeometry
Hierarchy: Freezable Animatable

Geometry

Type: Simple Geometry

 <RectangleGeometry

 Rect="50,50 100 50"

 RadiusX="20"

 RadiusY="20" />

<RectangleGeometry .../> represents the geometry of a rectangle. Figure 9-17 shows the result of
evaluating the RectangleGeometry declared above in XamlPad.

Figure 9-17. RectangleGeometry

Attributes

RadiusX (optional)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Describes the x-radius of an ellipse that rounds the corners of the Rectangle described by the
Rect attribute

RadiusY (optional)

Describes the y-radius of an ellipse that rounds the corners of the Rectangle described by the
Rect attribute

Rect (required)

Describes the dimensions of the rectangle in terms of top-left corner, width, and height

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StartSegment
Hierarchy: Freezable Animatable

PathSegment

 <StartSegment

 Point="10,10" />

or:

 <StartSegment>
 <StartSegment.Point>

 <Point X="10" Y="10" />
 </StartSegment.Point>
 </StartSegment>

<StartSegment .../> describes the start point for a PathFigure. Each PathFigure must begin with a
StartSegment and cannot contain more than one.

Attributes

Point (required)

The start Point of a path

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. Layout
The elements in this chapter are all used to position and decorate content on a page. Some elements
are controls, such as Grid and StackPanel, while others are documents, such as FixedDocument.
These elements have been grouped together because they are all focused on laying out the page,
either by controlling the rendering and positioning of elements or by using it as a container of specific
content types.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Border Hierarchy: UIElement FrameworkElement Decorator

 <Border

 Height="25"

 Background="White"

 BorderBrush="Black"

 BorderThickness="1"

 CornerRadius="20"

 Padding="2 2 2 2">
 </Border>

<Border .../> draws a border, background, or both around an element (Figure 10-1). Only elements
contained within a parent Border element can display a border.

Border can have only one child. To display multiple children, an additional Panel element needs to be
placed within the parent Border. Child elements can then be placed within that Panel element.

Attributes

Background (optional)

Describes the Brush used to fill the interior of the element.

BorderBrush (optional)

Describes the Brush used to paint the border.

Figure 10-1. Border

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BorderThickness (optional)

Describes the thickness of the line used to draw the border. It is described in terms of Left,
Top, Right, and Bottom, all of which are Double values representing a pixel value. It is most
often described as a single value.

CornerRadius (optional)

Describes the degree to which the corners of the Border are rounded. Though the name of the
attribute implies a single value, non-uniform radii may be used.

Padding (optional)

Describes how much the child element size is increased. It is described in terms of Left, Top,
Right, and Bottom, all of which are Double values representing a pixel value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Canvas Hierarchy: UIElement FrameworkElement Panel

 <Canvas />

<Canvas .../> allows content to be positioned according to absolute x- and y-coordinates. Elements
are drawn in a unique location unless they occupy the same coordinates, in which case they're drawn
in the order in which they appear in markup. The default Height and Width of a Canvas is 0, unless it
has a parent that automatically sizes child elements.

Canvas has attached attributes, meaning they are used by child elements and defined as attributes of
such. The following is an example of declaring the attached attributes of Canvas within a child
element:

 <Canvas>
 <TextBox

 Canvas.Top="20"

 Canvas.Left="20"

 Canvas.Right="20"

 Canvas.Bottom="20">My text
 </TextBox>
 </Canvas>

Attached Attributes

Canvas.Bottom (optional)

A Double value that describes the distance of the element from the bottom of the Canvas

Canvas.Left (optional)

A Double value that describes the distance of the element from the left edge of the Canvas

Canvas.Right (optional)

A Double value that describes the distance of the element from the right edge of the Canvas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Canvas.Top (optional)

A Double value that describes the distance of the element from the top of the Canvas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColumnDefinition
Hierarchy: DependencyObject

FrameworkContentElement DefinitionBase

 <ColumnDefinition
 MinWidth="20"
 MaxWidth="100"
 Width="50" />

<ColumnDefinition .../> defines column-specific properties in a Grid.

Attributes

MinWidth (optional)

This Double value determines the minimum width of the column.

MaxWidth (optional)

This Double value determines the maximum width of the column.

Width (optional)

This Double value determines the initial width of the column.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DashStyle
Hierarchy: DependencyObject Freezable

Animatable

 <Element Dashes="2,3,2,5,2,3,2,5" />

DashStyle defines the series of dashes and gaps drawn by a Pen element. It is an array of Double
elements interpreted as a pair of dash,gap values. The actual length of the dash or gap is determined
by multiplying the declared size of the dash or gap by the Pen's Thickness. DashStyle is rarely
directly used; rather, it is used primarily to describe the StrokeDashArray attribute used by Path and
other geometries when drawing Path elements.

Example 10-1shows the use of a DashStyle when defining the StrokeDashArray attribute of a Path.
This example (shown in Figure 10-2) draws a Line with a series of dashes of length
5*StrokeThickness (5*4), a gap of length 2*StrokeThickness (2*4), a dash of length
6*StrokeThickness (6*4), and so on, according to the StrokeDashArray attribute.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DockPanel Hierarchy: UIElement FrameworkElement Panel

 <DockPanel .../>

<DockPanel .../> uses the attached Dock attribute to position content along the edges of a container.
When Dock is set to Top or Bottom , it stacks the child elements above or below each other. When Dock is
set to Left or Right , it stacks the child elements to the left or right of each other. You can use
DockPanel to position a group of related controls, such as a set of buttons.

As with the properties of Canvas , Dock is an attached attribute and is declared by child elements. The
default value of Dock is Left . The following is an example of elements declaring the DockPanel.Dock
attribute:

 <DockPanel>
 <Button DockPanel.Dock="Top|Right|Bottom|Left" Content="Button 1" />
 <TextBox DockPanel.Dock="Top|Right|Bottom|Left" Content="This is my content" />
 </DockPanel>

Attached Attributes

DockPanel.Dock (optional)

Determines where a child element will be placed within the DockPanel

Bottom

Element is positioned at the bottom of the DockPanel in the order in which it was declared.

Left

Element is positioned at the left of the DockPanel in the order in which it was declared.

Right

Element is positioned at the right of the DockPanel in the order in which it was declared.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Top

Element is positioned at the top of the DockPanel in the order in which it was declared.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FixedDocument
Hierarchy: DependencyObject

FrameworkContentElement Document

 <FixedDocument
 xmlns="http://schemas.microsoft.com/metro/2005/02/rp"

 PageSize="8.5,11">

 <PageContent Source="FixedPage1.xaml"/>

 <PageContent Source="FixedPage2.xaml"/>

 <PageContent Source="FixedPage3.xaml"/>
 </FixedDocument>

or:

 <FixedDocument
 xmlns="http://schemas.microsoft.com/metro/2005/02/rp">
 <FixedDocument.PageSize>

 <Size Height="11" Width="8.5" />
 </FixedDocument.PageSize>

 <PageContent Source="FixedPage1.xaml"/>
 </FixedDocument>

<FixedDocument .../> hosts a fixed-format document with read access for user text selection,
keyboard navigation, and search. The only allowable child element of FixedDocument is PageContent.

Attributes

PageSize (optional)

Sets the size of the page as described by a Size element or through inline markup of a Size

xmlns (required)

The namespace for the document to be loaded

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FlowDocument
Hierarchy: DependencyObject

FrameworkContentElement Document

 <FlowDocument

 ColumnGap="5"

 ColumnWidth="300"

 ColumnRuleWidth="15"

 ColumnRuleBrush="LightGray"
 IsColumnWidthFlexible="true|false"
 FlowDirection="LeftToRightThenTopToBottom|RightToLeftThenTopToBottom "

 LineHeight="12"

 MaxPageHeight="1000"

 MaxPageWidth="1000"

 MinPageHeight="400"

 MinPageWidth="400"

 PageHeight="700"

 PageWidth="700"

 PagePadding="5,10,5,10"
 TextAlignment="Center|End|Justify|Left|Right|Start"
 TextTrimming="CharacterEllipsis|WordEllipsis|None"
 TextWrap="Wrap|NoWrap|Emergency" />

<FlowDocument .../> provides a mechanism for displaying and formatting text with advanced
features such as pagination and columns.

Attributes

ColumnGap (optional)

This Double value describes the distance between columns. If ColumnWidth is null, this value
has no effect. The value of this attribute cannot exceed the page Width minus the PagePadding.

ColumnRuleBrush (optional)

This attribute describes the Brush used to paint the column rule. If ColumnRuleWidth is 0, this
attribute has no effect. Exposed predefined colors from the Color class, listed in Appendix G,
may be used to describe this attribute.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColumnRuleWidth (optional)

This Double value describes the width of the rule between columns. The default is 0.

ColumnWidth (optional)

This Double value describes the width of the columns.

FlowDirection (optional)

Determines the direction that text flows within the document:

LeftToRightThenTopToBottom

RightToLeftThenTopToBottom

IsColumnWidthFlexible (optional)

This Boolean determines whether ColumnWidth is flexible.

true

Column widths will frequently be larger than specified.

false

Column widths will always be exactly the width specified.

LineHeight (optional)

This Double describes the height of each generated line of text. It does not affect the font size.

MaxPageHeight (optional)

This Double describes the maximum height of a page of content.

MaxPageWidth (optional)

This Double describes the maximum width of a page of content.

MinPageHeight (optional)

This Double describes the minimum height of a page of content.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MinPageWidth (optional)

This Double describes the minimum width of a page of content.

PageHeight (optional)

This Double describes the height of a page of content.

PagePadding (optional)

This Thickness describes the amount of padding to apply. It can be described as a uniform
value (PagePadding="10") or as individual values (PagePadding="0,5,10,5").

PageWidth (optional)

This Double describes the width of a page of content.

TextAlignment (optional)

This attribute describes the horizontal alignment of text.

Center

The text is center-aligned.

End

The text is aligned on the end of the inline progression, as determined by the current
text-advance direction.

Justify

Text is justified. This will increase spacing between words if necessary to keep text
justified across the width of the FlowDocument.

Left

In horizontal inline progression, the text is aligned on the left.

Right

In horizontal inline progression, the text is aligned on the right.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Start

The text is aligned on the start of the inline progression, as determined by the current
text-advance direction.

TextTrimming (optional)

Determines how to treat text that flows past the end of the element.

CharacterEllipsis

Text is trimmed at a character boundary. Remaining text is replaced with an ellipsis (. . .).

None

Text is not trimmed.

WordEllipsis

Text is trimmed at a word boundary. Remaining text is replaced with an ellipsis (. . .).

TextWrap (optional)

Determines the behavior of text when it reaches the boundary of its containing box.

Emergency

Text is wrapped even if the line-breaking algorithm cannot determine an optimal
wrapping opportunity. This is the default behavior.

NoWrap

Text is not wrapped.

Wrap

Text is wrapped.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Grid Hierarchy: UIElement FrameworkElement Panel

<Grid ShowGridLines="true|false" />

<Grid .../> is similar to a Table but is more flexible than its traditional counterpart. Grid allows
layering of content, including multiple elements in a single cell, whereas Table does not. Child
elements in a Grid can be absolutely positioned relative to the upper-left corner of their cell
boundaries. Finally, child elements are added to Grid based on row and column index, while child
elements in a Table are declared within its parent cell.

Grid is a container for ColumnDefinition, RowDefinition, and elements that are placed by specifying
their desired row and column attributes.

An example of a Grid with content follows and is evaluated in XamlPad in Figure 10-3:

 <Grid ShowGridLines="true">

 <ColumnDefinition Width="100"/>

 <ColumnDefinition Width="100"/>

 <RowDefinition Height="100" />

 <RowDefinition Height="25" />

 <RowDefinition Height="25" />

 <TextBlock Grid.Column="0" Grid.Row="0">Col 0, Row 0</TextBlock>

 <TextBlock Grid.Column="1" Grid.Row="0">Col 1, Row 0</TextBlock>

 <TextBlock Grid.Column="0" Grid.Row="1">Col 0, Row 1</TextBlock>

 <TextBlock Grid.Column="1" Grid.Row="1">Col 1, Row 1</TextBlock>

 <TextBlock Grid.Column="0" Grid.Row="2">Col 0, Row 2</TextBlock>

 <TextBlock Grid.Column="1" Grid.Row="2">Col 1, Row 2</TextBlock>
 </Grid>

Figure 10-3. Grid with content and ShowGridLines=true

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

ShowGridLines (optional)

This attribute determines whether the grid will be lined.

true

The gridlines will be displayed.

false

No gridlines will be displayed.

Attached Attributes

Grid.Column

A zero-based integer representing the column of the Grid into which the element should be
placed

Grid.Row

A zero-based integer representing the row of the Grid into which the element should be placed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PageContent Hierarchy: UIElement FrameworkElement

 <PageContent
 Source="filename.xaml" />

<PageContent. . . /> provides the content data stream for FlowDocument and FixedDocument.

Attributes

Source (required)

Describes the URI that points to the data stream

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Panel Hierarchy: UIElement FrameworkElement

Panel is the base element for all Avalon elements defining layout characteristics. Panel elements are
used to position and lay out child elements. Avalon includes a healthy number of predefined elements
derived from Panel. The four derived elements useful for UI design are:

Canvas

Grid

DockPanel

StackPanel

All elements derived from Panel share a common set of properties, as described in Table 10-1.

Table 10-1. Common properties of elements derived from Panel

Property Data type Description

Height Double The height of the element.

Width Double The width of the element.

IsItemsHost Boolean Specifies whether the Panel is a container for elements
generated for an ItemHost.

true

If the element is an item host

false

If the element is not an item host

HorizontalAlignment Enumeration Specifies how the Panel should align horizontally when placed
within a parent Panel or ItemHost.

Left

Align the element on the left of its parent's layout area.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Data type Description Align the element on the left of its parent's layout area.

Right

Align the element on the right of its parent's layout area.

Center

Align the element in the center of its parent's layout area.

Stretch

Stretch the element to fill its parent's horizontal layout
area.

VerticalAlignment Enumeration Specifies how the Panel should align vertically when placed
within a parent Panel or ItemHost.

Bottom

Align the element on the bottom of its parent's layout
area.

Center

Align the element in the center of its parent's layout area.

Top

Align the element at the top of its parent's layout area.

Stretch

Stretch the element to fill its parent's vertical layout area.

Visibility Enumeration Determines the visibility of the element.

Visible

The element is displayed.

Hidden

The element is not displayed but does occupy layout

Align the element on the left of its parent's layout area.

Right

Align the element on the right of its parent's layout area.

Center

Align the element in the center of its parent's layout area.

Stretch

Stretch the element to fill its parent's horizontal layout
area.

VerticalAlignment Enumeration Specifies how the Panel should align vertically when placed
within a parent Panel or ItemHost.

Bottom

Align the element on the bottom of its parent's layout
area.

Center

Align the element in the center of its parent's layout area.

Top

Align the element at the top of its parent's layout area.

Stretch

Stretch the element to fill its parent's vertical layout area.

Visibility Enumeration Determines the visibility of the element.

Visible

The element is displayed.

Hidden

The element is not displayed but does occupy layout

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Data type Description The element is not displayed but does occupy layout
space.

Collapsed

The element is not displayed and does not occupy layout
space.

FlowDirection Enumeration Describes how text and other child elements flow within a
parent. The enumerations are self-explanatory. The default is
LeftToRightThenTopToBottom.

LeftToRightThenTopToBottom

RightToLeftThenTopToBottom

TopToBottomThenLeftToRight

TopToBottomThenRightToLeft

LayoutTransform UIElement The name of the TRansform to be applied during layout of this
element.

Margin Thickness Represents the margin around the element.

Background Fill Describes how to fill the area between the boundaries.

MinWidth Double Describes the minimum width of this element.

MinHeight Double Describes the minimum height of this element.

The element is not displayed but does occupy layout
space.

Collapsed

The element is not displayed and does not occupy layout
space.

FlowDirection Enumeration Describes how text and other child elements flow within a
parent. The enumerations are self-explanatory. The default is
LeftToRightThenTopToBottom.

LeftToRightThenTopToBottom

RightToLeftThenTopToBottom

TopToBottomThenLeftToRight

TopToBottomThenRightToLeft

LayoutTransform UIElement The name of the TRansform to be applied during layout of this
element.

Margin Thickness Represents the margin around the element.

Background Fill Describes how to fill the area between the boundaries.

MinWidth Double Describes the minimum width of this element.

MinHeight Double Describes the minimum height of this element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RowDefinition
Hierarchy: DependencyObject

FrameworkContentElement DefinitionBase

 <RowDefinition />

<RowDefinition .../> is used within a Grid to define a row.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Setter Hierarchy: Object SetterBase

 <Setter

 Property="PropertyBeingSet"

 TargetName="{x:Type NameOfTheTarget}"

 Value="ValueBeingSet"|{"DynamicResource ResourceName"} |

 {"StaticResource ResourceName"} />

<Setter .../> defines a property for a specific element. It is used to apply a Style or trigger to
multiple elements of a specific type, e.g., all Buttons, all TextBlocks, etc. The element declares the
attribute (property) to be set, the target element type, and the value to which to set the attribute.
For example, Setter could be used to set the Background of all Button elements to a specific Color
(Example 10-2) or to set the width of all Button elements to the same size (Example 10-3).

Attributes

Property (required)

The name of the attribute being set. Examples include Font, Height, and Background.

TargetName (required)

The type of the child node the Setter will target, if any (Example 10-4).

Value (required)

The value for the attribute. The value may be a literal representation ("Blue", "2") or a
reference to a DynamicResource or a StaticResource.

Example 10-4. Example of setting the TargetName of the Setter to a child
node

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TargetName="{x:Type ComboBoxItem}"

TargetName="{x:Type Button}"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StackPanel Hierarchy: UIElement FrameworkElement Panel

 <StackPanel
 Orientation="Horizontal|Vertical" />

<StackPanel. . . /> stacks elements in the direction specified by the Orientation attribute.
Specifying Horizontal as the Orientation causes child elements to flow left to right. If the
Orientation is declared as Vertical, elements will flow top to bottom.

Attributes

Orientation (optional)

Determines how child elements are stacked in the panel.

Horizontal

Child elements are stacked from left to right. This is the default behavior.

Vertical

Child elements are stacked from top to bottom.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Style Hierarchy: Object

 <Style

 BasedOn="StyleName"

 TargetType="{x:Type NameOfElementOrControl}"

 x:Key="Name" />

Note that x is replaceable for both the TargetType value and the Key attribute.

It refers to the XAML namespace
(http://schemas.microsoft.com/winfx/xaml/2005), which must be included in
your document when using this method of reference.

<Style .../> describes the visual presentation of elements. A style contains a collection of Setter,
Storyboard, and trigger. Style is explored in depth in Chapter 5.

Attributes

BasedOn (optional)

Describes the Style this Style attribute is based on.

TargetType (required)

Describes the element or control that is targeted by this Style (Example 10-5).

x :Key (optional)

Names the Style so that it can be referenced by the Style attribute of elements and controls.
If this attribute is not set, the style will be applied to all elements of TargetType.

Example 10-5. Examples of targeting an element with a Style

http://schemas.microsoft.com/winfx/xaml/2005
http://lib.ommolketab.ir
http://lib.ommolketab.ir

TargetType="{x:Type MenuItem}"

TargetType="{x:Type RadioButton}"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table
Hierarchy: DependencyObject FrameworkContentElement

 TextElement Block

 <TextFlow>
 <Table

 CellSpacing="5">
 <TableRowGroup>
 <TableRow>

 <TableCell>Cell 1</TableCell>

 <TableCell>Cell 2</TableCell>

 <TableCell>Cell 3/TableCell>
 </TableRow>
 </TableRowGroup>
 </Table>
 </TextFlow>

<Table .../> is a typographic element comprising TableRowGroup. The Table element must be nested
either within a parent TextFlow or within another element nested within a TextFlow (Example 10-6).

Attributes

CellSpacing (optional)

Sets the amount of spacing between TableCell elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TableCell
Hierarchy: DependencyObject

FrameworkContentElement TextElement Block

 <TableCell
 ColumnSpan="4"
 RowSpan="3"
 BreakPageBefore="true|false"
 BreakColumnBefore="true|false"
 KeepTogether="true|false"
 KeepWithNext="true|false" />

<TableCell .../> defines a content cell for a Table object. TableCell elements must be contained
within a TableRow element. TableCell elements can only contain elements derived from Block.

Attributes

ColumnSpan (optional)

Determines how many TableColumn elements the TableCell spans

RowSpan (optional)

Determines how many TableRow elements the TableCell occupies

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TableColumn
Hierarchy: DependencyObject

FrameworkContentElement

 <TableColumn Width="20" />

<TableColumn .../> is used to apportion a Table element. The Width attribute is used to describe its
width.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TableRow
Hierarchy: DependencyObject

FrameworkContentElement TextElement

 <TableRow Height="30" />

<TableRow .../> defines rows within a Table element. The Height attribute is used to describe the
height of the row.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Trigger Hierarchy: Object TriggerBase

 <Trigger

 Property="PropertyName"

 Value="Value" />

<Trigger .../> is used to conditionally style targets (Example 10-7). It contains one or more Setter
elements that describe what to apply when the trigger is active.

Attributes

Property (required)

The attribute name examined by Value to determine whether to execute the TRigger (Example
10-8).

Value (required)

The value of the attribute. If the value of the target attribute matches this value, the trigger
fires.

Example 10-8. Setting the Value attribute for a Trigger

<Trigger Property="ComboBoxItem.IsMouseOver" Value="true" >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 11. Animations and
Transformations
Animations and transformations provide a way to modify an element's attributes over time without
requiring code. The concepts behind animation and transformations are explored more deeply in
Chapter 6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AnimationTimeline
Hierarchy: DependencyObject Freezable

 Animatable Timeline

<AnimationTimeline .../> is a base class for a number of other abstract classes that can animate
specific types of data. All the derived classes are the same, except for the type of data they are
intended to animate. A few derived classes specifically implement a separate Animation, such as
ColorAnimation and DoubleAnimation.

All of the TypeAnimationBase elements have at least one subclass that can animate the data type

supported by using a collection of KeyFrame elements. Each subclass is appropriately named
TypeAnimationUsingKeyFrames. These elements are identical to each other in functionality; they

simply require the use of a data type-specific KeyFrame, which is named using the format
TypeKeyFrame. Each TypeKeyFrame element is detailed in this chapter. For example, the

BooleanAnimationBase element has one subclass, BooleanAnimationUsingKeyFrames, which requires a
collection of BooleanKeyFrame elements as its children.

Example 11-1 offers a DoubleAnimationUsingKeyFrames as a template for how to use the classes
derived from AnimationTimeline.

Similarly, a majority of the TypeAnimationBase elements have TypeAnimation subclasses. These

predefined animations offer a way to animate specific types of data in an easy-to-define element.
Each of the elements utilizes the same attributes: From, To, By, and Duration. The only difference
between them is that the From, To, and By attributes are specific to the type of the animation. From,
To, and By are of type Color for a ColorAnimation; for a DoubleAnimation, they are of type Double
(Example 11-2).

All of the TypeAnimation elements are declared in a similar manner, substituting the appropriate Type

with From, To, or By. These elements are not further documented because they are declared exactly
the same way and with the same attributes, differentiated only by their data type. The elements are
listed in this chapter but refer back to AnimationTimeline as their main reference.

Do not specify both the To and the By attribute in a TypeAnimation.

The AnimationTimeline-derived elements are:

BooleanAnimationBase

BooleanAnimationUsingKeyFrames

CharAnimationBase

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CharAnimationUsingKeyFrames

ColorAnimationBase

ColorAnimationUsingKeyFrames ColorAnimation

DecimalAnimationBase

DecimalAnimationUsingKeyFrames DecimalAnimation

DoubleAnimationBase

DoubleAnimationUsingKeyFrames DoubleAnimation

Int16AnimationBase

Int16AnimationUsingKeyFrames Int16Animation

Int32AnimationBase

Int32AnimationUsingKeyFrames

Int32Animation

Int64AnimationBase

Int64AnimationUsingKeyFrames

Int64Animation

MatrixAnimationBase

MatrixAnimationUsingKeyFrames

Point3DAnimationBase

Point3DAnimationUsingKeyFrames Point3DAnimation

PointAnimationBase

PointAnimationUsingKeyFrames

PointAnimation

Rect3DAnimationBase

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rect3DAnimationUsingKeyFrames

Rect3DAnimation

RectAnimationBase

RectAnimationUsingKeyFrames

RectAnimation

Rotation3DAnimationBase

Rotation3DAnimationUsingKeyFrames RotationAnimation

SingleAnimationBase

SingleAnimationUsingKeyFrames SingleAnimation

Size3DAnimationBase

Size3DAnimationUsingKeyFrames

Size3DAnimation

SizeAnimationBase

SizeAnimationUsingKeyFrames SizeAnimation

StringAnimationBase

StringAnimationUsingKeyFrames

ThicknessAnimationBase

ThicknessAnimationUsingKeyFrames

ThicknessAnimation

Vector3DAnimationBase

Vector3DAnimationUsingKeyFrames

Vector3DAnimation

VectorAnimationBase

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VectorAnimationUsingKeyFrames

VectorAnimation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BooleanKeyFrame Hierarchy: DependencyObject Freezable

BooleanKeyFrame is the base class for only one subclass, DiscreteBooleanKeyFrame:

 <DiscreteBooleanKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"
 Value="true|false" />

<DiscreteBooleanKeyFrame .../> animates a Boolean from a previous value to its own at KeyTime.

Attributes

KeyTime (required)

The time, relative to the animation, that Value will be reached:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

The Boolean value destination

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CharKeyFrame Hierarchy: DependencyObject Freezable

CharKeyFrame is the base class for only one subclass, DiscreteCharKeyFrame:

 <DiscreteCharKeyFrame

 KeyTime="0:0:10"

 Value="t" />

<DiscreteCharKeyFrame .../> animates a Char from a previous value to its own at KeyTime.

Attributes

KeyTime (required)

The time, relative to the animation, that Value will be reached:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

The Char value destination

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColorAnimation

See AnimationTimeline.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColorKeyFrame Hierarchy: DependencyObject Freezable

ColorKeyFrame is the base class for three types of color key frames: discrete, linear, and spline. Each
of the three subclasses of ColorKeyFrame represents a key frame with a distinct interpolation
technique, indicated by its name:

 <LinearColorKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="Red" />

 <DiscreteColorKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="Blue" />

 <SplineColorKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="Green" >
 <SplineColorKeyFrame.KeySpline>

 <KeySpline ControlPoint1="5,5" ControlPoint2="10,10" />
 </SplineColorKeyFrame.KeySpline>
 </SplineColorKeyFrame>

All three ColorKeyFrame subclasses determine when (KeyTime) the frame will reach the designated
value (Value). KeyTime is specified in terms of hours:minutes:seconds. The Value attribute of all
ColorKeyFrame subclasses is a Color.

DiscreteColorKeyFrame

Skips from one value to the desired value without interpolation. Thus, the Value will not be
reached until KeyTime (relative to the beginning of the animation).

LinearColorKeyFrame

Utilizes linear interpolation to reach the desired value. Linear interpolation progresses the
animation at a steady rate for its duration.

SplineColorKeyFrame

Uses a concept similar to Bezier curves to interpolate values until Value has been reached. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subclass requires an additional attribute, KeySpline, which is used to interpolate the value in
much the same way as control points are used to interpolate a line when declaring a Bezier
curve.

Attributes

KeySpline (required) (SplineColorKeyFrame only)

This KeySpline describes how the key frame will be altered during animation.

KeyTime (required)

This attribute specifies when, relative to the animation, this key frame takes place:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

This Color describes the destination value of the key frame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DecimalAnimation

See AnimationTimeline.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DecimalKeyFrame Hierarchy: DependencyObject Freezable

DecimalKeyFrame is the base class for three types of decimal key frames: discrete, linear, and spline.
Each of the three subclasses of DecimalKeyFrame represents a key frame with a distinct interpolation
technique, indicated by its name:

 <LinearDecimalKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1.2" />

 <DiscreteDecimalKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1.2" />

 <SplineDecimalKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1.2">
 <SplineDecimalKeyFrame.KeySpline>

 <KeySpline ControlPoint1="5,5" ControlPoint2="10,10" />
 </SplineDecimalKeyFrame.KeySpline>
 </SplineInt64KeyFrame>

All three DecimalKeyFrame subclasses determine when (KeyTime) the frame will reach the designated
value (Value). KeyTime is specified in terms of hours:minutes:seconds. The Value attribute of all
DecimalKeyFrame subclasses is a Decimal.

DiscreteDecimalKeyFrame

Skips from one value to the desired value without interpolation. Thus, the Value will not be
reached until KeyTime (relative to the beginning of the animation).

LinearDecimalKeyFrame

Utilizes linear interpolation to reach the desired value. Linear interpolation progresses the
animation at a steady rate for its duration.

SplineDecimalKeyFrame

Uses a concept similar to Bezier curves to interpolate values until Value has been reached. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subclass requires an additional attribute, KeySpline, which is used to interpolate the value in
much the same way as control points are used to interpolate a line when declaring a Bezier
curve.

Attributes

KeySpline (required) (SplineDecimalKeyFrame only)

This KeySpline describes how the key frame will be altered during animation.

KeyTime (required)

This attribute specifies when, relative to the animation, this key frame takes place:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

This Decimal describes the destination value of the key frame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DoubleAnimation

See AnimationTimeline.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DoubleAnimationUsingPath

Hierarchy: DependencyObject

Freezable Animatable

Timeline AnimationTimeline
DoubleAnimationBase

 <DoubleAnimationUsingPath

 Duration="0:0:10"
 Source="Angle|X|Y">
 <DoubleAnimationUsingPath.PathGeometry>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigureCollection>
 <PathFigure>
 <PathFigure.Segments>
 <PathSegmentCollection>
 <StartSegment Point="10,50" />
 <LineSegment Point="200,70"/>
 </PathSegmentCollection>
 </PathFigure.Segments>
 </PathFigure>
 </PathFigureCollection>
 </PathGeometry.Figures>
 </PathGeometry>
 </DoubleAnimationUsingPath.PathGeometry>
 </DoubleAnimationUsingPath>

<DoubleAnimationUsingPath .../> animates a visual object along a path.

Attributes

PathGeometry (required)

This PathGeometry element represents the path of the animation.

Source (required)

This attribute specifies which output property of the path this animation will represent.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DoubleKeyFrame Hierarchy: DependencyObject Freezable

DoubleKeyFrame is the base class for three types of double key frames: discrete, linear, and spline.
Each of the three subclasses of DoubleKeyFrame represents a key frame with a distinct interpolation
technique, indicated by its name:

 <LinearDoubleKeyFrame

 KeyTime="0:0:5|Uniform|Paced|30%"

 Value="3.0" />

 <DiscreteDoubleKeyFrame

 KeyTime="0:0:5|Uniform|Paced|30%"

 Value="3.0" />

 <SplineDoubleKeyFrame

 KeyTime="0:0:5|Uniform|Paced|30%"

 Value="3.0" >
 <SplineDoubleKeyFrame.KeySpline>

 <KeySpline ControlPoint1="5,5" ControlPoint2="10,10" />
 </SplineDoubleKeyFrame.KeySpline>
 </SplineDoubleKeyFrame>

All three DoubleKeyFrame subclasses determine when (KeyTime) the frame will reach the designated
value (Value). KeyTime is specified in terms of hours:minutes:seconds. The Value attribute of all
DoubleKeyFrame subclasses is a Double.

DiscreteDoubleKeyFrame

Skips from one value to the desired value without interpolation. Thus, the Value will not be
reached until KeyTime (relative to the beginning of the animation).

LinearDoubleKeyFrame

Utilizes linear interpolation to reach the desired value. Linear interpolation progresses the
animation at a steady rate for its duration.

SplineDoubleKeyFrame

Uses a concept similar to Bezier curves to interpolate values until Value has been reached. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subclass requires an additional attribute, KeySpline, which is used to interpolate the value in
much the same way as control points are used to interpolate a line when declaring a Bezier
curve.

Attributes

KeySpline (required) (SplineDoubleKeyFrame only)

This KeySpline describes how the key frame will be altered during animation.

KeyTime (required)

This attribute specifies when, relative to the animation, this key frame takes place:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

This Double describes the destination value of the key frame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Int16KeyFrame Hierarchy: DependencyObject Freezable

Int16KeyFrame is the base class for three types of short key frames: discrete, linear, and spline. Each
of the three subclasses of Int16KeyFrame represents a key frame with a distinct interpolation
technique, indicated by its name:

 <Linearint16KeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1" />

 <DiscreteInt16KeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1" />

 <SplineInt16KeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1" >
 <SplineInt16KeyFrame.KeySpline>

 <KeySpline ControlPoint1="5,5" ControlPoint2="10,10" />
 </SplineInt16KeyFrame.KeySpline>
 </SplineInt16KeyFrame>

All three Int16KeyFrame subclasses determine when (KeyTime) the frame will reach the designated
value (Value). KeyTime is specified in terms of hours:minutes:seconds. The Value attribute of all
Int16KeyFrame subclasses is a short.

DiscreteInt16KeyFrame

Skips from one value to the desired value without interpolation. Thus, the Value will not be
reached until KeyTime (relative to the beginning of the animation).

LinearInt16KeyFrame

Utilizes linear interpolation to reach the desired value. Linear interpolation progresses the
animation at a steady rate for its duration.

SplineInt16KeyFrame

Uses a concept similar to Bezier curves to interpolate values until Value has been reached. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subclass requires an additional attribute, KeySpline, which is used to interpolate the value in
much the same way as control points are used to interpolate a line when declaring a Bezier
curve.

Attributes

KeySpline (required) (SplineInt16KeyFrame only)

This KeySpline describes how the key frame will be altered during animation.

KeyTime (required)

This attribute specifies when, relative to the animation, this key frame takes place:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

This short describes the destination value of the key frame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Int32KeyFrame Hierarchy: DependencyObject Freezable

Int32KeyFrame is the base class for three types of integer key frames: discrete, linear, and spline.
Each of the three subclasses of Int32KeyFrame represents a key frame with a distinct interpolation
technique, indicated by its name:

 <LinearInt32KeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1" />

 <DiscreteInt32KeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1" />

 <SplineInt32KeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1"
 <SplineInt32KeyFrame.KeySpline>

 <KeySpline ControlPoint1="5,5" ControlPoint2="10,10" />
 </SplineInt32KeyFrame.KeySpline>
 </SplineInt32KeyFrame>

All three Int32KeyFrame subclasses determine when (KeyTime) the frame will reach the designated
value (Value). KeyTime is specified in terms of hours:minutes:seconds. The Value attribute of all
Int32KeyFrame subclasses is an Integer.

DiscreteInt32KeyFrame

Skips from one value to the desired value without interpolation. Thus, the Value will not be
reached until KeyTime (relative to the beginning of the animation).

LinearInt32KeyFrame

Utilizes linear interpolation to reach the desired value. Linear interpolation progresses the
animation at a steady rate for its duration.

SplineInt32KeyFrame

Uses a concept similar to Bezier curves to interpolate values until Value has been reached. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subclass requires an additional attribute, KeySpline, which is used to interpolate the value in
much the same way as control points are used to interpolate a line when declaring a Bezier
curve.

Attributes

KeySpline (required) (SplineInt32KeyFrame only)

This KeySpline describes how the key frame will be altered during animation.

KeyTime (required)

This attribute specifies when, relative to the animation, this key frame takes place:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

This Integer describes the destination value of the key frame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Int64KeyFrame Hierarchy: DependencyObject Freezable

Int64KeyFrame is the base class for three types of long key frames: discrete, linear, and spline. Each
of the three subclasses of Int64KeyFrame represents a key frame with a distinct interpolation
technique, indicated by its name:

 <Linearint64KeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1" />

 <DiscreteInt64KeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1" />

 <SplineInt64KeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1" >
 <SplineInt64KeyFrame.KeySpline>

 <KeySpline ControlPoint1="5,5" ControlPoint2="10,10" />
 </SplineInt64KeyFrame.KeySpline>
 </SplineInt64KeyFrame>

All three Int64KeyFrame subclasses determine when (KeyTime) the frame will reach the designated
value (Value). KeyTime is specified in terms of hours:minutes:seconds. The Value attribute of all
Int64KeyFrame subclasses is a Long.

DiscreteInt64KeyFrame

Skips from one value to the desired value without interpolation. Thus, the Value will not be
reached until KeyTime (relative to the beginning of the animation).

LinearInt64KeyFrame

Utilizes linear interpolation to reach the desired value. Linear interpolation progresses the
animation at a steady rate for its duration.

SplineInt64KeyFrame

Uses a concept similar to Bezier curves to interpolate values until Value has been reached. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subclass requires an additional attribute, KeySpline, which is used to interpolate the value in
much the same way as control points are used to interpolate a line when declaring a Bezier
curve.

Attributes

KeySpline (required) (SplineInt64KeyFrame only)

This KeySpline describes how the key frame will be altered during animation.

KeyTime (required)

This attribute specifies when, relative to the animation, this key frame takes place:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

This Long describes the destination value of the key frame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

KeySpline Hierarchy: DependencyObject Freezable

 <KeySpline

 ControlPoint1="5,5"

 ControlPoint2="10,10" />

pr:

 <KeySpline>
 <KeySpline.ControlPoint1>

 <Point X="5" Y="5" />
 </KeySpline.ControlPoint1>
 <KeySpline.ControlPoint2>

 <Point X="10" Y="10" />
 </KeySpline.ControlPoint2>
 </KeySpline>

<KeySpline .../> defines the control points used to modify the transition of a spline-based key
frame. Both control points can be declared using abbreviated markup syntax or explicitly as Point
elements.

Attributes

ControlPoint1 (required)

Represents the first control point

ControlPoint2 (required)

Represents the second control point

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Matrix Matrix is a structure and has no class hierarchy.

 <Matrix

 M11="2.0"

 M12="3.0"

 M21="2.0"

 M22="3.0"

 OffsetX="1.0"

 OffsetY="1.0" />

<Matrix .../> represents a 3 x 3 matrix used for transformations. Avalon supports only affine
transformations linear transformations followed by a translationso the matrix has only six entries
instead of nine. The final three entries in the matrix are predefined, as shown in Table 11-1.

Table 11-1. The Avalon Matrix structure

M11 M12 0

M21 M22 0

M11 M12 0

Attributes

M11 (required)

A Double value representing the value in the first row and first column of the Matrix

M12 (required)

A Double value representing the value in the first row and second column of the Matrix

M21 (required)

A Double value representing the value in the second row and first column of the Matrix

http://lib.ommolketab.ir
http://lib.ommolketab.ir

M22 (required)

A Double value representing the value in the second row and second column of the Matrix

OffsetX (optional)

A Double value representing the amount of the x-offset in the translation following the
transformation

OffsetY (optional)

A Double value representing the amount of the y-offset in the translation following the
transformation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MatrixAnimationUsingPath

Hierarchy: DependencyObject

Freezable Animatable Timeline

 AnimationTimeline
MatrixAnimationBase

 <MatrixAnimationUsingPath

 Duration="0:0:10" >
 <MatrixAnimationUsingPath.PathGeometry>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigureCollection>
 <PathFigure>
 <PathFigure.Segments>
 <PathSegmentCollection>

 <StartSegment Point="10,50" />

 <LineSegment Point=" 200,70"/>
 </PathSegmentCollection>
 </PathFigure.Segments>
 </PathFigure>
 </PathFigureCollection>
 </PathGeometry.Figures>
 </PathGeometry>
 </MatrixAnimationUsingPath.PathGeometry>
 </MatrixAnimationUsingPath>

<MatrixAnimationUsingPath .../> animates a visual object along a path.

Attributes

PathGeometry (required)

This PathGeometry element represents the path of the animation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MatrixKeyFrame Hierarchy: DependencyObject Freezable

MatrixKeyFrame is the base class for only one subclass, DiscreteMatrixKeyFrame:

 <DiscreteMatrixKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="0 0 0 0 0 0" />

<DiscreteMatrixKeyFrame .../> animates a Matrix from a previous value to its own at KeyTime. The
Matrix can be declared using abbreviated markup syntax or by explicitly declaring a Matrix element.

Attributes

KeyTime (required)

The time, relative to the animation, that Value will be reached:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

The Matrix value destination

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MediaTimeline
Hierarchy: DependencyObject Freezable

Animatable Timeline

 <MediaTimeline
 IsMuted="true|false"
 Source="c:\\beehive.wmv"
 VolumeRatio="2.0" />

<MediaTimeline .../> describes a Timeline specifically for a MediaElement.

Attributes

IsMuted (optional)

This Boolean value determines whether the media source is initially muted.

true

The source is muted.

false

The source is not muted.

Source (required)

This attribute determines the absolute URI to the media being displayed.

VolumeRatio (optional)

This Double value describes the initial volume of the timeline.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ParallelTimeline
Hierarchy: DependencyObject Freezable

Animatable Timeline TimelineGroup

 <ParallelTimeline />

<ParallelTimeline .../> represents a group of Timeline elements capable of running at the same
time. Timeline elements in a ParallelTimeline become active according to the value specified by
their BeginTime attribute rather than the order in which they are declared.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PointAnimationUsingPath

Hierarchy: DependencyObject

Freezable Animatable Timeline

 AnimationTimeline
PointAnimationBase

 <PointAnimationUsingPath

 Duration="0:0:10"
 <PointAnimationUsingPath.PathGeometry>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigureCollection>
 <PathFigure>
 <PathFigure.Segments>
 <PathSegmentCollection>
 <StartSegment Point="10,50" />
 <LineSegment Point="200,70"/>
 </PathSegmentCollection>
 </PathFigure.Segments>
 </PathFigure>
 </PathFigureCollection>
 </PathGeometry.Figures>
 </PathGeometry>
 </PointAnimationUsingPath.PathGeometry>
 </PointAnimationUsingPath>

<PointAnimationUsingPath .../> animates a visual object along a path.

Attributes

PathGeometry (required)

This PathGeometry element represents the path of the animation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Point3DKeyFrame Hierarchy: DependencyObject Freezable

Point3DKeyFrame is the base class for three types of long key frames: discrete, linear, and spline.
Each of the three subclasses of Point3DKeyFrame represents a key frame with a distinct interpolation
technique, indicated by its name:

 <LinearPoint3DKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1,1" />

 <DiscretePoint3DKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1,1" />

 <SplinePoint3DKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1,1" >
 <SplinePoint3DKeyFrame.KeySpline>

 <KeySpline ControlPoint1="5,5" ControlPoint2="10,10" />
 </SplinePoint3DKeyFrame.KeySpline>
 </SplinePoint3DKeyFrame>

All three Point3DKeyFrame subclasses determine when (KeyTime) the frame will reach the designated
value (Value). KeyTime is specified in terms of hours:minutes:seconds. The Value attribute of all
Point3DKeyFrame subclasses is a Point3D.

DiscretePoint3DKeyFrame

Skips from one value to the desired value without interpolation. Thus, the Value will not be
reached until KeyTime (relative to the beginning of the animation).

LinearPoint3DKeyFrame

Utilizes linear interpolation to reach the desired value. Linear interpolation progresses the
animation at a steady rate for its duration.

SplinePoint3DKeyFrame

Uses a concept similar to Bezier curves to interpolate values until Value has been reached. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subclass requires an additional attribute, KeySpline, which is used to interpolate the value in
much the same way as control points are used to interpolate a line when declaring a Bezier
curve.

The Point3D value may be specified using abbreviated markup syntax or explicitly declared as a
Point3D element.

Attributes

KeySpline (required) (SplinePoint3DKeyFrame only)

This KeySpline describes how the key frame will be altered during animation.

KeyTime (required)

This attribute specifies when, relative to the animation, this key frame takes place:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

This Point3D describes the destination value of the key frame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PointKeyFrame Hierarchy: DependencyObject Freezable

IntPointFrame is the base class for three types of long key frames: discrete, linear, and spline. Each
of the three subclasses of PointKeyFrame represents a key frame with a distinct interpolation
technique, indicated by its name:

 <LinearPointKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1" />

 <DiscretePointKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1" />

 <SplinePointKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1" >
 <SplinePointKeyFrame.KeySpline>

 <KeySpline ControlPoint1="5,5" ControlPoint2="10,10" />
 </SplinePointKeyFrame.KeySpline>
 </SplinePointKeyFrame>

All three PointKeyFrame subclasses determine when (KeyTime) the frame will reach the designated
value (Value). KeyTime is specified in terms of hours:minutes:seconds. The Value attribute of all
PointKeyFrame subclasses is a Point.

DiscretePointKeyFrame

Skips from one value to the desired value without interpolation. Thus, the Value will not be
reached until KeyTime (relative to the beginning of the animation).

LinearPointKeyFrame

Utilizes linear interpolation to reach the desired value. Linear interpolation progresses the
animation at a steady rate for its duration.

SplinePointKeyFrame

Uses a concept similar to Bezier curves to interpolate values until Value has been reached. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subclass requires an additional attribute, KeySpline, which is used to interpolate the value in
much the same way as control points are used to interpolate a line when declaring a Bezier
curve.

The Point value may be specified using abbreviated markup syntax or explicitly declared as a Point
element.

Attributes

KeySpline (required) (SplinePointKeyFrame only)

This KeySpline describes how the key frame will be altered during animation.

KeyTime (required)

This attribute specifies when, relative to the animation, this key frame takes place:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

This Point describes the destination value of the key frame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RectAnimation

See AnimationTimeline.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rect3DKeyFrame Hierarchy: DependencyObject Freezable

Rect3DPointFrame is the base class for three types of Rect3D key frames: discrete, linear, and spline.
Each of the three subclasses of Rect3DKeyFrame represents a key frame with a distinct interpolation
technique, indicated by its name:

 <LinearRect3DKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1,1 10 10 10" />

 <DiscreteRect3DKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1,1 10 10 10" />

 <SplineRect3DKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1,1 10 10 10" >
 <SplineRect3DKeyFrame.KeySpline>

 <KeySpline ControlPoint1="5,5" ControlPoint2="10,10" />
 </SplineRect3DKeyFrame.KeySpline>
 </SplineRect3DKeyFrame>

All three Rect3DKeyFrame subclasses determine when (KeyTime) the frame will reach the designated
value (Value). KeyTime is specified in terms of hours:minutes:seconds. The Value attribute of all
Rect3DKeyFrame subclasses is a Rect3D.

DiscreteRect3DKeyFrame

Skips from one value to the desired value without interpolation. Thus, the Value will not be
reached until KeyTime (relative to the beginning of the animation).

LinearRect3DKeyFrame

Utilizes linear interpolation to reach the desired value. Linear interpolation progresses the
animation at a steady rate for its duration.

SplineRect3DKeyFrame

Uses a concept similar to Bezier curves to interpolate values until Value has been reached. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subclass requires an additional attribute, KeySpline, which is used to interpolate the value in
much the same way as control points are used to interpolate a line when declaring a Bezier
curve.

The Rect3D value may be specified using abbreviated markup syntax or explicitly declared as a Rect3D
element.

Attributes

KeySpline (required) (SplineRect3DKeyFrame only)

This KeySpline describes how the key frame will be altered during animation.

KeyTime (required)

This attribute specifies when, relative to the animation, this key frame takes place:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

This Rect3D describes the destination value of the key frame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RectKeyFrame Hierarchy: DependencyObject Freezable

RectPointFrame is the base class for three types of Rect key frames: discrete, linear, and spline. Each
of the three subclasses of RectKeyFrame represents a key frame with a distinct interpolation
technique, indicated by its name:

 <LinearRectKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1 10 10" />

 <DiscreteRectKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1 10 10" />

 <SplineRectKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1 10 10" >
 <SplineRectKeyFrame.KeySpline>

 <KeySpline ControlPoint1="5,5" ControlPoint2="10,10" />
 </SplineRectKeyFrame.KeySpline>
 </SplineRectKeyFrame>

All three RectKeyFrame subclasses determine when (KeyTime) the frame will reach the designated
value (Value). KeyTime is specified in terms of hours:minutes:seconds. The Value attribute of all
RectKeyFrame subclasses is a Rect.

DiscreteRectKeyFrame

Skips from one value to the desired value without interpolation. Thus, the Value will not be
reached until KeyTime (relative to the beginning of the animation).

LinearRectKeyFrame

Utilizes linear interpolation to reach the desired value. Linear interpolation progresses the
animation at a steady rate for its duration.

SplineRectKeyFrame

Uses a concept similar to Bezier curves to interpolate values until Value has been reached. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subclass requires an additional attribute, KeySpline, which is used to interpolate the value in
much the same way as control points are used to interpolate a line when declaring a Bezier
curve.

The Rect value may be specified using abbreviated markup syntax or explicitly declared as a Rect
element.

Attributes

KeySpline (required) (SplineRectKeyFrame only)

This KeySpline describes how the key frame will be altered during animation.

KeyTime (required)

This attribute specifies when, relative to the animation, this key frame takes place:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

This Rect describes the destination value of the key frame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RotateTransform
Hierarchy: DependencyObject Freezable

Animatable Transform

 <RotateTransform

 Center="0,0"

 Angle="45" />

or:

 <RotateTransform

 Angle="45" >
 <RotateTransform.Center>

 <Point X="0" Y="0" />
 </RotateTransform.Center>
 </RotateTransform>

<RotateTransform .../> describes a rotation around a point, based on the specified angle. Figure 11-
1 shows the result of applying a 45-degree rotation to a Rectangle (Example 11-3).

Figure 11-1. Rectangle and rotated rectangle comparison

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

Angle (optional)

This Double value describes the angle of rotation.

Center (optional)

This Point describes the point around which the element is rotated.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rotation3D
Hierarchy: DependencyObject Freezable

Animatable

 <Rotation3D

 Angle="45"

 Axis="0,0,0" />

or:

 <Rotation3D

 Angle="45" >
 <Rotation3D.Axis>
 <Vector3D

 X="5"

 Y="5"

 Z="5" />
 </Rotation3D.Axis>
 </Rotation3D>

<Rotation3D .../> rotates a 3-D model around the specified Axis at the specified Angle.

Attributes

Angle (required)

This Double represents the spherical orientation of a transformed 3-D model as an angle
between 0 and 360 degrees.

Axis (required)

This Vector3D represents the axis around which the rotation should occur.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rotation3DKeyFrame Hierarchy: DependencyObject Freezable

Rotation3DPointFrame is the base class for three types of Rotation3D key frames: discrete, linear,
and spline. Each of the three subclasses of Rotation3DKeyFrame represents a key frame with a distinct
interpolation technique, indicated by its name:

 <LinearRotation3DKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1,1" />

 <DiscreteRotation3DKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1,1" />

 <SplineRotation3DKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1,1" >
 <SplineRotation3DKeyFrame.KeySpline>

 <KeySpline ControlPoint1="5,5" ControlPoint2="10,10" />
 </SplineRotation3DKeyFrame.KeySpline>
 </SplineRotation3DKeyFrame>

All three Rotation3DKeyFrame subclasses determine when (KeyTime) the frame will reach the
designated value (Value). KeyTime is specified in terms of hours:minutes:seconds. The Value attribute
of all Rotation3DKeyFrame subclasses is a Rotation3D.

DiscreteRotation3DKeyFrame

Skips from one value to the desired value without interpolation. Thus, the Value will not be
reached until KeyTime (relative to the beginning of the animation).

LinearRotation3DKeyFrame

Utilizes linear interpolation to reach the desired value. Linear interpolation progresses the
animation at a steady rate for its duration.

SplineRotation3DKeyFrame

Uses a concept similar to Bezier curves to interpolate values until Value has been reached. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subclass requires an additional attribute, KeySpline, which is used to interpolate the value in
much the same way as control points are used to interpolate a line when declaring a Bezier
curve.

The Rotation3D value may be specified using abbreviated markup syntax or explicitly declared as a
Rotation3D element.

Attributes

KeySpline (required) (SplineRotation3DKeyFrame only)

This KeySpline describes how the key frame will be altered during animation.

KeyTime (required)

This attribute specifies when, relative to the animation, this key frame takes place:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

This Rotation3D describes the destination value of the key frame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ScaleTransform
Hierarchy: DependencyObject Freezable

Animatable Transform

 <ScaleTransform

 Center="0,0"

 ScaleX="2"

 ScaleY="2" />

or:

 <ScaleTransform

 ScaleX="2"

 ScaleY="2" >
 <ScaleTransform.Center>

 <Point X="0" Y="0" />
 </ScaleTransform.Center>
 </ScaleTransform>

<ScaleTransform .../> scales an element by the specified factor. The scaling can be applied in both
the x- and y-directions. Example 11-4 applies a scaling transformation to a Rectangle, effectively
doubling its size (Figure 11-2).

Figure 11-2. Scaling a Rectangle using ScaleTransform

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

Center (optional)

This attribute represents the center point of the scaling operation. The default is a Point at
(0,0).

ScaleX (optional)

This Double value represents the factor by which to scale the width of the element. 1.0 is
equivalent to the original size, or 100 percent. A factor of 0.5 would reduce the width by 50
percent, and a factor of 1.5 would increase the width by 150 percent.

ScaleY (optional)

This Double value represents the factor by which to scale the height of the element. 1.0 is
equivalent to the original size, or 100 percent. A factor of 0.5 would reduce the height by 50
percent, and a factor of 1.5 would increase the height by 150 percent.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SetterTimeline
Hierarchy: DependencyObject Freezable

Animatable Timeline TimelineGroup

ParallelTimeline

 <SetterTimeline

 Path="(Button.Width)"

 TargetName="MyButton" />

<SetterTimeline .../> objects are used inside storyboards to apply animations to framework
elements. A SetterTimeline's TargetName property specifies the name of the element to target and its
Path property specifies the property to animate.

To apply animations to the targeted element, add them as children of the SetterTimeline. When the
storyboard is processed, clocks are created for the animations and connected to the targeted
properties.

Attributes

Path (required)

This attribute describes where the value will be set, according to the timeline specifications.

TargetName (required)

This String attribute represents the name of the element whose value is set according to the
Path attribute.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SkewTransform
Hierarchy: DependencyObject Freezable

Animatable Transform

 <SkewTransform

 AngleX="45"

 AngleY="30"

 Center="0,0" />

or:

 <SkewTransform

 AngleX="45"

 AngleY="30" >
 <SkewTransform.Center>

 <Point X="0" Y="0" />
 </SkewTransform.Center>
 </SkewTransform>

<SkewTransform .../> describes a skew, or shear, transformation. SkewTransform stretches the
coordinate space in a non-uniform manner, as seen in Figure 11-3. The code to produce the
transformation is found in Example 11-5.

Figure 11-3. Modifying a Rectangle using SkewTransform

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

Center (optional)

This Point specifies the center of the transformation.

AngleX (optional)

This Double value determines the skew of the x-axis values relative to the current coordinate
system.

AngleY (optional)

This Double value determines the skew of the y-axis values relative to the current coordinate
system.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SizeAnimation

See AnimationTimeline.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Size3D Size3D is a structure and has no class hierarchy.

 <Size3D
 X="5"
 Y="5"
 Z="5" />

<Size3D .../> describes a size in three dimensions.

Attributes

X (required)

This Double value describes the size of the x-dimension.

Y (required)

This Double value describes the size of the y-dimension.

Z (required)

This Double value describes the size of the z-dimension.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Size3DKeyFrame Hierarchy: DependencyObject Freezable

Size3DPointFrame is the base class for three types of Size3D key frames: discrete, linear, and spline.
Each of the three subclasses of Size3DKeyFrame represents a key frame with a distinct interpolation
technique, indicated by its name:

 <LinearSize3DKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1 1 1" />

 <DiscreteSize3DKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1 1 1" />

 <SplineSize3DKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1 1 1" >
 <SplineSize3DKeyFrame.KeySpline>

 <KeySpline ControlPoint1="5,5" ControlPoint2="10,10" />
 </SplineSize3DKeyFrame.KeySpline>
 </SplineSize3DKeyFrame>

All three Size3DKeyFrame subclasses determine when (KeyTime) the frame will reach the designated
value (Value). KeyTime is specified in terms of hours:minutes:seconds. The Value attribute of all
Size3DKeyFrame subclasses is a Size3D.

DiscreteSize3DKeyFrame

Skips from one value to the desired value without interpolation. Thus, the Value will not be
reached until KeyTime (relative to the beginning of the animation).

LinearSize3DKeyFrame

Utilizes linear interpolation to reach the desired value. Linear interpolation progresses the
animation at a steady rate for its duration.

SplineSize3DKeyFrame

Uses a concept similar to Bezier curves to interpolate values until Value has been reached. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subclass requires an additional attribute, KeySpline, which is used to interpolate the value in
much the same way as control points are used to interpolate a line when declaring a Bezier
curve.

The Size3Dvalue may be specified using abbreviated markup syntax or explicitly declared as a Size3D
element.

Attributes

KeySpline (required) (SplineSize3DKeyFrame only)

This KeySpline describes how the key frame will be altered during animation.

KeyTime (required)

This attribute specifies when, relative to the animation, this key frame takes place:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

This Size3D describes the destination value of the key frame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SizeKeyFrame Hierarchy: DependencyObject Freezable

SizeKeyFrame is the base class for three types of Size key frames: discrete, linear, and spline. Each of
the three subclasses of SizeKeyFrame represents a key frame with a distinct interpolation technique,
indicated by its name:

 <LinearSizeKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1 1" />

 <DiscreteSizeKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1 1" />

 <SplineSizeKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1 1" >
 <SplineSizeKeyFrame.KeySpline>

 <KeySpline ControlPoint1="5,5" ControlPoint2="10,10" />
 </SplineSizeKeyFrame.KeySpline>
 </SplineSizeKeyFrame>

All three SizeKeyFrame subclasses determine when (KeyTime) the frame will reach the designated
value (Value). KeyTime is specified in terms of hours:minutes:seconds. The Value attribute of all
SizeKeyFrame subclasses is a Size.

DiscreteSizeKeyFrame

Skips from one value to the desired value without interpolation. Thus, the Value will not be
reached until KeyTime (relative to the beginning of the animation).

LinearSizeKeyFrame

Utilizes linear interpolation to reach the desired value. Linear interpolation progresses the
animation at a steady rate for its duration.

SplineSizeKeyFrame

Uses a concept similar to Bezier curves to interpolate values until Value has been reached. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subclass requires an additional attribute, KeySpline, which is used to interpolate the value in
much the same way as control points are used to interpolate a line when declaring a Bezier
curve.

The Size value may be specified using abbreviated markup syntax or explicitly declared as a Size
element.

Attributes

KeySpline (required) (SplineSizeKeyFrame only)

This KeySpline describes how the key frame will be altered during animation.

KeyTime (required)

This attribute specifies when, relative to the animation, this key frame takes place:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

This Size describes the destination value of the key frame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StringKeyFrame Hierarchy: DependencyObject Freezable

StringKeyFrame is the base class for only one subclass, DiscreteStringKeyFrame:

 <DiscreteStringKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="String" />

<DiscreteStringKeyFrame .../> animates a string from a previous value to its own at KeyTime.

Attributes

KeyTime (required)

This attribute specifies the time, relative to the animation, when Value will be reached:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

This String describes the destination value of the key frame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ThicknessKeyFrame Hierarchy: DependencyObject Freezable

ThicknessKeyFrame is the base class for three types of Thickness key frames: discrete, linear, and
spline. Each of the three subclasses of ThicknessKeyFrame represents a key frame with a distinct
interpolation technique, indicated by its name:

 <LinearThicknessKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1,1,1" />

 <DiscreteThicknessKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1,1,1" />

 <SplineThicknessKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1,1,1" >
 <SplineThicknessKeyFrame.KeySpline>

 <KeySpline ControlPoint1="5,5" ControlPoint2="10,10" />
 </SplineThicknessKeyFrame.KeySpline>
 </SplineThicknessKeyFrame>

All three ThicknessKeyFrame subclasses determine when (KeyTime) the frame will reach the
designated value (Value). KeyTime is specified in terms of hours:minutes:seconds. The Value attribute
of all ThicknessKeyFrame subclasses is a Thickness.

DiscreteThicknessKeyFrame

Skips from one value to the desired value without interpolation. Thus, the Value will not be
reached until KeyTime (relative to the beginning of the animation).

LinearThicknessKeyFrame

Utilizes linear interpolation to reach the desired value. Linear interpolation progresses the
animation at a steady rate for its duration.

SplineThicknessKeyFrame

Uses a concept similar to Bezier curves to interpolate values until Value has been reached. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subclass requires an additional attribute, KeySpline, which is used to interpolate the value in
much the same way as control points are used to interpolate a line when declaring a Bezier
curve.

The Thickness value may be specified using abbreviated markup syntax or explicitly declared as a
Thickness element.

Attributes

KeySpline (required) (SplineThicknessKeyFrame only)

This KeySpline describes how the key frame will be altered during animation.

KeyTime (required)

This attribute specifies when, relative to the animation, this key frame takes place:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

This Thickness describes the destination value of the key frame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Timeline
Hierarchy: DependencyObject Freezable

Animatable

 <Timeline

 AccelerationRatio="1"
 AutoReverse="true|false"

 BeginTime="100"

 CutOffTime="300"
 FillBehavior="Deactivate|HoldEnd"

 DecelerationRatio="1"

 Duration="Automatic|Forever|100"
 RepeatBehavior="IterationCount|RepeatDuration|Forever"
 SpeedRatio="0.5" />

<Timeline .../> is an abstract element that represents a time period. Timeline makes use of the
TimeSpan structure, which is represented textually as "d:h:s," where "d" is the number of days, "h" is
the number of hours, and "s" is the number of seconds.

Attributes

AccelerationRatio (optional)

This Double value represents the percentage of the Duration spent accelerating from zero to its
maximum rate. This attribute must be set to a value between 0 and 1, inclusive. The default
value is 0.

AutoReverse (optional)

This Boolean value determines whether the timeline will play in reverse after it has completed a
forward iteration.

true

The timeline will play in reverse at the end of each forward iteration.

false

The timeline will not play in reverse. This is the default value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BeginTime (optional)

This TimeSpan attribute determines when the timeline will begin. The default value is 0.

CutOffTime (optional)

This TimeSpan attribute determines when the timeline should end, relative to BeginTime.

DecelerationRatio (optional)

This Double value represents the percentage of the Duration spent decelerating from its
maximum rate to zero. This attribute must be set to a value between 0 and 1, inclusive. The
default value is 0.

Duration (optional)

This attribute determines how long the timeline should continue, not counting repetitions.

Automatic

The timeline automatically ends when its last child stops playing.

Forever

The timeline will continue playing indefinitely.

TimeSpan

The value of this attribute is a time span.

FillBehavior (optional)

This value determines how the animation will behave once it has completed but while its parent
is still active.

Deactivate

The Timeline is turned off when its parent is no longer active.

HoldEnd

The Timeline holds its progress until the end of its parent's active and hold periods.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RepeatBehavior (optional)

This attribute determines how the timeline will repeat its Duration, if at all.

Forever

The timeline will repeat indefinitely.

IterationCount

The timeline's behavior is determined by this value. A value of 1.0 means that the timeline will
execute exactly once. A value of 2.0 means that the timeline will execute twice. A value of 0.5
means that the timeline will execute only half of its intended duration. An IterationCount is
specified using the following syntax: RepeatBehavior="2x", where 2 is the desired iteration
count and x is a keyword that indicates the type of RepeatBehavior being declared.

RepeatDuration

The timeline will repeat for the amount of time specified by this value. A RepeatDuration is
specified by declaring the RepeatBehavior as a TimeSpan, e.g., "0:0:5" specifies a
RepeatDuration time of five seconds.

SpeedRatio (optional)

This Double value specifies the rate of movement over the Duration. The default value is 1.0.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TranslateTransform
Hierarchy: DependencyObject Freezable

 Animatable Transform

 <TranslateTransform

 X="5"

 Y="5" />

<TranslateTransform .../> defines an axis-aligned transition in the x- and y-directions. It moves an
element the specified number of 1/96" units in the x- and y-direction. Example 11-6 shows the
original Rectangle and then the same Rectangle translated along the x- and y-axis. Figure 11-4
shows the result of evaluating the code in XamlPad.

Figure 11-4. TranslateTransform applied to a Rectangle

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

X (optional)

This Double value determines the distance along the x-axis to move the element.

Y (optional)

This Double value determines the distance along the y-axis to move the element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VectorAnimation

See AnimationTimeline.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VectorKeyFrame Hierarchy: DependencyObject Freezable

VectorPointFrame is the base class for three types of Vector key frames: discrete, linear, and spline.
Each of the three subclasses of VectorKeyFrame represents a key frame with a distinct interpolation
technique, indicated by its name:

 <LinearVectorKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1" />

 <DiscreteVectorKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1" />

 <SplineVectorKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1" >
 <SplineVectorKeyFrame.KeySpline>

 <KeySpline ControlPoint1="5,5" ControlPoint2="10,10" />
 </SplineVectorKeyFrame.KeySpline>
 </SplineVectorKeyFrame>

All three VectorKeyFrame subclasses determine when (KeyTime) the frame will reach the designated
value (Value). KeyTime is specified in terms of hours:minutes:seconds. The Value attribute of all
VectorKeyFrame subclasses is a Vector.

DiscreteVectorKeyFrame

Skips from one value to the desired value without interpolation. Thus, the Value will not be
reached until KeyTime (relative to the beginning of the animation).

LinearVectorKeyFrame

Utilizes linear interpolation to reach the desired value. Linear interpolation progresses the
animation at a steady rate for its duration.

SplineVectorKeyFrame

Uses a concept similar to Bezier curves to interpolate values until Value has been reached. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subclass requires an additional attribute, KeySpline, which is used to interpolate the value in
much the same way as control points are used to interpolate a line when declaring a Bezier
curve.

The Vector value may be specified using abbreviated markup syntax or explicitly declared as a Vector
element.

Attributes

KeySpline (required) (SplineVectorKeyFrame only)

This KeySpline describes how the key frame will be altered during animation.

KeyTime (required)

This attribute specifies when, relative to the animation, this key frame takes place:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

This Vector describes the destination value of the key frame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Vector3DKeyFrame Hierarchy: DependencyObject Freezable

Vector3DPointFrame is the base class for three types of Vector3D key frames: discrete, linear, and
spline. Each of the three subclasses of Vector3DKeyFrame represents a key frame with a distinct
interpolation technique, indicated by its name:

 <LinearVector3DKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1,1" />

 <DiscreteVector3DKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1,1" />

 <SplineVector3DKeyFrame

 KeyTime="0:0:10|Uniform|Paced|30%"

 Value="1,1,1" >
 <SplineVector3DKeyFrame.KeySpline>

 <KeySpline ControlPoint1="5,5" ControlPoint2="10,10" />
 </SplineVector3DKeyFrame.KeySpline>
 </SplineVector3DKeyFrame>

All three Vector3DKeyFrame subclasses determine when (KeyTime) the frame will reach the designated
value (Value). KeyTime is specified in terms of hours:minutes:seconds. The Value attribute of all
Vector3DKeyFrame subclasses is a Vector3D.

DiscreteVector3DKeyFrame

Skips from one value to the desired value without interpolation. Thus, the Value will not be
reached until KeyTime (relative to the beginning of the animation).

LinearVector3DKeyFrame

Utilizes linear interpolation to reach the desired value. Linear interpolation progresses the
animation at a steady rate for its duration.

SplineVector3DKeyFrame

Uses a concept similar to Bezier curves to interpolate values until Value has been reached. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subclass requires an additional attribute, KeySpline, which is used to interpolate the value in
much the same way as control points are used to interpolate a line when declaring a Bezier
curve.

The Vector3D value may be specified using abbreviated markup syntax or explicitly declared as a
Vector3D element.

Attributes

KeySpline (required) (SplineVector3DKeyFrame only)

This KeySpline describes how the key frame will be altered during animation.

KeyTime (required)

This attribute specifies when, relative to the animation, this key frame takes place:

A time period specified in hours:minutes:seconds.

Uniform: The Duration will be split evenly among all key frames.

Paced: The Duration will be split among key frames in a way that ensures the speed of
the animation remains relatively constant.

A percentage of the total duration.

Value (required)

This Vector3D describes the destination value of the key frame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Vector Vector is a structure and has no hierarchy.

 <Vector

 X="5"

 Y="5" />

<Vector .../> represents the direction and magnitude of a line segment. It describes the movement
of the x- and y-coordinates of a point along the x- and y-axes. If a line has start point (0,0) and end
point (5,5), then the Vector describing the line segment is (5,5)essentially, the difference between
the start and end points. Vector is a transformation mechanism; specifically, it is used to transform
lines within a 2-D space.

Attributes

X (optional)

This Double value represents the x-component of the Vector. The default value is 0.

Y (optional)

This Double value represents the y-component of the Vector. The default value is 0.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Vector3D Vector3D is a structure and has no hierarchy.

 <Vector3D

 X="5"

 Y="5"

 Z="5" />

<Vector3D .../> represents a displacement in 3-D space. It describes the movement of all three
coordinates of a 3-D point along the x-, y-, and z-axes. If a three-dimensional line has start point
(0,0,0) and end point (5,5,5), then the Vector describing the line segment is (5,5,5)essentially, the
difference between the start and end points. Vector3D is a transformation mechanism; specifically, it
is used to transform lines within a 3-D space.

Attributes

X (required)

This Double value represents the x-component of the Vector3D.

Y (required)

This Double value represents the y-component of the Vector3D.

Z (required)

This Double value represents the z-component of the Vector3D.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 12. Events
In a typical application, UI elements will contain other elements as children. A Page contains a Button
and a Label; a StackPanel might contain multiple Button elements as well as text-based and Image
elements. UI elements and their children are designed with user interaction in mind. When a user
interacts with an element, a corresponding event is raised andif declaredan event handler is
executed. When a Button is clicked, the Click event is raised; when the selection in a ComboBox
changes, the SelectionChanged event is raised; and so on. Chapter 8 notes the events raised by
controls along with each element and lists the common events for all controls.

While this material is likely familiar to developers, there is a fundamental difference in how Avalon
elements deal with events. In a typical Windows Forms or other Microsoft .NET application, only the
element that raised the event responds to the event. If a Button is clicked by a user, the Button
element receives the corresponding event indicating that the button has been clicked. In a XAML
application, the parent element of the Button may handle the event instead, or any other element in
the tree in which the Button is declared.

Consider the following XAML application (Figure 12-1) and its XAML code (Example 12-1).

Figure 12-1. A simple XAML application

Example 12-1. A simple XAML application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005">
 <Border

 Margin="10"

 Padding="10"

 BorderBrush="Black"

 Background="SkyBlue"

 BorderThickness="1">
 <StackPanel

 Margin="10">
 <Button

 Content="Click me" />
 </StackPanel>
 </Border>
</Page>

The application consists of four elements: Page, Border, StackPanel, and Button. Button is a child of
StackPanel, StackPanel is a child of Border, and Border is a child of Page. Just as your grandparent is
a kind of "parent," so too are the parent elements of a XAML element's parent. This is illustrated by
the formatting of the examples in this book; using indentation to nest elements within their parent
helps to visualize their relationship.

Usually, the event handler for the Button element's Click event would be defined with the Button
element and handled by the Button. However, Avalon does not require that Button handle its own
Click event. In Example 12-1, StackPanel or Border can just as easily handle the Click event by
declaring it as through it were an attached attribute:

 <StackPanel Margin="10 " Button.Click ="MyButtonHandler " />

Avalon allows parent elements to participate in many events directed at its children through event
routing . An event can be routed through multiple elements in a parent/child relationship (the "tree")
until it is marked as Handled by one of the elements in the tree.

This might be useful to group together controls that should use the same event handler when any
one of them raises a particular event (Example 12-2). For example, a "Yes" and a "No" button might
be grouped together in a StackPanel. The same application logic will likely be executed when either
button is clicked, but there will probably be some differences to account for.

Example 12-2. Grouping Buttons together to use a common event
handler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<StackPanel Button.Click="ButtonWasClicked">

 <Button Name="YesButton" Content="Yes" />

 <Button Name="NoButton" Content="No" />
</StackPanel>

A single event handler (Example 12-3) can then be defined to handle both cases and to execute
common application logic.

Example 12-3. Common event code in C#

public void ButtonWasClicked(object sender, RoutedArgs e)
{
 FrameworkElement source = e.Source as FrameworkElement;
 switch (source Name)
 {
 case "YesButton":
 // yes specific code
 break;
 case "NoButton":
 // no specific code
 break;
 }
 // common application logic
}

Avalon uses three distinct types of routing, which will be discussed further in the next section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.1. Routing Strategies

There are three types of routed event strategies in Avalon: bubble, direct, and tunnel:

Bubble

A bottom-up routing strategy. The target element is first notified, then its parent, then its
parent, and so on. If the event is marked Handled, then no other event handlers will be
invoked. Microsoft suggests marking an event as Handled as soon as you know that there are
no further elements along the route because there are performance advantages to keeping the
codepath as short as possible.

Direct

The type of routing strategy used by Windows Forms and other Microsoft .NET libraries. Direct
routing means that only the event source element is notified. If the event was raised by a
Button, then only the Button in question will receive notification. Very few UI events in Avalon
use the direct-routing strategy.

Tunnel

Works in the opposite direction as bubble; it starts at the root of the tree and works down,
stopping with the target element. Tunneling events are prefixed in Avalon with the word
Preview. Generally, there is a corresponding bubble event for each tunnel event. If the tunnel
event is named PreviewKeyDown, then the bubble event is called KeyDown. Similarly, if there is a
bubble event called KeyUp, then there is likely a tunneling event called PreviewKeyUp.

Because of tunneling and bubbling, parent elements often receive events when the source is one of
their child elements. If necessary, the source of the event can be determined programmatically by
accessing the Source property of the EventArgs parameter passed to the event handler, as in
Example 12-3.

Not all events are routed. The XAML designer will need to know whether they are, because routed
events can be used within styles to created triggers; non-routed events cannot. Events are
specifically marked as routed or non-routed to assist the XAML designer with trigger creation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.2. Event Argument Reference

The signature for event handlers is primarily the same for all events; only the event argument
changes for different types of events. The syntax for all event handlers is:

 C#:

 public void HandlerName(Object sender, EventArgs e)
 Visual Basic:

 Sub HandlerName(ByVal sender As Object, ByVal e As EventArgs)

Each event argument type holds values specific to the event as well as general data such as the
source element and the original source element. This section details the event argument types.

RoutedEventArgs

RoutedEventArgs is the base class for many other routed event argument types and is also the
argument type passed to the event handler for events such as Click and Closed.

Properties

Handled

This Boolean designates whether the event has been handled. If it is set to true, then no other
event handlers will be invoked.

OriginalSource

OriginalSource is stored as an Object and is generally cast to FrameworkElement in order to
determine its true type. OriginalSource is the original element that raised the event.

RoutedEvent

This RoutedEvent type indicates the associated routed event. This value can never be null.

Source

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Source is stored as an Object, and is generally cast to FrameworkElement in order to determine
its true type. Because of routing strategies, Source may not be the original source of the event.

DependencyPropertyChangedEventArgs

DependencyPropertyChangedEventArgs is passed to handlers that are raised when a dependency
property changes. It is not associated with routed events. DependencyProp-ertyChangedEventArgs has
properties that help to determine both the old value and new attribute values. This class also allows
you to programmatically determine the state of a selector, such as CheckBox or RadioButton, as well
as handle changes in other properties.

Properties

NewValue

NewValue is an Object that can be cast to the appropriate type. NewValue holds the new value of
the property.

OldValue

OldValue is an Object that can be cast to the appropriate type. OldValue holds the previous
value of the property.

Property

This field returns the actual property that has been changed, allowing you to programmatically
manipulate it.

PropertyName

This String represents the name of the property that has been changed.

KeyEventArgs

KeyEventArgs describes the arguments passed to a handler for a key-based event, such as KeyUp or
KeyDown.

Properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Device

This property gets or sets the InputDevice that raised the event.

Handled

This Boolean designates whether the event has been handled. If it is set to true, then no other
event handlers will be invoked.

InputSource

This property is the PresentationSource that raised the event. At this time, there is only one
implementation of a presentation source: the Windows standard HwndSource.

IsDown

This Boolean indicates whether the key referenced by the event is down.

IsRepeat

This Boolean indicates whether the key referenced by the event is a repeated key.

IsToggled

This Boolean indicates whether the key referenced by the event is toggled.

IsUp

This Boolean indicates whether the key referenced by the event is up.

Key

This Key (enumeration) indicates the key referenced by the event. See Microsoft's
documentation for Key enumeration values.

KeyboardDevice

KeyboardDevice contains the logical KeyboardDevice.

KeyState

This KeyState (enumeration containing Down, None, Toggled) indicates the state of the key
associated with the event.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OriginalSource

OriginalSource is stored as an Object and is generally cast to FrameworkElement in order to
determine its true type. OriginalSource is the original element that raised the event.

RoutedEvent

This property indicates the associated routed event. This value can never be null.

Source

Source is stored as an Object and is generally cast to FrameworkElement in order to determine
its true type. Because of routing strategies, Source may not be the original source of the event.

SystemKey

This property indicates the Key associated with this event if the event is going to be processed
by the system.

TimeStamp

This property is an Integer representing the time the event occurred.

ScrollChangedEventArgs

ScrollChangedEventArgs is derived from RoutedEventArgs and extends the class with properties
specific to scrollbars.

Properties

HorizontalChange

A Double value indicating the amount of horizontal change in the scrolled content

HorizontalOffset

A Double value indicating the updated horizontal position of the content

VerticalChange

A Double value indicating the amount of vertical change in the scrolled content

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VerticalOffset

A Double value indicating the updated vertical position of the content

TextChangedEventArgs

TextChangedEventArgs is derived from RoutedEventArgs and adds properties specific to the
TextChanged event

Properties

UndoAction

UndoAction is an enumeration indicating how the change in text will affect the undo stack.

Clear

The action will clear the undo stack.

Create

The action will create a new undo stack.

Merge

This change will merge into the previous undo stack.

None

This change will not affect the undo stack.

Redo

This change is the result of a call to Redo().

Undo

This change is the result of a call to Undo().

MouseEventArgs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MouseEventArgs provide access to the mouse and its various states.

Properties

Device

This property gets or sets the InputDevice that raised the event.

Handled

This Boolean designates whether the event has been handled. If it is set to true, then no other
event handlers will be invoked.

LeftButton

This MouseButtonState (an enumeration containing Pressed and Released) indicates the state of
the left button of the mouse.

MiddleButton

This MouseButtonState (an enumeration containing Pressed and Released) indicates the state of
the middle button of the mouse.

MouseDevice

This property gets the MouseDevice associated with the event.

OriginalSource

OriginalSource is stored as an Object and is generally cast to FrameworkElement in order to
determine its true type. OriginalSource is the original element that raised the event.

RightButton

This MouseButtonState (an enumeration containing Pressed and Released) indicates the state of
the right button of the mouse.

RoutedEvent

This property indicates the associated routed event. This value can never be null.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Source

Source is stored as an Object and is generally cast to type FrameworkElement in order to
determine its true type. Because of routing strategies, Source may not be the original source of
the event.

StylusPointer

This Object represents the stylus mouse associated with the event.

TimeStamp

This Integer represents the time the event occurred.

XButton1

This MouseButtonState (an enumeration containing Pressed and Released) indicates the state of
the first extended button of the mouse.

XButton2

This MouseButtonState (an enumeration containing Pressed and Released) indicates the state of
the second extended button of the mouse.

MouseButtonEventArgs

MouseButtonEventArgs extends MouseEventArgs and adds several properties dealing specifically with
the mouse buttons. It is generally used by non-routed mouse button events such as
MouseLeftButtonDown and MouseLeftButtonUp.

Properties

ButtonState

This property is read-only and indicates the MouseButtonState (Pressed or Released) of the
mouse button associated with the event.

ChangedButton

This property is read-only and indicates which MouseButton (an enumeration containing Left,
Middle, Right, XButton1, or XButton2) has changed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ClickCount

This Integer indicates the click count of the button associated with the event.

SelectionChangedEventArgs

SelectionChangedEventArgs is derived from RoutedEventArgs and adds properties specific to the
SelectionChanged event.

Properties

SelectedItems

SelectedItems is an IList (a non-generic collection of objects that can be accessed by index)
of all items selected as a result of this event.

UnselectedItems

UnselectedItems is an IList (a non-generic collection of objects that can be accessed by index)
of all items unselected as a result of this event.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.3. Event Reference

Click

Routed Event

Yes

Elements

MenuItem
Hyperlink
ButtonBase

Description

Click is raised on an element's MouseLeftButtonDown and MouseRightButtonDown events.

Event Argument Type

RoutedEventArgs

Closed

Routed Event

Yes

Elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ContextMenu
ToolTip
Popup
Pag
Windo
NavigationWindow

Description

Closed is raised when the element has closed.

Event Argument Type

RoutedEventArgs

DragEnter

Routed Event

Yes

Elements

UIElement

Description

DragEnter is raised when an underlying system drag event is raised, with either this element or a
child element along the route as the target. The corresponding event is PreviewDragEnter.

Event Argument Type

RoutedEventArgs

DragLeave

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Routed event

Yes

Elements

UIElement

Description

DragLeave is raised when an underlying system drag event is raised, with either this element or a
child element along the route identified as the origin. The corresponding event is PreviewDragLeave.

Event Argument Type

RoutedEventArgs

DragOver

Routed Event

Yes

Elements

UIElement

Description

DragOver is raised when an underlying system drag event is raised, with either this element or a child
element along the route as the target. The corresponding event is PreviewDragOver. This event is
raised even if the origin of the drag event is within the boundaries of the element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Event Argument Type

RoutedEventArgs

Drop

Routed Event

Yes

Elements

UIElement

Description

Drop is raised when an underlying system drop event is raised, with either this element or a child
element along the route as the target. The corresponding event is PreviewDrop.

Event Argument Type

RoutedEventArgs

GotFocus

Routed Event

Yes

Elements

UIElement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description

GotFocus is a routed event that occurs when the element receives focus. The corresponding event is
PreviewGotFocus. It uses a bubbling event strategy.

Event Argument Type

RoutedEventArgs

IsCheckedChanged

Routed event

Yes

Elements

ToggleButton
MenuItem

Description

IsCheckedChanged is raised when the IsChecked attribute of an element changes state.

Event Argument Type

RoutedEventArgs

IsEnabledChanged

Routed event

http://lib.ommolketab.ir
http://lib.ommolketab.ir

No

Elements

UIElement

Description

IsEnabledChanged is raised when the IsEnabled attribute of an element changes state.

Event Argument Type

DependencyPropertyChangedEventArgs

IsFocusChanged

Routed event

No

Elements

UIElement

Description

IsFocusChanged is raised when the IsFocused attribute of an element changes state.

Event Argument Type

DependencyPropertyChangedEventArgs

IsMouseDirectlyOverChanged

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Routed event

No

Elements

UIElement

Description

IsMouseDirectlyOverChanged is raised when the IsMouseDirectlyOver attribute of an element changes
state.

Event Argument Type

DependencyPropertyChangedEventArgs

IsVisibleChanged

Routed event

No

Elements

UIElement

Description

IsVisibleChanged is raised when the IsVisible attribute of an element changes state.

Event Argument Type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DependencyPropertyChangedEventArgs

KeyDown

Routed Event

Yes

Elements

UIElement

Description

KeyDown is raised when a key is pressed while the element or a child element has focus. KeyDown uses
a bubbling event strategy. The corresponding event is PreviewKeyDown.

Event Argument Type

KeyEventArgs

KeyUp

Routed Event

Yes

Elements

UIElement

Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

KeyUp is raised when a key is released while the element or a child element has focus. KeyUp uses a
bubbling event strategy. The corresponding event is PreviewKeyUp.

Event Argument Type

KeyEventArgs

LayoutUpdated

Routed event

No

Elements

UIElement

Description

LayoutUpdated is raised when the layout of the element has been altered because a property, such as
Width or Content, was changed; because a window was resized; or because the user specifically
requested the layout update.

Event Argument Type

DependencyPropertyChangedEventArgs

LostFocus

Routed Event

Yes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Elements

UIElement

Description

LostFocus is a routed event that occurs when the element loses focus. The corresponding event is
PreviewLostFocus. It uses a bubbling event strategy.

Event Argument Type

RoutedEventArgs

MouseEnter

Routed Event

Yes

Elements

UIElement

Description

MouseEnter is raised when the mouse pointer enters the boundaries of the element to which it is
attached. It uses a direct routing strategy, so it is handled only in the element in which it was raised,
but it does enable other routed event behaviors (such as event triggers in styles).

Event Argument Type

RoutedEventArgs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MouseLeave

Routed Event

Yes

Elements

UIElement

Description

MouseLeave is raised when the mouse pointer leaves the boundaries of the element to which it is
attached. It uses a direct routing strategy, so it is handled only in the element in which it was raised,
but it does enable other routed event behaviors (such as event triggers in styles).

Event Argument Type

MouseEventArgs

MouseMove

Routed Event

Yes

Elements

UIElement

Description

MouseMove is raised when the mouse pointer moves over the element or a child element along the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

route. It uses a bubbling strategy. The corresponding event is PreviewMouseMove.

Event Argument Type

MouseEventArgs

MouseLeftButtonDown

Routed Event

No

Elements

UIElement

Description

MouseLeftButtonDown is raised when the left mouse button is clicked over an element.

Event Argument Type

MouseButtonEventArgs

MouseLeftButtonUp

Routed Event

No

Elements

UIElement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description

MouseLeftButtonUp is raised when the left mouse button is released while it is over the element.

Event Argument Type

MouseButtonEventArgs

MouseRightButtonDown

Routed Event

No

Elements

UIElement

Description

MouseRightButtonDown is raised when the right mouse button is clicked while it is over the element.

Event Argument Type

MouseButtonEventArgs

MouseRightButtonUp

Routed Event

No

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Elements

UIElement

Description

MouseRightButtonUp is raised when the right mouse button is released while it is over an element.

Event Argument Type

MouseButtonEventArgs

Opened

Routed Event

Yes

Elements

ContextMenu
Popup
Tooltip

Description

Opened is raised when the element opens.

Event Argument Type

RoutedEventArgs

SelectionChanged

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Routed event

Yes

Elements

TextBoxBase
Selector

Description

SelectionChanged is raised whenever a selection is changed, whether through binding, user
interaction, or programmatically. It uses a bubble routing strategy.

Event Argument Type

SelectionChangedEventArgs

ScrollChanged

Routed Event

Yes

Elements

ScrollViewer

Description

ScrollChanged is raised when the scroll state has changed.

Event Argument Type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ScrollChangedEventArgs

TextChanged

Routed Event

Yes

Elements

TextBoxBase

Description

TextChanged is raised when the text in the element changes either through user interaction or
programmatically. This is raised even when the element is initially created and the text is populated.

Event Argument Type

TextChangedEventArgs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part IV: Appendixes
Appendix A, System.Windows.Controls

Appendix B, System.Windows.Documents

Appendix C, System.Windows.Shapes

Appendix D, System.Windows

Appendix E, System.Windows.Media

Appendix F, System.Windows.Input.ApplicationCommands

Appendix G, Predefined Colors

Appendix H, XAML Interface in Code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix A. System.Windows.Controls
When writing code for event handlers, it is sometimes necessary to include the namespace in which
specific elements reside. Here are the elements found in the System.Windows.Controls namespace:

Border

Button

Canvas

CheckBox

ColumnDefinition

ColumnDefinitionsCollection

ComboBox

ComboBoxItem

ContextMenu

DockPanel

DocumentViewer

Expander

Frame

Grid

HorizontalSlider

Image

Label

ListBox

ListBoxItem

MediaElement

Menu

MenuItem

Page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Panel

PasswordBox

RadioButton

RadioButtonList

RichTextBox

RowDefinition

ScrollViewer

TabControl

TabItem

TextBlock

TextBox

TextSearch

ToolBar

ToolBarOverflowPanel

ToolBarPanel

ToolBarTray

ToolTip

VerticalSlider

Viewbox

Viewport3D

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix B. System.Windows.Documents
When writing code for event handlers, it is sometimes necessary to include the namespace in which
specific elements reside. Here are the elements found in the System.Windows.Documents namespace:

Bold

Figure

FixedDocument

FixedPage

Floater

FlowDocument

Hyperlink

Inline

Italic

LineBreak

List

ListItem

PageContent

Paragraph

Section

Subscript

Superscript

Table

TableFooter

TableBody

TableCell

TableColumn

TableFooter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TableHeader

TableRow

TableRowGroup

Underline

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix C. System.Windows.Shapes
When writing code for event handlers, it is sometimes necessary to include the namespace in which
specific elements reside. Here are the elements found in the System.Windows.Shapes namespace:

Ellipse

Line

Path

Polygon

Polyline

Rectangle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix D. System.Windows
When writing code for event handlers, it is sometimes necessary to include the namespace in which
specific elements reside. Here are the elements found in the System.Windows namespace:

Application

DataTemplate

Setter

Style

TexTDecoration

trigger

Window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix E. System.Windows.Media
When writing code for event handlers, it is sometimes necessary to include the namespace in which
specific elements reside. Here are the elements found in the System.Windows.Media namespace:

ArcSegment

BezierSegment

Brush

CloseSegment

Colors

CombinedGeometry

DashStyle

Drawing

DrawingBrush

DrawingCollection

DrawingGroup

EllipseGeometry

Geometry

GeometryCollection

GeometryDrawing

GeometryGroup

GradientBrush

GradientStop

ImageBrush

LinearGradientBrush

LineGeometry

LineSegment

MatrixTransform

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MediaTimeline

PathFigure

PathFigureCollection

PathGeometry

PathSegment

PathSegmentCollection

Pen

PointCollection

PolyBezierSegment

PolyLineSegment

PolyQuadraticBezierSegment

QuadraticBezierSegment

RadialGradientBrush

RectangleGeometry

RotateTransform

ScaleTransform

SkewTransform

SolidColorBrush

StartSegment

TextEffect

TextEffectCollection

TileBrush

transform

TRansformCollection

transformGroup

TRanslateTransform

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix F.
System.Windows.Input.ApplicationCommands
In XAML, MenuItem can be assigned to any one of the common commands provided by Windows. Here are
the commands found in the namespace System.Windows.Input.ApplicationCommands and descriptions of
what each command represents:

Close

Represents the Close command

ContextMenu

Represents the Context Menu command

Copy

Represents the Copy command

CorrectionList

Represents the Correction List command

Cut

Represents the Cut command

Delete

Represents the Delete command

Find

Represents the Find command

Help

Represents the Help command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

New

Represents the New command

Open

Represents the Open command

Paste

Represents the Paste command

Print

Represents the Print command

PrintPreview

Represents the Print Preview command

Properties

Represents the Properties command

Redo

Represents the Redo command

Replace

Represents the Replace command

Save

Represents the Save command

SaveAs

Represents the Save As command

SelectAll

Represents the Select All command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stop

Represents the Stop command

Undo

Represents the Undo command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix G. Predefined Colors
The Brush element is often assigned by using a predefined color name such as Red or Blue. The
following are the predefined colors supported in XAML for this purpose:

AliceBlue DarkKhaki GreenYellow

AntiqueWhite DarkMagenta HoneyDew

Aqua DarkOliveGreen HotPink

Aquamarine DarkOrange IndianRed

Azure DarkOrchid Indigo

Beige DarkRed Ivory

Bisque DarkSalmon Khaki

Black DarkSeaGreen Lavender

BlanchedAlmond DarkSlateBlue LavenderBlush

Blue DarkSlateGray LawnGreen

BlueViolet DarkTurquoise LemonChiffon

Brown DarkViolet LightBlue

BurlyWood DeepPink LightCoral

CadetBlue DeepSkyBlue LightCyan

Chartreuse DimGray LightGoldenrodYellow

Chocolate DodgerBlue LightGray

Coral Firebrick LightGreen

CornflowerBlue FloralWhite LightPink

Cornsilk ForestGreen LightSalmon

Crimson Fuchsia LightSeaGreen

Cyan Gainsboro LightSkyBlue

DarkBlue GhostWhite LightSlateGray

DarkCyan Gold LightSteelBlue

DarkGoldenrod Goldenrod LightYellow

DarkGray Gray Lime

DarkGreen Green LimeGreen

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Linen Orange SeaShell

Magenta OrangeRed Sienna

Maroon Orchid Silver

MediumAquamarine PaleGoldenrod SkyBlue

MediumBlue PaleGreen SlateBlue

MediumOrchid PaleTurquoise SlateGray

MediumPurple PaleVioletRed Snow

MediumSeaGreen PapayaWhip SpringGreen

MediumSlateBlue PeachPuff SteelBlue

MediumSpringGreen Peru Tan

MediumTurquoise Pink Teal

MediumVioletRed Plum Thistle

MidnightBlue PowderBlue Tomato

MintCream Purple transparent

MistyRose Red Turquoise

Moccasin RosyBrown Violet

NavajoWhite RoyalBlue Wheat

Navy SaddleBrown White

OldLace Salmon WhiteSmoke

Olive SandyBrown Yellow

OliveDrab SeaGreen YellowGreen

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix H. XAML Interface in Code
Anything in XAML can be done programmatically, due to the fact that XAML elements represent
classes in WPF. Consider the following XAML declaration of a simple application:

 <Page
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005" >
 <StackPanel>
 <StackPanel
 Orientation="Vertical"
 Width="100"
 HorizontalAlignment="Left" >
 <TextBlock>First Block of Text</TextBlock>
 <Button
 Content="Button 1" />
 </StackPanel>
 <StackPanel
 Orientation="Vertical"
 Width="100"
 HorizontalAlignment="Left" >
 <TextBlock>Second Block of Text</TextBlock>
 <Button
 Content="Button 2" />
 </StackPanel>
 </StackPanel>
 </Page>

The following C# code declares the same controls and elements described in the preceding XAML
declaration. Note that the C# code requires many more lines than the XAML representation, and the
XAML representation is much clearer in terms of the hierarchy of elements. These are two of the
advantages of using XAML over procedural code to declare a user interface.

 using System;
 using System.Collections;
 using System.Text;
 using System.Windows;
 using System.Windows.Controls;
 using System.Windows.Documents;
 using System.Windows.Navigation;
 using System.Windows.Media;
 using System.Windows.Media.Imaging;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using System.IO;
 using System.Threading;

 namespace SimpleApplication
 {
 public class MyApplication : Application
 {
 TextBlock txtElement1;
 TextBlock txtElement2;
 StackPanel rootPanel;
 Button btnElement1;
 StackPanel panel1;
 StackPanel panel2;
 Button btnElement2;
 Window win;

 protected override void OnStartup(StartupEventArgs e)
 {
 win = new System.Windows.Window();
 rootPanel = new StackPanel();

 panel1 = new StackPanel();
 panel1.Orientation= System.Windows.Controls.Orientation.Vertical;
 panel1.HorizontalAlignment=System.Windows.HorizontalAlignment.Left;
 panel1.Width=100;
 txtElement1 = new TextBlock();
 txtElement1.Text = "First Block of Text";
 btnElement1 = new Button();
 btnElement1.Content = "Button 1";
 panel1.Children.Add(txtElement1);
 panel1.Children.Add(btnElement1);

 panel2 = new StackPanel();
 panel2.Orientation= System.Windows.Controls.Orientation.Vertical;
 panel2.HorizontalAlignment=System.Windows.HorizontalAlignment.Left;
 panel2.Width=100;
 txtElement2 = new TextBlock();
 txtElement2.Text = "Second Block of Text";
 btnElement2 = new Button();
 btnElement2.Content = "Button 2";
 panel2.Children.Add(txtElement2);
 panel2.Children.Add(btnElement2);

 win.Content = rootPanel;
 rootPanel.Children.Add(panel1);
 rootPanel.Children.Add(panel2);
 win.Show();
 }
 }

 internal sealed class Test

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 [System.STAThread()]
 public static void Main()
 {
 MyApplication app = new MyApplication();
 app.Run();
 }
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

About the Author

Lori A. MacVittie is currently a Senior Technology Editor with Network Computing Magazine. In past
lives, she has been a software developer, a network administrator, and an enterprise architect
specializing in web-based technologies. Through the course of her career, she has nearly coded her
way through the alphabet, starting with Apple BASIC, hitting "L" for LISP while consulting for
Autodesk, and is currently on the letter "Y". Lori holds an M.S. in Computer Science from Nova
Southeastern University and lives with her husband and children in the technological mecca of the
Midwest, Green Bay, Wisconsin.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

The animal on the cover of XAML in a Nutshell is a kudu. Not to be confused with kudzu, a purple-
flowered vine indigenous to East Asia, the kudu, native to East Africa, comprises 2 of the 90 species
of antelope: Lesser Kudu and Greater Kudu. Both species have coats of a brownish hue that are
adorned with white stripes. Males are easily distinguished from their distaff counterparts by their
twisted horns, whose myriad traditional applications among African cultures include serving as
musical instruments, honey receptacles, and ritual symbols of male potency.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC Garamond. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

" " (double quotes)

 attribute values

 inline attribute declarations

2-D vector graphics

3-D interfaces, Electric Rain ZAM D XAML Tool

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

abbreviated syntax

 in C#

 specifying Margin thickness

 subpath declarations

absolute positioning

 hindering localization efforts

affine transformations

alignment

Angle attribute (RotateTransform)

Animation elements

 attributes

 Duration attribute

 extending

animation types, matching type of targeted attribute

animations 2nd

 animating multiple element attributes with ParallelTimeline

 animation types

 coordinating multiple animations for a Button

 elements transforming position of other elements

 KeyFrame, using

 mixing and matching using ParallelTimeline

 modifying with AutoReverse and RepeatBehavior

 storyboards

 timing

AnimationTimeline element

 elements derived from

ANT

ApplicationDefinition file

applications

 building XAML applications

 defining in XAML

 sample XAML application

 XAML, created in Visual Studio

ArcSegment element

arguments (event)

attached attributes

 Canvas element 2nd

 DockPanel element

 altering position of child elements

 Grid element

 Row and Column (Grid)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attached properties

 DockPanel.Dock

attributes 2nd

 animating

 element belonging to a collection

 Animation elements 2nd

 assigning

 common language runtime property

 declaring

 dependency properties

 elements used as

 modifying with triggers

 NavigationWindow

 referencing local resource

 Shape elements

 structures and elements used as attribute types

 typing of

 XAML elements

 manipulation in code

AutoReverse attribute

Avalon namespace 2nd

Avalon project file, key XML elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

BackgroundColor attribute (Button), animating

BAML (Binary Application Markup Language)

BAML file

BasedOn attribute (Style)

Begin attribute

BezierSegment element

Binary Application Markup Language (BAML)

bind declaration

Block element, Padding attribute

blocks of text, formatting in documents

Bold element

BooleanKeyFrame element

Border element 2nd

 alignment of TextBlock within

 Padding attribute

Brush element 2nd

 predefined colors 2nd

 targeting for animation

bubbling events

building XAML applications

Button class

Button element 2nd

 animating BackgroundColor

 animating width, using DoubleAnimation

 background color declared as resource

 conditionally styling, using a Trigger

 coordinating multiple animations for

 event handlers, declaration of

 event handling in XAML application

 modifying multiple attributes with a trigger

 Padding attribute

 style for width and height

 using alternate elements as content

 Width attribute

By attribute 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

C#

 abbreviated syntax

 button OnClick event handler

 common event code

 default code for XAML application, generated in Visual Studio

 event handler implementation

 event handler syntax

 file generarted by MSBuild

Canvas element 2nd

 absolute positioning of elements on

CharKeyFrame element

CheckBox element

child elements

 content control with multiple

 declaration of

 DockPanel, altering position of

 event routing

 placement within Grid cells

Children property

class files, Avalon application

classes

 .NET Framework, correspondence to XAML tags

 content control-derived

 dependency properties on CLR classes

Click event 2nd

clipping regions

CloseSegment element

CLR (Common Language Runtime)

 assemblies, generation with MSBuild

 classes, representation by XAML elements

 representation of classes in XAML elements

code, inlining in XAML files

codebehind

 application logic and event processing

 event handlers 2nd 3rd

 file generated in Visual Studio for XAML application

collections

 PathFigureCollection

 PathSegmentCollection

 PointCollection

 targeting an element for animation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Color element 2nd

ColorAnimation element

 mixing with DoubleAnimation

ColorKeyFrame element

colors, predefined

Column attribute (Grid)

ColumnDefinition element

CombinedGeometry element

ComboBox element

common language runtime properties

compilation of XAML

complex attributes

Configuration attribute

Content attribute

 modifying with triggers

content controls

ContentControl element

ContextMenu element

Control class

Control element

 FontWeight property

 IsMouseOver attribute

 Padding attribute

control elements

 content controls

 item controls

 simple controls

controls 2nd

 base control reference

 common event reference

 Content attribute

 core control reference

 events raised by

 grouping together to use common event handler

 modifying style with Triggers

.g.cs file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

DashStyle element

database file (.pdb) for program

DecimalKeyFrame element

declarations

 default namespace

 explicit declaration of complex attributes

 inline declaration of simple attribute

 local trigger

 resources

 rules for declaring XAML elements

 subpath, abbreviated syntax for

 Table element, full declaration

 target of an animation

 XAML, event handlers for Button

declarative markup languages

defining XAML applications

dependency properties

 animated attributes

 searches by WPT system for value of

DependencyObject class

DependencyObject element

DependencyProperty class

DependencyPropertyChangedEventArgs class

deployment file for XAML application

deserializing BAML into CLR objects

development resources

direct routing (events)

discrete KeyFrame elements 2nd

DiscreteRect3DKeyFrame element

DiscreteRectKeyFrame element

DiscreteRotation3DKeyFrame element

DiscreteSize3DKeyFrame element

DiscreteSizeKeyFrame element

DiscreteStringKeyFrame element

DiscreteThicknessKeyFrame element

DiscreteVector3DKeyFrame element

DiscreteVectorKeyFrame element

DockPanel class 2nd

 Dock property, using for element positioning

 mixing and matching Dock values

DockPanel element 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

document elements 2nd

 FixedDocument

 FlowDocument

DocumentViewer element

DoubleAnimation element

 animating width of elements

 definition of

 mixing with ColorAnimation

 targeting Height and Width of a rectangle

DoubleAnimationUsingKeyFrames

DoubleAnimationUsingPath element

DoubleKeyFrame element

DragLeave event

DrawingBrush element

DrawingGroup element

Drop event

Duration attribute 2nd

 coordinating for multiple animations

 KeyFrame animations

DynamicResource keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Electric Rain ZAM D XAML Tool

elements

 XAML 2nd

 absolute positioning and

 as attributes for other elements

 categories of

 control

 dealing with events

 declaring

 derived from AnimationTimeline

 document

 naming of

 order of declaration, relative positioning and

 panel

 reference

 resources

 root

 shape and geometric

 used as attribute types

 using as RadioButton content

 XML, in Avalon project file

ElementTree

Ellipse element 2nd

 fill attribute defined by a resource

EllipseGeometry element 2nd

 clipping an image with

end tag, closing XAML elements

enumerations, inline declaration of

environment variables used by MSBuild

event handlers 2nd

 adding for button in XAML application

 C# implementation

 grouping controls together to use common handler

 syntax

 VisualBasic implementation

event routing

events 2nd

 argument reference

 common event reference

 common to all UIElement-derived elements

 event reference

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 non-routed

 raised by controls

 routing strategies

executable application

Expander element

express applications 2nd

Expression Interactive Designer

extensible nature of XAML

eXtensible User-interface Language (XUL)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Figure element

FixedDocument element 2nd

Floater element

FlowDocument element 2nd

FontWeight property (Control)

formatting

 documents

Frame element

frames (animations)

 key frames

framework elements, targeting for animation

FrameworkContentElement

FrameworkElement element

freezables, animation and

From attribute 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

geometric elements 2nd

 ArcSegment

 BezierSegment

 CloseSegment

 CombinedGeometry

 defining clipping regions

 EllipseGeometry

 LineGeometry

 LineSegment

 PolyBezierSegment

 PolyLineSegment

 PolyQuadraticBezierSegment

 QuadraticBezierSegment

 RectangleGeometry

 rendering

 simple and path geometries

Geometry element, Shape versus

GeometryDrawing element

GeometryGroup element

global resources 2nd

 resource hierarchy and

GotFocus event

GradientStop element

Grid element 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

HeaderContentControl element

HeaderedItemsControl element

Height attribute

 animating for Rectangle using DoubleAnimation

 Button elements, defined by a style

 modifying with triggers

 precedence over alignment attributes

hierarchy, XAML elements

 controls

HorizontalAlignment attribute

 Height and Width attributes versus

 StackPanel

 Stretch value

HostInBrowser attribute

HTML, XAML versus

Hyperlink element 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

IE (Internet Explorer), express application file

if...then logic, implemented with triggers

Image element

 assigning as ToolTip for a control

ImageBrush element

 painting a Rectangle

ImageDrawing element

Import element

indexing, Row and Column placement in Grid

inheritance, XAML elements

Inline element

inline elements

inlining code in XAML files

Install attribute

installed applications

Int16KeyFrame class

Int32KeyFrame element

Int64KeyFrame element

InternalChildren property

interpolation technique, KeyFrame elements

IsCheckedChanged event

IsEnabledChanged event

IsMouseDirectlyOverChanged event

IsMouseOver attribute (Control)

IsVisibleChanged event

Italic element

item controls

ItemGroup element

ItemsControl element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

key name for elements defined as resources

KeyDown event

KeyEventArgs class

KeyFrame animations

 animating a Rectangle

 creating, steps in

 linear, discrete, and spline

KeyFrame elements

 BooleanKeyFrame

 CharKeyFrame

 ColorKeyFrame

 DecimalKeyFrame

 DoubleKeyFrame

 Int16KeyFrame

 Int32KeyFrame

 Int64KeyFrame

 MatrixKeyFrame

 Point3DKeyFrame

 PointKeyFrame

 Rect3DKeyFrame

 RectKeyFrame

 Rotation3DKeyFrame

 Size3DKeyFrame

 SizeKeyFrame

 StringKeyFrame

 ThicknessKeyFrame

 Vector3DKeyFrame

 VectorKeyFrame

KeySpline element

KeyTime attribute

 possible values

KeyTime value, KeyTime attribute

KeyUp event

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Label element

 Padding attribute

layout 2nd

 absolute positioning

 Grid element

 margins and padding

 panel elements

 StackPanel and DockPanel

 width and alignment

LayoutUpdated event

Left attribute, Canvas element

Line element

linear KeyFrame elements 2nd

LinearDoubleKeyFrame elements

LinearGradientBrush element

LinearRect3DKeyFrame element

LinearRectKeyFrame element

LinearRotation3DKeyFrame element

LinearSize3DKeyFrame element

LinearSizeKeyFrame element

LinearThicknessKeyFrame element

LinearVector3DKeyFrame element

LinearVectorKeyFrame element

LineBreak element

LineGeometry element

LineSegment element

List element

 with multiple items

ListBox element

ListItem element

local resources 2nd

 declaring

 resource hierarchy and

login interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

make facilities (Unix/Linux)

manifest file

Margin attribute

markup languages, declarative

markup-based interfaces

Matrix element

MatrixAnimationUsingPath element

MatrixKeyFrame elements

MediaElement element

MediaTimeline element

Menu element

MenuItem element

 commands

Microsoft

 Expression Interactive Designer

 Visual Studio 2005 Extensions for WinFX

Mobiform Aurora XAML Editor

MouseEnter event

MouseEventArgs class

MouseLeftButtonDown event

MouseMove event

MouseRightButtonDown event

MouseRightButtonUp event

MSBuild

MyXAML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

namespace

 adding to define resources

 application namespace, declaring

 referenced in root element

 System.Windows

 System.Windows.Controls

 System.Windows.Documents

 System.Windows.Media

 System.Windows.Shapes

 XAML elements

NavigationApplication element

NavigationWindow element 2nd

.NET Framework, interfacing with XAML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

objects, DependencyObject

OnClick event handlers

Opened event

operating systems, XAML on

Orientation property (StackPanel)

overflow panel for ToolBar

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Paced value, KeyTime attribute

Padding attribute

Page class

Page element 2nd 3rd

PageContent element

Panel class

 StackPanel and DockPanel subclasses

Panel element

 common properties of elements derived from

panel elements

Paragraph element

ParallelTimeline element

 animating multiple attributes of an element

 managing multiple SetterTimeline elements

parent/child elements, event routing

Parser class

PasswordBox element

Path (animations)

 button background color animation

Path element

path geometry

 DoubleAnimationUsingPath

 LineSegment element

 MatrixAnimationUsingPath element

 PointAnimationUsingPath

 PolyLineSegment element

 PolyQuadraticBezierSegment element

 QuadraticBezierSegment element

PathFigure element

PathFigureCollection element

PathGeometry element

paths, abbreviated syntax for subpath declarations

PathSegmentCollection element

Pen element 2nd

 DashStyle

Point element 2nd

Point3D element

Point3DKeyFrame element

PointAnimationUsingPath element

PointCollection element

PointKeyFrame element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PolyBezierSegment element

Polygon element

Polyline element

PolyLineSegment element

PolyQuadraticBezierSegment element

Popup element

positioning elements

 absolute positioning

 Grid element, using

 margins and padding

 StackPanel and DockPanel

 width and alignment

prerequisites for XAML

procedural code embedded in XAML page

.proj file extension

Project element

properties

 accessibility to XAML developers

 attached

 common language runtime

 of XAML elements

 styles extended with BasedOn attribute

PropertyGroup element

 attributes, setting

 Configuration property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

QuadraticBezierSegment element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

RadialGradientBrush element

RadioButton element

 using elements as content

RadioButtonList element

read-only properties, XAML and

Rect element

Rect3D element

Rect3DKeyFrame element

Rect3DPointFrame class

Rectangle element

 animating the RotateTransform

 animating using key frame animation

 painting with ImageBrush

 RotateTransform applied to

 ScaleTransform applied to

 SkewTransform applied to

 TranslateTransform applied to

RectangleGeometry element

RectKeyFrame element

RectPointFrame class

rendering

 elements derived from FrameworkContentElement

 elements derived from UIElement

 geometric elements

RepeatBehavior attribute

RepeatBehavior attribute (Animation elements)

RepeatButton element

resources

 declarations

 hierarchy of

 key name for elements defined as

 media

 namespace

 static or dynamic access

 styles

 triggers

Resources attribute

 defining triggers within

root elements 2nd

 global resources

 panel-derived elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Project

 Storyboard attribute, setting

RotateTransform element 2nd

 animating for a Rectangle

Rotation3D element

Rotation3DKeyFrame element

Rotation3DPointFrame class

RoutedEventArgs class

routing events

 strategies for

Row attribute (Grid)

RowDefinition element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

ScaleTransform element 2nd

screen resolutions and sizes

ScrollChanged event

ScrollChangedEventArgs class

ScrollViewer element

Section element

SelectionChanged event

Setter element

SetterTimeline element 2nd

 managing multiple with ParallelTimeline

 mixing and matching animations within

 targeting a freezable

 targeting an element

 targeting element in a collection

Shape class 2nd

Shape element, Geometry versus

shapes

 attributes common to all Shape elements

 elements

 Ellipse element

 Line element

 Polygon element

 Polyline element

 Rectangle element

simple attributes, inline definition of

simple controls

simple geometry

 EllipseGeometry element

 LineGeometry element

 RectangleGeometry element

Size3DKeyFrame element

Size3DPointFrame class

SizeKeyFrame element

SkewTransform element 2nd

Slider element

smart clients

SolidColorBrush element

 defined as resource

SpeedRatio attribute

spline KeyFrame elements 2nd

 KeySpline

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SplineRect3DKeyFrame element

SplineRectKeyFrame element

SplineRotation3DKeyFrame element

SplineSize3DKeyFrame element

SplineSizeKeyFrame element

SplineThicknessKeyFrame element

SplineVector3DKeyFrame element

SplineVectorKeyFrame element

StackPanel class 2nd

 Orientation property

StackPanel element 2nd 3rd

 alignment of elements within

 Margin values, using for layout

 using to position Canvas elements

 width of elements in

StackPanel elements, width and height of buttons defined by a style

StartSegment element

StartupUri attribute, NavigationWindow

StaticResource keyword

Storyboard attribute

 SetterTimeline element

 setting for root element or a style

Storyboard element

storyboards

Stretch value (HorizontalAlignment)

 effect of explicitly setting Width

StringKeyFrame element

strong typing in XAML

structures

 Matrix

 Point

 Point3D

 Rect

 Rect3D

 used as attribute types

 Vector

 Vector3D

Style element 2nd 3rd

 extending with BasedOn attribute

 TargetType attribute

styles

 conditionally styling a Button, using a Trigger

 declaring different styles of Pen

 global, using resources to define

 modifying with triggers

 Storyboard attribute, setting

subpath declarations, abbreviated syntax for

system requirements for XAML

System.Windows.Button class

System.Windows.Controls namespace

System.Windows.DependencyObject

System.Windows.FrameworkContentElement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

System.Windows.Serialization.Parser class

System.Windows.UIElement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

TabControl element

TabItem element

Table element

 Grid versus

TableCell element

TableColumn element

TableRow element

<CDATA[...]]> tag, inlined code in

target of an animation

 element in a collection

TargetType attribute (Style)

text, formatting in documents

TextBlock element 2nd

 alignment within Border element

TextBox element

 Padding attribute

TextChanged event

TextChangedEventArgs class

TextDecoration element

TextDecorationCollection element

TextEffect element

Thickness element 2nd

 Margin attribute

 Padding attribute

ThicknessKeyFrame element

Timeline element

 attributes

Timeline-derived elements

 MediaTimeline

 ParallelTimeline

 SetterTimeline

timing animations

 AnimationTimeline element

 KeyTime attribute

To attribute 2nd

toolable nature of XAML

ToolBar element

ToolBarOverflowPanel element

ToolBarPanel element

 with overflow panel

ToolBarTray element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tools for XAML development

ToolTip element

Top attribute (Canvas) 2nd

Transform element, targeting for animation

transformations 2nd

 affine transformations

 RotateTransform element

 Rotation3D element

 ScaleTransform element

 SkewTransform element

 TranslateTransform element

 Vector element

 Vector3D element

TranslateTransform element 2nd

Trigger element 2nd

 declared local to an element

 modifying appearance of any Control

 modifying styles of specific elements

tunneling events

TypeAnimation elements

TypeAnimationBase elements

 TypeAnimation subclasses

TypeAnimationUsingKeyFrames elements

TypeKeyFrame elements

types

 animation type and targeted attribute

 animation, determining based on attribute type

typing in XAML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

UIElement element 2nd

UIElement-derived elements, events common to

Underline element

Uniform value, KeyTime attribute

Unix/Linux make facilities

user interface

 login interface (example)

 separation from application logic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

VB.NET, button OnClick event handler

Vector element

Vector3D element

Vector3DKeyFrame element

Vector3DPointFrame class

VectorKeyFrame element

VectorPointFrame class

VerticalAlignment attribute

 Height and Width attributes vs.

VerticalSlider element

Visual Basic, event handler syntax

visual editors for XAML

Visual Studio

 WinFX Extensions

 XAML applications

Visual Studio 2005, WinFX Extensions

VisualBasic, event handler implementation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

web-based delivery of Windows applications with XAML

WebBrowser Application (WinFX)

well-formed XAML elements

width

 animating for element, using DoubleAnimation

 Button elements, defined by a style

 interaction of alignment with

 targeting for button with animation

Width attribute

 animating for Rectangle using DoubleAnimation

 Button element

 disadvantages of specifying

 modifying with triggers

 precedence over alignment attributes

 StackPanel element, constraining element sizes

 StackPanel elements

Width property (Button class)

Window element 2nd

Windows Application (WinFX)

Windows operating systems, availability of XAML on

Windows Vista, ix

 animations using frames

WinFX

 Extensions to Visual Studio 2005 2nd

 WebBrowser Application

 Windows Application

WinFX runtime

WinFX SDK

 MSBuild

WPF (Windows Presentation Foundation), ix 2nd

 property system

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

XAML (eXtensible Application Markup Language)

 applications created in Visual Studio

 benefits of

 building applications

 core syntax

 attributes

 elements

 defining applications

 development resources

 HTML versus

 interfacing with .NET Framework

 prerequisites

 what it's not

XAML Converter

Xamlon Pro and XAML Converter

XamlPad 2nd

XamlViewer

.xbap file

XML

 elements used in a project file

XUL (eXtensible User-interface Language)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	XAML in a Nutshell
	Table of Contents
	Copyright
	Preface
	Who Should Read This Book
	What This Book Covers
	Organization
	Conventions Used in This Book
	Using Code Examples
	Comments and Questions
	SafariÂ® Enabled
	Acknowledgments

	Part I: Introducing XAML
	Chapter 1. Introducing XAML
	Section 1.1. The Benefits of XAML
	Section 1.2. What XAML Is Not
	Section 1.3. XAML Development Resources

	Chapter 2. Getting Started with XAML
	Section 2.1. XAML Prerequisites
	Section 2.2. Defining XAML Applications
	Section 2.3. Building XAML Applications
	Section 2.4. XAML Applications and Visual Studio

	Part II: XAML Concepts
	Chapter 3. The Basics of XAML
	Section 3.1. Core XAML Syntax
	Section 3.2. Elements
	Section 3.3. Attributes
	Section 3.4. Attached Properties
	Section 3.5. Binding Properties
	Section 3.6. codebehind

	Chapter 4. Layout and Positioning
	Section 4.1. StackPanel and DockPanel
	Section 4.2. Using Width and Alignment
	Section 4.3. Margins and Padding
	Section 4.4. Grid
	Section 4.5. Absolute Positioning

	Chapter 5. Resources
	Section 5.1. Using Resources
	Section 5.2. Using Styles
	Section 5.3. Triggers

	Chapter 6. Storyboards and Animations
	Section 6.1. Storyboards
	Section 6.2. Controlling Animations
	Section 6.3. Animation Using Key Frames

	Part III: Core XAML Reference
	Chapter 7. Elements
	Bold
	Brush
	Color
	Figure
	Floater
	Frame
	GradientStop
	Image
	ImageBrush
	Inline
	Italic
	Label
	LinearGradientBrush
	LineBreak
	List
	ListItem
	Paragraph
	Pen
	RadialGradientBrush
	Section
	SolidColorBrush
	TextBlock
	TextDecoration
	TextDecorationCollection
	TextEffect
	Thickness
	Underline

	Chapter 8. Controls
	Section 8.1. Base Control Reference
	Section 8.2. Common Event Reference
	Section 8.3. Core Control Reference

	Chapter 9. Shapes and Geometry
	ArcSegment
	BezierSegment
	CloseSegment
	CombinedGeometry
	DrawingBrush
	DrawingGroup
	Ellipse
	EllipseGeometry
	GeometryDrawing
	GeometryGroup
	ImageDrawing
	Line
	LineGeometry
	LineSegment
	Path
	PathFigure
	PathFigureCollection
	PathGeometry
	PathSegmentCollection
	Point
	Point3D
	PointCollection
	PolyBezierSegment
	Polygon
	Polyline
	PolyLineSegment
	PolyQuadraticBezierSegment
	QuadraticBezierSegment
	Rect
	Rect3D
	Rectangle
	RectangleGeometry
	StartSegment

	Chapter 10. Layout
	Border
	Canvas
	ColumnDefinition
	DashStyle
	DockPanel
	FixedDocument
	FlowDocument
	Grid
	PageContent
	Panel
	RowDefinition
	Setter
	StackPanel
	Style
	Table
	TableCell
	TableColumn
	TableRow
	Trigger

	Chapter 11. Animations and Transformations
	AnimationTimeline
	BooleanKeyFrame
	CharKeyFrame
	ColorAnimation
	ColorKeyFrame
	DecimalAnimation
	DecimalKeyFrame
	DoubleAnimation
	DoubleAnimationUsingPath
	DoubleKeyFrame
	Int16KeyFrame
	Int32KeyFrame
	Int64KeyFrame
	KeySpline
	Matrix
	MatrixAnimationUsingPath
	MatrixKeyFrame
	MediaTimeline
	ParallelTimeline
	PointAnimationUsingPath
	Point3DKeyFrame
	PointKeyFrame
	RectAnimation
	Rect3DKeyFrame
	RectKeyFrame
	RotateTransform
	Rotation3D
	Rotation3DKeyFrame
	ScaleTransform
	SetterTimeline
	SkewTransform
	SizeAnimation
	Size3D
	Size3DKeyFrame
	SizeKeyFrame
	StringKeyFrame
	ThicknessKeyFrame
	Timeline
	TranslateTransform
	VectorAnimation
	VectorKeyFrame
	Vector3DKeyFrame
	Vector
	Vector3D

	Chapter 12. Events
	Section 12.1. Routing Strategies
	Section 12.2. Event Argument Reference
	Section 12.3. Event Reference

	Part IV: Appendixes
	Appendix A. System.Windows.Controls
	Appendix B. System.Windows.Documents
	Appendix C. System.Windows.Shapes
	Appendix D. System.Windows
	Appendix E. System.Windows.Media
	Appendix F. System.Windows.Input.ApplicationCommands
	Appendix G. Predefined Colors
	Appendix H. XAML Interface in Code

	About the Author
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

