
ÿØÿà

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Java™ Web Services in Nutshell

By Kim Topley

Publisher: O'Reilly

Pub Date: June 2003

ISBN: 0-596-00399-4

 Copyright

 Preface

 Contents of This Book

 Related Books

 Web Services Programming Resources Online

 Examples Online

 Conventions Used in This Book

 Request for Comments

 Acknowledgments

 Part I: Introduction to the Java Web Services API

 Chapter 1. Introduction

 Section 1.1. What Is a Web Service?

 Section 1.2. The SOAP Protocol

 Section 1.3. Describing and Discovering Web Services

 Section 1.4. J2EE Web Service APIs

 Section 1.5. An Example Web Service

 Chapter 2. JAX-RPC

 Section 2.1. JAX-RPC Overview

 Section 2.2. Programming with JAX-RPC

 Section 2.3. Using EJBs to Implement Web Services

 Chapter 3. SAAJ

 Section 3.1. Introduction to SAAJ

 Section 3.2. SAAJ Programming

 Section 3.3. SOAP Messages

 Section 3.4. SOAP Fault Handling

 Section 3.5. SOAP Messages and MIME Headers

 Section 3.6. SOAP with Attachments

 Section 3.7. SOAP Headers

 Section 3.8. Using SAAJ with Secure Connections

 Chapter 4. JAXM

 Section 4.1. JAXM Overview

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 4.2. Providers and Asynchronous Messaging

 Section 4.3. An Example JAXM Application

 Section 4.4. JAXM Configuration

 Section 4.5. The SOAP-RP Profile

 Section 4.6. The ebXML Profile

 Chapter 5. WSDL

 Section 5.1. WSDL Overview

 Section 5.2. WSDL Elements

 Chapter 6. Advanced JAX-RPC

 Section 6.1. Using WSDL with JAX-RPC

 Section 6.2. ServiceFactory and the Service Interface

 Section 6.3. The Dynamic Invocation Interface

 Section 6.4. JAX-RPC and J2EE 1.4 Application Clients

 Section 6.5. Using Attachments

 Section 6.6. RPC-Style and Document-Style JAX-RPC

 Section 6.7. Client and Server Context Handling

 Section 6.8. SOAP Header Processing

 Section 6.9. Serialization and Type Mappings

 Chapter 7. JAXR

 Section 7.1. UDDI and ebXML Registries

 Section 7.2. JAXR Architecture

 Section 7.3. Using the JAXR Examples

 Section 7.4. JAXR Registry Model Overview

 Section 7.5. JAXR Programming

 Chapter 8. Web Service Tools and Configuration Files

 Section 8.1. wscompile - JAX-RPC Stub and Tie Generation Utility

 Section 8.2. wsdeploy - JAX-RPC Deployable Web Archive Generation Utility

 Section 8.3. J2EEC - Utility for Creating Stubs and Ties for a JAX-RPC Web Service

 Section 8.4. J2EE Deploytool - Utility for Deploying Modules and Enterprise Applications

 Section 8.5. JAXM Client and Provider Configuration

 Section 8.6. J2EE 1.4 Web Services Configuration File

 Section 8.7. J2EE 1.4 JAX-RPC Mapping File

 Part II: API Quick Reference

 Chapter 9. The javax.xml.messaging Package

 Package javax.xml.messaging

 Endpoint

 JAXMException

 JAXMServlet

 OnewayListener

 ProviderConnection

 ProviderConnectionFactory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ProviderMetaData

 ReqRespListener

 URLEndpoint

 Chapter 10. The javax.xml.namespace Package

 Package javax.xml.namespace

 QName

 Chapter 11. The javax.xml.registry Package

 Package javax.xml.registry

 BulkResponse

 BusinessLifeCycleManager

 BusinessQueryManager

 CapabilityProfile

 Connection

 ConnectionFactory

 DeclarativeQueryManager

 DeleteException

 FederatedConnection

 FindException

 FindQualifier

 InvalidRequestException

 JAXRException

 JAXRResponse

 LifeCycleManager

 Query

 QueryManager

 RegistryException

 RegistryService

 SaveException

 UnexpectedObjectException

 UnsupportedCapabilityException

 Chapter 12. The javax.xml.registry.infomodel Package

 Package javax.xml.registry.infomodel

 Association

 AuditableEvent

 Classification

 ClassificationScheme

 Concept

 EmailAddress

 ExtensibleObject

 ExternalIdentifier

 ExternalLink

 ExtrinsicObject

 InternationalString

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Key

 LocalizedString

 Organization

 PersonName

 PostalAddress

 RegistryEntry

 RegistryObject

 RegistryPackage

 Service

 ServiceBinding

 Slot

 SpecificationLink

 TelephoneNumber

 URIValidator

 User

 Versionable

 Chapter 13. The javax.xml.rpc Package

 Package javax.xml.rpc

 Call

 JAXRPCException

 NamespaceConstants

 ParameterMode

 Service

 ServiceException

 ServiceFactory

 Stub

 Chapter 14. The javax.xml.rpc.encoding Package

 Package javax.xml.rpc.encoding

 DeserializationContext

 Deserializer

 DeserializerFactory

 SerializationContext

 Serializer

 SerializerFactory

 TypeMapping

 TypeMappingRegistry

 XMLType

 Chapter 15. The javax.xml.rpc.handler Package

 Package javax.xml.rpc.handler

 GenericHandler

 Handler

 HandlerChain

 HandlerInfo

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HandlerRegistry

 MessageContext

 Chapter 16. The javax.xml.rpc.handler.soap Package

 Package javax.xml.rpc.handler.soap

 SOAPMessageContext

 Chapter 17. The javax.xml.rpc.holders Package

 Package javax.xml.rpc.holders

 BigDecimalHolder

 BigIntegerHolder

 BooleanHolder

 BooleanWrapperHolder

 ByteArrayHolder

 ByteHolder

 ByteWrapperHolder

 CalendarHolder

 DoubleHolder

 DoubleWrapperHolder

 FloatHolder

 FloatWrapperHolder

 Holder

 IntegerWrapperHolder

 IntHolder

 LongHolder

 LongWrapperHolder

 ObjectHolder

 QNameHolder

 ShortHolder

 ShortWrapperHolder

 StringHolder

 Chapter 18. The javax.xml.rpc.server Package

 Package javax.xml.rpc.server

 ServiceLifecycle

 ServletEndpointContext

 Chapter 19. The javax.xml.rpc.soap Package

 Package javax.xml.rpc.soap

 SOAPFaultException

 Chapter 20. The javax.xml.soap Package

 Package javax.xml.soap

 AttachmentPart

 Detail

 DetailEntry

 MessageFactory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MimeHeader

 MimeHeaders

 Name

 Node

 SOAPBody

 SOAPBodyElement

 SOAPConnection

 SOAPConnectionFactory

 SOAPConstants

 SOAPElement

 SOAPElementFactory

 SOAPEnvelope

 SOAPException

 SOAPFactory

 SOAPFault

 SOAPFaultElement

 SOAPHeader

 SOAPHeaderElement

 SOAPMessage

 SOAPPart

 Text

 Class, Method, and Field Index

 A-G

 H-X

 Part III: Appendix

 Appendix A. Appendix: WSDL Files for the Example Source Code

 Section A.1. WSDL File for the Book Web Service

 Section A.2. WSDL File for the Document-Style Book Web Service

 Colophon

 Index

Top

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Copyright © 2003 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.

Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of

O'Reilly & Associates, Inc. Java™ and all Java-based trademarks and logos are trademarks or

registered trademarks of Sun Microsystems, Inc., in the United States and other countries. O'Reilly &
Associates, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware
of a trademark claim, the designations have been printed in caps or initial caps. The association

between the image of a European ibex and the topic of Java Web Services is a trademark of O'Reilly &

Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors

assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface

This book is a desktop quick reference for programmers writing web services or web service clients

using the Java™ programming language. Part I offers a fast-paced but comprehensive tutorial covering
the web service APIs that are part of the J2EE 1.4 platform and the Java Web Services Developer Pack

(JWSDP), both of which provide all of the software needed to develop and test web services using

Sun's reference implementations of these technologies. These chapters are followed by a quick-
reference section that details each class and interface in the web service APIs covered in the tutorial.

This book is intended to be used in conjunction with the best-selling O'Reilly titles Java in a Nutshell,

by David Flanagan and Java Enterprise in a Nutshell, by William Crawford, Jim Farley, and David
Flanagan. Java in a Nutshell introduces the Java programming language and provides an API quick

reference for the core packages and classes of the Java 2 Standard Edition (J2SE) platform, while Java

Enterprise in a Nutshell does the same for the APIs in the Java 2 Enterprise Edition (J2EE). Web
services leverage technology that is provided by J2EE (including XML, servlets, and Enterprise

JavaBeans™) and therefore at least a basic working knowledge of the Java programming language and
its enterprise features is required in order to get the best from this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Contents of This Book

Part I, which is the first eight chapters of this book, provides an introduction to web services and

tutorial material for the APIs and command-line tools that are provided by the J2EE 1.4 platform and
the Java Web Services Developer Pack (JWSDP):

Chapter 1

This chapter is a short but practical introduction to web services in general and to the support

provided for web services by both the JWSDP and the J2EE 1.4 platform. The second part of this

chapter provides a quick overview of the JAX-RPC API and shows how you might use it to

create a client that can browse through the books available at Amazon.com, using that company's

store-browsing web service.
Chapter 2

For most web service developers, JAX-RPC is the most important of the APIs covered in this

book. This chapter provides a basic introduction to JAX-RPC and shows you how to create a

simple service and a client that can be used to access it, starting from a Java definition of the

interface that the service provides. This chapter also discusses the use of both servlets and
Enterprise JavaBeans (EJBs) to host JAX-RPC services and the tools that you need to build and
deploy them.

Chapter 3

While JAX-RPC is probably the most commonly used web service API, the SOAP with

Attachments API for Java (or SAAJ) is the API that appeals most to those who like to see and

understand what goes on "under the hood." SAAJ provides the means to create and receive raw

SOAP messages. It requires you to build and decode each message at the XML element level.
This chapter covers all of the SAAJ API, including the use of MIME attachments, which allow

you to transfer arbitrary content, such as images and sound files.

Chapter 4

JAXM is a development of SAAJ that provides asynchronous messaging and more reliable

delivery. In this chapter, you'll see how to make use of these features and how to configure the

reference implementation so that your JAXM clients can communicate with each other. This

chapter also looks at the two SOAP message profiles, SOAP-RP and ebXML TRP, that are
supported by the reference implementation.

Chapter 5

The Web Service Description Language (WSDL) is an application of XML that lets you describe

the interface to a web service in implementation-independent terms. One of the most useful

http://lib.ommolketab.ir
http://lib.ommolketab.ir

features of WSDL is that it can be both created and consumed easily by software tools; as a
result, you can use it to publish the interface to a web service implemented in Java or a different

programming language, and create from the WSDL definition artifacts that allow clients for that

service to be written in any language on any platform that has support for web services. Chapter

5 looks at the grammar of a WSDL document, preparing the way for the application of WSDL in

Chapter 6.
Chapter 6

This lengthy chapter starts by showing you how to use JAX-RPC to import a WSDL definition of

a web service and then generate the Java interface and other classes required to let you build a

client for that service. It goes on to demonstrate the wide range of powerful features that the

JAX-RPC API provides, including support for both document- and RPC-based services, the use

of MIME attachments with JAX-RPC web services, and SOAP message handlers, which let you
process and extract data from or insert data into a SOAP message without modifying the code for

the client or server that will generate or consume the message.

Chapter 7

This chapter covers the Java API for XML-based Registries (JAXR). Registries allow

organizations to publish their services so that would-be clients can discover them, learn how to

access them and, eventually, do business using them. The JAXR API supports both the UDDI
and ebXML registries in such a way as to make it possible to write a registry client application

that can work with either of them without requiring any registry-specific code, while still

allowing applications that need access to features that are offered by only one registry or the

other to be created.

Chapter 8

Both the JWSDP and J2EE 1.4 provide a number of tools that you need to use when creating web
services. This chapter documents both the tools themselves and the configuration files that are

required to control them.

Part II (Chapter 9 to Chapter 20) forms the API quick reference, which is a succinct but detailed API

reference formatted for optimum ease of use. Please be sure to read How to Use This Quick Reference,

which appears at the beginning of the reference section; it explains how to get the most out of these

chapters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Books

O'Reilly and Associates, Inc. publishes an entire series of books on Java programming. You can find a

complete list of Java books from O'Reilly and Associates at http://java.oreilly.com. Books that are of
particular interest to Java developers working with web services include:

Java in a Nutshell by David Flanagan

A Java language tutorial and complete API reference for the core Java classes.

Java Enterprise in a Nutshell by Jim Farley, William Crawford, and David Flanagan

A tutorial and API reference for many of Java's enterprise API's, including EJBs and servlets,

both of which can be used to host Java web services.

Java and XML by Brett McLaughlin

Although it is possible to create and use simple web services without much understanding of

XML, a proper grounding in this important subject is required to make use of the more advanced
features. Brett McLaughlin's Java and XML provides both an introduction to XML and good

coverage of many of the XML-based technologies that are relevant to web services.

XML Schema by Eric van der Vlist

This book provides detailed coverage of the XML schema language, a knowledge of which is

useful if you want to be able to read web service definitions written using WSDL, or if you

intend to use the lower-level web service APIs, such as SAAJ.
Ant: the Definitive Guide by Jesse Tilly and Eric M. Burke

Provides comprehensive coverage of Ant, which is now the tool that is most commonly used by

development teams to build their software, and which is required to compile and run the example

source code for this book.

http://java.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Web Services Programming Resources Online

This book is a quick reference designed for speedy access to frequently needed information. It does not,

and cannot, tell you everything you need to know about developing web services in Java. In addition to
the books just listed, there are several valuable (and free) electronic sources of information about web

services:

The World Wide Web Consortium (W3C) web site

Although much of the existing technology underpinning web services was developed

independently by groups of companies such as Sun Microsystems, IBM, and Microsoft working

together, most of those technologies have now been adopted and are being standardized by the

W3C. You can find the latest drafts of the specifications currently being worked on, plus
technical reports that document the earlier work, including the specifications for SOAP and

WSDL, on the W3C web site at http://www.w3c.org.
The OASIS web site

The Organization for the Advancement of Structured Information Standards (OASIS) is a not-

for-profit organization that is leading the development of standards in the e-business arena.
OASIS is one of the sponsors for ebXML, which uses SOAP as its underlying message transport
mechanism, and is also undertaking web service-related work in the areas of distributed

management, interactive applications, reliable messaging, and services for remote portals. You

can find the current state of this work at http://www.oasis-open.org.

Web Services Interoperability Organization (WS-I) web site

WS-I is a relatively new organization whose aim is to promote cross-platform web service

interoperability by defining profiles that reduce the number of choices that web service vendors
need to make when creating their infrastructure. Sun recently announced that the web service

support in J2EE 1.4 conforms to the WS-I Basic Profile Version 1.0, which covers the

construction of SOAP messages, WSDL documents, and service publication in XML-based

registries. The WS-I web site is at http://www.ws-i.org.

Apache Web Services Project web site

The Apache Software Foundation has a project dedicated to web services, the web site of which

can be found at http://ws.apache.org. Apache Axis, which can be downloaded from this site, is an
implementation of SOAP that claims to comply to both the JAX-RPC 1.0 and SAAJ 1.1

specifications and can therefore be used as an alternative to Sun's reference implementations of

these APIs. There is also an implementation of WS-Security, a W3C standard that is not

currently part of either J2EE 1.4 or the JWSDP.

http://www.w3c.org
http://www.oasis-open.org
http://www.ws-i.org
http://ws.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

XMethods web site

The XMethods web site at http://www.xmethods.com provides links to many publicly available
demonstration web services, some of which also have example clients that you can use to try out

the service or see how to use it.

http://www.xmethods.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Examples Online

The examples in this book are available online and can be downloaded from the book's home page at
http://www.oreilly.com/catalog/javawsian/ . You may also want to visit this site to see if any important

notes or errata about the book have been published there. Once you download the example source code,

you need to install it, together with either the Java Web Services Developer's Pack (JWSDP) or the
J2EE Version 1.4 reference implementation.

The JWSDP is a standalone package that contains everything that you need to get started with web

service development, including the reference implementations of the web services APIs, a version of
the Tomcat web server that has been preconfigured with web services, and the Ant build tool for

compiling and running web service applications. The JWSDP requires J2SE Version 1.3.1 or later. The

example source code for this book has been tested with JWSDP Version 1.1 and J2SE versions 1.4.0
and 1.4.1.

Most of the web services technologies from the JWSDP have been incorporated into the J2EE 1.4

platform. The examples have been tested with the beta release of the J2EE 1.4 reference
implementation and should work unchanged with the final release, unless unexpected changes are

made. Following the FCS release of J2EE 1.4, refer to the book's web site where any necessary updates

to the example source code will be posted.

You can obtain the JWSDP from http://java.sun.com/webservices/webservicespack.html . After

completing the download, follow the instructions that are supplied with the distribution to install it.
Alternatively, download and install the reference implementation of J2EE 1.4, which is available at

http://java.sun.com/j2ee/download.html . If you choose to use the examples in this book with J2EE 1.4,

you will not need to download the JWSDP.

Installing the Example Source Code

The example source code is supplied as a ZIP file that can be unpacked into a directory of your choice,

which we'll refer to throughout this section as c:\JWSNutshell\examples . Beneath this directory, you'll

find the examples for each chapter organized into separate directories. The example source code

contains buildfiles for the Ant utility, which is supplied with both the JWSDP and the J2EE 1.4

reference implementation and, throughout this book, you'll find specific instructions for building and

running each example along with the text that describes it.

Once you unpack the examples, copy the files jwsnutExamples.properties and

jwsnutJaxrExamples.properties to your home directory. These files need to be tailored to suit your

environment before you can run any of the examples, as described in the following sections.

http://www.oreilly.com/catalog/javawsian/
http://java.sun.com/j2ee/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tailoring the jwnutExamples.properties file

Before you start editing the jwsnutExamples.properties file, you need to decide whether you will be

using the example source code with the JWSDP or with J2EE 1.4. To use the JWSDP with the Tomcat

web server, uncomment and set the following properties that appear near the top of the file:

USING_JWSDP=true
WSROOT=c:/jwsdp-1.1

The WSROOT property should be set to point to the directory in which you installed the JWSDP. Since

this file is read by the Ant build utility, it is acceptable to use forward slashes in pathnames on all

operating system platforms, although Windows users may use backslashes if preferred. To use the

example source code with J2EE 1.4, uncomment and set the following properties instead:

USING_J2EE14=true
J2EEROOT=c:/j2sdkee1.4
WSROOT=${J2EEROOT}

You should ensure that the property definitions in only one of these two blocks are uncommented.

The settings for the remainder of the properties in this file do not depend on your choice of web

container and should be set as described in Table P-1 . In most cases, the values that you'll find in the

file will work for your system; therefore, only a small number of these properties will need to be
changed.

Table P-1. Properties defined in the jwsnutExamples.properties file

Property Description

EXAMPLES_ROOT
The directory in which you have installed the example source code - for example,

c:/JWSNutshell/examples .

USERNAME

PASSWORD

Some of the examples in this book make use of HTTP basic authentication to

demonstrate how you can apply basic security to your web service. These examples

require you to supply a username and password, which are referred to within the text
as JWSUser and JWSPassword respectively, but which may have any values you

choose. The username and password must also be registered with the web container, as

described later in this section.

AMAZON_TAG

Chapter 1 contains an example that makes use of a web service provided by

Amazon.com. If you want to run this example for yourself, you will need to register at

Amazon.com's web site and obtain a developer tag, the value of which you should

supply here. To register, visit the URL

https://associates.amazon.com/exec/panama/associates/join/developer/application.html
.

https://associates.amazon.com/exec/panama/associates/join/developer/application.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Description

AMAZON_TAG

Chapter 1 contains an example that makes use of a web service provided by

Amazon.com. If you want to run this example for yourself, you will need to register at

Amazon.com's web site and obtain a developer tag, the value of which you should
supply here. To register, visit the URL

https://associates.amazon.com/exec/panama/associates/join/developer/application.html
.

CONNECTED

Some of the examples in Chapter 7 are fully functional only when used on a machine

that has an Internet connection. If your machine has such a connection, set this
property to true.

TARGET_HOST
The name of the host on which the Tomcat or J2EE 1.4 web container is running. In

most cases, the value localhost , which is the default, is appropriate.

TOMCAT_WEBPORT

J2EE14_WEBPORT

The port number used by the web container. The values that you'll find in the file as

installed are correct for the default installations of the JWSDP and J2EE 1.4

TOMCAT_WEBSVCPORT

J2EE14_WEBSVCPORT

The JWSDP installs a small number of services in the Tomcat web container. These

services are accessed at a different port, which must be supplied using the

TOMCAT_WEBSVCPORT property. The value supplied in the file as installed is correct for
the default configuration of the JWSDP and for J2EE 1.4.

TOMCAT_WEBSVCPORT

J2EE14_WEBSVCPORT

The JWSDP installs a small number of services in the Tomcat web container. These
services are accessed at a different port, which must be supplied using the

TOMCAT_WEBSVCPORT property. The value supplied in the file as installed is correct for

the default configuration of the JWSDP and for J2EE 1.4.

TOMCAT_WEBSVCPORT

J2EE14_WEBSVCPORT

The JWSDP installs a small number of services in the Tomcat web container. These

services are accessed at a different port, which must be supplied using the

TOMCAT_WEBSVCPORT property. The value supplied in the file as installed is correct for

the default configuration of the JWSDP and for J2EE 1.4.

TOMCAT_WEBHTTPSPORT

J2EE14_WEBHTTPSPORT

The port number that the web container uses for secure HTTP (HTTPS). The initial

settings are correct for the default installations of JWSDP and J2EE 1.4.

TOMCAT_WEBHTTPSPORT

J2EE14_WEBHTTPSPORT

The port number that the web container uses for secure HTTP (HTTPS). The initial

settings are correct for the default installations of JWSDP and J2EE 1.4.

TOMCAT_WEBHTTPSPORT

J2EE14_WEBHTTPSPORT

The port number that the web container uses for secure HTTP (HTTPS). The initial

settings are correct for the default installations of JWSDP and J2EE 1.4.

HTTP_PROXY_SERVER

HTTP_PROXY_PORT

If you need to run the client parts of the example source code in this book through a

proxy server, you may do so by setting these properties to point to the server and port

AMAZON_TAG

Chapter 1 contains an example that makes use of a web service provided by

Amazon.com. If you want to run this example for yourself, you will need to register at

Amazon.com's web site and obtain a developer tag, the value of which you should
supply here. To register, visit the URL

https://associates.amazon.com/exec/panama/associates/join/developer/application.html
.

CONNECTED

Some of the examples in Chapter 7 are fully functional only when used on a machine

that has an Internet connection. If your machine has such a connection, set this
property to true.

TARGET_HOST
The name of the host on which the Tomcat or J2EE 1.4 web container is running. In

most cases, the value localhost , which is the default, is appropriate.

TOMCAT_WEBPORT

J2EE14_WEBPORT

The port number used by the web container. The values that you'll find in the file as

installed are correct for the default installations of the JWSDP and J2EE 1.4

TOMCAT_WEBSVCPORT

J2EE14_WEBSVCPORT

The JWSDP installs a small number of services in the Tomcat web container. These

services are accessed at a different port, which must be supplied using the

TOMCAT_WEBSVCPORT property. The value supplied in the file as installed is correct for
the default configuration of the JWSDP and for J2EE 1.4.

TOMCAT_WEBSVCPORT

J2EE14_WEBSVCPORT

The JWSDP installs a small number of services in the Tomcat web container. These
services are accessed at a different port, which must be supplied using the

TOMCAT_WEBSVCPORT property. The value supplied in the file as installed is correct for

the default configuration of the JWSDP and for J2EE 1.4.

TOMCAT_WEBSVCPORT

J2EE14_WEBSVCPORT

The JWSDP installs a small number of services in the Tomcat web container. These

services are accessed at a different port, which must be supplied using the

TOMCAT_WEBSVCPORT property. The value supplied in the file as installed is correct for

the default configuration of the JWSDP and for J2EE 1.4.

TOMCAT_WEBHTTPSPORT

J2EE14_WEBHTTPSPORT

The port number that the web container uses for secure HTTP (HTTPS). The initial

settings are correct for the default installations of JWSDP and J2EE 1.4.

TOMCAT_WEBHTTPSPORT

J2EE14_WEBHTTPSPORT

The port number that the web container uses for secure HTTP (HTTPS). The initial

settings are correct for the default installations of JWSDP and J2EE 1.4.

TOMCAT_WEBHTTPSPORT

J2EE14_WEBHTTPSPORT

The port number that the web container uses for secure HTTP (HTTPS). The initial

settings are correct for the default installations of JWSDP and J2EE 1.4.

HTTP_PROXY_SERVER If you need to run the client parts of the example source code in this book through a

https://associates.amazon.com/exec/panama/associates/join/developer/application.html
https://associates.amazon.com/exec/panama/associates/join/developer/application.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Description

HTTP_PROXY_PORT

HTTPS_PROXY_SERVER

HTTPS_PROXY_PORT

If you need to run the client parts of the example source code in this book through a

proxy server, you may do so by setting these properties to point to the server and port

number of the proxy that you are using. The HTTPS properties need to be set only if
the example uses a secure connection. These properties must not be set if you do not

need to use a proxy.

HTTP_PROXY_SERVER

HTTP_PROXY_PORT

HTTPS_PROXY_SERVER

HTTPS_PROXY_PORT

If you need to run the client parts of the example source code in this book through a

proxy server, you may do so by setting these properties to point to the server and port
number of the proxy that you are using. The HTTPS properties need to be set only if

the example uses a secure connection. These properties must not be set if you do not
need to use a proxy.

HTTP_PROXY_SERVER

HTTP_PROXY_PORT

HTTPS_PROXY_SERVER

HTTPS_PROXY_PORT

If you need to run the client parts of the example source code in this book through a

proxy server, you may do so by setting these properties to point to the server and port

number of the proxy that you are using. The HTTPS properties need to be set only if
the example uses a secure connection. These properties must not be set if you do not

need to use a proxy.

Tailoring the jwsnutJaxrExamples.properties file

The jwsnutJaxrExamples.properties file contains settings that are used with the examples for JAXR
(covered in Chapter 7). The appropriate values are described in Chapter 7 alongside the text for the

examples that use them.

Environment variables

Some of the utilities in the JWSDP and the J2EE reference implementation rely on environment
variables to locate libraries, configuration files, and other utilities. Table P-2 lists the variables that you

need to set, along with typical values.

Table P-2. Environment variable settings

Variable Description

JAVA_HOME The installation directory of the J2SE SDK. A typical value is c:\j2sdk1.4.1.

J2EE_HOME
The installation directory of the J2EE reference implementation. This is required only

if you are using J2EE 1.4. A typical value is c:\j2sdkee1.4 .

JWSDP_HOME
The installation directory of the JWSDP. A typical value is c:\jwsdp-1.1 . Does not

need to be set if you are using J2EE 1.4.

HTTP_PROXY_PORT

HTTPS_PROXY_SERVER

HTTPS_PROXY_PORT

If you need to run the client parts of the example source code in this book through a

proxy server, you may do so by setting these properties to point to the server and port

number of the proxy that you are using. The HTTPS properties need to be set only if
the example uses a secure connection. These properties must not be set if you do not

need to use a proxy.

HTTP_PROXY_SERVER

HTTP_PROXY_PORT

HTTPS_PROXY_SERVER

HTTPS_PROXY_PORT

If you need to run the client parts of the example source code in this book through a

proxy server, you may do so by setting these properties to point to the server and port
number of the proxy that you are using. The HTTPS properties need to be set only if

the example uses a secure connection. These properties must not be set if you do not
need to use a proxy.

HTTP_PROXY_SERVER

HTTP_PROXY_PORT

HTTPS_PROXY_SERVER

HTTPS_PROXY_PORT

If you need to run the client parts of the example source code in this book through a

proxy server, you may do so by setting these properties to point to the server and port

number of the proxy that you are using. The HTTPS properties need to be set only if
the example uses a secure connection. These properties must not be set if you do not

need to use a proxy.

Tailoring the jwsnutJaxrExamples.properties file

The jwsnutJaxrExamples.properties file contains settings that are used with the examples for JAXR
(covered in Chapter 7). The appropriate values are described in Chapter 7 alongside the text for the

examples that use them.

Environment variables

Some of the utilities in the JWSDP and the J2EE reference implementation rely on environment
variables to locate libraries, configuration files, and other utilities. Table P-2 lists the variables that you

need to set, along with typical values.

Table P-2. Environment variable settings

Variable Description

JAVA_HOME The installation directory of the J2SE SDK. A typical value is c:\j2sdk1.4.1.

J2EE_HOME
The installation directory of the J2EE reference implementation. This is required only

if you are using J2EE 1.4. A typical value is c:\j2sdkee1.4 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Variable Description

JWSDP_HOME
The installation directory of the JWSDP. A typical value is c:\jwsdp-1.1 . Does not

need to be set if you are using J2EE 1.4.

JAXRPC_HOME

The home directory for JAX-RPC. This is required only if you are using the JWSDP

and should be set to point to the JAX-RPC directory directly below JWSDP_HOME . For

JWSDP 1.1, this would be %JWSDP_HOME%\jaxrpc-1.0.3

JAXR_HOME

The home directory for JAXR. This is required only if you are using the JWSDP and

should be set to point to the JAXR directory directly below JWSDP_HOME . For JWSDP

1.1, this is %JWSDP_HOME%\jaxr-1.0_03

ANT_HOME

The home directory for the Ant build tool. If you are using the JWSDP, set this to

%JWSDP_HOME%\jakarta-ant-1.5.1. For J2EE 1.4, set it to the value of J2EE_HOME .

You can also set this variable to point to a separately installed version of Ant if you
prefer.

PATH

This variable must include the following:

The bin directory of the J2SE SDK (e.g. c:\j2sdk1.4.1\bin)

The bin directory of the J2EE installation, if you are using J2EE 1.4 (e.g.,
c:\j2sdkee1.4\bin)

If you are using the JWSDP, the bin directories for the JWSDP itself, then Ant , JAX-
RPC, and JAXR must also be added:

%JWSDP_HOME%\bin

%JWSDP_HOME%\shared\bin

%ANT_HOME%\bin

%JAXRPC_HOME%\bin

%JAXR_HOME%\bin

Using the Example Source Code with the JWSDP

To use the example source code with the Tomcat web container that is supplied with the JWSDP, you

need to add a role name and two usernames and passwords to the web container's authentication

information, which you'll find in the file %JWSDP_HOME%\conf\tomcat-users.xml . The lines that

should be added to this file are highlighted in Example P-1 .

JWSDP_HOME
The installation directory of the JWSDP. A typical value is c:\jwsdp-1.1 . Does not

need to be set if you are using J2EE 1.4.

JAXRPC_HOME

The home directory for JAX-RPC. This is required only if you are using the JWSDP

and should be set to point to the JAX-RPC directory directly below JWSDP_HOME . For

JWSDP 1.1, this would be %JWSDP_HOME%\jaxrpc-1.0.3

JAXR_HOME

The home directory for JAXR. This is required only if you are using the JWSDP and

should be set to point to the JAXR directory directly below JWSDP_HOME . For JWSDP

1.1, this is %JWSDP_HOME%\jaxr-1.0_03

ANT_HOME

The home directory for the Ant build tool. If you are using the JWSDP, set this to

%JWSDP_HOME%\jakarta-ant-1.5.1. For J2EE 1.4, set it to the value of J2EE_HOME .

You can also set this variable to point to a separately installed version of Ant if you
prefer.

PATH

This variable must include the following:

The bin directory of the J2SE SDK (e.g. c:\j2sdk1.4.1\bin)

The bin directory of the J2EE installation, if you are using J2EE 1.4 (e.g.,
c:\j2sdkee1.4\bin)

If you are using the JWSDP, the bin directories for the JWSDP itself, then Ant , JAX-
RPC, and JAXR must also be added:

%JWSDP_HOME%\bin

%JWSDP_HOME%\shared\bin

%ANT_HOME%\bin

%JAXRPC_HOME%\bin

%JAXR_HOME%\bin

Using the Example Source Code with the JWSDP

To use the example source code with the Tomcat web container that is supplied with the JWSDP, you

need to add a role name and two usernames and passwords to the web container's authentication

information, which you'll find in the file %JWSDP_HOME%\conf\tomcat-users.xml . The lines that

should be added to this file are highlighted in Example P-1 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example P-1. Adding authentication information to the tomcat-users.xml file

<?xml version='1.0'?>
<tomcat-users>
 <role rolename="admin"/>
 <role rolename="manager"/>
 <role rolename="provider"/>
 <role rolename="JWSGroup"/>
 <user username="JWSUserName" password="JWSPassword"
 roles="admin,manager,provider,JWSGroup"/>
 <user username="AnotherUser" password="Pwd"
 roles="admin,manager,provider,JWSGroup"/>
</tomcat-users>

Note that the values JWSUserName and JWSPassword shown here must match the USERNAME and

PASSWORD properties set in the jwsnutExamples.properties file. If you have substituted your own

username and password, then you must use the same values in the tomcat-users.xml file.

Using the Source Code with J2EE Version 1.4

If you intend to use J2EE 1.4, you need to add two usernames and a group to the application server's

authentication information. The commands required to do this are shown next, where it is assumed that
the bin directory of the J2EE installation has been added to your PATH environment variable:

realmtool -addGroup JWSGroup
realmtool -add JWSUserName JWSPassword JWSGroup
realmtool -add AnotherUser Pwd JWSGroup

Note that the values JWSUserName and JWSPassword shown here match those of the USERNAME and

PASSWORD properties set in the jwsnutExamples.properties file. If you have substituted your own

username and password, then you must use the same values here.

Using the Examples with a TCP Monitor Utility

It is sometimes useful to be able to see the SOAP messages that a web service client sends and

receives. There are various monitoring utilities available that can be interposed between the client and

the server to catch and print these messages as they are exchanged. One such utility is tcpmon , which
is part of the Apache Axis distribution and can be downloaded from http://ws.apache.org/axis . A file in

this distribution, axis.jar , contains the class files for tcpmon . To monitor the examples in this book

using this utility, you need to select a free port on which tcpmon will listen and from which it will

forward all messages to the server. Assuming you select port 5050 for tcpmon , you can start it using

the following command:

java -classpath axis.jar org.apache.axis.utils.tcpmon 5050 localhost 8000

This command will display any messages sent to port 5050 and pass them on to port 8000 on

http://lib.ommolketab.ir
http://lib.ommolketab.ir

localhost , which is the port on which the J2EE 1.4 reference implementation listens by default. If
you are using the JWSDP, then you should forward the messages to port 8080 instead. Next, you need

to ensure that the examples connect to port 5050 instead of the port assigned to the web container. To

do this, edit the jwsnutExamples.properties file in your home directory and set either TOMCAT_WEBPORT

(for the JWSDP) or J2EE_WEBPORT (for J2EE 1.4) to 5050. With these changes, you'll see all of the

SOAP messages sent and received by most of the examples in this book displayed in the tcpmon
window. To revert to normal operation, just reset the value of TOMCAT_WEBPORT or J2EE_WEBPORT and

stop tcpmon .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conventions Used in This Book

We use the following formatting conventions in this book:

Italic

Used for emphasis and to signify the first use of a term. Italic is also used for commands, email

addresses, web sites, FTP sites, file and directory names, and newsgroups.
Bold

Occasionally used to refer to particular keys on a computer keyboard or to portions of a user

interface, such as the Back button or the Options menu.

Constant Width

Used in all Java code and generally for anything that you would type literally when

programming, including keywords, data types, constants, method names, variables, class names,

and interface names.
Constant Width Italic

Used for the names of function arguments and generally as a placeholder to indicate an item that
should be replaced with an actual value in your program.

Constant Width Bold

Used occasionally for emphasis in code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Request for Comments

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You can

access this page at:

http://www.oreilly.com/catalog/javawsian

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/javawsian
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Acknowledgments

When Bob Eckstein suggested the idea of writing a book in the Nutshell series to cover the web service

APIs in the Java Web Services Developer's Pack, I must admit to not having been immediately inspired
by the idea. My feelings changed, however, when I saw the number of sessions devoted to this subject

at the 2002 JavaOne conference in San Francisco, most of which were extremely well attended. Soon

after the conference, I agreed to write the book you are now holding in your hands. My thanks for

providing me with the opportunity to do so go to Bob as well as to Mike Loukides, who also had a hand

in the process of persuasion that ultimately lead to me making the right decision.

When Bob moved on to other things in O'Reilly, the editorial job was taken over by Brett McLaughlin,
a man known to write books at a speed that mere mortals such as I can only simultaneously disbelieve

and envy. Brett had the unenviable task of making sense of the first draft of this manuscript, which was
in the process of being hastily overhauled following the release of the beta version of the J2EE 1.4

reference implementation. I am extremely grateful to Brett for his comments on the technical content of

the book and for working so hard to edit and push the book through its production process in time for a
fixed release date that we all wanted to meet. Thanks also to Kyle Hart for the part she played in

making sure the book met this very important deadline.

The production team at O'Reilly have turned some very ordinary-looking text and diagrams into a real
book under considerable time pressure. My thanks go to Mary Brady as production editor and to the

rest of the team, whose names you will find in the Colophon at the end of this book, for a job well

done. Thanks also to David Flanagan for his help with the preparation of the API reference material

and for his general advice on the content of this part of the book.

Java Web Services in a Nutshell has taken the best part of a year to produce. For various reasons, this
has been one of the most difficult years of my professional career. I am grateful, as ever, for the support

of my family, Berys, Andrew, and Katie, who have made the last year more bearable than it otherwise

would have been. Without your support, I would not have been able to finish this book at all.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part I: Introduction to the Java Web Services
API

Part I is an introduction to writing web services using Java. These chapters provide enough

information for you to get started using the J2EE web services APIs right away:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Introduction

This book is an introduction to, and a quick reference for, the Java APIs for web services as

implemented in the J2EE 1.4 platform. This chapter begins with a high-level overview of web services,
using a real-world example to show why you might need to create one and how it would differ from a

traditional HTML-based web application. It then moves on to introduce the technologies that have been

developed to enable web services and describes how those technologies have been made available to
Java developers. The chapter closes by demonstrating the steps required to build a client application

that can communicate with and present information from the web service interface provided by the
online bookseller Amazon.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1 What Is a Web Service?

In early 2002, Sun Microsystems released the first version of their Java Web Services Developer's Pack

(JWSDP). This large download contained everything that a developer needs to begin creating web
services using the Java platform. When it appeared, the questions that most developers immediately

asked were just exactly what is a web service and why should I be interested in finding out how to

build or use one? If, at that time, you looked around the bookstores and the Internet for an answer to

these questions, your conclusion would most likely have been that there was plenty of hype, promise,

and marketing talk from those companies interested in promoting web services to other companies (and
in particular to their Chief Technology Officers), but very little that would be of real use to hands-on

developers trying to come to terms with a new technology. Even today, a full year later, it is still
difficult to find a consistent definition of what constitutes a web service. The most useful definition

that I have been able to find is the following, which appears in the Web Services Architecture

document published by the World Wide Web Consortium (W3C), available for download from their
web site at http://www.w3.org/TR/ws-arch:

A web service is a software system identified by a URI, whose public interfaces and bindings are

defined and described using XML. Its definition can be discovered by other software systems.
These systems may then interact with the Web service in a manner prescribed by its definition,

using XML-based messages conveyed by Internet protocols.

In essence, then, a web service is something that provides an interface defined in terms of XML

messages and that can be accessed over the Internet (or, of course, an Intranet). What about looking at

some real examples of web services to see what they are actually being used for? This is where it gets a
little bit harder. At the present time, there aren't many real web services deployed and available on the

Internet, although it is expected that this situation will change as web service standards, in particular

those related to security, are published and start being implemented over the next year or so.

A good place to look for example web services is the XMethods web site at http://www.xmethods.com,

which describes itself as a "virtual laboratory" for developers, allowing them to showcase the ways in

which web services can be used. Here, you'll find a wide range of services implemented using various
technologies; for example:

A route finder that provides an optimal route between two or more locations in the form of
directions or a map

A service that locates synonyms for a given word

A stock quote service that provides stock prices, updated every 15 minutes

http://www.w3.org/TR/ws-arch
http://www.xmethods.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

An online dictionary

A weather service

A POP3 client that allows you to access your mailbox

If you go to the XMethods web site and follow a link to any of these services, you won't find yourself

directly connected to the service itself. Instead, you'll be presented with a page that tells you, among

other things, where to get a service definition and who to contact for further information. If you want to
actually use the service, you'll need to write your own client application. Services like these are, of

course, already freely available to anyone with a web browser and a connection to the Internet (or even
a cell phone!). Why bother to invent a new way of delivering them, which also puts the onus on the

service consumer to write or obtain the client-side software? The answer to this question goes to the

very heart of the movement towards web services - the need to perform business-to-business
transactions using open but secure protocols over the Internet.

1.1.1 Web Services and Web Applications

To see why the current web application model is not sufficient for business-to-business commerce and

why it is also quite limiting when your client is a human consumer, consider the case of the online
bookstore Amazon.com. Amazon.com has one of the best-known web sites on the Internet. Book

buyers use its facilities to browse for and purchase books (and, these days, a wide range of other
products), while publishers and authors use its sales ranking and reader reviews to get a feel for public

reaction to their work. If you want to find a good Java book, all you have to do is use the site's search

facilities to locate a few titles, read the reviews, and place your order. At each stage, the site sends you

a page of HTML that your browser renders for you, and you respond by clicking a link or filling in a
form to move to the next stage.

Although this is convenient for low-volume searches conducted by humans, it is not quite as useful if

you want to extract and collate information from the site. Suppose, for example, that you are a

publisher (or an author) wanting to keep track of the sales rankings of a group of books on a daily basis.

To achieve this using the HTML-based interface provided by Amazon's web site, you need to

bookmark the page for each book you are interested in, reload each of those pages every day, and

manually extract the sales ranking and the latest customer reviews. If you are a little more technically
minded, you could automate this process somewhat by writing a client application that reads the HTML

and extracts the information using screen-scraping techniques.[1] While this is perfectly feasible, it is

less than ideal, due to the following:

[1] You'll find an example that demonstrates how to write such a client for a cell phone in J2ME in

a Nutshell, by Kim Topley (O'Reilly).

Amazon.com web pages contain a lot of content. This makes them large documents - often in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

excess of 10 kilobytes. In reality, you need only a very small portion of the information that each
of them contains.

Screen-scraping programs, by their nature, are very reliant on the layout of the information source

that they are analyzing-in this case, the HTML produced by Amazon.com's web servers.

Unfortunately, web site designers have a habit of changing their page layouts from time to time,

and these changes can invalidate the algorithm that your application uses to locate the small part

of the information buried in the HTML markup that it actually needs.

The root cause of these problems is the use of HTML to convey data. HTML is, of course, reasonably
good at the job it was designed for - combining raw data with markup that specifies how it is to be

presented and links that allow related information to be obtained. If you're only looking for the sales

ranking of your book, all you really want is a single number - you certainly don't need lots of
additional tags that tell you how to present the information. This is exactly the kind of situation in

which, if you had control over the server, you would choose to use XML rather than HTML to
encapsulate the data, so that a client that is interested only in the raw content would not need to concern

itself with stripping out the markup.

If you look back at the definition of a web service cited earlier in this chapter, you'll see that if

Amazon.com provided a web service interface to its bookstore and exposed the appropriate information

in XML form, authors and publishers would have an easier way to find out how their books are

performing. In fact, in mid-2002, Amazon.com did exactly that. The Amazon.com web service is one
of the few commercial web services currently available on the Internet. As well as writing private client

applications to extract specific book-related information, web service developers can use this service to

create their own web sites that incorporate information obtained from Amazon.com, without having to

present it in the same way as it appears on the Amazon.com web site. Figure 1-1 shows an example

software architecture that might be used to do this.

Figure 1-1. Using XML-based web services to obtain information from a web service provider

In this diagram, an end user using a web browser visits the web site of MyXMLBooks.com, a fictional

company that, amongst other things, is a member of the Amazon.com Associates program. This allows

MyXMLBooks.com to earn royalties on sales of books made via its own web site. MyXMLBooks.com

has previously used click-through links that will display Amazon.com's own web pages when the user
selects a book advertised on its web site, but now wants to make use of Amazon's web service to obtain

raw information and present it in a way that is more consistent with the other pages on its site. When

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the user selects a book from one of MyXMLBooks.com's web pages, the HTTP request generated is
routed via a controlling servlet on the MyXMLBooks.com web server, which determines that it needs

to retrieve raw book data from Amazon.com. The servlet obtains this data by using a web service client

implemented by MyXMLBooks.com's developers. This client uses the web service interface published

by Amazon.com to invoke a method on its server that returns the required information. The method

invocation is performed by creating an XML message that contains the method name and any required
parameters and then sending it to Amazon.com's server using the SOAP protocol, which is discussed

later in this chapter. The value (or values) returned by the method call are then wrapped in another

XML message and sent back to the MyXMLBooks.com's web client, which extracts the information

that it needs and uses a JSP to render it as HTML. The HTML is then returned to the client's browser.[2]

[2] Although this example uses a web browser as the client, it is equally possible to create a rich

client (using Swing, for example) that would connect directly to the web service and present the
results on the user's desktop rather than via a browser.

Figure 1-1 represents what will probably be a fairly typical use of a web service. Notice in particular

that the direct user of the web service is not a human, but a web server. In fact, this diagram shows both

a Business-to-Consumer (B2C) transaction performed using HTML over HTTP, and a Business-to-

Business (B2B) transaction, which is the domain of web services and uses XML-based messaging.

Once MyXMLBooks.com adopts this architecture, which separates the presentation of information

from the means by which it is obtained, it is relatively simple for it to add additional features. For
example, if other online booksellers begin to offer a web service interface, MyXMLBooks.com could

provide a consolidated service that routes user requests to the vendor that provides the best price or

shortest delivery time for the items that the user wants to buy, or could query all of the available

providers for their prices and delivery time commitments and then allow the user to make the choice.

Although all of this could be done using screen scraping, the advantages of using a web service instead
are:

Less data will need to be transferred because the useful information does not need to be
accompanied by presentation markup.

The code required to make a request of a web service is much simpler than that required to extract

data from an HTML page.

If, in the future, a standard interface were to be defined for online booksellers,

MyXMLBooks.com needs only to write a single client in order for it to be able to talk to multiple

booksellers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2 The SOAP Protocol

The web service definition cited earlier in this chapter stated that a web service communicates using

"XML-based messages conveyed by Internet protocols." Although it is expected that there will be a
choice of web service protocols in the future, at the present time, web services communicate using

Simple Object Access Protocol (SOAP). SOAP is an XML-based protocol that can be carried over any

transport mechanism capable of delivering a byte stream. In practice, SOAP messages are usually

exchanged between clients and services that are resident in web containers and are typically

encapsulated inside an HTTP request or response message. However, nothing in the SOAP 1.1
specification (which can be obtained from the W3C web site at http://www.w3c/org/TR/SOAP[3])

prevents the use of other transport mechanisms, such as FTP, SMTP or even JMS; in fact, both Apache
SOAP and its successor, Axis, support the use of SMTP as the carrier for SOAP messages.

[3] Like most web service specifications, SOAP was originally defined by a group of cooperating

businesses and has now been taken under the wing of the W3C. The next version of the SOAP

specification (Version 1.2) is being produced by the W3C and can be obtained from
http://www.w3c.org.

A basic SOAP message consists of an envelope that may contain any number of headers plus a body.

These parts are delimited by XML elements called Envelope, Header, and Body, which belong to a
namespace defined by the SOAP specification. Although the specification defines rules that

implementations must follow when creating the structure of a SOAP message, it says nothing about the

application-dependent information that the message may contain, apart from the fact that any content

conveyed within the envelope must be valid XML. Example 1-1 shows a typical SOAP message.

Example 1-1. A SOAP message

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns0=
 "urn:jwsnut.chapter6.headerbookservice/types/HeaderBookQuery"
 xmlns:ns1=
 "urn:jwsnut.chapter6.headerbookservice/wsdl/HeaderBookQuery"
 env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <env:Header>
 <ns1:auth xsi:type="ns0:Authentication">
 <UserName xsi:type="xsd:string">JWSUserName</UserName>
 <Password xsi:type="xsd:string">JWSPassword</Password>
 </ns1:auth>

http://www.w3c/org/TR/SOAP
http://www.w3c.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </env:Header>
 <env:Body>
 <ns1:getBookAuthor>
 <String_1 xsi:type="xsd:string">Java in a Nutshell</String_1>
 <String_2 xsi:type="xsd:string" xsi:nil="1"/>
 </ns1:getBookAuthor>
 </env:Body>
</env:Envelope>

As you can see, the message consists of an Envelope element that wraps both a Header element and a

Body element. This particular Envelope element declares a bewildering number of XML namespaces,
the meaning of which will be explained in Chapter 3, as will the rules that govern the way in which the

message is constructed. In this case, the message has a single SOAP header that contains a username
and a password, and a single element in the body that represents a request to the receiver to return the

name of the author of the book Java in a Nutshell. The interpretation of the information in the header

and the body is generally determined by the application itself, although in this case the body contains a
remote procedure call (RPC) request that is formed according to rules laid down in the SOAP

specification and was actually generated by JAX-RPC, which is the subject of the next chapter. In other
cases, the body might contain an arbitrary XML document formed according to a schema that both the

sender and the receiver have agreed to use. Similarly, although some SOAP headers will be

standardized, others are not. In this example, the authentication information is conveyed in a very

insecure way using an XML structure defined by the application itself. There is, of course, work in

progress to define the standards for web service security that is standardizing the way in which
information like this is carried in SOAP messages, but the results of that work are not yet visible in

either J2EE 1.4 or the JWSDP.

In many cases, limiting an application to XML is too restrictive. As an example, MyXMLBooks.com

might like to include book cover images on its web site. One way to achieve this is to return a URL in

the SOAP message and have the client application fetch the image directly using HTTP (i.e., without

involving a SOAP message). This approach is not mandatory, however, because there is an extension to
the SOAP specification called SOAP with Attachments that allows a SOAP message to have associated

MIME attachments that can carry any data with a recognized (or even application-private)

representation. Both the SOAP and SOAP with Attachments specifications are covered in detail in

Chapter 3, which also contains an example that shows how to use an attachment to return a book cover

image to a web service client.

1.2.1 Web Service Profiles

The SOAP specification provides encoding rules for the XML data and attachments that make up an

application-level message, but it leaves much in the hands of the application itself. For example, it

defines a framework for placing information that might need to be processed alongside the actual

message data into message headers. These headers may be directed at either the system containing the
web service itself or intermediaries that the message might need to pass through en route to its

http://lib.ommolketab.ir
http://lib.ommolketab.ir

destination. What it does not do, however, is specify what those headers are or what information they
should contain. This flexibility is deliberate because it allows SOAP to be used at one end of the scale

as the basis for a private distributed application, where the header and data content need be known only

to the implementor of the application, or at the other end as a building block for more open web

services, such as that provided by Amazon.com.

In the real world, it is necessary to reduce the level of flexibility available to service implementors in

order to make it less likely that incompatible implementations, either of SOAP itself or of the
applications it supports, are developed. For this reason, several different web service profiles have been

proposed or developed. A profile consists of rules, in addition to those imposed by SOAP, that all

participants in that profile agree to abide by to ensure that their implementations can interwork with

each other. Three examples of such profiles follow:

The WS-Routing profile

The WS-Routing profile (originally known as SOAP-RP) defines a set of SOAP headers that

allow the specification of a route to be followed by a SOAP message as it is being sent from the
client application to the server. The specification also allows a reverse path to be constructed as

the message is being passed between the intermediary systems that form its output route. Since

this profile is concerned only with message routing, it does not specify any standard body

content.

The ebXML Transport, Routing, and Packaging profile (ebXML-TRP)

This profile defines a message format for applications engaged in various forms of electronic
business. Like WS-Routing, it includes a definition of a set of headers and prescribes their

meanings. Unlike WS-Routing, it also includes a set of standard XML elements that can be

included in the message body. See Section 4.6 for a discussion of this profile.

The Web Services Interoperaibility (WS-I) profile

WS-Routing and ebXML-TRP are narrow standards that confine themselves to specific aspects

of SOAP messaging. Indeed, ebXML-TRP itself applies only to a particular vertical marketplace.
By contrast, the WS-I profile, introduced early in 2003, is a broad profile that aims to maximize

the potential for interworking across a range of applications by ensuring that the messaging

systems on which they are built obey certain specific rules that cover not only SOAP, but also

some of the other technologies that you'll see elsewhere in this book. The WS-I profile creates a

greater probability of successful interworking by reducing the number of choices that
implementors can make from the wide range allowed by individual specifications to a much

smaller number-often just one. Sun Microsystems recently announced that the web services

support provided by the J2EE 1.4 platform is WS-I conformant; therefore, developers using J2EE

1.4 do not need to do anything in order to comply with this specification.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3 Describing and Discovering Web Services

One of the clauses in the W3C definition of a web service states that its "definition can be discovered

by other software systems." In order to make this possible, the web service standards include:

A language used to define the interfaces provided by a web service, in a manner that is not

dependent on the platform on which it is running or the programming language used to implement
it

A provision for a registry within which these definitions can be placed

Since all access to web services uses XML messaging, it is appropriate that the language used to

describe a web service should itself be XML-based. The Web Service Description Language (WSDL)

was originally defined by Microsoft, IBM, and Ariba, and is now subject to standardization by the

W3C consortium. W3C recently published a draft of its official variant of WSDL (Version 1.2), which

can be downloaded from its web site at http://www.w3c.org. At the time of this writing, however, most
existing WSDL-aware software (including that provided by Sun Microsystems) is based on WSDL

Version 1.1.

As you'll see in Chapter 5, WSDL describes a web service by defining the messages that it accepts and

the reply messages that it returns. These messages are actually defined first in abstract terms and then

bound to one or more message and transport protocols. Today, of course, web services use SOAP as the

messaging protocol, and therefore almost all WSDL files will define a binding of the service to SOAP
messages delivered over the HTTP protocol. WSDL is not a difficult metalanguage to learn, and it is

useful to be able to glance at a WSDL file to get an overview of the interface of a service. However,

you don't really need to be able to do much more than this because WSDL definitions are usually both

created and consumed by software tools. As you'll see later in this chapter, once you obtain the WSDL

definition of a service, the first thing to do is generate a Java interface from it that provides the same
operations as the service itself. Not only is a Java interface much easier to understand than the

corresponding WSDL, but you can also use the interface when writing your client application, or when

creating an implementation of the service itself, if that is your assigned task.

Given that WSDL definitions are central to web services, how would you go about finding such a

definition? One way to do so is to contact the service owner and ask for it. WSDL definitions are plain-

text XML documents and can be readily exchanged using email or placed at a known URL for
download from the Internet (most tools that consume WSDL let you specify its location either as a

URL or as a file in an accessible filesystem). In many cases, however, you might not know who owns a

service or even exactly what services are available. You might, for example, want to find out which

organizations provide online book-selling services and then examine their service definitions to see if

http://www.w3c.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

any of them provide the facilities that you need. To make this possible, WSDL definitions can be
published in a registry. There are two major registry standards in use today, both of which can store

web service information - the ebXML registry/repository and the UDDI registry. Both of these

registry types, which are discussed in Chapter 7, allow the service owner to advertise service

information that includes the location of a WSDL definition plus associated documentation and contact

numbers that will be of use to potential consumers of the service. A registry can also contain
classification information that can make services easy to find. For example, a service provider can

specify that it is a bookseller operating in the United States. A potential client for a bookseller's web

service based in the United States can locate all such providers by searching the registry using these

specific criteria. Not surprisingly, both the ebXML and UDDI registries are themselves XML-based

web services.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.4 J2EE Web Service APIs

Java web services are one of the major new features in the J2EE 1.4 platform, which has integrated

versions of some of the APIs that Sun Microsystems released as part of the Java Web Services
Developer's Pack in 2002. Figure 1-2 shows the various web service APIs (represented by the shaded

areas) and how they fit together.

Figure 1-2. The J2EE 1.4 and JWSDP web service APIs

Working up from the bottom of the diagram, by definition, all web services depend on XML, since the

messages exchanged between the service provider and the service consumer are encoded in XML. At

the present time, these messages are carried using the SOAP protocol, which is itself based on XML. It
is generally accepted, however, that SOAP is only the current state of the art and need not be the only

web service protocol. Layered above SOAP and XML are the various web service APIs, which are

summarized in the following sections:

WSDL

As described earlier, WSDL is an XML vocabulary used to describe the interface provided by a

web service. Both J2EE 1.4 and JWSDP support the use of WSDL 1.1 to specify service

interfaces, but do not provide an API for application code to directly manipulate WSDL. At the
time of this writing, a standard API (called JWSDL) that provides this functionality is under

development by the JSR 110 expert group. See http://jcp.org/jsr/detail/110.jsp for details. WSDL

is discussed in Chapter 5.

SAAJ

SAAJ (SOAP with Attachments API for Java) provides a direct programming interface to the

SOAP protocol. If you are used to low-level protocol handling and don't mind building your own
SOAP messages, then you will likely find SAAJ quite simple to use, but for most application

developers it is probably not the right place to start. You'll find detailed coverage of the API in

http://jcp.org/jsr/detail/110.jsp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3.
JAXM

SAAJ provides a basic SOAP messaging service, but it is lacking some features required by more

advanced applications. The Java API for XML Messaging (JAXM), which is layered on top of

SOAP, provides some additional functionality that many developers will find useful, including

asynchronous messaging, support for the ebXML and WS-Routing profiles, and a limited facility

to retransmit messages that are not successfully delivered when first sent. A reference
implementation of JAXM, which is the subject of Chapter 4, is available in the JWSDP, but was

not formally adopted as part of the J2EE 1.4 platform. There is, however, the possibility that

some vendors will nevertheless provide JAXM support in their products.

JAX-RPC

For most developers, the Java API for XML-based RPC (JAX-RPC) is the most important web

service API in the J2EE 1.4 platform (and in the JWSDP). JAX-RPC provides a relatively simple
way to access web services using Java programming language constructs, thereby entirely

shielding the underlying SOAP- and XML-based infrastructure from those who do not wish to

see it. The JAX-RPC API is relatively small, but still manages to provide such a large number of

features that it requires two chapters in this book (Chapter 2 and Chapter 6) to provide complete

coverage.
JAXR

The Java API for XML-based Registries (JAXR) provides an interface to both UDDI and

ebXML registries. Although this API can be used by any application, it is most likely to be of use

to developers who wish to create tools that allow easy access to registries or provide custom

searches. JAXR allows both the publication of information to registries and information retrieval.

Full coverage of this API can be found in Chapter 7.

The most obvious omission from the suite of web service APIs included with the J2EE 1.4 platform is
anything relating to security. Although the use of HTTPS is supported, this is not a complete solution

for applications that have high security requirements, and there are several working groups currently

engaged in the specification of security mechanisms for XML-based messaging. These efforts are being

tracked by JCP expert groups and, no doubt, over the next year additional packages will be released

that can be added to the J2EE 1.4 platform to incorporate these features.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.5 An Example Web Service

Although it might appear from Figure 1-1 that there is a lot to learn before you can properly make use

of web services, in practice, this is not true. Even though the technology is still relatively new, there are
already tools in existence that simplify life for both the end user and the developer. To illustrate this,

let's look at how you might go about the task of developing a client application for the web service

provided by Amazon.com.

First of all, how would you know that Amazon.com offers a web service? One way to find out is to

visit their web site. In general, though, when looking for web services, you won't know in advance all

of the companies that might offer the service that you need, so you will most likely go to an electronic
business registry and perform a search based on criteria such as industry sector, country of residence,

etc. In Chapter 7, you'll see exactly how businesses can publish information to a registry and attach
classifications to it so that you can, indeed, perform a search based on various criteria, much as you

would when looking for a business in the Yellow Pages.

Figure 1-3 shows the result of performing a search for Amazon.com in a UDDI business registry, which

in this case is hosted by IBM.[4] As it happens, Amazon.com has not applied any meaningful criteria to
its entry in this registry (at least at the time of writing), so I did not find it by looking for booksellers.

However, in an ideal world, this would be possible and, no doubt, for many other businesses, a search
using reasonable criteria would produce the desired results. As you can see, the information on this

page includes the URL of the WSDL definition of the service.

[4] In fact, you have to go through several steps before reaching this screen. Refer to Chapter 7 for

a description of the complete process.

Figure 1-3. Results of looking for details of the Amazon.com web service in a UDDI registry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The WSDL definition can be downloaded using a web browser and, since it is an XML document, can

be inspected to determine the details of the service interface. However, there is a simpler way. Using a
tool called wscompile that is supplied with both the JWSDP and the J2EE 1.4 reference

implementation, you can obtain a definition of the service in the form of a Java interface. You'll see

exactly how to perform this conversion in the chapters of this book that deal with JAX-RPC. The result
is shown in Example 1-2.

Example 1-2. A Java version of the Amazon.com web service interface

public interface AmazonSearchPort extends java.rmi.Remote {
 public ora.jwsnut.chapter1.amazon.ProductInfo keywordSearchRequest(
 ora.jwsnut.chapter1.amazon.KeywordRequest keywordSearchRequest)
 throws java.rmi.RemoteException;
 public ora.jwsnut.chapter1.amazon.ProductInfo browseNodeSearchRequest(
 ora.jwsnut.chapter1.amazon.BrowseNodeRequest browseNodeSearchRequest)
 throws java.rmi.RemoteException;
 public ora.jwsnut.chapter1.amazon.ProductInfo asinSearchRequest(
 ora.jwsnut.chapter1.amazon.AsinRequest asinSearchRequest)
 throws java.rmi.RemoteException;
 public ora.jwsnut.chapter1.amazon.ProductInfo upcSearchRequest(
 ora.jwsnut.chapter1.amazon.UpcRequest upcSearchRequest)
 throws java.rmi.RemoteException;
 public ora.jwsnut.chapter1.amazon.ProductInfo authorSearchRequest(
 ora.jwsnut.chapter1.amazon.AuthorRequest authorSearchRequest)
 throws java.rmi.RemoteException;
 public ora.jwsnut.chapter1.amazon.ProductInfo artistSearchRequest(
 ora.jwsnut.chapter1.amazon.ArtistRequest artistSearchRequest)
 throws java.rmi.RemoteException;
 public ora.jwsnut.chapter1.amazon.ProductInfo actorSearchRequest(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ora.jwsnut.chapter1.amazon.ActorRequest actorSearchRequest)
 throws java.rmi.RemoteException;
 public ora.jwsnut.chapter1.amazon.ProductInfo manufacturerSearchRequest(
 ora.jwsnut.chapter1.amazon.ManufacturerRequest
 manufacturerSearchRequest) throws java.rmi.RemoteException;
 public ora.jwsnut.chapter1.amazon.ProductInfo directorSearchRequest(
 ora.jwsnut.chapter1.amazon.DirectorRequest directorSearchRequest)
 throws java.rmi.RemoteException;
 public ora.jwsnut.chapter1.amazon.ProductInfo listManiaSearchRequest(
 ora.jwsnut.chapter1.amazon.ListManiaRequest listManiaSearchRequest)
 throws java.rmi.RemoteException;
 public ora.jwsnut.chapter1.amazon.ProductInfo similaritySearchRequest(
 ora.jwsnut.chapter1.amazon.SimilarityRequest similaritySearchRequest)
 throws java.rmi.RemoteException;
}

The Java interface is much easier to understand than the WSDL version, which you'll find in the file

chapter1\amazon\AmazonWebService.wsdl relative to the installation directory of the example source

code for this book. The interface uses several classes, such as asinSearchRequest, which are passed to

the methods that represent the web service operations, to supply the criteria for a product search. Each

of these methods returns a ProductInfo object that contains the results of the search. These classes are
all defined, in XML terms, in the WSDL document and are converted to Java form by the wscompile

utility.

Given the interface definition in readable and compilable form, it only remains to write an application

to use it. At this point, you would probably be looking for some documentation that would tell you

what the method parameters mean, what each method does, and how to interpret the results. Usually, a

company would publish a link to relevant documentation along with the service entry in the registry. It
so happens that, at least when I looked, Amazon.com had not done this. You can, however, obtain

documentation from the Amazon.com web site, where you will also discover that you need to obtain a

"developer token" to make use of the service.

The example source code for this book contains a simple GUI application that uses the Amazon.com

web service by collecting search parameters from the user, and using authorSearchRequest(),

asinSearchRequest(), and keywordSearchRequest() to perform the search. If you look at the
source code for this example, which you'll find in the directory

chapter1\amazon\client\ora\jwsnut\chapter1\client, you'll see that almost all of it is concerned with

managing the user interface. In fact, only three lines of code are required to set up the JAX-RPC library

in preparation for a call to be made to the service:

AmazonSearchService service = new AmazonSearchService_Impl();
amazonSearch = service.getAmazonSearchPort();
((Stub)amazonSearch)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, address);

What is convenient about JAX-RPC is that all of the classes required by the client application are

generated for you from the WSDL. All you have to do is supply the service address, which can also be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

found in the WSDL file:[5]

[5] Although this code explicitly supplies the web service address, you'll see in Chapter 6 that you
can also create JAX-RPC applications that obtain the service address directly from the WSDL

document.

<!-- Endpoint for Amazon Web APIs -->
<service name="AmazonSearchService">
 <port name="AmazonSearchPort" binding="typens:AmazonSearchBinding">
 <soap:address location="http://soap.amazon.com/onca/soap"/>
 </port>
</service>

Actually calling the web service and obtaining the results requires the construction of a SOAP message

containing the query parameters, transmitting it, receiving the response message, and converting it back
from XML to Java objects. If you were to code this using the low-level SAAJ API, you would probably

end up with a couple of pages of code. However, JAX-RPC reduces this to something much simpler.

Here, for example, is how you might perform a search for a book based on author name:

AuthorRequest authorReq = new AuthorRequest(newKey, String.valueOf(page),
MODE, WEBSERVICE, TYPE, devtag, VERSION);
result = amazonSearch.authorSearchRequest(authorReq);

At the moment, it's not necessary to worry about what all of the method arguments mean. The

important point is that obtaining information from a web service is no more complex in programming
terms than making a local method call. The tools provided by JAX-RPC handle the details of parsing
the service's WSDL definition, and the use of SOAP and XML to encode the content of the message

ensures that you don't need to be concerned about either the nature of the platform on which the service

itself is running or the programming language used to implement it.

You can try out the Amazon web service for yourself by obtaining a developer tag from the

Amazon.com web site, including it in the jwsnutExamples.properties file in your home directory as the

value of the AMAZON_TAG property, making chapter1\amazon your working directory, and typing the
following commands:

ant compile
ant run-client

The user interface that appears allows you to choose a search based on Author, Keyword, or ISBN, and

a search string of your choice. To start the search, press the Go button. The books (up to 10 of them)
that match your search criterion appear in the form of a list. If you select an entry from this list, the

sales ranking for that book, together with any available customer reviews, appears, as shown in Figure

1-4.

Figure 1-4. The results of a book search using the Amazon web service

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Amazon.com web service is one of a small but growing number of commercial web services that
are now becoming available on the Internet. At the moment, many of these services are more
experimental than serious, and there are still minor interoperability issues between SOAP

implementations from different vendors. It is likely that real business transactions over the Internet

using web services will not take place in any volume until the security features are fully defined,

implemented, and deployed. However, as you'll see in the rest of this book, there is already a lot of
functionality available for use and for developers to become familiar with.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. JAX-RPC

The Java API for XML-based RPC (JAX-RPC) is designed to provide a simple way to create remote

procedure call-based web services in which either the client or the server (or both) run on the Java
platform without requiring the developer to be aware of the way that the SOAP messages that carry the

procedure call request and response are encoded. Because JAX-RPC is based around remote procedure

calls, the programming model will be very familiar to Java developers who have used RMI or CORBA.

In order to use the more powerful features of JAX-RPC, you need to have some understanding both of
SOAP and of WSDL, an XML-based language that describes the interface to a web service. These

topics are covered in Chapter 3 and Chapter 5, respectively. However, you don't need to know anything
about either of them in order to become a JAX-RPC programmer. This chapter provides a

straightforward introduction to JAX-RPC by demonstrating how to create and deploy a simple JAX-

RPC web service and a client application that calls it, using familiar-looking Java code and only a very
small amount of XML. The more advanced features of JAX-RPC will be covered in detail in Chapter

6, once the details of SOAP and WSDL are explained.

The JAX-RPC specification was developed under the Java Community Process as JSR 101 and is
available for download from http://jcp.org/jsr/detail/101.jsp.

http://jcp.org/jsr/detail/101.jsp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1 JAX-RPC Overview

JAX-RPC was designed to provide a simple way for developers to create web services and web service

clients using techniques that are not very different from those used in nondistributed Java
programming. Programming with JAX-RPC is very similar to using RMI to create a distributed

application, in the sense that client code appears to be making ordinary method calls on local objects. In

reality, however, the infrastructure handles these calls by converting them to messages that are sent

over a network to the server, where they cause a local call to be made on the actual method

implementation. The results of this call are used to create a reply message that is sent back the client,
where they are extracted and presented as return values from the client application's method call.

Although there are similarities between RMI and JAX-RPC, the major difference arises from the fact

that the messages exchanged between JAX-RPC clients and services are encoded using an XML-based
protocol and can potentially be carried by a range of transport-level protocols, including HTTP (or its

more secure variant HTTPS), SMTP, or even FTP. JAX-RPC allows a client written in the Java

programming language to access a service implemented on, for example, the Microsoft .NET platform,
whereas RMI clients and servers must both be written in Java (although it is possible to expose an

RMI/CORBA hybrid service written in any language that has a binding to CORBA IIOP). In other
words, it can communicate with foreign services without needing to be aware of the technology that its

peer is actually using.

One of the benefits of using JAX-RPC over a lower-level web services technology such as SAAJ or

JAXM (both of which will be covered later in this book) is that it doesn't require you to know much

about XML before you can start building a distributed application. This is because, with a few
exceptions that fall into the advanced category, the programming interfaces are completely independent

of both the underlying messaging infrastructure and the transport protocol that is used to carry the XML

messages. The JAX-RPC specification requires every implementation to support at least the use of

SOAP over HTTP 1.1, but, as a developer, you can use JAX-RPC without having to be an expert in

XML, SOAP, or HTTP. On the other hand, if these technologies are more than acronyms to you, as
you'll see in Chapter 6, it is possible to use some of the more advanced JAX-RPC features to gain

access to the lower levels. Here, you can directly handle SOAP headers or extend the set of data types

that the client and server can exchange beyond those supported transparently by JAX-RPC.

2.1.1 The JAX-RPC Programming Model

This section introduces the JAX-RPC API by examining its programming model. At first, some of the
concepts described here may seem a little abstract, especially if you are not familiar with another

distributed programming technology, such as CORBA or RMI. In order to make things a little clearer,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the following section will illustrate these concepts by relating them to a simple example.

2.1.1.1 Services, ports, and bindings

JAX-RPC uses web services terminology to describe some of its concepts. The meaning of some of

these terms is represented in a diagram in Figure 2-1. A web service consists of a service endpoint

interface (which is often referred to simply as an endpoint) that defines one or more operations that the

web service offers. In order to promote portability and independence from the underlying

communications mechanisms, web services are thought of as entities in their own right, separate from
the protocol stacks used to gain access to them. Access to an endpoint is provided by binding it to a

protocol stack through a port, which has an address that a client can use to communicate with it and

invoke its operations.[1]

[1] The terms introduced in this section are based on those used by the Web Service Description
Language (WSDL), which is covered in detail in Chapter 5.

Since the JAX-RPC specification requires that all implementations support the use of SOAP 1.1

messaging over HTTP 1.1 as the underlying transport protocol, the most common binding uses SOAP
and HTTP, as shown in Figure 2-1. Bindings to other messaging systems and protocols are neither

required nor precluded by the specification. In Figure 2-1, for example, port 1 provides access to the

web service through a SOAP 1.1/HTTP protocol stack, port 2 uses SOAP 1.1 over HTTPS,[2] and port
3 exposes the same endpoint via a different (unspecified) protocol and messaging system.

[2] Support for HTTPS is not required by the JAX-RPC specification, but very often is required by

real-world operation; it is included in the JAX-RPC reference implementation.

Figure 2-1. Web service terminology: endpoint, port, and binding

The nature of a port address depends partly on the protocol to which the endpoint is bound and partly
on the JAX-RPC implementation. We'll see how the JAX-RPC reference implementation handles port

addressing later in this chapter. In the case of an HTTP or HTTPS binding, port addresses are based on

URLs. It is important to note that when you implement a web service using JAX-RPC, (provided that

you don't use some of the more advanced features described in Chapter 6) your code will be

independent of both the port address and the binding used by the client to access it, and therefore will

http://lib.ommolketab.ir
http://lib.ommolketab.ir

not contain any SOAP- or HTTP-specific details.

2.1.1.2 JAX-RPC web service clients and servers

In terms of Java programming, JAX-RPC maps a web service operation to a Java method call and maps

a service endpoint to a Java interface. One way to begin the implementation of a web service with

JAX-RPC, therefore, is to create a Java interface that contains a method for each operation that the

service will provide, along with a class that implements that interface. There are certain rules that need

to be followed when defining both the interface and the methods that it contains. As we'll see in
Chapter 6, JAX-RPC also allows you to import the definition of an existing web service in the form of

a WSDL document and then generate from it the corresponding Java interface definition, in order to

create either your own implementation of the service itself or a client that will use the service.

In a nondistributed programming environment, method calls are handled entirely by the Java virtual
machine. For example, suppose you were to create a simple class like the one shown in Example 2-1,

and another one that uses it, as shown in Example 2-2.

Example 2-1. A simple "service"

import java.util.Date;

public class DateService {
 public Date getDate() {
 return new Date();
 }
}

Example 2-2. A simple "client"

import java.util.Date;

public class Test {
 public static void main(String[] args) {
 DateService instance = new DateService();
 Date date = instance.getDate();
 System.out.println("The date is " + date);
 }
}

If you were to run the main() method of the class shown in Example 2-2, the getDate() method

would be invoked directly within the same Java virtual machine as the main() method. In a
distributed environment, however, the service implementation - that is, the DateService class and its

getDate() method - would reside in a different Java virtual machine (and usually a different

physical host) than the service client, which is the main() method in the Test class in this case. In

these circumstances, the getDate() method call could not be dispatched directly by the client's virtual

http://lib.ommolketab.ir
http://lib.ommolketab.ir

machine. Instead, a layer of software must be used to convey the method call from the client program to
the server, carrying with it any arguments provided by the method caller (although in this case there are

none) and returning the method call result (the Date object) to the client. This layer of software is

provided by the JAX-RPC runtime system, as shown in Figure 2-2, in which the client application

represents the Test class and the service implementation is the DateService class.

Figure 2-2. Clients, services, and the JAX-RPC runtime system

Although Figure 2-2 implies that the JAX-RPC runtime system is present on both the client and server

systems, this will not always be the case. JAX-RPC supports interoperation with other XML-based
RPC implementations, provided that they implement the SOAP 1.1 messaging protocol and use the

same transport layer binding. The following list describes the supported software combinations.

JAX-RPC client implementation connecting to a JAX-RPC service implementation, as shown in

Figure 2-2

JAX-RPC client implementation connecting to a third-party SOAP 1.1-based RPC product, as

shown in Figure 2-3

Third-party SOAP 1.1-based RPC client implementation connecting to a JAX-RPC service

implementation, as shown in Figure 2-4

Figure 2-3. JAX-RPC client interoperability with services implemented using a third-party product

Figure 2-4. JAX-RPC service interoperability with a client implemented using a third-party product

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At the time of this writing, there are several SOAP 1.1 development environments available in addition

to JAX-RPC, including Apache SOAP, Apache Axis, and GLUE, which are all Java-based, and

SOAP::Lite for Perl developers. Perhaps most significantly, however, the Microsoft Visual Studio
.NET development environment makes the creation of SOAP-based web services and web service

clients for the Microsoft .NET platform relatively simple. As a result, web services created with JAX-
RPC are easily accessible to clients written in Visual Basic or C# and running on .NET and vice versa.

2.1.1.3 JAX-RPC service creation

As a developer, you may find yourself in one of several possible roles when working with web

services:

Creating a web service together with the corresponding client or clients for in-house use1.

Creating a web service to be made available locally or on the Internet2.

Creating a client for an existing web service implemented by somebody else, possibly in a

different organization

3.

In the first case, where you will develop both the service and the client software that will be used to
access it, it may be possible to use JAX-RPC on both the client and server systems. In the second case,

the service itself may be implemented using JAX-RPC, but the clients, developed by other groups

within your company or by users in other companies, could be built on the .NET platform or using a

different Java SOAP implementation. Finally, in the third case, a client for an existing web service can

be written using JAX-RPC, provided that the service is RPC-based and uses only data types that JAX-
RPC can support or for which you can write extensions.[3]

[3] In order to support new data types, you need to write a custom serializer that knows how to

convert between the data type and a corresponding XML representation. At the time of this

writing, the JAX-RPC specification does not provide a framework for writing serializers that are

portable between JAX-RPC implementations, and the API used by the reference implementation

to create them is, therefore, not part of the specification. Consequently, you should consider
creating custom serializers only if there is no other choice.

In all three cases, there needs to be a definition of the web service that describes the operations that it

http://lib.ommolketab.ir
http://lib.ommolketab.ir

provides and the data types that they require as arguments and provide as return values. In addition, but
of less interest in this chapter, it is necessary to define how the information that moves between the

client and the server when operations are performed is mapped onto the protocols to which the JAX-

RPC (or third party) implementation is bound-that is, how the SOAP 1.1 messages that are exchanged

are to be constructed. Service definitions that contain all of this information are typically made

available as a document written using the Web Service Description Language (WSDL), which is
covered in Chapter 5.

From the client developer's point of view, having a WSDL description of someone else's service to

work with is useful even if you don't know very much about WSDL, because JAX-RPC can read such a

document and generate from it the Java code required to link your client code to the service, leaving

you to write only the business logic of the client application itself. Since WSDL is a standardized

language based on XML, JAX-RPC can do this for any web service, whether it was originally
implemented using JAX-RPC, on the .NET platform, or in any other way. If you'd like to know what a

WSDL document looks like, flip forward to the Appendix at the back of this book, which contains a

couple of representative examples.

For the benefit of the server developer, having defined your service as a Java interface, you can avoid

the tedious task of manually creating the corresponding WSDL document by using a tool provided by

JAX-RPC. Once the WSDL is created, it is typically advertised at a well-known URL or in a registry so
that client implementors can find and import it. WSDL file publication and discovery can be handled

using facilities provided by another J2EE technology called the Java API for XML Registries (JAXR),

which is described in Chapter 7.

2.1.1.4 JAX-RPC client and server programming environments

JAX-RPC supports the creation of clients that are implemented either as freestanding J2SE

applications, as J2EE client applications (that is, applications that operate within the J2EE client
container), or within a web or EJB container. A freestanding JAX-RPC client application is typically a

rich GUI client implemented with Swing or AWT, while a container-based client might be embedded

in a servlet or an Enterprise JavaBean (EJB) that is part of a J2EE-hosted web application. In the future,

support will be provided for freestanding JAX-RPC clients on small devices that host the Java 2 Micro

Edition (J2ME) platform.

On the server side, the JAX-RPC specification envisages that a JAX-RPC service will be implemented
as either a servlet or an EJB, although the specification itself covers only the programming model for a

service hosted by a servlet. In support of this, the JAX-RPC reference implementation provides a

servlet that can be used to direct SOAP messages received over an HTTP transport to the actual web

service implementation. The details of this mechanism will be covered later in this chapter. The

implementation of a JAX-RPC service within an EJB is outside of the scope of the JAX-RPC
specification itself. However, support for EJB-hosted web services is an integral part of the J2EE 1.4

platform and is discussed later in this chapter. For the most part, however, you don't need to care too

http://lib.ommolketab.ir
http://lib.ommolketab.ir

much about which environment your service is running in, since most of the details are the same in
both cases.

The classes that form the JAX-RPC API-many of which are available to both client- and server-side

code-are distributed over the small set of packages listed in Table 2-1.

Table 2-1. Packages in the JAX-RPC API

Package name Description

javax.xml.rpc Core classes that provide the client-side programming model.

javax.xml.rpc.encoding

Classes that perform the conversion of Java primitives and other

supported data types to and from the XML representation used in
SOAP messages.

javax.xml.rpc.handler

javax.xml.rpc.handler.soap

Classes that process the XML messages sent and received during

request and response handling. Developers can create custom
handlers that may be invoked during message processing on both

the client and server sides to perform specialized tasks such as data
encryption or other security services. Creation of message handlers

requires an understanding of SOAP. This is covered in Chapter 6.

javax.xml.rpc.holders

Classes that support the use of output or input-output parameters in

JAX-RPC method calls. Since Java does not directly support the

notion of parameters whose value can be changed as the result of a

method call (i.e., parameters that have call-by-reference semantics),
these classes can be used to wrap the actual parameters in order to

provide that capability.

javax.xml.rpc.holders

Classes that support the use of output or input-output parameters in

JAX-RPC method calls. Since Java does not directly support the

notion of parameters whose value can be changed as the result of a

method call (i.e., parameters that have call-by-reference semantics),

these classes can be used to wrap the actual parameters in order to
provide that capability.

javax.xml.rpc.server

This package contains the minimal API (only two interfaces)

provided by JAX-RPC for the use of web service implementation
classes.

2.1.1.5 Stubs and ties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Package name Description

javax.xml.rpc.soap

This package contains the JAX-RPC classes that are specific to the

SOAP binding of the JAX-RPC API. At the time of this writing, it

consists of a single exception class (SOAPFaultException).

2.1.1.5 Stubs and ties

When a JAX-RPC client invokes an operation provided by a web service, the method that it calls is not

the one that will actually perform the operation, since, as shown in Figure 2-2, the service

implementation does not reside in the same Java virtual machine as the client. Instead, the client-side
JAX-RPC runtime converts the call into a message that is sent to the server-side JAX-RPC runtime to

be dispatched to the actual service class method implementation. For simplicity, however, it is
desirable for the client code to look as similar as possible to that shown in Example 2-2, even though it

cannot directly invoke a method on the actual implementation class.

To make this possible, JAX-RPC provides a stub object that has the same methods as the service

implementation class.[4] The client application is linked with the stub and invokes a stub method,
which is then delegated to the client-side JAX-RPC runtime so that the appropriate SOAP message can

be sent to the server. When the method call is completed on the server, the result is sent back to the
client-side JAX-RPC runtime and then forwarded to the client stub, which returns it as the result of the

client application's method call. Figure 2-2 shows where stubs reside in the client-side JAX-RPC

implementation.

[4] If you are familiar with CORBA or RMI programming, you'll recognize that the same stub and

tie programming model is being used here.

Similarly, on the server side, the message received as a result of a client's method call must be
converted into a method call on the actual service implementation. This functionality is provided by

another piece of glue software, called a tie, that knows how to extract the method name and parameters

from an incoming SOAP 1.1 message and use them to invoke the required service method. The tie also

converts the result of the method call back into a response message to be returned to the client JAX-

RPC runtime system.

Since the stub and tie classes have to be able to handle the same methods as the service endpoint that
the client wishes to use, they depend on the definition of the service endpoint created by the web

service developer. They also need to be coded to use the underlying JAX-RPC runtime to create, send,

and receive SOAP 1.1 messages. Fortunately, the developer does not have to write these classes -

instead, JAX-RPC implementations are required to provide tools that generate them. The details of this

process are not part of the JAX-RPC specification; therefore, vendors are free to implement this

functionality in any way that they see fit. As you'll see shortly, the JAX-RPC reference implementation
includes command-line programs that can be used to create stubs and ties from either a WSDL

document or a Java interface definition. Other vendors might include this functionality as part of an

javax.xml.rpc.soap

This package contains the JAX-RPC classes that are specific to the

SOAP binding of the JAX-RPC API. At the time of this writing, it

consists of a single exception class (SOAPFaultException).

2.1.1.5 Stubs and ties

When a JAX-RPC client invokes an operation provided by a web service, the method that it calls is not

the one that will actually perform the operation, since, as shown in Figure 2-2, the service

implementation does not reside in the same Java virtual machine as the client. Instead, the client-side
JAX-RPC runtime converts the call into a message that is sent to the server-side JAX-RPC runtime to

be dispatched to the actual service class method implementation. For simplicity, however, it is
desirable for the client code to look as similar as possible to that shown in Example 2-2, even though it

cannot directly invoke a method on the actual implementation class.

To make this possible, JAX-RPC provides a stub object that has the same methods as the service

implementation class.[4] The client application is linked with the stub and invokes a stub method,
which is then delegated to the client-side JAX-RPC runtime so that the appropriate SOAP message can

be sent to the server. When the method call is completed on the server, the result is sent back to the
client-side JAX-RPC runtime and then forwarded to the client stub, which returns it as the result of the

client application's method call. Figure 2-2 shows where stubs reside in the client-side JAX-RPC

implementation.

[4] If you are familiar with CORBA or RMI programming, you'll recognize that the same stub and

tie programming model is being used here.

Similarly, on the server side, the message received as a result of a client's method call must be
converted into a method call on the actual service implementation. This functionality is provided by

another piece of glue software, called a tie, that knows how to extract the method name and parameters

from an incoming SOAP 1.1 message and use them to invoke the required service method. The tie also

converts the result of the method call back into a response message to be returned to the client JAX-

RPC runtime system.

Since the stub and tie classes have to be able to handle the same methods as the service endpoint that
the client wishes to use, they depend on the definition of the service endpoint created by the web

service developer. They also need to be coded to use the underlying JAX-RPC runtime to create, send,

and receive SOAP 1.1 messages. Fortunately, the developer does not have to write these classes -

instead, JAX-RPC implementations are required to provide tools that generate them. The details of this

process are not part of the JAX-RPC specification; therefore, vendors are free to implement this

functionality in any way that they see fit. As you'll see shortly, the JAX-RPC reference implementation
includes command-line programs that can be used to create stubs and ties from either a WSDL

document or a Java interface definition. Other vendors might include this functionality as part of an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

integrated development environment (IDE), and generate the stub and tie classes automatically as part
of the normal process of running an application or deploying a service from within the IDE.

2.1.1.6 Client invocation modes

JAX-RPC provides two different modes of operation that client applications may use when invoking

service methods. The first and most familiar mode is synchronous request-response, illustrated in

Figure 2-5. This mode works exactly like an ordinary Java method call, in that once the client has

invoked the method, it blocks until the service performs the requested operation and either returns the
results or throws an exception. In terms of message exchanges, once the client JAX-RPC runtime has

generated and sent the request message, it waits for its counterpart on the server-side to return a

response message and then delivers the results to the client application.

Figure 2-5. Synchronous method invocation

JAX-RPC also supports a less coupled mode of operation referred to as a one-way RPC. In this mode,

shown in Figure 2-6, the client does not expect a reply from the service and therefore does not block

after the request has been sent. Note that a one-way RPC is not represented by the following style of

Java method call:

public void request(int arg1, int arg2);

Even though a method defined in this way does not return a value to the caller, if it appeared in a web

service interface definition, it would actually be mapped to a synchronous request-response RPC and
not a one-way RPC. A response from the server is required even though the method return type is void

because, even though it would not contain a return value, it might still need to indicate that an

exception should be thrown to the client. A one-way RPC, by contrast, cannot result in an exception

being thrown from the service implementation and therefore cannot report an error condition to the

initiating client.

Figure 2-6. One-way RPC invocation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is no Java method call syntax that correctly reflects the semantics of a one-way RPC call. For

this reason, client stubs support only the synchronous request-response mode. In order to make a one-

way RPC call, an application has to bypass the stubs and make a Dynamic Invocation Interface (DII)

call. DII calls are discussed in Chapter 6.

2.1.2 A Simple JAX-RPC Example

Now that you've seen the basic concepts of JAX-RPC, it's time to see how it works in practice by

looking at a simple example that shows how to define a web service endpoint, deploy the server

implementation, and, finally, invoke it from a client application. In this section, we're not going to look
in much detail at the JAX-RPC API itself or the code that implements either the client or the service -

instead, the focus is on demonstrating how to use the JAX-RPC reference implementation to quickly
create a web service from scratch. The details will be covered later in the chapter.

2.1.2.1 Defining the service interface

Since WSDL is the universally understood language for describing web services, the JAX-RPC

specification requires all implementations to provide a mechanism to convert a WSDL document into

the corresponding Java interface definition, together with the stubs and ties that allow you to
implement the service itself and client applications that will invoke it. From a developer's viewpoint,

though, having to create a WSDL definition of a new web service as the first step is far from

convenient. Fortunately, although it is not mandatory, the specification also allows implementations to

support other ways of specifying a web service. As already mentioned, the JAX-RPC reference

implementation accepts service definitions in the form of class files that contain compiled Java
interfaces. From these class files, it creates not only the stubs and ties, but also a WSDL file that

represents the web service. This is convenient because it means that you don't need to learn to write

WSDL documents before you can get started writing web services.

We'll use this approach to demonstrate the steps necessary to create a simple web service that provides

information about books. Given the title of a book, the service can return specific attributes such as its

price or the name of its author. It also provides a way to get a listing of all available books, together

http://lib.ommolketab.ir
http://lib.ommolketab.ir

with full information for each of them. A Java interface that represents the service endpoint interface
definition for the book web service is shown in Example 2-3.

Example 2-3. The BookQuery interface

package ora.jwsnut.chapter2.bookservice;

import java.util.HashMap;
import java.rmi.Remote;
import java.rmi.RemoteException;

/**
 * The interface definition for the book
 * web service.
 */
public interfaceBookQuery extends Remote {
 // Gets the number of books known to the service
 public abstract int getBookCount() throws RemoteException;

 // Gets the author of a book given its title
 public abstract String getAuthor(String name) throws RemoteException;

 // Gets the editor of a book given its title
 public abstract String getEditor(String name) throws RemoteException;

 // Gets the price of a book given its title
 public abstract double getPrice(String name) throws BookServiceException,
 RemoteException;

 // Gets information for all books known to the service in
 // the form of an array
 public abstract BookInfo[] getBookInfo() throws RemoteException;

 // Gets information for all books in the form of a HashMap in which the key
 // is the book's title in upper case and the value is a BookInfo object
 public abstract HashMap getBookMap() throws RemoteException;
}

The first point to notice about this definition is that the interface extends java.rmi.Remote. This is a

requirement of all JAX-RPC service endpoint interface definitions. The second important point is that
every method in the interface is defined to throw a java.rmi.RemoteException. This is also a

mandatory requirement and it allows the JAX-RPC runtime to use this exception to report

communication problems that might occur during the exchange of SOAP messages required to

complete a method call.

Aside from these requirements, the methods are declared in the same way as they would be if they were

intended to be implemented by a class in the local Java virtual machine. As you'll see later, there are
some restrictions on the types of arguments that can be used and on the values that can be returned. In

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this case, most of the methods use only Java primitive types and Strings. The getBookInfo() and
getBookMap() methods, however, are slightly different.

The getBookMap() method returns all of the books that the service knows about in the form of a

HashMap. Here, we are using an extension that is part of the JAX-RPC reference implementation,

because support for Java collections as method arguments and return values is not required by the JAX-

RPC specification.

The getBookInfo() method is defined to return an array of objects of type BookInfo, a simple class

that is part of the web service interface definition. JAX-RPC supports the use of certain types of
developer-defined Java objects, both as method parameters and return values, provided they meet

certain simple criteria that are discussed later. If you need to use an object of a type that does not meet

these criteria, you need to write a custom serializer, which is a nontrivial task that is not supported in a
portable manner at the present time.

The definition of the BookInfo class is shown in Example 2-4.

Example 2-4. The BookInfo class

package ora.jwsnut.chapter2.bookservice;

/**
 * A class that holds information relating
 * to a book known to the book web service.
 */
public class BookInfo {

 private String title;
 private String author;
 private String editor;
 private double price;

 // Constructs an uninitialized BookInfo object.
 public BookInfo() {
 }

 // Constructs a BookInfo object initialized with given attributes.
 public BookInfo(String title, String author, String editor, double price) {
 this.title = title;
 this.author = author;
 this.editor = editor;
 this.price = price;
 }

 // Gets the title of the book
 public String getTitle() {
 return title;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Gets the author of the book
 public String getAuthor() {
 return author;
 }

 // Gets the name of the editor the book
 public String getEditor() {
 return editor;
 }

 // Gets the price of the book in USD
 public double getPrice() {
 return price;
 }

 // Sets the title of the book
 public void setTitle(String title) {
 this.title = title;
 }

 // Sets the author of the book
 public void setAuthor(String author) {
 this.author = author;
 }

 // Sets the name of the editor the book
 public void setEditor(String editor) {
 this.editor = editor;
 }

 // Sets the price of the book in USD
 public void setPrice(double price) {
 this.price = price;
 }
}

This class is simply a holder for information returned from the web service to its clients. Aside from

providing methods to set and retrieve its attributes, it has no useful behavior. To use a term that is

familiar to J2EE developers, this is an example of a value type. Value types are one of the types of

method arguments and return values that JAX-RPC supports.

Since the client application is not expected to modify the content of a BookInfo

object, it seems inappropriate to incorporate public methods such as setAuthor(

) that seem to encourage this behavior. Unfortunately, for reasons that we'll

cover later, JAX-RPC requires you to declare these public mutator methods, or

make the attributes themselves public, which is an even worse alternative.

Notice that, in addition to RemoteException, the getPrice() method of the BookQuery interface

shown in Example 2-3 is declared to throw a BookServiceException. JAX-RPC allows methods to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

throw service-specific exceptions that are derived from java.lang.Exception, but not errors (i.e.,
subclasses of java.lang.Error). In this case, BookServiceException is derived directly from

java.lang.Exception, as shown in Example 2-5.

Example 2-5. A JAX-RPC service-specific exception

package ora.jwsnut.chapter2.bookservice;

/**
 * A service-specific exception that reports
 * problems while executing methods of the book
 * web service
 */
public class BookServiceException extends Exception {

 // Constructs a BookServiceException with an associated message
 public BookServiceException(String message) {
 super(message);
 }

 // Gets the message associated with this exception
 public String getMessage() {
 return super.getMessage();
 }
}

Notice that this exception class defines a getMessage() method that returns the message set in the

constructor, even though a method with the same name and signature is inherited from its superclass. If

this were not done, a BookServiceException thrown by the service implementation would not be
translated to a BookServiceException on the client side. The exact conditions that must be met when

defining an exception class in order for the exception to be properly reported to a client application are:

Each parameter supplied to the constructor must have a corresponding accessor method defined in

the exception class itself (and not inherited from its superclass). This condition requires

BookServiceException not only to have a getMessage() method, but to provide it for itself

rather than rely on the one inherited from java.lang.Exception.

Each accessor method must have a corresponding parameter in the constructor.

The parameter type of each argument of the constructor must match that of the return type of its

accessor method. In this case, both are of type String.

There must be only one accessor method with a given return type. This means that

BookServiceException could not define another accessor method that would return a String.

If any of these conditions is not met, then a SOAPFaultException will be thrown in the client instead of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the application-specific exception thrown by the service.

You have now seen all of the source code that makes up the definition of the book web service. There
are a couple of points to note about this code:

Although we created an interface that contains the operations provided by the service, you haven't
yet seen anything that ties this interface into the web service itself. As you'll see in Chapter 4,

when a web service is defined in a WSDL file, the association between the service and the

operations that it provides is obvious because of the structure of the XML. When you start with a
Java interface, however, the mechanism used to link the service to the interface is

implementation-dependent. For this purpose, the reference implementation uses a separate XML
configuration file that you'll see when we take a closer look at this example later in this chapter in

Section 2.2.2.

Both of the classes that make up the definition of the web service have been declared to be in the

package ora.jwsnut.chapter2.bookservice. Later in this chapter, you'll see a recommended
source code structure that clearly separates the files that represent the interface definition from

those that make up the service implementation and the code for the application client. Neither the
JAX-RPC specification nor the reference implementation requires a particular source code

structure or package organization, but it is a good idea to keep related pieces together (and

separate from other pieces) for the sake of clarity.

2.1.2.2 Implementing the service

Having defined the service endpoint interfaces, the next step is to write the code for the service itself.
The service implementation can be spread over as many classes as you like, provided that there is at

least one class, usually referred to as a servant, that meets the following conditions:

It must have a public, no-argument constructor.

It must implement the methods of the service endpoint interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The JAX-RPC specification requires not only that the servant provide

implementations of the methods defined in the service interface, but also that it

declares, using the Java implements keyword, that it implements that interface.
However, the J2EE Web Services specification (JSR 109) relaxes this

requirement, making it optional for the servant class to make this declaration,

subject to the proviso that if it chooses not to, then the methods themselves must

not be final. At the time of this writing, the JWSDP imposes the requirement of

the JAX-RPC specification and therefore, for the sake of compatibilty, the
servant classes for all of the examples in this book declare that they implement

the service endpoint interface. J2EE 1.4 follows JSR 109 and does not insist on
this declaration.

Provided you follow these rules, there is nothing special about writing a JAX-RPC servant class. In

fact, apart from a couple of interfaces defined in the javax.xml.rpc.server package that allow a
servlet-based servant to interface to the servlet container within which it is running, there is no server-

side JAX-RPC API. These interfaces will be covered in Chapter 6.

The JAX-RPC specification does not specify how the methods of the servant class are invoked in

response to a method call made by an application client. For services that are hosted in a web container,

the reference implementation provides a servlet that uses the tie classes to extract the method

arguments from a call message, invokes the appropriate servant method, and then builds the reply
message. A similar arrangement is provided for EJB-hosted web services. Since these details are all

handled by the JAX-RPC runtime, you don't need to concern yourself with them when creating the

service implementation.

The implementation of the book web service consists of two Java classes and a text file that contains

the list of books that the service knows about, together with the information to be provided in the

BookInfo objects for each book. Since much of the code is concerned with reading the text file and
building the book list, I'm not going to include all of it here. If you download the example source code

and install it as described in the section Examples Online in the Preface, you'll find all of the code for

these classes in the folder chapter2\bookservice\server\ora\jwsnut\chapter2\bookservice. The code for

the servant class, BookServiceServant, which actually implements the service endpoint interface, is

shown in Example 2-6.

Example 2-6. Implementation of the book web service

package ora.jwsnut.chapter2.bookservice;
import java.util.HashMap;

/**
 * Implementation class for the book web service
 */
public class BookServiceServant implements BookQuery {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public int getBookCount() {
 return BookServiceServantData.getBookInfo().length;
 }

 public String getAuthor(String name) {
 BookInfo book = findBook(name);
 return book == null ? null : book.getAuthor();
 }

 public String getEditor(String name) {
 BookInfo book = findBook(name);
 return book == null ? null : book.getEditor();
 }

 public double getPrice(String name) throws BookServiceException {
 BookInfo book = findBook(name);
 if (book == null) {
 // No such book - throw an exception
 throw new BookServiceException("No matching book for '" +
 name + "'");
 }
 return book.getPrice();
 }

 public BookInfo[] getBookInfo() {
 return BookServiceServantData.getBookInfo();
 }

 public HashMap getBookMap() {
 return BookServiceServantData.getBookInfoHashMap();
 }

 /* -- Implementation details -- */
 private BookInfo findBook(String name) {
 BookInfo[] books = BookServiceServantData.getBookInfo();
 for (int i = 0; i < books.length; i++) {
 if (books[i].getTitle().equalsIgnoreCase(name)) {
 // Found a match
 return books[i];
 }
 }
 return null; // No match
 }
}

The important things to note about this class are:

It looks like an ordinary Java class, in the sense that it does not contain any JAX-RPC-specific

code. The fact that JAX-RPC does not require the service code to be written in any particular way

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(other than as mentioned in the following paragraphs) means that you don't need to learn a new
API to create the server-side parts of a web service. It also makes it easier to convert existing code

into a web service.

The JAX-RPC runtime does not require this class to have any particular name or be derived from

a fixed base class. It does, however, require that this class has a public no-argument constructor.

In this case, since there is nothing for the constructor to do, the default constructor inserted by the

compiler satisfies this requirement.

The servant class is required to implement the methods of the service endpoint interface. As noted
earlier, it is optional for the class to use the implements keyword to declare that it implements

this service endpoint interface. The interface methods may not be final if the servant class does

not declare that it implements the service endpoint interface.

Although the operation methods are declared to throw RemoteException in the endpoint interface
definition shown in Example 2-3, the actual method implementations do not do so. The interface

definition is required to declare that a RemoteException might be thrown because the service
methods are invoked through the JAX-RPC runtime, including the client-side stubs and the

server-side tie classes, which might encounter various types of errors that are reported by

throwing a RemoteException.

By contrast, the getBookPrice() method, which is declared to throw the service-specific
BookServiceException in the interface definition in Example 2-3, also makes this declaration in

the implementation class and throws the exception in the normal way if it cannot find a book that
matches the title supplied as its argument.

The data for this service is managed in a separate helper class called BookServiceServantData, the

implementation of which is uninteresting apart from the code shown in the following extract:

 InputStream is = BookServiceServantData.class
 .getResourceAsStream("booklist.txt");
 BufferedReader reader = new BufferedReader(
 new InputStreamReader(is));
 String line;
 while ((line = reader.readLine()) != null) {
 StringTokenizer st = new StringTokenizer(line, "!");
 if (st.countTokens() == 4) {
 list.add(new BookInfo(st.nextToken(),
 st.nextToken(),
 st.nextToken(),
 Double.parseDouble(st.nextToken())));
 }
 }

The significant point here is that the book data is kept in a file called booklist.txt that resides in the

same package as the BookServiceServantData class itself. Because there is nothing special about a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JAX-RPC service implementation, this file can be treated as a resource and therefore can be located at
runtime in the usual way, using the getResourceAsStream() method of java.lang.Class.

Since JAX-RPC services will ultimately be deployed in a web or EJB container of a J2EE-based

application server, another way to obtain initialization data is from the container's JNDI environment

or, for a servlet-based implementation, from the initialization parameters of the servlet that invokes the

service's methods. You'll see how to get access to the servlet's initialization parameters as part of the

discussion of the ServletLifecycle interface in Chapter 6.

2.1.2.3 Writing the client code

For the purposes of demonstrating the book web service, the example code contains a freestanding

J2SE client application that invokes the methods of the BookQuery interface and displays the results

that it receives. The source for this application can be found in the file
chapter2\bookservice\client\ora\jwsnut\bookservice\client\BookServiceClient.java relative to the

installation directory of the example source code for this book.

To invoke the methods of a service endpoint interface, a client application needs to get a reference to
an object that implements that interface. Obviously, it cannot simply instantiate the

BookServiceServant class in order to do this - instead, as you can see from Figure 2-2, it has to get a

reference to a generated stub object that implements the service endpoint interface. Unfortunately, the
JAX-RPC specification does not fully specify the naming convention to be used for stub classes.

Instead, it makes the following statement:

The name of a generated stub class is either <BindingName>_Stub or is implementation specific.

As a result of this rather loose requirement, it is not possible to write portable code that refers directly

to generated stub classes. If you need to write fully portable code, then you have two choices:

Write a J2EE application client and deploy it into your J2EE application server. A J2EE

application client runs in a container generated at deployment time by the application server. This

container provides the means to get statically generated stubs in a portable way. The disadvantage

of this approach is that the client must be deployed separately into each application server whose

web services it needs to access. See Section 6.4 for an example of this technique.

Use the Dynamic Invocation Interface or a dynamic proxy, both of which are discussed in Chapter
6. Be aware, however, that both of these are likely to incur much more runtime overhead than

using a statically generated stub.

If you are using the JAX-RPC reference implementation, you can obtain and use a stub using the

following code:

// Get a reference to the stub and set the service address

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BookService_Impl service = new BookService_Impl();
BookQuery bookQuery = (BookQuery)service.getBookQueryPort();
((Stub)bookQuery)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, args[0]);

BookInfo[] books = bookQuery.getBookInfo();

As you'll see in Section 2.2 later in this chapter, BookService_Impl is one of the classes that is

generated along with the stubs themselves. The BookService_Impl class contains a generated method

that allows an instance of the stub for the service endpoint interface to be obtained. The stub object
implements both the BookQuery service endpoint interface and the interface javax.xml.rpc.Stub,

which is part of the JAX-RPC client-side API. This latter interface provides a method (called

_setProperty()) that allows the information that the stub needs in order to communicate with a

server that contains the actual service implementation to be supplied. The only information that the

stub requires is the address to which the call message should be sent, which must be set using the stub's
ENDPOINT_ADDRESS_PROPERTY. We'll look in more detail at the properties of stubs and the exact format

of the address in Section 2.2.2, later in this chapter.

Once the address is set, the stub can be used to make any number of method calls, which look exactly

like local calls:

BookInfo[] books = bookQuery.getBookInfo();

Looking at this code, it is natural to think of the object referenced by bookQuery as being a single

object at the server on which method calls can be made. However, this is not necessarily the case. If

you make two separate method calls using the same bookQuery reference, those calls might actually be

dispatched to two different server-side objects, depending on the way in which the JAX-RPC server-
side environment is implemented. In this example, that isn't important, since the service endpoint

interfaces defined here simply query the state of a static set of books. However, it is important if we

attempt to define an interface that requires several method calls to set up conditions within the target

object followed by a call that performs some operation based on those conditions, since not all of the

conditions will necessarily be set on the same server-side object instance. In other words, the server-
side object that implements the service cannot be assumed to maintain state relating to any of its

clients.[5]

[5] The server-side JAX-RPC API includes a provision for a servlet-hosted web service

implementation to preserve per-client state across web service method calls, provided that the

client allows it. See Section 6.7.5 for an example that demonstrates this feature.

2.1.2.4 Example source code organization

When you create a web service, you need to write the source code for the interface definition and the
service implementation classes and, at least for testing purposes, you will most likely also create a

client application. As well as your own source code, the build process creates class files and

(optionally) source code for the stub and tie classes. For the sake of clarity, the example source code for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this chapter is organized into a directory structure, shown in Figure 2-7, that reflects the function of
each class and its relationship to the other components of the overall system. It is clearly desirable to

separate the client application from the service implementation, for example, because in the real world

the client and the service may be developed independently and possibly by different developers

working in different companies. Similarly, the source code that defines the service endpoint interface

should be maintained separately from the service implementation.

Figure 2-7. Example source code organization

The top-level directory, chapter2, contains a subdirectory called bookservice that contains all of the

source code for this example. The Java source file for the service endpoint interface definition is placed
beneath the interface subdirectory, in a directory hierarchy organized according to the usual package

naming conventions and, similarly, the service implementation is held below the server subdirectory.

For this example, both the interface definition and the service implementation code are in the same

package (ora.jwsnut.chapter2.bookservice), although this is not required by JAX-RPC - in fact,
JAX-RPC does not place any restrictions on the mapping of classes to packages when you create your

own service endpoint interface.[6] The client code is held separately in the client subdirectory and also

resides in a separate package (ora.jwsnut.chapter2.client). Again, this is done for the sake of

clarity.

[6] If you start with a WSDL file instead of Java service definitions, all of the generated classes are

placed in the same package by default. However, it is possible to force some of the generated
classes to be placed in different packages based on the XML namespace within which they are

defined. For more details, refer to Chapter 6.

2.1.2.5 Compiling and running the book web service example

Once the code is written, deployment and testing of a web service requires that the following steps are

performed:

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The service endpoint interface and the service implementation classes must be compiled.1.

The server-side code must be bundled into a Web Archive (WAR) file, together with the
appropriate tie classes.

2.

The WAR must be deployed into the target web container or J2EE-based application server.3.

Client-side stubs must be generated.4.

The client code must be compiled.5.

To simplify this process, the examples in this book are all built and run using the Ant build tool, which

is included in both the J2EE 1.4 reference implementation and the Java Web Services Developer

Pack.[7] Before you can run the examples, you need to set up environment variables used by the JAX-

RPC reference implementation as well as create a file called jwsnutExamples.properties in your home

directory that contains information specific to your system that will be used by the Ant buildfile to
locate source files and deploy the web service. If you have not already done so, refer to Examples

Online in the Preface for a description of what is required.

[7] You don't need to know anything about Ant to be able to run the example source code in this
book. However, Ant is an extremely useful tool for all kinds of Java development. If you're not

familiar with it (or even if you are), I recommend getting a copy of Ant: The Definitive Guide, by

Jesse Tilly and Eric M. Burke (O'Reilly).

To use the example source code, open a command window and make the bookservice directory your
working directory. Here, you will find three files that are relevant to the build process, as shown in

Figure 2-8:

build.xml

This is the build control file for Ant. This XML file contains a set of targets that you can use to

build the interface definitions, the service implementation, and the client, as well as use to run

the example.

config.xml

This file tells the command-line utility wscompile (which will generate client-side stubs that will
be used to access the web service) where to find the definition of the service endpoint interface

for the book web service. We'll look at this file in detail in Section 2.2.2 later in this chapter.

example.properties

Because many of the tasks involved in building and deploying web services are common, most of

the content of the build.xml file is actually stored in a separate location from which it is imported

when it is read by Ant. The example.properties file contains settings that tailor the common build
process for this particular example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-8. Build-related files for the book web service

There are also some files that are related to the server-side deployment process, which you'll find in the

deploy and deploy-j2ee14 subdirectories. There are two sets of files because the deployment process

required for J2EE 1.4 is different from that used with the JWSDP. These files are discussed in Section

2.2.4, later in this chapter.

The build.xml file contains a number of targets that can be used to perform selected parts of the build

process, to deploy the web service, or to run the client application. To call one of these targets, use a
command such as:

ant target

where target is one of those listed in Table 2-2.

Table 2-2. Targets in the Ant buildfile for the book web service

Target Description

compile-
interface Compiles the service endpoint interface definitions from the interface subdirectory.

compile-
server

Compiles the classes in the server subdirectory that make up the service

implementation.

generate-
client Runs wscompile to generate the client stub classes.

compile-
client

Compiles the classes in the client subdirectory that make up the application clients

for this web service.

compile Compiles both the service implementation and the application clients.

portable-web-
package Packages the service implementation as a WAR file.

web-package
Uses the file created by the portable-web-package target to create a deployable

WAR file by generating and adding tie classes and the WSDL file for the service.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Target Description

deploy

Compiles, packages, and deploys the book web service in the J2EE reference

implementation application server or the Tomcat web container included with the

Java Web Services Developer Pack.

undeploy Removes the book web service from the web container.

redeploy
Replaces the current version of the book web service in the web container by
undeploying it and deploying the most recently packaged version.

run-client Runs one of the application clients.

run-client-
bookmap Runs the other application client.

clean
Deletes all generated and compiled files and output directories, leaving only the

original source files.

In most cases, these targets invoke other targets as necessary to complete their tasks so that, for

example, if you use the compile-server target, it will automatically invoke the compile-interface
target that creates the inputs that it requires.

The easiest way to run the book web service example is to start by generating the files required for the

server-side deployment using the following command:

ant web-package

This target causes Ant to compile the service interface definitions and the service implementation

classes, and create a web archive containing everything necessary to deploy the service.[8] During this

process, two extra directories are created beneath the bookservice directory:

[8] The details of this process will be described in more detail in Section 2.2.4, later in this

chapter.

The generated directory holds the Java source code for the client-side stubs created from the

service endpoint interface definitions.

The output subdirectory contains all of the compiled class files, including those corresponding to

the generated stubs. In order for you to see where each class file comes from, they are organized

into subdirectories called output/interface, output/server, and output/client.

Compiling the interface definitions and the service implementation files is a simple matter of running

the Java compiler in the usual way, specifying the appropriate location in which to store the class files

beneath the output directory. The only point to note is that the CLASSPATH passed to the compiler needs

to include the classes that make up the JAX-RPC API. For the J2EE 1.4 platform, these classes are

deploy

Compiles, packages, and deploys the book web service in the J2EE reference

implementation application server or the Tomcat web container included with the

Java Web Services Developer Pack.

undeploy Removes the book web service from the web container.

redeploy
Replaces the current version of the book web service in the web container by
undeploying it and deploying the most recently packaged version.

run-client Runs one of the application clients.

run-client-
bookmap Runs the other application client.

clean
Deletes all generated and compiled files and output directories, leaving only the

original source files.

In most cases, these targets invoke other targets as necessary to complete their tasks so that, for

example, if you use the compile-server target, it will automatically invoke the compile-interface
target that creates the inputs that it requires.

The easiest way to run the book web service example is to start by generating the files required for the

server-side deployment using the following command:

ant web-package

This target causes Ant to compile the service interface definitions and the service implementation

classes, and create a web archive containing everything necessary to deploy the service.[8] During this

process, two extra directories are created beneath the bookservice directory:

[8] The details of this process will be described in more detail in Section 2.2.4, later in this

chapter.

The generated directory holds the Java source code for the client-side stubs created from the

service endpoint interface definitions.

The output subdirectory contains all of the compiled class files, including those corresponding to

the generated stubs. In order for you to see where each class file comes from, they are organized

into subdirectories called output/interface, output/server, and output/client.

Compiling the interface definitions and the service implementation files is a simple matter of running

the Java compiler in the usual way, specifying the appropriate location in which to store the class files

beneath the output directory. The only point to note is that the CLASSPATH passed to the compiler needs

to include the classes that make up the JAX-RPC API. For the J2EE 1.4 platform, these classes are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bundled into the file lib\j2ee.jar, which contains the entire J2EE API, whereas for JWSDP 1.1, they can
be found in the JAR file jaxrpc-api.jar in the jaxrpc-1.0.3\lib directory. The Ant buildfile takes care of

setting the correct CLASSPATH, but you will need to ensure that you include the appropriate JAR files if

you intend to compile JAX-RPC services or applications from the command line.

Having created the web archive, which will be written to the file chapter2\bookservice\Books.war, the

next step is to make the service available by deploying it either in a web container or in a J2EE-

compatible application server. There are several different ways to perform the deployment, but the
simplest approach is to use the deploy target in the Ant buildfile:

ant deploy

Having deployed the service, if you want to make changes to it, some containers (including Tomcat)

require you to undeploy the existing instance before you can install a new one. The Ant buildfile
provides a target called undeploy that will do this for you, as well as a target called redeploy that

combines the undeployment and deployment steps.

A quick way to check that the service is properly deployed is to open a browser and point it at the URL

http://hostname:port/Books/BookQuery?WSDL

where hostname and port correspond to the HTTP port of the J2EE application server or the Tomcat

web container for the JWSDP. If you are using J2EE 1.4, the appropriate URL is:

http://localhost:8000/Books/BookQuery?WSDL

whereas if you have installed the JWSDP with the default setup, the web container uses port 8080
instead of port 8000; therefore, the URL is:

http://localhost:8080/Books/BookQuery?WSDL

If the service is properly deployed, then in the case of the JWSDP, this URL will return a page of XML

tags like that shown in Figure 2-9, which is actually the WSDL definition for the deployed web service.

WSDL is described in detail in Chapter 5 of this book.

Figure 2-9. WSDL definition for a deployed web service

http://hostname:port/Books/BookQuery?WSDL
http://localhost:8000/Books/BookQuery?WSDL
http://localhost:8080/Books/BookQuery?WSDL
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next step is to build the application client code, which can be done using the compile-client

target of the Ant buildfile:

ant compile-client

There are actually two application clients, which you can run by using the run-client or run-client-
bookmap targets. The client run by the run-client-bookmap target, for example, uses the getBookMap(

) method of the BookQuery interface to fetch the complete set of books known to the service in the
form of a HashMap, in which the key to each entry is the book title in uppercase and the associated

value is the BookInfo object for that book. Having retrieved the HashMap, it prints the key and value

for each of its entries. Type the following command:

ant run-client-bookmap

You should see output that looks like this (only a subset is actually shown):

 [java] KEY: [JAVA IN A NUTSHELL], value = Java in a Nutshell by David
Flanagan, edited by Paula Ferguson, Robert Eckstein, price USD 39.95
 [java] KEY: [J2ME IN A NUTSHELL], value = J2ME in a Nutshell by Kim
Topley, edited by Robert Eckstein, price USD 29.95
 [java] KEY: [JAVA I/O], value = Java I/O by Elliotte Rusty Harold,
edited by Mike Loukides, price USD 32.95
 [java] KEY: [JAVA 2D GRAPHICS], value = Java 2D Graphics by Jonathan
Knudsen, edited by Mike Loukides, price USD 29.95
 [java] KEY: [JAVA SWING], value = Java Swing by Robert Eckstein et al,
edited by Mike Loukides, price USD 44.95
 [java] KEY: [JAVA SERVLET PROGRAMMING], value = Java Servlet
Programming by Jason Hunter, William Crawford, edited by Paula Ferguson,
price USD 32.95

The other client can be used to invoke any of the remaining methods of the BookQuery interface,

depending on the arguments supplied on its command line. The client's command line looks like this:

java ora.jwsnut.chapter2.bookservice.BookServiceClient url command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

title

Here, url is the address of the BookQuery service endpoint interface, command indicates which
interface operation is to be called, and title is the book title to be supplied as the argument to the

operation. If the command and title arguments are omitted, the client uses the getBookInfo()

method to get a book list and prints the result. You can try this out using the command:

ant run-client

This produces a result that is similar to that shown earlier, except that the key values are not present

because the return value is an array of BookInfo objects instead of a HashMap.

The allowable values for the command argument are author, editor, and price. Selecting one of these

values causes the application client to invoke the BookQuery interface's getAuthor(), getEditor(),
or getPrice() method, passing the book title obtained from the remaining command-line arguments

as its parameter. The BookInfo object that is returned is then printed. To supply command-line
arguments to this client using Ant, set the CLIENT_ARGS property from the command line and execute

the run-client target. To get the name of the editor of the book Java Swing, for example, use the

following command:

ant -DCLIENT_ARGS="http://localhost:8000/Books/BookQuery editor Java Swing"
run-client

This command produces the following result:

run-client:
 [java] NAME = [Java Swing]
 [java] Mike Loukides

The URL used in this command:

http://localhost:8000/Books/BookQuery

indicates that the method to be called belongs to the BookQuery interface of a web service deployed in

a web application called Books. The fact that such a simple and obvious address exists for this service

endpoint interface is determined by configuration information supplied among the deployment files for

this service, the details of which will be shown in Section 2.2.4, later in this chapter.[9]

[9] Almost all of the web service URLs that you'll see in this book use port number 8000, since

this is the default HTTP port for the web container in the J2EE 1.4 reference implementation. If
you are using the examples with the JWSDP, you should use port 8080 instead. In most cases,

however, you won't need to concern yourself with this difference because the Ant buildfile targets

that run the example applications handle this difference for you by obtaining the port number

from the jwsnutExamples.properties file.

In order to run the application client, the Ant buildfile sets up the appropriate CLASSPATH so that all of

http://localhost:8000/Books/BookQuery
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the JAR files that the JAX-RPC reference implementation relies on are available. The CLASSPATH
required to run a client application is larger than that required to compile it because it is necessary to

include the classes for a specific JAX-RPC implementation, whereas the compilation step requires only

the implementation-independent JAX-RPC API classes. If you are using the JWSDP, the complete set

of files required is quite large:

jaxrpc-api.jar jaxrpc-ri.jar saaj-api.jar saaj-ri.jar

activation.jar commons-logging.jar dom4j.jar mail.jar

jaxp-api.jar dom.jar sax.jar xalan.jar

xercesImpl.jar xsltc.jar

These JAR files can be found in various subdirectories of the JWSDP installation. In the case of the
J2EE 1.4 platform, the CLASSPATH needs only to include the lib\j2ee.jar file and a small number of

additional JAR files that can be found in the lib/endorsed subdirectory of the reference implementation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2 Programming with JAX-RPC

Now that you've seen a simple example of JAX-RPC programming, this section lifts the hood a little

and looks more closely at some of the details that were skimmed over in the first part of this chapter.
Although much of what follows is completely generic, it isn't possible to give a complete description of

JAX-RPC programming without going beyond the bounds of the specification, since there are certain

aspects of the programming model that vendors are permitted to implement in any convenient manner.

Where this is the case, we'll make it clear that what is being described is not covered by the

specification, and we'll use the JAX-RPC reference implementations in the J2EE 1.4 platform and the
JWSDP as typical examples.

2.2.1 The JAX-RPC Service Interface

Web service development with JAX-RPC begins either with the definition of the service itself as a Java

interface or by importing a service definition in the form of a WSDL document. In this chapter, for the
sake of simplicity, we consider only the first case and defer discussion of WSDL and of using WSDL

as the starting point for JAX-RPC development to Chapter 5 and Chapter 6, respectively. As noted
earlier, using Java to define the service endpoint interface is not sufficient if you want to publish the

service so that it can be used by clients written in other programming languages. In order to be truly

open, the service definition has to be exported as a WSDL document. However, using Java as the

definition language is convenient at this stage since we haven't yet described WSDL. Therefore, we
will continue to discuss JAX-RPC service definitions and the rules that apply to them in terms of their

bindings to the Java language for the rest of this chapter.

2.2.1.1 Interface method definitions

A Java web service endpoint interface must obey the following rules:

The interface must extend java.rmi.Remote.

Each interface method must declare that it throws java.rmi.RemoteException.

A method may additionally throw service-dependent exceptions, as long as they are checked

exceptions derived from java.lang.Exception.

Method name-overloading is permitted, subject to the usual rules of the Java language.

Service endpoint interfaces may be derived by extension from other interfaces.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Arguments passed to the methods of an endpoint interface are passed to the service implementation by
value. Where an argument is an object, its value is copied before being sent to the server. Return values

that are objects are newly created during the processing of the reply message from the server. The

copying and creation of objects in this way by the JAX-RPC runtime requires certain restrictions to be

placed on the types of objects that can be used as arguments and return values, as described in Section

2.2.1.4.

Service endpoint interface definitions cannot include static fields, and, as a result, constants declared
using the usual Java syntax (i.e., using the public static final modifiers) are not allowed.

2.2.1.2 Supported data types

JAX-RPC allows a limited range of data types to be used as method arguments or as the return value.
The types for which support is required by the JAX-RPC specification are listed in Table 2-3.

Table 2-3. Java data types that can be used as JAX-RPC method arguments and return values

Data type Description

Java primitive
types

boolean, byte, short,int, long, float, double

Wrapper classes

for Java primitive

types

Boolean, Byte, Short, Integer, Long, Float, Double

Standard Java

classes

The specification requires support for the following:

java.lang.String

java.util.Calendar

java.util.Date

java.math.BigDecimal

java.math.BigInteger

Value types

Arbitrary classes that meet certain conditions can be used as method arguments

and return types. The BookInfo class is an example of a value type. See Section

2.2.1.4 for further details.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data type Description

Holder classes

Holder classes may be used as method arguments to provide a form of "pass by

reference" semantics that is not directly supported by the Java programming

language. See Section 2.2.1.3 for further information.

Arrays
Single- and multidimensional arrays, in which the elements are all JAX-RPC-

supported types, can be used both as method arguments and for the return value.

Implementations may also provide built-in support for additional types, use of which would, of course,
reduce the vendor-independence of a JAX-RPC web service. The reference implementation, for

example, allows the use of the following collection classes from the java.util package:

ArrayList

HashMap

HashSet

Hashtable

LinkedList

Properties

Stack

TreeMap

TreeSet

Vector

If you need to use data types that are not directly supported by JAX-RPC, you can do so by creating a
custom serializer and deserializer that together convert an object of that type to and from its XML

representation. However, the current JAX-RPC specification does not provide a framework for creating

serializers and deserializers that are portable between different JAX-RPC implementations; therefore,

using this feature may compromise your ability to port your service to a different JAX-RPC

implementation-that is, between application servers from different vendors.

Support is not provided for the passing of objects by remote reference in the manner of RMI. Objects
used as method arguments and return values are therefore not permitted to implement the

java.rmi.Remote interface, which is necessary to implement object-by-reference semantics, since the

SOAP 1.1 specification does not provide the support required for true remote method invocation.

There is little difference between the use of a Java primitive type such as int and its object wrapper, so

that the following method declarations are both valid:

Holder classes

Holder classes may be used as method arguments to provide a form of "pass by

reference" semantics that is not directly supported by the Java programming

language. See Section 2.2.1.3 for further information.

Arrays
Single- and multidimensional arrays, in which the elements are all JAX-RPC-

supported types, can be used both as method arguments and for the return value.

Implementations may also provide built-in support for additional types, use of which would, of course,
reduce the vendor-independence of a JAX-RPC web service. The reference implementation, for

example, allows the use of the following collection classes from the java.util package:

ArrayList

HashMap

HashSet

Hashtable

LinkedList

Properties

Stack

TreeMap

TreeSet

Vector

If you need to use data types that are not directly supported by JAX-RPC, you can do so by creating a
custom serializer and deserializer that together convert an object of that type to and from its XML

representation. However, the current JAX-RPC specification does not provide a framework for creating

serializers and deserializers that are portable between different JAX-RPC implementations; therefore,

using this feature may compromise your ability to port your service to a different JAX-RPC

implementation-that is, between application servers from different vendors.

Support is not provided for the passing of objects by remote reference in the manner of RMI. Objects
used as method arguments and return values are therefore not permitted to implement the

java.rmi.Remote interface, which is necessary to implement object-by-reference semantics, since the

SOAP 1.1 specification does not provide the support required for true remote method invocation.

There is little difference between the use of a Java primitive type such as int and its object wrapper, so

that the following method declarations are both valid:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public void methodName(int value) throws RemoteException;
public void methodName(Integer value) throws RemoteException;

However, the second form makes it possible to use null as a distinguished value that might be of

special significance to the method being invoked. Similarly, a method that is declared to return a
wrapper object can also return a null value. So, for example, if a service interface method were

defined to return the number of copies of a named book that a publisher has in stock in the form of an

Integer, a return value of null could be reserved to mean that the book title is not recognized, as an

alternative to throwing an exception.

Notice that the list of supported types in Table 2-3 does not include java.lang.Object. This means

that it is not possible to define an operation with an argument or return type whose runtime type is not
specified. This restriction is, however, relaxed in the reference implementation, making it possible (if

portability is not an issue) to use a method defined like this:

public Object sendAnObject(Object arg);

However, even though arg is declared as being of type Object, its runtime type must still be one of
those listed in Table 2-3, or a type for which a custom serializer has been created. The same restriction

applies to the return value. When using this feature, it is important to realize that the actual runtime

type of the argument used by the sender is not known by the receiver. Hence, in some cases, the object
that is delivered to the service implementation class may not be of the same type as the one supplied by

the client application. This situation can arise when more than one data type uses the same
representation in the XML messages that are exchanged by the client and the service. Consider the

following example:

Object result = stub.sendAnObject(new Date());

This method call requires that a Date object be transmitted to the server. However, JAX-RPC maps

both the Date class and the GregorianCalendar class to the XML schema data type xsd:dateTime,

which is what therefore appears in the SOAP message that the client sends. Lacking any specific type

information, the server-side JAX-RPC runtime has to choose which representation to use for an
xsd:dateTime element in an incoming message. In the reference implementation, it happens to be the

case (at least at the time of this writing) that it chooses to create a GregorianCalendar object and not

the Date object that was originally supplied. This results in a ClassCastException if the service class

implementation assumes that it will receive a Date object. This feature should, therefore, be used only

with great caution.

As mentioned earlier, all objects used as method arguments or return values need to have an associated

serializer so that they can be converted to and from their XML representations during the method call.
JAX-RPC supplies serializers for the data types listed in Table 2-3. Therefore, in most cases, when the

method signature specifies the actual object type, the JAX-RPC runtime system can arrange for

appropriate serializers to be available to the stubs and ties that are generated from the interface

definition. However, when you declare a method that uses Object as an argument or return value, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

actual type will not be known until runtime; therefore, the required set of serializers cannot be created
from the endpoint interface definition alone. The same is true if the method signature references an

abstract class, an interface type, or in the case where a method is declared to use a base class (such as

Calendar) but is actually passed an instance of a derived class (such as GregorianCalendar). In these

examples, the developer must list the actual types that are used at runtime in a configuration file used

when the stubs and ties are generated. This topic is covered in more detail in Chapter 6.

Method arguments and return values may be single- or multidimensional arrays of any supported JAX-
RPC data type. Note, however, that because a JAX-RPC method call operates on a copy of its

argument, assignment to a member of an array does not have the same effect as it would in the case of a

local call. Suppose, for example, that you want to define a method in a service endpoint interface that

reverses the order of the elements in an array of integers. In the case of a local call, the following code

accomplishes this:

public void reverse(int[] values) {
 for (int i = 0; i < values.length/2; i++) {
 int temp = values[i];
 values[i] = values[values.length - 1 - i];
 values[values.length - 1 - i] = temp;
 }
}

If this method is called like this:

int[] values = new int[] {1, 2, 3, 4, 5};
reverse(values);

then the order of elements in the values array is reversed in-situ, because the reverse() method has

direct access to the array. If this same method is included in a service endpoint interface and called

from a client application, the elements of the array are reversed on the server, but this has no effect on

the client's copy. One way to implement this functionality in JAX-RPC is to return the re-ordered array:

public int[] reverse(int[] values) {
 for (int i = 0; i < values.length/2; i++) {
 int temp = values[i];
 values[i] = values[values.length - 1 - i];
 values[values.length - 1 - i] = temp;
 }
 return values;
}

and invoke the method like this:

int[] values = new int[] {1, 2, 3, 4, 5};
int[] reversedValues = reverse(values);

so that the JAX-RPC runtime returns (a copy of) the server's reversed integer array from the reverse(

) method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2.1.3 Holder classes

Although Java itself does not provide pass-by-reference semantics for method call arguments, JAX-

RPC includes a set of holder classes that can be used to simulate something similar to pass-by-
reference arguments. The set of standard holder classes, which reside in the javax.xml.rpc.holders

package, is shown in the following table:

BigDecimalHolder BigIntegerHolder BooleanHolder

BooleanWrapperHolder ByteArrayHolder ByteHolder

ByteWrapperHolder CalendarHolder DoubleHolder

DoubleWrapperHolder FloatHolder FloatWrapperHolder

IntegerWrapperHolder IntHolder LongHolder

LongWrapperHolder ObjectHolder QNameHolder

ShortHolder ShortWrapperHolder StringHolder

Each of the supported JAX-RPC data types has its own holder class. The name of the holder class for a

Java primitive type is formed by taking the type name, capitalizing the first letter, and appending
Holder so that, for example, an IntHolder is a class that holds a value of type int. The corresponding

object wrapper classes use a similar naming convention, except that they append

WrapperHolder

instead of Holder. Therefore, the holder class for an object of type java.lang.Integer is called

IntegerWrapperHolder.

All of the holder classes implement the javax.rpc.xml.holders.Holder interface. This interface is

simply a marker to indicate that classes that implement it are holders-it does not declare any methods.

Instead, holders follow a coding pattern, exemplified by the public API of the IntHolder class,
which consists of two constructors and a public field:

public int value;
public IntHolder();
public IntHolder(int value);

The value associated with the holder is held in the value field, where it can be set before a method call

and retrieved when the call completes. The initial value can also be set at construction time. If the no-
argument constructor is used, the associated value will be zero, or false for a Boolean value. In the case

of an object-value holder such as IntegerWrapperHolder, the default value is null.

Holder classes provide another way to implement the reverse() method shown in the previous

section. Recall that, since the array of ints passed to this method is passed by copy, we declared the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

method to return an array of ints so that we could retrieve them in reverse order. In fact, what we
really need is to provide copy-by-reference semantics for the integer array, so that the service can

(appear to) update it in-place. This is exactly the purpose of a Holder class. However, since there is no

standard Holder for an array of integers, we need to define one. The code for this very simple class is

shown in Example 2-7.

Example 2-7. A custom holder class for an array of integers

import javax.xml.rpc.holders.Holder;

/**
 * A class that acts as a holder for an array of integers.
 */
public class IntArrayHolder implements Holder {

 // The actual int[] value
 public int[] value;

 // Constructs an IntArrayHolder with a null value
 public IntArrayHolder() {
 }

 // Constructs an IntArrayHolder initialized with the given array
 public IntArrayHolder(int[] value) {
 this.value = value;
 }
}

To make use of this holder, replace the reverse() method in the service endpoint interface definition

with the following:

public void reverse(IntArrayHolder holder);

Then, provide the following code in the service implementation:

public void reverse(IntArrayHolder holder) {
 int[] values = holder.value;
 for (int i = 0; i < values.length/2; i++) {
 int temp = values[i];
 values[i] = values[values.length - 1 - i];
 values[values.length - 1 - i] = temp;
 }
}

Aside from the change in the method signature, the only difference between this implementation and

the original is that the integer array containing the values to reverse is obtained from the values field

of the holder, rather than directly as a method argument. Notice that, since the array is updated in-situ,
there is no need to change the values field at the end of the method call or to return a value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The client-side code to invoke this method is also very simple:

int[] values = new int[] {0, 5, 10, 15, 20};
IntArrayHolder holder = new IntArrayHolder(values);
bookQuery.reverse(holder);
values = holder.value; // NOTE THIS LINE (SEE BELOW)
for (int i = 0; i < values.length; i++) {
 System.out.println(values[i]);
}

The line of code shown in bold is very important in this example. Although an IntArrayHolder passes

an array of integers to the JAX-RPC runtime and allows another array holding the results of the method

call to be passed back, the returned array is not actually the one that was originally supplied. The JAX-
RPC runtime creates a new array to contain the method call results and assigns it to the value field of

the Holder object. This is necessary in the general case because the returned integer array need not

contain the same number of elements as the one supplied; therefore, reuse of the original array is not

possible.

All of the standard holder classes and our custom IntArrayHolder store the
associated value in a public field. When implementing custom holders, it is very

important to use the name value for this field, since the stubs generated by the

reference implementation use this name to access the content of the holder.

Holder classes are used by the JAX-RPC runtime to represent parameters with "out" or "in-out"

semantics (also known as parameter modes) in code generated from a web service described by a

WSDL document. See Chapter 5 for a description of WSDL and Chapter 6 for further discussion of

parameter modes.

2.2.1.4 Value types

Although you cannot use arbitrary Java classes as method arguments without writing a custom
serializer and deserializer, JAX-RPC does provide support for the use of value types, which are classes

having the following characteristics:

This class has a public, no-argument constructor. It may also have other constructors for the use

of application code, but these will not be used by the JAX-RPC runtime.

The class may be derived by extending any other class, may contain static and instance methods,

and may implement any Java interfaces apart from java.rmi.Remote or any interface that has

java.rmi.Remote as an ancestor.

The class may contain static fields and instance fields that are public, protected, package private,

or private. Each of these fields must be either another value type (allowing nesting of value types

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to any depth), a type for which a custom serializer or deserializer is available, or one of the other
supported JAX-RPC types listed in Table 2-3.

It might at first appear that almost any Java class could be considered to be a value type. However, the

important point about these objects is that, when used as method arguments or a return value, JAX-

RPC only copies those parts of the object state that it can get access to, either directly or by using

accessor and mutator methods. When a call involving a value-type argument is made, the following

steps are taken:

The accessible state of the object is extracted and included as part of the SOAP message sent to

the server-side JAX-RPC runtime.

1.

The server-side JAX-RPC runtime creates an instance of the value type using its public, no-
argument constructor, then uses the values in the received message to initialize the object state

either by writing directly to public fields or using mutator methods for those fields that are not

public.

2.

The same process is used when a method has a return value that is a value type object or its argument
list includes a Holder class that references one. Therefore, in order for an element of the object state to

be transferred from the client to the server, it must satisfy one of the following requirements:

It must be a public, nonfinal, and nontransient static or instance field. Clearly, a final field does

not need to have its state copied because it is fixed and will be set either when the class is first
loaded (for static state) or before or during execution of the constructor. Transient state is not

transferred because, by definition, it is not required to be preserved during the process of object

transfer by serialization and deserialization.

If the field is not public, it must have both an accessor and a mutator method that can be used to

retrieve and set its value. These methods must follow the usual JavaBeans naming conventions.

The BookInfo class used in the book web service example and shown in Example 2-4 is an example of
a value type. Here, all of the instance fields are private, but their values can be obtained for inclusion in

the message sent from the client by calling the accessor methods getTitle(), getAuthor(),

getEditor(), and getPrice(), and can be set in the object passed to the service implementation

using the mutator methods setTitle(), setAuthor(), setEditor(), and setPrice(). When the

state of the the object is being set from a received message, the order in which the mutator methods are
called is undefined; therefore, care should be taken when implementing the value type to ensure that

there are no unintended side-effects resulting from the order in which the mutator methods are invoked.

The requirement that the JAX-RPC runtime be able to set these values means that value type classes

must have mutator methods, even though this might not be desirable from the point of view of the

object model. The BookInfo class is a case in point, since we would prefer that it were an immutable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

object from the client's viewpoint, but the JAX-RPC runtime requires the presence of mutator methods.

The case in which a class has both a public field and a pair of accessor and mutator methods that
correspond to a JavaBeans property that has the same name is considered to be an error:

public class ValueType {
 public int value; // Error - name clash. OK if not public.

 public int getValue() {
 return value;
 }

 public void setValue(int value) {
 this.value = value;
 }
}

In the reference implementation, this error is detected when the stub and tie classes are being generated,

and results in an error message from the generation process.

When a value type is derived from another (non-Object) class, all of the public and nonpublic fields
accessible via public accessor and mutator methods, both in the value type class itself and all of the

classes in its inheritance hierarchy, are included in the state transferred between the client and the
server.

2.2.1.5 Inner classes

The JAX-RPC specification does not mention the subject of inner classes, but the reference

implementation supports their use, provided that they are declared as static. For example, suppose you

want to extend the book web service so that the BookInfo object contains a type value that indicates
whether the subject matter of the book is most closely related to the J2EE, J2SE, or J2ME platform. To

do this, you might subclass the value type BookInfo to create a new class called ExtendedBookInfo,

for example, that contains the new book type attribute, and then extend the service endpoint interface

definition to provide a method that returns instances of the subclass instead of BookInfo itself. Since

the book type is a constant that can have only a limited number of fixed values, it is natural to define it
as a static inner class of ExtendedBookInfo and then define three static constants that represent the

three types. Example 2-8 shows how this might be implemented.

Example 2-8. Using an inner class with JAX-RPC

public class ExtendedBookInfo extends BookInfo {

 // The type of this book
 private BookType bookType;

 public ExtendedBookInfo() {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 public ExtendedBookInfo(String title, String author, String editor,
 double price, BookType bookType) {
 super(title, author, editor, price);
 this.bookType = bookType;
 }

 public BookType getBookType() {
 return bookType;
 }

 public void setBookType(BookType bookType) {
 this.bookType = bookType;
 }

 // Inner class -- must be static and a value type
 public static class BookType {

 public static final BookType J2EE_TYPE = new BookType("J2EE");
 public static final BookType J2SE_TYPE = new BookType("J2SE");
 public static final BookType J2ME_TYPE = new BookType("J2ME");

 private String type;

 public BookType() {
 }

 public BookType(String type) {
 this.type = type;
 }

 public String getType() {
 return type;
 }

 public void setType(String type) {
 this.type = type;
 }

 public String toString() {
 return type;
 }

 public int hashCode() {
 return type.hashCode();
 }

 public boolean equals(Object o) {
 return o instanceof BookType &&
 type.equals(((BookType)o).type);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
}

Here, BookType is the inner class that represents the type of the book. This class defines three constant

values: BookType.J2EE_TYPE, BookType.J2SE_TYPE, and BookType.J2ME_TYPE, which can be passed
to the ExtendedBookInfo constructor or its setBookType() method to associate the type with a book.

The important points to note about this class are:

It is a public, static inner class.

It is a value type and therefore must have a public, no-argument constructor and accessor and

mutator methods for the type property, which is a human-readable description of the type.

This class also overrides the equals() and hashCode() methods inherited from Object so that

expressions like this are possible:

ExtendedBookInfo info =; // Get an instance (not shown)
if (info.getBookType().equals(ExtendedBookInfo.BookType.J2ME_TYPE)) {
 // This is a J2ME book...
}

Note that the following plausible alternative does not work:

if (info.getBookType() == ExtendedBookInfo.BookType.J2ME_TYPE) {

because the value returned by the getBookType() method is an instance created by the JAX-RPC
runtime on receipt of a reply message and not the constant instance defined in the BookType class. In

general, the direct comparison of objects returned by JAX-RPC method calls should be avoided and

equals() used instead.

2.2.1.6 Other data types

In addition to those already covered in this section, JAX-RPC provides mechanisms for the use of two
other classes of data types:

Data that can be represented using a MIME encoding. Objects of this type are carried as an
attachment in the SOAP messages that implement the remote procedure call.

XML documents or fragments of XML documents. Arbitrary XML fragments can be passed as

method arguments or as a method return value using classes provided by the SAAJ API, which is

covered in Chapter 3.

The JAX-RPC API that allows these data types to be used is discussed in Chapter 6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2.2 Converting the Service Interface Definition to Client-Side Stubs

The JAX-RPC specification does not specify how service endpoint interface definitions are converted

into the stubs and ties required by the JAX-RPC runtime. It also doesn't place any constraints on how

the stubs and ties operate. Both the conversion mechanism and the resulting classes are, therefore,
entirely dependent on the JAX-RPC implementation that you use. We have already seen (in Section

2.1.2.3 earlier in this chapter) that the client code is dependent on the names of the generated stub
classes. Although the design of portable stubs is an aim for a future revision of the specification, at the

present time, if you want to change your JAX-RPC software vendor, you need to regenerate the stubs

(for the client application) and modify your client code. In this section, we assume that you are using
the JAX-RPC reference implementation.[10]

[10] As well as being vendor-dependent, stubs and ties are specific to the underlying messaging

service and transport protocol in use. The stubs created by the reference implementation work
only for SOAP 1.1 messages carried by HTTP 1.1. If support is provided at some future point for

alternatives, then using a different communications infrastructure would involve creating and

linking different stubs and ties, even if the same JAX-RPC implementation is used.

The reference implementation provides a command-line utility called wscompile that, given either a
WSDL file or a service endpoint interface definition written in Java, can generate the following:

The compiled class files and, optionally, the Java source files, for the stubs required to interface
with the reference implementation's client-side JAX-RPC runtime.

The compiled class files and, optionally, the corresponding source files, for the ties required by
the JAX-RPC server-side runtime, together with configuration information that is used to link

these artifacts to the web or EJB container that will dispatch incoming service requests. In

practice, however, wscompile is usually not used directly to create these artifacts. Instead, for the

J2EE 1.4 platform, they are created using either the deploytool or j2eec utilities, whereas the

JWSDP provides a different utility called wsdeploy. For further information on generating ties,
refer to Section 2.2.4.

If the service is presented as a Java interface (as is the case in this chapter), a WSDL file that is

equivalent to the interface definition.

If the service is presented in the form of a WSDL document (as will be the case for some of the

examples in Chapter 6), the Java interface definition that corresponds to the service endpoint that

it defines, together with Java classes for any value-type objects that it references.

A model file that describes the service in an internal form that can be processed more quickly than

either compiled Java class files or WSDL documents. Having created a model file using
wscompile, you can use it next time you run wscompile for improved performance. Model files

can also be used when creating the server-side artifacts, as you'll see later.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The wscompile utility has many command-line arguments, which are described in detail in Chapter 8.

You need only to use a small number of these to create the client-side stubs. The following command

line generates the stubs, compiles them, and places them below the directory output, which must

already exist:

wscompile -gen:client -d output/client -classpath classpath config-file

The classpath argument is a colon-separated (for Unix) or semicolon-separated (for Windows) list of

JAR files or directories that contain the class file for the endpoint interface definition for which the
stubs are to be generated and any supporting classes on which they depend. In most cases, this

argument contains a single directory name, since it is desirable to keep all of the classes that make up

the interface in the same package. The actual name of the class that represents the endpoint interface is
specified in the configuration file given as the last argument to wscompile and described next.

The command line just shown creates the source files for the stubs in a temporary location and deletes

them once they are compiled. You can arrange to retain the Java source files for inspection by using the
-keep argument and supplying the name of the directory below which they will be placed (which must

already exist), using the -s argument:

wscompile -gen:client -keep -s generated/client -d output/client

 -classpath classpath config-file

The Ant buildfile for the example shown in this chapter provides a target called generate-client that

runs wscompile to create the client stubs and retains the Java source files for inspection so that you can

get a feel for how they work. The generated source files and the class files are stored in directories that

make clear that they are client-side artifacts. The pathnames of these directories, relative to the
installation directory of the example source code, are:

Java source code chapter2\bookservice\generated\client

Compiled class files chapter2\bookservice\output\client

The format of the configuration file required by wscompile depends on whether it is being given a

WSDL document, a model file, or a service defined by Java interfaces as its starting point. You'll find a

complete specification of this file in Chapter 8. The configuration information for the book web service
can be found in the file chapter2\bookservice\config.xml. The content of this file is shown in Example

2-9, in which the line numbers shown on the left are for reference purposes only and do not exist in the

file itself.[11]

[11] The use of the name config.xml for this file is consistent with the naming conventions used by

the documentation supplied with the JWSDP, but it is only a convention. You can choose any

name you like for this file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 2-9. wscompile configuration file for the book web service

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <configuration xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
3 <service name="BookService"
4 targetNamespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"
5 typeNamespace="urn:jwsnut.chapter2.bookservice/types/BookQuery"
6 packageName="ora.jwsnut.chapter2.bookservice">
7
8 <interface name="ora.jwsnut.chapter2.bookservice.BookQuery"/>
9 </service>
10 </configuration>

The outermost element of this file, called configuration, specifies that this is a wscompile

configuration file, the format of which is defined by the XML schema document that can be found at

the URL http://java.sun.com/xml/ns/jax-rpc/ri/config. If you want to look at this document offline and
have installed the JWSDP tutorial, you'll find a copy in the file

docs\tutorial\examples\jaxrpc\common\jax-rpc-ri-config.xsd. If you are not familiar with XML schema
documents, you can find a tutorial at http://www.w3c.org/TR/xmlschema-0, or else pick up a copy of

XML Schema, by Eric van der Vlist (O'Reilly). Since XML schema files and the data types defined by

the W3C XML schema documents are used extensively by JAX-RPC, it is advantageous to have at
least some familiarity with this subject.

The configuration element may contain one of the following nested elements:

service

Defines a web service in terms of Java interface definitions

wsdl

Defines a web service using a WSDL document

modelfile

Defines a web service from a model file

In this chapter, we look only at the use of the service element, which has four associated attributes

that are listed in Table 2-4. Typical values for these attributes are shown in Example 2-9.

Table 2-4. Attributes of the config.xml service element

http://java.sun.com/xml/ns/jax-rpc/ri/config
http://www.w3c.org/TR/xmlschema-0
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute name Description

name

The name to be used for the web service. This value of this attribute determines

the names of some of the generated files, including the Java source file that

represents the service itself. By convention, this name is also part of the URL

used to reference the web service and, in the example code used in this book, it is
also the name of the WAR file used to deploy the server-side components.

targetNamespace

The XML namespace that will be used in the generated WSDL file for the names

associated with the service itself, the port type (i.e., the endpoint interface
definition), the operations (i.e., the methods), and the definitions of the SOAP

messages exchanged by the client and service JAX-RPC runtimes. This

namespace also appears in the code that is generated by wscompile. It is

important that the value of this attribute is set correctly - see Section 2.2.7.5 at

the end of this chapter for more information.

typeNamespace

This is the XML namespace that will be used in the generated WSDL file for any
data types that are declared by the web service definition. In the book service

example, BookInfo is an example of a data type that would be associated with
this namespace. It is important that the value of this attribute is set correctly -

see Section 2.2.7.5 at the end of this chapter for more information.

packageName

The name of the Java package in which the classes generated by wscompile for
the service itself will be placed (see Table 2-5). The stub classes generated from

the endpoint interface definition appear in the same package as the service

endpoint interface and are therefore not affected by this setting. In the book web

service example, we use ora.jwsnut.chapter2.bookservice, which is the
same package used by the endpoint interfaces; therefore, all of the generated

classes appear in the same package.

The service element must have a nested interface element. An interface element may have

several attributes, of which only the name attribute is mandatory.[12] This attribute gives the the fully
qualified name of the Java class that contains the service endpoint interface definition, and, in the case

of the web service, it has the value ora.jwsnut.chapter2.bookservice.BookQuery.

[12] Refer to Chapter 8 for a more complete desccription of the elements and attributes in the

wscompile configuration file.

Using this book's example source code, type the following command:

ant generate-client

This runs wscompile to generate the client-side stubs, writing the Java source files to the directory

chapter2\bookservice\generated\client and the compiled class files to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

chapter2\bookservice\output\client. As noted before, we deliberately place client-related files in a
separate directory hierarchy from those related to the interface definition and the service

implementation so that you can easily see which files relate to which part. Below these directories, the

files are arranged according to their package location. Since the interface class (shown in Example 2-3)

is in the package ora.jwsnut.chapter2.bookservice and the packageName attribute in the config.xml

file (shown on line 6 of Example 2-9) has the same value, all of the generated source files will be in the
directory chapter2\bookservice\generated\client\ora\jwsnut\chapter2\bookservice, while the compiled

classes will be written to chapter2\bookservice\output\client\ora\jwsnut\chapter2\bookservice. If you

examine the set of files created, you will find that there are several different groupings, a selection of

which are shown in Table 2-5.

Table 2-5. Some of the client-side source files generated by wscompile

Source Generated files

Service BookService.java

 BookService_Impl.java

 BookService_SerializerRegistry.java

Exception BookServiceException_SOAPSerializer.java

 BookServiceException_SOAPBuilder.java

Value type BookInfo_SOAPSerializer.java

 BookInfo_SOAPBuilder.java

BookQuery interface BookQuery_Stub.java

 BookQuery_getAuthor_RequestStruct.java

 BookQuery_GetAuthor_ResponseStruct.java

 BookQuery_getAuthor_RequestStruct_SOAPBuilder.java

 BookQuery_GetAuthor_ResponseStruct_SOAPBuilder.java

 BookQuery_getAuthor_RequestStruct_SOAPSerializer.java

 BookQuery_GetAuthor_ResponseStruct_SOAPSerializer.java

 BookQuery_getBookCount_RequestStruct.java

 BookQuery_GetBookCount_ResponseStruct.java

 BookQuery_getBookCount_RequestStruct_SOAPSerializer.java

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Source Generated files

 BookQuery_GetBookCount_ResponseStruct_SOAPSerializer.java

If you choose a different package name for the packageName attribute in the
config.xml file, only the three service-related files shown in Table 2-5 will be

generated in that package. The package location for all of the other files is

determined by the package lines in the Java interface definitions themselves.

2.2.3 The Client-Side JAX-RPC API

Most of the files in Table 2-5 handle the details of interfacing with the JAX-RPC runtime to convert
client method calls to SOAP messages and extract the return value, if there is one, from the reply

message. To use the client-side JAX-RPC API, you need only to concern yourself with the service-
related files and the stubs.

The file BookService.java contains the definition of an interface that represents the book web service

itself. In other words, it corresponds directly to the service element in the wscompile configuration

file. The content of this file is shown in Example 2-10.

Example 2-10. The BookService.java file, generated by xrpcc

package ora.jwsnut.chapter2.bookservice;

import javax.xml.rpc.*;

public interface BookService extends javax.xml.rpc.Service {
 public ora.jwsnut.chapter2.bookservice.BookQuery getBookQueryPort();
}

The BookService interface extends javax.xml.rpc.Service, which, despite its name, is actually a

JAX-RPC client-side interface. Most of the methods of the Service interface are concerned with the

details of the dynamic invocation interface (DII), which will be covered in Chapter 6. The single
generated method in the BookService interface allows you to get a reference to the stub object for the

endpoint interface for this service. The value returned by the getBookQueryPort() method is of type

ora.jwsnut.chapter2.bookservice.BookQuery, which corresponds to the service endpoint interface

itself, rather than the actual runtime type of the generated stub. This makes the code that uses the stub

more portable, since it does not need to refer to the stub class using an implementation-dependent

name.

When writing an application, you need to get a reference to the stub. In order to get one, you need an

object that implements the BookService interface so that you can call its getBookQueryPort()

method. The only way to get such an object is to instantiate BookService_Impl, which is another class

generated by wscompile that implements the BookService interface. This is unfortunate, because the

 BookQuery_GetBookCount_ResponseStruct_SOAPSerializer.java

If you choose a different package name for the packageName attribute in the
config.xml file, only the three service-related files shown in Table 2-5 will be

generated in that package. The package location for all of the other files is

determined by the package lines in the Java interface definitions themselves.

2.2.3 The Client-Side JAX-RPC API

Most of the files in Table 2-5 handle the details of interfacing with the JAX-RPC runtime to convert
client method calls to SOAP messages and extract the return value, if there is one, from the reply

message. To use the client-side JAX-RPC API, you need only to concern yourself with the service-
related files and the stubs.

The file BookService.java contains the definition of an interface that represents the book web service

itself. In other words, it corresponds directly to the service element in the wscompile configuration

file. The content of this file is shown in Example 2-10.

Example 2-10. The BookService.java file, generated by xrpcc

package ora.jwsnut.chapter2.bookservice;

import javax.xml.rpc.*;

public interface BookService extends javax.xml.rpc.Service {
 public ora.jwsnut.chapter2.bookservice.BookQuery getBookQueryPort();
}

The BookService interface extends javax.xml.rpc.Service, which, despite its name, is actually a

JAX-RPC client-side interface. Most of the methods of the Service interface are concerned with the

details of the dynamic invocation interface (DII), which will be covered in Chapter 6. The single
generated method in the BookService interface allows you to get a reference to the stub object for the

endpoint interface for this service. The value returned by the getBookQueryPort() method is of type

ora.jwsnut.chapter2.bookservice.BookQuery, which corresponds to the service endpoint interface

itself, rather than the actual runtime type of the generated stub. This makes the code that uses the stub

more portable, since it does not need to refer to the stub class using an implementation-dependent

name.

When writing an application, you need to get a reference to the stub. In order to get one, you need an

object that implements the BookService interface so that you can call its getBookQueryPort()

method. The only way to get such an object is to instantiate BookService_Impl, which is another class

generated by wscompile that implements the BookService interface. This is unfortunate, because the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JAX-RPC specification does not require the name of the implementation class for the service interface
to be formed by adding _Impl to the service interface name as it is in this case-it recommends only

that it should be. As a result, the code required to access the service is dependent on a particular JAX-

RPC implementation:

// Get a reference to the stub and set the service address
BookService_Impl service = new BookService_Impl();

The client-side JAX-RPC API includes an interface called ServiceFactory,
which is intended to allow Service objects to be created without requiring prior

knowledge of the implementation class involved. Ideally, it should be possible to
obtain a Service object by calling a method of ServiceFactory, passing it the

name of the service that you require. Unfortunately, this works only if your

service is described by a WSDL document, or if you want to use the dynamic
invocation interface; ServiceFactory is of no use when using statically created

client-side stubs. The ServiceFactory interface is described in Chapter 6.

Given an instance of the Service implementation class, you can get a reference to an object that

implements the service endpoint interface:

BookQuery bookQuery = (BookQuery)service.getBookQueryPort();

Using this reference, you can call any of the methods of the BookQuery interface:

String editorName = bookQuery.getEditor(bookTitle);

However, this does not work yet, because nowhere have you told the JAX-RPC runtime how to connect

to the host containing the service implementation. In order to do this, you have to configure the stub.

As well as implementing the methods of service endpoint interface, the stub returned by the

getBookQueryPort() method implements the interface javax.xml.rpc.Stub, which is part of the
client-side JAX-RPC API.[13] This interface is particularly simple, consisting of only three methods:

[13] In fact, the object returned by the getBookQueryPort() method is an instance of the

generated BookQuery_Stub class that was listed in Table 2-5.

public interface Stub {
 public abstract Object _getProperty(String name) throws JAXRPCException;
 public abstract Iterator _getPropertyNames();
 public abstract void _setProperty(String name, Object value)
 throws JAXRPCException;
}

These methods allow a Stub to be configured using a set of properties, a small number of which are
defined by the JAX-RPC specification and are therefore portable across different JAX-RPC

implementations. Vendors are also permitted to define their own properties, which the application code

may use at the risk of reducing application portability. The names of the standard properties, which are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

described in Table 2-6, are all constants defined by the Stub interface.

Table 2-6. Standard Stub properties

Property name Type Description

ENDPOINT_ADDRESS_PROPERTY String

The address of the service to which the stub should

connect. The format of this address depends on the

protocol used to carry the messages to the server.

SESSION_MAINTAIN_PROPERTY Boolean

Specifies whether the client wishes to enter into and

maintain a session with the service endpoint. By default,
this property is false and session management is not

performed. Refer to Section 6.7 in Chapter 6 for more
information on the use of this property.

USERNAME_PROPERTY

PASSWORD_PROPERTY
String

These properties can be used to specify a username and

password if the server requires client authentication.
Support for basic HTTP authentication is required by the

specification when HTTP is used as the underlying

message transport mechanism. Authentication is described
in more detail in Section 6.7.6.

The _getPropertyNames() method returns an Iterator whose values are the names of the properties

for which the stub has configured values. The _getProperty() method returns the value associated

with a single named property, while _setProperty() changes a given property's value. The last two

methods throw a JAXRPCException if they detect an error, which might be caused by one of the
following:

Using an invalid property name.

Attempting to associate a value with a property that is not of the type expected by that property.

Attempting to associate a value with a property that is of the correct type but is illegal for some
other reason. Note, however, that not all property values are necessarily verified at the time that

they are set. For example, the value of the ENDPOINT_ADDRESS_PROPERTY might not be checked by

the _setProperty() method because its validity can only be determined by attempting to use it.

In this case, an illegal value instead leads to an exception during the invocation of a remote

method.

JAXRPCException is defined in the javax.xml.rpc package. It may have an associated error message
and/or refer to another Throwable that describes the initial cause of an error. These values can be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

obtained using the getMessage() and getLinkedCause() methods, respectively. Since
JAXRPCException is a RuntimeException, application code is not obliged to catch and handle it.

The address of the service to which the Stub should connect is configured by setting the property

ENDPOINT_ADDRESS_PROPERTY, the value of which must be a String. The way in which the address is

interpreted depends on the transport mechanism and the implementation of the server-side JAX-RPC

runtime. The book web service application client avoids any knowledge of the format of the address by

obtaining it from the command line and then calling the _setProperty() method of the Stub object
obtained from the getBookQueryPort() method to configure it:

((Stub)bookQuery)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, args[0]);

You'll see how the appropriate value for the address is actually constructed in the next section.

2.2.4 The Server-Side Implementation

As you saw earlier in this chapter, the server-side implementation of the book web service is not at all

dependent on JAX-RPC - it is simply a set of classes, one of which implements the methods of the
BookQuery interface. In fact, there really isn't very much that can be termed a server-side JAX-RPC

API. The javax.xml.rpc.server package, which contains what API there is, consists only of two
interfaces, both of which deal with accessing the servlet environment from which the methods of the

servant class will be invoked. Neither of these interfaces is relevant to a web service hosted by an EJB,

so there really is no service-side JAX-RPC API at all for EJB-hosted services. Since the book web

service (which is initially implemented within a servlet) doesn't need to access the servlet environment,

we defer discussion of the javax.xml.rpc.server package to Chapter 6.

2.2.4.1 Server-side architecture

In order to understand how a JAX-RPC service is deployed, it is useful to review how the methods of

the service implementation class are invoked by the server-side JAX-RPC runtime. Figure 2-10 shows

the server-side architecture for the case in which the service is deployed in a web container. The

alternative, in which the service is provided by a stateless session bean, is covered separately in Section

2.3 later in this chapter.

Figure 2-10. The server-side JAX-RPC runtime environment as implemented in a web container

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAP messages for a service deployed in a web container are handled first by a servlet that is

registered to receive HTTP requests directed to URLs that begin with the context path of the web
application in which the service is deployed, plus an additional part that identifies the web service

itself. The way in which these URL parts are determined depends on the details of the deployment,

which are described in Section 2.2.5. For example, the URL for the book web service, when deployed

on the J2EE 1.4 platform using deployment information supplied with the example source code, is

http://localhost:8000/Books/BookQuery. Here, the context path is Books and the part of the URL that
corresponds to the book web service itself is BookQuery. In terms of Figure 2-10, the entire URL maps

to the single servlet instance shown at the top-left of the diagram, within the Books web application.

On receipt of a SOAP message, the servlet locates the generated tie class for the service endpoint

interface and passes it the message, from which the tie extracts the name of the method to be invoked,

together with the XML-encoded representations of its parameters. The tie decodes the method

parameters and uses them to invoke the target method of the servant class. The return value and any
output parameters are then encoded into XML and used to build a reply message that the servlet returns

to the calling client.

The JAX-RPC specification does not describe in detail how the servlet itself is to be implemented.
Vendors are free to provide their own implementation or may generate one during the deployment

process. The information that determines the URL of the servlet is provided at deployment time, along

with details that allow the servlet to find the service endpoint interface, the tie class, and the service
implementation class. The information required to deploy a web service on the J2EE 1.4 platform is

defined by the J2EE Web Services specification (JSR 109). There is no formal specification that covers
other possible deployment targets (such as the Tomcat web container with the JWSDP, which defines

its own set of deployment files as described in Section 2.2.7).

2.2.4.2 Service implementation threading model

If a servlet receives a client request for a web service while that service is already handling an earlier
request, it needs to decide whether to dispatch the new request immediately or to defer it until handling

of the existing request is completed. The JAX-RPC specification does not define what should happen

in this case, but there is a precise definition for the case in which the web service is deployed on the

J2EE 1.4 platform. The rules are as follows:

Service hosted by a servlet on the J2EE 1.4 platform

In this case, the behavior depends on whether the servant class implements the

javax.servlet.SingleThreadModel interface. If it does not, the servlet may dispatch the
request immediately to an existing instance of the servant class. As a result, there may be

multiple threads of execution within the servant class at any given time, and it must therefore be

implemented in a thread-safe manner. On the other hand, if the servant class implements

SingleThreadModel, the servlet ensures that only one thread of execution is active in any one

http://localhost:8000/Books/BookQuery
http://lib.ommolketab.ir
http://lib.ommolketab.ir

instance of the servant class. It may do this by serializing all requests through a single instance of
the class or by creating as many instances as are necessary to service all outstanding requests

(probably subject to a maximum number of instances) and dispatch each request to a dedicated

instance.

Service hosted by a stateless session bean on the J2EE 1.4 platform

Like all EJBs, stateless session beans are inherently single-threaded, and therefore the container

must ensure that only one web service request at a time is active within any given EJB. Should
another request be received while an earlier one is active, the container may choose to create a

new instance of the bean to service the request, or may queue the request for later processing by

an existing instance.

Service hosted by the JWSDP in a Tomcat web container

The JWSDP behaves as if the servant class did not implement the SingleThreadModel interface.

In other words, all requests are dispatched to a single servant instance, which must therefore be
implemented so that it is thread-safe.

An important point to note is that the servant class, whether it is hosted in a servlet or a stateless

session bean, cannot hold client-specific state in its instance variables. Attempting to do so would lead

to undefined effects, since the same instance might be used first to service a method call from one

client and then to handle a call from another client, thereby changing the state created for the first

client. Alternatively, if the server-side implementation adopts a pooled model, two successive method
calls from the same client might be dispatched to different instances of the servant class, which would

also result in the client state set up by the first method called being unavailable for the second call. The

bottom line is that all operations in web service interfaces must supply all the necessary information as

method parameters, and the operation cannot have any side effects.[14]

[14] In fact, as we'll see in Chapter 6, it is possible to use HTTP sessions to pass client-specific

state between a JAX-RPC client and the servant class, provided that the service is hosted in a web
container. There is no such facility for EJB-hosted web services.

2.2.5 Deployment of a JAX-RPC Service in a Web Container

To deploy a servlet-hosted web service, create a web archive (WAR) file containing the classes and

resources required to define a J2EE web application.[15] The files that you might expect to have to

place in this archive include:

[15] The deployment of a web service hosted by an EJB is described separately in Section 2.3 later
in this chapter.

The Java class file for the service endpoint interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Java class files for the service implementation and any resources that it relies on, such as the
booklist.txt file

A web.xml file that contains deployment information for the web application

The class files for the JAX-RPC tie classes

The responsibilty for creating the files in the first three categories lies with the developer. However, the

generated tie classes are dependent on a specific JAX-RPC implementation, so, if you create a WAR

file that includs them, you would only be able to deploy the file into a container hosting the JAX-RPC
implementation used to generate them. In order to clearly separate the duties of the application

developer or assembler from those of the person performing the actual deployment, the process is
actually divided into two steps:

The developer or application assembler creates an archive that contains the components that have
no dependency on the JAX-RPC runtime. The result of this step is a portable WAR file.

1.

The deployer processes the portable WAR file to create a separate, implementation-specific

archive or archives that can be deployed into a specific web container. This processing is

performed by a tool provided by the vendor of the target JAX-RPC environment.

2.

The details of both of these steps depend on whether your deployment target is the J2EE 1.4 reference
implementation (or a commercial product derived from it) or a Tomcat web container hosting the

JWSDP. These two cases are described separately in the following sections.

In the case of the book web service, the content of the portable WAR file includes those files listed in

Table 2-7, which are clearly not dependent on the deployment platform.

Table 2-7. Content of the portable WAR file for the book web service

Category Filename

Service

Definition
WEB-INF/classes/ora/jwsnut/chapter2/bookservice/BookQuery.class

 WEB-INF/classes/ora/jwsnut/chapter2/bookservice/BookServiceException.class

 WEB-INF/classes/ora/jwsnut/chapter2/bookservice/BookInfo.class

Implementation WEB-INF/classes/ora/jwsnut/chapter2/bookservice/BookServiceServant.class

WEB-
INF/classes/ora/jwsnut/chapter2/bookservice/BookServiceServantData.class

In addition, the developer is required to include one or more files that contain information required by

the tools that will perform the actual deployment. The requirement to include these files appears to

make the archive nonportable. However, this is not strictly true, for the following reasons:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Category Filename

Resources WEB-INF/classes/ora/jwsnut/chapter2/bookservice/booklist.txt

In addition, the developer is required to include one or more files that contain information required by

the tools that will perform the actual deployment. The requirement to include these files appears to
make the archive nonportable. However, this is not strictly true, for the following reasons:

A portable archive that will eventually be deployed onto the J2EE 1.4 platform requires a set of
files that are defined by the J2EE Web Service specification. Such an archive is, therefore,

portable amongst all implementations of that specification. In practice, additional deployment
information will likely need to be supplied in vendor-specific files within the archive. As long as

these are named differently by each vendor, it should still be possible to create a single portable

archive that can be targeted at a range of J2EE 1.4 platform implementations by including the
additional vendor-specific files for all of them.

The JWSDP also requires additional deployment information. Unfortunately, at the time of this

writing, the JWSDP requires the developer to include in the portable WAR file a version of the
web.xml file that is not compatible with the requirements placed on the same file by J2EE 1.4. It

is therefore not practical to build a portable web archive that can be deployed both to a J2EE 1.4

platform and to a web container hosting the JWSDP reference implementation. In practice, it is
unlikely that the JWSDP will be used as a deployment target in production environments;

therefore, the incompatibility with J2EE 1.4 is not really important.[16]

[16] It happens to be the case that, despite the apparent incompatibility between J2EE 1.4 and

the JWSDP, it is possible to create a single web.xml file that can be used for both

deployments; therefore, a single portable WAR file can be built that is suitable for both.

However, after processing, the web.xml file in the deployable WAR file for the JWSDP

contains content that should not, strictly speaking, be legal, even though it happens to work
when deployed to the Tomcat web container. This should be considered good luck and

should not be relied upon in the real world.

As a result of the differences between these two cases, the deployment targets in the Ant buildfiles for

the example source code for this book can be used to build a portable WAR file that can be deployed

either to J2EE 1.4 or to the JWSDP (but not to both). The two deployment processes are described

separately in the next two sections.

2.2.6 Deploying a JAX-RPC Service onto the J2EE 1.4 Platform

Deployment of a JAX-RPC web service onto the J2EE 1.4 platform requires the creation of a portable

web archive and processing of that archive by utilities provided by the target platform. This section

Resources WEB-INF/classes/ora/jwsnut/chapter2/bookservice/booklist.txt

In addition, the developer is required to include one or more files that contain information required by

the tools that will perform the actual deployment. The requirement to include these files appears to
make the archive nonportable. However, this is not strictly true, for the following reasons:

A portable archive that will eventually be deployed onto the J2EE 1.4 platform requires a set of
files that are defined by the J2EE Web Service specification. Such an archive is, therefore,

portable amongst all implementations of that specification. In practice, additional deployment
information will likely need to be supplied in vendor-specific files within the archive. As long as

these are named differently by each vendor, it should still be possible to create a single portable

archive that can be targeted at a range of J2EE 1.4 platform implementations by including the
additional vendor-specific files for all of them.

The JWSDP also requires additional deployment information. Unfortunately, at the time of this

writing, the JWSDP requires the developer to include in the portable WAR file a version of the
web.xml file that is not compatible with the requirements placed on the same file by J2EE 1.4. It

is therefore not practical to build a portable web archive that can be deployed both to a J2EE 1.4

platform and to a web container hosting the JWSDP reference implementation. In practice, it is
unlikely that the JWSDP will be used as a deployment target in production environments;

therefore, the incompatibility with J2EE 1.4 is not really important.[16]

[16] It happens to be the case that, despite the apparent incompatibility between J2EE 1.4 and

the JWSDP, it is possible to create a single web.xml file that can be used for both

deployments; therefore, a single portable WAR file can be built that is suitable for both.

However, after processing, the web.xml file in the deployable WAR file for the JWSDP

contains content that should not, strictly speaking, be legal, even though it happens to work
when deployed to the Tomcat web container. This should be considered good luck and

should not be relied upon in the real world.

As a result of the differences between these two cases, the deployment targets in the Ant buildfiles for

the example source code for this book can be used to build a portable WAR file that can be deployed

either to J2EE 1.4 or to the JWSDP (but not to both). The two deployment processes are described

separately in the next two sections.

2.2.6 Deploying a JAX-RPC Service onto the J2EE 1.4 Platform

Deployment of a JAX-RPC web service onto the J2EE 1.4 platform requires the creation of a portable

web archive and processing of that archive by utilities provided by the target platform. This section

http://lib.ommolketab.ir
http://lib.ommolketab.ir

describes the steps required to deploy a service using the tools provided by this J2EE 1.4 reference
implementation.

2.2.6.1 Creating the portable WAR file

The portable WAR file for the J2EE 1.4 platform requires the files listed in Table 2-7, plus a number of

other files that contain deployment information. The content of these files is completely described by

the J2EE Web Services specification, so you can rely on the fact that the same files should work with

all conforming implementations. Vendors are, however, free to require additional information to be
provided in files that are specific to their own implementations of the J2EE 1.4 platform. To create the

deployable WAR file for the book web service, use the command:

ant portable-web-package

which results in an archive called Books-portable.war being created in the directory
chapter2\bookservice.

The required deployment files are listed in Table 2-8.

Table 2-8. Deployment files required by the J2EE 1.4 platform

File Description

WEB-INF/web.xml

Maps web application URLs to the servlets hosting the web service and

contains environment settings and parameters for those servlets, together
with security constraints that may be used to restrict access only to

authorized users.

WEB-
INF/webservices.xml

Describes the web services contained in the archive and how they map to
servlets or EJBs.

WSDL files Definitions for each web service in the webservices.xml file.

Mapping file
Defines the mapping from the WSDL definition of the web services to the

Java classes that implement the service.

The easiest way to describe these files is to look at those used to deploy the book web service. The

web.xml file for this service is shown in Example 2-11 and a copy of it, together with the other

deployment files, can be found in the directory chapter2\bookservice\deploy-j2ee14 relative to the

book's example source code.

Example 2-11. The web.xml file for the book web service for deployment on the J2EE 1.4 platform

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app>
 <display-name>JAX-RPC Book Service</display-name>
 <description>JAX-RPC Book Service</description>
 <servlet>
 <servlet-name>BookQueryServlet</servlet-name>
 <servlet-class>ora.jwsnut.chapter2.bookservice.BookServiceServant
 </servlet-class>
 <load-on-startup>0</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>BookQueryServlet</servlet-name>
 <url-pattern>/BookQuery</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
</web-app>

This is a standard web.xml file that declares a single servlet called BookQueryServlet, which can be

accessed using the path BookQuery relative to the context path of the web application itself. If the web
application is deployed with the context path Books, then the URL

http://localhost:8000/Books/BookQuery can be used to send SOAP messages to this web service. The

following rules apply to the servlet-mapping element in the web.xml file when the servlet it relates to

is the host for a J2EE web service.

It is not mandatory to include a servlet-mapping for the servlet. If this element is omitted, the

deployment tools will determine a suitable mapping and include the appropriate servlet-

mapping element in the deployed version of the web.xml file.[17]

[17] Although this requirement appears in the J2EE Web Services specification, at the time
of this writing it is not implemented in the J2EE 1.4 reference implementation.

If a servlet-mapping is specified, then the url-pattern must not be a wildcard path. In other

words, values such as /* and /BookQuery* are not valid.

Only one servlet-mapping may be specified for each servlet that hosts a web service.

Once the service is deployed, its URL is used to update the address element in the WSDL definition so

that clients can use this file to locate the web service. See Chapter 5 for a discussion of WSDL files and

the addressing information that they contain.

http://localhost:8000/Books/BookQuery
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The servlet name assigned using the servlet-name tag should be unique within the web archive. It is
used to link the servlet to the ports in the webservices.xml file (shown later) for the service endpoint

interfaces that it hosts. The servlet-class element contains the name of the service implementation

class rather than a servlet class. At deployment time, this name is replaced by a reference to a servlet

provided or generated by the target container to create a valid web.xml file.

The portable WAR file must include a WSDL file that describes the web service being deployed. The

book service example used in this chapter is specified using a Java interface definition, so a WSDL
description is not immediately available. However, you can use the command-line utility wscompile to

create a suitable WSDL file, using a command line like the following:

wscompile -define -classpath output\interface -d output\server config.xml

where the config.xml file is as shown in Example 2-9, and gives the name of the service and the class
name of the Java interface that defines the service endpoint. The -classpath option points to the

directory beneath which the compiled interface class file can be found. The WSDL file is written to the

directory supplied with the -d option and is typically copied to the root directory or the WEB-INF
directory of the portable archive. The exact location of this file within the archive is not critical because

it is specified in the webservices.xml file.

The webservices.xml file contains definitions for the web services that appear in the portable WAR file.
The content of this file for the book service is shown in Example 2-12. This file must reside in the

WEB-INF directory of the archive. For a complete description of the elements that may appear in this

file, refer to Chapter 8.

Example 2-12. The webservices.xml file for the book web service

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE webservices
 PUBLIC "-//IBM Corporation, Inc.//DTD J2EE Web services 1.0//EN"
 "http://www.ibm.com/standards/xml/webservices/j2ee/j2ee_web_services_1_0.dtd">

<webservices>
 <webservice-description>
 <webservice-description-name>JAX-RPC Book Service
 </webservice-description-name>
 <wsdl-file>BookService.wsdl</wsdl-file>
 <jaxrpc-mapping-file>WEB-INF/model</jaxrpc-mapping-file>
 <port-component>
 <port-component-name>BookQueryPort</port-component-name>
 <wsdl-port>
 <namespaceURI>urn:jwsnut.chapter2.bookservice/wsdl/BookQuery
 </namespaceURI>
 <localpart>BookQueryPort</localpart>
 </wsdl-port>
 <service-endpoint-interface>ora.jwsnut.chapter2.bookservice.BookQuery

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </service-endpoint-interface>
 <service-impl-bean>
 <servlet-link>BookQueryServlet</servlet-link>
 </service-impl-bean>
 </port-component>
 </webservice-description>
</webservices>

A WAR file may contain implementations of any number of web services; for each, there is a

corresponding webservice-description element in the webservices.xml file. Each such element must

contain at least the following child elements:

wsdl-file

Points to the WSDL document that describes the web service represented by the containing
webservice-description element. The value of this element is a path that is taken to be relative

to the root of the archive. There is no fixed location for this file. In Example 2-12, the WSDL

definition is in a file called BookService.wsdl located in the root of the archive. It is not necessary

to include a leading "/" to indicate that the path begins with the archive root.

jaxrpc-mapping-file

A file that describes a mapping between the WSDL definition and the Java interfaces that
represent the service endpoints of the web service. There is no fixed name or location within the

web archive for this file. Its content is used by the deployment tools when creating the tie and

serializer classes for the deployed web service. This is a complex file that is described in more

detail in Chapter 8. In the simplest cases, it is only necessary to indicate how the namespaces

within the WSDL file for the service are mapped to Java packages. The J2EE 1.4 reference
implementation allows a model file to be supplied instead of a JAX-RPC mapping file. This is

convenient, because a model file can be generated automatically from either a Java interface

definition or a WSDL file. The examples in this book all take advantage of this feature in order

to minimize the work required to deploy a web service on the J2EE 1.4 platform. Vendor

implementations are not required to support this, but are likely to provide a tool that will allow a
default mapping file to be created with minimal effort. In Example 2-12, the jaxrpc-mapping-

file element points to a model file held within the WEB-INF directory of the archive.

port-component

A webservice-description element must contain a port-component element for each port in

its associated WSDL file. A mismatch between the set of ports in the WSDL file and the port-

component elements in webservices.xml causes an error at deployment time. Recall from the

beginning of this chapter that a port represents a binding of a service endpoint interface to a
particular combination of messaging and transport protocols at a specific transport address. The

child elements of the port-component element contain the information necessary to identify the

WSDL port and the way in which it is implemented within the web container.

The port-component element has several optional child elements that allow the inclusion of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

descriptive information, plus an optional handler element that allows SOAP message handlers to be
configured. (SOAP message handlers are an advanced feature that is described in Chapter 6.) The

following child elements must appear exactly once, in the following order, in each port-component

element:

port-component-name

Provides a name for the port. This name is not necessarily related to the name port that appears

within the WSDL definition for the web service, but it must be unique among all port-

component elements in the webservices.xml file.
wsdl-port

Specifies the port within the WSDL definition that the port-component is associated with, in

terms of the port name and its namespace URI (refer to Example 2-12). The quickest way to

determine the values to be used within this element is to locate the definition of the port in the
WSDL file and transcribe the name and namespace URI from there.

service-endpoint-interface

Gives the fully qualified Java class name of the class that represents the service endpoint
interface.

service-impl-bean

This element is the link from the port definition to its actual implementation. The service-

impl-bean element must contain either a nested servlet-link or a nested ejb-link element,

depending on whether the service is hosted within a servlet or a stateless session bean. In the

former case, the value of the servlet-link element is the servlet-name of a servlet defined in
the web.xml file in the same web archive. In Example 2-12, for instance, this element has the

value BookQueryServlet, which indicates that the web service is hosted by the servlet of the

name defined in the web.xml file shown in Example 2-11. This, in turn, means that the URL

associated with this port will be /BookQuery relative to the context path of the web application.

For a description of the alternative ejb-link element, refer to Section 2.3, later in this chapter.

Note that the J2EE Web Services specification requires that only one port-component element be
associated with any particular servlet, which means that one servlet can only implement a single service

endpoint interface.

2.2.6.2 Deploying the JAX-RPC service

Once you have a portable WAR file, there are several ways to deploy it to a J2EE application server.

The most direct approach is to use the -deployModule option of the deploytool utility:

deploytool -server localhost -deployModule -id Books Books-portable.war

This command causes the web service in the file Books-portable.war to be deployed on the application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

server running on localhost. During the deployment, the appropriate tie classes are generated and the
linkage between the servlet, the tie classes, and the web service implementation class (as shown in

Figure 2-10) are created. The id argument supplies the context path of the web application hosting the

web service, so that the BookQuery port of the service is available at the URL

http://localhost:8000/Books/BookQuery. This method also works if the portable WAR file is wrapped

into an Enterprise Archive (EAR) in order to allow EJBs to be deployed at the same time.

As an alternative, you can perform the deployment in two stages. The first step uses the j2eec utility to
create the ties required by the web service and saves them in a separate JAR file, along with the

appropriate serializers, the client-side stubs, and the generated Service class for the service:

j2eec -o Books-generated.jar Books-portable.war

The second step uses the deploytool -deployGeneratedModule option to complete the deployment:

deploytool -server localhost -deployGeneratedModule -id Books
Books-portable.war Books-generated.jar

The -deployGeneratedModule option differs from -deployModule in that it requires a JAR file

containing the pregenerated ties to be supplied as a command-line argument, whereas the -
deployModule option generates the ties each time it is used. During development, it may be faster to

use the -deployGeneratedModule option because it avoids the overhead of tie class generation for

each deployment, provided that you don't change the web service interface in any way that would
require a change in the generated classes.

2.2.7 Deploying a JAX-RPC Service with the JWSDP

This section describes the steps needed to deploy a JAX-RPC web service into a web container hosting

the JWSDP reference implementation. Before attempting to deploy the book web service into the

JWSDP, you should edit the jwsnutExamples.properties file in your home directory so that the

USING_JWSDP property is set, as described in Examples Online in the Preface. These settings determine
how the Ant buildfile targets perform the deployment.

2.2.7.1 Creating the portable WAR file

As noted earlier, the portable WAR file for the JWSDP is portable only between implementations of

the JWSDP. To create a portable WAR file for the book web service, with chapter2\bookservice as

your working directory, type the command:

ant portable-web-package

which creates a file called Books-portable.war in the same directory. If you look at the content of this

file, you'll find that it contains the three files shown in Table 2-9 in addition to those listed in Table 2-

http://localhost:8000/Books/BookQuery
http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.

Table 2-9. Additional portable WAR files required for JWSDP deployment

Name Description

WEB-INF/web.xml Web application deployment descriptor

WEB-INF/jaxrpc-ri.xml JWSDP-specific deployment information

WEB-INF/model Model file generated by wscompile

A web.xml file typically contains information that describes the servlets that make up a web
application, together with the URL mappings for those servlets. It may also contain initialization

parameters and security constraints that must be applied to protect some or all of the web application's

resources. The web.xml file for the book web service example, which can be found in the directory
chapter2\bookservice\deploy, is shown in Example 2-13.

Example 2-13. The web.xml file for the book web service for deployment with the JWSDP

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app>
 <display-name>JAX-RPC Book Service</display-name>
 <description>Book Service Web Application using JAX-RPC</description>
</web-app>

As you can see, this file contains only a description of the web application. Information relating to the

deployment of the service, such as the servlet to use and the URL mapping, is not included. Instead, the
JAX-RPC reference implementation in the JWSDP generates this information based on the content of

the jaxrpc-ri.xml file when it creates the deployable WAR file.

In most cases, it would not be strictly necessary to include a model file in the portable archive. If you

choose not to do so, then during the process of creating a deployable WAR file, a WSDL definition for

the service is created based on the Java interface that defines the service endpoint, whereas if the model

file is included in the archive and referenced from the jaxrpc-ri.xml file (as shown next), the WSDL
definition is built from the information in the model file. The difference between these two approaches

is as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the model file is used, the service name in the WSDL file is as specified to wscompile, which in
this case is BookService. If it is not specified, the service name is the name of the Java interface

file-in this case, BookQuery. In many cases, this is not significant, because it is not visible to a

client that uses statically generated stubs. It may be considered relevant if, as will be shown in

Chapter 6, the client stubs are created from the WSDL definition rather than from the Java

interface definition, since the name of the service class will not match that used in the static
client.

In some cases, it is essential to include the model file because the Java interface definition alone

does not convey everything about the way in which the service should behave. Some examples of

this will be given in Chapter 6.

All of the JAX-RPC examples in this book include the model file in the deployable web archive.

2.2.7.2 Creating a deployable WAR file

To create a deployable WAR file for deployment in the JWSDP, use a command-line utility called

wsdeploy. The basic form of this command requires only the names of the portable WAR file and
deployable WAR file that is to be created:

wsdeploy -o targetFileName portableWarFileName

You'll find a more complete description of wsdeploy in Chapter 8. To create the deployable WAR file

for the book web service, you can use the web-package target of the Ant buildfile:

ant web-package

This command writes its output to the file chapter2\bookservice\Books.war. Note that, despite its

name, the wsdeploy command simply creates the deployable WAR file and does not actually deploy it

to an application server.

The process of creating the deployable archive is driven mainly by the content of the jaxrpc-ri.xml file,

which is described later. The archive will contain the following:

The class files and resources that were supplied in the portable WAR file.

A compiled class file for the implementation-dependent tie required by the service endpoint

interface. In the case of the BookQuery interface, this class is called BookQuery_Tie.

Compiled class files for the serializers required to encode the method calls and data types used by

the service into SOAP messages and to decode them. These files are the same as those created by
wscompile when generating the client-side stubs. This makes sense, because each serializer

contains the code to both encode and decode a data type or an RPC message; therefore, the same

classes can be used by both the client and the server.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A WSDL file that describes the web service in a form that can be used by other developers to

create clients that can use the service. This file is placed in the WEB-INF directory of the archive

and is created either from the Java interface representing the service endpoint or from the model
file, if it is included.

A copy of the JAX-RPC model file for the service, placed in the WEB-INF directory. This is

either a copy of the model file that is included in the portable archive or, if it is not included, a

compressed binary file built by inspecting the Java service interface definition. For the book web

service, if this file is generated by wsdeploy, it would be called BookQuery_model.xml.gz. For

more information on the use of a model file, refer to the description of the wscompile command in
Chapter 8.

A modified version of the web.xml file.

A file called jaxrpc-ri-runtime.xml, which is based on the content of the jaxrpc-ri.xml file

supplied in the portable WAR file.

When the web service is deployed as a web application, SOAP messages addressed to the URLs that

correspond to the application will be delivered to a servlet (as shown in Figure 2-10) based on a
servlet-mapping element in the web.xml file. This element, together with the name of servlet itself,

was not supplied in the original web.xml file shown in Example 2-13, but is added by wsdeploy.
Example 2-14 shows the version of web.xml that appears in the deployable archive.

Example 2-14. The modified web.xml file included in the Books.war file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">
<web-app>
 <display-name>JAX-RPC Book Service</display-name>
 <description>Book Service Web Application using JAX-RPC</description>
 <listener>
 <listener-class>com.sun.xml.rpc.server.http.JAXRPCContextListener
 </listener-class>
 </listener>

 <servlet>
 <servlet-name>BookQuery</servlet-name>
 <display-name>BookQuery</display-name>
 <description>JAX-RPC endpoint - BookQuery</description>
 <servlet-class>com.sun.xml.rpc.server.http.JAXRPCServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>BookQuery</servlet-name>
 <url-pattern>/BookQuery</url-pattern>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </servlet-mapping>
</web-app>

The servlet element causes a servlet called JAXRPCServlet (which is part of the JWSDP reference

implementation) to be loaded when the web application is started, while the servlet-mapping element
causes all URLs that have the string BookQuery immediately following the context part, such as

http://localhost:8080/Books/BookQuery, to be delivered to it. The web.xml file does not, of course,

contain the information that the servlet will need to locate the correct tie and servant classes for the

web service, which will be needed in order to handle SOAP messages. This information is supplied in

the jaxrpc-ri.xml file, which the developer creates and includes in the portable WAR file. The content
of this file, as used to deploy the book web service, is shown in Example 2-15.

Example 2-15. The jaxrpc-ri.xml file for the book web service

<?xml version="1.0" encoding="UTF-8"?>
<webServices
 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/dd"
 version="1.0"
 targetNamespaceBase="urn:jwsnut.chapter2.bookservice/wsdl/"
 typeNamespaceBase="urn:jwsnut.chapter2.bookservice/types/">

 <endpoint
 name="BookQuery"
 displayName="BookQuery Port"
 description="Book Query Port"
 model="/WEB-INF/model"
 interface="ora.jwsnut.chapter2.bookservice.BookQuery"
 implementation="ora.jwsnut.chapter2.bookservice.BookServiceServant"/>

 <endpointMapping
 endpointName="BookQuery"
 urlPattern="/BookQuery"/>
</webServices>

The webServices element in this file may contain any number of endpoint elements, followed by any

number of endpointMapping elements.[18] Each endpoint element describes a single service endpoint

interface that will be managed by the servlet. The name attribute provides a symbolic name that links it

to an endpointMapping element that has an endpointName attribute with the same value. When such
an endpointMapping element exists, its urlPattern attribute is used to create the url-pattern

element of the servlet-mapping for the service endpoint in the web.xml file, which in this case is

/BookQuery. If more than one endpoint is included in the webServices element, then there will be a

servlet-mapping in the web.xml file for each of them. This means that more than one web service can

be managed by a single servlet.

[18] The targetNamespaceBase and typeNamespaceBase attributes of the webServices element
are not described here, because they are not relevent to this discussion. They are, however,

covered in Section 2.2.7.5, later in this chapter.

http://localhost:8080/Books/BookQuery
http://lib.ommolketab.ir
http://lib.ommolketab.ir

It is not necessary to include an endpointMapping element for each endpoint element. If you choose

not to provide such an element, however, you must add an additional attribute to the webServices

element that will be used to create the URL pattern for that endpoint. Example 2-16 shows an
alternative to the jaxrpc-ri.xml file shown in Example 2-15 that does not use an endpointMapping

element.

Example 2-16. A jaxrrpc-ri.xml file with no endpointMapping element

<?xml version="1.0" encoding="UTF-8"?>
<webServices
 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/dd"
 version="1.0"
 targetNamespaceBase="urn:jwsnut.chapter2.bookservice/wsdl/"
 typeNamespaceBase="urn:jwsnut.chapter2.bookservice/types/"
 urlPatternBase="/base">

 <endpoint
 name="BookQuery"
 displayName="BookQuery Port"
 description="Book Query Port"
 model="/WEB-INF/model"
 interface="ora.jwsnut.chapter2.bookservice.BookQuery"
 implementation="ora.jwsnut.chapter2.bookservice.BookServiceServant"/>
</webServices>

Since there is no endpointMapping element corresponding to the BookQuery endpoint element,

wsdeploy uses the urlPatternBase attribute of the webServices element to create a default mapping
using the pattern:

urlPatternBase + '/' + endpoint name

In this case, this produces the result:

/base/BookQuery

Using this setup, assuming that the web application is deployed with the context path Books, a client

program needs to use the URL http://localhost:8080/Books/base/BookQuery to access the book web
service, instead of http://localhost:8080/Books/BookQuery. As you can see from Example 2-15, you

don't need to supply a value for urlPatternBase if every

endpoint

element has a matching endpointMapping.

Two other attributes in the endpoint element supply the other information that is required when

decoding a URL from a client request. The interface attribute names the Java service endpoint

interface that corresponds to the endpoint, while the implementation attribute provides the class name

http://localhost:8080/Books/base/BookQuery
http://localhost:8080/Books/BookQuery
http://lib.ommolketab.ir
http://lib.ommolketab.ir

of the servant class. When wsdeploy processes this file, it creates a modified version of the file (called
jaxrpc-ri-runtime.xml) that includes the name of the tie class that it generates for this endpoint (which

is the information that the servlet really needs, together with the servant class name). Example 2-17

shows the jaxrpc-ri-runtime.xml file generated for the book web service, with the interesting attributes

of the endpoint element highlighted in bold. Since this file is private to the JAX-RPC reference

implementation, its format may change at any time. Fortunately, you will never have to create one of
these files by hand.

Example 2-17. The jaxrpc-ri-runtime.xml file for the book web service

<?xml version="1.0" encoding="UTF-8"?>
<endpoints xmlns='http://java.sun.com/xml/ns/jax-rpc/ri/runtime' version='1.0'>
 <endpoint
 name='BookQuery'
 interface='ora.jwsnut.chapter2.bookservice.BookQuery'
 implementation='ora.jwsnut.chapter2.bookservice.BookServiceServant'
 tie='ora.jwsnut.chapter2.bookservice.BookQuery_Tie'
 model='/WEB-INF/BookQuery_model.xml.gz'
 wsdl='/WEB-INF/BookQuery.wsdl'
 service='{urn:jwsnut.chapter2.bookservice/wsdl/BookQuery}BookQuery'
 port='{urn:jwsnut.chapter2.bookservice/wsdl/BookQuery}BookQueryPort'
 urlpattern='/BookQuery'/>
</endpoints>

The jaxrpc-ri-runtime.xml file is placed in the WEB-INF directory of the deployable archive, where it

can be located and read by the servlet during initialization.

2.2.7.3 Deploying the service implementation

Once you have the deployable WAR file, there are several ways in which you can deploy it. The

context path associated with the web application that is created depends on the deployment method, as

described in the following paragraphs.

Manually

If you are using the JWSDP with the Tomcat web container, a manual deployment can be

performed by stopping the web server, copying the Books.war file into its webapps directory, and
then restarting the web server. This is all that is required to complete the deployment. Although

this is very simple, it is inconvenient because it involves manually stopping and starting the

server each time you make a change to the service. The context path for the web application in

this case is taken from the name of the web archive file with the .war suffix removed, and will

therefore be Books in this case.

Using the Ant buildfile

The Tomcat web server includes a built-in web application called manager that can be used to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

programmatically deploy another web application. The JWSDP includes Ant tasks that use the
manager application to automate the tasks of deployment and undeployment. The Ant buildfile

for the example source code provides targets called deploy,
undeploy

, and redeploy, that take advantage of these tasks, the use of which is described in Section 2.1.2.5,

earlier in this chapter. In this case, the context path for the web application is explicitly provided as a

parameter to the Ant task.

2.2.7.4 Special handling for the HTTP GET request

Although SOAP messages from JAX-RPC clients are sent using HTTP POST requests, it is worth

noting that JAXRPCServlet provides some useful behavior when it receives an HTTP GET request for
the URL corresponding to a service endpoint. The information returned in response to these requests is

intended for display in a browser and can be used to check that the service is properly deployed, or by

developers that need to get a copy of the WSDL document that describes your service.

If, for example, you point your browser at the URL for the book web service, you get the result shown
in Figure 2-11. You'll notice that the web page shown in the figure contains two further URLs that are

directly derived from the URL of the service itself:

Figure 2-11. Web page returned by a GET request on the book service URL

http://localhost:8080/Books/BookQuery?WSDL

Returns the WSDL document for the service. When you define a web service in terms of Java

interfaces, the WSDL is created and deployed for you by wsdeploy. In Chapter 6, you'll see how

to create the client stubs needed to allow a JAX-RPC client to access an existing web service

given a WSDL document that describes it. The result of using this URL was shown in Figure 2-9

earlier in this chapter.

http://localhost:8080/Books/BookQuery?model

http://localhost:8080/Books/BookQuery?WSDL
http://localhost:8080/Books/BookQuery?model
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Fetches a compressed binary file that contains an internal representation of the web service as
created by wsdeploy. As noted in Section 2.2.2, earlier in this chapter, you can supply the content

of this file to wscompile as another way to create the JAX-RPC client-side stubs for an existing

web service.

2.2.7.5 JWSDP configuration files and XML namespaces

If you compare the content of the config.xml file used to generate the client-side stubs in Example 2-9

with the jaxrpc-ri.xml file for the server-side deployment shown in Example 2-15, you'll notice that
they both have elements that contain namespace-related attributes. In the case of the config.xml file,

these attributes are associated with the service element:

<service name="BookService"
 targetNamespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"
 typeNamespace="urn:jwsnut.chapter2.bookservice/types/BookQuery"
 packageName="ora.jwsnut.chapter2.bookservice">

while in jaxrpc-ri.xml they appear with the webServices element:

<webServices
 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/dd"
 version="1.0"
 targetNamespaceBase="urn:jwsnut.chapter2.bookservice/wsdl/"
 typeNamespaceBase="urn:jwsnut.chapter2.bookservice/types/">

In Chapter 6, you'll see exactly how the namespaces specified by these attributes are used when

building the SOAP messages that are exchanged by the client and server. For now, it is important to
ensure that they specify consistent values-otherwise the server will not be able to decode messages

sent to it by the client.

The key to using the correct value is to start by choosing the values of targetNamespaceBase and

typeNamespaceBase in the jaxrpc-ri.xml file, which fixes their values for the server-side

implementation. A namespace can be any valid URI; here, we chose to use a URN that clearly indicates

that the service is part of the example source code for this chapter. By convention, the suffixes wsdl
and types are added to indicate the different uses that are made of these namespaces.

As their names imply, these attributes are just base values. When the ties and the WSDL document for

each service endpoint interface in the jaxrpc-ri.xml file are generated, wsdeploy appends the name of

the endpoint to each base name to create the namespace for that endpoint. For the BookQuery endpoint,

therefore (see the endpoint element in Example 2-15), the namespaces are:

Types namespace urn:jwsnut.chapter2.bookservice/wsdl/BookQuery

Target namespace urn:jwsnut.chapter2.bookservice/types/BookQuery

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that it is necessary to add the "/" to the targetNamespaceBase and typeNamespaceBase attributes

in the jaxrpc-ri.xml file in order for these names to be formed correctly.

These two namespace URIs are the ones that should be used for the targetNamespace and

typeNamespace attributes in the config.xml file. Another way to locate the correct namespace is to look

at the WSDL file that wsdeploy places in the deployable WAR file. In the case of book web service,

this file is called BookService.wsdl.[19] At the start of this file, you will find the following elements:

[19] This name is used only if you include a model file in the deployable web archive and
reference it from jaxrpc-ri.xml. If you do not, then the WSDL file will be called BookQuery.xml

and the name attribute in the definitions element will be BookQuery.

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="BookService"
 targetNamespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"
 xmlns:tns="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ns2="urn:jwsnut.chapter2.bookservice/types/BookQuery"
 xmlns:ns3="http://java.sun.com/jax-rpc-ri/internal">
 <types>
 <schema targetNamespace=
 "urn:jwsnut.chapter2.bookservice/types/BookQuery"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tns="urn:jwsnut.chapter2.bookservice/types/BookQuery"
 xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns="http://www.w3.org/2001/XMLSchema">

The correct values to use for the typeNamespace and targetNamespace attributes in the config.xml file

are given by the targetNamespace attributes of the schema and definitions elements, respectively. This

technique can also be used when you need to create a client to communicate with an existing service

for which you only have a WSDL definition. You'll find more about WSDL in Chapter 5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3 Using EJBs to Implement Web Services

So far, you have seen how to implement a web service and arrange for it to be hosted by a servlet in a

web container. J2EE 1.4 extends this model by allowing you to implement web services as stateless
session beans in the EJB container or, if you want to view it another way, to advertise the remote

interface of an existing stateless session bean as a web service, provided that the interface methods

meets the requirements of a JAX-RPC service endpoint interface.

2.3.1 Web Service Session Bean Requirements

Session beans typically have a combination of the following:

A remote interface that contains the service methods that remote clients can invoke. This interface
is required to extend javax.ejb.EJBObject.

A local interface that contains the methods available to clients that reside with the session bean.

This may be the same set of methods as those in the remote interface, but this is not required. The
local interface extends javax.ejb.EJBLocalObject.

A home interface that remote clients use to manage their view of the lifecycle of the session bean,

including obtaining an instance of it and releasing it when it is no longer required. The home

interface must extend javax.ejb.EJBHome and is required to exist if the session bean provides a

remote interface.

A local home interface, which is the equivalent of the home interface for clients that are local to
the bean and extends javax.ejb.EJBLocalHome. The local home interface is required only if the

bean provides a local interface.

An implementation class or classes that provide the bean's code. One of these classes is

considered to be the main implementation class of the bean and must implement the

javax.ejb.SessionBean interface.

Session beans that host web services must provide and implement a service endpoint interface like the

BookQuery interface defined for the book web service described in this chapter. This interface must, of
course, satisfy the usual JAX-RPC requirements described in Section 2.1.2.1, earlier in this chapter,

and will ultimately be published to clients in the form of a WSDL definition. The session bean may

also have remote and/or local interfaces and the corresponding home and local home interfaces.

However, a bean that is implemented simply in order to host a web service is not required to be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

accessible to either local or remote clients as an EJB and therefore is not required to provide the local
and remote interfaces (or their home interface counterparts). Thus, although it is possible to extend an

existing session bean so that it can be exposed as a web service by defining a service endpoint interface

that advertises some or all of its existing business methods, it is not necessary to invent a local or

remote interface or home interfaces for a new bean that is only intended to be used as a web service.

A web service session bean must provide a public no-argument constructor and all of the methods of

the SessionBean interface. As you'll see later in this section, if the bean is purely providing a web
service interface, most of these methods can be empty stubs. The bean must also provide

implementations of all of the methods in the web service endpoint interface. However, the bean

implementation class is not required to declare that it implements the endpoint interface.

2.3.2 EJB Web Service Programming Model

The lifecycle of a web service session bean is exactly the same as that of an ordinary stateless session

bean. When a web service client invokes one of its methods, the container creates an instance and
delegates the method invocation to it. Since the bean is stateless, the container is free to create a pool of

bean instances to which it directs web service method invocations as required. The lifecycle of the bean

is, therefore, decoupled from the lifecycle of the client applications that invoke its methods.

The overall lifecycle is as follows:

The container invokes the bean implementation class's zero-argument constructor.1.

The container calls the bean's setSessionContext() method, passing it a SessionContext

object that gives it access to the container environment.

2.

The container calls the bean's ejbCreate() method. Since the bean is created by the container
rather than in response to a create() call from a home interface, and there is no state available

that could be passed as method arguments, the bean is required to provide a zero-argument

ejbCreate() method.

3.

The container calls one or more methods from the web service endpoint interface as a result of

receiving and decoding SOAP messages from clients.

4.

After some time, the container may choose to destroy the bean instance. At this point, it calls its

ejbRemove() method, after which no further web service calls will be delegated to it.

5.

Eventually, the bean is garbage-collected. However, the implementation class is not permitted to
override the finalize() method and cannot, therefore, use this method to tidy up its state. Any

required cleanup should, therefore, be performed in the ejbRemove() method.

6.

The fact that the container calls the ejbCreate() and ejbRemove() methods makes it possible for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the bean to manage resources at the beginning and end of its lifecycle. By contrast, the implementation
class for a servlet-hosted bean does not have direct access to the lifecycle of that servlet, and therefore,

it must use its constructor and finalize() method to allocate and release resources unless it also

implements the optional ServiceLifecycle interface, which will be discussed in Chapter 6.

The container's call to the setSessionContext() method provides the bean with a SessionContext

object, which allows it access to its execution context, such as the java.security.Principal object

that identifies the caller of its service endpoint methods. A servlet-hosted service implementation must
implement the ServiceLifecycle interface to obtain the same information. Of course, the caller

identity is valid only if the container has authenticated the caller. For further discussion of this topic,

refer to Chapter 6. Note that the bean may not attempt to use the SessionContext getEJBHome() and

getEJBLocalHome() methods to access the home or local home interfaces if it does not define those

interfaces. Similarly, the bean may not call the getEJBObject() and getEJBLocalObject()
methods during the execution of the methods that implements its service endpoint interface. This

remains true even if the bean provides a local or remote client view outside the scope of its web service

role.

A web service implemented in a session bean can assume that it is single-threaded, since this restriction

applies to all session beans. EJB-based web services, therefore, have a slightly simpler programming

model than those hosted by servlets, where multithreading is the norm.

2.3.3 The Book Web Service Implemented as a Stateless Session Bean

It is extremely simple to convert the servant class for the book web service shown in Example 2-6 into

a session bean implementation of the same service. Since web service beans don't need to have home

interfaces or even remote interfaces, you need only to build the session bean class itself, although

nothing prevents you from providing these interfaces if you also want to expose your web service to
EJB clients. Example 2-18 shows part of the bean implementation class for the book web service.

Example 2-18. Implementing the book web service as a stateless session bean

package ora.jwsnut.chapter2.ejbbookservice;

import java.util.HashMap;
import javax.ejb.EJBException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import ora.jwsnut.chapter2.bookservice.BookInfo;
import ora.jwsnut.chapter2.bookservice.BookServiceException;

/**
 * Implementation class for the books web service
 * hosted by a stateless session bean.
 */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class BookServiceEJB implements SessionBean {

 private SessionContext sessionContext;

 /**
 * Provides the bean with access to state
 * from the container.
 */
 public void setSessionContext(SessionContext sessionContext)
 throws EJBException {
 this.sessionContext = sessionContext;
 }

 // SessionBean methods
 public void ejbCreate() throws EJBException {
 // Nothing to do in this example
 }

 public void ejbRemove() throws EJBException {
 // Nothing to do in this example
 }

 /**
 * Activation/passivations methods are also no-ops
 */
 public void ejbActivate() throws EJBException {
 }

 public void ejbPassivate() throws EJBException {
 }

 /**
 * Gets the number of books known to the service
 * @return the number of books known to the service.
 */
 public int getBookCount() {
 return BookServiceServantData.getBookInfo().length;
 }

 // All other code unchanged
}

As you can see, the BookServiceEJB class implements the SessionBean interface, which requires it to
provide the setSessionContext(), ejbActivate(), ejbPassivate(), and ejbRemove()

methods. In this case, there is nothing to do in any of these methods, although a more complex bean

might use the ejbRemove() method, for example, to deallocate any resources that the bean uses during

its lifecycle. In order to expose a session bean as a web service, it is also necessary to provide a no-

argument ejbCreate() method, which could be used to perform initial resource allocation or to use
JNDI to access configuration information specified in the ejb-jar.xml file and stored in the bean's

environment, but which in this case also does nothing. The rest of the code consists of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

implementation of the web service interface, which is not shown here because it is unchanged from
Example 2-6.

The bean also has to provide a service endpoint interface class, which defines its web service view and

provides the methods that its clients can use. In this case, the bean will simply reuse the BookQuery

interface as defined in Example 2-3. Note, however, that the BookServiceEJB class does not state that

it implements the BookQuery interface, because the Web Services for J2EE specification does not

require it to do so. As you'll see later in this chapter, the connection between the bean class and the
service endpoint interfaces that it implements is made in a deployment descriptor rather than in code.

As a matter of fact, the bean implementation of this service can refer to exactly the same compiled

class file for the service interface as the servlet-hosted variant. This means that a single application

client could load the same service endpoint interface class file to access either the servlet- or the

session bean-hosted variant of the service and not be able to tell them apart. More realistically,
however, a client application will not have access to the original class file created by the service

developer. Instead, it will use an interface class generated from the service's WSDL definition. Since

both implementations offer the same service interface, they can share the same WSDL definition;

therefore, no client that imports that definition will be aware of which implementation choice was

made by the service developer.

2.3.4 EJB Web Service Deployment

Of course, writing the code is not the end of the story - you also need to deploy the service, which

means creating the deployment descriptors and packaging them with the code. Writing deployment

descriptors is a tedious task that is best delegated to a tool. Nevertheless, it is useful to know what they

look like and how they depend on each other, so that you know where to look and what to expect
should anything go wrong with your deployment.

You can compile and deploy the web service EJB by making chapter2\ejbbookservice your working

directory and typing the command:

ant ejb-deploy

This command creates an EJB JAR file, wraps it in an Enterprise Archive, and deploys it to the J2EE

1.4 server. The EJB JAR file contains the files shown in Table 2-10.

Table 2-10. Files required to deploy the session bean-hosted book web service

File type File name

Service endpoint interface ora/jwsnut/chapter2/bookservice/BookInfo.class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

File type File name

 ora/jwsnut/chapter2/bookservice/BookQuery.class

 ora/jwsnut/chapter2/bookservice/BookServiceException.class

Bean implementation classes ora/jwsnut/chapter2/ejbbookservice/BookServiceEJB.class

 ora/jwsnut/chapter2/ejbbookservice/BookServiceServantData.class

 ora/jwsnut/chapter2/ejbbookservice/booklist.txt

WSDL file BookService.wsdl

Deployment information META-INF/ejb-jar.xml

 META-INF/mapping.xml

 META-INF/model

 META-INF/webservices.xml

Manifest file META-INF/MANIFEST.MF

The mapping.xml and model files perform the same function for the EJB as they did for the servlet-

hosted version of the service shown earlier in this chapter. The two files of most interest in the archive
are ejb-jar.xml and webservices.xml. The first file contains standard deployment information for a

stateless session bean, as shown in Example 2-19.

Example 2-19. ejb-jar.xml file for the book web service session bean

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar version="2.1"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd">
 <display-name>EJB Book Service</display-name>
 <enterprise-beans>
 <session>
 <ejb-name>BookQueryBean</ejb-name>
 <service-endpoint>ora.jwsnut.chapter2.bookservice.BookQuery
 </service-endpoint>
 <ejb-class>ora.jwsnut.chapter2.ejbbookservice.BookServiceEJB</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
</ejb-jar>

There are a couple of points worth noting in this file. First, since this bean offers only a web service

 ora/jwsnut/chapter2/bookservice/BookQuery.class

 ora/jwsnut/chapter2/bookservice/BookServiceException.class

Bean implementation classes ora/jwsnut/chapter2/ejbbookservice/BookServiceEJB.class

 ora/jwsnut/chapter2/ejbbookservice/BookServiceServantData.class

 ora/jwsnut/chapter2/ejbbookservice/booklist.txt

WSDL file BookService.wsdl

Deployment information META-INF/ejb-jar.xml

 META-INF/mapping.xml

 META-INF/model

 META-INF/webservices.xml

Manifest file META-INF/MANIFEST.MF

The mapping.xml and model files perform the same function for the EJB as they did for the servlet-

hosted version of the service shown earlier in this chapter. The two files of most interest in the archive
are ejb-jar.xml and webservices.xml. The first file contains standard deployment information for a

stateless session bean, as shown in Example 2-19.

Example 2-19. ejb-jar.xml file for the book web service session bean

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar version="2.1"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd">
 <display-name>EJB Book Service</display-name>
 <enterprise-beans>
 <session>
 <ejb-name>BookQueryBean</ejb-name>
 <service-endpoint>ora.jwsnut.chapter2.bookservice.BookQuery
 </service-endpoint>
 <ejb-class>ora.jwsnut.chapter2.ejbbookservice.BookServiceEJB</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
</ejb-jar>

There are a couple of points worth noting in this file. First, since this bean offers only a web service

http://lib.ommolketab.ir
http://lib.ommolketab.ir

interface, it does not require either a remote or a home interface, and therefore the elements of the
deployment descriptor that correspond to these classes have been omitted from ejb-jar.xml. Second, for

a web service bean, you have to include an additional element that declares the service endpoint

interface that the bean implements. The line containing the service-endpoint element appropriate for

this bean is highlighted in Example 2-19.

The content of the webservices.xml file for this archive is shown in Example 2-20.

Example 2-20. The webservices.xml file for the book web service session bean

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE webservices
 PUBLIC "-//IBM Corporation, Inc.//DTD J2EE Web services 1.0//EN"
 "http://www.ibm.com/standards/xml/webservices/j2ee/j2ee_web_services_1_0.dtd">

<webservices>
 <webservice-description>
 <webservice-description-name>EJB-Based JAX-RPC Book Service
 </webservice-description-name>
 <wsdl-file>BookService.wsdl</wsdl-file>
 <jaxrpc-mapping-file>META-INF/model</jaxrpc-mapping-file>
 <port-component>
 <port-component-name>BookQueryPort</port-component-name>
 <wsdl-port>
 <namespaceURI>urn:jwsnut.chapter2.bookservice/wsdl/BookQuery
 </namespaceURI>
 <localpart>BookQueryPort</localpart>
 </wsdl-port>
 <service-endpoint-interface>ora.jwsnut.chapter2.bookservice.BookQuery
 </service-endpoint-interface>
 <service-impl-bean>
 <ejb-link>BookQueryBean</ejb-link>
 </service-impl-bean>
 </port-component>
 </webservice-description>
</webservices>

This file is almost the same as that deployed with the version of the service shown in Example 2-12,

with the exception of the service-impl-bean element. Here, this element contains a nested ejb-link
element instead of the servlet-link that is used when the service is hosted by a servlet. The value

contained within the ejb-link element is the name of the session bean that provides the service and

must match the value of the ejb-name element in the ejb-jar.xml file in Example 2-19.

2.3.5 The EJB Web Service URL

To be accessible to a client, a web service must have a URL. A web service port implemented in a

servlet has a URL that is derived from that of the servlet itself, as described earlier in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Session beans, of course, do not have associated URLs. One of the steps required to deploy a session-
bean hosted web service, therefore, is to define the URL to be used to access the bean's web service

interface. The deployment tools and the container are responsible for ensuring that SOAP messages

sent to the assigned URL are decoded and converted to calls on the session bean's service endpoint

interface methods. Although the means by which this is achieved are container-dependent, a natural

implementation involves generating a servlet and registering it to respond to the bean's URL.

In the J2EE 1.4 reference implementation, the URL for a session bean-hosted web service is declared in
the file sun-j2ee-ri.xml, which is placed in the META-INF directory of the EAR file. The content of the

file used in the deployment of the book web service session bean is shown in Example 2-21.

Example 2-21. The sun-j2ee-ri.xml file for the book web service session bean

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE j2ee-ri-specific-information
 PUBLIC '-//Sun Microsystems Inc.//DTD J2EE Reference Implementation 1.3//EN'
 'http://localhost:8000/sun-j2ee-ri_1_3.dtd'>

<j2ee-ri-specific-information>
 <enterprise-beans>
 <module-name>EJBBooks.jar</module-name>
 <unique-id>0</unique-id>
 <ejb>
 <ejb-name>BookQueryBean</ejb-name>
 <gen-classes/>
 <webservice-endpoint>
 <port-component-name>BookQueryPort</port-component-name>
 <endpoint-address-uri>webservice/EJBBookQuery
 </endpoint-address-uri>
 </webservice-endpoint>
 </ejb>
 </enterprise-beans>
</j2ee-ri-specific-information>

The content of enterprise-beans element applies to a bean called BookQueryBean that will be found

in the file EJBBooks.jar within the EAR. This name matches the value of the ejb-name element in the

ejb-jar.xml file in the JAR, as shown in Example 2-19. The nested webservice-endpoint element
names the specific port of the web service for which the URL is to be defined and the URL itself, and

the value of the port-component-name element must match that of a port-component-name element

in the webservices.xml file in EJBBooks.jar (see Example 2-20). The URI given by the endpoint-

address-uri element is appended to the URL of the server itself to become the full URI of the web

service endpoint. To verify this, and to show that you can use the same web service client to access an
EJB-hosted web service and one implemented in a servlet, you can run the book service client shown

earlier in this chapter against the session bean by making chapter2\bookservice your working directory

and typing the command:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ant -DCLIENT_ARGS=http://localhost:8000/webservice/EJBBookQuery run-client

For the steps required to deploy a session-bean hosted web service to a different J2EE application
server and specify its URL, consult the server vendor's documentation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. SAAJ

In the last chapter, you saw how to use JAX-RPC to create web services based around the use of

remote procedure calls. Even though JAX-RPC uses an XML-based protocol, there was hardly any
XML in evidence in Chapter 2. For the most part, JAX-RPC does a very good job of hiding the details

of messages that are exchanged between a web service and its client during a remote procedure call.

However, most of the more advanced JAX-RPC features require an understanding of SOAP, the XML-
based protocol on which JAX-RPC in particular, and web services in general, are based. This chapter

paves the way for a more in-depth examination of JAX-RPC by introducing SOAP, together with
SAAJ, which is a Java API for creating, sending, and receiving SOAP messages.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1 Introduction to SAAJ

SAAJ, which stands for SOAP with Attachments API for Java, provides a convenient API for

constructing SOAP messages without having to directly create the XML yourself. SAAJ was originally
part of the Java API for XML Messaging (JAXM), which was developed by the JSR 67 expert group.

The final release of this specification (JAXM Version 1.0) provided two different but related facilities:

Core functionality concerned with manipulating SOAP messages in a generic way, together with

the ability to send a SOAP message from one entity to another.

A higher-level messaging facility that included reliable delivery of messages and support for

messaging profiles, which require SOAP messages to be constructed in specific ways.

During the maintenance cycle for JSR 67, it was decided to unbundle the low-level SOAP message

creation features into a separate specification, thus creating SAAJ 1.1, leaving the higher-level features

to form JAXM Version 1.1. At the same time, minor modifications were made to the API to remove a
dependency that would otherwise have had the undesirable effect of making SAAJ 1.1 dependent on

JAXM 1.1. The result is that it is possible to use SAAJ as a lightweight library for building and

exchanging SOAP messages, without requiring the inclusion of JAXM 1.1, which provides facilities

that go beyond the requirements of many web service clients. JAX-RPC, in particular, uses SAAJ to

construct and decode SOAP messages, but it does not require reliable messaging and therefore is not
dependent on the presence of a JAXM implementation.

The formal specifications for both SAAJ 1.1 and JAXM 1.1 can be downloaded from

http://jcp.org/jsr/detail/67.jsp. This chapter looks only at SAAJ and uses it as a convenient means of

introducing SOAP messages; the more advanced messaging facilities provided by JAXM are covered

in Chapter 4.

http://jcp.org/jsr/detail/67.jsp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2 SAAJ Programming

Whereas JAX-RPC is concerned with allowing a client program to make a remote procedure call to a

web service without exposing the underlying XML-based protocols that are used, SAAJ is a much
lower-level API that is entirely concerned with the messages exchanged between the web service and

its clients. Furthermore, while JAX-RPC applications look, for the most part, like ordinary Java

applications making local method calls, an application that uses SAAJ needs to construct SOAP

messages piece by piece and extract information from response messages. Using SAAJ requires much

more work on the part of the developer than JAX-RPC, so why would you bother to use it? Here are
some of the circumstances in which you might want to use SAAJ and its close relative JAXM instead

of JAX-RPC:

JAX-RPC is convenient for accessing web services that present an RPC-like interface. However,

the RPC model is not suitable for all services. In many cases, it is more convenient to simply send
an XML message to a service, which the service interprets and then generates an XML response.

The most commonly quoted example of this is a business-to-business service where the client

sends a purchase order in the form of an XML document to which the service responds with a
confirmation and an invoice, also encoded as an XML document. A simple service like this does

not require method calls or arguments - all that is necessary is to exchange fragments of XML.
SAAJ represents a convenient way to encode and decode the SOAP messages that will carry these

XML documents.

Most services accessed using JAX-RPC are likely to be synchronous in nature, so that the service

immediately processes the request and returns a reply to the client, which is blocked until the call

completes. However, it is not always convenient or appropriate for the service to handle the
request and reply immediately. Using the purchase order example again, the business that receives

the purchase order may not be able to respond with a confirmation or an invoice immediately -

perhaps not until the goods are in stock, or until it is verified that the initiator of the request has an

account against which the goods can be ordered and that sufficient credit is available. For this

type of business model, which is likely to be very common in the real world, it is more
appropriate to think of the whole process as two separate operations that are not tightly coupled to

each other and that the responding business might take anything from several seconds to several

days to reply. To implement this type of loosely coupled messaging, it is appropriate to use

JAXM, which is built on top of SAAJ and provides the ability to send and receive messages

asynchronously.

JAX-RPC works only when the client and the service are active at the same time and also
assumes that there is an available network path that directly connects them. If the service is not

http://lib.ommolketab.ir
http://lib.ommolketab.ir

available when the client initiates the request, or there are good reasons (perhaps security-related)
why the client cannot be directly connected to the server, then you can't use JAX-RPC. JAXM, on

the other hand, provides a reliable delivery service without requiring the client application to be

involved in how the reliability is provided and can also support routing of SOAP messages

between hosts that cannot be directly connected.

SAAJ and JAXM provide a complete solution for XML-based messaging. The major differences

between SAAJ and JAXM are as follows:

SAAJ provides the API for the generic handling of SOAP messages; JAXM builds on this by

adding the capability to create SOAP messages with preset content as required by messaging
standards such as SOAP-RP and ebXML-TRP.

SAAJ can be used to create a freestanding Java client that communicates directly with a web

service. JAXM adds the concept of a messaging provider, which acts as an intermediary between

the client and the eventual recipient of the message. The message provider can provide a reliable
delivery service and can route messages to other intermediaries without the involvement of the

client. JAXM clients that use a messaging provider must be hosted in a web container or an
application server.

SAAJ clients (and JAXM clients that choose not to use a messaging provider) can only engage in

synchronous request/response message exchanges. However, JAXM clients using a messaging

provider have access to additional message exchange modes, including asynchronous delivery and

receipt of messages. See Chapter 4 for further details.

The classes and interfaces that provide the SAAJ and JAXM APIs reside in different packages, and, to
emphasize the fact that SAAJ does not require JAXM, they are distributed in separate JAR files, as

shown in Table 3-1.

Table 3-1. Packaging of the SAAJ and JAXM APIs

API Package JAR file

SAAJ javax.xml.soap
saaj-api.jar (API)

saaj-ri.jar (reference implementation)

JAXM javax.xml.messaging
jaxm-api.jar (API)

jaxm-runtime.jar (reference implementation)

In the case of J2EE 1.4, JAXM is not supported and the SAAJ classes appear in lib\j2ee.jar, which

http://lib.ommolketab.ir
http://lib.ommolketab.ir

contains almost all of the packages in the reference implementation.

Although we have used the terms "client" and "server" to describe the participants in a SAAJ message
exchange, the programming model for both SAAJ and JAXM does not make a strong distinction

between these two roles, because most of the API is concerned with the details of handling the

messages rather than actually sending and receiving them. In fact, SAAJ messaging represents more of

a peer-to-peer model in which it might be more appropriate to use the terms "sender" and "receiver"

instead of "client" and "server." In this chapter, however, all of the examples use SAAJ and are
therefore limited to synchronous request/reply exchanges. For the sake of clarity, I will continue to use

the term "client" to refer to the initiator of a service request, which will always be a freestanding J2SE

application, and I will use "server" to mean the entity that receives and replies to the request.

For the JWSDP, to compile client applications that use SAAJ, your CLASSPATH needs to include only
the saaj-api.jar file. However, the CLASSPATH required to run a client application is much larger,

consisting of the following JAR files, which can be found in various subdirectories of the JWSDP
installation:

saaj-api.jar saaj-ri.jar activation.jar commons-logging.jar

dom4j.jar mail.jar jaxp-api.jar dom.jar

sax.jar xalan.jar xercesImpl.jar xsltc.jar

To run a SAAJ client application with J2EE 1.4, your CLASSPATH needs to include lib\j2ee.jar, together

with the following four files from the endorsed directory:

dom.jar sax.jar xalan.jar xercesImpl.jar

Aside from the handling of SOAP messages, SAAJ includes the ability to synchronously send a

completed message to a given destination using HTTP as the underlying transport mechanism[1] and

receive the reply (see Section 3.3.1, later in this chapter), but no specific provision is made for

receiving a SOAP request in the server role. Servers are expected to reside in web containers or

application servers, and need to make their own arrangements to receive SOAP messages. The JAXM
specification includes a servlet (javax.xml.messaging.JAXMServlet) that can be used as the basis for

a web container-based message receiver, but service providers are not required to use it. The example

source code in this chapter uses a servlet that is very similar to JAXMServlet, so that we can

demonstrate SAAJ without introducing a dependency on JAXM. This servlet is described later in this

chapter in Section 3.3.2.

[1] Support of HTTP as the transport mechanism for SOAP messages is mandatory for all SAAJ
implementations. Vendors are free to provide other transport mechanisms, but are not required to

do so.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3 SOAP Messages

The format of SOAP messages is defined by a note submitted to the World Wide Web Consortium
(W3C) in May 2000 by a group of companies including Microsoft and IBM. This note, which describes

Version 1.1 of SOAP and can be downloaded from http://www.w3.org/TR/SOAP , is not a formally

adopted W3C specification but it is, nevertheless, the specification on which all existing SOAP
implementations, including SAAJ, are based. The W3C is working on a formal definition of the next

revision of SOAP, to be called Version 1.2. At the time of this writing, the SOAP 1.2 specification is
available for public review, and Sun plans to include support for SOAP 1.2 in SAAJ (and JAX-RPC)

when the specification is finalized.[2]

[2] The acronym SOAP originally stood for "Simple Object Access Protocol." In SOAP Version

1.2, the letters no longer have any meaning. This is probably a good idea, because the original
name is arguably not really an accurate description of what SOAP is: although the S and the P

could be justified, there is really nothing in SOAP that provides object access, at least not in any
sense that would be acceptable to an object-oriented programmer.

SOAP defines a way to wrap information represented in XML so that it can be transmitted between

peer entities that know how to interpret that information and, presumably, act on it to provide a service.

Other than the fact that the useful content of the message (which is known as the payload) must be

encoded in XML, SOAP does not mandate a particular set of XML elements and attributes to be used

to represent primitive items of data (such as integers, floating-point numbers, and strings) in terms of
XML constructs, although it does specify an encoding mechanism for these data types and others, the

use of which is encouraged. In practice, these encoding rules, commonly referred to as "SOAP section

5 encoding," have become a de facto standard and are the default encoding used by JAX-RPC to

represent method arguments and return values. Although detailed coverage of these encoding rules is

outside the scope this book, there are several examples of their use in this chapter; you'll find a
complete discussion of the SOAP encoding rules in Java and SOAP , by Robert Englander (O'Reilly).

Applications are free to use privately defined encodings instead of the SOAP section 5 rules if they

wish.

What SOAP does specify is the overall structure of a message, together with rules for wrapping SOAP

messages when the underlying transport protocol is HTTP. There are two slightly different ways to

construct a SOAP message depending on whether the message has any attachments (the meaning of
which is defined later). The SOAP Version 1.1 specification covers only the case where there are no

attachments and requires that a message be constructed as shown in Figure 3-1 . The outermost layer of

the message is a protocol-specific wrapper, the nature of which is defined in the specification only for

HTTP and which we'll see later in this chapter. Inside this wrapper is the SOAP message itself,

consisting of an envelope, a header part, a body part, and optional additional content.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-1. A SOAP message with no attachments

The SOAP envelope is, as its name suggests, a top-level XML element that acts as a container for the
rest of the message. The SOAP header is optional but, if present, must be the first element in the

envelope. It is intended to be used to carry information that can be used in the processing or routing of
the message payload, such as a digital signature to guarantee the integrity of payload data or

authentication information to validate the identity of the message sender. There are specifications,

referred to in the JAXM documentation as profiles, that define specific SOAP headers to be used to

communicate information to applications that are aware of the profile. The reference implementation of

JAXM includes messaging providers that can create SOAP messages that have pre-installed headers as
required by the SOAP-RP or ebXML TRP specifications. For further information on these two profiles,

see Chapter 4 .

The SOAP body is the only mandatory part of the envelope and contains the actual payload intended

for the ultimate recipient of the message. It must either follow the SOAP header or, if the header is

omitted, be the first element in the envelope. Following the body, it is possible to include additional

content, the interpretation of which, like the payload itself, is entirely dependent on the sending and
receiving entities.

Everything within the SOAP envelope must be encoded in XML. For many applications, this is not an

acceptable restriction. For example, an online book store offering a web service interface might want to

supply book details that include a photograph of the book's cover, scanned copies of pages from the

book, or a sample chapter in the form of a PDF document. In order to enable applications such as this,

Microsoft and Hewlett Packard created an additional specification called " SOAP Messages with
Attachments," which can be downloaded from http://www.w3.org/TR/SOAP-attachments . Like the

SOAP 1.1 document, this specification has been submitted to the W3C, and although it has not been

approved by W3C, it has become the de facto standard for packaging SOAP messages that require

some element of non-XML content.

A SOAP message that has attachments is formatted as shown in Figure 3-2 . Attachments typically

contain non-XML data, such as images, audio, or plain text. The first part of the message contains the
SOAP envelope and its content, constructed as described by the SOAP 1.1 specification. Each object to

be attached is then added as MIME content, and the whole message is packaged as a MIME

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Multipart/Related message as defined by RFC 2387 (which can be found at
http://www.ietf.org/rfc/rfc2387.txt). Each separate message part has its own MIME wrapper that

specifies, among other things, the type of data that it contains - it may contain an identifier that can be

used within the SOAP envelope to refer to it. Using SAAJ, you can construct SOAP messages with

attachments that contain any type of data that has a MIME encoding. This topic is discussed in more

detail in Section 3.6 , later in this chapter, where you'll also see exactly what a typical message with
attachments looks like when bound to the HTTP protocol.

Figure 3-2. A SOAP message with two attachments

3.3.1 Creating and Sending a SOAP Message Using SAAJ

In order to allow vendors to supply their own implementations, almost all of the SAAJ API is made up

of interfaces and abstract classes. In particular, the SOAPMessage class, which represents a SOAP

message, is abstract and therefore cannot be directly instantiated. To create a SOAP message, you need
to use a MessageFactory . MessageFactory , which is part of the javax.xml.soap package, is itself

an abstract class, an instance of which can be obtained using its static newInstance() method:

public static MessageFactory newInstance() throws SOAPException;

To permit vendors to plug in their own implementations of MessageFactory , this method looks at the

system property javax.xml.soap.MessageFactory and in a couple of other places to select the

subclass of MessageFactory that will be used. Refer to the description of

javax.xml.soap.MessageFactory in the reference section of this book for a complete description of

the steps taken to find a MessageFactory .

http://www.ietf.org/rfc/rfc2387.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

If a problem is encountered while instantiating the MessageFactory , a SOAPException is thrown.

SOAPException , which is one of only four concrete classes in the javax.xml.soap package, is a

checked exception that is thrown by many of the methods in the SAAJ API. It contains a message

describing the reason for the exception and, for cases where the root cause is an exception thrown from

a lower level, provides a getCause() method to provide access to the original exception.

MessageFactory has two methods that create SOAP messages:

public SOAPMessage createMessage() throws SOAPException;
public SOAPMessage createMessage(MimeHeaders headers, InputStream is)
 throws SOAPException;

The second of these two methods is used typically in a servlet to deserialize a message received from

an input stream, an example of which we'll see in Section 3.3.2 , later in this chapter. To create a SOAP

message for transmission, you need to use the first method:

MessageFactory messageFactory = MessageFactory.newInstance();
SOAPMessage message = messageFactory.createMessage();

The message that createMessage() returns does not contain anything useful, but rather than pause

here to introduce the API needed to add some content to it, let's skip ahead a little and look at how to
transmit the skeleton message. In order to send a message, you need an instance of the

SOAPConnection class, which, since it is abstract, must be obtained from a factory:

SOAPConnectionFactory connFactory = SOAPConnectionFactory.newInstance();
SOAPConnection conn = connFactory.createConnection();

Just like MessageFactory , SOAPConnectionFactory is an abstract class that vendors can supply their

own implementations of. The actual class that the newInstance() method uses is determined by a

procedure that is virtually identical to that used by the MessageFactory class, and which is described in

the reference section for javax.xml.soap.SOAPConnectionFactory , later in this book. If all else fails,

the reference implementation returns its own implementation of SOAPConnectionFactory (or throws a

SOAPException if this class is not available).[3]

[3] Despite its name, SOAPConnection does not actually represent a connection to a message

receiver. Instead, think of it as representing a connection between application code and the SAAJ

runtime that can be used to send SOAP messages. In Chapter 4 , we'll see that JAXM has a

similar class, called ProviderConnection , which provides an association between a JAXM

application and a messaging provider, but similarly does not imply that an immediate network

connection is made.

Once you have a SOAPConnection , you can use its call() method to transmit a message:

public abstract SOAPMessage call(SOAPMessage request, Object destination)
throws SOAPException;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The destination object determines where the message will be sent. The SAAJ specification requires
that the following types be supported as valid destination arguments:

An instance of the java.net.URL class.

An instance of String , provided that its value can be converted to a valid URL using its
URL(String url) constructor.

An instance of the class javax.xml.messaging.URLEndpoint . This class, which wraps a URL,

is part of the JAXM API and is therefore not likely to be used by pure SAAJ applications. It is

accepted as a valid destination because Version 1.0 of the JAXM specification, which did not
have SAAJ separated out as a freestanding API, defined the destination parameter of this method

as being of type javax.xml.messaging.Endpoint . This is an abstract base class of which
URLEndpoint is the only concrete implementation; therefore, supporting a destination of type

URLEndpoint provides backward-compatibility.

The reference implementation supports all of these possibilities; vendor implementations are free to

add their own destination types as required. All of these destination types resolve to a URL, but the
structure of this URL depends entirely on the implementation of the receiver and the environment in

which it is hosted. We'll see a typical example in Section 3.3.2 , later in this chapter.

As noted earlier in this section, a SAAJ client can only use a synchronous request/response
programming model; therefore, the call() method blocks having sent the message until a reply sent

to the message is received, or until an error causes it to throw a SOAPException . The reply is returned

to the method caller. Having received a reply, if you don't need to make further use of the

SOAPConnection object, you should use its close() method to release it; this method can be called
only once. Once it is, any further invocations of call() method result in a SOAPException .

The example source code for this chapter includes a client that creates a SOAP message, prints its

content, and then sends it to a servlet that echoes it straight back. To run this example, start your web

server or application server, open a command window and make chapter3\echoservice your working

directory, and then use the following command to build and deploy the servlet:

ant deploy

Next, compile and run the client application using the command:

ant compile-client run-client

In the command window, you'll see quite a lot of output, including the XML for the SOAPMessage that

was transmitted (which has been reformatted to make it more readable):

1 <soap-env:Envelope xmlns:soap-env=
 "http://schemas.xmlsoap.org/soap/envelope/">
2 <soap-env:Header/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3 <soap-env:Body/>
4 </soap-env:Envelope>

This is what the basic message returned by the createMessage() method looks like if you don't make

any changes to it. Lines 1 and 4 contain the XML elements that represent the SOAP message envelope.
As you can see, the element name is Envelope and it is qualified using the namespace prefix soap-env

, which is associated with the URL http://schemas.xmlsoap.org/soap/envelope . This URL identifies the

entire SOAP message as being formatted according to the rules of SOAP Version 1.1. If a SOAP

message whose envelope is qualified with any other namespace is received, then it should be treated as

a SOAP version mismatch, and the receiver is required to reject the message by generating a SOAP
fault (as described in Section 3.4 , later in this chapter).

Inside the envelope are the header and body elements, for which the element names are Header and

Body , respectively. These two elements are also qualified with the same namespace tag as the

envelope. In this case, since we didn't actually add anything to the message returned by the

MessageFactory createMessage() method, the header and body parts are both empty. Under normal

circumstances, if you do not need any header content, you completely remove the header part. You'll
see how to do this later in this chapter.

SOAP messaging makes heavy use of XML namespaces and XML schema. A

detailed discussion of these topics is outside the scope of this book and, although
we'll explain the use of namespaces and schemas as we encounter them, for a full

treatment of XML namespaces and XML schema, refer to XML In a Nutshell,
Second Edition , by Elliotte Rusty Harold and W. Scott Means (O'Reilly).

3.3.2 Receiving a SOAP Message

The SOAPConnection class provides the call() method to allow a SOAP message to be transmitted,

but there is no corresponding API that takes care of receiving a message. The example just shown uses

a servlet as the target of the message. This is convenient because the SOAPConnection class uses HTTP

as the default protocol when transmitting messages, and the servlet API contains everything that you
need to handle a payload delivered over an HTTP connection, including a convenient API to handle the

HTTP headers.

The java.xml.messaging package includes a servlet called JAXMServlet that can be used to receive

and handle SOAP messages. However, since this package is part of the JAXM API, using it would

introduce a dependency on JAXM as well as SAAJ, which is not desirable because JAXM is not part of

the J2EE 1.4 platform. To avoid this, the servlet used in the echoservice example is based on a
slightly simpler version of JAXMServlet that is provided in the sample code supplied with the JWSDP.

The source code for this servlet can be found in the file

chapter3\servlet\ora\jwsnut\saaj\SAAJServlet.java relative to the installation directory of the example

code for this book. Most of the code is also shown in Example 3-1 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 3-1. A servlet that can receive SOAP messages

package ora.jwsnut.saaj;

import java.io.IOException;
import java.io.OutputStream;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.StringTokenizer;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.MimeHeader;
import javax.xml.soap.MimeHeaders;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPMessage;

/**
 * A servlet that can be used to host a SAAJ
 * service within a web container. This is based
 * on ReceivingServlet.java in the JWSDP tutorial
 * examples.
 */
public abstract class SAAJServlet extends HttpServlet {

 /**
 * The factory used to build messages
 */
 protected MessageFactory messageFactory;

 /**
 * Initialisation - create the MessageFactory
 */
 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 try {
 messageFactory = MessageFactory.newInstance();
 } catch (SOAPException ex) {
 throw new ServletException("Failed to create MessageFactory", ex);
 }
 }

 /**
 * Handles a POST request from a client. The request is assumed
 * to contain a SOAP message with the HTTP binding.
 */
 public void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 try {
 // Get all the HTTP headers and convert them to a MimeHeaders object
 MimeHeaders mimeHeaders = getMIMEHeaders(request);

 // Create a SOAPMessage from the content of the HTTP request
 SOAPMessage message = messageFactory.createMessage(mimeHeaders,
 request.getInputStream());

 // Let the subclass handle the message
 SOAPMessage reply = onMessage(message);

 // If there is a reply, return it to the sender.
 if (reply != null) {
 // Set OK HTTP status, unless there is a fault.
 boolean hasFault = reply.getSOAPPart().getEnvelope()
 .getBody().hasFault();
 response.setStatus(hasFault ?
 HttpServletResponse.SC_INTERNAL_SERVER_ERROR :
 HttpServletResponse.SC_OK);

 // Force generation of the MIME headers
 if (reply.saveRequired()) {
 reply.saveChanges();
 }

 // Copy the MIME headers to the HTTP response
 setHttpHeaders(reply.getMimeHeaders(), response);

 // Send the completed message
 OutputStream os = response.getOutputStream();
 reply.writeTo(os);
 os.flush();
 } else {
 // No reply - set the HTTP status to indicate this
 response.setStatus(HttpServletResponse.SC_NO_CONTENT);
 }
 } catch (SOAPException ex) {
 throw new ServletException("SOAPException: " + ex);
 }
 }

 /**
 * Method implemented by subclasses to handle a received SOAP message.
 * @param message the received SOAP message.
 * @return the reply message, or <code>null</code> if there is
 * no reply to be sent.
 */
 protected abstract SOAPMessage onMessage(SOAPMessage message)
 throws SOAPException;

 // HEADER HANDLING CODE NOT SHOWN.....

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

When SAAJServlet receives a SOAP message, it hands it to the abstract onMessage() method and

sends the reply message returned by this method to the message sender. To provide specific message

handling, subclass SAAJServlet and implement the required processing in the onMessage() method.

The doPost() method of this servlet demonstrates how to receive a SOAP message from an HTTP

connection. When transmitted over HTTP, the protocol-specific wrapper shown in Figure 3-1 and
Figure 3-2 is represented as HTTP headers, and the rest of the message is written out as a stream of

XML or, if the message has attachments, as a Multipart/Related MIME payload containing the XML

and the encoded attachment data. Example 3-2 shows what an empty SOAP message looks like when
bound into an HTTP request message.

Example 3-2. An empty SOAP message bound to the HTTP protocol

Content-Length: 17 1
SOAPAction: ""
User-Agent: Java1.4.0
Host: localhost:5050
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
 <soap-env:Header/>
 <soap-env:Body/>
</soap-env:Envelope>

When this HTTP request message is delivered to a servlet, the HTTP headers are automatically stripped

off and made available via the HttpServletRequest object, while the rest of the data, namely the

XML itself, can be obtained by reading the InputStream provided by the HttpServletRequest
getInputStream() method. To convert the XML back into a SOAPMessage , the servlet uses a

MessageFactory that it creates when it is initialized, and calls the second variant of the

createMessage() method that we saw in Section 3.3.1 earlier in this chapter, passing it the HTTP

headers and the input stream containing the XML-encoded SOAP message:[4]

[4] In case you are wondering why the createMessage() method needs access to the HTTP

headers as well as the XML content, it is because it uses the Content-Type header to decide
whether the SOAP message has attachments, and decodes the rest of the HTTP request

appropriately.

// Create a SOAPMessage from the content of the HTTP request
SOAPMessage message = messageFactory.createMessage(mimeHeaders, request.
getInputStream());

The first argument supplied to this method is an object of type javax.xml.soap.MimeHeaders , which

http://lib.ommolketab.ir
http://lib.ommolketab.ir

encapsulates the HTTP headers that were received as part of the HTTP binding. We'll look at this class
and the way in which it is populated from the HTTP request in Section 3.5 . later in this chapter.

Once the SOAPMessage is created, it is passed to the onMessage() method. If this method returns a

reply, it needs to be sent back to the caller in the servlet's HTTP response message. Naturally, the reply

needs to be wrapped in HTTP in the same way that the request was when it was transmitted by the

sender. The original message was created as a result of calling the SOAPConnection call() method,

which opens an HTTP connection to the servlet and takes care of building the HTTP wrapper for the
message. Here, however, we can't use this method because we want to return the message using the

HTTP connection originally created by the client, so we have to create the HTTP binding for the reply

message ourselves. This requires three steps:

Get any HTTP headers to be sent with the reply message from the message itself. This can be

done by calling the SOAPMessage getMimeHeaders() method, which returns them in the form of
a MimeHeaders object.

1.

Use the methods of the servlet's HttpServletResponse object to install the HTTP headers in the

reply.

2.

Get the XML representation of the SOAPMessage itself and write it to the OutputStream obtained
from the HttpServletResponse getOutputStream() method.

3.

Before we can start this process, however, we need to ensure that the HTTP headers for the

SOAPMessage have been created. As you'll see later, a newly created SOAPMessage object does not

actually contain any XML or any of the HTTP headers that will eventually be used when transmitting it

over HTTP. Instead, it consists of a hierarchy of objects that represents the envelope, the header, the
body, and so on, in much the same way as a DOM model represents an XML document. In order to

force the headers to be created, we use the following code:

if (reply.saveRequired()) {
 reply.saveChanges();
}

The saveChanges() method creates not only the headers, but also the XML representation of the
message itself. The saveRequired() method is used to discover whether it is actually necessary to

perform this step - once saveChanges() is called, it does not need to be called again, and

saveRequired() returns false until some change is made to the SOAPMessage that causes either the

headers or the XML to need to be updated. The actual code that gets the HTTP headers from the reply

SOAPMessage and installs them in the HTTP response is shown in Section 3.5 .

The XML representation of a SOAPMessage can be written to an OutputStream using the following
SOAPMessage method:

public void writeTo(OutputStream os);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It is not necessary to call saveChanges() before invoking this method, since writeTo() calls it for

itself (if necessary). Hence, the following code is all that is necessary to write the reply message back to

the caller:

// Send the completed message
OutputStream os = response.getOutputStream();
reply.writeTo(os);
os.flush();

Incidentally, the writeTo() method is a useful debugging aid because you can use code like the
following to dump the XML represented by a SOAPMessage to the standard output stream:

message.writeTo(System.out);

Note, however, that this method writes only the XML - it does not include the MIME headers, which

must be obtained separately by calling getMimeHeaders() .

This leaves only one open issue regarding the handling of SOAP messages in a servlet: what

destination URL should the client application supply to the SOAPConnection call() method to

arrange for the message to be delivered to the servlet? The simple answer is that it depends on how the

servlet is deployed. In the case of the echoservice example used here, the message echoing is
provided by a simple servlet that is derived from SAAJServlet and overrides its onMessage() method

to return the SOAPMessage that it is called with, having first written its content to the web containers log

for debugging purposes, as shown in Example 3-3 .

Example 3-3. A servlet that logs and echoes a received SOAP message

public class EchoServlet extends SAAJServlet {

 /**
 * Output stream used to save a SOAP message
 * for logging.
 */
 private ByteArrayOutputStream os = new ByteArrayOutputStream();

 /**
 * Handles a received SOAP message by simply
 * returning it.
 */
 public SOAPMessage onMessage(SOAPMessage message) {

 // Convert the message to string representation
 // and log it.
 try {
 message.writeTo(os);
 log("Received SOAP message:\n" + os.toString());
 os.reset();
 } catch (Exception ex) {
 log("Exception", ex);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 // Return the received message to the caller.
 return message;
 }
}

This servlet (together with its base class, SAAJServlet) is wrapped in a WAR file and then deployed

as a web application called SAAJEchoService . The web application's web.xml file looks like this:

<web-app>
 <display-name>SAAJ Echo Service</display-name>
 <description>SAAJ Message Echo Service</description>

 <servlet>
 <servlet-name>EchoService</servlet-name>
 <display-name>Servlet for the SAAJ Message Echo Service
 </display-name>
 <servlet-class>ora.jwsnut.chapter3.echoservice.EchoServlet
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>EchoService</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

The url-pattern element means that all URLs that map to the web application SAAJEchoService are

directed to the servlet. Assuming that the web application is deployed in a web server listening at port
8000 on your local machine, the client application may therefore use the following URL to send SOAP

messages to the servlet:

http://localhost:8000/SAAJEchoService

If the url-pattern element looks like this:

<url-pattern>/EchoServlet/*</url-pattern>

the result is that the required URL is:

http://localhost:8000/SAAJEchoService/EchoServlet

If you are writing a SAAJ client that is intended to communicate with an existing server, then the URL

that you need to use should be obtained from the service provider. In some cases, the address of a

service is not fully specified by a URL. An example of this might be a server implementation where all

requests are initially handled by a single servlet and then routed internally to the appropriate web
service based on something in the message itself. In order to aid with such an arrangement, the SOAP

1.1 specification defines an HTTP header called SOAPAction that can be used to provide a string that

http://localhost:8000/SAAJEchoService
http://localhost:8000/SAAJEchoService/EchoServlet
http://lib.ommolketab.ir
http://lib.ommolketab.ir

holds further information that can be used to identify the target web service. If a service does not
require SOAPAction , its value should be set to the empty string. This is, in fact, the default value for

the SOAPAction header when you create a new SOAPMessage , as you can see from Example 3-2 . If the

service you need to communicate with requires a specific SOAPAction value, you can install it using the

MimeHeaders setHeader() method:

message.getMimeHeaders().setHeader("SOAPAction", "ServiceInfo");

3.3.3 The Anatomy of a SAAJ SOAP Message

Although a SOAP message is transmitted as a set of characters encoded in UTF-8, holding the message

in character form would make it difficult to manipulate. Instead, SOAPMessage contains a hierarchy of

objects that represent the various parts of the message and the XML elements and text (if any) that it
contains. The message is kept in this form until it is ready to be transmitted, at which point a UTF-8

byte stream is created from its content. Figure 3-3 shows a typical hierarchy of elements that might
make up a SOAPMessage object.

Figure 3-3. Component parts of a SOAPMessage object with a single attachment

A SOAPMessage object consists of a single SOAPPart and zero or more AttachmentPart s. The default

message returned by the MessageFactory createMessage() method contains a SOAPPart but no

attachments. AttachmentPart s, if they are required, must be explicitly created and added to create a

SOAP with attachments message. The SOAPPart , in turn, contains a SOAPEnvelope object, which

http://lib.ommolketab.ir
http://lib.ommolketab.ir

represents the envelope shown in Figure 3-1 and Figure 3-2 . Within the envelope is the SOAP
message header, represented by an object implementing the SOAPHeader interface and the SOAP

message body in the form of a SOAPBody object. Both the body and the header contain XML markup

that constitutes, respectively, the message payload and any information required to qualify or process

the payload, represented by SOAPElement s or Text nodes.

3.3.3.1 SOAPMessage

SOAPMessage is an abstract class that represents the whole SOAP message. It contains methods that

deal with the following:

MIME headers

When a SOAP message is wrapped in a MIME-aware transport protocol such as HTTP or

SMTP, MIME-related information must be included to identify the data being carried as an XML
message. A SOAPMessage object supplies default values for the MIME Content-Type , Content-

Length , and SOAPAction headers, but it also provides a method that returns the underlying
MimeHeaders object that contains the associated MIME headers. You can use this object to

retrieve the headers for a received message or to add additional ones for an outgoing message.

See Section 3.5 later in this chapter, for details.

SOAPMessage also provides a convenience method to set or retrieve the value of the optional
Content-Description header, which is used to attach descriptive text to the message.

Conversion between object and byte format

A SOAP message is created and manipulated by application code as a tree of objects like that
shown in Figure 3-3 . For transmission, however, it must be converted to a byte stream that

represents the XML itself. The saveChanges() method creates a byte array that represents the

object tree and stores it within the SOAPMessage object ready to be written by the writeTo()

method. Since the creation of the byte representation is an expensive process, it should be

performed only if it has not already been done, or if the content of the object tree has been
modified since saveChanges() was last called. The saveRequired() method can be used to

determine whether it is necessary to call saveChanges() . The writeTo() method calls both

saveRequired() and saveChanges() as necessary, so it is rarely necessary for client code to

do anything other than call writeTo() .

Access to the SOAPPart object

The SOAPMessage getSOAPPart() method returns a reference to the SOAPPart that contains the
XML parts of the message:

public SOAPPart getSOAPPart() throws SOAPException;

Note that it is not possible to replace the SOAPPart associated with a SOAPMessage .

Attachments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A SOAPMessage can have any number of attachments, each of which may contain data of any

type that has a MIME encoding. SOAPMessage provides the methods necessary to create the

AttachmentPart objects that represent individual attachments, add them to the message, retrieve

them, and remove them. Attachments must be used if it is necessary to include non-XML content

in a message; their use is described in detail in Section 3.6 , later in this chapter.

3.3.3.2 SOAPPart

The SOAPPart object is a wrapper for the SOAP envelope and therefore contains the part of the

message that must be represented in XML. For simple SOAP messages, SOAPPart does not really add
anything other than the ability to access the SOAPEnvelope object, but for a SOAP message with

attachments, it provides the ability to manipulate the content of the MIME wrapper for the SOAP part
of the message, as shown in Figure 3-2 .

Access to the SOAPEnvelope object

For most practical purposes, the getEnvelope() method is the most important feature of

SOAPPart :
public SOAPEnvelope getEnvelope() throws SOAPException;

There is no direct way with the SAAJ API to create your own SOAPEnvelope object and use it to

replace the one installed when a SOAPMessage is created. However, you can replace the entire content

of the SOAPPart , as described next, which has the same effect but is less convenient.

MIME headers

Most of the SOAPPart API is concerned with creating, retrieving, and manipulating MIME
headers. These headers, however, are not related to those associated with the SOAPMessage -

they are used only when the message has one or more attachments, and become part of the

MIME wrapper for the SOAP part of the message. Although you can still use this API for a

message that does not have attachments, it will have no practical effect on the message that is

finally transmitted.
SOAPPart content replacement

The getContent() and setContent() methods allow access to and replacement of the

content of the SOAPPart in a form that can be manipulated by the JAXP APIs. The setContent(

) method in particular can be used to replace the SOAP envelope with an alternative that is

represented by a DOM tree or the content of an input stream encoded in XML. While this might

have some practical applications, it would be more useful to be able to import XML in either of
these forms into the SOAP body, but there is currently no API that supports this.[5]

[5] The only way to import XML into the SOAP body is to use the SOAPPart getContent(

) method to get access to the content of the SOAPPart , transform it into a DOM tree,

import the XML into the DOM tree, and then use setContent() to replace the entire

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAP part with the modified content. If you really need to do this, you'll find the necessary
code in Java Web Services , by David Chappell and Tyler Jewell (O'Reilly).

3.3.3.3 SOAPEnvelope

This object represents the SOAP envelope, which must contain a single SOAPBody object and may

contain a SOAPHeader and additional XML elements. If these parts are present, they must appear in the

following order: header, body, and additional elements. Like SOAPPart , SOAPEnvelope is of little
direct use to most applications, except as a means of accessing the header and body parts.

Access to the SOAP header and body parts

SOAPEnvelope provides methods that allow references to the header and body objects that it

contains to be retrieved:
public SOAPBody getBody() throws SOAPException;
public SOAPHeader getHeader() throws SOAPException;

The message created by the MessageFactory createMessage() method contains empty header and

body parts.

Replacement of the SOAP header and body parts

It is possible to create and add a new header or a new body part to a SOAP message. This is
useful when modifying the content of a received message in order to forward it or to use it as the

basis for the reply to the sender:
public SOAPBody addBody() throws SOAPException;
public SOAPHeader addHeader() throws SOAPException;

These methods create, install, and return an empty SOAPBody or SOAPHeader object, respectively. These
methods represent the only way to directly create instances of these objects. You can only install a new

SOAPHeader or a new SOAPBody if you have already removed the previous one. There are, however, no

methods named removeHeader() or removeBody() that allow you to do this. Instead, you have to

rely on the fact that both SOAPBody and SOAPHeader (like SOAPEnvelope) are derived from the

javax.xml.soap.Node interface, which provides the detachNode() method to allow it to be removed
from whatever it is contained in. Here, for example, is how you would remove the SOAPHeader from a

SOAPMessage and install a new, empty one:

// Remove the message header
SOAPEnvelope envelope = message.getSOAPPart().getEnvelope();
envelope.getHeader().detachNode();

// Add a new header
SOAPHeader header = envelope.addHeader();

Nodes are discussed in Section 3.3.4 , later in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Creation of Name objects

For reasons of backwards-compatibility with Version 1.0 of JAXM (which contained the API
that is now known as SAAJ),

SOAPEnvelope

includes factory methods that create Name objects for use with XML elements within the envelope. In

SAAJ 1.1, the preferred way to create Name objects is by using the SOAPFactory class. Name objects are

described in Section 3.3.4 , later in this chapter.

3.3.3.4 SOAPHeader

SOAPHeader is a container for headers that determines the way in which the message payload is

processed or interpreted. There are standardized uses of SOAP, such as SOAP-RP or ebXML-TRP, that
specify the format of certain headers that are of meaning to receivers that implement these standards,

but applications are free to define and use their own private headers.[6] SOAP itself does not specify

any standard headers, and therefore the API provided by SOAPHeader is restricted to methods that add a
new header entry or allow existing header entries to be accessed. SOAP headers are discussed in

Section 3.7 , later in this chapter.

[6] The terminology can get a little confusing when discussing headers. A SOAP message can only
contain a single SOAPHeader , but a SOAPHeader may contain any number of XML fragments that

represent application-defined headers. When the context does not make it clear whether "header"

refers to one such XML fragment or the entire SOAPHeader , we use the term "header entry"

instead.

3.3.3.5 SOAPBody

SOAPBody is the container that holds the real payload of the SOAP message. Logically, the payload

consists of one or more XML document fragments. However, in the SAAJ API, the payload is

constructed as a hierarchy of elements and text nodes, represented by the SOAPElement and Node

interfaces (described in the next section). The payload is typically included in the body by creating a
SOAPBodyElement to represent the root element of each fragment and then adding nested elements and

text as necessary:

public SOAPBodyElement addBodyElement(Name name) throws SOAPException;

The body may also contain a SOAPFault object that reports a failure to properly process either a

message header or the message payload itself. SOAPBody provides methods to add a SOAPFault object

to the body and to handle one in a message that has been received. This API is covered in Section 3.4 ,

later in this chapter.

3.3.4 Nodes, Elements, and Names

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The SAAJ interfaces that we have seen so far provide the framework within which SOAP messages can
be built, but the actual message content is constructed by using four more basic interfaces that are

described in this section. Here's a brief description of these interfaces, which we'll expand on by

reference to an example in the rest of this section:

Name

In XML terms, a Name object represents a qualified element name (or QName) - that is, a local

name together with an optional namespace prefix and the associated namespace URI. For

example, in the case of the XML tag that represents the SOAP envelope:
<soap-env:Envelope xmlns:soap-env=
 "http://schemas.xmlsoap.org/soap/envelope/">

Envelope is the local name of the element, soap-env is the namespace prefix,
http://schemas.xmlsoap.org/soap/envelope/ is the URI that uniquely identifies the namespace,

and the combination soap-env:Envelope is the qualified element name (qualified because it contains a

namespace prefix).

Node

Node is the base interface for the nodes in the object tree that make up the content of a SOAP

message. It provides the methods necessary to link itself to or remove itself from its parent node

as well as to allow application code to discover its parent node. However, this interface does not
provide a way to add child nodes and therefore represents a leaf in the object tree. SAAJ

applications usually do not deal directly with Node s - instead, they handle objects of the

derived types SOAPElement and Text .

Text

Text is a type of Node that holds a text string. Text is always a leaf node and its content may

represent an XML comment.
SOAPElement

SOAPElement is a subinterface of Node that adds the methods required to attach child nodes, and

therefore need not always be a leaf in the object tree.

SOAPElement has a number of subinterfaces that represent entities that can appear within the SOAPPart

. These subinterfaces and their relationships to SOAPElement and Node are shown in Figure 3-4 .

Figure 3-4. SAAJ interfaces used in building SOAP messages

http://schemas.xmlsoap.org/soap/envelope/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

It is interesting to note that SOAPEnvelope , SOAPBody , and SOAPHeader are all SOAPElement s, which

implies that you can add content directly to them. This is, of course, true, although we'll see later that
both SOAPBody and SOAPHeader have their own specific SOAPElement variants (SOAPBodyElement and

SOAPHeaderElement) that are used as their immediate children and take special action when you

attempt to add an arbitrary SOAPElement instead. We'll look at how a typical SOAP message is

constructed by examining an example application that gets a list of O'Reilly book titles from a server
and displays them in list form in a Swing-based user interface. Later in this chapter, we'll extend this
example so that it can fetch images of the front covers of these books from the server, as an illustration

of the use of non-XML SOAP message attachments.

Before running this example, you need to compile and deploy the service implementation, which is

based on SAAJServlet . To do so, start your web server or application server, open a command

window and make chapter3\bookimageservice your working directory, and then use the following

command to build and deploy the servlet:

ant deploy

Next, compile and run the client application using the command:

ant compile-client run-client

Once the client starts, you'll see the list of books that it has obtained from the server, as shown in

Figure 3-5 .

Figure 3-5. SAAJ client showing a list of book titles obtained from a SAAJ server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3.4.1 Constructing the SOAP message to get the book titles

The SOAP message that is sent to get the list of book titles is shown in Example 3-4 .

Example 3-4. A SOAP message sent to retrieve book titles from a web service

1 <?xml version="1.0" encoding="UTF-8"?>
2 <soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
3 xmlns:tns="urn:jwsnut.bookimageservice">
4 <soap-env:Body>
5 <tns:BookList/>
6 </soap-env:Body>
7 </soap-env:Envelope>

There are three differences between this message and the empty one shown in Example 3-2 :

The SOAP header part has been removed because headers are not required by this application.

The addition of a namespace declaration on the Envelope element.

The SOAP body contains an application-defined element called BookList .

The BookList element is, of course, not defined by the SOAP 1.1 specification - it is a private

element that is recognized by the web service as a request to send the list of book titles that it knows

about. Since this request does not need any parameters, all that is required is an empty element.

However, since the BookList element is private, we define an XML namespace for the web service,

assign a prefix to it, and associate the prefix with the element name, so that there is no ambiguity about
the meaning of the request.

The namespace itself is defined by the xmlns attribute on the Envelope element, as shown on line 3 of

Example 3-4 . In order to declare a namespace, we have to assign a prefix and associate it with the

namespace's URI. In this case, we chose to use the prefix tns . Although arbitrary, it is quite common

to use this particular prefix for the namespace that refers to the service's private elements, since the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

letters tns serve as a useful mnemonic for "this namespace," as distinct from the namespace used for
the elements that are part of the SOAP envelope itself. The namespace URI is, again, arbitrary,

although it should be unique, and the same value must be used by both the client and the web service

implementation.[7] Here, we choose to use a URN with a string value that identifies the service as the

book image service from this book, but we could have used any other valid URI.

[7] Although the client and the service implementation must use exactly the same URI for the

namespace, they do not have to use the same prefix, because the prefix serves only as a shorthand
for the URI itself.

The SOAP 1.1 specification does not actually require elements in the body of the SOAP message to be

namespace-qualified, although it recommends that they are. From the point of view of the service

implementation, it is just as well to require that the client supplies the namespace so it can
unambiguously check that if it receives a BookList element from a client, the element actually

represents the BookList request that it provides, rather than a similarly named request for an entirely
different service. You'll see shortly how the service implementation makes this check. Incidentally, you

don't have to associate a namespace prefix with every SOAP element. You can, if you wish, declare a

default namespace on an element, like this:

<?xml version="1.0" encoding="UTF-8"?>
 <soap-env:Envelope xmlns:soap-env=
 "http://schemas.xmlsoap.org/soap/envelope/"
 xmlns="urn:jwsnut.bookimageservice">
 <soap-env:Body>
 <BookList/>
 </soap-env:Body>
 </soap-env:Envelope>

An xmlns attribute without an associated namespace prefix specifies the namespace that will be

associated with any element, such as BookList , that does not have an explicit namespace prefix. This

default is in operation for the scope of the element to which the xmlns attribute is attached.

Now let's look at the code that created the SOAPMessage shown in Example 3-4 . This code is shown in

Example 3-5 .

Example 3-5. Constructing a SOAP message using the SAAJ APIs

1 // Build the message
2 SOAPMessage message = messageFactory.createMessage();
3
4 // Remove the message header
5 SOAPEnvelope envelope = message.getSOAPPart().getEnvelope();
6 envelope.getHeader().detachNode();
7
8 // Set up the namespace declaration
9 envelope.addNamespaceDeclaration(SERVICE_PREFIX, SERVICE_URI);
10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11 // Add the element for the book list request
12 SOAPBody soapBody = envelope.getBody();
13 soapBody.addBodyElement(BOOK_LIST_NAME);

The first part of this code (lines 2 to 6) creates an empty message, gets a reference to the SOAPEnvelope

, and then removes the empty header part, which this application does not use. Line 9 adds the

declaration of the private namespace used by this service using the SOAPElement
addNamespaceDeclaration() method:

public SOAPElement addNamespaceDeclaration(String prefix, String uri)
 throws SOAPException;

In this case, the prefix and the URI supplied are declared as static strings within the class definition:

// The URI used to qualify elements for this service
private static final String SERVICE_URI = "urn:jwsnut.bookimageservice";

// The namespace prefix used in elements for this service
private static final String SERVICE_PREFIX = "tns";

The addNamespaceDeclaration() method can be used to attach a namespace declaration to any
SOAPElement . Its effect is scoped to that element and its child elements, and returns a reference to the

SOAPElement on which it is invoked. In this case, we apply the declaration to the SOAPEnvelope itself,
so that it applies to the entire message.

Lines 12 and 13 are responsible for adding the BookList element to the SOAP body, using the

SOAPBody addBodyElement() method:

public SOAPElement addBodyElement(Name name) throws SOAPException;

The Name object passed to this method determines the element name and the namespace within which it

is defined. As you'll see later in this chapter, there are several ways to create a Name object. In this case,

the Name is created using one of the methods provided by the SOAPFactory class:

// The name of the element used to request a book name list
private static Name BOOK_LIST_NAME;

// SOAPFactory for message pieces
private static SOAPFactory soapFactory;

// Create the BookList element
soapFactory = SOAPFactory.newInstance();
BOOK_LIST_NAME = soapFactory.createName("BookList", SERVICE_PREFIX,
 SERVICE_URI);

SOAPFactory is a factory for objects that can be added to SOAP messages, including SOAPElement s,

Detail objects (which are used in connection SOAP faults), and Name s.[8] A Name object is a

representation of a fully qualified element name and therefore requires the following attributes:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[8] SOAPFactory is a new class added to SAAJ Version 1.1. The earlier API (JAXM 1.0) used the
SOAPEnvelope createName() methods, which require access to the SOAPEnvelope object, to

create Name objects. In many cases, however, an application will want to construct part of a SOAP

message without having to have access to the SOAPEnvelope within which it will eventually be

enclosed, so the context-free SOAPFactory class was added to make this possible. SOAPFactory is

a generalization of the JAXM 1.0 SOAPElementFactory class, which is deprecated as of SAAJ
Version 1.1.

The local name of the element - in this case, BookList

The URI of the namespace within which the name is defined

The prefix used to represent the namespace (tns in this example)

It is also possible to have Name s that are not namespace-qualified. In these cases, the URI and
namespace prefix are both null .

Once the Name is created, the SOAPBody addBodyElement() method creates the actual

SOAPBodyElement and installs it in the body. Since this element does not have any nested elements, it

ends up looking like this:

<tns:BookList/>

You can see that the namespace prefix and the local name that were used to create the Name object

become part of the element.

3.3.4.2 Handling the BookList request in the service implementation

The book image service is implemented as a servlet derived from SAAJServlet , much of the code for

which is shown in Example 3-6 .

Example 3-6. A servlet that uses SAAJ to provide the book image web service

/**
 * A servlet that uses SAAJ attachments to
 * serve images to a client.
 */
public class BookImageServlet extends SAAJServlet {

 // The XML Schema namespace
 private static final String XMLSCHEMA_URI =
 "http://www.w3.org/2001/XMLSchema";

 // The XML Schema instance namespace
 private static final String XMLSCHEMA_INSTANCE_URI =
 "http://www.w3.org/2001/XMLSchema-instance";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Namespace prefix for XML Schema
 private static final String XMLSCHEMA_PREFIX = "xsd";

 // Namespace prefix for XML Schema instance
 private static final String XMLSCHEMA_INSTANCE_PREFIX = "xsi";

 // The namespace prefix used for SOAP encoding
 private static final String SOAP_ENC_PREFIX = "SOAP-ENC";

 // The URI used to qualify elements for this service
 private static final String SERVICE_URI = "urn:jwsnut.bookimageservice";

 // The namespace prefix used in elements for this service
 private static final String SERVICE_PREFIX = "tns";

 // MessageFactory for replies from this service
 private static MessageFactory messageFactory;

 // SOAPFactory for message pieces
 private static SOAPFactory soapFactory;

 // The name of the element used to request a book name list
 private static Name BOOK_LIST_NAME;

 // The name of the element used to reply to a book name list request
 private static Name BOOK_TITLES_NAME;

 // The name of the element used to request a book image
 private static Name BOOK_IMAGE_REQUEST_NAME;

 // The name of the element used to respond to a book image request
 private static Name BOOK_IMAGES_NAME;

 // The name of the attribute used to hold the image encoding
 private static Name IMAGE_TYPE_ATTRIBUTE;

 // The name of the href attribute
 private static Name HREF_ATTRIBUTE;

 /**
 * Handles a received SOAP message.
 */
 public SOAPMessage onMessage(SOAPMessage message) throws SOAPException {

 if (messageFactory == null) {
 // Create all static data on first call
 messageFactory = MessageFactory.newInstance();
 soapFactory = SOAPFactory.newInstance();
 BOOK_LIST_NAME = soapFactory.createName("BookList", SERVICE_PREFIX,
 SERVICE_URI);
 BOOK_TITLES_NAME = soapFactory.createName("BookTitles",
 SERVICE_PREFIX, SERVICE_URI);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 BOOK_IMAGE_REQUEST_NAME =
 soapFactory.createName("BookImageRequest",
 SERVICE_PREFIX, SERVICE_URI);
 BOOK_IMAGES_NAME = soapFactory.createName("BookImages",
 SERVICE_PREFIX, SERVICE_URI);
 IMAGE_TYPE_ATTRIBUTE = soapFactory.createName("imageType",
 SERVICE_PREFIX, SERVICE_URI);
 HREF_ATTRIBUTE = soapFactory.createName("href");
 }

 // Create the reply message and define the namespace
 // and encoding for the elements used in the reply.
 SOAPMessage reply = messageFactory.createMessage();
 SOAPEnvelope replyEnvelope = reply.getSOAPPart().getEnvelope();
 replyEnvelope.getHeader().detachNode();
 replyEnvelope.addNamespaceDeclaration(SERVICE_PREFIX, SERVICE_URI);
 replyEnvelope.addNamespaceDeclaration(SOAP_ENC_PREFIX,
 SOAPConstants.URI_NS_SOAP_ENCODING);
 replyEnvelope.addNamespaceDeclaration(XMLSCHEMA_PREFIX, XMLSCHEMA_URI);
 replyEnvelope.addNamespaceDeclaration(XMLSCHEMA_INSTANCE_PREFIX,
 XMLSCHEMA_INSTANCE_URI);
 replyEnvelope.setEncodingStyle(SOAPConstants.URI_NS_SOAP_ENCODING);
 SOAPBody replyBody = reply.getSOAPPart().getEnvelope().getBody();

 // There are two requests - one for the list of
 // book titles, the other for the image for a book.
 SOAPBody requestBody = message.getSOAPPart().getEnvelope().getBody();
 Iterator iter = requestBody.getChildElements();
 if (iter.hasNext()) {
 // The child element contains the request
 SOAPElement element = (SOAPElement)iter.next();
 Name elementName = element.getElementName();
 if (elementName.equals(BOOK_LIST_NAME)) {
 handleBookListRequest(replyBody);
 } else if (elementName.equals(BOOK_IMAGE_REQUEST_NAME)) {
 handleBookImageRequest(element, reply);
 } else {
 // Unrecognized request - this is a fault.
 createFault(replyBody, "soap-env:Client.UnknownRequest",
 "Unrecognized request", SERVICE_URI, elementName.
 getLocalName());
 }
 } else {
 // No request - this is a fault
 createFault(replyBody, "soap-env:Client.MissingRequest",
 "Missing request", SERVICE_URI, "No request found");
 }
 return reply;
 }

 // HELPER METHODS NOT SHOWN...
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first part of the onMessage() method is concerned with creating objects such as Name s that will

be used to build a reply message the first time the service is used, and then creating the envelope for the
reply message, which we'll look at more closely very shortly. Before the reply can be constructed,

however, the received message must be examined to identify the client request that it contains. To do

this, it is necessary to find the first child element of the SOAP body and extract its element name. Here

is the code that does this:

 SOAPBody requestBody = message.getSOAPPart().getEnvelope()
 .getBody();
 Iterator iter = requestBody.getChildElements();
 if (iter.hasNext()) {
 // The child element contains the request
 SOAPElement element = (SOAPElement)iter.next();

Although SOAPBody does not provide any methods for accessing its content, the SOAPElement interface

from which it is derived does provide this facility. In particular, the getChildElements() method

returns an Iterator that can be used to step through all of the immediate child elements of the

SOAPElement

to which it is applied. In this case, we expect to find exactly one child element; if we don't find any,

then the message has been constructed incorrectly and the request will not be processed. Instead, a

reply message containing a SOAP fault will be returned to the client, as described in Section 3.4 , later
in this chapter.

Assuming that we find a child element, the next step is to find out what it represents. So far, we have
only seen the BookList request, but in fact, this servlet can also handle a request for a cover image for

a book with a given title, the implementation of which we'll look at when we discuss how to use SOAP

attachments. It is therefore necessary to work out which of these two requests has been received:

Name elementName = element.getElementName();
if (elementName.equals(BOOK_LIST_NAME)) {
 handleBookListRequest(replyBody);
} else if (elementName.equals(BOOK_IMAGE_REQUEST_NAME)) {
 handleBookImageRequest(element, reply);
} else {
 // Unrecognized request - this is a fault.
 createFault(replyBody, "soap-env:Client.UnknownRequest",
 "Unrecognized request", SERVICE_URI, elementName.getLocalName());
}

The SOAPElement getElementName() method returns the Name object that identifies the element,
which contains the local element name and the URI for its associated namespace. To determine which

request has been received, we compare the element name against two fixed values, BOOK_LIST_NAME

and BOOK_IMAGE_REQUEST_NAME , which are constructed (using the SOAPFactory class) with the

appropriate local names and the private URN associated with this service. This is, of course, the same

http://lib.ommolketab.ir
http://lib.ommolketab.ir

URN (urn:jwsnut.bookimageservice) used by the client. Notice that the comparison is performed
using the equals() method, which, for Name objects, returns true if both the local names and the

namespace URIs are the same.[9] Depending on the result of the test, the handleBookListRequest()

or the handleBookImageRequest() method is called, or, if the element name does not match either of

the expected values, a SOAP fault is returned to the client. Here, we are interested only in the

handleBookListRequest() method. Before we look at its implementation, however, let's examine the
SOAP message that the service sends in reply to the client's BookList request, which is shown in

Example 3-7 .

[9] In the case of Name s that do not have namespace qualifiers, this test still works because the

namespace URI for such a Name is null .

Example 3-7. A SOAP message containing a list of book titles

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:tns="urn:jwsnut.bookimageservice"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 soap-env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <soap-env:Body>
 <tns:BookTitles xsi:type="SOAP-ENC:Array"
 SOAP-ENC:arrayType="xsd:string[]">
 <item>Java in a Nutshell</item>
 <item>J2ME in a Nutshell</item>
 <item>Java 2D Graphics</item>
 <item>Java I/O</item>
 <item>JavaServer Pages</item>
 <item>Java Internationalization</item>
 <item>Java Foundation Classes in a Nutshell</item>
 <item>Java Performance Tuning</item>
 <item>Creating Effective JavaHelp</item>
 <item>Enterprise JavaBeans</item>
 <item>Java Servlet Programming</item>
 <item>Java Swing</item>
 </tns:BookTitles>
 </soap-env:Body>
</soap-env:Envelope>

If you compare this to the BookList request message shown in Example 3-4 , you'll see that the

Envelope of the reply message declares many more namespaces than the request. Each of these

namespaces, which are listed in Table 3-2 , is added to the SOAPEnvelope object using the
addNamespaceDeclaration() method that we saw earlier; therefore, they apply to the whole

message.

Table 3-2. Namespaces commonly used in SOAP messages

http://lib.ommolketab.ir
http://lib.ommolketab.ir

URI Description

http://schemas.xmlsoap.org/soap/envelope/
Associated with the SOAP message envelope. This
namespace is used on all of the standard envelope

elements.

http://www.w3.org/2001/XMLSchema

Definitions relating to the W3C XML Schema
standard. Typically assigned the prefix xsd and used to

indicate built-in datat ypes defined by this standard,

such as xsd:string .

http://www.w3.org/2001/XMLSchema-

instance

Another namespace associated with W3C XML

Schema, this is typically assigned the prefix xsi and is

attached to attributes such as xsi:type that define the
data types of elements in the SOAP message.

http://schemas.xmlsoap.org/soap/encoding/
A namespace that indicates definitions taken from the

SOAP section 5 encoding rules.

The implementation shown in Example 3-6 defines constants to represent both the URIs and the

prefixes that will be associated with them when constructing SOAP messages. The

javax.xml.soap.SOAPConstants interface includes constant values

(SOAPConstants.URI_NS_SOAP_ENCODING and SOAPConstants.URI_NS_SOAP_ENVELOPE) for the URIs
associated with the SOAP encoding rules and the envelope, but does not define the other URIs, even
though they are likely to be used just as often.

The Envelope element also has an attribute that you haven't seen before:

soap-env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

The value of this attribute is a URI that indicates the encoding rules used to determine the

representation of the data within the element to which it is attached. In this case, the message is

encoded using SOAP section 5 encoding rules. It is, of course, necessary for both the sender and

receiver of the message to understand the encoding rules that are actually used within the message,

which is why the SOAP 1.1 specification includes these rules that applications are encouraged (but not
absolutely required) to use.

Since the encodingStyle attribute is attached to the Envelope element, it applies to everything within

the envelope unless explicitly overridden at the level of a nested element, in which case that element

and its child elements can be encoded according to different rules:

<OuterElement soap-env:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/">
 <!-- SOAP section 5 encoding rules apply here -->
 <InnerElement soap-env:encodingStyle="urn:MyPrivateStyle">

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-
http://schemas.xmlsoap.org/soap/encoding/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- Private encoding rules apply here -->
 </InnerElement>
 <!-- SOAP section 5 encoding rules apply again -->
</OuterElement>

Nested encodings such as this might be convenient if the message contains all or part of an XML

document that uses a different representation than that used by the parties exchanging SOAP messages
and that ultimately will probably be processed by a different application.

The body of the reply message is simply an array of strings, where each string represents the title of a

book. In order for the client to understand the reply, it must know how the server will represent an array

of strings. Fortunately, the SOAP section 5 encoding rules provide a standard way of representing an

array of objects in XML. For simple types such as strings, the canonical form looks like this:

<tns:ElementName xsi:type= "SOAP-ENC:Array" SOAP-ENC:arrayType= " arrayType">
 <item>itemValue1</item>
 <item>itemValue2</item>
 <!-- and so on -->
</tns:ElementName>

The attribute xsi:type is defined by the W3C XML Schema standard and indicates that the element
contains an array as defined by the SOAP encoding rules, since the namespace prefix for the Array

attribute is SOAP-ENC , which is mapped, in this example, to the URI for these encoding rules. The

arrayType attribute specifies the type of the array. For an array of strings, this will typically have the
value:

SOAP-ENC:arrayType="xsd:string[]"

Here, the value xsd:string is the XML Schema attribute value that defines a string,[10] and the square
brackets obviously indicate an array. In this case, the square brackets are empty, which means that the

number of elements in the array should be determined by counting the child elements. It is also possible

to specify fixed bounds by composing the attribute like this, to indicate a string array with 12 elements:

[10] You can see that xsd:string is an attribute defined by XML Schema because the xsd prefix

in this example (represented in Example 3-6 by the constant value XMLSCHEMA_PREFIX) is

mapped to the XML Schema URI (represented by the constant value XMLSCHEMA_URI).

SOAP-ENC:arrayType="xsd:string[12]"

The elements of the array are all represented as nested elements, the names of which (commonly

referred to as accessor names) must all be the same but can otherwise be arbitrary. In this example, we

use the element name item , but any legal XML name will suffice. In the actual reply message shown
in Example 3-7 , the array element is actually called BookTitles and, not surprisingly, is qualified with

the namespace associated with this web service. Notice, however, that the array elements use an

element name (item) that is not namespace-qualified. This is explicitly allowed by the SOAP encoding

rules.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now let's look at the code in the handleBookListRequest() method that creates this representation
of a string array, which is shown in Example 3-8 .

Example 3-8. Creating a SOAP message containing an array of book titles

 /**
 * Handles a request for list of book names.
 */
 private void handleBookListRequest(SOAPBody replyBody) throws SOAPException {
 // Create a BookTitles element containing an entry
 // for each book title.
 SOAPBodyElement bodyElement = replyBody.addBodyElement(BOOK_TITLES_NAME);

 // Add 'xsi:type = "SOAP-ENC:Array"'
 bodyElement.addAttribute(
 soapFactory.createName("type", XMLSCHEMA_INSTANCE_PREFIX,
 XMLSCHEMA_INSTANCE_URI), SOAP_ENC_PREFIX + ":Array");

 // Add 'SOAP-ENC:arrayType = "xsd:string[]"
 bodyElement.addAttribute(
 soapFactory.createName("arrayType", SOAP_ENC_PREFIX,
 SOAPConstants.URI_NS_SOAP_ENCODING), XMLSCHEMA_PREFIX +
 ":string[]");

 // Add an array entry for each book
 String[] titles = BookImageServletData.getBookTitles();
 for (int i = 0; i < titles.length; i++) {
 SOAPElement titleElement = bodyElement.addChildElement("item");
 titleElement.addTextNode(titles[i]);
 }
 }

We're not going to show how the book titles themselves are obtained - the logic for this is hidden in a

separate class called BookImageServletData , which provides a method that returns all of the titles in

the form of an array of strings. Instead, we're going to concentrate on how to build the SOAP

representation of the titles list. The first step is to create the BookTitles element, which is done using

the SOAPBody addBodyElement() method, using the qualified name of the element as its argument.
This is the same way that the client created the BookList request. Next, we need to add to this element

the xsi:type and SOAP-ENC:arrayType attributes required by the SOAP-encoding rules to indicate

that the element represents an array of strings. To add an attribute to a SOAPElement , the

addAttribute() method is used:

public SOAPElement addAttribute(Name name, String value);

name is the qualified name of the attribute, and value is the value to be associated with it. As before, in

this example, we use the SOAPFactory class to create Name objects for the attributes, which creates the

Name object for the attribute xsi:type , which is then passed to the addAttribute() method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Add 'xsi:type = "SOAP-ENC:Array"'
bodyElement.addAttribute(
 soapFactory.createName("type", XMLSCHEMA_INSTANCE_PREFIX,
 XMLSCHEMA_INSTANCE_URI), SOAP_ENC_PREFIX + ":Array");

The addAttribute() method returns a reference to the

SOAPElement

to which the attribute was added, which makes it possible to add multiple attributes by chaining calls:

bodyElement.addAttribute(...).addAttribute(...).addAttribute();

Having installed the BookTitles element in the reply body, we now need to add a child element for

each book title. The SOAPElement interface provides five methods that allow a nested element to be

added. In this case, since the element is part of a SOAP-encoded array definition, its name does not

need to be namespace-qualified, so we can use the variant of the addChildElement() method that
requires a string to specify the local name of the element to be created and returns a reference to the

SOAPElement itself:

SOAPElement titleElement = bodyElement.addChildElement("item");

At this point, we have SAAJ message structures that amount to the following XML:

 <tns:BookTitles xsi:type="SOAP-ENC:Array" SOAP-
ENC:arrayType="xsd:string[]">
 <item/>
<tns:BookTitles>

What is missing here is the book title within the item element. Unlike item itself, the book title should

not be represented by an XML element - it is, in fact, just a text string. To add text to a SOAPElement ,
we need to create and add a Text node, using the SOAPElement addTextNode() method:

public SOAPElement addTextNode(String text) throws SOAPException;

You may be surprised to see that this method is defined to return a SOAPElement instead of an object of
type Text , despite its name (especially since Text is not derived from SOAPElement ; see Figure 3-4).

In fact, this method returns a reference to the SOAPElement on which it was invoked, not the Text

object that was created. In most cases, you don't actually need to get access to the Text object itself; the

only way to do so is to use the SOAPElement getChildElements() method to get an Iterator over

all of the element's children and search for the one that implements the Text interface. Adding the
following method call:

titleElement.addTextNode(titles[i])

finally completes the array element for the book title, so that now the message body contains the
following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<tns:BookTitles xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[]">
 <item>Creating Effecttive JavaHelp</item>
<tns:BookTitles>

The rest of the loop in the handleBookListRequest() method adds item elements for each of the

books that the service knows about. When this method completes, the reply message is completely built

and is returned from the servlet's onMessage() method, to be sent back to the client.

By now, you have probably realized that implementing a web service using

SAAJ involves much more code that deals directly with details such as the exact

layouts of SOAP messages than you see if you simply used JAX-RPC. In fact,
you might wonder how the author of a client application that needs to connect to

a web service implemented by somebody else is supposed to know what message

types the service supports and how to build the required element structure. Here,

for example, the client application knows how to build the requests for the book

image service and how to interpret the replies only because they were both
implemented by the same person. In the real world, service providers are

supposed to publish the interfaces to their web services in the form of WSDL
documents. As you'll see in Chapter 5 , WSDL includes XML elements that

describe the operations that a web service supports and the formats of the

messages required to access them.

3.3.4.3 Client processing for the reply to the BookList request

The processing performed by the client when it receives the reply to its BookList request is very simple

- all it has to do is loop over the SOAP array in the message body and extract the book titles from
each nested element. Example 3-9 shows the implementation.

Example 3-9. Handling the server's reply to the BookList request

SOAPBody replyBody = reply.getSOAPPart().getEnvelope().getBody();
if (replyBody.hasFault()) {
 SOAPFault fault = replyBody.getFault();
 throw new SOAPException("Fault when getting book titles: " +
 fault.getFaultString());
}

// The body contains a "BookTitles" element with a nested
// element for each book title.
Iterator iter = replyBody.getChildElements(BOOK_TITLES_NAME);
if (iter.hasNext()) {
 ArrayList list = new ArrayList();
 SOAPElement bookTitles = (SOAPElement)iter.next();
 iter = bookTitles.getChildElements();
 while (iter.hasNext()) {
 list.add(((SOAPElement)iter.next()).getValue());

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
}

The first part of this code checks whether the server detected an error with the request by looking for a

SOAP fault element in the reply body. SOAPBody provides the convenience methods hasFault() ,
which returns true if there is a fault present, and getFault() , which looks for and returns the

SOAPFault element. Since the presence of a fault indicates either an error in the client code that

constructed the request or a problem at the server, there is no reasonable recovery possible in this case

and a SOAPException is thrown.

If there is no fault, then the body of the reply contains a BookTitles element. Earlier, we saw that

SOAPElement has a getChildElements() method that returns all of the children of the element that it
is invoked on, and which we used previously to get all of the top-level elements in the body of a SOAP

message. Here, we use an overloaded variant of that method, which accepts a Name as its argument:

public Iterator getChildElements(Name name) throws SOAPException;

This method returns only those elements whose name matches the one given. In this case, we get back
an Iterator over all of the BookTitles elements in the SOAPBody - there should be exactly one.

Once we have a reference to this element, we invoke the getChildElements() method on it to gain

access to all of the nested array elements. In this case, we use the variant of getChildElements() that
returns all of the children, both because we know that we need to process all of them and because the

name associated with the element is arbitrary (and therefore we cannot construct an appropriate Name
object). Finally, we iterate over all of the nested elements and extract the title by using the getValue(

) method, which returns the text associated with a Node , if there is any.

3.3.5 More on SOAPElements

The example that you have just seen shows some of the ways in which a SOAPElement can be created.

It also demonstrates some of its API. In this section, we take a closer look at how to create and use

SOAPElement s.

3.3.5.1 Creation of SOAPElements

So far, you have seen how to create new SOAPElement s and incorporate them into the node tree for a
SOAPMessage in a single step. To create a SOAPElement that appears directly in the SOAPBody , in a

SOAPHeader , or in a SOAPFault , use convenience methods provided by these classes, of which the one

provided by SOAPBody is typical:

public SOAPBodyElement addBodyElement(Name name) throws SOAPException;

This method returns not a SOAPElement but an instance of SOAPBodyElement , which is derived from

SOAPElement . All top-level elements in the SOAP body must be SOAPBodyElement s, rather than

simply

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPElement

s. Similarly, top-level elements inside the SOAPHeader must be of type SOAPHeaderElement , and top-
level elements in a SOAPFault will be of type SOAPFaultElement . As far as the SAAJ API is

concerned, there is no real difference between a SOAPElement and a SOAPBodyElement or a

SOAPHeaderElement , since neither of these interfaces add any methods in addition to those defined by

SOAPElement .

Once you have a SOAPElement , you can add child elements to it using one of the five overloaded

variants of its addChildElement() method, all of which return the newly created SOAPElement :

public SOAPElement addChildElement(Name name)

This variant adds a new SOAPElement for which the name is obtained by the supplied Name
argument. If the Name is a qualified name, then the element as written to the XML output stream

has both a local name and an associated namespace prefix; otherwise, it has an unqualified local
name.

public SOAPElement addChildElement(String localName)

Creates a new SOAPElement with the given unqualified name and adds it to the child list of the

element on which this method is invoked.
public SOAPElement addChildElement(String localName, String prefix, String uri)

Creates a new SOAPElement with a fully qualified name created from the supplied arguments and

adds it to the child list of the element on which this method is invoked. Using this method has
the same result as creating a Name using the supplied arguments and then calling the

addChildElement(Name name) variant.

public SOAPElement addChildElement(String localName, String prefix)

This is similar to the previous variant, except that it does not provide the URI for the namespace

that the localName argument is associated with. However, if the supplied prefix can be resolved
to a namespace URI by examining the SOAPElement on which this method or its ancestors are

invoked, then that URI is used when creating the SOAPElement . If this is not possible, then a

SOAPException is thrown. For example, consider the following code, where soapBody is a

reference to a SOAPBody object:
Name name = soapFactory.createName("bodyElement", "tns", "urn:service");
SOAPBodyElement bodyElement = soapBody.addBodyElement(name);
SOAPElement childElement = bodyElement.addChildElement("childElement",
 "tns");

Here, the addChildElement() call to create childElement does not specify the namespace URI.

However, since the namespace prefix tns supplied as the second argument is defined by the parent

node, a mapping to the URN given in that element is inferred and childElement is associated with this
URI.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public SOAPElement addChildElement(SOAPElement element)

Requests that the given SOAPElement be added to the list of children of the element on which it is
invoked. Depending on the type of the parent element, however, a different SOAPElement may be

added to the parent.

Although the methods all declare the return value to be of type SOAPElement , in reality they may return

a subinterface of SOAPElement . In particular, calling addChildElement() on a SOAPBody object

(which is possible because SOAPBody is itself a SOAPElement) will always return a SOAPBodyElement .

Consider the following code:

SOAPElement bodyElement = soapBody.addBodyElement(name);
 // "name" is of type Name
SOAPElement secondElement = soapBody.addChildElement("localName");

Here, bodyElement is obviously of type SOAPBodyElement because addBodyElement() is defined to
return an object of that type. However, secondElement is also a SOAPBodyElement , since it is a top-

level element within a SOAPBody . Similar results are obtained when addChildElement() is invoked
on an element of type SOAPHeader or SOAPFault .

Now suppose that element is an existing SOAPElement called TopElement , and then consider the

following code, in which soapBody again refers to an object of type SOAPBody :

SOAPElement childElement = soapElement.addChildElement("ChildElement");
SOAPBody addedElement = body.addChildElement(element);

This attempts to add an existing SOAPElement , complete with a child element of its own, to a

SOAPBody . There seems to be a problem here, since the immediate child of a SOAPBody must be a

SOAPBodyElement , but the element being added is actually a SOAPElement . What actually happens is

that a new SOAPBodyElement is created as a copy of the supplied SOAPElement , added to the SOAPBody
instead of it, and returned from the addChildElement() method. The copied element also has as its

child a copy of the child element associated with the original.

Since all of the SOAPElement s that you have seen so far have been created as children of other

SOAPElement s, you might wonder how we could create the unattached SOAPElement used in the

example just shown. To create a freestanding SOAPElement , use one of the following methods of

SOAPFactory :

public SOAPElement createElement(Name name) throws SOAPException;
public SOAPElement createElement(String localName) throws SOAPException;
public SOAPElement createElement(String localName, String prefix,
 String uri) throws SOAPException;

The SOAPElementFactory class also has identical methods to those shown here. However,

SOAPElementFactory is deprecated as of SAAJ 1.1 and the SOAPFactory methods (to which those in

SOAPElementFactory actually delegate) should be used instead.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These methods can be used, as shown in a small way in the previous example, to build a message

fragment as a freestanding entity and then add it to a SOAPMessage , without having to supply a

reference to any part of the message to the code that builds the fragment.

3.3.5.2 Removal of SOAPElements

Although SOAPElement does not provide a method that allows any of its child elements to be removed,
the Node interface, from which SOAPElement is derived, has a detachNode() method that removes the

Node on which it is invoked from its parent. For example, the following code shows how to use this

method to remove the first child of a SOAPElement :

SOAPElement parent = soapFactory.createElement("Element");
parent.addChildElement("Child1");
parent.addChildElement("Child2");
parent.addChildElement("Child3");
parent.addChildElement("Child4");

// Get the first child and remove it
Iterator iter = parent.getChildElements();
SOAPElement child = (SOAPElement)iter.next();
child.detachNode();

Incidentally, it is not possible to remove more than one SOAPElement at a time by using an Iterator in
this way, since the next() method throws a ConcurrentModificationException when called after

removal of the first child element. To remove more than one SOAPElement , use the Iterator remove(
) method instead. The following code shown next, for example, removes all the children of a

SOAPElement .

Iterator iter = parent.getChildElements();
while (iter.hasNext()) {
 iter.remove();
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4 SOAP Fault Handling

A SOAP fault is a specific type of XML element placed in the body of a reply message to convey status

information or, more usually, to report a fault while processing the original request. SAAJ represents a
fault using the SOAPFault interface that, since it must be a top-level element in the SOAP body, is

derived from SOAPBodyElement (see Figure 3-4). The SOAP specification requires that there be no

more than one SOAP fault in the message body. Faults can be mixed with other top-level elements if

necessary.

SOAP faults have three attributes that can be set to provide information about the condition being

reported. Each of these attributes has corresponding methods in the SOAPFault interface to allow its
value to be set or retrieved:

Attribute
SOAPFault

methods
Description

Fault

code

getFaultCode()

setFaultCode()

A code that indicates the reason for reporting the fault. Applications

may define their own private fault codes or use the set of standard

values defined by the SOAP 1.1 specification (described later). All

fault codes must be namespace-qualified.

Fault

string

getFaultString(
)

setFaultString(
)

A human-readable description of the reason for the fault. The value

of this attribute typically is written to a log file or displayed in a user

interface.

Fault
actor

getFaultActor(
)

setFaultActor(
)

The URI of the participant in the SOAP message path (referred to in

the SOAP specification as an actor) that caused the fault element to

be generated.

3.4.1 Fault Codes

SOAP defines a small set of fault codes that can be used as appropriate. All of these fault codes belong

to the same namespace as the SOAP envelope itself. The SAAJ API does not define constant values for

these codes, so the application code must hardcode them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Fault code Description

VersionMismatch

This code indicates that a SOAP message was received in which the namespace

for the SOAP envelope did not match the version of SOAP that the receiver

supports. At the time of this writing, this means that the namespace was

something other than http://schemas.xmlsoap.org/soap/envelope/.

MustUnderstand

This error is generated when a SOAP actor receives a message containing a

header that contains the mustUnderstand attribute with value 1, which it does not

know how to process. For further details, see Section 3.7, later in this chapter.

Client

Indicates that the message was improperly constructed by its originator. It is
possible to more closely specify the nature of the problem (albeit in an

application-dependent way) by appending one or more qualifiers to the fault
code. For example, the book image service uses the fault code

Client.UnknownRequest if it receives a message in which the top-level element

of the body is not one of the requests that it recognizes.

Server

Indicates that a processing error occurred within the server. This might, for

example, be because the resources required within the server to handle the

message are not currently available. This code should not be used when the cause
of the error is related to content or construction of the message. Like the Client

fault code, it is common to return a more specific error code by appending a
qualifier.

3.4.2 Fault Actor

Although in this chapter our examples have involved only a client application and the web service that

it is using, in many cases, a SOAP message passes through and is processed by intermediate systems

before reaching its final destination. These intermediate systems, referred to as actors, usually perform

message validation or processing based on the content of SOAP headers attached to the message. If an
error is detected during header processing, the actor may return a fault to the message originator, and

must identify itself as the source of the report by using the fault actor attribute, which is technically a

URI, but is typically the URL of the system concerned.

When an error is detected at the system that is the ultimate destination of the message, the fault actor

attribute need not be set. Note, however, that the SAAJ API does not allow you to set this attribute to

null - instead, you need to use an empty string to indicate that the fault actor is not specified.

3.4.3 Fault Details

In addition to the three attributes just described, a SOAP fault also requires a detail element to be

present if the fault relates to the content of the message body. No detail element is permitted if the fault

http://schemas.xmlsoap.org/soap/envelope/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

relates to header processing. The content of the detail element is application-dependent, but the top-
level element must be namespace-qualified.

3.4.4 Creating Fault Elements

The book image web service generates a fault in response to a number of conditions. Later in this

chapter, you'll see how the client application and the web service use SOAP attachments to transfer the
cover image for one or more books, given a request containing the book titles. If the web service is

asked for the image of a book whose title it does not recognize, then it generates a fault. To see an

example of this, start the client using the command line:

ant run-client-debug

Now select No Such Book in the book title list and press the "Fetch" button. The client requests the

book cover for a book whose title the web service does not know. In the command window from the

start of this example, you'll see the server's reply message, which contains a SOAP fault entry in the
body:

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/
 envelope/"
 xmlns:tns="urn:jwsnut.bookimageservice"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 soap-env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <soap-env:Body>
 <soap-env:Fault>
 <faultcode>soap-env:Client.Title</faultcode>
 <faultstring>Unknown title</faultstring>
 <faultactor>urn:jwsnut.bookimageservice</faultactor>
 <detail>
 <tns:BookFaultDetail>No Such Book</tns:BookFaultDetail>
 </detail>
 </soap-env:Fault>
 </soap-env:Body>
</soap-env:Envelope>

As you can see, the Fault element (which is qualified with the SOAP envelope namespace) contains

child elements for the fault code, a fault string, the fault actor, and the fault detail:

Fault code

Since the error in this case results from an invalid book title in the received request, the web

service uses a fault code from the soap-env:Client set, and qualifies it with the word "Title" to

indicate that the error was with the book title. Obviously, for this to be of any use, the client and

the service both need to be aware of the possible error codes and their meanings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Fault string

This is simply a text message that describes the error, for the purposes of logging.
Fault actor

In this case, the fault was detected by the ultimate destination of the message, so it was not

mandatory to specify the fault actor. The value supplied here is the URN of the web service.

Detail

The detail element contains an application-defined child element called BookFaultDetail that
provides further information regarding the error. This element must be namespace-qualified, and

it is appropriate here to qualify it with the URN of the web service. Child elements (if there are
any) of the BookFaultDetail element do not need to be namespace-qualified. Applications are

free to include any kind of private content in the detail part.

The code used to generate this fault is shown in Example 3-10.

Example 3-10. Creating a SOAP fault element

/**
 * Creates a fault in the reply body.
 */
private void createFault(SOAPBody replyBody, String faultCode,
 String faultString, String faultActor, String detailString)
 throws SOAPException {

 SOAPFault fault = replyBody.addFault();
 fault.setFaultCode(faultCode);
 fault.setFaultString(faultString);
 fault.setFaultActor(faultActor);
 if (detailString != null) {
 Name detailName = soapFactory.createName("BookFaultDetail",
 SERVICE_PREFIX, SERVICE_URI);
 Detail detail = fault.addDetail();
 DetailEntry detailEntry = detail.addDetailEntry(detailName);
 detailEntry.addTextNode(detailString);
 }
}

The Fault element itself is created using the SOAPBody addFault() method:

public SOAPFault addFault() throws SOAPException;

Three setter methods are used to set the fault code, fault string, and fault actor. If this method is used to

report a fault during header processing, it is not permissible to include a detail element; therefore, the

detailString argument is null. In this case, however, the problem is with the message body, so a
detail entry is mandatory. To create a detail entry and add it to the SOAPFault object, the SOAPFault

addDetail() method is used:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public Detail addDetail() throws SOAPException;

Alternatively, a Detail object can be obtained from SOAPFactory, in which case it must be explicitly

added to the SOAPFault object:

Detail detail = soapFactory.createDetail();
fault.addChildElement(detail);

Finally, to add a top-level element to the Detail object, use its addDetailEntry() method, passing it

the fully qualified element name (in this case, tns:BookFaultDetail):

public DetailEntry addDetailEntry(Name name) throws SOAPException;

DetailEntry is a SOAPElement; therefore, further elements can be nested inside it (and need not be

namespace-qualified), or text can be added, as shown in Example 3-10.

It is also permissible to add other application-defined elements directly to the SOAPFault, rather than

inside the Detail element. These elements can be created using the addChildElement() methods that

SOAPFault inherits from SOAPElement (see Figure 3-4 for the inheritance hierarchy of SOAPFault) or
using the SOAPFactory class in the usual way. All elements added to the SOAPFault element are of type

SOAPFaultElement (from which Detail is derived) and must be namespace-qualified.

The SOAP specification requires that a SOAP reply message containing a Fault
element must, when sent over HTTP, have the HTTP response code 500, which

indicates an internal server error. SAAJServlet fulfills this requirement by
inspecting the message returned by the onMessage() method and setting the

appropriate response code if the body contains a fault - see Example 3-1.

To make it simple to handle SOAP faults, the SOAPBody interface provides two convenience methods:

public boolean hasFault();
public SOAPFault getFault();

These methods remove the need for application code to search the body looking for a SOAPFault

element, which may not be the first element in the SOAP body.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.5 SOAP Messages and MIME Headers

When a SOAP message is wrapped for transmission in HTTP (or another protocol, such as SMTP),

suitable MIME headers must be created. At minimum, the wrapper must include the Content-Type and
Content-Length headers along with the SOAPAction header that was described in Section 3.3.2, earlier

in this chapter. Similarly, when a message is received, any MIME headers that accompany it must be

extracted from the protocol-specific wrapper and be made part of the created SOAPMessage. The MIME

headers associated with a SOAPMessage are held in an object of type javax.xml.soap.MimeHeaders.

In terms of the structure of an encapsulated SOAP message, the MIME headers logically appear outside

the envelope (as shown in Figure 3-1), where they form the protocol-specific wrapper. In the case of a
SOAP message with attachments, in addition to the headers in the outer wrapper, the SOAP message

part and each of the attachment parts have their own collection of MIME headers that are distinct from
those of the wrapper, as shown in Figure 3-2.

3.5.1 The MimeHeader and MimeHeaders Classes

MimeHeader and MimeHeaders are two of four concrete classes in the java.xml.soap package. The

MimeHeader class represents a single MIME header and contains the header name and its associated
value, which are set at construction time and cannot subsequently be changed.

MimeHeaders is a collection of MimeHeader objects. When it is created, a MimeHeaders object is empty;

headers can be added using one of the following methods:

public void addHeader(String headerName, String headerValue)

Creates a MimeHeader object with the given header name and value, and adds it to the collection

of headers.

public void setHeader(String headerName, String headerValue)

If the MimeHeaders object does not contain a header with the given name, this method behaves in
the same way as addHeader(). Otherwise, the value for the first header in the collection that

has the given name is replaced with the given value, and all other MimeHeader entries with the

same name are removed.

As implied by the description of the setHeader() method, it is possible to have more than one header

with the same name in a MimeHeaders object. The following code results in two header entries, both

with the name HeaderName:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MimeHeaders headers = new MimeHeaders();
headers.addHeader("HeaderName", "Value1");
headers.addHeader("HeaderName", "Value2");

Calling setHeader() method results in exactly one header with the supplied name being present in

the collection, no matter how many there were before the call was made. The following line:

headers.setHeader("HeaderName", "NewValue");

replaces the MimeHeader with name HeaderName; it replaces value Value1 with the value NewValue;

and it removes the MimeHeader for the entry with value Value2. Note that this method, like all of the
methods of MimeHeaders, uses case-insensitive comparison when searching for headers by name, so

that the names HeaderName and HEADERNAME are equivalent.

There are a number of methods that can be used to query the content of a MimeHeaders object:

public Iterator getAllHeaders()

Gets an Iterator over all of the headers in the collection. Each item returned by the Iterator is

of type MimeHeader.

public String[] getHeader(String headerName)

Gets all of the values associated with headers whose names match the given name. Using the

MimeHeaders object just constructed as an example, the method call
getHeaders("HeaderName") would return an array of two strings containing the values Value1

and Value2.

public Iterator getMatchingHeaders(String[] headerNames)

Gets an Iterator that returns all of the MimeHeader objects that have a name that matches those

in the given array.

public Iterator getNonMatchingHeaders(String[] headerNames)

Gets an Iterator that returns all of the MimeHeader objects that have a name that does not match
those in the given array.

Finally, there are two methods that remove entries from the collection:

public void removeAllHeaders()

Removes all of the MimeHeader objects, leaving an empty collection.

public void removeHeader(String headerName)

Removes all MimeHeader objects whose name matches the supplied argument.

3.5.2 Setting MIME Headers When a SOAP Message Is Transmitted

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When a SOAPMessage is created using the no-argument createMessage() method of

MessageFactory, it has an empty MimeHeaders object associated with it. You can add headers at any

time by retrieving this object from the SOAPMessage and using the addHeader() or setHeader()

method:

message.getMimeHeaders().addHeader("Header1", "Value1");

The protocol-specific wrapper for a protocol such as HTTP requires that the Content-Length,

Content-Type, and SOAPAction headers be included. These headers can be generated automatically by

calling the SOAPMessage saveChanges() or writeTo() methods. The SOAPAction method can be

explicitly set by application code and is not overwritten if it already has a value; the other two headers
are always set by the saveChanges() and writeTo() methods. The SOAPMessage class also has a

convenience method called setContentDescription() that allows the optional Content-

Description method to be set. The content description is treated as comment only.

If a SOAP message is transmitted using the call() method of SOAPConnection, the saveChanges()
method is automatically called to create the appropriate headers, and the content of the resulting

MimeHeaders object is copied to the outgoing HTTP message, as shown in Figure 3-6.

Figure 3-6. Mapping of MIME headers to HTTP headers

On the other hand, if you are implementing a server in a servlet environment and sending a reply

message, you won't have a SOAPConnection, and therefore you cannot use its call() method to wrap
the SOAPMessage in the HTTP reply. In this case, you have to manually insert the MIME headers in the

HTTP reply and then write the content of the SOAPMessage to the servlet's output stream. Much of the

code to handle this was shown in the doPost() method in Example 3-1. Note that it is first necessary

to ensure that the MimeHeaders object is actually populated before copying the headers to the HTTP

reply, by calling the saveChanges() method. Once this is done, it is a simple matter to install the
headers in the reply. The code for the SAAJServlet setHttpHeaders() method is shown in Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3-11. This method is invoked as follows:

// Copy the MIME headers to the HTTP response
setHttpHeaders(reply.getMimeHeaders(), response);

where response is the HttpServletResponse object passed to the doPost() method.

Example 3-11. Copying MIME headers to an HTTP message

private void setHttpHeaders(MimeHeaders mimeHeaders,
 HttpServletResponse response) {
 Iterator iter = mimeHeaders.getAllHeaders();
 while (iter.hasNext()) {
 MimeHeader mimeHeader = (MimeHeader)iter.next();
 String headerName = mimeHeader.getName();
 String[] headerValues = mimeHeaders.getHeader(headerName);

 int count = headerValues.length;
 StringBuffer buffer = new StringBuffer();
 for (int i = 0; i < count; i++) {
 if (i != 0) {
 buffer.append(',');
 }
 buffer.append(headerValues[i]);
 }
 response.setHeader(headerName, buffer.toString());
 }
}

This method uses the SOAPMessage getAllHeaders() method to get an Iterator over all of the

MimeHeader objects in the set of headers that is passed, and it uses the HttpServletResponse

setHeader() method to install the header name and value corresponding to each MimeHeader. As a

space optimization, if there is more than one header with the same name, this method gathers all of

their values together and writes a single header in which all of the values are comma-separated. This is
so that, for example, if a header with name HeaderName appears twice with values Value1 and Value2,

the result is a single HTTP header that looks like this:

HeaderName: Value1,Value2

3.5.3 Obtaining MIME Headers When a SOAP Message Is Received

When a SOAPMessage is created from an HTTP request received by a servlet, the MessageFactory

createMessage() method is used, as shown in Example 3-1. This method requires two arguments:

public SOAPMessage createMessage(MimeHeaders headers, InputStream
 inputStream);

The MimeHeaders argument supplies the headers to be installed in the SOAPMessage, while the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

InputStream is used to read the XML that makes up the SOAP envelope and, in the case of a message
with attachments, the attachments themselves. The createMessage() method associates the supplied

MimeHeaders object with the SOAPMessage so that it can be retrieved later by calling the

getMimeHeaders() method. The Content-Type header from the collection is also used by

createMessage() to determine whether the SOAP message is in the format shown in Figure 3-1

(where the content type is text/xml) or has attachments as shown in Figure 3-2 (and content type
Multipart/Related).

The servlet has to create an appropriate MimeHeaders object from the HTTP wrapper before it can call

createMessage(). The code used by SAAJServlet to do this is shown in Example 3-12.

Example 3-12. Creating a MIMEHeaders object from an HTTP message

private MimeHeaders getMIMEHeaders(HttpServletRequest request) {
 MimeHeaders mimeHeaders = new MimeHeaders();
 Enumeration enum = request.getHeaderNames();
 while (enum.hasMoreElements()) {
 String headerName = (String)enum.nextElement();
 String headerValue = request.getHeader(headerName);
 StringTokenizer st = new StringTokenizer(headerValue, ",");
 while (st.hasMoreTokens()) {
 mimeHeaders.addHeader(headerName, st.nextToken().trim());
 }
 }
 return mimeHeaders;
}

In this code, the HTTP headers are obtained from the HttpServletRequest object. In most cases, one
MimeHeader will be created from each header in the HTTP message. However, if a header contains

multiple comma-separated values, such as:

HeaderName: Value1,Value2

then a separate MimeHeader will be added for each of the values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.6 SOAP with Attachments

A SOAP message constructed according to the SOAP 1.1 specification can only contain data encoded

as XML. The SOAP with attachments specification defines an extension of the SOAP that allows
additional data items - which may or may not be XML - to be transferred along with a SOAP

message. SAAJ supports SOAP with attachments and provides a simple API that allows the transfer of

arbitrary data. However, as we'll see, at the detailed level this interface is not quite as easy to use as it

could be.

3.6.1 An Example SOAP with Attachments Application

As a demonstration of the use of attachments, the book image web service uses the SAAJ API to return
the cover images for one or more of the books that it knows about. To see how this works, start the

client using the following command:

ant run-client-debug

When the list of book titles appears, select one or more of them by clicking on them with the mouse

(hold down the Control key to select more than one), then press the "Fetch" button. The selected

images will appear in the user interface, as shown in Figure 3-7, and the message used to deliver them

will be written to the command window. Since the message contains the binary data for the images,
you'll see some strange characters in the output window. Leaving out the image data itself, a typical

message used to transfer three cover images is shown in Figure 3-8.

Figure 3-7. Using SOAP with attachments to transfer images

Figure 3-8. A SOAP with attachments message containing three attachments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Before we look at the SOAP with attachments message, let's briefly look at the request message that the

client sends. This message (which does not have any attachments) contains an element called

BookImageRequest that represents an array of strings, where each string is the title of a book. Here is
what the body of the SOAP request looks like when requesting the cover images for three books:

<tns:BookImageRequest
 xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[]"
 tns:imageType="image/jpeg">
 <item>J2ME in a Nutshell</item>
 <item>Java Swing</item>
 <item>Java in a Nutshell</item>
</tns:BookImageRequest>

As you can see, the BookImageRequest element contains the standard xsi:type and SOAP-

ENC:arrayType attributes that indicate that it is a string array encoded using the SOAP section 5
encoding rules. It also includes another attribute defined in the book image web service's own

namespace, which specifies the format in which the image should be returned:

tns:imageType="image/jpeg"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The server supports both JPEG and GIF images, and you can select the type required using the "Use

GIF Images" checkbox on the user interface.

Now let's examine the reply message shown in Figure 3-8. As you can see, it is broken down into

several parts that map directly to those shown in Figure 3-2. The first part consists of the HTTP headers

that wrap the entire SOAP message. These headers are generated when the message is constructed

using the saveChanges() method, and include a Content-Type header that indicates that the message
is constructed according to the rules for a MIME Multipart/Related message. Any additional MIME

headers added by application code to the MimeHeaders object obtained from the getMimeHeaders()

method of SOAPMessage appear here.

The boundaries between the message parts are indicated using a text string that is automatically

generated when the message is constructed and are supplied as the value of the boundary attribute of

the Content-Type header, which in this case is:

------=_Part_11_4712040.1027772369874

You can find a complete description of the format of these messages in RFC 2045 and RFC 2387, both
of which can be downloaded from http://www.ietf.org.

The second part corresponds to the part of the message represented by the SOAPPart object and

includes the SOAP message body. As you can see, this portion of the message also has MIME headers,
one of which is the Content-Type header that describes the content as being text/xml. Since the

SOAP body is always XML-encoded, this is the only legal value that could appear here. The SOAPPart

object has a group of methods that allow application code to set or query the MIME headers that it

contains, which are closely related to the methods of the MimeHeaders object described in the previous
section of this chapter. These headers are distinct from those associated with the SOAPMessage object

and are used only when the message includes attachments.

Following the SOAPPart are the three attachments. Again, each attachment has its own collection of

MIME headers that, at minimum, must include a Content-Type header that describes the type of data

that the attachment contains. In this case, the header is image/jpeg because all three attachments

represent a book cover image encoded in JPEG format. Each attachment also has an additional header
that looks like this:

Content-Id: ID0

This header is added by the book image servlet and acts as a label that is used to refer to the attachment
from within the XML part of the message, which is shown in Example 3-13.

Example 3-13. The array of images returned by the book image service

<tns:BookImages xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:anyType[]">
 <item href="cid:ID0"/>

http://www.ietf.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <item href="cid:ID1"/>
 <item href="cid:ID2"/>
</tns:BookImages>

By now, you should recognize this as a SOAP-encoded array. In this case, though, the array type is

given as xsd:anyType[]. This particular specifier indicates that the element content could be any type

- the application needs to examine each element to work out its actual type. This construct is
essentially the same as declaring an array of Java Objects.

Another difference between this array and those that you have already seen is the actual element

content is not inline with the array itself. Since the data in this case is not XML, it cannot be included

directly in the message part, so we have to provide a reference that will allow the receiving application
to locate the data. In this case, we choose to do so by using the href attribute, the value of which maps

directly to the Content-Id of the attachment part that contains the image data apart from the inclusion
of the cid:, which indicates that the value is a Content-Id. This distinguishes this representation from

an alternative choice, available only for XML content, which places the value in the body of the

message itself and for which the reference uses a # symbol instead of cid:, as shown here:

<item href="#ID0"/>

Here is a typical example where this style of reference is used:[11]

[11] Another point to note is that you could try to avoid the use of href and id attributes by simply

adopting the convention that the image data for the first book is in the first attachment, the data
for the second is in the second attachment, and so on. However, this might not be a good idea,
since although the SAAJ API includes a method that gets all the attachments for a message, its

definition does not state that they are returned in the same order in which they appear in the

message.

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns0="urn:jwsnut.chapter2.bookservice/types"
 env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <env:Body>
 <ans1:getBookInfoResponse xmlns:ans1=
 "urn:jwsnut.chapter2.bookservice/wsdl">
 <result href="#ID1"/>
 </ans1:getBookInfoResponse>
 <ns0:ArrayOfBookInfo id="ID1" xsi:type="enc:Array"
 enc:arrayType="ns0:BookInfo[12]">
 <item href="#ID2"/>
 <!-- Additional item elements not shown -->
 </ns0:ArrayOfBookInfo>
 <ns0:BookInfo id="ID2" xsi:type="ns0:BookInfo">
 <editor xsi:type="xsd:string">Paula Ferguson, Robert Eckstein

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </editor>
 <author xsi:type="xsd:string">David Flanagan</author>
 <price xsi:type="xsd:double">39.95</price>
 <title xsi:type="xsd:string">Java in a Nutshell</title>
 </ns0:BookInfo>
 <!-- More elements not shown -->
 </env:Body>
</env:Envelope>

This SOAP message is actually created by JAX-RPC, and the data represents an array of BookInfo

objects, which were used in the previous chapter. The result element uses the attribute href="#ID1"
to reference the data for the array of BookInfo objects that make up the result of the request, and the

element that contains the data, called ArrayOfBookInfo, has an id attribute, the value of which is the
referenced identifier. The same technique is used to refer to the array content from within the array.

It is important to note that there is nothing automatic about the use of href and id attributes to cross-

reference one part of the message from the other: the references must be included by the application,

and the receiver must use the id provided by the href attribute to find the referenced data, either in the
SOAP message body as just shown or in an attachment.

3.6.2 Creating and Managing SOAP Attachments

The SAAJ API represents SOAP attachments using an instance of the

javax.xml.soap.AttachmentPart class. SOAPMessage provides three methods to create attach-ments:

public AttachmentPart createAttachmentPart()

Creates an AttachmentPart with no associated content. To add some data to the attachment, use

one of the methods described in Section 3.6.3.

public AttachmentPart createAttachmentPart(Object content, String contentType)

Creates an AttachmentPart with the given content and with the Content-Type header set from
the second argument. SAAJ makes some assumptions about the data type of the content object

passed to it based on the supplied content type, as described in the next section.

public AttachmentPart createAttachmentPart(DataHandler dataHandler)

Creates an AttachmentPart where the data for the attachment is supplied by the given

DataHandler. See the next section for a discussion of this method.

These methods do not connect the AttachmentPart to the message. To do this, use the

addAttachmentPart() method:

public void addAttachmentPart(AttachmentPart part);

The number of attachments associated with a SOAPMessage can be obtained by calling the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

countAttachments() method, whereas an Iterator that returns some or all of the attachments can
be obtained using the following methods:

public Iterator getAttachments()
public Iterator getAttachments(MimeHeaders headers)

The Iterator returned by the first of these methods will visit all of the attachments, whereas the one
returned by the second method returns only those for which the MIME headers include all of those in

the given MimeHeaders object. For example, to get all of the attachments whose data content is a JPEG

image, use the following code:

MimeHeaders headers = new MimeHeaders();
headers.addHeader("Content-Type", "image/jpeg");
Iterator iter = soapMessage.getAttachments(headers);

The SAAJ specification does not explicitly require that the order in which the attachments are returned

by the Iterator matches the order in which they appear in the message.

The Iterator returned by these methods can also be used to remove selected attachments from the

message. The following code removes all attachments containing JPEG images:

MimeHeaders headers = new MimeHeaders();
headers.addHeader("Content-Type", "image/jpeg");
Iterator iter = soapMessage.getAttachments(headers);
while (iter.hasNext()) {
 iter.remove();
}

A quicker way to remove all attachments is to use the removeAllAttachments() method.

3.6.3 Attachment Headers and Content

An attachment contains a collection of MIME headers and some data content. This section looks at the

API that SAAJ provides for manipulating both of these parts, using the book image web service for
illustration purposes.

3.6.3.1 MIME headers

Like the SOAPMessage and the SOAPPart, an AttachmentPart has associated MIME headers.

AttachmentPart provides the same API for manipulating these headers (as discussed earlier in Section

3.5.1). An AttachmentPart always has a Content-Type header that reflects the data type of the object

that it contains, which is set when the AttachmentPart is created, when content is associated with it
using one of the methods that we'll cover shortly, or when explicitly using the setContentType()

method. If the latter is used, then the value supplied must match the actual type of the data in the

attachment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AttachmentPart also supplies convenience methods for setting two specific MIME headers:

public void setContentId(String contentId);
public void setContentLocation(String contentLocation);

Both of these headers are usually used to refer to the attachment from elsewhere using an element with

an href attribute. The difference between these two types of identifier is as follows:

Content-Id is typically associated with an identifier that has only local scope and is guaranteed to

be unique only within the message that contains the attachment. Applications commonly use
values such as ID0, ID1, etc.

The value associated with a Content-Location is a URI (often a URL), which is more likely to

be globally meaningful. If a message with an AttachmentPart containing a Content-Location
header is received, it can more easily be removed and attached to another message than if

Content-Ids is used, since the Content-Id in the AttachmentPart might clash with another

already attached to the message.

Refer to RFC 2557 (at http://www.ietf.org/rfc/rfc2557.txt) for a complete discussion of the use of these
identifier types. For an example that uses Content-Ids to locate attachments, see Section 3.6.4, later in

this chapter.

It is important to realize that setting the Content-Id or the Content-Location header has no actual
effect on the data in the AttachmentPart other than attaching a label to it.

3.6.3.2 Associating data with an AttachmentPart

There are four ways to install the data for an AttachmentPart:

Use the createAttachmentPart(Object content, String contentType) method of

SOAPMessage.

Use the setContent(Object content, String contentType) method of AttachmentPart.

Use the createAttachmentPart(DataHandler handler) method of SOAPMessage.

Use the setDataHandler(DataHandler handler) method of AttachmentPart.

The first two are equivalent, as are the second two, so we'll discuss these two different mechanisms

separately.

3.6.3.3 Specifying a value and a content type

http://www.ietf.org/rfc/rfc2557.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the easiest way to install content in an attachment. For example, the following code installs a

string value in a newly created attachment:

AttachmentPart part = soapMessage.createAttachment();
part.setContent("This is in the attachment", "text/plain");
soapMessage.addAttachmentPart(part);

You can achieve the same result using an overloaded variant of the createAttachmentPart()

method:

AttachmentPart part = soapMessage.createAttachment("This is in the
attachment", "text/plain");
soapMessage.addAttachmentPart(part);

However, this mechanism is not always as convenient as it may seem, because SAAJ places some
requirements on the type of the content object, depending on the Content-Type that you supply. If

these requirements are not met, then a SOAPException is thrown.

The content types that the SAAJ specification requires all implementations to recognize and the

expected type of the Java object that must be supplied when creating the attachment are listed in Table
3-3. When the attachment contains a string, it is simple enough to make use of this API, since the

content can be supplied as a java.lang.String object. Of course, this is probably among the least
likely of data types to find in an attachment, and in all the other cases the developer has to work a little

harder.

Table 3-3. Mapping between content type and object type for SOAP attachments

Content type Required object type

text/plain java.lang.String

text/xml javax.xml.transform.stream.StreamSource

image/gif java.awt.Image

image/jpeg java.awt.Image

To attach XML, you can't simply read the XML into a string and pass the string value - in other

words, the following does not work:

soapMessage.createAttachmentPart("<AnElement>Content</AnElement>",
 "text/xml");

Instead, you have to construct a StreamSource object:

soapMessage.createAttachmentPart(
 new StreamSource(new StringReader(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "<AnElement>Content</AnElement>")), "text/xml");

Although this is not so convenient when you have the XML in the form of a String, it does make the
task of including XML from a file or an InputStream very simple:

soapMessage.createAttachmentPart(new StreamSource(new File(
 "c:\\fileName.xml")), "text/xml");

As far as images are concerned, in order to attach one to a message, you need to have it in the form of a
java.awt.Image object. While this might not seem too onerous a requirement, it probably is not the

best design choice for the following reasons:

Using the java.awt.Image class implies the use of user interface classes. This is really not a

good idea in a server environment, where it should not be necessary to load and initialize any user
interface classes.

Typically, in order to get the required Image object, you will open a file containing the image

encoded in byte form in either GIF or JPEG format, and then load the file content using methods

provided by java.awt.Component together with a java.awt.MediaTracker. This is all
unnecessary overhead, since the Image is then converted back to a byte stream when the SOAP

message is transmitted.

Finally, you cannot use this mechanism to attach an image in GIF format to a message, since the
process of converting from an Image to a byte stream requires a GIF encoder, which is not

supplied as part of the standard Java platform at the time of this writing (although, of course, it is

possible to decode a byte stream in GIF format).

For all these reasons, if you want to include an image as an attachment, you need to use a DataHandler,

as described in the next section.

3.6.3.4 Using a DataHandler

The javax.activation.DataHandler class is part of the JavaBeans Activation Framework (JAF). It is

most commonly used in conjunction with JavaMail to encapsulate access to attachments sent and

received with Internet mail, which is essentially the same as handling SOAP message attachments.

Whenever you create an AttachmentPart while building an outgoing message, or when an

AttachmentPart is created to represent part of a received SOAP message, it has an associated
DataHandler.

When a SOAP message is being converted from its internal representation to the byte stream that is

ultimately transmitted, the DataHandler is responsible for creating a byte stream representation of the

data in the attachment. The way in which this is done depends on the type of data to convert, so the

DataHandler uses objects called DataContentHandlers, each of which can perform this conversion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for a specific data type. DataContentHandlers are created by an object implementing the
DataContentHandlerFactory interface, which returns an appropriate DataContentHandler for a

given MIME type, if it has one. The SAAJ reference implementation installs a

DataContentHandlerFactory that provides handlers for the data types listed in Table 3-3.

Unfortunately, the handlers created by this factory for image/jpeg, image/gif, and text/xml work

only when they are asked to convert objects of the types listed in the second column of Table 3-3.
When the data you need to attach is already in the form of a byte array, simply using the

AttachmentPart setContent() method in the obvious way:

attachmentPart.setContent(imageData, "image/jpeg");

cannot be done without also changing the DataContentHandler used to handle objects with this MIME
type. The only way to do this is to write and install your own DataContentHandlerFactory. (This is

done by using the DataHandler setDataContentHandlerFactory() method), but this requires you to

implememt handlers for all MIME types that you need to support, since there can only be one factory
active at any given time and there is no way to get a reference to the existing factory so that you can

delegate to it.

Fortunately, there is a simpler way to solve this problem. A DataHandler can work directly with an
object that implements the javax.activation.DataSource interface. A DataSource is used when you

have access to the object in a form from which it is simple to create an InputStream and an

OutputStream. When you associate a DataSource with a DataHandler, it uses the DataSource to
access the underlying data instead of looking for a DataContentHandler. When you have a GIF or

JPEG image in the form of an array of bytes, it is natural to use a DataSource instead of a
DataContentHandler, because no further data conversion is required. To describe how this can be

done, the code that attaches the book cover images to the SOAP reply for the book image service is

shown in Example 3-14.

Example 3-14. Attaching images to a SOAP message

private void handleBookImageRequest(SOAPElement element, SOAPMessage reply)
 throws SOAPException {
 // The request element contains an attribute that holds the
 // type of image requested and a nested string for each title.
 // The reply body has a BookImages element and a nested item with
 // a reference to the image which is sent as an attachment
 SOAPBody replyBody = reply.getSOAPPart().getEnvelope().getBody();

 // Determine whether to use JPEG or GIF images
 String imageType = element.getAttributeValue(IMAGE_TYPE_ATTRIBUTE);
 boolean gif = imageType.equalsIgnoreCase("image/gif");

 // Build the BookImages element containing all of the replies
 SOAPBodyElement bodyElement = replyBody.addBodyElement(BOOK_IMAGES_NAME);
 bodyElement.addAttribute(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 soapFactory.createName("type", XMLSCHEMA_INSTANCE_PREFIX,
 XMLSCHEMA_INSTANCE_URI), SOAP_ENC_PREFIX + ":Array");
 bodyElement.addAttribute(
 soapFactory.createName("arrayType", SOAP_ENC_PREFIX,
 SOAPConstants.URI_NS_SOAP_ENCODING), XMLSCHEMA_PREFIX + ":anyType[]");

 // Index of the next attachment to use
 int index = 0;

 // Handle each nested element.
 Iterator iter = element.getChildElements();
 while (iter.hasNext()) {
 // Get the next child element from the request message
 SOAPElement childElement = (SOAPElement)iter.next();

 // Get the book title
 String title = childElement.getValue();

 // Get the image data
 byte[] imageData = BookImageServletData.getBookImage(title, gif);
 if (imageData != null) {
 // Got the data - attach it.
 AttachmentPart attach = reply.createAttachmentPart();
 attach.setDataHandler(new DataHandler(
 new ByteArrayDataSource("Image Data",
 imageData,
 gif ? "image/gif" : "image/jpeg")));
 attach.setContentId("ID" + index);
 reply.addAttachmentPart(attach);

 // Add an element in the reply pointing to the attachment
 bodyElement.addChildElement("item").addAttribute(HREF_ATTRIBUTE,
 "cid:ID" + index);

 // Increment the index
 index++;
 } else {
 // No data - this is a fault.
 // Clear the reply and install the fault
 reply.removeAllAttachments();
 bodyElement.detachNode();
 createFault(replyBody, "soap-env:Client.Title", "Unknown title",
 SERVICE_URI, title);
 return;
 }
 }
}

This code loops over all of the book titles in the client request message and adds an element to the body

of the reply that points to a corresponding attachment, using an href attribute with the Content-Id of

the attachment as the reference value, as shown in Example 3-13. It uses a separate class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(BookImageServletData, not shown here) to get the data for a book with a given title in the form of an
array of bytes that is encoded in either GIF or JPEG form. The section of this code that is relevant to

this discussion is highlighted in bold. The first step is to create the AttachmentPart:

AttachmentPart attach = reply.createAttachmentPart();

To associate the image data with the attachment, we need to replace the default DataHandler with one

that uses a DataSource that takes its content from the image data. Unfortunately, there is no

DataSource implementation that accepts a byte array as its input, but it is simple enough to create one,

as shown in Example 3-15.

Example 3-15. A DataSource that encapsulates access to data in a byte array

class ByteArrayDataSource implements DataSource {

 private String contentType;

 private byte[] data;

 private String name;

 ByteArrayDataSource(String name, byte[] data, String contentType) {
 this.name = name;
 this.data = data;
 this.contentType = contentType;
 }

 public String getContentType() {
 return contentType;
 }

 public InputStream getInputStream() throws IOException {
 return new ByteArrayInputStream(data);
 }

 public String getName() {
 return name;
 }

 public OutputStream getOutputStream() throws IOException {
 throw new IOException(
 "ByteArrayDataSource cannot support getOutputStream()");
 }
}

From the point of view of this example, the DataSource is only required to implement the

getContentType()

method (to return the MIME type of the data that it provides) and the getInputStream() method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(which needs to return an InputStream to provide access to the data passed to it at construction time).
This is easily achieved by wrapping the byte array containing the data in a ByteArrayInputStream. It

would be simple to generalize this to also allow the data to be modified by implementing the

getOutputStream() method, but that is not required here.

Given this DataSource, the image data can be associated with the attachment and then added to the

SOAP reply message as follows:

 attach.setDataHandler(new DataHandler(
 new ByteArrayDataSource("Image Data",
 imageData,
 gif ? "image/gif" : "image/jpeg")));
 attach.setContentId("ID" + index);
 reply.addAttachmentPart(attach);

When the completed reply message is being converted into a byte stream for transmission, the content

of the attachments are always read from their DataHandlers. Since we constructed the DataHandler

for each attachment with a DataSource, instead of trying to find a DataContentHandler for the
attachment's associated MIME type, the data is obtained directly from the input stream returned by the

getInputStream() method of the ByteArrayDataSource. Not only is this more convenient than
converting the data into an Image, it is also much more efficient, and better still, it allows GIF images

to be supported. Since there is no need for a GIF encoder to be present, the encoding has already taken

place when the image data was created. This web service can now support any type of image, since it
simply treats the image data as an opaque byte stream. Whether this is useful depends on the

capabilities available to the client to decode the data and display it - obviously, it is not useful to send
an image in PNG format to a client that cannot decode PNG images.

This same technique could be used for any type of data for which you have a byte stream

representation, for content types that are not listed in Table 3-3, and for which, therefore, the

AttachmentPart setContent() method will not work. If, for example, you have an array of bytes

that represents an audio clip in .wav format (a format that is not directly supported in the reference
implementation), you can associate it with an attachment as follows:

byte[] audioData =; // Load sound bytes (not shown)
 attach.setDataHandler(new DataHandler(
 new ByteArrayDataSource("Audio Data",
 audioData, "audio/wav")));

As well as installing your own DataHandler to make use of a custom DataSource, you can also use its

other two constructors to attach data to a SOAP message:

public DataHandler(Object object, String mimeType);
public DataHandler(URL url);

The first constructor is of little use because it is equivalent to using the AttachmentPart setContent(

) method. The second constructor can be used to import data from a given URL, where it is assumed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that the URL getContent() method returns an object whose type is consistent with the content types
listed in Table 3-3.

3.6.4 Processing Received Attachments

When a SOAP message containing one or more attachments is received, the SOAPMessage object will

have one AttachmentPart per attachment. The interpretation placed on these attachments and the way
in which they relate to the XML in the body of the message is, of course, application-dependent. In the

case of the book image service, as we saw in Example 3-13, each image returned in response to a

BookImageRequest has its own entry in the BookImages array that appears in the body of the SOAP

message sent by the web service to the client. The array entry is bound to the attachment containing the

image data by an href attribute that contains the value of the Content-Id MIME header of the
appropriate attachment:

<item href="cid:ID0"/>

To extract all of the images, the book image client loops over all of the elements in the array, extracts

the href attribute for each, and finds the AttachmentPart that has the corresponding Content-Id, as
shown in Example 3-16.

Example 3-16. Handling attachments in a SOAP message

SOAPBody replyBody = reply.getSOAPPart().getEnvelope().getBody();
if (replyBody.hasFault()) {
 SOAPFault fault = replyBody.getFault();
 throw new SOAPException("Fault when getting book images: " +
 fault.getFaultString() +
 ", actor is [" + fault.getFaultActor() + "]");
}

// The body contains a "BookImages" element with a nested
// element for each book title.
Iterator iter = replyBody.getChildElements(BOOK_IMAGES_NAME);
if (iter.hasNext()) {
 ArrayList list = new ArrayList();
 MimeHeaders headers = new MimeHeaders();
 SOAPElement bookImages = (SOAPElement)iter.next();
 iter = bookImages.getChildElements();
 while (iter.hasNext()) {
 SOAPElement element = (SOAPElement)iter.next();
 String imageRef = element.getAttributeValue(HREF_ATTRIBUTE);
 if (imageRef != null) {
 // Get the attachment using the Content-Id, having
 // first removed the "cid:" prefix
 imageRef = imageRef.substring(4);
 headers.setHeader("Content-Id", imageRef);
 Iterator attachIter = reply.getAttachments(headers);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (attachIter.hasNext()) {
 AttachmentPart attach = (AttachmentPart)attachIter.next();
 Object content = attach.getContent();
 if (content instanceof Image) {
 list.add(content);
 }
 }
 }
 }
 int size = list.size();
 Image[] images = new Image[size];
 list.toArray(images);
 return images;
} else {
 // No BookTitles element was found
 throw new SOAPException("No BookImages element in returned message");
}

As each child element of the array is found, its href attribute is obtained. Since this is actually in the

form cid:ID0, it is necessary to first strip away the leading cid: to obtain the value that is used for the
Content-Id header:

 String imageRef = element.getAttributeValue(HREF_ATTRIBUTE);
 if (imageRef != null) {
 // Get the attachment using the Content-Id, having
 // first removed the "cid:" prefix
 imageRef = imageRef.substring(4);

As noted earlier, the SAAJ API provides two SOAPMessage methods that return the attachments for the

message:

public Iterator getAttachments()
public Iterator getAttachments(MimeHeaders headers)

There is no direct way to find a single attachment given a content id string. Instead, the second
getAttachments() method provides a general facility that returns all attachments that have a given

set of MIME headers. Here, we use it to locate the correct AttachmentPart by looking for the

attachment in which the Content-Id header has the value extracted from the message body:

MimeHeaders headers = new MimeHeaders();
headers.setHeader("Content-Id", imageRef);
Iterator attachIter = reply.getAttachments(headers);
if (attachIter.hasNext()) {
 AttachmentPart attach = (AttachmentPart)attachIter.next();

Given the way that this message is constructed, we expect there to be only one AttachmentPart per

element in the message body, but this isn't necessarily the case: it is possible to attach more then one

object with the same Content-Id, perhaps to supply the image and an associated sound file containing

some marketing information for the book. The two objects would, of course, be distinguished by the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

content types, which can be obtained from the AttachmentPart using its getContentType() method.

Once you have the AttachmentPart, you can get its content using the following method:

public Object getContent();

The actual type of the returned object is determined by the attachment's content type and the
DataContentHandlers that are installed. In the case of the reference implementation, the mapping from

content type to Java object type is as shown in Table 3-3, which means that, in this example, the

getContent() method should return a java.awt.Image containing the image data extracted from the

attachment.

Content types for which a DataContentHandler is not found are returned as an InputStream from

which the raw byte data can be read. In the case of the reference implementation, for example, a sound
file sent with type audio/wav or a byte stream of type application/octet-stream is returned in this

way.

Another way to extract the data from an attachment is to use the DataHandler that is created for each
AttachmentPart. Using the DataHandler, you can bypass the DataContentHandlerFactory and get

direct access to the raw attachment data, even if the content type is recognized by the SAAJ

implementation that you are using. Here, for example, is some code that will create an Image object
from any of the image types recognized by the JRE that you are using, even if the SAAJ

implementation does not provide a DataContentHandler for it. At the time of this writing, this code
works for PNG images as well as those in GIF or JPEG format:

if (attach.getContentType().startsWith("image/")) {
 javax.activation.DataHandler handler = attach.getDataHandler();
 InputStream is = handler.getInputStream();
 int count = is.available();
 byte[] buffer = new byte[count];
 is.read(buffer, 0, count);
 Image img = java.awt.Toolkit.getDefaultToolkit().createImage(buffer);
}

Notice that we use the available() method of InputStream to find out how much data there is in the
attachment, even though AttachmentPart has a getSize() method. The reason for this is the

AttachmentPart method always seems to return a number that is larger than the actual size of the data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.7 SOAP Headers

So far, we have only concerned ourselves with the body of a SOAP message and its attachments, both

of which are intended solely for the ultimate destination of the message. A message can also include
headers, which contain information that is related to the routing or processing of the message, but

which are not part of the payload itself. SOAP itself does not define any standard headers, but there are

specific uses of SOAP that do, some of which are discussed in Chapter 4. In this section, we'll look in a

generic way at the facilities provided by SAAJ for creating and handling headers, and defer detailed

discussion of real-world uses of this facility until Chapter 4.

3.7.1 SOAP Actors and the mustUnderstand Attribute

Although the examples that we have shown so far involve only a client and a web service to which the

client sends a SOAP message, in practice, a SOAP message may pass through one or more intermediate

systems before reaching its ultimate destination. For the purposes of this discussion, an intermediate
system is not like a network router, which is concerned only with passing a transport-level packet from

node to node until it reaches a destination, but an application-level entity that receives a SOAP
message, examines it, and either handles it or forwards it to another SOAP receiver for further

processing.

As an example of the use of an intermediate system, suppose that a business wants to make it possible

for other businesses to place stock orders by building a SOAP message that contains a purchase order,

in response to which it expects confirmation of the order and payment details. Before the order is
processed, it might be necessary to check that the initiator is known to the company and has a purchase

account to which the transaction can be billed. In order to implement this, the business might separate

the handling of the account check from the handling of the purchase order, as follows:

When the client sends the purchase order, it is required to include a header that identifies it in a

way that is determined by the business providing the service. In practice, this would probably

involve the use of some secure mechanism, such as public key cryptography and the inclusion of a

certificate to identify the client.

1.

The system to which the purchase order is sent looks for this header, extracts the required
information, and verifies it. If it is not valid, a fault is returned to the originator. Otherwise, the

header is removed and perhaps replaced with one that provides information about the initiator that

is in a form that is more useful to the business itself, such as account details.

2.

The message is now forwarded to an internal system that handles the purchase order and3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ultimately returns a response to the order itself.

3.

In the SAAJ API, each SOAPMessage can have a single SOAPHeader element. By default, this element is
empty. Headers are created by adding XML elements to the SOAPHeader. Each such header element

must be namespace-qualified and may contain an attribute that identifies the system that is intended to

process it, known as the actor attribute. The value of this attribute is defined to be a URI and, in

practice, it is often a URL, although it need not be. There are three cases to consider:

The actor attribute is missing

When there is no actor attribute, the header is deemed to be intended for the ultimate recipient of

the message.
The actor attribute has the distinguished value http://schemas.xmlsoap.org/soap/actor/next

A header containing an actor attribute with this value (which a SAAJ application can

conveniently refer to by using the constant value SOAPConstants.URI_SOAP_ACTOR_NEXT) is

intended for the first system that receives it.
The actor attribute has some other value

In this case, the header is intended for the system whose URI matches the value of the attribute.

When a SOAP message is received, the headers must be checked for any that are intended for the

recipient. If there are any, the following rules apply:

The header must be removed from the message.

If the receiver understands the header, then it may process the header and act upon it. As a result,
it may add one or more new headers to the message (which may be identical to the received

header). If the header contains the mustUnderstand attribute from the SOAP envelope

namespace, and the value of this attribute is 1, the receiver must process the header - or else

return a fault to the originator if it chooses not to do so or cannot do so for some reason.

If the receiver does not understand a header that is addressed to it, it may choose to silently ignore

it, unless the mustUnderstand attribute is present and has the value 1, in which case it must return
a fault to the originator.

If a fault is returned as a result of the mustUnderstand attribute, then the fault code must have the

value soap-env:MustUnderstand and the fault actor must be set to the URI of the system that

generated the fault. A system that processes a header may also generate a fault for reasons that are

related to the content of the header. In all cases, a fault that arises from header processing may not

include a detail element.

3.7.2 Creating Header Elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Header elements are created using the SOAPHeader addHeaderElement() method, which requires a

Name object from which the element name and its namespace are determined. The SOAP specification

requires that header elements are namespaced-qualified. The addHeaderElement() method returns a
newly created SOAPHeaderElement, which was added as a direct child of the SOAPHeader. Example 3-

17 shows how to add a header that contains child elements for a username and a password.

Example 3-17. Adding a header entry to a SOAP message

SOAPHeader header = message.getSOAPPart().getEnvelope().getHeader();
SOAPHeaderElement headerElement = header.addHeaderElement(
 soapFactory.createName("AuthInfo"));
headerElement.addNamespaceDeclaration(null, "urn:headerDemo");
headerElement.setMustUnderstand(true);
headerElement.addChildElement("UserName").addTextNode("JWSUserName");
headerElement.addChildElement("Password").addTextNode("JWSPassword");

The header element is called AuthInfo and its namespace is urn:headerDemo, which is an arbitrarily
chosen URN. The following method call:

headerElement.addNamespaceDeclaration(null, "urn:headerDemo");

makes this namespace the default for this element and its subelements, so that the element names will

appear without a namespace prefix. The use of the default namespace in this way is a convenience and

not a requirement.

The SOAPHeaderElement interface has four methods that provide easy access to the SOAP actor and

mustUnderstand attributes:

public void setActor(String actorURI);
public String getActor();
public void setMustUnderstand(boolean cond);
public boolean getMustUnderstand();

The code in Example 3-17 sets the mustUnderstand attribute to 1 (by virtue of the fact that its

argument has the value true), but does not set the actor attribute at all, which implies that the header is

to be processed by the ultimate recipient of the message, and must be understood and properly actioned
or a fault returned. Here is what a SOAP message produced by this code looks like:

<soap-env:Envelope xmlns:soap-env=
 "http://schemas.xmlsoap.org/soap/envelope/">
 <soap-env:Header>
 <AuthInfo xmlns="urn:headerDemo" soap-env:mustUnderstand="1">
 <UserName>JWSUserName</UserName>
 <Password>JWSPasswordJWSPassword</Password>
 </AuthInfo>
 </soap-env:Header>
 <soap-env:Body/>
</soap-env:Envelope>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The default value of the mustUnderstand attribute is 0, which means that the header can be removed

without being processed by its target.

3.7.3 Processing Header Elements

When a SOAP message is received, there are three ways to handle the header entries that it contains

once a reference to the SOAPHeader has been obtained:

Get an iterator over all of the child elements of the SOAPHeader. This returns all of the

SOAPHeaderElement objects in the message.

Get an iterator over all of the headers intended for a given actor. This returns a subset of the

SOAPHeaderElement objects in the message.

Get an iterator over all of the headers intended for a given actor and also remove them from the
message.

A message recipient must process all headers for which the actor attribute is set to next or to its own

URI, and must remove them once they have been processed. The SOAPHeader interface provides two
methods that locate the headers intended for a given actor URI:

public Iterator examineHeaderElements(String actorURI);
public Iterator extractHeaderElements(String actorURI);

The difference between these two methods is that the second removes all of the headers that appear in

the Iterator from the message, whereas the first does not. Calling either of these methods with the

argument SOAPConstants.URI_SOAP_ACTOR_NEXT returns all of the headers that have the actor attribute

set to next and all of those that do not have an actor attribute.[12] As an alternative to these two

methods, you can get an Iterator over all of the header entries without removing any of the them,
using the getChildElements() method that SOAPHeader inherits from SOAPElement:

[12] It is not clear from the SAAJ specification whether this is the intended behavior or just a bug.

In my opinion, it would be better if this call returned only those headers with the actor attribute

set to next.

// Gets all the SOAPHeaderElements
Iterator iter = soapHeader.getChildElements();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.8 Using SAAJ with Secure Connections

The web service examples used so far in this book have not attempted to provide any security measures

to ensure that they can only be accessed by authorized users, or to provide some level of assurance to
the client that the server to which it might be about to pass sensitive information is the one to which it

thinks it is connected. At the time of this writing, security for web services is the subject of several in-

progress JSRs, such as JSR 105 (XML Digital Signature APIs; see http://jcp.org/jsr/detail/105.jsp) and

JSR 106 (XML Digital Encryption APIs; see http://jcp.org/jsr/detail/106.jsp). Until these JSRs are

completed and their implementations become part of the Java platform, you can still make use of the
authentication mechanisms already provided for HTTP to add a level of security to your service. In this

section, you'll see how to configure the client and server parts of the service to use both HTTP basic
authentication, which is relatively weak, and HTTPS, which is much more robust but is slightly more

difficult to set up.

3.8.1 Using Basic Authentication

HTTP basic authentication is a simple mechanism that requires the client to supply a username and
password to gain access to a service. The authentication information is encoded and sent in an HTTP

header to the server, which can then verify whether the user should have access to the service at the

URL specified in the request. Although it is easy to configure basic authentication, it is a very weak

mechanism because the data exchanged by the client and server is not encrypted and there is no
protection against unauthorized modification. Furthermore, the algorithm used to encode the username

and password is trivial, thus making it a simple matter for a snooper to discover what they are.

Nevertheless, in an internal corporate network, basic authentication may be sufficient.[13]

[13] Basic authentication is what is happening when you log onto a web site for which you

preregister for access to member-only areas. The dialog box that pops up to get your username

and password is the browser's way to get the information required for the authentication header in

the HTTP request.

To demonstrate how to use basic authentication, we'll add it to the book image web service.

Configuring basic authentication requires three steps:

Define the role or roles that are allowed access to some or all of the web service and the set of

users that belong to those roles.

1.

Define the URLs within the web service that require protection, and specify which roles should be

able to use them.

2.

3.

http://jcp.org/jsr/detail/105.jsp
http://jcp.org/jsr/detail/106.jsp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

Configure the web service client to send the appropriate authentication information when

accessing the service.

3.

3.8.1.1 Adding roles and users to the web container

The first step involves setting up authentication information for the web container that hosts the web
service. The details of this process for the J2EE 1.4 reference implementation and the Tomcat web

container in the JWSDP are covered in Chapter 1, where we added a role called JWSGroup together

with a couple of users allowed to access that role.

3.8.1.2 Adding URL-based protection

Defining a new role does not add any protection. To achieve this, it is necessary to include

authorization information in the web.xml file for the web service. The authorization information defines
which of the web service's URLs are to be protected and which role or roles are to be allowed to access

those URLs. Allowing a role to access a URL has the effect of making it possible for all of the users in

that role to access the URL, provided that they can authenticate themselves to the web container by
supplying the correct password.

The book image web service can be accessed without requiring authentication at almost any URL that

starts with http://localhost:8000/BookImageService. In order to illustrate basic authentication, the
web.xml file for this service is also configured so that only users in the bookimageservice role can

acccess the protected URL http://localhost:8000/BookImageService/basicAuth. The portion of the

web.xml file that specifies this restriction is shown in bold in Example 3-18.[14]

[14] The result of this configuration is rather unusual because the web service now has both

protected and unprotected URLs, all of which provide access to the same service. In reality, you
are most likely to protect all access to the web service by precisely defining which URLs it

responds to and mapping them all to the appropriate roles. Here, both a protected and an

unprotected service are provided so that we can use it to illustrate the SAAJ APIs without having

to first introduce basic authentication.

Example 3-18. Adding protected URLs to a web service

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app>
 <display-name>SAAJ Book Image Service</display-name>
 <description>SAAJ Book Image Service</description>

http://localhost:8000/BookImageService
http://localhost:8000/BookImageService/basicAuth
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <servlet>
 <servlet-name>BookImageService</servlet-name>
 <display-name>Servlet for the SAAJ book Image Service</display-name>
 <servlet-class>ora.jwsnut.chapter3.bookimageservice.BookImageServlet
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>BookImageService</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>SAAJ Book Image Service</web-resource-name>
 <url-pattern>/basicAuth/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>JWSGroup</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Book Image Service</realm-name>
 </login-config>

</web-app>

The security-constraint element specifies which URLs are to be protected (using the url-pattern

element) and the role or roles allowed access to them (in the auth-constraint element). It is also

necessary to specify how the identity of the caller is to be determined. This is achieved by the login-
config element, which requires the use of basic authentication.

You can verify that this constraint is active by attempting to access the service with your web browser.

With the J2EE 1.4 server running, point your browser at the URL

http://localhost:8000/BookImageService. You should see an error page resulting from the fact that the

service does not support access using the HTTP GET method. If, however, you use the URL

http://localhost:8000/BookImageService/basicAuth, you are instead prompted to enter a username and
password. Only after you correctly enter these do you see the same error page. If you are using the

JWSDP with the Tomcat web server, use port number 8080 instead of 8000 in these URLs.

3.8.1.3 Setting up the client

When it is run using the Ant target run-client, the Java client for the book image service that we used

earlier in this chapter uses the URL http://localhost:8000/BookImageService to access the web service;

http://localhost:8000/BookImageService
http://localhost:8000/BookImageService/basicAuth
http://localhost:8000/BookImageService
http://lib.ommolketab.ir
http://lib.ommolketab.ir

therefore, it does not need to supply a username and password. The client gets the URL from its
command line, so it is possible to arrange for it to access the protected URL

http://localhost:8000/BookImageService/basicAuth instead. If you do this, however, you get an

exception, since the web server expects to receive a username and a password to validate access to this

URL, and refuses access if it does not get them (or if they are incorrect). SAAJ uses a slightly different

URL syntax to allow the username and password to be included with the URL, which looks like this:

http://username:password@host:port/path

In the case of the book image service, for a user called JWSUserName with the password JWSPassword,
the appropriate URL is:

http://JWSUserName:JWSPassword@localhost:8000/BookImageService/basicAuth

The Ant project file for this example includes a target that can be used to run the client with this URL.

To try it out, open a command window, make chapter3\bookimageservice (relative to the installation

directory of the book's example source code) your working directory, and type the command:

ant run-basicauth-client

Since JWSUserName has access to the role JWSGroup, the web container allows the client access to the

service, based on the auth-constraint element in the web.xml file. To prove that access by

unauthorized users will be refused, change the value of the USERNAME property in the
jwsnutExamples.properties file in your home directory so that it does not correspond to a valid user,

and then run the example again.

3.8.2 Using HTTPS

If you need more security than basic authentication can provide (as you almost certainly will if you

intend to publish your web service on the Internet), you can arrange for it to be accessible over HTTPS
instead of HTTP. By using HTTPS, you ensure that all the data exchanged between the client and the

server is encrypted and protected against unauthorized modification. The client can also be sure that the

server it is actually connected to is the one that it thinks it is connected to, and that the server itself can

be trusted. This assurance is possible because the SSL protocol used by HTTPS delivers the server's

certificate to the client. This certificate can be verified against a set of trusted certificates held by the
client. The certificate also contains information, such as the server's hostname, which can be checked to

ensure that the certificate belongs to the server that sent it.

In order to use HTTPS, you need to have the Java Secure Sockets Extension (JSSE) installed on both

the client and server systems. If you are using Java 2 Version 1.4, JSSE is part of the core distribution

so you do not need to take any extra steps. Otherwise, you should download and install the latest

version of the JSSE from http://java.sun.com before proceeding.

http://localhost:8000/BookImageService/basicAuth
http://username:password@host:port/path
http://JWSUserName:JWSPassword@localhost:8000/BookImageService/basicAuth
http://java.sun.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

When performing the following configuration steps, it is important to remember

that the client and server will, in general, run on different hosts, although for

testing purposes they might reside on the same system. In the descriptions that
follow, we will use the names serverhost and clienthost to distinguish these two

different hosts. You should, of course, substitute the names of your machines

wherever these terms are used.

3.8.2.1 Enabling HTTPS in the web server

The means by which you enable HTTPS support in your web server is vendor-dependent. In this

section, we describe how to do this for the Tomcat web server distributed with the JWSDP. If you are

using a third-party web server, you need to consult your vendor's documentation for the appropriate
procedure. In particular, if you are using the J2EE 1.4 reference implementation instead of the JWSDP

Tomcat web server, then you can skip this section because it has HTTPS enabled by default.

In the following descriptions, we use the shorthand ${EXAMPLES_ROOT} to refer to the directory in
which you installed the example source code for this book, and we use ${JAVA_HOME} for the

installation directory of J2SE. The first step is to create the certificate that the web server sends to any

client that connects to it over HTTPS. To create this certificate, open a command window on

serverhost, make ${EXAMPLES_ROOT} your working directory, and type the following command (all

on one line):

keytool -genkey -alias server -keyalg RSA -keypass changeit
-storepass changeit -keystore server.keystore -dname "CN=serverhost"

The certificate is created in a new keystore whose name is given by the -keystore argument, which in

this case is stored in the installation directory of the example source code for the sake of convenience.
The -storepass argument supplies the password used to access the keystore. Here, we use the default

JRE keystore password. You can choose a different one, as long as you supply the same password

when configuring the server to access the keystore, as described shortly.

The -dname argument can be used to supply a set of attributes that identify the certificate and its

owning organization. Here, we set only the CN attribute, which specifies the name of the host to which

the certificate belongs. It is important that you use the correct hostname because the client may extract
this attribute and check that it matches the name of the host to which it thinks it is connected.[15]

[15] Obviously, in a real-world environment, it is not a good idea to use CN=localhost, but this

might be appropriate for testing purposes.

The keytool command creates a self-signed certificate, which is, strictly speaking, appropriate only for

development and testing purposes. In the real world, you should instead apply to a certificate authority

for a properly signed server certificate, and then import it into the keystore using the keytool -import

argument. For further details on the use of the -import argument (and on the keytool command in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

general), see Java in a Nutshell, by David Flanagan (O'Reilly).

The second step required to activate HTTPS is to enable it in the Tomcat web server by editing the
server.xml file, which you'll find in its conf directory. Open this file in an editor and add the lines

shown in bold in the following code section, substituting the pathname of the example source code

installation directory in the value of the keyStoreFile attribute:

<Service className="org.apache.catalina.core.StandardService" debug="0"
 name="Java Web Services Developer Pack">
 <Connector className="org.apache.coyote.tomcat4.CoyoteConnector"
acceptCount="10">
 <Factory className="org.apache.catalina.net.DefaultServerSocketFactory"
/>
 </Connector>

 <!-- Added for SSL -->
 <Connector className="org.apache.catalina.connector.http.HttpConnector"
 port="8443" minProcessors="5" maxProcessors="75"
 enableLookups="false"
 acceptCount="10" connectionTimeout="60000" debug="0"
 scheme="https" secure="true">
 <Factory className="org.apache.catalina.net.SSLServerSocketFactory"
 keystoreFile="${EXAMPLES_ROOT}\server.keystore"
 keystorePass="changeit"
 clientAuth="false" protocol="TLS"/>
 </Connector>
 <!-- End of SSL section -->

Note the following:

SSL is enabled by adding a second Connector element to the Service element for "Java Web

Services Developer Pack." There is also another Service element in this file for internal services

- make sure you modify the correct
Service

element.

The filename supplied using the keystoreFile attribute must be the name of the keystore in

which the certificate was created (or imported) by keytool. Similarly, the correct keystore

password must be supplied using the keystorePass attribute.

HTTPS is enabled on port 8443, rather than port 8080. This is one of the two port numbers used
by convention for HTTPS; the other is 443 (which, on Unix-based systems, is accessible only to

privileged processes).

Having completed these steps, you can check that all is well by restarting the Tomcat web server and

pointing your browser at the URL https://serverhost:8443 (note that the protocol is https instead of http

https://serverhost:8443
http://lib.ommolketab.ir
http://lib.ommolketab.ir

and the port number is 8443). Your browser will probably ask you to confirm that you accept the
server's certificate and will then display the web server's home page. If you have not obtained and

installed a certificate from a certificate authority, you will probably be warned that the certificate is

from a company that you have chosen not to trust. There is no need to be concerned about this - it is

the result of using a self-signed certificate, which relies upon itself for its trust (and therefore cannot be

trusted at all).

3.8.2.2 Setting up the client system

Now let's move to the client system. In order to use the book image web service client with HTTPS,

you have to give it the appropriate URL. If you want to use basic authentication together with HTTPS,

use the following URL:

https://JWSUserName:JWSPassword@serverhost:7000/BookImageService/basicAuth

To use HTTPS on its own, use:

https://serverhost:7000/BookImageService

Port number 7000 is used because this is the port on which the J2EE reference implementations listen
for HTTPS connections. If you are using the JWSDP with the Tomcat web server, then the port number

is 8443 instead of 7000.

When you use either of these URLs, the client connects over HTTPS and expects to receive the server's
certificate and validate it. How does the validation work? The complete process is complex and not of

any great interest from a web service development viewpoint. However, one of the following two

conditions must hold:

The server's certificate must be installed in a keystore on the client machine to which the client

application has access.

The server's certificate must be issued by a trusted authority whose certificate is installed in the

client machine's keystore. In this case, the certificate itself does not need to be in the client's
keystore.

In the first case, the certificate for the issuing authority is almost certainly found in the certificate store

that is supplied with the JRE, which can be found at ${JAVA_HOME}\jre\lib\security\cacerts;

therefore, there is not any further work to do on the client system. If you created your own self-signed

certificate, then you need to import it into a keystore that is accessible to the client.

Although you could import certificates directly into the JRE keystore, we will instead create and use a

private keystore in order to demonstrate how simple it is to do this. This also has the advantage that you
can experiment with certificates without the possibility of damaging your JRE. On the client machine,

https://JWSUserName:JWSPassword@serverhost:7000/BookImageService/basicAuth
https://serverhost:7000/BookImageService
http://lib.ommolketab.ir
http://lib.ommolketab.ir

copy the cacerts file from the JRE to the installation directory of this book's source code and rename it
client.keystore:

copy ${JAVA_HOME}\jre\lib\security\cacerts
 ${EXAMPLES_ROOT}\client.keystore

Next, if you are using a self-signed certificate, you need to get a copy of it and import it into the newly
created keystore; you can skip this step if the server is using a certificate issued by a trusted authority.

To get the certificate, go to the server machine and proceed as follows:

If you are using the JWSDP Tomcat web server, go to the directory containing the keystore

(server.keystore) created in the previous section and type the command:
keytool -export -alias server -storepass changeit -keystore server.
 keystore -file server.cer

If you are using the J2EE reference implementation, go to the directory lib\security below the

J2EE installation directory and type the command:
keytool -export -alias server -storepass changeit -keystore keystore.jks
 -file server.cer

Copy the newly created file server.cer from the server machine to the ${EXAMPLES_ROOT} directory

on the client machine and import it there using the following command:

keytool -import -v -trustcacerts -alias JWSNutshell -storepass changeit
 -keystore client.keystore -file server.cer

Reply when asked if you want to trust this certificate. Note that you can use any valid name for the

alias, as long as it does not clash with one already in use in the keystore. The fact that you do not have

to import a server certificate obtained from a trusted certification authority in this way is a great

advantage, of course, because it means that clients that want to connect to your service do not need to
get a copy of your certificate in advance.

In order to run the client application with HTTPS, it is necessary to supply the correct URL and arrange

for it to use the keystore that has just been created to look for certificates. To point the application at

the correct keystore, the two system properties listed in Table 3-4 need to be set.

Table 3-4. System properties used by JSSE to access a keystore

Property Description

javax.net.ssl.trustStore
The pathname of the keystore. In this case, this is

${EXAMPLES_ROOT}\client.keystore.

A target that runs the web service over HTTPS using basic authentication by setting the appropriate

values for both of these properties has been included in the Ant buildfile for this example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Description

javax.net.ssl.trustStorePassword
The password needed to access the keystore. By default, this

password is changeit.

A target that runs the web service over HTTPS using basic authentication by setting the appropriate
values for both of these properties has been included in the Ant buildfile for this example:

 <target name="run-httpsserver-client" if="client.present"
 depends="init">
 <java classname="${CLIENT_CLASS_NAME}" fork="yes">
 <sysproperty key="javax.net.ssl.trustStore"
 value="${EXAMPLES_ROOT}/client.keystore"/>
 <sysproperty key="javax.net.ssl.trustStorePassword"
 value="changeit"/>
 <arg line="${CLIENT_HTTPS_SERVER_AUTH_ARGS}"/>
 <classpath refid="run.path"/>
 </java>
 </target>

The property CLIENT_HTTPS_SERVER_AUTH_ARGS is set using properties in the
jwsnutExamples.properties file to the appropriate URL for the service, which in this case is:

https://JWSUserName:JWSPassword@serverhost:8443/BookImageService/basicAuth

(or port 7000 if you are using the J2EE reference implementation).

To use this target, open a command window, make chapter3\bookimageservice (relative to the

installation directory of the book's example source code) your working directory, and then type the

command:

ant run-httpsserver-client

You should see the application start up and run as usual, although there will probably be a slight delay

because of the additional overhead required to set up an HTTPS connection. If you'd like to see the
details of the setup process, use the target run-httpsserver-client-debug instead.

javax.net.ssl.trustStorePassword
The password needed to access the keystore. By default, this

password is changeit.

A target that runs the web service over HTTPS using basic authentication by setting the appropriate
values for both of these properties has been included in the Ant buildfile for this example:

 <target name="run-httpsserver-client" if="client.present"
 depends="init">
 <java classname="${CLIENT_CLASS_NAME}" fork="yes">
 <sysproperty key="javax.net.ssl.trustStore"
 value="${EXAMPLES_ROOT}/client.keystore"/>
 <sysproperty key="javax.net.ssl.trustStorePassword"
 value="changeit"/>
 <arg line="${CLIENT_HTTPS_SERVER_AUTH_ARGS}"/>
 <classpath refid="run.path"/>
 </java>
 </target>

The property CLIENT_HTTPS_SERVER_AUTH_ARGS is set using properties in the
jwsnutExamples.properties file to the appropriate URL for the service, which in this case is:

https://JWSUserName:JWSPassword@serverhost:8443/BookImageService/basicAuth

(or port 7000 if you are using the J2EE reference implementation).

To use this target, open a command window, make chapter3\bookimageservice (relative to the

installation directory of the book's example source code) your working directory, and then type the

command:

ant run-httpsserver-client

You should see the application start up and run as usual, although there will probably be a slight delay

because of the additional overhead required to set up an HTTPS connection. If you'd like to see the
details of the setup process, use the target run-httpsserver-client-debug instead.

https://JWSUserName:JWSPassword@serverhost:8443/BookImageService/basicAuth
https://JWSUserName:JWSPassword@serverhost:8443/BookImageService/basicAuth
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. JAXM

SAAJ is a convenient API that allows applications to exchange SOAP messages containing information

encoded in XML, together with arbitrary data held in message attachments. Although it is useful on its
own, SAAJ is also the basis for JAX-RPC and for the Java API for XML Messaging (JAXM). This

chapter looks at the features that JAXM adds to SAAJ and describes how to configure and use the

JAXM reference implementation.

Although JAXM is part of the Java Web Services Developers Pack, it is not one

of the APIs that was selected for inclusion in Version 1.4 of the J2EE platform.

The examples in this chapter can therefore only be used with the JWSDP. JAXM

may be integrated into a future release of J2EE, but at the time of this writing,

there is no commitment on Sun's part to do this.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1 JAXM Overview

SAAJ allows you to construct SOAP messages and send them directly and synchronously to a web

service. JAXM builds on SAAJ to provide a higher-level API with the following additional features:

Messaging profiles

The SOAP messages returned by the SAAJ MessageFactory consist of an empty body and an
empty header. However, there are established uses of SOAP that make use of message headers to

convey information from the message sender to the receiver, or to intermediate nodes that the

message might traverse along its delivery path. JAXM provides the concept of messaging

profiles, where a profile represents a specific and standardized way of constructing a SOAP

message, such as the ebXML Message Service. A JAXM messaging profile is represented by a
profile-specific MessageFactory that can build SOAP messages according to the rules applicable

to the profile.
Asynchronous messaging

Using SAAJ, you can only send a message directly to a service and then wait for the service to

send a reply. This mode of operation is well-suited to RPC-style interaction, in which the server
is able to reply almost immediately to an incoming message. In many cases, however, it is not
possible to operate in this way. If a client submits a purchase order to a company's online

business web service, for example, it may not be possible to respond immediately with an order

confirmation or an invoice for payment. In these circumstances, it is useful to be able to simply

send a message and be prepared to receive a reply at a later time. JAXM supports this by

providing several asynchronous messaging modes, described in Section 4.1.1 next.

More robust message delivery

SAAJ requires both the sender and receiver of a message to be active at the same time and works

only if it is possible to make a direct connection between the two (although transparent hops -

i.e., proxies - are supported in the same way as they are by the generic HTTP support in the

JRE). JAXM removes both of these restrictions by providing an intermediary messaging provider

that is responsible for the handling of all messages. A messaging provider delivers a message by

forwarding it, not to the intended recipient, but to another messaging provider, which may or
may not be directly connected to the message destination. If delivery to the next provider fails,

perhaps because it is not active or because of a temporary lack of network connectivity, the

sending provider can be configured to retransmit the message a specified number of times. If a

provider receives a message for a recipient that is not currently active, it can store it until the

recipient becomes active.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1.1 JAXM Message Delivery Modes

The JAXM specification (available at http://jcp.org/jsr/detail/67.jsp) requires support for three

asynchronous message delivery modes in addition to the synchronous reply/response mode supported

by SAAJ.[1]

[1] In fact, the JAXM specification describes five message delivery modes. In addition to the three
listed here, the other two are synchronous inquiry and synchronous update, both of which result

in the sender blocking until a reply to its request is received. In the first case, the reply message

contains some useful information, while in the second case, it is an acknowledgment that the

request was received. These two cases are not covered here, because they are provided by SAAJ,

not JAXM.

4.1.1.1 Asynchronous inquiry

In an asynchronous inquiry, shown in Figure 4-1, the sender constructs a request (such as a purchase

order) and sends it to the web service, then continues with other processing.

Figure 4-1. Message flow for an asynchronous inquiry

When the target web service receives the request, it may or may not process it immediately. Either way

- possibly days after the request was received - it creates a reply message (perhaps containing an

order confirmation) and returns it to the sender of the request.

When asynchronous messaging is used, it is necessary for the sender to be able to match each reply to

the original request message. JAXM does not concern itself with how this is done, assuming that it is

part of the application-level protocol. The SOAP-RP profile, for example, defines a SOAP header that
allows a message reference to be included with a request and a matching cross-reference to be sent with

the response. See Section 4.5 later in this chapter for details.

4.1.1.2 Asynchronous update

http://jcp.org/jsr/detail/67.jsp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

From the messaging viewpoint, an asynchronous update (shown in Figure 4-2) is identical to an
asynchronous inquiry. At the application level, however, there is a difference: the reply to an update is

simply an acknowledgement that the request was received, which may or may not imply that the

request has been successfully actioned. The exact semantics of the acknowledgement are application-

dependent.

Figure 4-2. Message flow for an asynchronous update

4.1.1.3 Fire-and-forget

Fire-and-forget, shown in Figure 4-3, simply involves sending a message to a receiver. Since the sender
does not receive any acknowledgement from the receiver, it cannot rely on the safe delivery of the

message; therefore, this mode cannot be used when reliability is a concern. This mode is suited to

noncritical functions, such as logging, in which the overhead involved in generating or waiting for

confirmation of receipt is unacceptable, and in which the loss of messages does not have any direct

impact on the integrity of the business process.

Figure 4-3. Message flow for fire-and-forget

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2 Providers and Asynchronous Messaging

The asynchronous messaging and reliable delivery features of JAXM are implemented by a messaging

provider. The specification itself says very little about the provider, other than to describe the API
needed to access it, leaving the details to be determined by implementations. In practice, application

code is almost unaffected by the presence of a provider, but it is very important to understand how to

configure the provider and how to deploy the application with the appropriate settings required to

access it. In this section, we look at the API that application code uses to work with the provider, and at

how to configure the provider included with the JAXM reference implementation.

4.2.1 Provider Message Path

When a message provider is in use, the logical flow of a message is still directly from the sender to the

receiver, but the actual flow is somewhat different, as shown in Figure 4-4.

Figure 4-4. Logical and actual message flow when using a messaging provider

In order to send messages, the sender first connects to the local provider and determines whether it

supports the messaging profile that it wants to use; if so, it obtains a MessageFactory for that profile.

Each message is then handled as follows:

The sender creates a SOAP message using the SAAJ API with the MessageFactory for the

selected messaging profile.

1.

The message is sent to the local provider. This operation returns control to the caller as soon as
the provider receives the message, and the sender is free to continue with other processing.

2.

The provider stores the message in its outgoing queue.3.

A separate thread handles queued messages, dispatching each of them in turn to the receiving4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.

provider. If the receiving provider is not accessible, the message is left in the queue and retried
later.

4.

The remote provider (eventually) receives the message and stores it in its dispatching queue.5.

If the message receiver is active, the message is delivered to it. Otherwise, it is held in the

dispatching queue until it can be delivered, or until the retry count has expired.

6.

The receiver processes the message.7.

It is important to note that the message flow is entirely asynchronous to the sender: once the message is

delivered to the local provider, its eventual transmission is scheduled separately (and, in the reference
implementation, in a separate thread). Similarly, when the message is received by the remote provider,

it is simply written to a queue and dispatched at a later time to the intended recipient. The
asynchronous nature of the message flow and the fact that it involves intermediaries is in sharp contrast

to the direct connection used by SAAJ applications. The message flow is strictly unidirectional: there

is no provision (and no possibility) for a reply message, and therefore this flow models the fire-and-
forget message mode described earlier in this chapter. If the application-level protocol requires a reply

or an acknowledgement, then a separate (asynchronous) message is sent by the receiver to the original
sender, using the reverse message path to that shown in Figure 4-4.

You will notice that the diagrams in this chapter use the terms "sender" and "receiver" instead of

"client" and "service," since we are focusing on the messaging aspects rather than on the roles of the

sender and receiver in the web service. It is important to keep these separate. Although the client is the

sender and the service is the receiver when the service is first invoked, the roles are reversed when the

service eventually sends a reply to the client. Unlike the synchronous programming model used by
SAAJ, in which the service receives a message in its onMessage() method and simply returns a

SOAPMessage to be sent back to the client (almost as a side effect), the service has to explicitly send the

reply via its local messaging provider. In this chapter, we will use the term "JAXM client" to refer to

either the sender or the receiver, since we consider both to be clients of the messaging provider.

The arrangement shown in Figure 4-4 is fine when both the sender and the receiver are implemented

using JAXM, but this is not the most general case. In the real world, one party may not be associated
with a messaging provider, an obvious example of which is a JAXM client accessing a web service

running on the Microsoft .NET platform or vice versa. As far as the client or service implementation is

concerned, this makes no difference - only the configuration details need to change, as we'll see later

in this chapter. The only configuration that does not work is an asynchronous JAXM client connecting

to a web service that expects to reply synchronously using the same underlying transport connection as
the one on which it received the request. For an explanation of why this does not work, see Section

4.3.3, later in this chapter.

4.2.2 The JAXM Execution Environment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Chapter 3, you saw an example SAAJ application in which the service was implemented as a servlet
in the Tomcat web container and the client was a freestanding Java application. Both JAX-RPC and

SAAJ allow the client either to be an application or to reside in a container. However, all JAXM

applications (including the part you would naturally think of as the "client") must be hosted in a web

container or an EJB container. At the time of this writing, the JAXM reference implementation

supports only deployment of JAXM applications as servlets within a web container, so the examples
used in this chapter are all hosted by servlets. In the future, it is expected that JAXM will also be

supported by EJB containers in the form of Message Driven Beans.

The JAXM 1.1 specification uses the term "JAXM client" to refer either to a
client that uses a messaging provider or to one that makes a direct connection to

a web service; therefore, it sometimes talks about "freestanding JAXM clients."
In this book, we make a sharp distinction between the following two cases:

A client that connects directly to a service without using a messaging
provider is considered to be a SAAJ client. Such a client needs only to use

the API provided by the javax.xml.soap package, and can only use a

synchronous request/response model. SAAJ clients can be freestanding
J2SE applications, or they may reside in a container.

A client that uses a messaging provider is a JAXM client. These clients use

the javax.xml.soap package to construct their messages, and use the
javax.xml.messaging package to interact with the provider. Only JAXM

clients can use the asynchronous messaging features of the provider, and

they must be hosted by a web container (or an EJB container in the future).

The API provided by JAXM resides in the javax.xml.messaging package. In order to compile a

JAXM client, you need to have the JAR files jaxm-api.jar and jaxm-runtime.jar on your

CLASSPATH, together with saaj-api.jar for access to the javax.xml.soap package. At runtime, you

additionally need access to all of the JAR files listed in Table 3-1. Inclusion of these JAR files is

usually automatic, however, since the client is actually deployed in a web container in which JAXM
and SAAJ should already have been installed.

The messaging provider that is provided with the JAXM reference implementation is implemented as a

servlet that resides at the URL http://localhost:8081/jaxm-provider in the default deployment. There is

also a web application at the URL http://localhost:8081/jaxm-provideradmin that can be used to

configure the provider. Further information on the provider and its configuration are found later in this

chapter.

Note that these services reside at port 8081, not port 8080. This becomes

important when you configure the provider, as you'll see later.

http://localhost:8081/jaxm-provider
http://localhost:8081/jaxm-provideradmin
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3 An Example JAXM Application

In order to demonstrate the JAXM APIs and show you how to set up the JAXM provider configuration,

we'll look at the implementation of a very simple web service that simply accepts a message and returns
it to its sender, having added an XML element containing the date and time at which the message was

processed. The process of returning the message requires the receiver to explicitly address the message

to its originator and send it back via its own local provider. In other words, each time this service is

used, two asynchronous messages are sent, one in each direction.

Since this is a JAXM example, both the sender and the receiver are implemented as servlets in a web

container. Both of them need to be able to receive SOAP messages and dispatch them to application
code. In Chapter 3, we used a private class called SAAJServlet as the base class for our example web

service, but in this chapter, we are going to use the class javax.xml.messaging.JAXMServlet instead.
These two servlets are virtually identical - the only real difference between them is that JAXMServlet

is included as part of the JAXM API and should therefore be available in all JAXM implementations,

whereas SAAJServlet is a private class developed from example code in the JWSDP distribution. We
could, of course, have used JAXMServlet in Chapter 3 instead of creating SAAJServlet, but to do so

would have introduced a dependency on JAXM, which we wanted to avoid. Like SAAJServlet,
JAXMServlet delivers received SOAP messages via the onMessage() method, where the application

will implement its message handling.

In previous examples, in which the message sender was a freestanding application, we could run it by

simply starting the application from the command line. When the message sender is implemented as a

servlet, however, we have to take a different approach. We'll implement the servlet's doGet() method
so that it sends a message to the receiver whenever it is invoked. This allows us to run the example by

pointing a web browser at the appropriate URL; this also gives us somewhere to display the message

that the receiver returns to us. We don't have a similar issue with the message receiver, which is also

deployed as a servlet derived from JAXMServlet, since its task is only to respond to messages when

they are delivered to it.

Before we look at the example code, we'll deploy both the sending and receiving servlets. To do this,
make sure that the Tomcat web server is running and open a command window. To deploy the receiver,

change your current directory to chapter4\soaprpecho relative to the installation directory of the

example code for this book and type the command:

ant deploy

This command compiles the code for the receiver and deploys it on the web server. Next, to compile

and deploy the sender, change your working directory to chapter4\soaprpsender and type the following

http://lib.ommolketab.ir
http://lib.ommolketab.ir

command to complete the process:

ant deploy

Although most of the examples in this book need only to be compiled and deployed in order for you to
use them, this is not the case here. This example won't work until you have taken some extra steps to

configure the JAXM provider, which is covered in Section 4.4, later in this chapter.

4.3.1 Implementing the Sending Servlet for the JAXM Echo Service

Now let's look at how the servlet that provides the functionality of the message sender is implemented.
The code for this servlet is shown in Example 4-1.

Example 4-1. The JAXM client for the echo web service

package ora.jwsnut.chapter4.soaprpsender;

import java.io.IOException;
import java.io.OutputStream;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.messaging.Endpoint;
import javax.xml.messaging.JAXMServlet;
import javax.xml.messaging.OnewayListener;
import javax.xml.messaging.ProviderConnection;
import javax.xml.messaging.ProviderConnectionFactory;
import javax.xml.messaging.ProviderMetaData;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPFactory;
import javax.xml.soap.SOAPMessage;
import com.sun.xml.messaging.jaxm.soaprp.SOAPRPMessageFactoryImpl;
import com.sun.xml.messaging.jaxm.soaprp.SOAPRPMessageImpl;

/**
 * A servlet that creates a SOAP-RP message on demand and sends
 * it to a remote echo service.
 */
public class SOAPRPSenderServlet extends JAXMServlet implements OnewayListener {

 /**
 * Message returned by the echo service.
 */
 private SOAPMessage replyMessage;

 /**
 * Factory used to create parts of SOAP messages

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 */
 private SOAPFactory soapFactory;

 /**
 * ProviderConnection used to send reply messages
 */
 private ProviderConnection conn;

 /**
 * Factory used to create messages
 */
 private MessageFactory msgFactory;

 /**
 * Initialize by installing the appropriate MessageFactory
 */
 public void init(ServletConfig servletConfig) throws ServletException {
 super.init(servletConfig);
 try {
 // Create the connection to the provider
 conn = ProviderConnectionFactory.newInstance().createConnection();
 soapFactory = SOAPFactory.newInstance();

 // Check that the soaprp profile is supported
 ProviderMetaData metaData = conn.getMetaData();
 String[] profiles = metaData.getSupportedProfiles();
 boolean found = false;
 for (int i = 0; i < profiles.length; i++) {
 if (profiles[i].equals("soaprp")) {
 found = true;
 break;
 }
 }

 if (!found) {
 // No SOAPRP profile
 log("soaprp profile not supported");
 throw new ServletException("soaprp profile not supported");
 }

 // Get the message factory and build the message
 msgFactory = conn.createMessageFactory("soaprp");

 // Install the factory to use when receiving messages
 setMessageFactory(msgFactory);
 }catch (Exception e) {
 e.printStackTrace();
 throw new ServletException(
 "Failed to initialize SOAPRP sender servlet " +
 e.getMessage());
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /**
 * Handles a request from a client to send a message.
 */
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws IOException, ServletException {

 // Only allow gets on the "request" handler
 String path = req.getServletPath();
 if (!path.equals("/request")) {
 resp.sendError(HttpServletResponse.SC_METHOD_NOT_ALLOWED,
 "Cannot use get on this URL");
 return;
 }

 // Build and send a message
 boolean sent = sendMessage();

 // Wait until the echo service has replied,
 // for a maximum of 30 seconds
 if (sent) {
 synchronized (this) {
 replyMessage = null;
 try {
 if (replyMessage == null) {
 wait(30000L);
 }
 } catch (InterruptedException ex) {
 }
 }
 }

 // Now send the reply to the caller.
 try {
 if (replyMessage == null) {
 resp.sendError(HttpServletResponse.SC_SERVICE_UNAVAILABLE,
 "No reply received");
 return;
 }

 OutputStream os = resp.getOutputStream();
 resp.setContentType("text/html");
 resp.setStatus(HttpServletResponse.SC_OK);
 os.write("<html><P><XMP>".getBytes());
 replyMessage.writeTo(os);
 os.write("</XMP></html>".getBytes());
 os.flush();
 } catch (Exception ex) {
 log("Exception in doGet", ex);
 resp.sendError(HttpServletResponse.SC_SERVICE_UNAVAILABLE,
 "Exception: " + ex.getMessage());
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 replyMessage = null;
 }

 /**
 * Handles a POST either from a client or as a
 * callback from the provider.
 */
 public void doPost(HttpServletRequest req, HttpServletResponse resp)
 throws IOException, ServletException {
 // Only allow posts to the "message" handler
 String path = req.getServletPath();
 if (path.equals("/message")) {
 // This is allowed
 super.doPost(req, resp);
 } else {
 // Cannot post to the request path
 resp.sendError(HttpServletResponse.SC_METHOD_NOT_ALLOWED,
 "Cannot post to this URL");
 }
 }

 /* -- Useful functionality starts here -- */
 /**
 * Builds a message and sends it to the service
 */
 private boolean sendMessage() {
 try {
 // Build the SOAP-RP message
 SOAPRPMessageImpl message =
 (SOAPRPMessageImpl)msgFactory.createMessage();
 message.setTo(new Endpoint("urn:SOAPRPEcho"));
 message.setFrom(new Endpoint("urn:SOAPRPSender"));
 SOAPElement element =
 message.getSOAPPart().getEnvelope().getBody().addBodyElement(
 soapFactory.createName("Sent", "tns", "urn:SOAPRPSender"));
 element.addTextNode("This is the content");

 // Send the message to the echo service
 conn.send(message);

 // Return indicating that the message was sent.
 return true;
 } catch (Exception ex) {
 log("Failed when sending message", ex);
 }

 return false;
 }

 /**
 * Handles a received SOAP message - this is the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * asynchronous reply from the echo service.
 */
 public void onMessage(SOAPMessage message) {
 try {
 synchronized (this) {
 // Save the message for the benefit
 // of the client.
 replyMessage = message;

 // Wake up the client
 notify();
 }
 } catch (Exception ex) {
 log("Exception", ex);
 }
 }

 public void destroy() {
 try {
 if (conn != null) {
 conn.close();
 }
 } catch (Exception ex) {
 // Don't log this - the provider may already have closed
 }
 }
}

Since there is rather a lot of code here, we'll break it down into smaller pieces and examine each of

them in turn.

4.3.1.1 Servlet configuration

The sending servlet will receive inputs from two different sources:

An HTTP GET request from a browser that we'll use to initiate the sending of a message.

An HTTP POST request containing received SOAP messages, sent by the web service and
delivered by the local JAXM provider.

We can easily distinguish these two different cases because the former will be handled by the doGet()

method and the latter by doPost(), but in order to make the distinction between these two different

aspects of the servlet clearer, we choose to assign them to different URLs in the web.xml file that is

shown in Example 4-2.

Example 4-2. The web.xml file for the echo example sending servlet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app>
 <display-name>SOAP-RP Message Sender</display-name>
 <description>SOAP-RP Message Sender</description>

 <servlet>
 <servlet-name>SOAPRPSender</servlet-name>
 <display-name>Servlet for the SOAP-RP Message Sender Example
 </display-name>
 <servlet-class>ora.jwsnut.chapter4.soaprpsender.SOAPRPSenderServlet
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>SOAPRPSender</servlet-name>
 <url-pattern>/request</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>SOAPRPSender</servlet-name>
 <url-pattern>/message</url-pattern>
 </servlet-mapping>

</web-app>

The servlet will be deployed with the context path SOAPRPSender, so the URLs that correspond to it are

as follows (assuming deployment on localhost):

URL Description

http://localhost:8080/SOAPRPSender/request
Used by a web browser to initiate the sending of a

message

http://localhost:8080/SOAPRPSender/message
Used by the JAXM provider to deliver SOAP

messages addressed to the sender

4.3.1.2 Accessing the provider and creating the MessageFactory

When we used SAAJ to send a message, we had to use a factory to create a SOAPConnection, get a

MessageFactory to create an empty message, and populate it. We then used the SOAPConnection
send() method to transmit it and wait for the reply. Here, for example, is the code that we used in the

last chapter to obtain SOAPConnection and MessageFactory objects:

http://localhost:8080/SOAPRPSender/request
http://localhost:8080/SOAPRPSender/message
http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Get a SOAPConnection
SOAPConnectionFactory connFactory = SOAPConnectionFactory.newInstance();
SOAPConnection conn = connFactory.createConnection();
MessageFactory messageFactory = MessageFactory.newInstance();

When using a messaging provider, the code is almost identical:

ProviderConnectionFactory factory = ProviderConnectionFactory.newInstance();
ProviderConnection conn = factory.createConnection();
MessageFactory messageFactory = conn.createMessageFactory("soaprp");

The most obvious difference between these two code extracts is that we now use

javax.xml.messaging.ProviderConnectionFactory and

javax.xml.messaging.ProviderConnection instead of SOAPConnectionFactory and

SOAPConnection. These methods (at least notionally) create a connection to the local provider and then
use that connection to obtain a MessageFactory for messages to be sent using that provider. Simple

and logical though this code might appear, it raises an obvious question: how does the

createConnection() method know where to find the provider that it is creating a connection to? If

you refer back to Figure 4-4, you'll see that the provider is a separate entity. In fact, in the JAXM

reference implementation, it is a separate web application that may (or may not) reside on the same
host as the JAXM client itself. Yet the JAXM client does not need to provide the URL of the provider

in order to connect to it. This is because the URL of the provider is part of the configuration

information required to deploy a JAXM client, which we'll look at in Section 4.4, later in this chapter.

The fact that you don't need to hardwire it or write code to obtain the URL at runtime simplifies the
task of writing the client, and also enhances its portability between different JAXM implementations,
since the way in which providers are configured is not covered by the JAXM specification, and is

therefore a matter for JAXM vendors that can be addressed at deployment time without the need to

modify code.

In the future, should JAXM be more tightly integrated into web or J2EE containers, the

ProviderConnectionFactory will probably become a managed object that is configured into the JNDI

naming context of the servlet (or message-driven bean) hosting the JAXM client, which would then
follow the usual coding pattern to get a reference to it:

InitialContext ctx = new InitialContext();
ProviderConnectionFactory factory = (ProviderConnectionFactory)ctx.lookup("key");

In the reference implementation, the createConnection() method does not

actually cause a connection to be made to the provider, despite its name. A real

connection is not established until an attempt is made to send a message, or until

the getMetaData() method is called.

Another difference between the code shown here and that used in the previous chapter is the way in

which the MessageFactory is obtained. When you use a provider, you have to get the MessageFactory

using the following ProviderConnection method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public MessageFactory createMessageFactory(String profile)
 throws JAXMException;

where profile is a string that represents the message profile to be used when constructing SOAP

messages. The reference implementation recognizes two values for this argument, which are described
in Table 4-1.

Table 4-1. Messaging profiles supported by the JAXM reference implementation

Profile

string
Description

soaprp

Returns a MessageFactory that can be used to create messages with preconfigured headers

as defined by the SOAP WS-Routing protocol. WS-Routing (which stands for Web

Services Routing) was formerly known as the SOAP Routing Protocol, or SOAP-RP (hence

the name of the profile - we'll refer to it throughout this chapter as SOAP-RP or soaprp

for consistency with the implementation). It allows the route by which a SOAP message

reaches its ultimate destination to be recorded in the message header, and for a suitable
reverse path to be created as the message is forwarded through intermediary systems.

Section 4.5, later in this chapter, looks at the support for this profile in the JAXM reference

implementation.

ebxml

Returns a MessageFactory for messages with headers that conform to the ebXML Message

Service specification. See Section 4.6, later in this chapter, for further information on this

profile.

JAXM clients that use a messaging provider must use one of the profiles that it supports - it is not

possible to create a plain SOAP message using the default MessageFactory (returned by its static

newInstance() method) and then try to transmit this via a provider.

The consequence of this restriction is that you cannot get the benefits of using a

messaging provider unless you use a messaging profile. You can, on the other

hand, create a profiled message and use the SOAPConnection call() method to

send it without using a provider - in fact, you have to do this if you want to use

synchronous messaging with a profiled message.

In practice, this is not really a constraint, since applications will typically be written specifically for a

particular messaging profile. As you'll see, the code for this example needs to know that it is using a

SOAP-RP message and would not work at all with the ebXML profile. For this reason, most clients

will obtain the MessageFactory for their profile by directly requesting it by name, as shown earlier:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MessageFactory messageFactory = conn.createMessageFactory("soaprp");

If the provider does not support the requested profile, this method throws a JAXMException. You can
discover the set of profiles that a messaging provider supports by obtaining its ProviderMetaData

object using the following ProviderConnection method:

public ProviderMetaData getMetaData() throws JAXMException;

and then calling the getSupportedProfiles() method, which returns the profile names in the form
of a string array. Here's how the example source code uses this method to check whether the SOAP-RP

profile is supported, as an alternative to catching a JAXMException from the createMessageFactory(

) method:

// Check that the soaprp profile is supported
ProviderMetaData metaData = conn.getMetaData();
String[] profiles = metaData.getSupportedProfiles();
boolean found = false;
for (int i = 0; i < profiles.length; i++) {
 if (profiles[i].equals("soaprp")) {
 found = true;
 break;
 }
}

if (!found) {
 // No SOAPRP profile
 log("soaprp profile not supported");
 throw new ServletException("soaprp profile not supported");
}

If you refer to Example 4-1, you'll notice that the code that handles the connection to the messaging

provider and the obtaining of a MessageFactory is all executed in the servlet's init() method. This
is appropriate because a single instance of all of these objects can be shared among all users of the

servlet; therefore, they need only to be created once, when the servlet is first loaded.

4.3.1.3 Handling requests from the browser

Having initialized the servlet by connecting to the provider and getting a MessageFactory, there is

nothing further to do until the user visits its request URL

(http://localhost:8080/SOAPRPSender/request), at which time the servlet's doGet() method is called.
At this point, we want to do the following:[2]

[2] Note that the doGet() method would also be called if the browser were incorrectly given the

URL http://localhost:8080/SOAPRPSender/message, which is intended to be used for delivery of

the response message from the web service. In order to exclude this case, the doGet() method

uses the HttpServletRequest getServletPath() method to determine the URL used to call it,

1.

http://localhost:8080/SOAPRPSender/request
http://localhost:8080/SOAPRPSender/message
http://lib.ommolketab.ir
http://lib.ommolketab.ir

and returns an error if appropriate.

Construct a SOAP message.1.

Send it to the web service.2.

Wait for the reply message.3.

Send an HTTP response to the browser containing a copy of the SOAP message returned by the

web service.

4.

We'll cover the details of the construction of the outgoing message and the handling of the reply later.
The important point to deal with here is that the response to the browser has to be sent before the

doGet() method completes, which means that doGet() has to receive and process the web service's

reply.

The problem with this is that when we use a provider, the method that sends a message does not block
until the reply arrives - it returns control as soon as the message is handed to the provider. The reply

message arrives at some time in the future - or perhaps not at all. Hence, the doGet() method needs
to arrange to block until it is notified that the web service's reply message has been received. We

achieve this by using an instance variable that is initially set to null, but which is used to store a

reference to the reply message when it arrives. The doGet() method uses the Object wait() method
to pause for up to 30 seconds. When it resumes, it is either because the reply was received (in which

case it prepares a reply containing the message content) or because the time limit expired (when it
sends a response containing an error status).

4.3.1.4 Constructing and sending the message

The message that we're going to send to the web service is obtained using the createMessage()

method of the SOAP-RP profile's MessageFactory:

// Build the SOAP-RP message
SOAPRPMessageImpl message = (SOAPRPMessageImpl)msgFactory.createMessage();
message.setTo(new Endpoint("urn:SOAPRPEcho"));
message.setFrom(new Endpoint("urn:SOAPRPSender"));
SOAPElement element = message.getSOAPPart().getEnvelope().getBody().
addBodyElement(

soapFactory.createName("Sent", "tns", "urn:SOAPRPSender"));
element.addTextNode("This is the content");

The first thing to note about this code is that the object returned from the createMessage() method

- although it is a SOAPMessage - is cast to a reference of type SOAPRPMessageImpl. The

SOAPRPMessageImpl class, which resides in the com.sun.xml.messaging.jaxm.soaprp package, is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the reference implementation's representation of a SOAP-RP message, and provides convenience
methods that allow you to set and retrieve the content of XML elements that form the header entry that

SOAP-RP defines without needing to understand the way in which the element structure is built. This

class, which is not covered by the JAXM specification, is described in more detail in Section 4.5, later

in this chapter.

Both of the profiles supported by the reference implementation use message

classes that are defined in packages that are not covered by the JAXM

specification. Unfortunately, due to the fact that you have to use a profiled

message with a message provider, you have no choice but to use these classes
despite the fact that their API is not formally defined, and hence might be subject

to change in the future.

SOAP-RP defines two particular header fields that hold the source and ultimate destination addresses
of the message. Both are defined as URIs. The SOAPRPMessageImpl class allows you to set these fields

using the setFrom() and setTo() methods, both of which accept an argument of type
javax.xml.messaging.Endpoint. Endpoint is the most general form of address recognized by

JAXM. It simply encapsulates a string, the interpretation of which depends entirely on the profile used

to create the message and the messaging provider. In this case, the to and from addresses, which are

urn:SOAPRPEcho and urn:SOAPRPSender respectively, are URNs rather than URLs. As we'll see

later in Section 4.4, these values are simply tokens that are mapped to URLs by the messaging
provider.

Using tokens instead of absolute addresses has the obvious advantage that the code is completely

independent of the actual addresses that are eventually used. The only requirement is that the sending

provider has a mapping for the token that represents the destination address, and the receiving provider

has a mapping for the sender's token if it is necessary to send a reply. It is, of course, possible to use the

real URLs as the tokens, but it is still necessary to create a trivial identity mapping in the provider
configuration.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Endpoint has a subclass called URLEndpoint that explicitly indicates that the

address is supplied in the form of a string that represents a URL. This class does

not really add anything more than cosmetic value, because there is no validity
checking applied to the address, and it is not possible to use it in conjunction

with a real java.net.URL object. It is really just a convenience for SAAJ

applications that need to deal directly with URLs (because they do not have a

messaging provider to map from a URI), and is largely redundant as of SAAJ 1.1

because the SOAPConnection send() method accepts a string argument such as
http://localhost:8080/BookImageService as well as the more complex new

URLEndpoint("http://localhost:8080/BookImageService"). Note,
however, that you cannot simply pass a string to the setTo() and setFrom()

methods of SOAPRPMessageImpl, and that all address handling inside the

messaging provider uses Endpoint objects.

Having addressed the message and added a simple XML node containing some text, the last step is to

transmit it, which is achieved using the ProviderConnection send() method:

public void send(SOAPMessage message) throws JAXMException;

Note the two very important differences between this method and the SOAPConnection call()
method used in Chapter 3:

It does not return a value. This, of course, is because send() just sends the message without
waiting for a response.

It doesn't provide an argument that specifies the destination address of the message. The

destination is assumed either to be part of the message or to be implicitly known to the provider,

depending on the profile in use. We'll see later in Section 4.4 exactly how the addressing works in

the case of the SOAP-RP profile.

4.3.1.5 Handling the response message

At some point after the message is transmitted, the receiving servlet (the code for which will be shown

shortly) returns a modified version of it to our local messaging provider, which then uses an HTTP

POST request to deliver it to our sending servlet's doPost() method.[3] Since SOAPRPSenderServlet

is derived from JAXMServlet, its doPost() method decodes the HTTP POST request and converts its

content into a SOAPMessage, using code that is very much like that shown in Example 3-1 in Chapter 3.
The SOAPMessage is then delivered to our onMessage() method. In order to decode the content of the

HTTP request, JAXMServlet needs an appropriate MessageFactory, so that it can call its

createMessage() method in the same way as SAAJServlet does in Example 3-1. For a SAAJ

application, the default MessageFactory can be used, but when using a messaging provider, it is

http://localhost:8080/BookImageService
http://lib.ommolketab.ir
http://lib.ommolketab.ir

necessary to install the factory for the messaging profile in use by using the JAXMServlet
setMessageFactory() method. This is typically done in the servlet's init() method, once the

ProviderConnection and MessageFactory have been obtained:

[3] You are probably wondering exactly how the messages manage to find their way from the

sending servlet to the receiver and back again when all that we have supplied is a pair of

seemingly meaningless URNs. We'll show exactly how this works in Section 4.4, later in this

chapter. For now, we're looking only at how the messages themselves are created and handled,
which is the only thing that affects the code that you actually write. I am deliberately remaining

silent on configuration, which is a deployment issue, to avoid presenting too complex a picture.

// Get the message factory
msgFactory = conn.createMessageFactory("soaprp");

// Install the factory to use when receiving messages
setMessageFactory(msgFactory);

If you don't install a MessageFactory in the servlet's init() method,

JAXMServlet uses the default MessageFactory to decode the messages that it

receives. This won't cause any problems with the process of creating the
internalized form of the message, but all the messages will be of type

SOAPMessage and not the profile-specific subclass that you are probably
expecting, the likely result of which is a ClassCastException.

In most cases, then, if you use JAXMServlet as the base class for your JAXM client, you need only to

override onMessage() to be able to handle messages directed at your client, and there is no need to
override doPost() yourself. In this example, however, since our servlet is mapped to two URLs, we

would like to ensure that only POST requests sent to the URL that ends with /SOAPRPSender/message

are treated as SOAP messages. To do this, we override doPost() to inspect the URL to which the

POST was directed, and invoke the JAXMServlet doPost() method only if the correct URL was used:

public void doPost(HttpServletRequest req, HttpServletResponse resp)
 throws IOException, ServletException {
 // Only allow posts to the "message" handler
 String path = req.getServletPath();
 if (path.equals("/message")) {
 // This is allowed
 super.doPost(req, resp);
 } else {
 // Cannot post to the request path
 resp.sendError(HttpServletResponse.SC_METHOD_NOT_ALLOWED,
 "Cannot post to this URL");
 }
}

Once the message is handed to the onMessage() method, all we need to do is store a reference to it in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the replyMessage instance variable and use the notify() method to wake up the thread that handled
the original request from the browser that is blocked in the doGet() method.

When you derive your servlet class from JAXMServlet, you have to provide an onMessage() method

to receive SOAP messages. There are two different ways to use the JAXMServlet onMessage()

method:

To receive a SOAP message and return another one that will be sent back to the originator of the

message that was received. In this mode, if the message was delivered using an HTTP POST
request (which will always be the case in the reference implementation), the reply is sent back in

the HTTP response. When used in this way, JAXMServlet behaves in the same manner as
SAAJServlet, which is used in Chapter 3.

To receive a SOAP message without returning a reply in the HTTP response. This mode is

appropriate for asynchronous messaging, and is the only one that can be used in conjunction with

a messaging provider (discussed in Section 4.3.3, later in this chapter). If a reply message is
subsequently generated, it must be sent via the messaging provider in the usual way.

JAXMServlet distinguishes these two cases based on which of two interfaces your servlet subclass

implements. If it implements the javax.xml.messaging.ReqRespListener interface, the onMessage(
) method must have the following signature:

public SOAPMessage onMessage(SOAPMessage message);

This interface should only be used as an alternative to using SAAJServlet. Servlets that work with a

messaging provider (including the ones shown in this chapter) must implement the

javax.xml.messaging.OnewayListener interface, in which the onMessage() method does not

return a SOAPMessage:

public void onMessage(SOAPMessage message);

If your servlet does not declare that it implements one or the other of these interfaces, then the doPost(

) method throws a ServletException when it receives a SOAP message.

4.3.2 Implementing the Receiving Servlet for the JAXM Echo Service

The servlet that implements the web service itself and that receives the messages sent by

SOAPRPSenderServlet is also derived from JAXMServlet and implements the OnewayListener

interface. Unlike SOAPRPSenderServlet, however, it has only one source of message (its local

messaging provider). Therefore, it needs only to be mapped to a single URL in its web.xml file, which

is shown in Example 4-3.

Example 4-3. The web.xml file for the echo example receiving servlet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app>
 <display-name>SOAP-RP Echo Service</display-name>
 <description>SOAP-RP Echo Service</description>

 <servlet>
 <servlet-name>SOAPRPEcho</servlet-name>
 <display-name>Servlet for the SOAP-RP Message Echo Service</display-name>
 <servlet-class>ora.jwsnut.chapter4.soaprpecho.SOAPRPEchoServlet
 </servlet-class>
 <load-on-startup>1000</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>SOAPRPEcho</servlet-name>
 <url-pattern>/message</url-pattern>
 </servlet-mapping>
</web-app>

Given that this servlet is deployed with the context path SOAPRPEcho, the URL used to deliver SOAP

messages to it would be http://localhost:8080/SOAPRPEcho/message.

An important point to note about this web.xml file is that it contains the following line:

<load-on-startup>1000</load-on-startup>

This causes the servlet to be initialized when it is deployed and when the web container starts up,

without waiting for it to be invoked as a result of an HTTP request. This is essential for this servlet, but

the reason is impossible to describe until we discuss how the provider communicates with the servlet in

Section 4.4, later in this chapter. It is not necessary to load the sending servlet at startup, because it is

not required until it is asked to send a message as a result of a browser making an HTTP GET request to
its /request URL.

Like the sending servlet, SOAPRPEchoServlet overrides the JAXMServlet init() method to obtain a

connection to the messaging provider and install a MessageFactory. The code is almost identical to

that shown earlier, but there are some interesting differences. The implementation is shown in Example

4-4.

Example 4-4. The init() method of the receiving servlet

public void init(ServletConfig servletConfig) throws ServletException {
 super.init(servletConfig);

http://localhost:8080/SOAPRPEcho/message
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Workaround for hang when deploying in J2EE container.
 // Do not connect to the provider here - defer to another thread.
 new Thread(new Runnable() {
 public void run() {
 try {
 // Create the connection to the provider
 conn = ProviderConnectionFactory.newInstance()
 .createConnection();

 // Work around for a JAXM bug
 conn.getMetaData();

 // Install the message factory for the SOAP-RP profile
 setMessageFactory(conn.createMessageFactory("soaprp"));
 } catch (Exception e) {
 log("Exception when initializing", e);
 }
 }
 }).start();
}

The ProviderConnection getMetaData() method is called for no apparent reason - the value that it

returns is ignored. In JWSDP Version 1.1, this is a workaround for a problem that we'll explain later in
Section 4.4. If you don't do this, the provider will be unable to deliver messages to the servlet.

The onMessage() method handles each message that it receives by creating a copy in which the to

and from addresses are reversed, and adding an element that contains the date and time at which the

message was processed. The new message is then sent to the provider, which delivers it to the original

sender (or, more precisely, whatever the from address points to). An extract from this method showing
the most interesting lines of code is shown in Example 4-5.

Example 4-5. Handling a SOAP message and returning an asynchronous reply

public void onMessage(SOAPMessage message) {

 try {

 // Create a copy of the message with the same body
 // and with the to and from addresses exchanged.
 SOAPRPMessageImpl soapMsg = (SOAPRPMessageImpl)message;
 MessageFactory factory = soapMsg.getMessageFactory();

 // Create a reply message
 SOAPRPMessageImpl replyMsg = (SOAPRPMessageImpl)factory.createMessage();

 // Move the body content from the received message to the source.
 SOAPBody body = soapMsg.getSOAPPart().getEnvelope().getBody();
 SOAPBody replyBody = replyMsg.getSOAPPart().getEnvelope().getBody();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Iterator iter = body.getChildElements();
 while (iter.hasNext()) {
 SOAPElement element = (SOAPElement)iter.next();
 replyBody.addChildElement(element);
 }

 // Add an element after the body that contains the date.
 SOAPElement element =
 replyMsg.getSOAPPart().getEnvelope().addChildElement(
 "Date", "tns", "urn:SOAPRPEcho");
 element.addTextNode(new Date().toString());

 // Copy any attachments
 iter = soapMsg.getAttachments();
 while (iter.hasNext()) {
 replyMsg.addAttachmentPart((AttachmentPart)iter.next());
 }

 // Get the SOAP message ID and install it as the "relates-to" value
 replyMsg.setRelatesTo(soapMsg.getSOAPRPMessageId());

 // Get the the "To" address and install it as the "From" address
 replyMsg.setFrom(soapMsg.getTo());

 // Get the "From" address an install it as the "To" address
 replyMsg.setTo(soapMsg.getFrom());

 // [CODE HERE NOT SHOWN]

 // Send the reply message
 conn.send(replyMsg);
 } catch (Exception ex) {
 log("Exception", ex);
 }
}

First, the received message is cast to the SOAPRPMessageImpl object so that we can use the convenience

methods that it provides to get access to the SOAP-RP fields of the header that we need, especially the

to and from addresses. This works because we installed the appropriate MessageFactory in the

servlet's init() method (and, of course, because we are receiving SOAP-RP messages!). Next, we

create an empty message and copy the content of the received message's body and its attachments (if
there are any) into it. Although we could use the MessageFactory created in the init() method to

create the copy, we take the opportunity to demonstrate the SOAPRPMessageImpl getMessageFactory(

) method, which returns a reference to the MessageFactory that was used to create the received

message, and use the same one to build the reply.

Next, we add an element to the new message that contains the current date and time:

// Add an element after the body that contains the date.
 SOAPElement element =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 replyMsg.getSOAPPart().getEnvelope()
 .addChildElement("Date", "tns", "urn:SOAPRPEcho");
 element.addTextNode(new Date().toString());

You'll notice that we add this element directly to the SOAP envelope, which means that it appears after

the body element rather than inside the body. There is no special reason for this, other than to

demonstrate that this is allowed both by the SOAP specification and the SAAJ API.

Finally, we swap the to and from addresses using the SOAPRPMessageImpl convenience methods that
provide easy access to these fields. Then, we use the ProviderConnection send() method to send the

copied and modified message back to the original sender:

 // Get the the "To" address and install it as the "From" address
replyMsg.setFrom(soapMsg.getTo());

// Get the "From" address an install it as the "To" address
 replyMsg.setTo(soapMsg.getFrom());

// Send the reply message
conn.send(replyMsg);

4.3.3 Why Synchronous Messaging Does Not Work with a Provider

When you use a messaging provider, you have no choice but to send your message asynchronously.
Furthermore, in the example that we have been looking at in this section, the message receiver is a

subclass of JAXMServlet that implements OnewayListener, and returns its reply using another
asynchronous call to its local provider. The obvious question to ask is, since the receiver in this case

can process the message and generate its reply immediately, why can't it implement the

ReqRespListener interface and return the reply message for the provider to send straight back?

Although this might seem simpler (and nothing stops you from trying it), it won't actually work - your

message will not be delivered.

To understand why you can't implement a synchronous receiver to respond to an asynchronous
message, look at the sequence of events that happens when the original message is transmitted:

The sender delivers its outgoing message to its local provider.1.

The provider puts the message in its outgoing queue.2.

Some time later, the local provider delivers the message to the receiver's provider.3.

Some time later, the receiver's provider delivers the message to the receiving servlet.4.

The last step in this process is the critical one. The message is delivered to the servlet by the receiver's

provider using an HTTP POST request. If the receiving servlet implemented ReqRespListener, it

could return a SOAPMessage and JAXMServlet would place it in the HTTP response. However, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

receiving provider is simply not expecting this behavior - it does not examine the content of the
HTTP response, so the message is lost.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4 JAXM Configuration

You have now seen and deployed all of the code for both the sender and receiver parts of the JAXM

message echo example. If, however, you were to start your web browser and point it at
http://localhost:8080/SOAPRPSender/request, which is the URL that causes the sender servlet to

transmit a message, you would find that after about 30 seconds, the sender would give up waiting for a

reply from the receiver and an error page would be displayed by the browser. Although all of the code

is in place, the proper JAXM configuration has not been set up to allow the providers to exchange

messages. In this section, we look at how to configure the JAXM reference implementation.

4.4.1 Configuring JAXM Clients

A message traveling from the sending servlet to the receiver has to make three hops:

From the sender to the local provider1.

From the local provider to the remote provider2.

From the remote provider to the receiving servlet3.

We saw earlier that a JAXM client logically connects to its local provider using the

ProviderConnectionFactory createConnection() method, but we didn't see how the provider

itself is located. This information is held in a file called client.xml, which must be located in the

CLASSPATH of the JAXM client. Since both the sender and the receiver servlets in this example are

deployed as web applications, their client.xml files should be placed in the WEB-INF/classes directory
of their WAR files, as shown in the following listing of the files that make up the web archive for the

SOAPRPSender servlet:

 META-INF/MANIFEST.MF
 WEB-INF/classes/ora/jwsnut/chapter4/soaprpsender/SOAPRPSenderServlet.class
 WEB-INF/classes/client.xml
 WEB-INF/web.xml

A full description of the client.xml file will be found in Chapter 8. The content of the client.xml file

used by the SOAPRPSender servlet is shown in Example 4-6, in which the line numbers on the left have

been added for ease of reference only.

Example 4-6. The client.xml file for the sending servlet

http://localhost:8080/SOAPRPSender/request
http://lib.ommolketab.ir
http://lib.ommolketab.ir

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2
3 <!DOCTYPE ClientConfig
4 PUBLIC "-//Sun Microsystems, Inc.//DTD JAXM Client//EN"
5 "http://java.sun.com/xml/dtds/jaxm_client_1_0.dtd">
6 <ClientConfig>
7 <Endpoint>
8 urn:SOAPRPSender
9 </Endpoint>
10 <CallbackURL>
11 http://localhost:8080/SOAPRPSender/message
12 </CallbackURL>
13
14 <Provider>
15 <URI>http://java.sun.com/xml/jaxm/provider</URI>
16 <URL>http://localhost:8081/jaxm-provider/sender</URL>
17 </Provider>
18 </ClientConfig>

The lines shown in bold relate to the configuration of the sending servlet; the other lines are fixed
content that are the same in all client.xml files. The Provider element at the end of the file is used

when the client connects to the messaging provider. The two child elements are used as follows:

URI

The URI value identifies the provider in use. For the JAXM reference implementation, you must

use the value http://java.sun.com/xml/jaxm/provider. The JAXM code that implements the

ProviderConnection interface and the provider itself communicate by adding private header

entries to the messages sent by JAXM clients. This URI is used as the namespace for the XML
elements in these header entries; it is also used to set their actor attribute. When the provider

receives a message from a JAXM client, it removes and actions all headers for which the actor

attribute has this fixed value.

URL

The URL is where messages from the JAXM client to the provider are actually sent. For the

reference implementation in the JWSDP, the provider is a Tomcat service called jaxm-
provider, accessible at port 8081. The provider is not required to be on the same host as the

JAXM client. If the provider is not co-located with the client, then the name of the provider's

host should be used instead of localhost.

Figure 4-5 shows how the URL field of the Provider element is used to locate the JAXM client's local

provider.

Figure 4-5. JAXM client configuration

http://localhost:8080/SOAPRPSender/message
http://java.sun.com/xml/jaxm/provider
http://lib.ommolketab.ir
http://lib.ommolketab.ir

When a provider receives a message for delivery to a client, it needs to be able to match the destination
address of the message to the client that provides service at that address. As we saw earlier, the

destination address that is placed in a SOAP-RP header is a URI that identifies the target of the

message - it need not be a URL. Therefore, the provider maintains a list of mappings from the
Endpoint URI to the URL of the client that should receive messages destined for that URI. In the

client.xml file, the Endpoint element declares the URI that corresponds to the client, and the
CallbackURL element specifies the URL to which messages for that URI should be delivered. In terms

of the example that we are using in this chapter, the sending servlet advertises its URI as

urn:SOAPRPSender. Since the sending servlet expects to receive messages on the URL
http://localhost:8080/SOAPRPSender/message, this is the URL to which the sending servlet's URI

should be mapped.[4] Hence, the appropriate Endpoint and CallbackURL entries in the client.xml file
for the sending servlet would be:

[4] This URL comes from the sending servlet's web.xml file, which was shown in Example 4-2.

<Endpoint>
 urn:SOAPRPSender
</Endpoint>

<CallbackURL>
 http://localhost:8080/SOAPRPSender/message
</CallbackURL>

In the case of the receiving servlet (which as a JAXM client also requires its own client.xml file), these
entries would look like this:

<Endpoint>
 urn:SOAPRPEcho
</Endpoint>

<CallbackURL>
 http://localhost:8080/SOAPRPEcho/message
</CallbackURL>

The receiving servlet also needs a Provider element containing the URL of its local provider that, if

you deploy both the sending and receiving servlets on the same host, is the same provider used by the

http://localhost:8080/SOAPRPSender/message
http://lib.ommolketab.ir
http://lib.ommolketab.ir

sending servlet and therefore requires the same URL.

4.4.2 Configuring the JAXM Provider

The client.xml file solves the problem of how to route messages between clients and a provider, but

there remains the issue of how the providers route messages among themselves. In the case of the

example used in this chapter, the provider needs to deliver messages addressed to the URIs
urn:SOAPRPEcho and urn:SOAPRPSender, by passing them to whichever provider the clients owning

these endpoints are connected.[5] In order to make this possible, providers are configured with URI-to-

URL mappings that are similar to those created by the Endpoint and CallbackURL elements used in the

client.xml file. Each provider must be configured with a mapping for each remote URI to which

messages from its local clients might be addressed, specifying the URL of the provider to which
messages carrying that URI as a destination address must be delivered (and not the URL of the

receiving client).

[5] In general, when there are two JAXM clients on separate machines, there are two providers
involved. However, if both the sender and receiver are deployed on the same machine, the

likelihood is that they will use the same provider (although you could arrange to run two

providers on the same machine). Even though this is the case, the configuration still has to be
created in the same way as if there were two providers. The description here is consistent with

that.

In the reference implementation, these mappings are stored in a file called provider.xml, which resides
in the /WEB_INF directory of the jaxm-provider service, details of which you'll find in Chapter 8.

Fortunately, you don't need to deal with this file directly - instead, you can view and change the

mappings using the JAXM provider administration service, which can be accessed using a web

browser.

The provider administration tool is a web application that provides a user interface that lets you
configure the JAXM provider without having to manually edit its provider.xml file. Once you

understand the content of this file (details of which are provided in Chapter 8), you'll find it very easy

to use the administration tool, so we're not going to describe it in great detail. Here, we need to use it to

add endpoint mappings for the URIs urn:SOAPRPEcho and urn:SOAPRPSender. Assuming that this

service is running on the same host as your browser, the URL that you need to use to access it is
http://localhost:8081/jaxm-provideradmin. When you attempt to connect to this service, you are

prompted to supply a username and password. When you installed the JWSDP, you were prompted to

supply a username and a password, and you should use the same username and password to access the

configuration service. If you can't remember them, you can find them in the tomcat-users.xml file,

which is held in the conf directory of the web server. Here is what this file typically looks like, with the
important lines highlighted in bold:

<?xml version='1.0'?>

http://localhost:8081/jaxm-provideradmin
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<tomcat-users>
 <role rolename="admin"/>
 <role rolename="manager"/>
 <role rolename="provider"/>
 <user username="JWSUserName" password="JWSPassword"
 roles="admin,manager,provider"/>
</tomcat-users>

In this case, supply the username JWSUserName and the password JWSPassword. These values can also

be found in the jwsnutExamples.properties file in your home directory, assuming you created it as

described in Chapter 1.

Once you reach the configuration service's home page, expand the tree view that you'll see on the left,
and select the entry for http below the SOAPRP profile. You should see a screen like that shown in

Figure 4-6.

Figure 4-6. The JAXM provider administration screen

This screen contains, among other things, the endpoint mappings for messages being sent by the

provider for the SOAP-RP profile using HTTP as the underlying communications protocol. The URL

associated with the URI urn:SOAPRPEcho needs to be the one required to access the provider to which

the receiving servlet is attached, whereas the URL for the URI urn:SOAPRPSender should be that of
the provider for the sending servlet. A provider has three available URLs; for the case of the JWSDP

reference implementation running in the Tomcat web server, these URLs are listed in Table 4-2, where

it is assumed that the provider and the clients are all running on the same machine.

Table 4-2. URLs for the JAXM provider in the reference implementation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

URL Description

http://localhost:8081/jaxm-

provider/sender

Address to which JAXM clients send outgoing messages. This

URL is configured in the client's client.xml file and is not part
of the provider configuration.

http://localhost:8081/jaxm-

provider/receiver/soaprp

Address to which messages using the SOAP-RP profile should

be sent.

http://localhost:8081/jaxm-
provider/receiver/ebxml

Address to which messages using the ebXML profile should be
sent.

If the target provider is on a different machine, substitute the hostname of that machine for localhost
in these URLs.

Since the messages in the example used in this chapter use the SOAP-RP profile, both of the JAXM

client URIs should be mapped to the URL for the SOAP-RP receiving URL of the target provider,
which will be http://localhost:8081/jaxm-provider/receiver/soaprp. To add these mappings, select

"Create New Endpoint Mapping" from the combo box at the top right of the screen. You are presented

with a form that allows you to enter a URI along with its corresponding URL, as shown in Figure 4-7,

where the mapping for urn:SOAPRPEcho has been entered.

Figure 4-7. Configuring a URI-to-URL mapping

The mappings that you need to enter are shown in Table 4-3.

Table 4-3. URI mappings for the JAXM SOAP-RP profile example

http://localhost:8081/jaxm-
http://localhost:8081/jaxm-
http://localhost:8081/jaxm-
http://localhost:8081/jaxm-provider/receiver/soaprp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

URI Target URL

urn:SOAPEcho http://localhost:8081/jaxm-provider/receiver/soaprp

urn:SOAPSender http://localhost:8081/jaxm-provider/receiver/soaprp

Once both mappings are set up, they should appear on the main screen as shown in Figure 4-8. Select

"Save to Profile" to save these mappings.

Figure 4-8. The JAXM provider administration screen with two new URI mappings configured

At this point, the provider is properly configured to forward messages to either URI. Of course, if the
clients are on separate machines and use different providers, it is then necessary to configure each

provider separately:

The provider local to the sending servlet is configured with a mapping for the URI

urn:SOAPRPEcho - that is, the URI to which it sends. The URL for this mapping refers to the

other provider.

The provider local to the receiving servlet similarly requires a mapping for the URI

urn:SOAPRPSender.

You can now finally run the example that we have been using throughout this chapter. To do so, simply
enter the URL http://localhost:8080/SOAPRPSender/request into your browser. After a short delay, you

should see the SOAP message that was sent by the sending servlet and returned by the receiver, an

http://localhost:8081/jaxm-provider/receiver/soaprp
http://localhost:8081/jaxm-provider/receiver/soaprp
http://localhost:8080/SOAPRPSender/request
http://lib.ommolketab.ir
http://lib.ommolketab.ir

example of which is shown in Example 4-7. This message has been reformatted for the sake of
readability.

Example 4-7. A SOAP-RP message sent via a messaging provider

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
 <soap-env:Header>
 <m:path xmlns:m="http://schemas.xmlsoap.org/rp">
 <m:from>urn:SOAPRPEcho</m:from>
 <m:to>urn:SOAPRPSender</m:to>
 <m:id>9a85b633-2c8f-4d2e-84a5-ff6b21c05f61</m:id>
 <m:relatesTo>3166c06a-e38c-466e-b43e-d55a37f3d3fc</m:relatesTo>
 <m:fwd/>
 <m:rev/>
 </m:path>
 </soap-env:Header>
 <soap-env:Body>
 <tns:Sent xmlns:tns="urn:SOAPRPSender">This is the content</tns:Sent>
 </soap-env:Body>
 <tns:Date xmlns:tns="urn:SOAPRPEcho">Thu Aug 08 15:58:53 BST 2002</tns:Date>
</soap-env:Envelope>

The elements in the message header are defined by the SOAP-RP protocol, further information on

which can be found later in this chapter. Note the to and from elements, which contain the URIs for the
sending and receiving servlets, and the Date element, which follows the SOAP body and contains the
date and time at which the message was processed by the receiver.

4.4.3 How a Message Is Sent and Delivered

As a summary of how messaging providers use the JAXM configuration information, the following is a

step-by-step account of the way in which a SOAP-RP message is sent from a JAXM client to its

destination. The return path would obviously be identical, but with the addresses reversed.

The receiving servlet initializes. As it does so, it uses the ProviderConnectionFactory and the

ProviderConnection interface to establish a connection to its local provider, as well as calls the
ProviderConnection getMetaData() method. In order to contact the provider to obtain the

metadata, the JAXM code in the client accesses the receiving servlet's client.xml file to locate the

provider's URL from the Provider element - in this case, http://localhost:8081/jaxm-

provider/sender. It also passes to the provider the information in the Endpoint and CallbackURL

elements so that the provider knows that messages intended for the URI urn:SOAPRPEcho
should be delivered to the URL http://localhost:8080/SOAPRPEcho/message.

1.

The sending servlet uses the ProviderConnectionFactory and the ProviderConnection2.

http://localhost:8081/jaxm-
http://localhost:8080/SOAPRPEcho/message
http://lib.ommolketab.ir
http://lib.ommolketab.ir

interface to establish a connection to its local provider. It also obtains a MessageFactory for the
soaprp profile and constructs a message, setting the from address to urn:SOAPRPSender and the

to address to urn:SOAPRPEcho.

2.

The client uses the ProviderConnection send() method to transmit the message. The JAXM

code in the client accesses the sending servlet's client.xml file and uses the URI and URL in the

Provider element to find the URL of the provider - in this case, http://localhost:8081/jaxm-

provider/sender. Also, if it has not already done so, it passes to the provider the information in the
Endpoint and CallbackURL elements so that it can map the sending servlet's URI

(urn:SOAPRPSender) to its message callback URL

(http://localhost:8080/SOAPRPSender/message). The message is then delivered to the provider at

the URL http://localhost:8081/jaxm-provider/sender.

3.

When the provider receives the message, it stores it in its outgoing message queue. There is a

separate set of message queues for each profile that the provider supports, which the reference
implementation keeps in a directory hierarchy in temporary storage provided by its host container.

If you are running the JWSDP in the Tomcat web server, you'll find the messages that the

provider sends and receives held below the directory work\Services Engine\jwsdp-services\jaxm-

provider, relative to the JWSDP installation directory.

4.

When the message is to be transmitted from the outgoing message queue, the provider extracts its

destination address. In order to do this, the provider needs to understand where it will find this
address, which is profile-dependent. The provider can do this because the class

com.sun.xml.messaging.soaprp.SOAPRPMessageImpl that represents a SOAP-RP message is

derived from com.sun.xml.messaging.jaxm.util.ProfileMessage (which has abstract

methods that extract to to and from addresses from the message). SOAPRPMessageImpl

implements these methods so that they extract the correct parts of the SOAP-RP header. The
message class for the ebXML profile similarly implements them to extract the Party object from

the message (see Section 4.6 later in this chapter, for further information on this). The fact that the

provider has to be able to get the destination address from within a SOAP message explains why

nonprofiled messages that do not contain a destination address (i.e., SAAJ messages created using

the default MessageFactory) cannot be sent using a provider.

5.

The provider uses the destination address to check its URI-to-URL mapping, set up using the
JAXM provider administration tool, to find the URL of the provider to which the message should

be sent. In this case, the destination address is urn:SOAPRPEcho, which maps to the URL

http://localhost:8081/jaxm-provider/receiver/soaprp. This happens to be a URL belonging to the

same provider, of course, but this does not matter. The local provider delivers the message to its

peer using an HTTP POST request to this URL. If delivery fails, the provider retries on the
assumption that the remote provider is not yet started or there is a problem with network

connectivity.

6.

When the peer provider receives the incoming SOAP-RP message, it stores it in its received7.

http://localhost:8081/jaxm-
http://localhost:8080/SOAPRPSender/message
http://localhost:8081/jaxm-provider/sender
http://localhost:8081/jaxm-provider/receiver/soaprp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

message queue. Subsequently, an attempt is made to deliver this message to the correct JAXM
client. Delivery is performed by extracting the destination address from the message, in the same

way as the sending provider did when transmitting the message, and using it to access the

Endpoint mapping table built from the client.xml files of the clients connected to the provider

(see Figure 4-5). Here, the destination address urn:SOAPRPEcho has been registered by the

receiving servlet and mapped to its delivery URL http://localhost:8080/SOAPRPEcho/message
(see Step 1). The provider delivers the message using an HTTP POST request to that URL. If

delivery fails, or if there is no entry for the destination URI in the provider's mapping table, the

provider will retry delivery later, on the assumption that the client has not yet been started but will

register later.

7.

4.4.4 Servlet Loading Issue

The final point to mention in our discussion of JAXM configuration discusses the reason for including
the load-on-startup element in the web.xml file of the receiving servlet in our example so that it is

loaded when the web container initializes. As we said earlier in Section 4.4.1, a provider uses the

Endpoint elements from the client.xml files of the JAXM clients that are connected to it to determine
where to route the messages it receives. A provider cannot directly read these files - instead, they are

read and a representation of their content is passed (in a private SOAP message header) when a client
connects to the provider.[6] The sending servlet, which is not marked to be loaded at startup, initializes

and connects to the provider when the request from the browser sent to the URL

http://localhost:8080/SOAPRPSender/request is received by the web container; therefore, it is

registered with the provider before a message addressed to it needs to be dispatched. However, since
the receiving servlet's URL is only referenced when the provider tries to deliver a message to it based

on an entry in the provider's client URI-to-URL mapping table, if the receiving servlet were not marked

to be loaded at startup, it would not have initialized and connected to the provider, and therefore its

URL would not be registered in this mapping table.

[6] Exactly when this happens is, of course, implementation-dependent. At the time of this writing,

the reference implementation does this the first time the client requests ProviderMetaData, or
when the ProviderConnection send() method is called for the first time. The fact that this is left

so late also explains why a client that simply listens passively for messages, such as the receiving

servlet in the example in this chapter, must call getMetaData() as shown in Example 4-4, even

though it doesn't make use of the ProviderMetaData. The purpose of the call is simply to register

the receiver's Endpoint with the provider so that it can receive messages.

http://localhost:8080/SOAPRPEcho/message
http://localhost:8080/SOAPRPSender/request
http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.5 The SOAP-RP Profile

The SOAP-RP profile is an implementation of the SOAP WS-Routing specification (formerly known

as the SOAP Routing Protocol), which can be downloaded from
http://msdn.microsoft.com/ws/2001/10/Routing. Although a full discussion of the specification is

outside the scope of this book, this section contains a brief overview and a description of the API that

JAXM provides to allow the construction of messages that conform to the specification.

4.5.1 SOAP-RP Overview

SOAP-RP defines a SOAP header and a set of rules to be followed that enable a SOAP message to be

routed from a sender, through zero or more intermediate systems to its final destination. The SOAP-RP
header, which is called path, contains child elements from the set listed in Table 4-4.

Table 4-4. SOAP-RP header elements

Element Description

to
Contains the URI of the ultimate destination of the message. This element is added by

the sender and cannot be changed as the message passes through intermediate systems.

from Contains a URI that identifies the sender of the message.

fwd

If present, this tag contains zero or more URIs that define a list of intermediate systems

that must be visited before the message is delivered to its final recipient. All of the

systems in this list must be visited in the order in which they appear. If this is not

possible, the message is discarded and a fault is returned (see the fault element).

Each URI is enclosed in a child element called via. As each intermediate system is
traversed, it removes its own via entry, which must be at the front of the list.

Intermediate systems can add new via entries to the path as necessary, before

forwarding.

If present, this tag allows a reverse path to be created as the message traverses the route

from sender to receiver. Each intermediate system that handles the message typically

inserts its own URI as the first child of this element, in the form of a via tag, although it

may insert the URI of some other system if that system would be a more appropriate hop

http://msdn.microsoft.com/ws/2001/10/Routing
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

rev

may insert the URI of some other system if that system would be a more appropriate hop

in the return path.

The final recipient of a SOAP message that contains a reverse path usually extracts it and

stores it as the fwd element of the message that it sends in reply.

The rev tag is inserted by the initial sender. If it is not present, it cannot be added by an
intermediate system, and therefore a reverse path cannot be constructed.

action

Contains a URI that defines the intent of the message. Its meaning is private to the

application and therefore there is no well-known set of permitted action values. This
element must be set by the sender and cannot be modified by intermediate systems.

id
Contains a URI that uniquely identifies the message in which it is contained. The

identifier is used to link a reply or a fault to the original message that caused it to be sent.

relatesTo
Contains the value of the id element for the message to which it is related. This element
is used when returning a fault, or in an application-level reply to a message sent earlier.

fault

Used to report an error condition detected when trying to route or handle a SOAP-RP

message. fault must be used in conjunction with relatesTo to indicate the message to

which the fault applies.

The reason for a fault is described by two child elements that must always be present.
The code element contains a numeric code defined by the WS-Routing specification and

is intended for application use. The reason element contains a textual description
intended for logging or display. Depending on the fault code, other child elements may

be present. Refer to the WS-Routing specification for details.

The path element and all of its child elements are defined in the namespace associated with the URI

http://schemas.xmlsoap.org/rp.

In outline, here is how the SOAP-RP path header is used when routing a message:

The message originator constructs a path containing an id element to uniquely identify the

message and an action element that specifies what the receiver should do with the message. It
may also include a to element, a fwd element, a from element, and a rev element. If it is present,

the to element indicates the URI of the intended recipient. The fwd element may contain an

ordered set of URIs that determine the route to be taken to reach the recipient. If the header does

not contain a to element, then the last entry in the fwd element must be the URI of the target

system. A rev element is included only if a reverse path is to be created and would normally be
empty.

1.

The message originator sends the message to the first intermediary system.2.

3.

rev

may insert the URI of some other system if that system would be a more appropriate hop

in the return path.

The final recipient of a SOAP message that contains a reverse path usually extracts it and

stores it as the fwd element of the message that it sends in reply.

The rev tag is inserted by the initial sender. If it is not present, it cannot be added by an
intermediate system, and therefore a reverse path cannot be constructed.

action

Contains a URI that defines the intent of the message. Its meaning is private to the

application and therefore there is no well-known set of permitted action values. This
element must be set by the sender and cannot be modified by intermediate systems.

id
Contains a URI that uniquely identifies the message in which it is contained. The

identifier is used to link a reply or a fault to the original message that caused it to be sent.

relatesTo
Contains the value of the id element for the message to which it is related. This element
is used when returning a fault, or in an application-level reply to a message sent earlier.

fault

Used to report an error condition detected when trying to route or handle a SOAP-RP

message. fault must be used in conjunction with relatesTo to indicate the message to

which the fault applies.

The reason for a fault is described by two child elements that must always be present.
The code element contains a numeric code defined by the WS-Routing specification and

is intended for application use. The reason element contains a textual description
intended for logging or display. Depending on the fault code, other child elements may

be present. Refer to the WS-Routing specification for details.

The path element and all of its child elements are defined in the namespace associated with the URI

http://schemas.xmlsoap.org/rp.

In outline, here is how the SOAP-RP path header is used when routing a message:

The message originator constructs a path containing an id element to uniquely identify the

message and an action element that specifies what the receiver should do with the message. It
may also include a to element, a fwd element, a from element, and a rev element. If it is present,

the to element indicates the URI of the intended recipient. The fwd element may contain an

ordered set of URIs that determine the route to be taken to reach the recipient. If the header does

not contain a to element, then the last entry in the fwd element must be the URI of the target

system. A rev element is included only if a reverse path is to be created and would normally be
empty.

1.

The message originator sends the message to the first intermediary system.2.

3.

http://schemas.xmlsoap.org/rp
http://schemas.xmlsoap.org/rp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

The intermediate system looks for a via element in the fwd element of the path header of the

received message. If such an element exists, it must contain the intermediate system's own URI; if

it does not, a fault is generated and returned to the sender. Assuming that the via entry is valid, it

is removed.

3.

If the header contains a fwd entry, the intermediate system may introduce additional via entries in

the message path if appropriate. This allows routing to proceed even if the message sender does
not know the complete route to the destination when sending the message.

4.

If the path header contains a rev element, the intermediate system may add a URI as its first child

element to indicate a node on the reverse path for the message.

5.

The intermediate system uses the first via entry of the fwd element as the URI for the next hop of

the path. If there are no remaining via entries, the URI in the to element is used instead. If there
is no to element, a fault is generated and returned to the sender.

6.

When the message reaches its intended recipient, it should validate that its own URI is either in

the to element or in the only remaining via entry of the fwd element. Failing this, a fault should
be generated.

7.

Should the receiver need to send a message back to the originator, it again includes a path header with

id and action elements, together with a relatesTo element whose value is the URI from the id

element of the original message. The to, fwd, from, and rev elements may also be included and are
used as just described. If the original message contains a rev element, then its content may be used to
create the fwd element of this message, but this is not mandatory.

For a definitive description of the message routing process, refer to the WS-Routing specification.

4.5.2 The JAXM SOAP-RP Message API

In order to create SOAP-RP messages, you need a MessageFactory that implements the SOAP-RP

profile. As described earlier, once you have a ProviderConnection for a provider that supports this

profile, you can obtain a suitable factory using the createMessageFactory() method:

// Get a message factory for the SOAP-RP profile
MessageFactory msgFactory = conn.createMessageFactory("soaprp");

To arrange for the correct factory to be used when receiving SOAP-RP messages in the onMessage()

method of JAXMServlet, you must override its init() method to install the same MessageFactory,
as shown in Example 4-4.

All SOAP messages created using this factory are of type

com.sun.xml.messaging.soaprp.SOAPRPMessageImpl. They have a minimal path header populated

only with empty fwd and rev elements.[7] To include other elements or to add entries to the forward

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and reverse paths, you need to use convenience methods provided by the SOAPRPMessageImpl class,
definitions of which you will find in the reference section of this book. A typical SOAP-RP message

header is shown in Example 4-7, earlier in this chapter. The following sections cover some of the more

important aspects of this API.

[7] In fact, this is not a good default. Ideally, fwd and rev elements are added only when

specifically requested, since the absence of the rev element has a specific meaning. With the

current implementation, it is not possible to create a path header without a rev element. This may
change in the future, of course.

4.5.2.1 Getting and setting the message ID

The SOAP-RP specification requires that each message has a unique identifier that can be used to

correlate it with either a fault or a reply. Fortunately, you don't have to generate these identifiers for
yourself, since one is automatically created each time the factory returns a new SOAP-RP message. The

getSOAPRPMessageId() method can be used to retrieve the identifier for a message. The most likely
reason for calling this method is to use its return value to set the value of the relatesTo element when

building a fault or reply message:

reply.setRelatesTo(request.getSOAPRPMessageId());

The API includes a method called newMessageId() that lets you set a new identifier for a message,
but it is unlikely that you will need to use this because it is called for you when a SOAP-RP message is

created.

4.5.2.2 Getting and updating the forward and reverse message paths

The forward and reverse message paths are held as Vectors containing Endpoint objects. You can

retrieve the complete path and modify it directly using the getSOAPRPFwdMessagePath() and
getSOAPRPRevMessagePath() methods. There are also slightly more abstract methods that let you

update a path without having to fetch a complete copy of it:

public void updateFwdMessagePath(Endpoint uri, int position);
public void updateRevMessagePath(Endpoint uri);

The updateFwdMessagePath() method requires both the URI to be added and the position in the path

at which it is to be inserted, where the value 0 indicates that the entry should be added at the front of

the list. The updateRevMessagePath() method does not require a position index, since new elements

in the reverse path are always added at the start of the list.

If you need to create a reply or generate a fault for a message, you might want to use the reverse path

from the message as the forward path for the reply or the fault. To do this, use the
getSOAPRPRevMessagePath() and updateFwdMessagePath() methods together:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Vector revPath = soapMsg.getSOAPRPRevMessagePath();
int count = revPath.size();
for (int i = 0; i < count; i++) {
 replyMsg.updateFwdMessagePath((Endpoint)revPath.get(i), i);
}

At the time of this writing, there is a problem with the reference implementation

of the SOAP-RP profile that causes the forward path to be ignored. The

specification requires that the to element of the SOAP-RP header contains the

URI of the final destination and that the first via child of the fwd element
indicates the URI of the first intermediate system. Unfortunately, the reference

implementation currently always sends the message to the system whose URI is

in the to element, rather than using the forward path, if there is one.

4.5.2.3 Fault handling

Fault information is included using the fault element, which is a direct child of the path header.

Unfortunately, the reference implementation does not provide any API for accessing this information or

creating it if it is not already present. Therefore, if you want to add fault information to a new message
or extract it from a message that you have received, you must do so by directly accessing the path

header, and using the usual SAAJ APIs to add or locate the fault element. Here's how you might
locate the path header for a message:

final String SOAPRP_URI = "http://schemas.xmlsoap.org/rp";
message.addHeaders();
SOAPHeader header = message.getSOAPPart().getEnvelope().getHeader();
Iterator iter = header.getChildElements();
while (iter.hasNext()) {
 SOAPElement elem = (SOAPElement)iter.next();
 Name name = elem.getElementName();

 // Compare both the local name and the namespace URI
 if (name.getLocalName().equalsIgnoreCase("path") &&
 name.getURI().equals(SOAPRP_URI)) {
 // "elem" is the path header element.

 }
}

When adding fault information to a newly created message, you should call the addHeaders() method

as shown in this code extract before searching for the path element, since the header is not actually

created until this method is invoked. This is not necessary in the case of a message received in the

onMessage() method of a servlet, since the headers are created automatically as part of the process of
converting the received XML to a SOAPMessage.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.6 The ebXML Profile

The ebXML initiative aims to create a framework for applications that allow organizations to carry out

electronic business by exchanging XML-based messages. The ebXML Transport, Routing, and
Packaging (ebXML-TRP) specification (lcoated at http://www.ebxml.org/specs/ebMS.pdf) defines the

packaging model for ebXML messages, which is based on SOAP with attachments and is therefore

compatible with both SAAJ and JAXM. This section briefly describes the ebXML packaging model

and looks at how it is supported by the JAXM ebXML profile. The ebXML profile implements Version

1.0 of the ebXML-TRP specification.

4.6.1 Overview of the ebXML Packaging Model

Like WS-Routing, ebXML-TRP uses SOAP headers to carry protocol information. Unlike WS-

Routing, however, ebXML-TRP also defines elements that may be added to the SOAP message body.

Many of the features described in the ebXML-TRP specification are optional, so we'll restrict ourselves
to briefly discussing just the mandatory parts of the specification, which are the only parts actually

provided in the JAXM reference implementation. For a definitive description, refer to the ebXML-TRP
specification itself.

ebXML-TRP considers a SOAP message to be made up of two separate parts:

The header container

Despite its name, the header container corresponds to the entire SOAP part of the message and

therefore consists of both the SOAP header and the SOAP body. The specification defines six

elements that may appear in the header, and four that can be used in the message body. The

JAXM ebXML profile supports only one header element and one body element, since the others
are optional.

Payload containers

An ebXML-TRP message may have zero or more payload containers that carry information that

supplements the XML in the header container. Each payload container is realized as a SOAP

message attachment; therefore, it can carry data of any type that has a MIME representation, such

as an image or an XML document. Since SAAJ already provides the ability to add attachments to
a message, no additional API is required in the ebXML profile to handle payload containers.

However, the application must ensure that each payload container in the message has a

corresponding reference in the ebXML-TRP Manifest element in the body of the header

container, as described shortly.

http://www.ebxml.org/specs/ebMS.pdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

All ebXML-TRP elements and attributes are in the namespace identified by the URI
http://www.ebxml.org/namespaces/messageHeader.

4.6.2 The MessageHeader Element

The MessageHeader element must appear in the header container of every ebXML-TRP message. The

specification defines 10 child elements for this header, of which only the 7 listed in Table 4-5 are
supported by the ebXML profile.

Table 4-5. MessageHeader elements supported by the ebXML profile

Element Description

CPAId

A string that identifies in some way that is known to the application the terms of

the agreement entered into between the parties to the message exchange. ebXML

defines the concept of a Collaboration Profile Agreement (CPA) that encompasses
these terms. The CPAId is typically a URI that refers to such a CPA.

ConversationId

A unique, application-defined identifier that is attached to each of the messages

that make up a single conversation. What consititutes a conversation is, of course,
application-dependent.

Service

Specifies the service supplied by the message receiver that should act upon the

message. A service is identified by a combination of a type and a value, in which
the type defaults to URI to indicate that the value is itself a URI. Other types may

be defined for private use by applications. A typical service description, encoded

as a URI, might be urn:services:OrderProcessing.

Action

Qualifies the service description by specifying the action to be performed by the

target service on receipt of the message. This element is simply a string defined by

the service, such as PlaceOrder.

To

Identifies the intended recipient of the message. A message may have multiple

recipients, each of which has a corresponding child element of type Party. The

value of the Party element is the recipient's address, which is typically a URI, but
may be a different style of address by prior agreement between the sender and the

receiver. If the address is not a URI, then its actual type must be specified using

the type attribute of the Party element.

From
Identifies the message sender. As with the To element, the sender's address is

supplied in the form of a Party element.

Contains child elements that allow an individual message to be uniquely

http://www.ebxml.org/namespaces/messageHeader
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

MessageData

Contains child elements that allow an individual message to be uniquely

identified. The reference implementation supports only the following three child

elements:

MessageId, which provides a unique identifier for the message, chosen by

the sender. This is similar to the id element of a SOAP-RP header.

Timestamp, which records the time at which the message was constructed.

RefToMessageId, which is used to correlate this message to one sent earlier
by specifying the value of its MessageId element. This is similar to the

relatesTo element of a SOAP-RP header.

The TimeToLive element is not supported.

The optional SequenceNumber, Description, and QualityOfServiceInfo elements of

MessageHeader are not implemented in the ebXML profile; neither are the TraceHeaderList,
ErrorList, Signature, Acknowledgement, and Via header elements.

4.6.3 The Manifest Element

The Manifiest element appears in the body of the SOAP message. It consists of one or more child

elements of type Reference that describe payload objects that appear in the body of the message in a
payload container or as external resources, such as documents on the Internet.[8] A Manifest element is

required only if there is payload to be referenced.

[8] Although the SOAP body may contain payload elements, the specification recommends that

this not be done.

A typical Manifest element looks like the following, in which the namespace prefix eb is assumed to

be mapped to the ebXML-TRP namespace URI:

<eb:Manifest eb:id="payload01"
 xlink:type="simple"
 xlink:href="cid:attachment-01"
 xlink:role="urn:purchaseOrder">

The attributes are used as described in Table 4-6.

Table 4-6. Attributes used with the Manifest element

MessageData

Contains child elements that allow an individual message to be uniquely

identified. The reference implementation supports only the following three child

elements:

MessageId, which provides a unique identifier for the message, chosen by

the sender. This is similar to the id element of a SOAP-RP header.

Timestamp, which records the time at which the message was constructed.

RefToMessageId, which is used to correlate this message to one sent earlier
by specifying the value of its MessageId element. This is similar to the

relatesTo element of a SOAP-RP header.

The TimeToLive element is not supported.

The optional SequenceNumber, Description, and QualityOfServiceInfo elements of

MessageHeader are not implemented in the ebXML profile; neither are the TraceHeaderList,
ErrorList, Signature, Acknowledgement, and Via header elements.

4.6.3 The Manifest Element

The Manifiest element appears in the body of the SOAP message. It consists of one or more child

elements of type Reference that describe payload objects that appear in the body of the message in a
payload container or as external resources, such as documents on the Internet.[8] A Manifest element is

required only if there is payload to be referenced.

[8] Although the SOAP body may contain payload elements, the specification recommends that

this not be done.

A typical Manifest element looks like the following, in which the namespace prefix eb is assumed to

be mapped to the ebXML-TRP namespace URI:

<eb:Manifest eb:id="payload01"
 xlink:type="simple"
 xlink:href="cid:attachment-01"
 xlink:role="urn:purchaseOrder">

The attributes are used as described in Table 4-6.

Table 4-6. Attributes used with the Manifest element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

eb:id
This is a standard id attribute that can be used to refer to the element from elsewhere

in the message. This attribute is optional.

xlink:type

and
xlink:href

These attributes together constitute a simple link to the payload content, as described

by the XML XLink specification (a description of which can be found in XML in a

Nutshell, by Elliotte Rusty Harold and W. Scott Means (O'Reilly). The xlink:type

attribute always has the value simple, which means that the xlink:href attribute is a

URI. There are three cases to be distinguished:

If the payload is contained within the header container (possible, but not

recommended), the href attribute refers to the id attribute of the top-level XML
element that represents the payload. A typical example is xlink:href="#ID1".

If the payload is in the payload container (i.e., it is in a SOAP attachment), then

the href attribute must reference the Content-Id MIME header of the payload

attachment, in the same way as described in connection with the SAAJ SOAP

with Attachments API in Chapter 3. A typical example of this is

xlink:href="cid:attachment-01", which refers to an attachment for which
the Content-Id header has the value attachment-01.

The payload may also be an external resource that is not included in the

message. In this case, the href is a URI that points to that resource, an example

of which is xlink:href="http://www.ora.com".

xlink:role

An optional attribute that identifies the type or use of the payload in some way that

has meaning to the application. Like href, this must be a valid URI formed according

to the XML XLink specification.

A Reference element may also have the following child elements:

A Schema element that refers to a schema document (typically an XML-Schema document) that
describes the content of the payload. This element is required only for structured content (such as

XML) that can be described in this way, and is not included for images or other binary payloads.

Zero or more Description elements that contain a textual description of the payload. This

element has an attribute called lang that specifies the language in which the text is written. If

more than one Description element is present, typically to provide the same information in more

than one language, then each should have a lang attribute with an appropriate value.

4.6.4 An Example ebXML-TRP Message

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The sample code for this book includes a pair of web services that send and echo an ebXML-TRP

message in the same way as the SOAP-RP message echoing example that was described earlier in this

chapter. In order to run these examples, start the Tomcat web server and deploy them both as follows:

Change your working directory to chapter4\ebXMLecho relative to the installation directory of the

example source code.

1.

Type the command ant deploy.2.

Change your working directory to chapter4\ebXMLsender relative to the installation directory of
the example source code.

3.

Type the command ant deploy.4.

Next, you need to configure the JAXM provider so that it knows how to route messages to these web

services. Using a browser, connect to the JAXM provider administration web page (at

http://localhost:8081/jaxm-provideradmin), select the HTTP protocol under the ebXML profile, add the
mappings shown in Table 4-7, and press "Save to Profile".

Table 4-7. URI mappings for the JAXM ebXML profile example

URI Target URL

urn:ebXMLEcho http://localhost:8081/jaxm-provider/receiver/ebxml

urn:ebXMLSender http://localhost:8081/jaxm-provider/receiver/ebxml

Note that the last component of these URLs is ebxml rather than soaprp, since the messages need to be

directed to the provider's received message queues for ebXML messages.

To run the example, point your web browser at the URL http://localhost:8080/ebXMLSender/request.

After a short delay, you should see the message that was transmitted by and returned to the sender,

which is shown in Example 4-8.

Example 4-8. An ebXML message created using the JAXM ebXML profile

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
 <soap-env:Header>
 <eb:MessageHeader xmlns:eb=
 "http://www.ebxml.org/namespaces/messageHeader" eb:version="1.0"
 soap-env:mustUnderstand="1">
 <eb:From>

http://localhost:8081/jaxm-provideradmin
http://localhost:8081/jaxm-provider/receiver/ebxml
http://localhost:8081/jaxm-provider/receiver/ebxml
http://localhost:8080/ebXMLSender/request
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <eb:PartyId eb:type="URI">urn:ebXMLEcho</eb:PartyId>
 </eb:From>
 <eb:To>
 <eb:PartyId eb:type="URI">urn:ebXMLSender</eb:PartyId>
 </eb:To>
 <eb:CPAId>urn:EchoCollaborationAgreement</eb:CPAId>
 <eb:ConversationId>1</eb:ConversationId>
 <eb:Service eb:type="URI">urn:ECHOSERVICE</eb:Service>
 <eb:Action>ECHO</eb:Action>
 <eb:MessageData>
 <eb:MessageId>7b683c87-3d44-4135-b397-ef436d1437aa</eb:MessageId>
 <eb:RefToMessageId>0c3e1841-29bb-4c6c-bc3f-d4b419846b26
 </eb:RefToMessageId>
 <eb:Timestamp>1030880701373</eb:Timestamp>
 </eb:MessageData>
 </eb:MessageHeader>
 </soap-env:Header>
 <soap-env:Body>
 <tns:Sent xmlns:tns="urn:ebXMLSender">This is the content</tns:Sent>
 <eb:Manifest xmlns:eb="http://www.ebxml.org/namespaces/messageHeader"
 eb:id="ID1" eb:version="1.0">
 <eb:Reference eb:id="ID2" xmlns:xlink="http://www.w3.org/1999/xlink"
 xlink:href="http://www.ora.com">
 <eb:Description xml:lang="en">O'Reilly Home Page</eb:Description>
 </eb:Reference>
 <eb:Reference eb:id="ID3" xmlns:xlink="http://www.w3.org/1999/xlink"
 xlink:href="http://www.amazon.com">
 <eb:Description xml:lang="en">Online bookstore</eb:Description>
 </eb:Reference>
 </eb:Manifest>
 </soap-env:Body>
 <tns:Date xmlns:tns="urn:ebXMLEcho">Sun Sep 01 12:45:01 BST 2002</tns:Date>
</soap-env:Envelope>

The code that was used to create this message will be shown in the next section. For now, note the

content of the MessageHeader element in the SOAP header and the Manifest element in the body,

which refers to two payloads that are Internet resources and are therefore not included as part of the

message itself.

4.6.5 The JAXM ebXML Message API

To use the ebXML profile, you first need to get a MessageFactory that can create ebXML messages.

Having done this, you can then call the createMessage() method to get such a message. The code

that creates the message just shown can be found in Example 4-9.

Example 4-9. Using the JAXM API to create an ebXML message

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MessageFactory msgFactory = conn.createMessageFactory("ebxml");
EbXMLMessageImpl message = (EbXMLMessageImpl)msgFactory.createMessage();

// Set attributes held in the MessageHeader
message.setAction("ECHO");
message.setService(new Service("urn:ECHOSERVICE", "URI"));
message.setCPAId("urn:EchoCollaborationAgreement");
message.setConversationId("1");

// Set the sending and receiving parties.
message.setReceiver(new Party("urn:ebXMLEcho"));
message.setSender(new Party("urn:ebXMLSender"));

// Add a Manifest with two references to external locations
Manifest manifest = new Manifest("ID1", "1.0");
Reference ref = new Reference("ID2", "http://www.ora.com", null);
Description desc = new Description("en");
desc.setText("O'Reilly Home Page");
ref.setDescription(desc);
manifest.addReference(ref);

ref = new Reference("ID3", "http://www.amazon.com", null);
desc = new Description("en");
desc.setText("Online bookstore");
ref.setDescription(desc);
manifest.addReference(ref);

message.setManifest(manifest);

The message that the createMessage() method returns is of type

com.sun.xml.messaging.jaxm.ebxml.EbXMLMessageImpl.[9] To use the convenience methods

provided by the API, cast the method's return value to this type.

[9] Note the spelling of the last component of this name - the second character is a lowercase
"b".

4.6.5.1 The ebXML MessageHeader element

The first section of code sets the values of child elements that appear in the ebXML MessageHeader

element, which will be created in the SOAP message header. This element is mandatory and therefore

it is always present. The specification requires that all of the child elements listed in Table 4-5 must

appear in an ebXML message; it is your responsibility to ensure that valid values are supplied for them.
Elements for which you do not supply values will not be included in the MessageHeader, which may

cause the receiver to reject the message. Table 4-8 briefly describes the values that need to be supplied

as arguments to the EbXMLMessageImpl methods that install these elements. In some cases, the

arguments are instances of other classes that are also part of the com.sun.xml.messaging.jaxm.ebxml

package. Documentation for these simple classes can be found in the reference section of this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 4-8. Arguments supplied to convenience methods for the ebXML MessageHeader element

Method Argument

setAction() A string, the value of which is defined by the target service.

setService()

A Service object. This object has two attributes: a type and an identifier,

which are both supplied as strings. By default, the type attribute is assumed

to be URI. However, you should explicitly set this value because the

reference implementation transmits the type as an empty string if you do

not, which may cause interoperability problems. The target service defines
the set of type and identifier values that it understands.

setCPAId()
A string value, determined (in advance) by agreement between the sender

and receiver.

setConversationId(
) A string value that uniquely identifies a related set of messages.

setSender() and
setReceiver()

These methods set to To and From elements, respectively. They each require
an argument of type Party, which, like Service, has both a type and an

identifier. The default for the type attribute is URI; in this case, the reference

implementation handles this default properly; therefore, there is no need to
supply it explicitly. In the example used in this chapter, the identifier is the
URI of the message sender or receiver, and is the key used by the provider

to route the message.

There are a couple of points to note regarding the handling of the To and From elements in the reference

implementation:

While the specification allows either of these elements to contain one or more nested Party
elements, at the time of this writing the implementation supports only one. Therefore, you cannot

address a message to more than one recipient.

1.

Despite the fact that the elements are called To and From, the methods that set them are

setReceiver() and setSender(), respectively. This is because the superclass of

EbXMLMessageImpl defines the setTo() and setFrom() methods to have arguments of type

Endpoint, while application code more naturally deals with objects of type Party. When
transmitting a message, the provider needs an Endpoint and therefore uses the getTo() method

to obtain the target address. This method gets the Party object set by setReceiver(), extracts

the identifier part, and then uses it to create the corresponding Endpoint object.

2.

You'll note that the code in Example 4-9 does not explicitly set any values for the MessageData

http://lib.ommolketab.ir
http://lib.ommolketab.ir

element. Nevertheless, this element appears in the message because the timestamp and a unique
message identifier are installed automatically by the MessageFactory. In the case of a reply message,

the RefToMessageId element must be set to the unique identifier of the message to which it relates.

This is not done automatically, but you can set it using the same technique used for the SOAP-RP

relatesTo element:

// Get the message ID and install it as the "RefToMessageId" value
replyMsg.setRefToMessageId(soapMsg.getMessageId());

4.6.5.2 The ebXML Manifest element

If an ebXML message has any kind of payload, its body must include a Manifest element with one
Reference element for each item of payload. These elements are represented in the ebXML message

API by the Manifest and Reference classes, respectively.

Manifest is a simple class that is constructed with an XML ID (used to refer to it from elsewhere in the

message, if required) and a version number, which must be the version number of the ebXML-TRP

specification to which the overall message conforms (in this case, "1.0"). The specification requires that

a valid XML ID be provided. The implementation, however, does not prevent the use of null for this
attribute, which would result in the creation of a message that is technically not valid. Once you have a

Manifest object, you can use its addReference() method to add any number of payload references.

The code shown in Example 4-9 installs two references, both to external data that is not actually part of

the message itself.

To construct a Reference object, you need to supply an XML ID and appropriate values for its role

and href attributes. In order to construct a valid message, an appropriate id and href must be supplied,
but the role attribute may be null if appropriate. Following construction, you can associate a Schema

and/or a Description with the Reference object using the setSchema() and setDescription()

methods, respectively. There are two items to note regarding these methods:

The setSchema() method requires an argument of type Schema. Schema is a simple container

class that is constructed from the URI that defines the schema and the schema version number.

The setDescription() method uses an argument of type Description. The constructor of the

Description class requires a string that specifies the language for the associated text (such as en,

en_US, en_GB, etc.), whereas the text itself is added using the setText() method. Although the
ebXML-TRP specification allows a Reference element to be associated with any number of

descriptions, the reference implementation allows only zero or one.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. WSDL

In Chapter 2, you saw how simple it is to create a web service using JAX-RPC by starting with a

service definition in the form of a Java interface. Given such definitions and a configuration file, the
wscompile and wsdeploy utilities can generate the Java code necessary to link both the client and

server implementations to the underlying JAX-RPC infrastructure that ultimately creates or consumes

SOAP messages. Although this is convenient for Java developers, it is not really acceptable to describe
web services-which are supposed to be platform- and language-independent-using the type

definition system of a programming language. The JAX-RPC book service created in Chapter 2, for
example, uses a command-line client written in Java. In the real world, the client might instead need to

be written in VB.NET, C#, or C++, or somebody might want to take the service definition and create an

alternative server-side implementation on a different platform, such as Microsoft's .NET. In both of
these cases, having the service defined in terms of Java interfaces is not particularly helpful.

The Web Service Description Language (WSDL) is an XML vocabulary that can be used to describe

web services in both a platform- and programming language-neutral fashion. Web services defined by
WSDL documents are published in a registry. Programmers can then either create their own

implementations of these services, or develop clients to consume them by obtaining the WSDL

definition and interpreting it in terms of the programming language of their choice. This task is made

easier by the availability of tools that can parse WSDL and automatically generate the code necessary

to build and decode the SOAP messages used by a web service, thereby freeing developers to
concentrate on the business rules of the application instead of the network-level plumbing. In this

chapter, we take a brief look at the structure of a WSDL document, and in Chapter 6, you'll see how to

use JAX-RPC to implement a web service given a WSDL definition.

This chapter covers WSDL Version 1.1, the specification for which can be downloaded from

http://www.w3.org/TR/wsdl. WSDL 1.1 was submitted by IBM, Microsoft, and Ariba and is widely

used, but it is not a W3C standard. At the time of the writing, W3C is defining a new version of WSDL
that will eventually become the endorsed standard.

http://www.w3.org/TR/wsdl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1 WSDL Overview

A WSDL document describes a web service in terms of the operations that it provides and the data

types that each operation requires as inputs and can return in the form of results. It is important to note
that WSDL itself does not make any assumptions about the way in which the service is provided at the

protocol level. Instead, the service is first defined in abstract terms and then mapped onto one or more

specific protocols by the use of bindings. A binding specifies how each of the inputs and outputs for

each operation are mapped onto a protocol (such as SOAP). A WSDL file may also contain a set of

addresses at which a bound service can be accessed.

The logical structure of a WSDL file is shown in Example 5-1.

Example 5-1. Logical structure of a WSDL file

<wsdl:definitions>

 <!-- Import definitions from external sources -->
 <wsdl:import/>

 <!-- Definitions of types used only in this WSDL file -->
 <wsdl:types/>

 <!-- Definitions of messages for this web service -->
 <wsdl:message .../>

 <!-- Definitions of the interfaces and operations provided by the service -->
 <wsdl:portType .../>

 <!-- Concrete bindings of interfaces and operations to protocols -->
 <wsdl:binding/>

 <!-- Defines the service as a collection of interfaces and supplies the
 protocol address -->
 <wsdl:service/>

</wsdl:definitions>

The order of child elements shown here is a natural one that reflects a progression from most abstract at

the beginning to most concrete at the end. It also approximately matches the order in which we discuss

the elements in this chapter and is the only order strictly permitted by the schema document for WSDL,

which can be obtained from http://schemas.xmlsoap.org/wsdl, a URL that also defines the namespace

for WSDL elements.

http://schemas.xmlsoap.org/wsdl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Any WSDL element can contain a single documentation element with arbitrary content that can be
used to add descriptive text to it for the benefit of implementors of the service itself or of clients that

will use the service. The use of documentation elements is preferred over XML comments because

XML parsers are not required to pass XML comments to application code.[1] Here's a trivial example of

the use of a documentation element:

[1] At the time of this writing, application code that needs to parse or manipulate WSDL must do

so by using a DOM or SAX parser or a third-party class library. However, a standardized Java
API called JWSDL that provides a higher-level interface to a WSDL document is currently being

developed by the JSR 110 expert group. See http://jcp.org/jsr/detail/110.jsp for details.

<wsdl:types>
 <wsdl:documentation>
 This section defines the data types used by this service.
 </wsdl:documentation>
 <!-- Type definitions would be added here -->
</wsdl:types>

Each element can also contain any number of other elements that are not defined by the generic part of

the WSDL specification. This feature allows the use of extensibility elements, which contain
information relevant to particular bindings of a service to an underlying protocol. For example, the

binding section is typically composed of extensibility elements that describe how to map the service

onto SOAP messages. There are also extensibility elements that can be used to map a simple web
service onto HTTP GET and POST messages, and another set of elements that describe web service

messages that contain data that is represented using a MIME encoding. Each of these sets of elements
is defined by its own XML schema, which is also used as the namespace for those elements, as shown

in Table 5-1.

Table 5-1. Schemas and namespaces commonly used in WSDL documents

Element type Schema location and namespace URI

Generic WSDL elements http://schemas.xmlsoap.org/wsdl

Elements for the SOAP binding http://schemas.xmlsoap.org/wsdl/soap

Elements for the HTTP binding http://schemas.xmlsoap.org/wsdl/http

Elements for the MIME binding http://schemas.xmlsoap.org/wsdl/mime

Aside from documentation, the top-level elements that may appear in a WSDL file are as follows:

import

Allows parts of a web service definition to be spread over multiple files and then imported as

http://jcp.org/jsr/detail/110.jsp
http://schemas.xmlsoap.org/wsdl
http://schemas.xmlsoap.org/wsdl/soap
http://schemas.xmlsoap.org/wsdl/http
http://schemas.xmlsoap.org/wsdl/mime
http://lib.ommolketab.ir
http://lib.ommolketab.ir

required. Use of this technique is recommended, in order to allow different web services to share
the same data types or to separate the definition of a web service and its protocol bindings from

the elements that provide the address of a server that offers the service. See Section 5.2.9 at the

end of this chapter for some examples of this.

types

Defines the data types used by the web service. See Section 5.2.2 later in this chapter for details.

message

These elements describe the data that is exchanged between the web service and its clients in
terms of the data types defined within the type elements. In concrete terms, each message

defined here corresponds to a SOAP message when SOAP is used as the underlying

communications mechanism.
portType

Defines the operations that a web service provides. A port type is the WSDL equivalent of a

service endpoint interface, as described in Chapter 2.
binding

Describes how the operations and messages defined by the message and portType elements are

mapped onto their concrete representations when a specific transport mechanism is used. WSDL

defines extensions that allow the description of bindings to SOAP with attachments and to
HTTP.

port

Gives the address at which a binding of a portType can be found. Port addresses are used by
clients to connect to the web service.

service

Groups related ports together and thereby represents an entire web service.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2 WSDL Elements

In this section, we take a closer look at each of the WSDL elements. To illustrate the discussion, we'll
use examples from the WSDL document that describe the JAX-RPC book service that you saw in

Chapter 2 . That particular web service was developed by starting with Java interface definitions, rather

than from a WSDL file. If you already have a distributed application written in Java (perhaps using
RMI) that you need to convert to a web service, this is the natural path to follow. However, in order to

make the service generally available, you must create and publish a WSDL document. Fortunately, the
wsdeploy utility provided with the JAX-RPC reference implementation generates a WSDL file from

the information provided in its jaxrpc-ri.xml file together with the class files for the Java interfaces,

thus saving you the trouble of trying to build one manually.

As described in Chapter 2 , the wsdeploy utility creates the WSDL document for

a web service while constructing a deployable web archive from a portable WAR
file. If you just want to see what the WSDL document corresponding to a Java

interface definition looks like, you can use the wscompile utility to generate it

without having to first create a portable WAR file. See Chapter 8 for a
description of how this can be done.

The WSDL file for the JAX-RPC book service, which is called BookQuery.wsdl , can be found in the

web archive at chapter2\bookservice\Books.war relative to the installation directory for this book's

example source code. If this file is missing, you can recreate it by making chapter2\bookservice your
working directory and typing the command:

ant web-package

Throughout this chapter, we'll show extracts from this file, slightly reformatted for better readability. A
complete listing can be found in the Appendix.

Although it is very likely that the majority of WSDL files will be both created and consumed by

software tools, it is still extremely useful to be able to read and understand a WSDL document so that

you can see the operations provided by a web service that you need to interact with before using the

stub and tie code (created by tools like wscompile and wsdeploy) to create a client for the service or to

create your own implementation of it.

5.2.1 The WSDL definitions Element

The root element of every WSDL file must be a definitions element, which has two attributes:

name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The WSDL specification describes this attribute as lightweight documentation for the content of

the file. It is typically not used by software that parses WSDL files with the intent of generating

code. In particular, this attribute does not provide the name of the web service, which is obtained
instead from the service element.

targetNamespace

The value of this attribute is a URI that becomes the XML namespace for the elements used to

describe the services, ports, messages, and bindings defined in the file. It is not necessary (or

possible) to explicitly state the namespace when declaring these objects, because they will

automatically be associated with the target namespace.

As a typical example, the definitions element from the WSDL file generated for the book service is
shown in Example 5-2 .

Example 5-2. A typical WSDL definitions element

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="BookService"
 targetNamespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"
 xmlns:tns="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ns2="urn:jwsnut.chapter2.bookservice/types/BookQuery"
 xmlns:ns3="http://java.sun.com/jax-rpc-ri/internal">

 <!-- All nested elements omitted -->

</definitions>

Here, the target namespace is urn:jwsnut.chapter.bookservice/wsdl/BookQuery , which is also

associated with the namespace prefix tns so that it can be conveniently referred to throughout the file.
In the case of a WSDL file generated by wsdeploy , the URL from this namespace is obtained by

combining the typeNamespaceBase attribute of the webServices element in the jaxrpc-ri.xml file, and

the name attribute of the endpoint element for the service in the same file, as described in Section

2.2.7.5 in Chapter 2 . Prefixes for other namespaces that will be referenced are also typically defined

within this element. The default namespace in this example, as in most WSDL files, is the namespace
associated with WSDL itself rather than the target namespace, since most of the elements in the

document will be WSDL elements.

5.2.2 Type Definitions

The data types that are used in the messages exchanged by a web service and its clients are defined
using the WSDL types element, and are referenced from the message elements that will be described

http://lib.ommolketab.ir
http://lib.ommolketab.ir

later in this chapter.[2] The schema document for WSDL allows this element to contain arbitrary
content, although in practice it will contain type definitions described using a schema language, plus an

optional documentation element. The WSDL specification recommends the use of XML schema as

the preferred schema language, and existing software tools that parse WSDL, including wscompile ,

currently expect to find XML schema elements here.

[2] It is possible to use type definitions found in external schema documents instead of (or as well

as) defining types within the WSDL document itself. See Section 5.2.9 at the end of this chapter
for details.

If you intend to manually build WSDL documents, you need a good understanding of XML schema to

create the content of the types element. XML schema is a large and complex subject that is well

beyond the scope of this book but is fully covered in Eric van der Vlist's book, XML Schema
(O'Reilly). Fortunately, XML schemas are slightly easier to read than they are to write, as you can see

from Example 5-3 , which shows the types element in the WSDL document generated by wsdeploy
for the book web service.

Example 5-3. Type definitions from the book service WSDL file

<types>
 <schema targetNamespace="urn:jwsnut.chapter2.bookservice/types/BookQuery"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tns="urn:jwsnut.chapter2.bookservice/types/BookQuery"
 xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="ArrayOfBookInfo">
 <complexContent>
 <restriction base="soap-enc:Array">
 <attribute ref="soap-enc:arrayType" wsdl:arrayType="tns:BookInfo[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="BookInfo">
 <sequence>
 <element name="editor" type="string"/>
 <element name="author" type="string"/>
 <element name="price" type="double"/>
 <element name="title" type="string"/>
 </sequence>
 </complexType>
 <complexType name="BookServiceException">
 <sequence>
 <element name="message" type="string"/>
 </sequence>
 </complexType>
 </schema>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <schema targetNamespace="http://java.sun.com/jax-rpc-ri/internal"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tns="http://java.sun.com/jax-rpc-ri/internal"
 xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="hashMap">
 <complexContent>
 <extension base="tns:map">
 <sequence/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="map">
 <complexContent>
 <restriction base="soap-enc:Array">
 <attribute ref="soap-enc:arrayType" wsdl:arrayType="tns:mapEntry[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="mapEntry">
 <sequence>
 <element name="key" type="anyType"/>
 <element name="value" type="anyType"/>
 </sequence>
 </complexType>
 </schema>
</types>

The first thing to note is that there are two XML schema declarations here. This is necessary because

they are declaring types within different namespaces (as defined by the targetNamespace attribute),

and a single schema element can only refer to one namespace. The first schema contains the data types
that appear in the Java interface definitions for the book web service, whereas the second is added by

wsdeploy to allow the use of HashMap as a method return value.

The namespace for the first schema is obtained by combining the typeNamespaceBase attribute of the

webServices element in the jaxrpc-ri.xml file supplied to wsdeploy with the name attribute of the

endpoint element in the same file. It is good practice to use separate namespaces for the type

definitions and the definitions of the messages, port types, etc. that also appear in the WSDL document,
which you can achieve by supplying different values for the typeNamespaceBase and

targetNamespaceBase attributes of the

webServices

element. It is permissible, as shown here, to have more than one namespace within the type element.

For reference, here is the definition of the remote interface supported by the book web service, from

which the WSDL document was generated:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public interface BookQuery extends Remote {
 public abstract int getBookCount() throws RemoteException;
 public abstract String getAuthor(String name) throws RemoteException;
 public abstract String getEditor(String name) throws RemoteException;
 public abstract double getPrice(String name)
 throws BookServiceException,RemoteException;
 public abstract BookInfo[] getBookInfo() throws RemoteException;
 public abstract HashMap getBookMap() throws RemoteException;
}

Most of the methods in this interface have arguments and return values that are either Java primitives

or of type String . These types do not require definitions in the type section, because they can be

represented directly by predefined XML schema elements such as xsd:int and xsd:string .
Therefore, the schema section for the book web service declares a type for the BookServiceException

class, the BookInfo class, and another that represents an array of BookInfo objects.[3] Data types can be
defined as abstract types, using the XML schema complexType and simpleType elements, or they can

be defined as elements that are either instances of predefined types or custom types, possibly with

restrictions or extensions added. We'll examine these two possibilities separately.

[3] The schema section does not include a declaration for HashMap , since this type is not defined
by the book web service - it is provided by the JAX-RPC reference implementation and is

actually defined in the second schema section in the WSDL file.

5.2.2.1 Use of XML schema complexType and simpleType elements

Without delving too deeply into XML schema, it should be obvious that the following extract from the

schema definitions shown in Example 5-3 declares a type called BookInfo that has four fields, three

that contain strings and another that holds a double:

 <complexType name="BookInfo">
 <sequence>
 <element name="editor" type="string"/>
 <element name="author" type="string"/>
 <element name="price" type="double"/>
 <element name="title" type="string"/>
 </sequence>
 </complexType>

The name used to declare a type, in this case BookInfo , cannot be explicitly namespace-qualified. It is

automatically assigned to the targetNamespace of the enclosing schema element, which is

urn:jwsnut.chapter2.bookservice/types/BookQuery . The attributes of the schema element also

associate this namespace with the prefix tns (see Example 5-3) so that the fully qualified name of the
BookInfo type can be used in the schema definition for an array of BookInfo objects:

 <complexType name="ArrayOfBookInfo">
 <complexContent>
 <restriction base="soap-enc:Array">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <attribute ref="soap-enc:arrayType"
 wsdl:arrayType="tns:BookInfo[]"/>
 </restriction>
 </complexContent>
 </complexType>

Without the explicit namespace qualifier, BookInfo would be incorrectly taken as a name in the XML

schema namespace.

A type that represents an array of objects of type Foo is usually given the name ArrayOfFoo . This

convention is suggested in the WSDL specification and is honored by wsdeploy . In the rather terse
definition just shown, the restriction element together with its base attribute specify that an

ArrayOfBookInfo type is an Array , as defined by the SOAP specification (and described in Chapter 3

), in which the arrayType attribute has the value tns:BookInfo[] . In other words, the array may
contain an unspecified number of BookInfo objects.

The type declarations in a WSDL document describe the data only in abstract
terms, so it does not follow that the actual representation of this array within a

message sent or received by participants in the book web service will necessarily

be as a SOAP Array element. The mapping from the abstract description to a
concrete representation for each message appears in the bindings section, which

is described later in this chapter. Of course, when the service is bound to SOAP
messaging, it is natural for the bindings to require the use of SOAP section 5

encoding rules and result in an object of type ArrayOfBookInfo being encoded

as a SOAP Array element.

The second schema element in Example 5-3 is generated as a result of the use of a HashMap as the

return value of the getBookMap() method in the BookQuery interface. The schema essentially defines

a new type called hashMap , which extends a private type called map and consists of an array of

key/value pairs in which both the key and the value are described by the XML schema type anyType .

This type should be used wherever an object of any kind is valid - in other words, wherever you
would use java.lang.Object in a Java method definition. Both hashMap and map appear in the private

namespace http://java.sun.com/jax-rpc-ri/internal , which is not likely to be understood by non-JAX-

RPC implementations; therefore, the use of HashMap (or any of the Java collection classes) may lead to

interoperability issues with web service platforms that are not based on the JAX-RPC reference

implementation.[4]

[4] As a side issue, it might have been better if the namespace http://java.sun.com/jax-rpc-
ri/internal contained schema definitions for the Java collection classes so that this extra schema

element did not need to be added to the WSDL file by wsdeploy . This would not, of course,

remove the interoperability problem, but it would simplify the WSDL document a little.

The complexType element is used to define a type that can contain other objects, such as the BookInfo

http://java.sun.com/jax-rpc-ri/internal
http://lib.ommolketab.ir
http://lib.ommolketab.ir

object or the ArrayOfBookInfo array. A simpleType element, by contrast, declares a type that does not
contain any other objects, such as integers and strings. It is not necessary to define new types in cases

where the object can be represented directly using an XML schema primitive type. However, the

simpleType element can be used to qualify the use of another simple type by applying restrictions to it.

For example, consider the following:

<simpleType name="BookType">
 <restriction base="string">
 <enumeration value="paperback"/>
 <enumeration value="hardback"/>
 </restriction>
</simpleType>

This schema extract defines a simple type called BookType that must have a string value that is either

"paperback" or "hardback". Note, however, that while this constraint is useful as documentation for a

human reader, it is not guaranteed that automatically generated code will check that BookType values
received in messages actually satisfy the constraint.

For further information on the XML scheme complexType and simpleType elements, see XML

Schema , by Eric van der Vlist.

5.2.2.2 Use of XML schema element element

The complexType and simpleType elements define data types, not actual data elements. The distinction

between these two is analogous to the difference between a class and an instance of that class. Put

another way, given the definitions shown in the schema in Example 5-3 , you would not expect to find
a BookInfo element in a message sent by the book web service, but you could define an element with

the characteristics of the BookInfo type by using an XML schema element called (appropriately

enough) element , referring to the BookInfo type:

<element name="BookInfoElement" type= "BookInfo"/>

With this definition in place, an item of book information could be encoded like this:

<BookInfoElement>
 <editor>Robert Eckstein</editor>
 <author>Kim Topley</author>
 <price>29.95</price>
 <title>J2ME in a Nutshell</title>
</BookInfoElement>

An element can also simply be a redefinition of a simple type, as in:

<element name="author" type="xsd:string"/>

or it can have an associated but anonymous type declaration:

<element name="BookTypeElement">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <simpleType>
 <restriction base="string">
 <enumeration value="paperback"/>
 <enumeration value="hardback"/>
 </restriction>
 </simpleType>
</element>

5.2.3 Defining Messages

Having defined the types that a web service will use, the next step is to describe the messages that the
service expects to receive or send to its clients. Each message is represented by a message element,

which may contain any number of part elements. Example 5-4 shows some of the message elements

generated for the book web service.

Example 5-4. Message elements for the book web service

<message name="BookQuery_getAuthor">
 <part name="String_1" type="xsd:string"/>
</message>
<message name="BookQuery_getAuthorResponse">
 <part name="result" type="xsd:string"/>
</message>
<message name="BookQuery_getBookInfo"/>
<message name="BookQuery_getBookInfoResponse">
 <part name="result" type="ns2:ArrayOfBookInfo"/>
</message>
<message name="BookQuery_getBookMap"/>
<message name="BookQuery_getBookMapResponse">
 <part name="result" type="ns3:hashMap"/>
</message>
<message name="BookServiceException">
 <part name="BookServiceException" type="xsd:string"/>
</message>

You'll notice that the message elements are paired - for example, BookQuery_getAuthor is matched

with BookQuery_getAuthorResponse . Based on their name attributes, you would probably guess that

these messages represent the set of arguments passed to a JAX-RPC method call and the values to be

returned from that call, respectively. This is correct, although the only way to be sure that this is

actually the case is to check the operation elements that actually associate the messages with the
service's method calls.

5.2.3.1 Message names

The value of a message element's name attribute must be unique within the WSDL document. Apart

from this constraint, there is no requirement to follow any specific pattern when choosing a name,

although tools that generate WSDL from programming language code are likely to use a convention

http://lib.ommolketab.ir
http://lib.ommolketab.ir

similar to the one defined by JAX-RPC and illustrated in Example 5-4 :

The name of the message that supplies the arguments for a JAX-RPC method call is formed from

the name of the service endpoint interface (such as BookQuery) and the method name (such as
getBookInfo).

The name of the message that represents the return values from a method call is the name of the

corresponding request message with the word Response appended.

The name of a message that represents the content of an exception thrown in response to a method

call is the same as the name of the exception itself.

In the case of an overloaded method name, a number is appended in order to create a unique value for
the name attribute so that, for example, if the getBookInfo() method had a second variant that

required an argument, then the request message for this method is assigned the name
BookQuery_getBookInfo2 and the response message is called BookQuery_getBookInfo2Response .

Again, this is a convention used by the JAX-RPC reference implementation that may not be followed

by other tools that generate WSDL.

The value of the name attribute is used to refer to the element from the operation element or elements
that use it, as described next.

5.2.3.2 Message parts

The part elements represent an item of data that is part of the message. Since a message element

provides only an abstract description of the data that it is associated with, the order of part elements

does not in any way determine how that data is represented within the message at runtime. That

information is provided using binding elements, as described later in this chapter. That said, however,
in practice it is quite common for there to be a direct relationship between part elements and the fields

in the XML message that will be constructed when a method call is made or a response is to be

returned.

JAX-RPC uses a single part element for each method call parameter or return value. The

BookQuery_getAuthor message, for example, supplies a string value that is actually the title of the

book for which the author name is required. Methods that do not require any arguments, such as
BookQuery_getBookInfo , are represented as message elements with no part s. The name attribute of a

part element must be unique within its surrounding message but is otherwise arbitrary.[5] By

convention, the part that corresponds to the return value of a JAX-RPC method call uses the name

result .

[5] For an RPC-style web service in which a part element represents a method argument, it is

natural to use the name of the argument to name the element itself. Tools that create WSDL

documents from programming language definitions may not always be able to follow this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

convention, however. In particular, since argument names are not preserved in Java class files,
wsdeploy uses the Java type of the argument (followed by a numeric value to make it unique)

rather than its name when creating the corresponding part object, as illustrated by the part name

String_1 in Example 5-4 .

For web services that are not RPC-based (i.e., document-based web services, such as the book image

service created in Chapter 3 using the SAAJ APIs), message elements are used in the same way as they

are for an RPC service to represent the logical content of the messages exchanged by the client and
server. For document-based services, however, there are no naming conventions to be concerned with,

since there is no mapping to the elements of a programming language. SAAJ, being a low-level API, is

not WSDL-aware; therefore, there are no tools to create WSDL from the SAAJ code used to construct a

SOAP message and vice versa. However, as will be shown in Chapter 6 , you can use JAX-RPC

instead of SAAJ to build a document-based web service from an existing WSDL description.

The data type associated with a part is declared using either a type or an element attribute, only one
of which may be specified. When the type attribute is used, several examples of which are shown in

Example 5-4 , its value is the namespace-qualified name of the type that describes the item. This could

be a standard type defined by a schema language (such as xsd:anyType , xsd:string , or xsd:int), a

user-defined type to be found in the types section of the WSDL document (such as

ns2:ArrayOfBookInfo), or could be imported into it from an external source, as described in Section
5.2.9 , later in this chapter. If the element attribute is used instead, then it must refer to an element

element in the types section (see Section 5.2.2.2 earlier in this chapter for details) or in an imported

schema document.

The reference implementation of JAX-RPC does not generate WSDL files that
use the element attribute and, at least at the time of this writing, it also does not

accept such files, despite the fact that the specification states that it should.

5.2.4 Port Types and Operations

The operations that a web service provides are represented, not surprisingly, by operation elements.

These operations are grouped together as child elements of a portType element. You can think of a

portType as corresponding to the service endpoint interface, and therefore to the Java interface when

the service is implemented in Java. An operation is equivalent to a Java method within that interface.

The portType and operation elements generated for the BookQuery endpoint interface in the book
web service are shown in Example 5-5 .

Example 5-5. WSDL portType and operation elements

<portType name="BookQuery">
 <operation name="getAuthor" parameterOrder="String_1">
 <input message="tns:BookQuery_getAuthor"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <output message="tns:BookQuery_getAuthorResponse"/>
 </operation>
 <operation name="getBookCount" parameterOrder="">
 <input message="tns:BookQuery_getBookCount"/>
 <output message="tns:BookQuery_getBookCountResponse"/>
 </operation>
 <operation name="getBookInfo" parameterOrder="">
 <input message="tns:BookQuery_getBookInfo"/>
 <output message="tns:BookQuery_getBookInfoResponse"/>
 </operation>
 <operation name="getEditor" parameterOrder="String_1">
 <input message="tns:BookQuery_getEditor"/>
 <output message="tns:BookQuery_getEditorResponse"/>
 </operation>
 <operation name="getPrice" parameterOrder="String_1">
 <input message="tns:BookQuery_getPrice"/>
 <output message="tns:BookQuery_getPriceResponse"/>
 <fault name="BookServiceException" message="tns:BookServiceException"/>
 </operation>
 <operation name="getBookMap" parameterOrder="">
 <input message="tns:BookQuery_getBookMap"/>
 <output message="tns:BookQuery_getBookMapResponse"/>
 </operation>
</portType>

5.2.4.1 The portType element

The portType element must supply a name attribute whose value is unique over all of the portType s
in the WSDL document. The wsdeploy command in the JAX-RPC reference implementation uses the

Java interface name for the value of this attribute when creating a WSDL file. In Example 5-5 ,

therefore, the portType element is assigned the name BookQuery .

5.2.4.2 Operation elements

Each operation element within a portType has a required name attribute, the value of which is

required to be unique within its enclosing portType . Since an operation element maps to a Java

method in an RPC-style web service, it would be natural to use the name of the method as the value of

the name attribute. In the case of an overloaded method name, as with the message element, wsdeploy

generates a unique name by appending a numeric value for the operation elements generated for the
second and subsequent methods. When manually creating a WSDL file for such a case, any approach

can be used to ensure a unique name.

A web service operation, whether it is RPC- or document-based, requires some or all of the following:

A message containing input values

A message containing output values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A message containing error information, in the event that the operation did not complete properly

The messages associated with a given operation are listed as nested elements of type input , output ,

and fault , respectively. Each of these elements refers to a message element defined elsewhere in the

WSDL document. Each operation element may have zero or one input element, zero or one output
elements, and any number of fault elements (including none). Which of these elements is present, and

the order in which they occur, depends on the type of the operation, as shown in Table 5-2 .

Table 5-2. Web service operation types

Type
Elements

and ordering
Description

One-way input

The client sends a message to the server, to which there is no reply.

This maps the asynchronous mode supported by JAXM. One-way calls
can also be made by JAX-RPC clients using the dynamic invocation

mechanism that will be covered in Chapter 6 .

Request-

response

input

output

Zero or more
fault

elements, as
required

The operation consists of a message sent from the client to the server,
followed by either a response message from the server or a message that

reports one of several possible error conditions. If SOAP is used as the

underlying messaging system, the fault elements used to link to the
definitions of the message sent as a result of error condition are

normally mapped to SOAP fault elements. Request-response operations
are directly supported by both JAX-RPC and SAAJ.

Solicit-
response

output

input

Zero or more

fault

elements, as
required

The same as request-response, except that the first message is sent by

the server to the client, thus reversing their roles. These operations are

not supported by either JAX-RPC or SAAJ.

Notification output

A notification is a message sent from the server to the client, to which
there is no reply. Such an operation might be used to report an event

within the server that the client might need to be aware of. This is not

supported by either JAX-RPC or SAAJ. These operations can be

supported by using the asynchronous facilities provided by JAXM, as

described in Chapter 4 .

Note that although you can construct an operation element that describes a solicit-response or a

notification operation, the concrete bindings described in the WSDL 1.1 specification do not provide a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

way to map these operations onto existing network protocols. Therefore, in practice, only one-way and
request-response operations can be used.

In Example 5-5 , the getAuthor operation corresponds to the getAuthor() method in the BookQuery

interface, which is defined as follows:

public String getAuthor(String name) throws RemoteException;

This is obviously a request-response operation, and the operation element reflects this through the

presence and ordering of both input and output elements:

<operation name="getAuthor" parameterOrder="String_1">
 <input message="tns:BookQuery_getAuthor"/>
 <output message="tns:BookQuery_getAuthorResponse"/>
</operation>

Although the getAuthor() method can throw a RemoteException , no fault element is required,
since this exception is generated by the underlying communication layers rather than as a result of an

error message to be returned by the server.

The input and output elements refer to message definitions using the message attribute, the value of

which is the name assigned to the message using its own name attribute, qualified by its namespace.
The input and output messages for this operation are defined as follows:

<message name="BookQuery_getAuthor">
 <part name="String_1" type="xsd:string"/>
</message>
<message name="BookQuery_getAuthorResponse">
 <part name="result" type="xsd:string"/>
</message>

These definitions state that the message sent to the server consists of a single string, which will

represent the method argument. The reply message also contains a string. It so happens that the string

in the reply message will become the return value of the method call, but you cannot tell this from the
message definitions (although the use of the name result for the message element is a useful hint). To

see how the method arguments and return values are mapped to the values in the input and output

messages, you need to refer back to the operation element itself:

<operation name="getAuthor" parameterOrder="String_1">

RPC method arguments are of three types:

In arguments

These arguments are sent in the input message but do not change as a result of the method

invocation. This is a direct mapping of the pass-by-value semantics of arguments in Java method

calls.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Out arguments

These arguments appear in the method signature, but their value is not sent with the input
message. However, a new value for the argument may appear in the response message and, if so,

the argument is modified from the returned value. Java method calls do not directly support out

arguments; instead, JAX-RPC uses holder classes to allow the argument value to be modified, as

described in Chapter 2 .

In/out arguments

The value of an in/out argument is sent in the input message and is modified from the reply
message. An in/out argument is therefore both an in and out argument, and is supported by JAX-

RPC using holder classes.

Parts that appear in the parameterOrder attribute of the operation element represent method

arguments and must reflect the order in which the arguments appear in the original method signature.
This attribute and the input and output messages are then used as follows:

Parts that appear in the input message but not in the output message represent in arguments.1.

Parts that appear in the output message but not in the input message represent out arguments.2.

Parts that appear in both the input and output messages are assumed to represent in/out arguments.3.

If the output message contains a single part that does not appear in the parameterOrder attribute,

then it represents the return value of the method call. If there is no such part, then the method does
not return a value (and its Java return type will be void).

4.

In the case of the getAuthor operation, only String_1 appears in the parameterOrder attribute. Since

this part is listed in the input message, it must be an in argument. The output message contains a single

part that is not listed in the parameterOrder attribute. This part must therefore be the return value.

The WSDL specification allows the parameterOrder attribute to be omitted. In this case, the rules just

described are still used to identify which message parts represent input and output parameters.

However, there is possible doubt over the way in which parts listed in the output message but not in the
input message are to be treated - do they represent out arguments, or is one of them to be considered

the result of the method call? When generating Java code from WSDL, it doesn't really matter, except

as a matter of style, which interpretation is chosen, since the calling code will be written with

knowledge of the signature of the generated method. JAX-RPC therefore resolves the issue as follows:

If there is a single part in the output message that is not also in the input message, it is mapped to

the return value of the method.

If there is more than one part in the output message that is not in the input message, they are all

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mapped as out arguments and the return type of the method is void .

Naturally, if all of the parts appear in both the input and output messages, then they all represent in/out
arguments and the return type of the method is void .

A method that does not have any arguments is described using an input message that has no parts. An

example of this is the getBookCount() method, which is mapped to the getBookCount operation:

<operation name="getBookCount" parameterOrder="">
 <input message="tns:BookQuery_getBookCount"/>
 <output message="tns:BookQuery_getBookCountResponse"/>
</operation>

The BookQuery_getBookCount message contains no parts:

<message name="BookQuery_getBookCount"/>

A Java method that may throw an exception as a result of an error detected by the service

implementation is mapped to an operation element containing one fault element for each possible
exception. The getPrice() method, defined as follows, is an example of this:

public abstract double getPrice(String name)
 throws BookServiceException, RemoteException;

The operation element for this method looks like this:

<operation name="getPrice" parameterOrder="String_1">
 <input message="tns:BookQuery_getPrice"/>
 <output message="tns:BookQuery_getPriceResponse"/>
 <fault name="BookServiceException" message="tns:BookServiceException"/>
</operation>

Note that only the service-defined exception is listed as a fault element. The message that describes

the fault contains the information to be made available through accessor methods of the Java
exception class. In this case, the exception provides only a string that describes the error that was

detected. The BookServiceException method therefore consists of a part that contains a simple XML

schema type:

<message name="BookServiceException">
 <part name="BookServiceException" type="xsd:string"/>
</message>

In the case of an exception with more than one associated data element, wsdeploy creates a

complexType in the types section that has a field for each data element for which the exception has a

public accessor method, and it uses the type attribute of the part element to refer to it. For example,

suppose we define BookServiceException so that it supplies an extra Boolean value that indicates a

transient error, in order for the client to retry the failed operation later. To map this, wsdeploy
generates the following complexType in the types section:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<complexType name="BookServiceException">
 <sequence>
 <element name="message" type="string"/>
 <element name="retry" type="boolean"/>
 </sequence>
</complexType>

The message element now looks like this:

<message name="BookServiceException">
 <part name="BookServiceException" type="ns2:BookServiceException"/>
</message>

The fault element is, of course, unaffected by this change.

The input , output , and fault elements must all have a name, unique within the enclosing portType
element, that can be used to link them to their associated bindings (described in the next section). The

name is declared using the name attribute, as the fault element in the definition of the getPrice
operation shows:

<operation name="getPrice" parameterOrder="String_1">
 <input message="tns:BookQuery_getPrice"/>
 <output message="tns:BookQuery_getPriceResponse"/>
 <fault name="BookServiceException" message="tns:BookServiceException"/>
</operation>

Notice that in this example, the input and output elements do not provide a value for this attribute. This

is possible because the WSDL specification allows the name attribute to be defaulted, with the default
value being inferred according to the following rules:

For a one-way or notification message, the name attribute has the same value as the name attribute

of the operation itself.

For a request-response operation, the name attribute of the input element is defaulted to

XXXRequest , and the name attribute of the output element is defaulted to XXXResponse , where

XXX is the value of the name attribute of the operation.

For a solicit-response operation, the name attribute of the ouput element is defaulted to

XXXSolicit , and the name attribute of the input element is defaulted to XXXResponse , where
XXX is the value of the name attribute of the operation.

Given these rules, the definition of the getPrice operation just shown is equivalent to the following:

<operation name="getPrice" parameterOrder="String_1">
 <input name="getPriceRequest" message="tns:BookQuery_getPrice"/>
 <output name="getPriceResponse"
 message="tns:BookQuery_getPriceResponse"/>
 <fault name="BookServiceException" message="tns:BookServiceException"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</operation>

The name attribute for a fault element cannot be defaulted.

5.2.5 Concrete Bindings

The elements that you have seen so far create an abstract definition of a web service that tells you the

operations that it provides, and what information each of them requires as input and returns as output.

At this point, though, you don't know which protocols can be used to access the service or how the

inputs and outputs are mapped to real protocol messages. The binding elements provide this
information.

Each binding element describes the protocol binding for a single portType to a single protocol. To

map a web service to more than one protocol, create a separate set of bindings for each protocol. The

overall structure of a binding element is shown in Example 5-6 .

Example 5-6. Structure of the WSDL binding element

<binding name="bindingName" type= "portTypeName">
 <!-- Binding-specific information for the portType goes here -->
 <operation name="operationName"> <!-- One of these per operation -->
 <!-- Binding-specific information for this operation goes here -->
 <input name="messageName"> <!-- 0 or 1 of these -->
 <!-- Binding-specific information for this message goes here -->
 </input>
 <output name="messageName"> <!-- 0 or 1 of these -->
 <!-- Binding-specific information for this message goes here -->
 </output>
 <fault name="messageName"> <!-- 0 or 1 for each fault -->
 <!-- Binding-specific information for this message goes here -->
 </fault>
 </operation>
</binding>

A binding element contains an operation element for each operation in its associated

portType

, and each input , output , and fault element in the portType operation also has a corresponding
input , output , or fault element here. The core WSDL specification defines only the binding ,

operation , input , output , and fault elements - the additional elements necessary to provide the

actual binding information are defined by individual per-protocol bindings. These elements are inserted

at the points indicated by the comments in Example 5-6 . Since SOAP is the most commonly used

binding for web services, the WSDL specification describes a set of elements that can be used to
specify a SOAP binding, but recognizes that it may need to be extended to meet future requirements.

The specification also defines elements that can be used to bind a web service onto HTTP, but in this

chapter, we deal only with bindings in which the underlying protocol is SOAP 1.1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2.6 The SOAP Binding

The purpose of the SOAP binding is to define the following:

The transport protocol used to carry the SOAP messages.

The value of the SOAPAction header needed to access the service.

Whether each operation is RPC-style or document-style.

For each part of the input, output, and fault messages associated with the operation, whether the

corresponding elements appear within the SOAP header or the body and how they are encoded. If

there are any parts that appear in an attachment, then the MIME binding described later in this
chapter is used in conjunction with the SOAP binding to describe the structure of the message.

A typical example of a SOAP binding is shown in Example 5-7 , which contains part of the binding

element generated for the BookQuery interface of the book web service. For the sake of clarity, only
two of the operations are included here. The bindings for the other operations follow the same pattern

as those shown and do not use any additional constructs. The elements that relate to the SOAP binding,

which are highlighted, all have the prefix soap . This prefix is mapped to the namespace URI for the

SOAP binding - http://schemas.xmlsoap.org/wsdl/soap .[6]

[6] A full description of the SOAP binding, together with the HTTP and MIME bindings, can be

found in the WSDL 1.1 specification.

Example 5-7. SOAP bindings for the book web service

<binding name="BookQueryBinding" type="tns:BookQuery">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>
 <operation name="getAuthor">
 <soap:operation soapAction=""/>
 <input>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded" namespace="urn:jwsnut.chapter2.bookservice/wsdl/
BookQuery"/>
 </input>
 <output>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded" namespace="urn:jwsnut.chapter2.bookservice/wsdl/
BookQuery"/>
 </output>
 </operation>
 <operation name="getPrice">
 <soap:operation soapAction=""/>
 <input>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 use="encoded" namespace="urn:jwsnut.chapter2.bookservice/wsdl/
BookQuery"/>
 </input>
 <output>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded" namespace="urn:jwsnut.chapter2.bookservice/wsdl/
BookQuery"/>
 </output>
 <fault name="BookServiceException">
 <soap:fault encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded" namespace="urn:jwsnut.chapter2.bookservice/wsdl/
BookQuery"/>
 </fault>
 </operation>
</binding>

The WSDL binding element specifies that this is a binding for the BookQuery portType and assigns it

the name BookQueryBinding . This name is used later in a port element to associate a protocol address

with this binding (see Section 5.2.8). Within the binding, each operation from the portType has a

corresponding operation element, linked to the operation using the name element. Here, the bindings

for the getAuthor and getPrice operations (which are shown in Example 5-5) are defined.

Each abstract operation in a WSDL document is defined in terms of its input, output, and error
messages. In the binding for the same operation, the concrete representation of each of these messages

is specified. The linkage between the input and output elements in the binding and the corresponding

elements in the portType operation element is implicit, since there cannot be more than one instance

of each of these elements for any given operation. For example, the input element for the getAuthor

operation describes the SOAP binding of the BookQuery_getAuthor message, since this is the message
associated with the input element of the getAuthor operation in Example 5-5 . By contrast, there may

be more than one fault element for a given operation; therefore, the name attribute should be used to

link the binding for each fault to its definition in the portType operation element, as shown in the

binding for the getPrice operation in Example 5-7 .

5.2.6.1 The soap:binding and soap:operation elements

Each binding element has a corresponding soap:binding element that provides information that is

applicable to all of the operations for the portType to which it relates. The soap:binding element for

the BookQuery portType looks like this:

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="rpc"/>

The presence of this element makes it clear that the binding that it is part of uses SOAP messaging. It

has two attributes:

transport

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Although HTTP is currently the protocol most commonly used to carry SOAP messages, other
protocols such as SMTP or even FTP could also be used. Different conventions might be used to

wrap a SOAP message in each protocol - for example, SOAP messages carried by HTTP make

use of HTTP headers and, if there are attachments, MIME headers for each attachment are also

added. The transport attribute indirectly specifies the conventions to be applied by supplying a

URI that identifies the underlying transport protocol. Implementations that use a binding for a
particular protocol are assumed to know how SOAP messages are wrapped for that protocol. For

HTTP, this URI is http://schemas.xmlsoap.org/soap/http .

style

This attribute is a default that specifies whether the operations in this binding are RPC-style or

document-style. It takes the value rpc or document , as appropriate. Each operation can override

this default if necessary. If this attribute is omitted, then the style of each operation is taken to be
document unless otherwise stated in the soap:operation element.

The attributes of the soap:binding element just shown tell us that it relates to a mapping of SOAP

messages to the HTTP protocol and that its operations are RPC-style by default. Most web services

created using JAX-RPC will use this style, whereas those built with SAAJ (or JAXM) are more likely

to use document-style interactions. However, as you'll see in Chapter 6 , it is also possible to use JAX-

RPC to create a web service that uses document-style operations.

Each operation element within a binding normally contains a soap:operation element that specifies
SOAP-related information relating to that operation. This element has two attributes.

soapAction

The value of this attribute is a URI that becomes the value of the SOAPAction header for the

operation. SOAP over HTTP requires that this header be present, even if the service

implementation does not use it (as is the case with JAX-RPC). If the service does not make use

of SOAPAction , then the value should be supplied as an empty string, as shown for both

operations in Example 5-7 . For other protocols, this attribute should not be supplied at all.
style

The style attribute allows each operation to override the default style specified by the

soap:binding element. If neither the soap:operation element nor the soap:binding element

provides a value for this attribute, then the operation has document style.

5.2.6.2 Message construction elements

The remaining SOAP binding elements specify how the parts in the messages referred to from the
input , output , and fault elements of the portType operation element are used to construct a

SOAP message. The soap:body and soap:header elements are used to assign parts to the message

body and header, respectively, whereas soap:fault and soap:headerfault create fault information

http://schemas.xmlsoap.org/soap/http
http://lib.ommolketab.ir
http://lib.ommolketab.ir

either in the body or the header. The general form of soap:body looks like this:

<soap:body parts= "partslist" use= "literal | encoded"
 encodingStyle= "uriList" namespace="uri"/>

The parts attribute lists those parts from the list associated with the message element that will appear

in the SOAP message body with these attributes. It is permissible to use more than one soap:body
element if some parts need to be included with, for example, a different encoding. If the parts attribute

is omitted (which is probably the most common case), then all parts of the message are included.

The required use attribute and the optional encodingStyle attribute specify how the types listed for

the message parts are to be serialized into the message. If use has the value literal , then the

associated data is serialized according to its schema in the types section of the WSDL document. The

value encoded specifies that an encoding scheme or series of encoding schemes, whose URIs are given
by the encodingStyle parameter, are used to serialize the data. Although these attributes partly

determine the way in which the parts are represented within the SOAP message, the operation style also

affects the final encoding. We'll see examples that demonstrate exactly how this works in Chapter 6 .

The namespace attribute supplies the URI for the namespace to be applied to XML elements created

from this part that do not have an explicit namespace assigned as a result of the encoding in use. It may

be omitted if not required.

The input and output elements for the getAuthor operation in Example 5-7 contain a typical
soap:body element:

 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded" namespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"/>

This element specifies that all parts of the input message will appear in the body (all parts appear
because the parts attribute is omitted). The namespace for any elements that do not have a namespace

explicitly assigned in the serialization schema will be

urn:jwsnut.chapter2.bookservice/wsdl/BookQuery . The data will be encoded using the standard SOAP

section 5 encoding rules (described in Chapter 3).

The soap:fault element has the same attributes as soap:body and results in the content that it

describes being added as a Detail element inside a SOAP Fault element in the message body. As an
example of the use of this element, the getPrice operation has a fault element that is bound as

follows:

 <soap:fault encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded" namespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"/>

The soap:header and soap:headerfault elements are identical to soap:body and

soap:fault

http://lib.ommolketab.ir
http://lib.ommolketab.ir

, respectively, apart from the fact that they have an extra attribute and their output appears in the SOAP
message header instead of the body. The soap:header element looks like this:

<soap:header message="message" part="partslist" use= "literal | encoded"
 encodingStyle= "uriList" namespace="uri"/>

The soap:body and soap:fault elements refer implicitly to the message associated with the input ,
output , or fault element in their surrounding operation element. Both soap:header and

soap:headerfault can use parts from a different message by explicitly referencing that message with

the message attribute. This allows headers and message bodies to be described separately for

convenience. If this attribute is not used, then the parts are obtained from the message that is normally

associated with the element.

5.2.7 The MIME Binding

The SOAP binding on its own is sufficient for messages that do not require attachments. The MIME

binding can be used when attachments are needed. The WSDL description for a message that contains
one or more attachments consists of a set of mime:part elements wrapped in a

mime:multipartRelated element, where the namespace prefix mime is mapped to the URI
http://schemas.xmlsoap.org/wsdl/mime . For example, the parts for an output message for an operation

that returns some image data might be declared like this:

<message name="imageResult">
 <part name="body" type= "bodyType"/>
 <part name="imageData" type= "ArrayOfHexBinary"/>
</message>

where bodyType and ArrayOfHexBinary are assumed to be defined in the types section. In the binding

shown here, the body part is mapped to the SOAP body, while imageData appears as an attachment:

<output>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts="body">
 </mime:part>
 <mime:part>
 <mime:content part="imageData" type="image/gif"/>
 <mime:content part="imageData" type="image/jpeg"/>
 <mime:content part="imageData" type="image/png"/>
 </mime:part>
 </mime:multipartRelated>
</output

The mime:multipartRelated element signals that this binding represents a SOAP with attachments

message, where the SOAP envelope and each attachment are represented by a nested soap:part
element. The first such element contains a soap:body element and is therefore mapped to the body part

of the SOAP envelope. It is also permissible to use soap:header , soap:fault , and

http://schemas.xmlsoap.org/wsdl/mime
http://lib.ommolketab.ir
http://lib.ommolketab.ir

soap:headerfault elements as required.

MIME content within an attachment is described using a mime:content element, where the type
attribute specifies the MIME type of the data that may appear in the attachment. Where, as in this case,

several such elements appear, any of the listed MIME types might be expected to appear in the

attachment. Alternate types can also be specified using wildcards, such as:

<mime:content part="imageData" type="image/*"/>

which allows all types of images, and:

<mime:content part="imageData" type="*/*"/>

which permits arbitrary MIME-encoded data. In all cases where there are alternatives, the actual type of

the data in an attachment must be determined at runtime by examining the MIME headers of the

received message.

The MIME binding also provides a way to describe arbitrary XML within an attachment using the
mime:mimeXml element:

<mime:mimeXml part="partName"/>

The schema for the XML itself can be inferred from the part based on either the type or the element

within the types section (or an imported schema document) that it refers to.

5.2.8 Ports and Services

A binding element describes how the operations within a portType are mapped to SOAP messages or

messages in other protocols, but they don't tell you how to locate an instance of the portType . This is

the job of the port element, which maps a binding of a portType to a URI that can be used to access it
using the protocol associated with the binding. A service element groups together a set of related

ports. A WSDL document may contain several service elements, which are distinguished from each

other by their name attributes. There is no requirement for a service to contain elements for each port

defined in the WSDL document or for all of the ports in a given service element to use the same

binding. Example 5-8 shows the service and port elements for the book web service.

Example 5-8. service and port elements for the book web service

<service name="BookService">
 <port name="BookQueryPort" binding="tns:BookQueryBinding">
 <soap:address location="http://localhost:8000/Books/BookQuery"/>
 </port>
</service>

A port is associated with a binding via its binding attribute. The actual address is specified using an

element that is specific to the binding's protocol. Here, the soap:address element from the SOAP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

binding is used to provide the URL at which the service endpoint interface for the port can be accessed.

5.2.9 Using the import Element

So far in this chapter, we have described a WSDL document as if it were a single file. In the real world,

however, it would be more useful to be able to break down a WSDL definition into smaller pieces and
place each of them in a separate file, so that a set of common definitions can be shared by several web

services without having to replicate them in each WSDL document. This can be achieved by using

either or both of the WSDL import and XML schema import elements. The following sections show

how you might use these elements to distribute the definitions for the book web service over several

files.

5.2.9.1 Importing types from an XML schema definition

One obvious way to improve reusability of WSDL definitions is to extract those data type definitions
that might be of general use and place them in a separate XML schema document, which could then be

imported into any number of WSDL documents. As noted in Section 5.2.2 and shown in Example 5-3

earlier in this chapter, the generated WSDL file for the book service contains two sets of type
definitions:

Definitions of types that are part of the book service itself, such as the BookInfo value type

Definitions that are introduced by JAX-RPC to describe data types that it provides internally, such
as HashMap

These definitions belong to different namespaces and are contained in two separate schema elements

within the type element of the generated WSDL file. Since an XML schema document can only

contain a single schema element (and since the definitions, being in different namespaces, cannot be

merged together), it is necessary to create two XML schema documents to extract them from the

WSDL file, which we'll call bookTypes.xsd (the content of which is shown in Example 5-9) and
baseTypes.xsd (shown in Example 5-10).

Example 5-9. Schema document containing service-related type definitions for the book service

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="urn:jwsnut.chapter2.bookservice/types/BookQuery"
 xmlns:tns="urn:jwsnut.chapter2.bookservice/types/BookQuery"
 xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="ArrayOfBookInfo">
 <complexContent>
 <restriction base="soap-enc:Array">
 <attribute ref="soap-enc:arrayType" wsdl:arrayType="tns:BookInfo[]"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </restriction>
 </complexContent>
 </complexType>
 <complexType name="BookInfo">
 <sequence>
 <element name="editor" type="string"/>
 <element name="author" type="string"/>
 <element name="price" type="double"/>
 <element name="title" type="string"/>
 </sequence>
 </complexType>
 <complexType name="BookServiceException">
 <sequence>
 <element name="message" type="string"/>
 </sequence>
 </complexType>
</schema>

Example 5-10. Schema document containing JAX-RPC-specific type definitions

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://java.sun.com/jax-rpc-ri/internal"
 xmlns:tns="http://java.sun.com/jax-rpc-ri/internal"
 xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="hashMap">
 <complexContent>
 <extension base="tns:map">
 <sequence/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="map">
 <complexContent>
 <restriction base="soap-enc:Array">
 <attribute ref="soap-enc:arrayType" wsdl:arrayType="tns:mapEntry[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="mapEntry">
 <sequence>
 <element name="key" type="anyType"/>
 <element name="value" type="anyType"/>
 </sequence>
 </complexType>
</schema>

Notice that these are completely freestanding XML schema documents. Therefore, each has its own
schema element that declares the target namespace for its definitions, together with any other

namespaces that the enclosed elements and attributes reference. Notice also that the target namespaces

http://lib.ommolketab.ir
http://lib.ommolketab.ir

are different - bookTypes.xsd defines its elements in the namespace assigned to types associated with
the book service, while baseTypes.xsd uses a private namespace belonging to the JAX-RPC reference

implementation. In the case of bookTypes.xsd , if the types that it declares are to be used in other web

services, then it might be appropriate to assign them to another namespace whose name implies a wider

scope than simply the book service itself.

Having separated out the type definitions, it is now necessary to import them into the WSDL document

for the book service, using the WSDL import element. Example 5-11 shows how this is done.

Example 5-11. Importing definitions into a WSDL document

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BookService"
 targetNamespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"
 xmlns:tns="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ns2="urn:jwsnut.chapter2.bookservice/types/BookQuery"
 xmlns:ns3="http://java.sun.com/jax-rpc-ri/internal">

 <import namespace="urn:jwsnut.chapter2.bookservice/types/BookQuery"
 location="bookTypes.xsd"/>
 <import namespace="http://java.sun.com/jax-rpc-ri/internal"
 location="baseTypes.xsd"/>

 <message name="BookQuery_getAuthor">
 <part name="String_1" type="xsd:string"/>
 </message>

 <!-- Rest of the file unchanged -->
</definitions>

The WSDL import element has two attributes, both of which must be present:

namespace

The namespace into which the definitions from the included file are to be imported. The value of

this attribute must match the target namespace defined in the imported schema document.

location

A URI that indicates where the imported definitions will be found. This is usually an absolute

URL. In the example shown here, a relative filename is used. While this works if the WSDL file
is simply used as input to the wscompile command, it would not be acceptable if it were

published in a registry. For this reason, the specification requires that published WSDL

documents use absolute URIs.

Note that imported types are not wrapped within a types element like those declared within the WSDL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

file. It is, however, possible to mix the use of imported and inline declaration within the same WSDL
document by using both the import and types elements:

<!-- Import common types -->
<import namespace="urn:jwsnut.chapter2.bookservice/types/BookQuery"
location="bookTypes.xsd"/>
<import namespace="http://java.sun.com/jax-rpc-ri/internal"
location="baseTypes.xsd"/>
<types>
 <schema targetNamespace= ". . .">
 <!-- Add local declarations here -->
 </schema>
</types>

The import element can be used to include schema definitions from any schema, not simply those that
you might create specifically to define the types for your own web services. XML schema also has its

own import element that can be used to reference one schema from within another. Using this element,
the bookTypes.xsd file could be changed to reference the definitions in baseTypes.xsd , as shown in

Example 5-12 .[7]

[7] While this illustrates how to nest schema imports, it is not particularly advantageous to actually

do this for the book service, because the types defined in bookTypes.xsd do not depend on those

in baseTypes.xsd .

Example 5-12. Using the XML schema import element to provide nested inclusion of types

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="urn:jwsnut.chapter2.bookservice/types/BookQuery"
 xmlns:tns="urn:jwsnut.chapter2.bookservice/types/BookQuery"
 xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns="http://www.w3.org/2001/XMLSchema">

 <import namespace="http://java.sun.com/jax-rpc-ri/internal"
schemaLocation="baseTypes.xsd"/>

 <!-- Rest of the file left unchanged -->
</schema>

Following this change, only a single WSDL import element is required in the WSDL file, as shown in

Example 5-13 .

Example 5-13. WSDL document utilizing a schema with nested imports

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BookService"
 targetNamespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"
 xmlns:tns="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"
 xmlns="http://schemas.xmlsoap.org/wsdl/"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ns2="urn:jwsnut.chapter2.bookservice/types/BookQuery"
 xmlns:ns3="http://java.sun.com/jax-rpc-ri/internal">

 <import namespace="urn:jwsnut.chapter2.bookservice/types/BookQuery"
 location="bookTypes.xsd"/>

 <message name="BookQuery_getAuthor">
 <part name="String_1" type="xsd:string"/>
 </message>

 <!-- Rest of the file left unchanged -->
</definitions>

Notice that the XML schema import element shown in Example 5-12 imports definitions from a
different namespace than the target namespace for its parent schema element. This is perfectly valid.

However, the namespace attribute on the import element in the WSDL file still declares only the

namespace of the schema that it directly refers to.

Keep in mind that there are two different import elements being used here. You

can tell which is which because they belong to different XML namespaces. The

import element in Example 5-12 is an XML schema element because the default

namespace declared by its parent schema element is

http://www.w3.org/2001/XMLSchema , whereas the default namespace for the
schema element in Example 5-13 implies that the import element used there is a
WSDL element.

5.2.9.2 Separating WSDL definitions into separate files

The WSDL import element can be used to include all types of definitions that may appear in a WSDL

document - it is not limited to schema types. You can use this feature to separate out as much of a

service definition as you like into smaller files, the primary motivation for this being reuse.

One particularly useful application of this feature is to separate the generic definition of a web service

interface and its bindings from the service element that contains the addresses at which the service

can be located. This allows you to use a single service definition to describe several different instances
of the service that are hosted on different servers. You might, for example, decide that the demand for

the book service is so great that you want to create mirror sites around the world, and allow users to

make use of the mirror that gives them the fastest service by publishing the WSDL document in several

registries, each with a different service element. Instead of copying and propagating the entire WSDL

file, you would install only the part that contains the service element itself in the registry and import
the rest of the definition by reference to its single location using an absolute URL (or other URI).

Achieving this separation for the book service is extremely simple. The first step is to remove the

http://www.w3.org/2001/XMLSchema
http://lib.ommolketab.ir
http://lib.ommolketab.ir

service elements from the BookService.wsdl file, leaving only generic definitions, as shown in
Example 5-14 .

Example 5-14. Converting the BookService.wsdl file to a generic service definition

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BookService"
 targetNamespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"
 xmlns:tns="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ns2="urn:jwsnut.chapter2.bookservice/types/BookQuery"
 xmlns:ns3="http://java.sun.com/jax-rpc-ri/internal">

 <import namespace="urn:jwsnut.chapter2.bookservice/types/BookQuery"
location="bookTypes.xsd"/>
 <import namespace="http://java.sun.com/jax-rpc-ri/internal"
location="baseTypes.xsd"/>

 <message name="BookQuery_getAuthor">
 <part name="String_1" type="xsd:string"/>
 </message>

 <!-- OTHER FILE CONTENT NOT SHOWN -->
 <binding name="BookQueryBinding" type="tns:BookQuery">

 <!-- Binding content not shown -->
 </binding>

 <!-- The <service> element that was here has been removed from this file -->

</definitions>

Each instance of the service is realized by creating a WSDL document that imports the generic service

definition and supplies the appropriate URI for its ports within the service element. Example 5-15

shows how this technique is used to declare an instance of the book service running at port 8000 of a

host called targethost .

Example 5-15. Importing generic service definitions into a WSDL document

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BookServiceInstance"
 targetNamespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"
 xmlns:tns="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" >

 <!-- Import the common definitions for the generic service -->
 <import namespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"
 location="BookService.wsdl"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- Define the location of this instance of the service -->
 <service name="BookService">
 <port name="BookQueryPort" binding="tns:BookQueryBinding">
 <soap:address location="http://targethost:8000/Books/BookQuery"/>
 </port>
 </service>
</definitions>

Note that since both files are WSDL documents, they both need to have definitions as their root

element, and they both declare a target namespace. Although the namespaces match in this example,

this is not a requirement.

It might be difficult to see why this technique is useful for a JAX-RPC service, since, so far, you have
only seen how to create a JAX-RPC client using stubs supplied by wscompile based on Java interface

definitions, and then connected it to the server by supplying the URL yourself. In the next chapter,

however, you'll see how to use a WSDL document as the basis for your client and how to build a

dynamic method call that makes use of the port address in a WSDL file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. Advanced JAX-RPC

Chapter 2 introduced the concepts behind JAX-RPC and demonstrated how to create simple JAX-RPC

applications starting with a service endpoint defined in the form of a Java interface. This chapter builds
on the discussion of SOAP messaging in Chapter 3 and of WSDL in Chapter 5 to show you how to do

much more with JAX-RPC. This is quite a long chapter, which introduces many features of the JAX-

RPC API and the wscompile and wsdeploy utilities that were not covered in Chapter 2. While reading
this chapter, you will probably find it useful to refer to the detailed API coverage in the reference

section of this book and to Chapter 8, which contains more information on the command-line tools and
their associated configuration files.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1 Using WSDL with JAX-RPC

The book web service example that was used in Chapter 2 demonstrates how to create a web service

client application when you have access to a description of the service interface in the form of a Java
interface definition. Although this approach is convenient, it is unlikely that you will be able to use it

when writing a client for a third-party web service. Web services are not always implemented in Java

and, even for those that are, the public definition of the service interface is almost always provided in

the form of a WSDL document rather than Java class files.

One way to create a web service client from a WSDL file is to start by pointing the wscompile tool at

the WSDL document. To do this, you change the content of the config.xml file so that it contains a wsdl
element instead of the configuration element shown in Example 2-9. To see how this works, imagine

that the book web service from Chapter 2 had been created by a third party so that you don't have
access to Java class files for the BookQuery interface or the BookInfo class that is used by the methods

in that interface. You can, however, obtain a WSDL file that describes the service because, as noted in

Section 2.2.7.4 in Chapter 2, when a service is deployed using the JAX-RPC reference implementation,
you can append the query string ?WSDL to a URL that references the service in order to fetch the WSDL

definition of that service. For other implementations, the URL may be different, and in some cases, you
may have to download the WSDL document from a registry.

Example 6-1 shows the content of a config.xml file that can be used with wscompile to generate client-

side artifacts from a WSDL document.

Example 6-1. A config.xml file referencing a WSDL document

<?xml version="1.0" encoding="UTF-8" ?>

<configuration xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
 <wsdl location="http://localhost:8000/Books/BookQuery?WSDL"
 packageName="ora.jwsnut.chapter6.wsdlbookservice"/>
</configuration>

The wsdl element has two attributes:

location

A URI that gives the location of the WSDL document. In most cases, this is a URL. Here, it is

the URL of the WSDL file generated for the book web service developed in Chapter 2 and

deployed in the Tomcat or J2EE web container. The wscompile utility also accepts a filename so

that you can reference a WSDL document held locally, such as one downloaded from a registry.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

packageName

The name of the Java package into which all of the generated classes are placed. If the WSDL
document contains definitions in more than one namespace, it is possible to arrange for the Java

classes that correspond to these definitions to be placed in different packages based on their

owning namespaces. For details, see Section 8.1.

The command line used to generate client-side artifacts from WSDL is the same as that required when

you supply Java interface definitions, since wscompile distinguishes the two cases based only on the

content of config.xml:

wscompile -gen:client -keep -s generated/client -d output/client

 -classpath classpath config.xml

To see what this generates for the WSDL document corresponding to the book web service, you must
first start the web container and deploy the book web service as described in Chapter 2.

If you are using the beta release of J2EE 1.4 to run the examples for this book,

you need to work around a bug that prevents clients generated from WSDL
documents from working. If you go to the directory

repository\applications\Books beneath the installation directory of the J2EE
reference implementation, you will find a file whose name will be something like

JAX-RPC Book Service25695.wsdl (the numeric part will probably be different

on your system). Open this file with an editor and go to the last line, which

should contain a <soap:address> tag. You'll see that this tag has an attribute

called location, which contains the URL of the deployed book service -
something like http://localhost:8000//Books/BookQuery. The fact that there are

two "/" characters before Books causes the client to fail when it connects to the

service. To fix this problem, just replace the "//" pair with one slash, thus making

the address http://localhost:8000/Books/BookQuery. This problem will hopefully

be fixed in the FCS release of J2EE 1.4.

Open a command window, make your working directory chapter6\wsdlbookservice relative to the

example source code for this book, and type the command:

ant generate-client

This buildfile target runs the wscompile command line shown above, the output from which is written

to the following directories:

Name Directory

Java source code chapter6\wsdlbookservice\generated\client\ora\jwsnut\chapter6\wsdlbookservice

http://localhost:8000//Books/BookQuery
http://localhost:8000/Books/BookQuery
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Directory

Compiled class

files
chapter6\wsdlbookservice\output\client\ora\jwsnut\chapter6\wsdlbookservice

where the ora\jwsnut\chapter6\wsdlbookservice suffix is determined by the value of the packageName
attribute of the wsdl element, as shown in Example 6-1. Table 6-1 lists some of the Java source files

that are created by this command.

Table 6-1. A subset of the client-side source files generated by wscompile from a WSDL document

Source Generated files

Service BookService.java

 BookService_Impl.java

 BookService_SerializerRegistry.java

Exception BookServiceException.java

 BookServiceException_SOAPSerializer.java

 BookServiceException_SOAPBuilder.java

Value type BookInfo.java

 BookInfo_SOAPSerializer.java

 BookInfo_SOAPBuilder.java

BookQuery interface BookQuery.java

 BookQuery_Stub.java

 BookQuery_getAuthor_RequestStruct.java

 BookQuery_getAuthor_ResponseStruct.java

 BookQuery_getAuthor_RequestStruct_SOAPBuilder.java

 BookQuery_getAuthor_ResponseStruct_SOAPBuilder.java

 BookQuery_getAuthor_RequestStruct_SOAPSerializer.java

 BookQuery_getAuthor_ResponseStruct_SOAPSerializer.java

 BookQuery_getBookCount_RequestStruct.java

Compiled class

files
chapter6\wsdlbookservice\output\client\ora\jwsnut\chapter6\wsdlbookservice

where the ora\jwsnut\chapter6\wsdlbookservice suffix is determined by the value of the packageName
attribute of the wsdl element, as shown in Example 6-1. Table 6-1 lists some of the Java source files

that are created by this command.

Table 6-1. A subset of the client-side source files generated by wscompile from a WSDL document

Source Generated files

Service BookService.java

 BookService_Impl.java

 BookService_SerializerRegistry.java

Exception BookServiceException.java

 BookServiceException_SOAPSerializer.java

 BookServiceException_SOAPBuilder.java

Value type BookInfo.java

 BookInfo_SOAPSerializer.java

 BookInfo_SOAPBuilder.java

BookQuery interface BookQuery.java

 BookQuery_Stub.java

 BookQuery_getAuthor_RequestStruct.java

 BookQuery_getAuthor_ResponseStruct.java

 BookQuery_getAuthor_RequestStruct_SOAPBuilder.java

 BookQuery_getAuthor_ResponseStruct_SOAPBuilder.java

 BookQuery_getAuthor_RequestStruct_SOAPSerializer.java

 BookQuery_getAuthor_ResponseStruct_SOAPSerializer.java

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Source Generated files

 BookQuery_getBookCount_RequestStruct.java

 BookQuery_getBookCount_ResponseStruct.java

 BookQuery_getBookCount_RequestStruct_SOAPSerializer.java

 BookQuery_getBookCount_ResponseStruct_SOAPSerializer.java

It is interesting to compare this list of source files with the content of Table 2-5 in Chapter 2, which
shows what is generated when you start from a Java interface definition. You'll see that you get

essentially the same set of files, whether you start from a Java interface definition or the corresponding

WSDL document. In the latter case, of course, wscompile generates the class for the BookQuery

interface, together with BookInfo and BookServiceException, whereas in Chapter 2, these are the

files that we started with. In general, in order to write a client for a web service for which you have only
a WSDL definition, you need to create the corresponding Java interface definition (i.e., the equivalent

of the BookQuery and BookInfo classes in this example). Here, we obtain those files by using the -
gen:client option of wscompile, which also generates the client-side stubs. If you just want to

generate the interface files (perhaps because you intend to use one of the methods of accessing the web

service described later that do not require client-side stubs), you can use the -import option of
wscompile instead, as described in Section 6.4, later in this chapter.

By using the WSDL document generated from the Java service definitions for the book web service as

the input to wscompile, we have performed a round-trip from Java source code to WSDL and back
again. However, the source code that we end up with does not exactly match what we started with -

for one thing, if you compare the content of the generated BookInfo.java file with that created manually

in Chapter 2, you'll notice that the parameter order for the constructor is different. The JAX-RPC

specification does not require implementations to create exactly the same source code as the result of a
round-trip such as this, and, in the real world, you are unlikely to ever need to do this.

Another difference that is not apparent from the source code-but is nevertheless very important-is

that when you get the stub for the BookQuery interface using a BookService object generated from a

WSDL file, its target endpoint address may already have been set. To illustrate this, here is the code

that we used in Chapter 2 to get a list of books from the web service:

// Get a reference to the stub and set the service address
BookService_Impl service = new BookService_Impl();
BookQuery bookQuery = (BookQuery)service.getBookQueryPort();
((Stub)bookQuery)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, args[0]);

BookInfo[] books = bookQuery.getBookInfo();

The code required to get the same list of books using the classes generated from the WSDL for this

service, which you can find in the file

 BookQuery_getBookCount_RequestStruct.java

 BookQuery_getBookCount_ResponseStruct.java

 BookQuery_getBookCount_RequestStruct_SOAPSerializer.java

 BookQuery_getBookCount_ResponseStruct_SOAPSerializer.java

It is interesting to compare this list of source files with the content of Table 2-5 in Chapter 2, which
shows what is generated when you start from a Java interface definition. You'll see that you get

essentially the same set of files, whether you start from a Java interface definition or the corresponding

WSDL document. In the latter case, of course, wscompile generates the class for the BookQuery

interface, together with BookInfo and BookServiceException, whereas in Chapter 2, these are the

files that we started with. In general, in order to write a client for a web service for which you have only
a WSDL definition, you need to create the corresponding Java interface definition (i.e., the equivalent

of the BookQuery and BookInfo classes in this example). Here, we obtain those files by using the -
gen:client option of wscompile, which also generates the client-side stubs. If you just want to

generate the interface files (perhaps because you intend to use one of the methods of accessing the web

service described later that do not require client-side stubs), you can use the -import option of
wscompile instead, as described in Section 6.4, later in this chapter.

By using the WSDL document generated from the Java service definitions for the book web service as

the input to wscompile, we have performed a round-trip from Java source code to WSDL and back
again. However, the source code that we end up with does not exactly match what we started with -

for one thing, if you compare the content of the generated BookInfo.java file with that created manually

in Chapter 2, you'll notice that the parameter order for the constructor is different. The JAX-RPC

specification does not require implementations to create exactly the same source code as the result of a
round-trip such as this, and, in the real world, you are unlikely to ever need to do this.

Another difference that is not apparent from the source code-but is nevertheless very important-is

that when you get the stub for the BookQuery interface using a BookService object generated from a

WSDL file, its target endpoint address may already have been set. To illustrate this, here is the code

that we used in Chapter 2 to get a list of books from the web service:

// Get a reference to the stub and set the service address
BookService_Impl service = new BookService_Impl();
BookQuery bookQuery = (BookQuery)service.getBookQueryPort();
((Stub)bookQuery)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, args[0]);

BookInfo[] books = bookQuery.getBookInfo();

The code required to get the same list of books using the classes generated from the WSDL for this

service, which you can find in the file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

chapter6\wsdlbookservice\client\ora\jwsnut\chapter6\client\WSDLBookServiceClient.java, is slightly
different:

BookService_Impl service = new BookService_Impl();
BookQuery bookQuery = (BookQuery)service.getBookQueryPort();

BookInfo[] books = bookQuery.getBookInfo();

The new code does not explicitly reference the stub class and does not set its
ENDPOINT_ADDRESS_PROPERTY. There is no need to set the web service address because the stub that

you obtain from the getBookQueryPort() method is preconfigured with this information, which is

obtained from the soap:address element within the port element corresponding to the BookQuery

portType in the WSDL file, if one exists. You can find the relevant portion of the WSDL document by

pointing your web browser at the URL http://localhost:8000/Books/BookQuery?WSDL:

<service name="BookService">
 <port name="BookQueryPort" binding="tns:BookQueryBinding">
 <soap:address xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 location="http://localhost:8000/Books/BookQuery"/>
 </port>
</service>

Note, however, that not all WSDL documents need contain a port element. As noted in Section 5.2.9.2,

it is useful to create a WSDL document that describes a generic service (such as an electronic book
store) without specifying its actual location. Service providers can then create and advertise their own

WSDL documents to import the generic definition and additionally supply the location information for
their implementation of that service. If you generate the client-side artifacts from the generic WSDL

document (for any conforming electronic book store), then there will be no addressing information with

which to preconfigure the stubs.

You can compile and run this example using the commands:

ant compile-client
ant run-client

As a result, you should see the same list of books as that returned by the original client developed in

Chapter 2.

If, instead, you get the error message "Missing port information" and you are
using J2EE 1.4 beta, you need to fix the problem described in the note earlier in

this section.

To get the editor, author, or price of a specific book instead of the complete list, you can use the

CLIENT_ARGS property to supply the required command-line arguments. Here are two examples:

ant -DCLIENT_ARGS="author Java Swing" run-client

http://localhost:8000/Books/BookQuery?WSDL
http://lib.ommolketab.ir
http://lib.ommolketab.ir

ant -DCLIENT_ARGS="editor J2ME in a Nutshell" run-client

Notice that, since the deployed WSDL file for this service contains the service address, this version of
the client does not require the address to be given as a command-line argument.

6.1.1 Stubs and One-Way Operations

Because the JAX-RPC specification requires only stubs to support request-response operations (as

defined in Table 5-2), if you import a WSDL file for a service that contains a one-way operation, you'll
need to add an empty output message to the operation element and pass your modified copy of the

WSDL document to wscompile. This has the effect of making the operation appear to use the request-
response pattern, in which no valid reply is expected.

For example, suppose a service defines a one-way operation to make a log entry, requiring a single

string argument. The input message for this operation might be defined like this:

<message name="LogRequest">
 <part name="String_1" type="xsd:string"/>
</message>

The operation might be defined as follows:

<operation name="makeLogEntry" parameterOrder="String_1">
 <input message="tns:LogRequest"/>
</operation>

To convert this to a form acceptable to wscompile, you need to add an empty message:

<message name="LogEmptyResponse"/>

and then reference it from the operation element:

<operation name="makeLogEntry" parameterOrder="String_1">
 <input message="tns:LogRequest"/>
 <output message="tns:LogEmptyResponse"/>
</operation>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2 ServiceFactory and the Service Interface

In Chapter 2, you saw that in order to get a stub for a web service endpoint interface, it was first

necessary to obtain a reference to a Service object, using code like this:

BookService_Impl service = new BookService_Impl();
BookQuery bookQuery = (BookQuery)service.getBookQueryPort();

BookInfo[] books = bookQuery.getBookInfo();

where BookService_Impl is a class generated by wscompile that implements the

javax.xml.rpc.Service interface. As noted in Chapter 2, there is no standard naming convention for
this generated class (although the JAX-RPC specification recommends one); therefore, making use of

the class name in this way introduces a dependency in your code on a specific JAX-RPC
implementation. Although there is nothing that you can do about this if your client application uses the

stubs generated by wscompile, it is possible to make your code more portable if you use dynamic

proxies or the dynamic invocation interface instead of static stubs, or if you build a J2EE application
client instead of a standalone J2SE client. In order to see how this can be done, it is necessary first to

look in more detail at the Service interface and the ServiceFactory class to which it is related.

6.2.1 The ServiceFactory Class

ServiceFactory is an abstract class that can be used to create Service objects in a portable manner.

The public methods of ServiceFactory are shown in Example 6-2.

Example 6-2. The ServiceFactory class

public abstract class ServiceFactory {
 public static ServiceFactory newInstance();
 public abstract Service createService(URL wsdlLocation, QName serviceName);
 public abstract Service createService(QName serviceName);
}

The static newInstance() method returns an implementation-dependent instance of the

ServiceFactory class:

ServiceFactory factory = ServiceFactory.newInstance();

Although it is unlikely that you would ever need to do so, you can change the ServiceFactory

implementation class by setting the system property ServiceFactory.SERVICEFACTORY_PROPERTY to
the name of the class to be used.[1]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[1] Properties such as this are used not by developers, but by third-party vendors that provide their

own implementations of JAX-RPC. By setting an appropriate value, they cause their own classes

to be instantiated instead of the default classes provided by the reference implementation.

The two createService() methods return instances of an implementation-dependent class that
implements the Service interface. The first variant returns a Service object that has access to the ports

of a service described in a WSDL document whose URL is supplied as its first argument. The name of
the required service is supplied in the form of a QName object. QName represents an XML namespace-

qualified name and is therefore composed of a namespace part and a local part. Here is how to create a

QName object that refers to the book service developed in Chapter 2:

QName serviceName = new QName("urn:jwsnut.chapter2.bookservice/wsdl/
BookQuery", "BookService");

The constructor requires the namespace and local parts of the name, in that order. The namespace part

is determined by the targetNamespace attribute of the definitions element in the WSDL definition of
the service, while the local name comes from the name attribute of the service element. Refer to

Appendix A for a complete listing of the WSDL document for this service. The following code obtains
the actual Service object for this service:

URL wsdlURL = new URL("http://localhost:8000/Books/BookQuery?WSDL");
Service service = factory.createService(wsdlURL, serviceName);

The second variant of createService() requires only a QName argument. A Service object returned
by this method can only be used in conjunction with the dynamic invocation interface, which is
described later in this chapter.

ServiceFactory is intended to be used by standalone J2SE clients in the case where the target service

is defined in a WSDL document. However, for container-resident clients (such as J2EE application

clients), you should use the technique covered in Section 6.4 later in this chapter to get a reference to a

Service object instead of using ServiceFactory.

6.2.2 The Service Interface

An object that implements the Service interface provides the client-side view of a web service (despite

the name that might lead you to think that this is a server-side interface). Logically, it maps to the entity

represented by the service element in a WSDL document. The methods that make up the Service

interface are shown in Example 6-3.

Example 6-3. The javax.xml.rpc.Service interface

public interface Service {
 // Accessors
 public HandlerRegistry getHandlerRegistry();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public TypeMappingRegistry getTypeMappingRegistry();
 public QName getServiceName()
 public URL getWSDLDocumentLocation();

 // Access to ports
 public Iterator getPorts() throws ServiceException;
 public Remote getPort(Class endpointInterface) throws ServiceException;
 public Remote getPort(QName portName, Class endpointInterface)
 throws ServiceException;

 // DII-related methods
 public Call createCall() throws ServiceException;
 public Call createCall(QName portName) throws ServiceException;
 public Call createCall(QName portName, QName operationName)
 throws ServiceException;
 public Call createCall(QName portName, String operationName)
 throws ServiceException;
 public Call[] getCalls(QName portName);
}

When you use wscompile to create stubs from a Java interface definition or from a WSDL file, one of

the files that is generated is a class that implements the Service interface. The generated Service class
includes a method that can be used to get a client-side stub for the service endpoint interface. In the

book service example used in Chapter 2, for example, the following method is generated:

public BookQuery getBookQueryPort()

This method is not, of course, part of the Service interface and it is obviously not, therefore, available

from a Service object returned by the ServiceFactory createCall() method. If you use a

ServiceFactory to create your Service object instead of directly instantiating a generated Service

class, you will need to use one of the getPort() methods listed in Example 6-3 to get access to an
object that can be used to invoke the service endpoint's methods. These methods may, according to the

JAX-RPC specification, return an instance of a precompiled stub, just as the getBookQueryPort()

method would. It may also return an object called a dynamic proxy that is created on-the-fly. The use of

the getPort() methods is discussed later.

The various createCall() methods return a Call object that can be used to invoke an operation that

belongs to the web service's endpoint interface without requiring the generation and compilation of a
stub. The Call object is the core class for the JAX-RPC dynamic invocation interface (DII), which

provides lower-level access than either generated stubs or dynamic proxies, at the expense of additional

coding. Clients that use the DII can make one-way calls, whereas those that use the other mechanisms

are restricted to request-response operations. DII is covered in Section 6.3, later in this chapter.

The remaining four Service methods can be used to access various items of state:

public String getServiceName()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns the name of the service.
public URL getWSDLDocumentLocation()

Gets the URL for the WSDL document for the service. This is null if the WSDL document

location is not known - that is, if the Service object was generated by wscompile starting from

a Java interface definition, or if it was returned by the variant of the ServiceFactory

createService() method that does not require a WSDL document URL as one of its

arguments.
public HandlerRegistry getHandlerRegistry()

Returns a reference to the configured SOAP handlers for this service. A client can install

handlers to perform processing on a SOAP message created as a result of a JAX-RPC call before

it is transmitted, or on a response message when it is received and before its content is used to
generate the results of the JAX-RPC call. The HandlerRegistry is described in Section 6.8, later

in this chapter.
public TypeMappingRegistry getTypeMappingRegistry()

Returns a reference to the TypeMappingRegistry for this service. This registry contains the

serializers and deserializers that are used to convert between Java primitive types and objects and

their XML representation in SOAP messages. See Section 6.9, later in this chapter, for a

discussion of this registry and how its contents are determined.

6.2.3 Using the getPort() Methods of a Generated Service Object

Although a Service object (such as BookService_Impl) generated by wscompile has a method (like

getBookQueryPort()) that can be used to get a client-side stub, it is still possible to call the getPort(

) method of such an object instead. This method has two variants, the first of which requires a QName

object that identifies the port and a reference to a class object for the service endpoint interface:

public Remote getPort(QName portName, Class endpointInterface);

The port name is formed by combining a namespace with the local name of the port. The way in which

you obtain these names depends on whether wscompile generated the Service object from Java

interface definitions (as was the case in Chapter 2) or from a WSDL file:

For a Service generated from a Java interface definition, the namespace value is taken from the
targetNamespace attribute of the configuration element in the config.xml file, while the local

name is the name of the Java interface itself with the string Port appended to it. Therefore, in

Example 2-9, you can see that the namespace value for the BookQuery port of the book web

service should be urn:jwsnut.chapter2.bookservice/wsdl/BookQuery, while the local part of the

name is BookQueryPort, since BookQuery is the name of the interface defined in Example 2-3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For a Service created from WSDL, the namespace is the one that applies to the port as defined in
the WSDL document, which is determined by the targetNamespace attribute of the definitions

element enclosing the port element. The local part of the name is taken from the name attribute of

the port element itself. In the case of the book web service, the namespace is therefore

urn:jwsnut.chapter2.bookservice/wsdl/BookQuery (see Example 5-2) and the local name is

BookQueryPort (see Example 5-8).

In both cases, then, an appropriate QName object for the service endpoint interface of the book web
service can be created as follows:

QName portName = new QName("urn:jwsnut.chapter2.bookservice/wsdl/BookQuery",
 "BookQueryPort");

The following code sequence can therefore be used to get an object that can be used to invoke the
methods of this interface:

BookService_Impl service = new BookService_Impl();
QName portName = new QName("urn:jwsnut.chapter2.bookservice/wsdl/BookQuery",
 "BookQueryPort");
BookQuery bookQuery = (BookQuery)service.getPort(portName ,
 BookQuery.class);

The second variant of getPort() requires only the Class object for the Java interface:

BookService_Impl service = new BookService_Impl();
BookQuery bookQuery = (BookQuery)service.getPort(BookQuery.class);

Because the getPort() method is defined to return only a class that implements the Remote interface,

it is necessary to explicitly cast the returned value to the actual interface type before it can be used to

invoke the methods of the web service's endpoint interface.

When used with a generated Service object, these two variants of the getPort() method are
equivalent. Therefore, there is no advantage to using the variant that requires a QName to describe the

port in addition to the service interface Class object. In fact, in the reference implementation, both of

these methods return the same generated stub object that would be returned by the getBookQueryPort(

) method, so there is little reason to use getPort() when you are dealing with a generated Service

object.

6.2.4 Using getPort() with a Service Object from a ServiceFactory

When you obtain your Service object from a ServiceFactory, you can't use a method like

getBookQueryPort() to get a client-side stub. Therefore, you have to use the getPort() methods

(or use DII, which is considerably more complex). Consider the code shown in Example 6-4.

Example 6-4. Using the getPort() method with a Service object created by a ServiceFactory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ServiceFactory factory = ServiceFactory.newInstance();
QName serviceName = new QName("urn:jwsnut.chapter2.bookservice/wsdl/BookQuery",
 "BookService");
URL wsdlURL = new URL("http://localhost:8000/Books/BookQuery?WSDL");
Service service = factory.createService(wsdlURL, serviceName);

QName portName = new QName("urn:jwsnut.chapter2.bookservice/wsdl/BookQuery",
 "BookQueryPort");
BookQuery bookQuery = (BookQuery)service.getPort(portName, BookQuery.class)

This code uses a ServiceFactory to obtain a Service object for a web service defined in a WSDL

document and then calls its getPort() method to get an object that refers to the service's endpoint
interface. As you can see, there is no dependency on any client-side artifacts of the type created by

wscompile (and in particular, no reliance on knowledge of the class names used for such artifacts). The

only things that this code uses that might differ from service to service are the location of the WSDL

document and the name of the service within it for which a Service object is required. The fact that

you can access a web service in this way without having to pregenerate either a Service object or the
client-side stubs seems to greatly simplify the process of building web service clients. Moreover, it

appears that this code is completely independent of any particular client-side JAX-RPC
implementation, whereas applications that use generated Service objects are not, since they need to

use the name of the Service class, which is not defined by the JAX-RPC specification. However, there

are a few points to bear in mind when choosing this approach:

The ServiceFactory createService() method needs to read and parse the WSDL document at

runtime in order to determine the services and ports that it defines. Apart from the parsing
overhead that this incurs, there may be a noticeable delay if the WSDL document resides on a

host that is accessed over the Internet. By contrast, when you use wscompile to pregenerate the

Service object and the client-side stubs, this overhead is incurred only while the client

application is being built.

Even though the WSDL document is read at runtime, you still need to have prefetched it in order

to determine the fully qualified name of the service, which the createService() method
requires.

Although using the ServiceFactory class allows you to avoid using precompiled client-side

stubs, you still have to create a Java interface for the service endpoint itself. In this case, this

means generating and compiling the class file for the BookQuery interface. The easiest way to do

this is, of course, to use wscompile.

When you use wscompile to generate client-side stubs, the getBookQueryPort() and getPort(

) methods simply have to create and return an instance of the stub class. However, when you use
the getPort() method of a Service object returned from a ServiceFactory, there is no stub

class available. Instead, getPort() constructs and returns an object, called a dynamic proxy,[2]

that implements the methods of the service endpoint interface (BookQuery), as well as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

implementing the javax.xml.rpc.Stub interface so that it functions properly as a client-side
stub. The process of creating this object involves runtime overhead that will probably be greater

than simply instantiating an existing class.

[2] Dynamic proxies were introduced in J2SE Version 1.3. You don't need to understand

how dynamic proxies work in order to use the one returned by the getPort() method, but

if you are curious, refer to the descriptions of java.lang.reflect.Proxy and

java.lang.reflect.InvocationHandler in the J2SE documentation bundle or in Java in a
Nutshell, by David Flanagan (O'Reilly).

Once you have a Service object obtained from a ServiceFactory, you can use either of its two

getPort() methods to get a reference to a service endpoint interface. It is probably better to use the

variant that supplies both the port name and the service endpoint interface class, as shown in Example
6-4. If you use the variant that supplies only the service endpoint interface class, the required endpoint

is located by searching the WSDL document for a portType that has operation elements that map to
the methods defined in the service endpoint interface class. This is potentially a very time-consuming

process and therefore should be avoided wherever possible.

You can try out an example that uses dynamic proxies by opening a command window, making your

working directory chapter6\proxybookservice relative to the installation directory of the example

source code for this book, and then typing the commands:

ant generate-client
ant compile-client
ant run-client

As with the previous example in this chapter, this provides a client for the book web service developed

in Chapter 2 by importing its WSDL definition. Therefore, you must have already started the web

container and deployed the book web service before typing these commands, so that the WSDL
definition can be obtained from the web container.

The generate-client target uses wscompile to access the WSDL file and generate the definitions of

the BookQuery interface and the BookInfo object that it relies on, using the -import option of

wscompile (see Section 6.4, later in this chapter, or Chapter 8 for a description of this option). The

same config.xml file is shown in Section 6.1 earlier in this chapter. The run-client target uses a client

application to invoke the getBookCount() method of the book web service and then prints the result.
The output from this command should look like this:

run-client:
 [java] Book count = 12

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you see the error message "Missing port information" instead of the output

shown above and you are running the beta version of J2EE 1.4, you need to

apply a workaround to a bug that affects clients generated from WSDL
documents in that release. Refer to the note in Section 6.1, earlier in this chapter,

for details of the problem and the workaround.

The important point to note about this example is that, as the following code extract shows, once the

BookQuery object is obtained, the fact that it happens to be a dynamic proxy is not of any concern to

the application, which invokes its methods in the same way as it would invoke those of a generated
stub:

ServiceFactory factory = ServiceFactory.newInstance();
QName serviceName = new QName(
 "urn:jwsnut.chapter2.bookservice/wsdl/BookQuery", "BookService");
Service service = factory.createService(wsdlURL, serviceName);
QName portName = new QName("urn:jwsnut.chapter2.bookservice/wsdl/BookQuery",
 "BookQueryPort");
BookQuery bookQuery = (BookQuery)service.getPort(portName ,
 BookQuery.class);
int bookCount = bookQuery.getBookCount();

Notice also that, because the BookQuery object was created from information in a WSDL document,

there is no need to cast it to the type javax.xml.rpc.Stub and use the _setProperty() method to set
the endpoint address. You could, however, perform this cast to set any of the stub properties listed in

Table 2-6 if this is required, since the dynamic proxy returned by getPort() implements the Stub
interface as well as BookQuery.

The full command line for this example application provides options that allow you to use the other

methods of the service endpoint interface. The general form of the command line is as follows:

 ProxyBookServiceClient wsdlURL [args]

Here, wsdlURL is the URL to be used to obtain the WSDL document for the service, and args is the

additional argument that indicates which method is to be invoked and supplies any required parameters.

The run-client target does not supply any additional arguments, the result of which is the

getBookCount() method being called. Other legal argument combinations are as follows:

Arguments Description

author title
Gets the name of the author of the book with the given title, using the getAuthor()
method

editor title Gets the name of the book's editor, using the getEditor() method

price title Gets the book's price, using the getTitle() method

You can use the CLIENT_ARGS property to set the arguments to be passed to the application. For
example, the following command line calls the getEditor() method to get the name of the editor of

the book Java Swing:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Arguments Description

list Gets a list of all books, using the getBookInfo() method

You can use the CLIENT_ARGS property to set the arguments to be passed to the application. For

example, the following command line calls the getEditor() method to get the name of the editor of
the book Java Swing:

ant -DCLIENT_ARGS="http://locahost:8000/Books/BookQuery?WSDL
 editor Java Swing" run-client

The result is:

run-client:
 [java] NAME = [Java Swing]
 [java] Mike Loukides

list Gets a list of all books, using the getBookInfo() method

You can use the CLIENT_ARGS property to set the arguments to be passed to the application. For

example, the following command line calls the getEditor() method to get the name of the editor of
the book Java Swing:

ant -DCLIENT_ARGS="http://locahost:8000/Books/BookQuery?WSDL
 editor Java Swing" run-client

The result is:

run-client:
 [java] NAME = [Java Swing]
 [java] Mike Loukides

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3 The Dynamic Invocation Interface

A JAX-RPC implementation typically implements dynamic proxies by using the more primitive

dynamic invocation interface (or DII for short). As well as being used internally in this way, the DII is a
public API that provides another way for application code to access a web service without needing to

generate stub classes. Creating an application that uses the DII involves more coding effort than using

either dynamic proxies or precompiled stubs. However, the DII makes it potentially possible to write

clients that can work with web services that are not discovered until runtime, in much the same way as

the Java reflection feature allows software tools to call methods on classes that it does not know about
at compile time.

The steps required to use the dynamic invocation interface are as follows:

A client application gets a Service object for a web service.1.

Using the Service object, the application creates a Call object that is used to invoke the service's
operations. Call is the central class of the DII.

2.

Methods of the Call interface are used to specify which operation is to be called, and to discover

and list the Java and XML types of the operation's arguments and its return types.

3.

The application invokes the operation by calling the invoke() method of the Call object, which

provides the result of the operation as its return value.

4.

The Service interface provides five methods that can be used to obtain Call objects:

public Call createCall() throws ServiceException

This method returns a generic Call object that is not associated with any port or operation. It

must be configured by application code before it can be used.

public Call createCall(QName portName) throws ServiceException

Returns a Call object that can be used to call any method of the named port. The

setOperationName() method must be used to specify the operation to be invoked.

public Call createCall(QName portName, QName operationName) throws ServiceException

Returns a Call object associated with the specified operation of the given port.

public Call createCall(QName portName, String operationName) throws ServiceException

This method is the same as the previous one, except that the operation name is supplied as a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

string instead of a QName. The name must be the local part of the operation name; the namespace
is implicitly taken to be the same as the one associated with the port.

public Call[] getCalls(QName portName)

Returns an array of Call objects, each of which is preconfigured to invoke one of the methods of

the given port. The getOperationName() method can be used to discover which operation a

given Call object from the returned array is associated with. This method works only if the

Service object was obtained using the variant of the ServiceFactory createService()
method that accepts a WSDL document location.

To demonstrate how to use the dynamic invocation interface, we'll use a simplified version of the book

web service that we've used for earlier examples in this chapter and in Chapter 2. The endpoint

interface for this web service is shown in Example 6-5.

Example 6-5. A small web service used to demonstrate the dynamic invocation interface

package ora.jwsnut.chapter6.smallbookservice;

import java.rmi.Remote;
import java.rmi.RemoteException;
import javax.xml.rpc.holders.StringHolder;

/**
 * The interface definition for the small
 * book web service.
 */
public interface SmallBookQuery extends Remote {

 /**
 * Gets the number of books known to the service
 * @return the number of books known to the service.
 */
 public abstract int getBookCount() throws RemoteException;

 /**
 * Gets the title of a given book.
 * @param index the index of the book whose title is required
 * @return the title of the given book, or <code>null</code> if
 * the index is not valid.
 */
 public abstract String getBookTitle(int index) throws RemoteException;

 /**
 * Gets the author for a books with a given title
 * @param title the titles of the book
 * @param author an output parameter that will be set to the author of the
 * given book
 * @throws SmallBookServiceException if the book title is unknown
 */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public abstract void getBookAuthor(String title, StringHolder author)
 throws SmallBookServiceException, RemoteException;

 /**
 * Makes a log entry.
 * @param value the value to be logged.
 */
 public abstract void log(String value) throws RemoteException;
}

In order to run the example code used in this section, you should first deploy the service by opening a

command window, making chapter6\smallbookservice your working directory, and typing the

command:

ant deploy

Exactly how you use a Call object to invoke a web service method depends on whether the Service
object from which it was created has an associated WSDL description of the service. We'll look first at

the case where there is a WSDL definition. Later, you'll see how to call services for which you do not
have such a definition, which requires a little more work.

As noted earlier in this chapter, if you are using the beta release of J2EE 1.4 to

run the examples for this book, you need to work around a bug that prevents
clients generated from WSDL documents from working. If you go to the

directory repository\applications\SmallBooks beneath the installation directory
of the J2EE reference implementation, you will find a file whose name is

something like JAX-RPC Small Book Service54134.wsdl (the numeric part will

probably be different on your system). Open this file with an editor and go to the

last line, which should contain a <soap:address> tag. You'll see that this tag has
an attribute called location, which contains the URL of the deployed book

service - something like http://localhost:8000//SmallBooks/SmallBookQuery.

The fact that there are two "/" characters before SmallBooks causes the client to

fail when it connects to the service. To fix this problem, just replace the "//" pair

with one slash, thus making the address
http://localhost:8000/SmallBooks/SmallBookQuery.

6.3.1 Dynamic Invocation of a Service Defined by WSDL

If you have access to a WSDL definition of a service, then it is very simple to invoke its methods using

the DII. This is because the WSDL definition lists all of the available operations, together with the

number and types of the arguments that each operation requires and the type of its return value, if there

is one. As you'll see in the next section, in the absence of a WSDL document, you need to use the

addParameter() and setReturnType() methods to supply this information yourself.

http://localhost:8000//SmallBooks/SmallBookQuery
http://localhost:8000/SmallBooks/SmallBookQuery
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first step when using DII is to obtain a Service object for the web service that you want to access.
When the web service provides a WSDL description, you can obtain a Service object associated with

the service definition that it contains from a ServiceFactory, in the usual way:

QName serviceName = new QName(SERVICE_URI, "SmallBookService");
ServiceFactory factory = ServiceFactory.newInstance();
Service service = factory.createService(new URL(args[0]), serviceName);

This code is intended to be used to connect to a service that implements the SmallBookQuery endpoint
interface shown in Example 6-5, where the actual location of the WSDL definition is supplied as a

command-line argument to the application. The WSDL document for the implementation of this

service can be found at the URL http://localhost:8000/SmallBooks/SmallBookQuery?WSDL; if you
examine it, you'll find that the service that it defines is called SmallBookService. The namespace

associated with this name is the target namespace of the WSDL document, which, in this case, is
urn:jwsnut.chapter6.smallbookservice/wsdl/SmallBookQuery. For the sake of convenience, this URI is

shown as SERVICE_URI throughout this section. This service name and namespace URI are used in the

previous code to create the QName passed to the ServiceFactory createService() method to get the
Service object for the service.

The next step is to use the Service object get a Call object for the operation that you want to invoke.

The most direct way to achieve this is to use the Service createCall() method that accepts both a
port name and an operation name as arguments. To get a Call object for the getBookCount() method,

for example, use the following code:

QName portName = new QName(SERVICE_URI, "SmallBookQueryPort");
Call call = service.createCall(portName, new QName(SERVICE_URI,
 "getBookCount"));

Both the port name (SmallBookQueryPort) and the operation name (getBookCount) can be obtained

from the WSDL document itself. Note that, as with the service description, both of these names are

provided in QName form and therefore include both the simple name and the WSDL namespace value.

There is, however, another variant of createCall() that allows you to supply the operation name as a

simple string, allowing its namespace to be defaulted to that of the port:

Call call = service.createCall(portName, "getBookCount");

Whichever variant you use, both the port and the operation must be defined in the WSDL document

passed to the ServiceFactory createService() method, and the operation must be valid for the
given port. If these conditions are not met, a ServiceException is thrown.

The other variants of the createCall() method can be used to obtain Call objects that are not

associated with a specific operation and port. Before attempting to invoke an operation using such an

object, however, you need to fully specify both the port to be used and the operation to be performed.

For example, the following code creates a Call object for the port SmallBookQueryPort and then calls

the setOperationName() method to select from that port the operation that will be invoked:

http://localhost:8000/SmallBooks/SmallBookQuery?WSDL
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Call call = service.createCall(new QName(SERVICE_URI,
 "SmallBookQueryPort"));
call.setOperationName(new QName(SERVICE_URI, "getBookCount"));

To use a Call object returned by the zero-argument variant of createCall(), you need to specify the

required port and operation. Unfortunately, the current Call API does not include a method that allows
the port to be set programmatically. It does, however, include a method called setPortType(), which

appears to set an attribute that is never used. It appears that this is an oversight in the definition of the

API that renders the zero-argument createCall() method useless for application code.

You can use the setOperationName() method to change the operation that a Call object is associated

with. For example, the following sequence is valid:

Call call = service.createCall(new QName(SERVICE_URI,
 "SmallBookQueryPort"));
call.setOperationName(new QName(SERVICE_URI, "getBookCount"));

// Use Call object to invoke the getBookCount() method (code not shown)

call.setOperationName(new QName(SERVICE_URI, "getBookAuthor"));
// Use Call object to invoke the getBookAuthor() method (code not shown)

This feature allows you to conserve resources by creating only one Call object instead of one Call

object per operation invocation.

It appears that, at the time of this writing, there is a bug in the reference
implementation that devalues this technique if you associate a Call object with

an operation, invoke that operation, then select another operation. Under some

circumstances, an attempt to invoke the second operation fails, due to an

apparent mismatch between the number of parameters supplied and the number

that is expected.

Once you have a fully configured Call object, you can use the setProperty() method to set optional

properties that might affect the call, such as authentication information. The properties that you can set

are described in Section 6.3.5, later in this chapter. Finally, call the remote method using the invoke(

) method:

public Object invoke(Object[] inputParams) throws RemoteException;

The inputParams array contains the values to be used as method arguments, in the order in which they

appear in the definition of the method in the original Java interface definition (if there is one), or in the
operation element of the WSDL document. If the method does not require any arguments, then you

can set the inputParams argument to null. Here, for example, is how you invoke the getBookCount(

) method shown in Example 6-5, which does not require any arguments:

QName portName = new QName(SERVICE_URI, "SmallBookQueryPort");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Call call = service.createCall(portName, new QName(SERVICE_URI,
 "getBookCount"));
Object result = call.invoke(null);

In cases in which the remote method returns a Java primitive type, the invoke() method returns an

instance of the Java wrapper class for that primitive type. In the case of the getBookCount() method,

which returns an int, the actual return value from invoke() is an object of type java.lang.Integer:

Object result = call.invoke(null);
int bookCount = ((Integer)result).intValue();

Similarly, to supply the value for an argument that is a Java primitive type, you should pass an instance

of the corresponding wrapper class. To illustrate this, the following code invokes the getBookTitle()
method, which requires an integer argument in the range of 0 to one less than the number of books

returned by getBookCount():

Call call = service.createCall(portName, new QName(SERVICE_URI,
 "getBookTitle"));
// Get title for book with index = 3
Object result = call.invoke(new Object[] { new Integer(3) });
String title = (String)result;

The getBookAuthor() method demonstrates a different approach to returning a value from a web
service. Here is its definition:

public void getBookAuthor(String title, StringHolder author)
 throws SmallBookServiceException;

The intent of this method is that the caller supplies the title of a book as the first argument, while the
service returns the book's author in the StringHolder given as the second argument. Recall from

Chapter 2 that Holder classes make it possible to have parameters whose values change as the result of

a method call (i.e., output parameters), a feature that Java does not directly support. The specification

of the invoke() method states that its Object[] argument should contain only those parameters that

supply input values. Since author is a return value, the proper way to call this method using the DII is
as follows:

Call call = service.createCall(portName, new QName(SERVICE_URI,
 "getBookAuthor"));
String title = "J2ME in a Nutshell";
call.invoke(new Object[] { title });

However, this code would not work if the WSDL definition that the Call object is associated with was

originally created from a Java interface definition. The reason for this is that without additional
information, it is not possible for the tool that generates the WSDL definition (wscompile) to tell

whether the author argument is just an output parameter or whether it both supplies an input value and

receives an output value. As a result, it assumes the latter and generates the WSDL shown in Example

6-6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 6-6. The WSDL definitions for the getBookAuthor() method

<message name="SmallBookQuery_getBookAuthor">
 <part name="String_1" type="xsd:string"/>
 <part name="String_2" type="xsd:string"/>
</message>
<message name="SmallBookQuery_getBookAuthorResponse">
 <part name="String_2" type="xsd:string"/>
</message>
<portType name="SmallBookQuery">
 <!-- Some operation elements not shown -->
 <operation name="getBookAuthor" parameterOrder="String_1 String_2">
 <input message="tns:SmallBookQuery_getBookAuthor"/>
 <output message="tns:SmallBookQuery_getBookAuthorResponse"/>
 <fault name="SmallBookServiceException"
 message="tns:SmallBookServiceException"/>
 </operation>
</portType>

This WSDL extract shows that the input message for the getBookAuthor operation (called
SmallBookQuery_getBookAuthor) requires two string parameters, while the reply message (called

SmallBookQuery_getBookAuthorResponse) returns a single string value. Since the WSDL specifies

two string parameters, the DII invoke() call for this operation has to look like this:

call.invoke(new Object[] { title, null });

where null is supplied as the input value for the author parameter, since there is no meaningful value

that could possibly be used here.

The fact that you have to supply a value for an argument that is not actually used by the service is
unfortunate but is not something that you are likely to encounter in practice, since the WSDL definition

for a real web service will almost certainly have been created (or adjusted) so that it does not require

inputs for arguments that are output-only. In fact, if you were to edit the WSDL file generated by

wsdeploy and change the specification of the SmallBookQuery_getBookAuthor message to the

following:

<message name="SmallBookQuery_getBookAuthor">
 <part name="String_1" type="xsd:string"/>
</message>

then you could, indeed, pass only the single book title argument to the invoke() method.

As you saw earlier, the value returned by the invoke() method is the value returned by the RPC call

itself, if any. So how are the values of any output parameters obtained (as opposed to the method return

value)? There are two Call methods that can be used to get the output values:

public List getOutputValues();
public Map getOutputParams();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The java.util.List returned by the getOutputValues() method contains a single entry for each

input-output or output-only parameter, the order of which reflects the ordering in the Java method
signature (or the ordering implied by the parameterOrder attribute of the operation element in the

WSDL definition). For the getBookAuthor() method, the following code illustrates one way to get

the returned author name:

Call call = service.createCall(portName, new QName(SERVICE_URI,
 "getBookAuthor"));
String title = "J2ME in a Nutshell";
call.invoke(new Object[] { title });
List results = call.getOutputValues();
String author = (String)result.get(0);

Alternatively, the getOutputParams() method returns a java.util.Map in which the key for each
entry is the parameter name, and the associated value is the value returned by the web service. Note,

however, that to determine the correct parameter name, you need to inspect the WSDL definition rather

than rely on the original Java interface definition (if there is one). In particular, the following code does
not work with the JAX-RPC reference implementation:

Map map = call.getOutputParams();
author = (String)map.get(new QName("author"));

This is because the author parameter from the original method definition actually becomes String_2
in the WSDL definition. Instead, you need to use the following code:

Map map = call.getOutputParams();
author = (String)map.get(new QName("String_2"));

According to the JAX-RPC specification, the keys for the Map returned by the

getOutputParams() method should be of type java.lang.String. Therefore,

to get the value assigned to the parameter mapped to the name String_2, the

following code should be used:

Map map = call.getOutputParams();
author = (String)map.get("String_2"));

In the JAX-RPC reference implementation, however, the keys are of type QName

rather than String-hence, the use of QName objects in place of simple strings in

the code shown previously. Given that the implementation does not match the

specification, expect one or the other to change at some point. It is also likely
that vendor implementations will follow the specification and require a string

argument.

It might seem a little strange at first that, despite the fact that the getBookAuthor() method defines

the author argument as type StringHolder, the value retrieved by getOutputValues() or

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getOutputParams() is actually a String. In fact, StringHolder is just a convenience class that
appears in the Java definition of the web service and does not survive as far as the WSDL description,

which instead describes the parameter as a string. When using the DII, you have to work with the actual

parameter types that appear in the WSDL description of the service. The service implementation class,

however, receives a StringHolder, and, if you used wscompile to generate client-side stubs for the

SmallBookQuery interface, the stub for the getBookAuthor() method also expects the calling client
application to supply a StringHolder object. At runtime, the stub gets the string value returned by the

service and installs it in the StringHolder passed by the caller, from where it could be retrieved on

completion of the method call. In general, when working with the DII, refer to the WSDL definition for

the service at all times.

The example source code for this book contains a client application that uses the code shown in this

section to invoke the methods of the SmallBookQuery interface by importing its WSDL definition. You
can try it out by making chapter6\dynamicclients your working directory and typing the following

commands:

ant compile-client
ant run-first-client

The output from this client shows the total number of books as well as the title and author of each

book, obtained by using the DII to call the getBookTitle() and getBookAuthor() methods,

respectively. The complete source code for this client application can be found in the file

chapter6\dynamicclients\client\ora\jwsnut\chapter6\client\FirstDynamicClient.java.

Note that it has not been necessary to specify the URI of the web service before calling the invoke()

method, because the selection of a port defined in a WSDL document automatically determines the
URI. If you use a Call object that is not associated with a WSDL document (as described in the next

section), or if you want to use a target address that is not the same as the one in the WSDL, you can set

an explicit address using the setTargetEndpointAddress() method of the Call object.

6.3.2 Dynamic Invocation of a Service Not Defined by WSDL

Using the dynamic invocation interface for a service defined in a WSDL document is very convenient
for the programmer, since the Call objects are automatically initialized with the number and runtime

types of the input and output parameters and with the return value for each available operation. All you

have to do is select the port and operation that you want to use, supply the input parameter values, and

then invoke the operation. This convenience is obtained at the expense of the runtime cost of the time

taken to read and parse the WSDL document when the Service object is obtained. If you don't want to
incur this expense, or if you won't have access to the WSDL definition at runtime for any reason, you

can programmatically configure the Call objects with the same information. This is, however, very

complex, as you'll see.

As before, the first step is to obtain a Service object. In this case, since you don't have a WSDL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

document, you need to use the single argument createService() method and supply only the service
name:

QName serviceName = new QName(SERVICE_URI, "SmallBookService");
ServiceFactory factory = ServiceFactory.newInstance();
Service service = factory.createService(serviceName);

Next, you get a Call object for the method that you want to invoke, such as getBookCount():

Call call = service.createCall(portName, new QName(SERVICE_URI,
 "getBookCount"));

This code is unchanged from the case in which we used a WSDL definition. One important difference,
however, is that, in the absence of a WSDL definition, there is no way for the JAX-RPC runtime to

check that the port and operation name that you supply are valid. Therefore, any errors made here are
not detected until you attempt to invoke the method.

The next step is to configure the Call object with the information that would previously have been

obtained from the WSDL document. The attributes that you most commonly need to set are listed in

Table 6-2.

Table 6-2. Attributes of the Call object that should be set before invoking an operation

Property Comment

Parameter definitions Set using the addParameter() method

Return type Set using the setReturnType() method

Service URI Set using the setTargetEndpointAddress() method

Encoding style Set using the setProperty() method

Operation style Set using the setProperty() method

In the case of the getBookCount() method, there are no parameters and the return value is an integer.

Here is how you would tailor the Call object to match this specification before invoking this method:

call.setReturnType(XMLType.XSD_INT, java.lang.Integer.class);
call.setProperty(Call.ENCODINGSTYLE_URI_PROPERTY,
 SOAPConstants.URI_NS_SOAP_ENCODING);
call.setTargetEndpointAddress(args[0]);

The setReturnType() method requires that the data type of the return value be described both as an

XML type and as a Java type. The correct Java type is obviously java.lang.Integer, but what about

the XML type? If you didn't already know that the XML Schema type that represents an integer is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xsd:int, the quickest way to find out the correct value to supply is to look at the WSDL definition for
the getBookCount operation, the relevant parts of which are shown in Example 6-7.

Example 6-7. WSDL definitions for the getBookCount operation

<message name="SmallBookQuery_getBookCountResponse">
 <part name="result" type="xsd:int"/>
</message>
<portType name="SmallBookQuery">
 <!-- Not all operations are shown here -->
 <operation name="getBookCount" parameterOrder="">
 <input message="tns:SmallBookQuery_getBookCount"/>
 <output message="tns:SmallBookQuery_getBookCountResponse"/>
 </operation>
</portType>

The operation element specifies that the return value is defined in the

SmallBookQuery_getBookCountResponse message, which defines the type of the result as xsd:int.
Instead of hardcoding this constant value (as a QName), we make use of the

javax.xml.rpc.encoding.XMLType class, which defines constant values for many of the data types

defined by the XML Schema specification. In this case, XMLType.XSD_INT is actually a QName

constructed from the namespace URI for the XML Schema data types and the local name int. See the

reference materials at the back of this book for a list of the other values defined by the XMLType class.

The next line uses the setProperty() method to set the encoding style to be used when creating the
SOAP message for this operation. Unless you are going to use your own private encoding scheme

(which also involves writing custom serializers and deserializers), you should always specify the use of

the default SOAP encoding rules by setting the ENCODINGSTYLE_URI_PROPERTY property of the Call

object. For more information on these properties, see Section 6.3.5, later in this chapter.

Another property of the Call object determines whether the call uses rpc or document semantics. In

this case, there is no need to explicitly set the property because the default, rpc, is appropriate here. See
Section 6.6, later in this chapter, for a discussion of these two different operation styles.

Finally, the setTargetEndpointAddress() method is called to set the URI of the web service to be

called. In this case, we get the address from the command line, which amounts to the following:

call.setTargetAddress("http://localhost:8000/SmallBooks/SmallBookQuery");

Once the Call object is configured, invoke the getBookCount() method and get the results in the

same way as shown earlier:

Object result = call.invoke(null);
int bookCount = ((Integer)result).intValue();

Invoking the getBookTitle() method involves an extra line of code because it requires an integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

argument:

Call bookTitleCall = service.createCall(portName,
 new QName(SERVICE_URI, "getBookTitle"));
bookTitleCall.addParameter("int_1", XMLType.XSD_INT,

java.lang.Integer.class, ParameterMode.IN);
bookTitleCall.setReturnType(XMLType.XSD_STRING, java.lang.String.class);
bookTitleCall.setProperty(Call.ENCODINGSTYLE_URI_PROPERTY,
 SOAPConstants.URI_NS_SOAP_ENCODING);
bookTitleCall.setTargetEndpointAddress(args[0]);

Specify the types of the method call arguments by calling addParameter() once for each of them.

The first argument supplies the name of the parameter being configured, which must be obtained from

the WSDL definition rather than the original Java interface definition. The WSDL definition for the
getBookTitle operation is shown in Example 6-8, where you can see that the part that corresponds to

the method argument is called "int_1".

Example 6-8. The WSDL definitions for the getBookTitle operation

<message name="SmallBookQuery_getBookTitle">
 <part name="int_1" type="xsd:int"/>
</message>
<message name="SmallBookQuery_getBookTitleResponse">
 <part name="result" type="xsd:string"/>
</message>
<portType name="SmallBookQuery">
 <operation name="getBookTitle" parameterOrder="int_1">
 <input message="tns:SmallBookQuery_getBookTitle"/>
 <output message="tns:SmallBookQuery_getBookTitleResponse"/>
 </operation>
</portType>

The next two arguments supply the XML and Java types of the parameter value, which are determined
in the same way as they are for setReturnType(). In this case, since the argument is an integer, the

appropriate values are XMLType.XSD_INT and java.lang.Integer.class, respectively. The final

argument specifies whether the parameter is an input, output, or input-output value using constant

values defined by the javax.xml.rpc.ParameterMode class. In this case, since the parameter is an

input-only value, the appropriate value for this argument is ParameterMode.IN. The other properties
are set in the same way as they were for the getBookCount operation, except that the return value in

this case is a String rather than an integer.

Now that the Call object has been fully configured, you can use it in the usual way:

result = bookTitleCall.invoke(new Object[] { new Integer(3) });
String title = (String)result;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The addParameter(), setReturnType(), and removeAllParameters()

methods (the latter of which is not described here) can only be used with a Call

object created from a Service object that is not associated with a WSDL
definition. If you attempt to use these methods in violation of this rule, a

JAXRPCException is thrown. This is reasonable, since the argument and return

types for methods defined in a WSDL file are already known and should not be

changed.

You can programmatically determine whether a Call object will allow its

parameters and return type to be set by calling the
isParameterAndReturnSpecRequired() method. If this method returns true,

you must use addParameter() and setReturnType() to configure the Call
object. If it returns false, you must not call these methods.

Lastly, let's look at how to configure a Call object to invoke the getBookAuthor() method. Recall

from the previous section that this method does not have a return value. Instead, it uses an output
parameter to return the name of the author of the book whose title is supplied as its first argument.

Here's how to create and tailor a Call object for this case (the important lines are highlighted):

Call bookAuthorCall = service.createCall(portName, new QName(SERVICE_URI,
 "getBookAuthor"));
bookAuthorCall.addParameter("String_1", XMLType.XSD_STRING,
 java.lang.String.class, ParameterMode.IN);
bookAuthorCall.addParameter("String_2", XMLType.XSD_STRING,
 java.lang.String.class, ParameterMode.OUT);
bookAuthorCall.setReturnType(null);
bookAuthorCall.setProperty(Call.ENCODINGSTYLE_URI_PROPERTY,
 SOAPConstants.URI_NS_SOAP_ENCODING);
bookAuthorCall.setTargetEndpointAddress(args[0]);

Looking at the WSDL definition for this operation (in Example 6-6 earlier in this chapter), you can see

that the actual names to be used for the arguments are String_1 and String_2, respectively. We know
that the first argument (String_1) is an input-only value and therefore its parameter mode should be

ParameterMode.IN. The second argument, however, does not require a valid value when the method is

called - instead, the value is supplied by the reply message. The appropriate mode for this argument

is, therefore, ParameterMode.OUT.

The Java return type of this method is void; therefore, the setReturnType() method is called with

argument null to indicate this. The variant of setReturnType() used previously requires a QName that
describes the XML return type, but does not require the corresponding Java data type, which is inferred

based on the XML type. Hence, the following calls are equivalent:

call.setReturnType(XMLType.XSD_INT);
call.setReturnType(XMLType.XSD_INT, java.lang.Integer.class);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To invoke the getBookAuthor() method and extract the result, the following code is used:

bookAuthorCall.invoke(new Object[] { title });
List list = bookAuthorCall.getOutputValues();
String author = (String)list.get(0);

Note that, since the second parameter has been defined with mode ParameterMode.OUT, you should not
supply a value for it in the argument list passed to the invoke() method. If it was defined with mode

ParameterMode.INOUT, however, then a valid input value would have been required.

You can find the source code for the client application shown in this section in the file
chapter6\dynamicclients\client\ora\jwsnut\chapter6\client\SecondDynamicClient.java. To run this

example, which produces the same result as the earlier version that used a WSDL definition to

configure its Call objects, make chapter6\dynamicclients your working directory and type the
following commands:

ant compile-client
ant run-second-client

6.3.3 DII and Exceptions

Some of the methods in the SmallBookQuery interface are defined to throw service-specific exceptions

to report error conditions to the caller. For example, the getBookAuthor() method throws a

SmallBookServiceException when asked for the author of a book whose title it does not recognize:

public abstract void getBookAuthor(String title, StringHolder author)
 throws SmallBookServiceException, RemoteException;

If you use wscompile to generate client-side stubs, and then use those stubs to call this method with an

invalid book title, a SmallBookServiceException is thrown from the client's method call, provided

that the exception class is defined in such a way that it obeys the rules for properly formed service-

specific exceptions, as listed in Section 2.1.2.1.

The current version of the JAX-RPC specification does not require that this behavior be preserved for

methods that are invoked using the dynamic invocation interface. In fact, in the reference

implementation, when the invoke() method is called in circumstances that should result in a

SmallBookServiceException, application code actually receives a java.rmi.ServerException, for

which the associated message is the name of the service-specific exception thrown by the service

implementation - in this case,
ora.jwsnut.chapter6.smallbookservice.SmallBookServiceException. This is not particularly

helpful, and, hopefully, a future version of the JAX-RPC specification will require the original

exception to be propagated to the caller of the invoke() method.

6.3.4 One-Way Calls

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you use the invoke() method, the JAX-RPC runtime builds a SOAP message, sends it to the

server, and blocks until a response is received, thus giving the same effect as a method invocation using

a precompiled client-side stub or a dynamic proxy. In some cases, however, it is useful to be able to

call a method and not block until the server completes it. The JAX-RPC specification requires that all

implementations support this nonblocking mode, which it describes as a one-way call (a sequence
diagram for which can be found in Figure 2-6 in Chapter 2).

To perform a one-way call, obtain and configure (if necessary) a Call object in the usual way, and then

use the invokeOneWay() method instead of invoke(). The client applications used in this section

both make such a call to record logging information:

Call logCall = service.createCall(portName, new QName(SERVICE_URI, "log"));
logCall.addParameter("String_1", XMLType.XSD_STRING, java.lang.String.class,
 ParameterMode.IN);
logCall.setReturnType(null);
logCall.setProperty(Call.ENCODINGSTYLE_URI_PROPERTY,
 SOAPConstants.URI_NS_SOAP_ENCODING);
logCall.setTargetEndpointAddress(args[0]);
logCall.invokeOneWay(new Object[] { "Successful completion." });

This code makes a one-way call to a method called log() that requires a single string argument and
does not return anything. Logging is a good candidate for implementation as a nonblocking operation

because the client cares only that something is logged, but doesn't want to wait until the log entry is

written. One-way operations cannot return a value (for obvious reasons), and they also cannot throw
exceptions to report errors encountered in the service implementation.

It is important to note that the extent to which the invokeOneWay() method lives up to its claim of

being a nonblocking operation is implementation-dependent. Some implementations might choose to
provide true nonblocking semantics by using a separate thread to make the method call, so that the

invokeOneWay() method returns to the caller even before the SOAP message is sent. At the other

extreme, invokeOneWay() might construct and send the message before it returns control-therefore,

it will probably be only slightly faster than using the invoke() method (or perhaps not any faster at

all).

6.3.5 Call Object Properties

The Call object provides several standard properties that you can use to customize the way in which a

method invocation is performed. The set of properties defined by the JAX-RPC specification is shown

in Table 6-3. Note that some of these properties are the same as those defined for use with the Stub
interface and listed in Table 2-6.

Table 6-3. Properties associated with the Call object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property name Description

Call.USERNAME_PROPERTY

Call.PASSWORD_PROPERTY

The username and password to be supplied to the server when

basic authentication is in use. See Section 6.7.6 later in this

chapter for a discussion of authentication in the context of

JAX-RPC.

Stub.ENDPOINT_ADDRESS_PROPERTY

The URI of the target endpoint. This property is usually set
using the convenience method setTargetEndpoint-

Address(), and is set automatically when the Call object is
associated with a WSDL definition.

Call.ENCODINGSTYLE_URI_PROPERTY

Specifies the encoding rules to be used when building SOAP

messages. Under normal circumstances, you would use SOAP

section 5 encoding, which can be selected by setting this

property to the value

SOAPConstants.URI_NS_SOAP_ENCODING. This property is set
automatically when the Call object is associated with a

WSDL definition.

Call.OPERATION_STYLE_PROPERTY

Specifies whether the operation is RPC- or document-style.
For typical RPC operations, this attribute should be set to

rpc, which is its default value. See Section 6.6 later in this

chapter for more information on operation styles. Support for

this property is optional.

Call.SESSION_MAINTAIN_PROPERTY

A java.lang.Boolean value that determnes whether the

server should enter into an HTTP session with this client

when HTTP is the underlying transport mechanism. This
property is false by default. The use of sessions as a means of

retaining context between method calls is discussed in

Section 6.7, later in this chapter.

Call.SOAPACTION_URI_PROPERTY

The URI to be used for the SOAPAction header when making

the call. This URI is used only when the

SOAPACTION_USE_PROPERTY has the value true. Since JAX-

RPC-hosted services do not use SOAPAction, this attribute
need not be set when calling such a service. An appropriate

value should be used when calling a non-JAX-RPC

implementation. This property is set from the WSDL

definition of an operation when the Call object is created

from a Service that is associated with a WSDL document.

A java.lang.Boolean value that indicates whether a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property name Description

Call.SOAPACTION_USE_PROPERTY

A java.lang.Boolean value that indicates whether a

SOAPAction header should be included. If this property has

the value true, then the URI given by
SOAPACTION_URI_PROPERTY is used if it is set, or "" (an empty

string) is used if it is not set.

You can set the value of a property by calling the setProperty() method, supplying the property

name as the first argument:

public void setProperty(String name, Object value) throws JAXRPCException;

An exception is thrown if the property name is not recognized, if it is an optional property that the
implementation does not support, or if the supplied value is invalid. You can find out which properties

a particular implementation supports by calling the getPropertyNames() method, which returns an
Iterator in which each entry is a String representing the name of a supported property.

The value of a given property can be obtained using the getProperty() method:

Boolean useSession = (Boolean)call.getProperty(Call.SESSION_MAINTAIN_PROPERTY);

You can remove a property (thereby making its value undefined) using the removeProperty()

method.

Call.SOAPACTION_USE_PROPERTY

A java.lang.Boolean value that indicates whether a

SOAPAction header should be included. If this property has

the value true, then the URI given by
SOAPACTION_URI_PROPERTY is used if it is set, or "" (an empty

string) is used if it is not set.

You can set the value of a property by calling the setProperty() method, supplying the property

name as the first argument:

public void setProperty(String name, Object value) throws JAXRPCException;

An exception is thrown if the property name is not recognized, if it is an optional property that the
implementation does not support, or if the supplied value is invalid. You can find out which properties

a particular implementation supports by calling the getPropertyNames() method, which returns an
Iterator in which each entry is a String representing the name of a supported property.

The value of a given property can be obtained using the getProperty() method:

Boolean useSession = (Boolean)call.getProperty(Call.SESSION_MAINTAIN_PROPERTY);

You can remove a property (thereby making its value undefined) using the removeProperty()

method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4 JAX-RPC and J2EE 1.4 Application Clients

So far, you have seen two different ways for a client to get a reference to the Service object that it

needs before it can invoke the methods of a web service:

Direct instantiation of the Service implementation class. This is the technique used in Chapter 2.

Although this works, it requires the application to know the name of the generated Service class,
which makes it dependent on a particular JAX-RPC implementation.

Using a ServiceFactory to create a Service object, as shown earlier in this chapter. While this

frees your code from dependency on the JAX-RPC implementation, the object you get back

implements only the Service interface, not the actual interface defined by the web service (such

as BookService). Therefore, it doesn't have methods such as getBookQueryPort() that directly

return references to the service endpoint interface.

If you are writing a J2SE application client, these are the only choices available to you. However, J2EE
1.4 allows container-resident clients to retrieve references to Service objects defined in their JNDI

environment. Furthermore, these Service objects can be instances of generated classes such as

BookService. By using this facility, you can write code that is vendor-independent (in the sense that it

does not rely on the actual name of the generated Service class), while still having the convenience of

using methods such as getBookQueryPort(). This section shows how to make use of this feature by
demonstrating how to create a J2EE application client that works with the book web service developed

in Chapter 2.

Unlike J2SE clients, J2EE application clients run inside a client container provided by the vendor of

the application server in which the service is deployed. In order to build a J2EE application client, you

need to package it into a JAR file, use the application server's deployment tools to deploy it to the

target server, and finally run it under the control of the client container. Although very little in this
process depends on whether you are writing a client for a web service, for the sake of completeness, I'll

show you everything that is necessary to create and deploy a web service client for the J2EE 1.4

reference implementation. If you are using a different application server, the details of the deployment

might change but the same application code should work, since the APIs and even some of the

deployment descriptors are part of the J2EE 1.4 platform specification.

6.4.1 Adding a Web Service Reference to the JNDI Environment

The application client that you are going to see in this section uses the book web service developed in

Chapter 2. J2EE 1.4 allows a container-based client to get a reference to the Service object for a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

deployed service from an entry in its JNDI environment. You create such an entry for an application
client by including a file called webservicesclient.xml in the META-INF directory of its JAR file

(which will be referred to here as the client JAR file). Example 6-9 shows the content of this file for a

client that needs to access the book web service.

Example 6-9. A webservicesclient.xml file for a client of the book web service

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE webservicesclient PUBLIC
 "-//IBM Corporation, Inc.//DTD J2EE Web services client 1.0//EN"
 "http://www.ibm.com/standards/xml/webservices/j2ee/j2ee_web_services_client_1_
0.dtd">
<webservicesclient>
 <service-ref>
 <description>Book Service Reference</description>
 <service-ref-name>service/BookService</service-ref-name>
 <service-interface>ora.jwsnut.chapter2.bookservice.BookService
 </service-interface>
 <wsdl-file>BookService.wsdl</wsdl-file>
 <jaxrpc-mapping-file>META-INF/model</jaxrpc-mapping-file>
 </service-ref>
</webservicesclient>

The service-ref element defines a reference to a web service that is deployed somewhere on an

application server. The meanings of the elements nested inside service-ref are as follows:

service-ref-name

The service-ref-name child element determines where the reference to the service appears in

the JNDI environment, relative to java:comp/env. In this case, the reference appears at

java:comp/env/service/BookService, a name that was chosen to be consistent with the

recommendation in the J2EE specification that all web service references should appear under
java:comp/env/service.

service-interface

The fully qualified name of the generated Service class for the book web service. It is also

possible to use the value javax.xml.rpc.Service here, in which case the reference bound in the

JNDI environment is an instance of Service rather than BookService, and the application code

needs to use one of the getPort() methods rather than getBookQueryPort() to gain access to
the service endpoint.

wsdl-file

The WSDL definition for the service. The value of this element gives the location of the WSDL

file relative to the root of the JAR file that contains the client application.

jaxrpc-mapping-file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The J2EE 1.4 mapping file that describes how to map from the WSDL definition to the
corresponding Java service endpoint interface. This path is also relative to the root of the JAR

file containing the application. As noted in Chapter 2, the reference implementation of J2EE 1.4

allows you to use a wscompile model file instead of a mapping file.

The information in this file is processed by the deployment tools, and results in the generation of a

class that implements the Service interface, together with the client-side stubs that the application will

need to call the service itself. Unlike previous examples, code generation takes place when the client is
deployed, rather than as part of the process of writing the application itself.

6.4.2 Writing the J2EE Application Client

As far as using the service endpoint interface of the book web service is concerned, it does not matter

whether you implement the client as a J2SE application, a J2EE client, or as part of an EJB or a servlet
- you still invoke the same methods with the same arguments. The difference lies in the way that

container-resident clients obtain a Service object. The J2SE client in Chapter 2 was obliged to know
the name of the Service implementation class:

BookService_Impl service = new BookService_Impl();
BookQuery bookQuery = (BookQuery)service.getBookQueryPort();
((Stub)bookQuery)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, args[0]);

A container-resident client that includes a service-ref element in its webservicesclient.xml file can,

instead, obtain a Service object from its JNDI environment. Here's how such a client would access the

Service object declared in Example 6-9:

InitialContext ctx = new InitialContext();
BookService service = (BookService)PortableRemoteObject.narrow(
 ctx.lookup("java:comp/env/service/BookService"),
 BookService.class);
BookQuery bookQuery = (BookQuery)service.getBookQueryPort();
((Stub)bookQuery)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, args[0]);

Notice that this code deals only with the implementation-independent BookService and BookQuery

interfaces; it is up to the deployment tools to provide suitable implemention classes and make them

available to the application at runtime. Not only does this lack of dependence on concrete

implementation classes make the code more portable, it also removes the need for these classes to be

generated while the application is being developed. In fact, the only information that the developer
needs about the service is contained in its WSDL definition, from which the only classes needed to

create the application (i.e., the service endpoint interface and the other classes that it uses) can be

generated by using the -import option of the wscompile utility:

wscompile -import -f:norpcstructures -d output/interface config.xml

The -import option requires a config.xml file that specifies the location of the WSDL definition. Used

http://lib.ommolketab.ir
http://lib.ommolketab.ir

on its own, this option results in the generation of the service endpoint interface and additional classes
that know how to build the SOAP requests for the interface methods. Since we don't want the SOAP

message creation classes, we use the -f:norpcstructures option, so that only the implementation-

independent service endpoint interface classes (BookQuery, BookInfo, and BookServiceException)

are generated.

6.4.3 Packaging and Deploying the Application Client

Unlike a J2SE client, a J2EE application client needs to be packaged and deployed to an application

server. The purpose of the deployment is not to make the client available for remote access - rather, it

is to give the deployment tools the opportunity to create the appropriate server-dependent client-side

stubs as well as other information that will be needed to run the application from a client machine.

To deploy the application, you need to create a client JAR file that contains the files shown in Table 6-
4.

Table 6-4. Files required for the book web service application client JAR file

File type Filename

Service endpoint interface ora.jwsnut.chapter2.bookservice.BookQuery

 ora.jwsnut.chapter2.bookservice.BookInfo

 ora.jwsnut.chapter2.bookservice.BookServiceException

Service interface ora.jwsnut.chapter2.bookservice.BookService

Application implementation ora.jwsnut.chapter6.client.BookServiceAppClient

WSDL file BookService.wsdl

Deployment descriptors META-INF/application-client.xml

 META-INF/mapping.xml or META-INF/model

 META-INF/webservicesclient.xml

Manifest file META-INF/MANIFEST.MF

The client JAR file is actually used in two ways:

For deployment to the server in order to create the stubs

As the source for the class files for the application client at runtime

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The WSDL file and the deployment descriptors are required at deployment time, whereas the class files
and the manifest file are needed when the application is started on the client system. You've already

seen the webservicesclient.xml file and the mapping.xml file (or the wscompile model file, which may

be substituted for it in the case of the J2EE 1.4 reference implementation) as well as what they contain.

These files are specific to the J2EE 1.4 web service implementation. The other deployment file,

application-client.xml, is a generic file that is used to describe a J2EE application client and does not
contain anything related to web services.

Having created the client JAR file, you can either deploy it directly or wrap it in an EAR file and

deploy that instead. Whichever choice you make, you need to arrange for the file containing the
generated client stubs to be returned and stored on the client system so that they can be used when the

application is executed. You can build and deploy the client JAR file for this example by making

chapter6\appclient your working directory and typing the command:

ant appclient-deploy

Having built the client JAR file (called appclient.jar) and packaged it inside an Enterprise Archive file

(called appclient.ear), the appclient-deploy target of the Ant buildfile deploys it to the server using

the following command:

deploytool -deployModule -id BooksAppClient appclient.ear stubs.jar

Following successful deployment, the generated stubs are written to a file called stubs.jar. The JAR
also contains a file called sun-j2ee-ri.xml that contains information generated by the deployment tools
intended for the application container within which the client is executed. The content of this file,

which is specific to the J2EE 1.4 reference implementation, is shown in Example 6-10.[3]

[3] Actually, deployment of the application client is only one way to generate the required stubs.

Since the JAR file for an application client can be included in the same EAR as the WAR file or

EJB JAR file containing a web service implementation, it is often convenient to use deploytool as

shown here to create the stubs when the service itself is deployed. If you want to keep the
application separate, however, you could choose to use the j2eec command instead, which can

also generate the stubs and the sun-j2ee-ri.xml file, and does not require access to the target

application server. Of course, like deploytool, j2eec works only with the J2EE reference

implementation. To create stubs for a third-party application server, you need to use the vendor's

equivalent of j2eec. The j2eec command is described in Chapter 8.

Example 6-10. The sun-j2ee-ri.xml file generated for the book web service application client

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE j2ee-ri-specific-information
 PUBLIC "-//Sun Microsystems Inc.//DTD J2EE Reference Implementation 1.4//EN"
 "http://localhost:8000/sun-j2ee-ri_1_4.dtd">
<j2ee-ri-specific-information>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <rolemapping/>
 <app-client>
 <module-name>appclient.jar</module-name>
 <service-ref>
 <service-ref-name>service/BookService</service-ref-name>
 <service-impl-class>ora.jwsnut.chapter2.bookservice.BookService_Impl
 </service-impl-class>
 <service-qname>
 <namespaceURI>urn:jwsnut.chapter2.bookservice/wsdl/BookQuery
 </namespaceURI>
 <localpart>BookService</localpart>
 </service-qname>
 </service-ref>
 </app-client>
</j2ee-ri-specific-information>

The most interesting part of this file is highlighted in bold; these two lines instruct the application

container to bind an instance of the class ora.jwsnut.chapter2.bookservice.BookService_Impl

into the application's JNDI environment at java:comp/env/service/BookService. The JNDI location

was obtained by the deployment tools from the service-ref element in the webservicesclient.xml file

shown in Example 6-9. The class name, however, was not specified in that file - it is dependent on the
JAX-RPC implementation and corresponds to one of the generated artifacts in the stubs.jar file. In fact,

the stubs.jar file contains compiled versions of all of the implementation-dependent files listed in

Table 6-1. The difference between this case and the discussion earlier in this chapter is that these

classes were compiled and generated by the deployment tools rather than as part of the development of
the client-side application itself.

6.4.4 Running the Application Client

Although creating a J2EE application client has the benefit of removing vendor-specific dependencies

from the code, there are two important points that are worth bearing in mind:

This technique works only when the application can be deployed into a J2EE application server so

that the appropriate stubs can be generated. This is not as limiting as it may appear, however, as it

doesn't necessarily mean that you use only the resulting combination of client and stubs to talk to

the container in which the application was deployed. On the contrary, since the stubs simply
generate SOAP messages, it should be possible to use them to connect to any implementation of

the same web service, whether it is hosted by a J2EE-based application server or in a .NET

environment.

You can't just run the application client using a simple java command. Instead, you need to run it

under the control of an application client container. Furthermore, because the stubs file contains

information that is currently not part of the J2EE platform specification, you will almost certainly
have to use the client container provided by your application server vendor.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can run the application client for the book web service by typing the command:

ant appclient-run

This command uses the J2EE command-line utility runclient, which invokes the reference

implementation's client container. Here is the actual command that gets executed by this Ant buildfile

target:

runclient -client appclient.jar -stubs stubs.jar
 http://localhost:8000/Books/BookQuery

The appclient.jar file is, of course, the client JAR file containing only the vendor-independent
application implementation (the content of which was listed in Table 6-4), while stubs.jar contains all

of the files that depend on the target application server. By using these two JAR files together, it should

be possible to supply the address of any implementation of the book web service and successfully
interwork with it, provided that the underlying JAX-RPC implementation is capable of interworking

with the server that it is directed to connect to. In case you were wondering how the runclient utility
knows which class in the client JAR contains the main() method of the application itself, this

information is provided by a Main-Class entry in the MANIFEST.MF file of the client JAR:

Main-Class: ora.jwsnut.chapter6.client.BooksAppClient

Although in this example the client JAR was deployed to the application server in order for the stubs to

be generated, the deployed module is not used further. In fact, you can undeploy it from the application
server and still run the application. To prove this, use the following commands:

ant appclient-undeploy
ant appclient-run

You'll see that the application continues to work even after being "undeployed."

6.4.5 Web Service References for Servlets and EJBs

It is worth noting that J2EE 1.4 allows both EJBs and servlets to act as clients of web services that may

reside in the same application server or, more likely, at a remote location. This facility makes it

possible for a server-side component to satisfy some or all of a client request by delegating it to an

external web service, without the client needing to be aware that this is the case.

The deployment information for EJBs and web applications that need to communicate with web

services must include a service-ref element that describes the service endpoint interface and points
to its WSDL definition. This element appears in the web.xml file in the case of a servlet or in the ejb-

jar.xml file for an EJB. As with the service-ref element in the webservicesclient.xml file (which is

not used for servlets or EJBs), this element results in an appropriate Service object being bound into

the component's JNDI environment at runtime. A servlet or EJB uses the same techniques as the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

application client just shown to access the Service object and invoke web service methods.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.5 Using Attachments

In Chapter 3 , you saw that SOAP messages can carry information either in the body part or in separate
attachments. Typically, you would use an attachment when you need to include data of a type that

cannot be placed in the SOAP body, which is restricted to valid XML. You might also use an

attachment to carry plain text or an XML document or document fragment in cases where it would be
difficult or inconvenient to embed it within the body part itself. Whereas SAAJ requires the use of a

specific API to create SOAP messages with attachments, JAX-RPC transparently places the values of
method arguments and return values with any of the following Java types into SOAP attachments:

java.awt.Image

javax.activation.DataHandler

javax.mail.internet.MimeMultipart

javax.xml.transform.Source

Arguments and return types that are arrays of these data types are handled by creating one attachment

for each array entry.

Since JAX-RPC handles the creation of attachments transparently, neither the client nor the service

implementation needs to be aware that some of the data they are exchanging may be carried in an

attachment. This is far more convenient than the lower-level API provided by SAAJ, which requires
the programmer to explicitly manage each attachment and to create references from the message body

to any associated data in an attachment if necessary.

At the time of this writing, the reference implementation's handling of

attachments is such that it generates nonstandard SOAP messages that probably
will not be properly understood by third-party products. This is, however, only a

shortcoming of the reference implementation. Commercial products will almost

certainly use the standard MIME binding described in Chapter 5 in order to

ensure full interoperability.

In order to illustrate the use of attachments, the example source code for this book includes a JAX-RPC

web service that is similar to the book image web service implemented in Chapter 3 using the SAAJ

API. The endpoint interface definition for this service, which you can find in the file

chapter6\extendedbookservice\interface\ora\jwsnut\chapter6\extendedbookservice\EBookQuery.java ,

is shown in Example 6-11 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 6-11. A JAX-RPC web service that uses data types encoded in attachments

package ora.jwsnut.chapter6.extendedbookservice;

import java.awt.Image;
import java.rmi.Remote;
import java.rmi.RemoteException;
import javax.activation.DataHandler;
import javax.mail.internet.MimeMultipart;
import javax.xml.transform.Source;

public interface EBookQuery extends Remote {

 //Gets the number of books known to the service
 public abstract int getBookCount() throws RemoteException;

 // Gets the set of book titles.
 public abstract String[] getBookTitles() throws RemoteException;

 // Gets the images for books with given titles
 public abstract Image[] getImages(String[] titles, boolean gif)
 throws EBookServiceException, RemoteException;

 // Gets book images in the form of a DataHandler
 public abstract DataHandler[] getImageHandlers(String[] titles, boolean gif)
 throws EBookServiceException, RemoteException;

 // Gets the book images in MimeMultipart form
 public abstract MimeMultipart getAllImages()
 throws EBookServiceException, RemoteException;

 // Gets XML details for a given list of books.
 public abstract Source[] getBookDetails(String[] titles)
 throws EBookServiceException, RemoteException;
}

The service implementation has a list of books, keyed by book title, for each of which it holds a cover

image in both GIF and JPEG form as well as an XML document fragment that contains details of the

book. The methods of the EBookQuery interface allow a client application to get the complete list of

book titles and then to retrieve the cover images and the XML information for any number of them.
You can build and install the web service for this example by opening a command window, making

chapter6\extendedbookservice your working directory and then typing the following:

ant deploy

The client application is a variant of the Swing GUI client that was used in Chapter 3 . To compile and

run it, type the following commands:

ant compile-client
ant run-client

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When the user interface appears, you will see that it contains a list of the book titles that the web

service knows about, together with a blank area in which the cover images will be displayed and a set

of checkboxes that determine which of the service methods will be used to retrieve them, as shown in

Figure 6-1 .

Figure 6-1. A client that uses JAX-RPC to retrieve images and XML documents

The following sections use the client and server implementations for this example to illustrate how to

exchange the various different types of data that JAX-RPC places into attachments. Although the

methods of the EBookQuery interface are defined in such a way that the attachments are all associated

with method return values, it is perfectly possible for an attachment to be sent from the client to the
server. For example, a method defined like this:

public void addImage(String title, Image image);

results in the image data being placed in an attachment in the SOAP request message sent to the server.

6.5.1 Image Attachments

You can exchange images that are encoded using formats supported by the JRE by declaring a

java.awt.Image object as a method argument or return value. Having done this, the sender simply has

to create the Image object, and the receiver uses the copy that it receives in the normal way. Neither the

sender nor the receiver has to be concerned about how the image is encoded in the SOAP message.

Example 6-12 shows the server-side implementation of the getImages() method from the
EBookQuery interface. The helper class EBookServiceServantData holds book cover image data in the

form of two byte arrays for each book - one encoded in GIF format, and the other in JPEG format.

The method arguments specify the titles of the books for which the cover images are required and

whether the GIF or JPEG encoding should be returned.[4] The code in Example 6-12 gets the correct set

of image data from the helper class, converts each item of the set into an Image object, and returns an
array containing an entry for each of them. None of this code uses any JAX-RPC API, but it is fairly

typical of code that handles images.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[4] As of Java 2 Version 1.3, PNG images are also supported. In Java 2 Version 1.4, it is also

possible to plug in encoders and decoders for other image formats. For simplicity, this example

uses only GIF and JPEG images.

Example 6-12. Server implementation of a method that returns Image objects

public Image[] getImages(String[] titles, boolean gif) throws EBookServiceException {
 int length = titles.length;
 Image[] images = new Image[length];
 for (int i = 0; i < length; i++) {
 byte[] imageData = EBookServiceServantData.getImageData(titles[i], gif);
 if (imageData == null) {
 throw new EBookServiceException("Unknown title: [" +
 titles[i] + "]");
 }
 if (tracker == null) {
 tracker = new MediaTracker(new Component() {});
 }
 Image image = Toolkit.getDefaultToolkit().createImage(imageData);
 tracker.addImage(image, 0);
 images[i] = image;
 }
 try {
 tracker.waitForAll();
 for (int i = 0; i < length; i++) {
 tracker.removeImage(images[i]);
 }
 } catch (InterruptedException ex) {
 }

 return images;
}

The client code that uses this method, shown in Example 6-13 , is also very straightforward - the

Image objects that are returned are used to create Swing ImageIcon s that are then displayed in the user
interface using JLabel s. Once again, as you might expect, there is no JAX-RPC-specific code

involved.

Example 6-13. Client code that uses a JAX-RPC method returning Image objects

Image[] images = bookQuery.getImages(selectedTitles, isGif.isSelected());
for (int i = 0; i < images.length; i++) {
 imagePanel.add(new JLabel(new ImageIcon(images[i])));
}

To trigger this code, start the Swing client, select one or more book titles from the list on the lefthand

side of the window, make sure that the "DataHandler" checkbox is not selected, then press the button

labeled "Fetch." After a short delay, you should see the cover images for the books that you selected

http://lib.ommolketab.ir
http://lib.ommolketab.ir

displayed in the righthand side of the window.

Although this seems very straightforward, this code probably does not behave in quite the way you
might expect, although you're unlikely to notice the problem simply by looking at the results. The issue

revolves around the way in which the image is transferred from the web service. The second argument

of the getImages() method in Example 6-12 specifies whether to use the GIF- or JPEG-encoded

version of the image data. The value that is used depends on whether the "GIF images" checkbox in the

user interface is selected. This value is correctly conveyed to the server, which will build Image objects
from the appropriately encoded image data. Once the server's getImage() method returns the

Image

objects, the JAX-RPC runtime has to encode them in byte form for inclusion in an attachment.[5]

However, as noted during the discussion of attachments in Chapter 3 , the JRE includes an encoder for
JPEG images but not for GIF images. As a result, the JAX-RPC runtime included in the reference

implementation cannot produce a GIF-encoded byte stream for an image. It actually always creates an

attachment in which the content type is image/jpeg . Therefore, although you might request a GIF
image, and the service implementation class might return an Image object created from GIF-encoded

data, the client nevertheless receives an Image object created from a JPEG-encoding of that image. The
same is true for PNG images, or any other type of image that the server might support. In practice, this

is not really very important, since the Image class does not provide a means of finding out how the

image was originally encoded and therefore there is no way for the client to be affected by this
implementation quirk. There is really only a problem if the JRE used a JPEG encoding algorithm that

noticably reduced the quality of the image.

[5] This is, of course, rather counter-productive, since we already had the image data in byte form

and then converted it to an Image object for the sake of the method call. As you'll see in the next

section, there is a more efficient way to return image data to the client.

6.5.2 DataHandler Attachments

As you saw in Chapter 3 , the DataHandler class, which is part of the JavaBeans Activation

Framework, can be used to encapsulate any kind of data that has a MIME encoding. It therefore

represents an extremely flexible way to transport data - such as images, sound files, movies, and so

on - from a web service to an application client. Since the programming interface is independent of

the encapsulated data, the client does not need to be specifically coded to handle a specific set of
possible data types, but can instead deal only with a DataHandler object and use its getContentType(

) method to determine the type of data that it has received. Processing could then be delegated to an

appropriate helper, which is most likely configured and selected based on the content type.

In the case of the EBookQuery interface, the getImageHandlers() method is provided as an

alternative to getImages() , to return a DataHandler for each book's cover image instead of an Image

. The server-side implementation of this method is shown in Example 6-14 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 6-14. Server implementation of a method that returns DataHandler objects

public DataHandler[] getImageHandlers(String[] titles, boolean gif) throws
EBookServiceException {
 int length = titles.length;
 DataHandler[] handlers = new DataHandler[length];
 for (int i = 0; i < length; i++) {
 byte[] imageData = EBookServiceServantData.getImageData(titles[i], gif);
 if (imageData == null) {
 throw new EBookServiceException("Unknown title: [" +
 titles[i] + "]");
 }
 handlers[i] = new DataHandler(new ByteArrayDataSource("Image Data",
 imageData,
 gif ? "image/gif" : "image/jpeg"));
 }
 return handlers;
}

As you can see, this code is much simpler than that of the getImage() method in Example 6-12 . All

that is necessary is to get the encoded image data and then create a DataHandler to encapsulate it. A

DataHandler typically is created from a Java object representing the data itself and a string that
represents the content type of the data (such as image/jpeg). However, in this case, we associate the

DataHandler with the data through a custom DataSource class called ByteArrayDataSource . The

rationale for doing this, together with the implementation of the ByteArrayDataSource class, is

covered in detail in Section 3.6.3.4 (which you should read before proceeding, if you have not already

done so).

On the client side, an application that calls the getImageHandlers() method can use the
DataHandler getContent() method to get a Java object that represents the encapsulated data. The

code in the Swing GUI client that uses this method is shown in Example 6-15 .

Example 6-15. Client code that uses a JAX-RPC method returning DataHandler objects

DataHandler[] handlers = bookQuery.getImageHandlers(selectedTitles,
 isGif.isSelected());
for (int i = 0; i < handlers.length; i++) {
 imagePanel.add(new JLabel(new ImageIcon((Image)handlers[i].getContent())));
}

This code uses the getContent() method to extract the data from each returned DataHandler in

object form, which it expects to be an Image object. This assumption is justified because the JAX-RPC

specification requires that implementations of the getContent() method return objects of specific

types based on the content type of the data, which can itself be obtained by calling the DataHandler
getContentType() method. Table 6-5 shows the mapping from MIME type to Java types required by

the specification.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 6-5. Mapping of MIME types to Java types for the DataHandler getContent() method

MIME type Java data type

image/gif java.awt.Image

image/jpeg java.awt.Image

text/plain java.lang.String

text/xml javax.xml.transform.Source

application/xml javax.xml.transform.Source

multipart/* javax.mail.internet.MimeMultipart

In the case of this example, since the data always has content type image/gif or image/jpeg , the
object obtained from the getContent() method can be assumed to be of type Image . To return

objects of the other types, the server implementation creates a DataHandler in which the content type

is set appropriately. For example, to convey plain text in an attachment, the server does the following:

DataHandler handler = new DataHandler("Some plain text", "text/plain");

while XML can be incorporated by supplying a javax.xml.transform.Source object and setting the

content type to text/xml :

Source source = new javax.xml.transform.stream.StreamSource(
 new StringReader("<detail><name>Fred</name></detail>"));
DataHandler handler = new DataHandler(source, "text/xml");

MimeMultipart and XML data can also be explicitly passed via method arguments and the return

value, as will be described in Section 6.5.3 and Section 6.5.4 , later in this chapter. For content types

that are not listed in Table 6-5 , the DataHandler getContent() method may return an appropriate

Java object, or an instance of

java.io.InputStream

that can be used to access the byte stream representation of the object. For all content types, you can

use the DataHandler getInputStream() method to get an InputStream instead of a Java object
representation, should you need to do so.

The example client calls the getImageHandlers() method when you select one or more book titles

and check the "DataHandler" checkbox. Select or unselect the "GIF images" checkbox to request GIF

or JPEG images.

Leaving aside the fact that the intent is slightly less clear, there are two main advantages to be gained

by using a DataHandler in preference to Image objects when defining remote method signatures:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As shown in Example 6-14 , the server needs only to keep the image in byte form, exactly as it
would be read from a file. This avoids the use of Image objects, which are more appropriate to a

client application than a server, and take up memory resources as well as the time required to

create them.

When a DataHandler is used, the JAX-RPC runtime does not need to perform the time-

consuming process of converting the content of an Image back to a byte stream, almost certainly

reversing the process used by the service implementation to create the Image object in the first
place. The fact that no conversion is involved also means that images handled using a

DataHandler are encoded in SOAP message attachments using their correct MIME type - in
other words, GIF (and PNG) images are not converted to JPEG form first.

6.5.3 MimeMultipart Attachments

A javax.mail.internet.MimeMultipart object is a convenient wrapper that can be used to move one
or more items of MIME-encoded data between the client and the server. Although there is no

requirement for the data encapsulated within the MimeMultipart object to be all of the same MIME

type, the getAllImages() method of the EBookQuery interface always returns a MimeMultipart in

which each part is a JPEG image. The implementation of this method is shown in Example 6-16 .

Example 6-16. Server implementation of a method that returns a MimeMultipart object

public MimeMultipart getAllImages() throws EBookServiceException {
 String[] titles = EBookServiceServantData.getBookTitles();
 Image[] images = getImages(titles, false);

 try {
 MimeMultipart mp = new MimeMultipart();
 for (int i = 0; i < images.length; i++) {
 MimeBodyPart mbp = new MimeBodyPart();
 mbp.setContent(images[i], "image/jpeg");
 mbp.addHeader("Content-Type", "image/jpeg");
 mp.addBodyPart(mbp);
 }
 return mp;
 } catch (MessagingException ex) {
 throw new EBookServiceException("Failed building MimeMultipart: " +
 ex.getMessage());
 }
}

To add an item to a MimeMultipart object, first create a MimeBodyPart , then associate it with the data

by calling its setContent() method, which also specifies the MIME data.[6] In this case, the data is

the Image object for a book cover image. Alternatively, the data can be supplied in the form of a

DataHandler using the setDataHandler() method. This technique could be used to reimplement the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getAllImages() method using code similar to that shown in Example 6-14 , thereby avoiding the
need to use intermediate Image objects.

[6] It is also necessary to use the MimeBodyPart addHeader() method to add a MIME header for

the content type. This seems a little strange given that the content type has already been specified

by the setContent() method, but, at least in Sun's implementation, if you fail to call

addHeader() , the part of the MimeMultipart attachment that contains the data does not have a

MIME Content-Type header. This typically results in the data being interpreted as if it had type
text/plain .

A MimeBodyPart is incorporated in the MimeMultipart using the addBodyPart() method. Once the

MimeBodyPart for each image is added, getAllImages() returns the image to the JAX-RPC runtime.

The client code that uses a MimeMultipart object is essentially the reverse of the server

implementation, as shown in Example 6-17 . The example application executes this code when you
press the "Fetch" button when there are no book titles selected in the list on the lefthand side of Figure

6-1 . This results in the cover images for all of the books being obtained in JPEG form, ignoring the
settings of the "GIF images" and "DataHandler" checkboxes.

Example 6-17. Client code that uses a JAX-RPC method returning a MimeMultipart object

MimeMultipart mp = bookQuery.getAllImages();
count = mp.getCount();
for (int i = 0; i < count; i++) {
 BodyPart bp = mp.getBodyPart(i);
 Image img = (Image)bp.getContent();
 imagePanel.add(new JLabel(new ImageIcon(img)));
}

To handle the images, each BodyPart is obtained by calling the MimeMultipart getBodyPart()

method.[7] The simplest way to get the encapsulated image data is, as shown here, to use the BodyPart

getContent() method, which returns a Java object whose type is determined by the MIME type of

the data, as listed in Table 6-5 . In this case, the returned object is an Image . Alternatively, you can

access the data by calling the getDataHandler() method to retrieve a DataHandler , from which you
can then either obtain an InputStream or the same Java object that is returned by the BodyPart

getContent() method.

[7] BodyPart is an abstract base class from which MimeBodyPart is derived. The server needs to

explicitly use a MimeBodyPart when creating the MimeMultipart object, but the client does not

need to be aware exactly which subclass of BodyPart has been used and therefore is not required

to cast the return value of the getBodyPart() method.

6.5.4 XML Attachments

You can use an XML document (or an array of them) in a JAX-RPC method by defining the argument

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or return type to be of type javax.xml.transform.Source . The EBookQuery interface uses this
facility to allow a client application to retrieve an XML fragment that describes one or more books:

public abstract Source[] getBookDetails(String[] titles)
 throws EBookServiceException, RemoteException;

A Source object can contain XML in the form of a DOM model, a SAX event stream, or an input
stream. On receiving an attachment for which the content type is text/xml (or application/xml), the

JAX-RPC runtime creates a Source object of one of these types (i.e., DOMSource , SAXSource , or

StreamSource), where the choice is implementation-dependent. The implementation of this method in

the example web service is shown in Example 6-18 .

Example 6-18. Server implementation of a method that returns Source objects

public Source[] getBookDetails(String[] titles) throws EBookServiceException {
 int length = titles.length;
 Source[] sources = new Source[length];

 for (int i = 0; i < length; i++) {
 String data = EBookServiceServantData.getXMLDetails(titles[i]);
 if (data == null) {
 throw new EBookServiceException("Unknown title: [" +
 titles[i] + "]");
 }
 try {
 data = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n" + data;
 sources[i] = new StreamSource(new ByteArrayInputStream(
 data.getBytes("utf-8")));
 } catch (UnsupportedEncodingException ex) {
 ex.printStackTrace();
 }
 }

 return sources;
}

This method gets the XML data for a specific book based on its title, in the form of a String , then
wraps it in a StreamSource object-which implements the Source interface-by interposing a

ByteArrayInputStream (since the StreamSource constructors do not directly accept XML in the form

of a String). If you have an XML document in the form of a DOM model, you can use a similar

pattern to include some or all of it as an attachment by using a DOMSource instead of a StreamSource :

Document doc = ; // Get XML document as a DOM model
Element rootElement = doc.getDocumentElement();

// Using the "rootSource" object would result in the entire
// document being included in the attachment.
DOMSource rootSource = new DOMSource(rootElement);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Using the "firstChild" object would result in only that
// part of the document at and below the first child element
// being included in the attachment
Node firstChild = rootElement.getFirstChild();
DOMSource childSource = new DOMSource(firstChild);

The example client requests XML data when you check the "Get XML" checkbox and then press the

"Fetch" button. Once it retrieves all of the image data, it calls the getBookDetails() method to get

the XML details for the same set of books, and writes the result to its standard output. Here is a typical
result:

<?xml version="1.0" encoding="UTF-8"?>
<detail><author>Kim Topley</author><editor>Robert Eckstein</editor><price>
29.95</price></detail>

<?xml version="1.0" encoding="UTF-8"?>
<detail><author>Robert Eckstein et al</author><editor>Mike Loukides</editor>
<price>44.95</price></detail>

The client code that calls the getBookDetails() method is shown in Example 6-19 .

Example 6-19. Client code that uses a JAX-RPC method returning a Source object

Source[] sources = bookQuery.getBookDetails(selectedTitles);
if (transformer == null) {
 transformer = TransformerFactory.newInstance().newTransformer();
 streamResult = new StreamResult(System.out);
}
for (int i = 0; i < sources.length; i++) {
 transformer.transform(sources[i], streamResult);
 System.out.println("\n------------------------");
}

Most of this code is concerned with getting a Transformer object that will extract the XML from the

Source objects returned by the server and write it in a readable form to the standard output stream.

Even though the server provided the XML to the JAX-RPC runtime in the form of an array of
StreamSource objects, you cannot assume that the client will receive a StreamSource object with the

data extracted from the received attachment, since the choice between DOMSource , SAXSource , and

StreamSource depends on the implementation of the client-side JAX-RPC runtime. You can, of

course, use a Transformer to convert whatever you get into whichever type you want. For example, the

following code gets a DOM model from any kind of Source object:

// Convert the source to a DOM model
DOMResult domResult = new DOMResult();
transformer.transform(sources[i], domResult);

// Get the root node of the DOM model
Node node = domResult.getNode();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.6 RPC-Style and Document-Style JAX-RPC

In Section 5.2.6, it was noted that the SOAP binding for an individual operation or for all operations

defined within a portType element can have a style attribute that takes either of the values rpc or
document. However, not much was said about the actual differences between these two styles. This

section looks at how RPC- and document-style operations are represented in SOAP messages as well as

at the support that JAX-RPC provides for each.

6.6.1 RPC-Style Operations

Perhaps not surprisingly, when you create client-side stubs and server-side ties for a web service for

which the definition is supplied in the form of a Java interface, each method in the interface is mapped
to an RPC-style operation. The distinguishing feature of an RPC-style operation is the way in which it

is represented as a SOAP message, which is specified in section 7 of the SOAP 1.1 specification. For

example, Figure 6-2 shows the message that is sent as a result of invoking the following method from
the BookQuery interface from the book web service created in Chapter 2:

public String getAuthor(String name) throws RemoteException;

As you can see, the SOAP body contains a single element that is named for the operation being

invoked. This element is in the namespace associated with the web service, which is provided in the
config.xml file supplied to wscompile, as shown in Example 2-9. The arguments required for the

method call are nested as child elements. In this case, a single element containing the name of the book

for which the author name is required is added to the getAuthor element. In the case of a method that

requires more than one argument, each has a corresponding child element (commonly referred to as an

"accessor"), the order of which is the same as that of the arguments that they represent in the method
signature.

Figure 6-2. SOAP representation of an RPC-style operation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The SOAP specification states that each accessor should be named for its corresponding argument. It is

clear, however, that JAX-RPC does not strictly follow this rule, since the accessor for the title

argument in Figure 6-2 has been given the name String_1. The practical reason for the use of this

rather strange name is that wscompile sees only the compiled class file for the BookQuery interface.
Since class files do not contain information about the names used in the source code for method

arguments, the best wscompile can do is to use the argument type (String) together with a numeric

suffix to create a unique accessor name. Since the name assigned to the part element that describes this

argument (which is shown in Example 6-20) in the WSDL description of the service created at the

same time as the client stubs will be the same as that used in the SOAP message, it really doesn't matter
that it doesn't happen to be the same as the name that the developer used in the Java method

signature.[8]

[8] This situation exists only when wscompile is supplied with a Java interface definition as its

starting point. When a WSDL description of a service is used to create a Java interface definition

and client-side stubs, the argument names that wscompile generates match the part names used in

the WSDL document.

Example 6-20. WSDL elements relating to the getAuthor() method

<!-- Extracts from the message elements: -->
<message name="BookQuery_getAuthor">
 <part name="String_1" type="xsd:string"/>
</message>
<message name="BookQuery_getAuthorResponse">
 <part name="result" type="xsd:string"/>
</message>
<!-- Extracts from the portType element: -->
<operation name="getAuthor" parameterOrder="String_1">
 <input message="tns:BookQuery_getAuthor"/>
 <output message="tns:BookQuery_getAuthorResponse"/>
</operation>

It is clear from the WSDL extracts shown in Example 6-20 that the presence of the getAuthor element

is actually part of the RPC binding for this operation, because the generic WSDL definition of the

getAuthor operation indicates only that it requires a message labeled BookQuery_getAuthor that
consists of a single part called String_1. As you'll see in the next section, wrapper elements such as

getAuthor are a characteristic of the SOAP section 7 representation of RPC-style operations, and are

not used for document-style operations.

The result of the method call is returned in a response message that is constructed according to similar

rules. A typical response message resulting from an invocation of the getAuthor operation is shown in

Figure 6-3.

Figure 6-3. A SOAP response message for an RPC-style operation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this case, the SOAP body contains a single element whose name is formed by appending Response
to the name of the operation from the original request message. Although this convention is commonly

used, it is not mandatory - in fact, any name could be used, since the response message is implicitly
associated with the preceding request. Like the getAuthor element shown in Figure 6-2,

getAuthorResponse is a wrapper element that is required by the SOAP binding for RPC-style

operations, and does not appear in the WSDL description of the response message. The SOAP section 7
rules require the wrapper element to contain an accessor for the value that will become the return value

of the method call, followed by accessors that provide the values for any output parameters, if there are
any. In this case, since the getAuthor method does not have any output parameters, only the method

call result accessor is present. By convention, this accessor is called result, but this is not a

requirement. If the return type of the method is void, then the wrapper element contains only accessors
for the output parameters. The wrapper for a method that has no return value and no output parameters

therefore has no child elements.

In some cases, the wrapper element that represents the operation will be followed by other elements

that contain data referenced from one or more of the accessors. For example, consider the

getBookInfo() method from the book web service:

public abstract BookInfo[] getBookInfo() throws RemoteException;

A reference to the array of returned BookInfo elements is encoded as an accessor within a wrapper

element called getBookInfo, but the array itself and the individual BookInfo objects that it contains

are placed in the SOAP message body, as shown in Figure 6-4.

Figure 6-4. An RPC response message with data following the wrapper element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The discussion of the WSDL soap:body element in Chapter 5 mentioned the related attributes use and

encodingStyle. The use attribute specifies whether the data types associated with the parts of a SOAP

message are encoded according to some set of encoding rules specified by the encodingStyle attribute

or whether they are included literally. In most cases, RPC-style operations specify use="encoded" and

supply the URI http://schemas.xmlsoap.org/soap/encoding/ as the value of the encodingStyle attribute
to indicate that the message content is encoded according to the SOAP section 5 encoding rules that

were outlined in Chapter 3. WSDL also allows the use of literal encoding with RPC-style operations,

but JAX-RPC implementations are not required to support it. All WSDL files created by wscompile

from Java interface definitions contain only RPC-style operations encoded using SOAP section 5 rules.

Literal encoding is most often used with document-style operations, which are covered next.

6.6.2 Document-Style Operations

Although RPC-style operations are very common, some web services are defined in terms of the XML

documents that the client and server exchange rather than in terms of programming-language

operations. An operation defined in this way is referred to as a document-style operation. As an

example of a web service using document-style operations, a company that allows clients to place
orders over the Internet might create an XML Schema that defines a type to represent a purchase order

and another to represent an order confirmation. A client application is expected to build a purchase

order document and send it to the server, which, following validation, stock checks, credit checks, and

so on, then builds and returns an order confirmation document. By contrast, an RPC-style version of

http://schemas.xmlsoap.org/soap/encoding/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

this service represents each field in the purchase order as an input method parameter, and each field of
the order confirmation as an output parameter or return value. Of course, this can quickly become

unmanagable if the number of required arguments is large.

In Chapter 3, the SAAJ API was used to build a book image web service, which required a client to

create a SOAP message with a particular set of elements in the body part that would specify a list of

books for which it required the cover images. The service implementation used the SAAJ APIs to

examine the XML document in the SOAP body part, extract the book titles, and construct a reply
message containing the required images. The operations provided by the book image web service are

all examples of document-style operations. In order to demonstrate the SOAP encoding rules, all of the

data types used by its operations were encoded using the SOAP section 5 rules. However, document-

style web services are not required to use any particular encoding rules. Also, since such services are

usually defined by an XML Schema that explicitly specifies the data type of each message part, it is
more usual for document-style operations to use the so-called literal encoding. In the literal encoding,

the XML elements that make up a SOAP message do not carry explicit type qualification. For an

example of the difference between encoded and literal use, an element that contains floating-point

content looks like the following when encoded using the SOAP section 5 encoding rules:

<price xsi:type="xsd:double">29.95</price>

whereas a literal encoding would omit the typing attribute:

<price>29.95</price>

The use of literal encoding relies on the XML Schema document for the service containing a definition

such as the following:

<element name="price" type= "xsd:double"/>

This makes typing information in the message itself redundant.

6.6.2.1 JAX-RPC support for document-style operations

As you saw in Chapter 3, creating web services with SAAJ requires quite a lot of low-level coding.

Fortunately, JAX-RPC developers can avoid this work because JAX-RPC includes support for

document-style operations that allows you to delegate to the runtime the hard work of constructing and
interpreting the SOAP messages. However, this support works only if the messages in the WSDL

definition of the service are constructed in such a way that they look very much like those that are

generated for RPC-style operations. The easiest way to explain how document-style operations are

supported is to look at an example-in this case, yet another version of the book service that we have

been using throughout this chapter.

Since wscompile always maps the methods of a Java interface definition to RPC-style operations, the
only way to create a web service that contains document-style operations is to start by putting together a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WSDL definition (or importing one in the case of an existing service) from which the Java interface
definition can be generated.[9] Since WSDL files are quite verbose, we'll show only short extracts of the

file that contains the definitions for the document-style book web service. You can find a complete

listing in the Appendix. It is important to bear in mind throughout the following discussion that the

WSDL has been carefully constructed so that it satisfies certain criteria that make it possible for the

JAX-RPC runtime to generate and consume the messages that correspond to the SOAP bindings that it
contains. You'll see what these criteria are as the discussion proceeds.

[9] This is true at the time of this writing. However, a future version of JAX-RPC is likely to

contain an enhancement that allows document-style messages to be created for a service endpoint

defined in terms of a Java interface.

Let's start by looking at the portType element, which defines the operations that the service provides,
and the binding element for one of those operations. The relevant extracts from the WSDL document

are shown in Example 6-21.

Example 6-21. A WSDL extract showing a document-style operation

<portType name="DocBookQuery">
 <operation name="getBookCount" parameterOrder="">
 <input message="tns:DocBookQuery_getBookCount"/>
 <output message="tns:DocBookQuery_getBookCountResponse"/>
 </operation>
 <operation name="getBookTitle" parameterOrder="index">
 <input message="tns:DocBookQuery_getBookTitle"/>
 <output message="tns:DocBookQuery_getBookTitleResponse"/>
 </operation>
 <operation name="getBookAuthor" parameterOrder="title author">
 <input message="tns:DocBookQuery_getBookAuthor"/>
 <output message="tns:DocBookQuery_getBookAuthorResponse"/>
 </operation>
 <operation name="getBookInfo" parameterOrder="title result">
 <input message="tns:DocBookQuery_getBookInfo"/>
 <output message="tns:DocBookQuery_getBookInfoResponse"/>
 </operation>
 <operation name="getStockInfo" parameterOrder="title">
 <input message="tns:DocBookQuery_getStockInfo"/>
 <output message="tns:DocBookQuery_getStockInfoResponse"/>
 </operation>
</portType>
<binding name="DocBookQueryBinding" type="tns:DocBookQuery">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="document"/>
 <operation name="getBookCount">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"
 namespace="urn:jwsnut.chapter6.docbookservice/wsdl/DocBookQuery"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </input>
 <output>
 <soap:body use="literal"
 namespace="urn:jwsnut.chapter6.docbookservice/wsdl/DocBookQuery"/>
 </output>
 </operation>
 <!-- Additional operation bindings not shown -->
</binding>

Looking first at the soap:binding element, you can see that the style attribute has the value

document. This indicates that any operation that does not explicitly state otherwise is a document-style
operation. Since none of the soap:operation elements in this file have their own style attribute, it

follows that all of the operations of this web service use the document style. Next, look at the
soap:body elements for both operations. In both cases, the use attribute of these elements has the

value literal. Since all of the soap:body elements in this file are the same as the ones shown here,

every operation provided by this service is document-style with literal encoding.

Now let's look specifically at the getBookTitle operation. The definitions of the input and output
messages for this operation are shown in Example 6-22.

Example 6-22. Message definitions for the getBookTitle operation

<message name="DocBookQuery_getBookTitlet">
 <part name="body" element="typesns:BookTitleRequest"/>
</message>
<message name="DocBookQuery_getBookTitleResponse">
 <part name="result" element="typesns:BookTitleResponse"/>
</message>

The input message consists of a single part called body that represents an element of type

BookTitleRequest. As noted in Chapter 5, a part element can refer to either an element or a type
definition that may be either in the types section of the WSDL document or in an imported schema

(see Section 5.2.9 for information on how to import external schema information into a WSDL

document). In this case, the part element refers to a concrete element definition via the element

attribute, rather than using a type attribute to reference an abstract type. Although either is acceptable,

according to both the WSDL and JAX-RPC specifications, at the time of this writing, the JAX-RPC
reference implementation does not allow the use of the type attribute for a message part associated

with a document-style operation.

The next step is to look at the definition of the BookTitleRequest element. Before doing this,

however, it is useful to review the way in which message parts are defined for RPC-style operations by

looking at the WSDL definition for the getAuthor operation in the RPC-based book web service

shown in Example 6-20. The input message for that operation looks like this:

<message name="BookQuery_getAuthor">
 <part name="String_1" type="xsd:string"/>
</message>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

which resulted in the body of the SOAP message being constructed as follows:

 <env:Body>
 <ans1:getAuthor
 xmlns:ans1="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery">
 <String_1 xsi:type="xsd:string">Java Swing</String_1>
 </ans1:getAuthor>
 </env:Body>

Since the operation in this case was RPC-style, the element for the String_1 part was not placed

directly in the SOAP body but inside a wrapper element named for the operation itself. For document-

style RPC, however, this does not happen. Instead, the element that corresponds to each part of the

input or output message is added directly to the SOAP body, with no wrapper element. The problem
with this is that the JAX-RPC runtime always expects to receive an outer wrapper element that

corresponds to the requested operation, with nested accessors that provide the values of the operation

arguments. This remains true even for document-style web services. Since this wrapper is not added

automatically when the SOAP message is built, for a document-style operation it must be included as

part of the schema definition of the element itself. Bearing this in mind, suitable definitions for the
BookTitleRequest and BookTitleResponse elements are shown in Example 6-23

Example 6-23. The BookTitleRequest and BookTitleResponse elements for the document web service

<element name="BookTitleRequest">
 <complexType>
 <sequence>
 <element name="index" type="xsd:int"/>
 </sequence>
 </complexType>
</element>
<element name="BookTitleResponse">
 <complexType>
 <sequence>
 <element name="result" type="xsd:string"/>
 </sequence>
 </complexType>
</element>

The XML Schema definition for the BookTitleRequest element states that it is a compound type that

contains a single nested child element called index, whose associated value must be an integer.
Similarly, the BookTitleResponse element must contain a string-valued child element called result.

Since the WSDL extract in Example 6-22 indicates that the BookTitleRequest and

BookTitleResponse elements are placed directly in the SOAP body, the body part for a typical request

message for the getBookTitle operation constructed from these definitions would look like this:

<env:Body>
 <ns:BookTitleRequest env:encodingStyle="">
 <index>11</index>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </ns:BookTitleRequest>
</env:Body>

The prefix ns corresponds to the namespace within which the types used in the WSDL document are

defined. As you can see, this looks very much like an RPC-style request message for an operation
called BookTitleRequest that requires a single argument called index with the value 11. The data type

of the index argument is not explicitly specified in the index element, since the encoding style is literal

and therefore SOAP encoding rules do not apply.

Note that we chose to use the name BookTitleRequest instead of getBookTitle

for the element referred to from the input message for the getBookTitle
operation, and chose to use BookTitleResponse instead of

getBookTitleResponse for the output message, so that these names did not

appear both as part names and as operation names. This choice was made simply
so that it would be obvious that the name of the element placed directly in the

SOAP body is that of the element referred to by the message part, rather than the
name of the operation itself. You could, if you wish, use the name getBookTitle

instead of BookTitleRequest, and use getBookTitleResponse in place of

BookTitleResponse. While this would change the content of the SOAP
messages so the elements in the body part are named after the operations in the

WSDL definition, it would not have any effect on the client and server
implementations, as long as the stubs and ties (or their equivalents in the case of

a non-JAX-RPC platform) are both generated from the same WSDL document.

Summarizing this discussion, in order for a document-style web service to be compatible with JAX-
RPC, it must satisfy the following criteria:

The input and output messages must each define only a single part, so that only one element is
placed directly in the SOAP body. This restriction is placed by the JAX-RPC reference

implementation and does not appear in the specification. Therefore, it may not apply to other

implementations and may disappear in future revisions of the reference implementation.

The part element must use the element attribute rather than the type attribute. This is also a

restriction that is present in the reference implementation but not in the specification; therefore, it

may be lifted in later releases.

The element referenced by the part must be a complexType constructed as a sequence that
contains one nested element for each parameter that the operation requires.

It is entirely possible that you will come across third-party service definitions that do not meet these

criteria. In this case, it may not be possible for you to use JAX-RPC to create a client for such a service

and you will need to use SAAJ instead.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.6.2.2 JAX-RPC interface to document-style operations

To proceed with the implementation after creating a WSDL definition for your web service, you need
to generate the corresponding Java interface definition. You can do this by using wscompile with the -

import argument in the usual way. The example source code for this book contains an implementation

of this web service, which you can use by opening a command window and making

chapter6\docbookservice your working directory. To generate the Java interface definition, type the

command:

ant generate-interface

This command runs wscompile with the appropriate command-line arguments, and places the following
generated files in the directory

chapter6\docbookservice\generated\interface\ora\jwsnut\chapter6\docbookservice:

BookAuthorRequest.java

BookAuthorResponse.java

BookCountRequest.java

BookCountResponse.java

BookInfo.java

BookInfoRequest.java

BookTitleRequest.java

BookTitleResponse.java

DocBookQuery.java

StockInfoRequest.java

StockInfoResponse.java

The file DocBookQuery.java contains the Java interface definition corresponding to the DocBookQuery

portType. The other files contain the Java source code for the complex types, such as

BookTitleRequest and BookTitleResponse, that represent the parts of the input and output messages

used by the document-style operations defined by this service. The generated Java interface is shown in

Example 6-24.

Example 6-24. The Java interface definition for a web service containing document-style operations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public interface DocBookQuery extends java.rmi.Remote {
 public int getBookCount() throws java.rmi.RemoteException;
 public java.lang.String getBookTitle(int index)
 throws java.rmi.RemoteException;
 public java.lang.String getBookAuthor(java.lang.String title)
 throws java.rmi.RemoteException;
 public ora.jwsnut.chapter6.docbookservice.BookInfo
 getBookInfo(java.lang.String title) throws java.rmi.RemoteException;
 public javax.xml.soap.SOAPElement getStockInfo(java.lang.String title)
 throws java.rmi.RemoteException;
}

Taking the getBookTitle() method as a typical example, it is interesting to note that even though the
definition in the WSDL document for the operation that corresponds to this method used the complex

types BookTitleRequest and BookTitleResponse to describe the content of its input and output
messages, the Java classes that correspond to these complex types do not appear in the method

definition. An inspection of the WSDL extracts shown in Example 6-22 and Example 6-23, which

contain the definitions relevant to the getBookTitle operation, would lead you to expect that the
generated getBookTitle() method would look like this:

public BookTitleResponse getBookTitle(.BookTitleRequest request)
 throws RemoteException

The method signature that is actually generated is as follows:

public String getBookTitle(int index) throws RemoteException;

This is, of course, a much better reflection of the intent of the operation, and is identical to the hand-

created definition used by the original RPC-based version of this service shown earlier in this chapter.

On the other hand, the declaration of the getBookInfo() method does include a class generated from

the complex type that appears in the definition of the output message for its corresponding operation:

public BookInfo getBookInfo(String title) throws RemoteException;

So how is the actual method call signature determined? Let's discuss how the JAX-RPC reference

implementation works.

In the case of the method arguments, the complex type associated with the input message is examined
and an argument is added for each field within it, for which JAX-RPC defines a standard mapping to

XML. In the case of the getBookTitle operation, for example, the BookTitleRequest type (the

definition of which is shown in Example 6-23 earlier in this chapter) contains only a single field of type

xsd:int. Since JAX-RPC maps xsd:int to the Java primitive type int, the generated method will

have a single argument of type int, the name of which is taken from the name attribute of its element
definition.

For a method that has a return value, the method definition depends on the complex type that represents

the output message of the operation. In the case of the getBookTitle operation, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BookTitleResponse type (also shown in Example 6-23) has only a single child element of type
xsd:String; the generated method therefore returns a String value. The output message for the

getBookInfo operation, however, consists of a part that references the element definition shown in

Example 6-25.

Example 6-25. The BookInfo type declared as the output from the getBookInfo operation

<element name="BookInfo">
 <complexType>
 <sequence>
 <element name="title" type="xsd:string"/>
 <element name="author" type="xsd:string"/>
 <element name="editor" type="xsd:string"/>
 <element name="price" type="xsd:double"/>
 <element name="stock" type="xsd:int"/>
 </sequence>
 </complexType>
</element>

In cases such as this, in which there is more than one field in the output message, the Java method

returns an instance of the value type class generated from the BookInfo element, which acts as a

convenient holder for all five return values. An alternative approach is to generate a Holder class for
the BookInfo item and use the following method signature:

public void getBookInfo(String title, BookInfoHolder holder) throws RemoteException;

This is a more general solution, since it continues to work even if the output message for the operation

contains more than one part. However, at the time of this writing-since the reference implementation
allows only messages associated with document-style operations to have a single part-this generality

is not required and method signatures utilizing Holder classes in this way are not generated.

The last method in the generated DocBookQuery interface is a little different from the others:

public javax.xml.soap.SOAPElement getStockInfo(java.lang.String title)
 throws RemoteException;

This method returns the number of copies of a given book that are in stock. The return value should,

therefore, be an integer, and you might expect the generated method to look like this:

public int getStockInfo() throws RemoteException;

Instead of returning a Java primitive int, however, this method is defined to return an object of type

javax.xml.soap.SOAPElement, which is a class defined by the SAAJ API (and described in Chapter

3) that represents an XML element in a SOAP message. To see why this return value is used instead of

int, it is necessary to look at the parts of the WSDL document that define the output message for the

getStockInfo operation, which are shown in Example 6-26.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 6-26. WSDL definitions for the getStockInfo operation

<element name="StockInfoResponse">
 <complexType>
 <sequence>
 <element name="stock" type="xsd:nonNegativeInteger"/>
 </sequence>
 </complexType>
</element>

<message name="DocBookQuery_getStockInfoResponse">
 <part name="result" element="typesns:StockInfoResponse"/>
</message>

<!-- Operation definition (from portType) -->
<operation name="getStockInfo" parameterOrder="title">
 <input message="tns:DocBookQuery_getStockInfo"/>
 <output message="tns:DocBookQuery_getStockInfoResponse"/>
</operation>

These definitions amount to a statement that says the output message contains an element called stock
with XML Schema type xsd:nonNegativeInteger. Perhaps surprisingly, although JAX-RPC maps

xsd:int to a Java primitive int, it does not have a standard mapping to a Java type for

xsd:nonNegativeInteger. When, as here, there is no mapping for an element in literal mode, JAX-
RPC uses a SOAPElement to represent it in the generated Java interface. As a result, you'll need to use

SAAJ APIs in your client application or service implementation code to provide or extract the return
value of the getStockInfo() method, as you'll see later in this section.

The schema type for this return value was chosen deliberately in order to demonstrate the way in which

JAX-RPC handles types for which it does not have a mapping. The same stock information is also

available in the BookInfo object returned from the getBookInfo() method, the XML schema

definition for which was shown in Example 6-25. In this case, however, for the sake of simplicity, the
data type of the stock quantity was defined as xsd:int. Had it instead been declared as

xsd:nonNegativeInteger, then the stock field of the generated BookInfo class would have been of

type SOAPElement rather then int, as shown in the following code extract (the differences from the

actual generated code are highlighted):

// How the BookInfo class would have looked had "stock"
// been defined with schema type xsd:nonNegativeInteger
// (code not affected by this change is not shown)
public class BookInfo {
 private java.lang.String title;
 private java.lang.String author;
 private java.lang.String editor;
 private double price;
 private SOAPElement stock;

 public BookInfo() {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 public BookInfo(java.lang.String title, java.lang.String author,
 java.lang.String editor,
 double price, SOAPElement stock) {
 this.title = title;
 this.author = author;
 this.editor = editor;
 this.price = price;
 this.stock = stock;
 }

 public SOAPElement getStock() {
 return stock;
 }

 public void setStock(SOAPElement stock) {
 this.stock = stock;
 }
}

6.6.2.3 Implementing a service containing a document-style operation

As with our earlier examples, in order to provide the service described in the WSDL document, you

have to create a class that implements the DocBookQuery interface. The fact that the SOAP messages

that are exchanged between the service and client applications are document-style messages and do not
use the SOAP section 5 encoding rules is taken care of by the generated stub and tie classes, and is
therefore not visible either to the service or to code in the client application. Most of the code that

implements the service is very similar to that shown earlier in this chapter and in Chapter 2, and can be

found in the directory chapter6\docbookservice\server\ora\jwsnut\chapter6. Nevertheless, there are

some differences in the implementation and packaging of the service that you need to be aware of.

As far as the implementation is concerned, the only method of the service interface that is affected by

the fact that the operation that it corresponds to is a document-style operation using literal encoding is
getStockInfo(). This gets the quantity of a given book that is currently in stock, which must return a

SOAPElement instead of the int that is required for an RPC-style operation. The implementation details

of this method are shown in Example 6-27.

Example 6-27. Implementation of the getStockInfo() method

public SOAPElement getStockInfo(String title) {
 BookInfo book = findBook(title);
 SOAPElement element = null;
 if (book != null) {
 try {
 if (factory == null) {
 factory = SOAPFactory.newInstance();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 element = factory.createElement("stock");
 element.addTextNode(String.valueOf(book.getStock()));
 } catch (SOAPException ex) {
 // Just return null in this case
 element = null;
 }
 }
 return element;
}

As you can see, this method uses the SAAJ SOAPFactory class, described in Chapter 3, to create the

SOAPElement that will become its return value. For the sake of efficiency, a single SOAPFactory

instance is created when this method is first called. The SOAPElement's name must be taken from the
value of the name attribute for the corresponding element in the WSDL document. As you can see from

Example 6-26, this means that the element must be called stock. Once the SOAPElement is created, the
actual stock quantity value is included by adding a text node with the quantity as its value. The

SOAPElement that this code creates corresponds to XML that looks like this:

<stock>10</stock>

The client code that would use the value returned from this method is also slightly more complicated

than it would be for an RPC-style operation, since it needs to use the SOAPElement getValue()

method to access the content of the text node that it contains:

SOAPElement element = bookQuery.getStockInfo(title);
int stock = Integer.parseInt(element.getValue());

The only other point of interest in the construction of the service is the way in which it is packaged for

deployment. Recall from Chapter 2 that packaging is a two-step process:

A portable WAR file is created, containing the implementation-independent classes that contain

the code for the service itself, together with any other classes and resources that it requires.

1.

The content of the portable WAR file is used by wsdeploy or j2eec to generate a deployable

WAR file that contains implementation-dependent server-side ties and serializers, as well as the
developer-supplied classes and resources from the portable WAR file.

2.

In principle, this process should not be any different for a service that contains document/literal

operations than it is for any of the other examples that you have seen so far, which contained only

RPC-style operations. However, there is one small part of the process for creating the WAR file for

JWSDP deployment (but not for J2EE 1.4 deployment) that is a little different in this case.

In order for the wsdeploy utility to create a deployable archive, it reads the jaxrpc-ri.xml file from the

portable archive, and uses the information that it contains to generate server-side ties and serializer
classes that know how to convert between the data types used in the Java interface definition and their

XML representation in SOAP messages. In order to create the serializers and tie classes, wsdeploy uses

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java reflection to introspect on the methods and arguments of the Java interface definition indicated by
the interface attribute of the endpoint element. The problem with this, of course, is that there is

nothing in the class file to indicate whether any of the methods of the Java interface correspond to

document-style operations. In the absence of this information, wsdeploy assumes that they are all RPC-

style. This causes it to create a WSDL document, ties, and serializers that are suitable for an RPC-style

service using the SOAP encoding. These classes will not work properly for document-style operations.

To avoid this potential problem, it is necessary to indicate explicitly to wsdeploy which operations have
document-style semantics and which are RPC-style. One way to do this is to have it parse the WSDL

document, since this shows clearly the semantics of each operation. Unfortunately, wsdeploy does not

parse WSDL documents, but it will accept a model file as an alternative source of information in place

of a Java interface definition. As noted in Chapter 2, a model file contains a binary representation of a

service, its ports, port types, operations, messages, and types built by wscompile while parsing the
WSDL document. It is therefore equivalent to the WSDL definition. You can refer wsdeploy to the

model file for an endpoint by setting the model attribute of the endpoint element in the jaxrpc-ri.xml

file.

You can see a plain-text version of the model file for the book web service from

Chapter 2 by pointing your web browser at the URL
http://localhost:8000/Books/BookQuery?model and opening the model.gz file

that is returned. Although it is interesting to see what is in this file, there is no

real point in spending too much time trying to decode it, since it is specific to the
JAX-RPC reference implementation and you won't need to do anything with it
apart from create it and supply it to wsdeploy.

Assuming that you have a model file, you simply need to place it in the portable web archive and

include a line in the jaxrpc-ri.xml file indicating where it can be found, as shown in Example 6-28.

Whenever an endpoint element in a jaxrpc-ri.xml file contains a model attribute, the model file that it
refers to is used in preference to the Java interface class as a source of information regarding the web

service to be deployed. It is still necessary to supply the interface attribute, however, because the

class file that it refers to is used by JAXRPCServlet at runtime.

Example 6-28. The final version of the jaxrpc-ri.xml file for the document-based book web service

<?xml version="1.0" encoding="UTF-8"?>
<webServices
 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/dd"
 version="1.0"
 targetNamespaceBase="urn:jwsnut.chapter6.docbookservice/wsdl/"
 typeNamespaceBase="urn:jwsnut.chapter6.docbookservice/types/">

 <endpoint
 name="DocBookQuery"
 displayName="DocBookQuery Port"

http://localhost:8000/Books/BookQuery?model
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 description="Document-style Book Query Port"
 model="/WEB-INF/model"
 interface="ora.jwsnut.chapter6.docbookservice.DocBookQuery"
 implementation=
 "ora.jwsnut.chapter6.docbookservice.DocBookServiceServant"/>

 <endpointMapping
 endpointName="DocBookQuery"
 urlPattern="/DocBookQuery"/>
</webServices>

Note that the model file is placed in the WEB-INF directory of the portable web archive. This is an

appropriate place for it because it will then appear in the WEB-INF directory of the deployed web

service, where it is protected from direct access from HTTP clients.

The remaining point to clear up is how the model file is created. Fortunately, this is very simple - all

you need to do is use the -model argument when running the wscompile utility. In the Ant buildfile for
this example, this can be done when running wscompile to generate the Java interface definition from

the WSDL document:

wscompile -gen:server -model output/interface/model -s generated/interface
-d output/interface config.xml

All of this does not apply when deploying a service to a J2EE 1.4 application server because, as

mentioned in Chapter 2, the deployable WAR archive for J2EE 1.4 includes a WSDL definition of the

service along with a mapping file that allows you to define the way in which the WSDL definition is

mapped to Java interfaces. Unlike jaxrpc-ri.xml, these files clearly indicate whether each operation is

RPC- or document-style, and whether it uses literal or RPC-style encoding.

In fact, all of the JAX-RPC examples in this book are packaged with a model file. This is not strictly
necessary in most cases, since the information that wsdeploy can obtain by reflecting on the endpoint

interface classes is usually sufficient. The model file is actually included in every case so that the same

example source code can be used whether you choose to run the examples with the JWSDP or on the

J2EE 1.4 platform (in which the model file can be used in lieu of the J2EE 1.4 XML mapping file). In

the text that accompanies the example, we'll point out where including the model file would have been
a requirement even if it wasn't for this compatibility issue.

To build and deploy this web service, with chapter6\docbookservice as your working directory, type the

command:

ant deploy

The example source code also contains a simple application client that uses this service, which you can

run using the following commands:

ant compile-client
ant run-client

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.6.2.4 Suppressing the mapping of message content to method arguments

If you supply the -f:nodatabinding option to wscompile, it generates a Java interface in which the

SOAP-level interface of a document-style operation is exposed directly, instead of attempting to map

the content of the SOAP messages to method arguments and return values. In the case of the example
used in this section, the Java interface resulting from the use of this option would be as shown in

Example 6-29, which you should compare to Example 6-24.

Example 6-29. Java interface generated for document/literal operations with data binding disabled

public interface DocBookQuery extends java.rmi.Remote {
 public javax.xml.soap.SOAPElement
 getBookCount(javax.xml.soap.SOAPElement body) throws RemoteException;
 public javax.xml.soap.SOAPElement
 getBookTitle(javax.xml.soap.SOAPElement body) throws RemoteException;
 public javax.xml.soap.SOAPElement
 getBookAuthor(javax.xml.soap.SOAPElement title) throws RemoteException;
 public javax.xml.soap.SOAPElement
 getBookInfo(javax.xml.soap.SOAPElement title) throws RemoteException;
 public javax.xml.soap.SOAPElement
 getStockInfo(javax.xml.soap.SOAPElement title) throws RemoteException;
}

Turning off data binding in this way requires you to both create the SOAP elements to be included in
the outgoing messages, and decode the responses using low-level code written using the SAAJ API.
Therefore, this is not for the faint-hearted!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.7 Client and Server Context Handling

All of the JAX-RPC examples that you have seen so far have treated the client application and the
service implementation as independent entities that communicate only by passing information as

method arguments and return values. In reality, however, it is often useful for the server to have access

to additional context information that is supplied by the environment in which it operates or is
propagated from the client on each method call. This section looks at the various types of context

information that the JAX-RPC runtime makes available to web service implementations.

The web service implementation classes discussed so far have been self-contained and have confined
themselves to implementing the methods of the service endpoint interface. Resources that might be

required, such as the list of books known to a book service or the cover images for those books, have

been bundled into the WAR file along with the implementation class, and accessed at runtime using the
Class getResource() and getResourceAsStream() methods. This technique is acceptable when all

of the resources and configuration information for a web service are known when the service is
packaged, but it does not allow for configuration to be performed at deployment time. Web containers

typically provide some mechanism that allows configuration of this type to be performed, and the

servlet environment includes APIs that allow access to this information at runtime. However, there is a
problem. How does the service implementation class get access to the environment of its hosting

servlet? The JAX-RPC server-side API includes an interface
(javax.xml.rpc.server.ServiceLifecycle) that a service class can implement that makes this

possible.

As discussed in Chapter 2 , J2EE Version 1.4 allows a web service to be hosted

in a servlet environment or implemented as a stateless session bean. The
discussion in this section relates only to the former case. A web service

implemented as a session bean can use the lifecycle methods of the bean itself to

perform initialization and cleanup, while runtime context information is provided

by the SessionContext object passed to its setSessionContext() method.

Therefore, the ServiceLifecycle interface is not applicable to a web service
implemented as a session bean.

6.7.1 The ServiceLifecycle Interface

The definition of the ServiceLifecycle interface is shown in Example 6-30 .

Example 6-30. The ServiceLifecycle interface

public interface ServiceLifecylce {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void init(Object context) throws ServiceException;
 public void destroy();
}

When JAXRPCServlet (or an implementation-specific equivalent) receives requests that require the

invocation of a method of a web service, it creates one or more instances of the servant class that

provides that service. If (and only if) the service class implements the ServiceLifecylce interface,
then following execution of its constructor and before any of the methods that implement the service

endpoint interface are invoked, JAXRPCServlet calls its init() method. A servant class normally

uses the init() method to perform resource allocation, and may throw a ServiceException if it
encounters any errors that would prevent it from providing its service. If JAXRPCServlet can determine

that it no longer requires an instance of a servant class, then when its hosting web container is being
closed down, it typically calls the servant class's destroy() method to allow it to release resources.

JAX-RPC implementations that create a pool of instances of a servant class call the destroy()

method of an instance when removing it from the pool, following which no further web service method
calls will be delegated to it.

When the init() method of the servant class is called, it is passed an instance of an object that

provides runtime context information. In order to allow web services to be hosted in different
environments, the init() method signature simply declares this argument to be of type Object .

However, for the servlet environment, the actual runtime type of this object is

javax.xml.rpc.server.ServletEndpointContext . This object remains valid throughout the lifetime
of the service instance (that is, until the destroy() method is completed), and a reference to it may

therefore be stored for use within the methods that implement the service endpoint interface.

6.7.2 The ServletEndpointContext Interface

The ServletEndpointContext object provides access to the runtime environment in which a servant

class hosted by a servlet is executing. The methods defined by this interface are shown in Example 6-

31 .

Example 6-31. The ServletEndpointContext interface

public interface ServletEndpointContext {
 public ServletContext getServletContext();
 public Principal getUserPrincipal();
 public HttpSession getHttpSession();
 public MessageContext getMessageContext();
}

These methods are typically used as follows:

The getServletContext() method retrieves the ServletContext object for the web

application hosting the web service implementation. This is the only attribute of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ServletEndpointContext that is valid during the execution of the init() method. Among
other things, the ServletContext gives you access to the servlet's initialization parameters, which

are set when the web service is packaged and may be overridden at deployment time. You can

therefore use the web.xml file for the web application in which the service is deployed to supply

configuration information intended for the web service itself. An example of this is shown later.

The getUserPrincipal() method, which can be called only from within a method

implementing the service endpoint interface, returns a java.security.Principal object for the
user that invoked the endpoint interface method. The value returned from this method is null

unless the hosting servlet is configured so that the web container performs authentication for the

URL used to access the service. When authentication is enabled, the client application is required

to supply authentication information. Requests that fail to do so, or that supply invalid credentials,

will be rejected by the web container before the web service method is called. See Section 6.7.6
later in this chapter for an example of the use of web service authentication.

The getHttpSession() method returns the javax.servlet.http.HttpSession object for the

HTTP session within which the web service method is invoked (if there is one). If the client

application does not explicitly enable the use of HTTP sessions, then this method returns null .

See Section 6.7.5 for an example of the use of an HTTP session.

The getMessageContext() method returns a MessageContext object that can be used to

acccess the SOAP message that caused the currently executing service endpoint interface method
to be called. The same MessageContext object is shared by any message handlers configured for

the endpoint; therefore, it can also be used to store state information that needs to be shared

between message handlers or between message handlers and the web service implementation

itself. See Section 6.8 later in this chapter for further information on the MessageContext object.

In addition to the state available from the ServletEndpointContext , a web service implementation

class can access information stored in the JNDI environment of its hosting servlet.

6.7.3 Multithreaded Access to the ServletEndpointContext Object

Even though a single instance of the ServletEndpointContext interface is passed to a servant's init(

) method, the values of each of the attributes of this object, apart from the ServletContext , depend

on the context of a specific web service method and are therefore valid only when that method is being
executed. However, as discussed in Chapter 2 , a single servant instance may be used to service any

number of web service method invocations, which may or may not be serialized relative to each other.

In other words, it is possible that there may be more than one thread simultaneously executing the

servant's methods at any given time.

This situation might seem to cause a problem with the use of the ServletEndpointContext object,

since it needs to return the attributes applicable to one client application in one thread and those for a
different application (and probably a different user) in another thread. Fortunately, there is no conflict

http://lib.ommolketab.ir
http://lib.ommolketab.ir

between simultaneous uses of the ServletEndpointContext object in different threads, since the
request-specific information that it makes available is held in thread-local variables. Each thread,

therefore, has its own private copy of the state relating to the client application request that it is

handling, which is returned by the methods of the ServletEndpointContext when invoked from that

thread.

6.7.4 An Example Web Service Using ServletEndpointContext

To illustrate the use of the ServiceLifecycle and ServletEndpointContext interfaces, we'll use an

extended version of the SmallBookService that was shown earlier in this chapter. The definition of the

service interface for this example is shown in Example 6-32 .

Example 6-32. The ContextBookQuery service endpoint interface

public interface ContextBookQuery extends Remote {
 public abstract void setUpperCase(boolean cond) throws RemoteException;
 public abstract boolean isUpperCase() throws RemoteException;
 public abstract int getBookCount() throws RemoteException;
 public abstract String getBookTitle(int index) throws RemoteException;
 public abstract void getBookAuthor(String title, StringHolder author)
 throws ContextBookServiceException, RemoteException;
 public abstract void log(String value) throws RemoteException;
}

The only difference between this interface and the SmallBookQuery interface is the addition of the

setUpperCase() and isUpperCase() methods, which are included for the sake of demonstrating the

use of HTTP sessions in the next section. From the point of view of this section, the most interesting
aspect of this example is the servant implementation class, extracts from which are shown in Example

6-33 .

Example 6-33. Extract from the implementation class for the ContextBookQuery interface

public class ContextBookServiceServant implements ContextBookQuery, ServiceLifecycle {

 // ServletEndpointContext object
 private ServletEndpointContext endpointContext;

 // Name of an authorized user.
 private String userName;

 // Records whether book names should be sorted
 private boolean sorted;

 /* -- Implementation of the ServiceLifeCycle interface -- */
 public void init(Object context) throws ServiceException {
 endpointContext = (ServletEndpointContext)context;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Get the authorized user name from the init parameters
 ServletContext servletContext = endpointContext.getServletContext();
 userName = servletContext.getInitParameter("UserName");

 // Get alphabetic sorting flag from JNDI
 try {
 InitialContext namingCtx = new InitialContext();
 Object value = namingCtx.lookup("java:comp/env/sorted");
 sorted = value instanceof Boolean ? ((Boolean)value).booleanValue()
 : false;
 ContextBookServiceServantData.setSorted(sorted);
 } catch (NamingException ex) {
 servletContext.log("Exception while accessing naming context", ex);
 }
 }

 /**
 * Called when the service instance is no longer required.
 */
 public void destroy() {
 // Nothing to do
 }

 // Service endpoint interface implementation methods not shown
}

Since this class implements the ServiceLifecycle interface, it is obliged to provide the init() and
destroy() methods, although in the case of the latter, there is nothing to do for this particular service.
The init() method begins by casting the object that is passed to the type ServletEndpointContext ,

and storing it for later use in the web service implementation methods. The remaining code in this

method illustrates two ways for the servant class to get configuration information:

Servlet initialization parameters can be obtained by calling the getInitParameter() method of

ServletContext . The ServletContext for the hosting servlet is obtained by calling the

getServletContext() method of ServletEndpointContext . In this case, the init() method

gets the value of an initialization parameter called UserName , which it stores for later use. This
value is used in the second part of Example 6-33 , and is described later in Section 6.7.6 .

The values associated with entries in the hosting servlet's JNDI namespace can be obtained by

creating an InitialContext object and then using the lookup() method with an appropriate

key. Here, the value of a Boolean setting held under the key java:comp/env/sorted is retrieved.

Service implementation classes are permitted to access the JNDI context in their web service

implementation methods, as is init() .

The initialization parameter and the value of the sorted entry in the JNDI environment can be set by
including appropriate tags in the web.xml file that is included in the portable WAR. The web.xml file

for this example, with the tags needed to declare the parameters used in this example highlighted, is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shown in Example 6-34 .[10]

[10] The web.xm l file also contains a security constraint that ensures that only users in the
JWSGroup role can access this web service. You'll see how a JAX-RPC client identifies itself to

the web container in order to satisfy this constraint in Section 6.7.6 , later in this chapter.

Example 6-34. The web.xml file for the ContextBookQuery web service

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app>
 <display-name>Context-handling JAX-RPC Book Service</display-name>
 <description>Context-handling Book Service Web Application using JAX-RPC
 </description>

 <context-param>
 <param-name>UserName</param-name>
 <param-value>JWSUserName</param-value>
 </context-param>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>ContextBookService</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>JWSGroup</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Context Book Service</realm-name>
 </login-config>

 <env-entry>
 <env-entry-name>sorted</env-entry-name>
 <env-entry-value>true</env-entry-value>
 <env-entry-type>java.lang.Boolean</env-entry-type>
 </env-entry>
</web-app>

As well as providing access to initialization parameters, having a reference to the ServletContext

allows the servant class to make entries in the web container's log file. The log() method in the

service endpoint interface exploits this fact to improve on the original implementation described in

Section 6.3.4 earlier in this chapter, which wrote the logging information to System.out :

public void log(String value) {
 if (checkAccess()) { // checkAccess() is described later in this section

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 endpointContext.getServletContext().log(new Date() + ": " + value);
 }
}

To run this example, make chapter6\contextbookservice your working directory and type the command:

ant deploy

This command compiles, packages, and deploys the service implementation. The client application for

this example calls the getBookCount() method of the service endpoint interface to get the number of

books, then loops to get the author and title of each, printing the results in the command window. You
can run this client using the commands:

ant compile-client
ant run-client

When you run these commands, you'll notice that the book titles appear in alphabetical order. This
happens because the ContextBookServiceServantData class, which provides the book data to the

servant class for this example, uses the value of the Boolean variable obtained from the JNDI value
java:comp/env/sorted , as shown in Example 6-33 , to determine whether to return sorted data. As

you can see from the web.xml file in Example 6-34 , this variable is set to true and therefore the book

titles are sorted.

6.7.5 Session Management

For reasons discussed in Section 2.2.4.1 , servant classes cannot store state information relating to

individual client applications. As a result, the methods in the service endpoint interface are almost

always self-describing in the sense that all required inputs to the operation are provided as arguments.
However, a web service that is hosted by a servlet can store client-related information if it makes use of

the HTTP session support provided by the web container.

The servant class gets access to the session information by calling the getHttpSession() method of

the ServletEndpointContext object passed to its init() method, and then uses the HttpSession

setAttribute() method to store values that can be retrieved in subsequent invocations of the

endpoint interface methods. For an example of how this might be used, consider the setUpperCase()

and isUpperCase() methods in the ContextBookQuery interface shown in Example 6-32 . The intent
of the setUpperCase() method is to allow the client to specify whether the book titles returned by the

getBookTitle() method should be all in their natural case or in uppercase. A client should be able to

invoke this method once and then be able to get the title of any book without having to respecify the

required case setting with each method call. The isUpperCase() method should return the value set

by the most recent invocation of setUpperCase() by the same client, or else return a default value if
the client has never called it. The state set by the setUpperCase() method needs to be stored on a

per-client basis.

In order to provide this functionality, the servant class needs to keep the value set by the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

setUpperCase() method in the HTTP session associated with the client that invokes it, from which it
can be retrieved later when it is required. The implementation of the setUpperCase() and

isUpperCase() methods is shown in Example 6-35 .

Example 6-35. Using an HTTP session to store client-related state

public void setUpperCase(boolean cond) {
 HttpSession session = endpointContext.getHttpSession();
 if (session != null) {
 session.setAttribute(UPPER_CASE, cond ? Boolean.TRUE : Boolean.FALSE);
 }
}

public boolean isUpperCase() {
 HttpSession session = endpointContext.getHttpSession();
 if (session != null) {
 Boolean upperCase = (Boolean)session.getAttribute(UPPER_CASE);
 return upperCase == null ? false : upperCase.booleanValue();
 }

 // No session - upper case mode not allowed
 return false;
}

As you can see, both methods check whether the value returned by getHttpSession() is null before
attempting to access or store a value. This step is necessary because the client application might not

have enabled the use of HTTP sessions or the web container might not support them. In order to enable
HTTP sessions, the client must explicitly set a property on the JAX-RPC client stub:

// Get the endpoint interface
ContextBookService_Impl service = new ContextBookService_Impl();
ContextBookQuery bookQuery = service.getContextBookQueryPort();
Stub stub = (Stub)bookQuery;
stub._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, args[0]);

// Enable session maintenance so that the setUpperCase() method works .
stub._setProperty(Stub.SESSION_MAINTAIN_PROPERTY, Boolean.TRUE);

The same technique is required for a dynamic proxy Stub obtained using one of the Service getPort(
) methods. If you are using the dynamic invocation interface, then the

Call.SESSION_MAINTAIN_PROPERTY of the Call object should be set to Boolean.TRUE :

Call call = service.createCall(...);
call.setProperty(Call.SESSION_MAINTAIN_PROPERTY, Boolean.TRUE);

The client application for this example uses a command-line parameter to determine the argument

passed to the setUpperCase() method, which it calls before invoking any other web service method.

The example also retrieves the value to demonstrate that the setting is persistent, and therefore

constitutes a client-specific state retained between invocations of the web service's endpoint interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

methods:

boolean upperCase = args.length > 1 && args[1].equalsIgnoreCase("uppercase");
bookQuery.setUpperCase(upperCase);
System.out.println("Upper case? " + bookQuery.isUpperCase());

You can run the example with the appropriate command line by using the command:

ant run-client-uppercase

As a result, you should see the usual list of books, with all of the titles in uppercase.

6.7.6 JAX-RPC Authentication

JAX-RPC does not have any authentication mechanisms of its own. However, you can make use of the
generic facilities provided by the hosting web container to provide the same level of security to your

web services as are available to other web applications. Both HTTP connections with basic

authentication and HTTPS connections (with or without authentication) can be used to carry JAX-RPC
traffic, provided that you properly configure the web container and the servlet, and then use the

appropriate URL when accessing the service. The topic of web containers and authentication has
already been fully discussed in Section 3.8 , and, as far as the service implementation is concerned, the

setup details for a JAX-RPC service are the same as they are for SAAJ.

In the case of the ContextBookQuery web service, the web.xml file shown in Example 6-34 contains

security-constraint and login-config tags that enforce the use of basic authentication and allow

access only to users in the contextbookservice role. The roles referred to in the web.xml file, and the
users that belong to that role, must be configured with the web container. For the J2EE 1.4 reference

implementation, this is done using the realmtool command-line utility, whereas for Tomcat, you need

to edit the tomcat-users.xml file. For both of these cases, the details can be found in Chapter 1 . If you

are using a different application server, you should consult the application server's documentation to

find out how to add to its authentication database.

With this protection in place, any attempt to access the URLs provided by this service are rejected
unless the client provides the correct authentication information. A JAX-RPC client using either a

statically generated stub or a dynamic proxy returned by the Service getPort() method can supply

the username and password required for HTTP basic authentication by setting two Stub properties:

String userName = System.getProperty("ContextBooks.user");
String password = System.getProperty("ContextBooks.password");
if (userName != null && password != null) {
 stub._setProperty(Stub.USERNAME_PROPERTY, userName);
 stub._setProperty(Stub.PASSWORD_PROPERTY, password);
}

A client using the dynamic invocation interface associates the username and password with the Call

object instead:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Call call = service.createCall(.....);
call.setProperty(Call.USERNAME_PROPERTY, userName);
call.setProperty(Call.PASSWORD_PROPERTY, password);

Using container authentication in this way allows a web service to delegate the verification of the

identify of the client to the container rather than having to be coded to perform this task itself. In many

cases, this check provides all the security that the web service requires. If necessary, however, the

service can add its own explicit security checks to those performed by the container. Each time a

properly authenticated request is made to a servlet, the container creates a java.security.Principal
object containing the name of the authenticated user. The implementation methods of a servlet-hosted

web service can get access to this object by calling the getUserPrincipal() method of its
ServletEnpointContext . A web service implemented as a session bean can get the same information

from the getCallerPrincipal() method of its SessionContext , which is supplied to it during its

initialization. The ContextBookQuery web service uses this information to allow only a single user
access to the information that it provides. The name of the authorized user is obtained from the

initialization parameters of its hosting servlet (see the context-param element in Example 6-34), and
the access check is made by the code shown in Example 6-36 .

Example 6-36. Using the getUserPrincipal() method to get authentication information

private boolean checkAccess() {
 boolean allowed = true;
 if (userName != null) {
 // Authentication is configured.
 Principal principal = endpointContext.getUserPrincipal();
 allowed = principal != null && userName.equals(principal.getName());
 }
 return allowed;
}

This check is performed at the start of each method that implements the service endpoint interface. If

the calling user is not the one named in the initialization parameters, then the web service

implementation method returns a zero count or a null string, depending on the required return type.

The client application for this example obtains the username and password that it should use from

properties set on its command line, which in turn come from the jwsnutExamples.properties file in your

home directory, as does the name of the authorized user in the servlet initialization parameters. When
you run this example, the client application supplies the same username as the one in the web.xml file.

Therefore, it passes the web service's authorization check and you get back the complete list of books.

If you change the values of the USERNAME and PASSWORD properties in the jwsnutExamples.properties

file to those of the other user in the JWSGroup role-i.e., AnotherUser and Pwd -then the web

container allows the client application to invoke the methods of the web service, since the username
and password are valid and correspond to a user in the role JWSGroup . However, because the username

is not the same as the one in the web.xml file, the service's checkAccess() method returns false. As a

result, no book information is returned. If you choose a user that is not in the JWSGroup role, or if you

http://lib.ommolketab.ir
http://lib.ommolketab.ir

supply an incorrect password, the web container rejects the request before it reaches the web service
itself.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.8 SOAP Header Processing

In Section 6.6, earlier in this chapter, you saw that for both RPC- and document-style operations JAX-

RPC method call arguments and return values are placed in the SOAP message body. However, SOAP
extensions and higher-level business frameworks based on SOAP messaging, such as WS-Routing and

ebXML, typically add elements to the SOAP header as well as or instead of using the message body.

The WS-Security extension, for example, provides a framework to include in the SOAP header

authentication information, and provides security tokens (such as X.509 certificates) that can be used to

verify the identity of the message sender or protect against modification of the message while it is in
transit. Applications built using the SAAJ API have direct access to the SOAP header and can therefore

add any necessary elements to it before a message is transmitted as well as process header blocks when
a message is received. A JAX-RPC application can also access the SOAP header using one (or both) of

two techniques that are the subject of this section - mapping header content to method arguments or

creating a SOAP message handler.

6.8.1 Mapping Header Content to Method Arguments

Mapping header content to method arguments is a natural and convenient way for a JAX-RPC

application to access the header because it is consistent with the JAX-RPC programming model and

avoids the need for application code to have any direct dependency on the structure of the underlying

messages. You can use this technique provided that the following conditions are satisfied:

The service is described by a WSDL document rather than a Java interface definition.

The message parts that are to be included in the SOAP header are described using soap:header

elements in the binding section of the WSDL document.

To illustrate the mapping of header blocks to method arguments, we'll create a web service based on
the one used to demonstrate the dynamic invocation interface earlier in this chapter (the definition of

which you'll find in Example 6-5). However, we'll add to it a header element that contains

authentication information for the user invoking the service. The authentication information will be

inserted by the client application and extracted and interpreted by the web service implementation. This

example provides a very simplistic demonstration of how you can use the JAX-RPC APIs to provide
application-level security instead of relying on the web container to authenticate the calling user, as

shown in the previous section. The element that will be added to the header is shown in Example 6-37.

Example 6-37. Authentication information to be included in a SOAP message header

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<auth>
 <UserName>JWSUserName</UserName>
 <Password>JWSPassword</Password>
 </auth>

In a real application, you would want to encrypt some or all of this information to protect it from

unauthorized disclosure, and you would also need to include some kind of security token that would
guarantee that the authentication information belongs to and was provided by the message sender. In

order to keep this example simple, we're not going to attempt either of these things. If you'd like to

investigate how this might be done, the WS-Security specification, originated by IBM, Microsoft, and

Verisign, defines SOAP header elements and procedures that make it possible to securely incorporate

authentication details and other sensitive information in a SOAP message. The specification can be
downloaded from http://www.verisign.com/wss/wss.pdf.

6.8.1.1 Adding header parts to a service definition

In order to handle header information through JAX-RPC-generated method calls, you need to have a
WSDL definition of the service. Such a definition was created during the deployment of the service

whose original Java interface definition is shown in Example 6-5. For the purposes of this example,

we'll take a copy of the WSDL document for that service and add to it the elements required to send
authentication information to the server whenever the client application invokes any of the service

endpoint interface methods. We'll also arrange for an element containing the date and time at which the
service processed the request to be returned to the client to be included.

The first step is to add to the WSDL file a definition to the types section for the authentication

information, as shown in Example 6-38.

Example 6-38. XML Schema definition for a simple authentication element

<types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace=
 "urn:jwsnut.chapter6.headerbookservice/types/HeaderBookQuery">
 <!-- Header element for user name and password -->
 <complexType name="Authentication">
 <sequence>
 <element name="UserName" type="xsd:string"/>
 <element name="Password" type="xsd:string"/>
 </sequence>
 </complexType>
 </schema>
</types>

http://www.verisign.com/wss/wss.pdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, you need to arrange for an instance of this type to be included in the header of the SOAP

messages generated for each operation defined by this service. Recall from Chapter 5 that the WSDL

definition for a web service describes the content of the SOAP message sent by the client application

for a particular operation as follows:

In the portType section, the operation element for the operation specifies an input message

made up of zero or more parts, whose types are defined in the types section or imported from an

external schema.

Within the binding section, there is a corresponding operation element that maps these parts to
the SOAP message body, to the header, or to an attachment, as appropriate.

Here, for example, are the relevant parts of the WSDL definition for the getBookTitle operation,

which requires an integer argument:

<!-- Input message definition -->
<message name="SmallBookQuery_getBookTitle">
 <part name="int_1" type="xsd:int"/>
</message>

<!-- Subset of complete portType definition -->
<portType name="SmallBookQuery">
 <operation name="getBookTitle" parameterOrder="int_1">
 <input message="tns:SmallBookQuery_getBookTitle"/>
 <output message="tns:SmallBookQuery_getBookTitleResponse"/>
 </operation>
</portType>

<!-- Subset of complete binding definition -->
<binding name="SmallBookQueryBinding" type="tns:SmallBookQuery">
 <operation name="getBookTitle">
 <soap:operation soapAction=""/>
 <input>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded" namespace="urn:jwsnut.chapter6.smallbookservice/wsdl/
 SmallBookQuery"/>
 </input>
 <output>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded" namespace="urn:jwsnut.chapter6.smallbookservice/wsdl/
 SmallBookQuery"/>
 </output>
 </operation>
</binding>

The result of this definition is that the integer argument defined by the part labeled int_1 is placed in

the body of the SOAP message, wrapped in the usual way with an element named for the operation. In
order to arrange for an additional element to be added to the header, you need to define that element as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a part and then reference it from a soap:header element within the operation definition in the
binding section. Since the same header information is going to be included in each SOAP request

message, instead of adding the part to each individual message element, we create a new message

element containing only this part, and use the message attribute of the soap:header element to cause it

to be included in the SOAP message header.[11] We'll use the same technique to define the part that

contains the time at which the server processed the SOAP message, which is placed in the SOAP
header of the reply message.

[11] Refer to Section 5.2.6.2 for a description of the soap:header element.

In this case, since the same additional information is to be carried in the SOAP

headers for all request and reply messages, it is obviously more convenient to
define the parts in a separate message rather than include them in the existing

message elements for each operation in the WSDL document. At the time of this
writing, however, if you attempt to add these elements to the existing messages,

you'll find that the version of wscompile in the reference implementation refuses

to process the resulting WSDL document. Since there is nothing in the WSDL
specification that prohibits the mapping of elements from the original message

into the SOAP header, this is probably just an implementation error that will be
fixed at some point.

The WSDL document that results from these changes can be found in the file

chapter6\headerbookservice\Input_HeaderBookQuery.wsdl relative to the example source code for this
book. This document defines a new web service containing a service endpoint interface called

HeaderBookQuery, whose operations are the same as those of SmallBookQuery, apart from the addition

of authentication and timestamp information. Here's how the additional message elements that contain

the authentication information and the timestamp are defined:

<message name="HeaderBookQuery_Auth">
 <part name="auth" type="typesns:Authentication"/>
</message>
 <message name="HeaderBookQuery_Time">
 <part name="time" type="xsd:dateTime"/>
 </message>

Note that the time element uses a built-in XML Schema type and therefore does not require a new type

to be defined in the types section.

Each operation in the binding section is modified to include soap:header elements that refer to these

message parts. For example, the modified definition for the getBookTitle operation looks like this:

<operation name="getBookTitle">
 <soap:operation soapAction=""/>
 <input>
 <soap:header message="tns:HeaderBookQuery_Auth" part="auth"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"
 namespace=
 "urn:jwsnut.chapter6.headerbookservice/wsdl/
 HeaderBookQuery"/>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"
 namespace="urn:jwsnut.chapter6.headerbookservice/wsdl/
 HeaderBookQuery"/>
 </input>
 <output>
 <soap:header message="tns:HeaderBookQuery_Time" part="time"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"
 namespace=
 "urn:jwsnut.chapter6.headerbookservice/wsdl/
 HeaderBookQuery"/>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded" namespace="urn:jwsnut.chapter6.
 headerbookservice/wsdl/HeaderBookQuery"/>
 </output>
</operation>

The input message element now includes a soap:header element that specifies that an instance of the
auth part from the HeaderBookQuery_Auth message must be bound to the SOAP message header when

the request message is sent. Similarly, the SOAP header for the reply message must contain a time
element, as defined by the message element called HeaderBookQuery_Time. The JAX-RPC runtime is

responsible for obtaining the value to be used to construct the auth element in the outgoing message

and for making the returned timestamp available to the client application when the response is

received. These values are conveyed via the arguments of the methods in the Java interface that are
created from these WSDL definitions.

6.8.1.2 Generating the Java interface and client-side stubs

Having completed the WSDL definition, before you can write either the service implementation or an

application client, you need the corresponding Java interface. As you saw earlier in this chapter, this is

generated from the WSDL definition using the wscompile utility by giving it a config.xml file

containing a wsdl element. You can create and compile the Java interface definition by opening a
command window, making chapter6\headerbookservice your working directory, and typing the

command:

ant generate-interface

The wscompile utility does not automatically include method call arguments for parts that are mapped

to the SOAP header. To force it to do so, you need to use the -f:explicitcontext option.[12] Here is

the command line used by the generate-interface target:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[12] The name explicitcontext is used because when this option is specified, the elements
carried in the SOAP header, which typically represent context for the request or response in the

body (and here carry security context information) are explicitly exposed in the method signatures

of the service endpoint interface. This contrasts with implicit context information-such as the

authenticated Principal available from the ServletEndpointContext or the

SessionContext-which does not manifest itself in the programming interface of the web
service.

wscompile -gen:server -f:explicitcontext -keep
 -model generated/interface/model
 -s generated/interface
 -d output/interface config.xml

The generated files are placed in the directory
generated/interface/ora/jwsnut/chapter6/headerbookservice. The type defined in Example 6-38 to hold

the authentication information becomes a simple value type called Authentication with attributes that
hold a username and password. This value type is used in the signatures of all of the methods in the

generated service endpoint interface, which is shown in Example 6-39.

Example 6-39. A Java interface definition containing arguments that access the SOAP header

public interface HeaderBookQuery extends java.rmi.Remote {
 public void log(java.lang.String string_1, Authentication auth,
 javax.xml.rpc.holders.CalendarHolder time)
throws java.rmi.RemoteException;
 public int getBookCount(Authentication auth,
 javax.xml.rpc.holders.CalendarHolder time)
throws java.rmi.RemoteException;
 public java.lang.String getBookTitle(int int_1,
 Authentication auth,
 javax.xml.rpc.holders.CalendarHolder time)
throws java.rmi.RemoteException;
 public void getBookAuthor(java.lang.String string_1,
 javax.xml.rpc.holders.StringHolder string_2,
 Authentication auth, javax.xml.rpc.holders.
CalendarHolder time)
 throws HeaderBookServiceException, java.rmi.RemoteException;
}

Notice that the arguments that represent the explicit context, which are highlighted, have been added
after the regular method arguments. Note also that the time value that will be returned in the SOAP

header of every response message is represented by a CalendarHolder object because it is an output

parameter. This, of course, is a special case, since the data type of this value is one of those directly

supported by JAX-RPC and for which a predefined Holder object exists. If you define your own type

(such as the Authentication type) and assign it as a value to be returned in a response message, then a

suitable Holder class is generated by wscompile and included in the method signature.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.8.1.3 Invoking the service

The most convenient aspect of using explicit context is that application code simply passes the value or

values required for the SOAP header as method arguments and does not need to be aware that they are

actually being carried in the header. Similarly, values received in a SOAP header become associated

with Holder arguments in the usual way. Example 6-40 shows an extract from the example client
application for this service.

Example 6-40. Invoking service methods that contain explicit context

// Get a reference to the stub.
HeaderBookService_Impl service = new HeaderBookService_Impl();
HeaderBookQuery bookQuery = (HeaderBookQuery)service.getHeaderBookQueryPort();

// Create the required authentication information
String userName = System.getProperty("HeaderBooks.user");
String password = System.getProperty("HeaderBooks.password");
Authentication auth = new Authentication(userName, password);

// Get info for each book.
StringHolder stringHolder = new StringHolder();
CalendarHolder calendarHolder = new CalendarHolder();

int count = bookQuery.getBookCount(auth, calendarHolder);
Calendar calendar = (Calendar)calendarHolder.value;
System.out.println("Book count = " + count);
System.out.println("Processed at: " + calendar.getTime());

As you can see, the username and password are obtained from system properties (which are actually set

on the command line using values in your jwsnutExamples.properties file) and then used to construct

the Authentication object. This object and a CalendarHolder are passed as arguments to the
getBookCount() method, and the timestamp returned by the service implementation is extracted and

printed in the normal way.

6.8.1.4 The service implementation

The service implementation consists of a servant class that implements the generated

HeaderBookQuery interface shown in Example 6-39. Given that the values that represent the explicit

context are presented as method arguments, the servant class can retrieve the authentication
information that is supplied for each method call from the Authentication argument, as well as return

the invocation time in the CalenderHolder supplied to it by the JAX-RPC runtime system. This makes

the servant class as transparent to the fact that these values are carried in the SOAP header as the client

application is. The implementation of the getBookCount() method, for example, is shown in

Example 6-41, together with the checkAccess() method that it uses to verify the username and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

password supplied to it. The correct username and password values are obtained from servlet
initialization parameters, using the same code as that shown in Example 6-33.

Example 6-41. Implementation of a service method that uses explicit content

public int getBookCount(Authentication auth, CalendarHolder calendarHolder) {
 calendarHolder.value = new GregorianCalendar();
 String[] titles = HeaderBookServiceServantData.getBookTitles();
 return titles == null || !checkAccess(auth) ? 0 : titles.length;
}

/**
 * Check whether the calling user is authenticated.
 */
private boolean checkAccess(Authentication auth) {
 boolean allowed = false;
 if (userName != null && password != null && auth != null) {
 // Authentication is configured.
 return userName.equals(auth.getUserName()) &&
 password.equals(auth.getPassword());
 }
 return allowed;
}

In order to make this work with the JWSDP, however, you need to be careful when packaging the

service implementation. Recall that the ties for the service implementation are generated when you run

wsdeploy, which bases its actions on the endpoint definitions in the jaxrpc-ri.xml file. Ordinarily, the

ties are generated by introspecting the methods of the Java interface definition in the HeaderBookQuery
class, which is passed to it by the interface attribute of the endpoint element. However, without

additional information, there is no way to tell which of the method arguments map to body content and

which map to the SOAP header. This information was originally supplied in the WSDL document,

which cannot be supplied to wsdeploy. In the absence of any information to the contrary, wsdeploy

generates ties that expect all of the method arguments to correspond to elements in the SOAP message
body, which leads to incorrect behavior in this case.

The solution to this problem is the same one we used in Section 6.6.2.2, earlier in this chapter, where

we had to ensure that wsdeploy knew that the methods of a Java endpoint interface should map to

document-style operations - we generate a model file and reference it from the endpoint element in

the jaxrpc-ri.xml file. This, then is another case in which we genuinely need to include the model file.

The model file provides the same information to either j2eec or deploytool, if you are using the J2EE
1.4 reference implementation.

To verify that this example works, you can package and deploy the service by making

chapter6\headerbookservice your working directory and typing the command:

ant deploy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Then, build and run the client application by typing:

ant compile
ant run-client

The client prints the number of books returned by the getBookCount() method followed by the time
at which the server performed the operation, as returned in the SOAP header of the reply message. It

then prints the title and author of all of the books that the server knows about. This works because

when you build and deploy the service implementation, its web.xml file is initialized with the username

and password from your jwsnutExamples.properties file as the credentials for the user to be allowed to

access the service. When you run the client, it extracts the same values and uses them to populate the
Authentication object. If you temporarily change the username or password in your

jwsnutExamples.properties file and run the client again (without redeploying the service), the values in

the Authentication object sent by the client do not match the username and password known to the
server. As a result, the getBookCount() method returns 0 and you do not see any books listed.

6.8.2 SOAP Message Handlers

Mapping SOAP header content to method arguments is a simple and convenient way to expose that
content without introducing the complexities of SOAP message handling into application-level code. It

is, therefore, a useful technique to use in cases where information that forms part of the service

endpoint interface definition happens to be carried in the SOAP header. It is, however, not the only
means available to the JAX-RPC developer for getting at header content, although it is by far the
easiest to use.

Another way to process headers is to access the underlying SOAP message directly. This option is open

to any service implementation class that implements the ServiceLifecycle interface, or to a web

service implemented as a stateless session bean. It requires the service to use the MessageContext

object that can be obtained by calling the getMessageContext() method of the

ServletEndpointContext in the case of a servlet-hosted web service, or by calling the
getMessageContext() method of SessionContext for a session bean. In the case of SOAP

messaging, the MessageContext is actually an instance of the derived interface

javax.xml.rpc.handler.soap.SOAPMessageContext, which provides a method that returns the

SOAP message currently being handled:

public SOAPMessage getMessage()

This method can be called whenever the SOAPMessageContext is valid - that is, from within any of

the methods of the servant that implement the service endpoint interface. Once you have a reference to

the message, you can use the SAAJ API to access any part of it. To process headers, for example, you
might use code like this:

SOAPMessageContext ctx = (SOAPMessageContext)endpointContext.getMessageContext();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPMessage message = ctx.getMessage();
SOAPHeader header = message.getSOAPPart().getEnvelope().getHeader();
if (header != null) {
 // Process the header...
}

This technique is very useful, but it has at least two drawbacks:

It can only be used within the web service implementation class. There is nothing corresponding

to ServletEndpointContext that would allow a client application to process the SOAP message
received as the reply to its request.

It results in low-level logic appearing in what should really be application-level code.

One possible way to make use of message-level access is to compute a digital signature for some or all

of the content of a request message, and then place it into a SOAP header before it is transmitted from
the client. The header is extracted when the message is received by the server and the signature is

verified. Using a digital signature in this way ensures that the part of the message to which the

signature applies is not modified while in transit. Obviously, as an application developer, you wouldn't
want to be concerned with the details of digital signature algorithms, and you certainly wouldn't want to

have to introduce code that intercepts SOAP messages and handles digital signatures into what should
really be business logic. Instead, it is more convenient to be able to implement this code separately,

outside of the application itself, and have it operate on the messages that the JAX-RPC runtime creates

in response to method calls on the service endpoint interface. This capability is provided by JAX-RPC

message handlers.

6.8.2.1 Message-handling architecture

A message handler is a class that can receive and possibly act upon a SOAP message. Depending on

what the handler is supposed to do, it might modify the message, log its content somewhere, ignore it,

or deem it to be invalid and initiate some form of error handling, such as the generation of a SOAP

fault. Message handlers are grouped into a handler chain, which may be inserted into the processing

path for a specific service endpoint on the client side, the server side, or both. Figure 6-5 shows a

handler chain installed on the client side of a web service.

Figure 6-5. Client-side message-handling architecture

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The chain in this instance consists of three handlers labeled A, B, and C. As indicated in the diagram,

the chain is in the message-processing path for both outgoing and incoming messages. When there is a

handler chain associated with a service endpoint, SOAP messages are processed as follows:

The client application invokes a method of the service endpoint interface using a generated stub, a

dynamic proxy, or the dynamic invocation interface.

1.

The JAX-RPC runtime uses the method argument values to create a SOAP request message.2.

The request message is passed to the handler chain.3.

The handler chain passes the request message to each handler in turn. The handler may modify the
message, perhaps by adding a header, or may indicate that processing of the message is to be

terminated.

4.

If a handler wishes to stop the processing of a message as a result of detecting an error, it must

replace that message with another containing a suitable Fault element. A handler may also stop

message processing because it can generate the appropriate reply without needing to transmit the

message to the server, perhaps because the handler acts as a cache mapping previous requests to
received responses. If such a caching handler recognized a request that it had already sent, it

might be able to supply a copy of the response that it received to the original request. Whether the

handler generates a fault message or supplies a different message, that message is treated in the

same way as if it were a reply received from the server, as described starting at Step 8. This

situation is illustrated in Figure 6-6.

Figure 6-6. A handler intercepting an outgoing message

5.

A handler that detects an error may also throw an exception. In this case, no further processing

takes place and the exception is thrown back to application code.

6.

If the message successfully reaches the end of the handler chain, it is sent to the server.7.

When a reply message or a fault message is received (or the processing of an outgoing message is

terminated by a handler and a substitute message provided), it is delivered to the same handler

chain. The handler chain first verifies that the handler chain can successfully process all of the

headers intended for the receiving node that have their mustUnderstand attribute set to "1". If it

8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cannot, then the message is not processed and a SOAPFaultException is thrown to application
code. More details on the handling of the mustUnderstand attribute are provided later in this

section.

Next, every handler is given the opportunity to process and modify the response message. This

may result in headers being removed, content being modified, or a completely different message

being substituted before the next handler is invoked. If a handler throws an exception, that

exception is thrown back to application code and the message is not processed further. If a
handler indicates (without throwing an exception) that handler processing of the message should

end, then no more handlers in the chain are invoked. It does not, however, prevent Step 10 from

being performed.

9.

Assuming that no exception has been thrown during processing of the response, the JAX-RPC
runtime extracts the values of any output parameters and the return value from the (possibly

modified) message, and arranges for them to be returned to the caller of the service endpoint
interface method.

10.

The JAX-RPC specification allows the order in which handlers within a chain are invoked to be

implementation-dependent. However, the following is likely to be typical behavior:

An outgoing message is passed to handlers in a specific order. In terms of Figure 6-5, this order

might be A, B, C.

When a response message or a fault message is received from the server, the handlers are invoked

in the reverse order. That is, in Figure 6-5, the processing order for the response would be C, B,

A.

If processing for an outgoing message is blocked by a handler, the substituted fault or response
message is processed by the same handlers that have already handled the outgoing message, but

not by those that have not. For example, if handlers A and B in Figure 6-5 process a message and

handler B blocks further processing of that request, then the fault or reply message supplied by

handler B and shown in Figure 6-6 is processed by handler B and then handler A, but not by

handler C (since it did not see the outgoing message).

In general, handlers in a chain operate independently and therefore do not rely on the presence of other
handlers in the chain or the order in which they are invoked.

A handler chain may also be installed on the server side of a web service, as shown in Figure 6-7.

Figure 6-7. Server-side message handling architecture

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The processing of messages on the server side is similar to that performed for the client:

A SOAP message is received from the underlying transport and passed to the generated tie class

for the service endpoint interface.

1.

If a handler chain is configured, the message is given to the handler chain. Otherwise, processing
resumes at Step 5.

2.

The handler chain first verifies that its handlers can successfully process all of the headers

intended for the receiving node that have their mustUnderstand attribute set to "1". If it cannot,

then a fault message is created and processing resumes at Step 8. More details on the handling of

the mustUnderstand attribute are provided later in this section.

3.

The handlers in the chain are given the opportunity to process the message in some way. If any

handler throws an exception other than a SOAPFaultException, a fault message is created and
processing resumes at Step 8. If a handler detects an error that should result in a Fault being

returned to the client, it must replace the original message with one containing the appropriate

fault details and throw a SOAPFaultException, which causes processing to resume at Step 6. If a

handler indicates that processing of the request message should not continue (but does not throw

an exception), no further handlers in the chain are invoked and processing continues at step 7.
This is the server-side equivalent of the situation shown in Figure 6-6. In this case, the target

method of the service endpoint implementation class is not invoked and the handler must install

an appropriate reply message before returning control.

4.

If there is no handler chain or the handler chain was completed traversed, the (possibly modified)

message is decoded and the appropriate method of the service endpoint implementation class is

invoked. If an exception occurs either while the message is being decoded or during the execution
of the service endpoint method, then a fault message is generated. Otherwise, the return value and

output values from the method call are used to build an appropriate response message.

5.

If a fault message has been created, then the handler chain is given the opportunity to handle it. If

any handler throws an exception while processing the fault message, the chain terminates and a

new fault message reporting the exception is created instead. If a handler requests that chain

processing is complete, then no further handlers are invoked.

6.

Similarly, if a response message is generated, it is passed to the handler chain. Again, if any7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

handler throws an exception while processing the reply, the chain terminates and a fault message
reporting the exception is created instead. If a handler requests that chain processing is complete,

then no further handlers are invoked.

7.

Finally, the (possibly modified) response or fault message is transmitted to the client.8.

6.8.2.2 Message handler classes and interfaces

The classes and interfaces used in connection with message handling belong to the
javax.xml.rpc.handler and javax.xml.rpc.handler.soap packages. To implement a handler, you

need to create a class that implements the Handler interface shown in Example 6-42.

Example 6-42. The javax.xml.rpc.handler.Handler interface

public interface Handler {
 public void init(HandlerInfo config);
 public void destroy();
 public QName[] getHeaders();
 public boolean handleRequest(MessageContext ctx);
 public boolean handleResponse(MessageContext ctx);
 public boolean handleFault(MessageContext ctx);
}

For convenience, the javax.xml.rpc.handler package contains an abstract class called

GenericHandler that provides default implementations of the methods of the Handler interface, with
the exception of getHeaders(). You can use GenericHandler as the base class for your own handlers

to avoid having to include empty methods where no specific behavior is required.

Handlers are stateless objects that may be pooled by a JAX-RPC implementation and must provide a

public, no-argument constructor. When a handler is created, its init() method is called and passed an

object of type HandlerInfo that contains configuration information that it may use to initialize itself or
customize its behavior. If the JAX-RPC runtime decides that it no longer needs a specific instance of a

handler, it calls its destroy() method to allow it to release any resources it may have allocated at

construction time or during the execution of the init() method.

The HandlerInfo object passed to a handler's init() method contains information supplied when the

handler is configured using the API described in Section 6.8.2.3, later in this chapter. The most useful

HandlerInfo method is getHandlerConfig():

public java.util.Map getHandlerConfig();

The Map returned by this method contains properties that can be set at configuration time and used by

the handler to customize its behavior. The example handlers shown later in this chapter use this facility
to determine whether to print debugging information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The getHeaders() method is required to return the names of the header elements that the handler
processes, if any. Each value in the returned array must be a QName object representing the fully

qualified name of the top-level element of any such header. Handlers that process only the body of the

message or provide other functionality that is not related to a specific SOAP header should return an

empty array from this method.

The handleRequest(), handleResponse(), and handleFault() methods are where the real work

of the handler is done. These methods are invoked when the handler chain is processing a SOAP
request message, a response message, or a fault message, respectively. As a request message is being

processed, the handler chain invokes the handleRequest() method of each handler in turn. If this

method returns true, then the chain continues processing with the next handler. If it returns false, chain

processing terminates and response or fault processing may begin, as described earlier in Section

6.8.2.1. These methods may throw runtime exceptions as well. These also result in chain processing
being terminated, with consequences that differ depending on whether the handler chain is associated

with the client or server side of the web service, as described in the previous section.

When a message is being processed on either the client or server side, it is associated with an instance

of an object that implements the javax.xml.rpc.handler.MessageContext interface. On the client

side, a MessageContext object is associated with the handler chain when the request message is

created, and the same instance of that object is passed to each handler in the handler chain. When the
response message or a fault message is received, the same MessageContext object is then passed to

each handler as it processes the inbound message. On the server side, when a request is received, all

handlers that process that request are passed the same MessageContext instance. This MessageContext

object is available to the servant class that implements the web service, provided that it implements the

ServiceLifecycle interface, from the getMessageContext() method of ServletEndpointContext
and to a session bean implementation via the getMessageContext() method of its SessionContext.

The MessageContext is also passed to the handlers in the handler chain when the outgoing response or

fault message is being processed.

The methods of the MessageContext interface are shown in Example 6-43.

Example 6-43. The javax.xml.rpc.handler.MessageContext interface

public interface MessageContext {
 public boolean containsProperty(String name);
 public Iterator getPropertyNames();
 public Object getProperty(String name);
 public void setProperty(String name, Object value);
 public void removeProperty(String name);
}

As you can see, MessageContext is essentially a container for property values.[13] Since the same

instance of MessageContext is shared between all of the handlers in a chain (and also, on the server

side, with the servant class), it can be used to share state between handlers or between one or more

http://lib.ommolketab.ir
http://lib.ommolketab.ir

handlers and the web service implementation itself. You'll see how this technique can be used in
Section 6.8.2.5, later in this chapter.

[13] In the reference implementation, the implementation of this interface simply delegates its

behavior to a HashMap.

For SOAP messaging (which is the only form of messaging currently supported by JAX-RPC), the

MessageContext object passed to the handlers and the web service itself are actually instances of a

SOAP-specific derived interface called javax.xml.rpc.handler.soap.SOAPMessageContext. This

method contains a small number of additional methods that are shown in Example 6-44.

Example 6-44. The javax.xml.rpc.handler.soap.SOAPMessageContext interface

public interface SOAPMessageContext extends MessageContext {
 public SOAPMessage getMessage();
 public void setMessage(SOAPMessage message);
 public String[] getRoles();
}

When a SOAP message is received, a reference to it is stored in the SOAPMessageContext by calling
the setMessage() method. Handlers can then get access to the message by casting their

MessageContext argument to SOAPMessageContext and calling the getMessage() method. In some

cases, a handler may wish to replace the received message with another one, and may call the
setMessage() method to achieve this. The replacement message is then the one that is processed by

the other handlers in then chain and, on the server side, by the web service implementation if the
substitution occurs during request processing.

A complete handler chain is managed by an implementation-supplied object that implements the

javax.xml.rpc.handler.HandlerChain interface. A HandlerChain is responsible for invoking the

handleRequest(), handleResponse(), and handleFault() methods of each of the handlers that it

contains when its own methods of the same name are called, and is responsible for terminating

execution of the chain when a handler throws an exception or returns the value false. Since handler
chains are managed internally by the JAX-RPC runtime, you don't need to deal with them directly,

despite the fact that the HandlerChain interface itself is public. For a description of the HandlerChain

interface, refer to the reference section of this book.

6.8.2.3 Message handler configuration

Handler chains are associated with service endpoints. For each service endpoint, there may be zero or

one handler chain configured on the client side and zero or one handler chain on the server side.
Configure a handler chain by adding a handlerChains element to the config.xml file used by

wscompile on the client side. The format of the handlerChains element is shown in Example 6-45.

Example 6-45. the handlerChains element, used to configure a message handler chain

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<handlerChains>
 <chain runAt="client|server" roles="URI list">
 <!-- 0 or 1 with "client" and 0 or 1 with "server" -->
 <handler className="handlerClassName" headers="QName list">
 <!--- Any number permitted -->
 <property name="name" value="value"/>
 <!--- Any number permitted -->
 </handler>
 </chain>
</handlerChains>

A handlerChains element can contain zero, one, or two chain elements. The runAt attribute
determines whether a client-side or server-side chain is being described. There can be only one of each

type within a handlerChains element. The wscompile utility handles chain elements with runAt set to

client while generating client-side stubs. The meaning of the optional roles attribute will be
described later in this chapter in Section 6.8.2.4.

A chain element may contain any number of handler elements, each of which configures a single

message handler. The set of all handler elements describes the content of the handler chain. The
className attribute gives the name of the Java class that implements the handler. As mentioned

earlier, this class must have a public, no-argument constructor, and must implement the Handler

interface. The headers attribute is optional and is described later in Section 6.8.2.4.

Each handler element may have an arbitrary number of nested property elements that provide
configuration information for the handler. The value of the className and headers attributes of the
handler element along with a Map constructed from the property elements are used to initialize the

HandlerInfo object that is passed to the message handler's init() method. The property values can

be obtained by calling the getHandlerConfig() method of the HandlerInfo object.

If you are using the JWSDP, on the server side the information used to build the handler chain for an

endpoint is obtained from the handlerChains element in the jaxrpc-ri.xml file and built into the tie

classes generated by wsdeploy. For J2EE 1.4, the handler chain is described in the webservices.xml file,
as discussed later in this section. The handler chain for each endpoint is constructed when the tie for

that endpoint is initialized. There is currently no way for a web service implementation to

programmatically access or change the configuration of the handler chain that it is associated with.

On the client side, wscompile gets handler information from the handlerChains element in the

config.xml file and adds the code necessary to build a handler chain to the generated stub class for each

endpoint. This code accesses a registry of handlers that is owned by the generated Service class for
that endpoint and initialized in the constructor of that Service class. The registry is an instance of an

implementation-dependent class that implements the javax.xml.rpc.handler.HandlerRegistry

interface, which is shown in Example 6-46.

Example 6-46. The javax.xml.rpc.handler.HandlerRegistry interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public interface HandlerRegistry {
 public java.util.List getHandlerChain(QName portName);
 public void setHandlerChain(QName portName, java.util.List chain);
}

As long as you use only stubs generated by wscompile to access web services, you won't need to

concern yourself with the HandlerRegistry. However, if you use a Service object obtained from a
ServiceFactory (as you would if you invoke a web service using a dynamic proxy or the dynamic

invocation interface), that Service object will not have an initialized HandlerRegistry, since it is not

created as a result of code generated by wscompile. To ensure that the proper handler chain is

constructed in this case, you need to initialize the HandlerRegistry yourself, before calling the

Service getPort() or createCall() methods. An example that demonstrates how this can be done
is shown in Section 6.8.2.6, later in this chapter.

6.8.2.4 Headers, roles, and the mustUnderstand attribute

Each Handler implements the getHeaders() method to return a list of QNames for the headers that it

processes if they appear in the messages that are passed to it. When a handler chain is created, the

HandlerChain object calls the getHeaders() method of each Handler to create a list of the headers

that can be handled by the entire chain. This header list is used in conjunction with the role list set,
using the roles attribute of the chain element to determine whether the chain can process all of the

headers that it needs to be able to handle.

As you can see from Example 6-45, the handler tag has an optional headers

attribute whose value is a set of QName objects. In the reference implementation,
the value assigned to this attribute is passed to the handler in the HandlerInfo

object that it receives at initialization time. It is not clear why this would be

necessary, since a handler must, as a matter of implementation, know which

headers it is capable of processing. It is possible that this attribute is intended to

allow a restriction to be placed on which headers will actually be processed by a
handler in a given configuration. Since the meaning of this attribute is unclear,

for the example shown in the next section, I initialized it to the full set of headers

that the handler in that example processes.

The roles attribute is initialized using a list of URIs that represent the SOAP actors that the handlers in
the chain represent (refer to Section 3.7.1 for a discussion of SOAP actors and the rules for handling

SOAP headers that contain an actor attribute). If this list is non-empty, then the HandlerChain takes

the following steps before passing a received request message (on the client side) or a response

message (on the server side) to the first handler in the chain for processing:

Gets a list of the headers from the SOAP message that are intended for one of the actors in the1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

actor list, or that are addressed to the actor next.

1.

For each header in this list that has the mustUnderstand attribute set to "1", checks whether the
header QName is in the set of QNames for the headers that can be handled by the chain.

2.

If the header is not in the list, then there is no handler that can process the header. The SOAP

specification requires that a fault be generated in this case, so the HandlerChain does not proceed

with processing of the message but creates a fault message instead.

3.

If the chain element does not have a roles attribute, then it is assumed that only headers that are
intended for the ultimate recipient of the message are to be processed and this check does not take

place.

6.8.2.5 A message handler example

To demonstrate how you can make use of a SOAP message handler, we'll reimplement the example

used earlier in Section 6.8.1 without mapping the authentication information that appears in the header

of the request message, or mapping the timestamp that is placed in the reply message header, to explicit
method arguments. Instead, we'll handle these headers entirely in two message handlers - one created

for the client side, the other for the server side.

As before, the starting point for this example is the WSDL definition of the service. Since the wire
format of the messages will not change from that used in the original implementation, we'll start with a

WSDL definition that is exactly the same as that used in the previous version of this example (apart

from the fact that the filename is changed, as are the URIs within the file) to reflect the directory

structuring of the example source code. Using this WSDL definition, the next step is to create the Java
interface definition for the service using wscompile. On this occasion, however, we don't use the -

f:explicitcontext option, so that the soap:header elements in the binding section of the WSDL

document are ignored. You can generate the interface definitions by opening a command window,

making chapter6\handlerbookservice your working directory, and then typing the command:

ant generate-interface

The output from this command is written to the directory

chapter6\handlerbookservice\generated\interface\ora\jwsnut\chapter6\handlerbookservice. If you look

at the file HandlerBookQuery.java in this directory, you'll see the Java interface definition for this

service, which is reproduced here as Example 6-47.

Example 6-47. The service interface definition for HandlerBookQuery service

public interface HandlerBookQuery extends java.rmi.Remote {
 public void log(java.lang.String string_1) throws java.rmi.RemoteException;
 public int getBookCount() throws java.rmi.RemoteException;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public java.lang.String getBookTitle(int int_1)
 throws java.rmi.RemoteException;
 public void getBookAuthor(java.lang.String string_1, StringHolder string_2)
 throws HandlerBookServiceException, java.rmi.RemoteException;
}

Comparing this with Example 6-39, you'll see that the method call arguments corresponding to the

authentication information and the timestamp are no longer present. In this example, these attributes

are handled as follows:

On the client side, instead of the client application supplying the authentication information with

every method call on the service endpoint interface, a message handler inserts the username and
password in the SOAP header of every request message. This is beneficial not only because it

simplifies the application code, but also because by substituting a different handler (which is a

matter of changing the config.xml file and the jaxrpc-ri.xml or webservices.xml file), an
alternative authentication mechanism can be used without requiring a change to application code.

On the server side, the authentication information is extracted from the SOAP message header by

a server-side handler that knows the format of the header element that carries it. It is then made
available to the web service implementation via the MessageContext object.

Instead of each service endpoint method recording the time at which it was called, as shown in the

implementation of the getBookCount() method in Example 6-41, the server-side handler inserts

a header element containing this information in each response message that it processes.

Let's look first at the implementation of the handler used on the server side, the source code for which

you'll find in the file
chapter6\handlerbookservice\server\ora\jwsnut\chapter6\handlerbookservice\ServiceHandler.java.

The initialization code for this handler is shown in Example 6-48.

Example 6-48. Initialization code for a server-side message handler

public class ServiceHandler extends GenericHandler {

 // Namespace for types used by this handler
 private static final String NS_URI =
 "urn:jwsnut.chapter6.handlerbookservice/wsdl/HandlerBookQuery";
 // Namespace prefix used by this handler
 private static final String NS_PREFIX = "tns";

 // Name of the authentication header
 private static final QName authHeader = new QName(NS_URI, "auth");

 // Name of the date/time header
 private static final QName timeHeader = new QName(NS_URI, "time");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Formatter for dates
 private static final SimpleDateFormat format =
 new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss");

 // SOAPFactory used to create Names
 private static SOAPFactory factory;

 // Name of the authentication header as a Name
 private static Name authHeaderName;

 // Name of the date/time header as a Name
 private static Name timeHeaderName;

 // The headers that this handler is associated with
 private static QName[] headers;

 // Debug flag
 private boolean debug;

 // Performs initialization
 public void init(HandlerInfo info) {

 // Extract the debug setting from the configuration
 Map config = info.getHandlerConfig();
 String value = (String)config.get("debug");
 debug = value == null ? false : Boolean.valueOf(value).booleanValue();

 // Create Names
 try {
 factory = SOAPFactory.newInstance();
 authHeaderName = factory.createName("auth", NS_PREFIX, NS_URI);
 timeHeaderName = factory.createName("time", NS_PREFIX, NS_URI);
 headers = new QName[] { authHeader, timeHeader };
 } catch (SOAPException ex) {
 throw new JAXRPCException("Init failure", ex);
 }

 if (debug) {
 System.out.println("Server-side handler initialized");
 }
 }

 // Other code not shown here
}

Notice first that the handler class is derived from GenericHandler, which contained default

implementations for methods of the Handler interface that do not need to provide special behavior for
this example.

For the JWSDP, the init() method receives a HandlerInfo object whose content is created from the

handler configuration information provided in the jaxrpc-ri.xml file, which is shown in Example 6-49.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 6-49. The jaxrpc-ri.xml file for a JWSDP-hosted web service using a JAX-RPC message handler

<?xml version="1.0" encoding="UTF-8"?>
<webServices
 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/dd"
 version="1.0"
 targetNamespaceBase="urn:jwsnut.chapter6.handlerbookservice/wsdl/"
 typeNamespaceBase="urn:jwsnut.chapter6.handlerbookservice/types/">

 <endpoint
 name="HandlerBookQuery"
 displayName="HandlerBookQuery Port"
 description="Handler Book Query Port"
 model="/WEB-INF/model"
 interface="ora.jwsnut.chapter6.handlerbookservice.HandlerBookQuery"
 implementation=
 "ora.jwsnut.chapter6.handlerbookservice.HandlerBookServiceServant">
 <handlerChains>
 <chain runAt="server"
 xmlns:tns="urn:jwsnut.chapter6.handlerbookservice/wsdl/HandlerBookQuery>
 <handler
 className="ora.jwsnut.chapter6.handlerbookservice.ServiceHandler"
 headers="tns:auth tns:time">
 <property name="debug" value="true"/>
 </handler>
 </chain>
 </handlerChains>
 </endpoint>

 <endpointMapping
 endpointName="HandlerBookQuery"
 urlPattern="/HandlerBookQuery"/>
</webServices>

This configuration specifies that the handler chain associated with this service consists of a single

handler implemented in the class ora.jwsnut.chapter6.handlerbookservice.ServiceHandler.

Since the chain element does not have a roles attribute, the handler is assumed to handle only headers

that are intended for the ultimate recipient of each SOAP message. The headers attribute of the

handler element indicates that the handler processes two different headers called auth and time,
which are names defined in the XML namespace associated with this example

(urn:jwsnut.chapter6.handlerbookservice/wsdl/HandlerBookQuery). The property element associated

with this handler defines a single property called debug that, in this case, has the value true.

The corresponding server-side configuration for the J2EE 1.4 platform appears in the service's

webservices.xml file, which is shown in Example 6-50.

Example 6-50. The webservices.xml file for a web service using a message handler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE webservices
 PUBLIC "-//IBM Corporation, Inc.//DTD J2EE Web services 1.0//EN"
 "http://www.ibm.com/standards/xml/webservices/j2ee/j2ee_web_services_1_0.dtd">

<webservices>
 <webservice-description>
 <webservice-description-name>Book Service Web Application with message
 handler using JAX-RPC</webservice-description-name>
 <wsdl-file>HandlerBookQuery.wsdl</wsdl-file>
 <jaxrpc-mapping-file>WEB-INF/model</jaxrpc-mapping-file>
 <port-component>
 <port-component-name>HandlerBookQueryPort</port-component-name>
 <wsdl-port>
 <namespaceURI>urn:jwsnut.chapter6.handlerbookservice/wsdl/
 HandlerBookQuery</namespaceURI>
 <localpart>HandlerBookQueryPort</localpart>
 </wsdl-port>
 <service-endpoint-interface>ora.jwsnut.chapter6.handlerbookservice.
 HandlerBookQuery</service-endpoint-interface>
 <service-impl-bean>
 <servlet-link>HandlerBookQueryServlet</servlet-link>
 </service-impl-bean>

 <!-- Handler for this port -->
 <handler>
 <handler-name>Service Handler</handler-name>
 <handler-class>ora.jwsnut.chapter6.handlerbookservice.ServiceHandler
 </handler-class>
 <init-param>
 <param-name>debug</param-name>
 <param-value>true</param-value>
 </init-param>
 <soap-header>
 <namespaceURI>
 urn:jwsnut.chapter6.handlerbookservice/wsdl/HandlerBookQuery

 <localpart>auth</localpart>
 </namespaceURI>
 <localpart>auth</localpart>
 </soap-header>
 <soap-header>
 <namespaceURI>
 urn:jwsnut.chapter6.handlerbookservice/wsdl/HandlerBookQuery
 </namespaceURI>
 <localpart>time</localpart>
 </soap-header>
 </handler>
 </port-component>
 </webservice-description>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</webservices>

Here, the headers that the handler will process are described using nested soap-header elements, while
the SOAP roles are specified using one or more soap-rule elements. In this case, since there are no

soap-role elements, the handlers process only headers intended for the ultimate recipient of each

message.

The handler's class name and the header names are made available in the HandlerInfo object passed to

its init() method, together with the property value, which appears as an entry in the Map that can be

retrieved using its getHandlerConfig() method. The init() method, which is shown in Example
6-48, extracts this value and stores it in an instance variable for later use. This setting determines

whether debugging information will be printed. The rest of this method uses the
javax.xml.soap.SOAPFactory class to create the names of the header elements that this handler will

process. These names are used when calling methods from the SAAJ API when the handler is

processing SOAP messages. The handler's processing for SOAP request messages is shown in Example
6-51.

Example 6-51. Handling a SOAP request message in a server-side SOAP message handler

public boolean handleRequest(MessageContext ctx) {
 try {
 if (debug) {
 System.out.println("handleRequest called");
 }

 String userName = null;
 String password = null;
 SOAPMessage message = ((SOAPMessageContext)ctx).getMessage();
 SOAPHeader header = message.getSOAPPart().getEnvelope().getHeader();
 if (header != null) {

 // Locate the "auth" header
 Iterator iter = header.getChildElements(authHeaderName);
 if (iter.hasNext()) {
 SOAPElement element = (SOAPElement)iter.next();
 Iterator children = element.getChildElements();
 while (children.hasNext()) {
 SOAPElement childElement = (SOAPElement)children.next();
 String localPart = childElement.getElementName()
 .getLocalName();
 if (localPart.equals("UserName") && userName == null) {
 userName = childElement.getValue();
 } else if (localPart.equals("Password") && password == null) {
 password = childElement.getValue();
 }
 }

 // Remove this header

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 element.detachNode();
 }

 // Remove any other "auth" headers.
 while (iter.hasNext()) {
 ((SOAPElement)iter.next()).detachNode();
 }

 // Install the user name and password in the MessageContext.
 // This installs null if either attribute was missing.
 ctx.setProperty(HandlerBookServiceConstants.USERNAME_PROPERTY,
 userName);
 ctx.setProperty(HandlerBookServiceConstants.PASSWORD_PROPERTY,
 password);

 if (debug) {
 System.out.println("Got auth: user: [" + userName +
 "], password: [" + password + "]");
 }
 }
 } catch (SOAPException ex) {
 throw new JAXRPCException("Error in handleRequest", ex);
 }
 return true;
}

This code expects to find a header called auth carrying the username and password for the user calling
the methods of the web service endpoint on which it is configured. Most of this code is concerned with
using the SAAJ APIs described in Chapter 3 to locate this header, the format of which is shown in

Example 6-37. If the header is present, the code extracts the values that it contains. The points of

relevance to the construction of the message handler itself are the following:

In order to process the SOAP header, this method needs to be able to access the SOAP message.

This is achieved by casting the MessageContext object passed to it to the type

SOAPMessageContext and then calling its getMessage() method. Almost every

handleRequest(), handleResponse(), and handleFault() method in a message handler
will contain code like this.

Once the auth header is found and its content extracted, it is removed from the SOAP message.

This follows the rules for header handling in the SOAP specification (and also described in

Section 3.7).

Having obtained the username and password, the handler needs to be able to make them available

to the methods in the servant class that implement the service endpoint interface. It does this by

storing them under well-known names in the MessageContext, which is also available to the
service methods. Handlers can also use the MessageContext to pass information to other handlers

in the handler chain.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The difference that this handler makes to the service class can be seen by looking at the implementation

of the same methods that were shown in Example 6-41, where explicit context was used to convey the

information now extracted by the message handler. The new implementations of these methods are
shown in Example 6-52.

Example 6-52. Implementing authentication without explicit context

public int getBookCount() {
 String[] titles = HandlerBookServiceServantData.getBookTitles();
 return titles == null || !checkAccess() ? 0 : titles.length;
}

private boolean checkAccess() {
 boolean allowed = false;

 // Get the username and password from the MessageContext
 MessageContext context = endpointContext.getMessageContext();
 String callingUser = (String)context.getProperty(
 HandlerBookServiceConstants.USERNAME_PROPERTY);
 String callingPwd = (String)context.getProperty(
 HandlerBookServiceConstants.PASSWORD_PROPERTY);

 if (userName != null && password != null) {
 // Authentication is configured.
 return userName.equals(callingUser) &&
 password.equals(callingPwd);
 }
 return allowed;
}

As you can see, the getBookCount() method no longer receives any authentication information.

Instead, it simply invokes the helper method checkAccess(), and relies upon it to obtain the caller's

username and password. The checkAccess() method gets the user's credentials from the

MessageContext (where the message handler stored them), a reference to which it obtains from the

ServletEndpointContext object that was passed to the servant's init() method.

You'll notice also that the getBookCount() method no longer provides the time at which it was

invoked. In the new implementation, this information is no longer supplied by the servant class.
Instead, it is added to the header of each response message by the handleResponse() method of the

message handler, which is shown in Example 6-53.

Example 6-53. Handling a SOAP response message in a server-side SOAP message handler

public boolean handleResponse(MessageContext ctx) {
 try {
 if (debug) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.println("handleResponse called");
 }

 SOAPMessage message = ((SOAPMessageContext)ctx).getMessage();
 SOAPHeader header = message.getSOAPPart().getEnvelope().getHeader();
 if (header == null) {
 header = message.getSOAPPart().getEnvelope().addHeader();
 }
 SOAPElement element = header.addChildElement(timeHeaderName);
 String text = format.format(new Date());
 element.addTextNode(text);

 if (debug) {
 System.out.println("Added time header, value " + text);
 }
 } catch (SOAPException ex) {
 throw new JAXRPCException("Error in handleRequest", ex);
 }
 return true;
}

The implementation of the handler used on the client side, which you'll find in the file
chapter6\handlerbookservice\client\ora\jwsnut\chapter6\client\ClientHandler.java, is very similar to

that of the server-side handler just shown. Since almost all of the code is concerned with simple header

manipulation using the SAAJ APIs covered in Chapter 3, I'm not going to show it here. The handler's

init() method obtains the username and password to be used from the system properties and stores
them for use by the handleRequest() method, which places them in an auth element that it adds to
the SOAP header of each message that is passed to it. The handleResponse() method looks for a

time element in the SOAP header of the response messages that it receives and extracts from it the

timestamp inserted by the handler on the server side. There is no way, however, for the handler to

communicate this value to the client application in a manner that does not require the application to be

tied to the handler itself, since there is no client-side API that exposes the MessageContext object in

the same way that there is on the server side. This being the case, having extracted the timestamp, the
handler simply prints it on the System.out stream.

To activate a client-side handler, include a handlerChains element in the config.xml file from which

the client-side stubs are generated, as shown in Example 6-54. Note that, in this case, the runAt

attribute of the chain element has the value client. It is possible to include a server-side handler chain

in the config.xml file, but this would only be useful if you intend to use wscompile to generate server-

side artifacts.

Example 6-54. Configuring a client-side message handler

<?xml version="1.0" encoding="UTF-8" ?>

<configuration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
 <wsdl location=
 "C:\JWSNutshell\draft1\examples\chapter6\handlerbookservice/
 HandlerBookQuery.wsdl"
 packageName="ora.jwsnut.chapter6.handlerbookservice">
 <handlerChains>
 <chain runAt="client"
 xmlns:tns="urn:jwsnut.chapter6.handlerbookservice/wsdl/
HandlerBookQuery">
 <handler className="ora.jwsnut.chapter6.client.ClientHandler"
 headers="tns:auth tns:time">
 <property name="debug" value="true"/>
 </handler>
 </chain>
 </handlerChains>
 </wsdl>
</configuration>

You can run this example by deploying the service implementation using the command:

ant deploy

To run the client application, use the commands:

ant compile-client
ant run-client

Since debugging has been enabled by setting the debug property in both the client- and server-side

handlers, you'll see messages printed as the handlers' handleRequest() and handleResponse()

methods are called. An extract from the client-side output, reformatted for the sake of readability, is
shown here:

[java] handleRequest called
[java] OUTGOING MESSAGE:
[java] <?xml version="1.0" encoding="UTF-8"?>
[java] <soap-env:Envelope
 xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns0="urn:jwsnut.chapter6.handlerbookservice/types/HandlerBookQuery"
 xmlns:ns1="urn:jwsnut.chapter6.handlerbookservice/wsdl/HandlerBookQuery"
 env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <soap-env:Header>
 <tns:auth xmlns:tns=
 "urn:jwsnut.chapter6.handlerbookservice/wsdl/HandlerBookQuery">
 <UserName>JWSUserName</UserName>
 <Password>JWSPassword</Password>
 </tns:auth>
 </soap-env:Header>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <soap-env:Body>
 <ns1:log>
 <String_1 xsi:type="xsd:string">
 HandlerBookServiceClient: success
 </String_1>
 </ns1:log>
 </soap-env:Body>
 </soap-env:Envelope>
[java] handleResponse called
[java] Request processed at: 2002-10-24T21:13:59

The client handler's handleRequest() method prints the complete SOAP request message, including

the auth header that it adds (highlighted in bold in the previous code listing), while the

handleResponse() method displays the timestamp obtained from the time header provided by the

server-side handler. Similar output from the server-side handler can be found in the catalina.out file in
the logs directory of the Tomcat web server, or in the file used to capture the System.out stream for

the J2EE application server.

6.8.2.6 Initializing the HandlerRegistry when using dynamic proxies or dynamic invocation

When your client application uses stubs generated by wscompile, the generated Service object contains

the code necessary to create a handler chain if one is specified in the config.xml file. However, a

Service object obtained from a ServiceFactory is generic and therefore cannot create an application-
specific handler chain. To use handler chains in conjunction with dynamic proxies or the dynamic

invocation interface, you have to add code to your application to install the necessary information in the

HandlerRegistry associated with the Service object before using its getPort() or createCall()

methods. Example 6-55 shows an extract from a client application that uses a dynamic proxy to access

the book web service that we have been using in this section.

Example 6-55. Dynamically updating the HandlerRegistry for a service endpoint

// Form the names of the service and of the port
QName serviceName = new QName(NS_URI, "HandlerBookService");
QName portName = new QName(NS_URI, "HandlerBookQueryPort");

// Get the Service
ServiceFactory factory = ServiceFactory.newInstance();
Service service = factory.createService(wsdlURL, serviceName);

// Build a handler chain with one handler
QName[] headers = new QName[] {
 new QName(NS_URI, "auth"),
 new QName(NS_URI, "time")
 };
HashMap map = new HashMap();
map.put("debug", "true");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HandlerInfo info = new HandlerInfo(ClientHandler.class, map, headers);
ArrayList handlerList = new ArrayList();
handlerList.add(info);

// Add the handler chain to the HandlerRegistry
HandlerRegistry handlerRegistry = service.getHandlerRegistry();
handlerRegistry.setHandlerChain(portName, handlerList);

// Now get the dynamic proxy
HandlerBookQuery bookQuery =
 (HandlerBookQuery)service.getPort(portName,
 HandlerBookQuery.class);

This code gets a reference to the HandlerRegistry by calling the getHandlerRegistry() method of

the Service object obtained from the ServiceFactory. A handler chain is configured for a specific

service endpoint using the HandlerRegistry setHandlerChain() method:

public void setHandlerChain(QName portName, java.util.List handlerChain);

The portName argument provides the name of the port for which the handler is to be configured in the

form of a QName. The port name can, of course, be obtained from the port element in the WSDL
definition of the service:

final String NS_URI =
 "urn:jwsnut.chapter6.handlerbookservice/wsdl/HandlerBookQuery";
QName portName = new QName(NS_URI, "HandlerBookQueryPort");

The handlerChain argument is a java.util.List object containing an entry of type

HandlerInfo

containing configuration information for each handler in the chain. In the reference implementation, the

order of elements in this list determines the order in which the handlers are invoked during request

processing. This behavior however, is implementation-dependent. In this example, the handler chain

has only one handler.

The HandlerInfo constructor requires three arguments:

public HandlerInfo(Class handlerClass, java.util.Map config,
 QName[] headers);

The first argument is the Class object for the handler implementation class. The second argument is a

Map containing configuration parameters for the handler. This map should contain the values that you
ordinarily supply using property elements in the config.xml file. In this case the Map is initialized so that

the debug property has the value true, which results in the same configuration as that shown in

Example 6-54. The final argument lists the header types that the handler chain can process.

Once the list of handlers is constructed, it is installed in the registry:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Add the handler chain the HandlerRegistry
HandlerRegistry handlerRegistry = service.getHandlerRegistry();
handlerRegistry.setHandlerChain(portName, handlerList);

With registry initialization complete, it is now possible to use the getPort() method to obtain a

dynamic proxy for the target port (or one of the createCall() methods if you intend to use the

dynamic invocation interface). The proxy uses the information in the registry to construct the handler
chain before the first message is sent to the server. You can verify that this works by running the code

using the command:

ant run-proxy-client

This should produce the same result as the client used in the previous section, which used precompiled

stubs to access the web service.

As noted earlier in this chapter, if you are using the beta release of J2EE 1.4 to

run the examples for this book, you need to get around a bug that prevents clients
generated from WSDL documents from working. If you go to the directory

repository\applications\HandlerBooks beneath the installation directory of the

J2EE reference implementation, you will find there a file whose name will be
something like Book Service Web Application with message handler using JAX-

RPC54173.wsdl (the numeric part will probably be different on your system).
Open this file with an editor and go to the last line, which should contain a

<soap:address> tag. You'll see that this tag has an attribute called location,

which contains the URL of the deployed book service - something like

http://localhost:8000//HandlerBooks/HandlerBookQuery. The fact that there are

two "/" characters before HandlerBooks causes the client to fail when it connects
to the service. To fix this problem, just replace the "//" pair with one slash, thus

making the address http://localhost:8000/HandlerBooks/HandlerBookQuery.

http://localhost:8000//HandlerBooks/HandlerBookQuery
http://localhost:8000/HandlerBooks/HandlerBookQuery
http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.9 Serialization and Type Mappings

In Section 6.6, earlier in this chapter, you saw that there are two different sets of encoding rules that are

commonly used when creating SOAP messages - SOAP section 5 encoding, which is typically used
for RPC-style operations, and literal encoding, which is the usual choice for a document-style

operation. In order to create a SOAP message from the name and parameters of a method call or from

its return value and output parameters, the JAX-RPC runtime has to know how to convert the Java

primitive types and the Java objects used in the method definition into the corresponding XML

representation that will appear in the message. The process of converting a Java type to its XML
representation is called serialization, and the reverse process is termed deserialization. A class that can

perform these conversions is called a serializer or a deserializer. In practice, both the serialization and
deserialization rules for a specific type are implemented in the same class, which I will refer to simply

as a serializer. In this section, we look at how JAX-RPC handles the serialization and deserialization

processes. In case you think that you don't really need to know much about this somewhat esoteric
issue, in the course of this discussion you'll see that you can't always assume that JAX-RPC will

arrange for all of the serializers that you require to be available at runtime. This section shows you how
to make sure that they are.

6.9.1 Type Mappings and the Type Mapping Registry

The JAX-RPC runtime stores information relating to serialization in a TypeMappingRegistry. There is
a separate TypeMappingRegistry for each service endpoint being used by a client application or hosted

by a servlet or session bean. On the client side, the TypeMappingRegistry is associated with the

Service object. Client code can obtain a reference to it using the Service getTypeMappingRegistry(

) method. On the server side, it is owned and initialized by the tie class generated by wsdeploy

(JWSDP) or deploytool (J2EE 1.4) and is not accessible to the web service implementation class. The

relationship between the Service object, a server-side tie, and the TypeMappingRegistry, together
with the objects within the registry, is shown in Figure 6-8.

Figure 6-8. JAX-RPC TypeMapping architecture

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A TypeMappingRegistry contains zero or more TypeMapping objects, each of which manages the
serializers that encapsulate the encoding rules for a particular encoding style. The TypeMapping object

for a given encoding style can be obtained by calling the TypeMappingRegistry getTypeMapping()

method and supplying the URI that uniquely identifies the encoding style, provided that the
TypeMappingRegistry has been initialized with a TypeMapping for that URI. The JAX-RPC reference

implementation creates registries that are preconfigured with TypeMappings for the SOAP section 5
encoding rules and for literal encoding. Given a Service object, the following code can be used to get

the TypeMapping for each of these encoding styles:

Service service =; // Get Service object
TypeMapping soapMapping = service.getTypeMappingRegistry().getTypeMapping(
 javax.xml.rpc.NamespaceConstants.NSURI_SOAP_ENCODING));
TypeMapping literalMapping = service.getTypeMappingRegistry().
getTypeMapping("");

The serializers and deserializers required for each encoding style are registered with the TypeMapping
object using the register() method:

public void register(Class javaType, QName xmlType, SerializerFactory sf,
 DeserializerFactory dsf);

SerializerFactory and DeserializerFactory are interfaces implemented by classes that can return
a serializer or deserializer that can map between the given Java type and XML type. A TypeMapping

stores factory references instead of instances of the actual serializers so that the factory can determine

when it is appropriate to create serializer instances. In the reference implementation, these factories

create only a single instance of each serializer and deserializer, thereby minimizing object creation

overhead as well as memory utilization.

When a serializer to map from a given Java type to a given XML type is required, the TypeMapping
getSerializer() method is called:

public SerializerFactory getSerializer(Class javaType, QName xmlType);

If there is no factory registered for this combination of types, then null is returned. Once a factory is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

obtained, the serializer itself can be retrieved using the SerializerFactory getSerializerAs()
method:

public Serializer getSerializerAs(String mechanismType);

The mechanismType argument is provided to allow serializers and deserializers to be developed that

work with different underlying XML processing mechanisms. A deserializer factory may be able to

provide deserializers that work with the input from any or all of a DOM model, a SAX event stream, or

a streaming pull parser (i.e., a parser that processes XML elements on request by application code,

rather than by delivering events or providing a complete document model). The current version of the
JAX-RPC specification does not specify any fixed values for the mechanismType argument, and the

reference implementation supports only one mechanism type that corresponds to a streaming pull
parser. The same arrangement exists for deserializers.

The javax.xml.rpc.encoding.Serializer and javax.xml.rpc.encoding.Deserializer interface

must be implemented by all serializers and deserializers, respectively. They are defined as follows:

public interface Serializer {
 public String getMechanismType();
}

public interface Deserializer {
 public String getMechanismType();
}

The getMechanismType() method returns the identifier for the XML processing mechanism that the
serializer or deserializer supports. Surprisingly, these interfaces do not include methods that actually

perform any serialization or deserialization! The reason for this is that the current version of the JAX-

RPC specification provides only a framework within which serializers and deserializers can be

registered and located on demand. It does not specify how these objects are to be implemented nor how
they are called, leaving these details to be determined by JAX-RPC vendors. In the future, the JAX-

RPC specification is likely to be extended to allow developers to create serializers and deserializers that

are portable between different vendors' JAX-RPC implementations.

For an example of the effect of the encoding style on the content of a SOAP message, consider how a

date might be mapped to XML. The standard JAX-RPC mapping for the Java Date class (and also for

Calendar) is to map to the XML Schema type xsd:dateTime. The standard serializer that maps from
Date to xsd:dateTime included in the TypeMapping object for the SOAP section 5 encoding rules

creates XML that looks like this:

<ns1:time xsi:type="xsd:dateTime">2002-10-25T19:53:53.250+01:00</ns1:time>

In this case, time is a type defined in the WSDL specification of a service to contain a value of type

xsd:dateTime. If literal encoding is used, the XML is slightly different:

<ns1:time>2002-10-25T19:53:53.250+01:00</ns1:time>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Since these are relatively cumbersome representations, if you implement a web service intended for use

in a closed environment, you might agree with the users of your service that dates could be encoded in

a more lightweight form, perhaps as the number of milliseconds since January 1, 1970:

<ns1:time>1035657051647</ns1:time>

In order to do this, you would introduce a new serializer and deserializer for the Java Date and

Calendar classes and plug them into the TypeMapping object for the SOAP-encoding style and/or the

literal-encoding style. At the present time, however, it is not possible to write a custom serializer, either
to change the way in which a supported type is serialized or to provide serialization for application-

specific types, without becoming tied to a specific vendor's product. Therefore, it is best, wherever
possible, to create web service interfaces that require only those types for which support is provided by

the JAX-RPC specification.[14]

[14] The lack of a specification for portable serializers also means that you cannot implement a

custom-encoding style without making assumptions about the serialization framework of a
particular JAX-RPC implementation, since a new encoding style would require serializers and

deserializers that implement the new encoding rules.

6.9.2 Initialization of the TypeMappingRegistry

When the tie class for a server-side web service implementation class is initialized or a client
application obtains a Service object for a web service endpoint, the TypeMappingRegistry associated

with that endpoint is initialized. The registry content is constructed as follows:

A standard set of mappings is installed for both the SOAP and literal encodings. All JAX-RPC
implementations are required to provide serializers and deserializers for the Java primitive types

and the object types listed in Section 2.2.1.2. The JAX-RPC reference implementation also

includes serializers and deserializers for some of the Java collection classes.

On the server side, the tie class installs serializers and deserializers for arrays and value types used

in the service endpoint interface, as well as for the SOAP messages that will exchanged with the

client. These serializers and deserializers are generated by wsdeploy and included in the

deployable WAR file.

The same set of serializers is installed on the client side by the Service class generated by

wscompile.

For an example of what might be included in the TypeMappingRegistry for a given service endpoint

interface, consider the BookQuery interface defined for the book web service used in Chapter 2, which

is shown in Example 6-56.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 6-56. The BookQuery interface for the book web service

public interface BookQuery extends Remote {
 public abstract int getBookCount() throws RemoteException;
 public abstract String getAuthor(String name) throws RemoteException;
 public abstract String getEditor(String name) throws RemoteException;
 public abstract double getPrice(String name)
 throws BookServiceException, RemoteException;
 public abstract BookInfo[] getBookInfo() throws RemoteException;
 public abstract HashMap getBookMap() throws RemoteException;
}

The registry will need serializers and deserializers for the SOAP request and response messages for

each method call, which will themselves need to use lower-level serializers that can handle the data
types used as method call arguments and return values. In the case of this interface, the data types

concerned are as follows:

int

double

String

HashMap

BookInfo

BookInfo[]

The first three of these are standard types for which all JAX-RPC implementations are required to

provide serializers, whereas HashMap is supported as an extension by the JAX-RPC reference
implementation. The serializers and deserializers for these four types therefore appear in the

TypeMappingRegistry when it is initialized. The BookInfo class is a value type that contains values

that are directly supported by JAX-RPC. A custom serializer is generated for this class by both

wscompile and wsdeploy.[15] Similarly, a serializer for an array of BookInfo objects is generated. These

custom serializers are registered by the Service object on the client side and by the tie class on the

server side.

[15] Of course, a deserializer for this type is also generated. For the sake of brevity, from this point
forward, I'll use the term "serializer" as shorthand for both serializer and deserializer, unless

otherwise stated.

6.9.3 Adding Additional Serializers to the Registry

Both wscompile and wsdeploy ensure that the registry contains serializers for all of the types that are
used in the Java interface or WSDL document that defines the service endpoint interface for a web

http://lib.ommolketab.ir
http://lib.ommolketab.ir

service. Sometimes, however, this is not sufficient. Some examples of instances in which these tools
cannot generate all of the serializers that are required at runtime, given only the information in the

WSDL document or the Java interface, are described in the following list.

Use of collection classes

The JAX-RPC reference implementation can serialize and deserialize a subset of the Java

collection classes from the java.util package. These serializers know how to create XML that

represents the structure of the collection, including the pairing of keys with values for collections

such as HashMap. However, it is still necessary for the registry to contain specific serializers for
the objects that are stored in the collection. This requirement is met if the collection contains

only the standard JAX-RPC types such as String, Integer, Date, etc. It is also met for objects

that are used elsewhere in the interface or WSDL definition from which the stubs and ties for the
service are generated. In the case of the BookQuery interface, for example, the HashMap returned

by the getBookMap() method contains only Strings (for the entry keys) and BookInfo objects
(for the entry values). String is a JAX-RPC supported type, while BookInfo is explicitly

referenced elsewhere in the interface definition-therefore, both of these types already have

serializers installed. This requirement would not be met if the collection contained an instance of

a class that does not appear in the interface definition (even if that class is a value type that could

be serialized by JAX-RPC), or if it contained an array of objects of any type-even primitive
objects for which serializers are already registered (such as String[]).

Methods that use base class or interface arguments

Suppose that the provider of the web service that uses the BookQuery interface decides to include

a new category of books that could be viewed over the Internet by registered subscribers. To

accommodate this, a subclass of BookInfo, called ElectronicBookInfo, might be developed

that includes the URL at which the book could be found. The methods of the BookQuery
interface would continue to refer to BookInfo throughout, since they would need to handle any

kind of book. However, since ElectronicBookInfo is not mentioned in the interface definition,

there is not a serializer for it.

Put in a more general form, this issue arises when there is a collection class in the interface definition,

or when the Java method declarations or the WSDL document refer to base classes (perhaps abstract

base classes) or interfaces, in which the objects that are actually transferred are instances of derived
classes or classes that implement the specified interface. If the actual types are not mentioned anywhere

in the endpoint interface definition, neither wscompile nor wsdeploy generates serializers for them.

Suppose that we were to extend the book web service from Chapter 2 by adding a URL for those books

that can be viewed over the Internet, as previously suggested. We do this using the class

ElectronicBookInfo, the definition of which is shown in Example 6-57.

Example 6-57. A subclass of BookInfo with a URL attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class ElectronicBookInfo extends BookInfo {
 private String url;

 /**
 * Constructs an <code>ElectronicBookInfo</code> object.
 * This constructor is used for deserialization.
 */
 public ElectronicBookInfo() {
 }

 /**
 * Constructs an <code>ElectronicBookInfo</code> object initialized
 * with given attributes.
 */
 public ElectronicBookInfo(String title, String author, String editor,
 double price, String url) {
 super(title, author, editor, price);
 this.url = url;
 }

 public String getURL() {
 return url;
 }

 public void setURL(String url) {
 this.url = url;
 }
}

The addition of this subclass does not, of course, result in any changes in the BookQuery interface

(which is shown in Example 6-56). As far as the results of calling the methods of this interface are

concerned, the introduction of this BookInfo subclass has the following effect:

The array of BookInfo objects returned by the getBookInfo() method will be populated with

BookInfo objects for those books that cannot be viewed on the Internet, and with
ElectronicBookInfo objects for those that can.

Similarly, in the HashMap returned by getBookMap(), in which the keys are the book titles, the

value associated with each book is either a BookInfo or an ElectronicBookInfo object.

The client code shown in Example 6-58 could be used to fetch the books from the web service using

both methods, and prints the results.

Example 6-58. Getting a list of BookInfo and ElectronicBookInfo objects from the book web service

// Get all of the books
BookInfo[] info = bookQuery.getBookInfo();
System.out.println("Books from getBookInfo()");
for (int i = 0; i < info.length; i++) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 boolean eBook = info[i] instanceof ElectronicBookInfo;
 System.out.println("\tTitle: " + info[i].getTitle() +
 (eBook ? "; URL: " +
 ((ElectronicBookInfo)info[i]).getURL() : "; not E-Book"));
}

// Get the books in a HashMap
HashMap map = bookQuery.getBookMap();
System.out.println("Books from getBookMap()");
Iterator iter = map.values().iterator();
while (iter.hasNext()) {
 BookInfo book = (BookInfo)iter.next();
 boolean eBook = book instanceof ElectronicBookInfo;
 System.out.println("\tTitle: " + book.getTitle() +
 (eBook ? "; URL: " +
 ((ElectronicBookInfo)book).getURL() : "; not E-Book"));
}

Notice that after calling each method, the runtime type of each BookInfo object is checked to

determine whether it is accessible over the Internet. If we modified the servant for the book web service
to include a mixture of books that are and are not accessible over the Internet, and then run this client

code, we get output like that shown here (some lines have been omitted for the sake of brevity):

 Books from getBookInfo()
 Title: Java in a Nutshell; not E-Book
 Title: J2ME in a Nutshell; not E-Book
 Title: Java Swing; not E-Book
 .
 .
 Title: Java Internationalization; not E-Book
 Books from getBookMap()
 Title: Java in a Nutshell; not E-Book
 Title: J2ME in a Nutshell; not E-Book
 .
 .
 Title: Java Internationalization; not E-Book
 .
 .
 Title: Java Swing; not E-Book

These results indicate that all of the objects returned were of type BookInfo, despite the fact that the

server has a mixture of BookInfo and ElectronicBookInfo objects. This is perhaps not surprising,
since neither the client nor the server have a serializer for the ElectronicBookInfo class (which is not

explicitly mentioned in the BookQuery interface). As a result, the ElectronicBookInfo objects are all

serialized as instances of the base class BookInfo, for which a serializer is available.

6.9.3.1 Adding serializers to the client side

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On the client side, you can arrange for wscompile to generate serializers for classes that do not appear
in the service endpoint interface definition by including one or more additionalTypes elements in the

config.xml file. Example 6-59 shows the config.xml file for a client that will access a version of the

book web service that has been enhanced to return both BookInfo and ElectronicBookInfo objects.

Example 6-59. The additionalTypes element in the config.xml file

<?xml version="1.0" encoding="UTF-8" ?>

<configuration
 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
 <service name="SerializerBookService"
 targetNamespace=
 "urn:jwsnut.chapter6.serializerbookservice/wsdl/SBookQuery"
 typeNamespace=
 "urn:jwsnut.chapter6.serializerbookservice/types/SBookQuery"
 packageName="ora.jwsnut.chapter6.serializerbookservice">

 <interface name="ora.jwsnut.chapter6.serializerbookservice.SBookQuery"/>
 <typeMappingRegistry>
 <additionalTypes>
 <class name=
 "ora.jwsnut.chapter6.serializerbookservice.ElectronicBookInfol"/>
 </additionalTypes>
 </typeMappingRegistry>
 </service>
</configuration>

The typeMappingRegistry element shown here has several possible child elements that can be used to
specify the content of the TypeMappingRegistry associated with the Service object being configured,

all of which are described in Chapter 8. The additionalTypes element lists the classes for which

serializers must be generated and added to the registry at runtime. Each such class requires a class

element with a name attribute set to its fully qualified name.

6.9.3.2 Adding serializers to the server side

A serializer for the ElectronicBookInfo class must also be available to the JAX-RPC runtime on the
server side. However, the schema definition for the jaxrpc-ri.xml file, which wsdeploy uses to

determine the tie classes and serializers that it needs to generate, does not include a

typeMappingRegistry element. The only way to communicate a requirement for additional serializers

to wsdeploy is to generate a model file from the information contained in the config.xml file and then

include a reference to it in the endpoint element for the service. This is the same technique that we used
when it was necessary to arrange for wsdeploy to generate ties for a document-style service endpoint

interface in Section 6.6, earlier in this chapter. The model file is created by supplying the -model

argument to wscompile when creating the client-side artifacts, and is then placed in the WEB-INF

directory of the portable WAR file used by wsdeploy, along with a suitably modified jaxrpc-ri.xml file,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

as shown in Example 6-60.

Example 6-60. Using a model file to include additional serializers in a server-side deployment

<?xml version="1.0" encoding="UTF-8"?>
<webServices
 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/dd"
 version="1.0"
 targetNamespaceBase="urn:jwsnut.chapter6.serializerbookservice/wsdl/"
 typeNamespaceBase="urn:jwsnut.chapter6.serializerbookservice/types/">

 <endpoint
 name="SBookQuery"
 displayName="SBookQuery Port"
 description="Serializer Book Query Port"
 interface="ora.jwsnut.chapter6.serializerbookservice.SBookQuery"
 model="/WEB-INF/model"
 implementation=
 "ora.jwsnut.chapter6.serializerbookservice.SBookServiceServant"/>

 <endpointMapping
 endpointName="SBookQuery"
 urlPattern="/SBookQuery"/>
</webServices>

These changes make serializers for the types listed in the additionalTypes elements of the config.xml

file available in the TypeMappingRegistry used by the server-side tie classes for this web service, as

well as in the registry created by the generated Service object used on the client side. To run this

service, make chapter6\serializerbookservice your current directory, and deploy it into your web
container using the command:

ant deploy

Next, you need to compile and run the client application, which uses the code shown in Example 6-58,
using the following commands:

ant compile-client
ant run-client

Apart from a few lines left out for the sake of brevity, the output from the client looks like this:

Books from getBookInfo()
 Title: Java in a Nutshell; not E-Book
 Title: J2ME in a Nutshell; not E-Book
 Title: Java Swing; not E-Book
 .
 .
 Title: Java Internationalization; not E-Book
Books from getBookMap()
 Title: Java in a Nutshell; URL: http://www.ora.com/catalog/javanut

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Title: J2ME in a Nutshell; URL: http://www.ora.com/catalog/j2meanut
 .
 .
 Title: Java Internationalization; not E-Book
 Title: Java Swing; not E-Book

It is obvious that the values returned from the getBookInfo() method do not match those in the

HashMap obtained by calling getBookMap(). The values in the HashMap are a mixture of

ElectronicBookInfo (those where a URL is shown) and BookInfo objects (where there is no URL);
these are the "correct" results because they match the values held at the server. However, the array

returned by getBookInfo() contains only BookInfo objects - even those books that have associated

URLs have been serialized and deserialized as BookInfo objects rather than ElectronicBookInfo

objects. This difference arises from the way in which the values were serialized. Here are the rules that

govern the way in which a serializer is chosen:

If the runtime type of the object cannot be fully resolved at compilation time, then an appropriate

serializer is chosen at serialization time. This is the case when the type is declared to be
java.lang.Object, which is an abstract type or a Java interface.

In all other cases, the serializer to be used is determined during the code generation process for

the client-side stubs or server-side ties.

In the case of the getBookInfo() method, the return value is declared to be an array of BookInfo

objects. Since BookInfo is a concrete class, the stubs and ties are generated in such a way that a

serializer for BookInfo is used, even though the runtime type of any of the objects in the array could be

either BookInfo or its subclass ElectronicBookInfo. By contrast, the values in a HashMap are of type
java.lang.Object. Therefore, the serializer is chosen at runtime based on the actual type of each

value in the collection. As a result, BookInfo objects are serialized using the BookInfo serializer, and

ElectronicBookInfo objects by the ElectronicBookInfo serializer.

Had the getBookInfo() method been defined like this:

public Object[] getBookInfo();

then the returned array would have contained a mixture of BookInfo and ElectronicBookInfo objects.

Of course, replacing BookInfo[] with Object[] in this way is bad programming practice. A better

alternative is to make BookInfo an abstract base class and then create two concrete subclasses:

public abstract class BookInfo {
 // Same definition as existing BookInfo class
}

public class HardCopyBookInfo extends BookInfo {
 // Nothing added
 public HardCopyInfo() {
 // Required default constructor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 public HardCopyInfo(String title, String author, String editor,
 double price) {
 super(title, author, editor, price);
 }
}

public class ElectronicBookInfo extends BookInfo {
 // Defined as shown in Example 6-57
}

When defining classes-abstract or otherwise-whose names will appear as

method arguments or return values, it is essential that they follow the JAX-RPC
rules described in Section 2.2.1.4. In particular, the HardCopyBookInfo class is

required to have a default constructor as shown in the previous example. Also, at

least in the JAX-RPC reference implementation, a value type must have at least

one attribute (making it impossible to define a "marker" base class containing no

methods, and use it in the signature of a JAX-RPC method call), and an interface
must contain properly matched getter and setter methods.

Once BookInfo is made abstract, the serialization of the BookInfo array returned by getBookInfo()

uses serializers chosen at runtime. Naturally, it is also necessary to include HardCopyBookInfo in the
additionalTypes list in config.xml so that a serializer for HardCopyBookInfo is created.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. JAXR

JAX-RPC and SAAJ are enabling technologies that allow companies to create electronic business

applications that exchange information using XML and SOAP. WSDL (see Chapter 5) is the means by
which a developer finds out about the interface provided by a web service. As you saw in Chapter 6,

once you have a WSDL definition for a service, you can quickly create the client-side stubs that an

application needs in order to communicate with it using JAX-RPC. The remaining question is, given
that your business needs to find a provider for a specific service, how do you go about locating

businesses that offer that service, evaluate their offerings, and, if appropriate, fetch the WSDL
definition for the service itself? The answer lies in the XML-based registries that are currently being

established on the Internet.

A registry contains information that allows businesses to discover and make use of the services of

potential corporate electronic partners. A business might want to deal directly with another party
(purchasing components or other services from that company), or perhaps, it may intend to add value to

the other party's offerings-for example, by providing a specialized interface to the other's web service,
such as the one offered by Amazon.com.

A provider company submits an entry to a registry and categorizes it in various ways that will make it

easier to find. The submitting company might include in its registry entries links to technical

specifications that describe its service at the level required by a potential implementor of an application

client, or it might include marketing information for the consumption of management-level decision
makers. The enquiring company searches the registry for information using various criteria, such as

name hints (thus treating the registry as a source of White Pages information), categories of interest (a

Yellow Pages search), or a geographical location (a Green Pages search). The information that it

retrieves can be inspected and compared with what is available from other sources. Finally, if a

business agreement is reached, the client company retrieves the WSDL definition for the service that it

needs to use, which is typically also available through the registry, and uses that as the basis for
creating a SAAJ- or JAX-RPC-based application client.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.1 UDDI and ebXML Registries

There are currently two different XML-based registry standards being developed:

The UDDI Version 2.0 Registry

The Universal Description, Discovery, and Integration (UDDI) registry standard was originally

created by IBM, Microsoft, and Ariba, but the technical committee that is responsible for its
ongoing development now has more than 50 members. The UDDI registry is intended primarily

for the publication of metadata relating to web services.

The ebXML Registry/Repository

The ebXML Registry/Repository standard was created by OASIS and is aimed at the e-

commerce market. It is currently more feature-rich than UDDI, and also provides a repository,

which allows companies to store documents and other data in the registry, as well as links to
information that is kept elsewhere.

There is a public production UDDI business registry maintained by IBM, Microsoft, and SAP.

Businesses can register with any of these UDDI operator companies to enter and update their details.

Changes made in one operator company's copy of the registry are automatically propagated to those of

the other operators so that they can be seen by users of any of the operators' views and thus give the

appearance that there is a single, global registry. The registry offers an interface that allows you to
submit queries from your web browser using one of the following URLs:

https://uddi.ibm.com/ubr/registry.html

http://uddi.microsoft.com

http://udditest.sap.com

The business search page provided at the IBM web site is shown in Figure 7-1.

Figure 7-1. Searching for a business in a UDDI registry

https://uddi.ibm.com/ubr/registry.html
http://uddi.microsoft.com
http://udditest.sap.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This page allows you to locate business entries based on criteria such as the company name (which can

include a wildcard character) or categories that might have been applied by the company to its registry
entry, such as a geographical location qualifier. If, for example, you perform a case-insensitive search

for businesses whose name starts with the string "amazon," you would probably get two results, as
shown in Figure 7-2.

Figure 7-2. The results of a business search in the UDDI registry

A business may offer one or more services, the descriptions of which can be obtained by clicking the
Services link. In the case of the entry for Amazon.com, this leads to another page, shown in Figure 7-3.

As you can see, Amazon.com provides one web service, which describes itself as a fee-earner for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

developers that create application clients that are subsequently used to purchase items from the online
store. To find out more, you select the link in the Service Name column, which fetches the actual

service details, as shown in Figure 7-4. Among the information on this page is an Access URL, which

supplies the location of the service's WSDL definition, from which you can create the stubs required to

access the service using JAX-RPC.

Figure 7-3. Services offered by Amazon.com

Figure 7-4. Service details for Amazon.com

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This UDDI registry is intended for production use and contains real business information. The UDDI

operators also provide test registries that can be used during development and testing, one of which can

be found at http://uddi.ibm.com/testregistry/registry.html. While registry searching can be performed

anonymously, you'll typically need to register in order to be able to update a registry.

There is also a test version of the ebXML registry/repository available for public use at
http://registry.csis.hku.hk:8201/ebxmlrr/registry. At the time of this writing, this registry does not have

a browser-based interface. Instead, you have to download and install a Java client that can be used to
access the registry. Details of this client are provided in the next section.

http://uddi.ibm.com/testregistry/registry.html
http://registry.csis.hku.hk:8201/ebxmlrr/registry
http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2 JAXR Architecture

Aside from the fact that they both provide an XML-based interface to application clients (in addition to

the browser interface offered by the UDDI public registry), from a developer's point of view, the UDDI
and ebXML registries have little in common. In particular, the structure of information within the

registry and the programming interface are very different. As a result, applications written to use the

native facilities provided by the UDDI registry cannot be used with an ebXML registry and vice versa.

The Java API for XML Registries (JAXR) solves this problem by providing a common interface that

allows a Java application to access a registry without needing to be aware of its implementation details.
Figure 7-5 shows the JAXR software architecture. The JAXR specification was developed under the

Java Community Process and can be downloaded from http://jcp.org/jsr/detail/93.jsp.

Figure 7-5. JAXR architecture

The first thing to note is that, unlike SAAJ and JAX-RPC, JAXR is a client-side only API - the

implementation details of the registry service itself are of no concern, except insofar as the registry

service provides the XML-based interface and information model required by its specification.

Furthermore, although the internal information models defined for the UDDI and ebXML registries are
quite different, a JAXR application can extract business and service information from either of them,

since the JAXR API transparently maps them both to its own information model, which happens to be

based upon and very similar to that of the ebXML registry.[1]

[1] You can obtain the specifications for the UDDI registry from http://uddi.org and for the

ebXML registry/repository from http://www.ebxml.org. Although you don't need to read these

specifications in order to use JAXR, it is sometimes useful to know how JAXR operations affect

http://jcp.org/jsr/detail/93.jsp
http://uddi.org
http://www.ebxml.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the registry. Also, a knowledge of the internals of the registry may occasionally be helpful when
debugging JAXR applications.

A JAXR application client (such as a registry browser, a development tool, or a web services client that

needs to fetch registry-based information at runtime) uses the classes and interfaces in the

javax.xml.registry and javax.xml.registry.infomodel packages to make requests of the target

registry service. The mapping to the programming interface and information model of a specific

registry is performed by a JAXR provider that is specific to a particular type of registry. The JAXR
reference implementation includes a UDDI registry provider and a registry server that is useful for

development and testing purposes. A free, open source implementation of a JAXR provider for

ebXML, together with an ebXML registry/repository, can be downloaded from

http://ebxmlrr.sourceforge.net. We'll use both of these JAXR implementations in this chapter.

If you leave aside the details, the UDDI and ebXML registries have much in common. These common

facilities are mapped by the JAXR provider to the corresponding JAXR API. However, the ebXML
registry has some features that do not exist in UDDI and that cannot reasonably be emulated by the

UDDI JAXR provider. Rather than opt for a lowest common denominator API, which in this case

would have omitted the additional ebXML facilities, the JAXR expert group chose to introduce the

concept of capability levels. Each method within every JAXR class and interface is assigned a

capability level, and a JAXR provider also has an associated capability level. The following rules
apply:

A JAXR provider must fully implement all of the methods that are assigned to its capability level
and to all lower capability levels.

A JAXR provider must not provide a meaningful implementation of any of the methods assigned

to higher capability levels. If an application invokes one of these methods, then it must throw a

javax.xml.registry.UnsupportedCapabilityException.

The current JAXR specification defines two capability levels:

Level 0

Level 0 methods must be implemented by all JAXR providers and therefore represent the

common core functionality that all JAXR client applications can rely on. The UDDI provider is a
level 0 provider.

Level 1

Level 1 methods include additional functionality that covers the features of the ebXML

registry/repository that cannot be mapped so that they also appear to work with a UDDI provider.

An ebXML provider must be a level 1 provider.

It is important to note that the JAXR specification does not officially assign capability levels to classes

http://ebxmlrr.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

or interfaces, so that all providers must include an implementation of the whole API. However, in
practice, some interfaces are entirely composed of level 1 methods and are therefore effectively level 1-

only facilities. The reference documentation in this book for the javax.xml.registry and

javax.xml.registry.infomodel packages indicates the capability level of each method.

The capability level of a provider is available at runtime for the benefit of application clients that can

tailor their behavior according to the available functionality.

Although every provider is required to implement JAXR level 0 functionality,

unfortunately they cannot all do this to the same degree. As an example of this,

the level 0 API includes the ability to define private classification schemes, but,

as we'll see later in this chapter, even though this feature exists, an application
client cannot programmatically construct such a scheme when connected to a

UDDI registry.[2] Instead, the classification scheme has to be defined and
supplied to the JAXR provider at initialization time. As a consequence, the

classification scheme does not actually appear in the registry itself.

[2] Note also that an application client that attempts to define a private

classification scheme using the level 0 API for doing so would appear to
succeed. However, the classification scheme would not be properly defined

in the case of a UDDI registry, and an attempt to use it by another client
would fail.

By contrast, the ebXML registry provides everything necessary to allow user-

defined classification schemes to be set up dynamically by application clients.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3 Using the JAXR Examples

In order to use the example source code for this chapter, you need to install and configure the JAXR

providers that you intend to use and set a small number of properties that the examples will use to
locate and connect to the registry.

7.3.1 Using a UDDI Registry

Since the JAXR reference implementation includes a UDDI provider and a UDDI registry server, it is

very simple to use the example source code with this registry type. The following sections describe
what you need to do.

7.3.1.1 Edit the jwsnutJaxrExamples.properties file

The jwsnutJaxrExamples.properties file in your home directory (which should have been created
according to the instructions given in Examples Online in the Preface) specifies the authentication

information for the UDDI registry server and the URLs required to access it. In most cases, the default

settings in this file, shown here, are appropriate:

User name and password for the UDDI JAXR registry server
#
JAXR_UDDI_USER = testuser
JAXR_UDDI_PASSWORD = testuser

#
URLs for the UDDI JAXR registry server
#
JAXR_UDDI_SERVER_QUERY_URL =
 ${WEBURL}/${REGISTRY_SERVER_APP}/RegistryServerServlet
JAXR_UDDI_SERVER_LIFECYCLE_URL =
 ${WEBURL}/${REGISTRY_SERVER_APP}/ RegistryServerServlet

The JAXR_UDDI_USER and JAXR_UDDI_PASSWORD properties should be set to the username and password
required to access the UDDI registry. The settings shown here are appropriate for the user that is

already defined in the registry when you install the JWSDP or J2EE 1.4. If you intend to use a different

test UDDI registry (such as those provided by the UDDI registry operators), you need to register with

them and obtain a username and password.

The JAXR_UDDI_SERVER_QUERY_URL and JAXR_UDDI_SERVER_LIFECYCLE_URL properties are the URLs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that should be used to send queries to the registry and to make registry updates, respectively. The
values just shown are correct for the reference implementation, which is deployed as a service in the

Tomcat web container or, in the case of the J2EE 1.4 platform, as an external service accessed via a

connector. If you register with one of the UDDI operators, you should enter the appropriate URLs here.

Note that registry queries typically do not require authentication and usually use the HTTP protocol,

whereas updates are permitted only to registered users and require HTTPS. The reference
implementation is a special case that uses HTTP in both cases (although it does require a valid

username and password for updates).

7.3.1.2 Start the registry server

If you are using the registry in the JAXR reference implementation, you need to ensure that the Tomcat
web container is running before attempting to use the example source code. This registry stores its data

in an XML-based database called Xindice, which is also provided as part of the reference
implementation. If you are using J2EE 1.4, you can start the registry server and the database at the same

time as the J2EE application server by supplying the -startRegistry argument to its startup script:

j2ee -startRegistry

If you are using the JWSDP, the registry server is started automatically.

7.3.1.3 Install the sample registry data

The example source code uses sample registry data that must be installed before any of the examples

can be executed. To install the data, open a command window, make chapter7\setup (relative to the

installation directory of the example source code) your working directory, and type the commands:

ant compile
ant run-uddi-install-client

The data only needs to be installed once. You can clean up your registry at any time using the run-

uddi-delete-client target of the Ant buildfile:

ant run-uddi-delete-client

7.3.2 Using an ebXML Registry

The JWSDP reference implementation does not include either an ebXML JAXR provider or an ebXML

registry server. If you intend to run any of the examples that illustrate level 1 JAXR facilities, you need

to obtain at least an ebXML JAXR provider. Having done so, you can then make use of a public test

ebXML registry. Alternatively (and probably more conveniently), you can install a test registry of your

own.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One source for both a provider and a registry server can be found at http://ebxmlrr.sourceforge.net. This
site contains source and binary distributions for both components, together with installation and setup

instructions. Having installed the software and deployed the registry server in the Tomcat web

container using the instructions provided at the web site, follow the instructions shown next to

configure the registry and set up the example source code to use it.

The example source code assumes that it is using the ebXML provider and

registry from the web site just given. This assumption is necessary because the

means by which a registry client authenticates to the registry, which is necessary

in order to update its content, is registry-specific. The following instructions are
specific to this particular registry implementation - if you plan to use a different

implementation, you may have to modify the example source code and perform
the setup differently.

7.3.2.1 Create configuration files for the ebXML registry server

Among the files for the ebXML registry server there is one called ebxmlrr.properties. If the machine on

which you are running the server is not connected to the Internet, you should copy this file to your

home directory and edit the copy to look like the lines shown here so that both properties are set to

false:

#Decide whether to checkURLs in external links or not
#
ebxmlrr.persistence.rdb.ExternalLinkDAO.checkURLs=false
#Decide whether to checkURLs in service bindings or not
#
ebxmlrr.persistence.rdb.ServiceBindingDAO.checkURLs=false

You do not need to do this if your registry server will have Internet access.

7.3.2.2 Start the registry server

The registry server is deployed as a web application on the Tomcat web container; therefore, it is

started at the same time as the web container itself. If the web container is currently active, stop and

restart it so that the registry server reads the ebxmlrr.properties file set up in the previous step.

7.3.2.3 Create a registry user

The example source code needs to install some test data in the registry. Since only registered users can

update the registry, you need to create an identity for yourself. As you'll see in Section 7.5.10 at the end

of this chapter, an ebXML registry requires a client to provide a certificate as proof of identity.

Therefore, part of the process of creating a new registry user involves obtaining a suitable certificate.

http://ebxmlrr.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The simplest way to do this is to use the registry browser that is supplied with the registry. Before you
can do this, you need to create a file called .java.login.config in your home directory and add the

following lines to it:

JAXRTest {
 com.sun.security.auth.module.KeyStoreLoginModule required debug=true
 keyStoreURL="file://c:/homedir//jaxr-ebxml/security/keystore.jks";
};

jaxr-ebxml-provider {
 com.sun.security.auth.module.KeyStoreLoginModule required debug=true
 keyStoreURL="file://c:/homedir/jaxr-ebxml/security/keystore.jks";
};

c:/homedir should be replaced by the path name of your home directory. On a Windows system, this
would be something like c:/Documents and Settings/My Name. Note that forward slashes are

acceptable (since this is a URL) and that the text shown in bold should appear on a single line (even
though it is split over two lines here for the sake of readability).

Next, copy the file jaxr-ebxml.properties from the ebXML download to your home directory and

modify the lines beginning with jaxr-ebxml.security so that they look like this:

jaxr-ebxml.security.keystore=security/keystore.jks
jaxr-ebxml.security.storepass=ebXMLStorePassword
jaxr-ebxml.security.keypass=ebXMLKeyPassword

These lines are used to create the keystore for the certificate that is used to authenticate you to the

registry server. You do not have to use the values for the storepass and keypass keys shown here, but

if you change them, you must remember to use the same values when registering yourself with the

server.

Now start the registry browser by making the root directory of the registry server download your
working directory and typing the command:

ant run.browser

Select the URL of the registry in the Registry Location field (this is
http://localhost:8080/ebxmlrr/registry/soap if the web container is running on your local system) and

then press the "Show User Registration Wizard" toolbar button (which has an icon showing a person

and a small green cross). This displays a dialog that allows you to create your identity within the

registry. Many of the fields in this dialog can be left empty. However, you must provide at least a

username, and you must complete the following fields that appear at the bottom of the dialog:

Keystore Alias

This is the name under which the certificate that authenticates you will be held within the
keystore. You should remember the value that you enter here, because you will need to use it

http://localhost:8080/ebxmlrr/registry/soap
http://lib.ommolketab.ir
http://lib.ommolketab.ir

later. As an example, I'll suppose that you choose the alias ebXMLtestuser.
Keystore Password

This is the password that will be used to protect the keystore. You should use the value assigned

to the jaxr-ebxml.security.storepass key in the jaxr-ebxml.properties file, which, in the

example just shown, is ebXMLStorePassword.

Private Key Password

This is the password that will be used to protect the private key corresponding to your certificate

in the keystore. You should use the value assigned to the jaxr-ebxml.security.keypass key in
the jaxr-ebxml.properties file, which, in the example just shown, is ebXMLKeyPassword.

Once you complete the dialog, press the OK button. You are then presented with another dialog that

authenticates you to the registry server using the certificate that has just been created. Enter the same

alias and passwords that you supplied to the registration wizard and press OK. If you don't see any
errors, then your identity has been successfully registered.

7.3.2.4 Edit the jwsnutJaxrExamples.properties file

Several properties need to be set in the jwsnutJaxrExamples.properties file in your home directory
before you can successfully run the example source code with an ebXML registry. Typical settings for

these properties are shown here.

#
URLs for the ebXML JAXR registry server, if installed
#
JAXR_EBXML_SERVER_QUERY_URL = ${WEBURL}/ebxmlrr/registry/soap
JAXR_EBXML_SERVER_LIFECYCLE_URL = ${WEBURL}/ebxmlrr/registry/soap

Location of the lib directory for the ebXML registry
provider, if it is installed. This should be something
like c:/ebxmlrr-client/lib.
JAXR_EBXML_PROVIDER=c:/ebxmlrr-client/lib

Authentication for the ebXML JAXR registry server.
#
JAXR_EBXML_KEYSTORE_FILE=${user.home}/jaxr-ebxml/security/keystore.jks
JAXR_EBXML_ALIAS = ebXMLtestuser
JAXR_EBXML_KEY_PASSWORD = ebXMLKeyPassword
JAXR_EBXML_KEYSTORE_PASSWORD = ebXMLStorePassword

JAXR_EBXML_SERVER_QUERY_URL and JAXR_EBXML_SERVER_LIFECYCLE_URL are the URLs that map to

the registry server's query and update functionality. The values shown here are correct for the default

deployment in the Tomcat web container.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The JAXR_EBXML_PROVIDER property is the full pathname of the directory in which the client-side JAR
files for the ebXML JAXR provider are located. The correct path depends on where you install the

JAXR provider. You can easily locate it by looking for a file called jaxr-ebxml.jar.

The remaining properties relate to the keystore for the user that you registered earlier in Section 7.3.2.3.

The JAXR_EBXML_KEYSTORE_FILE property supplies the full pathname of the keystore itself. You may

use the property ${user.home} to refer to your home directory, as shown here. The location of the

keystore is always ${user.home}/jaxr-ebxml/, followed by the value of the jaxr-
ebxml.security.keystore property from the file jaxr-ebxml.properties; hence, the value shown here

is correct if you use the settings shown in Section 7.3.2.3. The JAXR_EBXML_ALIAS,

JAXR_EBXML_KEY_PASSWORD, and JAXR_EBXML_KEYSTORE_PASSWORD properties must have the same

values as those supplied when completing the user details in the user registration wizard of the registry

browser, as the values shown here illustrate.

7.3.2.5 Install the sample registry data

With all of the configuration details in place, the last step is to install the test data in the registry. Make

sure that the Tomcat web server is running, then make chapter7\setup (relative to the installation

directory of the example source code) your working directory and type the commands:

ant compile
ant run-ebxml-install-client

The data only needs to be installed once. You can clean up your registry at any time using the run-

ebxml-delete-client target of the Ant buildfile:

ant run-ebxml-delete-client

Note that, since the UDDI and ebXML registries are separate, installing or removing the data for one of

them has no effect on the other.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4 JAXR Registry Model Overview

A JAXR client views the registry as a set of objects whose types are defined in the

javax.xml.registry.infomodel package. The information model is based on the one defined by the
ebXML registry/repository specification, with some minor differences. A JAXR provider for a

particular registry is required to transparently map between the JAXR information model and the real

model of the registry itself, so that JAXR clients are not dependent on the details of any particular

registry. This section provides an overview of the JAXR registry information model. You'll see more

detail when we look at the JAXR registry programming model later in this chapter.

Figure 7-6 shows a small part of the complete JAXR registry model, illustrating the elements that are of
greatest importance to most JAXR clients. The first thing to note about this diagram is that it contains

only Java interfaces. In fact, ignoring exceptions, the JAXR API contains only one class that is not an
interface. The use of interfaces allows a JAXR provider to supply its own implementation classes for

each element of the information model without exposing them to application code. From the client

application's point of view, this has the effect that objects within the registry cannot be created directly
- instead, they are obtained from using factory methods of a class called

BusinessLifeCycleManager, which will be described later in this chapter.

Figure 7-6. Organization- and Service-related registry objects

A business that submits information to the registry is represented by an Organization object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Associated with each Organization is a distinguished person called the primary contact, represented
by a User object. User has several attributes, including two that are shown here: a name and a postal

address. As we'll see later, the PostalAddress interface is particularly interesting because there is no

commonly agreed way to represent a postal address within a registry, which leads to some

complications for the application client. User objects also appear within the audit trail (not shown in

the diagram) that is maintained by level 1 registries.

An organization usually enters itself into a registry in order to advertise its services. Each such service
is represented by a Service object. In the JAXR information model, a Service object is bound to an

organization and therefore organizations offering identical services cannot share the same registry

entries for those services. Service is actually a simple container object that references one or more

ServiceBindings. A ServiceBinding contains the information that a client might need to use a

service, including the URI at which the service can be reached, and, optionally, one or more
SpecificationLinks that might provide technical information on how the service is to be invoked. In

a properly constructed ServiceBinding, one of the SpecificationLinks would point to the WSDL

definition for the service.

In the case of a UDDI registry, a WSDL definition for a service is referenced using its URI, whereas an

ebXML registry might actually contain a copy of the definition itself. This illustrates an important

difference between these two registry types: a UDDI registry is a pure registry and contains only
metadata, whereas the ebXML registry is also a repository, allowing the storage of objects as well as

metadata. In terms of the JAXR API, the repository functionality is modeled by the ExtrinsicObject

interface, which is a level 1 feature described later in this chapter.

7.4.1 Information Model Interfaces

A class hierarchy diagram covering most of the interfaces that form the JAXR registry information
model is shown in Figure 7-7. The complete set of interfaces, together with a brief description of their

function, is listed in Table 7-1. More detailed descriptions will be found later in this chapter. The

presence of a symbol in the "Level 0 methods" column indicates that the interface includes at least

one method that can be used with a level 0 JAXR provider. If this column is empty, then the interface is

(at least currently) of use only with a level 1 provider. When a symbol appears in both the "Level 0
methods" and "Level 1 methods" columns, then some functionality within the interface is useful only in

conjunction with a level 1 provider.

Figure 7-7. Registry object class diagram

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 7-1. Interfaces in the javax.xml.registry.infomodel package

Interface
Level 0

methods

Level 1

methods
Description

Association

Represents an association between two entities in

the registry. An association has a type, which

reflects the kind of relationship being described. An

example of this is Replaces, which could be used to
indicate that one service has been superseded by

another. See Section 7.5.5.7 later in this chapter for

further information.

AuditableEvent

An entry in the audit trail for an object in the

registry. Only level 1 registries provide auditing,

which is described in Section 7.5.9.4, later in this

chapter.

Classification

Represents a classification that can be applied to a

registry object. Applying one or more classifications

to an object can make it much easier for clients to
locate businesses and services of interest. See

Section 7.4.4, later in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Interface
Level 0

methods

Level 1

methods
Description

ClassificationScheme

A scheme used to classify registry objects. See

Section 7.4.4 later in this chapter for further

information.

Concept

A facet of the JAXR registry model that maps onto

several different features of the UDDI and ebXML

registries. Concepts are typically used to represent
nodes in a classification scheme or elements of an

enumerated type.

EmailAddress
Represents an email address associated with a User
object. A User may have any number of email

addresses.

ExtensibleObject

The base interface for all objects within the registry.
ExtensibleObject provides methods that allow

arbitrary attributes to be added to a registry object

without the need for an additional API. See Section
7.4.3 later in this chapter for a description of this

interface.

ExternalIdentifier

A string value that may be attached to a registry
object to provide additional identification

information for that object. See Section 7.4.2 later in

this chapter for further information.

ExternalLink

Used to associate a link to additional information

with a registry object. The most common use of an

external link is to include a reference to the home

page of the organization that submitted the registry
object.

ExtrinsicObject

Represents stored data that is not of a type that the
registry can handle directly, such as a document or

an image file. ExtrinsicObjects can only be used

with a level 1 registry provider. See Section 7.5.9.1

later in this chapter for an example of the use of this

facility.

ClassificationScheme

A scheme used to classify registry objects. See

Section 7.4.4 later in this chapter for further

information.

Concept

A facet of the JAXR registry model that maps onto

several different features of the UDDI and ebXML

registries. Concepts are typically used to represent
nodes in a classification scheme or elements of an

enumerated type.

EmailAddress
Represents an email address associated with a User
object. A User may have any number of email

addresses.

ExtensibleObject

The base interface for all objects within the registry.
ExtensibleObject provides methods that allow

arbitrary attributes to be added to a registry object

without the need for an additional API. See Section
7.4.3 later in this chapter for a description of this

interface.

ExternalIdentifier

A string value that may be attached to a registry
object to provide additional identification

information for that object. See Section 7.4.2 later in

this chapter for further information.

ExternalLink

Used to associate a link to additional information

with a registry object. The most common use of an

external link is to include a reference to the home

page of the organization that submitted the registry
object.

ExtrinsicObject

Represents stored data that is not of a type that the
registry can handle directly, such as a document or

an image file. ExtrinsicObjects can only be used

with a level 1 registry provider. See Section 7.5.9.1

later in this chapter for an example of the use of this

facility.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Interface
Level 0

methods

Level 1

methods
Description

InternationalString

Used in the JAXR API where a string that may need

to be localized is required. It contains a

LocalizedString instance for each locale for which
a representation of the string has been supplied.

Key

Each object in the registry is assigned a unique

identifier when it is created. The value of this
identifier is held within the RegistryObject as a

Key object. The key can be used to fetch the object

at a later time, or to delete it. See Section 7.4.2 for

further information.

LocalizedString

A localized version of a string, together with its

associated locale and character set.
LocalizedStrings are wrapped within

InternationalStrings.

Organization
Represents a business within the registry. See
Section 7.5.5.1, later in this chapter.

PersonName
Represents the name of a registry user. See Section

7.5.5.1, later in this chapter.

PostalAddress

Represents the address of a user or (for a level 1

registry) an organization. Unfortunately, as
described in Section 7.5.7, later in this chapter, this

is not as simple a topic as you might expect.

RegistryEntry

A subinterface of RegistryObject from which a

small number of objects in the registry information

model are derived. See Section 7.4.2 later in this

chapter for more information.

RegistryObject

Defines the attributes and methods that form part of

every object stored in the registry. See Section 7.4.2

later in this chapter for a more complete description.

RegistryPackage

A container class that allows registry objects to be

grouped together. Holding a set of objects in a
RegistryPackage makes it simple to get a list of

them all at a later time, perhaps in order to remove

them all. RegistryPackages are supported only by

level 1 providers.

InternationalString

Used in the JAXR API where a string that may need

to be localized is required. It contains a

LocalizedString instance for each locale for which
a representation of the string has been supplied.

Key

Each object in the registry is assigned a unique

identifier when it is created. The value of this
identifier is held within the RegistryObject as a

Key object. The key can be used to fetch the object

at a later time, or to delete it. See Section 7.4.2 for

further information.

LocalizedString

A localized version of a string, together with its

associated locale and character set.
LocalizedStrings are wrapped within

InternationalStrings.

Organization
Represents a business within the registry. See
Section 7.5.5.1, later in this chapter.

PersonName
Represents the name of a registry user. See Section

7.5.5.1, later in this chapter.

PostalAddress

Represents the address of a user or (for a level 1

registry) an organization. Unfortunately, as
described in Section 7.5.7, later in this chapter, this

is not as simple a topic as you might expect.

RegistryEntry

A subinterface of RegistryObject from which a

small number of objects in the registry information

model are derived. See Section 7.4.2 later in this

chapter for more information.

RegistryObject

Defines the attributes and methods that form part of

every object stored in the registry. See Section 7.4.2

later in this chapter for a more complete description.

RegistryPackage

A container class that allows registry objects to be

grouped together. Holding a set of objects in a
RegistryPackage makes it simple to get a list of

them all at a later time, perhaps in order to remove

them all. RegistryPackages are supported only by

level 1 providers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Interface
Level 0

methods

Level 1

methods
Description

Service
Represents a service advertised by an organization.

A Service contains one or more ServiceBindings.

ServiceBinding

Contains the information necessary for a client to

invoke an instance of a service and may also refer,

via SpecificationLinks, to technical information
regarding the service. See Section 7.5.5.2 later in

this chapter for details.

Slot
Used to attach additional attributes to
ExtensibleObjects as described in Section 7.4.3,

later in this chapter.

SpecificationLink

Used to add a reference to a technical description to
a ServiceBinding. The link may be a URI or, in the

case of a level 1 registry, may refer to an

ExtrinsicObject in the repository.

TelephoneNumber
Represents a telephone number for a registry user.

See Section 7.5.5.1 later in this chapter.

URIValidator

An interface implemented by other objects that

contain a URI and that may optionally be requested

to validate it. For example, when an ExternalLink
is created, the registry may check that the URI that it

contains points to an accessible object. The methods

of URIValidator allow this validation to be turned

on or off, as required.

User

Represents a user of the registry. References to User

objects also appear in the audit trail maintained by

level 1 registries. See Section 7.5.5.1 and Section
7.5.9.4 later in this chapter for further details.

Versionable
An interface implemented by objects that might
have associated version numbers. All

RegistryEntry objects implement this interface.

7.4.2 RegistryObject and RegistryEntry

RegistryObject is the base interface from which almost all of the other interfaces that represent

entities stored in the registry are derived. RegistryObject is itself derived from ExtensibleObject, a

Service
Represents a service advertised by an organization.

A Service contains one or more ServiceBindings.

ServiceBinding

Contains the information necessary for a client to

invoke an instance of a service and may also refer,

via SpecificationLinks, to technical information
regarding the service. See Section 7.5.5.2 later in

this chapter for details.

Slot
Used to attach additional attributes to
ExtensibleObjects as described in Section 7.4.3,

later in this chapter.

SpecificationLink

Used to add a reference to a technical description to
a ServiceBinding. The link may be a URI or, in the

case of a level 1 registry, may refer to an

ExtrinsicObject in the repository.

TelephoneNumber
Represents a telephone number for a registry user.

See Section 7.5.5.1 later in this chapter.

URIValidator

An interface implemented by other objects that

contain a URI and that may optionally be requested

to validate it. For example, when an ExternalLink
is created, the registry may check that the URI that it

contains points to an accessible object. The methods

of URIValidator allow this validation to be turned

on or off, as required.

User

Represents a user of the registry. References to User

objects also appear in the audit trail maintained by

level 1 registries. See Section 7.5.5.1 and Section
7.5.9.4 later in this chapter for further details.

Versionable
An interface implemented by objects that might
have associated version numbers. All

RegistryEntry objects implement this interface.

7.4.2 RegistryObject and RegistryEntry

RegistryObject is the base interface from which almost all of the other interfaces that represent

entities stored in the registry are derived. RegistryObject is itself derived from ExtensibleObject, a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

simple interface that makes it possible to add additional attributes to any object in the registry, as
described later in Section 7.4.3. Only very simple objects that exist as part of other entities in the

registry, such as PersonName, EMailAddress, and TelephoneNumber, are not derived from

RegistryObject.

Every RegistryObject has a set of basic attributes, which are shown in the class diagram in Figure 7-8

and described in the following paragraphs.

Figure 7-8. Attributes of RegistryObjects

Name

The name of the RegistryObject is of type InternationalString, reflecting the fact that it

might need to be localized. This field typically contains the name of an Organization or the title
of a Service. Registry searches can be performed based on the value of this attribute.

Description

Like the name attribute, the description is also an InternationalString. It is intended to

contain localized text that will help a potential client searching the registry to determine whether

the corresponding Organization or Service is what he requires.
Key

Each entry in the registry has a unique identifier that can be used to locate it without requiring a

search based on the name or other criteria. The key is assigned by the registry when the entry is

created and never changes. Both the ebXML and UDDI registries assign 128-bit DCE unique

identifiers (UUIDs) to newly created objects, which the JAXR provider wraps in a Key object.

UUIDs are formed using an algorithm that ensures that they are globally unique.[3] Some well-
known registry objects have values that are published in their respective specifications. For

example, the registry object that represents the NAICS classification scheme (which will be

covered later in this chapter) has the UUID C0B9FE13-179F-413D-8A5B-5004DB8E5BB2.

Since this is a universal identifier, it is valid and has the same meaning in all registries.

[3] The specification for the UUID generation algorithm is available for purchase or online

viewing (following registration) at
http://www.opengroup.org/publications/catalog/c706.htm.

http://www.opengroup.org/publications/catalog/c706.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Object type

Identifies the type of the registry object. The values that may appear in this field are Concepts
defined in a classification scheme called ObjectType, which will be described later in Section

7.4.4. This attribute is valid only for RegistryObjects in a level 1 registry.

Organization

Identifies the Organization that submitted this object to the registry.

Associations

A collection containing the associations between this object and other objects within the registry.

Associations are discussed later in this chapter. Although this attribute is common to all
RegistryObjects, there may be limitations on its applicability. In the case of the UDDI registry,

for example, the JAXR provider allows associations to be made only between Organizations.

External links

A collection of ExternalLink objects containing links to information held outside the registry.
External identifiers

A collection of ExternalIdentifier objects. An ExternalIdentifier can be used to associate

with a RegistryObject an identifier that is assigned by a recognized agency and that might be
useful to registry clients. An example of this is the nine-digit Dun and Bradstreet D-U-N-S

number (see http://www.dnb.com) that uniquely identifies a registered company. External

identifiers are scoped by a classification scheme that acts as a namespace for the actual value.

The D and B numbering scheme, for example, is represented by a classification scheme with a

UUID value of 8609C81E-EE1F-4D5A-B202-3EB13AD01823.
Classifications

A collection of Classification objects that apply to the RegistryObject. Unlike external

identifiers that generally uniquely identify something, a classification applies to a class of

organizations, services, or other entities that have a common trait, such as the business type or

geographical location. A RegistryObject can have any number of associated classifications. See

Section 7.4.4 later in this chapter for further information.
Auditable events

A collection of AuditableEvent objects that record operations performed on the

RegistryObject that caused changes to its state. Auditing, described later in this chapter, is

supported only by level 1 registries.

Slots

Slots are inherited from ExtensibleObject and are described in the next section.

Four interfaces in the JAXR information model (Service, ClassificationScheme, ExtrinsicObject,

and RegistryPackage) are based on a derived interface of RegistryObject called RegistryEntry.

http://www.dnb.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

RegistryEntry has the following additional attributes that are meaningful only when the object is
stored in a level 1-compatible registry (such as an ebXML registry):

Version number

A RegistryEntry has three version-related attributes that can be managed using the methods of

the Versionable interface, from which it is derived. The major and minor version numbers are

both integers, the initial values for which are set by the registry when the object is first created.

The values may be explicitly changed using the methods of the Versionable interface, and may

also be changed by the registry if the RegistryEntry is modified in any way. There is also a user
version, which is a string value that can be set and read by application code. It is intended to be

the version of the object as seen by registry users and is not modified by the registry itself.

Stability

This attribute indicates whether the content of the RegistryEntry may change. The value
RegistryEntry.STABILITY_STATIC means that the content will not change;

RegistryEntry.STABILITY_DYNAMIC_COMPATIBLE implies that although the content might
change, its new value will be backward-compatible with its previous value; and

RegistryEntry.STABILITY_DYNAMIC indicates that the content may change in any way at any

time.

Expiration

The expiration attribute is a java.util.Date object that indicates the time up to which the value

of the stability attribute is valid. If it has the value null, then the stability attribute is valid
indefinitely. Otherwise, the stability of the entry is effectively

RegistryEntry.STABILITY_DYNAMIC once the expiration time has passed.

Status

This attribute corresponds to the state of the RegistryEntry within its overall life cycle. When

initially created, the object has the state RegistryEntry.STATE_SUBMITTED. The state may then

change to RegistryEntry.STATE_APPROVED, RegistryEntry.STATE_WITHDRAWN, or
RegistryEntry.STATE_DEPRECATED. The JAXR API allows a client application to deprecate an

object, but there is currently no provision for an object to be approved or withdrawn.

Nevertheless, these states may be seen because they may be set in the registry by clients using

more capable APIs.

7.4.3 ExtensibleObject and Slots

All RegistryObjects implement the ExtensibleObject interface, which allows arbitrary attributes to

be added to any object in the registry without requiring a change to the registry API. Each such attribute

is represented by a Slot, which has three properties:

Name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The name property can be used to retrieve a given Slot from its associated ExtensibleObject.
There cannot be more than one Slot with the same name attached to an ExtensibleObject. The

JAXR specification does not describe what should happen if this rule is ignored. In the reference

implementation for the UDDI registry, adding a Slot with the same name as an existing Slot

causes the old instance to be replaced by the new one, whereas in the case of the ebXML registry,

an exception is thrown when an attempt is made to store the RegistryObject.
Type

A string that specifies the type of the Slot. There is no predefined set of valid types. This

attribute has value null by default.
Values

A collection of values associated with the Slot. Each value must be a unique String.

7.4.3.1 Application use of Slots

A registry application can use a Slot to associate additional information with a RegistryObject. The

ebXML registry model specification suggests that a submitting organization might use a Slot to mark
all of its RegistryObjects with a copyright notice. Obviously, registry applications must have prior

knowledge of the existence and meaning of specific Slots in order to make use of them.

The mapping of the JAXR API to the UDDI registry model defined in the JAXR specification does not
describe how Slots should be stored in the registry, and, in fact, the reference implementation does not

store them at all. Therefore, JAXR applications that need to work with a UDDI registry cannot, in

general, create Slots and expect them to be saved in the registry. One specific exception to this rule is

the sortCode attribute of the UDDI equivalent of the JAXR PostalAddress object, which can be set
by application code using a Slot, as described in Section 7.5.7, later in this chapter.

7.4.3.2 Registry use of Slots

A registry implementation can attach Slots to a RegistryObject to expose attributes available from

the registry itself that are not mapped in the JAXR information model. There are several examples of

this in the case of the UDDI registry:

The operator and authorizedName fields of the registry objects that represent JAXR

Organizations and ClassificationSchemes are available in Slots, called
Slot.OPERATOR_SLOT and Slot.AUTHORIZED_NAME_SLOT, respectively.

A slot is defined for use by the PostalAddress object when a mapping to the UDDI postal

address scheme has not been defined. See Section 7.5.7 later in this chapter for details.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4.4 Classification of Registry Objects

All RegistryObjects have a name that can be used when searching the registry. You can, for example,

locate the Organization object for Amazon.com by searching on the full name or by using a wildcard
search with a wildcard such as %mazon%. However, when searching for potential business partners, it is

more likely that you will know the type of company that you want to deal with, rather than individual

company names. You might, for example, want to locate book publishers or book stores. In order to

make this type of search possible, a submitting organization can apply one or more classifications to

any of its registry entries. Classifications belong to classification schemes,[4] which categorize objects
according to a specific criterion.

[4] The JAXR specification uses the terms "classification scheme" and "taxonomy"

interchangeably. For the sake of clarity and consistency with the JAXR API (which calls the

relevant interface ClassificationScheme), I'll use only the term "classification scheme" in this
chapter.

A registry can, in theory, support any number of different classification schemes, and the JAXR

specification requires that it be possible to add user-defined schemes to a registry, a topic that is
covered in Section 7.5.6, later in this chapter. It also requires that all registries support at least three

standard classification schemes:

NAICS - the North American Industry Classification System

Classifies organizations according to the type of service that they provide. Examples of

classifications from this scheme include "Book Publisher" and "Book, Periodical, and Music

Stores." See http://www.ntis.gov/product/naics.htm for details.
ISO 3166

Classifies by geographical location. Organizations can categorize themselves according to

location in order to allow potential clients to restrict their search to a specific country or group of

countries. Typical classifications from these scheme are US and GB. See

http://www.din.de/gremien/nas/nabd/iso3166ma for more information on this scheme.

UNSPSC - the Universal Standard Products and Services Classification

This scheme is intended to provide classifications that are applicable world-wide, unlike NAICS,
which is, strictly speaking, biased toward the American marketplace. It is also broader in scope,

including product types (such as "Leathers" or "Twill weave cotton fabrics") as well as services.

See http://eccma.org/unspsc for more information on this classification scheme.

You can inspect the classifications provided by these three schemes by starting the UDDI registry

browser provided by the reference implementation (using the jaxr_browser.bat or jaxr_browser.sh

script in the bin directory), selecting a registry in the Registry Location field, or entering the URL for

a specific registry (such as http://localhost:8000/RegistryServer for the test registry server provided by

http://www.ntis.gov/product/naics.htm
http://www.din.de/gremien/nas/nabd/iso3166ma
http://eccma.org/unspsc
http://localhost:8000/RegistryServer
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the JWSDP and the reference implementation of the J2EE 1.4 platform)[5], and then selecting
Classifications in the Find by field. This results in the set of classifications supported by the

registry being displayed in a tree control in the bottom left of the browser window. To see the

classifications provided by a particular scheme, double-click on its name.

[5] Note that the registry browser was not included in the beta version of J2EE 1.4.

All three of the standard classification schemes are hierarchical. The NAICS scheme, for example,

includes a top-level classification called Information, below which is another classification called

Publishing Industries. Within this classification, there is Newspaper, Periodical, Book and
Database Publishers, and within that, Book Publishers. Assuming that you have installed the test

data for this chapter in the registry (as described in Section 7.3, earlier in this chapter), if you select

Book Publishers and then press Search, an entry for O'Reilly & Associates is returned, as shown in
Figure 7-9.

Figure 7-9. Searching the registry by classification

This search works because the Organization object representing O'Reilly & Associates in the registry

has the Book Publishers classification from the NAICS classification scheme attached to it. It also

has a geographical classification that indicates that it is based in the USA, as you can demonstrate by
opening the classification scheme labeled iso-ch:3166:1999, and drilling down through the

classification level for North America to United States. Select this classification and press Search

again. This time, you see entries for O'Reilly & Associates and Amazon.com. You can search on both

criteria together by selecting Book Publishers, then holding the Ctrl key while selecting United

http://lib.ommolketab.ir
http://lib.ommolketab.ir

States. This search looks for entries that have both selected classifications and therefore return just the
single entry for O'Reilly & Associates. You'll see later in this chapter how to add classifications to a

RegistryObject and how to search the registry given one or more classifications.

7.4.4.1 External and internal classification schemes

As previously noted, classification schemes are hierarchical. Figure 7-10 shows a very small portion of

the logical hierarchy tree that makes up the standard NAICS classification. The box at the top of the

figure represents the classification scheme itself. In terms of the JAXR registry information model, this
would be an instance of the javax.xml.registry.infomodel.ClassificationScheme interface. The

nodes below this can all be used to categorize other entries in the registry. The relationship between

these nodes reflects the granularity of the categorization so that, for example, a Book Publisher is a
member of the set of Newspaper, Periodical, Book and Database publishers. Logically speaking, these

nodes all represent elements of the classification scheme hierarchy and could therefore be used as
possible classification values, but in the JAXR registry model, they would not be instances of the

javax.xml.registry.infomodel.Classification interface. How these nodes map onto the JAXR

information model depends on whether the classification scheme is internal or external.

Figure 7-10. A logical view of part of the NAICS classification scheme

A JAXR UDDI provider is required to provide the NAICS, ISO 3166, and UNSPSC schemes as
internal classification schemes. In the case of an internal classification scheme, both the root

ClassificationScheme object and the complete hierarchy of nodes that represent classification

scheme elements are known and available within the provider implementation. The nodes themselves

are instances of javax.xml.registry.infomodel.Concept, an interface that has several different uses

within the JAXR API. A Concept is a RegistryObject that has the following attributes (among
others):

A name (inherited from its parent interface, RegistryObject).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A value, which is of type String.

A ClassificationScheme with which it is associated. Not all Concepts represent nodes in a

classification scheme hierarchy; for those that do not, this attribute has the value null.

A list of child Concepts and a reference to a parent Concept. These attributes allow Concepts to

be linked together in the hierarchical structure shown in Figure 7-10.

An internal classification scheme, then, is represented as a linked hierarchy of Concepts, rooted at a

ClassificationScheme object. The actual Concept hierarchy for the part of the NAICS classification
scheme illustrated in Figure 7-10 is shown in Figure 7-11, where all of the objects apart from the

ClassificationScheme at the top of the diagram represent Concepts.

Figure 7-11. Part of the Concept hierarchy for the NAICS classification scheme

Notice that this diagram shows both the name and value attributes for each Concept. The name is used

only for display purposes; it is the value attribute that determines which element of the classification
scheme hierarchy the Concept represents. In the case of the NAICS classification scheme, the values

are all numbers, where the number of digits is an indicator of the position of the value within the

overall scheme. For example, the Information node has the value "51." The values associated with all

of the nodes located below this point will start with "51," with an extra digit added for each additional

level of nesting. Hence, the Concept representing Book Publishers has the value "51113" and is

therefore three levels below the Information node, while the Concept for Newspaper Publishers, at the
same level, has the value 51111. A complete list of the names and values for all of the Concepts in this

classification scheme and the others that the JAXR provider is required to support can be found in the

following files, which are in the jaxr-ri.jar file in the JAXR reference implementation:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NAICS: com/sun/xml/registry/common/tools/resources/naics.xml

ISO 3166: com/sun/xml/registry/common/tools/resources/iso3166.xml

UNSPSC: com/sun/xml/registry/common/tools/resources/unspsc.xml

An external classification scheme is one for which the element hierarchy is not known to the JAXR

registry provider - only the ClassificationScheme node itself is registered. It is obviously easier to

create an external classification scheme because there is only one item to install in the registry provider,

whereas an internal scheme might require many hundreds of Concepts to completely describe it.
However, there are advantages to using an internal scheme:

Since the JAXR provider has a record of which Concept values exist within the classification
scheme, it can check whether a proposed classification is actually valid before applying it to a

registry object.

Application code can use the linkage between Concept nodes to browse the hierarchy of an

internal classification scheme to discover (and perhaps offer to the user) valid classification

values. In the case of an external scheme, the application must either know all legal values by

some external means or trust the user to supply only correct values.

Using an internal scheme, it is possible to search the registry for objects that are members of
groups of classifications. For example, it is possible to search for all registry objects that are

categorized as Newspapers, Periodical, Book, and Database Publishers, or any category below

that node in the Concept hierarchy (such as Book Publishers). See Section 7.5.2 later in this

chapter for an example that shows how this is done.

It is tempting to think that the node hierarchy for an internal classification

scheme is held within the registry itself. However, this is not necessarily the case.

The UDDI registry information model, for example, does not provide any

reasonable way to represent a hierarchy of Concepts and therefore cannot store

an internal classification scheme. A JAXR provider is, however, required to
provide a hierarchical view of an internal classification. The means by which this

is achieved is implementation-dependent. The JAXR reference implementation

achieves this by reading the classification files listed previously and creating a

local version of the node hierarchy within the client application. The ebXML

registry, by contrast, provides full support for internal classifications, which can,
therefore, be stored in the registry itself. The difference between these two

approaches becomes important if you want to create your own classification

scheme. See Section 7.5.6 later in this chapter for further discussion on this

topic.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In order to add a classification to a RegistryObject, you need an instance of a Classification
object. As with classification schemes, there are two types of classification: internal and external.

An internal classification is created by referencing a Concept from the node hierarchy of an internal

classification scheme. A Classification object for an internal classification representing Book

Publisher in the NAICS classification scheme is shown in Figure 7-12.

Figure 7-12. An internal classification

An internal classification is very easy to create once you have the associated Concept. It is known to be
valid since it refers to a node in the validated hierarchy of a classification scheme. Furthermore, given

such a Classification object, application (or registry) code can obtain a reference to the underlying

Concept and use it to navigate the hierarchy and create related Classifications, if necessary.

An external Classification object, by contrast, contains a reference to its parent

ClassificationScheme and a name and value that correspond to those of the classification that it
represents. An external classification, therefore, may or may not be valid, depending on whether the

value part is populated with a legal classification value. External classifications must be used if the

classification scheme itself is external, but may also be used in conjunction with an internal

classification scheme. You can see examples of both cases in Section 7.5.2, later in this chapter.

7.4.4.2 Concepts as enumerated types

Another use for Concepts and classification schemes is to provide a means of creating enumerated
types that can then be used as arguments to JAXR API method calls. An enumeration is created by

defining a ClassificationScheme and attaching a Concept that represents each possible value within

the enumeration. There are several such enumerations defined by the JAXR specification that every

JAXR provider must recognize. One such enumeration, called ObjectType, contains distinguished

http://lib.ommolketab.ir
http://lib.ommolketab.ir

values for each type of RegistryObject, plus a few other commonly used object types. This
enumeration actually consists of a ClassificationScheme called ObjectType and a set of Concepts,

whose value fields are listed here:

Association AuditableEvent Classification

Concept ExternalIdentifier ExternalLink

ExtrinsicObject Organization Package

Service ServiceBinding User

CPP CPA Process

WSDL

In order to use one of these values when making API calls, it is necessary to get a reference to the
Concept that represents it. One way to do this involves using the findConceptByPath() method of

the javax.xml.registry.BusinessQueryManager interface, which will be discussed in the next
section. This method requires a path that specifies the required Concept. In the case of predefined

enumerations, this path consists of the ClassificationScheme name (i.e., the enumeration name),

followed by the value attribute of the Concept itself. Since the ClassificationScheme in this case is
called ObjectType, the following code returns the Concept for the Service value of the enumeration,

assuming that the variable bqm is an instance of BusinessQueryManager:

Concept service = bqm.findConceptByPath("/ObjectType/Service");

As shown in Section 7.5.6, later in this chapter, it is possible to define your own enumerations.

The use of the ClassificationScheme name as the first part of the path is a

special case that the JAXR specification provides for easy access to the Concepts

of predefined enumerations. As you'll see in Section 7.5.2.3, later in this chapter,

findConceptByPath() usually requires the unique ID of the
ClassificationScheme to be supplied as the first component of the path rather

than the scheme name.

At the time of this writing, the ebXML registry provider available from

http://ebxmlrr.sourceforge.net does not support this special case. An alternative

way to retrieve the Concepts for an enumerated type can be found in Section

7.5.5.7, later in this chapter.

http://ebxmlrr.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.5 JAXR Programming

So far in this chapter, you have seen the JAXR registry information model, which is mapped to the
javax.xml.registry.infomodel package. This section looks at the API that allows you to search or

update a registry, which is defined in the package javax.xml.registry . The examples shown in this

section assume that you have installed the sample registry data in either a UDDI or ebXML registry, as
described in Section 7.3 , earlier in this chapter.

7.5.1 Connecting to the Registry

In order to use a registry, you first have to create a connection to it. This process requires two steps:

Obtain a ConnectionFactory object and optionally set properties that determine how it will

behave.

1.

Use the ConnectionFactory object to obtain a Connection or FederatedConnection to the

target registry.

2.

There are two ways to get a ConnectionFactory object. In a J2EE environment, the preferred way is to

use the JNDI API to look up a preconfigured ConnectionFactory :

InitialContext ctx = new InitialContext();
ConnectionFactory factory = (ConnectionFactory)ctx.lookup("pathToFactory");

J2SE-based registry clients that do not have a preconfigured JNDI environment can instead use the

static newInstance() method:

ConnectionFactory factory = ConnectionFactory.newInstance();

ConnectionFactory is an abstract class. The actual class of the object returned by the newInstance()

method is determined by the property javax.xml.registry.ConnectionFactoryClass , which can be
set in either of the following locations (in order of priority):

As a system property (and therefore accessible by calling System.getProperty(
"javax.xml.registry.ConnectionFactoryClass ")).

In a file called jaxr.properties that is located in the lib directory of the installed JRE.

If a value for this property is not found in either of these locations, then a file called

javax.xml.registry.ConnectionFactoryClass is searched for in a directory called META-INF/services

within the classpath of the Java VM.[6] If this file exists, its content is expected to be a single line of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

text that gives the name of the ConnectionFactory class to be loaded. Failing this, a default
ConnectionFactory implementation is used. In the case of the JAXR reference implementation, the

default factory creates Connection objects that can be used to access a UDDI registry.

[6] This file is typically included in the JAR file containing the implementation of a registry

provider. The first such JAR file to be processed, in classpath order, determines which registry

implementation is used.

The behavior of Connection objects that are obtained from a ConnectionFactory is determined by a

set of properties associated with the ConnectionFactory . These properties are set by calling the
setProperties() method, which requires as its argument a Properties object containing some or all

of the standard property values listed in Table 7-2 .

Table 7-2. Standard JAXR ConnectionFactory properties

Property name Description

javax.xml.registry.queryManagerURL

The URL at which the registry query
service can be accessed. This property

must always be set.

javax.xml.registry.lifeCycleManagerURL

The URL at which the service used to
update the registry can be accessed. If

not set, the query URL is used.

javax.xml.registry.semanticEquivalences

Allows a mapping to be established in

the JAXR provider between pairs of

Concepts that are to be regarded as

equivalent. This property is most often

used in connection with postal addresses
held in UDDI registries, and is described

in Section 7.5.7 , later in this chapter.

javax.xml.registry.security.authenticationMethod

Specifies the way in which the JAXR

provider is to authenticate itself to the

registry. The client must select an

authentication mechanism that is

recognized by the registry that it is

attempting to use. Authentication is
usually required only when updating the

registry. See Section 7.5.10 later in this

chapter for further information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property name Description

javax.xml.registry.uddi.maxRows

Specifies the maximum number of

elements that a registry find query is
allowed to return. This value applies only

to a UDDI registry and must be a well-

formed integer. If this property is not

specified, then no limit is placed on the

number of rows that will be returned.

javax.xml.registry.PostalAddressScheme

Gives the UUID of the postal address
scheme used to map postal address items

in the registry to attributes of the JAXR
PostalAddress object. This property is

currently used only by UDDI registry

implementations. See Section 7.5.7 later
in this chapter for further information.

JAXR implementations are free to specify additional properties as required to allow customization of

their behavior. The UDDI provider in the JAXR reference implementation recognizes the eight

additional properties listed in Table 7-3 .

Table 7-3. JAXR ConnectionFactory properties recognized by the reference implementation UDDI provider

Property name Description

com.sun.xml.registry.http.proxyHost
Hostname for an HTTP proxy if a direct connection

to the registry is not possible.

com.sun.xml.registry.http.proxyPort
Port number to be used for an HTTP connection to

a registry via a proxy host.

com.sun.xml.registry.https.proxyHost

Hostname used when making an HTTPS connection

to a proxy host. Some registries require secure

connections for registry updates.

com.sun.xml.registry.https.proxyPort
Port name used when making an HTTPS connection

to a proxy host.

com.sun.xml.registry.http.proxyUserName

If a proxy is in use and the proxy requires clients to

authenticate, this property should be used to set the

username expected by the proxy.

javax.xml.registry.uddi.maxRows

Specifies the maximum number of

elements that a registry find query is
allowed to return. This value applies only

to a UDDI registry and must be a well-

formed integer. If this property is not

specified, then no limit is placed on the

number of rows that will be returned.

javax.xml.registry.PostalAddressScheme

Gives the UUID of the postal address
scheme used to map postal address items

in the registry to attributes of the JAXR
PostalAddress object. This property is

currently used only by UDDI registry

implementations. See Section 7.5.7 later
in this chapter for further information.

JAXR implementations are free to specify additional properties as required to allow customization of

their behavior. The UDDI provider in the JAXR reference implementation recognizes the eight

additional properties listed in Table 7-3 .

Table 7-3. JAXR ConnectionFactory properties recognized by the reference implementation UDDI provider

Property name Description

com.sun.xml.registry.http.proxyHost
Hostname for an HTTP proxy if a direct connection

to the registry is not possible.

com.sun.xml.registry.http.proxyPort
Port number to be used for an HTTP connection to

a registry via a proxy host.

com.sun.xml.registry.https.proxyHost

Hostname used when making an HTTPS connection

to a proxy host. Some registries require secure

connections for registry updates.

com.sun.xml.registry.https.proxyPort
Port name used when making an HTTPS connection

to a proxy host.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property name Description

com.sun.xml.registry.http.proxyUserName

If a proxy is in use and the proxy requires clients to

authenticate, this property should be used to set the

username expected by the proxy.

com.sun.xml.registry.http.proxyPassword
Sets the password to be used if proxy authentication

is required.

com.sun.xml.registry.http.useCache

If this property has the value true, the registry may

store objects in a local cache from which it may

return them in response to later queries that require
the same object. This property is true by default.

com.sun.xml.registry.http.useSOAP

By default, the UDDI JAXR provider uses the

SAAJ API to send client requests to the registry
server. If this property is set to true, it uses Apache

SOAP instead. This property is not likely to be of
much practical use in a production environment.

A typical piece of code that obtains a connection to a registry is shown in Example 7-1 .

Example 7-1. Connecting to a registry

Properties props = new Properties();
props.put("javax.xml.registry.queryManagerURL", queryURL);
props.put("javax.xml.registry.lifeCycleManagerURL", lifecycleURL);

ConnectionFactory cf = ConnectionFactory.newInstance();
cf.setProperties(props);

// Get and initialize the connection
Connection conn = cf.createConnection();
conn.setCredentials(credentials);

// Get the RegistryService and the managers
RegistryService registry = conn.getRegistryService();
BusinessQueryManager bqm = registry.getBusinessQueryManager();
BusinessLifeCycleManager blcm = registry.getBusinessLifeCycleManager();

The Properties object created at the start of this example is populated with the URLs required to

access the registry's query and update services, and then passed to the ConnectionFactory object,

which uses it when creating a Connection . In the case of the JWSDP JAXR reference implementation

deployed in a Tomcat web container or in J2EE 1.4, the query and update URLs both have the value
http://localhost:8080/RegistryServer/RegistryServerServlet , assuming that the client application and

the registry are running on the same system.

com.sun.xml.registry.http.proxyUserName

If a proxy is in use and the proxy requires clients to

authenticate, this property should be used to set the

username expected by the proxy.

com.sun.xml.registry.http.proxyPassword
Sets the password to be used if proxy authentication

is required.

com.sun.xml.registry.http.useCache

If this property has the value true, the registry may

store objects in a local cache from which it may

return them in response to later queries that require
the same object. This property is true by default.

com.sun.xml.registry.http.useSOAP

By default, the UDDI JAXR provider uses the

SAAJ API to send client requests to the registry
server. If this property is set to true, it uses Apache

SOAP instead. This property is not likely to be of
much practical use in a production environment.

A typical piece of code that obtains a connection to a registry is shown in Example 7-1 .

Example 7-1. Connecting to a registry

Properties props = new Properties();
props.put("javax.xml.registry.queryManagerURL", queryURL);
props.put("javax.xml.registry.lifeCycleManagerURL", lifecycleURL);

ConnectionFactory cf = ConnectionFactory.newInstance();
cf.setProperties(props);

// Get and initialize the connection
Connection conn = cf.createConnection();
conn.setCredentials(credentials);

// Get the RegistryService and the managers
RegistryService registry = conn.getRegistryService();
BusinessQueryManager bqm = registry.getBusinessQueryManager();
BusinessLifeCycleManager blcm = registry.getBusinessLifeCycleManager();

The Properties object created at the start of this example is populated with the URLs required to

access the registry's query and update services, and then passed to the ConnectionFactory object,

which uses it when creating a Connection . In the case of the JWSDP JAXR reference implementation

deployed in a Tomcat web container or in J2EE 1.4, the query and update URLs both have the value
http://localhost:8080/RegistryServer/RegistryServerServlet , assuming that the client application and

the registry are running on the same system.

http://localhost:8080/RegistryServer/RegistryServerServlet
http://localhost:8080/RegistryServer/RegistryServerServlet
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ConnectionFactory getConnection() method returns a Connection object that can be used to
access a single registry. ConnectionFactory also supports the creation of a FederatedConnection ,

via the createFederatedConnection() method:

public FederatedConnection createFederatedConnection(Collection
 connections);

FederatedConnection is an interface derived from Connection that does not add any new methods.

Each object in the Collection passed to the createFederatedConnection() method must be a

Connection representing a connection to a single registry or another FederatedConnection object.

The intent of FederatedConnection is to allow queries made via the FederatedConnection to be sent

to all of the registries with which it is associated, and for the query results to be merged to create a
single result set. Although createFederatedConnection() is a capability level 0 method, it is still

considered an optional feature, and therefore may not be implemented by all registry providers. In

particular, the UDDI registry provider in the JAXR reference implementation does not support it and

throws an UnsupportedCapabilityException if the createFederatedConnection() method is

called.

The act of obtaining a Connection object does not actually make a connection to a registry. The
provider is free to defer the establishment of a connection until such time as the client makes an API

call that actually requires an operation to be performed by the registry. If the registry requires

authentication information from a client, then the setCredentials() method should be called after

obtaining a Connection object, as shown previously. The argument passed to this method is a
java.util.Collection containing one or more credentials, the data type of which depends on the
authentication method used by the registry server. Registry authentication is discussed in more detail in

Section 7.5.10 at the end of this chapter.

From the Connection object, a registry client obtains an instance of the interface RegistryService .

RegistryService is the central object within a JAXR provider. There is one instance of this object for

each registry Connection . From a RegistryObject , a client can discover the capability level of the

provider (from the getCapabilityProfile() method) and also obtain references to the following
interfaces:

BusinessQueryManager

BusinessQueryManager is an interface that provides the methods necessary to search the registry

using crtiteria that are expressed in terms of the JAXR information model. For example, you can

use the methods of the BusinessQueryManager to find all Organization s whose names match a

given pattern or with given classifications. BusinessQueryManager is described later in Section

7.5.2 .
DeclarativeQueryManager

A DeclarativeQueryManager allows a client to search the registry using expressions written

using one or more query languages. DeclarativeQueryManager is supported only by level 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JAXR providers. Using this interface, a client might be able to search a registry using queries
written in SQL-92 syntax or using an OASIS ebXML Registry Filter query. See Section 7.5.3

later in this chapter for more information.

BusinessLifeCycleManager

The BusinessLifeCycleManager interface contains methods that allow a registry client to

create, update, or delete registry content. In most cases, a client must be properly authenticated

with the registry in order to make changes to its content. BusinessLifeCycleManager is
discussed later in Section 7.5.5 .

Default Postal Scheme

This represents the ClassificationScheme used by the JAXR provider for handling

PostalAddress objects. This may be null if the registry includes native support for postal
addresses that is consistent with that required by the JAXR specification (as is the case with the

ebXML registry). See Section 7.5.7 later in this chapter for more on this subject.

RegistryObject also provides a method (makeRegistrySpecificRequest()) that can be used by
specialized registry applications to send a request to a registry in the native format used by that registry.

Since this method requires an understanding of the message schemes used by specific registries, it will

not be further discussed in this book.

7.5.2 Retrieving Objects from the Registry

The BusinessQueryManager and QueryManager interfaces in the javax.xml.registry package
provide methods that allow information held in the registry to be retrieved. The methods provided by

QueryManager return objects based on object type, object owner, or the unique key assigned to them

when they are created. BusinessQueryManager is derived from QueryManager and provides methods

that allow the registry to be searched using various business-related criteria, including object name or a
list of classifications. A search by name is equivalent to looking up an entry in a White Pages directory,

while a classification-based search is analogous to using the Yellow Pages to locate a company or

service based on its type (e.g., Book Publisher, Plumber, etc.).

7.5.2.1 Using QueryManager methods to retrieve registry objects

You can use the methods provided by

QueryManager

when you know the key assigned to the objects that you want or the type of that object, or you want to

fetch all of the objects that you have created in the registry.

When you know the registry key of the object that you want, you can use one of the following methods
to retrieve it:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public RegistryObject getRegistryObject(String id) throws JAXRException;
public RegistryObject getRegistryObject(String id, String type)
 throws JAXRException;

The first of these methods requires only the key, but is supported only by level 1 JAXR providers. A

level 0 provider (such as a UDDI V2 registry) requires the type of the object as well as the key

generated when it was stored in the registry. The possible values for the object type are available as
constants defined by the LifeCycleManager interface. The following code, for example, returns the

Organization object corresponding to the ID supplied by the variable key , where bqm is assumed to

refer to a QueryManager instance:

String key = "f1d13cc1-e0f1-d13c-8671-22c9c07a9a76";
Organization org = (Organization)bqm.getRegistryObject(key,
 LifeCycleManager.ORGANIZATION);

The getRegistryObject() method throws a JAXRException if the key or the type are invalid, or if

the key does not correspond to a RegistryObject of the specified type. JAXRException is actually a

base class for the small number of checked exceptions that a JAXR provider can throw, which are
shown in Figure 7-13 .

Figure 7-13. Response and exception classes in the JAXR API

There are four getRegistryObjects() methods that fetch different sets of RegistryObject s:

public BulkResponse getRegistryObjects() throws JAXRException;
public BulkResponse getRegistryObjects(String type) throws JAXRException;
public BulkResponse getRegistryObjects(Collection keys)
 throws JAXRException;
public BulkResponse getRegistryObjects(Collection keys, String type)
 throws JAXRException;

Each of these methods returns an object of type BulkResponse . BulkResponse contains a Collection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that holds the RegistryObject s that meet the selection criteria implied by the arguments (if any)
supplied to getRegistryObjects() , a reference to which can be obtained by calling the

getCollection() method. The following code can be used to iterate over the results of a

getRegistryObjects() method call:

BulkResponse res = bqm.getRegistryObjects();
Collection coll = res.getCollection();
Iterator iter = coll.iterator();
while (iter.hasNext()) {
 RegistryObject obj = (RegistryObject)iter.next();
}

BulkResponse also contains a collection of exceptions that indicate errors that occurred while
completing the method call. The getExceptions() method returns a reference to this Collection , or

returns null if no exceptions occurred. The exceptions in this collection are all derived from

JAXRException and are therefore checked exceptions. The exception hierarchy for the JAXR API is
shown in Figure 7-13 . Both BulkResponse and JAXRException implement the JAXRResponse

interface. JAXRResponse contains methods that are used in conjunction with asynchronous requests to
the registry, which are described later in Section 7.5.4 .

The set of objects returned by each of the getRegistryObjects() methods depends on the arguments

supplied, as follows:

getRegistryObjects()

Returns all of the objects in the registry that are owned by the user making the call.

getRegistryObjects(String type)

Returns all of the objects in the registry of the supplied type (such as

LifeCycleManager.ORGANIZATION) that are owned by the user making the call.
getRegistryObjects(Collection keys)

Returns the objects from the registry for which the keys are supplied in the Collection passed as

the argument. Each element of the collection must be an object of type Key .

getRegistryObjects(Collection keys, String type)

Returns the objects from the registry of the supplied type, for which the keys are passed in the

given Collection . The objects corresponding to the supplied keys must all be of the specified

type.

For those methods that return collections of objects owned by the calling user, the user's identity is
obtained from the credentials passed to the ConnectionFactory setCredentials() method. If valid

credentials have not been set, then a JAXRException is thrown.

7.5.2.2 Finding registry objects using BusinessQueryManager

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The BusinessQueryManager interface provides methods that allow registry searches based on the
values of specific attributes of RegistryObject s to be performed. These methods form two groups:

those that return an individual RegistryObject given a specification of exact attributes that the object

must have, and those that return a BulkResponse containing a collection of RegistryObject s that

meet specified criteria. In this section, we look at the methods that fall into the second of these groups.

The methods that return a set of results all require a set of input parameters, some of which are

optional, that supply the acceptable values for specific attributes of a particular class of object to be
found within the registry. The findOrganizations() method is a typical example that we'll use to

demonstrate how these methods work:

public BulkResponse getOrganizations(Collection findQualifiers,
 Collection namePatterns, Collection classifications, Collection
 specifications, Collection externalIdentifiers, Collection
 externalLinks);

In this case, all of the arguments are Collection s. Each Collection is expected to contain objects of

a specific type and may be null if it is not required to search on the basis of the corresponding
attribute. Supplying null for the externalIdentifiers argument, for example, allows Organization

s with any associated ExternalIdentifier s (including none) to be included in the response set. In

some cases, where there is more than one entry in a Collection , the corresponding attribute of a
RegistryObject must have all of the specified values (i.e., there is an implied AND operation), while

in other cases, it is required to have only one of the given values (i.e., an implied OR operation).
Supplying two values in the externalIdentifiers argument, for example, requires that

RegistryObject s have both ExternalIdentifier s in order to be returned. Table 7-4 shows the

types of the objects required in each Collection and the way in which multiple entries are handled.

Table 7-4. Arguments used by the BusinessQueryManager find methods

Collection argument Object in Collection Combination rule

associationTypes Concept OR

classifications Classification AND

externalIdentifiers ExternalIdentifier AND

externalLinks ExternalLink AND

namePatterns String or LocalizedString OR

specifications See the following description AND

In most cases, the type of object in the Collection can be inferred directly from the name used for the

argument in the method signature. There are, however, a few cases that require more description:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

associationTypes

An Assocociation is a formal linkage between two RegistryObject s that reflects a specific
kind of relationship between them. The different types of relationships that may exist are defined

as an enumeration, each element of which is represented within the registry model by a Concept .

To select Assocation s of various types, include the Concept s representing each of those

relationship types in the Collection and call the findAssociations() or

findCallerAssociations() method. See Section 7.5.5.7 later in this chapter for more on this
topic.

namePatterns

This Collection contains one or more objects of type String or LocalizedString that is used

to match against the name attribute of RegistryObject s of the type searched by the method in
use. To facilitate wildcard searching, the string may contain the character % to match any number

of characters-for example, the string % would match any name, while %a% would match any
name that contains at least one letter a . Whether the search is case-sensitive depends on the find

qualifiers in use, as described shortly. Note that the JAXR specification states that a name pattern

follows the syntax defined for the SQL-92 LIKE clause in a SELECT statement. At the time of this

writing, however, the JAXR reference implementation does not support the full syntax of this

clause.
specifications

This Collection can contain any object that might be used as the specification object of a

SpecificationLink . These objects are most likely to be Concept s in the case of a UDDI

registry, and ExtrinsicObject s for an ebXML registry. See Section 7.5.5.2 later in this chapter

for more on the use of SpecificationLink s.

Many of the search methods (including findOrganizations()) accept a Collection of find

qualifiers that can be used to control the search or to place requirements on the way in which the return
values are organized. Each element in this Collection must be one of the constant values defined by

the FindQualifier s interface and described in the reference materials for the javax.xml.registry

package in the second part of this book.

7.5.2.3 Searching by Classification

In order to demonstrate how to locate information in a registry, we'll look at an example that searches
for an organization based on its associated classification - in other words, a Yellow Pages search.

Specifically, the example searches for organizations that are categorized as Book Publishers in the

NAICS classification scheme. Initially, this is a simple task, since the BusinessQueryManager

interface provides a method called findOrganizations() that lets you search given various different

criteria, including the classifications applied to Organization objects. The interesting part of this
example is the way in which the Classification objects that the findOrganizations() method

requires are created.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As noted in Section 7.4.4 , earlier in this chapter, a JAXR provider is obliged to support the NAICS

scheme as an internal classification scheme. This means that we can create either an internal or an

external Classification to represent Book Publishers under this scheme. Classification s are
created using the createClassification() methods of the BusinessLifeCycleManager interface,

which will be covered in detail in Section 7.5.5 , later in this chapter. There are three such methods:

public Classification createClassification(ClassificationScheme scheme,
 String name, String value);
public Classification createClassification(ClassificationScheme scheme,
 InternationalString name, String value);
public Classification createClassification(Concept concept);

The first two methods can be used with either an internal or an external classification scheme and
create an internal classification. The third method creates a Classification corresponding to a

Concept in the node hierarchy of an internal classification scheme, as illustrated in Figure 7-12 .

The code required to create an external classification is very simple - all that is necessary is to look up
the parent

ClassificationScheme

and then supply the name and value of the classification itself. This is shown in the following code

extract, where the variables bqm and blcm refer to instances of BusinessQueryManager and

BusinessLifeCycleManager , respectively.

ClassificationScheme naics = bqm.findClassificationSchemeByName(null,
 "%naics%");
if (naics == null) {
 naics = bqm.findClassificationSchemeByName(null, "%NAICS%");
 if (naics == null) {
 System.out.println("COULD NOT FIND NAICS CLASSIFICATION SCHEME.");
 System.exit(1);
 }
}

// Create external classification
Classification bookPublishers = blcm.createClassification(naics,
 "Book Publishers", "51113");

When creating an external classification, it is important to supply the correct value argument (in this
case, "51113"), since this is what actually identifies the classification. The name argument ("Book

Publishers") is not so important, because it is not used when comparing the created Classification

against those associated with objects in the registry during a search. It should be clear from this code

that it is perfectly possible to create an external classification that has no real meaning, simply by

supplying an inappropriate value argument:

Classification bookPublishers = blcm.createClassification(naics,
 "Book Publishers", "ABCDEF");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This code succeeds in creating a Classification object, even though the NAICS scheme does not

contain a classification with value "ABCDEF".

It is a little more difficult to create an internal classification, since it is necessary to locate the Concept
that represents the node of the hierarchy for which a Classification object is required. The benefit of

doing so, however, is that an internal classification is known to be valid. Recall from Figure 7-12 that

the Concept nodes are arranged beneath the ClassificationScheme object with which they are

associated, in a hierarchy that reflects the classification scheme itself. In order to create an internal

classification that represents Book Publishers, you need first to locate the Concept with the value
"51113" shown at the bottom right of Figure 7-12 , which can then be passed to the third variant of the

createClassification() method just shown.

There are two ways to locate the required Concept . The first involves searching for it in the set of

Concept s that are descendents of the ClassificationScheme :

Concept publisherConcept = null;
Collection concepts = naics.getDescendantConcepts();
Iterator conceptIter = concepts.iterator();
while (conceptIter.hasNext()) {
 Concept concept = (Concept)conceptIter.next();
 String value = concept.getValue();
 if (value != null && value.equals("51113")) {
 publisherConcept = concept;
 break;
 }
}

The getDescendentConcepts() method returns a Collection containing all of the Concept s
associated with the ClassificationScheme . To find the one that is required, it is necessary to iterate

over this Collection until a Concept for which the value attribute of "51113" is found. A more elegant

solution, however, is to use the findConceptByPath() method, which requires that you specify the

location of the required Concept by giving its path. The path is formed by specifying first the key of the

ClassificationScheme , then appending the values of each Concept on the node tree leading from the

ClassificationScheme to the Concept itself, with each part being separated by a "/ " character. By
referring to Figure 7-12 , you can see that the appropriate path for the Concept whose name is "Book

Publisher" is therefore given by the expression:

"/" + naics.getKey().getId() + "/51/511/5111/51113"

Note that the path contains the value attribute of each Concept node, not the name. The following code

locates the correct Concept and creates the corresponding internal classification object:

String path = "/" + naics.getKey().getId() + "/51/511/5111/51113";
Concept publisherConcept = bqm.findConceptByPath(path);
Classification bookPublishers = blcm.createClassification(publisherConcept);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Even though the createClassification() methods are part of the

BusinessLifeCycleManager interface, which is intended to allow registry

updates, you don't actually make any changes to the registry itself by calling
them; therefore, you don't need to have authenticated with the registry in order to

do so.

Once you have a Classification object, you can use the findOrganizations() method to carry out

the required search, as shown in Example 7-2 .

Example 7-2. Searching the registry for an Organization with a given classification

ArrayList classifications = new ArrayList();
classifications.add(bookPublishers);
BulkResponse res = bqm.findOrganizations(null, null, classifications,
 null, null, null);

// Process results (if any)
Collection coll = res.getCollection();
System.out.println("Internal classification search #2 found " + coll.size());
Iterator iter = coll.iterator();
while (iter.hasNext()) {
 Organization org = (Organization)iter.next();
 System.out.println("\t" + org.getName().getValue());
}

The example source code for this chapter includes a client that uses this code to search the registry for

book publishers. To run this code, make chapter7\jaxr your working directory and type the commands:

ant compile
ant run-uddi-classify-client

The client uses the three different methods shown above to create the Classification object used to

perform the search. Each search should return and display the Organization object for O'Reilly &

Associates. You can use the command:

ant run-ebxml-classify-client

to use an ebXML registry instead of the UDDI registry in the reference implementation.

7.5.2.4 Extended Classification searches

When you use the findOrganizations() method (or any of the other find methods of
BusinessQueryManager) to search for a registry object based on its associated classifications, a match

is made against the exact classifications passed in the method call. This can have some unexpected

consequences. For example, suppose you want to find the entries for all organizations that operate

under the classification "Newspaper, Periodical, Book, and Database Publishers" in the NAICS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

classification scheme. If you simply create a Classification object for this category and then call
findOrganizations() , in all probability you won't find anything, since the companies that operate in

this marketplace are likely to have categorized themselves using the more specific classifications such

as "Book Publisher" and "Newspaper Publishers" that appear below the "Newspaper, Periodical, Book,

and Database Publishers" classification in Figure 7-12 .

In order to perform a query for an organization that has a given classification or any of the more

specific classifications that reside below it in the classification scheme, you need to include all of the
individual classifications in the Collection supplied to the findOrganizations() method. If the

classification scheme is external, in order to achieve this you must explicitly create Classification

objects for all of the descendent classifications by referring to a diagram like a more complete version

of Figure 7-12 , which shows how the classification scheme is organized. For an internal classification

scheme, however, you can make use of the fact that the structure of the scheme is known to the JAXR
provider to get all of the Concep ts that are descended from "Newspaper, Periodical, Book, and

Database Publishers," and then create Classification s for each of them. The advantage of working

with an internal classification scheme is that this does not require prior knowledge of the structure of

the scheme below the node representing the initial classification.

The code required to find the Concept for the "Newspaper, Periodical, Book and Database Publishers"

classification node, and then to create the corresponding Classification , is straightforward:

ArrayList classifications = new ArrayList();
String path = "/" + naics.getKey().getId() + "/51/511/5111";
Concept publisherConcept = bqm.findConceptByPath(path);
Classification bookPublishers = blcm.createClassification(publisherConcept);
classifications.add(bookPublishers);

Since NAICS is an internal classification scheme, we can use the findConceptByPath() method to

find the correct Concept . The path that corresponds to this node begins with the ID of the classification

scheme itself, followed by the values of the nodes leading to the one that we require. You can read off
the required values from Figure 7-12 . Once the correct Concept is found, the

createClassification() method is called to create a Classification object, which is then added

to an ArrayList that is eventually passed to the findOrganizations() method. The next step is to

add to this ArrayList the Classification objects for all of the descendents of the Concept that we

just found. To do this, we use the getDescendentConcepts() method, which locates all of the direct
descendents of the Concept to which it is applied, and all of the child Concept s of those descendents,

and so on:

Collection concepts = publisherConcept.getDescendantConcepts();
Iterator conceptIter = concepts.iterator();
while (conceptIter.hasNext()) {
 Concept concept = (Concept)conceptIter.next();
 System.out.println("Adding child: " + concept.getName().getValue());
 classifications.add(blcm.createClassification(concept));
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each descendent Concept is then wrapped in a Classification object and added to the ArrayList .

Finally, to locate the set of Organization s with any of these classifications, we pass the list of
Classification s to the findOrganizations() method:

ArrayList findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.OR_LIKE_KEYS);
BulkResponse res = bqm.findOrganizations(findQualifiers, null,
 classifications, null, null, null);

If you refer back to Table 7-4 , you'll see that in a find operation that includes more than one
Classification , they are combined using an AND operation - in other words, the AND operation

looks for objects that have all of the specified Classification s. Since we want to retrieve

Organization s that have any of the Classification s, we need to convert this to an OR operation.

To do this, we need to pass a set of find qualifiers containing FindQualifier.OR_LIKE_KEYS as the

first argument to the findOrganizations() method. You can try out this code by making
chapter7\jaxr your working directory and typing the command:

ant run-extended-uddi-classify-client

or:

ant run-extended-ebxml-classify-client

The output from either of these commands shows the classifications that are being included and the
result of the search, which should be the single entry for O'Reilly & Associates.

7.5.3 Declarative Queries

In addition to the search facilities provided by BusinessQueryManager , level 1 registries also allow

you to retrieve information using queries written in one or more query languages. The query language

or languages available may vary from registry to registry, and the JAXR specification does not require
any particular query language to be supported. The javax.xml.registry.Query interface defines

constants for three specific query languages, which are listed in Table 7-5 .

Table 7-5. Query languages identified by the Query interface

Constant Description

QUERY_TYPE_EBXML_FILTER_QUERY
An ebXML filter query, as described in the ebXML Registry

Service specification.

QUERY_TYPE_SQL A query using a subset of SQL-92.

QUERY_TYPE_XPATH A query using the W3C XPath language.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The rules that govern the use of ebXML filters and SQL as query languages are defined in the ebXML
Registry Service specification, which can be downloaded from http://www.oasis-

open.org/committees/regrep/documents/2.1/specs/ebrs.pdf .

In order to submit a query, you first need to obtain an instance of the DeclarativeQueryManager

interface from the RegistryService object associated with your connection to the registry. You can

then use the DeclarativeQueryManager object to build a query and submit it to the registry. The code

in Example 7-3 illustrates how to retrieve all of the Organization s from the registry, using an SQL
query.

Example 7-3. Using an SQL query to fetch a set of Organizations from the registry

RegistryService registry = conn.getRegistryService();
DeclarativeQueryManager dqm = registry.getDeclarativeQueryManager();
Query query = dqm.createQuery(Query.QUERY_TYPE_SQL,
 "SELECT o.id FROM Organization o")
BulkResponse res = dqm.executeQuery(query);

// Process results (if any)
Collection coll = res.getCollection();
Iterator iter = coll.iterator();
while (iter.hasNext()) {
 Organization org = (Organization)iter.next();
 System.out.println("\t" + org.getName().getValue());
}

The query is represented by a Query object, which is obtained by passing the constant representing the

query language to be used and the query itself to the createQuery() method of
DeclarativeQueryManager . The query is then performed using the executeQuery() method, which

returns a BulkResponse containing the RegistryObject s that match the query.

Although a registry may support SQL as a query language, it does not necessarily follow from this that

the registry is implemented using a relational or object database. Instead, the registry server is required

to provide a logical mapping of the registry information model to a set of SQL tables, which can then

be the target of SQL queries. The details of this mapping are outside the scope of this book, and can be
found in the ebXML Registry Service specification, together with a specification of the subset of the

SQL SELECT statement syntax that can be used in conjunction with the executeQuery() method. The

following is an incomplete summary that covers only the major points:

The SELECT statement may only return a single column from one registry table. That column must

be the id column, which represents the unique identifier assigned to the RegistryObject when it

is created. The BulkResponse will contain the RegistryObject s that correspond to the IDs

returned by the SELECT statement.[7]

[7] At the time of this writing, the ebXML registry implementation available from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sourceforge.net actually requires that the SELECT statement return more than just the ID
column. As a workaround for this problem, you can use SELECT * FROM instead of

SELECT id FROM .

Each RegistryObject is mapped to a table that is typically named for its concrete type, such as

Organization , ClassificationScheme , etc. There are some exceptions, such as User , which is

mapped to a table named User_ .

RegistryObject and RegistryEntry are represented as relational views that include all of the

rows from the individual tables that correspond to the concrete types and thus allow queries that
are independent of the actual type of an object to be made. Therefore, while SELECT o.id FROM

Organization o returns all Organization objects, the query SELECT r.id FROM

RegistryObject r produces a result set containing all RegistryObject s, including all
Organization s.

Not all attributes of a RegistryObject appear in the table that represents that object. Some

attributes, such as the name and description, appear as rows in a separate table that has a column
called parent that links it to the RegistryObject that it should be associated with. For example,

the query SELECT o.id FROM Organization o, Name nm WHERE o.id = nm.parent AND

nm.value LIKE '%ei% ' returns all Organization s for which the name contains the characters

ei (such as O'Reilly & Associates).

Attributes of a RegistryObject that are defined as Collection s - such as the set of

Classification s, ExternalLink s, etc. - can be obtained by invoking a stored procedure, and
passing the ID of the RegistryObject as a parameter. The set of stored procedures that are

defined for this purpose can be found in the ebXML Registry Service specification.

The example source code for this book contains a simple example that shows how to submit an SQL

query to an ebXML registry. To run this example, make chapter7\jaxr your working directory and type

the command:

ant run-ebxml-query-client

This example uses the SQL query shown above to find all Organization objects in the registry for

which the name contains the string ei and then fetches the Classification s associated with each of

them. The SQL query required to fetch the Classification s demonstrates how to use one of the
small number of stored procedures that return attributes defined as Collection s, as shown in Example

7-4 .

Example 7-4. Using a stored procedure to get the Classifications for a RegistryObject

Query classQuery = dqm.createQuery(Query.QUERY_TYPE_SQL,
 "SELECT c.id FROM Classification c WHERE id IN " +
 "(RegistryObject_classifications('" + org.getKey().getId() + "'))");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The stored procedure RegistryObject_classifications() requires the ID of the RegistryObject
for which the Classification s are required, and returns the ID for each of them. Note that the ID

argument must be surrounded by single quotes to satisfy the SQL syntax. The output from this

command, when run against an ebXML registry with just the sample data for this chapter installed,

looks like this:

 Query found 1
 OReilly & Associates, Inc
 Book Publishers United States

7.5.4 Asynchronous Queries

It has been implicitly assumed in the examples shown so far in this chapter that when a request is made

to the registry, the calling thread blocks until a reply is received. For most applications, this is an

acceptable mode of operation, since they have little or nothing else to do until the result of the

operation is known. However, applications that do not wish to be blocked awaiting a response can use

the Connection setSynchronous() method with the argument false to select an asynchronous mode
of operation. Once this mode is selected, queries made via BusinessQueryManager or

DeclarativeQueryManager , and registry modifications made using BusinessLifeCycleManager
(described shortly), behave as follows:

The provider allocates a unique identifier to the request and creates a JAXRResponse (which, in

practice, is a BulkResponse), with its request identifier attribute set to the value of this identifier

and its status set to JAXRResponse.STATUS_UNAVAILABLE . The JAXRResponse is returned to the

caller, as usual.

The provider is responsible for arranging for the request to be performed without blocking the
calling thread. A provider typically does this by creating a new thread to handle the request, or by

handing it off to an existing thread dedicated to handling asynchronous requests.

When the request completes, successfully or otherwise, the provider loads any responses or

exceptions into the JAXRResponse and sets its status to either STATUS_SUCCESS , STATUS_WARNING

, or STATUS_FAILURE .

Application code can treat the BulkResponse returned by the provider in the usual way by immediately

calling the getCollections() or getExceptions() methods to retrieve the results of the call.
However, if it does so, it is blocked until the request actually completes. In order to make use of the

asynchronous nature of the request, it must instead wait to be notified that the results are available, by

inspecting the value returned by the JAXRResponse getStatus() method or calling the convenience

method isAvailable() . These methods do not block. The code shown in Example 7-5 illustrates

how to asynchronously request the set of all Organization s known to a registry.

Example 7-5. Making an asynchronous registry request

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ConnectionFactory cf = ConnectionFactory.newInstance();

// Get and initialize the connection
Connection conn = cf.createConnection();
conn.setSynchronous(false);

// Get the RegistryService and the BusinessQueryManager
RegistryService registry = conn.getRegistryService();
bqm = registry.getBusinessQueryManager();

// Request all organizations
ArrayList namePatterns = new ArrayList();
namePatterns.add("%");
BulkResponse res = bqm.findOrganizations(null, namePatterns,
 null, null, null, null);

// Wait until the request has completed
System.out.println("Request submitted - id = " + res.getRequestId());
while (!res.isAvailable()) {
 System.out.println("Request status: " + res.getStatus());
 try {
 Thread.sleep(1000);
 } catch (InterruptedException ex) {
 }
}
System.out.println("Request completed");

// Process results (if any)
Collection coll = res.getCollection();

You can try this example by making chapter7\jaxr your working directory and typing the following
command:

ant run-uddi-async-client

or:

ant run-ebxml-async-client

The JAXR specification does not require that support for asynchronous

operations be provided to clients that reside in a J2EE container because of the

restrictions placed on container-resident code by the programming environment

in which it must execute (such as the inability to use threads). Asynchronous

operations are therefore limited to J2SE application clients.

7.5.5 Modifying the Registry

Although registries typically allow any client to browse their content, registry updates can only be made

http://lib.ommolketab.ir
http://lib.ommolketab.ir

by authenticated users. In order to authenticate yourself with the registry, you need to obtain a valid
user identity (which might consist of a username and password or an X509 certificate), and then use the

Connection setCredentials() method to provide your authentication details before calling

getRegistryService() . Section 7.5.10 later in this chapter describes in more detail how to supply

authentication information to the JAXR provider.

The methods that allow registry data to be modified are defined by two interfaces: LifeCycleManager

and BusinessLifeCycleManager , which is derived from it. Since RegistryService allows only the
creation of a BusinessLifeCycleManager object, in the rest of this section I'll discuss the methods of

both these interfaces as if they were all defined by BusinessLifeCycleManager .

It is important to note that you don't need to be authenticated in order to obtain a
reference to a BusinessLifeCycleManager object. As we have already seen, it is

necessary for unauthenticated clients to be able to create Classification
objects using BusinessLifeCycleManager in order to be able to search for

RegistryObject s that have specific classifications. Authentication is required

only if you intend to use the methods that actually save information in the
registry or delete entries from it.

BusinessLifeCycleManager allows you to modify the registry in three different ways:

Creating new objects

Modifying existing objects

Deleting existing objects

In order to enter new data into the registry, first use one or more of the BusinessLifeCycleManager

createXXX() methods to build an object representation of the information model that you want to

create. To add a new organization, for example, you would use the createOrganization() method to

obtain an object that represents the organization itself, then create and add a Service object for each
service that the organization will offer. Within each Service , you would create and add

ServiceBinding s that provide the information needed to access the service itself. Having built the

object representation of the organization, save it to the registry. No changes are made to the registry

unless they are explicitly committed using one of the BusinessLifeCycleManager saveXXX()

methods.

To modify existing data, use a BusinessQueryManager findXXX() method or the
getRegistryObject() method to obtain a memory-resident copy of its current value, make the

required changes, and then commit them using the BusinessLifeCycleManager saveXXX() methods.

Registry objects can be deleted using one of the BusinessLifeCycleManager deleteXXX() methods.

In order to delete an object, you need to supply the unique key assigned to it when it was created.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The rest of this section uses extracts from the registry client used to install the test data used for the

examples in this chapter to illustrate how new content can be installed in the registry. You can find the

source code for this client in the file chapter7\setup\src\ora\jwsnut\chapter7\setup\RegistrySetup.java
relative to the installation directory of the example source code for this book. For more information on

the LifeCycleManager and BusinessLifeCycleManager interfaces, refer to the reference material for

the javax.xml.registry package in the second part of this book.

7.5.5.1 Creating Organizations and Users

An Organization object is created using the BusinessLifeCycleManager createOrganization()
method, which has two variants:

public Organization createOrganization(String name) throws JAXRPCException;
public Organization createOrganization(InternationalString name)
 throws JAXRPCException;

Every RegistryObject has a name attribute of type InternationalString , which allows

representations of the name to be stored in a form suitable for any number of Locale s. Typically, when
creating a RegistryObject , you may choose to supply the name either as a String or as an

InternationalString . In the former case, the name is actually stored as an InternationalString in

which the supplied value is used as the representation for the Locale on which the client application is
running.

An InternationalString is a collection of LocalizedString objects, each of which contains a
Locale specifier, the character set to be used for that Locale , and a String appropriate to that Locale

. Since both InternationalString and LocalizedString are interfaces, you need to use factory

methods provided by BusinessLifeCycleManager to create instances of them. Here's an example that

shows how to create an Organization , supplying both the name and description attributes as

InternationalString s:

InternationalString name = blcm.createInternationalString(
 "OReilly & Associates, Inc");
Organization ora = blcm.createOrganization(name);
ora.setDescription(blcm.createInternationalString("Book Publisher"));

An InternationalString is created with values for either zero or one Locales . You can add

additonal Locale s by creating LocalizedString s and calling the addLocalizedString() or

addLocalizedStrings() methods:

LocalizedString str = blcm.createLocalizedString(Locale.UK, "O'Reilly and Associates UK");
name.addLocalizedString(str);

Further information on both InternationalString and LocalizedString can be found in the

reference material in the second part of this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Other than its name, an Organization is initially created with an empty set of attributes. An
Organization has the following set of attributes, in addition to those inherited from RegistryObject :

Address

Level 1 registries allow an Organization to have an address attribute of type PostalAddress . If

you are using a level 0 registry, the Organization 's address is taken to be that of its primary

contact. See Section 7.5.7 later in this chapter for a discussion of the way in which level 0

registries store PostalAddress objects, which is not as straightforward a subject as you might

expect.
Telephone Numbers

An Organization can have any number of contact numbers, each of which is of type

TelephoneNumber . These objects can be created using the BusinessLifeCycleManager

createTelephoneNumber() method.
Primary Contact

A User object containing contact information for the person responsible for the Organization 's

registry data. In the case of a level 0 registry, the PostalAddress attribute of the primary contact
is taken to be the address of the Organization itself.

Users

A collection of User objects represents users affiliated to the Organization . This list always

contains the primary contact; the JAXR provider inserts an entry for the primary contact in this

collection if it is not already present.

Services

A list of Service objects describing the services offered by the Organization . Refer to Section

7.5.5.2 later in this chapter for further information.

Parent, Children, and Root Organizations

Level 1 registries allow the creation of Organization hierarchies. Each Organization in such a

hierarchy has a single parent Organization and zero or more child Organization s. A reference

to the root Organization for the hierarchy is also available from each Organization .

Organization hierarchies are not supported by level 0 registries.

The User object is the registry's representation of a person affiliated to a business. In addition to those

that it inherits from RegistryObject , User has the following attributes:

Person Name

This attribute provides personal identification information for the user in the form of a

PersonName object. In a level 0 registry, the PersonName object provides only the full name of

the user, expressed as a single String . Level 1 registries additionally allow the user's first,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

middle, and last name to be supplied as separate String s.[8] Note that the PersonName attribute
is additional to the name attribute inherited from RegistryObject .

[8] Version 1.0 of the JAXR specification is not clear what should happen if you choose to

set the full name of a user for a level 1 registry. In particular, it does not specify whether the

supplied value should be broken into several fields and stored as the first, middle, and last

names, or whether the full name should be treated as a separate attribute from the first,

middle, and last name attributes.
Email Addresses

This is a collection of zero or more email addresses for the user, each of which is represented as

an object of type EmailAddress . An EmailAddress object contains the actual email address

(e.g., info@amazon.com) and a type attribute that allows qualifying information specifying the
way in which the address is to be used to be included.

Telephone Numbers

A collection of zero or more contact telephone numbers for the user. Each entry in the collection
is a TelephoneNumber object that, in a level 0 registry, holds the telephone number in the form of

a single, uninterpreted string. Level 1 registries break the telephone number down into its

constituent parts, including country code, area code, and so on.

Addresses

A collection of PostalAddress objects giving the contact addresses for the user. These are taken

as the addresses of the Organization itself if the User object represents the primary contact in a
level 0 registry.

Type

This attribute contains a string whose content is not interpreted by the registry. It is typically used

to describe the role that the user plays within the Organization , such as "Technical Contact."

URL

A URL that is in some way associated with the user. This attribute is supported only by level 1

registries.

A User object is created by calling the BusinessLifeCycleManager createUser() method, which
initializes all of its attributes to null . The code extract in Example 7-6 shows how to create an

Organization , associate it with a primary contact User , and initialize some of the attributes of both

objects.

Example 7-6. Creating Organization and User objects in a registry

// Create an entry for Amazon.com
Organization amazon = blcm.createOrganization(blcm.
createInternationalString("Amazon.com"));
amazon.setDescription(blcm.createInternationalString(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "Amazon.com e-commerce web services"));

// Add telephone numbers
TelephoneNumber number = blcm.createTelephoneNumber();
number.setNumber("206-266-2335");
ArrayList list = new ArrayList();
list.add(number);
amazon.setTelephoneNumbers(list);
list.clear();

// Add a link to the home page
ExternalLink eLink = blcm.createExternalLink("http://www.amazon.com",
 "Amazon.com home page");
eLink.setValidateURI(connected);
list.add(eLink);
amazon.setExternalLinks(list);
list.clear();

// Create the Amazon submitting user
User user = blcm.createUser();
personName = blcm.createPersonName("Amazon.com Corporate");
user.setDescription(blcm.createInternationalString(
 "Amazon.com primary contact"));
user.setPersonName(personName);
address = blcm.createPostalAddress("1200", "12th Avenue South", "Seattle",
 "Washington", "US", "98144", "Headquarters");
list.add(address);
user.setPostalAddresses(list);
list.clear();

list.add(number);
user.setTelephoneNumbers(list);
list.clear();

EmailAddress email = blcm.createEmailAddress("info@amazon.com");
list.add(email);
user.setEmailAddresses(list);
list.clear();

// Install the primary contact for Amazon.com
amazon.setPrimaryContact(user);

You'll notice that because many of the attributes of both Organization and User can have multiple
associated values, in order to set them, you have to create a Collection (in this case, an ArrayList is

used), add the value or values to the Collection , and call the appropriate setter method. This is a

pattern that you'll find yourself using very often when writing code that installs registry data.

Another point worth noting is that this code associates an ExternalLink with the Organization object

for Amazon.com. As mentioned earlier, an ExternalLink points to an arbitrary URL that might

contain some information of use to registry clients. In this case, the ExternalLink points to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

organization's home page. The registry is free to check the validity of the link by attempting to access
it. If this is not convenient, perhaps because the URL is not currently valid or because you are using a

private test registry that is not connected to the Internet, you can use the setValidateURI() method to

disable the check. In this case, the Boolean variable connected is assumed to be true if the client is

connected to the Internet, and it is false if the client is not connected.

When the test data for this chapter is installed in the registry, three Organization objects are created

for Amazon.com, O'Reilly & Associates, and Keyboard Edge Limited (my consulting company). You
can see that the data has been correctly installed by using a registry browser. The JAXR reference

implementation is supplied with a browser that works with UDDI registries, which we'll use in this

chapter. If you are using the ebXML registry available from http://ebxmlrr.sourceforge.net , you'll find

that it has a similar tool. To start the registry browser on a Windows platform, go to the bin directory of

the JWSDP installation and type:

jaxr-browser.bat

On a Unix/Linux platform, type:

jaxr-browser.sh

and enter the URL of the registry you want to browse in the Registry Location field. This field has a

drop-down box that contains several commonly used URLs, including one that corresponds to the

reference implementation's UDDI registry server when run on the local host
(http://localhost:8000/RegistryServer/RegistryServerServlet). Having selected a URL, you can enter a

name pattern in the Name field and look for Organization s whose names match the pattern. You can

also choose to search by Classification , which is a common operation when looking for businesses

by business type. In fact, all of the Organization s in the test registry data have associated

Classification s. You'll see how these are added later in Section 7.5.5.5 . Enter the string "%" in the
Name field and press the Search button. This string matches all names in the registry; therefore, three

entries should be returned, as shown in Figure 7-14 .

Figure 7-14. Using the registry browser to examine registry data

To take a closer look at the data for a specific Organization , double-click its entry in the table on the

http://localhost:8000/RegistryServer/RegistryServerServlet
http://lib.ommolketab.ir
http://lib.ommolketab.ir

righthand side of the window. This opens a dialog box that displays the contact information and
classifications for the Organization , and also allows you to examine its associated Service objects,

which will be discussed in the next section. Figure 7-15 shows the information returned for

Amazon.com. Note that this is test data only and does not necessarily represent the most current

information for Amazon.com, which you can find by looking at the public UDDI registries mentioned

at the start of this chapter.

Figure 7-15. More detailed registry information for an Organization

7.5.5.2 Services, ServiceBindings, and SpecificationLinks

As described in Section 7.4 , a service offered by an Organization is represented in the registry by a
hierarchy of Service , ServiceBinding , and SpecificationLink objects. Each of these types can be

created using factory methods provided by BusinessLifeCycleManager . Typical use of these methods

is illustrated in Example 7-7 , which shows the code used to add a Service and a ServiceBinding to

the Organization entry for Amazon.com when the test data for this chapter is installed.

Example 7-7. Adding a Service and a ServiceBinding to an Organization in the registry

// Create a Service entry
Service service = blcm.createService("Amazon web service");
service.setName(blcm.createInternationalString("Amazon web service"));
service.setDescription(blcm.createInternationalString(
 "Web services that allow developers to create" +
 " applications that consume Amazon.com core features"));

// Add a ServiceBinding
ServiceBinding binding = blcm.createServiceBinding();
binding.setName(blcm.createInternationalString("Amazon service binding"));
binding.setDescription(blcm.createInternationalString(
 "Access to Amazon web services"));
binding.setValidateURI(connected);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

binding.setAccessURI("http://soap.amazon.com/onca/soap");

// Add the binding to the service and
// the service to the organization
// "list" is an existing, empty ArrayList
list.add(binding);
service.addServiceBindings(list);
list.clear();
amazon.addService(service);

A Service object represents a single service of some kind (possibly a web service) that an

Organization provides. An Organization may have any number of associated services. Amazon.com

provides a web service interface that allows browsing and purchasing of of items in its online store.
The Service object just created is intended to encapsulate that service. The information required to

access the service is provided by a ServiceBinding nested within the Service object. Each
ServiceBinding describes a particular means that can be used to access the service. In the case of

Amazon.com, there is one ServiceBinding that advertises SOAP-based access to the service.[9]

Additional access methods, perhaps a user-to-business interface using HTTP to be displayed in a
browser, could be advertised by adding additional ServiceBinding objects.

[9] You cannot tell from the ServiceBinding that the access being offered is SOAP-based; you

have to examine the SpecificationLink s to infer this.

The ServiceBinding includes an attribute called accessURI that associates an address with the
binding. There is no fixed meaning for this attribute - it might, for example, be an HTTP or mailto :

URL to which a SOAP message can be sent. In order to know how to interpret it, you need to read the

technical specification for the service binding. As with ExternalLink s, it is possible to use the

setValidateURI() method (of ServiceBinding) to specify whether this URI should be validated
when the registry entry is created.

In some cases, a ServiceBinding does not directly reference the service implementation but is instead

redirected to another ServiceBinding . It might be convenient to do this if you are creating several

Organization entries that have some service implementations in common, and you want only to

specify the binding details once so that they can easily be changed if necessary. To do this, you can use

the ServiceBinding setTargetBinding() method to install a reference to the ServiceBinding that
holds the real access information. It is not legal to have both a target binding and an access URI in the

same ServiceBinding object.

A ServiceBinding can have a number of associated SpecificationLink s. A SpecificationLink is

intended to provide a link to information that provides the technical details necessary for a developer to

access the service using the binding that it is associated with. An organization might, for example,

create human-readable documentation that describes the service and/or a formal specification of the
service interface such as a WSDL document. Each of these could be associated with the

ServiceBinding using separate SpecificationLink objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The useful information is included within the SpecificationLink using a specificationObject
attribute, which is formally of type RegistryObject . The way in which you might use a

SpecificationLink to refer to the WSDL definition for a web service is not formally defined, but

there are conventions that are in use within both the ebXML and UDDI registries.

7.5.5.3 Storing a WSDL document reference in an ebXML registry

Since an ebXML registry has an associated repository, it is possible to actually hold documentation
referred to from a SpecificationLink within the repository in the form of an ExtrinsicObject . This

means that a registry client can obtain the WSDL document (or any other form of technical

specification) directly from the registry rather than having to be redirected to the owning company. An

example that shows how to store a WSDL document in an ebXML registry/repository is shown in

Section 7.5.9.1 , later in this chapter.

7.5.5.4 Storing a WSDL document reference in a UDDI registry

The way in which WSDL document references should be stored in a UDDI registry is not mandated by

the UDDI registry specifications. Instead, there is a "best practice" document available from the OASIS

web site at http://www.oasis-open.org/committees/uddi-spec/bps.shtml that recommends a convention

to be followed. This document uses terms from the UDDI registry information model to describe how
WSDL should be referenced. In this section, you'll see how this recommendation can be mapped to the

information model defined by the JAXR specification so that it can be used with the JAXR API.

The simplest way to explain the recommendation is to describe an example JAXR implementation of it,

which is shown in Example 7-8 .

Example 7-8. Creating a reference to a WSDL document in a UDDI registry

// Set up a SpecificationLink
SpecificationLink sLink = blcm.createSpecificationLink();
sLink.setName(blcm.createInternationalString("WSDL specification"));
sLink.setUsageDescription(blcm.createInternationalString("WSDL specification"));

// Create the specification object
Concept sConcept = blcm.createConcept(null, "AmazonWSDL", "AmazonWSDL");
ExternalLink eLink = blcm.createExternalLink(
 "http://soap.amazon.com/schemas/AmazonWebServices.wsdl",
 "WSDL Specification");
eLink.setValidateURI(connected);
sConcept.addExternalLink(eLink);
ClassificationScheme uddiTypes = bqm.findClassificationSchemeByName(
 null, "uddi-org:types");
Classification wsdlClass = blcm.createClassification(uddiTypes, "wsdlSpec",
 "wsdlSpec");
sConcept.addClassification(wsdlClass);
ArrayList list = new ArrayList();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

list.add(sConcept);
BulkResponse res = blcm.saveConcepts(list);
list.clear();
Collection coll = res.getCollection();
sConcept.setKey((Key)coll.iterator().next());

// Store the specification object
sLink.setSpecificationObject(sConcept);

// Associate the SpecificationLink with the ServiceBinding
// and set the accessURI
binding.addSpecificationLink(sLink);
binding.setValidateURI(connected);
binding.setAccessURI("http://soap.amazon.com/onca/soap");

The first part of this code creates the SpecificationLink object that contains the reference to the
WSDL document. Since the UDDI registry does not have a repository, it is not possible for the

SpecificationLink to refer directly to the WSDL specification. Instead, the object stored in the

SpecificationLink must be a Concept object that has the following properties:

It has an ExternalLink that points to the WSDL document.

It has a Classification with value wsdlSpec associated with a ClassificationScheme called

uddi-org:types . This ClassificationScheme is defined by the UDDI specification and must
be made available by all JAXR providers for UDDI registries.

Having created the Concept and added the appropriate ExternalLink and Classification , the code

in Example 7-8 uses the setSpecificationObject() method to install it in the SpecificationLink

and then adds the SpecificationLink to the ServiceBinding . Finally, the accessURI attribute of the

ServiceBinding is set to point to the actual URL of the web service itself.[10]

[10] This last step is also shown in Example 7-7 , but is repeated here for the sake of clarity.

When a registry client locates the Organization entry for Amazon.com and accesses this

ServiceBinding , it is able to deduce that the SpecificationLink refers to a WSDL document by
virtue of the fact that its specification object (the Concept) has the classification wsdlSpec from the

uddi-org:types ClassificationScheme . The WSDL document can then be retrieved from the

location specified by the ExternalLink associated with the specification object and used to create the

JAX-RPC client-side artifacts or to build a SAAJ client that can access the service.

The final point to note is that, as you saw in Chapter 5 , the WSDL document for a service may contain

service and port elements that provide the URL at which the service defined by the document may be
accessed. That being the case, why is it necessary to also include the service access point address as the

accessURI of the ServiceBinding when it could be obtained from the WSDL document? The intent

of this apparent duplication of information is to accomodate WSDL documents that don't include the

service and port information. As described in Section 5.2.9.2 , it is quite reasonable to separate the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

reusable parts of a WSDL definition (i.e., the type definitions and the service bindings) from the
service element, which simply specifies where an instance of the service can be reached and is

therefore not reusable. As an example of a case in which this might be useful, suppose that at some

future time a group of companies agrees on a common service interface for an online shopping service.

This common interface would be expressed as a WSDL definition and placed in a central location,

probably under the control of the industry body responsible for the specification of the interface. This
WSDL document would not, of course, indicate where actual implementations of the service could be

found. Instead, the ServiceBinding elements associated with the Organization entries for each online

shopping store would refer to the single WSDL document describing the service that they provide from

a SpecificationLink , and the URL of its particular implementation of the shopping interface would

be provided using the accessURI attribute of the ServiceBinding .

7.5.5.5 Classifying registry objects

Any registry object can have zero or more associated Classification s. As mentioned earlier in this

chapter, Classification s are added to allow registry users to search for businesses or services using

criteria such as geographical location or business type. Adding Classification s to an object is

simply a matter of creating the appropriate Classification object and calling the RegistryObject
addClassification() or addClassifications() method. You have already seen how to create a

Classification object to represent a specific element of a classification scheme (see Section 7.5.2.3 ,

earlier in this chapter.) The code extract shown in Example 7-9 illustrates how the Classification s

listed in Figure 7-15 were added to the Organization entry for Amazon.com.

Example 7-9. Adding Classifications to RegistryObjects

ClassificationScheme naics = bqm.findClassificationSchemeByName(null, "%naics%");
if (naics == null) {
 naics = bqm.findClassificationSchemeByName(null, "%NAICS%");
 if (naics == null) {
 System.out.println("COULD NOT FIND NAICS CLASSIFICATION SCHEME.");
 System.exit(1);
 }
}
ClassificationScheme isocs = bqm.findClassificationSchemeByName(null, "%iso%");
if (isocs == null) {
 isocs = bqm.findClassificationSchemeByName(null, "%ISO%");
 if (isocs == null) {
 System.out.println("COULD NOT FIND ISO CLASSIFICATION SCHEME.");
 System.exit(1);
 }
}

ArrayList amazonClass = new ArrayList();
amazonClass.add(blcm.createClassification(naics,
 "Book, Periodical, and Music Stores", "4512"));
amazonClass.add(blcm.createClassification(isocs, "United States", "US"));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

amazon.addClassifications(amazonClass);

7.5.5.6 Saving content in the registry

Content created using the various createXXX() methods of BusinessLifeCycleManager exists only

within the client application until it is explicitly saved. One way to save previously created objects is to

use the saveObjects() method:

public BulkResponse saveObjects(Collection objects) throws JAXRException;

The Collection passed to this method contains any number of RegistryObject s that need not all be

of the same type. As each object is saved, a unique key is generated for it and entered into the

Collection that is returned in the BulkResponse . If any of the objects could not be saved for any

reason, then a SaveException is generated and stored in the set of exceptions associated with the
BulkResponse .

Note that the key attribute of a RegistryObject held within a client application is not automatically

updated as a result of a successful save operation, even though the object is assigned a valid key by the

registry. Furthermore, even though the key is returned in the BulkResponse , since Collection s are

not ordered, there is no way to match each returned key with the RegistryObject that it is associated

with, unless only one object is saved in each call. The only way to acquire the key for a
RegistryObject is to use a findXXX() method to retrieve the object, and to use the getKey()

method to extract it.

BusinessLifeCycleManager provides additional methods that allow groups of objects of the same type

to be saved together:

public BulkResponse saveAssociations(Collection associations,
 boolean replace) throws JAXRException;
public BulkResponse saveClassificationSchemes(Collection schemes)
 throws JAXRException;
public BulkResponse saveConcepts(Collection concepts) throws JAXRException;
public BulkResponse saveOrganizations(Collection organizations)
 throws JAXRException;
public BulkReponse saveServiceBindingd(Collection bindings)
 throws JAXRException;
public BulkResponse saveServices(Collection services) throws JAXRException;

All of the saveXXX() methods either create a new registry object or update an existing one if the
object already exists in the registry. An update occurs if the object being saved contains a valid key. A

perhaps unexpected consequence of this is that it is possible to create any number of RegistryObject s

of the same type with the same name, simply by calling methods like createOrganization() and

then saving the objects that are returned. To avoid this, it is advisable to check before adding new

registry content whether the objects that it contains already exist in the registry.

When a memory-resident RegistryObject is saved (or updated), the provider is required to traverse all

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of the objects that it references and create or update their registry counterparts as well. As a result of
this, in order to create registry entries for a set of Organization s together with their associated links,

services, and service bindings, it is only necessary to create a Collection containing the

Organization objects and use the saveOrganizations() method to save the content of this

Collection :

ArrayList orgs = new ArrayList();
orgs.add(ora);
orgs.add(kbedge);
orgs.add(amazon);
BulkResponse res = blcm.saveOrganizations(orgs);

7.5.5.7 Associations

It is sometimes useful to be able to reflect the existence of a relationship of some kind between two

objects within the registry. A business, for example, might want to indicate that it makes use of the
services of another organization whose details can be found in the same registry. Relationships of this

type can be recorded in the registry by creating an association between a pair of RegistryObject s,

which is represented by an object of type javax.xml.registry.infomodel.Association . An

Association has three major attributes, which are illustrated in diagram form in Figure 7-16 .

Figure 7-16. An Association object

Source object

The object to which the Association is applied.

Target object

The object that is to be considered to be associated with the source object.
Association type

Describes the nature of the association.

The JAXR specification defines 15 different association types, which are listed here:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Contains EquivalentTo Extends ExternallyLinks

HasChild HasMember HasParent Implements

InstanceOf RelatedTo Replaces ResponsibleFor

SubmitterOf Supersedes Uses

Notice that each of these association types is clearly directional. To reflect this fact, the two
RegistryObject s involved are labeled as the source and target of the association. The example shown

in Figure 7-16 expresses the fact that RegistryObject "A" uses RegistryObject "B". Here, the

association type is "Uses", the source object is "A", and the target object is "B".

Although an Association can theoretically be applied to any pair of

RegistryObject s, limitations may be imposed by specific registry types. In

particular, the UDDI registry in the JAXR reference implementation permits

Association s to be made only between Organization s.

There are two distinct Association types: intramural and extramural . An intramural Association is
one in which the source and target objects, and the Association itself, are all submitted by the same

user. An extramural Association is one in which at least one of the objects does not have the same

owner (i.e., was submitted to the registry by a different user) as the Association itself.

In order to be considered trustworthy, an extramural Association must be confirmed by the owner of

both objects involved. A registry user confirms an Association by using the confirmAssociation()
method of BusinessLifeCycleManager , and may unconfirm it at any point using the

unConfirmAssocation() method. The isConfirmed(), isConfirmedBySourceOwner() , and

isConfirmedByTargetOwner() methods of Association can be used to retrieve the current

confirmation status. Extramural Association s are not visible to registry owners that are not a party to

the Association until they have been confirmed.

An intramural Association is always considered to be confirmed, since the three objects involved are
all owned by the same registry user.

An Association is created using the createAssociation() method of LifeCycleManager :

public Association createAssociation(RegistryObject target, Concept type)
 throws JAXRException;

The association type required by this method is a Concept from an enumerated type under a
ClassificationScheme called AssociationType . The code extract in Example 7-10 shows how to

create and apply a "Uses" Association between two Organization s.

Example 7-10. Creating an Association between two Organizations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Find the source organization
ArrayList list = new ArrayList();
list.add("%Reilly%");
BulkResponse res = bqm.findOrganizations(null, list, null, null, null, null);
Collection coll = res.getCollection();
Iterator iter = coll.iterator();
if (!iter.hasNext()) {
 System.out.println("Please load sample data into the registry");
 System.exit(1);
}
Organization ora = (Organization)iter.next();
list.clear();

// Find the target organization
list.add("%Keyboard%");
res = bqm.findOrganizations(null, list, null, null, null, null);
coll = res.getCollection();
iter = coll.iterator();
if (!iter.hasNext()) {
 System.out.println("Please load sample data into the registry");
 System.exit(1);
}
Organization kbedge = (Organization)iter.next();
list.clear();

// Get the concept for the association type
ClassificationScheme types = bqm.findClassificationSchemeByName(null,
 "AssociationType");
if (types == null) {
 System.out.println("Cannot find AssociationTypes scheme");
 System.exit(1);
}
String path = "/" + types.getKey().getId() + "/Uses";
Concept uses = bqm.findConceptByPath(path);
if (uses == null) {
 System.out.println("Cannot find 'Uses' concept");
 System.exit(1);
}

// Create the association
Association a = blcm.createAssociation(kbedge, uses);
ora.addAssociation(a);

// Save the association
list.add(a);
res = blcm.saveAssociations(list, false);
if (res.getExceptions() != null) {
 System.out.println("Failed to save association");
 iter = res.getExceptions().iterator();
 while (iter.hasNext()) {
 System.out.println(iter.next());
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.exit(1);
}
list.clear();

The first part of this code uses the findOrganizations() method of BusinessQueryManager to

obtain references to the source and target Organization s, which are O'Reilly & Associates and

Keyboard Edge Limited, respectively. The next step is to obtain the Concept for the type of
Association to be created, which in this case is a "Uses" Association . Since the association types

are predefined enumerations, the JAXR specification allows the path /AssociationType/Uses to be

passed to findConceptByPath() to get a reference to this Concept . However, as noted in Section
7.4.4.2 , earlier in this chapter, this path is a special case that is not supported by all providers. The

code shown here does not rely on the availability of the special case, because it retrieves the
ClassificationScheme object for the enumeration and builds the path using its unique identifier, as

described earlier in Section 7.5.2.3 .

The Association is created by supplying the target object and the type to the LifeCycleManager

createAssociation() method:

Association a = blcm.createAssociation(kbedge, uses);

Note that the source object is not supplied - instead, it is implied by calling the addAssociation()

method of the source object itself, which is the Organization object for O'Reilly & Associates:

ora.addAssociation(a);

Finally, the Association is made effective by storing it in the registry:

list.add(a);
res = blcm.saveAssociations(list, false);

The saveAssocations() method requires a Collection of Assocation s and a Boolean argument

that, if true, replaces all existing Association s owned by the caller with those in the supplied

Collection . This argument is usually false, which has the effect of adding the supplied Association

s to those already in existence. There is no need to save the affected Organization objects because

they are automatically updated.

Since the two Organization s and the Association are all owned by the same user, this will be an
intramural Association , and therefore there is no need for it to be explicitly confirmed.

You can obtain the list of Association s for a RegistryObject by calling its getAssociations()

method. You can also use the findAssociations() and findCallerAssociations() methods of

BusinessQueryManager to search for Association s using appropriate criteria.

7.5.6 Creating User-Defined Classification Schemes and Enumerated Types

It is sometimes useful to be able to add your own classification scheme or enumerated type to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

registry. Since an enumerated type is just a classification scheme with only a single hierarchy level, the
same technique can be used to create either. Unfortunately, this is one of the few cases in which you

have to use different approaches depending on the actual type of the registry that is being used. In this

section, you'll see how to add an enumerated type called TestEnum that has the distinguished values 1,

2, 3, and 4 with both the UDDI and ebXML providers.

7.5.6.1 Adding classification schemes to an ebXML provider

An ebXML registry provides the internal mechanisms necessary to install a new

ClassificationScheme and its associated Concept hierarchy within the registry itself. The code

required to do this is very simple and is shown in Example 7-11 .

Example 7-11. Creating a custom classification scheme in an ebXML registry

ClassificationScheme scheme = blcm.createClassificationScheme("TestEnum",
 "Custom Enumeration");
scheme.setValueType(ClassificationScheme.VALUE_TYPE_UNIQUE);
ArrayList list = new ArrayList();
list.add(blcm.createConcept(scheme, "Value 1", "1"));
list.add(blcm.createConcept(scheme, "Value 2", "2"));
list.add(blcm.createConcept(scheme, "Value 3", "3"));
list.add(blcm.createConcept(scheme, "Value 4", "4"));
scheme.addChildConcepts(list);
blcm.saveConcepts(list);
list.clear();

list.add(scheme);
blcm.saveClassificationSchemes(list);

The first line creates the ClassificationScheme itself, supplying the name TestEnum under which it

can be found by other registry clients. The value type of the scheme is then set to VALUE_TYPE_UNIQUE ,

which is one of three possible values that describe the constraint that will apply to the values of the

Concept s within this ClassificationScheme :[11]

[11] Note that the value type attribute can be used only with a level 1 JAXR provider.

VALUE_TYPE_UNIQUE

Each Concept has a unique value (obtainable by calling its getValue() method).

VALUE_TYPE_NON_UNIQUE

The same value may be associated with more then one Concept in the hierarchy.
VALUE_TYPE_EMBEDDED_PATH

The value associated with each Concept is the complete path from the ClassificationScheme

to the Concept itself. The developer is responsible for arranging that each Concept has the

correct value. Obviously, this implies VALUE_TYPE_UNIQUE .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, the individual Concept s are created using the createConcept() method of LifeCycleManager
, of which there are two variants that differ according to whether the name is suppled as a String or an

InternationalString :

public Concept createConcept(RegistryObject parent, String name, String
value) throws JAXRException;
public Concept createConcept(RegistryObject parent, InternationalString
name, String value)

throws JAXRException;

In this case, the parent argument is supplied as a reference to the ClassificationScheme to which the

Concept s will belong, since there is only a single hierarchy level. In the case of a more complex
hierarchy, a Concept might be created with another Concept as its parent.

The name argument supplies the display name for the Concept . The value argument is the one that

really matters - it is the one that is considered to be the distinguished value in the case of an

enumerated type. It is also the value that must appear in the path used to locate the Concept when using

the getConceptByPath() method.

Having created the ClassificationScheme and all of the Concept s, the final step is to commit them

all to the registry using the saveConcepts() and saveClassificationSchemes() methods. Once
this is done, the scheme becomes visible to all registry clients.

7.5.6.2 Adding classification schemes to a UDDI provider

Unfortunately, UDDI registries currently do not support the storage within the registry of user-defined

classification schemes that have Concept hierarchies.[12] However, a JAXR provider is required to

provide a means whereby such a scheme can be made available to registry clients. How this is achieved
is implementation-dependent. Here, we'll look at the mechanism provided by the JAXR reference

implementation.

[12] In fact, you can create ClassificationScheme s and

Concepts

within a UDDI registry, but it is not possible to link them in a hierarchal fashion. You can actually

run the code shown in Example 7-11 against a UDDI registry and it will appear to work.

However, although the ClassificationScheme and Concept s are created, you won't be able to

locate any of the Concept s by calling findConceptByPath() or by trying to access them as

children of the ClassificationScheme object.

In the reference implementation, user-defined classification schemes are loaded by the JAXR provider
from one or more files whose locations are provided by a system property called

com.sun.xml.registry.userTaxonomyFilenames . This property consists of a list of files, separated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

by vertical bar (|) characters. Note that, at least at the time of this writing, the filenames are not allowed
to have any embedded spaces. This may be inconvenient for Windows users, since users' home

directories very frequently have pathnames that contain spaces. At some point during the execution of a

JAXR client application, the provider reads this property, extracts the filenames that it contains, and

attempts to load the contents of each named file as a Concept hierarchy for a ClassificationScheme .

Note that com.sun.xml.registry.userTaxonomyFilenames is a system

property, and not one of the properties set on the ConnectionFactory object.

The steps that a developer must take to create a custom ClassificationScheme are as follows:

Define the ClassificationScheme itself in the registry using the
createClassificationScheme() method, then save it.

1.

Get the UUID assigned to the ClassificationScheme .2.

Create the file that contains the definition of the Concept hierarchy. In order to create this file,

you need the scheme's UUID.

3.

In JAXR client applications, include the full pathname of the file in the
com.sun.xml.registry.userTaxonomyFilenames system property.

4.

Once these steps are completed, you can treat the ClassificationScheme in the same way as if it had

been installed into the registry. In particular, you can use findConceptByPath() to locate the

Concept objects within the hierarchy, and then use them to create internal Classification s.

The installation process for the example registry data for this book includes the creation of a

ClassificationScheme called TestEnum , which we will use to illustrate how to populate a custom
enumeration (which is actually a single-level ClassificationScheme). By installing the test registry

data, therefore, you completed the first of the steps listed previously.[13] To get the UUID, make

chapter7\jaxr your working directory, and type the command:

[13] Refer to Section 7.3 earlier in this chapter for the procedure for installing the test data in the

registry, if you have not already done so.

ant run-uddi-enum-client-step1

This command retrieves the UUID of the ClassificationScheme from the registry and displays it.

Make sure to note the UUID, which will look something like this:

uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908

You'll need this value for the second part of this example. The next step is to define the hierarchy of

Concept s within the ClassificationScheme . The example source code for this chapter includes a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

file that defines the same Concept hierarchy as that created programmatically within the ebXML
registry in the previous section. The content of this file (which is called

chapter7\jaxr\CustomScheme.xml.template) is shown in Example 7-12 .

Example 7-12. Template for a definition of a custom ClassificationScheme

<PredefinedConcepts>
 <JAXRClassificationScheme id="@@" name="TestEnum">
 <JAXRConcept id="@@/1" name="Value 1" parent="@@" code="1"></JAXRConcept>
 <JAXRConcept id="@@/2" name="Value 2" parent="@@" code="2"></JAXRConcept>
 <JAXRConcept id="@@/3" name="Value 3" parent="@@" code="3"></JAXRConcept>
 <JAXRConcept id="@@/4" name="Value 4" parent="@@" code="4"></JAXRConcept>
 </JAXRClassificationScheme>
</PredefinedConcepts>

Within this file, the token @@ represents the places at which the UUID of the ClassificationScheme

itself should be inserted to convert this template into a valid definition. Looking at the structure of this

XML file, the elements are used as follows:

PredefinedConcepts

The root element of the file and must always be present.
JAXRClassificationScheme

Wraps the definition of a new ClassificationScheme . Any number of these elements may

appear within the PredefinedConcepts element.

The id attribute supplies the UUID of the ClassificationScheme in the registry for which this

element defines the Concept hierarchy, while the name attribute fairly obviously gives the

scheme's name.

JAXRConcept

Defines a Concept at some level within the ClassificationScheme . The id attribute supplies a

unique ID for the Concept . It is typically formed by appending a unique value to the UUID of
the scheme itself.

The name attribute supplies the name of the Concept .

The code attribute gives the actual value of the Concept , which is returned by its getValue()

method.

The parent attribute is the id of the Concept that resides immediately above this Concept in the

hierarchy, or of the ClassificationScheme itself in the case of a top-level Concept .

The Ant buildfile in the chapter7\jaxr directory contains a target that replaces the @@ token in the

template file with the UUID of the ClassificationScheme , and writes the result to a given location in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the filesystem. To use this target, you need to add the following two properties to the
jwsnutJaxrExamples.properties file in your home directory:

CUSTOM_ENUM_UUID = uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908
CUSTOM_ENUM_FILE = c:\\temp\\CustomSchemes.xml

The value of the CUSTOM_ENUM_UUID property must be the UUID of the ClassificationScheme that
was obtained by running the first part of this example, not the value just shown. The

CUSTOM_ENUM_FILE property gives the name of the file to be created by the editing process, which you

are free to choose, subject to the following important constraints that apply to the filename:

It cannot contain spaces.

For Windows users, the "\" separator must be represented as "\\", since a single "\" is taken as an

escape character.

The editing process can be carried out using the command:

ant build-enum-file

The result of performing this operation on the template from Example 7-12 is shown in Example 7-13 .

Example 7-13. Edited ClassificationScheme definition file

<PredefinedConcepts>
 <JAXRClassificationScheme id="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908"
 name="TestEnum">
 <JAXRConcept id="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908/1" name="Value 1"
 parent="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908" code="1"/>
 <JAXRConcept id="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908/2" name="Value 2"
 parent="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908" code="2"/>
 <JAXRConcept id="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908/3" name="Value 3"
 parent="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908" code="3"/>
 <JAXRConcept id="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908/4" name="Value 4"
 parent="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908" code="4"/>
 </JAXRClassificationScheme>
</PredefinedConcepts>

In order to use this file, a JAXR client application must contain the following line of code, which

results in the definition of the custom classification being loaded from the file given by the value of the

com.sun.xml.registry.userTaxonomyFilenames property:

System.setProperty("com.sun.xml.registry.userTaxonomyFilenames",
 "c:\\temp\\CustomScheme.xml");

The following command:

ant run-uddi-enum-client-step2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

runs an example that sets the com.sun.xml.registry.userTaxonomyFilenames property as shown

previously and uses the ClassificationScheme getDescendentConcepts() method to demonstrate

that the four Concept s with values 1, 2, 3 and 4 listed in Example 7-13 have been created. It also uses

the findConceptByPath() method to access one of the Concept s, as shown in Example 7-14 .

Example 7-14. Using the getDescendentConcepts() and getConceptByPath() methods

// First find the classification scheme
ClassificationScheme scheme = bqm.findClassificationSchemeByName(null,
 "TestEnum");
if (scheme == null) {
 System.out.println("Please install the registry test data");
 System.exit(1);
}
System.out.println("Scheme id is " + scheme.getKey().getId());

// Now look for the Concepts
Collection coll = scheme.getDescendantConcepts();
System.out.print("Enumeration values: ");
Iterator iter = coll.iterator();
while (iter.hasNext()) {
 Concept c = (Concept)iter.next();
 System.out.print(c.getValue() + " ");
}
System.out.println();

// Locate by path
String path = "/" + scheme.getKey().getId() + "/1";
Concept c = bqm.findConceptByPath(path);
if (c != null) {
 System.out.println("Located concept by path: value = " + c.getValue());
} else {
 System.out.println("Failed to locate concept by path");
}

The result of running this command should be:

 Scheme id is uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908
 Enumeration values: 1 2 3 4
 Located concept by path: value = 1

None of the code used in Example 7-14 is specific to the UDDI registry, and you can actually run the

same example against the ebXML registry to demonstrate that the technique used in the previous

section to programmatically create the same ClassificationScheme produces an identical result. You
can try this using the command:

ant run-ebxml-enum-client.

Although this example creates a ClassificationScheme with a single hierarchy level, it is equally

http://lib.ommolketab.ir
http://lib.ommolketab.ir

simple to produce one with more than one level by making appropriate use of the parent attribute of the
JAXRConcept element. For example, Example 7-15 demonstrates how to add a Concept with the value

41 immediately below the one with the value 4.

Example 7-15. Adding an additional level to a ClassificationScheme

<PredefinedConcepts>
 <JAXRClassificationScheme id="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908"
 name="TestEnum">
 <JAXRConcept id="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908/1" name="Value 1"
 parent="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908" code="1"/>
 <JAXRConcept id="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908/2" name="Value 2"
 parent="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908" code="2"/>
 <JAXRConcept id="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908/3" name="Value 3"
 parent="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908" code="3"/>
 <JAXRConcept id="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908/4" name="Value 4"
 parent="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908" code="4"/>
 <JAXRConcept
 id="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908/41" name="Value 41"
 parent="uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908/4" code="41"/>
 </JAXRClassificationScheme>
</PredefinedConcepts>

Note the following with regard to the line that has been added:

The code attribute is set to 41, which is the required value for the new Concept .

The parent attribute is set to the ID value of the Concept 4, which indicates that the new Concept

should be a child of that Concept .

The id attribute for the new Concept ends in /41 rather than /4/41. This is actually a matter of
choice, and either would be valid. The IDs are not required to reflect the actual hierarchy, since

that job is done by the parent attribute.

You can see more examples of the use of these XML elements by looking at the definition files that the

JAXR provider for UDDI uses to create the NAICS, ISO-3166, and UNSPSC classification schemes.

These can be found in the jaxr-ri.jar file for the JAXR reference implementation, at the following

locations:

NAICS com\sun\xml\registry\common\tools\resources\naics.xml

ISO 3166 com\sun\xml\registry\common\tools\resources\iso3166.xml

UNSPSC com\sun\xml\registry\common\tools\resources\unspsc.xml

7.5.7 Postal Addresses

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The JAXR API represents address information using the PostalAddress interface, which has attributes

that map to the various parts of the address, such as street number, street name, and so on. Mapping this

structure to an ebXML registry is simple, since its information model represents an address in exactly

the same way. However, the UDDI registry does not have such a well-defined address structure. The

UDDI information model stores address information in an address element, which may contain any
number of nested addressLine elements. The information model specification does not define how

individual addressLine s are to be interpreted as street number, street, city, and so on. It does,

however, allow two attributes to be associated with each addressLine that can be used to provide

linkage between its content and the part of the original address to which it corresponds. The values that

these attributes may take are, however, not defined within the specification. Instead, they are given
meaning by an address scheme, which is itself referred to from the parent address element. Registries

can therefore define their own (essentially arbitrary) address schemes, and as a result, it is not possible
for a JAXR provider to implement a fixed mapping between the attributes of a PostalAddress object

and the addressLine s of the registry's address structure.

Example 7-16 shows an example of an address stored in a UDDI registry. Note that each address line

has a keyName and a keyValue attribute. These attributes indicate what role the addressLine plays in
the original address. To interpret each addressLine , you need to look at the address scheme referred

to by the tModelKey attribute of the surrounding address element. In fact, the representation shown
here is the default provided by a JAXR provider for UDDI, and the tModelKey attribute refers to a

ClassificationScheme called PostalAddressAttributes that is defined within the provider

itself.[14] You can think of this as the "reference" layout for addresses, as recognized by the JAXR
provider in the reference implementation.

[14] This ClassificationScheme is defined using the technique shown in Section 7.5.6 , earlier in
this chapter. You can find its definition in the file jaxrconcepts.xml , which is in the

com\sun\xml\registry\common\tools\resources directory of the jaxr-ri.jar file.

Example 7-16. A PostalAddress stored in a UDDI registry using the default JAXR address scheme

<address sortCode="" tModelKey="PostalAddressAttributes" useType="Headquarters">
 <addressLine keyName="StreetNumber" keyValue="StreetNumber">1005
 </addressLine>
 <addressLine keyName="Street" keyValue="Street">Gravenstein Highway North
 </addressLine>
 <addressLine keyName="City" keyValue="City">Sebastopol</addressLine>
 <addressLine keyName="State" keyValue="State">CA</addressLine>
 <addressLine keyName="PostalCode" keyValue="PostalCode">95472</addressLine>
 <addressLine keyName="Country" keyValue="Country">USA</addressLine>
</address>

The JAXR reference implementation also includes a definition for a second address

ClassificationScheme called IBMDefaultPostalAddressAttributes . Using this scheme, the same

address would be represented slightly differently, as shown in Example 7-17 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 7-17. A PostalAddress stored using the IBM postal address scheme

<address sortCode=""
 tModelKey="uuid:6EAF4B50-4196-11D6-9E2B-000629DC0A2B" useType="Headquarters">
 <addressLine keyName="StreetAddressNumber" keyValue="StreetAddressNumber">
1005</addressLine>
 <addressLine keyName="StreetAddress" keyValue="StreetAddress">
 Gravenstein Highway North</addressLine>
 <addressLine keyName="City" keyValue="City">Sebastopol</addressLine>
 <addressLine keyName="State" keyValue="State">CA</addressLine>
 <addressLine keyName="ZipCode" keyValue="ZipCode">95472</addressLine>
 <addressLine keyName="Country" keyValue="Country">USA</addressLine>
</address>

Note first that the tModelKey of the address element is different: the value shown in Example 7-17 is

the UUID assigned to the IBMDefaultPostalAddressAttributes scheme within the registry. This
indicates immediately that the addressLine s within this element are not going to be encoded in the

same way as they would be in the default JAXR representation, and, as you can see, there are some
differences. For example, the addressLine s that represent the street address and postal code attributes

of the PostalAddress object have their keyValue attributes set to StreetAddress and ZipCode in this

case, whereas in Example 7-16 , the values Street and PostalCode are used.

7.5.7.1 Creating a representation of a registry addressing scheme

There are two problems for the JAXR provider: how to map the attributes of a given PostalAddress
attribute to the proper set of addressLines for the UDDI registry that it is connected to, and, when
reading an address from the registry, how to determine which PostalAddress attribute each

addressLine corresponds to. The solution is to require the registry client to provide the information

required to perform this mapping. Here's what the client is required to do:

Define the address scheme for the registry as a ClassificationScheme with one concept

corresponding to each of the PostalAddress attributes that is stored by the registry's

addressLine elements. The name and value attributes for each Concept are taken from the
keyName and keyValue attributes of the addressLine element to which it corresponds.

1.

Specify the mapping from the Concept s of the new address scheme to those of the default JAXR

addressing scheme (which is a predefined ClassificationScheme called

PostalAddressAttributes).

2.

Include the UUID of the address ClassificationScheme as well as a representation of the

Concept mapping in the Properties object supplied to the ConnectionFactory used to create

the Connection to the registry.

3.

The mapping that is created for a typical addressing scheme (in this case the IBM scheme used in
Example 7-17) is shown in Figure 7-17 . The blocks at the top of the diagram represent the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ClassificationScheme and Concept s for the default JAXR addressing scheme. These are all
predefined within the provider and cannot be renamed. The lower part of the diagram shows the

ClassificationScheme and Concept s for the IBM addressing scheme, which is also predefined

within the JAXR reference implementation. To create a mapping for a third-party addressing scheme,

use the technique described earlier in Section 7.5.6 to define the ClassificationScheme hierarchy to

the JAXR provider. The Concept names and values must be taken from the keyName and keyValue
attributes that appear in the

addressLine

elements within the registry. In this case, you can see by reference to Example 7-17 that these should be

StreetAddressNumber , StreetAddress , and so on. The arrows represent the relationship between
these Concept s and those defined within the default JAXR addressing scheme.

Figure 7-17. Creating a mapping from a registry address scheme to the JAXR default scheme

In order to activate this mapping, you need to set the following two properties in the Properties object

passed to the ConnectionFactory :

javax.xml.registry.postalAddress

Specifies the ID of the ClassificationScheme that represents the postal address scheme to be
used for the registry.

javax.xml.registry.semanticEquivalences

Specifies the mapping from the Concept s defined for the registry address scheme and the JAXR

default postal addressing scheme. The format of this property is shown later in Section 7.5.7.3 .

To see how the mapping information is used, consider what happens if the JAXR provider needs to

create a PostalAddress object from the registry information shown in Example 7-17 . First of all,

notice that the tModelKey attribute of the address element contains the ID assigned to the IBM
addressing scheme, as shown in the lower part of Figure 7-17 . If this ID is supplied to the provider via

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the javax.xml.registry.postalAddress property, then it knows that it can use the mapping in the
javax.xml.registry.semanticEquivalences property to map from the keyName and keyValue

attributes in the addressLine elements to the Concept s that make up the standard JAXR addressing

scheme.

For the example shown in Example 7-17 , the first addressLine has keyValue StreetAddressNumber

. Referring to Figure 7-17 , you can see that this Concept corresponds to StreetNumber in the JAXR

addressing scheme. (In reality, this match is made using the
javax.xml.registry.semanticEquivalences property, as you'll see shortly.) The provider knows

that the StreetNumber Concept corresponds to the StreetNumber attribute of the PostalAddress

object, so it uses the value 1005 to set this attribute. The next addressLine has keyValue

StreetAddress . This is mapped to the Street Concept of the JAXR addressing scheme; therefore,

the value Gravenstein Highway North is assigned to the Street attribute of the PostalAddress
object. The same procedure is used to map all of the addressLines to PostalAddress attributes, and is

used in reverse when storing the content of a PostalAddress into the registry.

In summary, the way in which address information in the UDDI registry is translated into

PostalAddress objects (and vice versa) depends on the settings of the

javax.xml.registry.postalAddressScheme and javax.xml.registry.semanticEquivalences

properties in the Properties object associated with the ConnectionFactory at the time that the
Connection object for the registry is created. The following sections show in more detail-and with

specific examples-how the values of these properties affect the translation process, both when a

PostalAddress is stored in the registry and when one is created as a result of loading an object from

the registry. The explanations that follow make use of a client application supplied with the example

source code for this book that stores a PostalAddress in the UDDI registry using the IBM addressing
scheme. Before proceeding, you should make chapter7\jaxr your working directory and install the new

PostalAddress using the following command:

ant run-postal-install-client

The address is stored by creating another Organization and including it as the address of its primary

contact. The result of storing the address is shown in Example 7-18 .

Example 7-18. A PostalAddress stored in a UDDI registry using an IBM registry address scheme

<address sortCode="1234"
 tModelKey="uuid:6EAF4B50-4196-11D6-9E2B-000629DC0A2B" useType="Headquarters">
 <addressLine keyName="StreetAddressNumber" keyValue="StreetAddressNumber">
 1005</addressLine>
 <addressLine keyName="StreetAddress" keyValue="StreetAddress">Gravenstein
 Highway North</addressLine>
 <addressLine keyName="City" keyValue="City">Sebastopol</addressLine>
 <addressLine keyName="State" keyValue="State">CA</addressLine>
 <addressLine keyName="ZipCode" keyValue="ZipCode">95472</addressLine>
 <addressLine keyName="Country" keyValue="Country">USA</addressLine>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</address>

As a result of installing this address, the registry now contains two copies of the address for O'Reilly &
Associates. One is stored using the default JAXR addressing scheme, and the other is stored with the

IBM scheme. There are two differences between the IBM representation of the address shown in

Example 7-18 and the default JAXR representation in Example 7-16 :

The addressLine elements are different, since a different addressing scheme is used.

The address element in Example 7-18 has the value 1234 associated with its sortCode attribute,

while in Example 7-16 , this attribute is empty. The sortCode attribute is part of the UDDI

information model for addresses, but it is not mapped as an attribute in the JAXR PostalAddress

interface. You can, however, supply a sortCode value by attaching a Slot to the PostalAddress
, using the following code (which is used when creating the PostalAddress in Example 7-18).

This is independent of the addressing scheme in use and could also have been done when the
address in Example 7-16 was stored.
address.addSlot(blcm.createSlot(Slot.SORT_CODE_SLOT, "1234", null));
// Attach sortCode value

7.5.7.2 Mapping without a PostalAddress scheme

When the javax.xml.registry.postalAddressScheme property has not been set, the JAXR provider
does not know how addresses are mapped within the registry. In this case, when populating a

PostalAddress object with registry data, it makes no attempt to guess which addressLine s might
correspond to the various attributes of the PostalAddress object. Instead, it adds a Slot called

Slot.ADDRESS_LINES_SLOT and stores the text from the addressLine elements as the Slot value

(which, as described in Section 7.4.3 , earlier in this chapter, is a Collection). To try this out, use the

command:

ant run-postal-none-client

Part of the output of this command is shown in Example 7-19 .

Example 7-19. Retrieving a PostalAddress with no postal scheme installed

POSTAL ADDRESS for OReilly & Associates, Inc
 Street number:
 Street:
 City:
 State:
 Postcode:
 Country:

SLOTS:
 sortCode: ;
 addressLines: 1005; Gravenstein Highway North; Sebastopol; CA; 95472; USA;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see, the PostalAddress attributes are all empty and the information retrieved from the

registry is stored in its addressLines slot.

Storing a PostalAddress in a registry when no value has been set for the

javax.xml.registry.postalAddressScheme property is slightly different. There are two cases to
consider:

A PostalAddress may have its own postal address scheme that overrides the default, which may
be set using the PostalAddress setPostalScheme() method. If this is not null , then the

address is stored according to that scheme.

Otherwise, the PostalAddress is stored as if the JAXR default postal address scheme were in

use. As a result, the address is mapped to the registry as shown in Example 7-16 .

7.5.7.3 Using the JAXR default PostalAddress scheme

You can specify use of the default JAXR postal address scheme by setting the
javax.xml.registry.postalAddressScheme and javax.xml.registry.semanticEquivalences

properties as shown in Example 7-20 .

Example 7-20. Specifying use of the default JAXR postal scheme

props.setProperty("javax.xml.registry.postalAddressScheme",
 "PostalAddressAttributes")
props.setProperty("javax.xml.registry.semanticEquivalences",
 "urn:uuid:PostalAddressAttributes/StreetNumber," +
 "urn:uuid:PostalAddressAttributes/StreetNumber|" +
 "urn:uuid:PostalAddressAttributes/Street," +
 "urn:uuid:PostalAddressAttributes/Street|" +
 "urn:uuid:PostalAddressAttributes/City," +
 "urn:uuid:PostalAddressAttributes/City|" +
 "urn:uuid:PostalAddressAttributes/State," +
 "urn:uuid:PostalAddressAttributes/State|" +
 "urn:uuid:PostalAddressAttributes/PostalCode," +
 "urn:uuid:PostalAddressAttributes/PostalCode|" +
 "urn:uuid:PostalAddressAttributes/Country," +
 "urn:uuid:PostalAddressAttributes/Country");

The value PostalAddressAttributes assigned to the javax.xml.registry.postalAddressScheme
property selects the default addressing scheme. The value assigned to the other property simply sets up

a direct equivalence between the default scheme and itself. It really should not be necessary to do this

but, at least at the time of this writing, the JAXR reference implementation requires it. The format of

the value assigned to this property will be described in the next section.

When this scheme is selected, all PostalAddress objects saved to the registry use the default JAXR

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mapping shown in Example 7-16 .

When the provider receives address information from the registry, it inspects the tModelKey attribute
of the address element. If it has the value PostalAddressAttributes , then the addressLine s should

have keyValue attributes that are consistent with the default postal address scheme - that is, they

should be the same as those shown in Example 7-16 . The content of the addressLines with keyValue

attributes that are valid are mapped to the corresponding attributes of the PostalAddress object (that

is, the value of the addressLine element with the keyValue attribute set to StreetNumber is mapped
to the StreetNumber attribute, and so on). If the set of addressLines should, for some reason, contain

one or more elements that have keyValue attributes that do not match the values of the Concepts in the

PostalAddressAttributes classification scheme, then they are grouped together in a Collection and

stored as the value of a Slot.ADDRESS_LINES_SLOT slot that is added to the PostalAddress .

If you type the command:

ant run-postal-default-client

you'll see the results of loading two addresses from the registry with the default classification scheme

selected. You'll notice that the PostalAddress object for O'Reilly & Associates is properly populated,
since it was stored when the default scheme was selected. However, the other address was written to

the registry using the IBM postal address scheme. Therefore, when it is retrieved, all of its
addressLines are stored in the Slot.ADDRESS_LINES_SLOT slot, as shown in Example 7-21 .

Example 7-21. Result of retrieving an address whose postal does not match the selected scheme

POSTAL ADDRESS for Another Organization
 Street number:
 Street:
 City:
 State:
 Postcode:
 Country:

SLOTS:
 sortCode: 1234;
 addressLines: 1005; Gravenstein Highway North; Sebastopol; CA; 95472; USA;

This output is actually the same as that shown in Example 7-19 , which illustrates that the result of

loading an address that uses a different postal address scheme from the one in use by the JAXR

provider is the same as if a postal address scheme had not been selected at all. Even though this scheme

has several addressLine s that have keyValue s that are valid for the default JAXR address scheme

(such as City and Country), the values still do not appear in the PostalAddress object.

7.5.7.4 Using a different PostalAddress scheme

In order to select a nondefault postal address scheme, you need to properly initialize the same two

http://lib.ommolketab.ir
http://lib.ommolketab.ir

properties. Example 7-22 shows how you would select the IBM postal address scheme.

Example 7-22. Specifying the use of the IBM postal address scheme

props.setProperty("javax.xml.registry.postalAddressScheme",
 "uuid:6EAF4B50-4196-11D6-9E2B-000629DC0A2B")
props.setProperty("javax.xml.registry.semanticEquivalences",
 "urn:uuid:PostalAddressAttributes/StreetNumber," +
 "urn:uuid:6EAF4B50-4196-11D6-9E2B-000629DC0A2B/StreetAddressNumber|" +
 "urn:uuid:PostalAddressAttributes/Street," +
 "urn:uuid:6EAF4B50-4196-11D6-9E2B-000629DC0A2B/StreetAddress|" +
 "urn:uuid:PostalAddressAttributes/City," +
 "urn:uuid:6EAF4B50-4196-11D6-9E2B-000629DC0A2B/City|" +
 "urn:uuid:PostalAddressAttributes/State," +
 "urn:uuid:6EAF4B50-4196-11D6-9E2B-000629DC0A2B/State|" +
 "urn:uuid:PostalAddressAttributes/PostalCode," +
 "urn:uuid:6EAF4B50-4196-11D6-9E2B-000629DC0A2B/ZipCode|" +
 "urn:uuid:PostalAddressAttributes/Country," +
 "urn:uuid:6EAF4B50-4196-11D6-9E2B-000629DC0A2B/Country");

As before, the value of the javax.xml.registry.postalAddressScheme property must be the ID of

the postal address scheme to be used; the value shown here is the UUID assigned to the IBM postal

address scheme. The javax.xml.registry.semanticEquivalences property describes the mapping
between the Concept s of the default JAXR postal address scheme and the one to be used. Its task is to

describe the mapping shown diagrammatically in Figure 7-17 . It is made up of a set of Concept pairs,

in which each pair is separated from the other pairs by a vertical bar (|) character. Each pair is made up

of two identifiers separated by a comma, where the first identifier is the path for the Concept in the

default JAXR postal address scheme, and the second identifier is for the corresponding Concept in the
target postal address scheme. For example, the following extract:

"urn:uuid:PostalAddressAttributes/StreetNumber," +
"urn:uuid:6EAF4B50-4196-11D6-9E2B-000629DC0A2B/StreetAddressNumber|" +
"urn:uuid:PostalAddressAttributes/Street," +
"urn:uuid:6EAF4B50-4196-11D6-9E2B-000629DC0A2B/StreetAddress|" +

maps the StreetAddressNumber Concept in the IBM address scheme to the StreetNumber Concept in

the JAXR address scheme, and maps the IBM scheme's StreetAddress Concept to the JAXR
scheme's Street concept.

If there are Concept s in the target address scheme that do not map to any of those in the default

scheme, then they cannot be included. As a result, the corresponding addressLine is mapped to the

Slot.ADDRESS_LINES_SLOT slot instead. As an example of this, if the target scheme includes an

addressLine with a keyValue of District , which cannot be mapped to one of the standard Concept

s, then it will not appear in the javax.xml.registry.semanticEquivalences property and its value
will be stored in the slot (although the keyValue is lost). Similarly, if there is no addressLine in the

target scheme that can be mapped to one or more of the standard Concept s (e.g., because the target

scheme does not have a PostalCode equivalent), the entry for that Concept in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

javax.xml.registry.semanticEquivalences property should be omitted, and the corresponding
attribute in a PostalAddress object created from registry data will be empty.

When a nondefault scheme is active, all PostalAddress objects saved to the registry are mapped using

the addressLine s defined by that scheme, an example of which is shown in Example 7-18 in which

the IBM postal address scheme is active. The results of loading a PostalAddress from the registry

mirror those described in the last section.

Addresses whose tModelKey attribute matches the ID of the selected postal address
ClassificationScheme are mapped to PostalAddress attributes as described in the previous

section.

All other addresses are mapped directly to the Slot.ADDRESS_LINES_SLOT slot of an otherwise
empty PostalAddress object.

The command:

ant run-postal-ibm-client

retrieves the same two addresses used in the previous section, but this time with the IBM address

scheme selected. This time, the O'Reilly & Associates address, which was stored using the JAXR

default address scheme, is unloaded into the Slot.ADDRESS_LINES_SLOT slot. The other address is

decoded properly, since it was stored using the IBM postal address scheme.

7.5.8 Deleting Registry Objects

Objects in the registry can be deleted using one of the deleteObjects() methods provided by

BusinessLifeCycleManager :

public BulkResponse deleteObjects(Collection keys) throws JAXRException;
public BulkResponse deleteObjects(Collection keys, String objectType) throws
JAXRException;

These methods remove the objects whose keys are supplied by the Collection argument. The first

variant, which allows the deletion of an arbitrary set of objects, is supported only by level 1 providers.

If you are using a level 0 provider, you need to use the second variant, which allows the removal of

only a single type of object with each call. The type is supplied as the second argument, using one of

the constants defined in the LifeCycleManager interface:

BulkResponse res = blcm.deleteObjects(keys, LifeCycleManager.ORGANIZATION);

BusinessLifeCycleManager also includes convenience methods that delete objects of specific types:

public BulkResponse deleteAssociations(Collection associationKeys)
 throws JAXRException;
public BulkResponse deleteClassificationSchemes(Collection schemeKeys)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 throws JAXRException;
public BulkResponse deleteConcepts(Collection conceptKeys)
 throws JAXRException;
public BulkResponse deleteOrganizations(Collection organizationKeys)
 throws JAXRException;
public BulkResponse deleteServiceBindings(Collection bindingKeys)
 throws JAXRException;
public BulkResponse deleteServices(Collection serviceKeys)
 throws JAXRException;

The BulkResponse returned by all of the deleteXXX() methods contains the keys for those objects

that were successfully removed and a DeleteException for any that were not. An attempt to delete an

object that is referenced by another object in the registry may succeed or may result in an
InvalidRequestException , depending on the level of checking performed by the registry. Since the

JAXR specification does not specify whether deletion of an object automatically results in the deletion
of any related objects that are no longer referenced, it may be necessary (depending on the registry

implementation) for application code to manually delete all Service s attached to an Organization

being deleted as well as all ServiceBinding s for those Service s, and so on.

It is important to note that the Collection s passed to the deleteXXX()

methods must contain the keys for the objects to be deleted, not the objects

themselves. Some JAXR provider implementations (including the UDDI

provider in the reference implementation) silently ignore elements of the

Collection that are not of type Key , with the result that no objects are deleted
and there is no error reported.

7.5.9 Level 1 Registry Features

Level 1 providers, such as those used with ebXML registries, provide additional functionality that can

be used by client applications that do not need to be portable to all registry types. This section describes

the most important of these additional features. Since the motivation for this functionality comes from

ebXML, additional information can be found in the ebXML Registry Service specification, which can

be obtained from the OASIS web site at http://www.oasis-open.org .

7.5.9.1 ExtrinsicObjects

ExtrinsicObject s are RegistryObject s that have associated data that is not of a type that is

normally handled by the registry and is therefore stored in the repository rather than the registry itself.

When creating an ExtrinsicObject , it is necessary to supply the data to be stored and the MIME type

of that data. BusinessLifeCycleManager provides a method that allows an ExtriniscObject to be
created:

public ExtrinsicObject createExtrinsicObject(DataHandler data)
 throws JAXRException;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The javax.activation.DataHandler passed to this method encapsulates both the data and its MIME

type. As discussed in Section 3.6.3.4 , there are several ways to create a DataHandler , one of which

uses a URL to point to the associated data. In this case, the MIME type of the data is obtained from the

data source (e.g., an HTTP server) if it is available, or inferred from the data content or URL if

possible. Once an ExtrinsicObject is created, the MIME type can be changed if necessary by calling
the setMimeType() method, and new data can be installed by calling setRepositoryItem() ,

passing a new DataHandler instance. If the data is not in a form in which it can be directly read by the

registry (or application clients), perhaps because it is encrypted, the setOpaque() method should be

called with the argument true to indicate this.

ExtrinsicObject s are often used in conjuction with SpecificationLink s to include service-related

documentation in the repository, to be retrieved by users who locate the parent ServiceBinding . The
following code extract shows how you might create an ExtrinsicObject to store a WSDL definition

for a web service (in this case, the one offered by Amazon.com) in an ebXML registry and associate
with it with a SpecificationLink :

ExtrinsicObject eObj = blcm.createExtrinsicObject(
 new DataHandler(new URL(
 "http://soap.amazon.com/schemas/AmazonWebServices.wsdl")));
SpecificationLink sLink = blcm.createSpecificationLink();
sLink.setName(blcm.createInternationalString("WSDL specification"));
sLink.setUsageDescription(sLink.getName());
sLink.setSpecificationObject(eObj);

7.5.9.2 RegistryPackages

A RegistryPackage is a container that allows arbitrary groupings of RegistryObject s to be created.

Since a RegistryPackage is a RegistryObject , a RegistryPackage may contain another

RegistryPackage . BusinessLifeCycleManager provides two methods that allow the creation of an

empty RegistryPackage :

public RegistryPackage createRegistryPackage(String name)
 throws JAXRException;
public RegistryPackage createRegistryPackage(InternationalString name)
 throws JAXRException;

Objects can be added to and removed from the package either individually or in groups by using

methods provided by the RegistryPackage interface. The getRegistryObjects() method returns a

Collection containing all of the objects in the package. One possible use for a RegistryPackage is to
group together all of the objects relating to an Organization so that they can be easily deleted:

BulkResponse res = package.getRegistryObjects();
ArrayList keys = new ArrayList();
Iterator iter = res.getCollection().iterator();
while (iter.hasNext()) {
 keys.add(((RegistryObject)iter.next()).getKey());
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.5.9.3 Object deprecation

The life cycle for RegistryObject s in a level 1 registry includes a deprecated state. In this state, the

object continues to exist, but cannot be made the target of new links from other objects. An attempt to

create a new link results in a JAXRException . Objects can be deprecated and undeprecated using the

following LifeCycleManager methods:

public BulkResponse deprecateObjects(Collection keys) throws JAXRException;
public BulkResponse unDeprecateObjects(Collection keys)
 throws JAXRException;

Note that the Collection s passed to these methods contain the keys for the objects whose state is to

be changed, not the objects themselves.

Even though deprecation applies at the RegistryObject level, there is no way

for a registry client to determine in advance whether a given object is deprecated,

except in the case that the object is a RegistryEntry . To determine whether a

RegistryEntry is deprecated, use the getStatus() method and test for the

return value RegistryEntry.STATUS_DEPRECATED .

7.5.9.4 Auditing

The registry contains an audit trail that keeps a record of the following events relating to

RegistryObject s:

Creation

Deletion

Deprecation

Undeprecation

Updates, other than classification, being made the target of an Assocation or being added to or
removed from a RegistryPackage

Changes to the version numbers

The audit trail for a RegistryObject can be obtained by calling its getAuditTrail() method, which

returns a Collection of objects of type AuditableEvent , each of which records the following

information:

The event type, as defined in the AuditableEvent interface. Object creation is recorded with type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AuditableEvent.EVENT_TYPE_CREATED .

The time at which the event occurred, which is available in the form of a java.util.Date object.

The RegistryObject to which the event relates.

The User object for the user that caused the event.

The code extract shown in Example 7-23 obtains and processes the complete audit trail for each
Organization in the registry.

Example 7-23. Getting and processing the registry audit trail for an object

// Get the Organization entries
ArrayList namePatterns = new ArrayList();
namePatterns.add("%");
BulkResponse res = bqm.findOrganizations(null, namePatterns, null, null, null,
null);

// Process the results
Collection coll = res.getCollection();
if (!coll.isEmpty()) {
 Iterator iter = coll.iterator();
 while (iter.hasNext()) {
 Organization org = (Organization)iter.next();
 coll = org.getAuditTrail();
 System.out.println("Events for " + org.getName().getValue() +
 ": " + coll.size());
 Iterator aIter = coll.iterator();
 while (aIter.hasNext()) {
 AuditableEvent evt = (AuditableEvent)aItet.next();
 // Do something with "evt"
 }
 }
}

Since you cannot get a RegistryObject for an object that has been deleted, you cannot see the

AuditableEvent that records the deletion by using the getAuditTrail() method. An alternate way

to retrieve AuditableEvent s is to exploit the fact that they are RegistryObject s and use the
BusinessQueryManager getRegistryObjects() method, as shown in Example 7-24 .

Example 7-24. Getting all AuditableEvents caused by the current user

BulkResponse res = bqm.getRegistryObjects(LifeCycleManager.AUDITABLE_EVENT);
if (res != null) {
 coll = res.getCollection();
 System.out.println("Events for current user: " + coll.size());
 Iterator aIter = coll.iterator();
 while (aIter.hasNext()) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 AuditableEvent evt = (AuditableEvent)aIter.next();
 // Do something with "evt"
 }
}

Since getRegistryObjects() returns only objects belonging to the authenticated user, you must have

set valid credentials on the Connection object used to establish a connection to the registry. This code
returns all AuditableEvent s caused by the actions of the authenticated user, which will include those

for object deletion.

7.5.10 Registry Security

Since a registry contains business-related information, it is important that its integrity is protected and

that mechanisms are provided to ensure that only the legitimate owner of registry data is allowed to
modify it. From the developer's viewpoint, the registry security model provided by the JAXR API is a

particularly simple one that requires the provider and the registry itself to be responsible for providing

and interpreting security tokens when necessary. The only obligations placed on the application
developer are to choose an authentication method and to supply credentials that are acceptable to the

target registry before obtaining the RegistryService object. This section briefly looks at the security
features that may be offered by a registry and how the developer can make use of them.

7.5.10.1 Authorization

The rules regarding who can access and modify registry data are very simple:

Any user is allowed to submit queries to the registry, and therefore read-only access requires no

authorization checks to be made. It follows that there is no need for a client who does not intend

to modify registry data to supply any kind of identifying information before accessing the registry.

Operations that modify registry data can be performed only by properly authenticated users.
Furthermore, with the possible exception of "super users" who might be required for

administration purposes by some registries, registry objects can only be modified or deleted by the

user that originally created them. In order to enforce these restrictions, write access to the registry

requires that clients provide authentication information that link them to a predefined registry

User . Objects created in the registry are associated with the User object of their creator; attempts
to change or delete them are valid only if they are made from a client authenticated as the same

User .

The way in which users are registered with a registry is registry-dependent. The public UDDI registries,

for example, provide a web-based interface that allows you to sign up and obtain a username and

password that enables you to enter registry data. In the case of an ebXML registry, the procedure is

likely to be more complex because these registries use stronger, certificate-based authentication. The

way in which a JAXR client supplies identification information to a registry is described later in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Section 7.5.10.3 .

7.5.10.2 Confidentiality

While it might be acceptable for the results of registry query operations to be transmitted in-clear over

public networks, it is less desirable for messages that contain usernames and passwords to be easily

readable. In order to provide confidentiality, registries may require the use of HTTPS when write

access to the registry is required. Since the JAXR API recognizes both a query URL and an update
URL for any given registry, it is possible for a registry to provide an unauthenticated query service over

HTTP, together with an authenticated and confidential update service that uses HTTPS as the transport

mechanism. Since HTTPS encrypts messages in transit and includes a mechanism that can detect

modification en route, it not only protects the integrity of the data being installed in the registry, but

also ensures that the credentials supplied to authenticate the client are not readable by third parties.

From the point of view of a JAXR client developer, there is very little that you need to do in order to
support the use of HTTPS connections to a registry. Most importantly, you need to ensure that the Java

Secure Sockets Extension (JSSE) is installed on the client system. If you are using J2SE Version 1.4 or

higher, then this requirement is already satisfied because JSSE is included. If not, then you need to

download and install the JSSE extension from http://java.sun.com .

HTTPS uses public key certificates. During connection establishment, the registry server sends a

certificate identifying itself. In order for the certificate to be recognized, either the certificate itself or
that of its issuing Certificate Authority (CA) must already be installed in a trust store on the client

system. Since the most commonly used CA certificates are included with the J2SE distribution, in most

cases you will probably find that this requirement is automatically satisfied. If not, then you need to

obtain and install in a local trust store the appropriate CA certificate. If the trust store you intend to use

is not the default provided by J2SE, then you may need to set the javax.net.ssl.trustStore and
javax.net.ssl.trustStorePassword system properties to those appropriate for your trust store.

Information on installing certificates and setting up these properties can be found in Section 3.8.2 .

7.5.10.3 User authentication

Different registries use different authentication mechanisms. A JAXR client is required to select an

authentication method and set the javax.xml.registry.security.authenticationMethod property
in the Properties object passed to the ConnectionFactory setProperties() method accordingly.

The literal strings shown in the lefthand column of Table 7-6 are to be used to indicate the most

common authentication methods. Note that the current JAXR specification does not define constant

values to represent these strings.

Table 7-6. JAXR registry authentication mechanisms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Meaning

UDDI_GET_AUTHTOKEN

An authentication scheme defined in the UDDI specification. The client

supplies a username and password and obtains in return a token that is

included by the client in each subsequent request that requires user

credentials. Naturally, in order for this mechanism to offer any kind of
security, it must be safeguarded against tampering. Therefore, HTTPS should

be used as the underlying transport protocol.

HTTP_BASIC

The standard HTTP basic authentication scheme. The client supplies a
username and password when challenged by the server. This type of

authentication is carried out by the HTTP server itself. The registry server can

obtain a Principal object for the validated user when handling a request that

requires the caller's identity to be known.

CLIENT_CERTIFICATE

Uses a public key certificate as proof of identity. This is a much stronger

security mechanism than those listed previously. It is used by ebXML
registries.

MS_PASSPORT Microsoft Passport authentication mechanism.

Providers are not required to implement all of these authentication mechanisms. In fact, it is only

required to support the mechanism or mechanisms used by the registry type for which it is designed. At
the time of this writing, the UDDI provider in the JAXR reference implementation supports only

UDDI_GET_AUTHTOKEN , while the ebXML provider available from http://ebxmlrr.sourceforge.net

recognizes only CLIENT_CERTIFICATE . If an unsupported authentication method is requested, the

ConnectionFactory createConnection() method throws an UnsupportedCapabilityException .

Having selected an authentication method, the JAXR client must also supply appropriate credentials
using the Connection setCredentials() method:

public void setCredentials(Collection credentials) throws JAXRException;

This call should be made before a RegistryService object is obtained. Changing credentials has no
effect on any existing RegistryService object.

The argument passed to this method is a Collection that may contain objects of any kind. A provider

is required to search the Collection to find objects that supply authentication information in a form

that is consistent with the authentication method that has been selected by the

javax.xml.registry.security.authenticationMethod property, and ignore all other content. This

makes it possible for a JAXR client to create a Collection that contains credentials suitable for several
different authentication methods. The JAXR specification specifies the form that the credentials

supplied by the JAXR client must take for the UDDI_GET_AUTHTOKEN , HTTP_BASIC , and

CLIENT_CERTIFICATE cases as described in the following paragraphs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For the simple cases in which a username and password are required (i.e., UDDI_GET_AUTHTOKEN and
HTTP_BASIC), the credentials are supplied in the form of a java.net.PasswordAuthentication

object. An object of this type can be created very easily, since the constructor requires only the

username and password:

String user = "testuser";
String password = "testuserpassword";
PasswordAuthentication auth = new PasswordAuthentication(user,
 password.toCharArray());

In the CLIENT_CERTIFICATE case, an object of type

javax.security.auth.x500.X500PrivateCredential must be provided. This object combines an

X.509 public certificate with the corresponding private key as well as the alias used to retrieve it from a

keystore. The code shown in Example 7-25 illustrates how to create such an object.[15]

[15] This code can be found in the file chapter7\util\src\ora\jwsnut\chapter7\util\Util.java in the
example source code for this book.

Example 7-25. Creating an X500PrivateCredential object for certificate-based authentication

public static X500PrivateCredential getCredentials(String file, String alias,

String keyPassword, String storePassword) throws Throwable {
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream(file), storePassword.toCharArray());
 X509Certificate cert = (X509Certificate)ks.getCertificate(alias);
 PrivateKey key = (PrivateKey)ks.getKey(alias, keyPassword.toCharArray());
 return new X500PrivateCredential(cert, key, alias);
}

Supplying the certificate and private key is sometimes not sufficient. For

example, at the time of this writing, the ebXML provider available from

http://ebxmlrr.sourceforge.net also requires access to the keystore from which the

certificate was obtained in order to obtain the complete certificate chain. Since
the X500PrivateCredential object does not point to the keystore itself, its

location is obtained from a property held in a configuration file that must be

installed in your home directory. See Section 7.3.2 earlier in this chapter for

further information.

The arguments to be supplied to this method are as follows:

file

The full pathname of the keystore file in which the certificate and private key are found. If you

create a self-signed certificate for testing purposes using the J2SE keytool command as described

in Section 3.8.2 , the value of this argument should be the full path to the file named with the -

http://ebxmlrr.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

keystore command-line argument to keytool .
alias

The alias under which the certificate is stored in the keystore. This is the same as the value of the

-alias argument of the keytool utility.

keyPassword

The password assigned to the private key. When creating a self-signed certificate, the private key

is generated and stored in the keystore at the same time. The private key password required here

is the same value as that supplied to keytool using its -keypass command-line argument.
storePassword

The password required to access the keystore. This is the same value supplied to keytool using its

-storepass argument.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. Web Service Tools and Configuration Files

The Java Web Services Developer Pack and the J2EE platform include a number of command-line

tools that can be used to create, configure, and administer web services. This chapter provides reference
information for these tools and the configuration files that they use. In some cases, it is useful to refer

to examples in order to illustrate how these tools are intended to be used. When this is the case,

references are made to examples shown in earlier chapters of this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1 wscompile - JAX-RPC Stub and Tie Generation Utility

8.1.1 Availability

J2EE 1.4 reference implementation and Java Web Services Developer's Pack.

8.1.2 Synopsis

wscompile [options] config-file

8.1.3 Description

The wscompile utility is a tool supplied by the JAX-RPC reference implementation. It is driven by a
configuration file (the format of which is shown in Examples Example 8-1 through Example 8-5) and a

set of command-line options.

The basic function of wscompile is to generate and compile artifacts that are required to link a JAX-

RPC client application or web service implementation to a particular JAX-RPC runtime. Like

wscompile itself, these artifacts are implementation-dependent. Providing a tool that creates them

removes the need for developers to concern themselves with the way in which these artifacts are
constructed, and allows much of the complexity of the JAX-RPC infrastructure to be hidden.

Depending on the content of the configuration file and the command-line options supplied, wscompile

may generate some or all of the following:

A Java interface containing methods that correspond to the operations provided by the web

service.

A Web Service Description Language (WSDL) file that contains a definition of a web service

expressed in a portable language- and platform-independent manner. A WSDL file is an XML

document that may be imported into various development environments (such as Microsoft
Visual Studio .NET) as a starting point for the generation of code that implements or interfaces

with the service that it describes.

A model file that provides a binary representation of the service in a form that can be used more

efficiently by tools such as wscompile or wsdeploy than either a WSDL file or a Java interface

definition.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Client-side stub classes that act as proxies for the methods in the web service's interface
definition.

Server-side tie classes that mediate between a servlet and a web service implementation class.

RPC structures that collect method call arguments and return values together. These are used

internally by the JAX-RPC runtime to hold all of the information for a SOAP request or response

message.

Serializers and deserializers that convert between Java primitive and object types and their
corresponding XML representations.

Although wscompile is capable of creating both client- and server-side artifacts, in most cases, it is

used in connection with a web service client application. Artifact generation for the server side is
usually performed as part of the preparation of a deployable web archive, using the wsdeploy utility or

the J2EE 1.4 deploytool command.

8.1.4 Options

The operation of the wscompile utility is determined in part by its command-line options, of which
exactly one of -gen, -define, and -import must appear. The behavior of this command is also partly

determined by which of three elements (service, modelfile, and wsdl) appear in the configuration

file. These elements are described in detail in Section 8.1.5. The presence or absence of one of these

elements may have an effect on the validity or meaning of the command-line options. When this is the

case, it is noted along with the description of the options concerned.

-classpath path
-cp path

Synonymous options that specify a semicolon- (Windows) or colon-separated (Unix) list of

directories, as well as JAR and ZIP files that contain classes that are required in order to compile

the client- or server-side artifacts created by wscompile. This option is typically used to supply

the location of the compiled Java class files that represent the service endpoint interface when the

configuration file contains a service element (see Section 8.1.5). It is not necessary to include
the JAR files that contain the class files for the JAX-RPC reference implementation.

-d directory

The pathname of a directory below which compiled class files are placed (unless subject to the -

nd option described later in this list). The specified directory must already exist. If this option is

omitted, the working directory is used instead.

-define

This option may only be used when the configuration file contains a service element. It causes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

wscompile to construct its internal model of the service based on a Java interface definition, and
writes a WSDL file describing the service to the directory indicated by the -nd option (see later

in this list). This option can also be used together with -model as a way to create a model file

without also generating stubs and/or tie classes.

-f:featurelist

-features:featurelist

Specifies a comma-separated list of suboptions that should be turned on. The available features
are described later in Section 8.1.7.

-g

Includes debugging information when compiling the generated Java source files.

-gen
-gen:client

-gen:server
-gen:both

Specifies whether artifacts for the client-side, server-side, or both are to be generated. The option

-gen is equivalent to -gen:client. See Section 8.1.6 later in this chapter for a description of

what is generated in each case.

-httpproxy:host[:port]

Provides the host and port information for the HTTP proxy to be used when accessing external

resources such as a WSDL definition or a schema document that it refers to. This option is not
required when a direct connection can be made. The port, if not specified, defaults to 8080.

-import

Imports a service definition in the form of a WSDL document and generates the files listed later

in Section 8.1.6. This option can only be used when the configuration file contains a wsdl

element.

-keep

Causes generated Java source files to be retained after compilation. By default, these files are
deleted. If a WSDL file is generated, it is not deleted, even if the -keep option is not used.

-model file

Writes a copy of the internal representation of the web service - created from a Java interface

definition or a WSDL document - to the given file. This file is in binary format and is typically

created so that it can be supplied to wsdeploy via the jaxrpc-ri.xml file. A human-readable

version of this file can be obtained by using the -Xdebugmodel option.
-nd directory

Specifies the directory in which files that are not Java source files or compiled Java class files

should be placed. This directory must already exist. By default, these files are placed in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

directory specified using the -d option, or else in the working directory if that option is also not
specified. Currently, only the generated WSDL file is placed in this directory.

-O

Causes generated code to optimize when compiled.

-s directory

Specifies the directory in which generated source files should be placed. This directory must

already exist. If this option is not specified, these files are placed in the directory given by the -d

option, or in the working directory if that option is also omitted. Generated source files are
deleted once they are compiled unless the -keep option is used.

-verbose

Prints extra messages that indicate what wscompile is doing.

-version

Displays the version number of the wscompile utility in use and exits. Any other arguments are
ignored.

-Xdebugmodel:file

Writes a human-readable version of the model file for the service to the given file.
-Xprintstacktrace

Causes stack traces to be printed for all exceptions encountered during execution of wscompile.

8.1.5 Configuration File

The wscompile utility uses an XML configuration file, typically called config.xml, to indicate where the

definition of a web service may be found, and to provide additional information that may be required
while generating and compiling the requested artifacts. A typical example of a configuration file is

shown in Example 2-9 in Chapter 2.

The top-most element of the file is always a configuration element. This element may contain exactly

one child element, which determines both the location of the web service definition and the form in

which it is held. This element must be one of the following:

service

Specifies that the service is defined by a Java interface

wsdl

Specifies a service defined by a WSDL document
modelfile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies a service defined in a JAX-RPC model file

Each of these elements has its own set of attributes and child elements that can be used to control the
actions taken by wscompile. All of the elements in the configuration file are defined in the XML

namespace associated with the URI http://java.sun.com/xml/ns/jax-rpc/ri/config, which is usually

assigned to be the default namespace.

8.1.5.1 The service element

This element is used when the web service endpoint interface is defined as a Java interface. The

attributes and child elements permitted with the service element are shown in Example 8-1. Values
must be supplied for all of these attributes.

Example 8-1. The service element in the wscompile configuration file

<service name="name" targetNamespace="URI" typeNamespace="URI"
 packageName="name">
 <interface name="name" servantName="className"
 soapAction="string" soapActionBase="string">
 <!-- Any number allowed -->
 <handlerChains> <!-- 0 or 1 allowed -->
 <!-- handlerChains content shown later -->
 </handlerChains>
 </interface>
 <typeMappingRegistry> <!-- 0 or 1 allowed -->
 <!-- typeMappingRegistry content shown later -->
 </typeMappingRegistry>
 <handlerChains> <!-- 0 or 1 allowed -->
 <!-- handlerChains content shown later -->
 </handlerChains>
 <namespaceMappingRegistry> <!-- 0 or 1 allowed -->
 <!-- namespaceMappingRegistry content shown later -->
 </namespaceMappingRegistry>
</service>

The name attribute provides the name that is used when generating the Service interface and

implementation class for this service. If this attribute has the value BookService, for example, then the

generated interface is called BookService and the implementation class is called BookService_Impl.
These classes, along with all of the others generated by wscompile, is placed in the package whose

name is supplied by the packageName attribute.

The targetNamespace and typeNamespace attributes are used when constructing the logical WSDL

definition for this service. Elements of the WSDL definition that would reside in the schema part (such

as XML schema complex types created from value types included in the interface definition) are

assigned the namespace given by the typeNamespace attribute, while those that would appear
elsewhere (e.g., port names, operation names, message definitions, etc.) have the namespace given by

http://java.sun.com/xml/ns/jax-rpc/ri/config
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the targetNamespace attribute.

Within the service element, there can be any number of interface elements, each of which maps a
Java interface definition to a portType of the corresponding WSDL definition. Although it is possible

to include more than one interface element in a service definition, the effects of doing so when the

server-side artifacts are created are perhaps not what you would expect. Although the client-side

artifacts correctly represent each interface element as a separate portType within the service, and the

generated Service object has a method (such as getBookQueryPort()) that returns an instance of the
stub object for each interface, on the server side, each interface is effectively mapped as a separate

service, in the sense that it has its own WSDL definition.

Of the attributes of the interface element, only name is mandatory, supplying the fully qualified name

of the compiled Java interface that defines the endpoint methods. The servantName attribute supplies
the name of the server-side implementation class for this interface. This attribute was meaningful

during the early releases of the JWSDP when both the client-side and server-side artifacts were
generated from one configuration file by a utility called xrpcc. In later releases, however, the server-

side generation was taken over by the wsdeploy utility, which expects the servant name to be specified

in the jaxrpc-ri.xml file. Therefore, this attribute is no longer used.

The optional soapAction and soapActionBase attributes can be used to determine the value of the

SOAPAction header for the SOAP messages generated when the methods of this interface are invoked.

There are three cases to consider:

When neither of these attributes is specified, the SOAPAction header has the value " " (i.e., an

empty string). This is the appropriate setting for a service that is also implemented using JAX-
RPC, since JAX-RPC does not rely on the use of
SOAPAction

for message routing.

If the soapAction attribute is set, then its value is used as the value of the SOAPAction header,

and the value of the soapActionBase attribute is ignored.

If the soapActionBase attribute is defined but soapAction is not, then the value of the

SOAPAction header is formed by appending the operation name to the value of this attribute. For

example, if this attribute has the value urn:actionBase/ and an interface method called

getValue() is invoked, then the SOAPAction header of the request message for that method has

the value urn:actionBase/getValue.

Each interface may have one nested handlerChains element. This element configures one or more

SOAP message handlers that are activated whenever a request, response, or fault message is processed

for any of the methods in the interface. The syntax of this element is described later in Section 8.1.5.4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Following the interface elements, the schema definition allows a typeMappingRegistry element, a
handlerChains element, and a namespaceMappingRegistry element. Only one instance of each of

these elements is permitted. Although allowed by the schema definition, the

namespaceMappingRegistry element is ignored, as is the handlerChains element. Handler chains

should instead be configured by nesting the handlerChains element inside the interface element. The

syntax and meaning of each of these elements are described later in this section.

8.1.5.2 The wsdl element

The wsdl element is used in place of service when the service definition is contained in a WSDL

document rather than framed in terms of Java classes. You are likely to use this element when

constructing clients for web services implemented by third parties. The syntax of this element is shown
in Example 8-2.

Example 8-2. The wsdl element in the wscompile configuration file

<wsdl location="URI" packageName= "name">
 <typeMappingRegistry> <!-- 0 or 1 allowed -->
 <!-- typeMappingRegistry content shown later -->
 </typeMappingRegistry>
 <handlerChains> <!-- 0 or 1 allowed -->
 <!-- handlerChains content shown later -->
 </handlerChains>
 <namespaceMappingRegistry> <!-- 0 or 1 allowed -->
 <!-- namespaceMappingRegistry content shown later -->
 </namespaceMappingRegistry>
</wsdl>

The location attribute is usually a URL that can be used to fetch the WSDL document, but may also

be the pathname of a file. The packageName attribute supplies the name of the Java package in which

the generated artifacts are placed by default. It is possible to arrange for code to be placed in different
packages based on the XML namespace of the item from which it is generated by using the

namespaceMappingRegistry element, which is described later in this section. The

typeMappingRegistry and handlerChains elements can be used to modify the type mapping registry

and the set of SOAP handlers associated with the endpoints generated from the WSDL document, as

described later in Section 8.1.5.5 and Section 8.1.5.4.

8.1.5.3 The modelfile element

This element is used when the service definition resides in a model file created by a previous

invocation of wscompile. The modelfile element has a single (mandatory) attribute and may not have

any child elements:

<modelfile location="URI"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The URI specifies the location of the model file and may be either a URL or the pathname of a file.

8.1.5.4 The handlerChains element

A handlerChains element configures a chain of SOAP message handlers for either or both of the
client and server side of a web service endpoint. It may be used in both the config.xml file and the

jaxrpc-ri.xml file, which is discussed in conjunction with the wsdeploy utility, later in this chapter. The
syntax of this element is shown is Example 8-3.

Example 8-3. The handerChains element

<handlerChains>
 <chain runAt="client|server" roles="URI list"> <!-- 0, 1 or 2 allowed -->
 <handler className="name" headers= "QName list"> <!-- Any number allowed -->
 <property name="name" value= "value"/> <!-- Any number allowed -->
 </handler>
 </chain>
</handlerChains>

A handlerChain element may contain up to two nested chain elements, in which one must have the

runAt element set to the value client, and the other set to the value server. The wscompile utility

processes the appropriate entry depending on whether it is generating client- or server-side artifacts.

The roles attribute of the chain element contains a space-separated list of URIs representing the

SOAP actors on behalf of which the SOAP message handlers (see Section 6.8) in the chain can act. If

this attribute is omitted, it is assumed that the chain acts on behalf of the SOAP actor next and the
ultimate recipient of the message. SOAP message handlers have complete access to a SOAP request

message before it is transmitted, as well as to SOAP response and fault messages before they are

processed as method call replies. A message handler typically adds or removes and processes SOAP

header blocks, but may also inspect or modify the message body.

The SOAP message handlers in a chain are added as children of the chain element. Each handler

element has a mandatory className attribute that supplies the name of the Java class that contains the
handler implementation. This class must provide a public, no-argument constructor and implement the

javax.xml.rpc.handler.Handler interface. The optional headers attribute is a space-separated list

of QNames for the headers that the handler can process. Each QName consists of a namespace prefix and a

local element part, such as tns:SecurityHeader. The namespace prefix must be defined and

associated with a URI on this element or on one of its parents. If this attribute is omitted, the handler
makes no statement about the set of headers it can handle. For a description of the way in which this

attribute is used, refer to Section 6.8.2.4.

Configuration information may be passed to a handler using one or more nested property elements.

The values configured here are made available to the handler implementation class when it is initialized

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in the form of a java.util.Map.

8.1.5.5 The typeMappingRegistry element

The typeMappingRegistry element is used to add serializers and deserializers to the type mapping

registry associated with each service endpoint interface. This element may contain up to three child

elements that modify the type mapping registry in different ways. The syntax of this element is shown

in Example 8-4.

Example 8-4. The typeMappingRegistry element

<typeMappingRegistry>
 <import> <!-- 0 or 1allowed -->
 <schema namespace="URI" location="URI"/> <!-- Any number allowed -->
 </import>
 <typeMapping encodingStyle="URI"> <!-- Any number allowed -->
 <entry schemaType="QName" javaType="type"
 serializerFactory="className" deserializerFactory=
 "className"/> <!-- Any number allowed -->
 </typeMapping>
 <additionalTypes> <!-- 0 or 1 allowed -->
 <class name="className"/> <!-- Any number allowed -->
 </additionalTypes>
</typeMappingRegistry>

The import element can be used to import types from one or more external schema documents, the

location of which is provided by the location attribute. The types are imported into the namespace

given by the namespace attribute, which should match the targetNamespace attribute of the schema
element in the document itself, but may not be the same as either the targetNamespace or

typeNamespace of the service element within which this element is nested.

The typeMapping element is used to install (probably custom) explicitly named serializers and

deserializers to be used when encoding and decoding SOAP elements with the encoding style specified

using the encodingStyle attribute. Typical values for this attribute are

http://schemas.xmlsoap.org/soap/encoding/, which represents SOAP section 5 encoding rules, and " ",

which represents literal encoding. The nested entry elements each create a mapping between a Java
type given by the javaType attribute and a corresponding XML schema type specified by the

schemaType attribute. The mapping indicates the factories to be used to get serializer and deserializer

classes that are to perform the conversion between the Java type and the XML representation given by

the schema type, or vice versa. Since there is currently no way to write portable serializers and

deserializers (and the API for creating these objects in the reference implementation is not public), it is
unlikely that this element will be frequently used.

The additionalTypes element is used to arrange for serializers and deserializers for specified Java

types to be generated and included in the type mapping registry. Each nested class element causes an

http://schemas.xmlsoap.org/soap/encoding/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

additional serializer/deserializer pair to be included. For example, the following extract arranges for
serializers for one- and two-dimensional arrays of strings to be added to the registry:

<additionalTypes>
 <class name="java.lang.String[]"/>
 <class name="java.lang.String[][]"/>
</additionalTypes>

It is not necessary to use this element to include serializers and deserializers for types that are explicitly
referred to in the service endpoint interface (i.e., appear as method parameters or return types). For a

discussion of this subject, refer to Section 6.9.

This element is permitted with both the service and wsdl elements, but is ignored when used with the

wsdl element.

8.1.5.6 The namespaceMappingRegistry element

The namespaceMappingRegistry element can be used to create a set of mappings from XML

namespaces to Java packages. The format of this element is shown in Example 8-5.

Example 8-5. The namespaceMappingRegistry element

<namespaceMappingRegistry>
 <namespaceMapping namespace="URI" packageName= "name"/>
 <!-- Any number allowed -->
</namespaceMappingRegistry>

Although the schema allows this element to appear within either a service or wsdl element, it is
actioned only when used with a wsdl element. By default, the packageName attribute of the wsdl

element determines where all generated classes are placed in the package hierarchy. Using the

namespaceMapping element, you can individually assign generated artifacts to packages based on their

owning namespace. This is particularly useful if your WSDL document imports one or more XML

schemas and you would like to logically separate the implementation classes for the types obtained
from these schemas from each other and/or from your own schema types.

As an example of the use of this element, consider the following config.xml file:

<configuration
 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
 <wsdl location="http://localhost:8080/Books/BookQuery?WSDL"
 packageName="ora.jwsnut.chapter6.wsdlbookservice">

 <namespaceMappingRegistry>
 <namespaceMapping namespace=
 "urn:jwsnut.chapter2.bookservice/types/BookQuery "
 packageName="ora.jwsnut.chapter2.bookserviceTypes"/>
 </namespaceMappingRegistry>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</wsdl>
</configuration>

The WSDL document imported in this case has a targetNamespace of

urn:jwsnut.chapter2.bookservice/wsdl/BookQuery, while its nested schema element uses the
namespace urn:jwsnut.chapter2.bookservice/types/BookQuery. The effect of this mapping is to

place all classes generated from the targetNamespace of the WSDL document into the package

ora.jwsnut.chapter6.wsdlbookservice, and all of those whose namespace is taken from the nested

schema into the package ora.jwsnut.chapter2.bookserviceTypes. Without the mapping, all of the

generated classes would have been placed in the package ora.jwsnut.chapter6.wsdlbookservice.

8.1.6 Generated Artifacts

The artifacts generated by wscompile depend on its command-line arguments and the content of the

configuration file. Table 8-1 summarizes what might be created based on whether wscompile is being

run to create client-side or server-side artifacts or to import a WSDL service definition. If the -gen:both
option is used, then the artifacts listed in both the -gen:client and -gen:server columns are created.

Table 8-1. Artifacts generated by the wscompile utility

Artifact -gen:client -gen:server -import

Stubs

Service interface

Service implementation class

Ties

WSDL document[1]

Serializers/deserializers

Java service endpoint interface[2]

Java service endpoint interface template class[3]

Custom classes

RPC structures[4]

[1] A WSDL document is not generated if the configuration file contains a wsdl element.

[2] The Java interface is not generated if the configuration file contains a service element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[3] This is a class that provides dummy implementations of each method in the service endpoint
interface. It is intended to be used as a starting point for an actual implementation.

[4] Creation of these files can be suppressed by using the -f:norpcstructures option.

Naturally, wscompile does not output copies of files that are supplied as input. Hence, no WSDL

document is generated when the configuration file contains a wsdl element, and a Java interface is not

required when one is supplied by an interface element.

When Java classes are generated, the source code is placed below the directory supplied by the -s
option, but is deleted following compilation if the -keep option is not used. Compiled Java class files

appear below the directory indicated by the -d argument. The WSDL document is placed in the same
directory, but may be redirected to another location using the -nd option.

All serializers/deserializers appear in the same location as the objects that they serialize or deserialize.

This includes the serializers/deserializers for SOAP messages, which are placed together with the stub

or tie class implementations that they correspond to.

8.1.7 Features

Certain wscompile features can be enabled or disabled using the -f argument, which requires a

comma-separated list of items from those listed in the following list. For example:

wscompile -f:datahandleronly,explicitcontext

This enables explicit binding of SOAP message headers to method arguments, and suppresses the

mapping of attachments to specific Java classes.

datahandleronly

Causes the content of attachments to be mapped to a method argument of type DataHandler.

When this feature is not turned on, certain attachment types are mapped to Java types such as

Image or javax.xml.transform.Source. See Section 6.5 for a list of these special types.

explicitcontext

Causes message parts assigned to the SOAP message header to appear as additional method
arguments in the Java service endpoint interface generated from a WSDL document. See Section

6.8.1 for further details.

infix=<name>

Specifies a string to be included in the name of generated serializers. For example, if the option -

f:infix=value is used, then the name of the serializer class for a value type called
BookInfo

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is BookInfo_value_SOAPSerializer instead of BookInfo_SOAPSerializer.

nodatabinding

Requests that the binding of message content to method arguments and return values that is
performed for document/literal operations be suppressed. If you use this option, you will need to

use the SAAJ API to construct a SOAPElement containing the XML to be placed in the body of

each request message and decode the response, which will be returned as a SOAPElement. See

Section 6.6.2.4 for an example of the use of this feature.

noencodedtypes

This feature causes the xsi:type attribute that appears by default in the SOAP encoding of
arrays and value types to be suppressed. The SOAP section 5 encoding rules allow this attribute

to be omitted if the type of the enclosed data can be discovered by reference to a schema. As an

example of the difference that this makes, a value type that is encoded like this by default:
 <ns0:BookInfo id="ID1" xsi:type="ns0:BookInfo">
 <editor xsi:type="xsd:string">Paula Ferguson, Robert Eckstein</editor>
 <author xsi:type="xsd:string">David Flanagan</author>
 <price xsi:type="xsd:double">39.95</price>
 <title xsi:type="xsd:string">Java in a Nutshell</title>
 </ns0:BookInfo>

looks like this when noencodedtypes is specified:

 <ns0:BookInfo id="ID2">
 <editor xsi:type="xsd:string">Paula Ferguson, Robert Eckstein</editor>
 <author xsi:type="xsd:string">David Flanagan</author>
 <price xsi:type="xsd:double">39.95</price>
 <title xsi:type="xsd:string">Java in a Nutshell</title>
 </ns0:BookInfo>

Note that the xsi:type attribute still appears in the encoding of the basic XML schema data types that
make up this object.

nomultirefs

Certain values (such as arrays) are encoded into a SOAP message as multi-reference values -

that is, the value is serialized as an independent entity with an associated identifier, which is then

referenced from within the message using an element with an href attribute whose value

matches the value's identifier. If the same value is used more than once within a message, the use

of space is reduced by serializing only one copy and including only a reference to it wherever it
should appear. When the nomultirefs feature is enabled, all types appearing in the message

body are serialized inline instead of using references.

norpcstructures

Switches off the output of Java classes that are used to group together parameters and return

http://lib.ommolketab.ir
http://lib.ommolketab.ir

values for the methods of the service endpoint interface. These classes are used internally by the
JAX-RPC runtime. Typically, you would use this option in conjunction with -import to obtain

from a WSDL file only the Java classes that define the service endpoint interface - without also

creating the RPC structures, which are not part of the service interface.

novalidation

Switches off validation of the WSDL document when the wsdl element is used. Using this

feature can reduce the execution time of wscompile when the WSDL document is already known
to be valid.

searchschema

Causes wscompile to generate serializers/deserializers and Java classes for all types that appear in

the schema associated with a WSDL document, whether or not they are explicitly referenced as
parts in the message definitions within the document. This feature should be used when creating

client-side artifacts from a WSDL definition if there are messages that are defined in terms of
abstract types, but where instances of derived types are actually used as inputs or outputs, which

are not themselves explicitly named in the message definitions.

serializeinterfaces

At the time of this writing, use of this feature has no effect.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2 wsdeploy - JAX-RPC Deployable Web Archive Generation Utility

8.2.1 Availability

Java Web Services Developer's Pack. The nearest equivalents for the J2EE 1.4 platform are the
deploytool and j2eec utilities described later in this chapter.

8.2.2 Synopsis

wsdeploy [options] sourceWarFile

8.2.3 Description

The wsdeploy utility is a command-line tool supplied by the JAX-RPC reference implementation in the

JWSDP. Its purpose is to create a web archive (WAR) file that can be deployed into a web container (in

which the server-side components of the reference implementation are already installed) from a WAR
file that contains implementation-independent components together with configuration information.

The location of the source WAR file is provided as a command-line argument. This file must contain
the following:

The Java classes that define the service endpoint interface (or interfaces) for the web service.

These classes typically appear in the /WEB-INF/classes directory of the archive.

The classes that provide the server-side implementation of the service endpoint interfaces,

together with any other classes and resources (e.g., images, sound files, text files) that they

depend upon. These classes and resources are placed in the /WEB-INF/classes directory of the

archive, or in the /WEB-INF/lib directory if they are packaged in JAR files.

A partial web.xml file for the web application that hosts the web service. This file must appear in
the /WEB-INF directory.

A configuration file (called jaxrpc-ri.xml) from which wsdeploy obtains the information necessary

to create the deployable WAR file. This file must appear in the /WEB-INF directory.

Optionally, a model file created by wscompile that provides additional information to wsdeploy.

Separating the process of creating the runtime artifacts required by a specific JAX-RPC server-side

implementation from the process of implementing the web service makes it possible for developers to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

create a single WAR file that can then be processed by different vendor tools to create a deployable
archive for any number of target environments. In practice, each such tool is likely to require vendor-

specific information to complete the deployment. In the case of wsdeploy, this information is provided

in the jaxrpc-ri.xml file, which must be placed in the /WEB-INF directory of the source WAR file and

optionally by a model file, the location of which is specified within the jaxrpc-ri.xml file. A portable

WAR file that is capable of being processed by more than one vendor's deployment tools would need to
supply vendor-dependent information for each tool.

The wsdeploy utility is part of the JWSDP. It is not included in the reference implementation of J2EE

1.4, which uses the J2EE deploytool utility to deploy web services instead.

Note that, despite what its name might imply, wsdeploy does not actually deploy the WAR file that it

creates. This step must be performed using the deployment tools provided by the target application
server or web container.

8.2.4 Options

The behavior of the wsdeploy utility can be controlled to a limited extent using command-line options.
Use of the -o option to specify the full pathname of the deployable WAR file is mandatory; all of the

other options are truly optional.

-classpath path
-cp path

Synonymous options that specify a semicolon- (Windows) or colon-separated (Unix) list of
directories, JAR, and ZIP files that contain classes that are required in order to compile the

artifacts created by wsdeploy. It is not necessary to include the JAR files that contain the class

files for the JAX-RPC reference implementation.

-keep

Causes temporary files generated by wsdeploy to be retained. By default, these files are deleted.

Temporary files are placed in a system-dependent location, or in the directory given by the -
tmpdir option, which is typically used in conjunction with -keep.

-o targetWarFile

Supplies the full pathname of the deployable WAR file that wsdeploy creates. If this file already

exists, it is overwritten. The directory in which the WAR file is placed must already exist. This

option must be supplied.

-tmpdir dirName

Causes wsdeploy to use the given directory, which must already exist, as the location for its
temporary files. If this option is not used, a system-dependent temporary directory is chosen

instead. This option is commonly used with -keep in order to retain temporary files for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inspection once wsdeploy exits.
-verbose

Prints extra messages that indicate what wsdeploy is doing.

-version

Displays the version number of the wsdeploy utility in use and exits. Any other arguments are

ignored.

8.2.5 Configuration File

The wsdeploy utility uses a configuration file called jaxrpc-ri.xml, which must be placed in the /WEB-

INF directory of the source archive, to obtain information about the service endpoints of the web

service for which it will create a deployable web archive file. All of the elements in the jaxrpc-ri.xml

file are defined in the XML namespace associated with the URI http://java.sun.com/xml/ns/jax-

rpc/ri/dd, which is usually assigned to be the default namespace.

The general form of the jaxrpc-ri.xml file is shown in Example 8-6 and a typical example will be found
in Example 2-15 in Chapter 2.

Example 8-6. The jaxrpc-ri.xml file

<webServices version="1.0"
 targetNamespaceBase="URI"
 typeNamespaceBase="URI"
 urlPatternBase= "/base">
 <!-- Nested endpoint elements -- shown later -->
 <!-- Nested endpointMapping elements -- shown later -->
</webServices>

The webServices element is always the top-level element in the jaxrpc-ri.xml file. The version
attribute is required and, at the time of this writing, must have the value "1.0".

The targetNamespaceBase and typeNamespaceBase attributes supply URIs from which the

namespaces for the elements and types associated with the web services in the WAR file are generated.

The namespaces for a specific endpoint are formed by appending the endpoint name to the

corresponding base name. For example, if the targetNamespaceBase attribute is set to

urn:jwsnut.chapter2.bookservice/wsdl/, then the actual target namespace for a nested endpoint called
BookQuery is urn:jwsnut.chapter2.bookservice/wsdl/BookQuery. This must match the

targetNamespace attribute assigned in the configuration file supplied to wscompile when creating the

client-side artifacts. However, if the endpoint element contains a model attribute (see later in this

chapter), both the targetNamespace and typeNamespace are taken from the model file rather than by

derivation from the attributes of the webServices element, thus ensuring that the client and server
agree. The typeNamespaceBase and targetNamespaceBase attributes may be omitted if each

http://java.sun.com/xml/ns/jax-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

endpoint element in the file has a valid model attribute.

The urlPatternBase attribute is a partial URI used to create the servlet path for those endpoints
defined in the jaxrpc-ri.xml file that do not have a corresponding endpoint mapping. See Section

8.2.5.2 later in this chapter for further information. This attribute may be omitted if each endpoint

element has a matching endpointMapping element.

8.2.5.1 The endpoint element

The endpoint element defines a single service endpoint interface within a web service. Each endpoint

therefore corresponds to a single Java interface. A webServices element may contain more than one
endpoint element, in which case each is effectively treated as a separate web service, in the sense that

each has its own WSDL definition that defines a service containing that endpoint as its only port. All of

the endpoints are, however, managed by the same servlet.

The format of the endpoint element is shown in Example 8-7.

Example 8-7. The endpoint element in the jaxrpc-ri.xml file

<endpoint name= "name"
 displayName= "name"
 description= "text"
 imp;lementation= "className"
 interface="className"
 model= "modelFile">
 <!-- Optional nested handlerChains element -->
</endpoint>

The required name attribute supplies the endpoint name, which should be unique within the file. This

name may be used in conjunction with the urlPatternBase attribute of the webServices element to

generate the URL used to access the endpoint, or as a key to obtain the URL from the corresponding
endpointMapping element if there is one (as described shortly). The optional displayName and

description elements supply text that describe the endpoint. At the time of this writing, this

information does not appear to be used.

The required implementation attribute supplies the fully qualified name of the web service

implementation class (or servant class). This class must implement the methods of the service endpoint

interface and must be present in the portable WAR file supplied to wsdeploy.

The required interface attribute supplies the fully qualified name of the Java class that defines the
web service endpoint interface. This class must also be present in the portable WAR file.

The optional model attribute can be used to pass a model file created by wscompile to wsdeploy. The

model file can reside anywhere in the portable WAR file, but is typically placed in the /WEB-INF

directory. The value of this attribute gives the location of the model file relative to the archive. A

http://lib.ommolketab.ir
http://lib.ommolketab.ir

typical value would, therefore, be /WEB-INF/model. If this attribute is omitted, wsdeploy builds a
model file based on the service endpoint interface definition referred to by the interface attribute.

If a model file is not supplied, wsdeploy introspects the Java service endpoint interface definition to

discover its methods and the types of its parameters in order to generate the necessary server-side ties

and any necessary serializers and deserializers. When a model file is used, this information is obtained

directly from the model file. Circumstances under which you would need to supply a model file include

the following:

The endpoint interface was originally derived from a WSDL document and you want to preserve

the method argument names in the generated code rather than use the type-based names (such as
String_1) obtained by introspecting the Java interface definition.

The endpoint interface was originally derived from a WSDL document and contains document-

style operations. See Section 6.6 for an example.

The type information that can be deduced from the Java interface definition is not sufficient to

generate all of the necessary serializers. A typical example of this is the use of abstract types or
interfaces in method definitions. In such cases, you use a typeMappingRegistry element

containing one or more additionalTypes elements in the wscompile configuration file when
creating the client-side artifacts. Since the jaxrpc-ri.xml file does not provide a

typesMappingRegistry element, this information must be obtained from the model file created

by wscompile. See Section 6.9 for an example.

An endpoint element may contain a nested handlerChains element that configures a server-side chain

of SOAP message handlers for the endpoint. The format and use of this element are described in
Section 8.1.5.4 in the description of the wscompile utility, earlier in this chapter.

8.2.5.2 The endpointMapping element

This optional element specifies the URL mapping for an endpoint configured using an endpoint

element. Its format is shown in Example 8-8.

Example 8-8. The endpointMapping element in the jaxrpc-ri.xml file

<endpointMapping endpointName="name" urlPattern="pattern"/>

The endpointName attribute matches with the value of the name attribute of the endpoint element for

which it supplies the URL mapping. The value of the urlPattern attribute is appended to the context
URL for the hosting web application to give the full URL for the endpoint to which this element

relates. For example, in a web application deployed at the URL http://localhost:8080/Books, the

following mapping:

http://localhost:8080/Books
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<endpointMapping endpointName= "BookQuery" urlPattern= "/MyBookQuery"/>

makes the BookQuery endpoint interface available at the URL
http://localhost:8080/Books/MyBookQuery. If an endpoint element does not have a corresponding

endpointMapping, the URL is formed as follows:

context-URL + "/" + urlPatternBase + "/" + endpointName

For example, for an endpoint called BookQuery defined within a webServices element for which the
urlPatternBase attribute has the value /base, the endpoint URL is

http://localhost:8080/Books/base/BookQuery.

8.2.6 Target Web Archive File Content

The web archive created by wsdeploy contains the items described in the following sections.

8.2.6.1 Original class files and resources

The class files, resource files, and JAR files that appear in the original WAR file are copied unchanged

into the deployable WAR file.

8.2.6.2 Tie and serializer/deserializer classes

The wsdeploy utility creates a tie class for each endpoint and the appropriate serializer/deserializer

classes for each value type defined in the endpoint interface and for the SOAP request and response

messages that will be used. For a discussion of the function of tie classes, see Section 2.2.4.1.

These classes are all placed in the same package as the Java interface definition for the corresponding
endpoint. Following compilation, they appear below the /WEB-INF/classes directory of the web

archive.

8.2.6.3 Model file

If the endpoint element in the jaxrpc-ri.xml file contains a model attribute, then the referenced model

file is copied into the deployable web archive. Otherwise, a model file is created based on introspection

of the Java interface definition and placed in the /WEB-INF directory. The model file is called
name_model.xml.gz, where name is the value of the name attribute of the endpoint element.

8.2.6.4 WSDL document

A WSDL definition describing each endpoint is created and placed in a file called name.wsdl in the

http://localhost:8080/Books/MyBookQuery
http://localhost:8080/Books/base/BookQuery
http://lib.ommolketab.ir
http://lib.ommolketab.ir

/WEB-INF directory, where name is the value of the name attribute of the endpoint element. Note that
a service with multiple endpoints will have the same number of generated WSDL documents, each

describing a service with a single port.

8.2.6.5 Deployment descriptors

Two files containing deployment information are placed in the /WEB-INF directory of the output WAR

file: web.xml and jaxrpc-ri-runtime.xml.

The web.xml file is derived from the skeleton version of the file included in the portable WAR file.

Certain elements of the input file are preserved, while others are added (or replaced if they were
originally specified).

The principal reason why wsdeploy utility modifies the web.xml file is to create the appropriate URL

mappings for each web service endpoint, and to associate the hosting web application with

JAXRPCServlet, which is the servlet provided by the reference implementation that handles the
dispatching of received SOAP messages to the appropriate tie classes. The original web.xml file is not

required to contain the elements that accomplish these tasks, because the association with
JAXRPCServlet is implementation-dependent. When deploying the web service in another vendor's

server implementation, a different servlet might be used and additional information might need to be

included.

For example, Example 8-9 shows a typical set of elements added to the web.xml file during the

deployment of a web service with a single endpoint called HandlerBookQuery.

Example 8-9. Elements added by wsdeploy to the web.xml file

<listener>
 <listener-class>com.sun.xml.rpc.server.http.JAXRPCContextListener
 </listener-class>
</listener>
<servlet>
 <servlet-name>HandlerBookQuery</servlet-name>
 <display-name>HandlerBookQuery</display-name>
 <description>JAX-RPC endpoint - HandlerBookQuery</description>
 <servlet-class>com.sun.xml.rpc.server.http.JAXRPCServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>HandlerBookQuery</servlet-name>
 <url-pattern>/HandlerBookQuery</url-pattern>
</servlet-mapping>

The URL mapping defined by the servlet-mapping element is derived from the endpointMapping

element in the jaxrpc-ri.xml file - or, if there is no such element, from the endpoint name together

http://lib.ommolketab.ir
http://lib.ommolketab.ir

with the urlPatternBase attribute of the webServices element.

Note the presence of a listener element in the web.xml file. Since this element

was introduced in Version 2.3 of the Java Servlet Specification, it follows that

the JWSDP requires a web container that conforms to Java Servlets Version 2.3
or later.

Other elements present in the web.xml file (including context parameters, environment entries, and so

on) are preserved unchanged by wsdeploy. A copy of the original file is placed in the /WEB-INF
directory under the name web-before.xml.

The other deployment-related file placed in the /WEB-INF directory is called jaxrpc-ri-runtime.xml.

This file contains deployment information derived from the jaxrpc-ri.xml file; since it is only intended
for internal use, its content is not discussed here. The original jaxrpc-ri.xml file can be found in /WEB-

INF/jaxrpc-ri-before.xml.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3 J2EEC - Utility for Creating Stubs and Ties for a JAX-RPC Web Service

8.3.1 Availability

J2EE 1.4 reference implementation.

8.3.2 Synopsis

j2eec [-keep | -keepgenerated] [-o output] module

8.3.3 Description

j2eec is a command-line utility that is part of the J2EE reference implementation. It accepts a
deployable J2EE module and creates a JAR file containing some or all of the following:

Client-side stubs for EJBs that have a remote interface

Client-side stubs for web services

Server-side ties for web services

A sun-j2ee-ri.xml file containing information that can be used by containers into which the

original module is deployed

The newly created JAR file can be used as follows:

To deploy the original module to a J2EE RI application server using the -

deployGeneratedModule option of the deploytool command (discussed later), without incurring

the overhead of stub and tie generation. This technique may be useful if you need to deploy the

same module to more than one server.

As the stubs file when running a J2EE application client using the runclient utility, as described

in Section 6.4. If the client JAR file contains service-ref elements referring to web services
deployed in the server, the sun-j2ee-ri.xml file contains the information that the client container

needs to bind a generated Service object that can be used to access the service in the application's

JNDI environment at runtime.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3.4 Options

The behavior of the j2eec command is determined primarily by the deployment descriptors provided in

the J2EE module supplied on its command line, which may be an EJB JAR file, a web archive, a J2EE

client application archive, or an EAR file containing any combination of the other module types. In the
latter case, the generated file includes all of the stubs, ties, and other information required for each of

the modules that it contains. The following command-line options are also available:

-keep
-keepgenerated

Synonymous options that cause the Java source files for the stubs and ties and other files

generated by j2eec to be retained. By default, these files are deleted. Temporary files are placed

in a system-dependent location. For Windows 2000 and Windows XP, for example, you'll find
these files in a directory beneath %HOME%\Local Settings\Temp, where %HOME% represents

your home directory. The actual location is displayed on standard output when the command is
executed.

-o filename

Specifies the name of the JAR file to which j2eec should write its output. If this argument is not

supplied, output is written to a file called generated.jar in the caller's working directory.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.4 J2EE Deploytool - Utility for Deploying Modules and Enterprise
Applications

8.4.1 Availability

J2EE 1.4 reference implementation.

8.4.2 Synopsis

deploytool [-server name[:port]] -deployModule [-id moduleID]
 module [client_JAR]
deploytool [-server name[:port]] -deployGeneratedModule [-id moduleID]
module generated_JAR
deploytool [-server name[:port]] -listModules type
deploytool [-server name[:port]] -undeploy moduleID

8.4.3 Description

The deploytool utility provided with the J2EE 1.4 reference implementation provides both a command-
line and a graphical user interface that allow you to create and deploy J2EE modules to the J2EE RI

application server. You can also use the same utility to deploy an existing module. The GUI interface is

used when no command-line arguments are supplied. This section covers only those command-line

features of the deploytool utility that are relevant to web services.

8.4.4 Options

Most forms of the deploytool command include an optional module ID, which is used to uniquely

identify a deployed module within the application server. If an explicit module ID is not supplied, then

one is created by taking the display name of the module and replacing all spaces by underscore

characters. The display name is obtained from the display-name element of the module's deployment
descriptor (i.e., META-INF/ejb-jar.xml for an EJB JAR file, WEB-INF/web.xml for a web archive,

META_INF/application-client.xml for a client archive, META-INF/ra.xml for a Connector resource

archive, or META-INF/application.xml for an Enterprise Archive).

-server name[:port]

Specifies that hostname, and optionally, the port number, for the target application server. If this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

option is not used, the server is assumed to be accessible at port 8000 on localhost.
-deployModule [-id moduleID] module [client_JAR]

Deploys a J2EE module to the application server. If a module with the same name is already

deployed, it is removed and the new version is deployed in its place. The module argument must

be the path name of an EJB JAR, a web archive, a client application archive, a resource archive,

or an Enterprise Archive. The deployment process may include the generation of stub and tie

classes and other information of use to client programs or to a J2EE client application container.
This information, which is the same as that created by the j2eec utility described earlier in this

chapter, may optionally be returned by the server and stored in the file given by the client_JAR

argument. It may be used in conjunction with the -deployGeneratedModule option or when

running a J2EE application client, as described in Section 6.4.

-deployGeneratedModule [-id moduleID] module generated_JAR

This option is the same as -deployModule, except that the stub generation step is omitted. The
stubs are assumed to have already been created by an earlier invocation of this command using

the -deployModule option or by the j2eec utility, and must be supplied using the generated_JAR

argument.

-listModules type

Lists all deployed modules of the specified type, which must be one of car (client archive), ear

(Enterprise Archive), ejb (EJB JAR), rar (Connector resource archive), or war (web archive).
-undeployModule moduleId

Undeploys the module identified by the given module ID.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.5 JAXM Client and Provider Configuration

8.5.1 Availability

Java Web Services Developer's Pack. There is no equivalent for the J2EE 1.4 platform, since JAXM is
not included.

8.5.2 Description

The Java API for XML Messaging (JAXM) provides a means to send and receive SOAP messages via

a provider instead of using a direct connection from the sender to the receiver. The benefits of this
arrangement, as discussed in Chapter 4, are:

Asynchronous operation

Clients deliver outgoing messages to their provider. The provider then has responsibility for

arranging the delivery of each message to the provider local to the intended recipient. If the

receiving provider is not active or not reachable, it will be necessary to retry delivery until it

succeeds or a preconfigured limit is reached.

Persistence

Messages can be received for a client that is not active and stored within the provider for delivery

later.

Location transparency

Whereas SAAJ applications need to know the address of the recipient of each message they send,

a JAXM client can use an address token that is independent of the real address of the receiving

application. The mapping from an address token to an actual address is configured in the

provider, where it can be more easily changed if necessary.

In order to provide these features, two levels of configuration are required. First, the provider has to be

configured with the details of the token-to-address mappings that provide location transparency for

applications and with other information, such as how many times to retry a failed message delivery.

Secondly, the client application needs to be configured with information required by its provider. This

section covers the configuration details for the JAXM reference implementation.

8.5.3 Provider Configuration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Provider configuration information is held in a file called provider.xml, which is located in the /WEB-

INF directory of the deployed JAXM provider. The format of the file content is shown in Example 8-

10.

Example 8-10. The JAXM provider.xml file

<ProviderConfig>
 <Profile profileId="profile"> <!-- 1 or more -->
 <Transport> <!-- 1 or more -->
 <Protocol>protocol</Protocol>
 <!-- Endpoint mappings for this protocol -->
 <Endpoint type="uri | urn"> <!-- 1 or more -->
 <URI>token</URI>
 <URL>targetAddress</URL>
 </Endpoint>

 <ErrorHandling> <!-- 0 or 1 --->
 <Retry>
 <MaxRetries>N</MaxRetries>
 <RetryInterval>M</RetryInterval>
 </Retry>
 </ErrorHandling>

 <Persistence> <!-- 0 or 1 -->
 <Directory>path</Directory>
 <RecordsPerFile>N</RecordsPerFile>
 </Persistence>
 </Transport>

 <ErrorHandling> <!-- 0 or 1 -->
 <Retry>
 <MaxRetries>N</MaxRetries>
 <RetryInterval>M</RetryInterval>
 </Retry>
 </ErrorHandling>

 <Persistence> <!-- 0 or 1 -->
 <Directory>path</Directory>
 <RecordsPerFile>N</RecordsPerFile>
 </Persistence>
 </Profile>
</ProviderConfig>

Nested within the top-level ProviderConfig element, the provider.xml file contains a separate

Profile element for each message profile that it supports, where the profileId attribute identifies the

profile. Valid values for profileId in the reference implementation are soaprp and ebxml; therefore,

there are typically two Profile elements, each of which configures the address mapping and other
policy details for its particular profile.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A profile may operate over one or more transport mechanisms, each of which requires a nested
Transport element whose first child element supplies the name of the protocol. The reference

implementation recognizes the values http and https as valid protocol identifiers. The remaining child

elements of the Transport element configure endpoint mappings, error handling, and local storage for

the provider when using the profile given by the containing Profile element over the specified

transport protocol.

The ProviderConfig element may also have nested ErrorHandling and Persistence elements that
configure default settings for all transports. These elements can appear within any Transport element

if it is necessary to override the defaults for a specific transport type. Only one instance of each element

can appear within the ProviderConfig element and within each Transport element.

8.5.3.1 Endpoint mappings

The Endpoint elements map the address tokens used by JAXM client programs to the transport

addresses to which messages using those tokens are to be sent. Here is typical example of an Endpoint
element configured for the soaprp profile:

 <Endpoint>
 <URI>urn:SOAPRPEcho</URI>
 <URL>http://localhost:8081/jaxm-provider/receiver/soaprp</URL>
 </Endpoint>

This element causes SOAP-RP messages in which the to address has the value urn:SOAPRPEcho to
be sent to the URL http://localhost:8081/jaxm-provider/receiver/soaprp. The destination address in the

URL element should always be that of a JAXM provider and is formed as follows:

The first part of the URL - in this case, http://localhost:8081/jaxm-provider - corresponds to

the URL of the JAXM provider web application that should receive the message. In this case, the

target provider is on the same machine as the sender, but this is not usually the case in the real

world. Port number 8081 is correct for the default installation of the JWSDP when running in the

Tomcat web container.

The second part of the URL is receiver/soaprp if the receiver at the receiving endpoint expects
messages to be built using the SOAP-RP profile and receiver/ebxml for ebXML profile messages.

The client application must, of course, be coded to use the same profile. If more profiles are added

in the future, then each will need its own unique URL for receiving messages.

The address token given by the URI element can be any URI that is considered to be a valid address for

the profile being configured. In this example, it happens to be a URN, but it could also be a URL. In

practice, the provider does not attempt to interpret this token other than to match it against the
destination address of a message being sent by a client.[5]

http://localhost:8081/jaxm-provider/receiver/soaprp
http://localhost:8081/jaxm-provider
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[5] The URI element has an optional type attribute that, according to its DTD, can have the value
uri or urn. These values are curious - it seems more logical to require url or urn. In any case,

there is no need to supply a value for this attribute, and, at least at the time of this writing, any

value that is supplied is ignored.

8.5.3.2 Error handling

The ErrorHandling element determines the actions that the provider takes when it is unable to deliver

a message immediately. There are two conditions that trigger error recovery:

A provider attempts to send a message to a remote provider and fails to do so because the

provider is not active or is not currently accessible for some other reason. In this case, the
message is held in the outgoing queue for retransmission.

A provider receives a message and attempts to deliver it to a local client whose endpoint is not

currently active. In this case, the message is held in the receiver queue in the expectation that the

client will shortly connect to the provider.

A typical ErrorHandling element looks like this:

<ErrorHandling>
 <Retry>
 <MaxRetries>3</MaxRetries>
 <RetryInterval>2000</RetryInterval>
 </Retry>
</ErrorHandling>

The MaxRetries element determines how many times the provider will retry an attempt to deliver the

message (this does not count the initial attempt). The RetryInterval element gives the time between

successive attempts to deliver a message, in milliseconds. In the example shown here, a total of four

attempts will be made to deliver a message, with one attempt being made approximately every two
seconds.

If the ErrorHandling element appears within a Transport element, its values apply only to that

transport type. This element may also appear directly beneath the ProviderConfig element, in which

case it supplies default values that apply to all transports that do not have a nested instance. In the case

where a Transport element does not provide its own error-handling values and there is no default

ErrorHandling element, then the provider attempts 10 retries separated by approximately 2 seconds

(these being hardcoded values).

8.5.3.3 Message persistence

The Persistence element specifies the directory within which the provider implements its outgoing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and received message queues as well as the way in which messages are mapped to temporary storage
files in that directory.

The Directory element gives the relative pathname of a directory for a set of queues. In the current

implementation, this directory is created in the location reserved by the hosting container for a web

application's temporary files. Beneath this directory, the provider creates four subdirectories, each of

which represents a separate queue and is described here:

received

Contains messages that have been received and successfully delivered to the local client that they

were intended for
sent

Contains messages that have been successfully sent to the appropriate remote provider

toBeSent

Contains messages that have not yet been successfully delivered to a remote provider

toBeDispatched

Contains messages received for local clients that have not yet been successfully delivered

Within a queue, the messages are written to files. The order of messages in the queue is reflected by the
creation date of each file and by the order of the messages within each file - that is, the messages in

the oldest file come first, and so on. As messages are successfully transmitted, they are removed from
their containing file and, when the file is empty, it is deleted. The maximum number of messages that

are placed in each individual file is given by the RecordsPerFile element.

According to the DTD for the provider.xml file, the Persistence element may appear either as a child

element of a Transport element or as a direct child of the ProviderConfig element. In the former

case, it is intended to configure the queues for a particular profile when operating over a specific
transport mechanism. In the latter case, presumably, it provides a single queue location for those

transports that do not have their own configuration. At the time of this writing, however, each

Transport element is required to contain its own Persistence element, and a Persistence element

appearing below the ProviderConfig element is ignored.

8.5.4 Client Application Configuration

JAXM client applications are always associated with a provider. However, the application code itself

does not explicitly provide the address of that provider. Instead, this information is provided in a

configuration file called client.xml that must appear in the application's CLASSPATH. A JAXM client

that uses the provider only as a means of building profile-specific messages and uses the synchronous

message delivery mechanism provided by SAAJ may be implemented as a standalone J2SE-based

http://lib.ommolketab.ir
http://lib.ommolketab.ir

application. All other JAXM clients must be container-based. At the present time, this means that such
clients must be hosted by a servlet.

The layout of the client.xml file is shown in Example 8-11.

Example 8-11. The JAXM client.xml file

<ClientConfig>
 <Endpoint>URI</Endpoint>
 <CallbackURL>URL</CallbackURL>
 <Proxy> <!-- Any number (including none) allowed
 <Host>hostname</Host>
 <Port>portNumber</Port>
 </Proxy>
 <Provider>
 <URI>providerURI</URI>
 <URL>providerURL</URL>
 </Provider>
</ClientConfig>

The Endpoint element supplies the URI associated with the client itself. This is the URI that appears as
the from address in all messages sent from this client (if the profile in use carries that information), and

is the destination address to which messages sent to this client should be addressed. It may be a real

URL, but is more likely to be a logical address. Providers that need to deliver messages to the client at

this URI must be configured to send them to the client's local provider by including an Endpoint
mapping in their provider.xml file, where the value associated with its URI child element matches the
value of this URI element. Refer to Section 4.4.3 for a full description of the message delivery path and

the way in which the values assigned to these elements are used.

The CallbackURL element is used when the provider receives a message addressed to the endpoint. As

just noted, JAXM clients that receive asynchronous messages from a provider must be hosted in a

servlet environment. This is most easily achieved by implementing the client as a subclass of

JAXMServlet, which is part of the JAXM reference implementation. The value of the CallbackURL is
the URL that corresponds to the instance of this servlet containing the JAXM client. See Section 4.3

for a complete example of a JAXM client hosted by JAXMServlet. In the case of a JAXM client hosted

by a J2SE application, this value is unused.

The optional Proxy element can be used to configure the host and port number for an HTTP proxy that

resides between the client application and its provider, if there is one. This element should not be

included if the client can directly access the provider. Although the DTD for the client.xml file

indicates that there can be any number of Proxy elements, at the time of this writing, only the first such
element found is used.

The Provider element is used to locate the provider with which the client is associated. The URI child

element contains a unique URI that identifies the provider implementation. For the JAXM provider

supplied with the reference implementation, this must have the value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://java.sun.com/xml/jaxm/provider. The URL child element contains the URL for the outgoing
message queue of the provider, which is constructed as follows:

The leading part of the URL is http://host:8081/jaxm-provider.1.

The final part of the URL is always sender, which selects the outgoing message queue.2.

A typical Provider element therefore looks like this:

<Provider>
 <URI>http://java.sun.com/xml/jaxm/provider</URI>
 <URL>http://localhost:8081/jaxm-provider/sender</URL>
</Provider>

http://java.sun.com/xml/jaxm/provider
http://host:8081/jaxm-provider
http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.6 J2EE 1.4 Web Services Configuration File

8.6.1 Availability

All J2EE 1.4 platforms.

8.6.2 Description

All J2EE modules that contain a web service are required to provide information that allows
deployment tools to locate the classes that implement the service, the WSDL document describing its

service interface, and a mapping file that describes how that interface should be mapped to elements of
the Java programming language. The location of this file depends on the archive in which it resides:

For a web service hosted by a servlet, the file belongs to the hosting web application and must be
called WEB-INF/webservices.xml.

For an EJB-hosted web service, the file is placed in the same EJB JAR file as the implementing

bean and is called META-INF/webservices.xml.

The content of this file is defined by an XML Schema document that can be downloaded from

http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd. An outline of the content of this

file is shown in Example 8-12.

Example 8-12. The webservices.xml file

<webservices>
 <webservice-description> <!-- One or more -->
 <description>text</description> <!-- Optional -->
 <display-name>text</display-name> <!-- Optional -->
 <icon> <!-- Optional -->
 <small-icon>name</small-icon> <!-- Optional -->
 <large-icon>name</large-icon> <!-- Optional -->
 </icon>
 <web-service-description-name>name</web-service-description-name>
 <wsdl-file>file-location</wsdl-file>
 <jaxrpc-mapping-file>file-location</jaxrpc-mapping-file>
 <port-component> <!-- One or more -->
 <description>text</description> <!-- Optional -->
 <display-name>text</display-name> <!-- Optional -->
 <icon> <!-- Optional -->

http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <small-icon>name</small-icon> <!-- Optional -->
 <large-icon>name</large-icon> <!-- Optional -->
 </icon>
 <port-component-name>name</port-component-name>
 <wsdl-port/> <!-- See text -->
 <service-endpoint-interface>class name</service-endpoint-interface>
 <service-impl-bean> <!-- See text -->
 <handler/> <!-- Zero or more. See text -->
 </port-component>
 </webservice-description>
</webservices>

Each web service defined in the module requires its own webservice-description element, in which

the web-service-description-name has a value that is unique within the module. The wsdl-file

and jaxrpc-mapping-file elements specify the locations of the WSDL file and the JAX-RPC
mapping file that apply to the service, relative to the root of the module. Either absolute or relative

paths may be used and are interpreted in the same way - that is, the tags shown here:

<wsdl-file>BookService.wsdl</wsdl-file>

and the tags shown here:

<wsdl-file>/BookService.wsdl</wsdl-file>

refer to the same location. The jaxrpc-mapping-file specifies the mapping from the elements of the
WSDL file to Java programming language elements and is described in Section 8.7, later in this

chapter.

Each webservice-description element contains one or more port-component elements, each of

which describes a single port within the service. The port-component-name element provides a name

for the port that must be unique within the module, whereas the service-endpoint-interface

element gives the fully qualified name of the Java class that implements the service endpoint interface.

A port-component is linked to a port element from the associated WSDL file using the wsdl-port
element, which is structured as follows:

<wsdl-port>
 <namespaceURI>urn:jwsnut.chapter2.bookservice/wsdl/BookQuery
 </namespaceURI>
 <localpart>BookQueryPort</localpart>
 </wsdl-port>

The namespaceURI element must match the namespace within which the port is defined, which is the

same as the value of the targetNamespace attribute of the definitions element in the WSDL
definition file. The localpart is the value of the name attribute of the port element in the WSDL file.

The values shown previously correspond to the following parts of the WSDL definition for the book

web service created in Chapter 2.

<definitions name="BookService"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 targetNamespace="urn:jwsnut.chapter2.bookservice/wsdl
 /BookQuery"
 xmlns:tns="urn:jwsnut.chapter2.bookservice/wsdl/
 BookQuery" >

 <service name="BookService">
 <port name="BookQueryPort" binding="tns:BookQueryBinding">
 <soap:address location="http://localhost:8000/Books/BookQueryPort"/>
 </port>
 </service>
</definitions>

The service implementation class is linked to by the service-impl-bean element, which may be either

a servlet or an EJB. Servlets are referred to using the servlet-link element:

<service-impl-bean>
 <servlet-link>BookQueryServlet</servlet-link>
</service-impl-bean>

where, in this case, BookQueryServlet must be the value of a servlet-name element in the web.xml
file located in the same module as the webservices.xml file. A web service implemented as an EJB

requires an ejb-link element instead:

<service-impl-bean>
 <ejb-link>BookQueryBean</ejb-link>
</service-impl-bean>

The target of the link must be the value of the ejb-name element of a stateless session bean declared in

the ejb-jar.xml file in the same module.

An optional set of SOAP message handlers (see Section 6.8.2) can be configured using one or more

handler elements, which is structured as shown in Example 8-13.

Example 8-13. The handler element in the webservices.xml file

<handler>
 <handler-name>name</handler-name>
 <handler-class>class name</handler-class>
 <init-param> <!-- Zero or more -->
 <description>text</description> <!-- Optional -->
 <param-name>name</param-name>
 <param-value>value</param-value>
 </init-param>
 <soap-header> <!-- Zero or more -->
 <namespaceURI>URI</namespaceURI>
 <localpart>name</localpart>
 <soap-header>
 <soap-role>rolename</soap-role> <!-- Zero or more -->
</handler>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Java class that implements the handler is named by the handler-class element. This class must

implement the javax.xml.rpc.handler.Handler interface. Optional initialization parameters may be

passed to the handler's init() method by including one or more init-param elements.

The soap-header and soap-role elements specify respectively the header or headers that the message
handler can process and the SOAP roles that apply to the message handler. See Section 6.8.2.4 for a

full description of message headers and SOAP roles. The soap-header element requires the
specification of both the namespace URI and the local part of the name:

<soap-header>
 <namespaceURI>urn:jwsnut.chapter6.handlerbookservice/wsdl/
HandlerBookQuery</namespaceURI>
 <localpart>auth</localpart>
</soap-header>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.7 J2EE 1.4 JAX-RPC Mapping File

8.7.1 Availability

All J2EE 1.4 platforms.

8.7.2 Description

Every web service deployed on the J2EE 1.4 platform must have an associated mapping that describes
how the namespaces, port types, operations, exceptions, and data types defined in the WSDL definition

of the service are to be mapped to Java language packages, interfaces, methods, exception classes, and
primitive or object types. In the simplest cases, it is permissible to specify only the namespace to

package mapping, allowing everything else to be defaulted according to built-in rules for the WSDL to

JAX-RPC mapping described in the JAX-RPC specification.

The JAX-RPC mapping file does not have a fixed name. Instead, its location is given by the wsdl-file
element in the webservices.xml file in the same J2EE module. The J2EE 1.4 reference implementation

allows a model file to be used instead of a mapping file. This is extremely convenient because the
model file can be created automatically from a WSDL definition. Since the mapping file is complex, it

is likely that other vendors will provide tool-based support for creating it.

The content of the JAX-RPC mapping file is defined by an XML Schema document that can be

downloaded from http://www.ibm.com/webservices/xsd/j2ee_jaxrpc_mapping_1_1.xsd. Example 8-14

shows the elements that appear at the two outer-most nesting levels of this document.

Example 8-14. The JAX-RPC mapping file

<java-wsdl-mapping>
 <package-mapping/> <!-- One or more - see text -->
 <java-xml-type-mapping/> <!-- Zero or more - see text -->
 <exception-mapping/> <!-- Zero or more - see text -->

 <!-- Any number of the next two elements may appear -->
 <service-interface-mapping> <! -- Zero or one may appear - see text -->
 <service-endpoint-interface-mapping> <!-- One or more -- see text -->
</java-wsdl-mapping>

At the time of this writing, the beta release of J2EE Version 1.4 supports only the package-mapping

element of this file; therefore, this section covers only that element. Note that, in most cases, this is the

http://www.ibm.com/webservices/xsd/j2ee_jaxrpc_mapping_1_1.xsd
http://lib.ommolketab.ir
http://lib.ommolketab.ir

only part of the file that you need to supply. Following the FCS release of J2EE 1.4, updated
information on this file will be posted on the web page for this book at O'Reilly's web site

(http://www.oreilly.com/catalog/javawsian).

8.7.2.1 Package mappings

The package-mapping element describes the correspondence between namespaces used in the WSDL

file and the Java packages in which the classes for the objects in those namespaces should be generated.

The structure of the package-mapping element is shown in Example 8-15.

Example 8-15. The package-mapping element in the JAX-RPC mapping file

<package-mapping>
 <package-type>Java package</package-type>
 <namespaceURI>namespace</namespaceURI>
</package-mapping>

There should be one package-mapping element for each namespace from which Java objects will be

generated. The most common case would require an element that maps the namespace given by the
targetNamespace attribute of the definitions element in the WSDL file. If the types defined or

imported by the WSDL file have a different targetNamespace, and those types require the generation

of Java classes, then a mapping should also be included for each such namespace. In the case of the
book web service from Chapter 2, for example, the types element uses a different namespace from that

of the definitions themselves:

<definitions name="BookService"
 targetNamespace="urn:jwsnut.chapter2.bookservice/wsdl/
 BookQuery" ... >
 <types>
 <schema targetNamespace=
 "urn:jwsnut.chapter2.bookservice/types/BookQuery" ...>

Since there are two different namespaces, to create a Java implementation of this web service and

deploy it on the J2EE 1.4 platform, you need to include a JAX-RPC mapping file with two package-
mapping elements:

<package-mapping>
 <package-type>ora.jwsnut.chapter2.bookservice</package-type>
 <namespaceURI>urn:jwsnut.chapter2.bookservice/wsdl/BookQuery</
namespaceURI>
</package-mapping>
<package-mapping>
 <package-type>ora.jwsnut.chapter2.bookservice</package-type>
 <namespaceURI>urn:jwsnut.chapter2.bookservice/types/BookQuery</namespaceURI>
</package-mapping>

The extract shown here defines a mapping in which Java objects from both namespaces are created in a

http://www.oreilly.com/catalog/javawsian
http://lib.ommolketab.ir
http://lib.ommolketab.ir

package called ora.jwsnut.chapter2.bookservice. It is permissible, however, to use a different Java
package for each namespace if you wish to.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part II: API Quick Reference

Part II is the real heart of this book: quick-reference material for the J2EE web services APIs.

Please read the following section How to Use This Quick Reference, to learn how to get the most

out of this material.

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Chapter 20

Class, Method, and Field Index

How to Use This Quick Reference

The quick-reference section that follows packs a lot of information into a small space. This
introduction explains how to get the most out of that information. It describes how the quick

reference is organized and how to read the individual quick-reference entries.

Finding a Quick-Reference Entry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The quick reference is organized into chapters, each of which documents a single package of the

Java platform or a group of related packages. Packages are listed alphabetically within and

between chapters, so you never really need to know which chapter documents which package -

you can simply search alphabetically, as you might do in a dictionary. The documentation for each

package begins with a quick-reference entry for the package itself. This entry includes a short
overview of the package and a listing of the classes and interfaces included in the package. In this

listing of package contents, classes and interfaces are first grouped by general category

(interfaces, classes, and exceptions, for example). Within each category, they are grouped by class

hierarchy, with indentation to indicate the level of the hierarchy. Finally, classes and interfaces at

the same hierarchy level are listed alphabetically.

Each package overview is followed by individual quick-reference entries for the classes and
interfaces defined in the package. All of the entries in this reference are organized alphabetically

by class and package name, so related classes are grouped near each other. This means that to
look up a quick-reference entry for a particular class, you must also know the name of the package

that contains that class. Usually, the package name is obvious from the context, and you should

have no trouble looking up the quick-reference entry you want. Use the tabs on the outside edge
of the book and the dictionary-style headers on the upper corner of each page to help you quickly

find the package and class you need.

Occasionally, you may need to look up a class for which you do not already know the package. In
this case, refer to the Class Index. This index allows you to look up a class by class name and find

out what package it is part of.

Reading a Quick-Reference Entry

The quick-reference entries for classes and interfaces contain quite a bit of information. The

sections that follow describe the structure of a quick-reference entry, explaining what information

is available, where it is found, and what it means. While reading the descriptions that follow, you

may find it helpful to flip through the reference section itself to find examples of the features

being described.

Class Name, Package Name, Availability, and Flags

Each quick-reference entry begins with a four-part title that specifies the name, package name,

and availability of the class, and may also specify various additional flags that describe the class.

The class name appears in bold at the upper left of the title. The package name appears, in smaller
print, in the lower left, below the class name.

The upper-right portion of the title indicates the availability of the class; it specifies the earliest

release that contained the class. If a class was introduced in Java 1.1, for example, this portion of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the title reads "Java 1.1". The availability section of the title is also used to indicate whether a
class has been deprecated, and, if so, in what release. For example, it might read "Java 1.1;

Deprecated in Java 1.2".

In the lower-right corner of the title you may find a list of flags that describe the class. The

possible flags and their meanings are as follows:

checked

The class is a checked exception, which means that it extends java.lang.Exception, but
not java.lang.RuntimeException. In other words, it must be declared in the throws

clause of any method that may throw it.
cloneable

The class, or a superclass, implements java.lang.Cloneable.

collection

The class, or a superclass, implements java.util.Collection or java.util.Map.

comparable

The class, or a superclass, implements java.lang.Comparable.
error

The class extends java.lang.Error.

event

The class extends java.util.EventObject.

event adapter

The class, or a superclass, implements java.util.EventListener, and the class name

ends with "Adapter".

event listener

The class, or a superclass, implements java.util.EventListener.

runnable

The class, or a superclass, implements java.lang.Runnable.
unchecked

The class is an unchecked exception, which means it extends

java.lang.RuntimeException and therefore does not need to be declared in the throws

clause of a method that may throw it.

Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The title of each quick-reference entry is followed by a short description of the most important

features of the class or interface. This description may be anywhere from a couple of sentences to

several paragraphs long.

Hierarchy

If a class or interface has a nontrivial class hierarchy, the "Description" section is followed by a

figure that illustrates the hierarchy and helps you understand the class in the context of that

hierarchy. The name of each class or interface in the diagram appears in a box; classes appear in

rectangles (except for abstract classes, which appear in skewed rectangles or parallelograms).

Interfaces appear in rounded rectangles, in which the corners have been replaced by arcs. The
current class-the one that is the subject of the diagram-appears in a box that is bolder than the

others. The boxes are connected by lines: solid lines indicate an "extends" relationship, and dotted
lines indicate an "implements" relationship. The superclass-to-subclass hierarchy reads from left

to right in the top row (or only row) of boxes in the figure. Interfaces are usually positioned

beneath the classes that implement them, although in simple cases, an interface is sometimes
positioned on the same line as the class that implements it, resulting in a more compact figure.

Note that the hierarchy figure shows only the superclasses of a class. If a class has subclasses,
those are listed in the cross-reference section at the end of the quick-reference entry for the class.

Synopsis

The most important part of every quick-reference entry is the class synopsis, which follows the

title and description. The synopsis for a class looks a lot like the source code for the class, except
that the method bodies are omitted and some additional annotations are added. If you know Java

syntax, you know how to read the class synopsis.

The first line of the synopsis contains information about the class itself. It begins with a list of

class modifiers, such as public, abstract, or final. These modifiers are followed by the class

or interface keyword and then by the name of the class. The class name may be followed by an

extends clause that specifies the superclass and an implements clause that specifies any
interfaces the class implements.

The class definition line is followed by a list of the fields and methods that the class defines. Once

again, if you understand basic Java syntax, you should have no trouble making sense of these

lines. The listing for each member includes the modifiers, type, and name of the member. For

methods, the synopsis also includes the type and name of each method parameter and an optional

throws clause that lists the exceptions the method can throw. The member names are in boldface,
so it is easy to scan the list of members looking for the one you want. The names of method

parameters are in italics to indicate that they are not to be used literally. The member listings are

printed on alternating gray and white backgrounds to keep them visually separate.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member availability and flags

Each member listing is a single line that defines the API for that member. These listings use Java
syntax, so their meaning is immediately clear to any Java programmer. There is some auxiliary

information associated with each member synopsis, however, that requires explanation.

Recall that each quick-reference entry begins with a title section that includes the release in which

the class was first defined. When a member is introduced into a class after the initial release of the

class, the version in which the member was introduced appears, in small print, to the left of the

member synopsis. For example, if a class was first introduced in Java 1.1, but had a new method
added in Java 1.2, the title contains the string "Java 1.1", and the listing for the new member is

preceded by the number "1.2". Furthermore, if a member has been deprecated, that fact is

indicated with a hash mark (#) to the left of the member synopsis.

The area to the right of the member synopsis is used to display a variety of flags that provide

additional information about the member. Some of these flags indicate additional specification

details that do not appear in the member API itself. Other flags contain implementation-specific
information. This information can be quite useful in understanding the class and in debugging

your code, but be aware that it may differ between implementations. The implementation-specific

flags displayed in this book are based on Sun's Linux implementation of Java.

The following flags may be displayed to the right of a member synopsis:

native

An implementation-specific flag that indicates that a method is implemented in native code.

Although native is a Java keyword and can appear in method signatures, it is part of the

method implementation, not part of its specification. Therefore, this information is included
with the member flags, rather than as part of the member listing. This flag is useful as a hint

about the expected performance of a method.

synchronized

An implementation-specific flag that indicates that a method implementation is declared

synchronized, meaning that it obtains a lock on the object or class before executing. Like

the native keyword, the synchronized keyword is part of the method implementation, not
part of the specification, so it appears as a flag, not in the method synopsis itself. This flag

is a useful hint that the method is probably implemented in a thread-safe manner.

Whether a method is thread-safe is part of the method specification, and this information

should appear (although it often does not) in the method documentation. There are a

number of different ways to make a method thread-safe, however, and declaring the method

with the synchronized keyword is only one possible implementation. In other words, a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

method that does not bear the synchronized flag can still be thread-safe.
Overrides:

This flag indicates that a method overrides a method in one of its superclasses. The flag is

followed by the name of the superclass that the method overrides. This is a specification

detail, not an implementation detail. As we'll see in the next section, overriding methods are

usually grouped together in their own section of the class synopsis. The Overrides: flag is

only used when an overriding method is not grouped in that way.
Implements:

This flag indicates that a method implements a method in an interface. The flag is followed

by the name of the interface that is implemented. This is a specification detail, not an

implementation detail. As we'll see in the next section, methods that implement an interface
are usually grouped into a special section of the class synopsis. The Implements: flag is

only used for methods that are not grouped in this way.
empty

This flag indicates that the implementation of the method has an empty body. This can be a

hint to the programmer that the method may need to be overridden in a subclass.

constant

An implementation-specific flag that indicates that a method has a trivial implementation.
Only methods with a void return type can be truly empty. Any method declared to return a

value must have at least a return statement. The constant flag indicates that the method
implementation is empty except for a return statement that returns a constant value. Such

a method might have a body like return null; or return false;. Like the empty flag,

this flag may indicate that a method needs to be overridden.

default:

This flag is used with property accessor methods that read the value of a property (i.e.,

methods whose names begins with "get" and take no arguments). The flag is followed by
the default value of the property. Strictly speaking, default property values are a

specification detail. In practice, however, these defaults are not always documented, and

care should be taken because the default values may change between implementations.

Not all property accessors have a default: flag. A default value is determined by

dynamically loading the class in question, instantiating it using a no-argument constructor,

and then calling the method to find out what it returns. This technique can be used only on
classes that can be dynamically loaded and instantiated and that have no-argument

constructors, so default values are shown for those classes only. Furthermore, when a class

is instantiated using a different constructor, the default values for its properties may be

different.

=

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For static final fields, this flag is followed by the constant value of the field. Only

constants of primitive and String types and constants with the value null are displayed.

Some constant values are specification details, while others are implementation details. The

reason that symbolic constants are defined, however, is so you can write code that does not

rely directly upon the constant value. Use this flag to help you understand the class, but do
not rely upon the constant values in your own programs.

In Chapter 11 and Chapter 12, which deal with the JAXR API, each method has the designator

"L0" or "L1." These designators indicate whether the method is part of the Level 0 API (which

must be supported by every JAXR provider), or the Level 1 API (which is available only from

more capable providers). Broadly speaking, Level features are provided by UDDI registries, while

features in Level 1 represent the additional functionality provided by the ebXML
registry/repository. Refer to Chapter 7 for further information.

Functional grouping of members

Within a class synopsis, the members are not listed in strict alphabetical order. Instead, they are
broken down into functional groups and listed alphabetically within each group. Constructors,

methods, fields, and inner classes are all listed separately. Instance methods are kept separate

from static (class) methods. Constants are separated from nonconstant fields. Public members are
listed separately from protected members. Grouping members by category breaks a class down

into smaller, more comprehensible segments, making the class easier to understand. This
grouping also makes it easier for you to find a desired member.

Functional groups are separated from each other in a class synopsis with Java comments, such as

// Public Constructors, // Inner Classes, and // Methods Implementing DataInput .

The various functional categories are as follows (in the order in which they appear in a class

synopsis):

Constructors

Displays the constructors for the class. Public constructors and protected constructors are

displayed separately in subgroupings. If a class does not define a constructor, the Java

compiler adds a default no-argument constructor that is displayed here. If a class defines

only private constructors, it cannot be instantiated, so a special, empty grouping entitled

"No Constructor" indicates this fact. Constructors are listed first because the first thing you

do with most classes is instantiate them by calling a constructor.
Constants

Displays all of the constants (i.e., fields that are declared static and final) defined by the

class. Public and protected constants are displayed in separate subgroups. Constants are

listed here, near the top of the class synopsis, because constant values are often used

http://lib.ommolketab.ir
http://lib.ommolketab.ir

throughout the class as legal values for method parameters and return values.
Inner classes

Groups all of the inner classes and interfaces defined by the class or interface. For each

inner class, there is a single-line synopsis. Each inner class also has its own quick-reference

entry that includes a full class synopsis for the inner class. Like constants, inner classes are

listed near the top of the class synopsis because they are often used by a number of other

members of the class.
Static methods

Lists the static methods (class methods) of the class, broken down into subgroups for public

static methods and protected static methods.

Event listener registration methods

Lists the public instance methods that register and deregister event listener objects with the
class. The names of these methods begin with the words "add" and "remove" and end in

"Listener". These methods are always passed a java.util.EventListener object. The
methods are typically defined in pairs, so the pairs are listed together. The methods are

listed alphabetically by event name rather than by method name.

Property accessor methods

Lists the public instance methods that set or query the value of a property or attribute of the
class. The names of these methods begin with the words "set", "get", and "is", and their

signatures follow the patterns set out in the JavaBeans specification. Although the naming
conventions and method signature patterns are defined for JavaBeans, classes and interfaces

throughout the Java platform define property accessor methods that follow these

conventions and patterns. Looking at a class in terms of the properties it defines can be a

powerful tool for understanding the class, so property methods are grouped together in this

section. Property accessor methods are listed alphabetically by property name, not by
method name. This means that the "set", "get", and "is" methods for a property all appear

together.

Public instance methods

Contains all of the public instance methods that are not grouped elsewhere.

Implementing methods

Groups the methods that implement the same interface. There is one subgroup for each

interface implemented by the class. Methods that are defined by the same interface are
almost always related to each other, so this is a useful functional grouping of methods.

If an interface method is also an event registration method or a property accessor method, it

is listed both in this group and in the event or property group. This situation does not arise

often, but when it does, all of the functional groupings are important and useful enough to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

warrant the duplicate listing. When an interface method is listed in the event or property
group, it displays an Implements: flag that specifies the name of the interface of which it is

part.

Overriding methods

Groups the methods that override methods of a superclass, broken down into subgroups by

superclass. This is typically a useful grouping, because it helps to make it clear how a class

modifies the default behavior of its superclasses. In practice, it is also often true that
methods that override the same superclass are functionally related to each other.

Sometimes a method that overrides a superclass is also a property accessor method or

(more rarely) an event registration method. When this happens, the method is grouped with

the property or event methods and displays a flag that indicates which superclass it
overrides. The method is not listed with other overriding methods, however. This is

different from interface methods, which, since they are more strongly functionally related,
may have duplicate listings in both groups.

Protected instance methods

Contains all of the protected instance methods that are not grouped elsewhere.

Fields

Lists all of the nonconstant fields of the class, breaking them down into subgroups for
public and protected static fields and public and protected instance fields. Many classes do

not define any publicly accessible fields. For those that do, many object-oriented
programmers prefer not to use those fields directly, but instead to use accessor methods

when such methods are available.

Deprecated members

Deprecated methods and deprecated fields are grouped at the very bottom of the class

synopsis. Use of these members is strongly discouraged.

Cross-References

The synopsis section of a quick-reference entry is followed by a number of optional cross-

reference sections that indicate other, related classes and methods that may be of interest. These

sections are the following:

Subclasses

This section lists the subclasses of this class, if there are any.

Implementations

This section lists classes that implement this interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Passed To

This section lists all of the methods and constructors that are passed an object of this type
as an argument. This is useful when you have an object of a given type and want to figure

out what you can do with it.

Returned By

This section lists all of the methods (but not constructors) that return an object of this type.

This is useful when you know that you want to work with an object of this type, but don't

know how to obtain one.
Thrown By

For checked exception classes, this section lists all of the methods and constructors that

throw exceptions of this type. This material helps you figure out when a given exception or

error may be thrown. Note, however, that this section is based on the exception types listed
in the throws clauses of methods and constructors. Subclasses of RuntimeException and

Error do not have to be listed in throws clauses, so it is not possible to generate a complete
cross-reference of methods that throw these types of unchecked exceptions.

Type Of

This section lists all of the fields and constants that are of this type, which can help you

figure out how to obtain an object of this type.

A Note About Class Names

Throughout the quick reference, you'll notice that classes are sometimes referred to by class name

alone and at other times referred to by class name and package name. If package names were

always used, the class synopses would become long and hard to read. On the other hand, if

package names were never used, it would sometimes be difficult to know what class was being

referred to. The rules for including or omitting the package name are complex. They can be
summarized approximately as follows, however:

If the class name alone is ambiguous, the package name is always used.

If the class is part of the java.lang package or is a very commonly used class, the package
name is omitted.

If the class being referred to is part of the current package (and has a quick-reference entry

in the current chapter), the package name is omitted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. The javax.xml.messaging Package

Package javax.xml.messaging

Endpoint

JAXMException

JAXMServlet

OnewayListener

ProviderConnection

ProviderConnectionFactory

ProviderMetaData

ReqRespListener

URLEndpoint

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Package javax.xml.messaging JAXM 1.1; JWSDP 1.0

The javax.xml.messaging package contains the classes and interfaces that make up the Java API for

XML-based Messaging (JAXM). JAXM is a software layer above SAAJ that provides the same access

to the low-level features of SOAP messaging and adds the following features:

Asynchronous message transmission

Whereas a SAAJ client blocks after sending a message until the server sends a response, JAXM
clients resume execution shortly after the message is sent. In fact, JAXM does not recognize the

concept of request-response messaging, viewing these instead as the transmission and receipt of
two independent messages.

More reliable delivery

If the intended recipient of a SOAP message is not active or not reachable when a SAAJ client

transmits it, the message is not delivered and the application is responsible for error recovery. By

contrast, messages sent by JAXM clients are resent a configurable number of times before being

considered undeliverable. As a consequence of this, a JAXM receiver may receive messages that
were sent to it while it was inactive.

Profiles

JAXM implementations may support one or more industry-standard profiles that represent agreed

ways to construct SOAP messages. Application code is required to specify the profile to be used

and supply the values to be included in the message, but the JAXM implementation is

responsible for ensuring that the message is constructed as required by the profile.

JAXM provides these features by interposing message providers between the JAXM sender and the
JAXM receiver. Instead of addressing and sending a SOAP message directly to its ultimate recipient,

the sender instead delivers it to a local messaging provider. The destination address in the message is

typically not that of the receiver, but a URI (actually an instance of the Endpoint class) that the

provider will map to a real address using internal configuration information. The resolved address will

actually be that of another JAXM provider that is local to receiver. Having chosen the destination, the
sending provider transmits the message one or more times until it is successfully delivered to the peer

JAXM provider or a configurable retry limit is reached. Since the call made by the JAXM client to send

the message returns before it is known whether the message will be successfully delivered, no reporting

of errors to the client is possible when using JAXM.

When a JAXM provider receives a message, it maps the destination address to a local endpoint and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

looks for a receiver willing to receive messages for that endpoint. If such a receiver exists, the message
is delivered to it. If not, the provider retains the message for a configurable period, waiting for a

receiver to register to receive messages addressed to that endpoint. If no such client registers within the

time-out period, the message is discarded.

The asynchronous nature of the message delivery path means that a provider must be able to deliver a

message to a receiver at any time. Since all communication takes place over HTTP, this means that the

message receiver must be prepared to accept an HTTP connection. Since J2SE does not provide a
server-side implementation of HTTP, the practical implication of this is that all JAXM clients that wish

to receive messages must be container-resident.

The configuration information required to allow a JAXM provider to map between logical Endpoint

addresses and real network addresses, and the mechanism used by a receiver to specify the Endpoint
address or addresses on which it is prepared to listen are implementation-dependent. Refer to Chapter 4

for a description of the mechanism used by the JAXM reference implementation.

JAXM providers typically support only profiled messages. The reference implementation provides
basic support for the WS-Routing profile (formerly known as SOAP-RP) and the ebXML TRP profile.

The API required for these profiles is not part of the JAXM specification and cannot, therefore, be

considered portable. No coverage of these APIs is provided in this chapter, although there is some

discussion of both profiles in Chapter 4.

Since JAXM senders and receivers always communicate directly with a provider rather than with each

other, they are both in the client role relative to the provider, even though one of them may play the
server role in respect of their (indirect) interaction with each other. Throughout this section, the term

"JAXM client" will be used to refer to both a JAXM sender or a receiver.

Unlike SAAJ, JAXM was not incorporated in the J2EE 1.4 platform. There is, however, an

implementation available in the JWSDP, although its applicability is clearly going to be limited for the

time being unless the J2EE vendors provide their own implementations.

Interfaces

public interface OnewayListener;

public interface ProviderConnection;

public interface ProviderMetaData;

public interface ReqRespListener;

Classes

public class Endpoint;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class URLEndpoint extends Endpoint;

public abstract class JAXMServlet extends javax.servlet.http.HttpServlet;

public abstract class ProviderConnectionFactory;

Exceptions

public class JAXMException extends javax.xml.soap.SOAPException;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Endpoint javax.xml.messaging

JAXM 1.1; JWSDP 1.0

public class Endpoint {

// Public Constructors
 public Endpoint(String uri);

// Public Methods Overriding Object
 public String toString();

// Protected Instance Fields
 protected String id;
}

The Endpoint class encapsulates the concept of a JAXM endpoint, which is the point of

communication between a JAXM application client and its local messaging provider. A JAXM client

typically builds a SOAP message containing source and destination Endpoint addresses, and delivers it

to its local provider, which is responsible for delivering it. Similarly, a JAXM receiver will register

with its local provider and supply the Endpoint for which it wishes to receive inbound messages.

An Endpoint is constructed from a URI, which is essentially an arbitrary string that represents a
message destination. Here's an example of the construction of an Endpoint:

Endpoint endpoint = new Endpoint("urn:SOAPRPecho");

When a message addressed to this endpoint is sent, the messaging provider is expected to convert the
logical address urn:SOAPRPecho to the real address of the receiving JAXM messaging provider using

configuration information supplied in an implementation-dependent manner. The actual endpoint

address is typically carried in the message as part of a SOAP message header so that it can be

interpreted by the receiving provider and used to locate the intended recipient. Both the WS-Routing

and ebXML profiles include headers that carry this information.

Subclasses

URLEndpoint

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JAXMException javax.xml.messaging

JAXM 1.1; JWSDP 1.0 serializable checked

public class JAXMException extends javax.xml.soap.SOAPException {

// Public Constructors
 public JAXMException();
 public JAXMException(Throwable cause);
 public JAXMException(String reason);
 public JAXMException(String reason, Throwable cause);
}

JAXMException is a checked exception (derived from javax.xml.soap.SOAPException) that is used
to report errors encountered during the execution of methods of the JAXM API.

A JAXMException typically includes a text string giving a human-readable description of the error and,

in some cases, may have an associated Throwable that represents the root cause of the problem. The

four constructors allow a JAXMException to be created with any combination of text message and
Throwable, which may subsequently be retrieved using the getMessage() and getCause() methods.

Note that the Throwable attribute can be set either at construction time or by using the initCause()
method. However, a java.lang.IllegalStateException is thrown if this method is called when the

Throwable attribute has already been set.

Thrown By

ProviderConnection.{close(), createMessageFactory(), getMetaData(), send()},

ProviderConnectionFactory.{createConnection(), newInstance()}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JAXMServlet javax.xml.messaging

JAXM 1.1; JWSDP 1.0 serializable

public abstract class JAXMServlet extends javax.servlet.http.HttpServlet {

// Public Constructors
 public JAXMServlet();

// Protected Class Methods
 protected static javax.xml.soap.MimeHeaders getHeaders(javax.servlet.http.HttpServletRequest req);
 protected static void putHeaders(javax.xml.soap.MimeHeaders headers, javax.servlet.http.HttpServletResponse res);

// Public Instance Methods
 public void setMessageFactory(javax.xml.soap.MessageFactory msgFactory);

// Public Methods Overriding HttpServlet
 public void doPost(javax.servlet.http.HttpServletRequest req, javax.servlet.http.HttpServletResponse resp)
 throws javax.servlet.ServletExceptionjava.io.IOException;

// Public Methods Overriding GenericServlet

 public void init(javax.servlet.ServletConfig servletConfig)

 throws javax.servlet.ServletException;

// Protected Instance Fields
 protected javax.xml.soap.MessageFactory msgFactory;
}

JAXMServlet is a skeleton servlet that can be subclassed to create a container-resident JAXM client.
The subclass must do the following:

Declare that it implements either the OnewayListener or ReqRespListener interface

Install a suitable MessageFactory i n the init() method

Provide an implementation of the onMessage() method

A SOAP message is delivered to the servlet as an HTTP POST request and is therefore handled in the

servlet's doPost() method, which converts the body of the request to a

javax.xml.soap.SOAPMessage object. This object is then passed to the onMessage() method, which

the JAXM client is required to implement.

A client should implement the OnewayListener interface if it does not intend to return a reply

immediately. In this case, the onMessage() method has the following signature:

public void onMessage(SOAPMessage message);

The ReqRespListener interface is intended for clients that create a synchronous reply - that is, the

reply method is sent back as the body of the HTTP response message. This interface, therefore, has a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

variant of onMessage() that requires the client to construct and return a reply message:

public SOAPMessage onMessage(SOAPMessage message);

In the JAXM reference implementation, it is not possible to construct a working JAXM client that
implements the ReqRespListener interface, since the message returned by onMessage() is ignored

by the JAXM provider. All JAXM clients must, therefore, be asynchronous. It is possible, however, to

use JAXMServlet as the base class for a SOAP message receiver that uses the SAAJ API and

implements the ReqRespListener interface rather than a JAXM client (although this option is not

available for the J2EE 1.4 platform, which does not include JAXM).

The conversion between the representation of a SOAP message in the body of an HTML request or
response and the corresponding SOAPMessage is performed by a javax.xml.soap.MessageFactory . A

suitable factory must be installed by overriding the init() method, calling super.init() , and then
using the setMessageFactory() method. By default, JAXMServlet installs a factory that does not

perform processing specific to any of the JAXM profiles. A client that wishes to handle profiled

messages (e.g., for WS-Routing or ebXML TRP) must instead supply the message factory provided by
that profile. These classes are implementation-dependent, but you can get one in a portable fashion by

using the createMessageFactory() method of the ProviderConnection class, as the following code
snippet shows:

ProviderConnection conn = ProviderConnectionFactory.newInstance()
 .createConnection();
setMessageFactory(conn.createMessageFactory("soaprp"));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OnewayListener javax.xml.messaging

JAXM 1.1; JWSDP 1.0

public interface OnewayListener {

// Public Instance Methods
 public abstract void onMessage(javax.xml.soap.SOAPMessage message);
}

The OnewayListener interface is implemented by a JAXMServlet subclass that receives a SOAP

message but does not wish to return an immediate response. The onMessage() method is called

whenever a message is received and is provided with a SOAPMessage object created from that message
as its only argument. The implementation may handle the message immediately or defer its processing

to a more convenient time.

A JAXM client that implements this interface and wishes to return a reply message must create the
message using the MessageFactory of the JAXM profile that it is using, set the destination address

using a profile-specific method, and then call the ProviderConnection send() method. See the

description of the JAXMServlet for information on obtaining an appropriate MessageFactory.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ProviderConnection javax.xml.messaging

JAXM 1.1; JWSDP 1.0

public interface ProviderConnection {

// Public Instance Methods
 public abstract void close() throws JAXMException;
 public abstract javax.xml.soap.MessageFactory createMessageFactory(String profile) throws JAXMException;
 public abstract ProviderMetaData getMetaData() throws JAXMException;
 public abstract void send(javax.xml.soap.SOAPMessage message) throws JAXMException;
}

A ProviderConnection object represents a connection path between a JAXM client and a JAXM
provider. An instance of this class can be obtained using the createConnection() method of

ProviderConnectionFactory , as described in the reference section for that class. Here's a typical

example:

ProviderConnectionFactory pcf = ProviderConnectionFactory.newInstance();
ProviderConnection conn = pcf.createConnection();

All JAXM clients work with a JAXM message profile, which constructs SOAP messages according to

agreed rules. A JAXM client can use the getMetaData() method to obtain a ProviderMetaData

object that can be used to get the names of the profiles that the provider supports. In practice, however,

a JAXM client has to be written with knowledge of the classes that implement a particular profile;
therefore, this mechanism will probably only be used to verify that the required profile is available.

The createMessageFactory() method returns an object that can create messages formed according

to the rules of the profile whose name is provided as its argument. The set of profiles supported by a

provider and the names by which they are known are implementation-dependent. The reference

implementation recognizes the names soaprp and ebxml . The following code returns a message

factory that knows how to build SOAP messages according to the rules in the WS-Routing (formerly
SOAP-RP) specification:

MessageFactory factory = conn.createMessageFactory("soaprp");

A JAXMException is thrown if the provider does not support the requested profile. Refer to the
reference section for the javax.xml.soap package for a description of the MessageFactory class.

Having constructed a SOAP message, a client forwards it to its local provider using the send()

method, which requires only the message itself as an argument. Unlike the send() method of the

SAAJ SOAPConnection class, this method does not have an explicit destination address argument.

Instead, the message is expected to specify the intended recipient using an address element that is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

specific to the profile according to which it was constructed. Furthermore, the address is usually not a
fixed transport address (such as a URL). More likely, it is a URI that is used as a key to a configuration

table in the provider where the URL of the JAXM provider local to the message recipient is held.

The close() method is used to release the ProviderConnection object when it is no longer required.

Returned By

ProviderConnectionFactory.createConnection()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ProviderConnectionFactory javax.xml.messaging

JAXM 1.1; JWSDP 1.0

public abstract class ProviderConnectionFactory {

// Public Constructors
 public ProviderConnectionFactory();

// Public Class Methods
 public static ProviderConnectionFactory newInstance() throws JAXMException;

// Public Instance Methods
 public abstract ProviderConnection createConnection() throws JAXMException;
}

ProviderConnectionFactory is an abstract class that can be used to create ProviderConnection

objects for the purpose of obtaining a connection to a JAXM provider. In a container-based

environment, a JAXM client uses a JNDI lookup to obtain a preconfigured

ProviderConnectionFactory that results in the message that it subsequently created being sent to a

JAXM provider chosen by an administrator.

An alternative way to obtain an instance of this class is to call the static newInstance() method. This
method locates a concrete implementation of ProviderConnectionFactory as follows, stopping when

a suitable class is found:

Looks in the system properties for a property called

javax.xml.messaging.ProviderConnectionFactory. If this property is defined, its value is

assumed to be the class name of a concrete implementation of ProviderConnectionFactory.

1.

Looks for the same property in a file called ${JAVA_HOME}/lib/jaxm.properties. If the

property is found, its value is assumed to be the required class name.

2.

Looks for a resource called META-

INF/services/javax.xml.messaging.ProviderConnectionFactory in the classpath. If such a
resource exists, it is opened and a single line is read from it. If the line is not empty, it is used as

the required class name.

3.

Finally, an implementation-dependent default class is used. In the case of the reference

implementation, this class is called

com.sun.xml.messaging.jaxm.client.remote.ProviderConnectionFactoryImpl.

4.

The createConnection() method returns a ProviderConnection object that allows a client to

communicate with a JAXM provider. The means by which the provider is located is implementation-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dependent. In the case of the reference implementation, the provider's address is configured in a file
called client.xml, which must be accessible as a resource in the classpath of the client. For a description

of the content of this file, refer to Chapter 4.

Returned By

ProviderConnectionFactory.newInstance()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ProviderMetaData javax.xml.messaging

JAXM 1.1; JWSDP 1.0

public interface ProviderMetaData {

// Public Instance Methods
 public abstract int getMajorVersion();
 public abstract int getMinorVersion();
 public abstract String getName();
 public abstract String[] getSupportedProfiles();
}

ProviderMetaData provides information about a JAXM provider. An instance of this object can be
obtained by calling the getMetaData() method of a ProviderConnection object.

The getName() method can be used to obtain an identifier for the JAXM provider to which the client

is connected, while getMajorVersion() and getMinorVersion() return version information. These

methods may be useful for logging purposes. The getSupportedProfiles() method returns the
names of the SOAP profiles that the provider supports. The names themselves are provider-specific and

can be passed to the ProviderConnection createMessageFactory() method to obtain a factory that
can create messages built according to the rules of the named profile.

Returned By

ProviderConnection.getMetaData()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ReqRespListener javax.xml.messaging

JAXM 1.1; JWSDP 1.0

public interface ReqRespListener {

// Public Instance Methods
 public abstract javax.xml.soap.SOAPMessage onMessage(javax.xml.soap.SOAPMessage message);
}

The ReqRespListener interface is implemented by a JAXMServlet subclass that receives a SOAP

message to which it immediately creates a response. The onMessage() method is called whenever a

message is received and is provided with a SOAPMessage object created from that message as its only
argument. The return value from this method may be either null or a SOAPMessage that is returned to

the originator of the request message.

For reasons mentioned in the description of the JAXMServlet class, a JAXM client that implements this
interface may not behave as expected in the JAXM reference implementation. Specifically, the reply

message returned from the onMessage() method is not delivered.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

URLEndpoint javax.xml.messaging

JAXM 1.1; JWSDP 1.0

public class URLEndpoint extends Endpoint {

// Public Constructors
 public URLEndpoint(String url);

// Public Instance Methods
 public String getURL();
}

URLEndpoint is a subclass of Endpoint in which the URI that represents the endpoint address is
expected to be a valid URL.

This class is used internally within the JAXM reference implementation to represent the addresses to

which a URI used by a JAXM clients is mapped within the JAXM provider, since each such address

must be the URL of the provider that will receive a message with that URI. From the viewpoint of a
JAXM client, however, the URLEndpoint class is of no practical use, at least in the reference

implementation, since neither of the profiles that it supports will accept a message destination that is a
URL.

A URLEndpoint can be used by a SAAJ client in conjunction with the SOAPConnection send()

method. However, it is simpler to use a string version of the URL instead.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. The javax.xml.namespace Package

Package javax.xml.namespace

QName

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Package javax.xml.namespace JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

This package contains only a single class, QName, that represents a namespace-qualified XML element

name. Theoretically, many of the XML APIs, including those that are not directly related to web

services, could make use of this class. At the present time, however, it is used only by the packages that

form the JAX-RPC API.

Classes

public class QName

implements Serializable;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

QName javax.xml.namespace

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4 serializable

public class QName implements java.io.Serializable {

// Public Constructors

 public QName(String localPart);

 public QName(String namespaceURI, String localPart);

// Public Class Methods

 public static QName valueOf(String s);

// Public Instance Methods
 public String getLocalPart();
 public String getNamespaceURI();

// Public Methods Overriding Object

 public final boolean equals(Object obj);
 public final int hashCode();
 public String toString();
}

This class represents an XML-qualified name. The two-argument constructor creates a QName object
with a given local part and namespace URI. The one-argument constructor creates a QName object that

does not have an explicitly specified namespace. An XML element associated with a QName that does

not have an explicit namespace is considered to be in the default namespace that is in force for that

element. The URI for the default namespace is determined by an xmlns attribute with no associated
prefix, placed either on that element or on one of its ancestors.

The getLocalPart() and getNamespaceURI() methods return the local part and the namespace URI

associated with the QName. In the case of a QName that does not have a namespace URI, the latter

method returns an empty string. The toString() method creates a string representation of the QName

as follows:

If the name does not have a namespace URI, then the value returned by toString() is just the

local part of the name.

Otherwise, the value returned is {URI}localPart.

The static valueOf () method accepts a string representation of a qualified name in the form returned
by toString() and converts it to a QName object. For example, the result of the call

QName.valueOf("{URI}localPart") is the same as using the constructor QName("URI",

"localPart"), whereas QName.valueOf("localPart") produces the same result as

QName("localPart"). If the argument cannot be decoded as a QName, then a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

java.lang.IllegalArgumentException is thrown.

Passed To

Too many methods to list.

Returned By

QName.valueOf(), javax.xml.rpc.Call.{getOperationName(), getParameterTypeByName(),

getPortTypeName(), getReturnType()}, javax.xml.rpc.Service.getServiceName(),

javax.xml.rpc.handler.GenericHandler.getHeaders(),

javax.xml.rpc.handler.Handler.getHeaders(),
javax.xml.rpc.handler.HandlerInfo.getHeaders(),
javax.xml.rpc.soap.SOAPFaultException.getFaultCode()

Type Of

javax.xml.rpc.encoding.XMLType.{SOAP_ARRAY, SOAP_BASE64, SOAP_BOOLEAN, SOAP_BYTE,

SOAP_DOUBLE, SOAP_FLOAT, SOAP_INT, SOAP_LONG, SOAP_SHORT, SOAP_STRING, XSD_BASE64,
XSD_BOOLEAN, XSD_BYTE, XSD_DATETIME, XSD_DECIMAL, XSD_DOUBLE, XSD_FLOAT, XSD_HEXBINARY,

XSD_INT, XSD_INTEGER, XSD_LONG, XSD_QNAME, XSD_SHORT, XSD_STRING},
javax.xml.rpc.holders.QNameHolder.value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 11. The javax.xml.registry Package

Package javax.xml.registry

BulkResponse

BusinessLifeCycleManager

BusinessQueryManager

CapabilityProfile

Connection

ConnectionFactory

DeclarativeQueryManager

DeleteException

FederatedConnection

FindException

FindQualifier

InvalidRequestException

JAXRException

JAXRResponse

LifeCycleManager

Query

QueryManager

RegistryException

RegistryService

SaveException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UnexpectedObjectException

UnsupportedCapabilityException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Package javax.xml.registry JAXR 1.0; JWSDP 1.0, J2EE 1.4

The javax.xml.registry and javax.xml.registry.infomodel packages contain the classes and

interfaces that make up the Java API for XML-based Registries (JAXR). The

javax.xml.registry.infomodel package (described in the next chapter), defines the programming

interface for the objects that reside in a registry, while the javax.xml.registry package (the subject

of this chapter), provides the means to connect to a registry, submit queries, and update and delete
objects within the registry.

In the JAXR API, a client application connects to a JAXR provider that is usually co-resident with it.

The JAXR provider is specific to a particular type of registry, but provides a programming model that

is entirely independent of the way in which the target registry stores and manages its content. There are

currently two major registry types in common use: the UDDI registry and the ebXML

registry/repository. Although these registries have a lot of common functionality, the ebXML
registry/repository also provides features that have no counterpart in the UDDI registry and that cannot

reasonably be emulated by a UDDI-based JAXR provider. The JAXR API deals with this situation by

allocating each method to a capability level. There are currently two such levels: level 0, which broadly

corresponds to the functionality provided by a UDDI registry, and level 1, which extends level 0 to

include functionality from the ebXML registry specification. All JAXR providers are required to
implement level 0. The JAXR reference implementation includes a level provider that works with a

UDDI registry. The level to which each method in the API is allocated is shown in the reference

sections in both this and the next chapter.

The core interface of the JAXR API is RegistryService. Each JAXR provider is represented by a

single instance of this interface, which can be retrieved by creating a ConnectionFactory, then

obtaining a Connection to the JAXR provider and calling its getRegistryService() method. The
RegistryService object provides access to the query managers and the lifecycle manager that can be

used to query and update the registry itself.

Querying a registry and updating a registry are modeled as two separate activities. This is appropriate

because registry queries can usually (depending on the policy of the registry) be performed by any user,

without the need for authentication. Registry updates, on the other hand, almost always require prior

authentication and are typically carried out only over a secure transport protocol, such as HTTPS. The
JAXR API provides the QueryManager and BusinessQueryManager interfaces to handle registry

queries and the LifeCycleManager and BusinessLifeCycleManager interfaces for registry updates. In

addition, level 1 registries may support registry queries written using SQL-92 or XQuery (and possibly

other query languages) via the DeclarativeQueryManager interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Interfaces

public interface BulkResponse extends JAXRResponse;
public interface BusinessLifeCycleManager extends LifeCycleManager;
public interface BusinessQueryManager extends QueryManager;
public interface CapabilityProfile;
public interface Connection;
public interface DeclarativeQueryManager extends QueryManager;
public interface FederatedConnection extends Connection;
public interface FindQualifier;
public interface JAXRResponse;
public interface LifeCycleManager;
public interface Query;
public interface QueryManager;
public interface RegistryService;

Classes

public abstract class ConnectionFactory;

Exceptions

public class JAXRException extends Exception implements JAXRResponse;
public class InvalidRequestException extends JAXRException;
public class RegistryException extends JAXRException;
public class DeleteException extends RegistryException;
public class FindException extends RegistryException;
public class SaveException extends RegistryException;
public class UnexpectedObjectException extends JAXRException;
public class UnsupportedCapabilityException extends JAXRException;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BulkResponse javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface BulkResponse extends JAXRResponse {

// Public Instance Methods
 public abstract Collection getCollection() throws JAXRException;

 // L0
 public abstract Collection getExceptions() throws JAXRException;

 // L0
 public abstract boolean isPartialResponse() throws JAXRException;

 // L0
}

BulkResponse is an interface derived from JAXRResponse that is returned by the JAXR API methods

that perform registry queries and by some of the registry update methods. A BulkResponse contains a

set of RegistryObjects that represent the results of a search or of an update operation such as a delete,

where the objects that were deleted are returned. These objects can be obtained by calling the

getCollection() method. If any errors are encountered while the operation is in progress, one or
more RegistryExceptions may also be included in the response. These exceptions can be retrieved

using the getExceptions() method. It is possible for an operation to succeed in respect to some

objects, but fail for others. In this case, both the getCollection() and getExceptions() methods

return nonempty collections. The isPartialResponse() method returns true if the registry did not

return all possible responses.

If a request is made on a synchronous connection, the caller is blocked until the JAXR provider
receives a reply, at which point the content of the BulkResponse is valid. In the case of an

asynchronous response, the getCollection() and getExceptions() methods block until the

operation is complete. To avoid being blocked, the caller may use the isAvailable() method, which

returns false until the results of the operation are available. An alternative is to monitor the return value

of the getStatus() method, which returns STATUS_UNAVAILABLE while the operation is in progress.
Once the operation has completed according to the isAvailable() method, the caller may use the

value returned by getStatus() to determine its success or failure, before retrieving the results or

exceptions, as appropriate. The status is set to STATUS_SUCCESS to indicate that the operation fully

succeeded. STATUS_FAILURE indicates that there is at least one exception in the collection returned by

getExceptions(); there may also be RegistryObjects available from the getCollection()
method. In other words, this status may represent partial success. STATUS_WARNING is used to indicate

that the request was successful, but may only contain a partial response (i.e., isPartial() would

return true).

When an asynchronous request is initiated, the JAXR provider allocates a unique identifier to it. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

identifier is of use mainly to the provider itself, but application code can retrieve its value from the
getRequestId() method.

Returned By

Too many methods to list.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BusinessLifeCycleManager javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface BusinessLifeCycleManager extends LifeCycleManager {

// Public Instance Methods

 public abstract void confirmAssociation(javax.xml.registry.infomodel.Association assoc)

 throws JAXRExceptionInvalidRequestException; // L0

 public abstract BulkResponse deleteAssociations(Collection associationKeys)

 throws JAXRException; // L0

 public abstract BulkResponse deleteClassificationSchemes(Collection schemeKeys)

 throws JAXRException; // L0

 public abstract BulkResponse deleteConcepts(Collection conceptKeys)

 throws JAXRException; // L0

 public abstract BulkResponse deleteOrganizations(Collection organizationKeys)

 throws JAXRException; // L0

 public abstract BulkResponse deleteServiceBindings(Collection bindingKeys)

 throws JAXRException; // L0

 public abstract BulkResponse deleteServices(Collection serviceKeys)

 throws JAXRException; // L0

 public abstract BulkResponse saveAssociations(Collection associations, boolean replace)

 throws JAXRException; // L0

 public abstract BulkResponse saveClassificationSchemes(Collection schemes)

 throws JAXRException; // L0

 public abstract BulkResponse saveConcepts(Collection concepts)

 throws JAXRException; // L0

 public abstract BulkResponse saveOrganizations(Collection organizations)

 throws JAXRException; // L0

 public abstract BulkResponse saveServiceBindings(Collection bindings)

 throws JAXRException; // L0

 public abstract BulkResponse saveServices(Collection services)

 throws JAXRException; // L0

 public abstract void unConfirmAssociation(javax.xml.registry.infomodel.Association assoc)

 throws JAXRExceptionInvalidRequestException; // L0
}

BusinessLifeCycleManager is a derived interface of LifeCycleManager that provides additional

methods to allow registry objects to be saved and deleted by reference to their type rather than by using

the generic methods provided by LifeCycleManager itself. Additionally, the confirmAssociation()
and unConfirmAssociation() methods allow the caller to change the confirmed state of an

extramural association (see the description of javax.xml.registry.infomodel.Association in the

next chapter for the meaning of this term). These two methods can only be called by the owner of either

the source or the target object in the association, as indicated by the credentials associated with the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

connection to the provider, or an InvalidRequestException is thrown.

All of the delete methods in this interface require a Collection argument, which must contain the Key
s for the registry objects to be deleted. The BulkResponse returned by these methods contains the Key s

of the deleted objects. If an error occurs, a DeleteException is added to the response, along with the

keys of all objects that have been deleted. A registry may refuse to allow the removal of an object that

is referenced from another object, but is not obliged to do so. If this error is detected, an

InvalidRequestException is placed in the BulkResponse .

The save methods in this interface all accept a Collection containing the objects to be saved. Objects
in this collection that did not already exist in the registry are created and a new key is assigned. Objects

that already exist are updated from the instance provided in the collection. When an object refers to

other objects, those dependent objects are also updated or created as a result of saving the first object.
Therefore, if a new Organization is created in memory, the act of saving that Organization also

saves any Classifications and other objects that become associated with it. The BulkResponse
returned by these methods contains the Key s that are associated with the created or updated objects,

together with any SaveException s that result from failures to save or create individual objects. When

an object is created using a factory method of the LifeCycleManager interface, it does not necessarily

have a valid key, but the process of saving it does not install a key in the client's view of the object,

even though one will have been allocated and returned in the BulkResponse .

Returned By

RegistryService.getBusinessLifeCycleManager()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BusinessQueryManager javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface BusinessQueryManager extends QueryManager {

// Public Instance Methods

 public abstract BulkResponse findAssociations(Collection findQualifiers,

 String sourceObjectId, String targetObjectId, Collection associationTypes)

 throws JAXRException; // L0

 public abstract BulkResponse findCallerAssociations(// L0

 Boolean confirmedByCaller,

 Boolean confirmedByOtherParty,

 Collection associationTypes) throws JAXRException;
 public abstract javax.xml.registry.infomodel.ClassificationScheme findClassificationSchemeByName

 Collection findQualifiers, String namePattern)

 throws JAXRException; // L0

 public abstract BulkResponse findClassificationSchemes(Collection findQualifiers,

 Collection namePatterns, Collection classifications,

 Collection externalLinks) throws JAXRException; // L0

 public abstract javax.xml.registry.infomodel.Concept findConceptByPath(String path)

 throws JAXRException; // L0

 public abstract BulkResponse findConcepts(Collection findQualifiers,

 Collection namePatterns, Collection classifications,

 Collection externalIdentifiers, Collection externalLinks)

 throws JAXRException; // L0

 public abstract BulkResponse findOrganizations(Collection findQualifiers, Collection namePatterns,

 Collection classifications, Collection specifications,

 Collection externalIdentifiers,Collection externalLinks)

 throws JAXRException; // L0

 public abstract BulkResponse findRegistryPackages(Collection findQualifiers, Collection namePatterns,

 Collection classifications, Collection externalLinks)

 throws JAXRException; // L1

 public abstract BulkResponse findServiceBindings(javax.xml.registry.infomodel.Key serviceKey,

 Collection findQualifiers, Collection classifications,

 Collection specifications)

 throws JAXRException; // L0

 public abstract BulkResponse findServices(javax.xml.registry.infomodel.Key orgKey,

Collection findQualifiers,

 Collection namePatterns, Collection classifications,

 Collection specifications)

 throws JAXRException; // L0
}

BusinessQueryManager is a derived interface of QueryManager that provides convenience methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

allowing registry searches to be performed based on registry object type, together with various criteria
that allow filtering of the objects contained in the response. A search may also specify a sort order for

the results that are returned. Most of the methods in this interface require a set of Collection s that

contain the filtering and sorting criteria. Where no criterion of a given type is to be applied, the

corresponding collection may be supplied as null . The filter and sorting arguments that may be

supplied are as follows; note that not all of these arguments are valid for every method.

findQualifiers

A collection of filters and sorting criteria as defined by the FindQualifier interface. Values
such as AND_ALL_KEYS specified here override the default methods of combining multiple criteria

described in each of the following paragraphs.

name patterns

A collection of strings that completely or partially specify the names of the registry objects to be
returned. The syntax defined for the SQL-92 LIKE clause may be used to specify wildcards. By

default, these names are combined using an OR operator, so that objects whose names matching
any of the supplied patterns are returned.

classifications

A collection of Classification s that are required to be attached to the registry objects

returned. These values are combined using an AND operator, so that only those objects that have
all of the Classification s specified are returned.

specifications

A ServiceBinding may have associated with it any number of specifications that provide
information of use to the developers writing applications that will invoke the service. The

connection between a ServiceBinding and a specification is made via a SpecificationLink

that must point to another object in the registry - typically, a Concept . This search criterion

uses any object that might be linked to by a SpecificationLink and, if more than one criterion

is supplied, requires a match on all of them.
external identifiers

Specifies a collection of objects of type ExternalIdentifier that must be associated with the

registry object. The specified external identifiers are combined with an AND operator; therefore,

the returned objects will have all of the requested external identifiers.

external link

Specifies a collection of objects of type ExternalLink that must be associated with the registry

object. The specified links are combined with an AND operator; therefore, the returned objects
will have all of the requested links.

association type

A collection of association types. This filter is applied only to the findAssociations() method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and is combined using an OR operator, so that Association s with any of the types in the
collection are returned.

The query operations provided by this interface may be performed either synchronously (the default) or

asynchronously. In either case, the BulkResponse object returned is valid immediately, but may not

contain valid data. An attempt to access either the object collection or the exception set results in the

calling thread being blocked until the operation completes. See the reference section for BulkResponse

earlier in this chapter for a discussion of asynchronous operations.

Returned By

RegistryService.getBusinessQueryManager()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CapabilityProfile javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface CapabilityProfile {

// Public Instance Methods

 public abstract int getCapabilityLevel() throws JAXRException; // L0

 public abstract String getVersion() throws JAXRException; // L0
}

CapabilityProfile provides two methods that return information about the JAXR provider. The

getCapabilityLevel() methods return the highest capability level that the provider implements. A

UDDI provider, like the one provided with the JAXR reference implementation, returns 0, while an

ebXML provider returns 1. The getVersion() method returns the version of the JAXR specification
that the provider implements, such as JAXR Version 1.0.

Returned By

RegistryService.getCapabilityProfile()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Connection javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface Connection {

// Public Instance Methods

 public abstract void close() throws JAXRException; // L0

 public abstract Set getCredentials() throws JAXRException; // L0
 public abstract RegistryService getRegistryService()

 throws JAXRException; // L0
 public abstract boolean isClosed()

 throws JAXRException; // L0

 public abstract boolean isSynchronous() throws JAXRException; // L0

 public abstract void setCredentials(Set credentials) throws JAXRException; // L0

 public abstract void setSynchronous(boolean sync)

 throws JAXRException; // L0
}

The Connection interface represents a logical connection between a JAXR client and a JAXR

provider. Although the client and provider may reside in separate processes or separate systems, in

general, they are co-located; therefore, method calls made by a JAXR client are handled directly by the
provider. The provider, however, is not normally in the same Java VM as the registry itself and is
responsible for using whatever communication mechanism is necessary to access the registry. This is

typically JAX-RPC or SAAJ, using SOAP as the underlying messaging protocol. A Connection object

is obtained from a ConnectionFactory and is specific to one type of registry. That is, all Connection

objects returned from a UDDI implementation of ConnectionFactory support only communication

with a UDDI registry.

Once you have a Connection , if the registry that you wish to communicate with requires
authentication of its users, you should use the setCredentials() method to supply the required

authentication information. This method takes an argument of type Set , which may contain

authentication information for more than one authentication scheme. For basic authentication,

credentials are supplied in the form of a java.net.PasswordAuthentication object containing a

username and password, whereas certificate authentication requires an object of type

javax.security.auth.x500.X500PrivateCredential . The credentials set for a Connection can be
retrieved by calling the getCredentials() method.

A Connection may operate in either synchronous or asynchronous mode, as described in the reference

section for the BulkResponse interface earlier in this chapter. The setSynchronous() and

isSynchronous() methods can be used to set and query this setting. It is possible to change this

setting on a per-request basis, if desired. The getRegistryService method returns the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RegistryService associated with the connection. Multiple calls to this method return the same object.
The RegistryService object is used to obtain the query and the life-cycle managers that are used to

send query and update requests to the registry.

When you no longer need access to a Connection object, call its close() method to allow the

provider to release resources it may have allocated. You can determine whether a Connection is

already closed by calling the isClosed() method.

Implementations

FederatedConnection

Returned By

ConnectionFactory.createConnection()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ConnectionFactory javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public abstract class ConnectionFactory {

// Public Constructors
 public ConnectionFactory();

// Public Class Methods
 public static ConnectionFactory newInstance() throws JAXRException;

// Public Instance Methods
 public abstract javax.xml.registry.Connection createConnection()

 throws JAXRException; // L0

 public abstract FederatedConnection createFederatedConnection(Collection connections)

 throws JAXRException; // L0 (optional)
 public abstract Properties getProperties()

 throws JAXRException; // L0

 public abstract void setProperties(Properties properties)

 throws JAXRException; // L0
}

The abstract ConnectionFactory class can be used to connect to JAXR registry providers. An instance
of ConnectionFactory may be obtained by calling newInstance() method, which uses a four-step

process to locate a suitable concrete implementation class, as follows:

Looks in the system properties for a property called

javax.xml.registry.ConnectionFactoryClass . If this property is defined, its value is

assumed to be the class name of a concrete implementation of ConnectionFactory .

1.

Looks for the same property in a file called ${JAVA_HOME}/lib/jaxr.properties . If the
property is found, its value is assumed to be the required class name.

2.

Looks for a resource called META-

INF/services/javax.xml.registry.ConnectionFactoryClass in the classpath. If such a

resource exists, it is opened and a single line is read from it. If the line is not empty, it is used as

the required class name.

3.

Finally, an implementation-dependent default class is used. In the case of the reference

implementation, this class is called com.sun.xml.registry.common.ConnectionFactoryImpl .

4.

A container-resident client may also be able to obtain a ConnectionFactory instance from its JNDI
environment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A ConnectionFactory supports only one type of registry - at the present time, there are providers
available for both UDDI and ebXML registries. In order to ensure you create an instance of the

appropriate ConnectionFactory , set the system property

javax.xml.registry.ConnectionFactoryClass to the appropriate value, or make sure that the

ConnectionFactory class for the registry implementation that you need appears on your classpath

before any other implementations and that none of the first three steps in the previous list locates
another implementation.

Once you have a ConnectionFactory , use the setProperties() method to set property values and

then call either the createConnection() method or the createFederatedConnection() method to

get a connection to a JAXR provider. The following properties must be supported by all JAXR

providers:

javax.xml.registry.queryManagerURL

The URL required to connect to the query service provided by a registry. The query service is

usually an open, insecure service accessed over HTTP.
javax.xml.registry.lifeCycleManagerURL

The URL required to connect to the registry update service. The registry update service typically

requires a user to obtain a user ID and to authenticate when connecting. Registries may require

the use of a secure transport, such as HTTPS, to perform registry updates. If this property is not
specified, it defaults to the value of the javax.xml.registry.queryManagerURL property.

javax.xml.registry.semanticEquivalences

Allows pairs of Concepts to be made equivalent in the view of the registry provider. This facility
is used in the handling of postal addresses, as described in Chapter 7 .

javax.xml.registry.security.authenticationMethod

Specifies the authentication mechanism that the client would like to use when connecting to the

registry. Not all registries insist on authentication for queries, but most do so before allowing

registry updates. The JAXR specification defines property values for several possible

authentication schemes. JAXR providers and registries are not expected to support all of these
schemes, which are UDDI_GET_AUTHTOKEN , HTTP_BASIC , CLIENT_CERTIFICATE , and

MS_PASSPORT . You'll find a description of each of these schemes in Chapter 7 .

javax.xml.registry.uddi.maxRows

As its name suggests, this property is specific to UDDI registry providers and specifies the

maximum number of rows that should be returned in the result of a query operation.

javax.xml.registry.postalAddressScheme

Different registry types use different representations of postal addresses. The JAXR API, on the
other hand, provides an abstract view of a postal address that allows application code to be

independent of any specific registry. This property provides the identifier of a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ClassificationScheme that specifies the mapping between the fields of the postal address
scheme used by the registry and the virtual scheme provided by JAXR.

The createConnection() method creates a Connection object that can be used to communicate with

a single registry via a JAXR provider. The provider uses the values of the

javax.xml.registry.queryManagerURL and javax.xml.registry.lifeCycleManagerURL

properties to access the target registry when the JAXR client makes requests that require

communication with the registry itself. The createFederatedConnection() method returns a
FederatedConnection object that can be used to send the same query to more than one registry at the

same time and combine the responses that are received into a single result set. The

createFederatedConnection() method requires a Collection containing one or more Connection

objects that correspond to the registries to which the queries should be sent. Support for

FederatedConnection s is optional despite the fact that it is a level 0 feature, although this may
change in a future revision of the JAXR specification. A provider that does not support this feature

throws an UnsupportedCapabilityException from its createFederatedConnection() method.

Returned By

ConnectionFactory.newInstance()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DeclarativeQueryManager javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface DeclarativeQueryManager extends QueryManager {

// Public Instance Methods

 public abstract Query createQuery(int queryType, String queryString)

 throws InvalidRequestExceptionJAXRException; // L1

 public abstract BulkResponse executeQuery(Query query)

 throws JAXRException; // L1
}

DeclarativeQueryManager is a derived interface of QueryManager that provides the ability to search

the registry using queries expressed directly in one of the query languages that it supports, rather than

using a query generated as a result of calling one of the methods of the QueryManager or

BusinessQueryManager interfaces. A DeclarativeQueryManager can be obtained from the
RegistryService object of a level 1 JAXR provider.

The query languages that a DeclarativeQueryManager supports are implementation-dependent and

might include SQL-92, the ebXML filter query language, or XQuery. The createQuery() method

returns a Query object that encapsulates a specified query expressed in a given query language. An

InvalidRequestType exception is thrown if the JAXR provider does not support the requested query

language or if the query string appears to be invalid. Validation of the query string is optional. The
executeQuery() method performs a query described by a Query object and returns the results in the

form of a BulkResponse.

Returned By

RegistryService.getDeclarativeQueryManager()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DeleteException javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4 serializable checked

public class DeleteException extends RegistryException {

// Public Constructors
 public DeleteException();

 public DeleteException(Throwable cause);

 public DeleteException(String reason);

 public DeleteException(String reason, Throwable cause);
}

DeleteException is a subclass of RegistryException that is used to indicate a failure during a

registry delete operation. DeleteException is not thrown by any method - instead, it is stored within

a BulkResponse object returned from a method such as the deleteOrganizations() method of
BusinessLifeCycleManager. The affected object may be identified using the getErrorObjectKey()

method inherited from RegistryException.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FederatedConnection javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface FederatedConnection extends javax.xml.registry.Connection {
}

A FederatedConnection is a Connection that represents a collection of other Connections, some of
which may also be FederatedConnections. The FederatedConnection interface defines exactly the

same methods as Connection, but differs in the following respects:

It is created by calling the createFederatedConnection() method of ConnectionFactory,

which requires a Collection containing the Connection objects that will be grouped together by

the FederatedConnection.

When a request is made of a QueryManager obtained from a RegistryService corresponding to
a FederatedConnection, the query is sent to all of the individual registries and the results are

combined into a single BulkResponse, thus allowing the set of registries to be treated as one.

Updates to multiple registries grouped into a FederatedConnection are not allowed. An attempt

to get a reference to a LifeCycleManager using the methods of a RegistryService

corresponding to a FederatedConnection results in an UnsupportedCapabilityException.

JAXR providers are not required to support FederatedConnections despite the fact that it is a level 0

feature, although this may change in a future revision of the JAXR specification. Such providers throw
an UnsupportedCapabilityException from the createFederatedConnection() method of its

ConnectionFactory method.

Returned By

ConnectionFactory.createFederatedConnection()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FindException javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4 serializable checked

public class FindException extends RegistryException {

// Public Constructors
 public FindException();

 public FindException(Throwable cause);

 public FindException(String reason);

 public FindException(String reason, Throwable cause);
}

FindException is a subclass of RegistryException that is used to indicate a failure during a registry

search operation. FindException is not thrown by any method - instead, it is stored within a

BulkResponse object returned from a method such as the findOrganizations() method of
BusinessQueryManager.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FindQualifier javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface FindQualifier {

// Public Constants
 public static final String AND_ALL_KEYS;

 // ="andAllKeys"
 public static final String CASE_SENSITIVE_MATCH;

 // ="caseSensitiveMatch"
 public static final String COMBINE_CLASSIFICATIONS;

 // ="combineClassifications"
 public static final String EXACT_NAME_MATCH;

 // ="exactNameMatch"
 public static final String OR_ALL_KEYS;

 // ="orAllKeys"
 public static final String OR_LIKE_KEYS;

 // ="orLikeKeys"
 public static final String SERVICE_SUBSET;

 // ="serviceSubset"
 public static final String SORT_BY_DATE_ASC;

 // ="sortByDateAsc"
 public static final String SORT_BY_DATE_DESC;

 // ="sortByDateDesc"
 public static final String SORT_BY_NAME_ASC;

 // ="sortByNameAsc"
 public static final String SORT_BY_NAME_DESC;

 // ="sortByNameDesc"
 public static final String SOUNDEX;

 // ="soundex"
}

The FindQualifier interface defines constants that are used when performing registry search
operations to specify criteria such has how to combine multiple keys, whether the operation should

consider case, and whether the results should be sorted. Registry providers are required to implement

all qualifiers, apart from SOUNDEX, while non-UDDI providers are not required to implement

SERVICE_SUBSET and COMBINE_CLASSIFICATIONS.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

InvalidRequestException javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4 serializable checked

public class InvalidRequestException extends JAXRException {

// Public Constructors
 public InvalidRequestException();

 public InvalidRequestException(Throwable cause);

 public InvalidRequestException(String reason);

 public InvalidRequestException(String reason, Throwable cause);
}

InvalidRequestException is thrown to report an invalid request. For example, the JAXR reference

implementation throws this exception from the ConnectionFactory createConnection() method if

the property that specifies the authentication method is set to any value other than null or
UDDI_GET_AUTHTOKEN.

Thrown By

BusinessLifeCycleManager.{confirmAssociation(), unConfirmAssociation()},

DeclarativeQueryManager.createQuery(), LifeCycleManager.{createClassification(),

createClassificationScheme(), createObject()}, RegistryService.getBulkResponse()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JAXRException javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4 serializable checked

public class JAXRException extends Exception implements JAXRResponse {

// Public Constructors
 public JAXRException();

 public JAXRException(Throwable cause);

 public JAXRException(String reason);

 public JAXRException(String reason, Throwable cause);

// Methods Implementing JAXRResponse
 public String getRequestId();

 // constant default:null L0
 public int getStatus();

 // constant default:0 L0
 public boolean isAvailable() throws JAXRException;

 // constant default:true

// Public Methods Overriding Throwable
 public Throwable getCause();

 // default:null
 public String getMessage();

 // default:null

 public Throwable initCause(Throwable cause);

 // synchronized

// Protected Instance Fields
 protected Throwable cause;
}

JAXRException is a checked exception that can be thrown from many of the methods in the JAXR API.

JAXRException also implements the methods of the JAXRResponse interface, although there is no clear

reason why it should do so. In the reference implementation, these methods return fixed values that

indicate a completed request. Registry exceptions that result from errors detected by the JAXR provider

(that is, on the client side of the operation) are derived from JAXRException, while those that occur on
the registry side are reported as subclasses of RegistryException, which is itself derived from

JAXRException.

A JAXRException contains a text message that describes the reason for the exception, and an optional

Throwable that can be used to link to another exception as the root cause of this one. Both of these

attributes may be set at construction time. The initCause() method may be used to associate a

Throwable with a JAXRException after it is created, but may be called at most once and may not be
called at all if a non-null Throwable is supplied to the constructor. The getMessage() method

returns the message text set at construction time, or it returns the result of invoking the getMessage()

of the Throwable if no message text is supplied to the constructor. If, in this case, there is no associated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Throwable, then getMessage() returns null.

Subclasses

InvalidRequestException, RegistryException, UnexpectedObjectException,
UnsupportedCapabilityException

Thrown By

Too many methods to list.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JAXRResponse javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface JAXRResponse {

// Public Constants
 public static final int STATUS_FAILURE;

 // =2
 public static final int STATUS_SUCCESS;

 // =0
 public static final int STATUS_UNAVAILABLE;

 // =3
 public static final int STATUS_WARNING;

 // =1

// Public Instance Methods
 public abstract String getRequestId() throws JAXRException;

 // L0
 public abstract int getStatus() throws JAXRException;

 // L0

 public abstract boolean isAvailable() throws JAXRException; // L0
}

JAXRResponse is an interface that defines methods and constants that provide information about a
response to a JAXR query or update operation. Application code does not deal with JAXRResponse

directly, but rather with JAXRException or BulkResponse, which both implement its methods. How

these methods are used depends on whether the Connection on which the original request was made is

set to operate in synchronous or asynchronous mode. Refer to the description of the BulkResponse
interface for details.

Implementations

BulkResponse, JAXRException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LifeCycleManager javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface LifeCycleManager {

// Public Constants
 public static final String ASSOCIATION;

 // ="Association"
 public static final String AUDITABLE_EVENT;

 // ="AuditableEvent"
 public static final String CLASSIFICATION;

 // ="Classification"
 public static final String CLASSIFICATION_SCHEME;

 // ="ClassificationScheme"
 public static final String CONCEPT;

 // ="Concept"
 public static final String EMAIL_ADDRESS;

 // ="EmailAddress"
 public static final String EXTERNAL_IDENTIFIER;

 // ="ExternalIdentifier"
 public static final String EXTERNAL_LINK;

 // ="ExternalLink"
 public static final String EXTRINSIC_OBJECT;

 // ="ExtrinsicObject"
 public static final String INTERNATIONAL_STRING;

 // ="InternationalString"
 public static final String KEY;

 // ="Key"
 public static final String LOCALIZED_STRING;

 // ="LocalizedString"
 public static final String ORGANIZATION;

 // ="Organization"
 public static final String PERSON_NAME;

 // ="PersonName"
 public static final String POSTAL_ADDRESS;

 // ="PostalAddress"
 public static final String REGISTRY_ENTRY;

 // ="RegistryEntry"
 public static final String REGISTRY_PACKAGE;

 // ="RegistryPackage"
 public static final String SERVICE;

 // ="Service"
 public static final String SERVICE_BINDING;

 // ="ServiceBinding"
 public static final String SLOT;

 // ="Slot"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static final String SPECIFICATION_LINK;

 // ="SpecificationLink"
 public static final String TELEPHONE_NUMBER;

 // ="TelephoneNumber"
 public static final String USER;

 // ="User"
 public static final String VERSIONABLE;

 // ="Versionable"

// Public Instance Methods
 public abstract javax.xml.registry.infomodel.Association createAssociation

 (javax.xml.registry.infomodel.RegistryObject targetObject,

 javax.xml.registry.infomodel.Concept associationType)

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.Classification createClassification

 (javax.xml.registry.infomodel.Concept concept)

 throws JAXRExceptionInvalidRequestException; // L0
 public abstract javax.xml.registry.infomodel.Classification createClassification

 (javax.xml.registry.infomodel.ClassificationScheme scheme,

 javax.xml.registry.infomodel.InternationalString name, String value)

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.Classification createClassification

 (javax.xml.registry.infomodel.ClassificationScheme scheme,

 String name, String value)

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.ClassificationScheme createClassificationScheme

 (javax.xml.registry.infomodel.Concept concept)

 throws JAXRExceptionInvalidRequestException; // L0
 public abstract javax.xml.registry.infomodel.ClassificationScheme createClassificationScheme

 (javax.xml.registry.infomodel.InternationalString name,

 javax.xml.registry.infomodel.InternationalString description)

 throws JAXRExceptionInvalidRequestException; // L0
 public abstract javax.xml.registry.infomodel.ClassificationScheme createClassificationScheme

 (String name, String description)

 throws JAXRExceptionInvalidRequestException; // L0
 public abstract javax.xml.registry.infomodel.Concept createConcept

 (javax.xml.registry.infomodel.RegistryObject parent,

 String name, String value)

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.Concept createConcept

 (javax.xml.registry.infomodel.RegistryObject parent,

 javax.xml.registry.infomodel.InternationalString name, String value)

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.EmailAddress createEmailAddress

 (String address)

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.EmailAddress createEmailAddress

 (String address, String type)

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.ExternalIdentifier createExternalIdentifier

 (javax.xml.registry.infomodel.ClassificationScheme identificationScheme,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 javax.xml.registry.infomodel. InternationalString name, String value)

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.ExternalIdentifier createExternalIdentifier

 (javax.xml.registry.infomodel.ClassificationScheme identificationScheme,

 String name, String value)

 throws JAXRException; // L0

 public abstract javax.xml.registry.infomodel.ExternalLink createExternalLink(String externalURI,

 javax.xml.registry.infomodel.InternationalString description)

 throws JAXRException; // L0

 public abstract javax.xml.registry.infomodel.ExternalLink createExternalLink(String externalURI,

 String description)

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.ExtrinsicObject createExtrinsicObject

 (javax.activation.DataHandler repositoryItem)

 throws JAXRException; // L1
 public abstract javax.xml.registry.infomodel.InternationalString createInternationalString()

 throws JAXRException; // L0

 public abstract javax.xml.registry.infomodel.InternationalString createInternationalString(String s)

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.InternationalString createInternationalString

 (Locale l, String s)

 throws JAXRException; // L0

 public abstract javax.xml.registry.infomodel.Key createKey(String id)

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.LocalizedString createLocalizedString

 (Locale l, String s)

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.LocalizedString createLocalizedString

 (Locale l, String s, String charSetName)

 throws JAXRException; // L0

 public abstract Object createObject(String interfaceName)

 throws JAXRExceptionInvalidRequestExceptionUnsupportedCapabilityException; // L0
 public abstract javax.xml.registry.infomodel.Organization createOrganization

 (javax.xml.registry.infomodel.InternationalString name)

 throws JAXRException; // L0

 public abstract javax.xml.registry.infomodel.Organization createOrganization(String name)

 throws JAXRException; // L0

 public abstract javax.xml.registry.infomodel.PersonName createPersonName(String fullName)

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.PersonName createPersonName

 (String firstName, String middleName,

 String lastName) throws JAXRException; // L0

 public abstract javax.xml.registry.infomodel.PostalAddress createPostalAddress(String streetNumber,

 String street,

 String city,String stateOrProvince,

 String country, String postalCode,

 String type) throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.RegistryPackage createRegistryPackage

 (javax.xml.registry.infomodel.InternationalString name)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 throws JAXRException; // L1
 public abstract javax.xml.registry.infomodel.RegistryPackage createRegistryPackage

 (String name)

 throws JAXRException; // L1

 public abstract javax.xml.registry.infomodel.Service createService (javax.xml.registry.infomodel.InternationalString name)

 throws JAXRException; // L0

 public abstract javax.xml.registry.infomodel.Service createService(String name)

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.ServiceBinding createServiceBinding()

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.Slot createSlot

 (String name,

 Collection values, String slotType)

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.Slot createSlot

 (String name, String value,

 String slotType)

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.SpecificationLink createSpecificationLink()

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.TelephoneNumber createTelephoneNumber()

 throws JAXRException; // L0
 public abstract javax.xml.registry.infomodel.User createUser()

 throws JAXRException; // L0

 public abstract BulkResponse deleteObjects(Collection keys)

 throws JAXRException; // L1

 public abstract BulkResponse deleteObjects(Collection keys, String objectType)

 throws JAXRException; // L0

 public abstract BulkResponse deprecateObjects(Collection keys)

 throws JAXRException; // L1
 public abstract RegistryService getRegistryService()

 throws JAXRException; // L0

 public abstract BulkResponse saveObjects(Collection objects)

 throws JAXRException; // L0

 public abstract BulkResponse unDeprecateObjects(Collection keys)

 throws JAXRException; // L1
}

The LifeCycleManager interface provides the methods necessary to create, update, remove, and

deprecate objects in the registry. JAXR clients that make use of these methods usually need to
authenticate to the registry by supplying valid credentials using the setCredentials() method of

ConnectionFactory , and may be required to use a secure transport, such as HTTPS.

The createXXX() methods allow you to create an in-memory representation of a new object of a

given type. In order to build a set of related registry objects, you would use the appropriate factory

methods to create the objects and then link them together using the methods that they provide for this

purpose. None of these operations affect the registry until the saveObjects() method is called. This
method requires a Collection of RegistryObject s that are to be saved. For each object in this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

collection, a new registry entry is created if it did not already exist, or an existing entry is updated to
reflect the state of the object supplied in the collection. In cases in which one object points to another

(such as an Organization referring to a Service), the process of saving the first object also creates or

updates all of its dependents. The BulkResponse returned by the saveObjects() method contains the

keys for the objects that were saved. Note that the RegistryObject s themselves are not automatically

updated with these keys. If an error occurs while saving an object, a SaveException is included in the
BulkResponse to indicate the error. The BusinessLifeCycleManager interface provides additional

methods that let you save objects by type.

The deleteObjects() method requires a Collection containing the keys of registry objects to be

deleted. The BulkResponse returned from this method contains the keys of those objects that were

deleted and possibly DeleteException s indicating deletion failures. The BusinessLifeCycleManager

interface provides additional methods that let you delete objects by type.

The level 1 deprecateObjects() and undeprecateObjects() methods allow a registry client to
change the deprecation status of one or more registry objects given by their keys. An object that is

deprecated may still be used and referred to by other registry objects, but the creation of new links to

them from other objects in the registry results in a JAXRException with a

java.lang.IllegalStateException as its root cause.

The LifeCycleManager interface also defines constants that represent each of the types of registry

object defined in the javax.xml.registry.infomodel package. These constants are required as
arguments to some method calls, such as the getRegistryObject() and getRegistryObjects()

methods in the QueryManager interface.

Implementations

BusinessLifeCycleManager

Returned By

javax.xml.registry.infomodel.RegistryObject.getLifeCycleManager()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Query javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface Query {

// Public Constants
 public static final int QUERY_TYPE_EBXML_FILTER_QUERY;

 // =2
 public static final int QUERY_TYPE_SQL;

 // =0
 public static final int QUERY_TYPE_XQUERY;

 // =1

// Public Instance Methods
 public abstract int getType() throws JAXRException;

 // L1
 public abstract String toString();

 // L1
}

The Query interface provides a way to encapsulate a registry query to be handled by a

DeclarativeQueryManager. A Query object is created by calling the createQuery() method of the

DeclarativeQueryManager whose executeQuery() method is eventually used to perform the search

operation that it specifies. The query manager may choose to return a private object implementing

Query that represents the query string in a form that is suitable for the means that are eventually used to
action it. The getType() methods return the type of query that the Query object represents (such as

QUERY_TYPE_SQL), while toString() returns a string representation of the query.

DeclarativeQueryManagers are supported only by level 1 providers, but only queries of type

QUERY_TYPE_EBXML_FILTER_QUERY are required to be supported.

Passed To

DeclarativeQueryManager.executeQuery()

Returned By

DeclarativeQueryManager.createQuery()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

QueryManager javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface QueryManager {

// Public Instance Methods
 public abstract javax.xml.registry.infomodel.RegistryObject

 getRegistryObject(String id)

 throws JAXRException; // L1

 public abstract javax.xml.registry.infomodel.RegistryObject getRegistryObject(String id,

String objectType)

 throws JAXRException; // L0

 public abstract BulkResponse getRegistryObjects() throws JAXRException; // L0

 public abstract BulkResponse getRegistryObjects(String objectType)

 throws JAXRException; // L0

 public abstract BulkResponse getRegistryObjects(Collection objectKeys)

 throws JAXRException; // L1

 public abstract BulkResponse getRegistryObjects(Collection objectKeys,

 String objectTypes)

 throws JAXRException; // L0
 public abstract RegistryService getRegistryService()

 throws JAXRException; // L0
}

QueryManager provides methods that allow objects in the registry to be retrieved based on type and/or

identifier. The only way to obtain a QueryManager object is by calling the getBusinessQueryManager(

) or the getDeclarativeQueryManager() method on RegistryService , which both return one of

the two derived interfaces of QueryManager defined by the API. The QueryManager
getRegistryService() method returns the RegistryService object from which it was obtained.

The zero-argument getRegistryObjects() returns a BulkResponse containing all of the objects in

the registry belonging to the calling user, while getRegistryObject(String objectType) returns the

subset of those objects that are of a given type (such as LifeCycleManager.ORGANIZATION). Both of

these methods throw a JAXRException if the connection does not have valid credentials associated with

it, allowing the calling user to be identified. The getRegistryObjects(Collection keys) method
returns all of the objects in the registry whose javax.xml.registry.infomodel.Key values appear in

the collection passed as its argument, while the getRegistryObject(String id) method returns the

single object whose identifier (i.e., the result of calling the getId() method on the object's Key) is

supplied. Neither of these methods uses the caller's identity as an implicit filter. However, they can be

used only with a level 1 registry provider. To get similar functionality from a level 0 provider, you need
to specify the type of registry object to be retrieved, in the form of a constant defined by the

LifeCycleManager interface, as well as the keys or registry object identifier.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Implementations

BusinessQueryManager , DeclarativeQueryManager

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RegistryException javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4 serializable checked

public class RegistryException extends JAXRException {

// Public Constructors
 public RegistryException();

 public RegistryException(Throwable cause);

 public RegistryException(String reason);

 public RegistryException(String reason, Throwable cause);

// Public Instance Methods
 public javax.xml.registry.infomodel.Key getErrorObjectKey()

 throws JAXRException; // default:null

 public void setErrorObjectKey(javax.xml.registry.infomodel.Key key)
 throws JAXRException;
}

RegistryException is a subclass of JAXRException that is used to report errors that occur on the

registry side of a connection during a JAXR query or update operation. RegistryExceptions are

returned to a JAXR client as part of a BulkResponse rather than being thrown from a JAXR API
method. When a RegistryException reports an error relating to a single object in the registry (such as

a failure to save or delete that object), the provider may use the setErrorObjectKey() key method to
associate the javax.xml.registry.infomodel.Key that uniquely identifies the object with the

exception. The getErrorObjectKey() method may be used to retrieve the key, but returns null if it

has not been set, as would be the case, for example, if an error were detected during a find operation.

Subclasses

DeleteException, FindException, SaveException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RegistryService javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface RegistryService {

// Property Accessor Methods (by property name)
 public abstract BusinessLifeCycleManager getBusinessLifeCycleManager()

 throws JAXRException; // L0
 public abstract BusinessQueryManager getBusinessQueryManager()

 throws JAXRException; // L0
 public abstract CapabilityProfile getCapabilityProfile()

 throws JAXRException; // L0
 public abstract DeclarativeQueryManager getDeclarativeQueryManager()

 throws JAXRExceptionUnsupportedCapabilityException; // L1
 public abstract javax.xml.registry.infomodel.ClassificationScheme getDefaultPostalScheme()

 throws JAXRException; // L0

// Public Instance Methods

 public abstract BulkResponse getBulkResponse(String requestId)

 throws InvalidRequestExceptionJAXRException; // L0

 public abstract String makeRegistrySpecificRequest(String request)

 throws JAXRException; // L0
}

This interface provides methods that are used to access the principal services provided by a registry

provider. To obtain a RegistryService object, first get a Connection or FederatedConnection from

a ConnectionFactory , then call its getRegistryService() method.

The most important methods in this interface are getBusinessQueryManager() and

getBusinessLifeCycleManager() . The former returns a BusinessQueryManager object associated

with the registry whose URL is given by the javax.xml.registry.queryManagerURL property of the
ConnectionFactory used when creating the RegistryService . BusinessQueryManager lets you

query the content of the registry. The latter method returns a BusinessLifeCycleManager that can be

used to make changes to the registry whose URL is given by the

javax.xml.registry.lifeCycleManagerURL property. The getDeclarativeQueryManager method,

which is supported only by level 1 providers, returns an object that you can use to form and send
queries expressed in a query language such as SQL-92 or the ebXML filter query language.

The getCapabilityProfile() method returns an object that can be used to find out which version of

the JAXR specification the provider implements and its capability level. The

getDefaultPostalScheme() method returns a ClassificationScheme that describes the mapping of

fields in a postal address as used within the registry to the fields of the generic postal address used by

the JAXR provider itself. Refer to Chapter 7 for a discussion of postal addresses. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getBulkResponse() method is supplied the unique identifier of a previously initiated asynchronous
request, and returns the BulkResponse that contains the responses from that request, which may still be

in progress and therefore incomplete. See the description of the BulkResponse for a discussion of

asynchronous request handling. The makeRegistrySpecificRequest() method can be used to send a

request expressed as an XML message in the format expected by the target registry, and to receive the

XML response.

Returned By

javax.xml.registry.Connection.getRegistryService() ,

LifeCycleManager.getRegistryService() , QueryManager.getRegistryService()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SaveException javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4 serializable checked

public class SaveException extends RegistryException {

// Public Constructors
 public SaveException();

 public SaveException(Throwable cause);

 public SaveException(String reason);

 public SaveException(String reason, Throwable cause);
}

SaveException is a subclass of RegistryException that is used to indicate a failure to save an object

in the registry. SaveException is not thrown by any method - instead, it is stored within a

BulkResponse object returned from a method such as the saveOrganizations() method of
BusinessLifeCycleManager. The affected object may be identified using the getErrorObjectKey()

method inherited from RegistryException.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UnexpectedObjectException javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4 serializable checked

public class UnexpectedObjectException extends JAXRException {

// Public Constructors
 public UnexpectedObjectException();

 public UnexpectedObjectException(Throwable cause);

 public UnexpectedObjectException(String reason);

 public UnexpectedObjectException(String reason, Throwable cause);
}

UnexpectedObjectException is an exception that is thrown by a JAXR provider when asked to

perform an operation using a collection of objects that are not of the type that the operation requires.

For example, the saveOrganizations() method of BusinessLifeCycleManager requires a
Collection of objects of type Organization. If an object in the Collection is not of this type, an

UnexpectedObjectException is thrown.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UnsupportedCapabilityException javax.xml.registry

JAXR 1.0; JWSDP 1.0, J2EE 1.4 serializable checked

public class UnsupportedCapabilityException extends JAXRException {

// Public Constructors
 public UnsupportedCapabilityException();

 public UnsupportedCapabilityException(Throwable cause);

 public UnsupportedCapabilityException(String reason);

 public UnsupportedCapabilityException(String reason, Throwable cause);
}

UnsupportedCapabilityException is thrown when an optional method that a JAXR provider does

not implement is invoked. For example, the createFederatedConnection() method of

ConnectionFactory may throw this exception, since support for FederatedConnections is optional.

Thrown By

LifeCycleManager.createObject(), RegistryService.getDeclarativeQueryManager()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 12. The javax.xml.registry.infomodel Package

Package javax.xml.registry.infomodel

Association

AuditableEvent

Classification

ClassificationScheme

Concept

EmailAddress

ExtensibleObject

ExternalIdentifier

ExternalLink

ExtrinsicObject

InternationalString

Key

LocalizedString

Organization

PersonName

PostalAddress

RegistryEntry

RegistryObject

RegistryPackage

Service

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ServiceBinding

Slot

SpecificationLink

TelephoneNumber

URIValidator

User

Versionable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Package javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

The javax.xml.registry.infomodel package contains the interfaces that represent the objects in the

registry information model provided by a JAXR provider. The information model is transparently

mapped by the provider to the real information model used by the registry to which a JAXR client is

connected. Instances of registry objects, which are realized by concrete classes supplied by JAXR
implementations, can be created using methods of the BusinessLifeCycleManager interface or

returned as the result of a registry search performed using a BusinessQueryManager. Both of these

interfaces are defined in the javax.xml.registry package.

From an inheritance point of view, RegistryObject is the most important interface in this package,

since it is the base from which all other objects in the registry are derived. The method of this interface

allows an object to have a name, a description, a unique key used by the registry to identify it, and a set
of optional attributes that can be used as search criteria by JAXR clients, such as classifications and

external identifiers. From a structural viewpoint, the registry data for a business is rooted in its

Organization object, from which a registry client can obtain contact information and discover the

services provided by the Organization. A business publishes its details in the registry by creating a

new Organization object and adding to it the required Services, Classifications, contact
information, and other attributes, and then realizing the same structure in the registry using the

saveOrganizations() method of BusinessLifeCycleManager. Each object in the registry is tagged

with an identifier for the user that created it and can only be modified by its owner. In a level 1 registry,

the life cycle of an object can be tracked by viewing an audit trail that is automatically created by the

registry as changes are made to the object.

Interfaces

public interface Association extends RegistryObject;
public interface AuditableEvent extends RegistryObject;
public interface Classification extends RegistryObject;
public interface ClassificationScheme extends RegistryEntry;
public interface Concept extends RegistryObject;
public interface EmailAddress;
public interface ExtensibleObject;
public interface ExternalIdentifier extends RegistryObject;
public interface ExternalLink extends RegistryObject, URIValidator;
public interface ExtrinsicObject extends RegistryEntry;
public interface InternationalString;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public interface Key;
public interface LocalizedString;
public interface Organization extends RegistryObject;
public interface PersonName;
public interface PostalAddress extends ExtensibleObject;
public interface RegistryEntry extends RegistryObject, Versionable;
public interface RegistryObject extends ExtensibleObject;
public interface RegistryPackage extends RegistryEntry;
public interface Service extends RegistryEntry;
public interface ServiceBinding extends RegistryObject, URIValidator;
public interface Slot;
public interface SpecificationLink extends RegistryObject;
public interface TelephoneNumber;
public interface URIValidator;
public interface User extends RegistryObject;
public interface Versionable;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Association javax.xml.registry.infomode

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface Association extends RegistryObject {

// Property Accessor Methods (by property name)
 public abstract Concept getAssociationType()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setAssociationType(Concept associationType)

 throws javax.xml.registry.JAXRException; //L0
 public abstract boolean isConfirmed()

 throws javax.xml.registry.JAXRException; //L0
 public abstract boolean isConfirmedBySourceOwner()

 throws javax.xml.registry.JAXRException; //L0
 public abstract boolean isConfirmedByTargetOwner()

 throws javax.xml.registry.JAXRException; //L0
 public abstract boolean isExtramural()

 throws javax.xml.registry.JAXRException; //L0
 public abstract RegistryObject getSourceObject()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setSourceObject(RegistryObject srcObject)

 throws javax.xml.registry.JAXRException; //L0
 public abstract RegistryObject getTargetObject()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setTargetObject(RegistryObject targetObject)

 throws javax.xml.registry.JAXRException; //L0
}

An Association represents an assertion of a relationship of some kind between two objects in the

registry, one of which is referred to as the source object, and the other as the target object. To create an

Association , use the LifeCycleManager createAssociation() method, which requires a reference

to the target object and an association type. The source object is set by adding the Association to it

using the RegistryObject addAssociation() method. As with other registry objects, an
Association is not visible in the registry until it has been saved using the

BusinessLifeCycleManager saveAssociations() method; in some cases, this is not sufficient to

make the association visible, as described shortly.

The Association type is specified using a Concept . The JAXR specification defines an enumerated

type containing a set of standard Association types. There is a full list of these types listed under

"Associations" in Chapter 7 . You can obtain the appropriate Concept for the type of association you
would like to create using the findConceptByPath() method of BusinessQueryManager , which is

described in the reference section for the Concept interface, later in this chapter. To form the path

needed to locate the Concept , you must have the identifier of a ClassificationScheme called

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AssociationType , which represents the enumeration that defines all of the types. The following code
extract demonstrates how to get this ClassificationScheme and then use it to find the Concept that

represents the association type Uses . It is assumed that the variable bqm refers to an instance of

BusinessQueryManager .

ClassificationScheme types = bqm.findClassificationSchemeByName(null, "AssociationType");
String path = "/" + types.getKey().getId() + "/Uses";
Concept uses = bqm.findConceptByPath(path);

Some JAXR providers allow you to use the name of the enumeration in the path supplied to the

findConceptByPath() method, thus removing the need to search for the ID of the

ClassificationScheme . In this case, you can use the following, much simpler code:

Concept uses = bqm.findConceptByPath("/AssociationType/Uses");

The next step is to create an Association by specifying the type and the target object. The following

code uses the BusinessLifeCycleManager referred to by the variable blcm to create an association of

type uses with an object referred to by the variable targetObject as its target:

Association association = blcm.createAssociation(targetObject, uses);

Finally, to complete the association, add the Association object to the source object:

sourceObject.addAssociation(association);

There is a distinction made in the API between the source and target objects because associations are

directional. The Uses association type is an example of this - the Assocation just created conveys the

fact that the source object "uses" the target object, rather than the other way around. If, at some point in
the future, the association needs to be broken, this can be done by removing it from the source object

using the removeAssociation() method. The source and target objects and the association type can

be obtained by calling the getSourceObject() , getTargetObject() , and getAssociationType(

) methods, respectively, and can be changed using the corresponding setter methods. Changing the

source object using setSourceObject() implicitly removes the Association from the original
source. Note that a registry object may be the source and/or target of any number of Association s at

the same time. You can search for existing Association s using the findAssociations() and

findCallerAssociations() methods of BusinessQueryManager .

Association s can be categorized as either intramural or extramural. An intramural Association is

formed when the source and target objects are owned by the same registry User and the Association is

created by that same User . Such an Association can be considered a correct factual assertion, and is

therefore said to be confirmed as soon as it is created. An extramural Association is one in which at
least one of the source and target objects in not owned by the User that creates it. Such an Association

is unconfirmed, since it has not been agreed to by the owner of both objects and is not visible to other

registry users until it is confirmed by them. The isExtramural() method can be used to determine

the intramural or extramural status of an Association . An Association can be confirmed using the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

confirmAssociation() method of BusinessLifeCycleManager , and confirmation can be
withdrawn using the unconfirmAssociation() method. To find out whether an extramural

Association is confirmed, use the isConfirmed() , isConfirmedBySourceOwner() , and

isConfirmedByTargetOwner() methods, which all return true when applied to an intramural

Association .

Passed To

javax.xml.registry.BusinessLifeCycleManager.{confirmAssociation() ,

unConfirmAssociation()} , RegistryObject.{addAssociation() , removeAssociation()}

Returned By

javax.xml.registry.LifeCycleManager.createAssociation()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AuditableEvent javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface AuditableEvent extends RegistryObject {

// Public Constants
 public static final int EVENT_TYPE_CREATED;

 //=0
 public static final int EVENT_TYPE_DELETED;

 //=1
 public static final int EVENT_TYPE_DEPRECATED;

 //=2
 public static final int EVENT_TYPE_UNDEPRECATED;

 //=5
 public static final int EVENT_TYPE_UPDATED;

 //=3
 public static final int EVENT_TYPE_VERSIONED;

 //=4

// Public Instance Methods

 public abstract int getEventType() throws javax.xml.registry.JAXRException; //L1
 public abstract RegistryObject getRegistryObject(
) throws javax.xml.registry.JAXRException;

 public abstract java.sql.Timestamp getTimestamp() throws javax.xml.registry.JAXRException; //L1

 public abstract User getUser() throws javax.xml.registry.JAXRException; //L1
}

Level 1 registries support the use of an audit trail that records changes made to objects in the registry.

Each RegistryObject has its own audit trail that is composed of AuditableEvent s. To retrieve the

audit trail for a particular RegistryObject , use the getAuditTrail() method. The audit trail is

managed by the registry itself; therefore, there is no API that allows client programs to explicitly create

or remove entries.

The getEventType() method returns a value that indicates the type of event that the AuditableEvent

represents. The JAXR API provides for auditing of object creation, deletion, deprecation,
undeprecation, versioning, and updates. The getRegistryObject() method returns a reference to the

object that the event relates to, while the getTimestamp() method gets the time at which the event

occurred, in the form of a java.sql.Timestamp object. The getUser() method returns the User

object for the user that causes the event to be generated. Since registry updates require authentication, it

is always possible to record the identity of any user that causes a registry object to be modified.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Classification javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface Classification extends RegistryObject {

// Property Accessor Methods (by property name)
 public abstract ClassificationScheme getClassificationScheme()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setClassificationScheme(ClassificationScheme classificationScheme)

 throws javax.xml.registry.JAXRException; //L0
 public abstract RegistryObject getClassifiedObject()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setClassifiedObject(RegistryObject classifiedObject)

 throws javax.xml.registry.JAXRException; //L0
 public abstract Concept getConcept()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setConcept(Concept concept)

 throws javax.xml.registry.JAXRException; //L0
 public abstract boolean isExternal()

 throws javax.xml.registry.JAXRException; //L0
 public abstract String getValue()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setValue(String value)

 throws javax.xml.registry.JAXRException; //L0
}

A Classification is an object that categorizes the RegistryObject to which it is attached according

to the ClassificationScheme to which it belongs. There are several standard classification schemes in

use, such as NAICS and UNSPSC, which are widely supported by registries and can be used by

businesses to make it easier for registry searches to locate their services. For example, a book publisher

might label its Organization entry and its services with the classification Book Publisher , which is
part of the NAICS classification scheme.

In order to categorize a RegistryObject , use one of the LifeCycleManager createClassification(

) methods and then call the addClassification() or addClassifications() method of the target

RegistryObject . Note that a Classification instance can be associated with only one object in the

registry at any given time, so it is necessary to create a new instance for each object to be classified.

The object that a Classification is associated with can be obtained from its getClassifiedObject(
) method and set using setClassifiedObject() , which is called on your behalf when you use

addClassification() or addClassifications() .

There are two types of Classification : internal and external. The type of a Classification is the

same as that of the scheme to which it belongs, as described in the reference section for the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ClassificationScheme interface later in this chapter. An internal Classification is defined by the
Concept from the ClassificationScheme that appears as the node in which it corresponds to the

classification hierarchy. Given a ClassificationScheme , you can use the findConceptByPath()

method of BusinessQueryManager to obtain the required Concept and then use the single-argument

variant of the LifeCycleManager createClassification() method to create the corresponding

Classification object. The following code extract illustrates this: bqm and blcm are instances of
BusinessQueryManager and BusinessLifeCycleManager , respectively:

ClassificationScheme naics = bqm.findClassificationSchemeByName(null, "%naics%");
String path = "/" + naics.getKey().getId() + "/51/511/5111/51113";
Concept publisherConcept = bqm.findConceptByPath(path);
Classification bookPublishers = blcm.createClassification(publisherConcept);

This code creates a Classification that refers to the "Book Publishers" category of the NAICS
classification scheme, which is supported as an internal classification scheme by the JAXR provider in

the reference implementation.

An external Classification simply has an associated name and value, and is created using one of the
other two createClassification() methods of LifeCycleManager :

// Create external classification
ClassificationScheme naics = bqm.findClassificationSchemeByName(null, "%naics%");
Classification bookPublishers = blcm.createClassification(naics, "Book Publishers", "51113");

Here, you need only to specify the name of the classification ("Book Publishers") and its value

("51113"). Using external classifications is more error-prone than internal classifications because there

is no way for the registry to verify that the values supplied are valid, whereas an internal classification

can only be created from a Concept that is part of a (presumably trusted) internal

ClassificationScheme .

You can get or set the Concept associated with an internal Classification using the getConcept()
and setConcept() methods. For an external Classification , use the getValue() and setValue(

) methods instead. In the case of the external Classification created previously, the getValue()

method returns "51113". The name attribute ("Book Publishers") can be retrieved using the getName(

) method inherited from RegistryObject . You can use the isExternal() method to determine

whether a Classification is external or internal and, hence, which of these sets of methods you need
to use.

Passed To

RegistryObject.{addClassification() , removeClassification()}

Returned By

http://lib.ommolketab.ir
http://lib.ommolketab.ir

javax.xml.registry.LifeCycleManager.createClassification()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ClassificationScheme javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface ClassificationScheme extends RegistryEntry {

// Public Constants
 public static final int VALUE_TYPE_EMBEDDED_PATH;

 //=1
 public static final int VALUE_TYPE_NON_UNIQUE;

 //=2
 public static final int VALUE_TYPE_UNIQUE;

 //=0

// Property Accessor Methods (by property name)
 public abstract int getChildConceptCount()

 throws javax.xml.registry.JAXRException; //L0
 public abstract Collection getChildrenConcepts()

 throws javax.xml.registry.JAXRException; //L0
 public abstract Collection getDescendantConcepts()

 throws javax.xml.registry.JAXRException; //L0
 public abstract boolean isExternal()

 throws javax.xml.registry.JAXRException; //L0
 public abstract int getValueType()

 throws javax.xml.registry.JAXRException; //L1

 public abstract void setValueType(int valueType)

 throws javax.xml.registry.JAXRException; //L1

// Public Instance Methods

 public abstract void addChildConcept(Concept concept)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void addChildConcepts(Collection concepts)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeChildConcept(Concept concept)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeChildConcepts(Collection concepts)

 throws javax.xml.registry.JAXRException; //L0
}

A ClassificationScheme represents a hierarchy of related classifications that can be used to

categorize objects in a registry. There are several commonly used classification schemes, such as

NAICS, ISO-3166, and UNSPSC, that can be used to describe a business or service in various different

ways. The NAICS scheme, for example, is used to categorize objects by their business type, such as

"Book Publisher," whereas the ISO-3166 is used to denote geographical location. By associating
elements of both schemes (represented in the JAXR model by Classification objects) with a

business, it is possible to indicate that your Organization is a U.S.-based book publisher in such a way

that potential clients could search for items tagged with these attributes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A ClassificationScheme is hierarchical, with broader classifications appearing toward the root of the

hierarchy and more specific ones toward the leaf nodes. The structure of the hierarchy may be known to

the registry and represented as a hierarchy of Concepts, in which each Concept represents a single
classification node. Such a ClassificationScheme is referred to as an internal scheme. An internal

scheme has the advantage that you can use the JAXR API to navigate the Concept hierarchy to find out

what classifications are available, and you can check whether a classification that claims to be within

the scheme actually exists. By contrast, an external ClassificationScheme's existence is known to the

registry, but its structure is not. As a result, the registry cannot check whether classifications that claim
to be part of an external scheme are valid, and cannot provide a way to discover all of the valid

classifications.

You can use the findClassificationSchemes() and findClassificationSchemeByName()

methods of BusinessLifeCycleManager to look up a ClassificationScheme, as the following code
extract illustrates for the NAICS scheme:

ClassificationScheme naics = bqm.findClassificationSchemeByName(null,
"%naics%");

To create a new scheme, use one of the createClassificationScheme() methods of

LifeCycleManager:

ClassificationScheme myScheme = blcm.
createClassificationSchemeByName("MyScheme", "My Private Scheme");

If your scheme is going to be internal, you need to create the Concepts that represent the classification

nodes and link them together to form the required structure. The top-level nodes can then be added to

the ClassificationScheme using the addChildConcept() or addChildConcepts() methods. You
can navigate the structure of an internal scheme using its getChildrenConcepts() and

getDescendentConcepts() methods, together with the methods of Concept that allow its children

and parents to be discovered. An external scheme has no internal structure known to the registry and

therefore does not need to be constructed in the same way. Note that some registries, in particular the

UDDI V2 registry, do not support the dynamic definition of internal classification schemes so that,
although you can use the JAXR API to build one, you cannot save it. JAXR providers are required

instead to provide a client-side mechanism that simulates the existence of custom internal classification

schemes, although the exact mechanism is implementation-dependent. The reference implementation

uses an XML file to represent such a classification scheme, as described in Chapter 7. Custom internal

classification schemes can be created and stored in an ebXML registry as just described.

The getValueType() and setValueType() methods can be used to get and set an attribute that
describes the value parts of the nodes in the scheme hierarchy. The following values are defined:

VALUE_TYPE_UNIQUE

Each node in the ClassificationScheme hierarchy has a unique value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VALUE_TYPE_NON_UNIQUE

More than one node in the hierarchy may have the same value, although any two nodes belonging
to the same parent must still have distinct values. As a result, to uniquely identify a classification

within such a scheme, you may need the entire path from the node to the root.

VALUE_TYPE_EMBEDDED_PATH

The value embeds the path from its node to the root of the scheme. This guarantees, of course,

that the value is unique.

Passed To

javax.xml.registry.LifeCycleManager.{createClassification(),

createExternalIdentifier()}, Classification.setClassificationScheme(),
ExternalIdentifier.setIdentificationScheme(), PostalAddress.setPostalScheme()

Returned By

javax.xml.registry.BusinessQueryManager.findClassificationSchemeByName(),

javax.xml.registry.LifeCycleManager.createClassificationScheme(),

javax.xml.registry.RegistryService.getDefaultPostalScheme(),
Classification.getClassificationScheme(), Concept.getClassificationScheme(),

ExternalIdentifier.getIdentificationScheme(), PostalAddress.getPostalScheme()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Concept javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface Concept extends RegistryObject {

// Property Accessor Methods (by property name)
 public abstract int getChildConceptCount()

 throws javax.xml.registry.JAXRException; //L0
 public abstract Collection getChildrenConcepts()

 throws javax.xml.registry.JAXRException; //L0
 public abstract ClassificationScheme getClassificationScheme()

 throws javax.xml.registry.JAXRException; //L0
 public abstract Collection getDescendantConcepts()

 throws javax.xml.registry.JAXRException; //L0
 public abstract RegistryObject getParent()

 throws javax.xml.registry.JAXRException; //L0
 public abstract Concept getParentConcept()

 throws javax.xml.registry.JAXRException; //L0
 public abstract String getPath()

 throws javax.xml.registry.JAXRException; //L0
 public abstract String getValue()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setValue(String value)

 throws javax.xml.registry.JAXRException; //L0

// Public Instance Methods

 public abstract void addChildConcept(Concept concept)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void addChildConcepts(Collection concepts)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeChildConcept(Concept concept)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeChildConcepts(Collection concepts)

 throws javax.xml.registry.JAXRException; //L0
}

Concepts are used in various different ways within the JAXR API. A Concept can be thought of as a

useful item that is given meaning by the context in which it is used. Some typical uses for Concepts

are:

To represent a member of an enumerated type. The JAXR API defines several enumerated types

that represent the different types of objects in the registry, the various types of Association that

are available, and so on.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As a node in an internal ClassificationScheme either stored within the registry or emulated by
the JAXR provider. In the NAICS scheme, for example, there is a Concept that represents the

node for "Publishing Industries," and another for a subclassification called "Newspaper,

Periodical, Book, and Database Publishers." The hierarchical relation between the classification

nodes is represented using the parent-child relationship between the corresponding Concepts.

As the target of a SpecificationLink when storing a reference to a WSDL document in the

registry. When used in this way, the Concept is acting simply as an anonymous registry object
and making use of its inherited ability to be classified and to refer to external content using an

ExternalLink. Refer to Section 7.5.5.4 in Chapter 7 for more details of this use.

Create a Concept using the createConcept() method of LifeCycleManager, which requires a name

and a value (both of which are strings), and a parent RegistryObject, which must be either another
Concept or a ClassificationScheme. In terms of the methods that it defines, a Concept is a simple

object that has a string value and resides in a hierarchy. The addChildConcept() and
addChildConcepts() methods can be used to add one or more children to a Concept, while

removeChildConcept() and removeChildConcepts() can be used to remove them. You can

navigate around a Concept by using the methods getParentConcept() (which returns null if there is

no parent), getChildrenConcepts() (which returns all of the immediate children of a Concept), and

getDescendentConcepts() (which returns all of the descendents of a Concept).

As noted earlier, Concepts often appear as nodes in a classification scheme. When this is the case, you
can find the ClassificationScheme of which a Concept is part by calling its

getClassificationScheme() method. Although you can build a new classification scheme hierarchy

by creating a new ClassificationScheme object and linking a hierarchy of Concepts beneath it, you

cannot store such a scheme in a UDDI V2.0 registry (although you can do so in an ebXML registry). To

compensate for this, the JAXR provider allows you to simulate the creation of a custom classification
scheme using configuration information stored locally to the provider, as described in Chapter 7.

Since Concepts are hierarchical, they have an associated path that can be obtained using the getPath(

) method. The path is formed from the identifier of the ClassificationScheme beneath which the

Concept resides, followed by the value (not the name) of each Concept in the path leading down to the

target Concept, where the path components are separated using the "/ " character. For example, a

Concept with the value "3" linked three levels below a ClassificationScheme with identifier
uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908, with intervening Concepts having values "1" and

"2", returns the string /uuid:f1ef390d-08f1-ef39-3f48-e3438b38f908/1/2/3 from its getPath()

method. Conversely, if you know the path of a Concept, you can use the findConceptByPath()

method of BusinessQueryManager to look it up:

Concept c = bqm.findConceptByPath("/uuid:f1ef390d-08f1-ef39-3f48-
e3438b38f908/1/2/3");

Code like this is commonly used when looking up members of enumerated types. In this case, the

JAXR provider typically allows you to use one of the enumerated type names listed in the JAXR

http://lib.ommolketab.ir
http://lib.ommolketab.ir

specification in place of the long-winded identifier used with ClassificationSchemes as the first part
of the path. For example, the following code returns the Concept that represents the object type for the

Classification object:

Concept c = bqm.findConceptByPath("/ObjectType/Classification");

Passed To

javax.xml.registry.LifeCycleManager.{createAssociation(), createClassification(),

createClassificationScheme()}, Association.setAssociationType(),
Classification.setConcept(), ClassificationScheme.{addChildConcept(),

removeChildConcept()}, Concept.{addChildConcept(), removeChildConcept()}

Returned By

javax.xml.registry.BusinessQueryManager.findConceptByPath(),

javax.xml.registry.LifeCycleManager.createConcept(), Association.getAssociationType(

), Classification.getConcept(), Concept.getParentConcept(),
RegistryObject.getObjectType()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

EmailAddress javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface EmailAddress {

// Public Instance Methods
 public abstract String getAddress()

 throws javax.xml.registry.JAXRException; //L0
 public abstract String getType()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setAddress(String address)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setType(String type)

 throws javax.xml.registry.JAXRException; //L0
}

EmailAddress is a simple interface that is intended to designate a string value as the email address of a
user. A User object in the registry may have one or more associated EmailAddress objects, created

using the LifeCycleManager createEmailAddress() method and added as a group by calling

setEmailAddresses(). The actual address required to contact the user can be obtained by calling the
getAddress() method, whereas the type attribute available from getType() is an arbitrary qualifier

that might be used to indicate that the address reaches the person at home, in the office, and so on.

Returned By

javax.xml.registry.LifeCycleManager.createEmailAddress()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ExtensibleObject javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface ExtensibleObject {

// Public Instance Methods

 public abstract void addSlot(Slot slot)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void addSlots(Collection slots)

 throws javax.xml.registry.JAXRException; //L0

 public abstract Slot getSlot(String slotName)

 throws javax.xml.registry.JAXRException; //L0
 public abstract Collection getSlots()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeSlot(String slotName)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeSlots(Collection slotNames)

 throws javax.xml.registry.JAXRException; //L0
}

ExtensibleObject is the interface from which all objects that reside in the registry are derived. The

methods of this interface provide for the association with a registry object of attributes that are not

explicitly defined in the JAXR API. An ExtensibleObject may have any number of these attributes,

which are represented by the Slot interface. Slots are created and added by the JAXR provider and
may also be used by application code, although not all JAXR providers will store application-created

Slots in the registry.

Slots can be added to an ExtensibleObject either singly using the addSlot() method or as a group

by calling addSlots(); they can be removed using removeSlot() or removeSlots(). Both of these

methods use the name of the Slot as the key. The getSlot() method locates a Slot given its name

and returns null if no slot with the supplied name is associated with the ExtensibleObject. Finally,
the getSlots() method returns a Collection containing all of an object's Slots.

Implementations

PostalAddress, RegistryObject

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ExternalIdentifier javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface ExternalIdentifier extends RegistryObject {

// Public Instance Methods
 public abstract ClassificationScheme getIdentificationScheme()

 throws javax.xml.registry.JAXRException; //L0
 public abstract RegistryObject getRegistryObject()

 throws javax.xml.registry.JAXRException; //L0
 public abstract String getValue()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setIdentificationScheme(ClassificationScheme identificationScheme)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setValue(String value)

 throws javax.xml.registry.JAXRException; //L0
}

An ExternalIdentifer is a value assigned by an external authority that can be associated with a

RegistryObject . An example of ExternalIdentifier s that is widely recognized is a Dun and

Bradstreet number (D-U-N-S), which a business can obtain following a process of registration. The
value of the identifier can be obtained from the getValue() method, but its meaning can be

interpreted only in relation to the scheme under which the value is classified, which can be obtained
using the getClassificationScheme() method. A RegistryObject can have any number of

ExternalIdentifiers , which are created using the BusinessLifeCycleManager

createExternalIdentifier() method and added by calling addExternalIdentifier() .

Passed To

RegistryObject.{addExternalIdentifier() , removeExternalIdentifier()}

Returned By

javax.xml.registry.LifeCycleManager.createExternalIdentifier()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ExternalLink javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface ExternalLink extends RegistryObject, URIValidator {

// Public Instance Methods
 public abstract String getExternalURI()

 throws javax.xml.registry.JAXRException; //L0
 public abstract Collection getLinkedObjects()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setExternalURI(String uri)
 throws javax.xml.registry.JAXRException;

 //L0
}

A RegistryObject may have any number of ExternalLinks that act as references to information

related to the object that resides outside of the registry. The location of the referenced information is

given by a URI that can be set using the setExternalURI() method and retrieved by calling

getExternalURI(). The getLinkedObjects() method returns a Collection containing all of the

RegistryObjects to which the ExternalLink has been applied using the RegistryObject
addExternalLink() or addExternalLinks() methods. Compare this level 0 facility to

ExtrinsicObject, which stores a copy of the information in a repository linked to the registry (but is

available only with a level 1 JAXR provider).

Passed To

RegistryObject.{addExternalLink(), removeExternalLink()}

Returned By

javax.xml.registry.LifeCycleManager.createExternalLink()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ExtrinsicObject javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface ExtrinsicObject extends RegistryEntry {

// Public Instance Methods
 public abstract String getMimeType()

 throws javax.xml.registry.JAXRException; //L1
 public abstract javax.activation.DataHandler getRepositoryItem()

 throws javax.xml.registry.JAXRException; //L1
 public abstract boolean isOpaque()

 throws javax.xml.registry.JAXRException; //L1

 public abstract void setMimeType(String mimeType)

 throws javax.xml.registry.JAXRException; //L1

 public abstract void setOpaque(boolean isOpaque)

 throws javax.xml.registry.JAXRException; //L1

 public abstract void setRepositoryItem(javax.activation.DataHandler repositoryItem)

 throws javax.xml.registry.JAXRException; //L1
}

Most of the interfaces in the javax.xml.registry.infomodel package represent data that is held

within the registry itself and is of a type that the registry understands. This is not the case for an

ExtrinsicObject . The ExtrinsicObject interface represents information that does not have any

meaning to and is not interpreted by the registry, which treats it simply as data and stores it in an

associated repository from which it can be retrieved on demand. To add an ExtrinsicObject to the
registry, use the LifeCycleManager createExtrinsicObject() method, which requires a

DataHandler that can be used to retrieve the data to be written to the repository as a byte stream. Once

a ExtrinsicObject is created, you can use the getRepositoryItem() method to get a DataHandler

that retrieves its content from the repository and the getMimeType() method to get the MIME type of

the data. The setOpaque() method can be used to mark the data as opaque, so that the registry should
not attempt to interpret it in any way. This might be done if the data is encrypted before being

submitted to the registry.

Since ExtrinsicObject s require storage outside the registry, they represent a level 1 feature.

Returned By

javax.xml.registry.LifeCycleManager.createExtrinsicObject()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

InternationalString javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface InternationalString {

// Public Instance Methods

 public abstract void addLocalizedString(LocalizedString localizedString)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void addLocalizedStrings(Collection localizedStrings)

 throws javax.xml.registry.JAXRException; //L0

 public abstract LocalizedString getLocalizedString(Locale locale,

String charsetName)

 throws javax.xml.registry.JAXRException; //L0
 public abstract Collection getLocalizedStrings()

 throws javax.xml.registry.JAXRException; //L0
 public abstract String getValue()

 throws javax.xml.registry.JAXRException; //L0

 public abstract String getValue(Locale locale)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeLocalizedString(LocalizedString localizedString)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeLocalizedStrings(Collection localizedStrings)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setValue(String value)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setValue(Locale locale, String value)

 throws javax.xml.registry.JAXRException; //L0
}

An InternationalString contains a string that has been translated for one or more locales, in which

each translation is represented by a LocalizedString object that specifies a locale, the text to be used

in that locale and, optionally, the character set that the locale requires. The LifeCycleManager

createInternationalString() method can be used to create an InternationalString and
optionally to add a LocalizedString for a single locale. The name attribute of RegistryObject is of

type InternationalString; therefore, all of the factory methods of LifeCycleManager that create

objects in the registry either accept a name argument of this type, or allow you to specify the name as a

String that is then converted to an InternationalString associated with the current locale.

Once you have an InternationalString object, you can add translations for additional locales by

creating the appropriate LocalizedString and using the addLocalizedString() or
addLocalizedStrings() methods. In the unlikely event that you need to remove translations, use the

removeLocalizedString() or removeLocalizedStrings() methods. The getLocalizedStrings(

) method returns a Collection of all of the LocalizedStrings that the InternationalString

http://lib.ommolketab.ir
http://lib.ommolketab.ir

contains, while getLocalizedString() returns the appropriate LocalizedString for a given locale
and character set, or null if there isn't one.

If you don't want to deal directly with LocalizedStrings, you can use one of the setValue()

methods instead. The setValue(Locale locale, String value) method creates and adds a

LocalizedString with the given value and locale, using the default character set (which is UTF-8).

The setValue(String value) does the same, but defaults to the system's default locale. The

getValue(Locale locale) method retrieves the string that is appropriate for the given locale, while
getValue() returns the value for the system's default locale. These methods return null if there is no

value stored for the given locale.

Passed To

javax.xml.registry.LifeCycleManager.{createClassification(),
createClassificationScheme(), createConcept(), createExternalIdentifier(),

createExternalLink(), createOrganization(), createRegistryPackage(), createService(

)}, RegistryObject.{setDescription(), setName()},
SpecificationLink.setUsageDescription()

Returned By

javax.xml.registry.LifeCycleManager.createInternationalString(),

RegistryObject.{getDescription(), getName()}, SpecificationLink.getUsageDescription(
)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Key javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface Key {

// Public Instance Methods
 public abstract String getId()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setId(String id)

 throws javax.xml.registry.JAXRException; //L0
}

A Key object represents the unique key allocated to a RegistryObject when it is first added to the

registry. The Key contains a string-valued identifier that can be retrieved using the getId() method

and set using setId(). Changing the identifier has the effect of changing the object in the registry
with which the RegistryObject is associated. In general, you should allow the registry to assign the

key for a new registry object. However, ebXML registries also allow the registry client to specify the
key.

Passed To

javax.xml.registry.BusinessQueryManager.{findServiceBindings(), findServices()},

javax.xml.registry.RegistryException.setErrorObjectKey(), RegistryObject.setKey()

Returned By

javax.xml.registry.LifeCycleManager.createKey(),

javax.xml.registry.RegistryException.getErrorObjectKey(), RegistryObject.getKey()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Organization javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface Organization extends RegistryObject {

// Property Accessor Methods (by property name)
 public abstract int getChildOrganizationCount()

 throws javax.xml.registry.JAXRException; //L1
 public abstract Collection getChildOrganizations()

 throws javax.xml.registry.JAXRException; //L1
 public abstract Collection getDescendantOrganizations()

 throws javax.xml.registry.JAXRException; //L1
 public abstract Organization getParentOrganization()

 throws javax.xml.registry.JAXRException; //L1
 public abstract PostalAddress getPostalAddress()

 throws javax.xml.registry.JAXRException; //L1

 public abstract void setPostalAddress(PostalAddress address)

 throws javax.xml.registry.JAXRException; //L1
 public abstract User getPrimaryContact()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setPrimaryContact(User primaryContact)

 throws javax.xml.registry.JAXRException; //L0
 public abstract Organization getRootOrganization()

 throws javax.xml.registry.JAXRException; //L1
 public abstract Collection getServices()

 throws javax.xml.registry.JAXRException; //L0
 public abstract Collection getUsers()

 throws javax.xml.registry.JAXRException; //L0

// Public Instance Methods

 public abstract void addChildOrganization(Organization organization)

 throws javax.xml.registry.JAXRException; //L1

 public abstract void addChildOrganizations(Collection organizations)

 throws javax.xml.registry.JAXRException; //L1

 public abstract void addService(javax.xml.registry.infomodel.Service service)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void addServices(Collection services)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void addUser(User user)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void addUsers(Collection users)

 throws javax.xml.registry.JAXRException; //L0

 public abstract Collection getTelephoneNumbers(String phoneType)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeChildOrganization(Organization organization)

 throws javax.xml.registry.JAXRException; //L1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public abstract void removeChildOrganizations(Collection organizations)

 throws javax.xml.registry.JAXRException; //L1

 public abstract void removeService(javax.xml.registry.infomodel.Service service)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeServices(Collection services)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeUser(User user)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeUsers(Collection users)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setTelephoneNumbers(Collection phoneNumbers)

 throws javax.xml.registry.JAXRException; //L0
}

The Organization interface represents a company or another type of provider that wants to publish
details about itself and its services in the registry. The Organization object, an instance of which can

be created by calling the createOrganization() method of LifeCycleManager , is the root from

which all other information regarding the organization can be found. Like all RegistryObject s, it has

an associated name and description, and can have associated Classification s that should be chosen

to allow potential clients to locate it based on searches that use criteria that relate to its activities, along
with links to external specifications and so on. The following information can be accessed directly from

the Organization object:

Services

The Service objects representing the services that the organization wishes to publish. The

getServices() method returns a Collection containing all of the services, whereas

addService() , addServices() , removeService() , and removeServices() can be used

to add to or remove from this set.
Primary Contact

A User object that represents the person responsible for maintaining the information published

by the Organization in the registry. Use the getPrimaryContact() method to access this

attribute and the setPrimaryContact() method to change it.

Users

An additional set of User s associated with the Organization . This set should always contain at

least the user designated as the primary contact. When the primary contact is set, her entry is
automatically included in this list. Note that the JAXR reference implementation does not

prevent duplicate entries from appearing in this list, which can be modified using the addUser(

) , addUsers() , removeUser() , and removeUsers() methods.

Telephone Numbers

A collection of TelephoneNumber s for the organization, manipulated as a group using the

getTelephoneNumbers() and setTelephoneNumbers() methods.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Postal Address

A postal address for the organization, set using setPostalAddress() and read using
getPostalAddress() , which are both level 1 methods. The principal address for an

organization in a level 0 registry is that of the primary contact.

Level 1 registry providers allow hierarchies of Organization s to be constructed that mirror the

business or ownership relationships between parent and subsidiary organizations, or other business

structures that should be visible to the outside world. The addChildOrganization() and

addChildOrganizations() methods let you add subsidiary organization nodes below their parent,
while getParentOrganization() , getChildOrganizations() , and

getDescendentOrganizations() allow you to traverse the hierarchy from any node or from the root,

which can be obtained by calling getRootOrganization() on any of its nodes. To remove nodes, use
the removeChildOrganization() or removeChildOrganizations() method.

Passed To

Organization.{addChildOrganization() , removeChildOrganization()} ,
javax.xml.registry.infomodel.Service.setProvidingOrganization()

Returned By

javax.xml.registry.LifeCycleManager.createOrganization() ,
Organization.{getParentOrganization() , getRootOrganization()} ,

RegistryObject.getSubmittingOrganization() ,

javax.xml.registry.infomodel.Service.getProvidingOrganization() ,
User.getOrganization()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PersonName javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface PersonName {

// Public Instance Methods
 public abstract String getFirstName()

 throws javax.xml.registry.JAXRException; //L1
 public abstract String getFullName()

 throws javax.xml.registry.JAXRException; //L0
 public abstract String getLastName()

 throws javax.xml.registry.JAXRException; //L1
 public abstract String getMiddleName()

 throws javax.xml.registry.JAXRException; //L1

 public abstract void setFirstName(String firstName)

 throws javax.xml.registry.JAXRException; //L1

 public abstract void setFullName(String fullName)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setLastName(String lastName)

 throws javax.xml.registry.JAXRException; //L1

 public abstract void setMiddleName(String middleName)

 throws javax.xml.registry.JAXRException; //L1
}

The PersonName interface represents the name of a registry User. A level 0 registry provides only the

ability to store the user's full name as a free-form string using the setFullName() method and to

retrieve it by calling getFullName(). A level 1 JAXR provider additionally implements the methods

that let you get and set a first name, middle name, and last name. The specification does not describe

how to resolve the possible conflicts caused by using these additional methods together with the
setFullName() method, or what getFullName() should return if both setFullName() and the

methods that set part of the name have been used, as in the following code extract:

personName.setFullName("John D. Doe");
personName.setFirstName("Jane");
String name = personName.getFullName();
//Result is undefined

Passed To

User.setPersonName()

Returned By

http://lib.ommolketab.ir
http://lib.ommolketab.ir

javax.xml.registry.LifeCycleManager.createPersonName(), User.getPersonName()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PostalAddress javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface PostalAddress extends ExtensibleObject {

// Property Accessor Methods (by property name)
 public abstract String getCity()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setCity(String city)

 throws javax.xml.registry.JAXRException; //L0
 public abstract String getCountry()

 throws javax.xml.registry.JAXRException; //L0

 String country)
 throws javax.xml.registry.JAXRException;
 public abstract String getPostalCode()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setPostalCode(String postalCode)

 throws javax.xml.registry.JAXRException; //L0
 public abstract ClassificationScheme getPostalScheme()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setPostalScheme(ClassificationScheme scheme)

 throws javax.xml.registry.JAXRException; //L0
 public abstract String getStateOrProvince()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setStateOrProvince(String stateOrProvince)

 throws javax.xml.registry.JAXRException; //L0
 public abstract String getStreet()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setStreet(String street)

 throws javax.xml.registry.JAXRException; //L0
 public abstract String getStreetNumber()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setStreetNumber(String streetNumber)

 throws javax.xml.registry.JAXRException; //L0
 public abstract String getType()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setType(String type)

 throws javax.xml.registry.JAXRException; //L0
}

A PostalAddress object can be used as the contact address of a User and, in the case of a level 1

registry, an Organization. To obtain a PostalAddress object, use the createPostalAddress()

method of LifeCycleManager. The PostalAddress interface is composed entirely of methods that

allow you to get and set the various fields that make up the address, with the exception of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getPostalScheme() and setPostalScheme() methods. These methods allow you to specify the
ClassificationScheme that describes how the fields in the PostalAddress should be mapped to

specific fields in the object in the registry that represents it. This mapping is necessary because UDDI

registries do not have a fixed representation of a postal address. As a result, each individual registry

may have its own particular way of holding the street address, city, ZIP code, and so on. Obviously, in

order to be portable, the JAXR provider has to be independent of the addressing scheme chosen for any
particular registry. It achieves this by putting the onus on the user, with knowledge of the target

registry, to describe how the mapping is to be performed. For a detailed description of how this

mapping is performed, along with examples, refer to Section 7.5.7.

Passed To

Organization.setPostalAddress()

Returned By

javax.xml.registry.LifeCycleManager.createPostalAddress(),
Organization.getPostalAddress()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RegistryEntry javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface RegistryEntry extends RegistryObject, Versionable {

// Public Constants
 public static final int STABILITY_DYNAMIC;

 //=0
 public static final int STABILITY_DYNAMIC_COMPATIBLE;

 //=1
 public static final int STABILITY_STATIC;

 //=2
 public static final int STATUS_APPROVED;

 //=1
 public static final int STATUS_DEPRECATED;

 //=2
 public static final int STATUS_SUBMITTED;

 //=0
 public static final int STATUS_WITHDRAWN;

 //=3

// Public Instance Methods
 public abstract java.util.Date getExpiration()

 throws javax.xml.registry.JAXRException; //L1
 public abstract int getStability()

 throws javax.xml.registry.JAXRException; //L1
 public abstract int getStatus()

 throws javax.xml.registry.JAXRException; //L1

 public abstract void setExpiration(java.util.Date expiration)

 throws javax.xml.registry.JAXRException; //L1

 public abstract void setStability(int stability)

 throws javax.xml.registry.JAXRException; //L1
}

RegistryEntry is an interface that acts as a base for objects within the registry that require metadata
beyond that provided by RegistryObject, of which it is an extension. The following additional

attributes are provided:

Versioning

ExtensibleObject implements the Versionable interface, which allows a RegistryEntry to

have major, minor, and user version numbers. See the description of the Versionable interface

later in this chapter for further details.

Stability

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The getStability() and setStability() methods manipulate a value that indicates whether
the registry object is permitted to change. If this attribute has the value STABILITY_STATIC, no

changes can occur. The value STABILITY_DYNAMIC means that a change of any type may occur,

whereas STABILITY_DYNAMIC_COMPATIBLE means that changes can be made, but will be

backward-compatible with previous versions of the object. The validity of the stability attribute

may be bounded by an expiration date, available from the getExpiration() method. If this is
not null, then the object is free to change arbitrarily after the returned Date.

Status

The getStatus() and setStatus() methods retrieve and set the attribute that gives the state

of the object within its overall lifecycle. There are several defined values for this attribute,

although it is only possible for clients using the JAXR API to move an object to

STATE_SUBMITTED or STATE_DEPRECATED. The other values might still be seen, however, since
they could be set as a result of administrative action by the registry operator or by a client using a

more capable API.

Although there are objects derived from RegistryEntry in the registry API that are available to clients

of both level 0 and level 1 providers, the attributes themselves are supported only in level 1 registries

and therefore are not available to level 0 clients.

Implementations

ClassificationScheme, ExtrinsicObject, RegistryPackage,
javax.xml.registry.infomodel.Service

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RegistryObject javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface RegistryObject extends ExtensibleObject {

// Property Accessor Methods (by property name)
 public abstract Collection getAssociatedObjects()

 throws javax.xml.registry.JAXRException; //L1
 public abstract Collection getAssociations()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setAssociations(Collection associations)

 throws javax.xml.registry.JAXRException; //L0
 public abstract Collection getAuditTrail()

 throws javax.xml.registry.JAXRException; //L1
 public abstract Collection getClassifications()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setClassifications(Collection classifications)

 throws javax.xml.registry.JAXRException; //L0
 public abstract InternationalString getDescription()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setDescription(InternationalString description)

 throws javax.xml.registry.JAXRException; //L0
 public abstract Collection getExternalIdentifiers()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setExternalIdentifiers(Collection externalIdentifiers)

 throws javax.xml.registry.JAXRException; //L0
 public abstract Collection getExternalLinks()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setExternalLinks(Collection externalLinks)

 throws javax.xml.registry.JAXRException; //L0
 public abstract javax.xml.registry.infomodel.Key getKey()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setKey(javax.xml.registry.infomodel.Key key)

 throws javax.xml.registry.JAXRException; //L0
 public abstract javax.xml.registry.LifeCycleManager getLifeCycleManager()
 throws javax.xml.registry.JAXRException;

 //L0
 public abstract InternationalString getName()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setName(InternationalString name)

 throws javax.xml.registry.JAXRException; //L0
 public abstract Concept getObjectType()

 throws javax.xml.registry.JAXRException; //L1
 public abstract Collection getRegistryPackages()

 throws javax.xml.registry.JAXRException; //L1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public abstract Organization getSubmittingOrganization()
 throws javax.xml.registry.JAXRException;

// Public Instance Methods

 public abstract void addAssociation(Association association)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void addAssociations(Collection associations)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void addClassification(Classification classification)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void addClassifications(Collection classifications)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void addExternalIdentifier(ExternalIdentifier externalIdentifier)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void addExternalIdentifiers(Collection externalIdentifiers)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void addExternalLink(ExternalLink externalLink)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void addExternalLinks(Collection externalLinks)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeAssociation(Association association)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeAssociations(Collection associations)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeClassification(Classification classification)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeClassifications(Collection classifications)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeExternalIdentifier(ExternalIdentifier externalIdentifier)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeExternalIdentifiers(Collection externalIdentifiers)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeExternalLink(ExternalLink externalLink)

 throws javax.xml.registry.JAXRException; //L0

 Collection externalLinks)
 throws javax.xml.registry.JAXRException;
 public abstract String toXML()

 throws javax.xml.registry.JAXRException; //L0
}

With the exception of a very small number of helper classes, every object that can be stored in the
registry and accessed using the JAXR API is derived from the RegistryObject interface.

RegistryObject provides very little functionality of its own-instead, it is composed mainly of

accessor and mutator methods that allow JAXR clients to work with the attributes of a

RegistryObject . The following paragraphs provide an overview of each of these attributes; for more

detailed information, refer to the appropriate reference section in this chapter.

Name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A human-readable name for the object. This value, along with the description, is typically used to
represent the object in a user interface and is of type InternationalString so that it can be

presented in the appropriate way for the locale of the viewing client. This attribute is accessed

using the getName() and setName() methods.

Description

A free-form description of the object, which can be accessed using the getDescription and

setDescription() methods. Like the Name attribute, this is intended for human consumption
and is therefore of type InternationalString .

Key

A value that identifies the object in the registry. The Key contains a unique identifier that is

usually a 128-bit DCE UUID. To guarantee uniqueness, this value is generally allocated by the
registry when the object is created, but ebXML registries allow clients to select the identifier for

objects that they create.
LifeCycleManager

A reference to the LifeCycleManager that was used to create this instance of the object. This

refers to the instance of the object currently being used by the JAXR client, rather than the

instance used to initially create the registry's version of the object.

Object Type

A Concept that describes the type of the registry object. The JAXR specification defines an

enumeration of object types called "ObjectType" from which these values are taken. Refer to
Chapter 7 for the list of valid object types. This attribute can be read using the getObjectType(

) method, which is available only with a level 1 JAXR provider.

Submitting Organization

A reference to the Organization object for the organization that created the object. This

attribute can be retrieved using the getSubmittingOrganization() method.

Audit Trail

A set of AuditableEvent objects that record changes to the object made by authorized users.
Audit trails are maintained only by level 1 registries, The complete set of audited events for an

object can be obtained from the getAuditTrail() method.

Associations

A RegistryObject can be associated with other objects in order to express some kind of

relationship between them, such as "Uses" or "Supersedes." Methods are provided to add and

remove associations, and to list the set of associations that involve the object on which they are
invoked. See the reference section for the Assocation interface, earlier in this chapter, for further

details.

Associated Objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The getAssociatedObjects() method returns the Collection of RegistryObject s that are
related to this object via an Association . This is a level 1 method.

Classifications

A set of Classification objects that allow a RegistryObject to be categorized according to

one or more classification schemes such as NAICS, which describes the industry to which an

object relates, or ISO-3166, which indicates a geographical location. Refer to the reference

sections for Classification and ClassificationScheme , earlier in this chapter, for more
information.

External Identifiers

A RegistryObject can have any number of associated ExternalIdentifier objects that

represent an identifier from an external numbering or tagging scheme such as D-U-N-S. See the
reference section for the ExternalIdentifier interface, earlier in this chapter, for more details.

External Links

An ExternalLink object provides the means to link a RegistryObject to information that
resides outside the registry via a URI. Refer to the description of the ExternalLink interface,

earlier in this chapter, for further information.

The toXML() method is provided to allow a registry to return its native XML representation of the

RegistryObject to allow access to attributes that are not exposed via the JAXR API. Although this is
a level 0 method, JAXR providers are not required to support it and may throw an

UnsupportedCapabilityException if they do not.

Implementations

Association , AuditableEvent , Classification , Concept , ExternalIdentifier , ExternalLink

, Organization , RegistryEntry , ServiceBinding , SpecificationLink , User

Passed To

javax.xml.registry.LifeCycleManager.{createAssociation() , createConcept()} ,

Association.{setSourceObject() , setTargetObject()} ,

Classification.setClassifiedObject() , RegistryPackage.{addRegistryObject() ,

removeRegistryObject()} , SpecificationLink.setSpecificationObject()

Returned By

javax.xml.registry.QueryManager.getRegistryObject() , Association.{getSourceObject()

, getTargetObject()} , AuditableEvent.getRegistryObject() ,

Classification.getClassifiedObject() , Concept.getParent() ,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ExternalIdentifier.getRegistryObject() , SpecificationLink.getSpecificationObject()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RegistryPackage javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface RegistryPackage extends RegistryEntry {

// Public Instance Methods

 public abstract void addRegistryObject(RegistryObject registryObject)

 throws javax.xml.registry.JAXRException; //L1

 public abstract void addRegistryObjects(Collection registryObjects)

 throws javax.xml.registry.JAXRException; //L1
 public abstract Set getRegistryObjects()

 throws javax.xml.registry.JAXRException; //L1

 public abstract void removeRegistryObject(RegistryObject registryObject)

 throws javax.xml.registry.JAXRException; //L1

 public abstract void removeRegistryObjects(Collection registryObjects)

 throws javax.xml.registry.JAXRException; //L1
}

RegistryPackage is an interface supported by level 1 JAXR providers. It allows a set of

RegistryObjects to be logically grouped together. An empty RegistryPackage can be created using

the LifeCycleManager createRegistryPackage() method, and entries can be added to it by calling
addRegistryObject() or addRegistryObjects(). To remove items from the package, use
removeRegistryObject() or removeRegistryObjects(). The benefits of a RegistryPackage

include the ability to version it or to indicate its stability, using methods provided by the

RegistryEntry interface, which it extends. You can also use the getRegistryObjects() method to

get a list of the objects that it contains. Since a RegistryPackage is a RegistryObject, it is possible

to nest one package inside another.

Returned By

javax.xml.registry.LifeCycleManager.createRegistryPackage()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Service javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface Service extends RegistryEntry {

// Public Instance Methods

 public abstract void addServiceBinding(ServiceBinding serviceBinding)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void addServiceBindings(Collection serviceBindings)

 throws javax.xml.registry.JAXRException; //L0
 public abstract Organization getProvidingOrganization()

 throws javax.xml.registry.JAXRException; //L0
 public abstract Collection getServiceBindings()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeServiceBinding(ServiceBinding serviceBinding)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeServiceBindings(Collection serviceBindings)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setProvidingOrganization(Organization providingOrganization)

 throws javax.xml.registry.JAXRException; //L0
}

Service is a simple container object that holds a set of ServiceBinding s. A Service object is created

by an Organization to describe a service that it wants to publish in the registry. An Organization

may have any number of associated Service objects, which are created using the createService()

method of LifeCycleManager and added using the addService() or addServices() methods of the
Organization interface. A registry client can locate a Service using the findServices() method of

BusinessQueryManager . When the target registry is UDDI, it is only possible to search for services

provided by a specified Organization ; ebXML registries allow searching for Service s over all

Organization s. In most cases, a service query is based on a set of classifications that describe the

nature of the service required. Once a suitable service is found, the getProvidingOrganization()
method can be used to discover the service provider (which is, of course, obvious in the case of a

UDDI registry), and the getServiceBindings() method can be used to obtain ServiceBinding

objects that describe how to access and use the service. The creating Organization can install and

remove these bindings using the addServiceBinding() , addServiceBindings() ,

removeServiceBinding() , and removeServiceBindings() methods.

Passed To

Organization.{addService() , removeService()}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returned By

javax.xml.registry.LifeCycleManager.createService() , ServiceBinding.getService()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ServiceBinding javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface ServiceBinding extends RegistryObject, URIValidator {

// Public Instance Methods

 public abstract void addSpecificationLink(SpecificationLink specificationLink)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void addSpecificationLinks(Collection specificationLinks)

 throws javax.xml.registry.JAXRException; //L0
 public abstract String getAccessURI()

 throws javax.xml.registry.JAXRException; //L0
 public abstract javax.xml.registry.infomodel.Service getService()

 throws javax.xml.registry.JAXRException; //L0
 public abstract Collection getSpecificationLinks()
 throws javax.xml.registry.JAXRException;

 //L0
 public abstract ServiceBinding getTargetBinding()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeSpecificationLink(SpecificationLink specificationLink)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void removeSpecificationLinks(Collection specificationLinks)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setAccessURI(String uri)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setTargetBinding(ServiceBinding binding)

 throws javax.xml.registry.JAXRException; //L0
}

A Service has one or more associated ServiceBinding s that provide the information necessary for a

developer to discover how to use and access the service. A Service that can be accessed using more

than one protocol or that is available at several different locations requires a separate ServiceBinding

for each. The Service object to which a binding corresponds can be obtained from its getService()

method, while the URI at which the service instance resides can be found by calling the
getAccessURI() method.

Information that describes the service can be linked to the binding using a SpecificationLink , which

may point to a WSDL document stored in an associated repository or at a location given by its URL.

Refer to the description of the SpecificationLink interface, later in this chapter, for a description of

the ways in which it can be used to refer to service documentation.

In some cases, a ServiceBinding may not refer directly to an instance of the service but to another

ServiceBinding . When this is true, the target binding can be retrieved using the getTargetBinding(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

) method.

Passed To

javax.xml.registry.infomodel.Service.{addServiceBinding() , removeServiceBinding()} ,
ServiceBinding.setTargetBinding()

Returned By

javax.xml.registry.LifeCycleManager.createServiceBinding() ,

ServiceBinding.getTargetBinding() , SpecificationLink.getServiceBinding()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Slot javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface Slot {

// Public Constants

 public static final String ADDRESS_LINES_SLOT; //="addressLines"

 public static final String AUTHORIZED_NAME_SLOT; //="authorizedName"

 public static final String OPERATOR_SLOT; //="operator"

 public static final String SORT_CODE_SLOT; //="sortCode"

// Public Instance Methods
 public abstract String getName()

 throws javax.xml.registry.JAXRException; //L0
 public abstract String getSlotType()

 throws javax.xml.registry.JAXRException; //L0
 public abstract Collection getValues()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setName(String name)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setSlotType(String slotType)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setValues(Collection values)

 throws javax.xml.registry.JAXRException; //L0
}

A Slot is an object with a name, a type, and a collection of string values, no two of which may be the

same. Slots are used to add arbitrary attributes to a RegistryObject without requiring an extension to

the JAXR API. Every RegistryObject inherits the ability to handle Slots from the

ExtensibleObject interface, which defines the methods necessary to store and retrieve them. A Slot
is uniquely identified by its name; the result of attempting to add a Slot to an object that already has

one with the same name is not defined by the JAXR specification.

The JAXR provider uses Slots to represent a small number of registry object attributes that are not

explicitly recognized by the JAXR API because they are registry-type specific; refer to Chapter 7 for

examples. Application code can create a Slot using one of the createSlot() methods of

LifeCycleManager, and it can associate it with a RegistryObject using its addSlot() or addSlots(
) methods. It should be noted, however, that the JAXR reference implementation for the UDDI registry

does not store Slots created by application code, although it does allow them to be created and

attached to an object.

The getName(), getSlotType(), and getValues() methods of Slot allow you to fetch the

attributes of a Slot, while the corresponding setter methods let you change them. Note that the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

meaning of the slot type attribute is not defined by the specification and there is no predefined set of
valid values.

Passed To

ExtensibleObject.addSlot()

Returned By

javax.xml.registry.LifeCycleManager.createSlot(), ExtensibleObject.getSlot()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SpecificationLink javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface SpecificationLink extends RegistryObject {

// Public Instance Methods
 public abstract ServiceBinding getServiceBinding()

 throws javax.xml.registry.JAXRException; //L0
 public abstract RegistryObject getSpecificationObject()

 throws javax.xml.registry.JAXRException; //L0
 public abstract InternationalString getUsageDescription()

 throws javax.xml.registry.JAXRException; //L0
 public abstract Collection getUsageParameters()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setSpecificationObject(RegistryObject obj)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setUsageDescription(InternationalString usageDescription)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setUsageParameters(Collection usageParameters)

 throws javax.xml.registry.JAXRException; //L0
}

A SpecificationLink is an attribute of a ServiceBinding that is used to link the binding to another
RegistryObject that either is or refers to technical documentation for the service. The link to the

information itself is provided by the object obtained from the getSpecificationObject() object

method. In an ebXML registry, this is likely to be an ExtrinsicObject that refers directly to a copy of

the specification in the repository, which can be obtained using the getRepositoryItem() method. In
the case of the UDDI registry, the target object is most likely to be a Concept with an associated

ExternalLink that points to the location at which the specification can be found. Refer to Chapter 7

for an example that shows how to link a ServiceBinding to the WSDL document that describes how

to access the service. Additional information can be provided in the form of usage parameters, which

can be obtained in the form of a Collection of String objects using the getUsageParameters()
method and set using setUsageParameters() . Note that the UDDI registry allows only a single entry

to be present in this collection. The getUsageDescription() method returns an

InternationalString that describes how the usage parameters should be used. Both of these

attributes are meant for human use and are therefore only loosely described in the JAXR specification.

Passed To

ServiceBinding.{addSpecificationLink() , removeSpecificationLink()}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returned By

javax.xml.registry.LifeCycleManager.createSpecificationLink()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TelephoneNumber javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface TelephoneNumber {

// Property Accessor Methods (by property name)
 public abstract String getAreaCode()

 throws javax.xml.registry.JAXRException; //L1

 public abstract void setAreaCode(String areaCode)

 throws javax.xml.registry.JAXRException; //L1
 public abstract String getCountryCode()

 throws javax.xml.registry.JAXRException; //L1

 public abstract void setCountryCode(String countryCode)

 throws javax.xml.registry.JAXRException; //L1
 public abstract String getExtension()

 throws javax.xml.registry.JAXRException; //L1

 public abstract void setExtension(String extension)

 throws javax.xml.registry.JAXRException; //L1
 public abstract String getNumber()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setNumber(String number)

 throws javax.xml.registry.JAXRException; //L0
 public abstract String getType()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setType(String type)

 throws javax.xml.registry.JAXRException; //L0
 public abstract String getUrl()

 throws javax.xml.registry.JAXRException; //L1

 public abstract void setUrl(String url)

 throws javax.xml.registry.JAXRException; //L1
}

The TelephoneNumber interface represents the telephone number of a user or an organization. Create

one or more TelephoneNumbers using the LifeCycleManager createTelephoneNumber method and

then add them, as a group, to either a User or an Organization object by calling their

setTelephoneNumbers() method.

The functionality provided by this interface depends on the JAXR provider. A level 0 provider

implements a type field, which is set to an arbitrary value such as "Home," "Office," or "Mobile," and a
single string to hold the number as dialed, which can be obtained using the getNumber() method. A

level 1 registry provider adds to this the ability to specify a URL that can dial the telephone number

automatically, and the ability to get and set each field of the number separately using methods such as

getCountryCode(), getExtension, and so on. In this case, the value returned by getNumber() is the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

local part of the number. No validity checking is performed on the content of this object.

Returned By

javax.xml.registry.LifeCycleManager.createTelephoneNumber()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

URIValidator javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface URIValidator {

// Public Instance Methods
 public abstract boolean getValidateURI()

 throws javax.xml.registry.JAXRException; //L0

 boolean (validate) throws javax.xml.registry.JAXRException;
}

URIValidator is an interface implemented by objects that contain a URI and provide the ability to

check that the URI is valid. In the JAXR registry model, both ExternalLink and ServiceBinding

implement this interface and, as a result, may attempt to check the validity of URIs that they contain
when their state is written to the registry. In some cases, this is not convenient, perhaps because the

referred content is not available at the time that the registry is updated. The setValidateURI()
method can be used to enable or disable verification of the URI associated with an object that

implements this interface. To determine whether checking is enabled, use getValidateURI().

Implementations

ExternalLink, ServiceBinding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

User javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface User extends RegistryObject {

// Property Accessor Methods (by property name)
 public abstract Collection getEmailAddresses()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setEmailAddresses(Collection emailAddresses)

 throws javax.xml.registry.JAXRException; //L0
 public abstract Organization getOrganization()

 throws javax.xml.registry.JAXRException; //L0
 public abstract PersonName getPersonName()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setPersonName(PersonName personName)

 throws javax.xml.registry.JAXRException; //L0
 public abstract Collection getPostalAddresses()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setPostalAddresses(Collection addresses)
 throws javax.xml.registry.JAXRException;

 //L0
 public abstract String getType()

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setType(String type)
 throws javax.xml.registry.JAXRException;
//L0
 public abstract java.net.URL getUrl()

 throws javax.xml.registry.JAXRException; //L1

 public abstract void setUrl(java.net.URL url)

 throws javax.xml.registry.JAXRException; //L1

// Public Instance Methods

 public abstract Collection getTelephoneNumbers(String phoneType)

 throws javax.xml.registry.JAXRException; //L0

 public abstract void setTelephoneNumbers(Collection phoneNumbers)

 throws javax.xml.registry.JAXRException; //L0
}

The User interface represents a registry user. Every object in the registry is associated with the User

object of the user that created it and, in a level 1 registry, changes to registry content are audited using

the User object of the authenticated user that made the change in order to preserve accountability. The

User object is also used to ensure that updates can only be made by the owner of the object being

modified.

When used by the registry for auditing and authorization checks, the User object is created from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

authentication supplied when the user connected to the registry. It is also possible for a registry client to
create a User object by calling the createUser() method of LifeCycleManager. An object created in

this way is used to assign the primary contact for or to add a user to an Organization.

Like many other objects in this package, the User interface consists mainly of getter and setter methods

that access attributes of the object. A User object has the following attributes:

The Organization with which the user is associated. Unlike the other attributes, this one cannot

be modified. It is set when the user is added to the Organization object either as the primary
contact or as an ordinary user.

A name, held in the form of a PersonName object.

A type, which is an arbitrary string that probably has some specific meaning within the

organization that assigned it.

A collection of postal addresses, represented by objects of type PostalAddress.

A collection of TelephoneNumber objects supplying contact numbers of various types (home,
office, mobile, fax, etc.) for the user.

A collection of email addresses, represented by objects of type EmailAddress.

For level 1 registries only, a URL that is owned by the user in some way. This might, for example,

be the URL of the user's home page or, in the case of the primary contact for an Organization,

the URL of a page that is relevant to the services that it has published in the registry.

Passed To

Organization.{addUser(), removeUser(), setPrimaryContact()}

Returned By

javax.xml.registry.LifeCycleManager.createUser(), AuditableEvent.getUser(),
Organization.getPrimaryContact()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Versionable javax.xml.registry.infomodel

JAXR 1.0; JWSDP 1.0, J2EE 1.4

public interface Versionable {

// Public Instance Methods
 public abstract int getMajorVersion()

 throws javax.xml.registry.JAXRException; //L1
 public abstract int getMinorVersion()

 throws javax.xml.registry.JAXRException; //L1
 public abstract String getUserVersion()

 throws javax.xml.registry.JAXRException; //L1

 public abstract void setMajorVersion(int majorVersion)

 throws javax.xml.registry.JAXRException; //L1

 public abstract void setMinorVersion(int minorVersion)

 throws javax.xml.registry.JAXRException; //L1

 public abstract void setUserVersion(String userVersion)

 throws javax.xml.registry.JAXRException; //L1
}

Some RegistryObjects, specifically those derived from RegistryEntry, include version information,

access to which is possible using the methods of the Versionable interface. The major and minor

version numbers, which can be read and set using the getMajorVersion(), getMinorVersion(),

setMajorVersion(), and setMinorVersion() methods, are intended to be maintained by the

registry and may be modified by the registry as changes are made to the object. By contrast, there is
also a user version number, which is intended to be a number that might be quoted to a registry user.

This value is manipulated using the getUserVersion() and setUserVersion() methods and is not

modified by the registry itself. Versioning is a level 1 registry feature.

Implementations

RegistryEntry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 13. The javax.xml.rpc Package

Package javax.xml.rpc

Call

JAXRPCException

NamespaceConstants

ParameterMode

Service

ServiceException

ServiceFactory

Stub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Package javax.xml.rpc

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

The javax.xml.rpc package contains the client-side API for the Java API for XML-based RPC (JAX-

RPC). Applications use the classes and interfaces in this package to invoke the methods of a web

service, the definition for which may be obtained in the form of either a WSDL document or a Java

interface. A simple JAX-RPC application uses stub classes generated from either of these sources by a
tool such as wscompile and may have to only deal directly with the Service and Stubs interfaces. A

more advanced application may choose to build its own method calls without involving a code

generator by making use of the Call interface, which provides the JAX-RPC Dynamic Invocation

Interface (DII) feature.

Interfaces

public interface Call;
public interface Service;
public interface Stub;

Classes

public class NamespaceConstants;
public class ParameterMode;
public abstract class ServiceFactory;

Exceptions

public class JAXRPCException extends RuntimeException;
public class ServiceException extends Exception;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Call javax.xml.rpc

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public interface Call {

// Public Constants
 public static final String ENCODINGSTYLE_URI_PROPERTY;

 // ="javax.xml.rpc.encodingstyle.namespace.uri"
 public static final String OPERATION_STYLE_PROPERTY;

 // ="javax.xml.rpc.soap.operation.style"
 public static final String PASSWORD_PROPERTY;

 // ="javax.xml.rpc.security.auth.password"
 public static final String SESSION_MAINTAIN_PROPERTY;

 // ="javax.xml.rpc.session.maintain"
 public static final String SOAPACTION_URI_PROPERTY;

 // ="javax.xml.rpc.soap.http.soapaction.uri"
 public static final String SOAPACTION_USE_PROPERTY;

 // ="javax.xml.rpc.soap.http.soapaction.use"
 public static final String USERNAME_PROPERTY;

 // ="javax.xml.rpc.security.auth.username"

// Property Accessor Methods (by property name)
 public abstract javax.xml.namespace.QName getOperationName();

 public abstract void setOperationName(javax.xml.namespace.QName operationName);
 public abstract Map getOutputParams();
 public abstract java.util.List getOutputValues();
 public abstract javax.xml.namespace.QName getPortTypeName();

 public abstract void setPortTypeName(javax.xml.namespace.QName portType);
 public abstract Iterator getPropertyNames();
 public abstract javax.xml.namespace.QName getReturnType();

 public abstract void setReturnType(javax.xml.namespace.QName xmlType);

 public abstract void setReturnType(javax.xml.namespace.QName xmlType,

Class javaType);
 public abstract String getTargetEndpointAddress();
 public abstract void setTargetEndpointAddress(

// Public Instance Methods

 public abstract void addParameter(String paramName,

 javax.xml.namespace.QName xmlType, ParameterMode parameterMode);

 public abstract void addParameter(String paramName, javax.xml.namespace.QName xmlType,

 Class javaType, ParameterMode parameterMode);

 public abstract javax.xml.namespace.QName getParameterTypeByName(String paramName);

 public abstract Object getProperty(String name);

 public abstract Object invoke(Object[] inputParams) throws java.rmi.RemoteException;

 public abstract Object invoke(javax.xml.namespace.QName operationName, Object[] inputParams)
 throws java.rmi.RemoteException;

 public abstract void invokeOneWay(Object[] inputParams);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public abstract boolean isParameterAndReturnSpecRequired(javax.xml.namespace.QName operationName);
 public abstract void removeAllParameters();

 public abstract void removeProperty(String name);

 public abstract void setProperty(String name, Object value);
}

The Call interface allows you to construct and make a call to a method in a web service endpoint

interface without using a generated stub class or a dynamic proxy. In order to make a call, you need to
obtain a Call object and configure the names of the port and operation that you want to invoke,

together with the types of the input and output arguments and the return value, if there is one. Once the

Call object is properly initialized, set the address of the service using the

setTargetEndpointAddress() method, and use the invoke() or invokeOneWay() methods to

make the method call. Depending on exactly how the Call object is obtained, some or all of the
required information may already be set up, leaving you with less to do. The Call interface provides

the JAX-RPC Dynamic Invocation Interface (DII). This is primarily intended as an internal

implementation mechanism for dynamic proxies and for service brokers, which dynamically discover

services and construct method calls given suitable parameters obtained from a human or from other

software. It is not the preferred mechanism for creating web service clients.

An instance of Call is obtained from a Service object and is therefore already associated with a
specific web service. Depending on how it was created, it may already be configured for a specific port

and even a particular method within that port. If the port is not configured, the setPortTypeName()

method must be used to set it, using its fully qualified name from the WSDL definition, before a call

can be made. If the operation name is not configured, you may choose to set (or change) it using the

setOperationName() method (which also requires a fully qualified name), or you can supply the
operation name when you make the method call.

If the Call object is obtained from a Service object that was built from a WSDL definition (perhaps

by passing a WSDL document URL to the ServiceFactory createService() method), then it is

already fully initialized with information regarding the input and output arguments and the return value

of the target method, and you may not change them. You can use the

isParameterAndReturnSpecRequired() to determine whether this is the case-if false is returned,
the Call object is fully initialized and you cannot use the calls described in the following two

paragraphs. Otherwise, you are required to initialize the Call object as described next.

If the method requires input or output parameters, you must use one of the addParameter() methods

to declare at least the name, XML type, and mode of each parameter. This information can, of course,

be obtained directly from the WSDL definition of the operation. The XML type is an XML schema or

SOAP data type, and is declared using one of the constants defined by the
javax.xml.rpc.encoding.XMLType interface. In most cases, an XML type implies a corresponding

Java type, but, where there are ambiguities, you may supply an explicit Java class in addition to the

XML type. An example of such is XSD_DATETIME , which could be mapped to either java.util.Date

or java.util.Calendar . Note that if you supply both the XML type and the Java class, then they must

http://lib.ommolketab.ir
http://lib.ommolketab.ir

be compatible. The parameter modes are defined by the ParameterMode interface and may be IN , OUT ,
or INOUT . You do not set the argument values using these methods-these are supplied at invocation

time. Note also that once you have built and used a Call object, you can reuse it either unchanged to

make another call to the same method, or to make a call to a different method by resetting it by using

removeAllParameters() .

The type of the value returned by the method is set using setReturnType() , which has two variants

that specify either just the XML type (again using a value defined by the
javax.xml.rpc.encoding.XMLType interface) or both the type and the corresponding Java class. If the

method does not return anything (i.e., the Java return type is void), use setReturnType(null) .

To call the web service method, use either invoke() or invokeOneWay() . There are two variants of

invoke() , one of which requires the fully qualified name of the operation and the argument values,
while the other requires only the arguments and relies on the operation already configured in the Call

object. invoke() is a synchronous operation that blocks until the server sends a reply. The value
returned from the remote operation is also the return value of the invoke() call. By contrast,

invokeOneWay() simply calls the web service method and does not return anything. This is not

necessarily the same as an asynchronous operation, since the caller may still be blocked until the server

completes the operation, even though there is no return value from the method call.

The order of argument values in the list passed to both invoke() and invokeOneWay() must match

the order in which the corresponding method parameters are declared and, of course, the data type of
each argument must be compatible with that of its matching method parameter. Values should not be

supplied for method parameters that are declared to have mode OUT . The values returned for output and

input/output parameters can be obtained using the getOutputValues() and getOutputParams()

methods. The first of these methods returns a java.util.List containing the output values in the

order in which they appear in the WSDL definition of the operation (and the same order as that used
with the addParameter() method). The second method returns a java.util.Map in which the key to

each entry is the fully qualified name (QName) of an argument, and the value is its returned value.

The Call interface defines a small number of properties, the values of which can be set and read using

the setProperty() and getProperty() methods. Only property names defined in the JAX-RPC

specification can be used with these methods, and not all properties need be supported by all

implementations. The getPropertyNames() method can be used to get the complete set of supported
names. To unset a property, use the removeProperty() method. The properties defined by the

specification are as follows:

USERNAME_PROPERTY

Holds the username associated with the caller. This property need only be set if the service being

called is protected by HTTP basic authentication. All implementations must support this

property.

PASSWORD_PROPERTY

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The caller's password. This property, which must be supported by all implementations, is used

together with USERNAME_PROPERTY .

SESSION_MAINTAIN_PROPERTY

A value of type Boolean that specifies whether the client will allow the service to maintain

HTTP session information for the client between calls. A service implementation that

implements the javax.xml.rpc.server.ServiceLifecycle interface can make use of sessions
to store state between method calls if this property is set to true. Support for this property is

mandatory.

OPERATION_STYLE_PROPERTY

Indicates whether the operation is rpc- or document-style using the values rpc and document ,

respectively. Support for this property is optional.

SOAPACTION_USE_PROPERTY

A Boolean value that indicates whether a SOAPAction header should be included in the message.
Defaults to Boolean.FALSE . Support for this property is optional.

SOAPACTION_URI_PROPERTY

The URI to be included as the value of the SOAPAction header if the SOAPACTION_USE_PROPERTY
has the value Boolean.TRUE . Support for this property is optional.

ENCODINGSTYLE_URI_PROPERTY

The encoding style to be used for elements in the generated SOAP message that do not have an

explicitly specified style. Defaults to the standard SOAP encoding rules. Support for this
property is optional.

Returned By

javax.xml.rpc.Service.{createCall() , getCalls()}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JAXRPCException javax.xml.rpc

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4 serializable unchecked

public class JAXRPCException extends RuntimeException {

// Public Constructors
 public JAXRPCException();

 public JAXRPCException(Throwable cause);

 public JAXRPCException(String message);

 public JAXRPCException(String message, Throwable cause);

// Public Instance Methods
 public Throwable getLinkedCause();

 // default:null
}

JAXRPCException is an unchecked exception that is thrown to report an error condition that arises
during the invocation of a method in JAX-RPC client-side API. In most cases, this exception reports

incorrect use of a parameter in a client-side API, but may also be thrown to report an operational

exception, such as a communication failure when attempting to send a SOAP message to the server-
side implementation.

A JAXRPCException object has two attributes, both of which may only be set at construction time. The
message attribute contains a human-readable string that describes the cause of the error. The cause

attribute, of type java.lang.Throwable, is used if the JAXRPCException is being used to report an

error that was originally caused by another exception. If a JAXRPCException is constructed with a non-

null cause and a null message, then the message attribute is set to the value of the message associated

with Throwable supplied as the cause.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NamespaceConstants javax.xml.rpc

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public class NamespaceConstants {

// Public Constructors
 public NamespaceConstants();

// Public Constants
 public static final String NSPREFIX_SCHEMA_XSD;

 // ="xsd"
 public static final String NSPREFIX_SCHEMA_XSI;

 // ="xsi"
 public static final String NSPREFIX_SOAP_ENCODING;

 // ="soapenc"
 public static final String NSPREFIX_SOAP_ENVELOPE;

 // ="soapenv"
 public static final String NSURI_SCHEMA_XSD;

 // ="http://www.w3.org/2001/XMLSchema"
 public static final String NSURI_SCHEMA_XSI;

 // ="http://www.w3.org/2001/XMLSchema-instance"
 public static final String NSURI_SOAP_ENCODING;

 // ="http://schemas.xmlsoap.org/soap/encoding/"
 public static final String NSURI_SOAP_ENVELOPE;

 // ="http://schemas.xmlsoap.org/soap/envelope/"
 public static final String NSURI_SOAP_NEXT_ACTOR;

 // ="http://schemas.xmlsoap.org/soap/actor/next"
}

The NamespaceConstants class contains symbolic names that map to several well-known XML
namespaces that are used by the JAX-RPC implementation. This may be useful to application code that

needs to directly create or manipulate XML fragments passed to and from JAX-RPC method calls.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ParameterMode javax.xml.rpc

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public class ParameterMode {

// No Constructor

// Public Constants
 public static final ParameterMode IN;
 public static final ParameterMode INOUT;
 public static final ParameterMode OUT;

// Public Methods Overriding Object
 public String toString();
}

The ParameterMode class provides symbolic constants that are used to specify whether a JAX-RPC
method parameter is input-only (i.e., set before the call and not modified), output-only (undefined

before the call, and modified as a result of the call), or both input and output. These constants are used

in conjunction with the addParameter() methods of the javax.xml.rpc.Call when building a
method call using the DII. See the description of the Call interface, earlier in this chapter, for further

information.

Passed To

Call.addParameter()

Type Of

ParameterMode.{IN, INOUT, OUT}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Service javax.xml.rpc

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public interface Service {

// Property Accessor Methods (by property name)
 public abstract javax.xml.rpc.handler.HandlerRegistry getHandlerRegistry();
 public abstract Iterator getPorts() throws ServiceException;
 public abstract javax.xml.namespace.QName getServiceName();
 public abstract javax.xml.rpc.encoding.TypeMappingRegistry getTypeMappingRegistry();
 public abstract java.net.URL getWSDLDocumentLocation();

// Public Instance Methods
 public abstract Call createCall() throws ServiceException;

 public abstract Call createCall(javax.xml.namespace.QName portName)
 throws ServiceException;

 public abstract Call createCall(javax.xml.namespace.QName portName,

 javax.xml.namespace.QName operationName) throws ServiceException;

 public abstract Call createCall(javax.xml.namespace.QName portName,

 String operationName) throws ServiceException;

 public abstract Call[] getCalls(javax.xml.namespace.QName portName)
 throws ServiceException;

 public abstract java.rmi.Remote getPort(Class serviceEndpointInterface)
 throws ServiceException;

 public abstract java.rmi.Remote getPort(javax.xml.namespace.QName portName,

 Class serviceEndpointInterface) throws ServiceException;
}

Service is the core interface of the JAX-RPC client-side API, representing a service element in a
WSDL definition of a web service. There are several ways to obtain a Service object, which are

discussed in the following list.

By using a tool such as wscompile to generate stubs from a WSDL file or an equivalent Java

interface definition. This process also creates a class that implements the Service interface.

From a ServiceFactory , either with or without the help of a WSDL document that describes the

service. A Service object that is created by a ServiceFactory without the use of a WSDL

document is simply a skeleton that has no information about the service other than its qualified

name, and can be used only in conjunction with the Dynamic Invocation Interface (DII), which is
described in the reference section for the Call interface. I'll refer to this type of Service as

unconfigured.

For container-resident clients only, from the JNDI environment. A Service obtained from the

environment normally is generated from a WSDL definition and is therefore fully configured with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

service information. Sometimes, however, the WSDL document may not contain a service;
element. In such a case, the Service object contains information about the operations that the

service provides, but does not contain the service address.

The getWSDLDcoumentLocation() method returns the URL for the WSDL document from which the

Service is generated, or null if it is not created from a WSDL document. The getServiceName()

method returns the fully qualified name of the service in the form of a javax.xml.namespace.QName

object.

A web service is composed of one or more ports, each of which is an access point for an instance of the
service with an associated address. A single web service might be accessible at more than one address

(and therefore have multiple ports) if it supports more than one transport protocol, or perhaps for load-

balancing or mirroring reasons. You can use the getPorts() method to get an Iterator over all of
the ports of the service. In the case of an unconfigured Service object, this Iterator does not contain

any elements.

To get an object that can be used to invoke the methods of a specific service endpoint interface, use one
of the getPort() methods and cast it to the service endpoint interface type. These methods throw a

ServiceException if invoked on an unconfigured Service object. The two-argument getPort()

method returns an object that can be used to invoke the methods of a port given the fully qualified

name of the port from the WSDL definition, and a Class object that represents the Java interface

created from the port definition. The returned value can be cast to the given class type. The one-
argument variant supplies only the Java interface, and does not specify the qualified name of the port.

Use of this method is not recommended in circumstances in which it can be avoided because it requires

a search of the WSDL definition to locate a port whose operations match the methods defined by the

Java interface. This requires not only a comparison of method and operation names, but also their

argument types. The getPort() methods may return an instance of a pregenerated stub class or a
dynamic proxy, which is a class generated on-the-fly that implements the methods of the service

endpoint interface accessible through the named port. Dynamic proxies are actually implemented using

the DII, as described in the reference section for Call earlier in this chapter.

The createCall() methods return a Call object that can be used to construct a DII call to one of the

methods provided by the service. The two-argument variants create a Call object that is fully

configured to invoke a specific method, whereas the one-argument variant requires you to additionally
specify the operation name using the methods of the Call interface. The zero-argument variant of this

method requires you to specify both the port name and the operation name before attempting to make a

call. The getCalls() method returns an array of Call objects, each of which is fully configured to

invoke one method of the service endpoint interface. Each time this method is called, it generates and

returns a new set of Call objects and is therefore a relatively expensive operation. A
ServiceException is thrown if this method is called on an unconfigured Service object.

The getTypeMappingRegistry() method returns a reference to the type mapping information relating

to the service. This information, which determines how Java data types are mapped to and from their

http://lib.ommolketab.ir
http://lib.ommolketab.ir

corresponding XML representation in SOAP messages, is created dynamically from the WSDL
definition of the service or the equivalent Java interface. Some implementations may also allow you to

add additional mappings, as described in Chapter 6 of this book. The getHandlerRegistry() method

returns a HandlerRegistry object that contains the configuration of SOAP handlers that will appear in

the processing pipeline for messages sent to the service. SOAP handlers can modify or extract

information from a SOAP message before it is sent or after it is received. Refer to Chapter 6 or Chapter
15 for further information.

Returned By

ServiceFactory.createService()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ServiceException javax.xml.rpc

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4 serializable checked

public class ServiceException extends Exception {

// Public Constructors
 public ServiceException();

 public ServiceException(Throwable cause);

 public ServiceException(String message);

 public ServiceException(String message, Throwable cause);

// Public Instance Methods
 public Throwable getLinkedCause();

 // default:null
}

ServiceException is a checked exception that is thrown to report an error condition that arises during
the invocation of a method of the javax.xml.rpc.Service interface. It may also be thrown from the

init() method of a service implementation class that implements the

javax.xml.rpc.server.ServiceLifecycle interface.

Like JAXRPCException, ServiceException may have either or both a text message and a linked
Throwable that describe the cause of the error. These can only be set at construction time and are
retrieved using the getMessage() and getLinkedCause() methods, respectively.

Thrown By

javax.xml.rpc.Service.{createCall(), getCalls(), getPort(), getPorts()},

ServiceFactory.{createService(), newInstance()},
javax.xml.rpc.server.ServiceLifecycle.init()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ServiceFactory javax.xml.rpc

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public abstract class ServiceFactory {

// Protected Constructors
 protected ServiceFactory();

// Public Constants
 public static final String SERVICEFACTORY_PROPERTY;

 // ="javax.xml.rpc.ServiceFactory"

// Public Class Methods
 public static ServiceFactory newInstance() throws ServiceException;

// Public Instance Methods

 public abstract javax.xml.rpc.Service createService(javax.xml.namespace.QName serviceName)
throws ServiceException;

 public abstract javax.xml.rpc.Service createService(java.net.URL wsdlDocumentLocation,

 javax.xml.namespace.QName serviceName) throws ServiceException;
}

ServiceFactory is a factory object used to create Service objects. To obtain an instance of this
abstract class, use the static newInstance() method, which attempts to locate a suitable concrete

implementation as follows:

Looks in the system properties for a property called javax.xml.rpc.ServiceFactory . If this

property is defined, its value is assumed to be the class name of a concrete implementation of

ServiceFactory .

Looks for the same property in a file called ${JAVA_HOME}/lib/jaxrpc.properties . If the

property is found, its value is assumed to be the required class name.

Looks for a resource called META-INF/services/javax.xml.rpc.ServiceFactory in the

classpath. If such a resource exists, it is opened and a single line is read from it. If the line is not

empty, it is used as the required class name.

Uses an implementation-dependent default class. In the case of the reference implementation, this

class is called com.sun.xml.rpc.client.ServiceFactoryImpl .

The two createService() methods return Service objects that are intended to be used in different

ways. The two-argument variant requires the location of a WSDL document and the fully qualified
name of a service defined within that document. The Service object that it returns has access to all of

the service information in the WSDL document and can be used to make calls on the remote methods

of the service using either dynamic proxies or the DII, both of which are covered in Chapter 6 . The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

single-argument variant accepts only a service name and therefore has no information at all about the
service (including whether it exists). A Service object created using this latter method can only be

used to construct a service endpoint interface call using the DII and is not able to validate the

correctness of these calls before they are made. Refer to the description of the Call interface earlier in

this chapter for further information.

ServiceFactory is intended to be used by J2SE clients that have no container support. Container-

resident JAX-RPC clients, such as servlets or JSP pages, are not expected to use ServiceFactory .
Instead, they typically obtain a reference to a Service object that has been configured into their JNDI

environment.

Returned By

ServiceFactory.newInstance()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stub javax.xml.rpc

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public interface Stub {

// Public Constants
 public static final String ENDPOINT_ADDRESS_PROPERTY;

 // ="javax.xml.rpc.service.endpoint.address"
 public static final String PASSWORD_PROPERTY;

 // ="javax.xml.rpc.security.auth.password"
 public static final String SESSION_MAINTAIN_PROPERTY;

 // ="javax.xml.rpc.session.maintain"
 public static final String USERNAME_PROPERTY;

 // ="javax.xml.rpc.security.auth.username"

// Public Instance Methods

 public abstract Object _getProperty(String name);
 public abstract Iterator _getPropertyNames();

 public abstract void _setProperty(String name, Object value);
}

Stub is an interface implemented by all client-side stub classes generated by the wscompile tool or a

vendor-specific equivalent. The task of a Stub object is to marshall the parameters for a remote method

call made on the client into a SOAP message, to unmarshall the reply to create the return value from

the call, if there is one, and to update any output parameters supplied in the form of Holder objects.

The code for a stub class is entirely generated by wscompile; the only methods that are of interest to
application code are declared in the Stub interface.

A Stub contains a collection of properties that application code can set to control the operation of the

JAX-RPC runtime when invoking the remote method. To set a property, use the _setProperty()

method. Use the _getProperty() method to retrieve the value of a named property and the

_getPropertyNames() method to get the names of the properties that may be used. (Note, however,

that the JAX-RPC 1.0 reference implementation implements this method differently-it returns the
names of the properties for which values have actually been set. The text here reflects the

specification.)

Only the property names defined by the interface may be used with the _getProperty() and

_setProperty() methods; not all implementations are required to support all of the properties. A

JAXRPCException is thrown for a property that is not recognized or not supported. The properties

defined by the interface are as follows:

USERNAME_PROPERTY

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Holds the username associated with the caller. This property need only be set if the service is
protected by HTTP basic authentication. All implementations must support this property.

PASSWORD_PROPERTY

The caller's password. This property, which must be supported by all implementations, is used

together with USERNAME_PROPERTY.

ENDPOINT_ADDRESS_PROPERTY

A string containing the address of the service endpoint interface (i.e., the port address) as a URI.

For services accessed over HTTP, this is a URL. Support of this property is optional.
SESSION_MAINTAIN_PROPERTY

A value of type Boolean that specifies whether the client will allow the service to maintain

HTTP session information for the client between calls. A service implementation that

implements the javax.xml.rpc.server.ServiceLifecycle interface can make use of sessions
to store state between method calls if this property is set to true. Support for this property is

mandatory.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 14. The javax.xml.rpc.encoding Package

Package javax.xml.rpc.encoding

DeserializationContext

Deserializer

DeserializerFactory

SerializationContext

Serializer

SerializerFactory

TypeMapping

TypeMappingRegistry

XMLType

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Package javax.xml.rpc.encoding

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

The javax.xml.rpc.encoding package contains the classes and interfaces that form the portable part

of the serialization framework used to convert between Java language types and XML messages.

Although the rules for mapping between these two representations are well-defined by the JAX-RPC

specification, only a minimal interface to the serialization framework is defined, leaving most of the
details to be determined by vendors that implement the specification. This has two consequences:

Although a minimal serialization interface is defined, it is far from sufficient to allow developers
to create their own serializers that would work across different JAX-RPC implementations.

Serializer portability was not an aim of the JAX-RPC 1.0 specification.

Although the JAX-RPC reference implementation contains a serialization framework, it is not

part of the public API and there is no documentation available for it. Therefore, in practice, even

if you don't mind the fact that your custom serializers will be nonportable, it is very difficult to

even get started writing one. Furthermore, the nonpublic nature of the API means that
incompatible changes may be made at any time, which may cause your serializers to stop
working.

As a result, this book does not describe how to write custom serializers, and this chapter documents

only the minimal public API.

The XMLType class defines constants that represent various XML Schema and SOAP data types. This

class is probably the only one in this package that application developers will be likely to use. The

TypeMappingRegistry and TypeMapping interfaces provide groupings of serializers for specific XML
data types using one or more encoding schemes. The serializers themselves implement the Serializer

and Deserializer interfaces, which, at least in the current version of the specification, are marker

interfaces that define no methods. Serializers are obtained from a SerializerFactory or a

DeserializerFactory, and use instances of the SerializationContext and

DeserializationContext interfaces to maintain state during the serialization or deserialization of a
message.

Interfaces

public interface DeserializationContext;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public interface Deserializer extends Serializable;
public interface DeserializerFactory extends Serializable;
public interface SerializationContext;
public interface Serializer extends Serializable;
public interface SerializerFactory extends Serializable;
public interface TypeMapping;
public interface TypeMappingRegistry extends Serializable;

Classes

public class XMLType;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DeserializationContext javax.xml.rpc.encoding

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public interface DeserializationContext {
}

DeserializationContext is a marker interface containing no methods that indicates an object that can
be used to store state the deserialization process requires. Although this interface is used internally by

the JAX-RPC reference implementation, the JAX-RPC 1.0 specification does not include any public

API that refers to it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Deserializer javax.xml.rpc.encoding

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4 serializable

public interface Deserializer extends java.io.Serializable {

// Public Instance Methods
 public abstract String getMechanismType();
}

A Deserializer is a class that can convert from an XML fragment into a corresponding Java object or

Java primitive. The deserialization process might accept XML in the form of a SAX stream, a DOM

model, or in some other form. The JAX-RPC specification does not give a list of supported input types
(which it refers to as mechanism types), but the reference implementation supports deserialization from

a raw input stream of XML characters. The getMechanismType() method returns an identifier for the
input type that the deserializer supports.

The Deserializer interface does not actually contain a method that causes deserialization to occur.

The JAX-RPC 1.0 specification does not attempt to create a standard or portable deserialization

mechanism and therefore does not specify the means by which deserialization is actually performed.
The reference implementation uses private deserializers that implement the Deserializer interface

and uses methods that are not part of the public API to invoke them.

Returned By

DeserializerFactory.getDeserializerAs()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DeserializerFactory javax.xml.rpc.encoding

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4 serializable

public interface DeserializerFactory extends java.io.Serializable {

// Public Instance Methods

 public abstract Deserializer getDeserializerAs(String mechanismType);
 public abstract Iterator getSupportedMechanismTypes();
}

A DeserializerFactory returns Deserializers that can convert from an XML type to a

corresponding Java object or primitive. A DeserializerFactory for a given (Java type, XML type)

pairing is registered with, and can be obtained from, a TypeMapping object. Once you have a
DeserializerFactory, you can obtain a Deserializer instance by calling its getDeserializerAs()

method, which requires an argument that specifies a serialization mechanism type. The mechanism type
describes the style of the underlying XML processing model with which the serializer works, examples

of which might be a DOM model or a character stream containing XML to be decoded. A factory might

be able to supply deserializers for more than one mechanism type. The JAX-RPC specification does not

define standard mechanism types, but the reference implementation supports a single, private type

identified by the URI http://java.sun.com/jax-rpc-ri/1.0/streaming/. The URIs for the
mechanism types for which the factory can return a suitable Deserializer can be obtained by calling
the getSupportedMechanismTypes() method.

Passed To

TypeMapping.register()

Returned By

TypeMapping.getDeserializer()

http://java.sun.com/jax-rpc-ri/1.0/streaming/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

SerializationContext javax.xml.rpc.encoding

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public interface SerializationContext {
}

SerializationContext is a marker interface containing no methods, that indicates an object that can
be used to store state the serialization process requires. Although this interface is used internally by the

JAX-RPC reference implementation, the JAX-RPC 1.0 specification does not include any public API

that refers to it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Serializer javax.xml.rpc.encoding

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4 serializable

public interface Serializer extends java.io.Serializable {

// Public Instance Methods
 public abstract String getMechanismType();
}

A Serializer is a class that can convert from a Java object or primitive into a corresponding XML

representation. The serialization process might result in a stream of characters that form an XML tag

with associated attributes and text, or a fragment of a DOM model. The JAX-RPC specification does
not give a list of supported output types (which it refers to as mechanism types), but the reference

implementation supports the creation of an XML output stream. The getMechanismType() method
returns an identifier for the mechanism that the serializer supports.

The Serializer interface does not actually contain a method that causes serialization to occur. The

JAX-RPC 1.0 specification does not attempt to create a standard or portable serialization mechanism

and therefore does not specify the means by which serialization is actually performed. The reference
implementation uses private serialization classes that implement the Serializer interface, and uses

methods that are not part of the public API to invoke them.

Returned By

SerializerFactory.getSerializerAs()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SerializerFactory javax.xml.rpc.encoding

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4 serializable

public interface SerializerFactory extends java.io.Serializable {

// Public Instance Methods

 public abstract Serializer getSerializerAs(String mechanismType);
 public abstract Iterator getSupportedMechanismTypes();
}

A SerializerFactory returns Serializers that can convert from a specific Java type to a

corresponding XML type. A SerializerFactory for a given (Java type, XML type) pairing is

registered with, and can be obtained from, a TypeMapping object. Once you have a
SerializerFactory, you can obtain a Serializer instance by calling its getSerializerAs()

method, which requires an argument that specifies a serialization mechanism type. The mechanism type
describes the style of the underlying XML processing model with which the serializer works-for

example, a DOM model or a character stream containing the generated XML. A factory might be able

to supply serializers for more than one mechanism type. The JAX-RPC specification does not define

standard mechanism types, but the reference implementation supports a single, private type identified

by the URI http://java.sun.com/jax-rpc-ri/1.0/streaming/. The URIs for the mechanism types
for which the factory can return a suitable Serializer can be obtained by calling the
getSupportedMechanismTypes() method.

Passed To

TypeMapping.register()

Returned By

TypeMapping.getSerializer()

http://java.sun.com/jax-rpc-ri/1.0/streaming/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

TypeMapping javax.xml.rpc.encoding

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public interface TypeMapping {

// Public Instance Methods

 javax.xml.namespace.QName xmlType);

 public abstract SerializerFactory getSerializer(Class javaType,

javax.xml.namespace.QName xmlType);
 public abstract String[] getSupportedEncodings();

 public abstract boolean isRegistered(Class javaType,

 javax.xml.namespace.QName xmlType);

 public abstract void register(Class javaType, javax.xml.namespace.QName xmlType,

 SerializerFactory sf, DeserializerFactory dsf);

 public abstract void removeDeserializer(Class javaType,

 javax.xml.namespace.QName xmlType);

 public abstract void removeSerializer(Class javaType,

 javax.xml.namespace.QName xmlType);

 public abstract void setSupportedEncodings(String[] encodingStyleURIs);
}

A TypeMapping object contains serializers and deserializers that can convert between Java objects or

primitive types and a corresponding XML representation. A single TypeMapping may support one or

several encoding styles. The supported encodings may be obtained by calling the

getSupportedEncodings() method and set using setSupportedEncodings() , both of which deal
with an array of strings that represent encoding scheme URIs (such as

http://schemas.xmlsoap.org/soap/encoding/ , which represents the SOAP section 5 encoding

rules).

The register() method is used to associate a SerializerFactory and a DeserializerFactory

with a (Java object, XML type) pair that represents the start and endpoints of the conversion process

that the serializers and deserializers obtained from those factories can perform. The XML type is
specified using constants defined by the javax.xml.rpc.encoding.XMLType class, whereas the Java

type is represented by its Class object. Although it is most likely that both a SerializerFactory and a

DeserializerFactory will be registered together, it is possible to register only one of the pair by

specifying the argument for the other as null . The removeSerializer() method removes the

SerializerFactory mapping for a specified Java type to XML type mapping, and throws a
JAXRPCException if there is no mapping for the given combination. The removeDeserializer()

similarly removes a DeserializerFactory .

The getSerializer() and getDeserializer() methods return a SerializerFactory or

DeserializerFactory for a given (Java type, XML type) pair, or returns null if none is registered.

http://schemas.xmlsoap.org/soap/encoding/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can determine whether either a SerializerFactory or DeserializerFactory is registered for a
given pairing using the isRegistered() method. This method does not, however, tell you which of

these objects is registered if only one of them is.

Passed To

TypeMappingRegistry.{register() , registerDefault() , removeTypeMapping()}

Returned By

TypeMappingRegistry.{createTypeMapping() , getDefaultTypeMapping() , getTypeMapping(

) , register() , unregisterTypeMapping()}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TypeMappingRegistry javax.xml.rpc.encoding

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4 serializable

public interface TypeMappingRegistry extends java.io.Serializable {

// Public Instance Methods
 public abstract void clear();
 public abstract TypeMapping createTypeMapping();
 public abstract TypeMapping getDefaultTypeMapping();
 public abstract String[] getRegisteredEncodingStyleURIs();

 public abstract TypeMapping getTypeMapping(String encodingStyleURI);

 public abstract TypeMapping register(String encodingStyleURI,

 TypeMapping mapping);

 public abstract void registerDefault(TypeMapping mapping);

 public abstract boolean removeTypeMapping(TypeMapping mapping);

 public abstract TypeMapping unregisterTypeMapping(String encodingStyleURI);
}

As its name suggests, the TypeMappingRegistry interface represents a registry for TypeMapping
objects. On the client side, a TypeMappingRegistry is associated with a Service object, and a

reference to the single instance for that Service can be obtained by calling its

getTypeMappingRegistry() method. On the server side, each service implementation has its own

TypeMappingRegistry that is created by the code for the tie classes that is generated by utilities such
as wsdeploy or j2eec, which are described in Chapter 8.

A TypeMappingRegistry maintains a set of mappings from URIs that represent encoding styles to the

TypeMapping objects that know how to encode and decode Java types using the rules of that encoding.

A typical example of an encoding style URI is http://schemas.xmlsoap.org/soap/encoding/,

which represents the SOAP section 5 encoding rules. A TypeMapping can be registered by calling the

register() method, which supplies the encoding style URI that the TypeMapping handles. Stubs,
ties, dynamic proxies, and Call objects created by the JAX-RPC reference implementation all have a

registry that is initialized with a TypeMapping that can handle the SOAP section 5 encoding rules, and

another that handles encoding for document-style operations, which maps the URI equal to the empty

string. To get a type mapping for a given encoding style, use the getTypeMapping() method, passing

the appropriate URI. If no mapping is registered for the given URI, null is returned, unless a default
mapping has been installed using the registerDefault() method. To determine which encoding

styles have configured mappings, use the getRegisteredEncodingStyleURIs() method.

To create a TypeMapping, use the createTypeMapping() method, and then use the methods of the

TypeMapping interface to configure it. The objects returned by this method must subsequently be

registered using the register() method before they can be used. A mapping can be removed by using

http://schemas.xmlsoap.org/soap/encoding/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the remoteTypeMapping() method, which requires a reference to the TypeMapping object. It returns
false if the mapping was not present in the registry. Since a single TypeMapping can be registered more

than once if it supports more than one encoding style, this method may remove the type mapping

capability for more than one encoding style. To remove the association between a TypeMapping and a

single encoding-style URI, use the unregisterTypeMapping() method, which affects only the

encoding style whose URI is supplied as its argument. The clear() method removes all useful
content in the registry.

Returned By

javax.xml.rpc.Service.getTypeMappingRegistry()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XMLType javax.xml.rpc.encoding

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public class XMLType {

// Public Constructors
 public XMLType();

// Public Constants
 public static final javax.xml.namespace.QName SOAP_ARRAY;
 public static final javax.xml.namespace.QName SOAP_BASE64;
 public static final javax.xml.namespace.QName SOAP_BOOLEAN;
 public static final javax.xml.namespace.QName SOAP_BYTE;
 public static final javax.xml.namespace.QName SOAP_DOUBLE;
 public static final javax.xml.namespace.QName SOAP_FLOAT;
 public static final javax.xml.namespace.QName SOAP_INT;
 public static final javax.xml.namespace.QName SOAP_LONG;
 public static final javax.xml.namespace.QName SOAP_SHORT;
 public static final javax.xml.namespace.QName SOAP_STRING;
 public static final javax.xml.namespace.QName XSD_BASE64;
 public static final javax.xml.namespace.QName XSD_BOOLEAN;
 public static final javax.xml.namespace.QName XSD_BYTE;
 public static final javax.xml.namespace.QName XSD_DATETIME;
 public static final javax.xml.namespace.QName XSD_DECIMAL;
 public static final javax.xml.namespace.QName XSD_DOUBLE;
 public static final javax.xml.namespace.QName XSD_FLOAT;
 public static final javax.xml.namespace.QName XSD_HEXBINARY;
 public static final javax.xml.namespace.QName XSD_INT;
 public static final javax.xml.namespace.QName XSD_INTEGER;
 public static final javax.xml.namespace.QName XSD_LONG;
 public static final javax.xml.namespace.QName XSD_QNAME;
 public static final javax.xml.namespace.QName XSD_SHORT;
 public static final javax.xml.namespace.QName XSD_STRING;
}

The XMLType class defines constants of type javax.xml.namespace.QName that represent various XML

Schema and SOAP data types. The values defined by this class are used in the JAX-RPC API where it

is necessary to refer to the XML representation of particular data types-for example, the

addParameter() method of the javax.xml.rpc.Call interface, which uses these constants as the

value of an argument that describes the XML data type of a method call to be made using the JAX-RPC
dynamic invocation interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 15. The javax.xml.rpc.handler Package

Package javax.xml.rpc.handler

GenericHandler

Handler

HandlerChain

HandlerInfo

HandlerRegistry

MessageContext

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Package javax.xml.rpc.handler

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

The javax.xml.rpc.handler package contains the classes and interfaces used to create and manage

handler chains on both the client and server sides of a JAX-RPC method call. A JAX-RPC message

handler is a class that is placed on the message path between the sender of a message and the network

on the client side, or between the network and the service implementation on the server side. A handler
receives and may process any SOAP message that is sent along the message path in either direction;

therefore it is somewhat akin to servlet filters. Any number of handlers may be grouped together to

form a handler chain. The handlers in a chain may be related or completely independent of each other

and/or the sender or recipient of the message. Typical uses for handlers include the processing and

removal or insertion of message headers (so that they are not seen by the message sender or receiver),
logging, encryption of some or all of a message, and so on. A message handler implements the Handler

interface, and may, for convenience, be derived from GenericHandler, which provides dummy
implementations of most of the interface methods.

A handler chain is associated with a Service object on the client side and with a service endpoint on

the server side. The handlers that make up a chain are typically set in advance in the configuration files

used by the wscompile utility on the client side and the wsdeploy or j2eec utilities on the server side.
It is also possible to configure handler chains at runtime-in some cases, this is the only way to achieve

the desired effect. See the description of the HandlerRegistry interface, later in this chapter, for

further information.

Interfaces

public interface Handler;
public interface HandlerRegistry extends Serializable;
public interface MessageContext;

Collections

public interface HandlerChain extends java.util.List;

Other Classes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public abstract class GenericHandler implements Handler;
public class HandlerInfo implements Serializable;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GenericHandler javax.xml.rpc.handler

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public abstract class GenericHandler implements javax.xml.rpc.handler.Handler {

// Protected Constructors
 protected GenericHandler();

// Methods Implementing Handler
 public void destroy();

 // empty
 public abstract javax.xml.namespace.QName[] getHeaders();

 public boolean handleFault(MessageContext context);

 // constant

 public boolean handleRequest(MessageContext context);

 // constant

 public boolean handleResponse(MessageContext context);

 // constant

 public void init(HandlerInfo config);

 // empty
}

GenericHandler is a convenience class that can optionally be used as a base class for message

handlers. MessageHandler provides default implementations of all of the methods of the Handler

interface apart from getHeaders(), which must be provided by subclasses. The default

implementations do the following:

The handleRequest(), handleResponse(), and handleFault() methods all return true,

indicating the processing of the message should continue.

The init() and destroy() methods do nothing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Handler javax.xml.rpc.handler

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public interface Handler {

// Public Instance Methods
 public abstract void destroy();
 public abstract javax.xml.namespace.QName[] getHeaders();

 public abstract boolean handleFault(MessageContext context);

 public abstract boolean handleRequest(MessageContext context);

 public abstract boolean handleResponse(MessageContext context);

 public abstract void init(HandlerInfo config);
}

The Handler interface defines the methods that must be implemented by a message handler. The init(
) and destroy() methods mark the beginning and end of the handler's life cycle. The init()

method receives a Map containing property values that are typically set from a configuration file such as

the jaxrpc-ri.xml file used by wsdeploy, the config.xml used by wscompile, or the
webservices.xml file supplied to the J2EE 1.4 j2eec utility. The getHeaders() method returns the

URIs of all of the headers that the handler can process, in the form of an array of
javax.xml.namespace.QName objects. A handler whose processing is not directly related to a header

should return an empty array.

The handler processing is carried out by the handleRequest(), handleResponse(), and

handleFault() methods, which are called for an outgoing message, an incoming message that is not

a fault, and a fault, respectively. Each of these methods is passed a MessageContext object that
handlers can use to store state that can then be read by other handlers in the chain. The

MessageContext object can also be used to retrieve the message itself. If a handler successfully

processes a message, it should return true from these methods. If an error occurs that should result in

message processing being interrupted, the handler should substitute a fault message for the original and

return false. A handler may also throw an exception from one of its handleXXX() methods to report an
exceptional condition. This exception is thrown to the application that sent the message. There are also

cases in which a handler might wish to terminate handling of a message without reporting an error. For

example, a handler might cache the replies to requests that it has already seen. In this case, the handler

should replace the message with its cached response and return false. For examples that illustrate the

possible uses of a handler, refer to Chapter 6.

Implementations

GenericHandler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HandlerChain javax.xml.rpc.handler

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4 collection

public interface HandlerChain extends java.util.List {

// Public Instance Methods
 public abstract void destroy();
 public abstract String[] getRoles();

 public abstract boolean handleFault(MessageContext context);

 public abstract boolean handleRequest(MessageContext context);

 public abstract boolean handleResponse(MessageContext context);

 public abstract void init(Map config);

 public abstract void setRoles(String[] soapActorNames);
}

A HandlerChain is a list of Handlers configured to operate on either the client or server side of a
SOAP message path. The configuration information required to build a HandlerChain is held in a

HandlerRegistry, the content of which may be created at the same time as client-side tools or server-

side ties are generated, or which may be installed by application code at runtime.

The handleFault(), handleRequest(), and handleResponse() methods are called to pass a
SOAP fault, request, or response message to each Handler within the chain in turn, resulting in the
Handler methods of the same name being called in sequence. Under some circumstances, the message

does not fully traverse the message path, as described in the reference entry for Handler, earlier in this

chapter. These methods return true if the message is completely processed, or false if a handler in the

chain caused message processing to be aborted.

The getRoles() method returns an array of strings that correspond to the URIs of the SOAP actors on

behalf of which the handlers in the chain claim to act. This list is initialized from configuration
information by calling the setRoles() method. The init() and destroy() methods are intended to

mark the beginning and end of the life cycle of a HandlerChain. However, in the reference

implementation, these methods are never called.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HandlerInfo javax.xml.rpc.handler

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4 serializable

public class HandlerInfo implements java.io.Serializable {

// Public Constructors
 public HandlerInfo();

 public HandlerInfo(Class handlerClass, Map config,

 javax.xml.namespace.QName[] headers);

// Property Accessor Methods (by property name)
 public Class getHandlerClass();

 // default:null

 public void setHandlerClass(Class handlerClass);
 public Map getHandlerConfig();

 // default:HashMap

 public void setHandlerConfig(Map config);
 public javax.xml.namespace.QName[] getHeaders();

 // default:null

 public void setHeaders(javax.xml.namespace.QName[] headers);
}

The HandlerInfo class contains all of the information needed to describe and construct a Handler.
HandlerInfo objects are stored in a HandlerRegistry and may be created by application code or,

more commonly, by code generated by a tool such as wscompile, wsdeploy, or j2eec, based on the

content of a configuration file.

A HandlerInfo object contains three attributes, all of which may be set at construction time or using

setter methods:

Handler class

The fully qualified name of the Java class that contains the handler functionality. This class must

have a no-argument constructor and must implement the Handler interface. This attribute may

be read using the getHandlerClass() method and changed by calling setHandlerClass().

Header list

The set of headers that the handler processes, specified as an array of QName objects. If the

handler does not operate on headers, then an empty array may be supplied. This attribute can be
accessed using the getHeaders() and setHeaders() methods.

Configuration information

A handler may be given configuration information in the form of a Map containing key/value

pairs, the meaning of which is of interest only to the handler. The content of this map, which is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

accessed using the getHandlerConfig() and setHandlerConfig() methods, is set from
property definitions in the configuration files used by the wsdeploy, wscompile, and j2eec

utilities, as described in Chapter 8.

Passed To

GenericHandler.init(), javax.xml.rpc.handler.Handler.init()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HandlerRegistry javax.xml.rpc.handler

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4 serializable

public interface HandlerRegistry extends java.io.Serializable {

// Public Instance Methods

 public abstract java.util.List getHandlerChain(javax.xml.namespace.QName portName);

 public abstract void setHandlerChain(javax.xml.namespace.QName portName,

 java.util.List chain);

}

HandlerRegistry is a container that holds the information necessary to build a handler chain. Handler

chains are defined for a port within a service endpoint interface. Each HandlerRegistry is therefore

associated with a service and contains one or more entries that are keyed on the
javax.xml.namespace.QName of a port within the service, as defined in the service's WSDL document.

The getHandlerChain() method can be used to retrieve the handler chain definition for a port given
its QName , while setHandlerChain() is used to install a chain definition. Both of these methods

represent a handler chain as a java.util.List containing a HandlerInfo object for each handler in

the chain.

On the client side, the HandlerRegistry for an endpoint is associated with its Service object and can

be retrieved using the getHandlerRegistry() method. When the Service object is generated from a

WSDL file or a Java interface definition, the code required to initialize the HandlerRegistry is
generated from the configuration information passed to wscompile . However, in the case of a Service

object obtained from a ServiceFactory , the HandlerRegistry is not initialized. A client application

that needs to use handlers with a Service obtained in this way needs to programmatically initialize the

registry by constructing the appropriate HandlerInfo objects, and by using the setHandlerChain()

method to install them on each port for which the handlers are required. This must be done before the
getPort() , createCall() , or createCalls() methods are used.

The code required to create the handler registry used with the server-side implementation of a service

endpoint interface is generated at the same time as the tie classes for the service are generated.

Returned By

javax.xml.rpc.Service.getHandlerRegistry()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MessageContext javax.xml.rpc.handler

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public interface MessageContext {

// Public Instance Methods

 public abstract boolean containsProperty(String name);

 public abstract Object getProperty(String name);
 public abstract Iterator getPropertyNames();

 public abstract void removeProperty(String name);

 public abstract void setProperty(String name, Object value);
}

A MessageContext object contains the state that accompanies a message as it traverses the pipeline

from the sender to the network when being sent from the network to its eventual recipient for an

inbound message. The MessageContext object is passed to the handleRequest(), handleResponse(
), or handleFault() method of each handler in the handler chain on the message path (if there is

one), depending on the message type and the direction in which it is moving. In addition, a service
implementation that implements the javax.xml.rpc.server.ServiceLifecycle interface can access

the MessageContext associated with the message that caused a service endpoint interface method to be

invoked by calling the getMessageContext() method of the

javax.xml.rpc.server.ServletEndpointContext object passed to its init() method.

The MessageContext interface is concerned only with providing a mechanism for information to be
propagated along the message path. Since all message handlers in the chain receive a reference to the

same MessageContext object during the processing of a single message, one handler can insert objects

that another handler or the web service implementation class (in the case of a server-side message

chain) can extract and possibly modify further. A client application, however, cannot access the

MessageContext.

The setProperty() method can be used to store an object in the context using any string as the key.

Calling setProperty() a second time with the same key has the effect of replacing the original value.
The getProperty() method returns the object stored under the given key, or returns null if the key is

not in use. To get a list of all of the property names in use, employ the getPropertyNames() method.

To determine whether a property with a given name has been set, use the containsProperty()

method; to remove a property, use removeProperty(). Refer to Chapter 6 for an example that

demonstrates how to use properties to communicate information from a SOAP message header to the
web service implementation that receives the message, without requiring the service implementation to

know anything about SOAP messages.

Since message handlers deal with messages, it might at first sight be surprising that MessageContext

http://lib.ommolketab.ir
http://lib.ommolketab.ir

does not have a method that provides access to the message itself. In order to preserve a degree of
independence of the underlying messaging protocol, MessageContext delegates the responsibility for

providing access to the message to derived interfaces that are specific to individual messaging

protocols. In the case of SOAP, the MessageContext object is actually an instance of the derived

interface javax.xml.rpc.soap.SOAPMessageContext, which does contain a method that allows access

to the SOAP message being sent or received.

Implementations

javax.xml.rpc.handler.soap.SOAPMessageContext

Passed To

GenericHandler.{handleFault(), handleRequest(), handleResponse()},
javax.xml.rpc.handler.Handler.{handleFault(), handleRequest(), handleResponse()},

HandlerChain.{handleFault(), handleRequest(), handleResponse()}

Returned By

javax.xml.rpc.server.ServletEndpointContext.getMessageContext()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 16. The javax.xml.rpc.handler.soap Package

Package javax.xml.rpc.handler.soap

SOAPMessageContext

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Package javax.xml.rpc.handler.soap

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

This package contains a single interface that provides an additional API for JAX-RPC message

handlers that work specifically with SOAP messages.

Interfaces

public interface SOAPMessageContext extends javax.xml.rpc.handler.MessageContext;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPMessageContext javax.xml.rpc.handler.soap

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public interface SOAPMessageContext extends javax.xml.rpc.handler.MessageContext {

// Public Instance Methods
 public abstract javax.xml.soap.SOAPMessage getMessage();
 public abstract String[] getRoles();
 public abstract void setMessage(javax.xml.soap.SOAPMessage message)
}

The SOAPMessageContext interface represents the context information passed between JAX-RPC

message handlers that are placed in the processing pipeline for an incoming or outgoing message, when

that message is constructed according to the rules of the SOAP 1.1 specification. An instance of this

interface is passed as an argument to the handleRequest(), handleResponse(), and handleFault(

) methods of each SOAP message handler in the pipeline.

Most of the functionality of this interface is inherited from MessageContext, from which it is derived.
The SOAPMessageContext interface adds only three methods, all of which are specific to SOAP as the

underlying message protocol. The getRoles() method returns the set of SOAP roles that apply to the

handler chain within which the SOAPMessageContext object is being used. This information is obtained

by the runtime system from configuration information associated with the handler chain. The

setMessage() method is used by the JAX-RPC runtime to store a reference to the message being
processed so that handlers can retrieve it by calling getMessage(). A handler may also use the

setMessage() method to change the message being processed. This is typically done when a handler

detects an error and wishes to prevent the original message from being sent, and to substitute a SOAP

fault message that is returned to the client. A substitution of the response message for a fault or other

message may also take place on the server side.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 17. The javax.xml.rpc.holders Package

Package javax.xml.rpc.holders

BigDecimalHolder

BigIntegerHolder

BooleanHolder

BooleanWrapperHolder

ByteArrayHolder

ByteHolder

ByteWrapperHolder

CalendarHolder

DoubleHolder

DoubleWrapperHolder

FloatHolder

FloatWrapperHolder

Holder

IntegerWrapperHolder

IntHolder

LongHolder

LongWrapperHolder

ObjectHolder

QNameHolder

ShortHolder

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ShortWrapperHolder

StringHolder

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Package javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

This package contains a set of classes that are used to simulate method arguments that can be used to

receive output values, a feature that is not directly supported by the Java programming language. A

holder argument is used wherever the WSDL definition calls for an output or input/output argument. In

terms of method call syntax, a service endpoint interface method that uses a holder class looks like this:

public void methodName(IntHolder arg) throws RemoteException;

All holders implement the Holder interface, which is a marker that does not declare any methods. Each
holder class can contain a value of a specific type. There are 21 pre-defined holder classes in the

javax.xml.rpc.holders package, which correspond to the Java primitive types (such as int), their
object wrapper counterparts (such as Integer), and a small number of special cases (such as

QNameHolder). A simple naming convention applies to the standard wrapper classes:

For a Java primitive type, the class name is formed by capitalizing the first letter of the type name

and appending Holder. Hence, the IntHolder class is the holder class for a primitive int,

ByteHolder corresponds to byte, and so on.

For a primitive wrapper type, the class name consists of the wrapper class name followed by

WrapperHolder. The holder for the Integer class is therefore IntegerWrapperHolder

JAX-RPC is capable of generating additional holder classes for method arguments of other types that
are defined to have either output or input/output semantics. For the reference implementation, this task

is performed by the wscompile utility described in Chapter 2 and Chapter 8. Since the Holder interface

does not define any methods, there is no standard way to get or set the value in a holder. Instead, the

predefined classes all follow a coding convention as follows:

The class provides a constructor that accepts a value of the appropriate type. For example, the

constructor of the IntHolder class requires an argument of type int.

The value itself is held in a public variable called value.

Assuming that the argument of the methodName() method just shown has input/output semantics, the
following code extract shows how it might be used:

IntHolder arg = new IntHolder(10); // Use 10 as the argument value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

port.methodName(arg); // Invoke the method...
int result = arg.value; // ... and get the result

Customized holders can be created by writing a class that declares that it implements the Holder and

follows these coding conventions. Refer to Chapter 2 for an example.

Interfaces

public interface Holder;

Classes

public final class BigDecimalHolder implements Holder;
public final class BigIntegerHolder implements Holder;
public final class BooleanHolder implements Holder;
public final class BooleanWrapperHolder implements Holder;
public final class ByteArrayHolder implements Holder;
public final class ByteHolder implements Holder;
public final class ByteWrapperHolder implements Holder;
public final class CalendarHolder implements Holder;
public final class DoubleHolder implements Holder;
public final class DoubleWrapperHolder implements Holder;
public final class FloatHolder implements Holder;
public final class FloatWrapperHolder implements Holder;
public final class IntegerWrapperHolder implements Holder;
public final class IntHolder implements Holder;
public final class LongHolder implements Holder;
public final class LongWrapperHolder implements Holder;
public final class ObjectHolder implements Holder;
public final class QNameHolder implements Holder;
public final class ShortHolder implements Holder;
public final class ShortWrapperHolder implements Holder;
public final class StringHolder implements Holder;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BigDecimalHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class BigDecimalHolder implements Holder {

// Public Constructors
 public BigDecimalHolder();

 public BigDecimalHolder(java.math.BigDecimal myBigDecimal);

// Public Instance Fields
 public java.math.BigDecimal value;
}

A Holder class that contains a value of type java.math.BigDecimal.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BigIntegerHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class BigIntegerHolder implements Holder {

// Public Constructors
 public BigIntegerHolder();

 public BigIntegerHolder(java.math.BigInteger myBigInteger);

// Public Instance Fields
 public java.math.BigInteger value;
}

A Holder class that contains a value of type java.math.BigInteger.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BooleanHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class BooleanHolder implements Holder {

// Public Constructors
 public BooleanHolder();

 public BooleanHolder(boolean myboolean);

// Public Instance Fields
 public boolean value;
}

A Holder class that contains a primitive Java boolean value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BooleanWrapperHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class BooleanWrapperHolder implements Holder {

// Public Constructors
 public BooleanWrapperHolder();

 public BooleanWrapperHolder(Boolean myboolean);

// Public Instance Fields
 public Boolean value;
}

A Holder class that contains a java.lang.Boolean value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ByteArrayHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class ByteArrayHolder implements Holder {

// Public Constructors
 public ByteArrayHolder();

 public ByteArrayHolder(byte[] mybyteArray);

// Public Instance Fields
 public byte[] value;
}

A Holder class that contains an array of bytes (i.e., byte[]).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ByteHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class ByteHolder implements Holder {

// Public Constructors
 public ByteHolder();

 public ByteHolder(byte mybyte);

// Public Instance Fields
 public byte value;
}

A Holder class that contains a single byte.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ByteWrapperHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class ByteWrapperHolder implements Holder {

// Public Constructors
 public ByteWrapperHolder();

 public ByteWrapperHolder(Byte mybyte);

// Public Instance Fields
 public Byte value;
}

A Holder class that contains an object of type java.lang.Byte.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CalendarHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class CalendarHolder implements Holder {

// Public Constructors
 public CalendarHolder();

 public CalendarHolder(Calendar myCalendar);

// Public Instance Fields
 public Calendar value;
}

A Holder class that contains holds a value of type java.util.Calendar.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DoubleHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class DoubleHolder implements Holder {

// Public Constructors
 public DoubleHolder();

 public DoubleHolder(double mydouble);

// Public Instance Fields
 public double value;
}

A Holder class that contains a value of type double.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DoubleWrapperHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class DoubleWrapperHolder implements Holder {

// Public Constructors
 public DoubleWrapperHolder();

 public DoubleWrapperHolder(Double mydouble);

// Public Instance Fields
 public Double value;
}

A Holder class that contains a value of type java.lang.Double.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FloatHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class FloatHolder implements Holder {

// Public Constructors
 public FloatHolder();

 public FloatHolder(float myfloat);

// Public Instance Fields
 public float value;
}

A Holder class that contains a value of type float.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FloatWrapperHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class FloatWrapperHolder implements Holder {

// Public Constructors
 public FloatWrapperHolder();

 public FloatWrapperHolder(Float myfloat);

// Public Instance Fields
 public Float value;
}

A Holder class that contains a value of type java.lang.Float.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Holder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public interface Holder {
}

Holder is a marker interface that is implemented by all standard and custom holder classes. It does not
define any methods or constants. Instead, holder classes follow a coding convention described in the

package overview.

Implementations

BigDecimalHolder, BigIntegerHolder, BooleanHolder, BooleanWrapperHolder, ByteArrayHolder,
ByteHolder, ByteWrapperHolder, CalendarHolder, DoubleHolder, DoubleWrapperHolder,

FloatHolder, FloatWrapperHolder, IntegerWrapperHolder, IntHolder, LongHolder,

LongWrapperHolder, ObjectHolder, QNameHolder, ShortHolder, ShortWrapperHolder,
StringHolder

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IntegerWrapperHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class IntegerWrapperHolder implements Holder {

// Public Constructors
 public IntegerWrapperHolder();

 public IntegerWrapperHolder(Integer myint);

// Public Instance Fields
 public Integer value;
}

A Holder class that contains a value of type java.lang.Integer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IntHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class IntHolder implements Holder {

// Public Constructors
 public IntHolder();

 public IntHolder(int myint);

// Public Instance Fields
 public int value;
}

A Holder class that contains a value of type int.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LongHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class LongHolder implements Holder {

// Public Constructors
 public LongHolder();

 public LongHolder(long mylong);

// Public Instance Fields
 public long value;
}

A Holder class that contains a value of type long.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LongWrapperHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class LongWrapperHolder implements Holder {

// Public Constructors
 public LongWrapperHolder();

 public LongWrapperHolder(Long mylong);

// Public Instance Fields
 public Long value;
}

A Holder class that contains a value of type java.lang.Long.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ObjectHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class ObjectHolder implements Holder {

// Public Constructors
 public ObjectHolder();

 public ObjectHolder(Object value);

// Public Instance Fields
 public Object value;
}

A Holder class that contains a value of type java.lang.Object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

QNameHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class QNameHolder implements Holder {

// Public Constructors
 public QNameHolder();

 public QNameHolder(javax.xml.namespace.QName myQName);

// Public Instance Fields
 public javax.xml.namespace.QName value;
}

A Holder class that contains a value of type javax.xml.namespace.QName.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ShortHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class ShortHolder implements Holder {

// Public Constructors
 public ShortHolder();

 public ShortHolder(short myshort);

// Public Instance Fields
 public short value;
}

A Holder class that contains a value of type short.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ShortWrapperHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class ShortWrapperHolder implements Holder {

// Public Constructors
 public ShortWrapperHolder();

 public ShortWrapperHolder(Short myshort);

// Public Instance Fields
 public Short value;
}

A Holder class that contains a value of type java.lang.Short.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StringHolder javax.xml.rpc.holders

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public final class StringHolder implements Holder {

// Public Constructors
 public StringHolder();

 public StringHolder(String myString);

// Public Instance Fields
 public String value;
}

A Holder class that contains a value of type java.lang.String.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 18. The javax.xml.rpc.server Package

Package javax.xml.rpc.server

ServiceLifecycle

ServletEndpointContext

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Package javax.xml.rpc.server

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

This package contains two interfaces that define the server-side API for JAX-RPC. These interfaces

allow a JAX-RPC service implementation to detect the beginning and end of its life cycle in order to

perform appropriate initialization and cleanup as well as to gain access to its execution environment.

Both interfaces are relevant only to a service that is hosted within a web container. Services

implemented as stateless session beans have access to similar facilities via the life cycle methods of the
bean itself and the SessionContext object passed as an argument to its setSessionContext()

method.

The server-side programming model for JAX-RPC is, in part, dependent on the container in which the

service is hosted. For example, a service implemented as a stateless session bean can assume that

methods invoked on a given instance are executed serialized with respect to each other, and therefore

need not be concerned about threading issues. By contrast, a servlet-hosted service must assume that
any of its methods may be called concurrently in separate threads and must, therefore, be thread-safe,

unless it implements the javax.servlet.SingleThreadModel interface. Note, however, that while the

J2EE specification requires that the container honor this interface, the JAX-RPC specification does not.

Therefore, services written for web containers that implement only the JAX-RPC specification (such as

the one provided by JWSDP 1.0) must be thread-safe.

Interfaces

public interface ServiceLifecycle;
public interface ServletEndpointContext;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ServiceLifecycle javax.xml.rpc.server

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public interface ServiceLifecycle {

// Public Instance Methods
 public abstract void destroy();

 public abstract void init(Object context) throws javax.xml.rpc.ServiceException;
}

This interface is implemented by a web service implementation class that wishes to be notified of the

start and end of its life cycle.

The init() method is called when an instance of the service implementation class is created and

before its first service endpoint interface method is invoked. The argument passed to this method is of
unspecified type and is intended to be dependent on the nature of the container within which the service

is running. In fact, the ServiceLifecycle interface is provided only by web containers; in this case,
the object passed to the init() method is of type

javax.xml.rpc.server.ServletEndpointContext .

The init() method is permitted to report an unrecoverable error or an illegal context object by

throwing a javax.xml.rpc.ServiceException . The container typically responds to this exception by

discarding the instance.

The destroy() method is called to notify a service instance of the end of its life cycle. Once this
method completes, the container does not dispatch any further web service interface method calls to the

instance and may make the instance eligible for garbage collection.

The J2EE specification does not require an EJB container to honor the ServiceLifecycle interface;

therefore, a service implemented as a stateless session bean should not implement it. Such a service can

detect the start and end of its life cycle by implementing the ejbCreate() and ejbRemove() methods

of the SessionBean interface, and can access the container environment by using the SessionContext

object passed to its setSessionContext() method. Additionally, the service can access its JNDI
naming context in the usual way by instantiating a javax.naming.InitialContext object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ServletEndpointContext javax.xml.rpc.server

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

public interface ServletEndpointContext {

// Public Instance Methods
 public abstract javax.servlet.http.HttpSession getHttpSession();
 public abstract javax.xml.rpc.handler.MessageContext getMessageContext();
 public abstract javax.servlet.ServletContext getServletContext();
 public abstract java.security.Principal getUserPrincipal();
}

A servlet container that provides a server-side implementation of JAX-RPC must create an object of
type ServletEndpointContext and pass it to the init() method of any service that declares that it

implements the ServiceLifecyle interface. The service class typically stores the object passed to it,

and uses it to obtain context information as necessary during the invocation of its service endpoint
interface methods.

The getServletContext() method returns the ServletContext for the web application of which the

web service implementation is a part. The ServletContext provides methods that allow the service to
access initialization parameters, delegate service implementation to other servlets or JSPs, and so on.

This is the only method that returns a meaningful value if called outside of a service endpoint interface

method (e.g., in init()).

The getHttpSession() method returns the HttpSession object that corresponds to the active session

maintained by the hosting web container for the client invoking a remote service endpoint interface
method, or null if the client is not in a session with the server. A JAX-RPC client must explicitly

enable the use of sessions by setting the SESSION_MAINTAIN_PROPERTY of its javax.xml.rpc.Stub or

javax.xml.rpc.Call object to true. The ability of other types of clients to establish a session is

dependent on the client's software environment.

The getUserPrincipal() method returns a java.security.Principal that identifies the caller of a

service endpoint interface method. A meaningful value is returned only if the web container has
authenticated the calling user as the result of the use of an auth-constraint element in the web.xml

file for the hosting servlet. If authentication is not performed, then null is returned.

The getMessageContext() method returns the javax.xml.rpc.handler.MessageContext object for

the SOAP message that caused the service's executing service endpoint interface method to be invoked.

The MessageContext can be used to allow a service implementation class to share property values with

SOAP message handlers that are designated to be included on the server-side processing path. A

service implementation might make use of this facility by reading a value extracted by a message

http://lib.ommolketab.ir
http://lib.ommolketab.ir

handler from a SOAP header that was part of the incoming message, or by saving a value that a handler
should write into the reply message, while not itself becoming dependent on the actual message

structure. If the MessageContext is an instance of

javax.xml.rpc.handler.soap.SOAPMessageContext, the service implementation class may use it to

gain direct access to the message itself, although this is not recommended.

Even though a single ServletEndpointContext object is passed to a given servlet instance, the values

that it returns depend on the execution context of the service endpoint interface method within which it
is used. For example, the same ServletEndpointContext object used concurrently in two different

threads by the same service instance might return different values from the getHttpSession()

method if the callers are in separate sessions with the web container. This is possible because the

ServletEndpointContext methods return information obtained from context that is held within the

servlet container on a per-thread basis.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 19. The javax.xml.rpc.soap Package

Package javax.xml.rpc.soap

SOAPFaultException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Package javax.xml.rpc.soap

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4

This package contains classes from the client-side JAX-RPC API that are specific to the use of this API

when SOAP is used as the underlying message transport (which, at the time of this writing, is

exclusively the case). In JAX-RPC 1.0, there is only one class in this package.

Exceptions

public class SOAPFaultException extends RuntimeException;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPFaultException javax.xml.rpc.soap

JAX-RPC 1.0; JWSDP 1.0, J2EE 1.4 serializable unchecked

public class SOAPFaultException extends RuntimeException {

// Public Constructors

 public SOAPFaultException(javax.xml.namespace.QName faultcode,

 String faultstring, String faultactor, javax.xml.soap.Detail faultdetail);

// Public Instance Methods
 public javax.xml.soap.Detail getDetail();
 public String getFaultActor();
 public javax.xml.namespace.QName getFaultCode();
 public String getFaultString();
}

SOAPFaultException is an unchecked exception that is thrown from a method call on the client side
that results in the server returning a SOAP message that contains a fault element. The methods from

which such a fault can be thrown are the invoke() method of the Call interface, and any method in

the service endpoint interface of a web service for which the WSDL definition allows the response to
contain a fault element.

The methods of SOAPFaultException allow the client application to retrieve the information conveyed
in the fault message (for a discussion of this, refer to the description of the SOAPFault element in the

SAAJ API in Chapter 20). The getFaultCode() and getFaultString() methods retrieve the reason

for the fault as an error code and a human-readable string, respectively, while the getFaultActor()

method returns a URI that identifies the system that detected the fault. The getDetail() returns

additional information, which is application-specific, that the sender stored in the SOAP fault element.
The value returned by this method is of type javax.xml.soap.Detail (see Chapter 20) and can,

therefore, contain arbitrary XML elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 20. The javax.xml.soap Package

Package javax.xml.soap

AttachmentPart

Detail

DetailEntry

MessageFactory

MimeHeader

MimeHeaders

Name

Node

SOAPBody

SOAPBodyElement

SOAPConnection

SOAPConnectionFactory

SOAPConstants

SOAPElement

SOAPElementFactory

SOAPEnvelope

SOAPException

SOAPFactory

SOAPFault

SOAPFaultElement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPHeader

SOAPHeaderElement

SOAPMessage

SOAPPart

Text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Package javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

The javax.xml.soap package contains the classes and interfaces that make up the Soap with

Attachments API for Java (SAAJ). This package can be divided into two major parts: a small number

of classes and interfaces that obtain a SOAP message and send it, and a much larger set that deal with

the structure of the message itself.

In order to send a message, you need to get an instance of the SOAPConnection class. As is the case
with most of the classes in this package, this class is abstract in order to allow vendors to provide their

own implementations. You can obtain a SOAPConnection object from the SOAPConnectionFactory

class, which is another abstract class that you can get an instance of by calling its newInstance()

method. A SOAP message is represented by the SOAPMessage class, which can be obtained from a

MessageFactory.

SOAP messages are built from elements that are represented in the API by the SOAPElement interface.
This interface provides methods that allow you to add other elements and text nodes to form a tree

structure that is serialized to XML form when the message is transmitted. Similarly, on receipt, a

SOAP message is converted from XML form to a SOAPMessage consisting of SOAPElements and Text

nodes. SOAPElement has various subinterfaces that represent different parts of the SOAP message, such

as SOAPHeader, SOAPBody, and SOAPFault.

The body of a SOAP message can only contain valid XML data. Non-XML data can be included by
adding one or more attachments. SAAJ supports the use of attachments that contain MIME-encoded

data. To add such an attachment, create an AttachmentPart object, specifying the data content and its

MIME type, and attach it to the message.

Interfaces

public interface Detail extends SOAPFaultElement;
public interface DetailEntry extends SOAPElement;
public interface Name;
public interface Node;
public interface SOAPBody extends SOAPElement;
public interface SOAPBodyElement extends SOAPElement;
public interface SOAPConstants;
public interface SOAPElement extends Node;
public interface SOAPEnvelope extends SOAPElement;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public interface SOAPFault extends SOAPBodyElement;
public interface SOAPFaultElement extends SOAPElement;
public interface SOAPHeader extends SOAPElement;
public interface SOAPHeaderElement extends SOAPElement;
public interface Text extends Node;

Classes

public abstract class AttachmentPart;
public abstract class MessageFactory;
public class MimeHeader;
public class MimeHeaders;
public abstract class SOAPConnection;
public abstract class SOAPConnectionFactory;
public class SOAPElementFactory;
public abstract class SOAPFactory;
public abstract class SOAPMessage;
public abstract class SOAPPart;

Exceptions

public class SOAPException extends Exception;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AttachmentPart javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public abstract class AttachmentPart {

// Public Constructors
 public AttachmentPart();

// Property Accessor Methods (by property name)
 public abstract Iterator getAllMimeHeaders();
 public abstract Object getContent() throws SOAPException;
 public String getContentId();

 public void setContentId(String contentId);
 public String getContentLocation();

 public void setContentLocation(String contentLocation);
 public String getContentType();

 public void setContentType(String contentType);
 public abstract javax.activation.DataHandler getDataHandler()
 throws SOAPException;

 public abstract void setDataHandler(javax.activation.DataHandler dataHandler);
 public abstract int getSize() throws SOAPException;

// Public Instance Methods

 public abstract void addMimeHeader(String name, String value);
 public abstract void clearContent();

 public abstract Iterator getMatchingMimeHeaders(String[] names);

 public abstract String[] getMimeHeader(String name);

 public abstract Iterator getNonMatchingMimeHeaders(String[] names);
 public abstract void removeAllMimeHeaders();

 public abstract void removeMimeHeader(String header);

 public abstract void setContent(Object object, String contentType);

 public abstract void setMimeHeader(String name, String value);
}

The AttachmentPart class represents an attachment to a SOAP message. Attachments are created
using the createAttachment() method of the SOAPMessage class and are composed of MIME-

encoded content and a set of MIME headers. The content can be associated with the attachment either

when it is constructed or when subsequently using the setContent() or setDataHandler()

methods.

The content of an attachment can be added using either the setContent() or the setDataHandler()

method, both of which automatically set the Content-Type MIME header to match the type of data
provided. The setContent() method supplies the content as a Java object together with a string that

indicates its MIME type. When the SOAPMessage is serialized to XML, the content of the attachment is

converted to a byte stream using a DataHandler that is specialized for that object's MIME type. The

SAAJ reference implementation provides handlers that work for a small number of MIME types,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

including plain text and XML and JPEG images. However, these handlers require the source object to
be of a specific type, which is not always convenient. For example, if you want to include a JPEG

image as an attachment, you need to supply it in the form of a java.awt.Image object. This is

inconvenient if you already have it in the form of a byte array. The setDataHandler() method lets

you supply the attachment data in the form of a DataHandler object that encapsulates both the MIME

type and the data, and also allows you to provide the code required to handle the conversion into byte
stream form, which is, of course, trivial if you already have a byte stream. Except for a small number of

special cases, the setDataHandler() method is the better choice. For a more complete discussion of

this topic, refer to Chapter 3.

You can discover the size of the data in an attachment by calling the getSize() method. The actual

content can be retrieved using either the getContent() or the getDataHandler() method. The

getContent() method returns the data in the form of an object that is determined by its MIME type
and the data content handlers that are installed. The getDataHandler() method returns the content in

the form of a DataHandler object instead, which potentially allows you to retrieve it in various

different forms or as a raw byte stream. The clearContent() method removes the data content of the

attachment, but does not affect any of the MIME headers.

Each attachment has its own set of MIME headers that are distinct from those associated with the

SOAPMessage of which it forms a part. The AttachmentPart class provides a group of methods that
allow you to access or set the MIME headers. The addMimeHeader(), setMimeHeader(),

removeMimeHeader(), and removeAllMimeHeaders() methods all change the set of headers,

whereas getMimeHeader(), getAllMimeHeaders(), getMatchingMimeHeaders(), and

getNonMatchingMimeHeaders() return some or all of the existing headers. These methods are the

same as the similarly named methods of the MimeHeaders class, which is described later in this section,
apart from the fact that the MimeHeaders method does not include Mime in the method name (e.g.,

getAllMimeHeaders() corresponds to the MimeHeaders getAllHeaders() method).

AttachmentPart also provides a small number of convenience methods, such as getContentType()

and setContentType(), that provide access to commonly used MIME headers without requiring the

use of the header name. As noted earlier, the appropriate Content-Type is set automatically when the
attachment data is installed, and should not usually be changed.

Passed To

SOAPMessage.addAttachmentPart()

Returned By

SOAPMessage.createAttachmentPart()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Detail javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public interface Detail extends SOAPFaultElement {

// Public Instance Methods

 public abstract DetailEntry addDetailEntry(Name name)
 throws SOAPException;
 public abstract Iterator getDetailEntries();
}

Detail is a SOAPElement that supplies application-specific information relating to a SOAP fault. A
SOAPFault element that reports an error while processing the body part of an earlier message must

contain a Detail element. Conversely, a SOAPFault reporting an error in the header of the message

must not contain this element. The Detail element, when present, contains one or more detail entries
that are represented in the SAAJ API by the DetailEntry element and contain the useful information

relating to the fault.

To create a Detail element, use the addDetail() method of the SOAPFault object within which it is
to appear. Once you have a Detail object, you can add entries to it by calling its addDetailEntry()

method. To examine the entries contained in a Detail object, use the getDetailEntries() method,

which returns an Iterator in which each item is of type DetailEntry.

Passed To

javax.xml.rpc.soap.SOAPFaultException.SOAPFaultException()

Returned By

javax.xml.rpc.soap.SOAPFaultException.getDetail(), SOAPFactory.createDetail(),

SOAPFault.{addDetail(), getDetail()}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DetailEntry javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public interface DetailEntry extends SOAPElement {
}

DetailEntry is a SOAPElement that provides application-specific information relating to a SOAP fault.
A DetailEntry is always contained by and can only be created from a Detail element. There is no

predefined SOAP element that corresponds to a DetailEntry-instead, the element name and its

namespace are supplied when it is created.

Since the DetailEntry interface is derived from SOAPElement, applications may nest Text nodes or
other SOAPElements inside a DetailEntry and may also attach attributes and namespace declarations

to it. The following code extract creates a DetailEntry and adds to it a single Text node. In this code,
detail is assumed to be a reference to a Detail object, and factory is assumed to be a reference to a

SOAPFactory:

DetailEntry entry = detail.addDetailEntry(
 factory.createName("BookError", "books", "urn:BookService"));
entry.addTextNode("Book title not known");

Here is how this would look in the resulting SOAP message, where the <detail> tag corresponds to

the containing Detail element:

<detail>
 <books:BookError xmlns:books="urn:BookService">Book title not known
 </books:BookError>
</detail>

Returned By

Detail.addDetailEntry()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MessageFactory javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public abstract class MessageFactory {

// Public Constructors
 public MessageFactory();

// Public Class Methods
 public static MessageFactory newInstance() throws SOAPException;

// Public Instance Methods
 public abstract SOAPMessage createMessage() throws SOAPException;

 public abstract SOAPMessage createMessage(MimeHeaders headers,

 java.io.InputStream in) throws java.io.IOExceptionSOAPException;
}

MessageFactory is an abstract base class that provides the methods used by application code to

construct SOAP messages. A SAAJ application obtains an instance of this class by calling the static

newInstance() method, which looks for a suitable concrete implementation using the following

algorithm:

Looks in the system properties for a property called javax.xml.soap.MessageFactory. If this

property is defined, its value is assumed to be the class name of a concrete implementation of

MessageFactory.

Looks for the same property in a file called ${JAVA_HOME}/lib/jaxm.properties. If the property

is found, its value is assumed to be the required class name.

Looks for a resource called META-INF/services/javax.xml.soap.MessageFactory in the

classpath. If such a resource exists, it is opened and a single line is read from it. If the line is not

empty, it is used as the class name.

Finally, an implementation-dependent default class is used. In the case of the reference

implementation, this class is called com.sun.xml.messaging.saaj.soap.MessageFactoryImpl.

Once you have a MessageFactory, use its zero-argument createMessage() method to obtain a basic
SOAPMessage object to which you can then add content and attachments. The default MessageFactory

provided by the SAAJ reference implementation returns a message that contains the following:

A SOAPEnvelope within a SOAPPart object

An empty SOAPHeader, followed by an empty SOAPBody, inside the SOAPEnvelope

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Since the MessageFactory is found using a lookup process, it is possible to plug in a custom factory

that will return a SOAPMessage that is partially populated with elements that a particular application or

suite of applications might require, without modifying application code.

The other variant of createMessage() is intended to be used to deserialize a SOAP message received
from an HTTP connection or some other communications mechanism into a SOAPMessage object and

therefore is most commonly used by servlets. The in argument provides an InputStream from which
the raw XML message can be read, while the headers argument is a MimeHeaders object containing

the MIME headers that accompanied the message and therefore accessible from the SOAPPart object

within the resulting SOAPMessage. Refer to Chapter 6 for an example that shows how to use this
method to handle a SOAP message from within a servlet.

Passed To

javax.xml.messaging.JAXMServlet.setMessageFactory()

Returned By

javax.xml.messaging.ProviderConnection.createMessageFactory(),
MessageFactory.newInstance()

Type Of

javax.xml.messaging.JAXMServlet.msgFactory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MimeHeader javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public class MimeHeader {

// Public Constructors

 public MimeHeader(String name, String value);

// Public Instance Methods
 public String getName();
 public String getValue();
}

MimeHeader is a simple class that acts as a container for the name and value of a MIME header. A
SOAP message may have MIME headers associated with its SOAPMessage object and, if it has any

attachments, the SOAPPart and each AttachmentPart may have its own MIME headers. MimeHeader

objects are usually grouped together and stored in a MimeHeaders object.

The getName() and getValue() methods return the name and value of the MIME header,
respectively. Typical values for these attributes might be Content-Type and text/xml. A SOAP

message may have multiple headers with the same name but different values. In this case, each
individual name/value pair has its own MimeHeader object. The MimeHeaders class provides methods

that allow all of the values for a given header to be retrieved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MimeHeaders javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public class MimeHeaders {

// Public Constructors
 public MimeHeaders();

// Public Instance Methods

 public void addHeader(String name, String value);
 public Iterator getAllHeaders();

 // default:Itr

 public String[] getHeader(String name);

 public Iterator getMatchingHeaders(String[] names);

 public Iterator getNonMatchingHeaders(String[] names);
 public void removeAllHeaders();

 public void removeHeader(String name);

 public void setHeader(String name, String value);
}

MimeHeaders is a container class that represents a group of MIME headers associated with a SOAP

message. A message that has no attachments has a single set of MIME headers that can be obtained by

calling the getMimeHeaders() method of its SOAPMessage object. A message with attachments has

additional sets of independent MIME headers associated with the SOAP envelope (available from the

SOAPPart object) and with each attachment.

MimeHeaders manages a set of MimeHeader objects, each of which represents a single header

name/value combination. It is possible for a header to have multiple values, in which case each value

has its own MimeHeader object. The addHeader() method creates a new entry with a given name and

value, leaving all existing entries with the same name intact. The setHeader() method adds a new

entry if a header with the given name does not already exist; otherwise, it replaces the value of the first

header in the collection with the given name, as illustrated by the following code snippet, in which
headers is a reference to a MimeHeaders object:

headers.setHeader("Content-Length", "1024");
headers.setHeader("Content-Type", "text/plain");
headers.setHeader("Content-Length", "2048");
// Replaces the value added earlier

This code creates a Content-Type header with the value text/plain and a Content-Length header
with the value 2048.

The removeHeader() method removes all MIME headers whose name matches the supplied value.

Note that the name comparison performed by this method (and all MimeHeaders methods) is case-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

insensitive. The removeAllHeaders() method removes all headers, leaving an empty container.

There are four methods that let you obtain some or all of the headers in a MimeHeaders object. The
getHeader() method accepts a header name and returns an array containing all of the values

associated with that header, or null if there are none. The other three methods all return an Iterator

containing objects of type MimeHeader. The getAllHeaders() method returns all headers and their

values. getMatchingHeaders() accepts a list of header names and returns the MimeHeader objects for

all headers whose names appear in the given list. getNonMatchingHeaders() returns the MimeHeader
objects for all headers whose names do not appear in the list; if an empty list of names is supplied, then

all headers and their associated values are returned.

Passed To

javax.xml.messaging.JAXMServlet.putHeaders(), MessageFactory.createMessage(),
SOAPMessage.getAttachments()

Returned By

javax.xml.messaging.JAXMServlet.getHeaders(), SOAPMessage.getMimeHeaders()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public interface Name {

// Public Instance Methods
 public abstract String getLocalName();
 public abstract String getPrefix();
 public abstract String getQualifiedName();
 public abstract String getURI();
}

Name is an interface that encapsulates the concept of an XML element name that may be namespace-
qualified. It is used whenever such a name is required by the SAAJ API instead of the

javax.xml.namespace.QName class, which is used by JAX-RPC. A Name has three attributes:

A local name, which all Name objects are required to have

A namespace URI, which uniquely identifies the namespace within which the local name is

defined

The prefix that is used as a shorthand identifier for the namespace and that appears along with the

local name in XML tags

Name objects can be obtained by calling one of the createName() methods of the SOAPFactory class

or the SOAPEnvelope interface. These methods have two variants:

public Name createName(String localName) throws SOAPException;
public Name createName(String localName, String prefix, String uri)
 throws SOAPException;

The first method creates a Name that is not explicitly associated with a namespace, as in the following

example:

SOAPFactory factory = SOAPFactory.newInstance;
Name bookTitle = factory.createName("BookTitle");
SOAPElement bookTitleElement = factory.createElement(bookTitle);

If bookTitleElement is added to a SOAPMessage and serialized, it appears as BookTitle. The fact that

the Name object does not have an explicit namespace does not, however, mean that an element created

from it is not in a namespace. In fact, the element is in the default namespace assigned either by itself
or by the nearest ancestor element that has an xmlns with no namespace prefix, if there is one.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The second method returns a Name element that has an explicit namespace defined by the uri argument.
Wherever the Name object is used to create a SOAPElement and then serialized, both the local name and

the prefix appear. The following code creates an element called BookTitle in a namespace defined by

the URI urn:BookService:

SOAPFactory factory = SOAPFactory.newInstance();
Name bookTitle = factory.createName("BookTitle", "book", "urn:BookService");
SOAPElement bookTitleElement = factory.createElement(bookTitle);

When the bookTitleElement is serialized, it appears as book:BookTitle, and a namespace declaration

mapping the prefix book to the URI urn:BookService is added:

<book:BookTitle xmlns:book="urn:BookService">

The getLocalPart(), getPrefix, and getURI() methods return the values of the three independent

attributes of the Name object. The getQualifiedName() method returns a string that shows how the

element will appear within the serialized SOAP message. For the two examples shown previously, this

method returns either BookTitle or book:BookTitle.

It is important to note that two Name objects are considered to be equal if they have the same local part
and the same namespace URI. In other words, the prefix is not a factor in the comparison.

Passed To

Detail.addDetailEntry(), SOAPBody.addBodyElement(), SOAPElement.{addAttribute(),

addChildElement(), getAttributeValue(), getChildElements(), removeAttribute()},
SOAPElementFactory.create(), SOAPFactory.createElement(),
SOAPHeader.addHeaderElement()

Returned By

SOAPElement.getElementName(), SOAPEnvelope.createName(), SOAPFactory.createName()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Node javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public interface Node {

// Public Instance Methods
 public abstract void detachNode();
 public abstract SOAPElement getParentElement();
 public abstract String getValue();
 public abstract void recycleNode();

 public abstract void setParentElement(SOAPElement parent)
 throws SOAPException;
}

Node is an interface that represents a node in a DOM-like tree representation of a SOAP message. In

particular, Node owns the reference required to maintain the linkage between a SOAP element and its
single parent. In the SAAJ API, Node is never used directly. Instead, the API deals with its two derived

interfaces: SOAPElement, which adds the capability to attach attributes and namespace declarations, and

Text, which represents textual content.

The getParentElement() method returns a reference to the SOAPElement that resides above this Node
in the element hierarchy, whereas setParentElement() links the node beneath a given SOAPElement.
The detachNode() method can be used to remove the Node from the tree. If the application code

knows that it no longer needs a particular Node, it should use the recycleNode() method to allow it to

be garbage-collected once all hard references to it are removed. As a side effect, the Node is removed

from its parent if it is still linked when this method is called.

getValue() is a convenience method that returns a string that is the value associated with a Text

child of this Node. It returns null if the node does not have such a child. Text can be associated with a
Node using the addTextNode() method of SOAPElement, which actually creates a Text node and adds

it as a child of the element.

Interestingly, although a Node may have a parent, it does not have any methods that allow access to

other Nodes that are its direct descendents, since the concept of child elements belongs to SOAPElement

instead. However, since every SOAPElement is also a Node, it is incorrect to regard Node as simply a leaf

in a tree structure.

Implementations

SOAPElement, Text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPBody javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public interface SOAPBody extends SOAPElement {

// Public Instance Methods

 public abstract SOAPBodyElement addBodyElement(Name name)
 throws SOAPException;
 public abstract SOAPFault addFault() throws SOAPException;
 public abstract SOAPFault getFault();
 public abstract boolean hasFault();
}

SOAPBody is a subinterface of SOAPElement that represents the body of a SOAP message. A single
SOAPBody element will always be found as either the first or second element of the SOAPEnvelope,

depending on whether the enclosing message has associated headers.

A SOAPBody element may contain any number of SOAPBodyElements that represent the information to

be sent to the message recipient. These elements can be created and added to the body in a single
operation by calling addBodyElement() or the addChildElement() method inherited from

SOAPElement. SOAPElements obtained from a SOAPFactory or from the SOAPElementFactory class
may also be added to the message body. However, in this case, since every immediate child of

SOAPBody must be a SOAPBodyElement, a copy of the element (and any child elements it may contain)

is made in which the original element is replaced by a SOAPBodyElement, and the copied hierarchy is

added to the message body.

SOAPBody may also contain a single SOAPFault element if the message is reporting an error
encountered while processing the headers or body of an earlier message. The addFault() method

creates and adds a SOAPFault element to the message body. Application code is responsible for

properly initializing this object, as described in the reference entry for SOAPFault, later in this chapter.

A message recipient can determine whether the body contains a fault element by calling hasFault(),

and can obtain a reference to it from the getFault() method, which returns null if there is no such

element in the body.

Returned By

SOAPEnvelope.{addBody(), getBody()}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPBodyElement javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public interface SOAPBodyElement extends SOAPElement {
}

SOAPBodyElement is a subinterface of SOAPElement that represents an element that has been added
directly to the body of a SOAP message. In all other respects, a SOAPBodyElement is the same as a

SOAPElement.

The most direct way to create a SOAPBodyElement is to use the addBodyElement() method of

SOAPBody, supplying the element name in the form of a Name object:

SOAPFacctory factory = SOAPFactory.newInstance();
Name elementName = factory.createName("BookSearch", "book",
 "urn:BookService");
SOAPBodyElement bodyElement = soapBody.addBodyElement(elementName);
bodyElement.addTextNode("Java Web Services");

Since SOAPBody is itself a SOAPElement, it inherits its addChildElement() methods. It is therefore

possible to use these methods to directly add elements to a SOAPBody like this:

SOAPElement element = body.addChildElement(
 "BookSearch", "book",
 "urn:BookService");

This code actually creates a SOAPBodyElement rather than an ordinary SOAPElement. Additionally,

SOAPElements created using factory methods and added directly to the SOAP body are replaced by

SOAPBodyElements. Therefore, in the following code extract:

SOAPElement element = factory.createElement("BookSearch", "book",
 "urn:BookService");
SOAPElement textElement = element.addTextNode("J2ME");
SOAPElement bodyElement = body.addChildElement(element);

the result of the addChildElement() method called on the third line is that a new SOAPBodyElement

is created and added to the body in place of the original element and a reference to that

SOAPBodyElement is returned. Any elements below the original element (in this case, the Text node)

are copied and placed below the newly created SOAPBodyElement.

Implementations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPFault

Returned By

SOAPBody.addBodyElement()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPConnection javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public abstract class SOAPConnection {

// Public Constructors
 public SOAPConnection();

// Public Instance Methods

 public abstract SOAPMessage call(SOAPMessage request, Object to)
 throws SOAPException;
 public abstract void close() throws SOAPException;
}

SOAPConnection is an object that can be used to send SOAP messages. Despite its name, it does not

represent a connection in the traditional sense, since it does not have a fixed association with a peer

object. Instead, it is better thought of as an access point that can be used to send any number of

individually addressed SOAP messages to arbitrary receivers.

To obtain a SOAPConnection, you need to use a SOAPConnectionFactory:

SOAPConnectionFactory factory = SOAPConnectionFactory.newInstance;
SOAPConnection conn = factory.createConnection;

Both SOAPConnectionFactory and SOAPConnection are abstract classes, concrete instances of which

are provided by your SAAJ implementation. The fact that the SOAPConnectionFactory newInstance(

) method searches for a suitable implementation class (as described in its reference section in this
chapter) means that you can plug in different SAAJ implementations without changing your application

code. When a SOAPConnection is no longer required, it should be released by calling its close()

method.

The call() method takes a SOAPMessage object, serializes it into XML, and sends it to the destination

given by its to argument. This argument is declared to be of type Object, which allows

implementations to support various different forms of destination addresses. At a minimum, the
following types must be supported:

java.net.URL

This is the simplest case: the URL directly specifies the location of the message recipient.

java.lang.String

When a string is supplied, it is expected to be the string representation of a valid URL.

javax.xml.messaging.URLEndpoint

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is a special case that is supported for compatibility with the JAXM API. The URLEndpoint
is a simple wrapper for a URL, which is obtained by calling its getURL() method and treated as

the message destination. This form of address is available only on systems that have JAXM

installed. Note that JAXM is not part of the J2EE 1.4 platform; therefore, it cannot be assumed to

be universally available.

Once the message is sent, the call() method blocks until a reply is received. The reply is

unmarshalled from XML into a SOAPMessage, which is then returned to the caller. call() therefore
represents a synchronous message exchange between a client and a server. SAAJ does not support

asynchronous operation; if you need this functionality, you may either simulate it by starting a new

thread to deliver a message, or by using JAXM if it is available.

Returned By

SOAPConnectionFactory.createConnection()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPConnectionFactory javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public abstract class SOAPConnectionFactory {

// Public Constructors
 public SOAPConnectionFactory();

// Public Class Methods
 public static SOAPConnectionFactory newInstance()
 throws SOAPExceptionUnsupportedOperationException;

// Public Instance Methods
 public abstract SOAPConnection createConnection() throws SOAPException;
}

SOAPConnectionFactory is a factory object used to create SOAPConnections. To obtain an instance of
this class, which is abstract, use the static newInstance() method, which uses the following

algorithm to locate a suitable concrete implementation:

Looks in the system properties for a property called javax.xml.soap.SOAPConnectionFactory.

If this property is defined, its value is assumed to be the class name of a concrete implementation

of SOAPConnectionFactory.

Looks for the same property in a file called ${JAVA_HOME}/lib/jaxm.properties. If the property

is found, its value is assumed to be the required class name.

Looks for a resource called META-INF/services/javax.xml.soap.SOAPConnectionFactory in
the classpath. If such a resource exists, it is opened and a single line is read from it. If the line is

not empty, it is used as the required class name.

Finally, an implementation-dependent default class is used. In the case of the reference

implementation, this class is called

com.sun.xml.messaging.saaj.client.p2p.HttpSOAPConnectionFactory.

Once you have a SOAPConnectionFactory, you can use its createConnection() method to obtain

any number of SOAPConnection objects.

Returned By

SOAPConnectionFactory.newInstance()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPConstants javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public interface SOAPConstants {

// Public Constants
 public static final String URI_NS_SOAP_ENCODING;

 // ="http://schemas.xmlsoap.org/soap/encoding/"
 public static final String URI_NS_SOAP_ENVELOPE;

 // ="http://schemas.xmlsoap.org/soap/envelope/"
 public static final String URI_SOAP_ACTOR_NEXT;

 // ="http://schemas.xmlsoap.org/soap/actor/next"
}

This interface defines three string-valued constants that are used within the SAAJ API:

URI_NS_SOAP_ENVELOPE

The URI of the namespace that is associated with the XML elements that make up the SOAP

envelope (http://schemas.xmlsoap.org/soap/envelope/).

URI_NS_SOAP_ENCODING

The URI of the namespace that corresponds to the standard encoding rules defined in the SOAP

specification (http://schemas.xmlsoap.org/soap/encoding/), usually referred to as the SOAP

section 5 rules. This constant is used in conjunction with the SOAPElement setEncodingStyle(
) and getEncodingStyle() methods.

URI_SOAP_ACTOR_NEXT

This constant holds the well-known URI that is the distinguished value of the actor attribute of

the SOAP header used to indicate that the header is intended to be processed by the next

recipient of the message. This value can be supplied as the argument of the setActor() method

of the SOAPHeaderElement interface and may be the return value of the getActor() method.

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPElement javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public interface SOAPElement extends Node {

// Property Accessor Methods (by property name)
 public abstract Iterator getAllAttributes();
 public abstract Iterator getChildElements();

 public abstract Iterator getChildElements(Name name);
 public abstract Name getElementName();
 public abstract String getEncodingStyle();
 public abstract void setEncodingStyle(

 String encodingStyle) throws SOAPException;
 public abstract Iterator getNamespacePrefixes();

// Public Instance Methods

 public abstract SOAPElement addAttribute(Name name, String value)
 throws SOAPException;

 public abstract SOAPElement addChildElement(SOAPElement element) throws SOAPException;

 public abstract SOAPElement addChildElement(String localName)
 throws SOAPException;

 public abstract SOAPElement addChildElement(Name name)
 throws SOAPException;

 public abstract SOAPElement addChildElement(String localName,

 String prefix) throws SOAPException;

 public abstract SOAPElement addChildElement(String localName, String prefix,

 String uri) throws SOAPException;

 public abstract SOAPElement addNamespaceDeclaration(String prefix,

 String uri) throws SOAPException

 public abstract SOAPElement addTextNode(String text) throws SOAPException;

 public abstract String getAttributeValue(Name name);

 public abstract String getNamespaceURI(String prefix);

 public abstract boolean removeAttribute(Name name);

 public abstract boolean removeNamespaceDeclaration(String prefix);
}

A SOAPElement represents an element within a SOAPMessage . SOAPElement is derived from Node and

inherits its ability to be associated with a parent node, thus allowing the construction of a message as a

tree of objects representing the elements and attributes that will eventually be serialized into XML tags.

With the exception of Text , SOAPPart , and AttachmentPart , all of the nodes within a SOAPMessage

are SOAPElement s. SOAPElement has a number of derived interfaces that are used to form particular
parts of a SOAP message. For example, SOAPHeaderElement is a SOAPElement that appears only as a

direct child of a SOAPHeader . Where these special interfaces exist, they are the only type of element

that can be added to their particular parent. An attempt to add a SOAPElement where a more specialized

type is required does not, however, result in an exception. Instead, the element and any child elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

it might have are copied, and the root element is converted to the correct specialized type before being
added to the parent. An attempt to add a SOAPElement to a SOAPHeader , for example, would result in

an equivalent SOAPHeaderElement being added instead.

There are several ways to create a SOAPElement . The simplest way is to use one of the

addChildElement() methods of an existing SOAPElement , such as SOAPBody , which both creates a

new element and makes it a child of the original element. There are five variants of this method.

The addChildElement(Name name) method creates a new element whose name and namespace
prefix are taken from the supplied Name object. A namespace declaration linking the namespace

prefix to the namespace URI from the Name object is also added to the element. If the Name object
does not have an explicit namespace, then neither the namespace prefix nor the namespace

declaration appears on the element.

The addChildElement(String localName) method creates an element whose name is supplied

by the localName argument and has no explicit namespace. The element is therefore in the default
namespace declared by the nearest ancestor that has an xlmns : namespace declaration, or it is

declared by itself if such a declaration is added using the addNamespaceDeclaration() method.

The addChildElement(String localName, String prefix, String uri) method creates an
element in which the name, namespace prefix, and namespace URI are obtained from the method

arguments. A namespace declaration linking the prefix and URI are included. For example, the

method call addChildElement("BookQuery", "book", "urn:BookService") would create an

element that would be serialized as book:BookQuery xmlns:book="urn:BookService ".

The addChildElement(String localName, String prefix) method creates an element with
the given local name and namespace prefix. A mapping from the given prefix to a URI must have

been provided by an ancestor of the newly created element, or a SOAPException is thrown.

The addChildElement(SOAPElement element) method adds either an existing element or a copy

of that element (and any child elements it might have) as a child of the element on which it is

invoked. The specification of this method warns that application code should not assume that the

element itself is added, and a copy is actually added in the reference implementation.

All of the addChildElement() methods return a reference to the SOAPElement that was created and/or
added. This can be useful if you want to create several nested elements in a single line of code:

body.addChildElement("Level1").addChildElement("Level2").
addChildElement("Level3").addTextNode("Text");

This code adds three levels of nested elements. The addTextNode() adds the text passed to it below

the SOAPElement on which it is called and returns a reference to that SOAPElement . The result of
executing this code is the following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<Level1>
 <Level2>
 <Level3>Text</Level3>
 </Level2>
</Level1>

SOAPElement provides a group of methods that allow you to add and manipulate attributes. The

addAttribute() method adds an attribute whose name and namespace prefix are given by the Name

argument and equates it to the supplied attribute value. If the Name object does not have an associated
namespace, then no namespace prefix appears in the serialized XML. The setEncodingStyle()

method is a convenience method that allows you to set the attribute that represents the SOAP encoding

style that applies to an element and its descendents without having to explicitly name the attribute. The

following code extract sets the default SOAP encoding rules:

element.setEncodingStyle(SOAPConstants.URI_NS_SOAP_ENCODING);

The getEncodingStyle() method returns the encoding style set for the element on which it is

invoked. Note that this method does not search the ancestors of the element for an inherited encoding
style if the element itself does not specify one-it simply returns null . The getAttributeValue()

method can be used to obtain the value of an attribute given its Name . If the given attribute is not
present, then null is returned. You can get an Iterator containing a Name object for each attribute

attached to an element by calling the getAllAttributes() method, and you can remove an attribute

with removeAttribute() .

The final group of SOAPElement methods handles namespaces. addNamespaceDeclaration() adds a

namespace declaration to the element that links the given namespace prefix to its URI. For example,
the following code links the namespace prefix book to the URI urn:BookService for the scope of the

element referred to by the element variable and its child elements:

element.addNamespaceDeclaration("book", "urn:BookService");

The serialized XML for this element looks like this, assuming the element is called BookName :

<BookName xmlns:book="urn:BookService"/>

If the prefix is supplied as the empty string, then a declaration of the default namespace is being made
(i.e., xmlns="urn:BookService "). The removeNamespaceDeclaration() method removes a

namespace declaration from an element given its namespace prefix. The getNamespacePrefixes()

method returns an Iterator in which each element is a string that represents the prefix of a namespace

declaration attached to the element on which it is invoked. To get the namespace URI for a given

prefix, use the getNamespaceURI() method.

Implementations

DetailEntry , SOAPBody , SOAPBodyElement , SOAPEnvelope , SOAPFaultElement , SOAPHeader ,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPHeaderElement

Passed To

Node.setParentElement() , SOAPElement.addChildElement()

Returned By

Node.getParentElement() , SOAPElement.{addAttribute() , addChildElement() ,

addNamespaceDeclaration() , addTextNode()} , SOAPElementFactory.create() ,
SOAPFactory.createElement()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPElementFactory javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public class SOAPElementFactory {

// No Constructor

// Public Class Methods
 public static SOAPElementFactory newInstance() throws SOAPException;

// Deprecated Public Methods

 public SOAPElement create(String localName)

 throws SOAPException; // #

 public SOAPElement create(Name name)

 throws SOAPException; // #

 public SOAPElement create(String localName, String prefix, String uri)

 throws SOAPException; // #
}

SOAPElementFactory is an obsolete class that was used in the early releases of the SAAJ API to create

SOAPElements and is now supported only for backward-compatibility. As of SAAJ Version 1.1,

application code should use the SOAPFactory class to create SOAPElement objects.

Returned By

SOAPElementFactory.newInstance()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPEnvelope javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public interface SOAPEnvelope extends SOAPElement {

// Public Instance Methods
 public abstract SOAPBody addBody() throws SOAPException;
 public abstract SOAPHeader addHeader()() throws SOAPException;

 public abstract Name createName(String localName) throws SOAPException;

 public abstract Name createName(String localName, String prefix, String uri)
 throws SOAPException;
 public abstract SOAPBody getBody() throws SOAPException;
 public abstract SOAPHeader getHeader() throws SOAPException;
}

SOAPEnvelope is a subinterface of SOAPElement that maps to the envelope of a SOAP message. A

reference to the SOAPEnvelope can be obtained from the SOAPPart of a message:

MessageFactory factory = MessageFactory .newInstance;
SOAPMessage msg = factory.createMessage;
SOAPEnvelope envelope = msg.getSOAPPart.getEnvelope;

SOAPEnvelope is a container for the header and body parts of the SOAP message, references to which
can be obtained from the getHeader() and getBody() methods. A newly created SOAPMessage

contains an empty header and an empty body. The addHeader() and addBody() methods can be

used to create and add a new SOAPHeader or SOAPBody body element to the envelope. However, since

only one object of each type can be present in the envelope at any time, the existing instance must be

removed by calling the detachNode() method before a new one is created.

SOAPEnvelope also acts as a factory for Name objects. The single-argument createName() method
creates a Name object with a given local part and no explicit namespace, while the three-argument

variant additionally includes the namespace URI and prefix. Refer to the discussion of the Name

interface earlier in this chapter for a description of these methods.

Returned By

SOAPPart.getEnvelope()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPException javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4 serializable checked

public class SOAPException extends Exception {

// Public Constructors
 public SOAPException();

 public SOAPException(String reason);

 public SOAPException(Throwable cause);

 public SOAPException(String reason, Throwable cause);

// Public Methods Overriding Throwable
 public Throwable getCause();

 // default:null
 public String getMessage();

 // default:null

 public Throwable initCause(Throwable cause);

 // synchronized
}

SOAPException is a checked exception that is used to report errors encountered during the execution of

methods of the SAAJ API.

A SOAPException typically includes a text string giving a human-readable description of the error and,

in some cases, may have an associated Throwable that represents the root cause of the problem. The

four constructors allow a SOAPException to be created with any combination of text message and
Throwable, which may subsequently be retrieved using the getMessage() and getCause() methods.

Note that the Throwable attribute can be set either at construction time or by using the initCause()

method. However, a java.lang.IllegalStateException is thrown if this method is called when the

Throwable attribute has already been set.

Subclasses

javax.xml.messaging.JAXMException

Thrown By

Too many methods to list.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPFactory javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public abstract class SOAPFactory {

// Public Constructors
 public SOAPFactory();

// Public Class Methods
 public static SOAPFactory newInstance() throws SOAPException;

// Public Instance Methods
 public abstract Detail createDetail() throws SOAPException;

 public abstract SOAPElement createElement(String localName) throws SOAPException;

 public abstract SOAPElement createElement(Name name) throws SOAPException;

 public abstract SOAPElement createElement(String localName, String prefix,

 String uri) throws SOAPException;

 public abstract Name createName(String localName) throws SOAPException;

 public abstract Name createName(String localName, String prefix,

 String uri) throws SOAPException;
}

SOAPFactory is an abstract factory that can be used to create Detail , Name , and SOAPElement objects.

Although all of these elements can be created using methods provided by various objects that are part

of a SOAP message (such as SOAPEnvelope), it is often convenient to be able to construct message

parts without having a reference to a SOAPMessage . In such cases, you should use the SOAPFactory

class.

To get a reference to a SOAPFactory object, use the static newInstance() method, which uses an

algorithm similar to that described for the SOAPConnectionFactory class to locate a concrete

implementation. By default, the reference implementation returns an object of type

com.sun.xml.messaging.saaj.soap.SOAPFactoryImpl .

The createElement() method that accepts a single argument of type String returns a SOAPElement

whose local name is given by the argument, and that does not have a namespace qualifier. An element

created in this way is qualified by the default namespace, which can be designated by adding a suitable
namespace declaration to the element itself or to one of its ancestors. You can create an element with

an explicit namespace by using the three-argument variant of createElement() , which requires the

namespace URI and the namespace prefix in addition to the local part of the element name. Here's a

typical example of the usage of this method:

SOAPElement element = factory.createElement("BookTitle", "book",
 "urn:BookService");

The serialized form of this element, when incorporated into a SOAP message, is book:BookTitle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xmlns:book="urn:BookService ".

The variant of createElement() that accepts an argument of type Name returns a SOAPElement , the
name of which is taken from the local part of the supplied argument. The element may or may not be

explicitly namespace-qualified, depending on whether the Name contains a namespace.

The createName() methods return instances of the Name interface that have a specified local part and

an optional namespace URI and namespace prefix. Refer to the description of the Name interface in this

chapter for a discussion of the use of Name objects and namespaces.

Returned By

SOAPFactory.newInstance()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPFault javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public interface SOAPFault extends SOAPBodyElement {

// Public Instance Methods
 public abstract Detail addDetail() throws SOAPException;
 public abstract Detail getDetail();
 public abstract String getFaultActor();
 public abstract String getFaultCode();
 public abstract String getFaultString();

 public abstract void setFaultActor(String faultActor) throws SOAPException;

 public abstract void setFaultCode(String faultCode) throws SOAPException;

 public abstract void setFaultString(String faultString) throws SOAPException;
}

SOAPFault is a subinterface of SOAPBodyElement that is used to report an error encountered while

processing the body or headers of an earlier message. A SOAPFault element can be created and added
to a message by calling the addFault() method of the SOAPBody element of the message. Only one

SOAPFault element may be present in a SOAP message body; a SOAPException is thrown if an attempt

is made to add a second SOAPFault.

When created, a SOAPFault element is empty. Application code should use SOAPFault methods to add
the following nested elements, as appropriate:

Fault code

This mandatory element contains a value intended to be used by software to identify the cause of

the error being reported. The SOAP specification defines a small number of standard fault codes

that should be used where applicable. For further information on SOAP fault codes, refer to

Chapter 6. The fault code is a string value that can be set using the setFaultCode() method

and read by calling getFaultCode().
Fault string

This mandatory element provides a human-readable description of the fault. It can be set using

the setFaultString() method and read using getFaultString().

Fault actor

This element contains the URI of the system that detected and is reporting the fault described by

the containing SOAPFault element. It must be present if the error was detected by an intermediate

system, and is optional if the fault is being reported by the intended message recipient. Use the
setFaultActor() and getFaultActor() methods to set and read this value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Details

A SOAPFault element may also contain additional information that describes the fault, the nature
of which is application-specific but might, for example, include some or all of the failing

message. This optional information is included within a Detail element, which can be created

using the addDetail() method. Refer to the description of DetailEntry earlier in this chapter

for an example that shows how to include detailed fault information in a SOAP message. Fault

reports that relate to the content of a message header may not have an associated Detail
element, whereas those that report errors in processing the body content may have no more than

one nested Detail element. A SOAPException is thrown if an attempt is made to add a second

Detail element to a SOAPFault.

Additionally, application-dependent elements may also be added to a SOAPFault by using the
addChildElement() method inherited from SOAPElement. These elements, which must be

namespace-qualified, will all be of type SOAPFaultElement.

Returned By

SOAPBody.{addFault(), getFault()}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPFaultElement javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public interface SOAPFaultElement extends SOAPElement {
}

SOAPFaultElement is a subinterface of SOAPElement that represents an element that has been added
directly to a SOAPFault. In all other respects, a SOAPFaultElement is the same as a SOAPElement. The

Detail element, described earlier in this chapter, is an example of a SOAPFaultElement that can be

created using the addDetail() method of the SOAPFault interface. There are two other ways to create
a SOAPFaultElement:

Using the addChildElement() method that SOAPFault inherits from SOAPElement. For
example, fault.addChildElement("BookError", "books", "urn:BookService") creates and

returns a SOAPFaultElement called BookError in the namespace urn:BookService, and also
adds it to the SOAPFault element referenced by the variable fault.

Creating a SOAPElement using the methods of SOAPFactory or SOAPElementFactory and using

addChildElement() to add it to a SOAPFault. In this case, the SOAPElement is replaced by an

equivalent SOAPFaultElement, and any nested elements are copied.

Implementations

Detail

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPHeader javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public interface SOAPHeader extends SOAPElement {

// Public Instance Methods

 public abstract SOAPHeaderElement addHeaderElement Name name)
 throws SOAPException;

 public abstract Iterator examineHeaderElements(String actor);

 public abstract Iterator extractHeaderElements(String actor);
}

SOAPHeader is a subinterface of SOAPElement that acts as a container for SOAP message headers. A

single SOAPHeader element is always found as the first element of the SOAPEnvelope within a

SOAPMessage returned by the default MessageFactory provided by the SAAJ reference
implementation. However, since the use of headers is optional, if it is not required, it may be removed

by calling its detachNode() method:

SOAPMessage msg = factory.createMessage;
SOAPPart part = msg.getSOAPPart;
SOAPHeader header = part.getEnvelope.getHeader;
header.detachNode;

A SOAPHeader may contain any number of SOAP headers, which are represented by

SOAPHeaderElements. The most direct way to add a header is to use the addHeaderElement()
method, which requires a Name object as its argument. Other elements may be nested within the

SOAPHeaderElement as required. The following code adds the header code BookHeader to a SOAP

message:

SOAPHeader header = part.getEnvelope.getHeader;
SOAPHeaderElement e = header.addHeaderElement(
 factory.createName("BookHeader", "book", "urn:BookService"));

Alternatively, the addChildElement() methods that SOAPHeader inherits from SOAPElement can be

used to achieve the same result. The following code extract is equivalent to that shown previously, and

also results in the creation of a SOAPHeaderElement:

SOAPHeader header = part.getEnvelope.getHeader;
SOAPElement e = header.addChildElement(factory.createName("BookHeader",
 "book", "urn:BookService"));

Elements created using SOAPFactory or SOAPElementFactory that are added to a SOAPHeader using

the addChildElement() method are copied and converted to instances of SOAPHeaderElement before

being included in the header.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The extractHeaderElements() method returns an Iterator over the set of nested

SOAPHeaderElements for which the actor attribute matches the supplied argument and removes those
elements from the header. By default, a SOAPHeaderElement is created with an actor attribute that

indicates that it should be processed by the next system that receives it. The following code extract

therefore retrieves all headers intended for the system that has received the message, which is assumed

to be identified by the URI urn:thisSystem:

Iterator iter1 = header.extractHeaderElements(
 SOAPConstants.URI_SOAP_ACTOR_NEXT);
Iterator iter2 = header.extractHeaderElements("urn:thisSystem");

Removal of header elements intended for the system that is processing a message is required by the

SOAP specification. However, if you just want to look at the headers with a given actor URI without
removing them, use the examineHeaderElements() method instead.

Returned By

SOAPEnvelope.{addHeader(), getHeader()}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPHeaderElement javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public interface SOAPHeaderElement extends SOAPElement {

// Public Instance Methods
 public abstract String getActor();
 public abstract boolean getMustUnderstand();

 public abstract void setActor(String actorURI);

 public abstract void setMustUnderstand(boolean mustUnderstand);
}

SOAPHeaderElement is a subinterface of SOAPElement that represents the root element of a SOAP
header. A SOAPHeaderElement can be created using the addHeaderElement() or addChildElement(

) methods of SOAPHeader, or by adding a SOAPElement directly to a SOAPHeader.

The setActor() method can be used to set the URI of the intermediate system that is expected to

process the header; the special value SOAPConstants.URI_SOAP_ACTOR_NEXT should be used to
indicate that the header is intended for the next recipient of the message. The setMustUnderstand()

method sets the header attribute that determines whether the actor to which the header is addressed
must be able to understand and process it; the method returns a reply containing a SOAPFault if the

actor does not understand the attribute.

Returned By

SOAPHeader.addHeaderElement()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPMessage javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public abstract class SOAPMessage {

// Public Constructors
 public SOAPMessage();

// Property Accessor Methods (by property name)
 public abstract Iterator getAttachments();

 public abstract Iterator getAttachments MimeHeaders headers);
 public abstract String getContentDescription();

 public abstract void setContentDescription(String description);
 public abstract MimeHeaders getMimeHeaders();
 public abstract SOAPPart getSOAPPart();

// Public Instance Methods

 public abstract void addAttachmentPart(AttachmentPart AttachmentPart);
 public abstract int countAttachments();
 public abstract AttachmentPart createAttachmentPart();

 public AttachmentPart createAttachmentPart(javax.activation.DataHandler dataHandler);

 public AttachmentPart createAttachmentPart(Object content, String contentType);
 public abstract void removeAllAttachments();
 public abstract void saveChanges() throws SOAPException;
 public abstract boolean saveRequired();
 public abstract void writeTo(java.io.OutputStream out)
 throws SOAPExceptionjava.io.IOException;
}

SOAPMessage is an abstract class that represents a complete SOAP message. A SOAPMessage object can

be obtained from the createMessage() method of the MessageFactory class, and consists of several
parts:

MIME headers

When a SOAP message is transmitted using a protocol such as HTTP or SMTP, it requires a set

of MIME headers that specify, at a minimum, the type of the protocol payload and its length. In

the case of a SOAP message with no attachments, the content type is always text/xml . A

message with attachments has content type multipart/related as well as additional MIME

headers associated with the SOAPPart and with each attachment.
A SOAPPart

SOAPPart is a wrapper for the XML part of the SOAP message. Nested inside the SOAPPart is a

SOAPEnvelope object that itself wraps an empty SOAPHeader and an empty SOAPBody . In the

case of a SOAP message with attachments, the SOAPPart has MIME headers, one of which

http://lib.ommolketab.ir
http://lib.ommolketab.ir

specifies the content type of text/xml . The getSOAPPart() method returns a reference to the
SOAPPart element of a SOAP message.

AttachmentPart s

When a message has attachments, each is represented by an AttachmentPart . This object

contains not only the data embedded within the attachment, but also the MIME headers that

specify its type, length, and other attributes. The SOAPMessage created by the default

MessageFactory implementation does not have any attachments.

The methods of the SOAPMessage class can be divided into three groups:

Methods that deal with the MIME headers

Methods that manage attachments

Miscellaneous methods that handle the message itself

The getMimeHeaders() method can be used to get a reference to the MimeHeaders object that

contains the message-level MIME headers. You can use the methods of this object to add or remove
headers as required. The setContentDescription() and getContentDescription() methods are

wrappers that allow you to quickly access or set the Content-Description header, although it is not

obvious why this header deserves special treatment. In general, application code does not attempt to set
either the Content-Type or Content-Length headers, since these are set appropriately by the

saveChanges() method (discussed shortly) before the message is transmitted.

The addAttachmentPart() method allows you to add an attachment given as an AttachmentPart

object to a SOAP message. There are three methods that you can use to create attachments. The zero-

argument createAttachment() method creates an attachment that has no associated data and returns

an AttachmentPart object. The content and MIME headers for an attachment created in this way can

be set using methods of the AttachmentPart class, described earlier in this chapter. The two-argument
variant of this method creates an attachment whose content is supplied by the first argument and whose

MIME type is given by the second argument. The MIME type must be compatible with the type of the

object itself, and SAAJ implementations may place restrictions on the data types that are handled

properly by this method. Refer to the discussion of attachments in Chapter 6 for further information.

The final version of this method specifies both the data content and its MIME type using a
DataHandler object. This method allows you to include almost any type of data in the attachment, and

also lets you determine the way in which it is represented.

The countAttachments() method returns the number of attachments in the message. There are two

methods that allow you to get access to these attachments. The zero-argument getAttachments()

method returns an Iterator over the AttachmentPart object for all of the attachments. The other

variant of getAttachments() returns an Iterator over all of the attachments that have MIME

headers that include all of those in the given MimeHeaders object. The removeAllAttachments()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

method removes all of the attachments from the message. Note that there is no way to remove
individual attachments.

The final group of SOAPMessage methods deals with the message itself. A SOAPMessage is constructed

by building a tree made up of SOAPElement s and other node types. This tree is then serialized into

XML for transmission, and the appropriate MIME headers are added. The serialization process can be

performed by calling the saveChanges() method, which stores a copy of the generated XML as part

of the SOAPMessage object. Subsequent changes to the node tree or to attachment data or MIME
headers invalidates the XML representation and necessitates another call to the saveChanges()

method. Since serialization is expensive, unnecessary calls to this method should be avoided by first

calling saveRequired() , which returns true only if the XML representation and the node tree are not

synchronized.

The writeTo() method creates an XML representation of a SOAPMessage and writes it to a given

output stream. writeTo() uses the saveRequired() and saveChanges() methods to create the
XML if necessary. This method can be useful as a debugging aid, and is also used internally by the

SOAPConnection call() method to generate the XML that is actually sent to a remote system.

Passed To

javax.xml.messaging.OnewayListener.onMessage() ,
javax.xml.messaging.ProviderConnection.send() ,

javax.xml.messaging.ReqRespListener.onMessage() ,

javax.xml.rpc.handler.soap.SOAPMessageContext.setMessage() , SOAPConnection.call()

Returned By

javax.xml.messaging.ReqRespListener.onMessage() ,

javax.xml.rpc.handler.soap.SOAPMessageContext.getMessage() ,

MessageFactory.createMessage() , SOAPConnection.call()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPPart javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public abstract class SOAPPart {

// Public Constructors
 public SOAPPart();

// Property Accessor Methods (by property name)
 public abstract Iterator getAllMimeHeaders();
 public abstract javax.xml.transform.Source getContent()
 throws SOAPException;

 public abstract void setContent(javax.xml.transform.Source source)
 throws SOAPException;
 public String getContentId();

 public void setContentId(String contentId);
 public String getContentLocation();

 public void setContentLocation(String contentLocation);
 public abstract SOAPEnvelope getEnvelope() throws SOAPException;

// Public Instance Methods

 public abstract void addMimeHeader(String name, String value);

 public abstract Iterator getMatchingMimeHeaders(String[] names);

 public abstract String[] getMimeHeader(String name);

 public abstract Iterator getNonMatchingMimeHeaders(String[] names);
 public abstract void removeAllMimeHeaders();

 public abstract void removeMimeHeader(String header);

 public abstract void setMimeHeader(String name, String value);
}

SOAPPart is a container that wraps the envelope of a SOAP message. To get a reference to the
SOAPPart, use the getSOAPPart() method of the containing SOAPMessage. Aside from getEnvelope(

), all of the methods of the SOAPPart interface are concerned with manipulating its associated MIME

headers, which are used only if the SOAP message has one or more MIME attachments. Refer to the

reference section for AttachmentPart, earlier in this chapter for a description of these methods.

Note that, unlike most interfaces that represent parts of a SOAP message, SOAPPart is not a

subinterface of SOAPElement, and therefore does not have methods that allow content to be added to or
removed from it. However, you can change the entire content of the SOAPPart by calling the

setContent() method, which requires an argument of type javax.xml.transform.Source and

supplies the XML representation of a complete SOAP message starting from the Envelope tag (but

excluding attachments). The message content can be supplied in the form of a DOM tree, a SAX parser

stream, or an input stream reading from a file or some other source.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returned By

SOAPMessage.getSOAPPart()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Text javax.xml.soap

SAAJ 1.1; JWSDP 1.0, J2EE 1.4

public interface Text extends Node {

// Public Instance Methods
 public abstract boolean isComment();
}

Text is a subinterface of Node that holds the text parts of a SOAP message. A Text node can only be

created by using the addTextNode() method of SOAPElement, as shown in the following code extract:

SOAPElement element = body.addChildElement("BookTitle");
SOAPElement element2 = element.addTextNode("J2ME in a Nutshell");

This code creates an element called BookTitle and adds the given text as its value, resulting in the

following XML when the message is serialized:

 <BookTitle>J2ME in a Nutshell</BookTitle>

The value returned by the addTextNode() method is actually a reference to the SOAPElement beneath
which the Text node was added. In the code extract shown previously, therefore, element2 is set to the

same value as element. The value of the text associated with a SOAPElement can be obtained by calling

getValue() on the element itself, rather than by first obtaining a reference to the intervening Text

object:

// Returns "J2ME in a Nutshell"
String text = element.getValue

In fact, there is no direct way to get a reference to the Text element itself. The only way to do this is to

use the getChildElements() method of the parent SOAPElement and search for a child of type Text:

Iterator iter = element.getChildElements;
while (iter.hasNext() {
 Node node = (Node)iter.next();
 if (node instanceof Text) {
 // This also prints "J2ME in a Nutshell"
 System.out.println("Value of Text node " + node.getValue());
 break;
 }
}

In theory, a Text node may also represent an XML comment, although it is unlikely that a SOAP

message would contain one. The isComment() method can be used to detect comments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class, Method, and Field Index

The following index allows you to look up a class or interface and find which package it is defined in.

It also allows you to look up a method or field and find which class it is defined in. Use it when you
want to look up a class but don't know its package, or when you want to look up a method but don't

know its class..

A-G

H-X

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A-G

_getProperty():

Stub

_getPropertyNames():

Stub
_setProperty():

Stub

addAssociation():

RegistryObject

addAssociations():

RegistryObject

addAttachmentPart():

SOAPMessage

addAttribute():

SOAPElement
addBody():

SOAPEnvelope

addBodyElement():

SOAPBody

addChildConcept():

ClassificationScheme, Concept

addChildConcepts():

ClassificationScheme, Concept
addChildElement():

SOAPElement

addChildOrganization():

Organization

addChildOrganizations():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Organization

addClassification():

RegistryObject

addClassifications():

RegistryObject
addDetail():

SOAPFault

addDetailEntry():

Detail

addExternalIdentifier():

RegistryObject
addExternalIdentifiers():

RegistryObject

addExternalLink():

RegistryObject
addExternalLinks():

RegistryObject

addFault():

SOAPBody

addHeader():

MimeHeaders, SOAPEnvelope

addHeaderElement():

SOAPHeader

addLocalizedString():

InternationalString

addLocalizedStrings():

InternationalString

addMimeHeader():

AttachmentPart, SOAPPart

addNamespaceDeclaration():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPElement
addParameter():

Call

addRegistryObject():

RegistryPackage

addRegistryObjects():

RegistryPackage
ADDRESS_LINES_SLOT:

Slot

addService():

Organization
addServiceBinding():

Service

addServiceBindings():

Service

addServices():

Organization

addSlot():

ExtensibleObject
addSlots():

ExtensibleObject

addSpecificationLink():

ServiceBinding

addSpecificationLinks():

ServiceBinding

addTextNode():

SOAPElement

addUser():

Organization

addUsers():

Organization

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AND_ALL_KEYS:

FindQualifier
Association:

javax.xml.registry.infomodel

ASSOCIATION:

LifeCycleManager

AttachmentPart:

javax.xml.soap
AUDITABLE_EVENT:

LifeCycleManager

AuditableEvent:

javax.xml.registry.infomodel
AUTHORIZED_NAME_SLOT:

Slot

BigDecimalHolder:

javax.xml.rpc.holders

BigIntegerHolder:

javax.xml.rpc.holders

BooleanHolder:

javax.xml.rpc.holders
BooleanWrapperHolder:

javax.xml.rpc.holders

BulkResponse:

javax.xml.registry

BusinessLifeCycleManager:

javax.xml.registry

BusinessQueryManager:

javax.xml.registry
ByteArrayHolder:

javax.xml.rpc.holders

ByteHolder:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

javax.xml.rpc.holders

ByteWrapperHolder:

javax.xml.rpc.holders

CalendarHolder:

javax.xml.rpc.holders
Call:

javax.xml.rpc

call():

SOAPConnection

CapabilityProfile:

javax.xml.registry

CASE_SENSITIVE_MATCH:

FindQualifier

cause:

JAXRException
Classification:

javax.xml.registry.infomodel
CLASSIFICATION:

LifeCycleManager

CLASSIFICATION_SCHEME:

LifeCycleManager

ClassificationScheme:

javax.xml.registry.infomodel

clear():

TypeMappingRegistry
clearContent():

AttachmentPart

close():

Connection, ProviderConnection, SOAPConnection

COMBINE_CLASSIFICATIONS:

FindQualifier

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONCEPT:

LifeCycleManager
Concept:

javax.xml.registry.infomodel

confirmAssociation():

BusinessLifeCycleManager

Connection:

javax.xml.registry
ConnectionFactory:

javax.xml.registry

containsProperty():

MessageContext
countAttachments():

SOAPMessage

create():

SOAPElementFactory

createAssociation():

LifeCycleManager

createAttachmentPart():

SOAPMessage
createCall():

Service

createClassification():

LifeCycleManager

createClassificationScheme():

LifeCycleManager

createConcept():

LifeCycleManager
createConnection():

ConnectionFactory, ProviderConnectionFactory, SOAPConnectionFactory

createDetail():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPFactory

createElement():

SOAPFactory

createEmailAddress():

LifeCycleManager
createExternalIdentifier():

LifeCycleManager

createExternalLink():

LifeCycleManager

createExtrinsicObject():

LifeCycleManager

createFederatedConnection():

ConnectionFactory

createInternationalString():

LifeCycleManager
createKey():

LifeCycleManager
createLocalizedString():

LifeCycleManager

createMessage():

MessageFactory

createMessageFactory():

ProviderConnection

createName():

SOAPEnvelope, SOAPFactory
createObject():

LifeCycleManager

createOrganization():

LifeCycleManager

createPersonName():

LifeCycleManager

http://lib.ommolketab.ir
http://lib.ommolketab.ir

createPostalAddress():

LifeCycleManager
createQuery():

DeclarativeQueryManager

createRegistryPackage():

LifeCycleManager

createService():

LifeCycleManager, ServiceFactory
createServiceBinding():

LifeCycleManager

createSlot():

LifeCycleManager
createSpecificationLink():

LifeCycleManager

createTelephoneNumber():

LifeCycleManager

createTypeMapping():

TypeMappingRegistry

createUser():

LifeCycleManager
DeclarativeQueryManager:

javax.xml.registry

DEFAULT_CHARSET_NAME:

LocalizedString

deleteAssociations():

BusinessLifeCycleManager

deleteClassificationSchemes():

BusinessLifeCycleManager
deleteConcepts():

BusinessLifeCycleManager

DeleteException:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

javax.xml.registry

deleteObjects():

LifeCycleManager

deleteOrganizations():

BusinessLifeCycleManager
deleteServiceBindings():

BusinessLifeCycleManager

deleteServices():

BusinessLifeCycleManager

deprecateObjects():

LifeCycleManager

DeserializationContext:

javax.xml.rpc.encoding

Deserializer:

javax.xml.rpc.encoding
DeserializerFactory:

javax.xml.rpc.encoding
destroy():

GenericHandler, Handler, HandlerChain, ServiceLifecycle

detachNode():

Node

Detail:

javax.xml.soap

DetailEntry:

javax.xml.soap
doPost():

JAXMServlet

DoubleHolder:

javax.xml.rpc.holders

DoubleWrapperHolder:

javax.xml.rpc.holders

http://lib.ommolketab.ir
http://lib.ommolketab.ir

EMAIL_ADDRESS:

LifeCycleManager
EmailAddress:

javax.xml.registry.infomodel

ENCODINGSTYLE_URI_PROPERTY:

Call

Endpoint:

javax.xml.messaging
ENDPOINT_ADDRESS_PROPERTY:

Stub

equals():

QName
EVENT_TYPE_CREATED:

AuditableEvent

EVENT_TYPE_DELETED:

AuditableEvent

EVENT_TYPE_DEPRECATED:

AuditableEvent

EVENT_TYPE_UNDEPRECATED:

AuditableEvent
EVENT_TYPE_UPDATED:

AuditableEvent

EVENT_TYPE_VERSIONED:

AuditableEvent

EXACT_NAME_MATCH:

FindQualifier

examineHeaderElements():

SOAPHeader
executeQuery():

DeclarativeQueryManager

ExtensibleObject:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

javax.xml.registry.infomodel

EXTERNAL_IDENTIFIER:

LifeCycleManager

EXTERNAL_LINK:

LifeCycleManager
ExternalIdentifier:

javax.xml.registry.infomodel

ExternalLink:

javax.xml.registry.infomodel

extractHeaderElements():

SOAPHeader

EXTRINSIC_OBJECT:

LifeCycleManager

ExtrinsicObject:

javax.xml.registry.infomodel
FederatedConnection:

javax.xml.registry
findAssociations():

BusinessQueryManager

findCallerAssociations():

BusinessQueryManager

findClassificationSchemeByName():

BusinessQueryManager

findClassificationSchemes():

BusinessQueryManager
findConceptByPath():

BusinessQueryManager

findConcepts():

BusinessQueryManager

FindException:

javax.xml.registry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

findOrganizations():

BusinessQueryManager
FindQualifier:

javax.xml.registry

findRegistryPackages():

BusinessQueryManager

findServiceBindings():

BusinessQueryManager
findServices():

BusinessQueryManager

FloatHolder:

javax.xml.rpc.holders
FloatWrapperHolder:

javax.xml.rpc.holders

GenericHandler:

javax.xml.rpc.handler

getAccessURI():

ServiceBinding

getActor():

SOAPHeaderElement
getAddress():

EmailAddress

getAllAttributes():

SOAPElement

getAllHeaders():

MimeHeaders

getAllMimeHeaders():

AttachmentPart, SOAPPart
getAreaCode():

TelephoneNumber

getAssociatedObjects():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RegistryObject

getAssociations():

RegistryObject

getAssociationType():

Association
getAttachments():

SOAPMessage

getAttributeValue():

SOAPElement

getAuditTrail():

RegistryObject

getBody():

SOAPEnvelope

getBulkResponse():

RegistryService
getBusinessLifeCycleManager():

RegistryService
getBusinessQueryManager():

RegistryService

getCalls():

Service

getCapabilityLevel():

CapabilityProfile

getCapabilityProfile():

RegistryService
getCause():

JAXRException, SOAPException

getCharsetName():

LocalizedString

getChildConceptCount():

ClassificationScheme, Concept

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getChildElements():

SOAPElement
getChildOrganizationCount():

Organization

getChildOrganizations():

Organization

getChildrenConcepts():

ClassificationScheme, Concept
getCity():

PostalAddress

getClassifications():

RegistryObject
getClassificationScheme():

Classification, Concept

getClassifiedObject():

Classification

getCollection():

BulkResponse

getConcept():

Classification
getContent():

AttachmentPart, SOAPPart

getContentDescription():

SOAPMessage

getContentId():

AttachmentPart, SOAPPart

getContentLocation():

AttachmentPart, SOAPPart
getContentType():

AttachmentPart

getCountry():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PostalAddress

getCountryCode():

TelephoneNumber

getCredentials():

Connection
getDataHandler():

AttachmentPart

getDeclarativeQueryManager():

RegistryService

getDefaultPostalScheme():

RegistryService

getDefaultTypeMapping():

TypeMappingRegistry

getDescendantConcepts():

ClassificationScheme, Concept
getDescendantOrganizations():

Organization
getDescription():

RegistryObject

getDeserializer():

TypeMapping

getDeserializerAs():

DeserializerFactory

getDetail():

SOAPFault, SOAPFaultException
getDetailEntries():

Detail

getElementName():

SOAPElement

getEmailAddresses():

User

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getEncodingStyle():

SOAPElement
getEnvelope():

SOAPPart

getErrorObjectKey():

RegistryException

getEventType():

AuditableEvent
getExceptions():

BulkResponse

getExpiration():

RegistryEntry
getExtension():

TelephoneNumber

getExternalIdentifiers():

RegistryObject

getExternalLinks():

RegistryObject

getExternalURI():

ExternalLink
getFault():

SOAPBody

getFaultActor():

SOAPFault, SOAPFaultException

getFaultCode():

SOAPFault, SOAPFaultException

getFaultString():

SOAPFault, SOAPFaultException
getFirstName():

PersonName

getFullName():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PersonName

getHandlerChain():

HandlerRegistry

getHandlerClass():

HandlerInfo
getHandlerConfig():

HandlerInfo

getHandlerRegistry():

Service

getHeader():

MimeHeaders, SOAPEnvelope

getHeaders():

GenericHandler, Handler, HandlerInfo, JAXMServlet

getHttpSession():

ServletEndpointContext
getId():

Key
getIdentificationScheme():

ExternalIdentifier

getKey():

RegistryObject

getLastName():

PersonName

getLifeCycleManager():

RegistryObject
getLinkedCause():

JAXRPCException, ServiceException

getLinkedObjects():

ExternalLink

getLocale():

LocalizedString

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getLocalizedString():

InternationalString
getLocalizedStrings():

InternationalString

getLocalName():

Name

getLocalPart():

QName
getMajorVersion():

ProviderMetaData, Versionable

getMatchingHeaders():

MimeHeaders
getMatchingMimeHeaders():

AttachmentPart, SOAPPart

getMechanismType():

Deserializer, Serializer

getMessage():

JAXRException, SOAPException, SOAPMessageContext

getMessageContext():

ServletEndpointContext
getMetaData():

ProviderConnection

getMiddleName():

PersonName

getMimeHeader():

AttachmentPart, SOAPPart

getMimeHeaders():

SOAPMessage
getMimeType():

ExtrinsicObject

getMinorVersion():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ProviderMetaData, Versionable

getMustUnderstand():

SOAPHeaderElement

getName():

MimeHeader, ProviderMetaData, RegistryObject, Slot
getNamespacePrefixes():

SOAPElement

getNamespaceURI():

QName, SOAPElement

getNonMatchingHeaders():

MimeHeaders

getNonMatchingMimeHeaders():

AttachmentPart, SOAPPart

getNumber():

TelephoneNumber
getObjectType():

RegistryObject
getOperationName():

Call

getOrganization():

User

getOutputParams():

Call

getOutputValues():

Call
getParameterTypeByName():

Call

getParent():

Concept

getParentConcept():

Concept

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getParentElement():

Node
getParentOrganization():

Organization

getPath():

Concept

getPersonName():

User
getPort():

Service

getPorts():

Service
getPortTypeName():

Call

getPostalAddress():

Organization

getPostalAddresses():

User

getPostalCode():

PostalAddress
getPostalScheme():

PostalAddress

getPrefix():

Name

getPrimaryContact():

Organization

getProperties():

ConnectionFactory
getProperty():

Call, MessageContext

getPropertyNames():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Call, MessageContext

getProvidingOrganization():

Service

getQualifiedName():

Name
getRegisteredEncodingStyleURIs():

TypeMappingRegistry

getRegistryObject():

AuditableEvent, ExternalIdentifier, QueryManager

getRegistryObjects():

QueryManager, RegistryPackage

getRegistryPackages():

RegistryObject

getRegistryService():

Connection, LifeCycleManager, QueryManager
getRepositoryItem():

ExtrinsicObject
getRequestId():

JAXRException, JAXRResponse

getReturnType():

Call

getRoles():

HandlerChain, SOAPMessageContext

getRootOrganization():

Organization
getSerializer():

TypeMapping

getSerializerAs():

SerializerFactory

getService():

ServiceBinding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getServiceBinding():

SpecificationLink
getServiceBindings():

Service

getServiceName():

Service

getServices():

Organization
getServletContext():

ServletEndpointContext

getSize():

AttachmentPart
getSlot():

ExtensibleObject

getSlots():

ExtensibleObject

getSlotType():

Slot

getSOAPPart():

SOAPMessage
getSourceObject():

Association

getSpecificationLinks():

ServiceBinding

getSpecificationObject():

SpecificationLink

getStability():

RegistryEntry
getStateOrProvince():

PostalAddress

getStatus():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JAXRException, JAXRResponse, RegistryEntry

getStreet():

PostalAddress

getStreetNumber():

PostalAddress
getSubmittingOrganization():

RegistryObject

getSupportedEncodings():

TypeMapping

getSupportedMechanismTypes():

DeserializerFactory, SerializerFactory

getSupportedProfiles():

ProviderMetaData

getTargetBinding():

ServiceBinding
getTargetEndpointAddress():

Call
getTargetObject():

Association

getTelephoneNumbers():

Organization, User

getTimestamp():

AuditableEvent

getType():

EmailAddress, PostalAddress, Query, TelephoneNumber, User
getTypeMapping():

TypeMappingRegistry

getTypeMappingRegistry():

Service

getURI():

Name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getUrl():

TelephoneNumber, User
getURL():

URLEndpoint

getUsageDescription():

SpecificationLink

getUsageParameters():

SpecificationLink
getUser():

AuditableEvent

getUserPrincipal():

ServletEndpointContext
getUsers():

Organization

getUserVersion():

Versionable

getValidateURI():

URIValidator

getValue():

Classification, Concept, ExternalIdentifier, InternationalString, LocalizedString, MimeHeader,
Node

getValues():

Slot

getValueType():

ClassificationScheme

getVersion():

CapabilityProfile

getWSDLDocumentLocation():

Service

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

H-X

handleFault():

GenericHandler, Handler, HandlerChain

Handler:

javax.xml.rpc.handler
HandlerChain:

javax.xml.rpc.handler

handleRequest():

GenericHandler, Handler, HandlerChain

handleResponse():

GenericHandler, Handler, HandlerChain

HandlerInfo:

javax.xml.rpc.handler

HandlerRegistry:

javax.xml.rpc.handler
hasFault():

SOAPBody

hashCode():

QName

Holder:

javax.xml.rpc.holders

id:

Endpoint
IN:

ParameterMode

init():

GenericHandler, Handler, HandlerChain, JAXMServlet, ServiceLifecycle

initCause():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JAXRException, SOAPException

INOUT:

ParameterMode

IntegerWrapperHolder:

javax.xml.rpc.holders
INTERNATIONAL_STRING:

LifeCycleManager

InternationalString:

javax.xml.registry.infomodel

IntHolder:

javax.xml.rpc.holders
InvalidRequestException:

javax.xml.registry

invoke():

Call
invokeOneWay():

Call

isAvailable():

JAXRException, JAXRResponse

isClosed():

Connection

isComment():

Text

isConfirmed():

Association

isConfirmedBySourceOwner():

Association

isConfirmedByTargetOwner():

Association

isExternal():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Classification, ClassificationScheme
isExtramural():

Association

isOpaque():

ExtrinsicObject

isParameterAndReturnSpecRequired():

Call
isPartialResponse():

BulkResponse

isRegistered():

TypeMapping
isSynchronous():

Connection

JAXMException:

javax.xml.messaging

JAXMServlet:

javax.xml.messaging

JAXRException:

javax.xml.registry
JAXRPCException:

javax.xml.rpc

JAXRResponse:

javax.xml.registry

KEY:

LifeCycleManager

Key:

javax.xml.registry.infomodel

LifeCycleManager:

javax.xml.registry

LOCALIZED_STRING:

LifeCycleManager

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LocalizedString:

javax.xml.registry.infomodel
LongHolder:

javax.xml.rpc.holders

LongWrapperHolder:

javax.xml.rpc.holders

makeRegistrySpecificRequest():

RegistryService
MessageContext:

javax.xml.rpc.handler

MessageFactory:

javax.xml.soap
MimeHeader:

javax.xml.soap

MimeHeaders:

javax.xml.soap

msgFactory:

JAXMServlet

Name:

javax.xml.soap
NamespaceConstants:

javax.xml.rpc

newInstance():

ConnectionFactory, MessageFactory, ProviderConnectionFactory, ServiceFactory,

SOAPConnectionFactory, SOAPElementFactory, SOAPFactory

Node:

javax.xml.soap

NSPREFIX_SCHEMA_XSD:

NamespaceConstants

NSPREFIX_SCHEMA_XSI:

NamespaceConstants

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NSPREFIX_SOAP_ENCODING:

NamespaceConstants
NSPREFIX_SOAP_ENVELOPE:

NamespaceConstants

NSURI_SCHEMA_XSD:

NamespaceConstants

NSURI_SCHEMA_XSI:

NamespaceConstants
NSURI_SOAP_ENCODING:

NamespaceConstants

NSURI_SOAP_ENVELOPE:

NamespaceConstants
NSURI_SOAP_NEXT_ACTOR:

NamespaceConstants

ObjectHolder:

javax.xml.rpc.holders

OnewayListener:

javax.xml.messaging

onMessage():

OnewayListener, ReqRespListener
OPERATION_STYLE_PROPERTY:

Call

OPERATOR_SLOT:

Slot

OR_ALL_KEYS:

FindQualifier

OR_LIKE_KEYS:

FindQualifier
Organization:

javax.xml.registry.infomodel

ORGANIZATION:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LifeCycleManager

OUT:

ParameterMode

ParameterMode:

javax.xml.rpc
PASSWORD_PROPERTY:

Call, Stub

PERSON_NAME:

LifeCycleManager

PersonName:

javax.xml.registry.infomodel

POSTAL_ADDRESS:

LifeCycleManager

PostalAddress:

javax.xml.registry.infomodel
ProviderConnection:

javax.xml.messaging
ProviderConnectionFactory:

javax.xml.messaging

ProviderMetaData:

javax.xml.messaging

putHeaders():

JAXMServlet

QName:

javax.xml.namespace
QNameHolder:

javax.xml.rpc.holders

Query:

javax.xml.registry

QUERY_TYPE_EBXML_FILTER_QUERY:

Query

http://lib.ommolketab.ir
http://lib.ommolketab.ir

QUERY_TYPE_SQL:

Query
QUERY_TYPE_XQUERY:

Query

QueryManager:

javax.xml.registry

recycleNode():

Node
register():

TypeMapping, TypeMappingRegistry

registerDefault():

TypeMappingRegistry
REGISTRY_ENTRY:

LifeCycleManager

REGISTRY_PACKAGE:

LifeCycleManager

RegistryEntry:

javax.xml.registry.infomodel

RegistryException:

javax.xml.registry
RegistryObject:

javax.xml.registry.infomodel

RegistryPackage:

javax.xml.registry.infomodel

RegistryService:

javax.xml.registry

removeAllAttachments():

SOAPMessage
removeAllHeaders():

MimeHeaders

removeAllMimeHeaders():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AttachmentPart, SOAPPart

removeAllParameters():

Call

removeAssociation():

RegistryObject
removeAssociations():

RegistryObject

removeAttribute():

SOAPElement

removeChildConcept():

ClassificationScheme, Concept

removeChildConcepts():

ClassificationScheme, Concept

removeChildOrganization():

Organization
removeChildOrganizations():

Organization
removeClassification():

RegistryObject

removeClassifications():

RegistryObject

removeDeserializer():

TypeMapping

removeExternalIdentifier():

RegistryObject
removeExternalIdentifiers():

RegistryObject

removeExternalLink():

RegistryObject

removeExternalLinks():

RegistryObject

http://lib.ommolketab.ir
http://lib.ommolketab.ir

removeHeader():

MimeHeaders
removeLocalizedString():

InternationalString

removeLocalizedStrings():

InternationalString

removeMimeHeader():

AttachmentPart, SOAPPart
removeNamespaceDeclaration():

SOAPElement

removeProperty():

Call, MessageContext
removeRegistryObject():

RegistryPackage

removeRegistryObjects():

RegistryPackage

removeSerializer():

TypeMapping

removeService():

Organization
removeServiceBinding():

Service

removeServiceBindings():

Service

removeServices():

Organization

removeSlot():

ExtensibleObject
removeSlots():

ExtensibleObject

removeSpecificationLink():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ServiceBinding

removeSpecificationLinks():

ServiceBinding

removeTypeMapping():

TypeMappingRegistry
removeUser():

Organization

removeUsers():

Organization

ReqRespListener:

javax.xml.messaging

saveAssociations():

BusinessLifeCycleManager

saveChanges():

SOAPMessage
saveClassificationSchemes():

BusinessLifeCycleManager
saveConcepts():

BusinessLifeCycleManager

SaveException:

javax.xml.registry

saveObjects():

LifeCycleManager

saveOrganizations():

BusinessLifeCycleManager
saveRequired():

SOAPMessage

saveServiceBindings():

BusinessLifeCycleManager

saveServices():

BusinessLifeCycleManager

http://lib.ommolketab.ir
http://lib.ommolketab.ir

send():

ProviderConnection
SerializationContext:

javax.xml.rpc.encoding

Serializer:

javax.xml.rpc.encoding

SerializerFactory:

javax.xml.rpc.encoding
Service:

javax.xml.registry.infomodel, javax.xml.rpc

SERVICE:

LifeCycleManager
SERVICE_BINDING:

LifeCycleManager

SERVICE_SUBSET:

FindQualifier

ServiceBinding:

javax.xml.registry.infomodel

ServiceException:

javax.xml.rpc
ServiceFactory:

javax.xml.rpc

SERVICEFACTORY_PROPERTY:

ServiceFactory

ServiceLifecycle:

javax.xml.rpc.server

ServletEndpointContext:

javax.xml.rpc.server
SESSION_MAINTAIN_PROPERTY:

Call, Stub

setAccessURI():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ServiceBinding

setActor():

SOAPHeaderElement

setAddress():

EmailAddress
setAreaCode():

TelephoneNumber

setAssociations():

RegistryObject

setAssociationType():

Association

setCharsetName():

LocalizedString

setCity():

PostalAddress
setClassifications():

RegistryObject
setClassificationScheme():

Classification

setClassifiedObject():

Classification

setConcept():

Classification

setContent():

AttachmentPart, SOAPPart
setContentDescription():

SOAPMessage

setContentId():

AttachmentPart, SOAPPart

setContentLocation():

AttachmentPart, SOAPPart

http://lib.ommolketab.ir
http://lib.ommolketab.ir

setContentType():

AttachmentPart
setCountry():

PostalAddress

setCountryCode():

TelephoneNumber

setCredentials():

Connection
setDataHandler():

AttachmentPart

setDescription():

RegistryObject
setEmailAddresses():

User

setEncodingStyle():

SOAPElement

setErrorObjectKey():

RegistryException

setExpiration():

RegistryEntry
setExtension():

TelephoneNumber

setExternalIdentifiers():

RegistryObject

setExternalLinks():

RegistryObject

setExternalURI():

ExternalLink
setFaultActor():

SOAPFault

setFaultCode():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPFault

setFaultString():

SOAPFault

setFirstName():

PersonName
setFullName():

PersonName

setHandlerChain():

HandlerRegistry

setHandlerClass():

HandlerInfo

setHandlerConfig():

HandlerInfo

setHeader():

MimeHeaders
setHeaders():

HandlerInfo
setId():

Key

setIdentificationScheme():

ExternalIdentifier

setKey():

RegistryObject

setLastName():

PersonName
setLocale():

LocalizedString

setMajorVersion():

Versionable

setMessage():

SOAPMessageContext

http://lib.ommolketab.ir
http://lib.ommolketab.ir

setMessageFactory():

JAXMServlet
setMiddleName():

PersonName

setMimeHeader():

AttachmentPart, SOAPPart

setMimeType():

ExtrinsicObject
setMinorVersion():

Versionable

setMustUnderstand():

SOAPHeaderElement
setName():

RegistryObject, Slot

setNumber():

TelephoneNumber

setOpaque():

ExtrinsicObject

setOperationName():

Call
setParentElement():

Node

setPersonName():

User

setPortTypeName():

Call

setPostalAddress():

Organization
setPostalAddresses():

User

setPostalCode():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PostalAddress

setPostalScheme():

PostalAddress

setPrimaryContact():

Organization
setProperties():

ConnectionFactory

setProperty():

Call, MessageContext

setProvidingOrganization():

Service

setRepositoryItem():

ExtrinsicObject

setReturnType():

Call
setRoles():

HandlerChain
setSlotType():

Slot

setSourceObject():

Association

setSpecificationObject():

SpecificationLink

setStability():

RegistryEntry
setStateOrProvince():

PostalAddress

setStreet():

PostalAddress

setStreetNumber():

PostalAddress

http://lib.ommolketab.ir
http://lib.ommolketab.ir

setSupportedEncodings():

TypeMapping
setSynchronous():

Connection

setTargetBinding():

ServiceBinding

setTargetEndpointAddress():

Call
setTargetObject():

Association

setTelephoneNumbers():

Organization, User
setType():

EmailAddress, PostalAddress, TelephoneNumber, User

setUrl():

TelephoneNumber, User

setUsageDescription():

SpecificationLink

setUsageParameters():

SpecificationLink
setUserVersion():

Versionable

setValidateURI():

URIValidator

setValue():

Classification, Concept, ExternalIdentifier, InternationalString, LocalizedString

setValues():

Slot
setValueType():

ClassificationScheme

ShortHolder:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

javax.xml.rpc.holders

ShortWrapperHolder:

javax.xml.rpc.holders

SLOT:

LifeCycleManager
Slot:

javax.xml.registry.infomodel

SOAP_ARRAY:

XMLType

SOAP_BASE64:

XMLType

SOAP_BOOLEAN:

XMLType

SOAP_BYTE:

XMLType
SOAP_DOUBLE:

XMLType
SOAP_FLOAT:

XMLType

SOAP_INT:

XMLType

SOAP_LONG:

XMLType

SOAP_SHORT:

XMLType
SOAP_STRING:

XMLType

SOAPACTION_URI_PROPERTY:

Call

SOAPACTION_USE_PROPERTY:

Call

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAPBody:

javax.xml.soap
SOAPBodyElement:

javax.xml.soap

SOAPConnection:

javax.xml.soap

SOAPConnectionFactory:

javax.xml.soap
SOAPConstants:

javax.xml.soap

SOAPElement:

javax.xml.soap
SOAPElementFactory:

javax.xml.soap

SOAPEnvelope:

javax.xml.soap

SOAPException:

javax.xml.soap

SOAPFactory:

javax.xml.soap
SOAPFault:

javax.xml.soap

SOAPFaultElement:

javax.xml.soap

SOAPFaultException:

javax.xml.rpc.soap

SOAPHeader:

javax.xml.soap
SOAPHeaderElement:

javax.xml.soap

SOAPMessage:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

javax.xml.soap

SOAPMessageContext:

javax.xml.rpc.handler.soap

SOAPPart:

javax.xml.soap
SORT_BY_DATE_ASC:

FindQualifier

SORT_BY_DATE_DESC:

FindQualifier

SORT_BY_NAME_ASC:

FindQualifier

SORT_BY_NAME_DESC:

FindQualifier

SORT_CODE_SLOT:

Slot
SOUNDEX:

FindQualifier
SPECIFICATION_LINK:

LifeCycleManager

SpecificationLink:

javax.xml.registry.infomodel

STABILITY_DYNAMIC:

RegistryEntry

STABILITY_DYNAMIC_COMPATIBLE:

RegistryEntry
STABILITY_STATIC:

RegistryEntry

STATUS_APPROVED:

RegistryEntry

STATUS_DEPRECATED:

RegistryEntry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

STATUS_FAILURE:

JAXRResponse
STATUS_SUBMITTED:

RegistryEntry

STATUS_SUCCESS:

JAXRResponse

STATUS_UNAVAILABLE:

JAXRResponse
STATUS_WARNING:

JAXRResponse

STATUS_WITHDRAWN:

RegistryEntry
StringHolder:

javax.xml.rpc.holders

Stub:

javax.xml.rpc

TELEPHONE_NUMBER:

LifeCycleManager

TelephoneNumber:

javax.xml.registry.infomodel
Text:

javax.xml.soap

toString():

Endpoint, ParameterMode, QName, Query

toXML():

RegistryObject

TypeMapping:

javax.xml.rpc.encoding
TypeMappingRegistry:

javax.xml.rpc.encoding

unConfirmAssociation():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BusinessLifeCycleManager

unDeprecateObjects():

LifeCycleManager

UnexpectedObjectException:

javax.xml.registry
unregisterTypeMapping():

TypeMappingRegistry

UnsupportedCapabilityException:

javax.xml.registry

URI_NS_SOAP_ENCODING:

SOAPConstants

URI_NS_SOAP_ENVELOPE:

SOAPConstants

URI_SOAP_ACTOR_NEXT:

SOAPConstants
URIValidator:

javax.xml.registry.infomodel
URLEndpoint:

javax.xml.messaging

USER:

LifeCycleManager

User:

javax.xml.registry.infomodel

USERNAME_PROPERTY:

Call, Stub
value:

BigDecimalHolder, BigIntegerHolder, BooleanHolder, BooleanWrapperHolder,

ByteArrayHolder, ByteHolder, ByteWrapperHolder, CalendarHolder, DoubleHolder,

DoubleWrapperHolder, FloatHolder, FloatWrapperHolder, IntegerWrapperHolder, IntHolder,

LongHolder, LongWrapperHolder, ObjectHolder, QNameHolder, ShortHolder,

ShortWrapperHolder, StringHolder
VALUE_TYPE_EMBEDDED_PATH:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ClassificationScheme

VALUE_TYPE_NON_UNIQUE:

ClassificationScheme

VALUE_TYPE_UNIQUE:

ClassificationScheme

valueOf():

QName
Versionable:

javax.xml.registry.infomodel

VERSIONABLE:

LifeCycleManager

writeTo():

SOAPMessage
XMLType:

javax.xml.rpc.encoding

XSD_BASE64:

XMLType
XSD_BOOLEAN:

XMLType

XSD_BYTE:

XMLType

XSD_DATETIME:

XMLType

XSD_DECIMAL:

XMLType
XSD_DOUBLE:

XMLType

XSD_FLOAT:

XMLType

XSD_HEXBINARY:

XMLType

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XSD_INT:

XMLType
XSD_INTEGER:

XMLType

XSD_LONG:

XMLType

XSD_QNAME:

XMLType
XSD_SHORT:

XMLType

XSD_STRING:

XMLType

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part III: Appendix

Part III of this book consists of a single chapter containing listings of the WSDL files for the

JAX-RPC based book web service used in Chapter 2, Chapter 5, and Chapter 6. A glance at these

files will probably be enough to convince you that the availability of tools that convert between
WSDL and Java interfaces (and therefore relieve of the task of decoding WSDL or creating files

manually) is a very good thing!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix A. Appendix: WSDL Files for the Example Source
Code

This appendix contains the full listing of the WSDL files for some of the web services developed in

this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.1 WSDL File for the Book Web Service

This WSDL file corresponds to the book web service used in Chapter 2, Chapter 5, and Chapter 6.

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="BookService"
 targetNamespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"
 xmlns:tns="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ns2="urn:jwsnut.chapter2.bookservice/types/BookQuery"
 xmlns:ns3="http://java.sun.com/jax-rpc-ri/internal">
 <types>
 <schema
 targetNamespace="urn:jwsnut.chapter2.bookservice/types/BookQuery"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tns="urn:jwsnut.chapter2.bookservice/types/BookQuery"
 xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
 <import namespace="http://java.sun.com/jax-rpc-ri/internal"/>
 <complexType name="ArrayOfBookInfo">
 <complexContent>
 <restriction base="soap-enc:Array">
 <attribute ref="soap-enc:arrayType"
 wsdl:arrayType="tns:BookInfo[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="BookInfo">
 <sequence>
 <element name="author" type="string"/>
 <element name="editor" type="string"/>
 <element name="price" type="double"/>
 <element name="title" type="string"/>
 </sequence>
 </complexType>
 <complexType name="BookServiceException">
 <sequence>
 <element name="message" type="string"/>
 </sequence>
 </complexType>
 </schema>
 <schema targetNamespace="http://java.sun.com/jax-rpc-ri/internal"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tns="http://java.sun.com/jax-rpc-ri/internal"
 xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
 <import namespace="urn:jwsnut.chapter2.bookservice/types/BookQuery"/>
 <complexType name="hashMap">
 <complexContent>
 <extension base="tns:map">
 <sequence/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="map">
 <complexContent>
 <restriction base="soap-enc:Array">
 <attribute ref="soap-enc:arrayType"
 wsdl:arrayType="tns:mapEntry[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="mapEntry">
 <sequence>
 <element name="key" type="anyType"/>
 <element name="value" type="anyType"/>
 </sequence>
 </complexType>
 </schema>
 </types>
 <message name="BookQuery_getAuthor">
 <part name="String_1" type="xsd:string"/>
 </message>
 <message name="BookQuery_getAuthorResponse">
 <part name="result" type="xsd:string"/>
 </message>
 <message name="BookQuery_getBookCount"/>
 <message name="BookQuery_getBookCountResponse">
 <part name="result" type="xsd:int"/>
 </message>
 <message name="BookQuery_getBookInfo"/>
 <message name="BookQuery_getBookInfoResponse">
 <part name="result" type="ns2:ArrayOfBookInfo"/>
 </message>
 <message name="BookQuery_getBookMap"/>
 <message name="BookQuery_getBookMapResponse">
 <part name="result" type="ns3:hashMap"/>
 </message>
 <message name="BookQuery_getEditor">
 <part name="String_1" type="xsd:string"/>
 </message>
 <message name="BookQuery_getEditorResponse">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <part name="result" type="xsd:string"/>
 </message>
 <message name="BookQuery_getPrice">
 <part name="String_1" type="xsd:string"/>
 </message>
 <message name="BookQuery_getPriceResponse">
 <part name="result" type="xsd:double"/>
 </message>
 <message name="BookServiceException">
 <part name="BookServiceException" type="ns2:BookServiceException"/>
 </message>
 <portType name="BookQuery">
 <operation name="getAuthor" parameterOrder="String_1">
 <input message="tns:BookQuery_getAuthor"/>
 <output message="tns:BookQuery_getAuthorResponse"/>
 </operation>
 <operation name="getBookCount" parameterOrder="">
 <input message="tns:BookQuery_getBookCount"/>
 <output message="tns:BookQuery_getBookCountResponse"/>
 </operation>
 <operation name="getBookInfo" parameterOrder="">
 <input message="tns:BookQuery_getBookInfo"/>
 <output message="tns:BookQuery_getBookInfoResponse"/>
 </operation>
 <operation name="getBookMap" parameterOrder="">
 <input message="tns:BookQuery_getBookMap"/>
 <output message="tns:BookQuery_getBookMapResponse"/>
 </operation>
 <operation name="getEditor" parameterOrder="String_1">
 <input message="tns:BookQuery_getEditor"/>
 <output message="tns:BookQuery_getEditorResponse"/>
 </operation>
 <operation name="getPrice" parameterOrder="String_1">
 <input message="tns:BookQuery_getPrice"/>
 <output message="tns:BookQuery_getPriceResponse"/>
 <fault name="BookServiceException"
 message="tns:BookServiceException"/>
 </operation>
 </portType>
 <binding name="BookQueryBinding" type="tns:BookQuery">
 <operation name="getAuthor">
 <input>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"
 namespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"/>
 </input>
 <output>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"
 namespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"/>
 </output>
 <soap:operation soapAction=""/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </operation>
 <operation name="getBookCount">
 <input>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"
 namespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"/>
 </input>
 <output>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"
 namespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"/>
 </output>
 <soap:operation soapAction=""/>
 </operation>
 <operation name="getBookInfo">
 <input>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"
 namespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"/>
 </input>
 <output>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"
 namespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"/>
 </output>
 <soap:operation soapAction=""/>
 </operation>
 <operation name="getBookMap">
 <input>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"
 namespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"/>
 </input>
 <output>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"
 namespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"/>
 </output>
 <soap:operation soapAction=""/>
 </operation>
 <operation name="getEditor">
 <input>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"
 namespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"/>
 </input>
 <output>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"
 namespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"/>
 </output>
 <soap:operation soapAction=""/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </operation>
 <operation name="getPrice">
 <input>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"
 namespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"/>
 </input>
 <output>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"
 namespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"/>
 </output>
 <fault name="BookServiceException">
 <soap:fault encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/" use="encoded"
 namespace="urn:jwsnut.chapter2.bookservice/wsdl/BookQuery"/>
 </fault>
 <soap:operation soapAction=""/>
 </operation>
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="rpc"/>
 </binding>
 <service name="BookService">
 <port name="BookQueryPort" binding="tns:BookQueryBinding">
 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>
 </port>
 </service>
</definitions>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.2 WSDL File for the Document-Style Book Web Service

This WSDL file describes a document-style variant of the book web service. It forms the basis of the

example in Section 6.6.2.1.

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="urn:jwsnut.chapter6.docbookservice/wsdl/DocBookQuery"
 xmlns:typesns="urn:jwsnut.chapter6.docbookservice/types/DocBookQuery"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 name="DocBookQuery"
 targetNamespace="urn:jwsnut.chapter6.docbookservice/wsdl/DocBookQuery">
 <types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace=
 "urn:jwsnut.chapter6.docbookservice/types/DocBookQuery">
 <element name="BookCountRequest">
 <complexType>
 <sequence/>
 </complexType>
 </element>
 <element name="BookCountResponse">
 <complexType>
 <sequence>
 <element name="result" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 <element name="BookTitleRequest">
 <complexType>
 <sequence>
 <element name="index" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 <element name="BookTitleResponse">
 <complexType>
 <sequence>
 <element name="result" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <element name="BookAuthorRequest">
 <complexType>
 <sequence>
 <element name="title" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="BookAuthorResponse">
 <complexType>
 <sequence>
 <element name="author" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="BookInfoRequest">
 <complexType>
 <sequence>
 <element name="title" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="BookInfo">
 <complexType>
 <sequence>
 <element name="title" type="xsd:string"/>
 <element name="author" type="xsd:string"/>
 <element name="editor" type="xsd:string"/>
 <element name="price" type="xsd:double"/>
 <element name="stock" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 <element name="StockInfoRequest">
 <complexType>
 <sequence>
 <element name="title" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="StockInfoResponse">
 <complexType>
 <sequence>
 <element name="stock" type="xsd:nonNegativeInteger"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </types>
 <message name="DocBookQuery_getBookCount">
 <part name="body" element="typesns:BookCountRequest"/>
 </message>
 <message name="DocBookQuery_getBookCountResponse">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <part name="result" element="typesns:BookCountResponse"/>
 </message>
 <message name="DocBookQuery_getBookTitle">
 <part name="body" element="typesns:BookTitleRequest"/>
 </message>
 <message name="DocBookQuery_getBookTitleResponse">
 <part name="result" element="typesns:BookTitleResponse"/>
 </message>
 <message name="DocBookQuery_getBookAuthor">
 <part name="title" element="typesns:BookAuthorRequest"/>
 </message>
 <message name="DocBookQuery_getBookAuthorResponse">
 <part name="author" element="typesns:BookAuthorResponse"/>
 </message>
 <message name="DocBookQuery_getBookInfo">
 <part name="title" element="typesns:BookInfoRequest"/>
 </message>
 <message name="DocBookQuery_getBookInfoResponse">
 <part name="result" element="typesns:BookInfo"/>
 </message>
 <message name="DocBookQuery_getStockInfo">
 <part name="title" element="typesns:StockInfoRequest"/>
 </message>
 <message name="DocBookQuery_getStockInfoResponse">
 <part name="result" element="typesns:StockInfoResponse"/>
 </message>
 <portType name="DocBookQuery">
 <operation name="getBookCount" parameterOrder="">
 <input message="tns:DocBookQuery_getBookCount"/>
 <output message="tns:DocBookQuery_getBookCountResponse"/>
 </operation>
 <operation name="getBookTitle" parameterOrder="index">
 <input message="tns:DocBookQuery_getBookTitle"/>
 <output message="tns:DocBookQuery_getBookTitleResponse"/>
 </operation>
 <operation name="getBookAuthor" parameterOrder="title author">
 <input message="tns:DocBookQuery_getBookAuthor"/>
 <output message="tns:DocBookQuery_getBookAuthorResponse"/>
 </operation>
 <operation name="getBookInfo" parameterOrder="title result">
 <input message="tns:DocBookQuery_getBookInfo"/>
 <output message="tns:DocBookQuery_getBookInfoResponse"/>
 </operation>
 <operation name="getStockInfo" parameterOrder="title">
 <input message="tns:DocBookQuery_getStockInfo"/>
 <output message="tns:DocBookQuery_getStockInfoResponse"/>
 </operation>
 </portType>
 <binding name="DocBookQueryBinding" type="tns:DocBookQuery">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="document"/>
 <operation name="getBookCount">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"
 namespace="urn:jwsnut.chapter6.docbookservice/wsdl/DocBookQuery"/>
 </input>
 <output>
 <soap:body use="literal" namespace="urn:jwsnut.chapter6.
 docbookservice/wsdl/DocBookQuery"/>
 </output>
 </operation>
 <operation name="getBookTitle">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal" namespace="urn:jwsnut.chapter6.
 docbookservice/wsdl/DocBookQuery"/>
 </input>
 <output>
 <soap:body use="literal" namespace="urn:jwsnut.chapter6.
 docbookservice/wsdl/DocBookQuery"/>
 </output>
 </operation>
 <operation name="getBookAuthor">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal" namespace="urn:jwsnut.chapter6.
 docbookservice/wsdl/DocBookQuery"/>
 </input>
 <output>
 <soap:body use="literal" namespace="urn:jwsnut.chapter6.
 docbookservice/wsdl/DocBookQuery"/>
 </output>
 </operation>
 <operation name="getBookInfo">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal" namespace="urn:jwsnut.chapter6.
 docbookservice/wsdl/DocBookQuery"/>
 </input>
 <output>
 <soap:body use="literal" namespace="urn:jwsnut.chapter6.
 docbookservice/wsdl/DocBookQuery"/>
 </output>
 </operation>
 <operation name="getStockInfo">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal" namespace="urn:jwsnut.chapter6.
 docbookservice/wsdl/DocBookQuery"/>
 </input>
 <output>
 <soap:body use="literal" namespace="urn:jwsnut.chapter6.
 docbookservice/wsdl/DocBookQuery"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </output>
 </operation>
 </binding>
 <service name="DocBookService">
 <port name="DocBookQueryPort" binding="tns:DocBookQueryBinding">
 <soap:address location="http://localhost:8080/DocBooks/DocBookQuery"/>
 </port>
 </service>
</definitions>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution

channels. Distinctive covers complement our distinctive approach to technical topics, breathing

personality and life into potentially dry subjects.

The animal on the cover of JavaT Web Services in a Nutshell is a European ibex. The animal, which is
also known as the Alpine ibex, is a medium-sized mountain goat that can grow to 70 inches as an adult.

It has very muscular legs, which allow it to move easily about the mountains in which it lives. Its coat
is brown; it is a darker shade of brown in the winter months, but the color becomes lighter during the

summer. The major defining characteristic of the ibex is its long horns, which grow up and then curl

back slightly. The male horns, which are typically about 40 inches in length, are much longer than the
female horns, which are only about 14 inches in length. The ibex eats mostly greens such as grass and

plant leaves. The European ibex primarily lives in the Alps; over the spring and summer, it
continuously moves up to higher altitudes, looking for more grazing land. Females and males do not

interact except during mating season.

Mary Brady was the production editor and the copyeditor for JavaT Web Services in a Nutshell.

Genevieve d'Entremont was the proofreader. Colleen Gorman and Claire Cloutier provided quality
control. Derek Di Matteo, Darren Kelly, Linley Dolby, and Reg Aubry provided production support.

Julie Hawks wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover

layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

Ellie Volckhausen and David Futato designed the interior layout, based on a series design by David

Futato. This book was converted by Andrew Savikas to FrameMaker 5.5.6 with a format conversion

tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML

technologies. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the
code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were

produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop

6. This colophon was written by Mary Brady.

The online edition of this book was created by the Safari production group (John Chodacki, Becki

Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and

maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

absolute addresses, using tokens instead of

accessors 2nd

Action element (ebXML-TRP MessageHeader)

action element (SOAP-RP header)

activation.jar file
actor attribute

addAssociation() method
addAttribute() method (SOAPElement)

addBodyElement() method (SOAPElement)

addBodyPart() method (MimeMultipart)
addChildElement() method (SOAPElement)

addDetail() method (SOAPFault)
addFault() method (SOAPBody)

addHeader() method (MimeHeaders)

addHeaderElement() method (SOAPHeader)
additionalTypes element (config.xml file)

addNamespaceDeclaration() method
addParameter() method (Call) 2nd

addReference() method (Manifest)

address information in UDDI registry

 translating into PostalAddress objects
address schemes

 registry

 third-party

addresses

 absolute, using tokens instead of

 message, source and destination
 port

addressLine elements

Amazon.com

 Java version of web service interface

 web application overview
Ant build tool

 compiling service interface

 deploying WAR file

 targets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 for book web service
 undeploy

Apache Axis

Apache SOAP 2nd

appclient.ear file

appclient.jar file 2nd
application-client.xml file

arguments (RPC method argument types)

arrays

 of book titles

 of images returned by book image service
 of objects in XML

asinSearchRequest() function

Association interface (javax.xml.registry.infomodel) 2nd 3rd

 creating objects

associations
associations attribute (RegistryObject)

associationTypes (Collection argument)
asynchronous inquiry

asynchronous messaging 2nd

 delivery modes
 message transmission

asynchronous operation and JAXM
asynchronous update

AttachmentPart class (javax.xml.soap)

 associating data with

 getSize() method
 MIME headers and

 setContent() method

 setDataHandler() method

 SOAPMessage object and

attachments 2nd [See also SAAJ]3rd 4th 5th
 creating and managing

 DataHandlers [See DataHandlers, attachments]

 determining amount of data in

 email and

 examples
 JAX-RPC web service

 extracting data

 headers and content

 images [See images, attachments]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 install content in
 Java type values

 mapping between content type and object type for

 MimeMultipart [See MimeMultipart class, attachments]

 obtaining number of

 order returned
 processing received

 removing all

 specification

 XML [See XML, attachments]

audit trail 2nd
auditable events attribute (RegistryObject)

AuditableEvent interface (javax.xml.registry.infomodel) 2nd

auth-constraint element

authentication [See also HTTPS]

 client set-up
 HTTP

 JAX-RPC
 user

 XML Schema definition

authorization
available() method (InputStream)

Axis

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

base classes, methods that use

baseTypes.xsd file

BigDecimalHolder class (javax.xml.rpc.holders)

BigIntegerHolder class (javax.xml.rpc.holders)

binding
 disabled

 section
binding elements

 (WSDL) 2nd

 MIME binding [See MIME binding]
 SOAP binding [See SOAP binding]

 document-style operations
book image web service

 array of images returned by

book list, SOAP representation of
book web service

 application client
 files required for JAR file

 sun-j2ee-ri.xml file

 WAR file

BookImageRequest element
BookImageServletData class

BookInfo class

 definition

 getBookInfo() method

 getBookMap() method

BookList request
booklist.txt file

BookQuery interface

 casting objects

 code example

 getAuthor() method
BookQueryBean

Books.war file

BookService interface

BookService.java file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BookService_Impl class
BookServiceException class

BookServiceServant class

BookServiceServantData class

BookTitleRequest element

 XML Schema definition for
BookTitleResponse element

bookTypes.xsd file

BooleanHolder class (javax.xml.rpc.holders)

BooleanWrapperHolder class (javax.xml.rpc.holders)

browser requests and doGet() method
build.xml file

BulkResponse interface (javax.xml.registry) 2nd 3rd

BusinessLifeCycleManager interface (javax.xml.registry) 2nd

 asynchronous queries

 createClassification() method
 methods that delete objects

 modifying registry data
BusinessQueryManager interface (javax.xml.registry) 2nd

 arguments used by

 asynchronous queries
 methods

ByteArrayDataSource class
ByteArrayHolder class (javax.xml.rpc.holders)

ByteArrayInputStream

ByteHolder class (javax.xml.rpc.holders)

ByteWrapperHolder class (javax.xml.rpc.holders)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

CalendarHolder class (javax.xml.rpc.holders) 2nd

Call interface (javax.xml.rpc)

 attributes

 changing operation with setOperationName() method

 configuring to invoke getBookAuthor() method
 configuring without WSDL document

 DII and
 ENCODINGSTYLE_URI_PROPERTY

 method output values

 OPERATION_STYLE_PROPERTY
 PASSWORD_PROPERTY

 properties
 SESSION_MAINTAIN_PROPERTY

 SOAPACTION_URI_PROPERTY

 SOAPACTION_USE_PROPERTY
 USERNAME_PROPERTY

call() method (SOAPConnection class)
CallbackURL element (client.xml file)

capability levels (JAXR)

CapabilityProfile interface (javax.xml.registry)

certificates
 signed

chain element (config.xml file)

checkAccess() method

cid: instead of # symbol

Classification interface (javax.xml.registry.infomodel) 2nd

 creating
 searching by

 extended searches

classification schemes

 adding to ebXML provider

 external and internal
 advantages of internal

 inspecting

 ISO 3166

 NAICS (North American Industry Classification System)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 UNSPSC (Universal Standard Products and Services Classification)
 user-defined

classifications

 external

 internal [See internal classification]

classifications attribute (RegistryObject)
ClassificationScheme interface (javax.xml.registry.infomodel) 2nd 3rd

 definition template for custom

 getDescendentConcepts() method

 value types

CLASSPATH
 client applications that use SAAJ

classpath argument (wscompile utility)

clean (Ant buildfile target)

client code

 building
 running

Client fault code
client invocation modes (JAX-RPC)

client-side JAX-RPC API

client.xml file
 Endpoint and CallbackURL entries

 example
 sending servlet

CLIENT_ARGS property 2nd

CLIENT_CERTIFICATE

CLIENT_HTTPS_SERVER_AUTH_ARGS property
clients

 application configuration

 definition in JAXM 1.1 specification

 on separate machines

collection classes
 (java.util package)

 serializers and

Collections

 of find qualifiers

com.sun.xml.registry
 http.proxyHost property

 http.proxyPassword property

 http.proxyPort property

 http.proxyUserName property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 http.useCach property
 http.useSOAP property

 https.proxyHost property

 https.proxyPort property

 userTaxonomyFilenames property

command-line tools, web services
commons-logging.jar file

compile (Ant buildfile target)

compile-client (Ant buildfile target)

compile-interface (Ant buildfile target)

compile-server (Ant buildfile target)
compiling service interface with Ant

complexType element (XML schema)

Concept interface (javax.xml.registry.infomodel) 2nd 3rd

 as enumerated type

 locating the required
 value types

ConcurrentModificationException
confidentiality

config.xml file 2nd 3rd 4th 5th

 additionalTypes element
 configuration element [See configuration element]

 handlerChains element
 import element

 interface elements inside service element

 modelfile element [See modelfile element]

 namespaceMappingRegistry element
 referencing a WSDL document

 RPC-style operations and

 service element [See service element]

 typeMapping element

 typeMappingRegistry element
 wsdl element [See wsdl element]

configuration

 at deployment time

 ways for servant class to get information

configuration element (config.xml file) 2nd
Connection interface (javax.xml.registry)

 setSynchronous() method

ConnectionFactory interface (javax.xml.registry)

 obtaining

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 properties
 recognized by reference implementation UDDI provider

container-resident clients, obtaining a Service object

containers, web [See servlets]

Content-Id, AttachmentPart

Content-Length header
Content-Location, AttachmentPart

Content-Type header

context information that JAX-RPC runtime makes available to web services

ContextBookQuery interface

 web service
 authentication

 web.xml file for

ContextBookServiceServantData class

convenience methods for ebXML MessageHeader element

ConversationId element (ebXML-TRP MessageHeader)
CPAId element (ebXML-TRP MessageHeader)

createAssociation() method (LifeCycleManager)
createAttachmentPart() method (SOAPMessage) 2nd

createCall() methods (Service)

createClassification() method (BusinessLifeCycleManager)
createConnection() method

createElement() method (SOAPElement)
createMessage() method (MessageFactory)

 message output

createService() method (ServiceFactory) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

data types supported by JAX-RPC

DataContentHandlerFactory interface

DataContentHandlers

 content types

datahandleronly feature (wscompile utility)
DataHandlers

 associating with a DataSource
 attachments

 client code

 constructors
 getContent() method

 mapping MIME types to Java types
 getContentType() method

 getInputStream() method

DataSource class
 associating with a DataHandler

 custom
debugging

DeclarativeQueryManager interface (javax.xml.registry) 2nd 3rd

 asynchronous queries

definitions element (WSDL)
DeleteException class (javax.xml.registry)

deploy (Ant buildfile target)

deploytool utility

 -deployGeneratedModule option

 -deployModule option

 options
deprecation, object

description attribute (RegistryObject)

Description elements (ebXML-TRP)

deserialization

DeserializationContext interface (javax.xml.rpc.encoding)
Deserializer interface (javax.xml.rpc.encoding) 2nd

DeserializerFactory interface (javax.xml.rpc.encoding) 2nd

deserializers

 adding to the type mapping registry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 mechanismType argument
 registering

deserializing SOAP messages

destination object

detachNode() method

 (SoapBody and SoapHeader)
 (SOAPElement)

Detail interface (javax.xml.soap)

DetailEntry interface (javax.xml.soap)

DII (Dynamic Invocation Interface) 2nd 3rd

 Call objects and
 defined

 example

 exceptions and

 one-way calls and

 Service interface methods
 service not defined by WSDL

 WSDL service and
Directory element (provider.xml file)

DocBookQuery interface, creating a class that implements

DocBookQuery.java file
document-style operations

 example
 implementing a service containing

 JAX-RPC interface to

 JAX-RPC support for

 packaging services containing
 suppressing mapping of message content to method arguments

 type attribute for message part associated with

 web service to be compatible with JAX-RPC summary

 web services and encoding rules

 wrappers and
 WSDL definition and

 WSDL extract

documentation elements (WSDL)

doGet() method

 handling browser requests
 Object wait() method and

dom.jar file

dom4j.jar file

DOMSource type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

doPost() method 2nd
DoubleHolder class (javax.xml.rpc.holders)

DoubleWrapperHolder class (javax.xml.rpc.holders)

dynamic invocation interface

dynamic proxies

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

EAR (Enterprise Archive)

ebXML

 filters, rules that govern use of

 JAXR provider for

 message
 created using JAXM ebXML profile

 JAXM API to create
 Manifest element

 MessageHeader element

 profile
 provider, adding classification schemes to

 SOAP headers and
ebXML registry 2nd 3rd 4th

 creating users

 open source download
 Registry Service specification

 setting up and using
 source for provider and registry server

 starting server

 submitting SQL query to

 versus UDDI registry
ebXML Transport, Routing, and Packaging [See ebXML-TRP]

ebxml value (JAXM reference implementation)

ebXML-TRP (ebXML Transport, Routing, and Packaging) 2nd 3rd

 header container

 message

 example
 MessageHeader element

 payload container

ebxmlrr.properties file

EJB-hosted web services

ejb-jar.xml file 2nd
 example

ejb-link element

ejb-name element (ejb-jar.xml file)

EJBBooks.jar file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ejbCreate() method 2nd
ejbRemove() method 2nd

EJBs

 JAR files

 web services

 deployment
 implementing

 programming model

 URL

element element (XML schema)

elements
 content that's not XML data

 encoded versus literal

 transferred from client

email

EmailAddress interface (javax.xml.registry.infomodel) 2nd 3rd 4th
encapsulated data [See DataHandlers]

encoding style, example of effect on content of SOAP message
encodingStyle attribute (Envelope element)

ENCODINGSTYLE_URI_PROPERTY (Call) 2nd 3rd

Endpoint class (javax.xml.messaging)
endpoint element

 jaxrpc-ri.xml file
 wsdeploy configuration file

Endpoint elements

 client.xml file

 provider.xml file, mapping 2nd
ENDPOINT_ADDRESS_PROPERTY

 (Call)

 (Stub) 2nd

endpointMapping element

 jaxrpc-ri.xml file
 wsdeploy configuration file

endpointName attribute (jaxrpc-ri.xml file)

Enterprise Archive (EAR)

enterprise-beans element

enumerated types
envelope (SOAP) [See also SOAPEnvelope interface]2nd

Envelope element (SOAP)

 encodingStyle attribute

ErrorHandling element (provider.xml file)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 within a Transport element
examineHeaderElements() method (SOAPHeader)

examining received messages

example.properties file 2nd

exceptions

 DII and
 fault element (WSDL)

 JAX-RPC service-specific

expiration attribute (RegistryEntry)

explicit content

explicit context
 authentication without

 SOAP headers and

explicitcontext feature (wscompile utility)

extensibility elements (WSDL)

ExtensibleObject interface (javax.xml.registry.infomodel) 2nd 3rd 4th
external classification

external Classification object
external identifiers attribute (RegistryObject)

external links attribute (RegistryObject)

ExternalIdentifier interface (javax.xml.registry.infomodel) 2nd
ExternalLink interface (javax.xml.registry.infomodel) 2nd

extractHeaderElements() method (SOAPHeader)
extramural Association

ExtrinsicObject interface (javax.xml.registry.infomodel) 2nd

ExtrinsicObjects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

Fault Actor attribute (SOAP Fault)

Fault Code attribute (SOAP Fault)

fault elements

 (WSDL) 2nd

 name attribute
 creating

 HTTP and
 SOAP-RP header

fault handling, SOAP-RP message API

Fault String attribute (SOAPFault)
FederatedConnection interface (javax.xml.registry)

finalize() method
find qualifiers

findConceptByPath() method

FindException class (javax.xml.registry)
FindQualifier interface (javax.xml.registry)

fire-and-forget
FloatHolder class (javax.xml.rpc.holders)

FloatWrapperHolder class (javax.xml.rpc.holders)

fragments of XML documents

From element (ebXML-TRP MessageHeader)
from element (SOAP-RP header)

fwd element (SOAP-RP header)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

generate-client (Ant buildfile target)

 wscompile and

generate-client target

GenericHandler class (javax.xml.rpc.handler) 2nd

getActor() method (SOAPHeaderElement)
getAllHeaders() method (Iterator)

getAttachments() method (SOAPMessage)
getAuthor operation

getAuthor() method

 BookQuery interface
getAuthorResponse element

getBookAuthor() method, WSDL definitions for
getBookCount operation

 WSDL definitions for

getBookCount() method
getBookInfo() method (BookInfo class)

getBookMap() method (BookInfo class)
getBookQueryPort() method

getBookTitle operation

 message definitions for

 WSDL definition for
getCallerPrincipal() method (SessionContext)

getCapabilityProfile() method

getContent() method

 (DataHandler)

 (SOAPPart object)

getContentType() method (DataHandler)
getDescendentConcepts() method 2nd

getEditor() method

getEJBLocalObject() method

getEJBObject() method

getElementName() method (SOAPElement)
getFault() method (SOAPBody)

getFaultActor() method

getFaultCode() method

getFaultString() method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getHandlerConfig() method (HandlerInfo)
getHandlerRegistry() method (Service)

getHeader() method (String)

getHeaders() method (Handler)

getHttpSession() method (ServletEndpointContext)

getImage() method, alternative to
getInitParameter() method (ServletContext)

getInputStream() method

 (ByteArrayDataSource)

 (DataHandler)

 (HttpServletRequest)
getMatchingHeaders() method (Iterator)

getMechanismType() method (Serializer)

getMessage() method

 (BookServiceException class)

 (SOAPMessageContext)
getMessageContext() method

getMimeHeaders() method (SOAPMessage) 2nd
getMustUnderstand() method (SOAPHeaderElement)

getNonMatchingHeaders() method (Iterator)

getOutputParams() method
getOutputValues() method

getPort() method (Service)
 authentication

 from a ServiceFactory

getRegistryObject() method (QueryManager)

getRegistryObjects() method (QueryManager)
getSerializer() method (TypeMapping)

getServiceName() method (Service)

getServletContext() method

getSize() method (AttachmentPart)

getSOAPPart() method (SOAPMessage)
getSOAPRPFwdMessagePath() method

getSOAPRPRevMessagePath() method

getStockInfo() method

getSupportedProfiles() method

getTypeMapping() method (TypeMappingRegistry)
getTypeMappingRegistry() method (Service)

getUserPrincipal() method

 getting authentication information

getValue() method (SOAPElement)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getWSDLDocumentLocation() method (Service)
GIF images

 DataSource

 JRE encoder

GLUE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

handleBookListRequest() method

handleFault() method

handler chains 2nd

 webservices.xml file

handler element
 config.xml file

 webservices.xml file
Handler interface (javax.xml.rpc.handler) 2nd

 getHeaders() method

HandlerBookQuery service
 service interface definition for

HandlerChain interface (javax.xml.rpc.handler) 2nd 3rd
handlerChains element

 config.xml file 2nd

 jaxrpc-ri.xml file
handleRequest() method

handleResponse() method
HandlerInfo class (javax.xml.rpc.handler) 2nd

 property values

HandlerRegistry interface (javax.xml.rpc.handler)

 dynamically updating for service endpoints
hasFault() method (SOAPBody)

header content, accessing [See message handlers SOAP headers]

header elements

 creating

 processing

HeaderBookQuery interface
 servant class that implements

HeaderBookQuery_Time element

holder classes 2nd 3rd

 implementing reverse() method

 list of standard
Holder interface (javax.xml.rpc.holders)

href attribute

HTML

 problems conveying data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using XML rather than
HTTP

 basic authentication

 binding for reply message

 Fault element and

 GET request
 POST request

HTTP_BASIC

HTTPS 2nd [See also authentication]

 enabling client system

 enabling in web server
HttpServletRequest class

HttpServletResponse class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

id element (SOAP-RP header)

Image objects

 as attachments [See images, attachments]

 used to create Swing ImageIcons

images
 attachments 2nd 3rd

 DataSource and
 transporting

implementation attribute (jaxrpc-ri.xml file)

import element
 (WSDL) 2nd

 attributes
 (XML schema)

 config.xml file

importing types from an XML schema definition
In arguments (RPC method argument type)

In/out arguments (RPC method argument type)
infix feature (wscompile utility)

init() method

 MessageFactory and

 receiving servlet
InitialContext object

inner classes

 example

input element (WSDL)

InputStream

 available() method
IntArrayHolder

IntegerWrapperHolder class (javax.xml.rpc.holders)

interface arguments

interface attribute (jaxrpc-ri.xml file)

interface elements inside service element (config.xml file)
interface files, generating with wscompile

interface method definitions

intermediate systems

internal classification

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 creating
InternationalString attribute (RegistryObject)

InternationalString interface (javax.xml.registry.infomodel) 2nd

IntHolder class (javax.xml.rpc.holders)

intramural Association

InvalidRequestException class (javax.xml.registry)
isConfirmed() method (Association)

isConfirmedBySourceOwner() method (Association)

isConfirmedByTargetOwner() method (Association)

ISO 3166

iso3166.xml file
isParameterAndReturnSpecRequired() method (Call)

Iterator class

 getAllHeaders() method

 getMatchingHeaders() method

 getNonMatchingHeaders() method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

J2EE 1.4 beta release bug

J2EE application clients

 JAX-RPC and

 adding a web service reference to JNDI environment

 packaging and deploying
 points to consider

 running
 writing

J2EE command-line tools

J2EE web service APIs
J2EE Web Services specification (JSR 109)

j2ee.jar file
j2eec utility 2nd

 options

JAF (JavaBeans Activation Framework) 2nd
JAR files

 client
 EJB

Java API for XML-based Messaging [See JAXM]

Java API for XML-based Registries [See JAXR]

Java API for XML-based RPC [See JAX-RPC]
Java classes, standard

Java data types, mapping

Java interface definition

 containing arguments that access SOAP header

 for a web service containing document-style operations

Java primitive types
 remote methods returning

Java reflection

Java Secure Sockets Extension (JSSE)

Java version of Amazon.com web service interface

Java virtual machines [See JVMs]
Java Web Services Developer's Pack (JWSDP) 2nd

 command-line tools

java.lang.Object

java.rmi.Remote interface 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

java.rmi.RemoteException
java.util package collection classes

JavaBeans Activation Framework [See JAF]

JavaMail

javax.activation.DataSource interface

javax.rpc.xml.holders.Holder interface
javax.xml.messaging package 2nd 3rd

 classes

 Endpoint

 JAXMServlet [See JAXMServlet]

 ProviderConnectionFactory
 URLEndpoint

 exceptions

 JAXMException

 interfaces

 OnewayListener [See OnewayListener interface]
 ProviderConnection

 ProviderMetaData
 ReqRespListener

javax.xml.messaging.JAXMServlet [See JAXMServlet]

javax.xml.namespace package
 QName class

javax.xml.registry package 2nd
 exceptions

 DeleteException

 FindException

 InvalidRequestException
 JAXRException

 RegistryException

 SaveException

 UnexpectedObjectException

 UnsupportedCapabilityException
 interfaces

 BulkResponse [See BulkResponse interface]

 BusinessLifeCycleManager [See BusinessLifeCycleManager interface]

 BusinessQueryManager [See BusinessQueryManager interface]

 CapabilityProfile
 Connection [See Connection interface]

 ConnectionFactory [See ConnectionFactory interface]

 DeclarativeQueryManager

 FederatedConnection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FindQualifier
 JAXRResponse

 LifeCycleManager [See LifeCycleManager interface]

 Query [See Query interface]

 QueryManager [See QueryManager interface]

 RegistryService [See RegistryService interface]
 properties

 lifeCycleManagerURL

 PostalAddressScheme

 postalAddressScheme

 queryManagerURL
 security.authenticationMethod

 semanticEquivalences

 uddi.maxRows

javax.xml.registry.infomodel package 2nd 3rd

 interfaces
 Association

 AuditableEvent
 Classification

 ClassificationScheme

 Concept
 EmailAddress

 ExtensibleObject
 ExternalIdentifier

 ExternalLink

 ExtrinsicObject

 InternationalString
 Key

 LocalizedString

 Organization

 PersonName

 PostalAddress [See PostalAddress interface]
 RegistryEntry [See RegistryEntry interface]

 RegistryObject [See RegistryObject interface]

 RegistryPackage

 Service [See Service interface]

 ServiceBinding [See ServiceBinding interface]
 Slot [See Slot interface]

 SpecificationLink

 TelephoneNumber

 URIValidator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 User
 Versionable

javax.xml.rpc package 2nd

 classes

 NamespaceConstants

 ParameterMode
 ServiceException

 ServiceFactory

 exceptions

 JAXRPCException

 interfaces
 Call [See Call interface]

 Service [See Service interface]

 Stub [See Stub interface]

javax.xml.rpc.encoding package 2nd

 classes
 XMLType 2nd

 interfaces
 DeserializationContext

 Deserializer

 DeserializerFactory
 SerializationContext

 Serializer
 SerializerFactory

 TypeMapping

 TypeMappingRegistry

javax.xml.rpc.handler package 2nd 3rd
 classes

 GenericHandler

 HandlerInfo

 interfaces

 Handler [See Handler interface]
 HandlerChain [See HandlerChain interface]

 HandlerRegistry [See HandlerRegistry interface]

 MessageContext

javax.xml.rpc.handler.soap package 2nd

 interface
 SOAPMessageContext

javax.xml.rpc.holders package 2nd 3rd

 classes

 BigDecimalHolder

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 BigIntegerHolder
 BooleanHolder

 BooleanWrapperHolder

 ByteArrayHolder

 ByteHolder

 ByteWrapperHolder
 CalendarHolder

 DoubleHolder

 DoubleWrapperHolder

 FloatHolder

 FloatWrapperHolder
 IntegerWrapperHolder

 IntHolder

 LongHolder

 LongWrapperHolder

 ObjectHolder
 QNameHolder

 ShortHolder
 ShortWrapperHolder

 StringHolder

 interfaces
 Holder

javax.xml.rpc.server package 2nd
 interfaces

 ServiceLifecycle

 ServletEndpointContext

javax.xml.rpc.soap package 2nd
 SOAPFaultException class

javax.xml.soap package 2nd

 exceptions

 SOAPException

 interfaces
 AttachmentPart [See AttachmentPart class]

 Detail

 DetailEntry

 MessageFactory

 MimeHeader
 MimeHeaders 2nd

 Name

 Node

 SOAPBody

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SOAPBodyElement
 SOAPConnection

 SOAPConnectionFactory

 SOAPConstants 2nd

 SOAPElement

 SOAPElementFactory
 SOAPEnvelope

 SOAPFactory

 SOAPFault

 SOAPFaultElement

 SOAPHeader
 SOAPHeaderElement

 SOAPMessage

 SOAPPart

 Text

JAX-RPC (Java API for XML-based RPC) 2nd 3rd
 APIs

 client-side
 packages

 using to provide application-level security

 authentication
 benefits of using

 book service
 WSDL file

 client and server programming environments

 client invocation modes

 client-side API for
 document-style operations [See document-style operations]

 example

 compiling and running

 defining the service interface

 implementing the service
 source code organization

 writing client code

 generated method calls, handling header information

 holder classes

 J2EE application clients and [See J2EE application clients, JAX-RPC and]
 mapping file

 example

 package-mapping element

 XML Schema document definition

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 message handlers 2nd
 method calls

 method requirements

 overview

 programming model

 programming with
 reference implementation

 how it works

 restrictions on class mappings

 RPC-style operations [See RPC-style operations]

 server-side API for
 server-side implementation

 service creation

 service endpoint interface definitions

 service interface

 converting to client-side stubs
 method definitions

 supported data types
 service-specific exception

 services, ports, and bindings

 supported software combinations
 tie classes [See tie classes]

 using EJBs
 using WSDL with [See WSDL, JAX-RPC, using with]

 versus RMI

 versus SAAJ and JAXM

 web service clients and servers
 web service, deploying onto J2EE 1.4 platform

 web service, deploying with JWSDP

JAX-RPC Dynamic Invocation Interface [See DII]

JAXM (Java API for XML Messaging) 2nd 3rd [See also javax.xml.messaging package]

 1.1 specification
 JAXM client

 APIs

 to create ebXML message

 asynchronous messaging [See asynchronous messaging]

 client and provider configuration
 configuration

 delivery modes

 example application

 receiving service for JAXM Echo service

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sending service for JAXM Echo service
 execution environment

 features

 overview

 providers [See providers]

 SAAJ and
 specification

 versus JAX-RPC

 versus SAAJ

jaxm-api.jar file

jaxm-runtime.jar file
JAXMException class (javax.xml.messaging)

JAXMServlet 2nd 3rd

 handling SOAP messages example

 onMessage() method

 SOAP messages and
jaxp-api.jar file

JAXR (Java API for XML Registries) 2nd 3rd [See also javax.xml.registry package]4th
 application client

 architecture

 capability levels
 connection between client and provider

 examples
 setup for

 implementations

 methods

 capability levels and
 need for

 postal address scheme

 programming

 connecting to registry

 deleting registry objects
 modifying registry

 querying registry

 retrieving objects from registry

 provider for ebXML

 download
 providers

 PostalAddress problems

 registry information model

 registry model

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 response and exception classes
 specification

jaxr-ebxml.properties file

JAXRClassificationScheme element

JAXRConcept element

JAXRException class (javax.xml.registry)
jaxrpc-api.jar file 2nd

jaxrpc-mapping-file element (webservices.xml file) 2nd

jaxrpc-mapping-file element (webservicesclient.xml file)

jaxrpc-ri-runtime.xml file

 example
 wsdeploy utility and

jaxrpc-ri.jar file

jaxrpc-ri.xml file 2nd 3rd

 endpoint element

 model attribute
 endpointMapping element

 example
 for a JWSDP-hosted web service using message handlers

 webServices element

JAXRPCException class (javax.xml.rpc) 2nd
JAXRPCServlet

 receiving HTTP GET request
 ServiceLifecycle and

JAXRResponse interface (javax.xml.registry)

JLabels

JNDI environment
 adding a web service reference to

JPEG images

 JRE encoder

JRE image encoder

JRE keystore
JSEE application client

 files required for JAR file

JSR 105 (XML Digital Signature APIs)

JSR 106 (XML Digital Encryption APIs)

JSR 109 (J2EE Web Services specification)
JSR 67

JSSE (Java Secure Sockets Extension)

JVMs (Java virtual machines)

JWSDP (Java Web Services Developer's Pack)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 authentication
 service hosted by, in Tomcat web container

JWSGroup role

jwsnutExamples.properties file 2nd 3rd 4th

jwsnutJaxrExamples.properties file 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

key attribute (RegistryObject)

Key interface (javax.xml.registry.infomodel) 2nd

keystore, JRE

keyStoreFile attribute

keytool command
keywordSearchRequest() function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

LifeCycleManager interface (javax.xml.registry)

 createAssociation() method

 modifying registry data

literal encoding

 document-style operations and
load-on-startup element (web.xml file)

LocalizedString interface (javax.xml.registry.infomodel) 2nd
location transparency and JAXM

login-config element

login-config tags (web.xml file)
LongHolder class (javax.xml.rpc.holders)

LongWrapperHolder class (javax.xml.rpc.holders)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

mail.jar file

makeRegistrySpecificRequest() method (RegistryObject)

Manifest class

 addReference() method

Manifest element
 (ebXML-TRP)

 ebXML message and
mapping

 classes, JAX-RPC

 Java data types
mapping file

mapping.xml file
MaxRetries element (provider.xml file)

mechanismType argument (serializers and deserializers)

message element (WSDL) 2nd
 name attribute

 part elements and
 web services that are not RPC-based

message handlers 2nd 3rd

 architecture

 classes and interfaces
 configuration

 configuring client-side

 example

 handling a SOAP request message

 handling a SOAP response message

 initialization code for server-side
 jaxrpc-ri.xml file for a JWSDP-hosted web service

 webservices.xml file for a web service

MessageContext interface (javax.xml.rpc.handler)

 methods

MessageData element (ebXML-TRP MessageHeader)
MessageFactory class

 creating a SOAP message

 methods for creating SOAP messages

 obtaining

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 obtaining instances of
MessageHeader element

 (ebXML)

 (ebXML-TRP)

messages

 addresses, source and destination
 constructing and sending

 delivery, robust

 flow, logical versus actual

 persistence

 receiving and returning another
 receiving without returning a reply

 returning an asynchronous reply

 routing and SOAP-RP path header

 sending and receiving

 summary
 suppressing mapping content to method arguments

 transmission, asynchronous
messaging

 profiles

 supported by the JAXM reference implementation
 provider

 discovering supported profiles
methods

 call signature

 mutator

 requirements (JAX-RPC)
MIME binding

MIME encoding

MIME headers

 AttachmentPart and

 obtaining when SOAP message received
 setting after SOAP message transmission

 SOAP messages and

MIME types

 mapping to Java types for the DataHandler getContent() method

mime:content element
mime:mimeXml element

mime:multipartRelated element

mime:part elements

MimeBodyPart

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MimeHeader class 2nd
MimeHeaders class 2nd

 addHeader() method

 multiple headers

 querying content of object

 setHeader() method
MimeMultipart class

 addBodyPart() method

 attachments

 client code

 setContent() method
model files 2nd 3rd

 creating for portable WAR file

modelfile element (config.xml file) 2nd 3rd

movie files, transporting

MS_PASSPORT
multithreading

MustUnderstand fault code
mutator methods

 value types and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

NAICS (North American Industry Classification System)

naics.xml file

name attribute

 (RegistryObject)

 (service element)
Name interface (javax.xml.soap) 2nd

 object attributes
name.wsdl file

namePatterns (Collection argument)

namespace-qualified SOAP messages
NamespaceConstants class (javax.xml.rpc)

namespaceMappingRegistry element (config.xml file)
namespaces commonly used in SOAP messages

namespaceURI element (webservices.xml file)

nested encodings
newInstance() method (ServiceFactory class)

nodatabinding feature (wscompile utility)
Node interface (javax.xml.soap) 2nd

noencodedtypes feature (wscompile utility)

nomultirefs feature (wscompile utility)

nondistributed programming environment
 method calls

norpcstructures feature (wscompile utility)

Notification web service operation type

novalidation feature (wscompile utility)

null value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

object deprecation

object type attribute (RegistryObject)

Object wait() method

 doGet() method and

ObjectHolder class (javax.xml.rpc.holders)
ObjectType

one-way calls
 DII and

one-way operations

 stubs and
one-way RPC

One-way web service operation type
OnewayListener interface (javax.xml.messaging) 2nd

onMessage() method

 (JAXMServlet)
operation elements (WSDL)

 name attribute
 parameterOrder attribute

 types

 Notification

 One-way
 Request-response

 Solicit-response

OPERATION_STYLE_PROPERTY property (Call)

OPERATION_STYLE_PROPERTY, Call interface (javax.xml.rpc)

organization attribute (RegistryObject)

Organization interface
 attributes

Organization interface (javax.xml.registry.infomodel) 2nd

Organization object (JAXR)

Out arguments (RPC method argument type)

output element (WSDL)
output values from Call methods

OutputStream

 XML representation of a SOAPMessage written to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

package-mapping element (JAX-RPC mapping file)

packageName attribute (service element)

parameter modes

ParameterMode class (javax.xml.rpc)

PASSWORD_PROPERTY
 (Call) 2nd

 (Stub) 2nd
payload

persistence

 JAXM and
Persistence element (provider.xml file)

PersonName interface (javax.xml.registry.infomodel) 2nd
PersonName object 2nd

PNG images 2nd

port addresses
port element (WSDL) 2nd

 binding
port-component element (webservices.xml file)

port-component elements (webservices.xml file)

port-component-name element (webservices.xml file) 2nd

portable archives [See WAR files, portable]
portable code, writing

portable-web-package (Ant buildfile target)

portType element (WSDL) 2nd

 document-style operations

 name attribute

Postal Scheme, default
PostalAddress attribute

 JAXR provider and

PostalAddress interface

 translating address information into objects

PostalAddress interface (javax.xml.registry.infomodel) 2nd 3rd 4th 5th
PostalAddress scheme

 JAXR

 mapping without

PredefinedConcepts element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

primitive types, Java
profiles, web services

programming environments

 nondistributed

 method calls

provider administration tool
Provider element (client.xml file)

provider.xml file 2nd

 Directory element

 Endpoint elements, mapping 2nd

 ErrorHandling element
 within a Transport element

 MaxRetries element

 Persistence element

 ProviderConfig element

 RecordsPerFile element
 Transport element

ProviderConfig element (provider.xml file)
ProviderConnection interface (javax.xml.messaging) 2nd

 send() method

ProviderConnectionFactory class (javax.xml.messaging) 2nd
ProviderMetaData interface (javax.xml.messaging) 2nd

providers
 clients on separate machines

 configuration

 configuring

 how they use configuration information
 URLs in JAXM reference implementation

proxies, dynamic

Proxy element (client.xml file)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

QName class (javax.xml.namespace)

QNameHolder class (javax.xml.rpc.holders)

queries, asynchronous

Query interface (javax.xml.registry) 2nd

QUERY_TYPE_EBXML_FILTER_QUERY
QUERY_TYPE_SQL

QUERY_TYPE_XPATH
QueryManager interface (javax.xml.registry)

 methods to retrieve registry objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

received messages, examining

RecordsPerFile element (provider.xml file)

redeploy (Ant buildfile target)

Reference class

 setDescription() method
 setSchema() method

Reference element (ebXML-TRP)
reference implementation (JAX-RPC)

reflection, Java

register() method (TypeMapping)
registries

 adding Service and ServiceBinding to Organization entry
 address schemes

 connecting to

 sample code
 creating Organization and User objects in

 deleting objects
 ebXML [See ebXML registry]

 Level 1 features

 locating information

 modifying
 overview

 querying

 retrieving objects from

 saving content in

 searching for an Organization with a given classification

 security
 standards

 types in common use

 UDDI [See UDDI registry]

 using browser to examine registry data

 XML-based [See JAXR]
RegistryEntry interface (javax.xml.registry.infomodel) 2nd 3rd

 attributes

RegistryException class (javax.xml.registry)

RegistryObject interface (javax.xml.registry.infomodel) 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 adding classification to
 adding Classifications to

 attributes

 classification of objects

 makeRegistrySpecificRequest() method

 related to other registry objects in package
 Slots and

RegistryPackage

RegistryPackage interface (javax.xml.registry.infomodel) 2nd

RegistryService interface (javax.xml.registry) 2nd

relatesTo element (SOAP-RP header)
remote methods returning Java primitive type

remote procedure call-based web services [See JAX-RPC]

removeAllAttachments() method

removeAllHeaders() method

removeAllParameters() method (Call)
removeHeader() method

reply messages
 building once service is used

 HTTP binding for

ReqRespListener interface (javax.xml.messaging) 2nd
Request-response web service operation type

rev element (SOAP-RP header)
reverse() method

 arrays and

 holder classes and

RFC 2045
RFC 2387

RMI

 passing of objects by remote reference

 versus JAX-RPC

roles referred to in web.xml file
RPC method argument types

RPC, one-way

RPC-style operations

 literal encoding and

 message part definitions
run-client (Ant buildfile target) 2nd

run-client-bookmap (Ant buildfile target)

runclient utility

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

SAAJ (SOAP with Attachments API for Java) 2nd 3rd

 1.1 specification

 APIs 2nd

 SOAP headers and

 SOAP messages using
 client applications and CLASSPATH

 interfaces used in building SOAP messages
 messaging

 overview

 programming
 versus JAX-RPC

 versus JAXM
 with secure connections

saaj-api.jar file 2nd

saaj-ri.jar file
SAAJEchoService

saveAssocations() method
saveChanges() method 2nd

SaveException class (javax.xml.registry)

saveRequired() method

sax.jar file
SAXSource type

Schema element (ebXML-TRP)

screen scraping

 programs

 versus web services

searching registry
 for an Organization with a given classification

searchschema feature (wscompile utility)

secure connections (SAAJ)

security

 using JAX-RPC APIs to provide application-level
security certificates

security-constraint element

security-constraint tag (web.xml file)

send() method (ProviderConnection)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

serialization
 framework

SerializationContext interface (javax.xml.rpc.encoding)

serializeinterfaces feature (wscompile utility)

Serializer interface (javax.xml.rpc.encoding) 2nd

SerializerFactory interface (javax.xml.rpc.encoding) 2nd
serializers 2nd

 adding additional to registry

 adding to client

 adding to server

 adding to the type mapping registry
 mechanismType argument

 registering

 when wscompile and wsdeploy fail to generate

servant classes

 converting into session bean
 instance variables

 invoking methods
 ways to get configuration information

Server fault code

server-side API for JAX-RPC
server-side architecture, service deployed in web container

server.cer file
server.xml file

Service class

 getPort() method

 authentication
service element (config.xml file) 2nd

Service element (ebXML-TRP MessageHeader)

service element (WSDL)

 binding

service endpoint interface class
service endpoints

 dynamically updating HandlerRegistry for

 handler chains and

Service interface 2nd

 (javax.xml.registry.infomodel) 2nd
 (javax.xml.rpc)

 compiling with Ant

 container-resident clients obtaining objects

 DII and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 getting a reference to
 methods

 objects from a ServiceFactory

 caveats

service-endpoint-interface element (webservices.xml file)

service-impl-bean element
 (webservices.xml file) 2nd

service-interface element

 (webservicesclient.xml file)

service-ref element (webservicesclient.xml file)

service-ref-name element (webservicesclient.xml file)
ServiceBinding interface (javax.xml.registry.infomodel) 2nd 3rd

ServiceException class (javax.xml.rpc)

ServiceFactory class (javax.xml.rpc) 2nd 3rd

 public methods

 using to create Service object
ServiceLifecycle interface (javax.xml.rpc.server) 2nd 3rd

ServiceLifeCycle interface (javax.xml.rpc.server)
 example web service using

servlet-hosted web services [See web services, servlet-hosted]

servlet-mapping (web.xml file) 2nd
servlet-name tag (web.xml file)

ServletContext class
 getInitParameter() method

ServletEndpointContext interface

 getUserPrincipal() method

ServletEndpointContext interface (javax.xml.rpc.server) 2nd
 example web service using

 getHttpSession() method

 getMessageContext() method

 getServletContext() method

 getUserPrincipal() method
 multithreaded access to

servlets

 init() method

 MessageFactory and

 initialization parameters
 loading issue

 receiving, init() method

 service hosted by, on J2EE 1.4 platform

 that log and echo a received SOAP message

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 that use SAAJ to provide book image web service
 URLs of

 web services for

session beans

 converting from servant class

 lifecycle
 requirements

session management

SESSION_MAINTAIN_PROPERTY

 (Call) 2nd

 (Stub) 2nd
SessionBean interface 2nd

SessionContext object

 getCallerPrincipal() method

 getEJBHome() method

 getEJBLocalHome() method
setAction() method (ebXML MessageHeader element)

setActor() method (SOAPHeaderElement)
setContent() method

 (AttachmentPart)

 (MimeMultipart)
 (SOAPPart object)

setConversationId() method (ebXML MessageHeader element)
setCPAId() method (ebXML MessageHeader element)

setDataHandler() method (AttachmentPart)

setDescription() method (Reference)

setFaultActor() method
setFaultCode() method

setFaultString() method

setFrom() method (SOAPRPMessageImpl)

setHeader() method

 (HttpServletResponse)
 (MimeHeaders)

setMessage() method (SOAPMessageContext)

setMustUnderstand() method (SOAPHeaderElement)

setOperationName() method

 change Call object operation
setProperty() method (Call)

setReceiver() method (ebXML MessageHeader element)

setReturnType() method (Call) 2nd

setSchema() method (Reference)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

setSender() method (ebXML MessageHeader element)
setService() method (ebXML MessageHeader element)

setSessionContext() method

setSynchronous() method (Connection)

setTargetEndpointAddress() method (Call)

setTo() method (SOAPRPMessageImpl)
ShortHolder class (javax.xml.rpc.holders)

ShortWrapperHolder class (javax.xml.rpc.holders)

Simple Object Access Protocol [See SOAP, protocol]

simpleType element (XML schema)

Slot interface (javax.xml.registry.infomodel) 2nd 3rd
 application use of

 registry use of

slots attribute (RegistryObject)

SmallBookQuery interface

SmallBookQueryPort interface
 Call object for

SmallBookServiceException
SOAP

 Envelope element

 protocol
 section 5 rules

 section 7 rules
SOAP 1.1 specification

SOAP attachments [See attachments]

SOAP binding

 example
SOAP body

SOAP envelope) [See envelope (SOAP]

SOAP faults

SOAP headers 2nd

 adding header parts to a service definition
 binding

 checking

 explicit context and

 generating Java interface and client-side stubs

 mapping header content to method arguments
 processessing

SOAP messages 2nd 3rd

 anatomy of

 attachments [See attachments]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 containing array of book titles
 creating and sending using SAAJ

 defined

 deserializing

 document-style operations [See document-style operations]

 effect of encoding style on content of
 example

 getting a reference to

 handler chains and

 handlers [See message handlers]

 headers [See SOAP headers]
 JAXMServlet and

 MIME headers and

 namespace-qualified

 namespaces commonly used in

 obtaining MIME headers when received
 receiving

 retrieving book titles from a web service
 RPC-style operations [See RPC-style operations]

 SAAJ interfaces used in building

 sent in reply to client's BookList request
 servlet example

 servlet that logs and echoes
 setting MIME headers after transmission

 using SAAJ APIs

 XML and

SOAP Messages with Attachments specification
SOAP with Attachments API for Java [See SAAJ]

soap-header element (webservices.xml file)

soap-role element (webservices.xml file)

SOAP-RP header elements

SOAP-RP message API
 fault handling

 forward and reverse message paths

 getting and setting message ID

SOAP-RP message, sent via a messaging provider

SOAP-RP path header
 routing a message

SOAP-RP profile 2nd

 overview

SOAP::Lite

http://lib.ommolketab.ir
http://lib.ommolketab.ir

soap:binding element
 style attribute

 transport attribute

soap:body element 2nd

 encodingStyle attribute

 namespace attribute
 use attribute

soap:fault element

soap:header element

soap:headerfault element

soap:operation element
 soapAction attribute

 style attribute

soap:part element

SOAPAction header

 default value
SOAPACTION_URI_PROPERTY (Call) 2nd

SOAPACTION_USE_PROPERTY (Call) 2nd
SOAPBody interface (javax.xml.soap) 2nd

 addFault() method

 getFault() method
 hasFault() method

 overview of functionality
SOAPBodyElement interface (javax.xml.soap)

SOAPConnection class (javax.xml.soap) 2nd

 call() method

 versus ProviderConnection send() method
 obtaining objects

 transmitting messages

SOAPConnectionFactory class (javax.xml.soap) 2nd

SOAPConstants interface (javax.xml.soap)

SOAPConstants.URI_NS_SOAP_ENCODING
SOAPConstants.URI_NS_SOAP_ENVELOPE

SOAPElement interface (javax.xml.soap) 2nd

 addAttribute() method

 addBodyElement() method

 addChildElement() method
 createElement() method

 creating objects

 detachNode() method

 getElementName() method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 getValue() method
 removing objects

SOAPElementFactory class (javax.xml.soap) 2nd

SOAPEnvelope interface (javax.xml.soap) 2nd

 overview of functionality

SOAPException class (javax.xml.soap) 2nd
SOAPFactory class (javax.xml.soap)

 creating Name objects for attributes

SOAPFault interface (javax.xml.soap) 2nd

 addDetail() method

 methods
SOAPFaultElement interface (javax.xml.soap)

SOAPFaultException class (javax.xml.rpc.soap)

SOAPHeader

 addHeaderElement() method

 examineHeaderElements() method
 extractHeaderElements() method

SOAPHeader element
SOAPHeader interface (javax.xml.soap) 2nd

 overview of functionality

SOAPHeaderElement interface (javax.xml.soap)
 getActor() method

 getMustUnderstand() method
 setActor()method

 setMustUnderstand() method

SOAPMessage class (javax.xml.soap) 2nd

 createAttachmentPart() method 2nd
 getMimeHeaders() method

 getSOAPPart() method

 methods that return attachments for message

 object parts

 overview of functionality
SOAPMessageContext interface (javax.xml.rpc.handler.soap)

 methods

SOAPPart class (javax.xml.soap)

 overview of functionality

SOAPPart of SOAPMessage object
soaprp value (JAXM reference implementation)

SOAPRPMessageImpl class

 setFrom() method

 setTo() method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Solicit-response web service operation type
sound files, transporting

source code example for Chapter 3, instructions for running

source files generated by wscompile

Source object

 client code using JAX-RPC method returning
 containing XML

 extracting XML from

SpecificationLink interface (javax.xml.registry.infomodel) 2nd 3rd 4th

specifications (Collection argument)

SQL as query language, rules that govern use of
SQL query

 submitting to ebXML registry

 to fetch set of Organizations from registry

SQL SELECT statement syntax

SSL, enabling
stability attribute (RegistryEntry)

standard Java classes
stateless session beans

 service hosted by, on J2EE 1.4 platform

static stubs
status attribute (RegistryEntry)

StreamSource object
StreamSource type

String class

StringHolder class (javax.xml.rpc.holders)

Stub interface (javax.xml.rpc)
 connecting object to service

 properties

Stub.ENDPOINT_ADDRESS_PROPERTY property (Call)

stubs

 client-side
 converting JAX-RPC service interface to

 configuring

 one-way operations and

 portable code, writing

 static
 web service endpoint interface

stubs.jar file 2nd 3rd

sun-j2ee-ri.xml file 2nd

synchronous receivers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

synchronous request-response

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

symbol instead of cid:

-deployGeneratedModule option (deploytool utility)

-deployModule option (deploytool utility)

_get Property() method (Object class)

_getPropertyNames() method (Iterator class)
_set Property() method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

targetNamespace attributes 2nd

targetNamespaceBase (jaxrpc-ri.xml file)

targets in Ant buildfile for book web service

TelephoneNumber attribute type (Organization)

TelephoneNumber interface (javax.xml.registry.infomodel) 2nd
TelephoneNumber object 2nd

Text interface (javax.xml.soap)
Text node

tie classes 2nd

 generating
To element (ebXML-TRP MessageHeader)

to element (SOAP-RP header)
tokens

 using instead of absolute addresses

Tomcat web container
 deploying WAR file

 service hosted by JWSDP
Tomcat web server

 authentication

 enabling

 verify running
tomcat-users.xml file and authentication

Transformer object

Transport element

 (provider.xml file)

 Persistence element and

type definitions (WSDL) 2nd
 reusability of

 separating into separate files

typeMapping element (config.xml file)

TypeMapping interface (javax.xml.rpc.encoding)

TypeMappingRegistry
typeMappingRegistry element (config.xml file)

TypeMappingRegistry interface (javax.xml.rpc.encoding)

 getTypeMapping() method

 initialization of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TypeMappings
 architecture

 getSerializer() method

 register() method

typeNamespace attribute (service element)

typeNamespaceBase (jaxrpc-ri.xml file)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

UDDI provider

 adding classification schemes

UDDI registry 2nd

 address structure

 PostalAddress
 public production business registry

 setting up and using
 starting server

 storing user-defined classification schemes

 storing WSDL docuent reference in
 translating address information into PostalAddress objects

 Version 2.0
 versus ebXML registry 2nd

UDDI_GET_AUTHTOKEN

undeploy (Ant buildfile target) 2nd
undeploying an instance

UnexpectedObjectException class (javax.xml.registry)
Universal Description, Discovery, and Integration registry [See UDDI registry]

UNSPSC (Universal Standard Products and Services Classification)

unspsc.xml file

UnsupportedCapabilityException class (javax.xml.registry)
updateFwdMessagePath() method

URI

 configuring for URL mapping

 mappings

URIValidator interface (javax.xml.registry.infomodel) 2nd

url-pattern element 2nd
 (jaxrpc-ri.xml file)

URLEndpoint class (javax.xml.messaging)

URLEndpoint subclass

urlPattern attribute (jaxrpc-ri.xml file)

URLs
 JAXM provider reference implementation

 mapping

 of servlets

 protected, adding to a web service

http://lib.ommolketab.ir
http://lib.ommolketab.ir

User interface (javax.xml.registry.infomodel) 2nd
User object (JAXR)

USERNAME_PROPERTY

 (Call) 2nd

 (Stub) 2nd

USING_JWSDP property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

value types 2nd 3rd

 derived from another (non-Object) class

 mutator methods and

value-type arguments, calls involving

VALUE_TYPE_EMBEDDED_PATH (ClassificationScheme)
VALUE_TYPE_NON_UNIQUE (ClassificationScheme)

VALUE_TYPE_UNIQUE (ClassificationScheme)
version number attribute (RegistryEntry)

Versionable interface (javax.xml.registry.infomodel) 2nd

VersionMismatch fault code
versus UDDI registry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

W3C (World Wide Web Consortium)

wait() method

 doGet() method and

WAR files

 book web service
 created by wsdeploy

 creating for J2EE 1.4 platform
 required files

 creating for JWSDP

 deployable
 creating for JWSDP

 deployed to J2EE 1.4 platform and to a web container hosting the JWSDP reference implementation
 deploying

 deploying to J2EE 1.4 platform

 packaging web service containing document-style operations
 portable

WDSL
 documents and port elements

web archive files [See WAR files]

web containers [See servlets]

web server
 enabling HTTPS

web service APIs

 JAX-RPC [See JAX-RPC]

 JAXM [See JAXM]

 JAXR [See JAXR]

 SAAJ [See SAAJ]
 WSDL [See WSDL]

Web Service Description Language [See WSDL]

web service endpoint interface

 getting a stub for

 rules
web services 2nd [See also JAX-RPC]3rd [See also WSDL]

 adding protected URLs to

 client-side view

 clients and servers (JAX-RPC)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 containing document-style operations
 packaging

 creating clients from a WSDL file

 defined

 deployed on J2EE 1.4 platform

 deployment and testing
 describing and discovering

 discovered at runtime [See DII]

 document-style

 document-style operations and JAX-RPC summary

 EJBs
 examples 2nd

 full listing of WSDL files

 mapping [See also binding]

 to more than one protocol

 profiles
 references for servlets and EJBs

 remote procedure call-based [See JAX-RPC]
 remote procedure calls [See JAX-RPC]

 security for

 servlet-hosted
 deploying

 session beans [See session beans]
 standards

 tools and configuration files

 versus screen scraping

 writing a client with only a WSDL definition
Web Services Architecture document

Web Services Interoperaibility (WS-I) profile

web-package (Ant buildfile target)

web-package target (Ant buildfile)

web.xml file 2nd 3rd
 authorization information in

 echo example sending servlet

 example

 for ContextBookQuery web service

 in deployable archive
 load-on-startup element

 login-config tags

 security-constraint tag

 servlet-mapping element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 servlet-name tag
 wsdeploy utility and

webservice-description element (webservices.xml file)

webservice-description element in webservices.xml file

webServices element (jaxrpc-ri.xml file) 2nd

webServices element (wsdeploy configuration file)
webservices.xml file 2nd 3rd 4th

 example 2nd 3rd

 for a web service using message handlers

 handler element

 jaxrpc-mapping-file element
 namespaceURI element

 port-component elements

 service-impl-bean element

 soap-header element

 soap-role element
 webservice-description element 2nd

 wsdl-file element
webservicesclient.xml file

 adding a web service reference to JNDI environment

 jaxrpc-mapping-file element
 service-interface element

 service-ref element
 service-ref-name element

 wsdl-file element

World Wide Web Consortium (W3C)

wrapper classes for Java primitive types
wrapper elements

 RPC-style operations and

 SOAP binding and

wrapping information

writeTo() method
WS-I (Web Services Interoperaibility) profile

WS-Routing

 profile

 SOAP headers and

WS-Security extension
wscompile utility 2nd

 client-side source files generated from WSDL document

 command-line arguments

 configuration file [See config.xml file]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 configuration file format
 features

 generate-client (Ant buildfile target) and

 generated artifacts

 generating interface files

 options
 SOAP headers

 source files generated by

wsdeploy utility 2nd

 configuration file [See jaxrpc-ri.xml file]

 options
 WAR file

 web service containing document-style operations

WSDL (Web Service Description Language) 2nd 3rd 4th

 binding elements) [See binding elements, (WSDL]

 defined
 definitions

 document-style operations and
 for getBookCount operation

 for getBookTitle operation

 document reference, storing in UDDI registry
 document utilizing a schema with nested imports

 documentation elements
 documents

 creating

 generic services and

 elements
 definitions

 message) [See message element (WSDL]

 operation) [See operation elements (WSDL]

 portType) [See portType element (WSDL]

 extensibility elements
 extract showing a document-style operation

 files

 for example source code

 for service that contains one-way operation

 logical structure of
 JAX-RPC, using with

 literal encoding

 overview

 schema document for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 schemas and namespaces commonly used in documents
 service definition and DII

 specification

 type definitions) [See type definitions (WSDL]

 XML schema and type definitions

wsdl element
 (config.xml file) 2nd 3rd 4th

 attributes

wsdl-file element

 (webservices.xml file) 2nd

 (webservicesclient.xml file)
wsdl-port element (webservices.xml file)

WSDP configuration files

 XML namespaces and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]

[W] [X]

xalan.jar file

xercesImpl.jar file

Xindice database

XMethods web site

XML
 array of objects in

 attachments
 documents

 extracting from Source object

 messaging
 namespaces

 WSDP configuration files and
 qualified names

 representation of a SOAPMessage written to OutputStream

 SOAP messages and
 Source object containing

 transferring data
 using rather than HTML

XML ID

XML schema

 complexType element
 definition

 for a simple authentication element

 for BookTitleRequest element

 document and literal encoding

 element element

 simpleType element
 type definitions

 importing types from

 WSDL type definitions and

XML Schema attribute value

XML-based registries [See JAXR]
xmlns attribute without an associated namespace prefix

XMLType class (javax.xml.rpc.encoding)

xsi type attribute

xsltc.jar file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Cover
	TOC
	Copyright
	Preface
	Contents of This Book
	Related Books
	Web Services Programming Resources Online
	Examples Online
	Conventions Used in This Book
	Request for Comments
	Acknowledgments

	Part I: Introduction to the Java Web Services API
	Chapter 1. Introduction
	1.1 What Is a Web Service?
	1.2 The SOAP Protocol
	1.3 Describing and Discovering Web Services
	1.4 J2EE Web Service APIs
	1.5 An Example Web Service

	Chapter 2. JAX-RPC
	2.1 JAX-RPC Overview
	2.2 Programming with JAX-RPC
	2.3 Using EJBs to Implement Web Services

	Chapter 3. SAAJ
	3.1 Introduction to SAAJ
	3.2 SAAJ Programming
	3.3 SOAP Messages
	3.4 SOAP Fault Handling
	3.5 SOAP Messages and MIME Headers
	3.6 SOAP with Attachments
	3.7 SOAP Headers
	3.8 Using SAAJ with Secure Connections

	Chapter 4. JAXM
	4.1 JAXM Overview
	4.2 Providers and Asynchronous Messaging
	4.3 An Example JAXM Application
	4.4 JAXM Configuration
	4.5 The SOAP-RP Profile
	4.6 The ebXML Profile

	Chapter 5. WSDL
	5.1 WSDL Overview
	5.2 WSDL Elements

	Chapter 6. Advanced JAX-RPC
	6.1 Using WSDL with JAX-RPC
	6.2 ServiceFactory and the Service Interface
	6.3 The Dynamic Invocation Interface
	6.4 JAX-RPC and J2EE 1.4 Application Clients
	6.5 Using Attachments
	6.6 RPC-Style and Document-Style JAX-RPC
	6.7 Client and Server Context Handling
	6.8 SOAP Header Processing
	6.9 Serialization and Type Mappings

	Chapter 7. JAXR
	7.1 UDDI and ebXML Registries
	7.2 JAXR Architecture
	7.3 Using the JAXR Examples
	7.4 JAXR Registry Model Overview
	7.5 JAXR Programming

	Chapter 8. Web Service Tools and Configuration Files
	8.1 wscompile — JAX-RPC Stub and Tie Generation Utility
	8.2 wsdeploy — JAX-RPC Deployable Web Archive Generation Utility
	8.3 J2EEC — Utility for Creating Stubs and Ties for a JAX-RPC Web Service
	8.4 J2EE Deploytool — Utility for Deploying Modules and Enterprise Applications
	8.5 JAXM Client and Provider Configuration
	8.6 J2EE 1.4 Web Services Configuration File
	8.7 J2EE 1.4 JAX-RPC Mapping File

	Part II: API Quick Reference
	Chapter 9. The javax.xml.messaging Package
	Package javax.xml.messaging
	Endpoint
	JAXMException
	JAXMServlet
	OnewayListener
	ProviderConnection
	ProviderConnectionFactory
	ProviderMetaData
	ReqRespListener
	URLEndpoint

	Chapter 10. The javax.xml.namespace Package
	Package javax.xml.namespace
	QName

	Chapter 11. The javax.xml.registry Package
	Package javax.xml.registry
	BulkResponse
	BusinessLifeCycleManager
	BusinessQueryManager
	CapabilityProfile
	Connection
	ConnectionFactory
	DeclarativeQueryManager
	DeleteException
	FederatedConnection
	FindException
	FindQualifier
	InvalidRequestException
	JAXRException
	JAXRResponse
	LifeCycleManager
	Query
	QueryManager
	RegistryException
	RegistryService
	SaveException
	UnexpectedObjectException
	UnsupportedCapabilityException

	Chapter 12. The javax.xml.registry.infomodel Package
	Package javax.xml.registry.infomodel
	Association
	AuditableEvent
	Classification
	ClassificationScheme
	Concept
	EmailAddress
	ExtensibleObject
	ExternalIdentifier
	ExternalLink
	ExtrinsicObject
	InternationalString
	Key
	LocalizedString
	Organization
	PersonName
	PostalAddress
	RegistryEntry
	RegistryObject
	RegistryPackage
	Service
	ServiceBinding
	Slot
	SpecificationLink
	TelephoneNumber
	URIValidator
	User
	Versionable

	Chapter 13. The javax.xml.rpc Package
	Package javax.xml.rpc
	Call
	JAXRPCException
	NamespaceConstants
	ParameterMode
	Service
	ServiceException
	ServiceFactory
	Stub

	Chapter 14. The javax.xml.rpc.encoding Package
	Package javax.xml.rpc.encoding
	DeserializationContext
	Deserializer
	DeserializerFactory
	SerializationContext
	Serializer
	SerializerFactory
	TypeMapping
	TypeMappingRegistry
	XMLType

	Chapter 15. The javax.xml.rpc.handler Package
	Package javax.xml.rpc.handler
	GenericHandler
	Handler
	HandlerChain
	HandlerInfo
	HandlerRegistry
	MessageContext

	Chapter 16. The javax.xml.rpc.handler.soap Package
	Package javax.xml.rpc.handler.soap
	SOAPMessageContext

	Chapter 17. The javax.xml.rpc.holders Package
	Package javax.xml.rpc.holders
	BigDecimalHolder
	BigIntegerHolder
	BooleanHolder
	BooleanWrapperHolder
	ByteArrayHolder
	ByteHolder
	ByteWrapperHolder
	CalendarHolder
	DoubleHolder
	DoubleWrapperHolder
	FloatHolder
	FloatWrapperHolder
	Holder
	IntegerWrapperHolder
	IntHolder
	LongHolder
	LongWrapperHolder
	ObjectHolder
	QNameHolder
	ShortHolder
	ShortWrapperHolder
	StringHolder

	Chapter 18. The javax.xml.rpc.server Package
	Package javax.xml.rpc.server
	ServiceLifecycle
	ServletEndpointContext

	Chapter 19. The javax.xml.rpc.soap Package
	Package javax.xml.rpc.soap
	SOAPFaultException

	Chapter 20. The javax.xml.soap Package
	Package javax.xml.soap
	AttachmentPart
	Detail
	DetailEntry
	MessageFactory
	MimeHeader
	MimeHeaders
	Name
	Node
	SOAPBody
	SOAPBodyElement
	SOAPConnection
	SOAPConnectionFactory
	SOAPConstants
	SOAPElement
	SOAPElementFactory
	SOAPEnvelope
	SOAPException
	SOAPFactory
	SOAPFault
	SOAPFaultElement
	SOAPHeader
	SOAPHeaderElement
	SOAPMessage
	SOAPPart
	Text

	Class, Method, and Field Index
	A-G
	H-X

	Part III: Appendix
	Appendix A. Appendix: WSDL Files for the Example Source Code
	A.1 WSDL File for the Book Web Service
	A.2 WSDL File for the Document-Style Book Web Service

	COLOPHON
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	SYMBOL
	T
	U
	V
	W
	X

