

•
Table of

Contents

• Index

• Reviews

•
Reader

Reviews

XSL-FO

By Dave Pawson

Publisher : O'Reilly

Pub Date : August 2002

ISBN : 0-596-00355-2

Pages : 282

Extensible Style Language-Formatting Objects, or XSL-FO, is a set of tools
developers and web designers use to describe page printouts of their XML (including
XHTML) documents. XSL-FO teaches you how to think about the formatting of your
documents and guides you through the questions you'll need to ask to ensure that your
printed documents meet the same high standards as your computer-generated content.

777

 Copyright

 Preface

 Who Should Read This Book?

 What Does This Book Cover?

 Motivation

 Organization of This Book

 What Else Do You Need?

 Conventions Used in This Book

 How to Contact Us

 Acknowledgments

 Chapter 1. Planning for XSL-FO

 Section 1.1. XML and Document Processing

 Section 1.2. Choosing Your Print Production Approach

 Section 1.3. Choosing Tools

 Section 1.4. The Future for XSL-FO

 Chapter 2. A First Look at XSL-FO

 Section 2.1. An XSL-FO Overview

 Section 2.2. Related Stylesheet Specifications

 Section 2.3. Using XSL-FO as Part of XSL

 Section 2.4. Shorthand, Short Form, and Inheritance

 Chapter 3. Pagination

 Section 3.1. Document Classes

 Section 3.2. The Main Parts of an XSL-FO Document

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 3.3. Simple Page Master

 Section 3.4. Complex Pagination

 Section 3.5. Page Sequences

 Chapter 4. Areas

 Section 4.1. Informal Definition of an Area

 Section 4.2. Area Types

 Section 4.3. Components of an Area

 Section 4.4. Reference Areas

 Section 4.5. Area Positioning

 Chapter 5. Blocks

 Section 5.1. Block Basics

 Section 5.2. Blocks for Special Purposes

 Section 5.3. Decorating Blocks

 Section 5.4. Lists

 Section 5.5. Tables

 Section 5.6. Additional Material

 Chapter 6. Inline Elements

 Section 6.1. Content

 Section 6.2. Inline Styling

 Section 6.3. Other Uses

 Chapter 7. Graphics and Color

 Section 7.1. Graphics

 Section 7.2. Basic Color Usage

 Section 7.3. Color Specification

 Section 7.4. Color Profiles

 Section 7.5. Applicability

 Chapter 8. Styling at the Character Level

 Section 8.1. General Character Properties

 Section 8.2. Fonts

 Chapter 9. Cross-Document Links

 Section 9.1. Cross-Document Links

 Section 9.2. Indexing and Tables of Contents

 Section 9.3. Running Headers

 Chapter 10. Putting It All Together

 Section 10.1. Outline

 Chapter 11. Stylesheet Organization

 Section 11.1. Classes of Stylesheets

 Section 11.2. Page Layout

 Section 11.3. Main Flows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 11.4. Inclusion and Importing

 Appendix A. How Do I Do That?

 Appendix B. Finding Your Way Aroundthe Specification

 Section B.1. Overview

 Appendix C. Today's Tools

 Section C.1. RenderX XEP Formatter

 Section C.2. Antenna House Formatter

 Section C.3. FOP Formatter

 Section C.4. PassiveTEX Formatter

 Section C.5. Unicorn Formatting Objects Formatter

 Section C.6. Formatting Objects Authoring Tool

 Section C.7. Render Engine from XML/XSL to PDF

 Section C.8. jfor, Java XSL-FO to RTF converter

 Section C.9. XMLmind FO Converter

 Section C.10. XSLfast

 Section C.11. Epic Editor V4.2

 Section C.12. IBM XSL Formatting Objects Composer (XFC)

 Section C.13. Summary

 Appendix D. Objects, Properties, andCompliance Levels

 Section D.1. Basic, Extended or Complete?

 Section D.2. Property Summary

 Appendix E. Inheritance Characteristics

 Section E.1. Font-, Character-, and Spacing-Related Properties

 Appendix F. Examples for Chapter 10

 Appendix G. Elements and Valid Properties

 Section G.1. XSL-FO Elements and Their Properties

 Section G.2. Properties and the Elements to Which They Apply

 Appendix H. GNU Free DocumentationLicense (GFDL)

 Section H.1. Preamble

 Section H.2. Applicability and Definitions

 Section H.3. Verbatim Copying

 Section H.4. Copying in Quantity

 Section H.5. Modifications

 Section H.6. Combining Documents

 Section H.7. Collections of Documents

 Section H.8. Aggregation with Independent Works

 Section H.9. Translation

 Section H.10. Termination

 Section H.11. Future Revisions of This License

 Section H.12. Addendum: How to Use This License for Your Documents

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Glossary

 A

 B

 F

 G

 I

 K

 L

 P

 O

 R

 S

 T

 W

 V

 Colophon

 Index

Copyright

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps. The association between the image of a
pennant-winged nightjar and the topic of XSL-FO is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

Certain parts of this document are taken from the Extensible Stylesheet Language (XSL) Version 1.0 W3C Proposed
Recommendation 28 August 2001, found at http://www.w3.org/TR/xsl/, which has a copyright statement at
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright. These are Copyright August 2001, World
Wide Web Consortium (Massachusetts Institute of Technology, Institut National de Recherche en Informatique et en
Automatique, and Keio University).

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the

http://safari.oreilly.com
http://www.w3.org/TR/xsl/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Invariant Sections being no invariant sections, with the Front-Cover Texts being no invariant sections, and with the
Back-Cover Texts being no invariant sections. A copy of the license is included in Appendix H, GNU Free
Documentation License. All images are to be included verbatim when the document is copied, distributed, or
modified under the terms of the GFDL.

Preface

This book is an introduction to Extensible Stylesheet Language Formatting Objects (XSL-FO). The Extensible
Stylesheet Language (XSL) provides a means of producing high-quality print output from your XML documents.
XSL describes how to use XSL Transformations (XSLT) to generate XSL-FO documents that represent page layouts.
Using XSL, you can create standard print representations of XML documents using XSL-FO to specify how
information should appear on pages.

Who Should Read This Book?

This book is for people who want to create print versions of their XML documents. It provides an introduction to the
XSL as specified by the World Wide Web Consortium (W3C) at http://www.w3.org/Style/XSL. It focuses, in
particular, on the XSL-FO aspect of XSL, an XML vocabulary targeted at expressing how source content should be
laid out and paginated for presentation.

This book should be useful to everyone from technical authors who have moved into stylesheet design to software
developers engaged in media design to those exploring the developing XML family of standards. If you are curious
about XSL-FO or want to produce print output from XML, read on. When you stop enjoying the chase, stop reading.
When you reach an "Aha!" moment, smile with me. I'm not saying it's easy, but this avenue of learning can be fun.
You'll be rewarded quickly by the feedback of visual output, although there are a few dead ends.

I make few assumptions about the audience other than a familiarity with basic XML and an awareness of XSLT
processing. You won't enjoy this book until you can process XML with an XSLT processor. With that in mind, my
recommendation for a companion volume is Mike Kay's XSLT Programmer's Reference (Wrox Press). It's an
excellent reference book that has never failed to explain to me how to use the W3C recommendation.

The intended audience of this book is users of the recommendation, not implementors. If you want to implement the
specification then the specification is your primary reading matter, though this book may be of some assistance.

What Does This Book Cover?

This book covers the same content found in the published recommendation. The focus throughout this book is to help
users of XSL-FO. It is not a theoretical discourse on the recommendation, but a complement to the recommendation. I
have tried to write something that bridges the gap between implementor and user, with a bias towards the user.

Motivation

A large part of my motivation for writing this book was my experience with Document Style Semantics and
Specification Language (DSSSL), an SGML style language. I had approached DSSSL within weeks of learning that
SGML existed and that it was supported by accessible tools. The tools were not well explained, however. My
struggles with DSSSL, SGML, Scheme, and Emacs, all in one go, were very nearly too much. Very few technologies

http://www.w3.org/Style/XSL
http://lib.ommolketab.ir
http://lib.ommolketab.ir

can gain support without sufficient explanatory material available to the end user. So with that in mind, and my
reaction to XSL-FO similar to what I had with DSSSL, I decided to do something about it.

Organization of This Book

Chapter 1 provides a brief explanation of what XSL-FO is good for and how it can fit into your XML print production
processes.

Chapter 2 introduces the big picture of XSL-FO, its foundations, and its capabilities.

Chapter 3 explores XSL-FO's notions of pages, page masters, and page sequences.

Chapter 4 explains how to define areas, which hold content within pages.

Chapter 5 introduces blocks, the units of the document that fill areas, which may be split across areas and pages, and
reflect document components such as paragraphs, tables, and figures.

Chapter 6 explains the special inline formatting that may occur inside block elements.

Chapter 7 explores XSL-FO's facilities for presenting information using graphics and color.

Chapter 8 explores XSL-FO's text-specific capabilities.

Chapter 9 examines how XSL-FO lets you create links for use with chapters, cross-references, indexes, and similar
structures so you may present documents that feel complete.

Chapter 10 examines how all the different pieces interact and combine when XSLT and XSL-FO are used to produce
formatted renderings.

Chapter 11 examines different types of stylesheets and issues of inclusion and reuse.

Appendix A provides a quick reference for common formatting tasks and the best ways to support them in XSL-FO.

Appendix B provides you with a basic framework for reading the W3C's XSL Recommendation in detail, as it isn't
exactly light reading.

Appendix C lists a variety of XSL-FO tools available at the time of writing.

Appendix D explains the compliance levels that XSL-FO permits processors to support. This appendix should help
you determine which implementation is appropriate to your needs.

Appendix E provides a quick guide to which properties are inherited among formatting objects.

Appendix F provides a full listing of the XSLT stylesheet created in Chapter 10.

Appendix G helps you pick the property or trait you need for a given task.

Appendix H provides the most updated version of the license at the time of this printing.

The Glossary lists terms you'll need to use XSL-FO effectively.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What Else Do You Need?

As mentioned earlier, you'll need some level of understanding of how to obtain an XML document compliant to the
XSL-FO vocabulary from an XML document. Plenty of examples are provided, but use of XSLT is necessary,
because I do not believe that authoring directly in XSL-FO is either viable or especially worthwhile. I always assume
your starting point is an XML instance and that the resultant XSL-FO is a temporary intermediary file that will be
thrown away once the final form document is available.

Next, you'll want a processor to convert the XSL-FO into its final form, either a printed document on paper or a PDF
document for web delivery. Appendix C addresses the options, covering tools available from the Web as part of the
open source movement through to commercial offerings and embedded tools.

Conventions Used in This Book

The following font conventions have been used in this book:

Italic

Is used to introduce new terms, as well as for email addresses and URLs.
Constant width

Is used for code examples and fragments, as well as for functions and properties.
Constant width bold

Is used to highlight a section of code being discussed in the text.
Constant width italic

Is used for replaceable elements in code examples.

Theis icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

I have, when discussing the elements and attributes of XSL-FO, frequently omitted the namespace prefix, as it should
be clear from the context. Where examples are included inline, I have attempted to keep them reasonably short. Most
examples are accompanied by images taken from the final output to show their actual appearance. If your processor
does not produce identical output, there are two possibilities: you've created your code slightly differently than the
example or your processor is interpreting the specification differently than the one I've used. The latter case will
happen until a far wider experience is fed back to the Working Group for resolution. Even then, there are places
where implementations will differ and both will be correct in the strictest terms. Implementation dependencies are, for
now, a fact of life.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You can access this
page at:

http://www.oreilly.com/catalog/xslfo/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the O'Reilly web
site at:

http://www.oreilly.com

Acknowledgments

First, I'd like to thank Norman Walsh (http://nwalsh.com) and predecessors for docbook, without whom this book
would have been written in Word. For his stylesheets, now gaining even wider adoption, and his support over the last
four years.

To Nikolai Grigoriev of RenderX and Arved Sandstrom of e-plicity and FOP, and Karen Lease, also a member of the
FOP team, for their contributions, and also for their early support of the belief that we could write a book.

To the reviewers for their valuable contributions: Paul Grosso, Norman Walsh, Jeni Tennison, and David Eisenberg.
It's far better for their input.

To Sue, my wife, for her patience and understanding when I'm on the computer instead of doing other things on my
to-do list.

To my current employer, Royal National Institute of the Blind in the United Kingdom, who gave me the opportunity
to get some way along the path to understanding the XML family, thank you Keith.

Last but not least to Simon and Len at O'Reilly, who made it a real treat to deal with a publisher, thank you.

http://www.oreilly.com/catalog/xslfo/
http://www.oreilly.com
http://nwalsh.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 1. Planning for XSL-FO

 1.1 XML and Document Processing

 1.2 Choosing Your Print Production Approach

 1.3 Choosing Tools

 1.4 The Future for XSL-FO

XSL-FO is a terrific technology for creating paginated print versions of information contained in XML documents,
but it is only one ingredient in the overall information-publishing recipe. Deciding whether XSL-FO suits your needs
and choosing which XSL-FO tools to use are first steps toward implementing applications of XSL-FO.

If you already have information stored in XML that you need to publish and an XSL-FO
toolkit you're comfortable with, you might want to go on to the next chapter.

1.1 XML and Document Processing

Individuals and organizations who need print output from computer-based content have many choices. Typically,
these range from basic text editors through to high-end word processors available to most, via office suites. The high
end of non-specialist tools is probably a desktop publishing package available for a few hundred dollars. This
stretches the capabilities of the casual user, introducing concepts not available to word processor users. Within this
toolset, the quality of output is generally sufficient for a large percentage of the documents that we see. Nevertheless,
these tools have several important drawbacks.

The limits appear rapidly as the importance of volume, print quality, layout options, repeatability, and document
organization increases. Within each of these areas, the effort needed to attain a desired output increases as more
features are sought. When these limits are reached, organizations either outsource the work to professional printers or
bring skills and an appropriate toolset in-house. The deciding factors vary between documents, users, financial
limitations, the frequency of need, and accurate growth forecasts.

One key aspect of this decision - perhaps a sign that XSL-FO is appropriate - is whether repeatability is an issue.
When a document is produced regularly, it becomes familiar in certain ways; its look and feel become recognizable.
We may not be able to say exactly what those elements are, but if the magazine, report, or manual fails to align with
style expectations, it is noticed. The content changes with each new issue, but the house style becomes established. In
some cases, the house style is dictated by simple description: "The editorial cannot be more than 200 words." "We
always have Anne's piece here." This repeatability and regularity form a key to processing and begin to drive input
needs.

If you regularly read a report or newspaper, you begin to know what to expect where. This is one aspect of style as it
applies to document preparation.

Styles need to be flexible, however. A common example of necessary flexibility is media creep. Someone may want
to add another medium. A print document is no longer adequate, and the toolset that has been good enough for a print

http://lib.ommolketab.ir
http://lib.ommolketab.ir

media is suddenly required to produce a web version, a version on compact disk, or an alternative media accessible to
nonprint users. This brings a critical question. Do we ask our present toolkit to produce this? Often, the answer should
be no, though it may take a long time to come to this realization. Tools designed for one media show their heritage
when applied to other media.

XSL-FO fits in with types of document preparation in-house. Eventually, old-fashioned preparation of documents will
no longer be satisfactory and the tools being used will no longer fit the bill. There are many options for improved
document preparation. Among the many options is XSL-FO.

The starting point for XSL-FO is the availability of source material marked up in XML. So one of the fundamental
questions is why bother with XML? Let's consider the alternatives, making the assumption that the information will
be available electronically. Data sources of interest (electronic text, either derived or originally authored) tend to
reside in one of two forms: on a database or as a document derived from direct human effort. The former is just as
easy to extract into XML as it is in any other format. A typical waste of effort, time, and money is to deliver
information from a database in print form, then to retype it for presentation in another format.

Information sourced from a contributor is a difficult task for the system administrator because of its format. The
author naturally prefers to see what she is giving, thus, the use of the What You See Is What You Get (WYSIWYG)
word processor. Why should she change? What are the benefits? To answer this, I ask you to consider the costs of
document preparation and manipulation. The critical costs lie in document transformation from WYSIWYG to the
separation of content and style.

There is a substantial psychological barrier in any move away from direct preparation of visually styled material to the
separation of content from style. This is often harder to overcome than many technical barriers. Any shift to XML-
based processing at the author level will be at least as disruptive as changing between word processors, although
some XML editors are emerging that appear to the user as a conventional word processor while producing XML. The
business case for using XML is hard to make without case histories, few of which are openly documented. There are
also tools that attempt to transform word processor formats to XML, with mixed success.

Choosing when to use XML can be difficult, but there are some rough guidelines. My organization, the Royal
National Institute for the Blind, addressed this with research into the issue of multimedia production, concluding that
XML is cost-beneficial for cases where more than one media is involved (statistically for greater than 1.6 media).
Single-media production (just print, web, or audio) has a greater overhead when XML is used. Extrapolating from
that, it may be reasonable that single-purpose documents should be produced for the target media. The only factor
countering this is the lifespan of a document. For documents that may have alternate uses in the future (you define an
appropriate lifespan for your use), can you risk using a proprietary format? Again, ask what is the value of the
information contained within the document to your organization and if it will be used again.

1.2 Choosing Your Print Production Approach

When you create selection criteria, you should address the following questions. Is XML input available? What access
do you have to expertise in any of these areas? What access do you have to other organizations that have chosen that
particular path, and how well do their needs match yours? Is expertise available locally, or can you afford to import
it? What are the timescales of the investment: are you expecting to use this toolset for a significant period or simply to
meet a short term need? What payback period are you allowed for such an investment? If a particular toolset is used,
how will it fit in with other tools and technology that you already use? Are your print processes isolated or part of a
larger publishing process? Will you fully own the process, or will some elements be outsourced, for instance, initial
markup or final printing? If so, are the interfaces known and understood? What transformations (if any) are required
as part of this process? For any particular toolchain, is there a good match with the personnel involved? How readily

http://lib.ommolketab.ir
http://lib.ommolketab.ir

will they accept the new tools and the associated training? Is training readily available?

Your particular answers to these questions are first steps toward addressing print production concerns.

1.2.1 Why XSL-FO?

So when is XSL-FO a good choice? What can it provide that other tools can't? The primary benefit is its place as an
XML language that enables the use of the increasing number of XML tools. XSL-FO takes XML as its input, and
delivers print, today most commonly in Adobe's Portable Document Format (PDF) or PostScript. Microsoft's Rich
Text Format (RTF) is also being targeted as a final form, with two implementations available. In between XML input
and print is an intermediate document in the fo namespace. Future implementations may indeed provide other

delivery forms as an endpoint in an XML-based toolchain in today's organizations. The FO vocabulary is primarily for
the implementors and, in the future, may even become an invisible stage (to the end user) as more graphical tools
become available.

XSL-FO has natural allies in XSLT and XPath, which were developed with XSL-FO. These two are widely
implemented and perform the content selection that is a part of the final form generation. The combined power of
these is enormous and still under-appreciated.

XSL-FO is often described as a document layout language. I am a little unsure if this is intended as a perceived
limitation; I certainly don't see it this way. It is well recognized that there is a heavy investment of time and energy in
the initial stylesheet design, which applies to both single-sheet output and to a full book-length document of many
hundreds of pages. With careful design and good use of shared code, many documents can share the development
costs.

My personal experience points to a number of variables that will support the selection of XSL-FO as a tool in the
production process:

The XML is valid to a well-understood schema (or DTD).

The schema itself changes slowly (the stylesheets will need to keep up with those changes).

Content selection criteria are known in advance.

The document format is easily repeatable.

Automation is desirable.

Update frequency of the source document is known in advance.

Validation can be performed prior to processing.

Necessary character sets are available on selected processor, to avoid the surprise of producing output with
missing glyphs.

Human checking of the final form is not essential. Time spent reviewing final output is not adding process
value. Once stable, the production process must be trusted.

There are also some warning signs to consider before using XSL-FO. These could include:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Only well-formed data is available (no validation). To process this, the stylesheet author has to guess what
might be coming.

Original authors are not XML aware.

Information comes from multiple sources (differing authoring environments that need further collation and
transformation).

Content structure is highly variable.

Character sets of source material are highly variable.

I hope that these might help you review the options.

1.2.2 Alternatives

If not XSL-FO, then what? Direct competition is fairly limited. Document Style Semantics and Specification
Language (DSSSL) falls into this category - it's an ISO standard, has a moderate following, and formats XML as
well as SGML. XSL-FO in its very brief history already beats DSSSL in terms of number of implementations. Less
direct competition includes TEX and LATEX. These tools are more than capable of quality production and have a very
active following and strong development. They satisfy many needs in the academic world, especially in the areas of
mathematics formatting. More well known are desktop publishing packages ranging from packages under $100
through packages such as QuarkXPress, which is capable of producing high-quality color productions satisfying the
most fastidious production needs. It is becoming more possible to get XML into and out of these systems, though it
remains a considerable task.

Each alternative has its strengths and weaknesses. Solutions that hint at a combination usage are appearing slowly. An
ideal would be automated processing for the majority, with "finishing" within such an environment by a professional.
This is not yet generally feasible at the time of this writing. The professional printer will likely find something to
complain about in all but the simplest XSL-FO document output. This is simply a realization that machines are not as
good alone as with their users, which is hardly startling. Today's processors don't make it easy to adjust final output.
While it is possible, it often requires that the stylesheet or content be adjusted to produce the desired result. It may
take a period of tweaking to produce a stable final automated processing system.

1.3 Choosing Tools

Choosing XSL-FO processors is still difficult. Although work on some of the processors has been underway for years,
the Recommendation only became final in December 2001 and there were substantial changes along the way. You'll
want to inspect tools closely and try them out if possible.

1.3.1 Selection Criteria

If, for example, you already use the Epic editor and wish to produce output using XSL-FO, that could be the perfect
choice. If your present processes leave you more room for choice, know which criteria must be met, should be met,
and what are nice to have?

Next, ask yourself a few questions to further narrow the selection. What expertise do you have to apply? What level
of support do you need from the supplier? What development options do you want, perhaps extending the formatter to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

account for your peculiar needs? Are you in a position to take what's given and use it within today's performance
envelope? How simple are your needs?

The more straightforward your print requirements the wider your choice. Are you in a position to use one of the open
source developments, adding to that formatter as your needs dictate? If you don't have the expertise in-house, might
you buy it? The number of proficient stylesheet authors around the globe is unlikely to exceed the low hundreds and
their availability for an in-house contract is questionable. Will remote support satisfy your needs? Can you negotiate a
contract that includes updates for the initial period while the specification settles and interpretations are made public?
These products are not necessarily complete yet. You will need someone capable of assessing each update.

The following sections discuss a couple of further issues to consider in detail.

1.3.1.1 Price

Price is always a primary determining factor. Whose money are you spending: your own, your employer's, or your
clients'? There are currently three commercial implementations with support. These are the most complete
implementations. More partial implementations are available in open source form.

In any event, the development of a formatter is not trivial. The people involved in that work have expended a
tremendous amount of effort in developing those products, so freely available or paid for, please don't ever think of
them as cheap products. On the other hand, this is not a market in which you necessarily get what you pay for. Assess
the product in terms of its capability, not its price.

1.3.1.2 Compliance

Most products list each formatting object and property and state their compliance with the specification. Look on the
product's web site for this compliance table and read it closely. When you encounter problems, go back to the
compliance matrix and see if the features you need are implemented. If it is, what is it doing differently from the
expected action? Is it clear where the difference is? Who is right and who is wrong?

The deep and dark corners of the specification will continue to hide surprises for both implementors and the Working
Group for some time to come. Having said that, I'm still confident that XSL-FO has a bright future. Its timing is right,
meeting a pressing need in many areas of commerce and publishing.

1.3.2 Usage

Fitting a formatter into a new or existing process is not easy. If your requirements are for an automated process with
minimal operator intervention, this will limit your choice to a formatter that doesn't involve programming. If you are
satisfied with a manual step carried out at less frequent intervals, with an operator manually creating the finished
document, your needs meet with today's processors. All processors provide this, with some having hooks to drive the
processor from a programmatic interface. Because this is a relatively new technology, it is worthwhile to check
regularly that you have the most recent version, due to the rate of change of implemented features.

PassiveTEX and UFO require a TEX installation. If this is a present part of your process, you may be pulled in that
direction. If not, then be warned: TEX is not a system that can be installed and forgotten. It has a very proud history, a
wide following and is extremely capable. It's not for the faint hearted though. Watching a TEX installation makes a
major office installation look trifling. What you gain, however, is wonderous to behold!

FOP and RenderX require a Java installation, available on most platforms. Antenna House is a standalone product,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

needing the least ancilliary support and system resources. Appendix C describes these tools in greater detail.

1.3.3 Platform and Performance

Make sure the formatter is comfortable on your target platform. Today's formatters are not of the instant variety. For a
typical chapter length file, perhaps 10 to 100 kilobytes in size, expect single figure seconds or more to convert from
an XML source to output format. This puts the technology into the borderline category for instant online delivery.
With smaller files, this is reasonable, but for larger files it becomes embarrassing waiting for output. You shouldn't
expect the sort of subsecond performance that you see with XSLT engines.

Performance problems in FO formatters are a situational problem. The processing of XML
source documents to final form is inadvisable for online processing. Typically a three-page
document can take up to 10 seconds or more depending on content, which is perceived
(rightly) as an unacceptable delay for direct download. This limitation may change as
experience is gained in engine design, but is likely to remain for some time. This mandates
pre-preprocessing content and web updating, which is worth some serious consideration.
Error handling raises the stakes.

Future developments are likely to extend the range of the final-form output of XSL-FO processors. Likely output
formats include:

PDF (currently available)

PostScript (currently available)

Microsoft Rich Text Format

PCL and/or PostScript

I hope that this list will fill out over time. For more details on particular tools currently available, see Appendix C.
Remember that your situation may matter as much as the particular features of any given tool.

1.4 The Future for XSL-FO

Like all other technologies, the success or failure of XSL-FO will be determined by user uptake and demand,
implementation response to that demand, and so on. A recent development that I found hopeful was the start of work
on more than one implementation of XSL-FO with RTF format being the target. Because Microsoft Word is so widely
in use, the availability of that specific format has potential importance in terms of numbers and interest - perhaps not
in the commercial sphere, but more in the home or office environment. I have no idea what will be the make or break
points in the development of XSL-FO, but the option to produce Word documents for the office environment could be
one of those.

The present focus of using PDF as the deliverable format is pragmatic. PDF is one of a small number of formats that
has been widely deployed, is readily available, is well known and has the capability of browser integration for web
delivery. Whether future implementations will maintain that pragmatic focus, I don't know, but alternatives are not
abundant. Few, if any, typesetting languages have been opened up to exploitation in this field, perhaps with the
exception of TEX, with its target of electronic typesetting. Perhaps the advent of electronic paper (rewritable sheets of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a plastic) will be a natural media for XSL-FO.

The need for paper-based delivery is, today, not in question. How that will be achieved in a multimedia-capable
organization in a few years is still open to debate. Will XSL-FO be a preferred part of the delivery chain? What will
help and hinder in making that choice? Tool availability, yes. Familiarity or access to the skills to develop the
stylesheets? Yes, or maybe not. If the sort of visual tool that allows me to paint styles onto content becomes available,
it should be possible to autogenerate the bulk of a stylesheet. Whether the impetus will be felt to develop such a tool
depends on whether there's a market for it. One of the fascinating developments in the history of XSL is
transformation. Once it became known that XSLT and XPath could produce HTML from XML, that swiftly overtook
the original intention. Such a twist of fate has surprising impact. What other factors are likely to move XSL-FO into
widespread use? Support networks? XSLT is extremely well supported via the Mulberrytech mailing list. One of the
XML Usenet groups just about splits evenly between XML and XSLT. XSL-FO has a single, quiet list.
Newsworthiness? XSL-FO is nowhere near as sexy as XML (either that or it doesn't have the support of people who
are good at hyping a technology), which could influence its fate. We are unlikely to see XSL-FO streams in the
mainstream conferences unless someone does some serious marketing.

Still, XSL-FO solves the problem of converting XML to print quite nicely.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 2. A First Look at XSL-FO

 2.1 An XSL-FO Overview

 2.2 Related Stylesheet Specifications

 2.3 Using XSL-FO as Part of XSL

 2.4 Shorthand, Short Form, and Inheritance

This chapter introduces the details of XSL-FO, including a look at XSL-FO markup and an explanation of how to
produce print documents with XSLT and XSL-FO. You should have a basic understanding of XSL-FO processing by
the end of the chapter, which will provide a foundation for learning the rest of XSL-FO.

2.1 An XSL-FO Overview

This section provides a high level view of XSL-FO and its major parts, describes the process of getting from source to
finished output, and describes some of the available tools. It introduces some of the necessary concepts (which will be
expanded on later) and some of the jargon.

The production process starts with an XML document that you have been given or that you have created: the source
XML. You take that document and apply an XSLT transformation (using an XSLT stylesheet) to select parts or all of
the document content, and it produces an output XML document that uses the XSL-FO vocabulary. Let's call this
output document the XSL-FO stylesheet. The XSL-FO stylesheet formatting instructions describe how the content of
the document should be laid out for presentation to the end user. The formatting engine interprets the XSL-FO
stylesheet to produce formatted output, often PDF, TEX, or some other print-ready form. This formatted document is
then ready for use. This end-to-end process is shown in Figure 2-1.

Figure 2-1. The end-to-end process

Making this work requires some means of creating XML documents, an XSLT processor, and an XSL-FO formatter
to produce the printer ready output. This may be a command-line tool, part of an editing suite, or a graphical user
interface-based tool. This formatter needs the XSL-FO document as its input and produces some form of printable
output. The only other tool you will need is a printer (or similar output device) if you want paper-based output.

You should use XSLT to generate your XSL-FO from source documents (described later in this chapter). To do that,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

however, you need to have some idea of what XSL-FO documents look like, so we'll start by looking at the result
XSL-FO documents.

The XSL-FO document specifies page layout, page size, any headers and footers, margins and page numbers, etc. For
example, the page specifications may be for A4 pages (or U.S. letter pages) of a certain height and width. The title
page may be specified separately from the main content. Other pages may need separate specification. The bulk of the
content of the document is likely to have a common layout. Any appendixes may need page numbers with letter
prefixes, for instance, page A1 for the first page of Appendix A. You can do all this using the page specifications.

The XSL-FO document also specifies in detail how each piece of content should be formatted, for example, titles
should be big, bold, and centered. This second aspect is the bulk of the work of the XSL-FO document author.

There are also some key supplementary tasks, including generating tables of contents, lists of figures, and perhaps an
index. Building these features will require a combination of XSLT processing to extract the information and XSL-FO
to format it.

Page specification is a two-part task. First, pages are defined in terms of size, margins, etc. These are called
simple-page-master s. Then they are called up in a sequence, referred to as a page-sequence. The

sequence might tell the formatter in which order to use the title page specification, the main page specification, and
the rear matter page specification. Standard XML techniques relate one to another. Example 2-1 shows a very simple
page specification, first defining a simple-page-master and then applying it to a small flow of text.

Example 2-1. A basic page specification

<?xml version="1.0" encoding="utf-8"?>
[1]<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
[2]<fo:layout-master-set>
 <fo:simple-page-master
 page-height="11in"
 page-width="8.5in"
[3] master-name="only">
 <fo:region-body
[4] region-name="xsl-region-body"
 margin="0.7in" />
[5] <fo:region-before
 region-name="xsl-region-before"
 extent="0.7in" />
 <fo:region-after
[6] region-name="xsl-region-after"
 extent="0.7in" />
 </fo:simple-page-master>
 </fo:layout-master-set>

[7]<fo:page-sequence master-reference="only" format="A">
 <fo:flow flow-name="xsl-region-body">
[8] <fo:block >Some base content, containing an inline warning,
 <fo:inline >Warning: </fo:inline>Do not touch blue paper,
 a fairly straightforward piece requiring emphasis
 <fo:inline font-weight="bold">TEXT</fo:inline>, and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 some instructions which require presenting in a different
 way, such as <fo:inline font-style="italic">Now light
 the blue paper</fo:inline>.
 </fo:block>
 </fo:flow>
 </fo:page-sequence>
</fo:root>

The document element in the fo namespace1.

The layout master, which wraps the page specification2.
The page specification with name only3.

The main body area of the page4.
The header area5.
The footer area6.
The page-sequence, which refers to the page specification7.

Some content, wrapped in blocks and inlines, which will appear in the output8.

As you can see, this isn't quite straightforward, but once mastered, any page specification can be reused. Twenty lines
of XML can specify a page that is good enough to provide quality print output. The formatted output is shown in
Figure 2-2.

Figure 2-2. Resulting output

In this example, note the use of regions. Three are used: xsl-region-before, xsl-region-after, and
xsl-region-body. You can read these as header, footer, and page content. These regions separate these areas of

a page. Once you have specified what you want in the header and footer, the focus will normally be on the body area.

Areas, blocks, and inlines are the basic building blocks of a page layout. As you look at a page, you could probably
draw rectangles around the page boundary, each paragraph's boundary, a figure's boundary, and so on. Each provides
what is termed an area (of the page), with lesser areas nesting inside greater ones. This nesting of areas is how the
formatter lays out each page in turn, following your instructions in the XSL-FO document. The contents of each area
are either blocks or inlines. Blocks are formed from paragraphs, lists, titles, images, examples, tables, etc. Within a
block, inlines lay out the lines of text, with attributes specifying how the inline should be formatted, for example in
bold or italics. In this way, the inlines build into blocks, which are built into areas, which form the pages you produce.

If you have ever used a desktop publishing tool, you may be familiar with the term text flowing . Conceptually, text is
poured into areas, which form the pages. The text originates from your XML source document and the formatter does
the pouring for you. When an inline area is filled, the formatter seeks the next piece of content (the next paragraph
perhaps). A new area is created for the next piece of content. Similar transitions occur at the block level and page
level. Any block can have margins, padding around it, and color and backgrounds applied to it, but all within the
framework of these areas of the page through which text and images pour, flow, and fill.

The XSL-FO element set provides the stylesheet author with the tools of her trade. From the small example given
earlier, you can see a few of these tools. Each is identified by the fo prefix, which is the namespace used for XSL-

FO. This tells the formatter that they are instructions to be followed. Content within such an element is used by the
formatter according to those instructions.

The fo:root element wraps the entire XSL-FO document. The fo:layout-master-set element specifies

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the page layout the formatter will use for your document. Each is identified by fo:simple-page-master and
its attribute, master-name. The element fo:page-sequence tells the formatter when to start using a
particular page master, when to stop using it, and when to change to another. The element fo:flow contains your

content, primarily in the body region mentioned earlier. This relates back to the ideas of text flowing into areas. It is
within this element that most of your time will be spent if you are writing XSL-FO or generating it with XSLT.

You'll need to be aware of the writing mode and what is termed progression direction (block-progression-
direction and inline-progression-direction). Had the specification been designed for Western

use only, these would probably not be necessary. However, it is an international specification, thus, these terms are
relative rather than absolute. The writing mode uses acronyms to specify the sequence of inline-progression-direction
then block-progression-direction. It might be left to right, then top to bottom. I personally write lines of text across the
page (inline progession), then lines continue down the page, top to bottom. This is abbreviated lr-tb (left-to-right, top-
to-bottom). In this way, all combinations of directions can be specified for all languages.

The fo:block element performs a multitude of roles, from providing 36pt titles that are centered and bold, right

down to holding the single bullet character used to visually identify a list item. Blocks build up into areas, adding to
one another in the block-progression-direction. Other block-like elements include tables, lists, and images, which all
act similarly.

Within a block, the fo:inline element specifies the formatting requirements when a line break is not needed,

such as for a section of bold or italic text, or when a font change is needed.

Finally, at the atomic level, the fo:character element is available. Each character in this book takes up its own

tiny area on the page; hence, chapters, paragraphs, and lines can all be broken down to this element when laying out a
book.

When talking about blocks having a multitude of uses, it is appropriate to know just how each of these is provided by
the single element. Attributes are used heavily to specify the formatting needed. In some cases, the number of
attributes can make the element hard to find. How and when to use these attributes is the subject of much of the rest
of this book.

2.2 Related Stylesheet Specifications

While XSL is a powerful set of formatting tools, it is far from the only option. XSL comes from a rich heritage of
stylesheet development, and can be used with or in place of these technologies.

2.2.1 XSL and DSSSL

One of the originators of the W3C submission was James Clark, the initial editor of the W3C document. He worked
on the Document Style Semantics and Specification Language (DSSSL) standard. The ISO/IEC 10179 document
states that DSSSL provides the specification of document processing for two purposes:

1. The transformation language for transforming SGML documents marked up in accordance with one or more
DTDs into other SGML documents marked up in accordance with other DTDs

2. The style language, where the result is achieved by applying a set of formatting characteristics to portions of
the data, and the specification is, therefore, as precise as the application requires, leaving some formatting
decisions, such as line-end and column-end decisions, to the composition and layout process.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

From this, it's quite clear that XSL-FO falls into the second group, that of specifying the formatting of documents.
DSSSL was designed with SGML in mind, whereas XSL-FO had XML in mind. The experience of DSSSL was a key
input to XSL-FO.

You may be asking the obvious by now. Why not DSSSL? Why XSL-FO? Two very clear reasons are
implementation and support. DSSSL has a small following for its single open source implementation, OpenJade,
produced by a group of faithfuls who took up the development of Jade when James Clark ceased its development.
The one commercial implementation is from Nextsolution (http://www.nextsolution.co.jp/English/index.html). They
recently announced the release of Version 2.0. Their initial release followed Jade in 1998.

The one key advantage DSSSL has over the XSLT/XSL-FO combination is its full programming language support,
often a complaint about XSLT. The Jade implementation is based on Scheme, one of the Lisp family of languages.
(While it provides all the functionality of a full programming language, Scheme is not an especially popular language
with the users of XML.) Another plus on the DSSSL side is that can produce Rich Text Format (RTF) as an output, as
used in Microsoft Word. The downside to DSSSL is its limited implementation. OpenJade has not added sufficiently
to the original product to make it comprehensive in its capabilities. A series of limitations, combined with a steep
learning curve, have deterred many people. DSSSL has very few tutorials and a specification written for implementors
rather than users.

With these issues holding it back, the future for DSSSL may be viewed as restricted. I may be wrong; I like Jade, and
it has an active support list of perhaps 30 to 50 regular users who are always very helpful. I just can't see its adoption
by a wider audience. One quote that amused me was, "If you put the world's DSSSL experts into one room, it would
still leave room for the toilet."

The lessons of DSSSL have been learned. XSL-FO uses an XML vocabulary. It has taken three years to get where it
is at the time of this writing (currently, Recommendation status). It fits beautifully with XSLT and XPath. Together,
these three will be complete, will have multiple implementations, will initially satisfy early adoptors, and will have the
potential to meet the needs of business-to-business transactions involving human access to XML-based information,
as well as to meet the needs of the publishing industry.

2.2.2 XSL and CSS

High-quality print output may be just one modality that integrates with others to provide the write once, deliver
anywhere promise of XML. The print document may have several siblings: some are delivered over the Web, some
are summarized in a WAP message, and others are converted to synthetic speech. This maze of information is
possible to navigate using the tools that adapt XML.

Remember that XSL-FO is compatible with W3C technologies for other media. There are many similarities to the
properties that form a part of Cascading Style Sheets (CSS) and XSL-FO. This is deliberatly done by the W3C. The
rationale for this, when looking from the stylesheet writer's perspective, is clear. Although the syntax is different, the
terms and terminology are similar. When you read the recommendation, you will see many cross-references to CSS
Version 2, along with direct quotes and nominal variations from it. The advances in CSS from basic web page styling
through to the complexities of Versions 2 and 3 use many of the formatting statements of DSSSL adapted for CSS.
This alignment of semantics helps the stylesheet author, reduces confusion, and reduces the effort in the transition.
Those used to the strengths of CSS will only have to respond to the shift in syntax when moving to XSL-FO. XSL-FO
has borrowed much of the semantics of CSS Level 2, adding to it and modifying it a little, as necessary.

The variation in syntax is significant. XSL-FO uses a regular XML vocabulary, whereas CSS has its own syntax.
Consider the following bit of CSS in XML:

http://www.nextsolution.co.jp/English/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<element style="font-size:12pt;font-weight:bold">content</element>

XSL-FO would have this as:

<fo:element font-size="12pt"
 font-weight="bold">content</element>

The similarities are clear. The shift to the syntax of XSL-FO will depend on the writer's familiarity with XML syntax.
XSL-FO goes beyond CSS in many areas, adding features that are page based as opposed to screen based. One often-
raised question is whether the major browser providers will ever have the capability of XSL-FO styling. This remains
to be seen, although, there are some indications that client side XSL-FO styling may become a feature in browsers at
some stage in the future. The specification does address screen output, so there is potential. Considering that the W3C
recommendation is now published, XSL-FO has three open developments on-going, and two commercial
developments that are nearly feature complete provide some indication of its potential, even before it's widely known.

I see XSL-FO as an exciting technology, providing much-needed functionality that can connect the staid office users
with the newer uses of XML. If Tim Berners-Lee is right, and the Semantic Web becomes a reality, slowly intruding
more into daily life, the need for automated print production from web-based information will increase exponentially.

2.3 Using XSL-FO as Part of XSL

This section looks at the integration of XSLT and XSL-FO. The two recommendations started out as one and, rightly,
have a close relationship. I make the assumption that the reader has some background in XSLT.

An XSLT transformation defines a mapping from the source document structures to XSL-FO formatting. When run,
the XSLT transformation produces an XSL-FO document that is then run through a formatter. Tools can combine
these two steps either overtly or behind the scenes, but it's worth understanding what happens under the hood. The
advantage of this two-stage approach is that content selection can take place in the first stage. Certain parts of the
source XML document may not be wanted in the final printed form. These can be ignored by this first stage. In the
same way, literal content can be added by the stylesheet (to save the XML source document author having to retype a
long company name, for instance), that is then output into the XSL-FO document, along with content from the source
document, and that becomes a part of the final presentation.

2.3.1 History

XSL and XSL-FO have suffered from some naming confusion, largely because of history in the W3C. Initially, what
we are calling XSL-FO was simply XSL, the Extensible Stylesheet Language. It became apparent that two-stage
processing of SGML or XML into a print format was necessary. The prevailing view was that these two stages should
be combined into a single W3C recommendation. This was proposed to the W3C, and XSL was born. When James
Clark first released a product based on the working draft of this recommendation, its immediate use was for a slightly
different purpose.

Remember I said that the transformation from XML into XSL-FO was done by XSLT? Initially, it was done by what
was then called XSL. It soon became obvious that XSL had a very clear and quite large market using the
transformation aspect to take one XML document through to another XML (or XHTML) format. This usage was well
received, as people began using XSLT to transform XML into web-viewable HTML, XHTML, or WML (for mobile
phones). Indeed, having realized that this general transformation capability was extremely useful, many people simply
started to ignore the original purpose of XSL and demanded more features in this transformation area. User demand to
speed up the delivery of the transformation side, at the expense of the formatting side, increased to the point where

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the Working Group accepted the inevitable and split out what are now XSLT and XPath from what remained XSL.
(Some people still refer to XSLT as XSL.)

This is the reason we refer to what is XSL as XSL-FO; the FO appendage refers to the formatting objects, which are
central to the life of XSL-FO and also are the only part of the original XSL that discriminates it from XSLT, the
transformation language. fo also happens to be the most common namespace prefix used for XSL-FO. This intimate

bond between the two still remains. XSLT provides the necessary tools in the first stage of transforming XML into a
paper-based deliverable of selection, combination, reorganization, and so on. XSLT can generate the table of contents
and all the cross links, while XSL-FO generates the page and paper-based outputs.

Before we move on, I would like to clarify, from the stylesheet author's perspective, how XSLT and XPath relate to
XSL-FO.

First, let's make it clear that the stylesheet author and the source XML document author may not be the same people.
As tools are produced to introduce XML into the office, generating valid XML will become easier. Styling that source
document is not a task for the office administrator coming directly from Microsoft Word. I have in mind a job
description that might equate to that of the analyst: taking the styling requirements of the originator and turning them
into a formatting specification that results in an XSL-FO stylesheet.

In an XML document, there are many ways different users may want information content presented. Take a company
report, for example. The company CEO may only want the executive summary. Others may want all the financial
information stripped out. This selection and reordering is the job of the combination of XSLT and XPath. XPath
provides the means to select content, XSLT, the means to transform it into the vocabulary of XSL-FO. XPath
specifies the parts of the source document on which to operate; XSLT specifies how the output vocabulary will be
used. It's this powerful combination that makes it easy to select all chapter titles (XPath) and specify that they be
indented, with dot-leaders prepending the page-number-citation (XSLT). The formatter (a part of an

XSL-FO implementation) then takes the markers placed there by the transformation and works out the actual page
numbers to replace the page-number-citation object.

The stylesheet author, therefore, needs a number of skills:

An understanding of the source XML document

An appreciation of page layout, which used to be the domain of the print industry

An understanding of the ways in which XPath and XSLT can be used to select and reorganize source content

A good understanding of how to turn a layout idea into XSL-FO (which this book will provide)

An understanding of the capabilities of the formatter that will be used

On the less technical side, the ability to translate the needs of the person who wants the high-quality output into
the desired formatting specification

Only when the final document is completed will the average recipient understand the difference between what he
requested verbally and what it actually looks like. That's the diplomatic aspect of the stylesheet author's job.

2.3.2 Page Layout, Blocks, and Inline Content

One stylesheet design aspect I found strange at first is worth explaining before we create our first stylesheet. The three

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fundamental aspects of styling are understanding the functions of page layout, blocks, and inline content.

Page layout is fairly straightforward. Any page has a physical size, margins on all four sides, perhaps some header
content, maybe marginalia, page numbers, etc.

Blocks are a little less obvious. A single word could be a block, as could the title of a chapter. Any area of a page
(regardless of its content) that is set apart from other content may be laid out as a block. This applies to paragraphs,
titles, figures, tables, captions, and many other items. XSL-FO generalizes blocks to a high degree, providing
flexibility to specify how they are formatted to meet user requirements.

Within blocks we often see lines of content, usually source document content. Some items within blocks are styled
using inline formatting objects. A typical example might be the page number citation that we often see at the end of a
line in the table of contents. Here, a number of items are wrapped in a block, each as an inline object. The chapter
title, for instance, followed by a line connecting the content to the actual page number. The page number citation
itself should not be split out onto a separate line, so it is marked as an inline object and, thus, is displayed in the same
line as the title. This may sound odd to the HTML author accustomed to using the br element to break lines.

The lesson here is to get used to identifying and realizing the difference between true inlines and blocks. Figure 2-3
shows an interaction between a long inline in a set of blocks. Whether to use a block formatting object or an inline
formatting object is a decision made early on.

Figure 2-3. A table of contents example

In stylesheet design, the appearance of a formatting object is specified by setting the properties of that object. These
are specified as attributes of the XML formatting object element. There are a large number of properties from which
to choose, which, can be used to determine such things as the level of indentation, the spacing around an object, the
color to apply to an object's content, or whether to break a flow before or after an object. By using different
properties, one block produces titles, and another produces the fine print we all love to hate!

2.3.3 Considering Compliance Levels

The principles of compliance discuss three levels: basic, extended, and complete. These are listed fully in Appendix D
and relate to each property. No formatting engine has a complete implementation. Many implement the basic level
and some, the extended level. It's easier for an implementor to implement the basics, but quite hard to implement even
some of the complete! Basic elements include fo:region-body, whereas extended requires fo:region-
before in addition. The former is required for any output, the latter, typically for headers, is considered an

extended feature. A rule of thumb is that the shorthands are often not basic level properties, but other than that, it's
necessary to look up the property.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are using a basic property, you will be far more likely to produce a stylesheet that is portable across
implementations. If you need an extended property, fine; but if you can use basic properties, it will maximize
interoperability. If non-portable stylesheets become the norm, we will be doing a great disservice to the acceptance of
XSL in general. Be aware of which class of properties you are using, and the implications for portability.

The terminology of XSL-FO may seem strange at first. I will describe some of the stranger terms in plain English
upon first use. Many of the terms are defined in the Glossary.

Although the XSL-FO recommendation fully specifies all the elements in the fo namespace, it doesn't show their

relationship to XSLT. There are two main areas in which such an understanding is necessary: first, selecting content
to format in a selected page, and second, matching XML source content markup with an appropriate element and its
properties in the fo namespace. I will discuss each of these in turn.

2.3.4 Selecting Content for Formatting

The simplest file, perhaps of use for test purposes, is shown in Example 2-2.

Example 2-2. Minimal test file

[1]<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
[2] <fo:layout-master-set>
 <fo:simple-page-master master-name="only">
 <fo:region-body
[3] region-name="xsl-region-body"
 margin="0.7in" padding="6pt" />
 <fo:region-before
 region-name="xsl-region-before"
 extent="0.7in" />
 <fo:region-after
 region-name="xsl-region-after"
 extent="0.7in" />
 </fo:simple-page-master>
 </fo:layout-master-set>
 <fo:page-sequence
[4] master-reference="only">

 <fo:flow flow-name="xsl-region-body">

[5] <fo:block>Hello World</fo:block>
 </fo:flow>
 </fo:page-sequence>
 </fo:root>

fo:root, the main wrapper, stating the fo namespace required on all XSL-FO stylesheets1.

Page definition2.
The main content area of the page3.
The page specification to use for the body4.
The actual content to be laid out5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.
5.

Please don't be put off by the page specification part of this example. It's not straightforward, but it's common to
simply reuse these parts of a stylesheet, because (for me at least) my paper size seldom varies, and margins, headers,
etc. only rarely need modification. These parts soon become reusable boilerplates with occasional minor changes.

These elements are explained more in Chapter 3, so for now it is sufficient to say that the content should be matched
at the:

<fo:flow flow-name="xsl-region-body">

element within the file.

How is this achieved using XSLT (and XPath, of course)? I'm presuming that the XSLT stylesheet is using a push
model rather than the simpler pull model, so templates will be used to match content rather than simply selecting
required content from a root template. The push model is rule based, where the output structure depends on the input
structure and is typically used for transforming documents. The pull model, has an output structure independent of the
input structure that uses the same approach as server pages. For this example, I'll take a very simple source document
as shown in Example 2-3. This is no more than an outer wrapper of doc with section wrappers and simple para
content.

Example 2-3. Source XML for the examples

<doc>
<section><head> Simple sectioned title </head>
<para>Some base content, containing an inline warning,
 <emphasis role="warning">Do not touch blue paper</emphasis>,
 a fairly straightforward piece requiring emphasis
 <emphasis>TEXT</emphasis>, and some instructions which
 require presenting in a different way, such as
 <instruction>Now light the blue paper</instruction>.
</para>

</section>

....

</doc>

The stylesheet to produce the basic outline of Example 2-3 is shown in Example 2-4.

Example 2-4. Basic stylesheet

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
[1] xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <xsl:output method="xml"/>
[2]<xsl:template match="/">
 <fo:root>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <fo:layout-master-set>
 <fo:simple-page-master
 master-name="only">
 <fo:region-body
 region-name="xsl-region-body"
 margin="0.7in"
 />
 <fo:region-before
 region-name="xsl-region-before"
 extent="0.7in"
 display-align="before" />

 <fo:region-after
 region-name="xsl-region-after"
 display-align="after"
 extent="0.7in"
 />
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="only">
 <fo:flow
 flow-name="xsl-region-body">
[3] <xsl:apply-templates />
 </fo:flow>
 </fo:page-sequence>

 </fo:root>
[4]</xsl:template>
</xsl:stylesheet>

Note the namespace usage, for both xslt and xsl-fo1.

The root template2.
Apply templates to the children of the document root3.
End of the root template4.

This is similar to an XSLT stylesheet targeted at (X)HTML output. The root template produces the basic outline, then
makes use of apply-templates to process the children of the root of the source document. This is no different
than processing XML through to (X)HTML, where within the root template, the elements html, head, and body
are output. So this is a simple use of XSLT to start processing a source document.

Further processing takes place within other templates, processing more source content to produce output in the fo
namespace. Example 2-5 shows two of these templates.

Example 2-5. Other templates

[1]<xsl:template match="section">
[2] <fo:block id="{generate-id}">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

[3]<xsl:template match="head">
 <fo:block
 font-family="Times"
 font-size="18pt"
 font-weight="bold"
 space-before="18pt"
 space-after="12pt"
 text-align="center">
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

[4]<xsl:template match="para">
 <fo:block
 font-family="Times"
 font-size="12pt"
 space-before="12pt"
 space-after="12pt"
 text-align="justify">
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

[5]<xsl:template match="emphasis[@role='warning']">
 <fo:inline
 color="red">Warning: </fo:inline>
 <xsl:apply-templates/>
 </xsl:template>

Template for the section element1.
An id that may be required for cross-referencing2.

Template for a heading3.
Template for a basic paragraph4.
Template for a warning notice5.

These templates (for a section that simply outputs a wrapper with an id value, a basic block for a paragraph, and a

simple inline that outputs red text) are all simple examples showing how each template must produce well-formed
XML. In the fo namespace, it might mean wrapping content or further processing content using XSLT's apply-
templates, in the xsl namespace. These principles provide the basis of processing XML through to print.

2.3.5 Matching Source to Content

Now to look at matching content with elements in the fo namespace. For any element in the source document, it's

necessary to decide what processing is needed to format it to the appearance needed in the print version.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 2-4 shows the processing for the root template, which contains mostly literals in the fo namespace, with a

single application of further processing. Other candidates for this class of processing might include boilerplate
warnings and cautions where the output is content not available in the source document.

Another class of processing is the feedthrough type of element. In Example 2-5, the processing of a section could
simply amount to an apply-templates instruction, to process the children of the element. The section tag

might require this. Typical applications for this class of processing are wrappers for content that provide structural
integrity.

Finally, there are those elements that are wrappers for actual content, such as the para and emphasis elements in

the example. Here, the decision is to select an appropriate element from a limited range of either block or inline
containers. This is basically restricted to one from the following list:

Block

Inline

List

Table

Graphic

So, for example, you would use a block for paragraphs, titles, and any other elements from the source document that
require the construction of separated content in the block progression direction (down the page for Western output).
These will be discussed in Chapter 3. Inlines are selected - for emphasis, a font change, a change of color - where
the content is laid out in the inline-progression-direction at right angles to the block-
progression-direction (along the line for Western output). Lists are a subclass of the block, as are tables.

Graphics can be either inlines or blocks.

With these selections made, the remaining task is to specify the appropriate property set for that element, which is
what the bulk of this book discusses.

Another class of processing is put to use by the index, table of contents, or cross-document links. Here, the problem
domain is cross-referencing one piece of source document with another, repetitively selecting content to format with
respect to its formatted position within the printed document. This is a repeat of its counterpart in the production of
(X)HTML.

For the table of contents, the basic processing model is to select the point in the output at which the table of contents
is required and call an appropriate template. The basis of the processing is shown next. I'll assume this processing is
done early in the document. Having output any frontmatter, and before processing further children, a call is made to a
named template that produces the table of contents as shown in Example 2-6.

Example 2-6. Out-of-line processing for a table of contents

<xsl:template match="/">
 <fo:root>
 <fo:page-sequence master-reference="only">
 <fo:flow flow-name="xsl-region-body">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- Produce the frontmatter here -->
 <xsl:call-template name="toc"/>
[1] <xsl:apply-templates />
 </fo:flow>
 </fo:page-sequence>

 </fo:root>
</xsl:template>

[2]<xsl:template name="toc">
[3] <xsl:for-each select="section">
 <fo:block text-align-last="justify"><xsl:value-of
 select="head"/> <fo:leader
 leader-pattern="dots"/> <fo:page-number/>
[4] <xsl:for-each select="section">
 <fo:block text-align-last="justify"> <xsl:value-of
 select="head"/> <fo:leader
 leader-pattern="dots"/> <fo:page-number />
 </fo:block>
 </xsl:for-each>
 </fo:block>
 </xsl:for-each>
</xsl:template>

Produce the table of contents prior to processing the majority of the document1.
The out-of-line processing template2.
Process each section by formatting the head contents3.
Recursively process each section child to an appropriate depth4.

A more complete example of this is shown in Chapter 9. The principle is to select content from the source document
and wrap it in elements in the fo namespace. This aspect demonstrates the real strength of mixing XSLT and XSL-

FO. XPath selects the appropriate content from the source document, and XSL-FO provides the cross-references
within the formatted document, in this case, page references.

I hope this has given you an idea of the strengths of this combination. Remember that together, these three
recommendations provide a toolset that has the strength to re-order, select, and present source content in the way that
the stylesheet designer wants.

2.4 Shorthand, Short Form, and Inheritance

The word shorthand in XSL is reserved for the CSS-compatibility shorthands in the complete conformance level (it's
described in section 7.29 of the specification, Shorthand Properties). Setting all components of a compound property
by omitting the component specification is termed a short form; it is not a shorthand and is part of the basic
conformance level. More on compound properties is discussed in Chapter 4. As an example, the background property
(except for a specification of border width, color, and style for all four borders) is derived from and aligned with a
similar CSS property.

By whatever name we choose to call it, a shorthand is a time-saving device for specifying more than one property
with a single statement. For example, section 7.29.3 in the specification defines the single property, border. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

border property is a shorthand property for setting the same width, color, and style for all four borders - top,

bottom, left, and right - of a box. Section 7.29 of the specification lists them all. The visual ones are shown here:

background border-bottom

background-position border-color

border border-left

border-bottom border-right

border-color border-style

background border-spacing

background-position border-top

border border-width

Note that each shorthand expands to specify other related properties. Also note that it will save you typing at a
potential cost of not being implemented in your customer's formatter. Shorthand properties do not inherit from the
shorthand on the parent. Instead, the individual properties that the shorthand expands into may inherit. For example,
border is not inherited, but border-before and border-start are.

In XSL-FO, most properties are inherited from an area to the areas that it contains. For example, if the color
property says that a block's text should be red, all the text in that block and other contained blocks will be red, unless
a child area overrides that color property.

XSL defines a precedence order when multiple interrelated shorthand properties, or a shorthand property and an
interrelated individual property, are specified. They are processed in increasing precision (for example, border is
less precise than border-top, which is less precise than border-top-color). The individual properties are

always more precise than any shorthand.

In general, you should stay away from shorthands that are only in the complete conformance level, because these can
always be replaced with corresponding basic properties, are mostly there just for CSS compatibility, and will not
always be supported by all implementations. If portability is an issue for you, this is important.

2.4.1 Inheritance

Using inheritance, I place common properties as high up in the FO tree as possible. Specification of common
properties can be made once, rather than repeated throughout the document. This promotes correctness, maintenance,
and legibility of the stylesheet and of the FO. This is both good practice and a good way to avoid errors.

Some of the properties applicable to formatting objects are inheritable. Those properties are identified as such in the
property description in the specification. The inheritable properties can be placed on any formatting object. They are
propagated down the formatting object tree from parent to child. (These properties are given their initial values at the
root of the result tree.) If a given inheritable property is present on a child, the value of the property is used for that
child and its descendants until explicitly reset. Hence, there is always a specified value defined for every inheritable
property for each formatting object.

If all properties were explicit on all elements, the description would become too verbose even by XML standards. To
constrain the amount of markup, the following expedient is introduced: certain properties may take their default
values from the closest ancestor in the tree where the property is specified. For example, to specify a font family for a
whole document, you can put a respective attribute on the root element. Any element with no explicit font-
family will pick their values from there. This is common in typography and styling, which have similar

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mechanisms.

To make inheritance work, you must break the coupling between properties and elements that consume them. In XSL-
FO, inheritable properties can be specified almost anywhere on the tree, not necessarily on elements whose formatting
is influenced by them. For instance, leader-pattern is inheritable: therefore, specifying it on a fo:table
will influence any and all fo:leaders inside cells of that table (unless a lower element redefines it to some other

value).

Inheritance breaks the standard scheme of getting default values for attributes from a DTD or schema, a property used
by an element may appear on any of its ancestors. Common sense and programming style are needed to avoid
confusion. A DTD for XSL-FO has been provided. Its authors admit it is not 100% accurate, but it is useful.

Later in the book, I will use inheritance occasionally to reduce the amount of typing. I will note examples when they
occur.

In summary, be aware of inheritance. It can be very useful to achieve a common style; on the other hand, if you ignore
inheritance, it can trip you up with unwanted effects.

2.4.2 Tips on Using Inheritance

It is common practice to specify inherited values on flows and block-level elements. There is also a special
fo:wrapper element that serves as a host to inherited properties. It is neither block-level nor inline-level, we can

define it as a transparent property carrier. Use it to specify properties on a group of consecutive elements without
introducing a fake extra area.

Don't abuse inheritance. When your stylesheets become complex, it may become hard to debug. Don't neglect another
mechanism to assign identical properties to many objects - for example, xsl:use-attribute-sets may be

more appropriate than relying on inheritance.

Inherited properties are propagated down the object tree regardless of the respective area placement. This may
sometimes lead to difficulties in styling your documents properly.

Out-of-lines (e.g., fo:footnote-body and fo:float) inherit properties from the content in which they

occur. So, if a footnote happens to be located in an indented paragraph, it takes inherited values of all indents; if the
text was red, the default color will also be red; if the text was a formula, the footnote may appear in Symbol font.
Take care to explicitly predefine as many inheritable properties as possible at the top of your fo:footnote or
fo:float element. There is no way in XSL-FO to assign a common set of properties to all footnotes; xsl:use-
attribute-sets remains the only plausible alternative.

Indents are inherited universally. For instance, indents from fo:flow will carry to all cells in all tables, to all block

and inline containers (even absolutely-positioned ones), despite the fact that these elements define a reference-area of
their own that is different from the page-reference-area. In practice, this often leads to unwanted effects. When you try
to adjust the position of a table by increasing its start-indent, the contents of each cell are shifted by the same
amount inside the cell. Don't forget to reset indents to zero somewhere in the middle between fo:table and
fo:table-cell; it is a good idea to add zero indents to fo:table-body, fo:table-header, and
fo:table-footer.

There are more delicate things about inheritance, e.g., peculiarities of line-height behavior or font shorthand

that silently resets a whole bunch of properties to their default values, which will be discussed later in their particular
contexts. As a further observation, I'd also like to point out that markers take their properties from where they end up,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

not from where they started. These are discussed further in Chapter 9.

Before moving on, we need to understand compound datatypes. Certain property values are described in terms of
compound datatypes. Every property has a datatype, which is the kind of information that it can hold, such as a color
or a number. Some properties have compound datatypes, such as length or keep. The compound datatypes are

represented in the XSL-FO result tree as multiple attributes. The names of these attributes consist of the property
name, followed by a period, followed by the component name.

For example, a space-before property may be specified as:

space-before.minimum="2.0pt"
space-before.optimum="3.0pt"
space-before.maximum="4.0pt"
space-before.precedence="0"
space-before.conditionality="discard"

This notation may be familiar to those who have experience with object-oriented systems. It simply means that the
space-before property has separate components that specify the optimum, minimum, and maximum
values, and so on.

A short form of a compound value specification may be used in cases where the datatype has some length
components and for the keep datatype. In the first case, the specification consists of giving a length value to an
attribute with a name matching a property name. Such a specification gives that value to each of the length
components and the initial value to all the non-length components.

For example:

space-before="4.0pt"

is equivalent to a specification of:

space-before.minimum="4.0pt"
space-before.optimum="4.0pt"
space-before.maximum="4.0pt"
space-before.precedence="0"
space-before.conditionality="discard"

It's a way of reducing typing (unless you want to explicitly specify limits). Note that short forms may be used together
with complete forms; the complete forms have precedence over the expansion of a short form.

Compound values of properties are inherited as a unit and not as individual components. After inheritance, any
complete form specification for a component is used to set its value.

2.4.3 Layout-Driven and Content-Driven Layout Types

The XSL 1.0 specification has a number of limitations that we will encounter throughout this book (and I will
diligently strive to point them out). One of these pertains to the classes of document that are best suited for this
version of XSL. It is possible to draw a fairly clean line between two primary categories of document: those that are
layout-driven and those that are content-driven.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the layout-driven case, a container searches the content flow to find matching content to put inside itself. In other
words, the layout comes first. (A container is, loosely speaking, a region on a page that can accept content. Refer to
Chapter 4 for more detail.) Typical documents in this category include magazines, newspapers, web pages, brochures,
newsletters, catalogs, and presentations (slides and overheads). Content is often adjusted to satisfy the constraints of
the layout.

In the content-driven case, the content itself identifies a model (think template), which, in turn, specifies the creation
of suitable containers. As many containers (layout areas on pages) are produced as required to consume all the content
of the document. Page layouts are usually relatively uncomplicated, and their selection is based on simple rules.
Examples of this category of documents include books, manuals, technical documentation, articles, and documents
driven by data. Content flows are sequential and unbroken. I find that XSL 1.0 is best suited for content-driven
documents (page layout, blocks, and inlines).

These concepts and terms - the three main divisions of any abstract document, and the distinction between layout-
driven and content-driven layout - are useful to keep in mind as we begin to discuss the highest-level structures in
FO documents.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 3. Pagination

 3.1 Document Classes

 3.2 The Main Parts of an XSL-FO Document

 3.3 Simple Page Master

 3.4 Complex Pagination

 3.5 Page Sequences

Practical publishing projects start with a number of constraints. Unless you are experimenting, you will already know
if your XML source is targeted at a book, an article, a business form, or a newsletter. In other words, the final product
will be a concrete instance of what I will informally call document categories or document classes.

Decades and centuries of usage have established publishing conventions for many document classes. Many readers
who have experience with at least one desktop publishing system or formatting software application will be familiar
with standard document classes. These conventions suggest rules to be followed at all levels of the formatting
process. It is at the pagination level, however, where the effect of these rules is most strongly felt. This chapter
discusses XSL pagination - how to design pages and how to put them together.

3.1 Document Classes

The rules and conventions that apply to a given document class will determine the presence and structure of the three
major divisions of any single document: the front matter, the main matter (probably most commonly known as the
body), and the back matter. (These terms are generally used in connection with only certain types of documents.
Because the concepts have more general utility, they will be extended to all documents.) The front matter obtains its
fullest form in books and typically contains most of the following: a title page, a copyright page, a preface, a table of
contents, and lists of figures or other illustrations. Dedications and similar material also belong to the front matter of a
document.

The main matter of a document consists of the actual content: everything from the introduction to the appendixes. The
back matter may contain an index, more acknowledgments, a glossary, a bibliography, a colophon, and so forth. It is
worth pointing out at this stage of the discussion (and I will repeat this point often) that these are logical structures.
They may be present and identifiable in your source XML, but will not be the same in the FO document. Equally,
items like a table of contents will not exist in the source but will be generated when transforming to the fo
namespace.

Depending on the specific type of document, the front matter may be greatly abbreviated, may be missing altogether,
or may be combined with the main matter. This is typical of articles and reports. Letters and business forms may have
only main matter. Books have all three, and these contain nearly all of the listed sections.

3.2 The Main Parts of an XSL-FO Document

XML instances in the fo namespace, or XSL-FO stylesheets, consist of two major parts. The first part describes the

general layout of all possible pages and provides instructions to the formatter regarding which page templates to use.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The second part assigns the actual content of the document to the pages and describes the formatting of the content.
The general pagination problem consists of properly and fully constructing the first part and in making the proper
assignment of content flows. This chapter will cover all of this in detail. The formatting of content remains for
subsequent chapters.

The top-level element of an FO document is the fo:root element.[1]

One important attribute on the fo:root element is the source-document, which has been added such that the

source document may be accessed from the XSL-FO document. It's a good habit to pass this to the XSLT stylesheet as
a parameter for inclusion.

The children of the fo:root element consist of:

One layout-master-set

An optional declarations

One or more page-sequence

Figure 3-1 shows a very useful diagram from the XSL specification that illustrates the pagination formatting objects.

Figure 3-1. Pagination formatting objects

The declarations element, if used, contains one or more color-profile children. declarations are

a wrapper for formatting objects whose content is to be used as a resource to the formatting process. This element
groups global declarations for the FO file. See Chapter 7 for a discussion on color profiles.

The layout-master-set corresponds to the first major part of an FO file that I mentioned earlier. Its function
is to fully specify the pages to be used in the document. The children of this element consist of simple-page-
master elements and page-sequence-master elements. You must have at least one simple-page-
master defined. It is good practice to organize your simple-page-masters and page-sequence-
masters in a way that suggests how they will be used. This will make more sense once you see some examples.

The simple-page-master has a master-name attribute by which it is referenced, and the page-
sequence element has a master-reference attribute that refers back to one of the simple-page-
master elements. Similarly, the page-sequence-master has a master-name attribute. This is how
content is assigned to one or another layout within the formatting operation. The significance of the master-name
attribute is that this is how masters are referenced by content flows.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The value of the master-name attribute must be unique across all the content of the
layout-master-set. The formatter will treat an empty or conflicting master-
name attribute as an error, and may or may not continue to process the FO file.

The page-sequence-master is simply a way of sequencing the use of simple-page-master elements

as more content is added. A typical use of this element is to specify that left- and righthand page layouts (properly,
verso and recto) are to be used alternately throughout the pages of a book. More on this later.

Let us make one more connection. As can be seen from Example 3-3, the selection of content for a particular type of
page layout (the simple-page-master elements) is achieved by either the use of one or more page-
sequence elements that follow the layout-master-set, or, indirectly, from references within the page-
sequence-master element's repeatable-page-master-reference element (see Section 3.4.3 for
more detail). Each page-sequence has a master-reference attribute, and the value of this attribute for a
given page-sequence designates the simple-page-master or page-sequence-master that will
paginate the content contained in that page-sequence. I think of this as the base relationship between this piece
of content and that particular type of page, so I might want to put all chapter elements into a standard page layout,
where standard is the master-name attribute of the simple-page-master. This attribute names this

particular page specification, which may be one of many such specifications. This attribute uniquely identifies the
associated page specification.

The formatter will treat an empty or conflicting master-reference attribute as an

error, and may or may not continue to process the FO file.

There is no requirement for master-references to be unique across page-
sequence elements. Several page-sequence elements may point at the same
simple-page-master or page-sequence-master. (The state of page-
sequence-master elements is not shared across page-sequence elements. We
will see what this means when we examine the use of multiple page-sequence
elements.)

3.3 Simple Page Master

XSL 1.0 specifies just one way of laying out a page: the page description. We use the simple-page-master
element for this page description. Any discussion of page masters presupposes the concept of a page. It may seem
self-evident at this point that we do have a page, but there is actually more to this concept in XSL than immediately
meets the eye.

The CSS and XSL specifications overlap, and this is reflected in shared models at various levels. CSS originally
approached pagination from the web point of view - a single unlimited canvas, effectively restricted in the
horizontal, but not in the vertical, direction. XSL is heavily weighted towards paged media; this distinction operates
primarily at the level of page master selection, not in the description of single pages. However, CSS is actively
embracing paper media (in CSS2), and XSL from the start has acknowledged formats other than print - namely,
HTML.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This means in XSL, we must deal with the idea of non-paged media and viewports. Non-paged effectively means one
page with flexible boundaries, which is obviously not the case with print. Hence, if you are reading this on a web
browser, you are effectively viewing it in a non-paged form. Viewports introduce the ideas of clipping and scrolling,
again, not things we will encounter in print. Fortunately, these are XSL capabilities that may be ignored by readers
interested in print; implementors are not so lucky. I will sufficiently explain viewport concepts so you will be able to
read the spec without confusion.

In XSL under normal (meaning print) circumstances, we use the page-width and page-height attributes on
the simple-page-master element. In a production context, these attributes are obvious candidates for XSL

parameterization. A simple model of the page is illustrated in Figure 3-2. Note that the labeling of the outer regions
supposes a left-to-right, top-to-bottom (lr-tb) writing mode.

Figure 3-2. Simple page model

The page-viewport-area content rectangle is the outermost rectangle, and for any media, this represents the physical
bounds of the output medium, e.g., the edges of the sheet of paper.

These might typically be set, for an A4 sheet, using:

<fo:simple-page-master
 master-name="simple"
 page-height="29.7cm"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 page-width="21cm"
 ...

For U.S. letter or other, substitute appropriate dimensions. The page-height would be "11in", and the
page-width would be "8.5in".

The margin properties on the simple-page-master (see Section 3.3.1") determine the size and position of the
page-reference-area content rectangle relative to the content rectangle of the page-viewport-area. For page-
masters, there is no ambiguity about the meaning of top, bottom, left, or right when discussing the page-

viewport-area edges, and therefore no ambiguity with respect to the corresponding margins (see Section 3.5.2").

These might be set using:

<fo:simple-page-master
 master-name="simple"
 page-height="29.7cm"
 page-width="21cm"
 margin-top="1cm"
 margin-bottom="2cm"
 margin-left="2.5cm"
 margin-right="2.5cm">

Note the height and width properties here. One simple way of obtaining a landscape page is to shift vertical and

horizontal properties, providing a greater width than height.

3.3.1 Margin Properties for Blocks

XSL-FO defines what are called common margin properties - block. These are also applicable in the page context.
The common margin properties consist of margin-top, margin-bottom, margin-left, margin-
right, space-before , space-after, start-indent, and end-indent. Note that how these

properties map on the actual page depends on the writing mode and reference orientation selected.

The value of each property may be either an absolute length or a percentage of the applicable dimension of the
containing block or page.

In other words for the page-reference-area content rectangle, we have that:

content-rectangle width = page-width - margin-left - margin-right1.
content-rectangle height = page-height - margin-top - margin-bottom2.

The page-height is the distance from top to bottom, and the page-width is the distance from left to right.

Two other attributes that may be set on simple-page-master are writing-mode and reference-
orientation. We will shortly examine their impact on the placement of regions.

Be aware that the page-reference-area may not have borders or padding. This is an XSL 1.0
limitation.

The following is a rough description of simple-page-master and its contents:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element

simple-page-master
Purpose

Defines the basic page master used in XSL 1.0
Properties

Common margin properties - block

master-name

page-height

page-width

reference-orientation

writing-mode
Content model

(region-body,region-before?,region-after?,region-start?,region-end?)

3.3.2 Regions

Figure 3-2 indicates the five regions that make up any page that can be created by using simple-page-master.
All four outer regions, which correspond to the header, footer, left side-bar, and right side-bar,
are optional. These elements are children of the simple-page-master element. Example 3-1 provides a
simple-page-master that includes all five regions.

Example 3-1. Region example

<fo:simple-page-master
 master-name="simple"
 page-height="29.7cm"
 page-width="21cm"
 margin-top="1cm"
 margin-bottom="2cm"
 margin-left="2.5cm"
 margin-right="2.5cm">
 <fo:region-body
 margin-top="1cm"/>
 <fo:region-before
 extent="3cm"/>
 <fo:region-after
 extent="1.5cm"/>
 <fo:region-start
 extent="2cm"/>
 <fo:region-end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 extent="2cm"/>
</fo:simple-page-master>

3.3.3 Absolute and Relative Directions

Directions and how they are specified are key concepts in XSL. They figure prominently throughout. To understand
some aspects of pagination, we must begin to discuss them here.

A number of formatting objects, including simple-page-master, define so-called reference areas. The
important characteristic of such elements is that they may have reference-orientation and writing-
mode attributes. That is, they can define coordinate systems.

reference-orientation defines the top for the content-rectangle of the reference area in question, with

respect to the containing reference area. Permitted values are 0, ±90, ±180, and ±270, and these specify counter-
clockwise (CCW) rotations in degrees. Thus, 90 is the same as 9 o'clock, and -90 is the same as 3 o'clock. The
default, or initial, value of reference-orientation is 0, so that if you do not explicitly set any other value,

the top of all areas will be the same as the top of the sheet of paper, which is the normal requirement for Western
usage. The only valid values are -270 , -180, -90, 0, 90, 180, and 270.

3.3.4 Writing Mode

A clear understanding of writing-mode is necessary both for background and to facilitate the insertion of content

that does not use the default.

Loosely speaking, writing-mode specifies the progression direction of blocks (lines and paragraphs, for

example) as they are laid out on a page and the progression direction of characters and words within a line. For our
purposes, it is sufficient to know that we must use writing-mode to fix both progression directions; this can then
be used to determine before, after, start, and end, and we can then map these relative directions to some
permutation of top, bottom, left, and right. The specific permitted values for writing-mode are lr-tb (left to
right, top to bottom), rl-tb, and tb-rl. The relative directions, as determined by writing-mode, are shown

in Figure 3-3.

Figure 3-3. Writing mode and relative directions

There are other possibilities for writing modes, but these are the three that can be currently specified. It should be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

clear that the writing-mode uniquely determines the two progression directions, one for blocks and one for

inlines; and this, in turn, uniquely fixes the four relative directions.

I don't find these terms particularly intuitive and, hence, keep a small diagram in front of me that shows (for Western
use) the before direction at 12 o'clock, the after direction at 6 o'clock, the end direction at 3 o'clock, and the
start direction at 9 o'clock. This equates with the first diagram in Figure 3-3. If I ever change the writing-
mode, all I need to do is rotate the diagram to maintain my orientation. When I want to specify a border at the left
edge of my page, I translate this as being at 9 o'clock for my usage. Further examples of orientation of writing-
mode can be found in Section 8.1.2.

The writing-mode property also determines the four edges of an area. Specification of writing-mode on the
simple-page-master identifies the before, after, start, and end edges of the page-reference-area
content-rectangle, relative to the top of that content-rectangle, as determined by the reference-orientation
we have specified on the simple-page-master. This is illustrated in Figure 3-4.

Figure 3-4. The regions of a page

Rule of thumb: the direction of top is specified by reference-orientation. This is determined first,

whether by explicit specification on the formatting object, by inheritance, or by using an initial value. Only then is the
writing-mode used to figure out the meaning of before, after, start, and end. When reading
writing-modes, bear in mind that lr, rl, and tb are short forms, and correspond to lr-tb, rl-tb, and
tb-rl, respectively. These are all related to your manner of writing; for instance, English uses lr-tb, that is, left
to right, top to bottom. Other languages have different writing directions. The first part of the writing-mode is
the inline-progression-direction, which determines start and end. Similarly, the second part of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the writing-mode is the block-progression-direction, which determines before and after.

To illustrate, if you lay out text with blocks (paragraphs) stacking from right to left, and words and characters
stacking from bottom to top, this would be a bt-rl writing-mode. If the current absolute orientation of the
area in question had top at the (real-world) left (at 90), then bottom-to-top (the inline-
progression-direction) runs from -90 (start) to 90 (end), and right-to-left runs from 0
(before) to 180 (after).

Now you will understand exactly how we placed the regions for the diagram in Figure 3-2. The writing-mode is
taken as lr-tb, and the reference-orientation on the simple-page-master is assumed to be 0
degrees. Hence, region-before is at 12 o'clock, or the top; region-after is at 6 o'clock, or the bottom;
region-start is at 9 o'clock, or the left; and region-end is at 3 o'clock, or the right.

Each of the four outside optional regions is flush with the edge of the page-reference-area content-rectangle of the
same name. That is, the before edge of region-before is flush with the before edge of the page-reference-

area content-rectangle. The same is true for the other three regions.

The single dimension that can be specified on any of the four optional regions is the extent. This is the value of the
extent attribute. The extent is the size of the region measured perpendicularly from the flush edge. It is specified

either as an explicit length or as a percentage of the corresponding height or width of the page; the default is 0.0pt.
Figure 3-5 illustrates this for Example 3-1. The region-body is not displayed, for clarity's sake.

Figure 3-5. Region extents

The region-body is sized differently. This formatting object has margins, just as does the simple-page-
master. For example, let us assume that we have specified a reference-orientation of 90 on the
simple-page-master. top for the simple-page-master points to real-world 9 o'clock. This means that
the absolute directions for the page-reference-area content-rectangle, which contains all the regions, are top at 90 (9
o'clock), bottom at -90 (3 o'clock), left at 180 (6 o'clock), and right at 0 (12 o'clock). Margins on the
region-body use these directions; margin-top on the region-body therefore is taken from the page-

reference-area content-rectangle edge at an absolute direction of 90 (9 o'clock).

Specifying a reference-orientation on the region-body does not affect the determination of margin

http://lib.ommolketab.ir
http://lib.ommolketab.ir

directions for the region. The reference-orientation on the region establishes a coordinate system for its

descendant areas.

The four margins - margin-top, margin-bottom, margin-right, and margin-left - on the
region-body are used to size and position that region, relative to the edges of the content rectangle of the page-
reference-area. It is important to understand that the positioning and size of the region-body are therefore

independent of the extents of any of the four optional outer regions, present or not.

It is up to you to ensure that the margins for the region-body are equal to or exceed the

extent of the outer region on each corresponding edge. If you do not explicitly specify any
margin properties, they will be set to 0. If percentages are used, the containing block is the
page-reference-area content-rectangle. The percentages are therefore mismatched between
the region extents and the margin of the region-body. On region-left, 10%
extent is 10% of the page width; on region-body, 10% margin-left is 10% of the

page-reference-area (that is, less than the extent!).

Each region establishes a viewport-area/reference-area pair, as does the simple-page-master. The
reference-orientation of the reference-area, which receives the actual content, is 0, so it has the same top
as the corresponding viewport. The overflow property controls behavior when the content "overflows" the
viewport. This has relevance to printed media: the default value of auto allows for user-agent-dependent behavior,
and none of the other choices - hidden, visible, scroll, or error-if-overflow - can be translated

into well-defined behavior in a print environment. If this is of concern, refer to Section 7.20.2 in the XSL
specification and the formatter documentation.

None of the region reference-areas may have any borders or padding. This is an XSL-FO 1.0
limitation. When combined with the similar injunction placed on the simple-page-
master, it means that if you want page borders, you will have to do fairly convoluted

things with block formatting objects.

You may also need to control the along-edge dimension of the four outer regions. The degree of control is limited, but
you can specify how the regions overlap at the corners. You may specify a value of true or false for the
precedence property on the region-before or region-after. The default, or initial, value is false.
The block-progression-direction of the region-start or region-end extends to the page

margins (to the start or end edge of the content-rectangle of the page-reference-area) if the value of the
precedence on the adjacent region-before or region-after is false; otherwise, if the
precedence of the region-before or region-after is true, then those regions float into the area that
would be otherwise occupied by region-start or region-end. In other words, if you specify true for the
precedence on the header (region-start), it will cover the top left and right corners; if you specify false,

the left and right areas will cover the corners.

Let us work up a fairly complex simple-page-master and depict the resulting regions:

 <fo:simple-page-master
[1] master-name="recto"
 page-height="11in"
 page-width="8.5in"
 margin-top="1in"
 margin-bottom="1in"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 margin-left="0.75in"
 margin-right="0.5in"
[2] reference-orientation="90"
[3] writing-mode="tb-rl">
 <fo:region-body
 reference-orientation="90"
 margin-top="3in"
 margin-bottom="1in"
 margin-left="1.5in"
 margin-right="1.25in"/>
 <fo:region-before
 precedence="true"
 extent="2in"/>
 <fo:region-start
[4] extent="1in"/>
 <fo:region-end
[5] extent="1in"/>
</fo:simple-page-master>

Page sequence references the simple-page-master using the master-name recto.1.
The reference-orientation of 90 and the writing-mode of tb-rl mean that top for the
page-reference-area content-rectangle is at 9 o'clock; with an inline-progression-direction of
tb, start is at 9 o'clock, and end is at 3 o'clock. Similarly, blocks are stacked rl, so before is at 12
o'clock, and after is at 6 o'clock.

2.

The extent of the region-start and region-end are set to 1 inch to be the same as the margins.3.

To associate content with regions of a page, each region must have a region-name property. The defaults are

listed in Table 3-1.

Table 3-1. Default region-names

Region Default region-name

region-body xsl-region-body

region-before xsl-region-before

region-after xsl-region-after

region-start xsl-region-start

region-end xsl-region-end

The default values are reserved for the specific regions mentioned in the table. For example,
you may not assign a value of xsl-region-before to the region-start.

The region-name property may be assigned a value of your choice, other than the default for that region.
region-names must be unique within a single simple-page-master. Finally, you may reuse your own
names across page-masters, but they must refer to the same region class. For example, Example 3-2 shows a full

http://lib.ommolketab.ir
http://lib.ommolketab.ir

document with these areas, using the names correctly.

Example 3-2. Correct region names

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
<fo:layout-master-set>
<fo:simple-page-master
 master-name="odd"
 page-height="11in"
 page-width="8.5in"
 margin-top="1in"
 margin-bottom="1in"
 margin-left="1.25in"
 margin-right="0.75in">

 <fo:region-body
 region-name="xsl-region-body"
 margin-top="0.6in"
 margin-bottom="0.6in"
 margin-left="0.6in"
 margin-right="0.6in"/>

 <fo:region-before
 precedence="true"
 border="thin black solid"
 region-name="xsl-region-before"
 extent="0.5in"/>

 <fo:region-after
 border="thin black solid"
 region-name="xsl-region-after"
 extent="0.5in"
 precedence="true"/>

 <fo:region-start
 region-name="xsl-region-start"
 border="thin black solid"
 extent="0.5in"/>

 <fo:region-end
 border="thin black solid"
 region-name="xsl-region-end"
 extent="0.5in"/>

</fo:simple-page-master>

</fo:layout-master-set>

 <fo:page-sequence master-reference="odd" format="A">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <fo:static-content
 flow-name="xsl-region-start">
 <fo:block> <fo:page-number/>
 <fo:block>Ch 1 </fo:block>
 </fo:block>
 </fo:static-content>

 <fo:static-content
 flow-name="xsl-region-end">
 <fo:block>Page <fo:page-number/>

 </fo:block>
 </fo:static-content>

 <fo:static-content flow-name="xsl-region-before" >
 <fo:block display-align="before">Part 1

 </fo:block>
 </fo:static-content>

 <fo:static-content
 flow-name="xsl-region-after"
 display-align="after">

 <fo:block
 text-align="center">Page <fo:page-number/>
 </fo:block>
 </fo:static-content>

 <fo:flow flow-name="xsl-region-body">

 <fo:block>

The quick brown fox jumps over the lazy dog.
(fill out with further content to show the full page)

 </fo:block>

 </fo:flow>
</fo:page-sequence>

</fo:root>

The following summary provides a rough description of region-body and its contents:

Element

region-body

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Purpose

Region containing the body content for a page
Properties

Common border, padding, and background properties

Common margin properties: block

clip

column-count

column-gap

display-align

overflow

region-name

reference-orientation

writing-mode
Content model

EMPTY

The region-body can be specified to be multicolumn. Although I will not discuss the complex structure of the
resulting areas in a region-body in this chapter, suffice it to say that the column-count property indicates
the number of columns on every page instance formatted using the simple-page-master to which this
region-body belongs. The column-count must be a positive integer greater than or equal to 1. The default is

1.

If a column-count of greater than 1 is specified, a value may be specified for the column-gap property; the
default is 12.0pt. The value is either an explicit length or a percentage of the inline-progression-
dimension of the content rectangle of the region-body.

The following summary provides a rough description of the region elements and their contents:

Elements

region-before, region-after, region-start, region-end
Purpose

Regions serving as the header, footer, left sidebar, and right sidebar for a page
Properties

Common border, padding, and background properties

clip

http://lib.ommolketab.ir
http://lib.ommolketab.ir

display-align

extent

overflow

precedence (region-before and region-after only)

region-name

reference-orientation

writing-mode
Content model

EMPTY

Each region also has a display-align property. This has the default value of auto, and may be assigned the
values auto, before, center, and after. The display-align property controls the alignment of the
child areas of the region in the block-progression-direction (top to bottom for a lr-tb page). A

detailed explanation of the nuances of this property requires concepts not yet discussed; just be content knowing you
can, in fact, influence the vertical placement of content on a page.

Because display-align defaults to before, its default value works well in region-before to keep the
content away from the content of the region-body, but unless you explicitly set display-align to after
for region-after, the footer content will meet the contents of the region-body, which is generally not
desired. In footers, display-align is generally better set to after to separate the footers from the main page

content.

3.3.5 Content Flows

The page-sequence element contains the content to fill a sequence of pages. This element is a wrapper for
content; the semantics of it derive entirely from its association with either a single simple-page-master or a
page-sequence-master. A single page-sequence-master can adequately describe the pagination
requirements for one chapter of a book; hence, we consider a page-sequence to be the vehicle for encapsulating

the content for a chapter.

A page sequence consists of one primary stream of content, contained within the flow. It may also contain as many
content chunks, described by static-content elements, as are required by the header, footer, and sidebar
regions of the simple-page-masters ultimately referenced by the page-sequence.

Both fo:flow and fo:static-content are referred to as flows. The terminology is confusing because of the

existence of the element of that name, but it is hard to devise anything better. Both are flows in the sense that they
provide content to be laid out into regions of pages. A fo:flow is intended to supply content for the region-
body and, as content is consumed, it will not be reused. Static-content elements, on the other hand, are reuseable

content chunks, capable of customization, which is normally derivative of the specific page that they are currently
addressing to provide content for the region-start and region-end (also known as left and right

sidebars),[2] for headers and for footers. Page numbering and running headers and footers are examples of content that
depends either on the current page or on the content delivered by the fo:flow that has been placed on the current

page. This is derivative content.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3.6 A Basic Example

Example 3-3 demonstrates the most basic concepts that we have discussed so far.

Example 3-3. A Hello World example

<?xml version="1.0" encoding="utf-8"?>

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <fo:layout-master-set>

 <fo:simple-page-master
[1] master-name="simple"
 page-height="29.7cm"
 page-width="21cm"
 margin-left="2.5cm"
 margin-right="2.5cm">
 <fo:region-body margin-top="3cm"/>
 </fo:simple-page-master>

 </fo:layout-master-set>

 <fo:page-sequence
 master-reference="simple">

 <fo:flow
[2] flow-name="xsl-region-body">

 <fo:block>Hello, World</fo:block>

 </fo:flow>
 </fo:page-sequence>
</fo:root>

page-sequence references the simple-page-master using the reference to the simple element.1.
The flow-name on fo:flow specifies the fo:region-body using its default (implicit) region-
name.

2.

An A4 sized page is used (again, use your own dimensions if needed), with reasonable margins and the single content
that is the block within the flow. This amounts to the smallest XSL-FO document without using default values and
having content meet the edges of the page.

3.4 Complex Pagination

We have, so far, developed a reasonably complete understanding of simple-page-masters, but now it is time
to examine complex pagination. What mechanism is available to us to specify the sequence of simple-page-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

masters that will be used to format a given page-sequence and the flows contained within it? For this
purpose, XSL 1.0 provides the page-sequence-master element.

This section will look at how the children of a page-sequence-master may be used to vary the selection of

page masters.

A page-sequence may select a simple-page-master directly, using the master-name attribute. This
simple-page-master then generates every page required by the flows contained in that page-sequence.

In other words, the page master is referenced as many times as is needed. This is shown in Figure 3-6.

Figure 3-6. Single simple-page-master

A page-sequence may alternatively select a page-sequence-master, also through use of the master-
reference attribute. The master-reference on the page-sequence matches the master-name on
the page-sequence-master. This is most often useful when the layout goes beyond the simple, single layout
needs, requiring varying simple-page-master usage, as is the case when recto and verso pages differ.

A page-sequence is not constrained to use a page-sequence-master that has
not been used already. page-sequence-masters are not stateful, in this sense, and
effectively "reset" themselves when called upon to supply page-masters to a new
page-sequence.

The page-sequence-master is a container for so-called sub-sequence-specifiers, which, by
definition, are children of the page-sequence-master. Each of the sub-sequence-specifiers
defines a subsequence of the page-sequence in question; the sum of all subsequences is the sequence of pages
that results from completely formatting the flow in that page-sequence.

The following summary provides a rough description of page-sequence-master and its contents:

Element

page-sequence-master
Purpose

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies the constraints on, and the order in which, a certain set of page-masters generates a sequence of

pages
Property

master-name
Content model

(single-page-master-reference|repeatable-page-master-
reference|repeatable-page-master-alternatives)+

The XSL specification requires that sufficient virtual page-master capacity be available in the page-
sequence-master, as provided through its children, to accommodate the needs of the page-sequence. In
other words, if the last subsequence runs out of page-masters and the fo:flow is not exhausted, it is an error.
A formatter may recover by using the last page-master.

The mapping of sub-sequence-specifiers to the subsequences that comprise the page-sequence is
ordered, and there must be at least as many sub-sequence-specifiers as there are subsequences of pages

that are satisfied by the specifiers. In plain English, this means it is acceptable for the flow to finish and leave a
number of unused sub-sequence-specifiers. The general idea is depicted in Figure 3-7.

Figure 3-7. Subsequences

During the processing of one page-sequence, once a page-sequence-master is selected, the sub-
sequence-specifiers are used, in order, starting with the first, and without breaks,[3] until the flow is
completely processed. Sub-sequence-specifiers may not be reused within the context of formatting a
single page-sequence.

3.4.1 Single-page-masters

The single-page-master-reference causes exactly one page to be generated. The subsequence that
corresponds to this specifier consists of one page. The simple-page-master that is to be used is identified
using the master-reference attribute on the page-sequence that corresponds to the single-page-
master-reference.

This sub-sequence-specifier is especially useful for front matter and back matter. It is most commonly
found at the beginning of page-sequence-masters. Example 3-4 shows a single-page-master-
reference.

Example 3-4. A single-page-master-reference

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<fo:root>
<fo:layout-master-set>
<fo:simple-page-master
 master-name="single"
 page-height="11in"
 page-width="8.5in"
 margin-top="1in"
 margin-bottom="1in"
 margin-left="0.5in"
 margin-right="0.5in">
 <fo:region-body
 margin-top="0.5in"
 margin-bottom="0.5in"/>
</fo:simple-page-master>
<fo:page-sequence-master
 master-name="single-page">
 <fo:single-page-master-reference
 master-name="single"/>
</fo:page-sequence-master>
</fo:layout-master-set>

<fo:page-sequence
 master-reference="single-page">
 ... CONTENT ...
</fo:page-sequence>
</fo:root>

Note the difference between using a single-page-master-reference and using a simple-page-
master directly. In the latter case, the number of instances of pages that are generated is potentially unbounded. In
the former case, the renderer will produce an error or warning if the page-sequence contains more than one page

of content.

Note also the required link-back from the page-sequence back to the page-sequence-master, which in
turn links back to the simple-page-master. This is the basic mechanism by which a page layout is selected for

any content.

3.4.2 Constructing Runs of Identical Pages

The repeatable-page-master-reference causes a bounded or unbounded sequence of pages to be
generated using the same page-master. The simple-page-master is referenced using the master-
reference attribute on repeatable-page-master-reference. The maximum-repeats attribute

can be used to set an upper limit on the number of pages that may be generated using this specifier.

The maximum-repeats attribute is typically used to restrict a flow to a fixed number of pages. Use this if, for

example, you require a particular content to be limited to 10 pages.

The initial, or default, value of maximum-repeats is no-limit, meaning it will generate a subsequence of
pages that consume the rest of the current fo:flow. Other permitted values are integers, from to N. A value of 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

indicates that this sub-sequence-specifier maps to a page subsequence of zero length. Negative values are

rounded to 0; positive fractions are rounded up to the nearest integer. Example 3-5 shows the use of a
repeatable-page-master-reference.

Example 3-5. A repeatable-page-master-reference

<fo:root>
<fo:layout-master-set>
<fo:simple-page-master
 master-name="many"
 page-height="11in"
 page-width="8.5in"
 margin-top="1in"
 margin-bottom="1in"
 margin-left="0.5in"
 margin-right="0.5in">
 <fo:region-body
 margin-top="0.5in"
 margin-bottom="0.5in"/>
</fo:simple-page-master>
<fo:page-sequence-master
 master-name="many-pages">
 <fo:repeatable-page-master-reference
 master-name="many"
 maximum-repeats="10"/>
</fo:page-sequence-master>
</fo:layout-master-set>

<fo:page-sequence
 master-reference="many-pages">
 ... CONTENT ...
</fo:page-sequence>
</fo:root>

3.4.3 Conditional Selection of Page Masters

The most powerful and challenging sub-sequence-specifier is the repeatable-page-master-
alternatives formatting object. Some of the nuances will become more clear when we discuss page-breaking in
Section 5.1.3. This element does not have a master-reference attribute, because it doesn't reference page

masters directly - its children do.

Use this element to select one from a number of alternatives for content. A number of conditions may be tested,
related to a page's position within a sequence, the page number, or whether or not a particular page is blank.

The children of the repeatable-page-master-alternatives element are known as alternatives. Each
alternative is represented using the conditional-page-master-reference formatting object. Each one
refers to a specific simple-page-master by name, using the master-reference attribute. It considers

each alternative in order. The first condition for which all of the subconditions are true causes its corresponding
conditional-page-master-reference to be selected, and the simple-page-master referenced

http://lib.ommolketab.ir
http://lib.ommolketab.ir

by that alternative generates the current page. The repeatable-page-master-alternatives element

may contain one or more of alternatives, although in practice, there are rarely more than three or four. The alternatives
have traits, specified using properties on each conditional-page-master-reference, that specify the

conditions that must be satisifed for this particular page layout to become active. Example 3-6 uses odd, even, blank,
or last pages. If all the conditions for a particular alternative are satisfied, the simple-page-master referenced

is used.

The primary use of this class of sequence is to organize content layout such that page layout is grouped according to
the formatted output page position or content.

It is considered good practice to supply a final conditional-page-master-
reference that has a condition that must always be true. This is akin to a default:
statement inside a C or Java switch block. If, at some point during use of a
repeatable-page-master-alternative, no condition is true, use of this
sub-sequence-specifier will terminate.

Three properties may be used to specify the conditions upon which the selection of the alternative is made:

page-position

odd-or-even

blank-or-not-blank

The page-position trait may take the values first, last, rest, or any. The default is any. The values

are interpreted as follows:

first

The subcondition is true if the current page is the first page in the page-sequence.
last

The subcondition is true if the current page is the last page in the page-sequence.
rest

The subcondition is true if the current page is neither the first nor the last page in the page-sequence.
any

Always true.

first or last relates to the formatted output of the flow. Think of it as pouring text into containers. The first
piece of content poured has the value of first; the last piece of content has the value of last, in this sense. This

might be the first or last piece of content of a chapter or article, as templates are applied to produce the content within
the flow.

The odd-or-even trait may have the values odd, even, or any. The default is any. The parity of the page-
number is determined with respect to the page-number trait for the current page; see Section 3.5.

The values are interpreted as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

odd

The subcondition is true if the current page number is odd.
even

The subcondition is true if the current page number is even.
any

Always true.

This property is used to select the formatting required for odd or even pages, for example, a page layout with left and
right margins appropriate for the layout of a book such that the margins nearer the gutter are larger than the opposite
margins; this provides a more even appearance when the book is laid open.

The blank-or-not-blank trait may have the values blank, not-blank, or any. The default is any. It
may not be immediately obvious that a blank page would be generated; one possibility is to use force-page-
count, mentioned in Section 3.5; a discussion of other possibilities will have to wait for the examination of page

breaks. The values of this property are interpreted as follows:

blank

The subcondition is true if the current page contains no areas generated from the fo:flow.
not-blank

The subcondition is true if the current page contains areas from the fo:flow.
any

Always true.

Note that we are concerned with areas generated by the fo:flow, not by fo:static-content. So-called
"blank" pages will often end up with headers or footers. If you do not yet know what page-master you will use,
how can you make a determination of what, if any, the applicable static-contents are? But you can always
determine whether the current page will contain areas from the fo:flow. So this condition concerns itself only with
fo:flow, not all content on the page.

Static content (as it is referred to in the specification) isn't exactly static. The idea is that,
compared to page body content, the headers and footers change relatively little, hence, they
are said to be "static." I find this confusing because the most common content for a header or
footer is the page number, which changes every page! However, the specification calls it
static content, so that's that. It is also static in that it is the same size and location for each
page layout, so perhaps we might sway towards agreeing with the spec writers. For
simplicity's sake, where you see static content, think headers and footers.

The repeatable-page-master-alternatives formatting object has a maximum-repeats property,
which has the same meaning and default value as it does for the repeatable-page-master-reference
formatting object. In effect, the number of times we test the conditions supplied by the repeatable-page-
master-alternatives to select appropriate page masters may be bounded.

Let us construct an example and use it to clarify everything we have learned so far about repeatable-page-
master-alternatives, conditional-page-master-reference, conditions, and subconditions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4.4 Page Conditions

I have already mentioned that a fo:page-sequence is often used to model a chapter of a book or a complete
article. In this capacity, let us surmise that we wish to prepare a page-sequence-master that can handle

chapters with the following structure:

First page

The rest of the pages, except for the last

Last page

Let us also consider that the chapters have some internal structure that might result in blank pages (page break
conditions, which are mentioned later, could cause this). We are also using the force-page-count property on
the page-sequence. Note that this is an extended property that should probably be avoided in favor of
initial-page-label="auto-odd" . We are using the force-page-count property on the page-
sequence to ensure that the total page count is even. (A portable alternative is to use the initial-page-
number attribute on the following page-sequence). We also want to handle internal blank pages and blank last
pages differently. Because we want new chapters to start on an odd page, we set force-page-count to even.

Separate page masters will be employed for the first page, for the last page, for blank pages, and for even and odd
pages.

The comments prior to each block of code in Example 3-6 explain the purpose of that block.

Example 3-6. Conditional page selection

<?xml version="1.0" encoding="utf-8"?>

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <fo:layout-master-set>

 <!-- layout for the first page -->
 <fo:simple-page-master
 master-name="first"
 page-height="29.7cm"
 page-width="21.0cm"
 margin-top="2cm"
 margin-bottom="2cm"
 margin-left="2.5cm" margin-right="2.5cm">
 <fo:region-body
 margin-top="10cm"
 margin-bottom="2cm"/>
 <fo:region-after
 region-name="non-blank-after"
 extent="2cm"/>
 </fo:simple-page-master>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- layout for odd pages -->
 <fo:simple-page-master
 master-name="odd"
 page-height="29.7cm"
 page-width="21.0cm"
 margin-top="2cm"
 margin-bottom="2cm"
 margin-left="3.5cm"
 margin-right="1.5cm">
 <fo:region-body
 margin-top="2cm"
 margin-bottom="2cm"/>
 <fo:region-before
 region-name="odd-before"
 extent="2cm"/>
 <fo:region-after
 region-name="non-blank-after"
 extent="2cm"/>
 </fo:simple-page-master>

 <!-- layout for even pages -->
 <fo:simple-page-master
 master-name="even"
 page-height="29.7cm"
 page-width="21.0cm"
 margin-top="2cm"
 margin-bottom="2cm"
 margin-left="1.5cm"
 margin-right="3.5cm">
 <fo:region-body
 margin-top="2cm"
 margin-bottom="2cm"/>
 <fo:region-before
 region-name="even-before"
 extent="2cm"/>
 <fo:region-after
 region-name="non-blank-after"
 extent="2cm"/>
 </fo:simple-page-master>

 <!-- layout for odd last page, blank or not-blank -->
 <!-- Note that this is redundant in the example -->

 <!-- layout for even last page, blank or not-blank -->
 <fo:simple-page-master master-name="last_even"
 page-height="29.7cm"
 page-width="21.0cm"
 margin-top="2cm"
 margin-bottom="2cm"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 margin-left="1.5cm"
 margin-right="3.5cm">
 <fo:region-body
 margin-top="2cm"
 margin-bottom="2cm"/>
 <fo:region-before
 region-name="even-last-before"
 extent="2cm"/>
 <fo:region-after
 region-name="last-after"
 extent="2cm"/>
 </fo:simple-page-master>

 <!-- layout for blank pages (non-last) -->
 <fo:simple-page-master
 master-name="blank"
 page-height="29.7cm"
 page-width="21.0cm"
 margin-top="2cm"
 margin-bottom="2cm"
 margin-left="2.5cm"
 margin-right="2.5cm">
 <fo:region-body
 margin-top="2cm"
 margin-bottom="2cm"/>
 <fo:region-before
 region-name="blank-before"
 extent="2cm"/>
 <fo:region-after
 region-name="blank-after"
 extent="2cm"/>
 </fo:simple-page-master>

 <fo:page-sequence-master
 master-name="chapter">
 <fo:repeatable-page-master-alternatives>
 <fo:conditional-page-master-reference
 master-reference="odd"
 page-position="rest"
 odd-or-even="odd" />
 <fo:conditional-page-master-reference
 master-reference="even"
 page-position="rest"
 odd-or-even="even" />
 <fo:conditional-page-master-reference
 master-reference="first"
 page-position="first" />
 <fo:conditional-page-master-reference
 master-reference="last_even"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 odd-or-even="even"
 page-position="last" />

 <fo:conditional-page-master-reference
 master-reference="blank"
 blank-or-not-blank="blank" />
 </fo:repeatable-page-master-alternatives>
 </fo:page-sequence-master>
 </fo:layout-master-set>
 <!-- end: defines page layout -->

 <!-- actual layout -->
 <fo:page-sequence
 master-reference="chapter"
 force-page-count="even"
 initial-page-label="1">

 <fo:static-content
 flow-name="non-blank-after">
 <fo:block> <fo:page-number/>
 <!-- content for non-blank page footers --></fo:block>
 </fo:static-content>

 <fo:static-content
 flow-name="blank-before">
 <fo:block> <fo:page-number/>
 <!-- content for blank page headers -->
 </fo:block>
 </fo:static-content>

 <fo:static-content
 flow-name="blank-after">
 <fo:block> <fo:page-number/>
 <!-- content for blank page footers -->
 </fo:block>
 </fo:static-content>

 <fo:static-content flow-name="odd-before">
 <fo:block> <fo:page-number/>
 <!-- content for odd page headers -->
 </fo:block>
 </fo:static-content>

 <fo:static-content flow-name="even-before">
 <fo:block> <fo:page-number/>
 <!-- content for even page headers -->
 </fo:block>
 </fo:static-content>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <fo:static-content flow-name="even-last-before">
 <fo:block> <fo:page-number/>
 <!-- content for even last page headers -->
 </fo:block>
 </fo:static-content>

 <fo:static-content flow-name="last-after">
 <fo:block> <fo:page-number/>
 content for last page footers --- >
 </fo:block> </fo:static-content>
 <fo:flow flow-name="xsl-region-body">

 <fo:block>
 Insert sufficient content for 35 pages to complete
 this example
 </fo:block>
 <fo:block break-before="page"/>
 </fo:flow>
 </fo:page-sequence>
<fo:page-sequence
 master-reference="chapter"
 force-page-count="even"
 initial-page-label="39">

 <fo:static-content
 flow-name="non-blank-after">
 <fo:block> <fo:page-number/>
 content for non-blank page footers --- >
 </fo:block>
 </fo:static-content>

 <fo:static-content flow-name="blank-before">
 <fo:block> <fo:page-number/>
 content for blank page headers --- >
 </fo:block>
 </fo:static-content>

 <fo:static-content flow-name="blank-after">
 <fo:block> <fo:page-number/>
 content for blank page footers --- >
 </fo:block>
 </fo:static-content>

 <fo:static-content
 flow-name="odd-before">
 <fo:block> <fo:page-number/>
 content for odd page headers --- >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </fo:block>
 </fo:static-content>

 <fo:static-content flow-name="even-before">
 <fo:block> <fo:page-number/>
 content for even page headers --- >
 </fo:block>
 </fo:static-content>

 <fo:static-content flow-name="even-last-before">
 <fo:block> <fo:page-number/>
 content for even last page headers --- >
 </fo:block>
 </fo:static-content>

 <fo:static-content flow-name="last-after">
 <fo:block> <fo:page-number/>
 content for last page footers --- >
 </fo:block>
 </fo:static-content>

 <fo:flow flow-name="xsl-region-body">

 <fo:block> Insert sufficient content for some
 more pages to complete this example
 </fo:block>

 </fo:flow>
 </fo:page-sequence>
</fo:root>

The repeatable-page-master-alternatives formatting object has a maximum-repeats attribute,
which is used in exactly the same fashion as described for repeatable-page-master-alternatives,
except that the individual pages are instances of simple-page-masters that are chosen according to

conditions. Figure 3-8 demonstrates how these alternatives may work.

Figure 3-8. Repeatable-page-master-alternatives

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.5 Page Sequences

So far, I have talked about aspects of fo:page-sequence - its children, the page-masters to which it
points in one fashion or another - that pertain to how sequences of pages are married with their page-masters. I

have also talked at length about the structure of a page. I have left out several properties that deal with page
numbering, but I'll introduce them soon. There are also two other properties that I will talk about that introduce
elements of internationalization.

3.5.1 Page Numbering

The initial-page-number property fixes the page number for the first page of the page-sequence to

which it applies. The values of the property and its interpretation are listed as follows:

auto

If this is the first page-sequence, the initial page number becomes 1. If it is not the first page-
sequence, the initial page number of the current page-sequence becomes the page number of the last
page of the preceding page-sequence, plus 1. That is, it simply continues numbering pages sequentially.

auto-odd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As for auto. If the resulting value is even, add 1.
auto-even

As for auto. If the resulting value is odd, add 1.
[number]

A positive integer, that is, 1 or greater. If a non-positive integer is supplied, this number is rounded to the
nearest positive integer.

To force content to be numbered starting at, say, page 51, simply use this property, as in Example 3-7.

Example 3-7. Forced page numbering

<fo:page-sequence
 master-reference="chapter"
 initial-page-label="51"
...

If the first page-sequence has no value specified for initial-page-number, the default of auto is used,

and hence, the first page is numbered as 1.

The force-page-count property imposes a condition on the number of pages in a page-sequence. This

number may be an absolute count or a parity condition. For each condition, if the condition is not satisfied, one page
is added to the current page-sequence. The values of the property and its interpretation are listed as follows:

auto

The action taken depends on the existence of a succeeding page-sequence and the value of its
initial-page-number property. If there is a succeeding page-sequence and an even initial-
page-number is explicitly specified on it, the current page-sequence must adapt.

even

Force an even page count for the page-sequence.
odd

Force an odd page count for the page sequence.
end-on-even

Force the last page to have an even page number.
end-on-odd

Force the last page to have an odd page number.
no-force

Do not force any page count.

Note that the default value is auto, which is mostly what is wanted, resulting in alignment
in the before direction. As a starting point, try the initial-page-number
property, which is the easier option here.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Consider what will happen if we set various values for the force-page-count property on the first page-
sequence, and modify the second page-sequence to have an explicit initial-page-number value of
39. Let us also assume that the first page-sequence now formats out to less than 39 pages, say 37. If the first
section actually formats out to 15 pages, by default, the renderer will add an even page, so that the next page-
sequence can start on an odd page, but it won't add the extra pages that are needed to fill in the numeric gaps.

If the default, auto, is in effect, then because the next page-sequence is required to start with a page number of

39, the last page of this one must be even. Currently, it is 37, so a page must be added.

If we set force-page-count to even, a page must be added, bringing the page count up to 38. The last page is
numbered 38. Again, note that this could be achieved more portably using simply the initial-page-number
property. If we set force-page-count to odd, no action needs be taken. If we set force-page-count to
end-on-even, a page must be added, so that the last page is numbered as 38. If we set force-page-count
to end-on-odd, no action needs be taken.

If you use initial-page-number attribute and a value of auto (the default) on the

page count, this should normally result in the output needed. It is simple and reliable.

Do not assume that an actual formatter will follow a particular method of forcing the page
count, as in adding blank pages. An implementation may elect to use a different strategy to
satisfy this constraint; and this may result in an unexpected blank page or no blank page
where you would expect one.

If you are concerned with this class of problem, it may well be worth experimenting with content and these properties
to fully come to terms with them. It is also wise to ensure which of these properties are supported by the formatter of
your choice.

Four properties that influence the formatting of the page number if it is requested are format, letter-value,
grouping-separator, and grouping-size. These properties are defined in Section 7.7.1, "Number to

String Conversion," of the XSLT specification.[4] Read that W3C Recommendation for a full exposition; here's a short
synopsis.

The common values that the format property may include are 1, which results in a sequence of the form 1, 2, 3, ...,

10, 11, 12, ..., 100, 101, 102, ..., or variants such as 001, which results in a sequence of the form 001, 002, 003, ...,
010, 011, 012, ..., 100, 101, 102, A generates an uppercase sequence of the form A, B, C, ..., AA, AB, AC, a
generates a lowercase sequence of the form a, b, c, ..., aa, ab, ac, i generates a sequence of lowercase Roman
numerals, and I, a sequence of uppercase Roman numerals. There are other possibilities. Be advised that numbering

is influenced by language (see the next section) and that these examples are true for Western scripts, not necessarily
others.

The letter-value property disambiguates between an alphabetic letter sequence, such as that realized in
English by the format token a and some other assignment of numbers to letters, such as the Roman numeral system
in English. The first is obtained by specifying the value of alphabetic, and the other is obtained by specifying a
value of traditional. The property is used when the format token would be the same; in other words, the first

member of the alphabetic sequence is the same as the first member of the traditional sequence. This is not an issue in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

English.

For readability, long numbers are frequently grouped, e.g., 10000 becomes 10,000. The grouping-separator
property specifies the separator, in this example, a comma; and the grouping-size property specifies the size of
the grouping, in this example, 3. For a grouping-separator of . and a grouping-size of 2, 10000

would become 1.00.00, which may or may not be meaningful to you.

3.5.2 Country and Language

The page-sequence country property is specified either as the value none, which is the default, or as an
ISO-3166 country specifier; for example, United States is us, United Kingdom is gb, Canada is ca, and Estonia is
ee. See http://www.ietf.org/rfc/rfc3066.txt for more information.

The page-sequence language property is specified either as the value none (the default), or as an ISO-639

language code, listed at http://xml.coverpages.org/languageIdentifiers.html. This is a two-letter tag. Again, if you have
programmed for web services to any extent, you will be somewhat familiar with such codes as en for English, fr for
French, and et for Estonian.

The values of the language and country properties affect the formatting of the fo:block and
fo:character elements, which you'll learn about in upcoming chapters. Both of the properties in combination

influence hyphenation, line justification, and line breaking.

[1] I will adhere to the convention of using an fo: prefix to refer to elements in the FO, or

http://www.w3.org/1999/XSL/Format namespace. You may use anything you like in place of fo:. For sake of

simplicity, I will not generally use prefixes in the main narrative, except where necessary to avoid confusion (as when

referring to the fo:flow element as a flow).

[2] In this context, a sidebar refers to the content placed into region-start or region-end. Be aware that

sidebars, in a more general sense, are blocks of explanatory text taken out of the normal narrative flow and visually

set apart.

[3] It is possible for a sub-sequence-specifier to match a subsequence containing zero pages.

[4] You can find this at http://www.w3.org/TR/xslt.

CONTENTS

http://www.ietf.org/rfc/rfc3066.txt
http://xml.coverpages.org/languageIdentifiers.html
http://www.w3.org/1999/XSL/Format
http://www.w3.org/TR/xslt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 4. Areas

 4.1 Informal Definition of an Area

 4.2 Area Types

 4.3 Components of an Area

 4.4 Reference Areas

 4.5 Area Positioning

In Chapter 3, I discussed how pages are organized into sequences, how page masters are selected for processing, and
how the page area is divided into regions. In this chapter, we will delve deeper into what happens on a page. We will
go into some detail about page layout. After this, you should appreciate why the formatter produces output as it does,
and perhaps have some sympathy with implementors.

4.1 Informal Definition of an Area

As you have seen in Chapter 3, formatting objects contain data that should be rendered as a series of marks on the
canvas - text, images, lines, etc. The formatter turns objects into series of imaginary rectangles on the page, called
areas. One object may produce more than one area: e.g., an fo:block element produces two areas if split by a

page break, as shown in Figure 4-1.

Figure 4-1. A block split over a page boundary

FOs have properties that specify constraints on the appearance and placement of areas generated by them. These
constraints are used to calculate area traits, which are attributes of areas that uniquely identify their placement,
appearance, and contents. Most properties and traits have one-to-one correspondence: e.g., the color property

unambiguously defines a trait with the same name. But there are several cases where relations between properties and
traits are more complicated; they will be considered later.

Traits are actual attributes of an area as calculated by the formatter, whereas properties are a
set of constraints imposed on the traits.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Areas form a tree structure: a larger area can contain smaller subareas. Typically, the area tree closely resembles the
source FO tree: an area generated by formatting object A contains subareas generated by descendant elements of A.
Important exceptions are out-of-line elements, such as floats and footnotes.

4.2 Area Types

Areas created by formatting objects can be of two principal types:

Inline-areas

These areas correspond to text chunks, inline images, etc. Areas of this type are stacked on a line in the
inline-progression-direction (see Chapter 6). Inline-areas are placed inside other inline-areas
or inside line areas. The following objects create only inline-areas: fo:character, fo:inline,
fo:inline-container, fo:bidi-override, fo:leader, fo:external-graphic,
fo:instream-foreign-object, fo:page-number, and fo:page-number-citation.

Block-areas

These areas correspond to text paragraphs, tables, lists, etc. Areas of this type are stacked on a page in the
block-progression-direction (see Chapter 5). The following objects create only block-areas:
fo:block, fo:block-container, fo:table, fo:table-and-caption, and fo:list-
block.

Each area has a set of font traits, derived from font properties of the respective formatting object. These traits
uniquely define a nominal font associated with the area. The area need not actually contain glyphs from this font;
parameters of the nominal font may be used in calculating area position. Two such traits are text-altitude and
text-depth: they specify the inline-progression-dimension of glyph-areas and are used in line-

stacking calculations. These are the low-level items that determine the area sizes.

Two more area types are useful for defining the area model:

Glyph-area

These areas can be viewed as an extreme case of an inline-area, corresponding to a single glyph. Every
printable character of the text data in the source FO tree generates a glyph area. A glyph-area has two
important traits that other areas don't have:

text-altitude

The height of the nominal ascender of the font to which the glyph belongs
text-depth

The depth of the nominal descender of the font

These are illustrated in Figure 4-2.

Figure 4-2. Text-altitude and -depth

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that text-altitude and text-depth are font properties, common to all glyphs in a given font, rather

than glyph properties: two glyph-areas containing glyphs from the same font will get identical values for these traits.
The specification says conforming implementations may choose as any value in the range of text-altitudes
used by fonts of the same script and font-size, instead of the values from the font data.

These two traits determine the size of the content-rectangle for the glyph-area in the block-
progression-dimension: from the top of text-altitude to the bottom of text-depth.

The height of the content-rectangle of a glyph-area is different from the font-size (the latter
is greater by the amount of the default leading for the font).

In the inline-progression-dimension, glyph-area size is determined by the glyph itself (for Western

fonts, this would be the glyph width inclusive of left and right bearings). This is worth being aware of, even though
the stylesheet author has no control over them.

Line-area

This is a special kind of a block-area, corresponding to a single line of text. It has no corresponding formatting
object; its traits are derived from properties of the embracing block-level object, such as line-height,
line-height-shift-adjustment, and line-stacking-strategy. It is a useful abstraction

to describe the switch between inline-level and block-level areas: inlines are stacked inside line-areas, which
are packaged into the surrounding block-area. Line-areas cannot have borders or padding, and their stacking in
the block-progression-direction is controlled by special rules (see Section 4.5.4 for line

stacking strategies). Figure 4-3 shows a line-area containing an inline.

Figure 4-3. Line-areas

There are other area types, used in constructing upper levels of the area tree, which also have no formatting objects
directly corresponding to them:

Region-reference-areas

Each region into which a page is divided (region-before, region-after, region-start,
region-end, and region-body) forms an area. The dimensions of the regions are defined by the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

respective region descriptors in the fo:simple-page-master currently selected.

Main-reference-area

This implicit area is created inside the region area that accepts the contents of the fo:flow (typically,
region-body) and differs from it by the adjustments necessary to allocate conditional subregions: xsl-
float-before, xsl-footnote, and xsl-footnote-separator. When there are no out-of-

line elements on the page, the page-reference-area coincides with the region-reference-area. It contains one or
more span-reference-areas.

Span-reference-area

In a multicolumn layout, a block-level element may have an attribute span="all" making it span all
columns on the page; others have span="none", meaning that areas produced by these elements lay within

one column. When laying out the page, a formatter partitions the flow into chunks such that all blocks in a
chunk have the same value of the span attribute. Each chunk creates a span-reference-area. This enables

common column areas to be laid out together.
Column-area

A span-reference-area is further subdivided into areas for single columns. For span-reference-areas with
span="all", there will be only one such area, coinciding with the span-reference-area itself. For
span="none", the number of areas is defined by the column-count property, and their separation by
the column-gap property of the fo:region-body element in the current simple-page-master
element.

Figure 4-4 shows the main areas of a normal page.

Figure 4-4. Page level areas

4.3 Components of an Area

An area may have a border around it, with or without a background inside it (which may be an image or a color fill).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following are terms for rectangles that constitute an area:

Content rectangle

This is the innermost part of an area. It represents the space actually available to host area contents, such as
children areas, glyphs, and graphics.

Padding rectangle

This rectangle extends up to the inner boundary of the border. It includes the content rectangle plus padding
offsets from all the four sides. This rectangle delimits the zones covered by the background of the area.

Border rectangle

This rectangle is delimited by the external edge of the border frame. It includes the padding rectangle, plus
border widths of all the four sides. Except for special cases (absolute/relative positioning, overflow, out-of-line
elements, etc.), no marks are produced by a formatting object outside the border rectangle of its generated
area(s) - the rectangle is surrounded by spaces transparent to marks left by other areas.

All these rectangles should be present in CSS2 box model. There is one more rectangle defined in CSS: a margin
rectangle that incorporates margins around the border. In XSL, margins are not used for area positioning (they are
replaced by spaces); so it does not make sense to include the respective rectangle in the model. Figure 4-5 shows the
content, padding, and border rectangles.

Figure 4-5. Area nomenclature

4.4 Reference Areas

In CSS2, normally positioned blocks have properties that determine their placement with respect to the content
rectangle of their parent box. All boxes are equivalent: children inside a box are always stacked in the same manner.

XSL takes a different approach: it designates some areas for use as reference for defining inline-progression-
dimension and orientation of their descendant areas. Such areas are called reference areas; I will refer to other areas
as normal.

Reference areas have the following distinctive features:

They define starting points for start-indent and end-indent traits of all descendant normal block-

areas.

They can set new writing-mode and reference-orientation (normal areas can change inline-
progression-direction only via the direction property or bidi mechanism).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Their dimension is always bound in both directions, and the display-align trait can be set to align their
contents in the block-progression-dimension.

All region and column areas are reference areas; areas produced by fo:block elements are normal. table-
cell is a reference area; label and body of a list item are normal. Only three formatting objects can explicitly

generate reference areas:

fo:table-cell

fo:block-container

fo:inline-container

4.5 Area Positioning

The XSL specification defines a large variety of properties to express constraints over the appearance of areas on a
page. The formatter tries to choose an optimal location for the area. This is not a straightforward process: properties
may clash with each other, giving rise to an overconstrained geometry specification. It's the formatter's task to choose
a location for an area that will satisfy as many constraints as possible. The XSL spec is flexible about rule conflicts: it
defines rules for prioritizing some constraints over others, but delegates the right to make the final decision to the
formatter engine.

Next, I will analyze properties for expressing area position and dimensions, and describe their interaction rules.

4.5.1 Turning Formatting Objects into Areas

It is not uncommon that a single formatting object produces two or more areas. A single block of text may be split by
a page break; an inline element may be scattered into several lines. Traits of the resulting areas are controlled by
properties of their source formatting object.

Borders and padding can be applied conditionally, using the extended property, border-after-
width.conditionality, for instance. The values are either retain or discard, and affect the border or

padding when it is at the beginning or the end of a reference area. This can cause problems when you actually want
the border or padding at the before or start side, and the conditionality is set to discard (the default). It is

explained further when I discuss space resolution in Section 4.5.4.

This is another case where a trailing area (here, a border) may be discarded if it is the last in a reference area.
Roughly, this means if a sequence of areas has a border specified, the final one may be discarded, because its area is
lost in the parent area. For example, if you have specified border-after on six successive areas, with the final

one ending a chapter, this may be discarded (default) by the formatter, because its area will be lost in the break before
the start of the next chapter. Similar logic works in the inline-progression-direction. Again, this is
controlled by the spaces and conditionality logic. If the conditionality is set to retain, the normal logic is

overridden.

There are also a number of constraints that don't directly assign traits to the areas; rather, they control the number and
the appearance of the areas produced by the formatting object that bears them. They are expressed by the following
properties:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

break-before

The first area generated by a formatting object with break-before set to something other than auto
should be placed first in the area-tree inside some reference-area. The stylesheet author specifies the condition,
and the formatter determines the placements. The type of this reference-area depends on the value of the
property:

auto

No constraint is present; the property is discarded.
column

The object starts a column-reference-area.
page

The object starts a page-reference-area.
odd-page

The object starts an odd-numbered page-reference-area.
even-page

The object starts an even-numbered page-reference-area.

This property triggers a break immediately before the first area generated by the current object, starting a new
column, page, odd-page, or even-page. Note, however, that this property is not like a form-feed command for a
printer; if the constraint on area placement had been generated without this property, no additional pages
would be generated. In plain words, consecutive break constraints separated by objects that create no areas are
merged.

Break-after

An inversion of the preceding property, with the same set of values. It generates a break after the object: the
last area generated by the object should be last in its column-area, and the next area should start a new column,
page, odd-page, or even-page.

Keep-with-previous

The opposite of break-before: the first area generated by the object should not be the first in the

area. This property is compound, with the following components:
.within-line

The object should not start a new line.
.within-column

The object should not start a column.
.within-page

The object should not start a page.

Each component may assume the following values:

auto

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constraint disabled.
Integer value

Specifies the strength of the constraint.
always

Specifies a strength value greater than any integer.

The strength of the constraint is used to arbitrate its conflicts with other constraints.
keep-with-next

Inhibits break after the last area produced by the object. It has the same component structure and the same
choice of values.

keep-together

This property prescribes that the formatting object should generate only one area - in other terms, it inhibits
respective breaks between areas generated by the formatting object. The components and the set of values are
the same as for the preceding two values.

Like space specifiers, keep and break constraints can lead to overconstrained specification, when it is impossible to
satisfy them all simultaneously. In these cases, the following rules of constraint relaxation apply:

All break constraints are satisfied first.

Keep constraints with lower strength are relaxed first.

The resulting set should satisfy the maximum number of constraints with the highest strength possible.

There are two more properties that constrain area placement inside reference areas: orphans and widows. They
specify the minimum number of line-areas that can be left at the end of the page (orphans) or carried over to the
next page (widows). The spec does not define how these properties should interact with other keep constraints.

4.5.2 Area Dimensions

Each area has two traits that define its dimension: inline-progression-dimension and block-
progression-dimension. These traits define the width and height of the content rectangle of the area; which
one is horizontal and which is vertical depends on the current writing-mode and reference-
orientation. However, not all formatting objects may have properties that directly map to these traits; they are

permitted only on objects that create reference areas or images:

fo:simple-page-master gets page-width and page-height properties, and margins. There is
a size shorthand, too.

fo:region-body has margins to specify its offsets from the page-reference-area content rectangle (defined
in its parent fo:simple-page-master). While there are no traits for direct settings of dimensions, it is
still possible to fix the size because the dimensions of page-reference-area are known.

fo:region-before , fo:region-after, fo:region-start , and fo:region-end cannot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

control their dimension in the direction parallel to the sheet edge to which they are attached. In the other
direction, their size is given by the extent property.

fo:block-container and fo:inline-container may have explicit attributes of inline-
progression-dimension and block-progression-dimension, specified either as a
percentage, range, or length. width and height may be also specified for these two elements. In addition,
when an fo:block-container is absolutely positioned, it may get its dimensions from top, bottom,

right, or left.

fo:external-graphic and fo:instream-foreign-object have the same size-related

properties as the containers above.

fo:table and fo:table-cell have width and height.

Note that there is no link between extent and margins on fo:region-body. It is the

stylesheet writer's responsibility to ensure that side regions fit into the place left free by
fo:region-body.

All other elements can only specify their dimensions in terms of distance from the edges of a reference area. (This is
more a feature than a limitation; to set any dimension explicitly, you always have an option of wrapping the desired
element into a block- or an inline-container).

4.5.3 Positioning a Block-Area: Margins and Indents

Each block-area has two traits that specify its position and size in the inline-progression-dimension:
start-indent and end-indent. They specify the distance from an edge of the content rectangle of the area
(start-edge for start-indent, end-edge for end-indent) to the respective edge of the content-

rectangle of its closest ancestor reference area. Each formatting object that produces areas may have properties that
map directly to these traits (and are named the same). See Figure 4-6.

Figure 4-6. Start- and end-indents

XSL has an alternative mechanism for setting indent traits: an area can be positioned using margin properties. There
are four margin properties: margin-top, margin-bottom, margin-left, and margin-right. A

margin property specifies the distance from the respective edge of the content-rectangle of the closest ancestor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

reference-area to the edge of the border-rectangle of the current area. Margin properties can only be absolutely
oriented: no writing-mode relative equivalents are provided. There is also a short form[1] property margin that

sets all the four margins simultaneously, using standard CSS2 rules.[2]

In XSL, indents are inheritable. Unless you set them explicitly (in either of the two ways described previously), the
content-rectangle of a nested area gets the same inline-progression-dimension as that of an embracing

area. Inheritance is discussed further in Appendix E. If you add padding and/or border to the nested area, its border-
rectangle will extend outside the content-rectangle of its parent. Note that this differs from CSS2 habits: there, the
border-rectangle of a contained box always fits inside the content-rectangle of the container one. If you want to
enforce CSS2-style box nesting, you have to specify margin="0pt" explicitly on every contained block.

For the sake of completeness, let's now mention the effects that side floats have on the placement of block-areas.
These are areas specified to float in the start or end direction, as might be found in an explanatory note. A side float F
is said to intrude into a block-area B if:

B and F have the same nearest ancestor reference-area.

There is a line parallel to the inline-progression-direction that intersects border rectangles of
both B and F. Think of this as the float stealing space from the block.

Intruding floats make no impact on the placement of normal block-areas. However, they do influence the inline-
progression-dimension of the following types of areas:

line-areas

reference-areas (generated by a fo:block-container element)

Areas generated by list-item-body

If an area belongs to one of these types, and has one or more side-floats intruding into it, then its start-indent
and end-indent are calculated from the inner side of the float box, rather than from the respective edge of an

ancestor-reference-area.

In a typical case, a paragraph of text with an intruding float will have lines shortened to make room for the float. Note
that the block itself is not influenced by the float; if it has a border around it, the float will be pasted inside the border.
On the other hand, a block-container with an automatically determined width will shrink as a whole, leaving the float
outside.[3]

4.5.4 Stacking Block-Areas and Spaces

Let's now consider how block-areas are stacked one after another in the block-progression-dimension.

We have already seen that the XSL model is based on spaces; now we will see which properties can be used to
constrain spaces between areas, and how they interact.

What is a space? Informally speaking, a space is a distance between the area's border-rectangle and the closest visible
mark left on the page by any normally positioned area. This mark may be left by a nonzero border, by padding
(because padding may contain background), or by a nonempty content-rectangle of any area. Border and padding
need not belong to the next or previous area: they may be left by an embracing block that happens to start or end just
before or after the current area. Note also that for two consecutive areas, the space-before of the first area is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

equal to the space-after of the second area. See Figure 4-7.

Figure 4-7. Space

Spaces before and after a block-area are controlled by space-before and space-after properties. These

two properties are compound, with the following components:

.minimum

A length. Default is 0pt.
.optimum

A length. Default is 0pt.
.maximum

A length. Default is 0pt.
precedence

A number or a special token, force. Default is 0.
conditionality

Either discard or retain. Default is discard.

There is also a shorthand notation: by specifying space-before="X" you set all numerical components
(.minimum, .optimum, and .maximum) to the same value of X.

These compound properties represent a very versatile mechanism: you can constrain a range for the space (from
minimum to maximum), indicate the preferred value (optimum), set the relative strength for the constraints
(precedence), or define space behavior when there is no adjacent area in the same reference-area
(conditionality).

This complexity is due to the fact that space constraints are not independent. When two consecutive areas meet, there
may be several space constraints applicable: a single space value should be chosen to satisfy them all (or rather, to
satisfy them to the best extent). In this situation, it is desirable to give a stylesheet writer the maximum control over
the selection of the correct space.

As I mentioned earlier, a space constraint between two consecutive areas A and B can be specified in any of the

following ways (see Figure 4-8):

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As a space-after of A

As a space-before of B

As a space-after of any block-area A1 descendant of A such that there is no other content, padding, or
border between A1 and B

As a space-before of any block-area B1 descendant of B such that there is no other content, padding, or
border between A and B1

Figure 4-8. Space resolution

All these constraints are considered together and merged into a single value, or better, a single range specifier with
.minimum, .maximum, and .optimum components. The final decision is delegated to the XSL formatter; it
should stick to the resolved .optimum value whenever possible, and choose another value within the .minimum
to .maximum range if there are other constraints to satisfy.

The merged space specifier is calculated by the following algorithm:

If any space property has .precedence="force" (forcing spaces), all space specifiers but forcing ones
are discarded. The resulting space specifier should have the sum of .minimum components as its
.minimum, the sum of .optimums as .optimum, and the sum of .maximums as .maximum. In other

words, forcing spaces are additive: they suppress all other spaces but don't merge with each other.

Otherwise, spaces with the maximum value of .precedence are selected, and others are discarded. If there
is more than one space specifier with the same precedence, the one with the higher .optimum value is
selected. If there are two or more specifiers with the same .precedence and .optimum values, the
resulting space specifier will be equal to the intersection of their ranges; that is, the .minimum will be equal
to the greatest of all .minimums, and the .maximum will be set to the smallest of all .maximums.

If an area happens to be the first on the page with no preceding marks from which to count space-before,
space-before is counted from the before-edge of the content-rectangle of the closest ancestor reference-area.
Remember that in this case, only specifiers with .conditionality="retain" are taken into consideration.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now let's see an example of how all this works. Figure 4-9 represents a typical configuration. Two blocks, each
specifies a space: the first specifies a space-after and the second specifies a space-before. Example 4-1

demonstrates how to achieve this.

Example 4-1. Space resolution

<fo:block space-after.minimum="3pt">
 space-after.maximum="24pt"
 space-after.optimum="12pt">

</fo:block>
<fo:block space-before.minimum="6pt"
 space-before.maximum="18pt"
 space-before.optimum="12pt">
....
</fo:block>

The resolution is for the resultant minimum to be set to 6pt, the maximum to be set to 18pt, and the computed
value, set to 12pt. This is shown in Figure 4-9, with the shaded area indicating the extents. When the optimum
values are equal, take the greatest minimum and least maximum, so the resolved space in this case has a
minimum of 6pt.

Figure 4-9. Space resolution (2)

It is easy to create a contradictory set of space constraints. In such a case, formatter behavior is not described by the
specification and remains application-specific. The stylesheet writer is responsible for the consistency of the
constraint system. The space mechanism is powerful and versatile, but not fool proof.

This differs drastically from the CSS box model where top- and bottom-margins are a single value. Margins in CSS
are self-contained and additive in most cases, and the margin merging algorithm is rudimentary - the widest margin
is selected. XSL supports margin properties on before-edge and after-edge, too; they are converted into space-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

specifiers as follows:

margin-{correspondent}="X":
 .minimum = .optimum = .maximum = X
 .conditionality="retain"
 .precedence="force"

This permits you to simulate CSS-style box stacking in XSL. Note that CSS-style margins won't merge with each
other and will overcome every non-forcing space specifier.

4.5.5 Stacking Inline-Areas

Stacking inline-areas inside a line-area is perfectly parallel to stacking block-areas inside a reference-area. An inline-
area has traits to control free space left before and after it in the inline-progression-direction:

space-start

Controls how much space is left before the start-edge of the inline-area; it is set by the space-start
compound property;

space-end

Controls how much space is left after the end-edge of the inline-area; it is set by the space-end compound

property.

space-start and space-end for inline-areas are calculated by the same rules as space-before and
space-after for block-areas (accounting for possible change of direction). Any conditionality components

control constraint suppression at the start or end of a line-area.

Alignment of inline-areas in the block-progression-direction is controlled by the baseline mechanism

(see Chapter 6).

4.5.6 Stacking Line-Areas

Stacking line-areas inside a block-area is less trivial. The distance between lines is controlled by the compound
property line-height, with the same components as other space specifiers. Its interpretation depends on the
algorithm selected for line-stacking. There are three algorithms available, switched by the line-stacking-
strategy property on the parent block-area: font-height, max-height, and line-height.

To describe the placement of lines in terms of stacked areas, here are some terms. A line-area can be logically divided
into three parts (see Figure 4-10):

The allocation-rectangle is the central part of the line-area around the baseline. It roughly corresponds to the
content-rectangle, but doesn't necessarily coincide with it. Its size in the block-progression-
dimension is determined differently depending on the line-stacking-strategy selected.

There are two spaces around the allocation-rectangle, which are both equal to half-leading. Half-leading spaces
get .conditionality and .precedence attibutes from the line-height property and can be

merged with other spaces and suppressed in the beginning or at the end of a reference area - just like other
spaces. However, half-leading spaces never get merged with their likes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 4-10. Line area layout

Line-areas are stacked one after another inside a block-area, leaving no other space before or after them but the half-
leadings from both sides. The gap between allocation rectangles of two adjacent line-areas consists of the half-
leading-after of the first line plus the half-leading-before of the second line. (Note that these two spaces aren't
merged.)

The available line-stacking strategies are line-height, font-height, and max-height.

Note that for lines built entirely of text using a nominal font, all three line-stacking strategies give the same value of
base line separation (equal to the line-height). They differ only in the treatment of large elements that go
outside the nominal-requested-line-rectangle: the simplest strategy is font-height: separation between baselines

of adjacent line areas is constant throughout the whole block and does not depend on the actual contents of any line.
Inter-line distance should equal line-height.optimum, unless the formatter chooses another value in the
range .minimum to .maximum to satisfy other constraints on block placement. Sizes of line-area elements are

determined as follows:

Allocation-rectangle for line-stacking-strategy="font-height" depends solely on the
nominal font for the block. Its before-edge is offset by text-altitude from the baseline, and its after-edge
is placed at text-depth from the baseline in the block-progression-direction. In the XSL

spec, this is called nominal-requested-line-rectangle, and is likely to be the most common one used.

Half-leading is half the difference between the line-height chosen and the height of the allocation

rectangle:
half-leading = (line-height - text-altitude - text-depth) / 2

In other words, this strategy stacks lines as if the whole block consisted entirely of plain text, with text-
altitude and text-depth remaining constant across the block. Eventual inclusions of other font glyphs or
large images don't influence the distance between the baselines. Using font-height will certainly make a mess of
things if you include, for instance, graphics in your document. In such a case, use max-height.

max-height is a more complicated strategy. The half-leading is calculated by the same formula as with font-
height and remains constant for all lines in the block. The allocation-rectangle, instead, is calculated in a more
complex way: its dimension in the block-progression-dimension is determined by the elements whose

before-edge and after-edge are the most distant from the baseline (for Western scripts these are determined by the
tallest/deepest elements; that's why the strategy is called max-height). With this strategy, the gaps between the

lines remain constant across the block; if the line has elements bigger than glyphs of nominal font, its separation from
its neighboring lines will be increased so as to leave the gap between lines equal to the constant value (two half-
leadings). However, if the line consists only of small elements, the baseline separation is not stretched: the allocation-
rectangle will always contain the nominal-requested-line-rectangle.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One more trait influences line placement with this strategy: line-height-shift-adjustment. It controls

processing of areas whose baselines are shifted from the common baseline of the line-area. There can be two values
for this trait:

consider-shifts

When calculating the allocation-rectangle, baseline shift elements are taken into account. For instance, if a line
contains a subscript, the next line will be placed lower because the allocation-rectangle will extend to reach the
after-edge of the subscript glyph.

disregard-shifts

Baseline shifts are disregarded. If a line contains subscripts or superscripts, its placement is not influenced by
their presence.

The last strategy is line-height. This way of stacking lines comes from CSS and differs greatly from the
preceding two. In this method, the line-height trait is considered a property of each inline-area, rather than the

whole block-area, and may vary across the block: it is even possible that areas within the same line have different
values of line-height. There is no common half-leading defined for the block; instead, every single area gets
margins before and after it, depending on the local value of the line-height trait. The allocation-rectangle of the

line-area is defined to be the least rectangle to include both the nominal-requested-line-rectangle and all inline-areas
with their margins. Allocation-rectangles defined this way are stacked one after another, with no additional gap
between them.

The algorithm to determine margins on inline-areas is similar to the method of calculating line separation in the
max-height strategy:

For inline images and reference-areas (containers), margins are set by normal space-specifiers that are treated as
CSS margins: conditionality and precedence are neglected, and no merging ever occurs.

For other types of areas, the half-leading is calculated as a function of line-height, text-altitude,
and text-depth. The formula is the same as earlier for font-height and max-height, but trait

values are taken from the inline-area. This half-leading is added before and after the content-rectangle
(determined by text-altitude/text-depth traits). Note that the block-progression-
dimension of the resulting margin-rectangle will be always equal to the line-height.

Within this strategy, line-height-shift-adjustment is also applicable and has the same meaning: when
line-height-shift-adjustment="disregard-shifts" is set, all calculations are performed as if

all inline-areas were aligned along the same baseline. This permits exclusion of inter-line gap widening due to
subscripts and superscripts.

font-height neglects big elements - line separation is always fixed. This strategy gives the tightest line

placement. Other strategies can only increase inter-line spaces.

max-height adjusts separation in such a way that visible gap between lines remains constant.

line-height permits variation of the treatment of outstanding elements on a case-by-case basis.

[1] Setting all components of a compound property by omitting the component specification is termed a short form.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[2] In fact, margins are tolerated in XSL as a secondary mechanism to ensure CSS2 compatibility, but they don't

integrate well with XSL layout model based on constrained spaces. We strongly advise using indents instead of

margins.

[3] This is expected to change significantly in the next version of the XSL spec.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 5. Blocks

 5.1 Block Basics

 5.2 Blocks for Special Purposes

 5.3 Decorating Blocks

 5.4 Lists

 5.5 Tables
 5.6 Additional Material

Blocks represent smaller parts of a document, familiar as features such as paragraphs, lists, and tables. Using these
pieces, you can structure your documents and present them within the page contexts you've established.

5.1 Block Basics

Think of the last document you styled. Each major space-separated block of contiguous text, graphic, table, or list is
most likely to be a block when styled with XSL-FO. fo:block could be called the basic building block of page
content. Simply inserting content into an fo:block element produces a simple paragraph style with all the default

properties. Blocks are most commonly used within the page layout you have specified, specifically within the
fo:flow element.

To appreciate the flexibility of blocks, it's necessary first to select the right type of block, then to select from its list of
available properties.

The top-level blocks include:

fo:block

fo:block-container

fo:list

fo:table

These are the major divisions, each producing an area within the block-progression-direction, visually

separated by a new line. I'll cover each of these in turn.

5.1.1 The Basic Block

The content model for a block consists of other blocks, inlines, or textual content. The simple block, acting as a
paragraph, is likely to be your most used element in the fo namespace, for normal text-heavy documents. Note that
the same fo:block may be used for any content that requires whitespace separation in the block-
progression-direction. This ranges from the title of a document on a page by itself to list item contents.

The block is a versatile element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The stylesheet snippet in Example 5-1 picks out the para elements in an XML source document, styles them as

blocks with no start indent, has fairly typical spacing between its predecessor and successor, uses the Times font, and
has simple content. The border around the block is simply to outline its area, as I'll be referring to this again.

Example 5-1. A simple block

<xsl:template match="para">
 <fo:block
 border-style="solid"
 border-width=".1mm"
 font-family="Times"
 font-size="12pt"
 space-before="12pt"
 space-after="12pt"
 text-align="justify">
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

This delivers a fairly standard paragraph, as shown in Figure 5-1.

Figure 5-1. Basic paragraph layout

The basic syntax is simple, but choosing the correct suite of attributes for any particular context is not quite so simple.
I've selected the font-family, font-size, and text-align (basic alignment) properties, a minimal set of
properties for consistent display. I've set the space-before and space-after properties, rather than using

the default (which places almost no space between succeeding paragraphs). Without the borders, spacing the same
size as the font (or slightly bigger) is a reasonable choice.

Now back to that border. It should show up as black, but I'm cheating here, relying on an inherited attribute to make
the color. To ensure that it is, I normally add color='black' to the fo:flow element containing the region-

body. The example specifies a border of 0.1mm width. I could have followed older HTML principles and specified
1px (1 pixel), but there is a downside to this. The specification, in Section 5.19, warns about the pixel as a unit of
measure: stylesheet authors should understand a pixel's actual size may vary between devices. Stylesheets using pixels
may not produce consistent results across different implementations or different output devices from a single
implementation.

The text alignment specified by the text-align attribute can be start, center, end, justify, inside,
outside, left, right, or inherit. The more common choices are start (the lefthand side in a left-to-
right layout), which provides what is sometimes called "ragged right" layout; center, which centers text; end,
which provides right justification; and justify, which provides both left and right justification, creating the
simplest of paragraphs, without any special features. inside and outside are peculiar to bound documents.

When documents are bound, particularly with stitched bindings, the text can be aligned relative to the binding. For

http://lib.ommolketab.ir
http://lib.ommolketab.ir

example, where the binding is toward the start side, the text is aligned to that side.

Indentation is provided by the two properties: start-indent and end-indent. Each takes a length
specification as its value and has an initial value of 0pt, or no indentation. This is not the same as text-indent,
which indents only the first line of text within the block. A negative value of text-indent will produce the
hanging indent. With start-indent, indentation is applied to the whole block. Possible uses are to indent a

quotation, perhaps similar to Example 5-2.

Example 5-2. Indentation

<xsl:template match="quote">
 <fo:block
 start-indent="6em"
 end-indent="6em"
 font-family="Times"
 font-size="12pt"
 space-before="12pt"
 space-after="12pt"
 text-align="start">
 "<xsl:apply-templates/>"
 </fo:block>
 </xsl:template>

This creates an indented block (indented at the start and end directions), offset by 6em from its nearest ancestor. I've
added the quote characters around content as decoration. Perhaps if the quotation is attributed to a specific author, it
could be offset to the right, in its own block, using text-align="end".

An alternate use for this form of indentation is to create a wrapper block element, with the indentation set to whatever
offset is needed from the edge of the printed area of the body, then to nest all other blocks within it, which reduces the
need to specify it for all the children of this block.

First line indentation, a common style in some texts, is achieved by using the text-indent attribute. To keep it
proportional to the font size in use, the em length specification is again useful. Example 5-3 and its result, Figure 5-2,

illustrate this.

Example 5-3. First line indentation

<xsl:template match="para">
 <fo:block
 space-before="12pt"
 space-after="12pt"
 text-indent="3em"
 text-align="justify">
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

Figure 5-2. First line indentation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A variation on this is the hanging indent, using a combination of the text-indent and start-indent
properties as in Example 5-4.

Example 5-4. Hanging indents

 <fo:block
 text-indent='-4em'
 start-indent='4em'>

An example of a hanging indent, a paragraph with the first
line left aligned, and the remainder of the paragraph
indented by a fixed amount. Set by using the start indent
and text-indent properties on a block. The text-indent is
set to a negative value, the start indent to a positive
value.

</fo:block>

Similarly, the last line of a block may be given special treatment using the last-line-end-indent attribute.

This assures a fixed end-space on the last line. The formatter may fit in more text than normal or may break one line
to form another. Either way, your last line is guaranteed minimum whitespace as specified by this property. Due care
is needed, because a positive value will indent the end-edge, and a negative value will extend it beyond the normal
finish, creating an outdent.

Another line property is text-align-last, whose value may be relative, start, center, end,
justify, inside, outside, left, or right. These values affect the layout in the line-progression-

direction. Justified text with this property may appear strange if the content of the last line is insufficient to reasonably
fill the line. The other values are self-explanatory; note that inside and outside values relate to the page binding edge.
I prefer the relative value, with the majority of a paragraph set with the text-align property having the value
justify, which provides start justification or a last line. Figure 5-3 shows these two options. The first option has
text-align set to justify, the second has text-align-last set to start.

Figure 5-3. Last line alignment

A simple use of fo:block just creates a break. This is certainly not a recommended practice, because using
fo:block to insert a break risks destroying the paragraph's indents, widow/orphan handling, or line-height
calculations. Other alternatives would be (as in the next example) to make each line a block using nl for a new line

and adjust the block separation accordingly, perhaps within a wrapper block. The problem here is that we use visual
properties in the source XML; <nl/>, for a newline, is hardly semantic markup.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Reusing this quote template with additional processing for the nl element produces the layout for the poem, as

shown in Example 5-5 and the output, in Figure 5-4.

Example 5-5. XML source for block as a break

<para>This paragraph includes a quotation
<quote>The fair breeze blew, the white foam flew <nl/>
The furrow followed free; <nl/>
We were the first that ever burst<nl/>
Into that silent sea. </quote>
<author>Samuel Taylor Coleridge</author>
And continues after it. </para>

Figure 5-4. Block as a break

The associated template for the end of line element is shown in Example 5-6.

Example 5-6. The template

 <xsl:template match="nl">
 <fo:block />
 </xsl:template>

The nl element is used to indicate that a line break is needed. Because this is visual rather than semantic, check your

output when you use this. The transformation used here is simply an empty block element, whose initial values
provided the needed styling. The template for the author element uses a large start-indent value (12em) to

provide the indentation for the author, because the lines themselves are short. For longer lines it may be appropriate to
use the text-align attribute value of end to ensure that the block is right aligned.

Although in this release of the specification there is no special treatment for an <fo:character
character='&#xOA'/> (it is treated the same as any other whitespace in content), there could be a case for

using some special character (perhaps U+2028, Line Separator) for this purpose. However, until it becomes a part of
the specification, I can't recommend it. The processing is shown in Example 5-7.

Example 5-7. Possible line treatment

<xsl:template match="nl">
 <fo:character character = ' ' />
 </xsl:template>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1.2 Block Separation

We often want to space paragraphs or other blocks of text to create the best visual effect. This is achieved by using
the space-before and space-after properties of a block, each of which takes a length specification. If two

succeeding paragraphs have space specified before and after, the formatter needs to combine the two specified values
to obtain a final resolved value. The properties that interact here are the space-before (or space-after)
precendence and conditionality. The specification is quite clear on the resolution: usually when there are
two values with similar precedence, you will see the larger one. A higher precedence (or special value force) may
be used to override this, if needed. To increase a value's precedence, use the value space-
after.precedence="n", where n is some number larger than the default value of zero; the more you need it
to increase the precedence, the higher the number. If you use a value of force, you completely change the

precedence-mediated merging semantic to an additive one. Note that padding does not interact with this space
resolution.

The first precedence rule may throw you: it states that if a space specifier is the first (outer) one and is conditional, it
is discarded. So when you try to create a title page that is blank except for the title block, the space above it is eaten,
which is quite frustrating. To invalidate this rule, use the retain value. Example 5-8 shows one way to ensure a 2-

inch space prior to a block.

Example 5-8. Retaining space

<fo:block
 space-before="2in"
 space-before.conditionality = 'retain'>
...

The first of the three paragraphs has no specification of space-after; the second paragraph has a 12pt space-
before specification and a space-after specification, with no precedence specified; and the third paragraph
specifies a space-before with a stated precedence of 5. You can see the result in Example 5-9 and Figure 5-5.

Example 5-9. Inter-paragraph spacing

<fo:block space-after="12pt"
border-style="solid"
border-width=".1mm"

>
This is the first of three blocks .</fo:block>

 <fo:block
border-style="solid"
border-width=".1mm"
 space-after="12pt">
This block has the space-after set to 12pt,
so there will be an interaction.</fo:block>

<fo:block

http://lib.ommolketab.ir
http://lib.ommolketab.ir

border-style="solid"
border-width=".1mm"
 space-before="18pt"
 space-before.precedence="5">
This block really must have the
larger (18pt) space before .</fo:block>

Figure 5-5. The impact of precedence on inter-paragraph spacing

5.1.3 Breaks Between Paragraphs

Authors often need to ensure some form of break in the flow of a document. Within blocks, two properties are used
for this: break-before and break-after. Possible values are auto, column, page, even-page, and
odd-page. auto is the default value, allowing the normal flow of content.

Typical use would be to ensure that a chapter starts on a new page or to start a new column in a multicolumn layout.
The specification of recto or verso pages is done by stating that the break should be to a new odd or even page.

If each chapter has its own block, specifying:

<fo:block break-before="odd-page">

will, if necessary, add the blank page to ensure that the chapter starts on the new, odd-numbered page.

5.1.4 The Block as a Wrapper

To decorate a block of text, rather than operate at the lower level, it's often easier to wrap a series of blocks in another
block to apply formatting to the outer wrapper block. This enables the styling of contained blocks within this frame. A
highlighted section of a page is a case in point. If a border is applied to the wrapper block, normal blocks can be
offset from this wrapper and will be presented as normal blocks within this box.

Example 5-10 shows the containing block with a border and two internal blocks, each with an indent at the start and
end directions to offset them from this border. Space is allocated before and after to ensure the separation of each
contained block.

Example 5-10. Wrapper blocks to offset content from the main flow

<fo:block
 border-style="solid"
 border-width="2mm">
 <fo:block start-indent="4em"
 space-before="2em"
 space-after="1em"
 end-indent="4em">First contained block

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </fo:block>
 <fo:block start-indent="4em"
 space-after="2em"
 end-indent="4em">Second contained block.
 The significant border together with the indents
 offsets the content,
 seperating it visually from the main flow.
 </fo:block>
</fo:block>

Example 5-10 uses two of the indent properties to offset the block content from its surroundings. The indent property
can be applied to both the start and end directions, as shown in the example. Here, the indent property it is used to
offset the content by 4em. Figure 5-6 illustrates this.

Figure 5-6. Wrapper blocks to offset content from the main flow

XSL-FO also permits the use of an absolute position, fixed relative to the containing area. Note that this property is a
part of complete compliance and, hence, is likely to reduce portability. In the case of paged media, the area is fixed
with respect to the page. For this, there is the absolute-position property. With this property set to fixed,

the top property specifies how far the content's top margin edge is offset below the top of the page. To produce
content at a fixed location, such as the signature line on a letter, we might see stylesheet content like that in Example
5-11.

Example 5-11. A stylesheet snippet showing styling for a signature

<xsl:template match="signature">
<fo:block-container absolute-position="fixed"
 top="240mm" left="100mm">
<fo:block xsl:use-attribute-sets="para">
 Yours Sincerely: <xsl:apply-templates/>
</fo:block>
</fo:block-container>
</xsl:template>

Note the use of fo:block-container here. One of the stated purposes of this formatting object is to change
the writing mode or orientation. I've used it here to use the absolute-position property, to position the

signature line 240mm from the top and 100mm from the left edge of the body. This achieves a regular positioning of
content to ensure that (in this case) the signature line is always seen in the same place for any letter. A dot leader
might be provided if the document was meant for a hand written signature.

5.2 Blocks for Special Purposes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The use of blocks for some purposes may not be readily obvious. A simple heading in a larger font may not be seen as
a variant of a block, but it is. It may be used as the main heading of a document.

A title page is simply a single block that has break-before and break-after set to the value page, and the
space-before.conditionality set to retain. Example 5-12 shows a specific example of this practice.

Example 5-12. A title page specification

<fo:block
 break-before="page"
 break-after="page"
 space-after="4in"
 space-before="3in"
 space-before.conditionality="retain"
 font="24pt Times bold"
 text-align="center">
 Document Title, using single or multiple lines.
</fo:block>

Note the use of the break condition in the containing block. This causes the page to appear on its own. This may also
be used to create a blank page.

Other content that needs special layout might include a quotation, a heavily emphasized block, or even images, which
often form the only content of a block.

Each needs consideration in terms of borders, offset spacing (using space-before, padding, or indentation), text

alignment, or other decorations.

Other special uses for which the block is ideal include the indented quotation (often called the blockquote), end
aligned blocks, emphasized text that is not inline, and simpler headings. Each of these is a block for which the
properties are selected appropriately. When selecting how you want a block laid out, a virtual ritual is needed to
choose which of the myriad properties are needed.

One possible approach is to run through the following sequence:

Block separation: from the previous and next block vertically. Use space-before or space-after.

Horizontal alignment within the block. Use text-align and text-align-last.

Indentation: use text-indent for the first line, or use start-indent and end-indent for a block.

Finally, select the font-family , font-weight, and font-size.

This sequence considers the positioning of the block vertically (relative to previous and subsequent blocks) and
horizontally (in the line-progression-direction), sets up the content alignment (start, end, or
justified), and then finally set the font, font weight, and size. For many blocks, this will be sufficient. Once you

have selected these properties, all that remains for you to do is the decoration on the block, which I'll discuss shortly.
These properties will satisfy most of your basic layout needs for simple blocks. Lists and tables also will be
addressed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2.1 Backgrounds on Blocks

A background can be specified for any block, and takes the following list of properties. Most of these properties
really apply only to the use of images as a background, with the exception of color, which may be used on its own or
as a fallback for the image.

background-attachment: scroll or fixed. Not really relevant to print, but specifies what happens

when an image is used as a background.

background-color sets the color.

background-image specifies the image to use.

background-position-vertical (or -horizontal) specifies the position of the background

image with respect to the containing rectangle.

background-repeat specifies if, and how, the image is to be repeated in the content rectangle. This is

discussed later in this chapter.

Probably the most common one is background-color, which simply specifies the color to be used for the

background of the block.

5.2.2 Images

For figures, images, illustrations, or graphics - whatever you want to call them - XSL-FO uses a single element,
fo:external-graphic ("external" simply because the actual graphics file is external to the XML source

document), to add it to the flow. If it is wrapped in a block or placed inline with the content, the graphic is
appropriately laid out by the formatter, as shown in Example 5-13 and illustrated in Figure 5-7.

Example 5-13. External graphics

<fo:block> <fo:external-graphic src='url(pig.jpg)'/> </fo:block>
 <fo:block>
 <fo:external-graphic
 src="url(pig.jpg)"/>
 </fo:block>
 <fo:block>A block containing the graphic wrapped in
 an inline container,
 <fo:inline alignment-baseline="before-edge">
 <fo:external-graphic
 src="url(images/1.png)"/>
 </fo:inline>
 </fo:block>

Note the syntax of the src attribute. The url function, as shown here, simply returns the local (relative) file. It has

raised some controversy in regards to its necessity, because most files will be local, although it does offer the option
of a web-based image. Be aware of the display capabilities of your formatter. Common ones are JPEG and PNG.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-7. Block and inline graphics

The two images are wrapped, one in a block and one inline. Their sizes are determined automatically in this case,
although sizes can be specified in applicable units using the content-height and content-width
properties of the fo:external-graphic. The specification recommends also using background-color,

which will fill in the rectangle outside of the actual image to the extent of the containing rectangle when the image is
available and will be visible when the image is unavailable. When the image is available, it is rendered on top of the
background color. (Thus, the color is visible in any transparent parts of the image.)

Figures can also use the block to create a title for the image. Nest both the title and the external graphic within a
single block to keep them together (to share alignment or any other special properties), as in Example 5-14.

Example 5-14. Titled images

<fo:block>
 <fo:block>Title for the figure</fo:block>
 <fo:external-graphic src="url(images/filename.ext)"/>
</fo:block>

Also, an image may be scaled by using the content-height and scaling properties:

<fo:external-graphic content-height="120%"
 scaling="uniform"
 ...

The aspect ratio of the graphic is maintained using the scaling property with a value of uniform, as above.
Note that uniform scaling is the default even when only the content-height is specified to be scaled.

Images may be used as a background for a block using the block property background-image. This provides the
image over which the content is written. The extent of the image is controlled with the background-repeat
property, which takes one of the following values: repeat, repeat-x, repeat-y, or no-repeat. These

produce an x and y repeat, an x direction only repeat, a y direction only repeat or no repetition, respectively. Figure 5-
8 shows an example using the no-repeat option, which produces a single image. The image may be positioned
readily using the background-position-vertical and background-position-horizontal
properties.

Figure 5-8. Background images

By judicious selection of the correct image and the background-repeat property, you will find out (probably by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

experimentation) which alternative provides the effect you need. This property on blocks may be used either
decoratively or for a more targeted purpose, such as indicating a property of the output to inform the reader that
certain content is not valid. This is often seen with the background images on checks that say sample only, to avoid
fraudulent use of the content.

Finally, a variant on an image, the instream-foreign-object element, is commonly used for SVG, but
could be used for other inline approaches. It contains any markup format that isn't in the fo namespace and that the

FO processor can invoke some other processor to handle. But the idea is that it creates a black box that is simply
positioned by the FO processor, just as with external-graphic. SVG usage is strong in some processors as an

XML-based vector graphic format. Other options are XHTML and the Synchronized Multimedia Integration
Language (SMIL), both W3C recommendations. Note that this is purely a function of the renderer you are using.
Ensure that your readers have that renderer prior to using this.

5.2.3 Identifying Blocks

Cross-references are generated at the transform stage, using perhaps the id and idref pairings from XML. The

XSLT stylesheet should produce similarly identified pairs of references and identified content, as discussed in
Chapter 9. The target of a cross-reference is identified by the id attribute on the block. This is shown in Example 5-
15. A chapter element creates a block with an id value taken directly from the XML source document. This may
then be referenced later using this id value.

The id value from the XML source needs to be carried over to the fo namespace! In the
XSL-FO document, the id value is required on the fo:block or whatever element is
used in the fo namespace. Hence, when the XML source document is transformed to the
fo namespace, the id value should be copied over to an appropriate element or the cross-

references will not work.

Example 5-15. A cross-reference target

<xsl:template match="chapter">
<fo:block id="{@id}">
 process content
</fo:block>
</xsl:template>

This is discussed further in Chapter 10.

5.3 Decorating Blocks

The title of this section may seem inappropriate to some readers. What one person may view as decoration, another
may view as essential content. In this section, I discuss borders, padding, color, etc., which some may view as
decoration.

First, I must clarify. From outside to inside, there is a border, padding, and then content. This is illustrated in Figure 5-
9.

Figure 5-9. Borders, padding, and content

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We can refine the breakdown of borders and padding by specifying only one side. Hence, the full list of borders is:

border-before

border-after

border-start

border-end

You should be aware that the simplest specification of a border (the form border='black solid 1pt') is

available only in a complete implementation. If portability is an issue, I might suggest using the basic options in
combination with the inherited color, which defaults to black. The basic version is shown in Example 5-16. It might
appear to be grossly inefficient, but if used as a part of your attribute sets as shown, it will not be a problem.

Example 5-16. Basic version of border specification

<xsl:attribute-set name='border'>
<xsl:attribute name='border-before-style'>solid</xsl:attribute>
<xsl:attribute name='border-after-style'>solid</xsl:attribute>
<xsl:attribute name='border-start-style'>solid</xsl:attribute>
<xsl:attribute name='border-end-style'>solid</xsl:attribute>

<xsl:attribute name='border-before-width'>.1mm</xsl:attribute>
<xsl:attribute name='border-after-width'>.1mm</xsl:attribute>
<xsl:attribute name='border-start-width'>.1mm</xsl:attribute>
<xsl:attribute name='border-end-width'>.1mm</xsl:attribute>
</xsl:attribute-set>

This is called up using:

 <fo:block xsl:use-attribute-sets='border'>
....

Padding is specified in the same way. To keep it simple, I will continue using the shorthand form, using simply
border, which the formatter then expands to specify all four properties. Further alternatives are provided by
border-top, border-bottom, border-left, and border-right, which are writing-mode
relative. For example, border-before.length would equate to border-top.length in left-to-right,

top-to-bottom writing. Feel free to interchange these if you prefer or if you are concerned about portability.

Having specified which border you want, the properties available for borders are:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

color

Specifies the color required for the border.
width

Specifies the extent of the border.
style

Specifies the appearance of the border. Possible values are none, hidden, dotted, dashed, solid,
double, groove, ridge, inset, and outset.

Most of the border properties are self-explanatory, though the style property may be less so. Each style offers a
different visual appearance. inset and outset attempt to provide a three-dimensional effect. Example 5-17
shows the basics of using the style property on a block.

Example 5-17. Using a simple border

<fo:block
 border-style="solid"
 border-width=".1mm"

 width="2in">
 A simple narrow border
 </fo:block>

This example uses the extended option of specifying style and width, relying on the inherited color, because the

basic specification requires a lot of typing.

border-style="solid"
border-before-style="solid"
border-after-style="solid"
border-start-style="solid"
border-end-style="solid"

border-before-width=".1mm"
border-after-width=".1mm"
border-start-width=".1mm"
border-end-width=".1mm"

border-before-color="black"
border-after-color="black"
border-start-color="black"
border-end-color="black"

An explicit and more comprehensive example is shown in Example 5-18; its formatted output is shown in Figure 5-
10. I have added a little padding simply to separate the content from the border.

Example 5-18. A more complete border example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<fo:block
 border-after-color="red"
 border-after-style="outset"
 border-after-width="1em"

 border-before-color="blue"
 border-before-style="outset"
 border-before-width="1.5em"

 border-end-color="silver"
 border-end-style="outset"
 border-end-width="2em"

 border-start-color="green"
 border-start-style="outset"
 border-start-width="2em"

 padding="6pt"
 width="4in">
 A paragraph with a completely specified border.
 Style is shared as 'outset',
 color varies on each edge,
 as does width.
 </fo:block>

Figure 5-10. Border example

Although the simpified forms can appear complex, for most users, they will suffice. If you want to use them more
fully, the specification is reasonably clear, despite the references to the Cascading Style Sheets specification.

Specifying padding is similar to borders. Its use is to offset content from its surrounding border or container if no
border is specified. It could be seen as an alternative to space-before and space-after, as it has a similar

visual effect, though it isn't meant for that. If padding is not specified, the default value of 0pt is used, which gives an
appearance of content being placed very close to area boundaries. A more natural appearance is to provide padding on
all blocks, which will be formatted in close proximity. Figure 5-11 indicates this difference clearly. The first block has
no padding, and the second block has padding applied in the start and end directions, as shown in Example 5-19.

Example 5-19. Specifying padding on a block

<fo:block space-before="18pt">A simple block with no

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 padding. Note the proximity of the content to the page
 edge (the containing area). This may be too
 close when large blocks of text are used. </fo:block>

<fo:block padding-end="6pt" padding-start="6pt">A
 simple block with padding specified as 6pt. Note the
 proximity of the content to the page edge (the
 containing area). This may be better when large
 blocks of text are used.
</fo:block>

Figure 5-11. The effect of adding padding

As with borders, padding may be individually specified or used in its shortform (padding="6pt"), as in the

example. The full list reads nearly the same as with borders, with the exception of the color specification.

padding-before (padding-top)

padding-after (padding-bottom)

padding-start (padding-left)

padding-end (padding-right)

The parenthesized alternatives provide the direction-oriented alternatives for left-to-right, top-to-bottom layout.

The explicit values using padding-before are:

padding-before.length

padding-before.conditionality (retain or discard)

The length property specifies the actual length of the padding, again using the common length specification and

unit format.

The conditionality property is logically consistent with spaces, i.e., if the padding is the first in a series of
spaces, and if the conditionality has the value discard, the space is discarded. If its value is set to
retain, it is kept.

One property that may be of use on a block when output is not desired is the visibility property.
visibility="hidden" produces no output for that block. An area is allocated for the block, but no content is

inserted into it. This may be useful for a limited distribution document, where confidential data is made available only
to authorized personnel.

5.4 Lists

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The XSL-FO specification is reasonably clear when describing lists. It needs to be, because in XSL-FO, lists are
certainly not intuitively easy. The basic syntax is shown in Example 5-20, using the Unicode symbol for the bullet,
ߦ, as the label. The constituent parts of the list are the list-block containing list-item, which has
both a list-item-label and list-item-body.

Example 5-20. Basic list syntax

<fo:list-block>
 <fo:list-item>
 <fo:list-item-label>
 <fo:block>•</fo:block>
 </fo:list-item-label>
 <fo:list-item-body>
 <fo:block>List item contents.</fo:block>
 </fo:list-item-body>
 </fo:list-item>
</fo:list-block>

The list-block contains the entire list. Each list entry contains both a list-item-label and a list-
item-body. The label contains the item marker or content, and the body holds the actual contents. Within both the

label and body, blocks wrap actual content. This provides the hierarchy shown in this example.

Laying out the list to the required spacing uses the properties on the contained elements, which the specification
demonstrates very well. Figure 5-12, which repeats the figure from the specification, illustrates the properties clearly,
though the combinations can be tricky. Using default values produces a list that some may think is too close to the
margins for normal use, because lists are usually indented. Indentation is achieved through the start-indent
property of the list-block. The provisional-distance-between-starts property of the list-
block specifies the distance between the start of the label (the bullet in Example 5-20) and the actual start of the list
content. The separation between the label and the body is specified by the provisional-label-
separation property. As you can see, there is interaction between them and the size of the areas produced by the

formatter for whatever label you have chosen. This is less important for simple, bulleted lists than it is for glossary
items, for example, where the label is actual text content. The label start-indent offsets the label from the
containing area (useful for nested lists) to indent secondary lists. The final property I will mention is the body end-
indent. This is useful when the extent of the list in the end direction is required to be less than the preceding

content, showing the list in a narrower space than the surrounding content.

Figure 5-12. Basic list layout

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Two key properties are the label end-indent and the body start-indent. For a simple list, I'd suggest for
the label end-indent, using label-end(), a function that returns a value of the end point of the label. For the body
start-indent, I'd suggest using body-start(), a function that returns the relative position of the start point of the

body. These provide a reasonably successful initial positioning. This is also suitable for nested lists, as shown in
Example 5-21 and Figure 5-13.

Example 5-21. A simple nested list

<fo:list-block
 start-indent="5mm"
 provisional-distance-between-starts="10mm">
 <fo:list-item>
 <fo:list-item-label end-indent="label-end()">
 <fo:block>•</fo:block>
 </fo:list-item-label>
 <fo:list-item-body start-indent="body-start()">
 <fo:block>List item contents.</fo:block>

[1] <fo:list-block>
 <fo:list-item>
 <fo:list-item-label
 end-indent="label-end()">
 <fo:block font-family="ZapfDingbats">➘
 </fo:block>
 </fo:list-item-label>
 <fo:list-item-body
 start-indent="body-start()">
 <fo:block>List item contents of nested list.
 </fo:block>
 </fo:list-item-body>
 </fo:list-item>
[2] </fo:list-block>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </fo:list-item-body>
 </fo:list-item>
 </fo:list-block>

Start of inner list1.
End of inner list2.

Figure 5-13. Figure showing a nested list

More specific layout options will use the length specifications of the list properties. These are shown quite clearly in
Figure 5-12 and can fully specify list layouts, including the use of this syntax for items other than lists.
Experimentation with these properties may be necessary to get the result you want. The specification, realizing how
complex the syntax is, contains a few examples in Section 6.8.

5.4.1 Other Types of Lists

Numbered lists use the contents of the label element, during the transformation phase, to number the list item,

either as a single numeric value or as part of some sequence. Often, this might use the node-set that constitutes the
children of a list element. If lists are split up by intervening content, XSLT provides the facilities to continue

numbering after the break by collecting the right node-set and numbering it. I refer you to Michael Kay's XSLT
Programmer's Reference (Wrox Press) for the definitive book on such use of XSLT, particularly the sections on
xsl:number and the position() function.

Display or definition lists are those often used for a glossary form, where a word or phrase is referenced in the main
body of text and linked to a definition of that word or phrase. The word is placed in the list-item-label and
some additional material is added as the list-item-body. Ensure that the size of the label's content is provided
for when using list-item-body. The provisional-distance-between-starts property must be

sufficient to fit the largest candidate if the list is to appear even. Word wrapping will take place if there is insufficient
space for the label and if steps are not taken to account for it. Overflow conditions are easy to find, so ensure that
each list item is given its own space and that the wrapping meets your needs. Note the wrapping in Example 5-22 and
the output of Figure 5-14.

Example 5-22. Varying the label length specification

 <fo:list-block
 start-indent="5mm"
 provisional-distance-between-starts="40mm">
 <fo:list-item space-after="1em">
 <fo:list-item-label >
 <fo:block
 font-weight="bold">A long label which wraps.</fo:block>
 </fo:list-item-label>
 <fo:list-item-body start-indent="body-start()" end-indent="5mm">
 <fo:block>List item contents. Note the text flow which takes
 place when sufficient text is placed to ensure wrapping.
 Note the text flow which takes place when sufficient text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 is placed to ensure wrapping.</fo:block>
 </fo:list-item-body>
</fo:list-item>
<fo:list-item>
 <fo:list-item-label >
 <fo:block font-weight="bold">
 Another long label which wraps.</fo:block>
 </fo:list-item-label>
 <fo:list-item-body start-indent="body-start()">
 <fo:block>Second content. </fo:block>
 </fo:list-item-body>
</fo:list-item>
</fo:list-block>

Figure 5-14. Label length variations

The example has the provisional-distance-between-starts property set to 40mm, which may still

be too small for some. With care, the specification can produce very attractive lists and works for most layout options.
It's even possible to use the list format in places where lists would not be considered. An example of this is in left- and
right-aligned text in a header or footer, using the label as a left header and the body as the right header.

Finally, remember that the list-item-label may be empty, if it's needed to vertically align the body items

without a marker or other content in the label field.

5.4.2 Alignment Issues

In some circumstances, you may need to consider the label-to-body alignment. This is not possible in the present
version of the recommendation. You can, however, set a value of relative-align on the fo:list-item to
be either before (the default) or baseline. This allows you to align either the initial lines' tops (e.g., cap-
heights) or baselines. So, there is some flexibility here.

5.5 Tables

XSL-FO is not like HTML. It is mostly unnecessary to use tables for layout as has been done in HTML. The XSL-FO
vocabulary provides so much more than HTML that you shouldn't fall back on tables simply to obtain an effect you
have achieved on the Web. The table-formatting object is for formatting tabular data. There may be circumstances
where table-based formatting is necessary, but they will be rare.

The table model used by XSL-FO is row first, which matches most - though not all - common table models in
XML markup. One option is to use two properties on a table cell, starts-row and ends-row (each set to either
true or false), included for use where no row wrapper is available, for example, where a particular type of
content or markup indicates this change. The outline sequence is table, table-header, table-footer,
table-body, table-row, table-cell. table-header keeps headings available at the top of each new

http://lib.ommolketab.ir
http://lib.ommolketab.ir

page of a multipage table, and table-footer allows a "Continued on next page" message in the footer; these

properties are optional.

5.5.1 The Basic Table

The basic table without a caption has a table-body child, which has table-row children, which have
table-cell children. This provides a simple transform from a standard table with a similar model. The only
caveat is that the table cells need their content wrapping in block elements. The transform shown in Example 5-23

provides this simplest of table models. Example 5-24 shows a snippet of the stylesheet.

Example 5-23. The simplest of table models

<table>
 <tbody>
 <row><td>R1C1</td><td>R1C2</td><td>R1C3</td></row>
 <row><td>R2C1</td><td>R2C2</td><td>R2C3</td></row>
 </tbody>
 </table>

Example 5-24. Stylesheet snippet

 <xsl:template match="table">
 <fo:table width="3in">
 <xsl:apply-templates/>
 </fo:table>
 </xsl:template>
 <xsl:template match="tbody">
 <fo:table-body>
 <xsl:apply-templates/>
 </fo:table-body>
 </xsl:template>

 <xsl:template match="row">
 <fo:table-row>
 <xsl:apply-templates/>
 </fo:table-row>
 </xsl:template>
 <xsl:template match="td">
 <fo:table-cell border="solid 1px black">
 <fo:block><xsl:apply-templates/></fo:block>
 </fo:table-cell>
 </xsl:template>

I have restricted the table size to 3 inches and added a border to each of the cells.

5.5.2 Captions

The table may be suitably captioned using the outer wrapper, table-and-caption, which holds both the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

table-caption and the table. This provides a bold, centered heading:

<fo:table-and-caption>
 <fo:table-caption text-align="center">
 <fo:block font-weight="bold" >Table Caption.</fo:block>
 </fo:table-caption>
 <fo:table>

The caption may be placed on any side of the table, using the caption-side property table-caption. I find

the use of an appropriate block after the table quite suitable for these purposes. It is probably useful only if you need
the caption to one side of the table.

5.5.3 Column Headings

One of the difficulties with the various table models currently available is that column headings are often not placed
conveniently within the table body itself. If column headings are needed, use the transform stage to reorder the
content.

The part of the model designated for column headers is the table-header element, the first child of the table
element. To specify a bold, centered heading, use:

<fo:table-header>
 <fo:table-cell
 border="solid black 1px"
 padding="1em"
 border-collapse="collapse">
 <fo:block
 text-align="justify"
 font-weight="bold">Column 1</fo:block>
 </fo:table-cell>

And so on for each column. This provides the hook for repeating headers at page breaks. The border-collapse
property is set such that the borders are merged rather than separated. The fo:table property table-omit-
header-at-break="false" tells the formatter that these headings are required to be redisplayed at each new
page. The treatment of footers is handled similarly. The footers use the table-footer element, with contained
table-cells and follow the table-header element. If you have to omit the footer prior to a break, use the
table-omit-footer-at-break property with a value of true. This improves the visual appearance and

indicates that the table continues.

5.5.4 Fixed-Width Tables and Columns

Tables with fixed widths depend on two table properties. The first is the inline-progression-dimension,
the second, the table-layout. Both of these default to auto. To produce a fixed-width table, set table-
layout to either a length specification, such as 100mm, or to a percentage, then set the table-layout
property to a value of fixed. So, to get a 3 inch-wide table, specify:

<fo:table inline-progression-dimension="3in" table-layout="fixed">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Similarly, to obtain a table half the width of the page, use:

<fo:table inline-progression-dimension="50%" table-layout="fixed">

To specify the column widths separately, use the element fo:table-column set to a value of, say, 50, with
attributes of column-number to specify the column under discussion and column-width set to a value using

the proportional-column-width function. There should be one entry per column of the table being set out, prior to the
fo:table-header entry. This isn't a percentage, but, to quote the specification, "The column widths are first
determined ignoring the proportional measures. The difference between the table-width and the sum of the

column widths is the available proportional width. One unit of proportional measure is the available proportional
width divided by the sum of the proportional factors." For example:

<fo:table width="3in">
 <fo:table-column
 column-label="1"
 column-width="proportional-column-width(50)"/>
 <fo:table-column
 column-label="2"
 column-width="proportional-column-width(25)"/>
 <fo:table-column column-label="3"
 column-width="proportional-column-width(25)"/>
 <fo:table-body>

This is often a good choice because it doesn't have to add up to 100% and it is easier to use where fixed-width
columns and proportional-width columns are mixed.

Proportional-width table columns may be specified using a column-width value of proportional-
column-width, as in Example 5-25.

Example 5-25. Proportional-width columns

<table-column column-width="proportional-column-width(1)"/>
 <table-column column-width="proportional-column-width(3)"/>
 <table-column column-width="proportional-column-width(1)"/>

This will make the middle column three times the width of each other column.

5.5.4.1 Fixed columns

An alternative approach to table layout is to specify the required width of a table column. The table-column
element is a first child of table and has attribute values that apply to the named column and spans. Example 5-26
shows a simple extract, using the column-width attribute values set to percentages. The values may take

percentages or widths, although percentages are generally easier to handle. A table column is specified by number,
starting at one, with each column width specified using the column-width attribute. Note that this property is
ignored if the number-columns-spanned is greater than one.

Example 5-26. Fixed columns, variable width

<fo:table>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <fo:table-column column-label="1" column-width="20%"/>
 <fo:table-column column-label="2" column-width="60%"/>
 <fo:table-column column-label="3" column-width="20%"/>
 ... Remainder of table specification.

An alternative use of this element is to ensure that table columns are of equal width. This may be specified using the
number-columns-repeated attribute of table-column. This is simply a shorthand to save rewriting the
table-columns for all succeeding columns. The effect is to take this table-column specification and repeat
it, with the column-number increasing by increments of one. So for this three-column table, a simple

specification requiring one third for each column is shown in Example 5-27.

Example 5-27. Fixed columns, constant width

<fo:table>
 <fo:table-column
 column-label="1"
 column-width="33%"
 number-columns-repeated="3"/>

 ... Remainder of table specification.

5.5.5 Spanning Columns and Rows

Two attributes are used for spanning. To span columns, use the number-columns-spanned property on either
table-column or table-cell elements to specify the number of columns required to be spanned. The

default value is 1. This provides a flexible way to mix single and multiple spans. Similarly for rows, use the
number-rows-spanned property of table-cell to span rows.

As an example, consider a 5 by 5 table, R1C1 to R5C5, where the requirement is to span R2C1 and R2C2 (column
span) and to span R4C1 and R5C1 (row span). So, the table-cell that specifies R2C1 will have the property
number-columns-spanned set to 2, with R2C2 omitted (its area now covered by R2C1). The table-cell
that specifies R4C1 will have the property number-rows-spanned set to 2, with cell R5C1 omitted.

Hence, the relevant stylesheet parts will be as shown in Example 5-28.

Example 5-28. Row and column spanning

<fo:table-row>
 <fo:table-cell border="solid black 1px"
 border-collapse="collapse"
 number-columns-spanned="2">
 <fo:block>R2C1</fo:block>
 </fo:table-cell>
 <!-- R2C2 omitted-->

.... and for row 4,

<fo:table-row>
 <fo:table-cell

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 border="solid black 1px"
 border-collapse="collapse"
 number-rows-spanned="2">
 <fo:block>R4C1</fo:block>
 </fo:table-cell>
... and for row 5
<fo:table-row>
 <!-- R5C1 omitted -->

This produces the table shown in Figure 5-15.

Figure 5-15. Row and column spanning in a table

Note that the borders on each of the relevant table cells are realigned as needed to provide for the spanning.

5.5.6 Empty Cells in Tables

Two options are offered for empty cells. The empty-cells property may be set to either show or hide. This

will affect borders that are either hidden or shown for each empty cell.

5.5.7 Cell Alignment

Within any cell, content may be aligned horizontally using the text-align property, as mentioned earlier - for
example, to center the contents of a cell - with values of start, center, end, or justify.

Vertical alignment within a cell is achieved using the display-align property, with a value of before,
center, or after. Figure 5-16 repeats the previous example, with R5C3 having the two attributes set as in

Example 5-29.

Example 5-29. Cell alignment

<fo:table-cell border="solid black 1px"
 display-align="center"
 border-collapse="collapse"
 text-align="center">
 <fo:block font-weight="bold">XXX</fo:block>
 </fo:table-cell>

Figure 5-16. Cell alignment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5.8 Other Table Issues

Other properties needed to address table layout problems include keeps and breaks, which keep content together over
page breaks or ensure a break after or before a specific row, respectively.

Within any table cell, the blocks that contain the content may use any of the available properties to lay out the cell
content.

5.6 Additional Material

While the descriptions above work well in most situations, there are a few more details about blocks that are worth
explaining.

5.6.1 A Minor Aside on Lengths

One of the ways to specify lots of things in XSL-FO is via the length specification.

The spec says:

<length> A signed length value where a `length' is a real number plus a unit qualification. A property may
define additional constraints on the value.

Got that? No? One approach is just to see what your formatter makes of your attempts and adjust as necessary.
Remember that fonts, for example, are not infinitely flexible, so a request for 11.6 point text is highly likely to result
in 12 point text. Section 5.9.13 of the Recommendation lists the permitted units of measurement, providing
centimeters (cm), millimeters (mm), inches (in), points (pt), picas (pc), pixels (px), and em (em). A pixel is taken as
0.28mm; a point, as 1/72 of an inch; and a pica is a printer's unit of type size, equal to 12 points or about 1/6 of an inch.

5.6.2 Short forms

Throughout the specification, you can read the dotted notation used for properties, for example, space-
before.optimum. Generally, the first term may be used alone to set the value. The fuller, dotted form is used
when tight requirements on formatting are needed, and it is required that some value lie between the X.minimum
and X.maximum values.

A short form provides a value for all the length specifications and the initial value to all the non-length specifications.

Section 5.11 of the Recommendation details the various datatypes, should you need them. The shortform of each
length is quite acceptable in most cases, for example, space-before="4pt". This is shown fully expanded in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 5-30.

Example 5-30. Full form

space-before.minimum="4.0pt"
space-before.optimum="4.0pt"
space-before.maximum="4.0pt"
space-before.precedence="0"
space-before.conditionality="discard"

The optimum, minimum, and maximum values together comprise a length-range that provides the

formatter with limits which should meet your needs.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 6. Inline Elements

 6.1 Content

 6.2 Inline Styling

 6.3 Other Uses

In this chapter, we will cover what is perhaps the simplest area of XSL-FO: styling the inline content. This is
analogous to the word processor's application of bold or italics to particular words.

Inline content can be defined as content that, when formatted , does not extend beyond the formatted line extent, i.e.,
it does not wrap into a new line. Typical source content that may need marking for fo:inline might include

content that needs to be emphasized for a specific purpose, such as emphasis, computer commands, instructions, and
cross-references. The formatted output might be italicized, underlined, boldface, or hyperlinked. Other visual forms of
emphasis include font changes and nontext output, such as inline graphics, horizontal lines, or dot leaders. These are
all possible within fo:inline . It's sometimes difficult to decide between using fo:block and fo:inline .
In such cases, if the content in question falls into a typeset line of content, use the fo:inline tag, otherwise, use
fo:block .

A simpler view of an inline element is as a wrapper to apply style to phrases or individual words. A word of advice: if
you use a style change, make a note of it and stick to it. If one specific font is used to represent a certain type of
content, stick to it. Try the options out on sample input and find a scheme that is identifiable by the schema in use,
and produces output that looks cohesive. A good example of this is provided in Donald E. Knuth's The TEXbook
(Addison Wesley). Throughout the book, two symbols are used. The first symbol is similar to a bend roadsign; the
other has two such symbols, referring to a dangerous bend! This simple scheme is used regularly and produces a nice
visual reminder.

6.1 Content

The content model for fo:inline is rather loose, permitting both other inline elements and block elements. It
makes sense to restrict content to #PCDATA plus other inlines elements, in most cases. I'll leave it to you to

experiment. If you start out with this principle, you will break it, though usually for good reason, and emerge with
greater understanding. I only ask that you consider why you are breaking it.

6.2 Inline Styling

Starting with the familiar, the stylesheet snippet of bullet 2 in Examples Example 6-1 and Example 6-2 demonstrates
basic fo:inline usage.

Example 6-1. Inline example, XML source

<para>Some base content, containing an inline warning,
 <emphasis role="warning">Do not touch blue paper</emphasis>,
 a fairly straightforward piece requiring emphasis

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <emphasis>TEXT</emphasis>, and some instructions which
 require presenting in a different way, such as
 <instruction>Now light the blue paper</instruction>.
</para>

Example 6-2. Inline example, stylesheet snippet

 <xsl:template match="para">
[1]<fo:block>
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

 <xsl:template match="emphasis[@role='warning']">
[2]<fo:inline background-color="red">Warning:</fo:inline>
 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="emphasis[not(@role) or @role='']">
[3]<fo:inline font-weight="bold">
 <xsl:apply-templates/></fo:inline>
 </xsl:template>

 <xsl:template match="instruction">
[4]<fo:inline font-style="italic">
 <xsl:apply-templates/>
 </fo:inline>
 </xsl:template>

This is the containing block.1.
The warning generates literal content using an inline.2.
The simple emphasis tag generates bold content.3.
The instruction tag generates italics.4.

This provides simple inline usage, probably the most common requirement, with the output as shown in Figure 6-1 .

Figure 6-1. Inline output example

Other straightforward styles that may be applied in this manner are the font-style attributes of normal ,
italic , oblique , and backslant ; the font-weight attributes, which split into relative values, are
normal , bold , bolder , lighter , as well as the absolute values of 100, 200, 300, 400, 500, 600, 700, 800,
and 900. Decoration is applied in the same way, using the text-decoration attribute of the fo:inline
element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The values for text-decoration are underline , overline , and line-through , which are the

affirmative requests to the formatter, requesting a line under, above, or through the marked content, respectively.
Each is effectively removed by the use of the no- prefix, so that an inline with mixed underline can be produced, as

in Example 6-3 . This nests inline content to (potentially) reduce the level of markup needed. Figure 6-2 shows the
text decoration being switched on and off.

Example 6-3. Text decoration

<fo:block text-decoration="underline">Underline on for all
 but one <fo:inline text-decoration="no-underline">word</fo:inline>
 of the sentence.
</fo:block>

Figure 6-2. Text decoration being switched on and off

In Figure 6-2 , the containing block has the underline property set; the contained inline turns it off for the single

word.

The ability to select either the affirmative requirement (underline) or its inverse (no-underline) is more

readily appreciated when transforming from XML. The utility of the specification becomes apparent only when you
need it.

Other values for text-decoration are overline and line-through . This is very useful when marking

up content for insertion and deletion in a manuscript. New content could be shown with either the background or the
content colored and with content set for deletion shown as strike-through.

When decorating content, each case should be judged on its merits and future use. If you're designing stylesheets for a
general purpose schema, it might be wise to allow for both cases, such that either may be applied. Which one you
choose should be determined more by the case than by any rules. This is where your understanding of blocks and line
layout will be tested.

text-shadow is available as an extended compliance option for text decoration; it is applicable to all elements,

though it's most appropriate on inline content. It takes two length specifications and a color attribute. It is not widely
implemented. The two lengths specify the horizontal and vertical offset, and the color specifies the color to be used
for the shadow, as in Example 6-4 . The first length is the horizontal offset from the text, the second, the vertical.
Negative values indicate an offset left and up, positive values, down and right

Example 6-4. Text shadow effect

<fo:block>
 <fo:inline
 text-shadow="red 1mm 1mm">
 Text with a red shadow down and to the right by 1mm
 .</fo:inline>
</fo:block>

6.2.1 Inapplicable Properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Certain properties appear (to me) to be largely inapplicable to inlines. I hate to make general rules, because it's all too
likely that they will be broken, but it is a reasonable starting point. Borders are of less use inline than they are in
blocks. Padding provides rather ugly whitespace around an inline and is best suited to blocks. Equally, breaks are best
left to the blocks. This is not the way to terminate a page or column. Finally, whitespace preservation properties do
not apply to inlines.

6.2.2 Inline Containers

fo:inline-container is available as an inline wrapper for content with a different writing mode to that of the

bulk of the content. This matches the provision of a block with a change in writing mode, this time for inline content.
A simple example is shown in Example 6-5 . Note that the content of this element is a block.

Example 6-5. The use of fo:inline-container

<fo:block>
 <fo:inline-container writing-mode="rl-tb">
 <fo:block>
 Some text with writing mode st to rl-tb.</fo:block>
 </fo:inline-container>

</fo:block>

6.2.3 Inline Graphics

Sometimes the formatter may not provide what you want. A classic response to this has been the use of graphics as a
replacement. For example, it has been common practice to insert mathematical expressions into HTML as graphics.
Another formatter might not have a glyph in the font you wish to use. XSL-FO provides a means of including external
graphics with fo:external-graphic , within the fo:inline element. This can be used to provide graphic

content that has the appearance of normal inline content. A classic aspect of PDF that produces inaccessible content is
the use of graphics to replace the first letter of a word. When exported to provide plain text, of course, the first letter
is are omitted. Example 6-6 shows how you would obtain the graphic.

Example 6-6. An inline graphic

<fo:inline id="ls1">The main
 <fo:external-graphic src="url(images/image.png)"/> is
</fo:inline>

This form needs due care and attention because various facets tend to conspire against it. First, the resolution of the
surrounding content is likely to be higher than that of the graphic. The graphic itself will need scaling and cropping to
match the surrounding text. XSL-FO has a property that aids with this aspect, permitting use of two properties that
size the graphic with respect to the font in use, using something such as Example 6-7 .

Example 6-7. Scaled graphic

<fo:external graphic
content-height="1em"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

content-width="1em"
src="url(images/image.png)"
/>

Other uses of graphics are discussed further in Chapter 7 .

The fo:instream-foreign-object has developed quite well to permit the use of vector graphics, due to

the efforts and needs of the FOP group, who embedded Scalable Vector Graphics (SVG) as a namespace-identified
inclusion. This permits high-quality graphics, particularly line graphics, to be included as an integral element of a
high-quality print document. You can read more about SVG on the W3C site or in SVG Essentials by David
Eisenberg (O'Reilly).

6.2.4 Word and Letter Spacing

Both word and letter spacing are tasks for the formatter. XSL-FO provides both. The letter-spacing property

specifies spacing behavior between text characters. When a length is specified, the value indicates inter-character
space, in addition to the default space between characters. Similarly, the word-spacing property indicates inter-

word space, in addition to the default space between words. See Example 6-8 .

Example 6-8. Letter spacing

<fo:inline
 letter-spacing="2mm">This is text with 2mm letter-spacing,</fo:inline>
<fo:inline word-spacing="1cm"> this has 1cm word spacing.</fo:inline>

Figure 6-3 is the result.

Figure 6-3. Character spacing

6.2.5 Other Styling Properties

The line-height property can emphasize certain content within a large surrounding block of text, without other

styling. This use of whitespace clearly outlines the content without otherwise distinguishing it. Note that if it is used
within a block of content, the entire line will be laid out with the additional spacing. This is useful for content that
does not stretch over a line boundary, after which point it simply looks strange. I find the percentage value most
useful in this application, because it will adjust to any changes in surrounding font size, being a percentage of the font
size itself.

6.2.6 The Horizontal Rule and Its Variants

The way a line is drawn in HTML is commonly known as the horizontal rule. XSL-FO provides a more subtle way of
producing the same effect. The uses of the fo:leader element are generally decorative and might include breaks
between sections of a book, signature lines, dot leaders in a table of contents, or text spacing. fo:leader is not

allowed as a top-level element; it must be used within a block.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The basic, full-length line is shown in Example 6-9 .

Example 6-9. Leaders for lines

 <fo:block>
[1] <fo:leader
[2] leader-length="100%"
[3] leader-pattern="rule"
[4] rule-style="solid"
[5] rule-thickness="0.1mm" color="black"/>
 </fo:block>

Wrapper element1.
Length of the leader2.
Its pattern3.
Its style4.
How thick and what color the result should be5.

The length of the resulting line is a standard length specification. I've chosen percentage here. Any form of length
range can be used.

The pattern is specified using the leader-pattern attribute, which accepts the following options: space ,
rule , dots , use-content , and inherit . The pattern used in the example is the rule option. The style
of the rule (rule-style) can be one of the following: none , dotted , solid , double , groove ,
ridge , or inherit . Each provides a variant decoration.

The thickness of the leader is specified using a length specification on the rule-thickness attribute. The

example uses millimeters.

Note that the default for leader-length is 100% when a situation occurs where the width of the content area is
determined by something other than the content itself.For example, when text-align-last is justify , the
default rule-style is solid . In these circumstances, use the following to get a full-width rule:

<fo:block text-align-last="justify">
 <fo:leader leader-pattern="rule"/>
</fo:block>

A variation on this is to use two leader lines with a decorative character or graphic centered within the line. Figure 6-4
shows such an example, using a character from the Zapf family and two leader lines on either side, each half slightly
less than 50% wide.

Figure 6-4. Decorative rule

The various options for decorative characters are nearly self-explantory. The pattern to be used is one from the
selection space , rule , dots , or use-content . space uses the space character; rule uses a plain line;
dots produces the dot leaders often used in lists; use-content produces a series of characters that are specified
as actual content of the fo:leader element. Example 6-10 shows an example of this, using the character o.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 6-10. Leader pattern example

<fo:leader leader-pattern="use-content" leader-length="60%">o</fo:leader>

The style of the rule is one from a selection list: none , dotted , solid , double , dashed , groove , or
ridge . Each selects a particular style of line. Figure 6-5 shows a variety of these.

Figure 6-5. Line styles

The final use is the table of contents example shown in Example 6-11 and Figure 6-6 .

Example 6-11. Table of contents usage

<fo:block
 text-align-last="justify">Chapter 10
 <fo:leader leader-pattern="dots" />Page 25</fo:block>

Figure 6-6. Table of contents usage

This demonstrates that inline styling may also be applied to blocks. This styling appears as a line of content, which is
why it's in this chapter. Note the use of the text-align-last property, which ensures that the content is

expanded to fill the available block width.

Another use of fo:leader is to produce a blank space on a form for someone to fill in. This makes use of the
leader-pattern="space" and style="none" attribute settings, with an appropriate length specification,
and produces a blank space in which the respondent can write. Note that if the font size is small, the line-height
should be adjusted to ensure sufficient space is left to hand-write a response. Another option might be to use
leader-pattern="dots" to provide a line on which to write, if the line is surrounded by whitespace.

6.2.7 Line Layout

Within any individual line, there may be layout issues requiring resolution. Some of these relate to block layout, such
as those specific to first and last line layout; while others are specific to inline content. Other issues may be a case of
appropriate selection. Typical of this last group are cross-references, footnotes and their references, and keeps and
breaks.

Although covered in Chapter 9 , I'll mention briefly the use of page numbers as typical inline content. The two aspects
of this element, fo:page-number and fo:page-number-citation , are not obvious. fo:page-
number-citation creates a page number reference. So when you want to talk about some material on another

http://lib.ommolketab.ir
http://lib.ommolketab.ir

page, it becomes a case of referencing the remote content and/or the page number on which that content appears. The
task of creating the page number is part of the formatting stage; the task of creating the reference to the section is part
of the transformation stage. As in other such contexts, the use of ID values is a great help here. If you wish to
reference Chapter 6 on page 34, or the title of that chapter, then if its ID value is known, it can be done easily in
XSLT, using XSLT constructs and the fo:page-number-citation element from the XSL-FO syntax. The

XSLT function id(string) takes a string value as a parameter, which is the ID needed, and returns the node-set that
contains that ID value. This can then be used to obtain, for example, the title of the chapter using an XPath
expression. The notable difference about fo:page-number-citation is that the ID value is not an ID value

in the source document, but one in the intermediate document made up from the transform, such that the formatter has
this information to determinine the page number on which this particular content is laid out. The implications of this
are that for any content having an ID value in the source file, it is worthwhile generating an ID value on the derived
block or inline. This is done easily with a simple, named template that adds the ID value to the block or inline only if
the context node actually has an ID value. Such a template, and its call, are shown in Example 6-12 .

Example 6-12. ID generation

<xsl:template match="p">
 <fo:block>
 <xsl:call-template name="gen-id">
 <xsl:with-param name="id-val" select="@id"/>
 </xsl:call-template>
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

 <xsl:template name="gen-id">
 <xsl:param name="id-val" select="@id"/>
 <xsl:if test="$id-val">
 <xsl:attribute name="id"><xsl:value-of
 select="$id-val"/></xsl:attribute>
 </xsl:if>
 </xsl:template>

As an example of ID generation, consider the snippet of XML in Example 6-13 .

Example 6-13. Cross-reference generation

<section id="sect1">
 <head>Introduction</head>
 <p>A plain paragraph</p>

 <p id="referenced-para">A paragraph which is referenced,
 hence has the id value.</p>

The section element is identifiable, and a particular paragraph is identified. Later on in the document, we may see
something similar to Example 6-14 .

Example 6-14. Source XML example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<p>See <link target="sect1"/>
on page <pgref target="referenced-para"/>.</p>

Although single media, this shows the principles in use. The transformation requirement is to generate the head
element contents in place of the link element and to replace the pgref element with the page number on which

that particular paragraph is placed. The transform to execute this is shown in Example 6-15 .

Example 6-15. Link usage

<xsl:template match='section'>
<fo:block id='{@id}'>
 <xsl:apply-templates/>
</fo:block>
</xsl:template>

<xsl:template match='para'>
 <fo:block id='{generate-id()}'>
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

 <xsl:template match="link">
 <xsl:value-of select="id(@target)/head"/>
 </xsl:template>

 <xsl:template match="pgref">
 <fo:page-number-citation ref-id="{@target}"/>
 </xsl:template>

Note that because the ID value is copied across from the source XML document to the transformed document, we can
use it as the target of page-number-citation .

6.2.8 Keeping Line Content Together

Some applications require you to keep a block of content within one line. The line wrapping options in XSL-FO will
let you know about this, but it's up to the stylesheet author to manage it. The keep property keep-
together.within-line attribute can be set to always to control wrapping. Note that if content cannot be
fitted to the line, the overflow property can be used. If it is set to error-if-overflow , the formatter will

report the error.

6.3 Other Uses

Some uses of inlines may not be obvious. For example, lists may be built using leaders with a fixed length to provide
the spacing between the list marker and the list item content. Example 6-16 shows an example of this. There may be
occasions when you simply need the line format that a list provides, but you don't want the block layout of a list.

Example 6-16. Leaders for lists

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<fo:inline>
 <fo:character
 character="•" font-family="ZapfDingbats"/> <fo:leader
 leader-pattern="space"
 leader-length="1.5cm"/> The list item contents</fo:inline>

Here, I have used the bullet character, U+2022, a fixed-length leader, and then the element content. Note that this is
viable only for lists with short content because wrapping will not occur as in a proper list.

6.3.1 Page Headers

One of the requirements of a page header is often to contain two or three items. These might be the page number, the
running header, and perhaps the book title. A number of options are available to do this, although the specification
does not address this need directly. Unfortunately, one of these options involves implementation dependency. The end
result of this is a loss of portability. The layout you test with one implementation may not work in another.

Use the text-align-last property of a block to stretch the block over the full line. The specification does not

say where this stretching should take place (assuming you have content that can be stretched). To quote the
recommendation, "The algorithm for resolving the adjusted values between word-spacing and letter-spacing is User
Agent dependent." Thus, one implementation may stretch the space between words, and another may stretch the
character spacing. Additionally, this is fraught with danger if the actual content is unknown and results in unequal
content. Given these caveats, I have provided examples that can provide this layout. In Example 6-17 , I have used
leaders to provide the stretchable spaces. Try them out with your formatter, and be careful.

Example 6-17. Stretchable spaces for three area headers

<fo:block text-align-last="justify">
 <fo:inline> start1 </fo:inline>
 <fo:inline> center </fo:inline>
 <fo:inline> end </fo:inline>
</fo:block>

<fo:block text-align-last="justify">
 <fo:inline letter-spacing="0pt" word-spacing="0pt"> start2 </fo:inline>
 <fo:inline letter-spacing="0pt" word-spacing="0pt"> center </fo:inline>
 <fo:inline letter-spacing="0pt" word-spacing="0pt"> end </fo:inline>
</fo:block>

<fo:block text-align-last="justify">
 <fo:inline> start3 </fo:inline>
 <fo:leader />
 <fo:inline> center </fo:inline>
 <fo:leader />
 <fo:inline> end </fo:inline>
</fo:block>

<fo:block text-align-last="justify">
 <fo:inline> start4 longer </fo:inline>
 <fo:leader />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <fo:inline> center </fo:inline>
 <fo:leader />
 <fo:inline> end </fo:inline>
</fo:block>

<fo:list-block>
 <fo:list-item>
 <fo:list-item-label>
 <fo:block id="A" text-align="left">start5</fo:block>
 </fo:list-item-label>
 <fo:list-item-body>
 <fo:list-block>
 <fo:list-item>
 <fo:list-item-label>
 <fo:block id="B" text-align="center">Center</fo:block>
 </fo:list-item-label>
 <fo:list-item-body>
 <fo:block id="C" text-align="right">Right</fo:block>
 </fo:list-item-body>
 </fo:list-item>
 </fo:list-block>
 </fo:list-item-body>
 </fo:list-item>
</fo:list-block>

The first part of the example uses whitespace as the stretchable item; the second part uses word spacing - this
guarantees that only spaces between inlines are expanded (inlines with explicitly specified letter-spacing and
word-spacing are not subject to justification). The third part of the example uses a leader; the fourth part abuses

the list structure. Note the impact of the longer start direction in the third part of the example on the centered area.

Stretching the block can also be achieved within an inline using two properties of inlines and leaders. First, the
balanced spacing is achieved using a leader with its pattern set to space , and the inline element uses the text-
align-last attribute set to justify . This spreads the three elements out over the inline giving the desired
effect. Using fo:block to replace the fo:inline will provide the full page width, as might be used for a

header or footer with content at the left, right, and center of the header. Example 6-18 shows how this spreading is
accomplished.

Example 6-18. Header justification

<fo:inline text-align-last="justify">
 Left-hand text
 <fo:leader leader-pattern="space" />
 Centre Text using inlines
 <fo:leader leader-pattern="space" />
 Right-hand text
 </fo:inline>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This produces output shown in Figure 6-7 . The width depends on the content.

Figure 6-7. Header justification

An alternative, when the content of each header area is unequal, is to misuse the list. Misuse is probably too strong a
term. One XSL Working Group member suggested a better title might be side-by-side formatting objects and
provided Example 6-19 , which shows a static-content example that enables unbalanced content to be nicely
formatted in three areas, with all three correctly placed. This is written to be used as a callable template, with a
parameter (listed here as a variable $header-width) for the actual header width.

Example 6-19. Lists in headers

<xsl:template name='head1'>
<xsl:param name='header-width'>

<fo:static-content flow-name="xsl-region-before">
 <!-- header-width is the width of the full header in picas -->
 <xsl:variable name="header-width" select="36"/>
 <xsl:variable name="header-field-width">
 <xsl:value-of select="$header-width * 0.3333"/><xsl:text>pc</xsl:text>
 </xsl:variable>
 <fo:list-block font-size="8pt" provisional-label-separation="0pt">
 <xsl:attribute name="provisional-distance-between-starts">
 <xsl:value-of select="$header-field-width"/>
 </xsl:attribute>
 <fo:list-item>
 <fo:list-item-label end-indent="label-end()">
 <fo:block text-align="left">
 <xsl:text>The left header field which is long </xsl:text>
 </fo:block>
 </fo:list-item-label>
 <fo:list-item-body start-indent="body-start()">
 <fo:list-block provisional-label-separation="0pt">
 <xsl:attribute name="provisional-distance-between-starts">
 <xsl:value-of select="$header-field-width"/>
 </xsl:attribute>
 <fo:list-item>
 <fo:list-item-label end-indent="label-end()">
 <fo:block text-align="center">
 Page - <fo:page-number/>
 </fo:block>
 </fo:list-item-label>
 <fo:list-item-body start-indent="body-start()">
 <fo:block text-align="right">
 <xsl:text>short right</xsl:text>
 </fo:block>
 </fo:list-item-body>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </fo:list-item>
 </fo:list-block>
 </fo:list-item-body>
 </fo:list-item>
 </fo:list-block>
</fo:static-content>
</xsl:template>

This produces the output shown in Figure 6-8 , illustrating the balancing effect.

Figure 6-8. Header justification 2

Inlines are only presented here in terms of what is practical and what is likely to be needed. Many more properties are
covered elsewhere in this book that can be used with inlines.

As stated earlier, the overlap between inlines and blocks is significant. Most of the properties available with inlines
are also available with blocks, so use them as you need them.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 7. Graphics and Color

 7.1 Graphics

 7.2 Basic Color Usage

 7.3 Color Specification

 7.4 Color Profiles

 7.5 Applicability

Graphics are mentioned briefly in Chapter 3 and Chapter 6 in the discussions of blocks and inlines. You will need to
consult your formatter's documentation to determine what graphics formats are viable. All the formatters I've used are
happy with JPEG.

Color is one of the most generally applicable properties in the specification, which makes it somewhat harder to
describe concisely. If you have a CSS background, you might already be familiar with its use on web pages. The
coverage is just as broad as in CSS, and indeed many of the properties carry over directly from CSS. The specification
of color is quite similar to that in CSS; colors can be specified by name or as Red-Green-Blue (RGB) color value
numbers. However, XSL-FO includes additional, more sophisticated ways to specify colors.

While color can add value to presentation, it can also spoil it. It should support your message, not overwhelm it. Use
it carefully and it will work well.

7.1 Graphics

The fo:external-graphic formatting object is always inline. If you want it to act like a block, you have to

wrap it in a block.

The fo:instream-foreign-object is often used to include Scalable Vector Graphics (SVG) directly in the
file, and it has all the same properties as an external-graphic.

fo:external-graphic provides the wrapper for graphics. Why external? Because the actual graphic's file is

external to the XML source document. If wrapped in a block or inline, the graphic is appropriately laid out by the
formatter, as shown in Example 7-1 and illustrated in Figure 7-1. The size is determined naturally by the actual
graphic size; text-align and display-align are used to align the graphic with respect to its area. You can
use the content-height and content-width properties to resize a graphic.

Example 7-1. Graphics example

<fo:block>
 <fo:block >Title for the figure</fo:block>
 <fo:external-graphic
 src="url(images/pig.jpg)"
[1] content-height="300%"
 scaling="uniform"/>
 </fo:block>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <fo:block>fo:external-graphic wrapped in a block, and</fo:block>
 <fo:block>a block containing the graphic wrapped in
 an inline container,
 <fo:inline>
 <fo:external-graphic src="url(images\1.png)"/>
 </fo:inline>
 with content both before and after the graphic.
 </fo:block>

Applies the scaling1.

Figure 7-1. A block with fully specified borders

The external graphic formatting object acts like a big character, meaning it generates an area with a certain size. The
actual size may be defined in a number of ways, which may seem confusing at first. There are, in fact, two pairs of
properties that affect the size of the generated area and how the image is displayed in that area. To understand how
that works, you need to understand one of the basic concepts underlying the XSL formatting model: the concept of a
viewport area/reference area pair. This pair acts like a scrollable window, and the content (in this case, your graphic)
is viewed in that window. The viewport area defines the size of the window area, and the reference area defines the
size of the graphic area. The viewport area is used when positioning the graphic with respect to other elements in the
same line.

The height and width properties of fo:external-graphic (or the writing-mode neutral equivalents,
block-progression-dimension and inline-progression-dimension) define the dimensions
of the viewport area. The content-height and content-width properties define the dimensions of the
reference (graphic) area. Both sets of properties can be specified as fixed-length values or as the special value auto.
If the viewport size properties are set to auto, the content size of the graphic determines both the reference area and
the viewport area dimensions. If both the content-height and content-width properties are set to auto,
the intrinsic size of the graphic, as modified by the value of the property scaling, determines the size.

Some graphic formats don't have any information about the intrinsic size and some tools
don't include it. In those cases, it's up to the formatter to make a judgement call.

If one of the content-height or content-width properties is not auto (the default), the formatter should

calculate a scale factor and apply it to both dimensions. If both are specified, the behavior depends on whether the
property scaling is set to uniform (the default value) or non-uniform. uniform implies that the aspect

ratio should be maintained.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you know how much space you want your graphic to occupy, set the dimensions using width and height, and
set the values of content-width and content-height to scale-to-fit. This will make the reference

area the same size as the viewport area by scaling the graphic appropriately.

If you have set a specific value for the viewport dimensions and left the content dimensions set to auto, or set them
to a different specific value, the reference area is aligned with respect to the viewport area using the text-align
and display-align traits. If it is too large for the viewport-area, the graphic is aligned as if it would fit and the

overflow trait controls the clipping. If the graphic is smaller than the viewport area, the space around it will be filled
according to the background-color or background property.

You might be wondering how the processor knows what to do with the graphic. The content-type property may
be used to specify the format explicitly. It may be either a mime-type, specified as content-type='content-
type:binary/jpeg', or a namespace prefix. If no content-type attribute is specified, the processor will

use an implementation-dependent way of recognizing the graphic format.

What formats does your XSL-FO processor support? If you are lucky, the documentation will tell you. It might also
say which compression options are supported for formats both on input and output. When creating PDF files, for
example, some graphic formats can be compressed quite effectively (for example, JPEG, bilevel TIFF with the
CCITT compression). Try out the combinations until you reach what is probably a compromise: the output satisfies
your needs and the processor supports that format, combined with the bandwidth impact on your delivery methods.
The higher the quality resolution of the graphic, the greater the space needed for that graphic. (All the examples in
this book were created in PNG format, simply because I know the processor I'm using supports it.)

7.2 Basic Color Usage

XSL-FO has several properties where color values can be specified. The most common is background-color,
which can be specified on most formatting objects. The color property describes the foreground color of text and
text decorations, such as under- or over-scoring. It can be specified on fo:block or fo:character (see

Chapter 8) and a number of inline formatting objects (see Section 7.5 later in this chapter). In addition to these, color
may be specified in the various border properties and in the text-shadow property.

Of the various color-related properties, only the color property itself is automatically inherited. That means that if
you specify color='red' on an fo:block, all text in that block and any of its descendants will be red, except
where a different color value is specified for a nested flow object. Although the background-color property

isn't inherited, you may be fooled into thinking that it is, because the default value for this property is
transparent. So if you have specified background-color='red' on an fo:block, its background
will be red. Any nested objects for which you don't specify background-color will thus let the underlying color

show through.

Which object's background-color is visible depends on the layering of the areas that are generated by

formatting objects. This is fairly intuitive, but it can become complicated when using absolutely positioned objects (as
with block-container) and in tables where there are several levels. Tables, rows, and columns can each have a
background-color. This can mean that different parts of a spanning cell could have different background

colors!

Following are a few basic examples to show color use in its more common application. An initial warning: if you are
not used to using color in document delivery, please don't get carried away with it. XSL-FO can apply color nearly
anywhere and everywhere. Use it carefully and it will enhance you document; abuse it and it will spoil your
document. Example 7-2 shows the use of background and border colors, and Figure 7-2 shows the results.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 7-2. Background and border colors

<fo:block background-color="aqua"
 border-after-color="red"
 border-after-width="1.2em"

 border-before-color="blue"
 border-before-width="1em"

 border-end-color="silver"
 border-end-width="1em"

 border-start-color="green"
 border-start-width="1em"

 border-style="solid"
 padding="6pt"
 start-indent="1in"
 end-indent="2in"

>
 A paragraph with a completely specified border.
 Style is not specified.
 color varies on each edge</fo:block>

Figure 7-2. A block with fully specified borders

Example 7-3 shows the use of background-color and color when flow objects are nested. Figure 7-3 shows

the result.

Example 7-3. Color and nesting

<fo:block
 background-color="yellow" color="blue">
 A paragraph with blue text on a yellow border.
 Nested in the text are two inline objects, one of which
 specifies a different 'color' and
 one which specifies a different 'background-color' value.
 Here is the
 <fo:inline color='green'>green inline</fo:inline>.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 And here is the
 <fo:inline background-color='white'>white background inline
 </fo:inline>. More text in the block after the inlines.</fo:block>

Figure 7-3. Color in nested FOs

7.3 Color Specification

The XSL-FO specification uses the keyword color to designate the value type for color-related properties. There

are several ways of specifying the actual color value. As in CSS, a predefined color keyword may be used. The list of
keyword color names is as follows: aqua, black, blue, fuchsia, gray, green, lime, maroon, navy,
olive, purple, red, silver, teal, white, and yellow. These 16 colors are defined in HTML.

When this range of base colors fails to meet your needs, you may specify the color more exactly using a hexidecimal
RGB form such as #FFCCAA. Note that it is not case-sensitive. The format of an RGB value in hexadecimal notation
is a # immediately followed by either three or six hexadecimal characters. The three-digit RGB notation (#rgb) is
converted into six-digit form (#rrggbb) by replicating digits, not by adding zeros. For example, #fb0 expands to
#ffbb00. This ensures that white (#ffffff) can be specified with the short notation (#fff) and removes any

dependencies on the color depth of the display.

The specification also defines three built-in functions that may be used to specify a color value. These are:

rgb(numeric, numeric, numeric)

rgb-icc(numeric, numeric, numeric, NCName, numeric, numeric, ...)

system-color(NCName)

The rgb function gives the same result as the hexidecimal form of the specification. In other words,
color="#FFCCAA" has the same effect as color="rgb(255, 204, 176)".

The rgb-icc function returns a color from an International Color Consortium (ICC) color profile. The profile to
use is defined by the NCName parameter, which is the fourth argument to the function. This must match the name
declared in the fo:color-profile element, which is part of the declarations section described in Section

7.4. The first three arguments designate a fallback RGB value, and the fifth and following arguments designate a
color in the ICC profile. The number and value of the arguments depend on the specific profile being used. This
function is intended for more sophisticated color specifications, such as CMYK, often used in printing.

The system-color function, as the name indicates, provides a way to obtain a system-dependent color value. For

example, in an X Window environment this might be one of the colors defined in the X Color database. Or a specific
formatter might provide a list of extra named colors accessible in this way.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4 Color Profiles

The fo:color-profile formatting object appears in the fo:declarations formatting object (which
appears after the fo:layout-master-set). An XSL-FO stylesheet may contain several color-profile
declarations. Each defines a profile named using the color-profile-name attribute. The actual profile
definition is designated with the src attribute, which is a URI value. The URI may be a conventional value that is

interpreted by the processor or may name an actual external resource containing the ICC profile description. Example
7-4 shows a color profile in use.

Example 7-4. Color profile example

<fo:declarations>
<fo:color-profile src="url('./myprofile.icc')" color-profile-name="cp1"/>
</fo:declarations>
 <-- Intervening stuff -->
 <fo:block color='icc-color(200, 200, 50, cp1, 1.45, 2.22)'>
 A block whose text color is defined using the profile named cp1
 </fo:block>

The color-profile declaration can also bear a rendering-intent attribute. The specification says in

Section 7.17.3:

rendering-intent permits the specification of a color-profile rendering-intent other than the default. rendering-
intent is applicable primarily to color-profiles corresponding to CMYK color spaces. The different options
cause different methods to be used for translating colors to the color gamut of the target rendering device.

7.5 Applicability

This section outlines the applicability of color to the various formatting objects available in XSL-FO and provides a
few examples.

The various color properties may be applied to the formatting objects listed in Table 7-1.

Table 7-1. Color properties and the formatting objects to which they may be applied

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Color property Formatting objects

background-
color

All page-region objects, block, block-container, all table objects, list-
block, list-item, inline, inline-container, external-graphic,
foreign-instream-object, character, leader, initial-property-
set, bidi-override, page-number, page-number-citation

border-{side}-
color

Same formatting objects as background-color, except for page-region objects

and some special cases in tables

color
block, character, inline, leader, initial-property-set, bidi-
override

text-shadow
(colors the shadow)

character, leader, page-number, page-number-citation, initial-
property-set

7.5.1 Summary

The application of color to your document content is a personal thing. It's highly likely that whatever you do with
color, some of your readers will object. The only advice is to avoid overdoing it. Color adds visual presentation value,
up to a point. Use it sparingly and wisely to enhance your documents.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 8. Styling at the Character Level

 8.1 General Character Properties

 8.2 Fonts

XSL-FO provides a number of features aimed at formatting text and dealing with characters, which provide fine-
grained control over presentation. You can manage content on a character-by-character basis, or you can apply
properties to larger chunks of text.

In this chapter, I discuss the options available for formatting at the character level and when you should use this level
of formatting. I also introduce font usage.

Be aware that, as formatters are introduced, the available fonts are not likely to match those
available for desktop publishing packages or word processors. Most packages allow you to
add fonts, either purchased or downloaded. See the vendor literature for instructions on
adding new fonts and for the list of included fonts.

8.1 General Character Properties

In many cases, what can be done at the character level could also be done at the inline level. This gives the stylesheet
designer the choice of using either one. In some cases, the choice will be very clear. If you need to style only a single
character, it makes sense to use the fo:character element. If it's necessary to style a block of text that is all
inline, use the fo:inline element. Many of the characteristics available at the inline level are equally applicable at

the character level, so the number of them to remember doesn't increase dramatically! The only properties unique to
fo:character are treat-as-word-space, character, glyph-orientation-horizontal,
glyph-orientation-vertical, and suppress-at-line-break. I'll describe each of these in this

chapter.

The fo:character element is always empty. The character to be formatted is specified as an attribute of the
element. While it is possible to specify more than one character, using the character="ABC" form, the working

draft does say that this attribute specifies the Unicode character to be presented! This implies a single character but
does not require it.

The fo:character element is the fundamental unit of formatting for the formatting engine, creating an area on

the page whose size is determined by the font metrics for the glyph representing the Unicode code point specified.
Presently, the Antenna House implementation permits this to be seen by indicating the borders around each character-
level element when specified as a unit. This indicates, to some extent, the work being done by the formatter when
laying out page after page!

8.1.1 Usage

The need to format a specific character in some special way is a rare occurrence, though it is handy to have that
capability. When a single character has to stand out in some way, marked off from other inline text, it first needs to be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

identified in the source XML document, then provided with sufficient characteristics to provide the stylesheet writer
with the information necessary to enable the appropriate formatting. This might be, for instance, a single character in
another language or an example character that, though inline, is required to be shown in some detail. For example,
you might specify that this character outlined in a large font, perhaps with a different background color. This can be
done with the properties discussed in Chapter 7, using border or background-color and color attributes.

Example 8-1 shows a single character in 20-point text, a pale blue background, and the character in red:

Example 8-1. A color-contrasted character

<fo:character
 character="&x067;"
 font-size="20pt"
 background-color="skyblue"
 color="red"/>

This creates output as shown in Figure 8-1.

Figure 8-1. A color-contrasted character

Now, let's move on to those characteristics specific to fo:character. The basic form of fo:character is

shown Example 8-2.

Example 8-2. fo:character example

 <fo:character
[1] character="g" />

Shows the primary, required attribute: the actual character to be displayed. This may be entered as either an
actual character or, as shown, in its Unicode entity format. The x indicates that it is a hexadecimal number. If
the special character is to be referred to, you might want to add an id attribute to identify it.

1.

When discussing a single character, it may be required to present it in a way other than the normal inline-progression-
direction. For a single character, this is specified using the glyph-orientation-horizontal attribute.

A more unusual property, treat-as-word-space, has the specific function of using characters, not

whitespace, to separate words. Unicode has a group of code points, U+2000 to U+200A, which may be used as word
seperators in certain circumstances. These are known, respectively, as:

U+2000, EN QUAD

U+2001, EM QUAD

U+2002, EN SPACE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

U+2003, EM SPACE

U+2004, THREE-PER-EM SPACE (a.k.a. thick space)

U+2005, FOUR-PER-EM SPACE (a.k.a. mid space)

U+2006, SIX-PER-EM SPACE (sometimes known as thin space)

U+2007, FIGURE SPACE (equivalent to the digit width of a font)

U+2008, PUNCTUATION SPACE (equivalent to the narrow punctuation of a font)

U+2009, THIN SPACE (one fifth of an em)

U+200A, HAIR SPACE (often the thinest space available)

So, why are we interested in them? The information is provided to tell the formatter that these are not printable
characters that provide glyphs, but that they are used to separate two words. This is done using the treat-as-
word-space attribute on fo:character, as shown in Example 8-3. A colleague informs me that in Thai texts,
the interword gaps are not always whitespace; perhaps this is a case where treat-as-word-space is needed.

Example 8-3. treat-as-word-space example

<fo:inline>Words with<fo:character
 character=" "
 treat-as-word-space="true"
 />spaces.
</fo:inline>

(Note that I'm cheating here! The specification says that this group of characters is treated as if true has been

specified anyway.) This gives the output shown in Figure 8-2.

Figure 8-2. treat-as-word-space example

The suppress-at-line-break attribute takes one value from a fixed number of values. This property

determines what happens to this character when it is the last character on either end of a line. The character may be
retained or suppressed depending on the setting of the attribute value. The values are:

auto

Action is dependent on the character.
suppress

The character is suppressed.
retain

The character is retained.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When the action is character dependent, the value of the character is inspected to determine whether it is a normal
space character, U+0020, in which case the character is suppressed. suppress implies that if it is at either end of a
line, the glyph is not presented. retain implies that the character will always be retained and presented.

8.1.2 Writing Mode

If you write from the top left to the bottom right as in English, writing mode is not an issue. Writing mode is only
necessary when you need to specify writing direction to a formatter. The W3C is serious about internationalization, so
this has been accounted for in XSL-FO. The terminology is explained in Chapter 3, but I want to bring this down to
its impact on character orientation. Remember that when we are dealing with characters, some properties are already
available. Starting at the top of the hierarchy, we have the block-progression-direction. At right angles to this is the
inline-progression-direction. These are both set by the writing-mode attribute. If we take the Latin example of

left to right, top to bottom, then when we come down to the character level, we finish with a default glyph orientation.
This has the top of the glyph oriented towards the top of the page.

Writing modes specify the manner in which text flows down the page. Unicode includes the default writing mode for
each character. Thus, Arabic is automatically presented right to left. If you want it presented left to right, you need to
use the bidi-override attribute of fo:inline. This also allows you to embed left-to-right text into right-to-

left data (e.g., English words embedded in an Arabic stream).

glyph-orientation (horizontal or vertical) sets the orientation of a glyph with respect to this default glyph

orientation. The variance is that vertical, as used here, relates to vertical and horizontal writing modes. Latin scripts
where the glyphs are laid out on the page from top to bottom, left to right use a horizontal writing mode.

For vertical writing mode, where text is laid out top to bottom, use the glyph-orientation-vertical
attribute. The rotation obtained should be one from the following list: 0, 90, 180, or -90. The formatter is supposed to
round to the nearest one of these values. Used for single characters, the result is that the character is rotated relative to
the zero at the top of the page. Using the clock face analogy, 90 degrees has the top of the glyph oriented to 3 on the
clock face. From that, it's easy to work out that the top of the glyph is at 6 on the clock face for 180 degrees and at 9
on the clock face for -90 (or +270) degrees. Figure 8-3 should explain it clearly.

Figure 8-3. Writing mode

Note that this applies to horizontal writing mode. Although the vertical writing mode is similar at the character level,
the effect is different when applied at block or inline level using the closely related properties set by the writing-mode
property. For fo:character level operation, it is fairly straightforward.

When vertical writing mode is used, the actual rotations are identical for single characters to that shown in Figure 8-3.
Character sequencing and layout are modified due to common layout properties, as specified in the font tables.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1.3 Superscript and Subscript

Although not specific to fo:character , the ability to use superscript and subscript is handy at the character

level. Typical uses might include references to footnotes, glossary items, or where a single character reference is
needed. This is achieved readily, as shown in Example 8-4. Because the size of the superscripted character is often set
smaller than the main content, the font-size property would normally be applied here, too.

Example 8-4. Superscript

<fo:character
 character="1"
 baseline-shift="super"
 font-size="8pt"
 font-family="'MS Serif'"/>

The value 1 specifies that the baseline-shift attribute be set to the value super. This provides the shift

upwards relative to the reference baseline suitable for a superscript. Example 8-5 combines this with an inline.

Example 8-5. Character-level superscript

<fo:inline>See note
 <fo:character
 character="1"
 baseline-shift="super"
 font-family="'MS Serif'"/>
</fo:inline>

This provides the output shown in Figure 8-4.

Figure 8-4. Character-level superscript

Subscript is similar but has the alternate attribute value baseline-shift="sub". If the extent of the shift is not

right for you, the alternative is to specify the amount by which the character is required to be shifted, using the
baseline-shift="120%" form. The specification also permits an absolute value stated as a length, but I don't

recommend it unless the document is fixed in terms of font size, etc. The percentage solution works relative to the
size of the font and, hence, would scale if the font were changed. Note that a negative value, such as baseline-
shift="-120%", provides the subscript version.

8.2 Fonts

Font selection considerations are primarily dependent on the formatter used. Each formatter may have certain built-in
fonts readily available to the stylesheet writer, other fonts may be added either by the user or by the provider. Fonts
may be found on the Web, purchased from font foundries, or developed specifically for a task. The two prerequisites
for use within a stylesheet are that the font metrics are available to the formatter in the style selected and that the font
chosen is identified correctly by the stylesheet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

While discussion of the general characteristics of fonts is beyond the scope of this book, a good reference is the
approach used by LATEX. One I found particularly useful is Chapter 7 of The Latex Companion by Goosens,
Mittelback, and Samarin (Addison Wesley).

Some of the preparatory tasks when writing the stylesheet for a document are to determine if the source file contains
characters not likely to be found in the primary font chosen for the document, find a font that contains an entry for
that character, and ensure that all characters can be mapped to a presentation form. The result of not doing these tasks
is likely to be a missing character glyph, often difficult to spot in anything other than a small document. It's often
easier to search the source XML document for entities than to peruse the formatted document for the missing
character glyph.

The reference section of XSL refers to a font model called OpenType, developed by Microsoft and Adobe. The
reference is to the OpenType specification v1.2 (see http://www.microsoft.com/truetype/tt/tt.htm). This technology
model has been adopted by XSL-FO.

Some of the terminology takes getting used to. As in all XML, the starting point is a given Unicode code point, such
as U+0041, its name, LATIN CAPITAL LETTER A, the actual glyph representing that code point, and the font
chosen to represent it, Arial Black, for instance. The XSL document defines a glyph as " . . . a recognizable abstract
graphic symbol which is independent of any specific design." Therefore, we can tell that a particular symbol
represents the letter A, even when it's in a strange font that we may have never seen before. The recognition is critical.
A font is simply a collection of glyphs. The font designer determines which set of glyphs to include in his font.

The font tables for any particular font include the information necessary to map characters to glyphs, to determine the
size of glyph areas, and to position the glyph area precisely on the page to align with its neighbors. Alignment of an
individual character with its neighbors uses reference points, called alignment points, such that any two glyphs that
are direct neighbors appear correct when viewed together. Vertical alignment information is also provided. For
instance, Western glyphs are aligned on the bottoms of the capital letters while other scripts have differing alignment
points. The table also holds information about the writing modes supported by the font. If you intend to present a
vertically oriented piece of text, ensure that this writing mode is available.

Each font table consists of the font characteristics, such as the font-weight and font-style. The formatter

uses this information to place the individual glyph precisely on the page, aligned both to the sides of its neighbors and
to any lines of text above or below it.

The space a character takes up is defined as the design space. It is the box within which the character fits, and within
which given reference points are measured in the design space coordinate system. Each line and curve of the glyph is
drawn within this box. This allows a single 20-point character in a line of 12-point characters while maintaining
legible presentation.

In XSL-FO, font selection is based on the font properties: font-family , font-style, font-variant,
font-weight, font-stretch , and font-size. The font-family specifies a font set from which the

stylesheet designer wishes to select characters. This addresses the issue of font coverage. A font set is a list of fonts
that will be tried, in turn, to find a glyph for the particular character. The first available font that contains the character
is used. The fonts listed should be the same style and size. The two types of values for this attribute are a specific
family name, such as Baskerville, and a generic family, either serif, sans-serif, cursive, fantasy, or
monospace. When specifying one of these generic families, do not use quotes. These act as a fallback mechanism,

coming into action when none of the font families contain the character you are seeking.

The Serif family are typically proportionately spaced and have finishing strokes. Examples include Times New
Roman, Bodoni, Garamond from the Latin family, and Bitstream Cyberbit from the Hebrew and Arabic families.

http://www.microsoft.com/truetype/tt/tt.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sans Serif fonts have stroke endings that are plain. Examples include MS Verdana, Univers, and Futura from the
Latin families, and Helvetica Cyrillic, ER Univers, and Lucida Sans Unicode from the Cyrillic fonts.

The font-family attribute is specified by a list as in Example 8-6.

Example 8-6. Font example

 <fo:inline
[1] font-family="Arial, Garamond, serif"/>
 </fo:inline>

Shows the font-family selection in use.1.

This selects the Arial font as first choice, Garamond as second choice, and the fallback of using any available Serif
fonts. Where the font family name contains spaces, enclose in the alternate quote marks, for example, 'Times
Extravaganza Fabuleux'.

font-style selects one style from a small number of variants. These are normal , the upright form of the
character; italic, often used for emphasis; oblique, slightly different visually from italic and sometimes known
as slanted; and backslant, the inverse of oblique.

Use is shown in Example 8-7 in a simple inline.

Example 8-7. Font style

<fo:inline
 font-style="normal">This is normal.</fo:inline>
<fo:inline
 font-style="italic">Italic.</fo:inline>
<fo:inline
 font-style="oblique">Oblique.</fo:inline>
<fo:inline
 font-style="backslant">Backslant.</fo:inline>

The font-variant attribute selects the small capital variant of the font, which could be generated by the

formatter or provided by the font. Example 8-8 shows its use.

Example 8-8. Font variant

<fo:inline
 font-variant="small-caps">A small-caps example</fo:inline>

Although content is mixed case, the formatter converts these to small capitals as shown in Figure 8-5.

Figure 8-5. Small capitals

The font-weight attribute follows this pattern, the options being one from a reasonably complete list, including:
normal, bold, bolder, and lighter, coupled with a numeric alternative, ranging from 100 to 900, in steps of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

100. bolder and lighter provide the option of making relative changes. These are all relative to the inherited
font-weight, which is useful in a text that may be modified. Each change increases or decreases the weight by
100 on this 100 to 900 scale, until either limit is reached. The equivalents provided set font-
weight="normal" at either 400 or 500, with font-weight="bold" at 700. Trying these will often not
produce a noticable difference between two adjacent values. Some fonts may only have the two basic types, normal
and bold. So be aware of this when designing a stylesheet.

The font-stretch attribute expands characters horizontally. Currently, this is not well supported in

implementations. Its utility is viable, because it is one aspect of layout that enables content to precisely fill a line. Its
use is identical to the previous attributes, setting font-stretch to a range from ultra-condensed to
ultra-expanded, again providing the relative options of wider and narrower, when compared to the inherited
property. The ranged list is: normal, wider, and narrow. These provide the relative aspects and the initial value
or default. The specified stretch range includes: ultra-condensed, extra-condensed, condensed,
semi-condensed, normal (the mid-range default), semi-expanded, expanded, extra-expanded,
and ultra-expanded. These should satisfy most requirements.

The font-size utility attribute provides basic sizing, selecting the potentially complex mix of availability and

other modifications. Watch out for formatter font size availability and the parent element's font value inherited by the
element under scrutiny.

As with the previous related attributes, this one can be provided in a number of ways, each having its uses. The full
list of options include absolute-size, relative-size, a length specification, and a percentage. The

meaning of these relates back to the CSS origins and may not be immediately obvious.

Let's start with a simple length specification, shown in Example 8-9.

Example 8-9. Simple font size example

<fo:inline
 font-size="12pt">Length specification.</fo:inline>

I've chosen the point length specification here. Other absolute length alternatives are the pixel (px), the pica (pc, 1
pica is equal to 12 points), inches (in), centimeters (cm), millimeters (mm). These forms of specification enable

content to be presented to the user with an absolute size. When using XSL-FO in combination with XSLT to style an
XML document, there are potential problems when using this form as anything other than an initial value to specify
basic body text sizes. These relate to nested structures within the source document, where the visual aspects of the
presented text size are important. Using the analogy of XHTML, headings will probably want to scale down from the
largest (XHTML has its H1 element) through to any minor headings (XHTML has its H6 element). If absolute lengths
are specified directly for any given level of nesting or class of text content, a number of factors come into play. If the
content is modified to introduce, say, another level of usage, it is often easier to specify the font size relative to its
direct neighbors. So, use absolute values (length specifications) with caution.

The length specification of a font-size shouldn't be confused with absolute-size, which includes the options:
xx-small, x-small, small, medium, large, x-large, and xx-large.

These are not relative. Because they are computed values, they are specific, and the specification states that each
relates to the other, with a scaling factor of 1.2 between each one and may, in fact, vary from font to font. These
options are known as absolute while the 12-point specification is known as a length. So, we might see
<fo:inline font-size="xx-small">Pretty small text</fo:inline>.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The relative alternative is shown in Example 8-10.

Example 8-10. Relative font changes

<fo:inline
 font-size="smaller">Relative Specification of font size.</fo:inline>

This form uses the previous range of values, xx-small to xx-large, such that each increment causes a change

of value in one of the two directions, obviously limited to either end. This is useful when styling one piece of content
with respect to its parent. Experience has proven the ratio to be successful.

The use of relative specification of size is a looser version of the larger or smaller specification in that it can range
over a larger change in value. You might use this to specify the font sizes in a document as part of a range of variables
that are then used throughout the document as needed. This permits a single change to alter the whole document.

The basis for this is shown in Example 8-11.

Example 8-11. Attribute sets for font variants

<xsl:variable name="base-font">12</xsl:variable>

<xsl:attribute-set name="head1">
 <xsl:attribute name="font-size"><xsl:value-of
 select="concat(round($base-font *1.2),'pt')"/></xsl:attribute>
 <xsl:attribute name="font-weight">bold</xsl:attribute>
 <xsl:attribute name="font-family">Helvetica</xsl:attribute>

 <!-- other attributes as required. -->
 </xsl:attribute-set>

With various attribute sets named like this, a clear specification is set up that may then be used throughout the
document quickly and easily, as shown in Example 8-12.

Example 8-12. Attribute set usage

<fo:block
 xsl:use-attribute-sets="head1"
 keep-with-next.within-page="always">
 <xsl:apply-templates/>
 </fo:block>

This makes use of the attribute set, adding, as needed, any other properties, without explicitly stating the font within
the body of the stylesheet. This provides the global version equivalent to using the percentage option locally, setting
any block or inline to a fixed percentage of its parent element's font size.

The specification gives the formatter the right to determine the tolerance when trying to determine what 13.56894-
point text should look like. Be aware of this and don't expect too much, even for scalable fonts.

The font-size-adjust property, which is used to tweak the aspect ratio of a character, is not used often. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is defined in the specification as the ratio of the font size to its x height. The x height is the height of a letter x within
a font. By adjusting this ratio, fonts can appear clearer. The calculations are provided in the specification, and the
CSS specification provides clear indications of usage, enabling you to substitute fonts that have differing aspect
values. The specification refers to the examples in the CSS2 specification:

For example, if 14px Verdana (with an aspect value of 0.58) was unavailable and an available font had an
aspect value of 0.46, the font-size of the substitute would be 14 * (0.58/0.46) = 17.65px.

If this level of adjustment is necessary on any scale, it may be worthwhile to purchase the required font in the needed
sizes.

The decoration (as it's called in the specification) of text provides for a more readily usable set of modifications to the
presented content. This uses the text-decoration property, where the list of options includes: none,
underline, no-underline, overline, no-overline, line-through , no-line-through,
blink, and no-blink.

You may wonder about the last two options. These can be directly attributed to CSS2 and are of little use in paper-
based output, as they're targeted for screen use. A quick word on the negations in this list of properties: when a
sequence of content is presented to a user, you may need to use an on/off sequence. For instance, when identifying
content for deletion, you could mark the first four words with line-through, remove the strike through with the
no-line-through property, then reapply it to words 7 through 10. The negation options provide for this.

Example 8-13 illustrates nested inlines using this feature.

Example 8-13. Negating decorations

<fo:inline
 text-decoration="line-through">Continuing,
 <fo:inline
 text-decoration="no-line-through">with
 </fo:inline> font-weight bold
</fo:inline>

The nested inlines use the no-line-through property to turn off the strike-through for the word with.

The other properties work the same way, decorating the content as described. The output is shown in Figure 8-6.

Figure 8-6. Negating decorations

The text-shadow property provides the type of shadow often seen on containing boxes or window buttons on a

graphical user interface. It is specified by an optional color and three length values, which specify the horizontal and
vertical offsets from the character (to the right and down being positive) and an implementation-dependent blur
radius. The syntax might be as shown in Example 8-14.

Example 8-14. Text shadow

<fo:inline
 text-shadow="red 0.3px -0.3px 5px">Eclipse
</fo:inline>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This provides a red shadow 0.3px to the right, 0.3px up, and a blur radius of 5px.

The final property associated with characters, though also applicable to other elements, is text-transform .

This enables the capitalization and case of selected content to be modified. Capitalization changes case on the first
letter of bicameral fonts. The Latin alphabet is an example of a bicameral font; it has an uppercase and lowercase.
Unicameral alphabets (such as Arabic and Hebrew) have only one case. The uppercase and lowercase values
ensure content is fixed to that particular case. As usual, the transformation may be turned off with the none value, if

this is required.

8.2.1 Shorthand Attribute Specification

The font attribute is a slightly lazy way of specifying a nearly complete set of font-related traits. The properties that
can be set are: font-family, font-size, font-weight, font-style, font-variant, line-
height, font-size-adjust, and font-stretch.

Use of the font attribute is demonstrated in Example 8-15.

Example 8-15. Font short form usage

font="italic 11pt/1.5 Times"

The syntax of this attribute is a space-separated list of values in the following order, extracting the relevent part of the
specification:

[<font-style> || <font-variant> || <font-weight>]?
 <font-size> [/ <line-height>]? <font-family>]

The || indicates that you can have any of the options in any order, so you don't necessarily need the font-style
before the font-weight, although these do have to occur before the font-size. Note the sequencing and the
exception, shown in Example 8-15, of the inclusion of the line-height value. This has the forward slash
predecessor and must follow the font-size. line-height is a multiplier and may be an explicit length. Be

aware that the shorthand sets all these values to their default values prior to applying those specified. So, if you don't
set a value, it has a default applied. If you want to maintain a value (perhaps set by a parent element), ensure that it is
included. Be careful: silently overriding line-height or font-size-adjust by this property can easily
give rise to confusion. The side effect here is that two other properties are reset to default values. These are font-
stretch and font-size-adjust.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 9. Cross-Document Links

 9.1 Cross-Document Links

 9.2 Indexing and Tables of Contents

 9.3 Running Headers

To quote from the specification:

Because XML, unlike HTML, has no built-in semantics, there is no built-in notion of a hypertext link.

So why does XSL-FO address links? Certainly for a paper-based output, an active hyperlink isn't much use, though
for a screen-based presentation using PDF, it might be. While XSL-FO is used primarily for paper-based output
today, it would be a mistake to think this is XSL-FO's only purpose. XSL-FO is designed to present XML across
several media, including interactive media; to do that, it needs to support hyperlinking. In its simplest form, the link is
useful to cross-reference to content, locations within the document, and specific structural elements. For web-based
delivery, it is handy to have an active link, and for print output, the actual content of the active element needs to be
meaningful. This facility is offered in the first version of the specification.

XSL-FO has a formatting object named fo:basic-link , which provides the basic linking capability. Example

9-1 and Figure 9-1 show this in use.

Example 9-1. A basic link

xml source

<para>...see the figure on page <link idref="fig53"/>
</para>

and the stylesheet
<xsl:template match="link">
<fo:basic-link background-color="lightblue"
 internal-destination="{@idref}">Page
 <fo:page-number-citation ref-id="intro"/>
 </fo:basic-link>

</xsl:template>

Figure 9-1. A basic link

Here, the link is shown inline and shaded, referencing a page number. The formatter replaces the page-number-
citation with the page number on which the link target is present while laying out the document. Some

formatters will create a clickable link, others will not. Be warned: there is no requirement to do so! Note the use of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attribute value template in this example to insert the id value of the link target, using the idref attribute value on

this element.

Now, let's have a look at the various uses for links.

9.1 Cross-Document Links

The simplest syntax for this use is the id /idref pair. This is for a case in which the document being transformed
contains both the source and target of the link. This way, the XSLT engine can resolve the link target using the id(
) function.

Note that for id /idref to work properly, the id attribute must be declared by the DTD

as being of type ID. A common error (and one that I frequently make) is to style a part of a
document and forget the DTD inclusion.

When the link is between documents that are only styled to form a single document for paper, other cross-document
linking forms should be used. If the source documents are parsed as a single entity, this presents no problem. If they
are to be used in other ways, to avoid unresolved cross-references the source of the link needs to use something other
than the IDREF attribute.

The contents of the basic-link element could be literal content or content retrieved from the target, such as the

title of a chapter, a page, or a section number, using the functionality of XSLT. Example 9-2 and Example 9-3 show
such an example, with the generated fo shown in Example 9-4 .

The cross-references are actually within the fo file. If you receive warnings about
unresolved page-number-citations or reference id values, it's possible that you
have forgotten to add the id values to the targets.

Example 9-2. Cross-references using target content, XML source

<chapter>
<para>A link to <xref idref="ch2" />.
 </para></chapter>
<chapter id="ch2">
 <title>Second chapter</title>
</chapter>

Example 9-3. Cross-references using target content, XSLT stylesheet

 <xsl:template match="chapter">
[1] <fo:block id="{@id}">
 <xsl:apply-templates/></fo:block>
</xsl:template>

 <xsl:template match="xref">
 <fo:inline ><fo:basic-link

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[2] internal-destination="{@idref}">
 Chapter
[3] <xsl:for-each select="id(@idref)">
 <xsl:number level="multiple" count="chapter" format="1 "/>
 </xsl:for-each>,
 <xsl:value-of select="id(@idref)/title"/>
 on Page
 <fo:page-number-citation ref-id="{@idref}"/>,
 </fo:basic-link>
</fo:inline>
 </xsl:template>

The example shows the chapter being wrapped in a block. An alternative is to use an empty block with the id
value set.

1.

The xref template creates the source link, with content obtained from the target (Chapter 2 title); its number

is calculated from its position within the document, and the page number is added.

2.

Note the need to change context, using xsl:for-each , to obtain the right context.3.

Example 9-4. Cross-references using target content, resulting FO

 <fo:block font-family="Times"
 font-size="12pt" space-before="12pt" space-after="12pt"
[4] text-align="justify">A link to <fo:inline>
 <fo:basic-link
 internal-destination="ch2">Chapter 2, Second chapter on Page
 <fo:page-number-citation ref-id="ch2"/>, </fo:basic-link>
 </fo:inline>.
 </fo:block>
 </fo:block>

The resulting output in the fo namespace indicates the processing that the formatter has to do, replacing the
page-number-citation while generating the link.

4.

Note that the whitespace in this example is there for readability.

9.1.1 Page Numbering

Page numbering can sometimes cause problems. As mentioned earlier in the book, page-number restarts are possible
for any layout. Another thing to consider is the actual appearance of page numbers. Front matter and main matter may
require different formats, for example; Roman for the front matter and Arabic for the main matter. This is not defined
in XSL-FO, but rather in XSLT, which provides that facility and is referenced from the XSLT-FO Recommendation.
xsl:number has an attribute named format , which takes an option of 1 , a , A , i , or I , and applies

formatting to the string to return Arabic numerals, lowercase letters, uppercase letters, lowercase Roman numerals,
and uppercase numerals, respectively. This attribute is available on the fo:page-sequence element, with a

default beginning value of 1. Select one of the other options to format the page number in Roman or other formats.
For example, to have a page-sequence numbered using Roman uppercase, you might specify <fo:page-
sequence master-reference="only" format="I"> <fo:flow flow-name="xsl-
region-body">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, let's put the basic link to use.

9.2 Indexing and Tables of Contents

The most common use of links, index, and table of contents generation, share two characteristics. First, they answer
the old problem of changing content. If the table of contents or index is generated automatically, there is no frantic
rush near publishing time to get all the page numbering correct. Second, the actual page numbers (or section or
chapter numbers) don't need to be hardcoded into the document. This way, content reorganization is not a problem.
Take a book with chapters and sections within chapters: if all cross-references are to chapter id values, then no

matter how much reorganization is done, the cross-references will remain valid, the table of contents will be accurate,
and the indexing is done as part of the transformation.

Let's take the previous example further, by producing a table of contents showing the title and page number. We need
to do that for chapters and the contained sections. Dot leaders are needed for each entry, which are second-level
entries indented by four character widths with respect to the parent. The source might look like Example 9-5 .

Example 9-5. Source XML requiring a table of contents

<chapter><title>one </title>
 <section><title>one one </title></section>
 <section><title>one two </title></section>
 <section><title>one three </title></section>
</chapter>

<chapter><title>two </title>
 <section><title>two one</title></section>
<section><title>two two</title></section>
<section><title>two three, with a long title to show
 the effect of wrapping on long lines in this mode.
 Normal layout provides a reasonable solution</title></section>
<section><title>two four</title></section>
<section><title>two five</title></section>
<section><title>two six</title></section>

The stylesheet section to generate the table of contents needs to be called at the appropriate time in the output
generation and might look like Example 9-6 . The example uses templates with a mode attribute set to the value toc
, to enable out-of-line processing. An appropriate header must be included.

Example 9-6. Table of contents stylesheet extract

 <xsl:template match="chapter" mode="toc">
 <fo:block text-align-last="justify">
 <fo:inline><xsl:value-of select="title"/>
 <fo:leader leader-pattern="dots"/>
 <fo:page-number-citation ref-id="{@id}"/>
 </fo:inline>
 </fo:block>
<xsl:apply-templates select="section" mode="toc"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</xsl:template>

 <xsl:template match="section" mode="toc">
 <fo:block text-align-last="justify"
 text-indent="-1em" start-indent="1em">
 <fo:inline padding-start="1em"><xsl:value-of select="title"/>
 <fo:leader leader-pattern="dots" />
 <fo:page-number-citation ref-id="{@id}"/>
 </fo:inline>
 </fo:block>
</xsl:template>

Leaders are used to separate the title contents from the page number. The only other difference is the use of the
text-align-last attribute. This expands content across the page to give the presentation shown in Figure 9-2 .

Figure 9-2. A table of contents example

Figure 9-2 shows how to control the wrapping of long lines by using the text-indent and start-indent
combination. The first line is outdented, with the whole block indented by the same amount.

Indexing is managed in a similar manner. Each term is identified, perhaps with a specific attribute or even using an
id attribute. The index is then generated automatically, using the id /idref pair again. More complex indexing

would require both primary and secondary (or even tertiary) annotations to indicate the level of indexing for that
usage. This is simply a case of using indentation to layout the index, perhaps using bold to indicate the primary entries
and normal weight for other levels. Example 9-7 shows a simple text example illustrating the source XML.

Example 9-7. Source XML

 <para>This is a page layout using the
 <term id="front-page">page </term> format....
....
 <idx>
 <item idref="front-page">Background Image</item>
 <item idref="b">Bold</item>
 <item idref="cen">Centered text</item>
 <item idref="sect4">Columns</item>
 </idx>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The indexed term is identified and referenced by page number. At the end of the document, the term is identified and
the index text is inserted, which in this case expands on the content for clarity. The XSLT stylesheet to produce the
overall index is shown in Example 9-8 .

Example 9-8. Stylesheet for the index

 <xsl:template match="idx">
 <fo:block
 start-indent="0.5in"
 end-indent="0.5in"
 font-size="{$base-font-spec}"
 text-align-last="justify">
 <fo:inline font-weight="bold">Item</fo:inline>
 <fo:leader leader-pattern="dots"/>
 <fo:inline font-weight="bold">Page</fo:inline>
 </fo:block>
 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="idx/item">
 <fo:block
 start-indent="0.5in"
 end-indent="0.5in"
 font-size="{$base-font-spec}"
 text-align-last="justify">
 <xsl:apply-templates/>
 <fo:leader leader-pattern="dots"/><fo:basic-link
 internal-destination="{@idref}">
 <fo:page-number-citation
 color="blue" ref-id="{@idref}"/></fo:basic-link>
</fo:block>
 </xsl:template>

The example provides the header for the index, the column headings, the term, and page number. Note that I have
used a variable to specify font-size to permit varying the whole document font size for different readers. The
content of the item element is left-justified with an indent, followed by the leader with a pattern set to dots to
provide the dot leaders out to the right margin, where the page number is included using the page-number-
citation property. This produces the actual page number. The result is shown in Figure 9-3 .

Figure 9-3. Resultanting index output

If secondary terms are required, the method shown for the table of contents example could be used (see Example 9-6 ,
earlier).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3 Running Headers

Because the method used to produce running headers is effectively a link, it is included here with other cross-
referencing techniques. For those not familiar with the term, running headers are the lines of text that run across the
tops of book pages, sometimes including chapter titles.

XSL-FO uses a scheme that I don't find particularly clear. As explained earlier in this book, headers are seen as static
content related to page layout, rather than to flowed content. This is reasonable for the majority of cases. I find it
counter-intuitive for running headers. As of Release 1 of the Recommendation, little has been provided that is
dependent on the page position. The XSL Working Group has openly stated that there are clear requirements for this
that will be addressed, but have yet to address them.

A key point here is that static content is defined in the page layout specification and remains static until a new page
layout is used. This means items such as page numbers and running headers that are required to change over a single
layout must be treated specially. The running header issue is resolved in XSL-FO by means of two formatting objects,
marker and retrieve-marker .

Let's first identify the content for the running header (or footer - the same principles apply). Assuming that a chapter
title is required for the running header, we may have something like Example 9-9 as the XML source file.

Example 9-9. XML source for a running header

<chapter><title>Introducing markers</title>

The stylesheet for this "Introducing markers" header is as shown in Example 9-10 .

Example 9-10. Marker usage

<xsl:template match="chapter/title">
 <fo:block xsl:use-attribute-sets="head1"
 break-before="page">
 <fo:marker marker-class-name="sect-head" >
 <fo:block><xsl:value-of select="."/>
 </fo:block>
 </fo:marker>
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

Within the title block, a marker is specified, given a class name of sect-head and its contents are enclosed in
a block (which is not strictly necessary). The marker-class-name must be unique within the layout area. Note

that this will not produce output prior to the contents of the title in the formatted output. It simply says, "Use this
content when you want the contents of the marker named sect-head ." This identifies the content, so now we

need to use it.

As part of the page layout, the header is specified as static-content . Assuming a justified layout of title
contents, we can use text-align-last for this justification, with each element as a child of the block with that
property set to justify . The header stylesheet might look like Example 9-11 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 9-11. Retrieve marker usage in a header

<fo:static-content
 flow-name="xsl-region-head">
 <fo:block>
 <fo:retrieve-marker
 retrieve-class-name="sect-head"/>
 </fo:block>
</fo:static-content>

The static content for the header is specified to contain the contents of the marker named sect-head , contained
within a block. This produces a header that changes within the same page-sequence to reflect the changing

contents of the chapter title. I'll leave it up to you to format the other typical contents of a header.

9.3.1 Footnotes

Though footnotes are not links, it seems appropriate to discuss them here. The element (in the fo namespace) to use
is fo:footnote . The two first children of this element are the inline for the footnote reference and the
footnote-body for the actual content of the footnote. In Example 9-13 , I've used a decorative horizontal rule to

separate the footnotes from the page text and created a list to lay out the footnote content. I'll leave the addition of
superscripting to you.

Both the reference and the content of the footnote is included at the same place, with the formatter doing the hard
work of laying it out on the same page. Examples Example 9-12 through Example 9-14 show the XML source, the
transformation, and the resulting FO.

Example 9-12. Footnote example, source XML

<para> the bicameral<footnote>The Latin
 alphabet, which you are reading, is an example of a
 bicameral font; it has an uppercase and
 lowercase. Unicameral alphabets (the Arabic and Hebrew
 alphabets) only have one case.</footnote> font presents us with two forms of
 presentation..</para>

Example 9-13. Footnote example, the transformation

<xsl:template match='para'>
<fo:block><xsl:apply-templates/></fo:block>
</xsl:template>

<xsl:template match='footnote'>
 <fo:footnote>
[1] <fo:inline>1</fo:inline>
 <fo:footnote-body>
[2] <fo:block text-align-last="justify">
 <fo:leader leader-pattern="rule"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </fo:block>

 <fo:list-block>
 <fo:list-item>
 <fo:list-item-label end-indent="label-end()">
[3] <fo:block>1</fo:block>
 </fo:list-item-label>
 <fo:list-item-body start-indent="body-start()">
[4] <fo:block><xsl:apply-templates/></fo:block>
 </fo:list-item-body>
 </fo:list-item>
 </fo:list-block>

 </fo:footnote-body>
 </fo:footnote>

</xsl:template>

The marker, which is an inline.1.
A leader separates footnotes.2.
A list presents footnote.3.
The actual footnote content.4.

Example 9-14. Footnote example, the resulting FO

 <fo:block>the bicameral font presents us with two forms of presentation
 <fo:footnote>
 <fo:inline>1</fo:inline>

 <fo:footnote-body>
 <fo:block text-align-last="justify">
 <fo:leader leader-pattern="rule"/>
 </fo:block>

 <fo:list-block>
 <fo:list-item>
 <fo:list-item-label end-indent="label-end()">
 <fo:block>1</fo:block>
 </fo:list-item-label>
 <fo:list-item-body start-indent="body-start()">
 <fo:block>The Latin
 alphabet, which you are reading, is an example of a
 bicameral font; it has an uppercase and
 lowercase. Unicameral alphabets (the Arabic and Hebrew
 alphabets) only have one case.</fo:block>
 </fo:list-item-body>
 </fo:list-item>
 </fo:list-block>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </fo:footnote-body>
 </fo:footnote>
font presents us with two forms of presentation..
</fo:block>

The output is shown in Figure 9-4 . The body content is simply the inline number one, to which a prefix could be
added during the transformation stage.

Figure 9-4. Resultant footnote presentation

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 10. Putting It All Together

 10.1 Outline

A small, complete document uses much of the previously described functionality and illustrates the power of XSL-
FO.

10.1 Outline

As source content, I'm going to use an imaginary book outline. In terms of layout, the major elements are the front
matter, which requires attention and is a one-off; the main chapters, which share layout but have one or two special
treatment areas; and the rear matter, for which separate treatment is needed for an index.

The pagination needed is shown in Figures Figure 10-1 and Figure 10-2.

Figure 10-1. Frontmatter layout

Figure 10-2. Initial page layout

http://lib.ommolketab.ir
http://lib.ommolketab.ir

No page headers are needed for the first three pages, page numbers are needed only for the preface and table of
contents, then we use a header (no footer), as shown, for the remainder of the chapters. Now we can specify these and
define some of the attribute sets that will be used throughout.

So let's put an outline together. I'm presuming a fairly complex stylesheet, so I'll partition it early. The main stylesheet
will hold only the content templates and will import separate stylesheets for the page layout (layout master set), the
primary element templates. I'll start with a trial for the layout master set.

First, separate simple-page-masters will be needed for the first three pages that share a common layout.

Others will be needed for the preface and contents pages and another for the bulk body content. I'll prepare those first
and try them out.

Rather than include the first layout inline, it is a separate page with comments. Now we can convert it to something
that is usable with content. Let's have a quick look at the format I'm using for the book itself. This is shown in outline
in Appendix F. The next task is to convert the outline into a stylesheet that matches this schema. First, the root
template is placed around what was an XML document in the fo namespace, then templates are applied, or called, to

replace the dummy content.

So far, there are three files. The page layout stylesheet is derived directly from the test layout, pl.xsl (page layout).
Another stylesheet is created with the majority of the templates, main.xsl . A third is created to hold all the standard
property sets to be used, ps.xsl (property sets). The main stylesheet is the second of these; the other two are imported
from that.

10.1.1 Page Layout

The page layout stylesheet is the key to the whole layout process, and it is important to see how the application of
templates relates to this file. The primary flows are in the title page, the front matter for the preface, table of contents,
and finally, the body matter, which picks up both chapter content and rear matter. Within each page-sequence, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

right apply-templates statements are needed.

For the page-sequence named first3, the flow content is as shown in Example 10-1.

Example 10-1. Flow contents for the first three pages

<fo:page-sequence master-reference="first3">
 <fo:flow flow-name="xsl-region-body">
 <xsl:apply-templates select="/book/frontmatter/title"/>
 <xsl:apply-templates select="/book/frontmatter/dedication"/>
 <xsl:call-template name="tPage"/>
 </fo:flow>
</fo:page-sequence>

Remember that, prior to this point in the stylesheet, all content is a literal result element. All you need is to apply
selected templates for the needed content and to ensure that other templates don't duplicate the content elsewhere.
Hence the use of the select attribute on apply-templates. This takes care of the first three pages, or it will

when templates are provided to match this content.

The next flow area includes the preface and table of contents. This is shown in Example 10-2.

Example 10-2. Preface and table of contents flow

<fo:page-sequence
 master-reference="prefAndToc"
[1]initial-page-label="1"
[2]format="I">

[3] <fo:static-content
 flow-name="xsl-region-after">
 <fo:block text-align="outer"><fo:page-number/></fo:block>
 </fo:static-content>

 <fo:flow flow-name="xsl-region-body">
 <xsl:apply-templates select="/book/frontmatter/preface"/>
 <xsl:apply-templates select="/" mode="toc"/>
 </fo:flow>
 </fo:page-sequence>

The page numbering is reset to 1.1.
The format is specified as Roman uppercase.2.
The region-after contains the page number only.3.

The only content needed here is the preface and table of contents. Again, a full path to each is provided. The toc
needs the full document to access each section, but is moded to ensure proper processing. Only the footer is used
here; there is no header. The page number is reset to 1, and its format is set to Roman numbering.

Finally, the main body content is applied to the remaining page-sequence, as shown in Example 10-3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 10-3. Chapter page-sequence

 <fo:page-sequence
 master-reference="chaps"
 initial-page-label="1"
[1] format="1">

 <fo:static-content
 flow-name="xsl-region-before">
[2] <fo:block text-align="outside">
 Chapter <fo:retrieve-marker
[3] retrieve-class-name="chapNum"/>
 <fo:leader leader-pattern="space" />
 <fo:retrieve-marker
[4] retrieve-class-name="chap"/>
 <fo:leader leader-pattern="space" />
[5] Page <fo:page-number font-style="normal" />
[6] of <fo:page-number-citation ref-id='end'/>
 </fo:block>
 </fo:static-content>

 <fo:flow flow-name="xsl-region-body">
 <fo:block xsl:use-attribute-sets='font'>
 <xsl:apply-templates select="/book/bodymatter"/>
 <xsl:apply-templates select="/book/rearmatter"/>
 </fo:flow>
</fo:page-sequence>

The page number is formatted in Roman.1.
This block forms the header on these pages.2.
The chapter number is retrieved as a marker.3.
The chapter title is retrieved as a marker.4.
The page number is added.5.
Last page number of document.6.

Markers are used for the static content in the header, both for the chapter title and the chapter number. The last page
is identified by a block with an id value of end, whose page number is retrieved here.

10.1.2 The Template File

The template file is where the stylesheet author will spend most of his or her time. I like to keep mine as uncluttered
as possible. I've laid it out almost in document order, so that if I'm looking for a template that matches front matter, I'll
expect it near the top of the file. I keep all general templates near the end of the file, finishing up with the default
template. This is what works for me.

I almost always write a default template first, which helps to identify missing templates. It reads as in Example 10-4.

Example 10-4. The default template

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<xsl:template match="*">
[1] <fo:block color="red">
 Element <xsl:value-of
 select="name(..)"/>/ <xsl:value-of
 select="name()"/> found, with no template.
 </fo:block>
 </xsl:template>

A block with red content.1.

All this tells me is the parent and element in question by pointing them out in red. Note that there is no child
processing, hence, it catches the parent prior to a child. This way, I know I need to keep writing templates until I have
no more red text displayed.

Within this file, I want to keep separate the actual style (appearance) of the various blocks and inlines. I separate these
out, for the most part, by means of attribute sets, in the ps.xsl file (I will define page breaks within this file). One
approach is to start at the front and, for each element of the source document, work through until the formatting has
been achieved. Prior to this, I want to set up some property sets for the major items, such that they are available for
use when this file is worked on. This prevents a random approach, which results in styles being spread all over the
file. As I consider each separate style, I want to review it as a candidate for either using an existing style or for
forming the basis for another style.

Let's start with the title page. This needs to be on a separate page with sufficient spacing. The content is obtained from
the source content by using the pull method. Because it's a one-off, all styling will be applied directly within the

template. This requires something such as what's shown in Example 10-5.

Example 10-5. Template for the front page

 <xsl:template name="tPage">
 <fo:block xsl:use-attribute-sets='font'>
 <fo:block
 font-size='36pt'
 space-before = '50mm'
 space-after = '25mm'
 ><xsl:value-of select='/book/title'/>
 </fo:block>
 <fo:block
 font-size='18pt'
 space-before = '25mm'
 space-after = '12mm'
>by </fo:block>
 <fo:block
 font-size='18pt'
 space-before = '25mm'
 space-after = '12mm'>
 <xsl:value-of select='/book/frontmatter/author'/>
 </fo:block>
 </fo:block>
 <fo:block text-align='end'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 font-size='10pt'
 space-before = '50mm'>
 © <xsl:value-of
 select="/book/frontmatter/pubdetails/pubname"/>
 </fo:block>
 <fo:block text-align='end'
 font-size='10pt'>
 <xsl:value-of
 select="/book/frontmatter/pubdetails/pubads"/>
 </fo:block>

 </xsl:template>

Next, for the dedication page. Literal text is needed here for a title, but otherwise, this is a simple, separate page,
styled in the same manner as the title page. The contents of the dedication can be handled by the standard paragraph
template.

Next comes the fancy title page. This sits between the dedication and the preface, hence, it needs to be inserted
manually, again using the pull technique. A template using XSLT modes inserts the content at the right time in the

output. I have to force the styling to obtain the side-by-side appearance of the image and the publisher data because I
don't have the appropriate float properties available in my formatter. I'm going to use a table containing the image and
the text, as shown in Example 10-6.

Example 10-6. Fancy title page template

<xsl:template match='/' mode='ffp'>
 <fo:block break-before="odd-page" >
 <fo:block
 xsl:use-attribute-sets="title font"
 space-after="20mm">
[1] <xsl:value-of select='/book/title'/>
 </fo:block>
 <fo:table width='130mm'>
 <fo:table-body>
 <fo:table-row>
 <fo:table-cell>
 <fo:block>
 <fo:external-graphic
 src="images\ttlpg.jpg"
[2] content-height="100%"
 scaling="uniform"/>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell display-align='bottom'>
 <fo:block/>
 <fo:block space-before='90mm'>
[3] © <xsl:value-of
 select='/book/frontmatter/pubdetails/pubname'/>
 </fo:block>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <fo:block>
 <xsl:value-of
 select='/book/frontmatter/pubdetails/pubads'/>
 </fo:block>
 </fo:table-cell>
 </fo:table-row>
 </fo:table-body>
 </fo:table>
 <fo:block
 font-size='{$small-sz}'>Image courtesy of Aries Cheung, Toronto
 </fo:block>
 </fo:block>

 </xsl:template>

Title1.
Image2.
Text content3.

With the new page layout for the preface and contents, the styling for these pages can be applied. The preface is
styled the same as the body of the book, so standard templates can be used. The table of contents requires the moded
template.

Because we don't have ID values in each chapter, appendix, etc., we need to generate them to obtain the page number.
This means that for the preface, each chapter, and each appendix, the template must generate the id value. Within the
table of contents, it is necessary to change context to generate an id value. The template for the table of contents is

shown in Example 10-7.

Example 10-7. Table of contents template

<xsl:template match="/" mode="toc">
 <fo:block break-before="odd-page" >
 <fo:block xsl:use-attribute-sets="title font">
[1] Table of Contents
 </fo:block>

 <xsl:for-each select='book/frontmatter/preface'>
 <fo:block text-align-last="justify">
 <fo:inline><xsl:value-of select="title"/>
 <fo:leader leader-pattern="dots"/>
[2] <fo:page-number-citation ref-id="{generate-id
 </fo:inline>
 </fo:block>
 </xsl:for-each>

[3]<xsl:for-each select='book/bodymatter/chapter'>
 <fo:block text-align-last="justify">
 <fo:inline><xsl:value-of select="title"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <fo:leader leader-pattern="dots"/>
 <fo:page-number-citation ref-id="{generate-id()}"/>
 </fo:inline>
 </fo:block>
 </xsl:for-each>

[4]<xsl:for-each select='book/rearmatter/appendix'>
 <fo:block text-align-last="justify">
 <fo:inline><xsl:value-of select="title"/>
 <fo:leader leader-pattern="dots"/>
 <fo:page-number-citation ref-id="{generate-id()}"/>
 </fo:inline>
 </fo:block>
 </xsl:for-each>
 </fo:block>
</xsl:template>

Table of contents title1.
Preface2.
Chapters3.
Appendixes4.

This uses the standard table of contents methods discussed earlier in the book.

The remainder of the book's formatting is fairly straightforward, using already defined property sets. If the early
definitions are right, there needs to be less special formatting as the stylesheet grows. Chapters repeat the preface
format, and most of the basic formatting is now available.

10.1.3 Property Sets

This file holds base variables, attribute sets, and little else. It is included by the main.xsl file. The ps.xsl file is shown
in Example F-4.

A quick glance at the source documents indicates some ready candidates for repeated styling:

Chapter titles

The basic paragraph element

Let's start with the basics for these. First, begin with the font and some base sizes that I can add to as needed. The
intent is never to specify an absolute size in the main.xsl file.

The first four variables set out a base size and three variants on that size, each a multiple of the base font. To call
these sizes up, next come strings used as the attribute value font-size. The font attribute set, which comes next,

defines the base font for the whole document. This is called up frequently throughout the document. A lengthy
attribute-set follows for the title formatting. This, in turn, uses previously defined variables. I've specified a padding
attribute set, though it hasn't been used so far. The same goes for the border attribute set. Finally, the paragraph
attribute set is specified. This file can be expanded to contain all the actual styling details, which are then called up
from the main stylesheet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This chapter has shown a general approach that may be used to create a complete stylesheet. For reference, all the
files are included in Example F-4: the outline source document is in Example F-2, the main stylesheet is in Example
F-3, the property sets file is in Example F-4, and the page layout file is in Example F-5.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 11. Stylesheet Organization

 11.1 Classes of Stylesheets

 11.2 Page Layout

 11.3 Main Flows

 11.4 Inclusion and Importing

Now that you have all the parts needed to create XSL stylesheets, you need to think about how best to assemble them.
XSLT provides very few constraints on how to structure stylesheets, but building stylesheets that can be reused and
maintained requires some extra consideration and discipline.

11.1 Classes of Stylesheets

Generally, stylesheets tend to be either specialized or broad-based general purpose. The implications of this should be
considered early. Examples of the first category are the one-off stylesheets created for a specific task, possibly used
only for a single class of document. These will be tailored to the needs of the DTD in question and contain only as
much flexibility as the DTD enables. The second category could include a base stylesheet and specialization layers to
provide for specialist adaptations or a base stylesheet that can quickly be adapted to a whole range of document
classes with minimal effort. These two forms require different approaches.

11.1.1 Specialized Stylesheets

If you are styling a single DTD or schema for print output, some finer considerations come into play. If you have a
firm requirement that is well thought-out and likely to be stable once designed, you've just hit stylesheet heaven. It's
far more likely that you will design the stylesheet, it will be in use for a few iterations, then the end users of the output
or the information providers will decide they want to tweak this bit, subdivide that part, or adapt the schema. If your
stylesheet is well thought-out, it may take the strain of such modifications. If it's monolithic and undocumented, you
may find the effort needed to update it is almost as great as the effort that was needed to create it.

A second consideration is the environment in which the stylesheet will be used. Stylesheets that are created and used
by the same person can often get away with less formal structures and documentation than stylesheets meant for use
in a production environment, where the creators of the stylesheets may be unavailable. Similarly, stylesheets that are
written with the expectation that their parts may be reused or changed on a regular basis may need more attention to
structural detail than stylesheets meant to be written once and never modified or reused.

11.1.2 General-Purpose Stylesheet

If the stylesheet is to live for some time, it should be documented, using either XML comments or namespaced inline
documentation. An example of this latter style of documentation may be found in the DocBook Stylesheets now
hosted on SourceForge at http://docbook.sourceforge.net. When a particular facet of a stylesheet is designed, the ideas
in the designer's mind may be very clear but that clarity is unlikely to remain over time. Make it easier for yourself
and others by documenting and updating as you work.

http://docbook.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Partitioning is the key to designing a successful, reusable stylesheet that can be quickly adapted. If you can swap
modules in and out of your stylesheet quickly and easily, your previous work can be reused. If it's also well
documented, you will be able to use that stylesheet extract efficiently. The design requirements of XSLT and XPath
support this reuse by being side-effect-free languages. It is still possible to write bad stylesheets that are unlikely to be
reusable, but some of the nastier aspects of procedural languages won't get in the way. If small, clean, closely related
templates are grouped into a single file, the chances of them being reused increases. How you group them is up to
you, whether it's by DTD relationships or some other association will depend on circumstance. Moded templates
come into their own when prior selection determines the formatting needed, and the moded templates are then called
with clear, well-known formatting requirements.

11.1.3 Local Modifications

If you are providing a stylesheet for others to extend or modify, certain considerations must be applied.

The stylesheet must be well documented if you want to avoid frequent requests for support. If possible modifications
could change the operation of the stylesheet, let users know of the risks they are taking.

Templates that are not meant to be modified must be identified as such, preferably with a clearly understandable
rationale for that identification. Try to control stylesheet operation by using parametric variables. This keeps the
stylesheet users away from prime code while satisfying their need to be able to customize stylesheet operation. Note
the interaction between parameters. A good example is the use of DocBook table of contents (toc) related parameters.
A single parameter is set to enable or disable toc generation. Once you've enabled toc generation, individual
parameters are used to switch toc generation on or off within the various major container level divisions such as parts,
chapters, and appendixes.

If your files are imported into the modifiers stylesheets, the importing stylesheet will take precedence. If an element is
found for which you haven't provided a template, let the user know that it's not being formatted. Example 11-1 shows
such a template.

Example 11-1. Unexpected element processing

<xsl:template match="*">
 <xsl:message>
 <xsl:value-of select="name(.)"/>
 <xsl:text> with no styling.</xsl:text>
 </xsl:message>
 <fo:block color="red" >
 <xsl:text>
 <xsl:value-of select="name(..)"/>/<xsl:value-of select="name(.)"/>
 </xsl:text>
 </fo:block>
</xsl:template>

This produces a block of red text (via the message) that lets the output reader and whomever is processing the

stylesheet know that this element has not been processed. The red text helps the message to stand out.

11.1.4 Overall Stylesheet Organization

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stylesheets may be crudely divided into two major parts: the part of the stylesheet that specifies the page layout and
the part that specifies the content styling. Of course, these two are fairly intimately related, but it is possible to isolate
them for design and update purposes. The other advantage of this separation is the refresh rate. Relatively, the second
block of templates is most likely to require modification. With this in mind, when starting from a blank page, one
early decision should be how many files you will create. Factors influencing this will be the size of the Schema or
DTD, context sensitivity (if similar elements will be processed differently in different contexts), stylesheet life, and
likely development period. Each of these impacts the file count. If you are used to dealing with large chunks of code,
it will be easier. If you are fairly new to stylesheets, it may be easier to develop incrementally, adding more templates
slowly, in smaller files, keeping your work focused on small sections of the Schema at any one time, and relying on
default handler templates for the elements you haven't processed yet.

A suggested starting point, given just too many options, might be to encapsulate all paging templates in one file, then
to look at either one or more files to hold all other templates below the root of the document instance. This provides a
basis on which to build. As the stylesheet grows, it may then be split out further, grouping templates either by similar
layout style or by some schema-related division. Further considerations, depending on the circumstances for isolation
and inclusion might be:

Font properties, using attribute-set elements

Parameter values, which control stylesheet operation

Locale-specific processing

Literals, if internationalization is an issue

Special page-level processing, for instance, front matter, back matter, or any major branches of the Schema that
require special handling

Elements from the Schema that are likely to require similar processing (these could be similar block-related
formats, inlines, or elements with special whitespace requirements)

If elements are to be formatted differently within each of the contexts within which they occur, as opposed to being
formatted identically in any context, groupings of templates will occur naturally by context. This often happens with
Schema that make high levels of reuse of lower-level structures (sometimes inappropriately). An example of this
might be a block-level element that is formatted as a float, in one context and an inline block in another.

11.2 Page Layout

One way to gain a view of a stylesheet's structure is to use the collapsable tree view provided by Internet Explorer
from Microsoft. If you think of your page definitions in this way, the candidates for modularization can be seen.
Figure 11-1 shows the overall structure.

Figure 11-1. Page layout structure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Standard XML inclusion methods may be used to keep each file a managable size using entities for any of these
sections. An example of such usage is shown in Example 11-2.

Example 11-2. Use of entities in a stylesheet

<?xml version="1.0" ?>
<!DOCTYPE xsl:stylesheet [
 <!ENTITY lms SYSTEM "lms.xml">
]>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
version="1.0">

<fo:root>
<-- Include the layout-master-set -->
&lms;
......

The entity lms contains the layout-master-set for the stylesheet. The remainder of the stylesheet is not
shown. The included entity is a well-formed XML file containing the layout-master-set itself.

This technique reduces the clutter in the main stylesheet (or one of its inclusions) and enables the author to focus on
the task at hand. Don't overdo it or you will find yourself constantly opening other files just to see what is included!
This can be done incrementally, developing a major section of the stylesheet, then, once it's finalized, separating that
section into an included entity.

This is perhaps most useful for the larger sections of the page layout information, which, once working, tend not to be
disturbed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.3 Main Flows

Selecting the flow into which a particular content is included is perhaps one of the most critical aspects of stylesheet
design. If you are applying single-document-specific templates within a particular flow, to ensure that the specific
content is formatted within a specific page-sequence, don't select it by its current position within the document;
instead, use an id value assigned to that element. This allows other siblings to be inserted or reorganized without

changing the stylesheet.

How content is selected for flows can be varied. An example is shown in Example 11-3.

Example 11-3. Selecting content for flows

<fo:page-sequence
 master-name="rest">
 <xsl:call-template name="page-sequence">
 <xsl:with-param
 name="head-R">Page <fo:page-number/> </xsl:with-param>
 <xsl:with-param name="foot-L">Chapter title</xsl:with-param>
 </xsl:call-template>
 <fo:flow flow-name="xsl-region-body">
 <xsl:comment>2D</xsl:comment>
 <!-- Process section contents -->
 <xsl:apply-templates select="simpdoca/section[@id='chap03']" />
 </fo:flow>
</fo:page-sequence>

Example 11-3 uses a named template, page-sequence, to specify the header and footer, uses the xsl-
region-body flow specify the page layout, and then applies the selected templates that process the section with
an id value of chap03.

11.4 Inclusion and Importing

For a definitive rationale on whether to select including or importing, read Michael Kay's book, XSLT Programmers'
Reference (Wrox Press). Take particular note of the relative precedence. When importing, the importing stylesheet
takes precedence. This is extremely useful for overrides. Tailoring a stylesheet for a particular case is possible using
the import statement. The base stylesheet (which is imported) provides standard processing, the importing

stylesheet then tailors that standard processing by only specifying templates that require non-standard formatting.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Appendix A. How Do I Do That?

This appendix covers some of the common questions that are asked about XSL-FO, but are not answered by the
Recommendation. Usually someone has thought about it and found an answer by using (or misusing, depending on
your point of view) one aspect or another of the Recommendation.

I'm used to using <xsl:preserve-space> to keep my whitespace in XSLT. Why doesn't it work in XSL-FO?

This is a case of working in the right domain. The xsl:* elements control spaces in the resulting XSL-FO file

only; these hints don't even arrive at the formatter.

Whitespace handling in XSL-FO is controlled by a substantial set of specialized properties: space-treatment
, linefeed-treatment , white-space-collapse , wrap-option , and white-space (a

CSS2-compatibility shorthand).
I can't find a particular property on a particular element.

Note that not all properties are listed for all elements. Often the Recommendation will list them by some form of
abstraction, such as border properties . This means that it's necessary to go hunting to find out if the property is
available. Often, it is quicker to try it and see if it is supported by your formatter. Another option is to use the DTD
provided by RenderX, and see if the fo file will validate to it. This is not guaranteed to work, but is very helpful. It
does mean working in the fo namespace, but that often provides the answer that you can take back to the XSLT

domain.
Can I create a newspaper-style layout: part of the page with one column, the rest with multiple columns?

Simply put, no. The present Recommendation focuses on content-driven layout, not layout-driven formatting. The
former simply pours the content into predefined areas, the latter dictates where the content should go. It is a known
issue that I hope will be addressed in the next version of the Recommendation.

Presently, you can fix this by using tables for layout, as in HTML, but don't expect content to wrap from one fake
column to another.

How do I fix the position of some content?

Document appearance may change because of varying content. If you need to fix the position of content (perhaps
the signature line on a letter at the bottom of the page), make use of the absolute-position property to

ensure that the content appears where you want it. Remember that absolute positions are calculated with respect to
the containing block, not the page. Example A-1 gives an example of this.

Example A-1. Fixed-position blocks

 <fo:block-container
[1] absolute-position="fixed"
[2] top="200mm">
 <fo:block>Yours sincerely:
 <fo:inline font-style="italic">Dave Pawson</fo:inline>
 </fo:block>
</fo:block-container>

1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The absolute-position property ensures that content in this block is fixed.1.

This block is fixed 200mm from the top.2.

How can I center a block across the page - for instance, a table?

You can indent the table by half the width of the item, as in:
<fo:block width="4in" start-indent="(100% - 4in) div 2">
 <xsl:apply-content/>
</fo:block>

This provides a block of 4 inches, indented by half that value. If you have a mathematical bent, please realize that the
formatter can deal with start-indent .

How do I number my footnotes consistently and automatically?

XSLT addresses this. If you want footnotes to be numbered automatically within, say, a chapter, use the
xsl:number attributes (count , format , and level) to select the numbering system. For example:

<xsl:number count="footnote" from="chapter" format="i"/>

This will count all footnotes within a chapter, numbering them with lowercase Roman numerals.

How do I get text to spread out over the line, creating the appearance of left- and right- justified text?

You can achieve this by using a leader-pattern of space, as in the following example. The lefthand text is

separated from the righthand text by means of the leader, which being formed of whitespace, does not show.
<fo:block text-align-last="justify">
 Left-hand text
 <fo:leader leader-pattern="space" />
 Right-hand text
</fo:block>
How do I start page numbering at something other than 1?

You can specify the number at which page numbering begins with:
<fo:page-sequence initial-page-label="A">

This specifies that all the pages in this sequence should be numbered starting at 42. Specify this in the page layout and
specification section of the stylesheet. This can also be used to reset the page number to one, where it would normally (by
default) continue numbering from the previous page sequence, simply by specifying the initial-page-number as

1.

What happens if I want to say page 42 of 120, where I don't know the last page number of the document?

In this case, you need to have a marker of some description at the end of the document. This is done by putting an
empty block as the last item of content right at the end of the document and providing an id attribute on that block.

Then you can use:
<fo:page-number-citation ref-id="theEnd"/>
...
<fo block id="theEnd"></fo:block>

which the formatter then replaces with the page number of the very last page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

How do I number my front matter pages using Roman numerals?

For the page master in question, use the format attribute to specify that Roman numerals are wanted:
<fo:page-sequence master-name="frontmatter" format="i">
How do I use a prefix for page numbering?

The prefix is a literal string, so add it as you would any other literal, for example, in Appendix C, to have the page
numbers use the C prefix, try

<fo:static-content
 flow-name="xsl-region-after">
 <fo:block text-align="outside">C<fo:page-number/></fo:block>
 </fo:static-content>

If you need the prefix calculated automatically, use the XSLT functions for numbering, with Arabic format, i.e. count the
number of appendixes and format the number using the format attribute.

How do I get running headers where the chapter title is placed in the header?

Use the marker element, as in:
<fo:marker marker-class-name="rh"><xsl:value-of select="title"/> </fo:marker>

This must be in the block containing the chapter, normally a wrapper for the whole chapter. This is within the template for
chapter. Then, in the static content for the header, use the marker, like so:

<fo:static-content flow-name="xsl-region-before">
 <fo:block font=" 10pt Helvetica">
 <fo:retrieve-marker retrieve-marker-name="rh"
 retrieve-boundary="page"
 retrieve-position="first-starting-within-page"/>
 </fo:block>
</fo:static-content>

This puts the chapter title on each page, and it changes as new chapters are formatted.

How do I create superscript and subscript?

The Recommendation specifically provides for this, either at the character level using:
<
fo:character
 character="1"
 baseline-shift="super"
 font-family="'MS Serif'"/>

which provides the number 1 in superscript (subscript is similar), or, as a standard inline, using:

<fo:inline
 vertical-align="sub"
 font-size="8pt"> <xsl:apply-templates/> </fo:inline>

which takes any content within the inline and formats it as subscript.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

How do I keep two pieces of content together (on the same page, column, etc.)?

There is a property that may be applied very broadly that ties content (in terms of blocks, lists, tables, inlines, etc.)
together. It's named keep-with-* , where * can be previous or next . This uses the dot notation to
provide a family of properties, such as keep-with-next.within-page and keep-with-
previous.within-line . This set of properties are known as the keep properties. So, to keep a heading on

the same page as the first paragraph, when styling the heading, try:
<fo:block
 ... other properties
keep-with-next.within-page='5'>
<xsl:apply-contents/>
</fo:block>

This tells the formatter that this and the following block should be kept together. The default value for this property is
always . It can be set to either a number or always . The always value is the strongest way of expressing your need

to keep these items together, even if it means starting a new page, for instance.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Appendix B. Finding Your Way Aroundthe Specification

 B.1 Overview

This description applies to the W3C Recommendation of October 15, 2001, found at http://www.w3.org/TR/xsl/.

At this URL, you will find various formats of the document. Unless you are lucky enough to be permanently
connected, it's probably wise to have a copy on your desktop. For that purpose, the specification is provided in
alternate formats, specifically, a single large file, a zip file, which splits up the HTML into a number of smaller files,
and a PDF version, should you be brave enough to print it out, kindly provided by RenderX.

Within the main specification, you will find frequent (annoyingly so, in my opinion) references to
http://www.w3.org/TR/1998/REC-CSS2-19980512/, the CSS2 specification. You should download that too. Each
time you come across such a reference, if you are using a local copy on your PC, the link in the HTML will be to a
web document. I resolved this by using a command line editor to change all the strings http://www.w3.org/TR/REC-
CSS2/ to read ../CSS2. In other words, I made them local references. Do this for all .html files in the directory in
which you have stored the XSL specification. In a similar manner, I have stored the CSS specification in the same
root directory, hence, the ../CSS2.

Personally, I found it worthwhile to have a paper copy. I also had access to a double sided printer and binding
facilities, which helped. You decide. The PDF produced by the RenderX stylesheets is good. All cross-references are
to page numbers and section numbers, so it really is a joy to use, and sometimes the screen is just not enough, until we
all have Annotea in place! Otherwise, the notes on the paper copy provides as good a place as any to keep your
jottings.

B.1 Overview

First, the downside! This document is not meant for end users of XSL-FO. Its target audience is an implementor. For
that reason, it is written in a style that is meant to be accurate, precise, and clear (to an implementor), rather than
explanatory. Keep that in mind when you read it and you'll appreciate why its phrasing is so concise. To quote the
specification, "This document is intended for implementors of such XSL processors. Although it can be used as a
reference manual for writers of XSL style sheets, it is not tutorial in nature."

B.1.1 index.html

The index.html file is most useful for its table of contents and is hyperlinked to each of even the most minor sections.
It is wonderfully complete, a real gem. My thanks to the XSL Working Group for this. Use it to find almost any
aspect of the specification.

B.1.2 Section 1

Section 1 of the specification outlines what happens with the conversion process, XML through to print (and screen-
based media). If you want the whole thing in perspective, this is the only chapter that deals at that level. It dives
straight into the jargon of formatting objects, so don't expect an easy ride.

http://www.w3.org/TR/xsl/
http://www.w3.org/TR/1998/REC-CSS2-19980512/
http://www.w3.org/TR/REC-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.1.3 Section 2

This section appears as a waste of space, referring out to XSLT and also formally defining the fo namespace.

B.1.4 Section 3

This section introduces the process of formatting. Some terminology is introduced, areas are discussed, and then it
moves on to a conceptual model of what happens. The XSL Working Group says what might happen, but carefully
avoids telling an implementor just what to do. This avoids implementation conflicts. The specification is supposed to
say what happens, not how to do it.

The rider here is that there are implementor interpretation conflicts; that is, the recommendation has been interpreted
differently by different implementations. It will take some time (and probably a revision of the recommendation) to
resolve this.

The formatting process is explained, in very broad terms, which is more than likely of little interest to the end user!
Look to Section 4 for a pictorial model of the area tree introduced here.

B.1.5 Section 4

Section 4 begins to put some meat on the bones. Further terminology is introduced, and there is more on areas, with
the introduction of block and inline areas block-progression-dimension and inline-
progression-dimension. The majority of this section relates to the management of areas, specifying how any

adjacent areas should resolve traits to produce the final output. The concept of conditionality (include or forget) is
introduced, spaces are defined and resolved, and the layout of blocks and inlines are expressed in terms of their
relationships to one another. Keeps and breaks (when to keep two areas together and when to break them) are defined
and the final stages, converting to the final presented output, are discussed. Borders and padding are brought into the
layout equation, explaining how they are added to content to offset one piece of content from another. This section
provides clear definitions of the terms that may be creating problems for you.

B.1.6 Section 5

This section is one I rarely visit. Come here when you need to care about inheritance! The shorthand of XSL-FO is
introduced (though not explained fully), and the section explains how actual final values of, for instance, indents and
widths are calculated.

This section, for some reason I can't figure, explains units you'll come across. If you want to know how to specify a
length, this is the section to which you should refer. The few XSL-FO functions are covered here as well, including
the color functions. Compound data types, specified with a minimum, maximum, and optimum set of values are
explained, including resolution.

B.1.7 Section 6

Section 6 starts with interesting material for the end user. Here, you will find the basic formatting objects defined in
reasonably plain English, both with the detailed content you will use most and with the page level objects. The
diagram in this section explains how to specify your pages in document tree form. I guess it was from this section that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RenderX derived their document type definition that I find so useful.

This section is worth browsing to absorb the details of page layout, which are diagrammed and explained. Also
included are the first examples in the specification. The common uses entries for each of the formatting objects are
particularly useful. It won't tell you of the devious ways you can use some of them, but states their most common
application.

This should be your starting point when you are trying to determine whether or not you can use a particular property.
Look up the particular formatting object of concern and you'll find a full list of applicable properties. This is of
particular application in the usage of tables and lists, which are not the most intuitive of structures.

This section is possibly the second most used section for the stylesheet author.

B.1.8 Section 7

Compared to the others, this section is home. When you want to find out about a particular property, you can either
look it up in the table of contents and go directly to it, or use the table of contents at the front of the document.

My personal usage of this section is actually centered on the table of contents. I have highlighted the ones I repeatedly
go back to because, due to its density of information, it can take a while to trawl through the list to find the one I
want.

B.1.9 Section 8

This section provides the source of the compliance tables available for most of the processors. This section defines the
three levels of conformance by which most of the implementations define their compliance.

B.1.10 Appendix A

This appendix addresses internationalization. It's worth a quick skim to find out the pains to which the XSL Working
Group went to address an international audience.

B.1.11 Appendix B

This appendix is the other half of Section 8. It assigns each of the formatting objects to one of the three levels of
compliance.

B.1.12 Appendix C

This appendix lists all the properties and candidate values. It's useful as a summary, and is fully linked to the section
in which properties and candidate values are fully specified.

B.1.13 Appendix D

This appendix lists references made from within the specification. They are mostly hyperlinked to the web address
where they can be found.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.1.14 Appendix E

This appendix has a list of hyperlinks or page references to each of the properties.

B.1.15 Appendix F

This appendix lists the most recent set of changes.

B.1.16 Appendix G

This appendix lists the acknowledgments from the XSL Working Group.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Appendix C. Today's Tools

 C.1 RenderX XEP Formatter

 C.2 Antenna House Formatter

 C.3 FOP Formatter

 C.4 PassiveTEX Formatter

 C.5 Unicorn Formatting Objects Formatter
 C.6 Formatting Objects Authoring Tool

 C.7 Render Engine from XML/XSL to PDF

 C.8 jfor, Java XSL-FO to RTF converter
 C.9 XMLmind FO Converter

 C.10 XSLfast
 C.11 Epic Editor V4.2

 C.12 IBM XSL Formatting Objects Composer (XFC)

 C.13 Summary

This appendix covers the tools that are currently available. I've placed this in an appendix simply because I didn't
want the book to appear dated within months of it being on the shelves. Please keep in mind the general comments I
made about tools in Chapter 2 when reading this.

C.1 RenderX XEP Formatter

XEP is an engine that converts XSL-FO documents to a printable form (PDF or PostScript). An evaluation package
with limited functionality is freely available. It aligns with the November 2001 Recommendation. Extensions are
included and partial SVG support is now available.

I think XEP is the most established product; it was certainly the first one I came across. Developed by a small and
dedicated team, it's a commercial product, with an evaluation version available for download. The evaluation version
is restricted in the number of pages it will output. It produces PDF and PostScript output. Its command-line interface
is convenient, and it has good error reporting. It's developers, who are contributors on the XSL-FO related lists, are
very helpful. Inputting of an XML file in the fo namespace, will deliver PDF in the evaluation version. An

implementation features list is available on their web site, http://www.renderx.com. XEP is written in Java and runs
on any system that supports Java 2 (JDK/JRE 1.1.8) and above. Their web site hosts many demonstration files, and
they have provided the W3C with a PDF version of the Recommendation ready for printing.

C.2 Antenna House Formatter

Nearly a year old, the Antenna House Formatter is a fast implementation with a GUI. Ideal for testing, it's probably
the fastest processor today. It's developers respond well to feedback. It is available as an evaluation download and as a
commercial product. It provides the two-step process of conversion, direct from XML through the visual presentation,
and it makes use of the Microsoft parser to transform to the fo namespace, which restricts its use to Windows. It

http://www.renderx.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

provides a stylesheet to convert XHTML into the fo vocabulary. I like it as a product and find it very convenient. It is

probably a prime choice for finding out all about XSL-FO. Its implementation feature list is available from their web
site, http://www.antennahouse.com/.

C.3 FOP Formatter

This is an open source project. IT was originally based around James Tauber's early work, but was reorganized and
taken well beyond the original. FOP is part of Apache's XML project. The goals of the Apache XML FOP Project are
to deliver an XSL-FO to PDF formatter that is compliant to at least the basic conformance level described in the W3C
Candidate Recommendation November 21, 2000, and that complies with the March 11, 1999, Portable Document
Format Specification (Version 1.3) from Adobe Systems. An implementation features list is available on the web site,
although, because it moves so fast, users do have problems determining if their problems are their interpretation of the
specification, or if they are trying to use a feature not implemented in FOP. I guess this is an issue with most
implementations, until specification interpretation becomes settled. It has the additional feature of supporting
embedded SVG, but FOP is now subcontracting that work to the Batik project instead of handling it directly. It can be
run from the command line or called via a Java interface. The home page of FOP is http://xml.apache.org/fop.

C.4 PassiveTEX Formatter

PassiveTEX is a partial implementation of the November 2001 XSL-FO Recommendation, using TEX. It is not
complete or conformant but implements things from all three levels of conformance. I am not sure whether it has a
long-term future, but for now, you can rely on it to do anything from straightforward pages to TEX's normal high
standards of, for example, hyphenation and justification. It understands a subset of MathML. PassiveTEX relies on
David Carlisle's xmltex XML processor written in TEX.

As its author, Sebastian Rahtz says, "If you have never installed TEX before, expect to have to do some work!" If you
do have a decent TEX setup (and you understand it), it should be easy. Because Sebastian Rahtz and David Carlisle
are very familiar with TEX, it makes full use of the strength of TEX. MathML is also processed, though not
completely.

At the home page, http://users.ox.ac.uk/~rahtz/passivetex/, there are stylesheets for the Text Encoding Initiative,
along with examples. A conformance matrix is also provided.

C.5 Unicorn Formatting Objects Formatter

Unicorn Formatting Objects (UFO) implements a substantial subset of the Extensible Stylesheet Language (XSL)
Version 1.0 specification (W3C Working Draft (March 27, 2000).

The UFO formatter is optimized for composition of business-style documents (e.g., catalogs, orders, invoices,
banking statements, etc.). Extensive support is provided for various features (for instance, collapsing border model in
tables), which are not yet supported by many existing XSL implementations.

The XSL-FO backend, written in TEX macro language, implements XSL-FO transformation algorithms. The interface
between the C++ frontend and TEX backend is well documented. Alternative backend implementations may be
created by independent developers. The generation of TEX code from an arbitrary source XML document can be done
in one pass, without creating intermediate files.

The software is free (see the license included in the distribution) and can be obtained at the Unicorn web site,

http://www.antennahouse.com/
http://xml.apache.org/fop
http://users.ox.ac.uk/~rahtz/passivetex/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://www.unicorn-enterprises.com/. It runs on Windows NT 4.0 and Windows 95.

C.6 Formatting Objects Authoring Tool

Formatting Objects Authoring (FOA) is a graphical XSL-FO authoring tool. It is a Java application that gives users a
graphical interface to author XSL-FO stylesheets. With FOA, you can generate pages and page sequences and fill
them with content provided into one or more XML files. FOA will generate the XSLT stylesheet that transforms the
XML content into an XSL-FO document.

This product approaches stylesheet design from quite a different angle. Using a Java GUI, a fill-in-the-gaps approach
takes you through form filling to define page layouts and styles (attribute sets), then you can apply those styles to a
selected document structure. If you come to XSL-FO from editing XML in the fo namespace, it takes some getting

used to. It introduces the idea of bricks, which might be described as the building blocks of XSL-FO (i.e., blocks,
images, inlines, etc.), which are then used to style the source document. The authors describe these as translation
elements. I'm not sure whether this would appear natural if you came to XSL-FO with no manual stylesheet
generation experience, though I guess, once familiar with the principles, it is a sound approach. A tutorial is provided,
though no compliance matrix is available. The current FOA version does not support tables and tables of content,
which some may find a shortcoming. The documentation is still being developed along with the product.

In use, the multiple open windows provide a complex interface, with a need to switch between windows frequently.
Again, familiarity with the interface will make this easier. The intuitive XSL-FO approach, taking a part of the source
XML structure and painting it with a particular style is the goal of this project (as I see it), and the product makes a
very solid start in this direction.

The home page is at http://www-uk.hpl.hp.com/people/fabgia/foa/foa.html, and it includes the tutorial, which is worth
watching for a novel approach to stylesheet generation.

As of February 2001, the project has become open source and moved to Sourceforge.

C.7 Render Engine from XML/XSL to PDF

Render Engine from XML/XSL to PDF (REXP) provides the functionality to render complex documents with good
quality.

The development started from an early implementation of FOP (Version 0.9.2) but has made several architectural
modifications. The product addresses the processing of complicated documents, such as commercial letters, and
focuses on adding support for page breaking, keeps, absolute positioning, and images (block level and inline level).
Properties, such as keep-with-next, keep-with-previous, and page-break-inside="avoid",

allow an efficient control on the document flow to designers. Special attention has been made around the line-
rendering algorithm, to readjust the line height and baseline accurately, especially with inline images. REXP includes
good document flow control (pagination rules and keeping support), absolute and relative positioning, inline and
block level images (precise line-height and baseline calculation), but is compliant only with the April 1999 Working
Draft Specification and lacks table and link support. The web site lists implemented properties, although not in the
compliance format of the specification.

It is completely written in Java and is, therefore, portable across operating systems; its output is PDF and it is open
source. Again, SVG is partially supported for vector graphics. REXP is engineered to be flexible and to support the
expansion to other output formats such as PostScript and other Page Description Language (PDL) languages.

http://www.unicorn-enterprises.com/
http://www-uk.hpl.hp.com/people/fabgia/foa/foa.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The home page for REXP is http://www.esng.dibe.unige.it/REXP/.

C.8 jfor, Java XSL-FO to RTF converter

jfor is licensed under the Mozilla Public License V1.1., is written in Java, and produces Microsoft Word 97 RTF
output documents. It's a SourceForge project, still at an early version, so it has limited support of FO blocks, inline
elements, lists, tables, and images. Personally, I'm quite pleased to see a Microsoft-compatible output. Because this
project is just starting, there is very little to report.

The home page is http://www.jfor.org/, which is worth watching if you or your customers are confirmed Office users.

C.9 XMLmind FO Converter

The XMLmind FO Converter (XFC) is an XSL-FO to RTF converter. It takes an XSL-FO source file as input and
converts it to RTF. XFC is a pure Java application/library.

Both personal and professional editions are offered. The first release is aimed at getting some feedback from the XSL-
FO community. Though XFC is deemed usable in its current state, there's still much to be done, in my opinion. If
everything goes right, expect a release of the commercial product in 2002. This version should add support of headers
and footers as far as allowed by RTF, and should provide better support of tables. Note that RTF has less capability
than XSL-FO, so remember that it must operate within those bounds.

For more information and to download the personal edition, please see the XFC home page at,
http://www.xmlmind.com.

C.10 XSLfast

Based at http://www.xslfast.com, this product is based on FOP and written in Java. Described as a design and
authoring tool for XSL-FO, this is another graphics-based application based around the FOP formatter. This product
is very new, so I don't know it at all well. It was announced just before this book went to print. I like the idea of visual
layout and see this as another step towards hiding the FO processing behind a visual layer. Good luck to the team
developing it.

XSLfast is an editor for creating XSL-FO stylesheets visually. It allows you to place elements such as text, images,
and tables on the page and edit properties such as font-family, font-style, and table-cell. These

elements can be positioned absolutely or relatively.

XSLfast gives you the option to enter XSL-Code within the layout areas defined on a layout. You can add external
template collections that produce partial or full FOs. For instance, a template for creating auto-layout tables with
variable column sizes depending on the input data. You then use xsl:call-template to create these tables.

Another important feature is the Multi Layout Manager, which allows you to combine several layouts into one,
driving the creation of FOs on a certain selection by expressions (Boolean XPath expressions). For instance, you
create a front page, one or more content layouts, and a table of contents layout, then combine all these into one bigger
layout with the Multi Layout Manager to get one PDF.

These layouts then produce the XSL-FO stylesheet, which then produces the FO file, which is then rendered to PDF.

http://www.esng.dibe.unige.it/REXP/
http://www.jfor.org/
http://www.xmlmind.com
http://www.xslfast.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.11 Epic Editor V4.2

Epic is well known as the Rolls Royce of XML (and SGML) editors. The latest release (Version 4.2) is designed for
creating XML and SGML content. The challenge of showing something other than a tags-based user view meant that
Arbortext provided a styled view of content. In addition to an older standard called FOSI, Arbortext now provides
XSL-FO capability, using what they call the Turbo Styler feature. The editor is just one piece of a full publishing
system, detailed on the Arbortext web site, http://www.arbortext.com/html/products.html. Windows NT 4.0, 95, 98,
2000, and Sun Solaris 7 and 8 are supported. The editor continuously applies a stylesheet that gives the content a print
or web appearance. Arbortext has been in the SGML and XML business for 12 years and has staff on the XSL
Working Group of the W3C, which provides something of an inside track that strengthens its position. The XSL-FO
offering is new, and with Arbortext's background and experience, I had expected something quite special and was not
disappointed.

The stylesheet aspects of this product are similar to using a word processor. Each element of the source schema is
presented in a list, where you are offered base options of block or inline styling. Block type elements are further sub-
divided into categories, such as divisions, lists, basic blocks, etc. As one of these is selected, the associated styling
options are modified live, presenting appropriate refinement options. For example, divisions can be numbered, start a
new page, be indented, or have preceding literal content. This is about as familiar as it gets when trying to make the
association between this form of styling and XSL-FO. For the technical author, this interface may well be ideal. Base
categories are presented as block, graphic, table, inline, link, or even hidden (for items such as revision histories that
should not be presented to the user). Block categories are basic, document, division, title, paragraph, list, list item,
table of contents, or preformatted. To further guide the user, inappropriate options are grayed out when inappropriate.
Unstyled elements are marked as such (which saves having that default template and going through the loop time after
time!) to inform the stylesheet writer.

The integration with the editor is what makes this product different. For an organization that requires cooperative
team authoring with high-quality print output, this product could provide the solution. Equally, for a user unused to
the programmatic interface of XSLT and XSL-FO, this tool provides an interface that, although complex, is
competent and comprehensive. Be aware of what you are buying though. You get the basics and extras don't come
cheap. Check out the options list before committing.

C.12 IBM XSL Formatting Objects Composer (XFC)

This is a processor that does the same job as other formatters, plus a little more. The user can choose whether to
create a PDF file or a Java2D output for online viewing in a Java environment. The PDF output is business as usual,
but the Java2D is added-value for those working (and at home) in a Java environment.

XSL Formatting Objects Composer (XFC) is a typesetting and display engine that implements a substantial portion of
XSL-FO. A compliance table is available and can be found at the IBM web site,
http://www.alphaworks.ibm.com/tech/xfc.

C.13 Summary

Now that the specification has become a W3C Recommendation, the tool developers should have the confidence to
carry on at less risk, which may provide incentive for others to follow. If you are curious and want to have a look at
XSL-FO, the tools are available in the public domain at zero cost. If you are convinced and prepared to invest as an
organization, commercial tools are available with support. Whether you pick up a text editor to write on your own or

http://www.arbortext.com/html/products.html
http://www.alphaworks.ibm.com/tech/xfc
http://lib.ommolketab.ir
http://lib.ommolketab.ir

invest in a site license for the Arbortext product, there are many options available.

My personal choice, today, would extend from the open source PassiveTEX, through the commercial RenderX or
Antenna House products for the programmers, to the Epic Editor suite (when I have a need for a standards-based
integrated environment). Each has a place; no single implementation will be suitable for all users.

Because this information will date rather quickly, please keep an eye on the web page for this book, the author's web
site, at http://www.dpawson.co.uk .

CONTENTS

http://www.dpawson.co.uk
http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Appendix D. Objects, Properties, andCompliance Levels

 D.1 Basic, Extended or Complete?

 D.2 Property Summary

D.1 Basic, Extended or Complete?

The following tables list formatting objects and properties, along with whether the XSL Recommendation considers
them necessary for basic, extended, or complete compliance.

Table D-1. Layout formatting objects

fo:root basic

fo:page-sequence basic

fo:page-sequence-master basic

fo:single-page-master-reference basic

fo:repeatable-page-master-reference basic

fo:repeatable-page-master-alternatives extended

fo:conditional-page-master-reference extended

fo:layout-master-set basic

fo:simple-page-master basic

fo:region-body basic

fo:region-before extended

fo:region-after extended

fo:region-start extended

fo:region-end extended

fo:declarations basic

fo:color-profile extended

fo:flow basic

fo:static-content extended

fo:title extended

Table D-2. Block formatting object compliance

fo:block basic

fo:block-container extended

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table D-3. Inline formatting objects

fo:bidi-override extended

fo:character basic

fo:initial-property-set extended

fo:external-graphic basic

fo:instream-foreign-object extended

fo:inline basic

fo:inline-container extended

fo:leader basic

fo:page-number basic

fo:page-number-citation extended

Table D-4. Table formatting objects

fo:table-and-caption basic

fo:table basic

fo:table-column basic

fo:table-caption

extended

caption-side="start" becomes caption-side="before"

caption-side="end" becomes caption-side="after"

caption-side="left" becomes caption-side="before"

caption-side="right" becomes caption-side="after"

fo:table-header basic

fo:table-footer extended

fo:table-body basic

fo:table-row basic

fo:table-cell basic

Table D-5. List formatting objects

fo:list-block basic

fo:list-item basic

fo:list-item-body basic

fo:list-item-label extended

Table D-6. Link and multi formatting objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fo:basic-link extended

fo:multi-switch extended, need not be implemented for extended conformance for non-interactive media

fo:multi-case basic: needed as wrapper for fallback for multi-switch

fo:multi-toggle extended, need not be implemented for extended conformance for non-interactive media

fo:multi-properties extended, need not be implemented for extended conformance for non-interactive media

fo:multi-property-set extended, need not be implemented for extended conformance for non-interactive media

Table D-7. Out-of-line formatting objects

fo:float extended

fo:footnote extended

fo:footnote-body extended

Table D-8. Other formatting objects

fo:wrapper basic

fo:marker extended

fo:retrieve-marker extended

D.2 Property Summary

Table D-9. Property table

Name Values Core

absolute-position auto | absolute | fixed | inherit Complete

active-state link | visited | active | hover | focus Extended

alignment-adjust
auto | baseline | before-edge | text-before-edge | middle | central | after-edge | text-
after-edge | ideographic | alphabetic | hanging | mathematical | <percentage> |
<length> | inherit

Basic

alignment-baseline
auto | baseline | before-edge | text-before-edge | middle | central | after-edge | text-
after-edge | ideographic | alphabetic | hanging | mathematical | inherit

Basic

auto-restore true | false Extended

azimuth
<angle> | [[left-side | far-left | left | center-left | center | center-right | right | far-right
| right-side] | behind] | leftwards | rightwards | inherit

Basic

background
[<background-color> | <background-image> | <background-repeat> |
<background-attachment> | <background-position>]] | inherit

Complete

background-
attachment

scroll | fixed | inherit Extended

background-color <color> | transparent | inherit Basic

background-image <uri-specification> | none | inherit Extended

http://lib.ommolketab.ir
http://lib.ommolketab.ir

background-position
[[<percentage> | <length>]{1,2} | [[top | center | bottom] | [left | center | right]]] |
inherit

Complete

background-position-
horizontal

<percentage> | <length> | left | center | right | inherit Extended

background-position-
vertical

<percentage> | <length> | top | center | bottom | inherit Extended

background-repeat repeat | repeat-x | repeat-y | no-repeat | inherit Extended

baseline-shift baseline | sub | super | <percentage> | <length> | inherit Basic

blank-or-not-blank blank | not-blank | any | inherit Extended

block-progression-
dimension

auto | <length> | <percentage> | <length-range> | inherit Basic

border [<border-width> | <border-style> | <color>] | inherit Complete

border-after-color <color> | inherit Basic

border-after-
precedence

force | <integer> | inherit Basic

border-after-style <border-style> | inherit Basic

border-after-width <border-width> | <length-conditional> | inherit Basic

border-before-color <color> | inherit Basic

border-before-
precedence

force | <integer> | inherit Basic

border-before-style <border-style> | inherit Basic

border-before-width <border-width> | <length-conditional> | inherit Basic

border-bottom [<border-width> | <border-style> | <color>] | inherit Complete

border-bottom-color <color> | inherit Basic

border-bottom-style <border-style> | inherit Basic

border-bottom-width <border-width> | inherit Basic

border-collapse collapse | collapse-with-precedence | separate | inherit Extended

border-color [<color> | transparent]{1,4} | inherit Complete

border-end-color <color> | inherit Basic

border-end-
precedence

force | <integer> | inherit Basic

border-end-style <border-style> | inherit Basic

border-end-width <border-width> | <length-conditional> | inherit Basic

border-left [<border-width> | <border-style> | <color>] | inherit Complete

border-left-color <color> | inherit Basic

border-left-style <border-style> | inherit Basic

border-left-width <border-width> | inherit Basic

border-right [<border-width> | <border-style> | <color>] | inherit Complete

border-right-color <color> | inherit Basic

border-right-style <border-style> | inherit Basic

border-right-width <border-width> | inherit Basic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

border-separation <length-bp-ip-direction> | inherit Extended

border-spacing <length> <length>? | inherit Complete

border-start-color <color> | inherit Basic

border-start-
precedence

force | <integer> | inherit Basic

border-start-style <border-style> | inherit Basic

border-start-width <border-width> | <length-conditional> | inherit Basic

border-style <border-style>{1,4} | inherit Complete

border-top [<border-width> | <border-style> | <color>] | inherit Complete

border-top-color <color> | inherit Basic

border-top-style <border-style> | inherit Basic

border-top-width <border-width> | inherit Basic

border-width <border-width>{1,4} | inherit Complete

bottom <length> | <percentage> | auto | inherit Extended

break-after auto | column | page | even-page | odd-page | inherit Basic

break-before auto | column | page | even-page | odd-page | inherit Basic

caption-side before | after | start | end | top | bottom | left | right | inherit Complete

case-name <name> Extended

case-title <string> Extended

character <character> Basic

clear start | end | left | right | both | none | inherit Extended

clip <shape> | auto | inherit Extended

color <color> | inherit Basic

color-profile-name <name> | inherit Extended

column-count <number> | inherit Extended

column-gap <length> | <percentage> | inherit Extended

column-number <number> Basic

column-width <length> | <percentage> Basic

content-height auto | scale-to-fit | <length> | <percentage> | inherit Extended

content-type <string> | auto Extended

content-width auto | scale-to-fit | <length> | <percentage> | inherit Extended

country none | <country> | inherit Extended

cue <cue-before> | <cue-after> | inherit Complete

cue-after <uri-specification> | none | inherit Basic

cue-before <uri-specification> | none | inherit Basic

destination-
placement-offset

<length> Extended

direction ltr | rtl | inherit Basic

display-align auto | before | center | after | inherit Extended

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dominant-baseline
auto | use-script | no-change | reset-size | ideographic | alphabetic | hanging |
mathematical | central | middle | text-after-edge | text-before-edge | inherit

Basic

elevation <angle> | below | level | above | higher | lower | inherit Basic

empty-cells show | hide | inherit Extended

end-indent <length> | <percentage> | inherit Basic

ends-row true | false Extended

extent <length> | <percentage> | inherit Extended

external-destination <uri-specification> Extended

float before | start | end | left | right | none | inherit Extended

flow-name <name> Basic

font
[[<font-style> | <font-variant> | <font-weight>]? <font-size> [/ <line-height>]?
<font-family>] | caption | icon | menu | message-box | small-caption | status-bar |
inherit

Complete

font-family
[[<family-name> | <generic-family>],]* [<family-name> | <generic-family>] |
inherit

Basic

font-selection-strategy auto | character-by-character | inherit Complete

font-size <absolute-size> | <relative-size> | <length> | <percentage> | inherit Basic

font-size-adjust <number> | none | inherit Extended

font-stretch
normal | wider | narrower | ultra-condensed | extra-condensed | condensed | semi-
condensed | semi-expanded | expanded | extra-expanded | ultra-expanded | inherit

Extended

font-style normal | italic | oblique | backslant | inherit Basic

font-variant normal | small-caps | inherit Basic

font-weight
normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 |
inherit

Basic

force-page-count auto | even | odd | end-on-even | end-on-odd | no-force | inherit Extended

format <string> Basic

glyph-orientation-
horizontal

<angle> | inherit Extended

glyph-orientation-
vertical

auto | <angle> | inherit Extended

grouping-separator <character> Extended

grouping-size <number> Extended

height <length> | <percentage> | auto | inherit Basic

hyphenate false | true | inherit Extended

hyphenation-character <character> | inherit Extended

hyphenation-keep auto | column | page | inherit Extended

hyphenation-ladder-
count

no-limit | <number> | inherit Extended

hyphenation-push-
character-count

<number> | inherit Extended

http://lib.ommolketab.ir
http://lib.ommolketab.ir

hyphenation-remain-
character-count

<number> | inherit Extended

id <id> Basic

indicate-destination true | false Extended

initial-page-number auto | auto-odd | auto-even | <number> | inherit Basic

inline-progression-
dimension

auto | <length> | <percentage> | <length-range> | inherit Basic

internal-destination empty string | <idref> Extended

intrusion-displace auto | none | line | indent | block | inherit Extended

keep-together <keep> | inherit Extended

keep-with-next <keep> | inherit Basic

keep-with-previous <keep> | inherit Basic

language none | <language> | inherit Extended

last-line-end-indent <length> | <percentage> | inherit Extended

leader-alignment none | reference-area | page | inherit Extended

leader-length <length-range> | <percentage> | inherit Basic

leader-pattern space | rule | dots | use-content | inherit Basic

leader-pattern-width use-font-metrics | <length> | <percentage> | inherit Extended

left <length> | <percentage> | auto | inherit Extended

letter-spacing normal | <length> | <space> | inherit Extended

letter-value auto | alphabetic | traditional Basic

linefeed-treatment ignore | preserve | treat-as-space | treat-as-zero-width-space | inherit Extended

line-height normal | <length> | <number> | <percentage> | <space> | inherit Basic

line-height-shift-
adjustment

consider-shifts | disregard-shifts | inherit Extended

line-stacking-strategy line-height | font-height | max-height | inherit Basic

margin <margin-width>{1,4} | inherit Complete

margin-bottom <margin-width> | inherit Basic

margin-left <margin-width> | inherit Basic

margin-right <margin-width> | inherit Basic

margin-top <margin-width> | inherit Basic

marker-class-name <name> Extended

master-name <name> Basic

master-reference <name> Basic

max-height <length> | <percentage> | none | inherit Complete

maximum-repeats <number> | no-limit | inherit Extended

max-width <length> | <percentage> | none | inherit Complete

media-usage auto | paginate | bounded-in-one-dimension | unbounded Extended

min-height <length> | <percentage> | inherit Complete

min-width <length> | <percentage> | inherit Complete

http://lib.ommolketab.ir
http://lib.ommolketab.ir

number-columns-
repeated

<number> Basic

number-columns-
spanned

<number> Basic

number-rows-spanned <number> Basic

odd-or-even odd | even | any | inherit Extended

orphans <integer> | inherit Basic

overflow visible | hidden | scroll | error-if-overflow | auto | inherit Basic

padding <padding-width>{1,4} | inherit Complete

padding-after <padding-width> | <length-conditional> | inherit Basic

padding-before <padding-width> | <length-conditional> | inherit Basic

padding-bottom <padding-width> | inherit Basic

padding-end <padding-width> | <length-conditional> | inherit Basic

padding-left <padding-width> | inherit Basic

padding-right <padding-width> | inherit Basic

padding-start <padding-width> | <length-conditional> | inherit Basic

padding-top <padding-width> | inherit Basic

page-break-after auto | always | avoid | left | right | inherit Complete

page-break-before auto | always | avoid | left | right | inherit Complete

page-break-inside avoid | auto | inherit Complete

page-height auto | indefinite | <length> | inherit Basic

page-position first | last | rest | any | inherit Extended

page-width auto | indefinite | <length> | inherit Basic

pause [<time> | <percentage>]{1,2} | inherit Complete

pause-after <time> | <percentage> | inherit Basic

pause-before <time> | <percentage> | inherit Basic

pitch <frequency> | x-low | low | medium | high | x-high | inherit Basic

pitch-range <number> | inherit Basic

play-during <uri-specification> mix? repeat? | auto | none | inherit Basic

position static | relative | absolute | fixed | inherit Complete

precedence true | false | inherit Extended

provisional-distance-
between-starts

<length> | <percentage> | inherit Basic

provisional-label-
separation

<length> | <percentage> | inherit Basic

reference-orientation 0 | 90 | 180 | 270 | -90 | -180 | -270 | inherit Extended

ref-id <idref> | inherit Extended

region-name
xsl-region-body | xsl-region-start | xsl-region-end | xsl-region-before | xsl-region-
after | xsl-before-float-separator | xsl-footnote-separator | <name>

Basic

relative-align before | baseline | inherit Extended

http://lib.ommolketab.ir
http://lib.ommolketab.ir

relative-position static | relative | inherit Extended

rendering-intent auto | perceptual | relative-colorimetric | saturation | absolute-colorimetric | inherit Extended

retrieve-boundary page | page-sequence | document Extended

retrieve-class-name <name> Extended

retrieve-position
first-starting-within-page | first-including-carryover | last-starting-within-page | last-
ending-within-page

Extended

richness <number> | inherit Basic

right <length> | <percentage> | auto | inherit Extended

role <string> | <uri-specification> | none | inherit Basic

rule-style none | dotted | dashed | solid | double | groove | ridge | inherit Basic

rule-thickness <length> Basic

scaling uniform | non-uniform | inherit Extended

scaling-method auto | integer-pixels | resample-any-method | inherit Extended

score-spaces true | false | inherit Extended

script none | auto | <script> | inherit Extended

show-destination replace | new Extended

size <length>{1,2} | auto | landscape | portrait | inherit Complete

source-document <uri-specification> [<uri-specification>]* | none | inherit Basic

space-after <space> | inherit Basic

space-before <space> | inherit Basic

space-end <space> | <percentage> | inherit Basic

space-start <space> | <percentage> | inherit Basic

span none | all | inherit Extended

speak normal | none | spell-out | inherit Basic

speak-header once | always | inherit Basic

speak-numeral digits | continuous | inherit Basic

speak-punctuation code | none | inherit Basic

speech-rate <number> | x-slow | slow | medium | fast | x-fast | faster | slower | inherit Basic

src <uri-specification> | inherit Basic

start-indent <length> | <percentage> | inherit Basic

starting-state show | hide Extended

starts-row true | false Extended

stress <number> | inherit Basic

suppress-at-line-break auto | suppress | retain | inherit Extended

switch-to xsl-preceding | xsl-following | xsl-any | <name>[<name>]* Extended

table-layout auto | fixed | inherit Extended

table-omit-footer-at-
break

true | false Extended

table-omit-header-at-
break

true | false Extended

http://lib.ommolketab.ir
http://lib.ommolketab.ir

target-presentation-
context

use-target-processing-context | <uri-specification> Extended

target-processing-
context

document-root | <uri-specification> Extended

target-stylesheet use-normal-stylesheet | <uri-specification> Extended

text-align start | center | end | justify | inside | outside | left | right | <string> | inherit Basic

text-align-last relative | start | center | end | justify | inside | outside | left | right | inherit Extended

text-altitude use-font-metrics | <length> | <percentage> | inherit Extended

text-decoration
none | [[underline | no-underline] | [overline | no-overline] | [line-through | no-
line-through] | [blink | no-blink]] | inherit

Extended

text-depth use-font-metrics | <length> | <percentage> | inherit Extended

text-indent <length> | <percentage> | inherit Basic

text-shadow
none | [<color> | <length> <length> <length>? ,]* [<color> | <length> <length>
<length>?] | inherit

Extended

text-transform capitalize | uppercase | lowercase | none | inherit Extended

top <length> | <percentage> | auto | inherit Extended

treat-as-word-space auto | true | false | inherit Extended

unicode-bidi normal | embed | bidi-override | inherit Extended

vertical-align
baseline | middle | sub | super | text-top | text-bottom | <percentage> | <length> | top
| bottom | inherit

Complete

visibility visible | hidden | collapse | inherit Extended

voice-family
[[<specific-voice> | <generic-voice>],]* [<specific-voice> | <generic-voice>] |
inherit

Basic

volume <number> | <percentage> | silent | x-soft | soft | medium | loud | x-loud | inherit Basic

white-space normal | pre | nowrap | inherit Complete

white-space-collapse false | true | inherit Extended

white-space-treatment
ignore | preserve | ignore-if-before-linefeed | ignore-if-after-linefeed | ignore-if-
surrounding-linefeed | inherit

Extended

widows <integer> | inherit Basic

width <length> | <percentage> | auto | inherit Basic

word-spacing normal | <length> | <space> | inherit Extended

wrap-option no-wrap | wrap | inherit Basic

writing-mode lr-tb | rl-tb | tb-rl | lr | rl | tb | inherit Basic

xml:lang <country-language> | inherit Complete

z-index auto | <integer> | inherit Extended

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Appendix E. Inheritance Characteristics

 E.1 Font-, Character-, and Spacing-RelatedProperties

This appendix simply lists those formatting objects that exhibit inheritance, based on Appendix C.2 of the
specification.

Why is it worth including? To quote from the specification:

During refinement the set of properties that apply to a formatting object is transformed into a set of traits that
define constraints on the result of formatting. For many traits there is a one-to-one correspondence with a
property; for other traits the transformation is more complex.

And:

The first step in refinement of a particular formatting object is to obtain the effective value of each property that
applies to the object. Any shorthand property specified on the formatting object is expanded into the individual
properties. ... For any property that has not been specified on the object the inherited or initial value, as
applicable, is used as the effective value.

This means some properties on an area that you specify are derived from the ancestors of the current node being
formatted. The inheritable properties are propagated down the formatting object tree from a parent to each child.
(These properties are given their initial value at the root of the result tree even if you don't specify them.) For a given
inheritable property, if that property is present on a child, that value of the property is used for that child (and its
descendants until explicitly reset in a lower descendant).

The following lists show the inherited properties for the visual formatting objects. Those not listed are not inherited.
They are grouped according to usage.

E.1 Font-, Character-, and Spacing-Related Properties

font

font-family

font-selection-strategy

font-size

font-size-adjust

font-stretch

font-style

http://lib.ommolketab.ir
http://lib.ommolketab.ir

font-variant

font-weight

glyph-orientation-horizontal

glyph-orientation-vertical

letter-spacing

line-height

line-height-shift-adjustment

line-stacking-strategy

word-spacing

E.1.1 Visibility-Related Properties

visibility

E.1.2 Writing Mode-Related Properties

direction

reference-orientation

writing-mode

E.1.3 Border- and Text Decoration-Related Properties

border-collapse

border-separation

border-spacing

score-spaces

E.1.4 Whitespace- and Line Break-Related Properties

hyphenate

hyphenation-character

http://lib.ommolketab.ir
http://lib.ommolketab.ir

hyphenation-keep

hyphenation-ladder-count

hyphenation-push-character-count

hyphenation-remain-character-count

linefeed-treatment

orphans

white-space

white-space-collapse

white-space-treatment

widows

wrap-option

E.1.5 Leader- and Rule-Related Properties

leader-alignment

leader-length

leader-pattern

leader-pattern-width

rule-style

rule-thickness

E.1.6 Indent-Related Properties

end-indent

last-line-end-indent

start-indent

text-indent

E.1.7 Border-Related Properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

border-collapse

border-separation

border-spacing

E.1.8 Caption-Related Properties

caption-side

E.1.9 Color-Related Properties

color

E.1.10 Alignment-Related Properties

display-align

relative-align

text-align

text-align-last

E.1.11 Table-Related Properties

empty-cells

E.1.12 Keeps- and Breaks-Related Properties

keep-together

page-break-inside

E.1.13 List-Related Properties

provisional-distance-between-starts

provisional-label-separation

E.1.14 Language-Related Properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

country

language

script

text-transform

xml:lang

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Appendix F. Examples for Chapter 10

Example F-1. Initial layout

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <fo:layout-master-set>

 <!-- spm for first 3 pages -->
[1] <fo:simple-page-master master-name="first3"
 page-height="29.7cm"
 page-width="21cm"
 margin-top="1in"
 margin-bottom="2in"
 margin-left="2.5cm"
 margin-right="2.5cm">
 <fo:region-body
 padding-start="1cm"
 padding-end="1cm"
 margin-top="0.6in"
 margin-bottom="0.6in"
 margin-left="0.7in"
 margin-right="0.5in"/>
 </fo:simple-page-master>
[2] <!-- No headers or footers required -->

 <!-- spm for preface and toc -->
 <fo:simple-page-master master-name="prefAndToc"
 page-height="29.7cm"
 page-width="21cm"
 margin-top="1in"
 margin-bottom="1.5in"
 margin-left="2.5cm"
 margin-right="2.5cm">
 <fo:region-body
 padding-start="1cm"
 padding-end="1cm"
 margin-top="0.6in"
 margin-bottom="0.6in"
 margin-left="0.7in"
 margin-right="0.5in"/>
 <fo:region-before
 extent ="0.5in"/> <!-- Height of the region -->
[3]
 <fo:region-after

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 extent ="0.5in"/> <!-- Height of region -->

 </fo:simple-page-master>

<!-- spm for main chapters, odd pages -->
[4] <fo:simple-page-master master-name="chapsOdd"
 page-height="29.7cm"
 page-width="21cm"
 margin-top="1in"
 margin-bottom="0.7in"
[5] margin-left="1.5cm"
 margin-right="2.5cm">

 <fo:region-body

[6] border-color="red"
 border-style="solid"
 border-width="1pt"

 padding-end="3mm"
 padding-start="1mm"
 margin-bottom="0.5in"
 margin-top="1in"
 margin-left="15mm"
 margin-right="15mm"/>
 <fo:region-before

 border-color="red"
 border-style="solid"
 border-width="1pt"

 extent ="0.7in"/> <!-- Height of the region -->

 <fo:region-after
 border-color="red"
 border-style="solid"
 border-width="1pt"

 extent ="0.4in"/> <!-- Height of region -->

 </fo:simple-page-master>

<!-- spm for main chapters, even pages -->
[7] <fo:simple-page-master master-name="chapsEven"
 page-height="29.7cm"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 page-width="21cm"
 margin-top="1in"
 margin-bottom="0.7in"
 margin-left="2.5cm"
 margin-right="1.5cm">

 <fo:region-body

 border-color="red"
 border-style="solid"
 border-width="1pt"

 padding-end="3mm"
 padding-start="1mm"
 margin-bottom="0.5in"
 margin-top="1in"
 margin-left="15mm"
 margin-right="15mm"/>
 <fo:region-before

 border-color="red"
 border-style="solid"
 border-width="1pt"

 extent ="0.7in"/> <!-- Height of the region -->

 <fo:region-after
 border-color="red"
 border-style="solid"
 border-width="1pt"

 extent ="0.4in"/> <!-- Height of region -->

 </fo:simple-page-master>

<!-- Control the sequencing for odd and even pages in chapters -->

[8] <fo:page-sequence-master master-name="chaps">

 <fo:repeatable-page-master-alternatives>
 <fo:conditional-page-master-reference
 master-reference="chapsOdd"
 odd-or-even="odd" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <fo:conditional-page-master-reference
[9] master-reference="chapsEven"
 odd-or-even="even" />

 </fo:repeatable-page-master-alternatives>
 </fo:page-sequence-master>
 </fo:layout-master-set>

<!-- page-sequence for first 3 pages -->

[10] <fo:page-sequence master-reference="first3">
 <fo:flow flow-name="xsl-region-body">
 <fo:block break-after="page">Front page</fo:block>
 <fo:block break-after="page">Dedication page</fo:block>
 <fo:block break-after="page">Title page</fo:block>
 </fo:flow>
 </fo:page-sequence>

<!-- Page sequence for preface and toc -->
[11] <fo:page-sequence master-reference="prefAndToc">
 <fo:static-content
 flow-name="xsl-region-after">
 <fo:block>Preface and toc footer with roman page numbers</fo:block>
 </fo:static-content>
[12] flow-name="xsl-region-before">
 <fo:flow flow-name="xsl-region-body">
 <fo:block break-after="page">Preface</fo:block>
 <fo:block break-after="page">Table of contents 1</fo:block>
 <fo:block break-after="page">Table of contents 2</fo:block>

 </fo:flow>
 </fo:page-sequence>

<!-- Page sequence for all chapters -->
 <fo:page-sequence master-reference="chaps">
 <fo:static-content

 <fo:block>Chapter header with Arabic page numbers</fo:block>
 </fo:static-content>

 <fo:flow flow-name="xsl-region-body">
 <fo:block break-after="page">chapter odd page</fo:block>
 <fo:block break-after="page">chapter even pages</fo:block>
 <fo:block break-after="page">chapter odd pages</fo:block>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </fo:flow>
 </fo:page-sequence>

</fo:root>

simple page model for first three pages. All pages follow this model.1.
No footers or headers.2.
Only the footer is needed, the header is included to keep the balance.3.
Specification for odd pages.4.
One-centimeter difference between odd and even pages, swapped for the even pages.5.
Borders will be removed for use. Inclusion allows the three areas to be viewed without content.6.
Main chapters, even pages specification.7.
Need to alternatively select odd and even pages, depending on the parity of the page number.8.
Select the even simple page model.9.
First flow . No headers, simple text content to ensure it works as expected. This will be replaced by templates.10.

Same for all areas, some temporary content is included to check that the layout works.11.
This will be replaced by retrieve-markers and page-number elements.12.

Example F-2. Source document outline

<book>
 <title>Book title</title>
[1]<frontmatter>
 <author>A.N. Author</author>
 <dedication>
 <para>Dedication to all the people
 who wrote this book for me.</para>
 </dedication>
 <pubdetails>
 <pubname>A Publisher</pubname>
 <pubads>London, 2001 </pubads>
 </pubdetails>

 <preface>
 <title>Preface</title>
 <para>First para of preface</para>
<para>Second para of preface</para>
 </preface>
 </frontmatter>
[2] <bodymatter>
 <chapter>
 <title>Introduction and first chapter title</title>
 <para>Content in the first chapter.
 Additional paragraphs are necessary to check for
 inter-paragraph spacing and layout. </para>
 <para>Content in the first chapter.
 Additional paragraphs are necessary to check for
 inter-paragraph spacing and layout. </para>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </chapter>
 <chapter>
 <title>chapter 2 title</title>
 <para>Content </para>
 </chapter>
 <chapter>
 <title>Chapter 3 title</title>
 <para>Content </para>
 </chapter>
 <chapter>
 <title>Chapter n +2</title>
 <para>Content </para>
 </chapter>
 <chapter>
 <title>Chapter n +3</title>
 <para>Content </para>
 </chapter>
 <chapter>
 <title>Chapter n +4</title>
 <para>Content </para>
 </chapter>
 <chapter>
 <title>Chapter n +5</title>
 <para>Content </para>
 </chapter>
 <chapter>
 <title>Chapter n +6</title>
 <para>Content </para>
 </chapter>
 <chapter>
 <title>Chapter n +7</title>
 <para>Content </para>
 </chapter>
 <chapter>
 <title>Chapter n +8</title>
 <para>Content </para>
 </chapter>

 </bodymatter>
[3]<rearmatter>
 <appendix>
 <title>Appendix title</title>
 <para>content</para>
 </appendix>
</rearmatter>
</book>

Front matter1.
2.
3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.
Body matter2.
Rear matter3.

Example F-3. Main stylesheet

<?xml version="1.0" ?>
<!DOCTYPE xsl:stylesheet [
<!ENTITY sp "<xsl:text> </xsl:text>">
]>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
version="1.0">
 <xsl:import href="pl.xsl"/>
 <xsl:import href='ps.xsl'/>
 <xsl:template match="book">
 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="frontmatter">
 <fo:block>
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

 <xsl:template match="author">
 <fo:block>
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

 <xsl:template match="frontmatter/title">
 <fo:block>
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

 <xsl:template name="tPage">
 <fo:block xsl:use-attribute-sets='font'>
 <fo:block
 font-size='36pt'
 space-before = '50mm'
 space-after = '25mm'
 ><xsl:value-of select='/book/title'/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </fo:block>
 <fo:block
 font-size='18pt'
 space-before = '25mm'
 space-after = '12mm'
>by </fo:block>
 <fo:block
 font-size='18pt'
 space-before = '25mm'
 space-after = '12mm'>
 <xsl:value-of select='/book/frontmatter/author'/>
 </fo:block>
 </fo:block>

 <fo:block text-align='end'
 font-size='10pt'
 space-before = '60mm'>
 © <xsl:value-of
 select="/book/frontmatter/pubdetails/pubname"/>
 </fo:block>
 <fo:block text-align='end'
 font-size='10pt' >
 <xsl:value-of select="/book/frontmatter/pubdetails/pubads"/>
 </fo:block>

 </xsl:template>

 <xsl:template match="dedication">
 <fo:block break-before='page'>
 <fo:block xsl:use-attribute-sets="title font">
 Dedication.
 </fo:block>
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

 <xsl:template match='/' mode='ffp'>
 <fo:block break-before="odd-page" >
 <fo:block xsl:use-attribute-sets="title font"
 space-after="20mm">
 <xsl:value-of select='/book/title'/>
 </fo:block>
 <fo:table width='130mm'>
 <fo:table-body>
 <fo:table-row>
 <fo:table-cell>
 <fo:block>
 <fo:external-graphic
 src="images\ttlpg.jpg"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 content-height="100%"
 scaling="uniform"/>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell display-align='bottom'>
 <fo:block/>
 <fo:block space-before='90mm'>
 © <xsl:value-of
 select='/book/frontmatter/pubdetails/pubname'/>
 </fo:block>
 <fo:block>
 <xsl:value-of
 select='/book/frontmatter/pubdetails/pubads'/>
 </fo:block>
 </fo:table-cell>
 </fo:table-row>
 </fo:table-body>
 </fo:table>
 <fo:block font-size='{$small-sz}'>Image courtesy of
 Aries Cheung, Toronto</fo:block>
 </fo:block>

 </xsl:template>

 <xsl:template match="preface">
 <fo:block id='{generate-id()}'>
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

 <xsl:template match="preface/title">
 <fo:block xsl:use-attribute-sets="title font">
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

 <xsl:template match="/" mode="toc">
 <fo:block break-before="odd-page" >
 <fo:block xsl:use-attribute-sets="title font">
 Table of Contents
 </fo:block>

 <xsl:for-each select='book/frontmatter/preface'>
 <fo:block text-align-last="justify">
 <fo:inline><xsl:value-of select="title"/>
 <fo:leader leader-pattern="dots"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <fo:page-number-citation ref-id="{generate-id()}"/>
 </fo:inline>
 </fo:block>
 </xsl:for-each>

 <xsl:for-each select='book/bodymatter/chapter'>
 <fo:block text-align-last="justify">
 <fo:inline><xsl:value-of select="title"/>
 <fo:leader leader-pattern="dots"/>
 <fo:page-number-citation ref-id="{generate-id()}"/>
 </fo:inline>
 </fo:block>
 </xsl:for-each>

 <xsl:for-each select='book/rearmatter/appendix'>
 <fo:block text-align-last="justify">
 <fo:inline><xsl:value-of select="title"/>
 <fo:leader leader-pattern="dots"/>
 <fo:page-number-citation ref-id="{generate-id()}"/>
 </fo:inline>
 </fo:block>
 </xsl:for-each>
 </fo:block>
 </xsl:template>

 <xsl:template match="bodymatter|rearmatter">
 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="chapter">
 <fo:block break-before="odd-page" id='{generate-id()}'>
 <fo:marker marker-class-name="chap">
 <xsl:value-of select="title"/>
 </fo:marker>
 <fo:marker marker-class-name="chapNum">
 <xsl:number count="chapter" level="any" from="bodymatter"/>

 </fo:marker>
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

 <xsl:template match="chapter/title">
 <fo:block/>
 <fo:block xsl:use-attribute-sets="title font">
 <xsl:apply-templates/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </fo:block>
 </xsl:template>

 <xsl:template match="appendix">
 <fo:block id='{generate-id()}'>
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

 <xsl:template match="appendix/title">
 <fo:block>
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

<!-- minor templates -->

 <xsl:template match="para">
 <fo:block xsl:use-attribute-sets="para font">
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

 <xsl:template match="*">
 <fo:block color="red">
 ***************** Element <xsl:value-of
 select="name(..)"/>/ <xsl:value-of
 select="name()"/> found, with no template. ****************
 </fo:block>
 </xsl:template>

</xsl:stylesheet>

Example F-4. File ps.xsl, the property sets

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE xsl:stylesheet [
<!ENTITY sp "<xsl:text> </xsl:text>">
]>
<xsl:stylesheet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
version="1.0">

<xsl:variable name='base-font-size' select='12'/>
<xsl:variable name='title-font-size' select='$base-font-size * 1.5'/>
<xsl:variable name='head-font-size' select='$base-font-size * 1.2'/>
<xsl:variable name='small-font-size' select='$base-font-size div 2'/>

<xsl:variable name='base-sz' select= 'concat ($base-font-size,"pt")'/>
<xsl:variable name='title-sz' select= 'concat ($title-font-size,"pt")'/>
<xsl:variable name='head-sz' select= 'concat ($head-font-size,"pt")'/>
<xsl:variable name='small-sz' select= 'concat ($small-font-size,"pt")'/>

<xsl:attribute-set name='font'> <!-- Font family -->
 <xsl:attribute
 name='font-family'>'Arial' 'Helvetica' Serif</xsl:attribute>
</xsl:attribute-set>

 <xsl:attribute-set name="title"
use-attribute-sets="font ">
 <xsl:attribute name="font-size">
 <xsl:value-of select="$title-sz"/>
 </xsl:attribute>
 <xsl:attribute name="font-weight">bold</xsl:attribute>
 <xsl:attribute name="font-style">normal</xsl:attribute>
 <xsl:attribute name="space-before.optimum">
 <xsl:value-of select="$title-sz"/>
 </xsl:attribute>
 <xsl:attribute
 name="space-before.conditionality">retain</xsl:attribute>
 <xsl:attribute name="space-after.optimum">
 <xsl:value-of select="$small-sz"/>
 </xsl:attribute>
 <xsl:attribute name="keep-with-next">true</xsl:attribute>
 <xsl:attribute name="page-break-inside">avoid</xsl:attribute>
 <xsl:attribute name="text-align">center</xsl:attribute>
 <xsl:attribute name="background-color">white</xsl:attribute>
 </xsl:attribute-set>

 <xsl:attribute-set name='pad'>
 <xsl:attribute name='padding'>
 <xsl:value-of select="$small-sz"/>
 </xsl:attribute>
 </xsl:attribute-set>

 <xsl:attribute-set name="border">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<xsl:attribute-set name='border'>
<xsl:attribute name='border-before-style>solid'</xsl:attribute>
<xsl:attribute name='border-after-style>solid'</xsl:attribute>
<xsl:attribute name='border-start-style>solid'</xsl:attribute>
<xsl:attribute name='border-end-style>solid'</xsl:attribute>

<xsl:attribute name='border-before-width>.1mm"</xsl:attribute>
<xsl:attribute name='border-after-width>.1mm"</xsl:attribute>
<xsl:attribute name='border-start-width>.1mm"</xsl:attribute>
<xsl:attribute name='border-end-width>.1mm"</xsl:attribute>
 </xsl:attribute-set>

 <xsl:attribute-set name="para"
 use-attribute-sets='font '>
 <xsl:attribute name="space-before.optimum">
 <xsl:value-of select="$base-sz"/>
 </xsl:attribute>
 <xsl:attribute name="space-after.optimum">
 <xsl:value-of select="$base-sz"/>
 </xsl:attribute>
 </xsl:attribute-set>

</xsl:stylesheet>

Example F-5. Page layout stylesheet

<?xml version="1.0" ?>
<!DOCTYPE xsl:stylesheet [
 <!ENTITY lms SYSTEM "lms.xml">
]>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
version="1.0">
<!-- Time-stamp: "2000-12-22 11:30:45 dave" -->

<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <fo:layout-master-set>

<!-- spm for first 3 pages -->
 <fo:simple-page-master master-name="first3"
 page-height="29.7cm"
 page-width="21cm"
 margin-top="1in"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 margin-bottom="2in"
 margin-left="2.5cm"
 margin-right="2.5cm">
 <fo:region-body
 padding-start="1cm"
 padding-end="1cm"
 margin-top="0.6in"
 margin-bottom="0.6in"
 margin-left="0.7in"
 margin-right="0.5in"/>
 </fo:simple-page-master>
 <!-- No headers or footers required -->

<!-- spm for preface and toc -->
 <fo:simple-page-master master-name="prefAndToc"
 page-height="29.7cm"
 page-width="21cm"
 margin-top="1in"
 margin-bottom="1.5in"
 margin-left="2.5cm"
 margin-right="2.5cm">
 <fo:region-body
 padding-start="1cm"
 padding-end="1cm"
 margin-top="0.6in"
 margin-bottom="0.6in"
 margin-left="0.7in"
 margin-right="0.5in"/>
 <fo:region-before
 extent ="0.5in"/> <!-- Height of the region -->

 <fo:region-after
 extent ="0.5in"/> <!-- Height of region -->

 </fo:simple-page-master>

<!-- spm for main chapters, odd pages -->
 <fo:simple-page-master master-name="chapsOdd"
 page-height="29.7cm"
 page-width="21cm"
 margin-top="1in"
 margin-bottom="0.7in"
 margin-left="1.5cm"
 margin-right="2.5cm">

 <!--
 border-color="red"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 border-style="solid"
 border-width="1pt"
-->
 <fo:region-body
 padding-end="3mm"
 padding-start="1mm"
 margin-bottom="0.5in"
 margin-top="1in"
 margin-left="15mm"
 margin-right="15mm"/>
 <fo:region-before

 extent ="0.7in"/> <!-- Height of the region -->
 <!--
 border-color="red"
 border-style="solid"
 border-width="1pt"
-->

 <fo:region-after

 extent ="0.4in"/> <!-- Height of region -->
 <!--
 border-color="red"
 border-style="solid"
 border-width="1pt"
-->
 </fo:simple-page-master>

<!-- spm for main chapters, even pages -->
 <fo:simple-page-master master-name="chapsEven"
 page-height="29.7cm"
 page-width="21cm"
 margin-top="1in"
 margin-bottom="0.7in"
 margin-left="2.5cm"
 margin-right="1.5cm">

 <fo:region-body

 padding-end="3mm"
 padding-start="1mm"
 margin-bottom="0.5in"
 margin-top="1in"
 margin-left="15mm"
 margin-right="15mm"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- border-color="red"
 border-style="solid"
 border-width="1pt" -->

 <fo:region-before

 extent ="0.7in"/> <!-- Height of the region -->
<!-- border-color="red"
 border-style="solid"
 border-width="1pt"
 -->
 <fo:region-after

 extent ="0.4in"/> <!-- Height of region -->
<!-- border-color="red"
 border-style="solid"
 border-width="1pt"
 -->
 </fo:simple-page-master>

<!-- Control the sequencing for odd and even pages in chapters -->
 <fo:page-sequence-master master-name="chaps">
 <fo:repeatable-page-master-alternatives>
 <fo:conditional-page-master-reference
 master-reference="chapsOdd"
 odd-or-even="odd" />

 <fo:conditional-page-master-reference
 master-reference="chapsEven"
 odd-or-even="even" />
 </fo:repeatable-page-master-alternatives>
 </fo:page-sequence-master>
 </fo:layout-master-set>

<!-- page-sequence for first 3 pages -->
 <fo:page-sequence master-reference="first3">
 <fo:flow flow-name="xsl-region-body">
 <xsl:call-template name="tPage"/>
 <xsl:apply-templates select="/book/frontmatter/dedication"/>
 <xsl:apply-templates select="/" mode="ffp"/>
 </fo:flow>
</fo:page-sequence>

<!-- Page sequence for preface and toc -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <fo:page-sequence
 master-reference="prefAndToc"
 initial-page-label="F" format="I">
 <fo:static-content
 flow-name="xsl-region-after">
 <fo:block text-align="outside"><fo:page-number/></fo:block>
 </fo:static-content>

 <fo:flow flow-name="xsl-region-body">
 <xsl:apply-templates select="/book/frontmatter/preface"/>
 <xsl:apply-templates select="/" mode="toc"/>

 </fo:flow>
 </fo:page-sequence>

<!-- Page sequence for all chapters -->
 <fo:page-sequence master-reference="chaps">
 <fo:static-content
 flow-name="xsl-region-before">
 <fo:block text-align="outside"
 xsl:use-attribute-sets='para font pad'>
 Chapter <fo:retrieve-marker retrieve-class-name="chapNum"/>
 <fo:leader leader-pattern="space" />
 <fo:retrieve-marker retrieve-class-name="chap"/>
 <fo:leader leader-pattern="space" />
 Page <fo:page-number
 font-style="normal" /> of <fo:page-number-citation
 ref-id='end'/>
 </fo:block>
 </fo:static-content>
 <fo:flow flow-name="xsl-region-body">
 <fo:block xsl:use-attribute-sets='font'>
 <xsl:apply-templates select="/book/bodymatter"/>
 <xsl:apply-templates select="/book/rearmatter"/>
 </fo:block>
 <fo:block id='end'/>
 </fo:flow>
</fo:page-sequence>

</fo:root>

</xsl:template>
</xsl:stylesheet>

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Appendix G. Elements and Valid Properties

 G.1 XSL-FO Elements and Their Properties

 G.2 Properties and the Elements to Which They Apply

In accordance with the W3C copyright, please note that this content is abstracted from Extensible Stylesheet
Language (XSL) Version 1.0, "Copyright 2001 World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved. http://www.w3.org/Consortium/Legal/".

This document lists all the properties available for the elements in the fo namespace (with exceptions being my error).
Posted to clarify.

G.1 XSL-FO Elements and Their Properties

This table lists all elements and their associated properties, derived from section 6 of the Recommendation. Table G-1
lists all elements and their properties.

The common aural properties, which are noted in this table for many elements, include azimuth, cue-after, cue-before,
elevation, pause-after, pause-before, pitch, pitch-range, play-during, richness, speak, speak-header, speak-numeral,
speak-punctuation, speech-rate, stress, voice-family, and volume.

Table G-1. Properties

Element Properties Comments

fo:root media-usage

fo:declarations

fo:color-profile src, color-profile-name, rendering-intent

fo:page-
sequence

country, format, language, letter-value, grouping-separator, grouping-size, id,
initial-page-number, force-page-count, master-reference

fo:layout-
master-set

fo:page-
sequence-
master

master-name

fo:single-page-
master-
reference

master-reference

fo:repeatable-
page-master-
reference

master-reference, maximum-repeats

http://www.w3.org/Consortium/Legal/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

fo:repeatable-
page-master-
alternatives

maximum-repeats

fo:conditional-
page-master-
reference

master-reference, page-position, odd-or-even, blank-or-not-blank

fo:simple-page-
master

margin-top, margin-bottom, margin-left, margin-right, space-before, space-after,
start-indent, end-indent, master-name, page-height, page-width, reference-
orientation, writing-mode

fo:region-body

background-attachment, background-color, background-image, background-
repeat, background-position-horizontal, background-position-vertical, border-
before-color, border-before-style, border-before-width, border-after-color,
border-after-style, border-after-width, border-start-color, border-start-style,
border-start-width, border-end-color, border-end-style, border-end-width,
border-top-color, border-top-style, border-top-width, border-bottom-color,
border-bottom-style, border-bottom-width, border-left-color, border-left-style,
border-left-width, border-right-color, border-right-style, border-right-width,
padding-before, padding-after, padding-start, padding-end, padding-top,
padding-bottom, padding-left, padding-right margin-top, margin-bottom,
margin-left, margin-right, space-before, space-after, start-indent, end-indent,
clip, column-count, column-gap, display-align, overflow, region-name,
reference-orientation, writing-mode

fo:region-
before

background-attachment, background-color, background-image, background-
repeat, background-position-horizontal, background-position-vertical, border-
before-color, border-before-style, border-before-width, border-after-color,
border-after-style, border-after-width, border-start-color, border-start-style,
border-start-width, border-end-color, border-end-style, border-end-width,
border-top-color, border-top-style, border-top-width, border-bottom-color,
border-bottom-style, border-bottom-width, border-left-color, border-left-style,
border-left-width, border-right-color, border-right-style, border-right-width,
padding-before, padding-after, padding-start, padding-end, padding-top,
padding-bottom, padding-left, padding-right clip, display-align, extent,
overflow, precedence, region-name, reference-orientation, writing-mode

fo:region-after

background-attachment, background-color, background-image, background-
repeat, background-position-horizontal, background-position-vertical, border-
before-color, border-before-style, border-before-width, border-after-color,
border-after-style, border-after-width, border-start-color, border-start-style,
border-start-width, border-end-color, border-end-style, border-end-width,
border-top-color, border-top-style, border-top-width, border-bottom-color,
border-bottom-style, border-bottom-width, border-left-color, border-left-style,
border-left-width, border-right-color, border-right-style, border-right-width,
padding-before, padding-after, padding-start, padding-end, padding-top,
padding-bottom, padding-left, padding-right clip, display-align, extent,
overflow, precedence, region-name, reference-orientation, writing-mode

background-attachment, background-color, background-image, background-
repeat, background-position-horizontal, background-position-vertical, border-
before-color, border-before-style, border-before-width, border-after-color,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fo:region-start

border-after-style, border-after-width, border-start-color, border-start-style,
border-start-width, border-end-color, border-end-style, border-end-width,
border-top-color, border-top-style, border-top-width, border-bottom-color,
border-bottom-style, border-bottom-width, border-left-color, border-left-style,
border-left-width, border-right-color, border-right-style, border-right-width,
padding-before, padding-after, padding-start, padding-end, padding-top,
padding-bottom, padding-left, padding-right clip, display-align, extent,
overflow, region-name, reference-orientation, writing-mode

fo:region-end

background-attachment, background-color, background-image, background-
repeat, background-position-horizontal, background-position-vertical, border-
before-color, border-before-style, border-before-width, border-after-color,
border-after-style, border-after-width, border-start-color, border-start-style,
border-start-width, border-end-color, border-end-style, border-end-width,
border-top-color, border-top-style, border-top-width, border-bottom-color,
border-bottom-style, border-bottom-width, border-left-color, border-left-style,
border-left-width, border-right-color, border-right-style, border-right-width,
padding-before, padding-after, padding-start, padding-end, padding-top,
padding-bottom, padding-left, padding-right clip, display-align, extent,
overflow, region-name, reference-orientation, writing-mode

fo:flow flow-name

fo:static-
content

flow-name

fo:title

[7.6 Common Aural Properties], source-document, role, background-
attachment, background-color, background-image, background-repeat,
background-position-horizontal, background-position-vertical, border-before-
color, border-before-style, border-before-width, border-after-color, border-after-
style, border-after-width, border-start-color, border-start-style, border-start-
width, border-end-color, border-end-style, border-end-width, border-top-color,
border-top-style, border-top-width, border-bottom-color, border-bottom-style,
border-bottom-width, border-left-color, border-left-style, border-left-width,
border-right-color, border-right-style, border-right-width, padding-before,
padding-after, padding-start, padding-end, padding-top, padding-bottom,
padding-left, padding-right, font-family, font-selection-strategy, font-size, font-
stretch, font-size-adjust, font-style, font-variant, font-weight, space-end, space-
start, color, line-height, visibility

fo:block

[7.6 Common Aural Properties], source-document, role, background-
attachment, background-color, background-image, background-repeat,
background-position-horizontal, background-position-vertical, border-before-
color, border-before-style, border-before-width, border-after-color, border-after-
style, border-after-width, border-start-color, border-start-style, border-start-
width, border-end-color, border-end-style, border-end-width, border-top-color,
border-top-style, border-top-width, border-bottom-color, border-bottom-style,
border-bottom-width, border-left-color, border-left-style, border-left-width,
border-right-color, border-right-style, border-right-width, padding-before,
padding-after, padding-start, padding-end, padding-top, padding-bottom,
padding-left, padding-right, font-family, font-selection-strategy, font-size, font-
stretch, font-size-adjust, font-style, font-variant, font-weight, country, language,
script, hyphenate, hyphenation-character, hyphenation-push-character-count,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

hyphenation-remain-character-count, margin-top, margin-bottom, margin-left,
margin-right, space-before, space-after, start-indent, end-indent, relative-
position, break-after, break-before, color, text-depth, text-altitude, hyphenation-
keep, hyphenation-ladder-count, id, intrusion-displace, keep-together, keep-
with-next, keep-with-previous, last-line-end-indent, linefeed-treatment, line-
height, line-height-shift-adjustment, line-stacking-strategy, orphans, white-
space-treatment, span, text-align, text-align-last, text-indent, visibility, white-
space-collapse, widows, wrap-option

fo:block-
container

absolute-position, top, right, bottom, left, background-attachment, background-
color, background-image, background-repeat, background-position-horizontal,
background-position-vertical, border-before-color, border-before-style, border-
before-width, border-after-color, border-after-style, border-after-width, border-
start-color, border-start-style, border-start-width, border-end-color, border-end-
style, border-end-width, border-top-color, border-top-style, border-top-width,
border-bottom-color, border-bottom-style, border-bottom-width, border-left-
color, border-left-style, border-left-width, border-right-color, border-right-style,
border-right-width, padding-before, padding-after, padding-start, padding-end,
padding-top, padding-bottom, padding-left, padding-right, margin-top, margin-
bottom, margin-left, margin-right, space-before, space-after, start-indent, end-
indent, block-progression-dimension, break-after, break-before, clip, display-
align, height, id, inline-progression-dimension, intrusion-displace, keep-
together, keep-with-next, keep-with-previous, overflow, reference-orientation,
span, width, writing-mode, z-index,

fo:bidi-override

[7.6 Common Aural Properties], font-family, font-selection-strategy, font-size,
font-stretch, font-size-adjust, font-style, font-variant, font-weight, relative-
position, color, direction, id, letter-spacing, line-height, score-spaces, unicode-
bidi, word-spacing

fo:character

[7.6 Common Aural Properties], background-attachment, background-color,
background-image, background-repeat, background-position-horizontal,
background-position-vertical, border-before-color, border-before-style, border-
before-width, border-after-color, border-after-style, border-after-width, border-
start-color, border-start-style, border-start-width, border-end-color, border-end-
style, border-end-width, border-top-color, border-top-style, border-top-width,
border-bottom-color, border-bottom-style, border-bottom-width, border-left-
color, border-left-style, border-left-width, border-right-color, border-right-style,
border-right-width, padding-before, padding-after, padding-start, padding-end,
padding-top, padding-bottom, padding-left, padding-right, font-family, font-
selection-strategy, font-size, font-stretch, font-size-adjust, font-style, font-
variant, font-weight, country, language, script, hyphenate, hyphenation-
character, hyphenation-push-character-count, hyphenation-remain-character-
count, space-end, space-start, relative-position, alignment-adjust, treat-as-word-
space, alignment-baseline, baseline-shift, character, color, dominant-baseline,
text-depth, text-altitude, glyph-orientation-horizontal, glyph-orientation-vertical,
id, keep-with-next, keep-with-previous, letter-spacing, line-height score-spaces,
suppress-at-line-break, text-decoration, text-shadow, text-transform, visibility,
word-spacing

[7.6 Common Aural Properties], source-document, role, background-
attachment, background-color, background-image, background-repeat,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fo:initial-
property-set

background-position-horizontal, background-position-vertical, border-before-
color, border-before-style, border-before-width, border-after-color, border-after-
style, border-after-width, border-start-color, border-start-style, border-start-
width, border-end-color, border-end-style, border-end-width, border-top-color,
border-top-style, border-top-width, border-bottom-color, border-bottom-style,
border-bottom-width, border-left-color, border-left-style, border-left-width,
border-right-color, border-right-style, border-right-width, padding-before,
padding-after, padding-start, padding-end, padding-top, padding-bottom,
padding-left, padding-right, font-family, font-selection-strategy, font-size, font-
stretch, font-size-adjust, font-style, font-variant, font-weight, relative-position,
color, id, letter-spacing, line-height, score-spaces, text-decoration, text-shadow,
text-transform, word-spacing

fo:external-
graphic

[7.6 Common Aural Properties], source-document, role, background-
attachment, background-color, background-image, background-repeat,
background-position-horizontal, background-position-vertical, border-before-
color, border-before-style, border-before-width, border-after-color, border-after-
style, border-after-width, border-start-color, border-start-style, border-start-
width, border-end-color, border-end-style, border-end-width, border-top-color,
border-top-style, border-top-width, border-bottom-color, border-bottom-style,
border-bottom-width, border-left-color, border-left-style, border-left-width,
border-right-color, border-right-style, border-right-width, padding-before,
padding-after, padding-start, padding-end, padding-top, padding-bottom,
padding-left, padding-right, margin-top, margin-bottom, margin-left, margin-
right, space-before, space-after, start-indent, end-indent, relative-position,
alignment-adjust, alignment-baseline, baseline-shift, block-progression-
dimension, clip, content-height, content-type, content-width, display-align,
dominant-baseline, height, id, inline-progression-dimension, keep-with-next,
keep-with-previous, line-height, overflow, scaling, scaling-method, src, text-
align, width

fo:instream-
foreign-object

[7.6 Common Aural Properties], source-document, role, background-
attachment, background-color, background-image, background-repeat,
background-position-horizontal, background-position-vertical, border-before-
color, border-before-style, border-before-width, border-after-color, border-after-
style, border-after-width, border-start-color, border-start-style, border-start-
width, border-end-color, border-end-style, border-end-width, border-top-color,
border-top-style, border-top-width, border-bottom-color, border-bottom-style,
border-bottom-width, border-left-color, border-left-style, border-left-width,
border-right-color, border-right-style, border-right-width, padding-before,
padding-after, padding-start, padding-end, padding-top, padding-bottom,
padding-left, padding-right, space-end, space-start, relative-position, alignment-
adjust, alignment-baseline, baseline-shift, block-progression-dimension, clip,
content-height, content-type, content-width, display-align, dominant-baseline,
height, id, inline-progression-dimension, keep-with-next, keep-with-previous,
line-height, overflow, scaling, scaling-method, text-align, width

[7.6 Common Aural Properties], source-document, role, background-
attachment, background-color, background-image, background-repeat,
background-position-horizontal, background-position-vertical, border-before-
color, border-before-style, border-before-width, border-after-color, border-after-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fo:inline

style, border-after-width, border-start-color, border-start-style, border-start-
width, border-end-color, border-end-style, border-end-width, border-top-color,
border-top-style, border-top-width, border-bottom-color, border-bottom-style,
border-bottom-width, border-left-color, border-left-style, border-left-width,
border-right-color, border-right-style, border-right-width, padding-before,
padding-after, padding-start, padding-end, padding-top, padding-bottom,
padding-left, padding-right, font-family, font-selection-strategy, font-size, font-
stretch, font-size-adjust, font-style, font-variant, font-weight, space-end, space-
start, relative-position, alignment-adjust, alignment-baseline, baseline-shift,
block-progression-dimension, color, dominant-baseline, height, id, inline-
progression-dimension, keep-together, keep-with-next, keep-with-previous, line-
height, text-decoration, visibility, width, wrap-option

fo:inline-
container

background-attachment, background-color, background-image, background-
repeat, background-position-horizontal, background-position-vertical, border-
before-color, border-before-style, border-before-width, border-after-color,
border-after-style, border-after-width, border-start-color, border-start-style,
border-start-width, border-end-color, border-end-style, border-end-width,
border-top-color, border-top-style, border-top-width, border-bottom-color,
border-bottom-style, border-bottom-width, border-left-color, border-left-style,
border-left-width, border-right-color, border-right-style, border-right-width,
padding-before, padding-after, padding-start, padding-end, padding-top,
padding-bottom, padding-left, padding-right, space-end, space-start, relative-
position, alignment-adjust, alignment-baseline, baseline-shift, block-
progression-dimension, clip, display-align, dominant-baseline,xe, height, id,
inline-progression-dimension, keep-together, keep-with-next, keep-with-
previous, line-height, overflow, reference-orientation, width, writing-mode

fo:leader

[7.6 Common Aural Properties], source-document, role, background-
attachment, background-color, background-image, background-repeat,
background-position-horizontal, background-position-vertical, border-before-
color, border-before-style, border-before-width, border-after-color, border-after-
style, border-after-width, border-start-color, border-start-style, border-start-
width, border-end-color, border-end-style, border-end-width, border-top-color,
border-top-style, border-top-width, border-bottom-color, border-bottom-style,
border-bottom-width, border-left-color, border-left-style, border-left-width,
border-right-color, border-right-style, border-right-width, padding-before,
padding-after, padding-start, padding-end, padding-top, padding-bottom,
padding-left, padding-right, font-family, font-selection-strategy, font-size, font-
stretch, font-size-adjust, font-style, font-variant, font-weight, space-end, space-
start, relative-position, alignment-adjust, alignment-baseline, baseline-shift,
color, dominant-baseline, text-depth, text-altitude, id, keep-with-next, keep-
with-previous, leader-alignment, leader-length, leader-pattern, leader-pattern-
width, rule-style, rule-thickness, letter-spacing, line-height, text-shadow,
visibility, word-spacing

[7.6 Common Aural Properties], source-document, role, background-
attachment, background-color, background-image, background-repeat,
background-position-horizontal, background-position-vertical, border-before-
color, border-before-style, border-before-width, border-after-color, border-after-
style, border-after-width, border-start-color, border-start-style, border-start-

The conversion
properties are:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fo:page-number

width, border-end-color, border-end-style, border-end-width, border-top-color,
border-top-style, border-top-width, border-bottom-color, border-bottom-style,
border-bottom-width, border-left-color, border-left-style, border-left-width,
border-right-color, border-right-style, border-right-width, padding-before,
padding-after, padding-start, padding-end, padding-top, padding-bottom,
padding-left, padding-right, font-family, font-selection-strategy, font-size, font-
stretch, font-size-adjust, font-style, font-variant, font-weight, space-end, space-
start, relative-position, alignment-adjust, alignment-baseline, baseline-shift,
dominant-baseline, id, keep-with-next, keep-with-previous, letter-spacing, line-
height, score-spaces, text-altitude, text-decoration, text-depth, text-shadow, text-
transform, visibility, word-spacing, wrap-option

[7.24.1 "format"],
[7.24.2 "grouping-
separator"], [7.24.3
"grouping-size"],
[7.24.4 "letter-
value"], [7.9.1
"country"], and
[7.9.2 "language"].

fo:page-
number-citation

[7.6 Common Aural Properties], source-document, role, background-
attachment, background-color, background-image, background-repeat,
background-position-horizontal, background-position-vertical, border-before-
color, border-before-style, border-before-width, border-after-color, border-after-
style, border-after-width, border-start-color, border-start-style, border-start-
width, border-end-color, border-end-style, border-end-width, border-top-color,
border-top-style, border-top-width, border-bottom-color, border-bottom-style,
border-bottom-width, border-left-color, border-left-style, border-left-width,
border-right-color, border-right-style, border-right-width, padding-before,
padding-after, padding-start, padding-end, padding-top, padding-bottom,
padding-left, padding-right, font-family, font-selection-strategy, font-size, font-
stretch, font-size-adjust, font-style, font-variant, font-weight, space-end, space-
start, relative-position, alignment-adjust, alignment-baseline, baseline-shift,
dominant-baseline, id, keep-with-next, keep-with-previous, letter-spacing, line-
height, ref-id, score-spaces, text-altitude, text-decoration, text-depth, text-
shadow, text-transform, visibility, word-spacing, wrap-option

fo:table-and-
caption

[7.6 Common Aural Properties], source-document, role, background-
attachment, background-color, background-image, background-repeat,
background-position-horizontal, background-position-vertical, border-before-
color, border-before-style, border-before-width, border-after-color, border-after-
style, border-after-width, border-start-color, border-start-style, border-start-
width, border-end-color, border-end-style, border-end-width, border-top-color,
border-top-style, border-top-width, border-bottom-color, border-bottom-style,
border-bottom-width, border-left-color, border-left-style, border-left-width,
border-right-color, border-right-style, border-right-width, padding-before,
padding-after, padding-start, padding-end, padding-top, padding-bottom,
padding-left, padding-right, margin-top, margin-bottom, margin-left, margin-
right, space-before, space-after, start-indent, end-indent, space-end, space-start,
relative-position, break-after, break-before, caption-side, id, intrusion-displace,
keep-together, keep-with-next, keep-with-previous, text-align

[7.6 Common Aural Properties], source-document, role, background-
attachment, background-color, background-image, background-repeat,
background-position-horizontal, background-position-vertical, border-before-
color, border-before-style, border-before-width, border-after-color, border-after-
style, border-after-width, border-start-color, border-start-style, border-start-
width, border-end-color, border-end-style, border-end-width, border-top-color,
border-top-style, border-top-width, border-bottom-color, border-bottom-style,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fo:table

border-bottom-width, border-left-color, border-left-style, border-left-width,
border-right-color, border-right-style, border-right-width, padding-before,
padding-after, padding-start, padding-end, padding-top, padding-bottom,
padding-left, padding-right, margin-top, margin-bottom, margin-left, margin-
right, space-before, space-after, start-indent, end-indent, space-end, space-start,
relative-position, block-progression-dimension, border-after-precedence, border-
before-precedence, border-collapse, border-end-precedence, border-separation,
border-start-precedence, break-after, break-before, id, inline-progression-
dimension, intrusion-displace, height, keep-together, keep-with-next, keep-with-
previous, table-layout, table-omit-footer-at-break, table-omit-header-at-break,
width, writing-mode

fo:table-column

background-attachment, background-color, background-image, background-
repeat, background-position-horizontal, background-position-vertical, border-
after-precedence, border-before-precedence, border-end-precedence, border-
start-precedence, column-number, column-width, number-columns-repeated,
number-columns-spanned, visibility

If the value of
border-collapse is
"collapse" or
"collapse-with-
precedence" for
the table the
border properties
also apply.

fo:table-caption

[7.6 Common Aural Properties], source-document, role, background-
attachment, background-color, background-image, background-repeat,
background-position-horizontal, background-position-vertical, border-before-
color, border-before-style, border-before-width, border-after-color, border-after-
style, border-after-width, border-start-color, border-start-style, border-start-
width, border-end-color, border-end-style, border-end-width, border-top-color,
border-top-style, border-top-width, border-bottom-color, border-bottom-style,
border-bottom-width, border-left-color, border-left-style, border-left-width,
border-right-color, border-right-style, border-right-width, padding-before,
padding-after, padding-start, padding-end, padding-top, padding-bottom,
padding-left, padding-right, relative-position, block-progression-dimension,
height, id, inline-progression-dimension, intrusion-displace, keep-together,
width

fo:table-header

[7.6 Common Aural Properties], source-document, role, background-
attachment, background-color, background-image, background-repeat,
background-position-horizontal, background-position-vertical, relative-position,
border-after-precedence, border-before-precedence, border-end-precedence,
border-start-precedence, id, visibility

If the value of
border-collapse is
"collapse" or
"collapse-with-
precedence" for
the table the
border properties
also apply.

fo:table-footer

[7.6 Common Aural Properties], source-document, role, background-
attachment, background-color, background-image, background-repeat,
background-position-horizontal, background-position-vertical, relative-position,
border-after-precedence, border-before-precedence, border-end-precedence,
border-start-precedence, id, visibility

If the value of
border-collapse is
"collapse" or
"collapse-with-
precedence" for
the table the
border properties
also apply.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fo:table-body

[7.6 Common Aural Properties], source-document, role, background-
attachment, background-color, background-image, background-repeat,
background-position-horizontal, background-position-vertical, border-after-
precedence, border-before-precedence, border-end-precedence, border-start-
precedence, id, visibility

If the value of
border-collapse is
"collapse" or
"collapse-with-
precedence" for
the table the
border properties
also apply.

fo:table-row

[7.6 Common Aural Properties], source-document, role, block-progression-
dimension, background-attachment, background-color, background-image,
background-repeat, background-position-horizontal, background-position-
vertical, border-before-color, border-before-style, border-before-width, border-
after-color, border-after-style, border-after-width, border-start-color, border-
start-style, border-start-width, border-end-color, border-end-style, border-end-
width, border-top-color, border-top-style, border-top-width, border-bottom-
color, border-bottom-style, border-bottom-width, border-left-color, border-left-
style, border-left-width, border-right-color, border-right-style, border-right-
width, padding-before, padding-after, padding-start, padding-end, padding-top,
padding-bottom, padding-left, padding-right, background-attachment,
background-color, background-image, background-repeat, background-position-
horizontal, background-position-vertical, relative-position, border-after-
precedence, border-before-precedence, border-end-precedence, border-start-
precedence, break-after, break-before, id, height, keep-together, keep-with-next,
keep-with-previous, visibility

If the value of
border-collapse is
"collapse" or
"collapse-with-
precedence" for
the table the
border properties
also apply.

fo:table-cell

[7.6 Common Aural Properties] source-document, role, background-attachment,
background-color, background-image, background-repeat, background-position-
horizontal, background-position-vertical, border-before-color, border-before-
style, border-before-width, border-after-color, border-after-style, border-after-
width, border-start-color, border-start-style, border-start-width, border-end-
color, border-end-style, border-end-width, border-top-color, border-top-style,
border-top-width, border-bottom-color, border-bottom-style, border-bottom-
width, border-left-color, border-left-style, border-left-width, border-right-color,
border-right-style, border-right-width, padding-before, padding-after, padding-
start, padding-end, padding-top, padding-bottom, padding-left, padding-right,
relative-position, border-after-precedence, border-before-precedence, border-
end-precedence, border-start-precedence, block-progression-dimension, column-
number, display-align, relative-align, empty-cells, ends-row, height, id, inline-
progression-dimension, number-columns-spanned, number-rows-spanned,
starts-row, width,

fo:list-block

[7.6 Common Aural Properties], source-document, role, background-
attachment, background-color, background-image, background-repeat,
background-position-horizontal, background-position-vertical, border-before-
color, border-before-style, border-before-width, border-after-color, border-after-
style, border-after-width, border-start-color, border-start-style, border-start-
width, border-end-color, border-end-style, border-end-width, border-top-color,
border-top-style, border-top-width, border-bottom-color, border-bottom-style,
border-bottom-width, border-left-color, border-left-style, border-left-width,
border-right-color, border-right-style, border-right-width, padding-before,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

padding-after, padding-start, padding-end, padding-top, padding-bottom,
padding-left, padding-right, relative-position, margin-top, margin-bottom,
margin-left, margin-right, space-before, space-after, start-indent, end-indent,
break-after, break-before, id, intrusion-displace, keep-together, keep-with-next,
keep-with-previous, provisional-distance-between-starts, provisional-label-
separation

fo:list-item

[7.6 Common Aural Properties], source-document, role, background-
attachment, background-color, background-image, background-repeat,
background-position-horizontal, background-position-vertical, border-before-
color, border-before-style, border-before-width, border-after-color, border-after-
style, border-after-width, border-start-color, border-start-style, border-start-
width, border-end-color, border-end-style, border-end-width, border-top-color,
border-top-style, border-top-width, border-bottom-color, border-bottom-style,
border-bottom-width, border-left-color, border-left-style, border-left-width,
border-right-color, border-right-style, border-right-width, padding-before,
padding-after, padding-start, padding-end, padding-top, padding-bottom,
padding-left, padding-right, relative-position, margin-top, margin-bottom,
margin-left, margin-right, space-before, space-after, start-indent, end-indent,
relative-position, break-after, break-before, id, intrusion-displace, keep-together,
keep-with-next, keep-with-previous, relative-align

fo:list-item-
body

source-document, role, id, keep-together

fo:list-item-
label

source-document, role, id, keep-together

fo:basic-link

[7.6 Common Aural Properties], source-document, role, background-
attachment, background-color, background-image, background-repeat,
background-position-horizontal, background-position-vertical, border-before-
color, border-before-style, border-before-width, border-after-color, border-after-
style, border-after-width, border-start-color, border-start-style, border-start-
width, border-end-color, border-end-style, border-end-width, border-top-color,
border-top-style, border-top-width, border-bottom-color, border-bottom-style,
border-bottom-width, border-left-color, border-left-style, border-left-width,
border-right-color, border-right-style, border-right-width, padding-before,
padding-after, padding-start, padding-end, padding-top, padding-bottom,
padding-left, padding-right, space-end, space-start, relative-position, alignment-
adjust, alignment-baseline, baseline-shift, destination-placement-offset,
dominant-baseline, external-destination, id, indicate-destination, internal-
destination, keep-together, keep-with-next, keep-with-previous, line-height,
show-destination, target-processing-context, target-presentation-context, target-
stylesheet

fo:multi-switch source-document, role, auto-restore, id

fo:multi-case source-document, role, id, starting-state, case-name, case-title

fo:multi-toggle source-document, role, id, switch-to

fo:multi-
properties

source-document, role, id,

fo:multi-
property-set

id, active-state

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fo:float float, clear

fo:footnote source-document, role

fo:footnote-
body

source-document, role

fo:wrapper id

fo:marker marker-class-name

fo:retrieve-
marker

retrieve-class-name, retrieve-position, retrieve-boundary

G.2 Properties and the Elements to Which They Apply

Table G-2. Properties to elements

Property Applies to

media-usage fo:root

color-profile-name fo:color-profile

rendering-intent fo:color-profile

src fo:color-profile, fo:external-graphic

country fo:page-sequence, fo:block, fo:character

force-page-count fo:page-sequence

format fo:page-sequence

grouping-separator fo:page-sequence

grouping-size fo:page-sequence

id

fo:page-sequence, fo:block, fo:block-container, fo:bidi-override, fo:character, fo:initial-
property-set, fo:external-graphic, fo:instream-foreign-object, fo:inline, fo:inline-container,
fo:leader, fo:page-number, fo:page-number-citation, fo:table-and-caption, fo:table, fo:table-
caption, fo:table-header, fo:table-footer, fo:table-body, fo:table-row, fo:table-cell, fo:list-
block, fo:list-item, fo:list-item-body, fo:list-item-label, fo:basic-link, fo:multi-switch, fo:multi-
case, fo:multi-toggle, fo:multi-properties, fo:multi-property-set, fo:wrapper

initial-page-number fo:page-sequence

language fo:page-sequence, fo:block, fo:character

letter-value fo:page-sequence

master-reference
fo:page-sequence, fo:single-page-master-reference, fo:repeatable-page-master-reference,
fo:conditional-page-master-reference

master-name fo:page-sequence-master, fo:simple-page-master

maximum-repeats fo:repeatable-page-master-reference, fo:repeatable-page-master-alternatives

blank-or-not-blank fo:conditional-page-master-reference

odd-or-even fo:conditional-page-master-reference

page-position fo:conditional-page-master-reference

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end-indent
fo:simple-page-master, fo:region-body, fo:block, fo:block-container, fo:external-graphic,
fo:table-and-caption, fo:table, fo:list-block, fo:list-item

margin-bottom
fo:simple-page-master, fo:region-body, fo:block, fo:block-container, fo:external-graphic,
fo:table-and-caption, fo:table, fo:list-block, fo:list-item

margin-left
fo:simple-page-master, fo:region-body, fo:block, fo:block-container, fo:external-graphic,
fo:table-and-caption, fo:table, fo:list-block, fo:list-item

margin-right
fo:simple-page-master, fo:region-body, fo:block, fo:block-container, fo:external-graphic,
fo:table-and-caption, fo:table, fo:list-block, fo:list-item

margin-top
fo:simple-page-master, fo:block, fo:block-container, fo:external-graphic, fo:table-and-caption,
fo:table, fo:list-block, fo:list-item

page-height fo:simple-page-master

page-width fo:simple-page-master

reference-orientation
fo:simple-page-master, fo:region-body, fo:region-before, fo:region-after, fo:region-start,
fo:region-end, fo:block-container, fo:inline-container

space-after
fo:simple-page-master, fo:region-body, fo:block, fo:block-container, fo:external-graphic,
fo:table-and-caption, fo:table, fo:list-block, fo:list-item

space-before
fo:simple-page-master, fo:region-body, fo:block, fo:block-container, fo:external-graphic,
fo:table-and-caption, fo:table, fo:list-block, fo:list-item

start-indent
fo:simple-page-master, fo:region-body, fo:block, fo:block-container, fo:external-graphic,
fo:table-and-caption, fo:table, fo:list-block, fo:list-item

writing-mode
fo:simple-page-master, fo:region-body, fo:region-before, fo:region-after, fo:region-start,
fo:region-end, fo:block-container, fo:inline-container, fo:table

background-
attachment

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-column, fo:table-caption, fo:table-
header, fo:table-footer, fo:table-body, fo:table-row, fo:table-cell, fo:list-block, fo:list-item,
fo:basic-link

background-color

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-column, fo:table-caption, fo:table-
header, fo:table-footer, fo:table-body, fo:table-row, fo:table-cell, fo:list-block, fo:list-item,
fo:basic-link

background-image

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-column, fo:table-caption, fo:table-
header, fo:table-footer, fo:table-body, fo:table-row, fo:table-cell, fo:list-block, fo:list-item,
fo:basic-link

background-position-
horizontal

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-column, fo:table-caption, fo:table-
header, fo:table-footer, fo:table-body, fo:table-row, fo:table-cell, fo:list-block, fo:list-item,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fo:basic-link

background-position-
vertical

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-column, fo:table-caption, fo:table-
header, fo:table-footer, fo:table-body, fo:table-row, fo:table-cell, fo:list-block, fo:list-item,
fo:basic-link

background-repeat

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-column, fo:table-caption, fo:table-
header, fo:table-footer, fo:table-body, fo:table-row, fo:table-cell, fo:list-block, fo:list-item,
fo:basic-link

border-after-color

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-after-style

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-after-width

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-before-color

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-before-style

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-before-width

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

http://lib.ommolketab.ir
http://lib.ommolketab.ir

border-bottom-color

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-bottom-style

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-bottom-width

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-end-color

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-end-style

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-end-width

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-left-color

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-left-style

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-left-width

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

http://lib.ommolketab.ir
http://lib.ommolketab.ir

border-right-color

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-right-style

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-right-width

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-start-color

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-start-style

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-start-width

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-top-color

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-top-style

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

border-top-width

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

http://lib.ommolketab.ir
http://lib.ommolketab.ir

clip
fo:region-body, fo:block-container, fo:external-graphic, fo:instream-foreign-object, fo:inline-
container

column-count fo:region-body

column-gap fo:region-body

display-align
fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:block-
container, fo:external-graphic, fo:instream-foreign-object, fo:inline-container, fo:table-cell

overflow
fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:block-
container, fo:external-graphic, fo:instream-foreign-object, fo:inline-container

padding-after

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

padding-before

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

padding-bottom

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

padding-end

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

padding-left

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

padding-right
margin-top

fo:region-body

padding-start

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

padding-top

fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end, fo:title,
fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

http://lib.ommolketab.ir
http://lib.ommolketab.ir

region-name fo:region-body, fo:region-before, fo:region-after, fo:region-start, fo:region-end

extent fo:region-before, fo:region-after, fo:region-start, fo:region-end

padding-right clip fo:region-before, fo:region-after, fo:region-start, fo:region-end

precedence fo:region-before, fo:region-after

flow-name fo:flow, fo:static-content

[7.6 Common
AuralProperties]

fo:title, fo:block, fo:bidi-override, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:leader, fo:page-number, fo:page-number-citation,
fo:table-and-caption, fo:table, fo:table-caption, fo:table-header, fo:table-footer, fo:table-body,
fo:table-row, fo:list-block, fo:list-item, fo:basic-link

color fo:title, fo:block, fo:bidi-override, fo:character, fo:initial-property-set, fo:inline, fo:leader

font-family
fo:title, fo:block, fo:bidi-override, fo:character, fo:initial-property-set, fo:inline, fo:leader,
fo:page-number, fo:page-number-citation

font-selection-
strategy

fo:title, fo:block, fo:bidi-override, fo:character, fo:initial-property-set, fo:inline, fo:leader,
fo:page-number, fo:page-number-citation

font-size
fo:title, fo:block, fo:bidi-override, fo:character, fo:initial-property-set, fo:inline, fo:leader,
fo:page-number, fo:page-number-citation

font-size-adjust
fo:title, fo:block, fo:bidi-override, fo:character, fo:initial-property-set, fo:inline, fo:leader,
fo:page-number, fo:page-number-citation

font-stretch
fo:title, fo:block, fo:bidi-override, fo:character, fo:initial-property-set, fo:inline, fo:leader,
fo:page-number, fo:page-number-citation

font-style
fo:title, fo:block, fo:bidi-override, fo:character, fo:initial-property-set, fo:inline, fo:leader,
fo:page-number, fo:page-number-citation

font-variant
fo:title, fo:block, fo:bidi-override, fo:character, fo:initial-property-set, fo:inline, fo:leader,
fo:page-number, fo:page-number-citation

font-weight
fo:title, fo:block, fo:bidi-override, fo:character, fo:initial-property-set, fo:inline, fo:leader,
fo:page-number, fo:page-number-citation

line-height
fo:title, fo:block, fo:bidi-override, fo:initial-property-set, fo:external-graphic, fo:instream-
foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-number-
citation, fo:basic-link

padding-right

fo:title, fo:block, fo:block-container, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:basic-link

role

fo:title, fo:block, fo:initial-property-set, fo:external-graphic, fo:instream-foreign-object,
fo:inline, fo:leader, fo:page-number, fo:page-number-citation, fo:table-and-caption, fo:table,
fo:table-caption, fo:table-header, fo:table-footer, fo:table-body, fo:table-row, fo:table-cell,
fo:list-block, fo:list-item, fo:list-item-body, fo:list-item-label, fo:basic-link, fo:multi-switch,
fo:multi-case, fo:multi-toggle, fo:multi-properties, fo:footnote, fo:footnote-body

source-document

fo:title, fo:block, fo:initial-property-set, fo:external-graphic, fo:instream-foreign-object,
fo:inline, fo:leader, fo:page-number, fo:page-number-citation, fo:table-and-caption, fo:table,
fo:table-caption, fo:table-header, fo:table-footer, fo:table-body, fo:table-row, fo:list-block,
fo:list-item, fo:list-item-body, fo:list-item-label, fo:basic-link, fo:multi-switch, fo:multi-case,
fo:multi-toggle, fo:multi-properties, fo:footnote, fo:footnote-body

http://lib.ommolketab.ir
http://lib.ommolketab.ir

space-end
fo:title, fo:character, fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader,
fo:page-number, fo:page-number-citation, fo:table-and-caption, fo:table, fo:basic-link

space-start
fo:title, fo:character, fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader,
fo:page-number, fo:page-number-citation, fo:table-and-caption, fo:table, fo:basic-link

visibility
fo:title, fo:block, fo:character, fo:inline, fo:leader, fo:page-number, fo:page-number-citation,
fo:table-column, fo:table-header, fo:table-footer, fo:table-body, fo:table-row

break-after
fo:block, fo:block-container, fo:table-and-caption, fo:table, fo:table-row, fo:list-block, fo:list-
item

break-before
fo:block, fo:block-container, fo:table-and-caption, fo:table, fo:table-row, fo:list-block, fo:list-
item

hyphenate fo:block, fo:character

hyphenation-
character

fo:block, fo:character

hyphenation-keep fo:block

hyphenation-ladder-
count

fo:block

hyphenation-push-
character-count

fo:block, fo:character

hyphenation-remain-
character-count

fo:block, fo:character

intrusion-displace
fo:block, fo:block-container, fo:table-and-caption, fo:table, fo:table-caption, fo:list-block,
fo:list-item

keep-together
fo:block, fo:block-container, fo:inline, fo:inline-container, fo:table-and-caption, fo:table,
fo:table-caption, fo:table-row, fo:list-block, fo:list-item, fo:list-item-body, fo:list-item-label,
fo:basic-link

keep-with-next
fo:block, fo:block-container, fo:character, fo:external-graphic, fo:instream-foreign-object,
fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-number-citation, fo:table-
and-caption, fo:table, fo:table-row, fo:list-block, fo:list-item, fo:basic-link

keep-with-previous
fo:block, fo:block-container, fo:character, fo:external-graphic, fo:instream-foreign-object,
fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-number-citation, fo:table-
and-caption, fo:table, fo:table-row, fo:list-block, fo:list-item, fo:basic-link

last-line-end-indent fo:block

line-height-shift-
adjustment

fo:block

line-stacking-strategy fo:block

linefeed-treatment fo:block

orphans fo:block

relative-position

fo:block, fo:bidi-override, fo:character, fo:initial-property-set, fo:external-graphic,
fo:instream-foreign-object, fo:inline, fo:inline-container, fo:leader, fo:page-number, fo:page-
number-citation, fo:table-and-caption, fo:table, fo:table-caption, fo:table-header, fo:table-
footer, fo:table-row, fo:table-cell, fo:list-block, fo:list-item, fo:basic-link

script fo:block, fo:character

span fo:block, fo:block-container

http://lib.ommolketab.ir
http://lib.ommolketab.ir

text-align fo:block, fo:external-graphic, fo:instream-foreign-object, fo:table-and-caption

text-align-last fo:block

text-altitude fo:block, fo:character, fo:leader, fo:page-number, fo:page-number-citation

text-depth fo:block, fo:character, fo:leader, fo:page-number, fo:page-number-citation

text-indent fo:block

white-space-collapse fo:block

white-space-
treatment

fo:block

widows fo:block

wrap-option fo:block, fo:inline, fo:page-number, fo:page-number-citation

 fo:block-container, fo:table-cell, fo:multi-properties

absolute-position fo:block-container

block-progression-
dimension

fo:block-container, fo:external-graphic, fo:instream-foreign-object, fo:inline, fo:inline-
container, fo:table, fo:table-caption, fo:table-row, fo:table-cell

bottom fo:block-container

height
fo:block-container, fo:external-graphic, fo:instream-foreign-object, fo:inline, fo:inline-
container, fo:table, fo:table-caption, fo:table-row, fo:table-cell

inline-progression-
dimension

fo:block-container, fo:external-graphic, fo:instream-foreign-object, fo:inline, fo:inline-
container, fo:table, fo:table-caption, fo:table-cell

left fo:block-container

right fo:block-container

top fo:block-container

width
fo:block-container, fo:external-graphic, fo:instream-foreign-object, fo:inline, fo:inline-
container, fo:table, fo:table-caption, fo:table-cell

z-index fo:block-container

direction fo:bidi-override

letter-spacing
fo:bidi-override, fo:character, fo:initial-property-set, fo:leader, fo:page-number, fo:page-
number-citation

score-spaces fo:bidi-override, fo:initial-property-set, fo:page-number, fo:page-number-citation

unicode-bidi fo:bidi-override

word-spacing
fo:bidi-override, fo:character, fo:initial-property-set, fo:leader, fo:page-number, fo:page-
number-citation

alignment-adjust
fo:character, fo:external-graphic, fo:instream-foreign-object, fo:inline, fo:inline-container,
fo:leader, fo:page-number, fo:page-number-citation, fo:basic-link

alignment-baseline
fo:character, fo:external-graphic, fo:instream-foreign-object, fo:inline, fo:inline-container,
fo:leader, fo:page-number, fo:page-number-citation, fo:basic-link

baseline-shift
fo:character, fo:external-graphic, fo:instream-foreign-object, fo:inline, fo:inline-container,
fo:leader, fo:page-number, fo:page-number-citation, fo:basic-link

character fo:character

dominant-baseline
fo:character, fo:external-graphic, fo:instream-foreign-object, fo:inline, fo:inline-container,
fo:leader, fo:page-number, fo:page-number-citation, fo:basic-link

http://lib.ommolketab.ir
http://lib.ommolketab.ir

glyph-orientation-
horizontal

fo:character

glyph-orientation-
vertical

fo:character

line-height score-
spaces

fo:character

suppress-at-line-
break

fo:character

text-decoration fo:character, fo:initial-property-set, fo:inline, fo:page-number, fo:page-number-citation

text-shadow fo:character, fo:initial-property-set, fo:leader, fo:page-number, fo:page-number-citation

text-transform fo:character, fo:initial-property-set, fo:page-number, fo:page-number-citation

treat-as-word-space fo:character

content-height fo:external-graphic, fo:instream-foreign-object

content-type fo:external-graphic, fo:instream-foreign-object

content-width fo:external-graphic, fo:instream-foreign-object

scaling fo:external-graphic, fo:instream-foreign-object

scaling-method fo:external-graphic, fo:instream-foreign-object

xe fo:inline-container

leader-alignment fo:leader

leader-length fo:leader

leader-pattern fo:leader

leader-pattern-width fo:leader

rule-style fo:leader

rule-thickness fo:leader

ref-id fo:page-number-citation

caption-side fo:table-and-caption

border-after-
precedence

fo:table, fo:table-column, fo:table-header, fo:table-footer, fo:table-body, fo:table-row,
fo:table-cell

border-before-
precedence

fo:table, fo:table-column, fo:table-header, fo:table-footer, fo:table-body, fo:table-row,
fo:table-cell

border-collapse fo:table

border-end-
precedence

fo:table, fo:table-column, fo:table-header, fo:table-footer, fo:table-body, fo:table-row,
fo:table-cell

border-separation fo:table

border-start-
precedence

fo:table, fo:table-column, fo:table-header, fo:table-footer, fo:table-body, fo:table-row,
fo:table-cell

table-layout fo:table

table-omit-footer-at-
break

fo:table

table-omit-header-at-
break

fo:table

http://lib.ommolketab.ir
http://lib.ommolketab.ir

column-number fo:table-column, fo:table-cell

column-width fo:table-column

number-columns-
repeated

fo:table-column

number-columns-
spanned

fo:table-column, fo:table-cell

[7.6 Common Aural
Properties] source-
document

fo:table-cell

empty-cells fo:table-cell

ends-row fo:table-cell

number-rows-
spanned

fo:table-cell

relative-align fo:table-cell, fo:list-item

starts-row fo:table-cell

provisional-distance-
between-starts

fo:list-block

provisional-label-
separation

fo:list-block

destination-
placement-offset

fo:basic-link

external-destination fo:basic-link

indicate-destination fo:basic-link

internal-destination fo:basic-link

show-destination fo:basic-link

target-presentation-
context

fo:basic-link

target-processing-
context

fo:basic-link

target-stylesheet fo:basic-link

auto-restore fo:multi-switch

case-name fo:multi-case

case-title fo:multi-case

starting-state fo:multi-case

switch-to fo:multi-toggle

active-state fo:multi-property-set

clear fo:float

float fo:float

marker-class-name fo:marker

retrieve-boundary fo:retrieve-marker

retrieve-class-name fo:retrieve-marker

http://lib.ommolketab.ir
http://lib.ommolketab.ir

retrieve-position fo:retrieve-marker

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Appendix H. GNU Free DocumentationLicense (GFDL)

 H.1 Preamble

 H.2 Applicability and Definitions

 H.3 Verbatim Copying

 H.4 Copying in Quantity

 H.5 Modifications
 H.6 Combining Documents

 H.7 Collections of Documents

 H.8 Aggregation with Independent Works
 H.9 Translation

 H.10 Termination
 H.11 Future Revisions of This License

 H.12 Addendum: How to Use This License for YourDocuments

GNU Free Documentation LicenseVersion 1.1, March 2000Copyright © 2000 Free Software Foundation, Inc.59
Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

H.1 Preamble

The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of freedom:
to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially
or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft," which means that derivative works of the document must themselves be free in
the same sense. It complements the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

H.2 Applicability and Definitions

This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can
be distributed under the terms of this License. The "Document", below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as "you."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification
is available to the general public, whose contents can be viewed and edited directly and straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup has been
designed to thwart or discourage subsequent modification by readers is not Transparent. A copy that is not
"Transparent" is called "Opaque."

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML
designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any title
page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

H.3 Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

H.4 Copying in Quantity

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you publish printed copies of the Document numbering more than 100, and the Document's license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as
fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a publicly-
accessible computer-network location containing a complete Transparent copy of the Document, free of added
material, which the general network-using public has access to download anonymously at no charge using public-
standard network protocols. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

H.5 Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a
copy of it. In addition, you must do these things in the Modified Version:

Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may
use the same title as a previous version if the original publisher of that version gives permission.

1.

List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the Document (all
of its principal authors, if it has less than five).

2.

State on the Title page the name of the publisher of the Modified Version, as the publisher.3.
Preserve all the copyright notices of the Document.4.
Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.5.
Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

6.

Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document's license notice.

7.

Include an unaltered copy of this License.8.
Preserve the section entitled "History," and its title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled
"History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on
its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

9.

Preserve the network location, if any, given in the Document for public access to a Transparent copy of the10.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the "History" section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the version it refers to gives
permission.

10.

In any section entitled "Acknowledgements" or "Dedications," preserve the section's title, and preserve in the
section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

11.

Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

12.

Delete any section entitled "Endorsements." Such a section may not be included in the Modified Version.13.
Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant Section.14.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These
titles must be distinct from any other section titles.

You may add a section entitled "Endorsements," provided it contains nothing but endorsements of your Modified
Version by various parties - for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of
Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

H.6 Combining Documents

You may combine the Document with other documents released under this License, under the terms defined in section
4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents, forming one
section entitled "History"; likewise combine any sections entitled "Acknowledgements," and any sections entitled
"Dedications." You must delete all sections entitled "Endorsements."

H.7 Collections of Documents

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

H.8 Aggregation with Independent Works

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a
volume of a storage or distribution medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a compilation is called an "aggregate," and
this License does not apply to the other self-contained works thus compiled with the Document, on account of their
being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one quarter of the entire aggregate, the Document's Cover Texts may be placed on covers that surround only the
Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.

H.9 Translation

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License provided that you also include the original English
version of this License. In case of a disagreement between the translation and the original English version of this
License, the original English version will prevail.

H.10 Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this
License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full compliance.

H.11 Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License "or any later version" applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version

http://www.gnu.org/copyleft/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

ever published (not as a draft) by the Free Software Foundation.

H.12 Addendum: How to Use This License for Your Documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME.Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in the section entitled
"GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are invariant. If you
have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being LIST"; likewise for
Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Glossary

A

B

F

G

I

K

L

P

O

R

S

T

W

V

A

alignment point

A particular point on each glyph to align any given script.

alphabetic baseline

The alignment point on a Western script used to determine the baseline for other glyphs in similar scripts.

area tree

An ordered tree containing geometric information for the placement of every glyph, shape, and image in the
document, together with information embodying spacing constraints and other rendering information.

B

back-tracking (with regard to refinement)

Re-formatting a page area that has already been formatted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

baseline-tables

A part of the font tables provided to a formatter. Determines the alignment points between different fonts.

block-progression-direction

The direction in which blocks are stacked when building a page. From a Western perspective, this is top to
bottom, more specifically, it starts at the before-edge, and ends at the after-edge.

Breaks

Page breaks may occur as determined by the formatter's processing as affected by the widow, orphan,
keep-with-next, keep-with-previous, and keep-together properties.

Break conditions are either break-before or break-after. A break-before condition is

satisfied if the first area generated and returned by the formatting object is leading within a context-area. A
break-after condition depends on the next formatting object in the flow; the condition is satisfied if

either there is no such next formatting object, or if the first normal area generated and returned by that
formatting object is leading in a context-area.

Break conditions are imposed by the break-before and break-after properties. A refined value of
page for these traits imposes a break condition with a context consisting of the page-reference-areas; a value
of even-page or odd-page imposes a break condition with a context of even-numbered page-reference-
areas or odd-numbered page-reference-areas, respectively; a value of column imposes a break condition with
a context of column-areas. A value of auto in a break-before or break-after trait imposes no break condition.

F

flow map

The assignment of flows to regions on a page-master is determined by a flow-map. The flow-map is an
association between the flow children of the fo:page-sequence and regions defined within the page-
masters referenced by that fo:page-sequence.

font

A collection of glyphs together with the font tables necessary to use those glyphs to present characters via a
formatter.

formatting

The process of turning the result of an XSL transformation into a tangible form for the reader, either on paper
or on screen.

formatting objects

Elements in the formatting object tree whose names are from the XSL namespace; a formatting object belongs
to a class of formatting objects identified by its element name. Some formatting objects are block-level and
others are inline-level. Conceptually, processing a formatting object creates areas and returns them to its parent
to be placed in the area tree.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G

glyph

A recognizable graphic symbol independent of any specific design. The letter A, as seen here, is a glyph with a
specific design. The abstract form is the glyph.

I

ideographic baseline

The alignment point on Far-Eastern scripts, used to determine the baseline for other glyphs in similar scripts.

Indic baseline

The alignment point on Indic scripts, used to determine the baseline for other glyphs in similar scripts. Often
aligned to a hanging baseline.

inline-progression-direction

From a Western perspective, left to right, going in the direction of line layout. More generally, following the
direction at right angles to the block-progression-direction. Specifically, it leads from the start

edge to the end edge of the page.

K

keeps

Keep conditions are either keep-with-previous, keep-with-next, or keep-together. A
keep-with-previous condition on an object is satisfied if the first area generated and returned by the

formatting object is not leading within a context-area, or if there are no preceding areas in a post-order
traversal of the area tree. A keep-with-next condition is satisfied if the last area generated and returned

by the formatting object is not trailing within a context-area, or if there are no following areas in a pre-order
traversal of the area tree. A keep-together condition is satisfied if all areas generated and returned by the

formatting object are descendants of a single context-area.

Keep conditions are imposed by the within-page, within-column, and within-line
components of the keep-with-previous, keep-with-next, and keep-together properties.

The refined value of each component specifies the strength of the keep condition imposed, with higher
numbers being stronger than lower numbers and the value always being stronger than all numeric values. A
component with a value of auto does not impose a keep condition. A within-page component imposes
a keep condition with context consisting of the page-reference-areas; within-column, with context
consisting of the column-areas; and within-line with context consisting of the line-areas.

L

leaders

The idea of a line leading the eye across a page to join two pieces of content.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

length-range

The range of values specified by the minimum, maximum, and optimum values.

line-progression-direction

In most Western scripts, the left-to-right direction across the page.

P

page-level-out-of-line

An area with area-class xsl-footnote, xsl-before-float, or xsl-fixed; placement of
these areas is controlled by the fo:page-sequence ancestor of its generating formatting object. A
reference-level-out-of-line area is an area with area-class xsl-side-float or xsl-absolute;

placement of these areas is controlled by the formatting object generating the relevant reference-area. An
anchor area is an area with area-class xsl-anchor; placement of these areas is arbitrary and does
not affect stacking. Areas with area-class equal to one of xsl-normal, xsl-footnote, or xsl-
before-float are defined to be stackable, indicating that they are supposed to be properly stacked.

page-number-citation

The fo:page-number-citation element is used to reference the page number for the page containing

the first normal area returned by the cited formatting object. It may be used to provide the page numbers in the
table of contents, cross-references, and index entries.

page-sequence

Pages are generated by the formatter's processing of fo:page-sequence elements. The fo:page-
sequence formatting object is used to specify how to create a (sub)sequence of pages within a document;
for example, a chapter of a report. The content of these pages comes from flow children of the fo:page-
sequence. The children of the fo:page-sequences, which are called flows (contained in fo:flow
and fo:static-content), provide the content that is distributed into the pages. Page-sequence-masters

have the role of describing the sequence of page-masters that will be used to generate pages during the
formatting of an fo:page-sequence.

O

out-of-line

Formatting object content that is formatted into a separate area of a page where it is available to be read
without immediately intruding on the reader.

R

Refinement

This is a computational process that finalizes the specification of properties based on the attribute values in the
XML result tree.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

reference areas

The Boolean trait is-reference-area determines whether or not an area establishes a coordinate

system for specifying indents. An area for which this trait is true is called a reference-area. Only a reference-
area may have a block-progression-direction that is different from that of its parent. A

reference-area may be either a block-area or an inline-area.

S

script.

A collection of glyphs used in one specific language. A Western alphabet is a script.

sub-sequence-specifiers

A sequence of simple-page-master-references specified as the children of a page-sequence-master.

T

traits

Traits are to areas what properties are to formatting objects and attributes are to XML elements.

W

writing-mode

The XSL relative frame of reference has four directions (before, after, start, and end), but these are
relative to the writing-mode. The writing-mode property is a way of controlling the directions

needed by a formatter to correctly place glyphs, words, lines, blocks, etc. on the page or screen. The
writing-mode expresses the basic directions noted above. There are writing-modes for left-to-right-
top-to-bottom (denoted as lr-tb), right-to-left-top-to-bottom (denoted as rl-tb), top-to-bottom-right-to-
left (denoted as tb-rl), and more.

Typically, the writing-mode value specifies two directions: the first is the inline-progression-
direction, which determines the direction in which words will be placed, and the second is the block-
progression-direction, which determines the direction in which blocks (and lines) are placed.

V

viewport

The Boolean trait is-viewport-area determines whether or not an area establishes an opening through

which its descendant areas can be viewed and can be used to present clipped or scrolled material; for example,
in printing applications where bleed and trim is desired. An area for which this trait is true is called a viewport-
area. For example, region-body specifies a viewport/reference pair that is located in the center of the
fo:simple-pagemaster.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The animal on the cover of XSL-FO is a pennant-winged nightjar. Pennant-winged nightjars (Macrodipteryx
vexillarius) are night-flying birds native to southern parts of Africa. Nightjars are also known in some areas as
goatsuckers, because they were once thought to drink the milk of goats. However, they are actually insectivores and
were probably common near goats because of the insects the animals attract.

Pennant-winged nightjars have long, pointed wings; weak feet; and small, wide bills. Fluffy feathers make them
almost noiseless fliers. Males are known for their long, black-and-white, pennant-like feathers that flutter like
streamers to attract mates. When a male finds a mate, his long feathers fall off.

Linley Dolby was the production editor and proofreader, and Tatiana Apandi Diaz was the copyeditor for XSL-FO.
Darren Kelly, Rachel Wheeler, and Claire Cloutier provided quality control. Derek Di Matteo and Phil Dangler
provided production support. Brenda Miller wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The cover image is a 19th-
century engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress 4.1
using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted to FrameMaker 5.5.6 with a format conversion
tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Linley Dolby.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and
Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray,
Benn Salter, John Chodacki, and Jeff Liggett.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

space-after property

<instream-foreign-object> element

/ forward slash predecessor
|| for listing attribute values

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

A4 page size
absolute direction

absolute-position property

 correcting content position with

 offsetting content with

alignment points
allocation-rectangle

alternatives
Antenna House Formatter 2nd

Apache XML FOP Project

apply-templates 2nd
Arabic language

 unicameral alphabet of
 writing mode and

Arabic numerals

area traits

 vs. properties
area tree 2nd

 sections about in XSL specification

areas 2nd

 components of

 dimensions of
 key types of

 positioning on page

 section about in XSL specification

attribute values, listing with ||
attributes

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

background-attachment property

background-color property

 images and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

background-image property 2nd
background-position-horizontal property

background-position-vertical property

background-repeat property

backgrounds

 color and
backmatter 2nd

backslant font style 2nd

baseline-shift property

basic/complete compliance

Berners-Lee, Tim
blank-or-not-blank property 2nd

blank pages

 in book chapters

blank space for forms, fo:leader element and

blink option
block-areas [See blocks]

block-progression-dimension property 2nd
 images and

 stacking blocks in

block-progression-direction
blocks 2nd [See also entries at fo:block]3rd 4th

 adding images to as background 2nd
 as breaks

 centering across page

 cross-references for

 decoration for
 importance of identifying/ understanding

 indented

 last line of

 length specification and

 line-areas and
 positioning of

 separating from one another

 side floats and

 special uses of

 stacking
 types of

 as wrappers

body element

body of document [See main matter]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

body of page
body-start() function

bold/bolder font weight

border-{side}-color property

border-before property

border-collapse property, column headings and
border properties

 color and

border rectangle

border-start property

borders 2nd
 section about in XSL specification

br element (HTML)

break-after property

 using for special-purpose blocks

break-before property
 using for special-purpose blocks

breaks
 properties for, section about in XSL specification

 using blocks as

bricks
bullets

 numbers as

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

C switch block
capitalization, text-transform property for

caption-side property

captions

 for images

 for tables
Cascading Style Sheets [See CSS]

case sensitivity, text-transform property for

CCW rotations

cells

centimeters (cm)
chapters of book

 titles of, including in header/footer 2nd

characters 2nd [See also text]

 last on either end of a line

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 mapped to glyphs
 non printable

 single, formatting

 styling vs. inline-level styling

 subscript/superscript and 2nd

 uppercase/lowercase
chunks

Clark, James 2nd

cm (centimeters)

color keyword

color-profile-name property
color property

 formatting objects applied to

colors 2nd

 background-color property and

 border
 caution with

 decorating blocks and
 foreground/background

 names of

 properties for (list)
column-areas

column-count property
column headings

columns

compliance 2nd

 section about in XSL specification
compound datatypes

 section about in XSL specification

.conditionality attribute

conditionality, section about in XSL specification

conditions, setting for pages
conformance

 section about in XSL specification

constraint relaxation

content

 correcting position of
 derivative

 inline elements and

 keeping pieces of together

 matching source document to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 resizing images and
 selecting for processing

 static [See static content]

content-driven layout 2nd

content flows

content-height property
 image size and

 resizing images and

content rectangle

content-width property

 image size and
 resizing images and

converters

counter-clockwise (CCW) rotations

countries, page-sequence country property for

cross-references
 links and

 page numbers and
cross-document links

CSS (Cascading Style Sheets)

 blink/no-blink options and
 consulting CSS2 specification for

 pagination and
cursive fonts

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

datatypes

 compound 2nd
debugging, empty/conflicting master-reference property and

dedication page, included with sample stylesheet

default template

default: statement (C or Java)

definition lists
derivative content

design space (of characters)

desktop publishing packages 2nd

direction

 absolute vs. relative
 block-progression/inline-progression

display-align property 2nd

display lists

http://lib.ommolketab.ir
http://lib.ommolketab.ir

doc wrappers
DocBook 2nd

document classes/categories

document elements

Document Style Semantics and Specification Language (DSSSL) 2nd

documents
 classes/categories of

 headings for, using blocks for

 XML and

dot leaders [See leaders]

DSSSL (Document Style Semantics and Specification Language) 2nd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

elements 2nd 3rd [See also entries at fo:]

em space
emphasis element

empty-cells property
en space

end-indent property 2nd 3rd

 indenting lists with
 offsetting content with[end indent property

 offsetting content with
Epic editor 2nd

extended compliance

Extensible Stylesheet Language [See XSL]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

fantasy fonts

figure space

floats
 fo:float element and

flows 2nd

 in sample stylesheet

 stylesheet organization and

FO documents [See stylesheets]
FO formatters [See formatters]

fo:basic-link element

fo:bidi-override element, internationalization and

fo:block element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 vs. fo:inline element
 as top-level set of blocks

fo:block-container element

 area dimensions and

 content positioning and

 as top-level set of blocks
fo:character element 2nd 3rd

 vs. fo:inline element

 subscript/superscript and 2nd

fo:color-profile element

fo:conditional-page-master-reference element
fo:declarations element

fo:external-graphic element 2nd 3rd

 area dimensions and

fo:float element

fo:flow element 2nd 3rd 4th
fo:footnote element

fo:footnote-body element
fo:inline element 2nd

 vs. fo:block element

 vs. fo:character element
 subscript/superscript and 2nd

fo:inline-container element
 area dimensions and

fo:instream-foreign-object element

 area dimensions and

 SVG and
fo:layout-master-set element 2nd 3rd 4th

fo:leader element

fo:list, as top-level set of blocks

fo:list-block element

fo:list-item element
fo:list-item-body element

 display/definition lists and

fo:list-item-label element

 display/definition lists and

fo:marker element 2nd
fo:page-number element

fo:page-number-citation element 2nd 3rd

fo:page-sequence element 2nd

 content flows and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 format attribute (XSLT) and
fo:page-sequence-master element 2nd

 content flows and

fo:region-after element

 area dimensions and

 region-name property for
fo:region-before element 2nd

 area dimensions and

 region-name property for

fo:region-body element 2nd 3rd

 area dimensions and
 multicolumns for

 region-name property for

fo:region-end element

 area dimensions and

 region-name property for
fo:region-name property

fo:region-start element
 area dimensions and

 region-name property for

fo:repeatable-page-master-alternatives element
fo:repeatable-page-master-reference element

fo:retrieve-marker element
fo:root element 2nd 3rd 4th

fo:simple-page-master element 2nd 3rd 4th 5th 6th

 area dimensions and

 complex pagination and
 content flows and

 included with sample stylesheet

 vs. fo:single-page-master-reference element

fo:single-page-master-reference element

fo:static-content element
fo:table element 2nd

 area dimensions and

fo:table, as top-level set of blocks

fo:table-and-caption element

fo:table-body element
fo:table-caption element

fo:table-cell element

 area dimensions and

fo:table-column element 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fo:table-footer element 2nd
fo:table-header element 2nd

fo:wrapper element

FOA tool

fo namespace 2nd 3rd 4th

 section about in XSL specification
font attribute

font-family property

 using for special-purpose blocks

font-height property

font sets
font-size-adjust property

font-size property 2nd

 using for special-purpose blocks

font-stretch property 2nd

font-style property 2nd
font-variant property 2nd

font-weight property 2nd 3rd
 using for special-purpose blocks

fonts 2nd

 setting properties for in one declaration
footer area

footers 2nd
 controlling along-edge dimension of

 included with sample stylesheet

 links for

 for table columns
footnotes 2nd

 numbering automatically

 superscript for

FOP formatter 2nd

force-page-count property 2nd
foreign languages

 Arabic 2nd

 Hebrew

 page-sequence language property for

format attribute (XSLT)
format property

formatters 2nd 3rd

 choosing

 empty/conflicting master-reference property and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 fonts and
 images and

 platforms/performance and

 properties supported by

formatting objects [See also entries at fo:]

 for block-areas[formatting objects
 block-areas[

 for inline-areas

 for reference areas

 section about in XSL specification 2nd

 specification compliance levels for (tables)
 turned into areas

Formatting Objects Authoring tool

formatting objects namespace [See fo namespace]

formatting, section about in XSL specification

forms, blank spaces for
forward slash predecessor (/)

front matter 2nd
frontmatter

 numbering

 page numbers and
 sample layout for

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

GFDL (GNU Free Documentation License)

glossaries, display/definition lists for
glossary in this book

glyph-orientation-horizontal property

 single character and

glyph-orientation-vertical property

glyphs/glyph-areas 2nd
GNU Free Documentation License (GFDL)

graphics [See images]

grouping-separator property
grouping-size property

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

hair space

half-leading spaces

head element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

header area
headers 2nd 3rd

 controlling along-edge dimension of

 links for

 for table columns

headings
 keeping with subsequent text

 for table columns

 using blocks for

Hebrew, unicameral alphabet of

height properties, section about in XSL specification
Hello World example

horizontal rule

HTML

 colors defined in

 tables and, vs. XSL-FO
html element

hyperlinks [See links]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

IBM formatter

id and idref pairings
 for links

id value

ID values for referencing page numbers

images 2nd
 as background for blocks 2nd

 captions/titles for

 replacing inline elements

 resizing

 scaling
 using blocks for

importing stylesheets

inches (in)

inclusion

indents 2nd
 inheritance and

index.html (XSL specification)

indexes, links for

inheritance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 properties exhibiting (list)
 section about in XSL specification

initial-page-number property 2nd 3rd

inline-areas [See inline elements]

inline documentation for stylesheets

inline elements 2nd 3rd
 importance of identifying/ understanding

 properties inapplicable for

 replacing with images

 stacking

 styling vs. character-level styling
inline-progression-dimension property

 fixed table widths and

 images and

inline-progression-direction

internationalization
 character orientation and

 section about in XSL specification
intruding floats

italic font style 2nd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Jade

Java switch block

jfor converter
justified text

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

keep properties

 section about in XSL specification

keep-together property 2nd

keep-with-next property 2nd
keep-with-previous property 2nd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

label-end() function
labels 2nd

landscape pages

languages [See foreign languages]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

last-line-end-indent property
LaTeX

 fonts and

layout master

layout types

layout-driven layout 2nd
leader-pattern attribute

 using to create justified text

leaders

 building lists from

 in indexes
 in table of contents

 using to create justified text

left sidebar

 controlling along-edge dimension of

left-to-right, top-to-bottom (lr-tb) 2nd
 blocks and

 short forms for
length properties

 section about in XSL specification

length-range compound datatype
length specification

letter-spacing property
letter-value property

letters 2nd [See also characters; text]

lighter font weight

line-areas
 stacking

line-height property 2nd

line-height-shift-adjustment property

line-progression-direction [See left-to-right, top-to-bottom]

line-stacking-strategy property
line-through option 2nd

line wrapping

linefeed-treatment property

lines [See rule]

links
lists

 alignment and

 building from leaders

lowercase characters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lr-tb [See left-to-right, top-to-bottom]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

main matter

main-reference-areas
main.xsl 2nd [See also templates]

mainmatter

 included with sample stylesheet

 page numbers and

margin-bottom property
margin-left property

margin rectangle

margin-right property

margin-top property

margins 2nd
 blocks and

master-name property 2nd
master-reference property

max-height property

maximum-repeats property 2nd
Microsoft Rich Text output

mid space
millimeters (mm)

missing character glyphs

mm (millimeters)
monospace fonts

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

nesting of areas

 color and

newspaper-style layout

Nextsolution
nl element

no-blink option

no-line-through option

no-overline option

no-prefix option
no-underline option

nominal font

non-paged formats

http://lib.ommolketab.ir
http://lib.ommolketab.ir

non printable characters
normal font style 2nd

normal font weight

number-columns-spanned property
numbered lists

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

oblique font style 2nd
odd-or-even property 2nd

OpenJade

OpenType specification
orphans and widows

out-of-lines 2nd
outer regions

 controlling along-edge dimension of

output documents
overconstrained specification 2nd

overflow property
 line wrapping and

overline option 2nd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

padding 2nd

 section about in XSL specification

padding rectangle

page headers [See headers]

page-height property 2nd
page layout 2nd [See also pagination]

 elements for 2nd

 example of

 importance of identifying/ understanding

 section about in XSL specification
 stylesheet organization and

page masters 2nd [See also fo:simple-page-master element]3rd 4th

 conditional selection of

page numbering 2nd

 included with sample stylesheet
page numbers 2nd 3rd 4th

 format for

 initial-page-number property for 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 in page headers
 unresolved citations and

page-position property

page-reference-area

 borders/padding not allowed for

page sequence 2nd [See also fo:page-sequence element; fo:page-sequence-master element]3rd
page-sequence country property

page-sequence language property

page specification [See pagination]

page-viewport area

page-width property 2nd
pages

 generating

 one only

 runs of identical

 limiting number of
 main areas of

 setting conditions for
pagination 2nd [See also page layout]3rd 4th

 complex

 CSS vs. XSL
 examples of

 simple
para content

para element

paragraphs

 breaks between
partitioning stylesheets

PassiveTeX formatter 2nd

pc (picas)

PCL output

PDF output
performance, formatters and

picas (pc)

pixels (px)

pl.xsl 2nd [See also page layout]

point (pt)
PostScript output

.precedence attribute

preface, included with sample stylesheet 2nd

prefixes, using in page numbering

http://lib.ommolketab.ir
http://lib.ommolketab.ir

print production, approaches and tools for
processing

 section about in XSL specification

 selecting content for

processors [See formatters]

progression direction
properties

 vs. area traits

 inheritance and

 list of properties exhibiting

 as listed in XSL specification 2nd
 by formatting object

 specification compliance levels for (table)

property sets 2nd

provisional-distance-between-starts property, lists and 2nd

provisional-label-separation property
ps.xsl 2nd [See also property sets]

PSM [See fo:page-sequence-master element]
pt (points)

punctuation space

push/pull models
px (pixels)

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Quark XPress
quotations, using blocks for

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Recommendation [See XSL specification]
rectangles, types of

reference areas 2nd

reference-orientation property

 direction and

 regions and 2nd
region-reference-areas

 borders/padding not allowed for

regions 2nd 3rd [See also entries at fo:region-]

 display-align property and

relative direction

Render Engine from XML/XSL into PDF (REXP)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rendering-intent attribute
RenderX 2nd

 XEP formatter

repeatability

resources for further reading

 fonts
 inclusion vs. importing

 section about in XSL specification

 SVG

 XSLT for list numbering

REXP (Render Engine from XML/XSL into PDF)
RGB colors 2nd

rgb function

rgb-icc function

Rich Text output

right sidebar
 controlling along-edge dimension of

Roman numerals, using for frontmatter
rows, spanning

rule

 for footnotes

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

sans-serif fonts

Scalable Vector Graphics (SVG)

 fo:instream-foreign-object element and
scaling property

scripts (linguistics) 2nd [See also foreign languages]3rd 4th 5th

section tag

section wrappers

Semantic Web
serif fonts

shadow, for text decoration 2nd

 text-shadow property for coloring

short forms 2nd

shorthands
 font attribute as

 section about in XSL specification

side floats

sidebars

http://lib.ommolketab.ir
http://lib.ommolketab.ir

simple page master [See fo:simple- page-master element]
single character, formatting

single page master reference

source document

 matching content to

 types of
source-document property

space-after property

 as block separator

 components of

 space resolution and
space-before property 2nd

 as compound property, components of

 as block separator

 space resolution and

space-start/space-end property
space-treatment property

spaces
 space resolution and

 stacking

spacing between characters/words
span-reference-areas

spanning columns/rows
SPM [See fo:simple-page-master element]

src attribute

start-indent property 2nd 3rd

 indenting lists and
 offsetting content with

 using for special-purpose blocks

static content

 fo:static-content element and

 in sample stylesheet
strike-through (line-through option) 2nd

stylesheets

 assembling/organizing

 example of

 sample code for
 need to document

 skills required by authors of

 types of

sub-sequence-specifiers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subscript/superscript 2nd
summary descriptions

 fo:page-sequence-master element

 fo:simple-page-master element

 region elements 2nd

superscript 2nd
suppress-at-line-break property

SVG (Scalable Vector Graphics)

 fo:instream-foreign-object element and

switch block
system-color function

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

table cells

table-layout property, fixed table widths and

table of contents
 fo:leader element and

 included with sample stylesheet
 template for

 links for

 processing and
table-omit-footer-at-break property

tables
 centering across page

 empty cells in

 fixed widths for

 in XSL-FO vs. HTML

templates
 included with sample stylesheet

 modifications and

 page layout and

TeX

 TeX formatter
text [See also characters]

 justified

 spacing between characters

 word separators for

text-align-last property 2nd
 headers and 2nd

 indexes/tables of contents and

 using for special-purpose blocks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

text-align property
 using for special-purpose blocks

text alignment

 indexes/tables of contents and

 lists and

 page headers and
 within table cells

text-altitude property 2nd

text-decoration property

 fonts and

 inline elements and
text-depth property 2nd

text flow [See flows]

text-indent property, using for special-purpose blocks

text-shadow property 2nd

 color and 2nd
text-transform property

thick/thin space
title page

 included with sample stylesheet 2nd

 using blocks for
titles, for images

tools 2nd
trailing areas

traits

treat-as-word-space property
troubleshooting

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

U.S. letter page size

UFO formatter 2nd

underline option 2nd

Unicode
 default writing modes and

 word separators and

Unicorn Formatting Objects formatter 2nd

units, section about in XSL specification

uppercase characters
URLs

 Arbortext

 for this book

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CSS2 specification
 FOA tool

 FOP formatter

 jfor

 Nextsolution

 OpenType specification
 PassiveTeX formatter

 REXP

 UFO formatter

 XFC converter

 XSL specification
utilities 2nd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

vector graphics, fo:instream-foreign-object element for
viewport-area/reference-area pair
viewports

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

WAP messages
white-space-collapse property

white-space property
whitespace

 line-height property and

widows and orphans

width properties, section about in XSL specification

WML
word processors

word-spacing property

wrap-option property

wrapping blocks

writing-mode property
 blocks and

 character orientation and

 regions and

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

XEP formatter (RenderX)

XFC converter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XML (Extensible Markup Language)
 document processing and

 Epic editor for

 id and idref pairings from

 using to document stylesheets

XML source document
XMLmind FO Converter

XPath 2nd

XSL (Extensible Stylesheet Language)

 indents/margins and

 specification for [See XSL specification]
 pagination and

XSL-FO

 benefits/cautions for print production vs. alternatives

 vs. CSS

 vs. DSSSL
 processing steps in

 specification for [See XSL specification]
 terminology evolution of

 tricks and tips/troubleshooting for

 XPath/XSLT related to
XSL-FO documents 2nd [See also stylesheets]3rd

 main parts of
XSL-FO element set

XSL formatters [See formatters]

xsl namespace [See fo namespace]

xsl:number element (XSLT)
 footnotes and

<xsl:preserve-space> (XSLT)

xsl-region-after 2nd

xsl-region-before 2nd 3rd

xsl-region-body
xsl-region-end

xsl-region-start

XSL specification 2nd

 color and

 compliance levels for formatting objects/properties (tables)
 product compliance with

 properties listed in

 recent changes to, section about within the specification

xsl:use-attribute-sets attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XSL Working Group, acknowledgements from as listed in the XSL specification
xsl-region-body[xsl region body[

XSLT 2nd

 page number format and

 referencing page numbers and

 transforming content and
 whitespace and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	XSL-FO
	Copyright
	Preface
	Who Should Read This Book?
	What Does This Book Cover?
	Motivation
	Organization of This Book
	What Else Do You Need?
	Conventions Used in This Book
	How to Contact Us
	Acknowledgments

	Chapter 1. Planning for XSL-FO
	1.1 XML and Document Processing
	1.2 Choosing Your Print Production Approach
	1.3 Choosing Tools
	1.4 The Future for XSL-FO

	Chapter 2. A First Look at XSL-FO
	2.1 An XSL-FO Overview
	2.2 Related Stylesheet Specifications
	2.3 Using XSL-FO as Part of XSL
	2.4 Shorthand, Short Form, and Inheritance

	Chapter 3. Pagination
	3.1 Document Classes
	3.2 The Main Parts of an XSL-FO Document
	3.3 Simple Page Master
	3.4 Complex Pagination
	3.5 Page Sequences

	Chapter 4. Areas
	4.1 Informal Definition of an Area
	4.2 Area Types
	4.3 Components of an Area
	4.4 Reference Areas
	4.5 Area Positioning

	Chapter 5. Blocks
	5.1 Block Basics
	5.2 Blocks for Special Purposes
	5.3 Decorating Blocks
	5.4 Lists
	5.5 Tables
	5.6 Additional Material

	Chapter 6. Inline Elements
	6.1 Content
	6.2 Inline Styling
	6.3 Other Uses

	Chapter 7. Graphics and Color
	7.1 Graphics
	7.2 Basic Color Usage
	7.3 Color Specification
	7.4 Color Profiles
	7.5 Applicability

	Chapter 8. Styling at the Character Level
	8.1 General Character Properties
	8.2 Fonts

	Chapter 9. Cross-Document Links
	9.1 Cross-Document Links
	9.2 Indexing and Tables of Contents
	9.3 Running Headers

	Chapter 10. Putting It All Together
	10.1 Outline

	Chapter 11. Stylesheet Organization
	11.1 Classes of Stylesheets
	11.2 Page Layout
	11.3 Main Flows
	11.4 Inclusion and Importing

	Appendix A. How Do I Do That?
	Appendix B. Finding Your Way Aroundthe Specification
	Section B.1. Overview

	Appendix C. Today's Tools
	Section C.1. RenderX XEP Formatter
	Section C.2. Antenna House Formatter
	Section C.3. FOP Formatter
	Section C.4. PassiveTEX Formatter
	Section C.5. Unicorn Formatting Objects Formatter
	Section C.6. Formatting Objects Authoring Tool
	Section C.7. Render Engine from XML/XSL to PDF
	Section C.8. jfor, Java XSL-FO to RTF converter
	Section C.9. XMLmind FO Converter
	Section C.10. XSLfast
	Section C.11. Epic Editor V4.2
	Section C.12. IBM XSL Formatting Objects Composer (XFC)
	Section C.13. Summary

	Appendix D. Objects, Properties, andCompliance Levels
	Section D.1. Basic, Extended or Complete?
	Section D.2. Property Summary

	Appendix E. Inheritance Characteristics
	Section E.1. Font-, Character-, and Spacing-Related Properties

	Appendix F. Examples for Chapter 10
	Appendix G. Elements and Valid Properties
	Section G.1. XSL-FO Elements and Their Properties
	Section G.2. Properties and the Elements to Which They Apply

	Appendix H. GNU Free DocumentationLicense (GFDL)
	Section H.1. Preamble
	Section H.2. Applicability and Definitions
	Section H.3. Verbatim Copying
	Section H.4. Copying in Quantity
	Section H.5. Modifications
	Section H.6. Combining Documents
	Section H.7. Collections of Documents
	Section H.8. Aggregation with Independent Works
	Section H.9. Translation
	Section H.10. Termination
	Section H.11. Future Revisions of This License
	Section H.12. Addendum: How to Use This License for Your Documents

	Glossary
	Colophon
	Index

