
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax: Creating Web Pages with Asynchronous JavaScript and XML

Ajax: Creating Web Pages with Asynchronous JavaScript and XML

By Edmond Woychowsky

...

Publisher: Prentice Hall

Pub Date: August 08, 2006

Print ISBN-10: 0-13-227267-9

Print ISBN-13: 978-0-13-227267-4

Pages: 432

Table of Contents | Index

The Easy, Example-Based Guide to Ajax for Every Web Developer

Using Ajax, you can build Web applications with the sophistication and usability of traditional desktop

applications and you can do it using standards and open source software. Now, for the first time,

there's an easy, example-driven guide to Ajax for every Web and open source developer, regardless of

experience.

Edmond Woychowsky begins with simple techniques involving only HTML and basic JavaScript. Then,

one step at a time, he introduces techniques for building increasingly rich applications. Don't worry if

you're not an expert on Ajax's underlying technologies; Woychowsky offers refreshers on them, from

JavaScript to the XMLHttpRequest object. You'll also find multiple open source technologies and open

standards throughout, ranging from Firefox to Ruby and MySQL.

You'll not only learn how to write "functional" code, but also master design patterns for writing rocksolid,

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/main.html (1 of 2) [03.07.2007 11:48:05]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax: Creating Web Pages with Asynchronous JavaScript and XML

high-performance Ajax applications. You'll also learn how to use frameworks such as Ruby on

Rails to get the job done fast.

● Learn how Ajax works, how it evolved, and what it's good for

● Understand the flow of processing in Ajax applications

● Build Ajax applications with XML and the XMLHttpRequest object

● Integrate back-end code, from PHP to C#

● Use XSLT and XPath, including XPath Axis

● Develop client-side Ajax libraries to support code reuse

● Streamline development with Ruby on Rails and the Ruby programming language

● Use the cross-browser HTML DOM to update parts of a page

● Discover the best Ajax Web resources, including Ajax-capable JavaScript libraries

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/main.html (2 of 2) [03.07.2007 11:48:05]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents

Ajax: Creating Web Pages with Asynchronous JavaScript and XML

By Edmond Woychowsky

...

Publisher: Prentice Hall

Pub Date: August 08, 2006

Print ISBN-10: 0-13-227267-9

Print ISBN-13: 978-0-13-227267-4

Pages: 432

Table of Contents | Index

 Copyright

 Bruce Perens' Open Source Series

 About the Author

 Preface

 Acknowledgments

 Chapter 1. Types of Web Pages

 Section 1.1. Static Web Pages

 Section 1.2. Dynamic Web Pages

 Section 1.3. Web Browsers

 Section 1.4. A Brief Introduction to Cross-Browser Development

 Section 1.5. The Server Side of Things

 Section 1.6. We Learn by Doing

 Section 1.7. Summary

 Chapter 2. Introducing Ajax

 Section 2.1. Not a Mockup

 Section 2.2. A Technique Without a Name

 Section 2.3. What Is Ajax?

 Section 2.4. An Ajax Encounter of the First Kind

 Section 2.5. An Ajax Encounter of the Second Kind

 Section 2.6. An Ajax Encounter of the Third Kind

 Section 2.7. The Shape of Things to Come

 Section 2.8. Summary

 Chapter 3. HTML/XHTML

 Section 3.1. The Difference Between HTML and XHTML

 Section 3.2. Elements and Attributes

 Section 3.3. Summary

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/toc.html (1 of 4) [03.07.2007 11:48:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents

 Chapter 4. JavaScript

 Section 4.1. Data Types

 Section 4.2. Variables

 Section 4.3. Operators

 Section 4.4. Flow-Control Statements

 Section 4.5. Functions

 Section 4.6. Recursion

 Section 4.7. Constructors

 Section 4.8. Event Handling

 Section 4.9. Summary

 Chapter 5. Ajax Using HTML and JavaScript

 Section 5.1. Hidden Frames and iframes

 Section 5.2. Cross-Browser DOM

 Section 5.3. Tabular Information

 Section 5.4. Forms

 Section 5.5. Advantages and Disadvantages

 Section 5.6. Summary

 Chapter 6. XML

 Section 6.1. Elements

 Section 6.2. Attributes

 Section 6.3. Handling Verboten Characters

 Section 6.4. Comments

 Section 6.5. Expectations

 Section 6.6. XML Declaration

 Section 6.7. Processing Instructions

 Section 6.8. XML Data Islands

 Section 6.9. Summary

 Chapter 7. XMLHttpRequest

 Section 7.1. Synchronous

 Section 7.2. Asynchronous

 Section 7.3. Microsoft Internet Explorer

 Section 7.4. XML Document Object Model

 Section 7.5. RSS

 Section 7.6. Web Services

 Section 7.7. Summary

 Chapter 8. Ajax Using XML and XMLHttpRequest

 Section 8.1. Traditional Versus Ajax Websites

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/toc.html (2 of 4) [03.07.2007 11:48:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents

 Section 8.2. XML

 Section 8.3. The XMLHttpRequest Object

 Section 8.4. A Problem Revisited

 Section 8.5. Tabular Information and Forms

 Section 8.6. Advantages and Disadvantages

 Section 8.7. Summary

 Chapter 9. XPath

 Section 9.1. Location Paths

 Section 9.2. Context Node

 Section 9.3. Parent Nodes

 Section 9.4. Attribute Nodes

 Section 9.5. Predicates

 Section 9.6. XPath Functions

 Section 9.7. XPath Expressions

 Section 9.8. XPath Unions

 Section 9.9. Axis

 Section 9.10. Summary

 Chapter 10. XSLT

 Section 10.1. Recursive Versus Iterative Style Sheets

 Section 10.2. XPath in the Style Sheet

 Section 10.3. Elements

 Section 10.4. XSLT Functions

 Section 10.5. XSLT Concepts

 Section 10.6. Client-Side Transformations

 Section 10.7. Summary

 Chapter 11. Ajax Using XSLT

 Section 11.1. XSLT

 Section 11.2. Tabular Information

 Section 11.3. Advantages and Disadvantages

 Section 11.4. Summary

 Chapter 12. Better Living Through Code Reuse

 Section 12.1. Reuse = Laziness

 Section 12.2. JavaScript Objects

 Section 12.3. Generic XSLT

 Section 12.4. Summary

 Chapter 13. Traveling with Ruby on Rails

 Section 13.1. What Is Ruby on Rails?

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/toc.html (3 of 4) [03.07.2007 11:48:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents

 Section 13.2. Installation

 Section 13.3. A Little Ruby on Rails Warm-Up

 Section 13.4. A Problem Revisited

 Section 13.5. Whither Ajax?

 Section 13.6. Summary

 Chapter 14. Traveling Farther with Ruby

 Section 14.1. Data Types

 Section 14.2. Variables

 Section 14.3. Operators

 Section 14.4. Flow-Control Statements

 Section 14.5. Threads

 Section 14.6. Ajax

 Section 14.7. Summary

 Chapter 15. The Essential Cross-Browser HTML DOM

 Section 15.1. Interfaces

 Section 15.2. Document

 Section 15.3. Frames

 Section 15.4. Collections

 Section 15.5. Summary

 Chapter 16. Other Items of Interest

 Section 16.1. Sarissa

 Section 16.2. JSON and JSON-RPC

 Section 16.3. ATLAS

 Section 16.4. The World Wide Web Consortium

 Section 16.5. Web Browsers

 Section 16.6. Summary

 Index

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/toc.html (4 of 4) [03.07.2007 11:48:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Copyright

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data:

 Woychowsky, Edmond.

 Ajax : creating Web pages with asynchronous JavaScript and XML / Edmond Woychowsky.

 p. cm.

 ISBN 0-13-227267-9 (pbk. : alk. paper) 1. Web sitesDesignComputer programs. 2. Ajax (Web site
development technology) 3. JavaScript (Computer program language) 4. XML (Document markup lan-
guage) I. Title.

 TK5105.8885.A52W69 2006

 006.7'86dc22
 2006017743

Copyright © 2007 Pearson Education, Inc.

This material may be distributed only subject to the terms and conditions set forth in the Open Publication

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/copyrightpg.html (1 of 2) [03.07.2007 11:48:06]

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://www.prenhallprofessional.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Copyright

License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

Text printed in the United States on recycled paper at R. R. Donnelley in Crawfordsville, Indiana. First
printing, August 2006

Dedication

This book is dedicated to my wife, Mary Ann, and my children, Benjamin and Crista. Without
their constant support, the book that you hold in your hands would definitely not exist.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/copyrightpg.html (2 of 2) [03.07.2007 11:48:06]

http://www.opencontent.org/openpub/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Bruce Perens' Open Source Series

Bruce Perens' Open Source Series

www.prenhallprofessional.com/perens

Bruce Perens' Open Source Series is a definitive series of books on Linux and open source technologies,
written by many of the world's leading open source professionals. It is also a voice for up-and-coming open
source authors. Each book in the series is published under the Open Publication License (www.opencontent.
org), an open source compatible book license, which means that electronic versions will be made available
at no cost after the books have been in print for six months.

● Java™ Application Development on Linux®

Carl Albing and Michael Schwarz

● C++ GUI Programming with Qt 3

Jasmin Blanchette and Mark Summerfield

● Managing Linux Systems with Webmin: System Administration and Module Development

Jamie Cameron

● User Mode Linux®

Jeff Dike

● An Introduction to Design Patterns in C++ with Qt 4

Alan Ezust and Paul Ezust

● Understanding the Linux Virtual Memory Manager

Mel Gorman

● PHP 5 Power Programming

Andi Gutmans, Stig Bakken, and Derick Rethans

● Linux® Quick Fix Notebook

Peter Harrison

● Implementing CIFS: The Common Internet File System

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/pref01.html (1 of 3) [03.07.2007 11:48:07]

http://www.prenhallprofessional.com/perens
http://www.opencontent.org/
http://www.opencontent.org/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Bruce Perens' Open Source Series

Christopher Hertel

● Open Source Security Tools: A Practical Guide to Security Applications

Tony Howlett

● Apache Jakarta Commons: Reusable Java™ Components

Will Iverson

● Linux® Patch Management: Keeping Linux® Systems Up To Date

Michael Jang

● Embedded Software Development with eCos

Anthony Massa

● Rapid Application Development with Mozilla

Nigel McFarlane

● Subversion Version Control: Using the Subversion Version Control System in Development Projects

William Nagel

● Intrusion Detection with SNORT: Advanced IDS Techniques Using SNORT, Apache, MySQL, PHP, and
ACID

Rafeeq Ur Rehman

● Cross-Platform GUI Programming with wxWidgets

Julian Smart and Kevin Hock with Stefan Csomor

● Samba-3 by Example, Second Edition: Practical Exercises to Successful Deployment

John H. Terpstra

● The Official Samba-3 HOWTO and Reference Guide, Second Edition

John H. Terpstra and Jelmer R. Vernooij, Editors

● Self-Service Linux®: Mastering the Art of Problem Determination

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/pref01.html (2 of 3) [03.07.2007 11:48:07]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Bruce Perens' Open Source Series

Mark Wilding and Dan Behman

● AJAX: Creating Web Pages with Asynchronous JavaScript and XML

Edmond Woychowsky

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/pref01.html (3 of 3) [03.07.2007 11:48:07]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

About the Author

About the Author

A graduate of Middlesex Country College and Penn State, Edmond Woychowsky began his professional life
at Bell Labs as a dinosaur writing recursive assembly-language programs for use in their DOSS order entry
system. Throughout his career, Ed has worked in the banking, insurance, pharmaceutical, and
manufacturing industries, slowly sprouting feathers and evolving into a web developer. He is best known for
his often unique articles on the TechRepublic website, as well as his ability to explain how Muenchian
grouping works in small words. Currently, he can be found working in New Jersey as a consultant, applying
both Ajax and XSLT to problems in often bizarre ways and looking forward to his next meal.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/pref02.html [03.07.2007 11:48:07]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface

Preface

The purpose of the book that you hold in your hands, Ajax: Creating Web Pages with Asynchronous
JavaScript and XML, is simply to show you the fundamentals of developing Ajax applications.

What This Book Is About

For the last several years, there has been a quiet revolution taking place in web application development.
In fact, it was so quiet that until February 2005, this revolution didn't have a name, even among the
revolutionaries themselves. Actually, beyond the odd mention of phrases such as XMLHttpRequest object,
XML, or SOAP, developers didn't really talk about it much at all, probably out of some fear of being burned
for meddling in unnatural forces. But now that the cat is out of the bag, there is no reason not to show how
Ajax works.

Because I am a member of the "we learn by doing" cult (no Kool Aid required), you'll find more code
examples than you can shake a stick at. So this is the book for those people who enjoyed the labs more
than the lectures. If enjoyed is the wrong word, feel free to substitute the words "learned more from."

Until around 2005, the "we learn by doing" group of developers was obscured by the belief that a piece of
paper called a certification meant more than hands-on knowledge. I suppose that, in a way, it did.
Unfortunately, when jobs became fewer and farther between, developers began to collect certifications the
way that Imelda Marcos collected shoes. Encyclopedic knowledge might have helped in getting interviews
and subsequent jobs, but it really didn't help very much in keeping those jobs. However, now that the
pendulum has begun to swing in the other direction, it is starting to become more important to actually
know a subject than to be certified in it. This leads to the question of "Why learn Ajax?"

The answer to that question can be either short and sweet or as rich and varied as the concept of Ajax
itself. Let's start with the first answer because it looks good on the resumé. We all know that when
something looks good on the resumé, it helps to keep us in the manner in which we have become
accustomed, living indoors and eating regularly. Couple this with the knowledge of actually having hands-
on knowledge, and the odds of keeping the job are greatly increased.

The rich and varied answer is that, to parrot half of the people writing about web development trends, Ajax
is the wave of the future. Of course, this leads to the statement, "I heard the same thing about DHTML,
and nobody has talked about that for five years." Yes, some of the same things were said about DHTML,
but this time it is different.

The difference is that, this time, the technology has evolved naturally instead of being sprung upon the
world just so developers could play buzzword bingo with their resumés. This time, there are actual working
examples beyond the pixie dust following our mouse pointers around. This time, the companies using these
techniques are real companies, with histories extending beyond last Thursday. This time, things are done
with a reason beyond the "it's cool" factor.

What You Need to Know Before Reading This Book

This book assumes a basic understanding of web-development techniques beyond the WYSIWYG drag and
drop that is the current standard. It isn't necessary to have hand-coded HTML; it is only necessary to know

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/pref03.html (1 of 3) [03.07.2007 11:48:08]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface

that HTML exists. This book will hopefully fill in the gaps so that the basics of what goes where can be
performed.

Beyond my disdain for the drag-and-drop method of web development, there is a logical reason for the
need to know something about HTMLbasically, we're going to be modifying the HTML document after it is
loaded in the browser. Nothing really outrageous will be done to the documentmerely taking elements out,
putting elements in, and modifying elements in place.

For those unfamiliar with JavaScript, it isn't a problem; I've taken care to explain it in some depth because
there is nothing worse than needing a second book to help understand the first book. Thinking about it
now, of course, I missed a wonderful opportunity to write a companion JavaScript volume. Doh!

If you're unfamiliar with XML, don't be put off by the fact that Ajax is short hand Asynchronous JavaScript
and XML because what you need to know is in here, too. The same is also true of XSLT, which is a language
used to transform XML into other forms. Think of Hogwarts, and you get the concept.

In this book, the evolution (or, if you prefer, intelligent design) of Ajax is described from the beginning of
web development through the Dynamic HTML, right up to Asynchronous JavaScript and XML. Because this
book describes a somewhat newer technique of web development, using a recent vintage web browser such
as Firefox or Flock is a good idea. You also need an Internet connection.

How This Book Is Laid Out

Here is a short summary of this book's chapters:

● Chapter 1, "Types of Web Pages," provides a basic overview of the various ways that web pages
have been coded since the inception of the Web. The history of web development is covered
beginning with static web pages through dynamic web pages. In addition, the various technologies
used in web development are discussed. The chapter closes with a discussion on browsers and the
browser war.

● Chapter 2, "Introducing Ajax," introduces Ajax with an account of what happened when I
demonstrated my first Ajax application. The concepts behind Ajax are described and then are
introduced in a step-by-step manner, from the first primordial Ajax relatives to the current evolution.

● Chapter 3, "HTML/XHTML," describes some of the unmentioned basic building blocks of Ajax, HTML/
XHTML, and Cascading Style Sheets.

● Chapter 4, "JavaScript," serves as an overview of JavaScript, including data types, variables, and
operators. Also covered are flow-control statements, recursive functions, constructors, and event
handlers.

● Chapter 5, "Ajax Using HTML and JavaScript," describes one of the earlier ancestors of Ajax.
Essentially, this is how to fake it using stone knives and bear skins. Although the technique
described is somewhat old-fashioned, it demonstrates, to a degree, how processing flows in an Ajax
application. In addition, the "dark art" of communicating information between frames is covered.
Additionally, in an effort to appease those who believe that this is all old hat, the subject of stored
procedures in MySQL is covered.

● Chapter 6, "XML," covers XML, particularly the parts that come into play when dealing with Ajax.
Elements, attributes and entities, oh my; the various means of describing content, Document Type
Definitions, and Schema are covered. Also included are cross-browser XML data islands.

● Chapter 7, "XMLHttpRequest," dissects the XMLHttpRequest object by describing its various
properties and methods. Interested in making it synchronous instead of asynchronous? You'll find
the answer in this chapter. In addition, both web services and SOAP are discussed in this chapter.

● Chapter 8, "Ajax Using XML and XMLHttpRequest," covers what some might consider pure Ajax,

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/pref03.html (2 of 3) [03.07.2007 11:48:08]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface

with special attention paid to the XMLHttpRequest object that makes the whole thing work.
Additionally, various back ends are discussed, ranging from PHP to C#. Also covered are two of the
more popular communication protocols: RPC and SOAP.

● Chapter 9, "XPath," covers XPath in detail. Starting with the basics of what is often considered
XSLT's flunky, this chapter describes just how to locate information contained in an XML document.
Included in this chapter is a detailed description of XPath axis, which is at least worth a look.

● Chapter 10, "XSLT," goes into some detail about the scary subject of XSLT and how it can be fit into
a cross-browser Ajax application. Starting with the basics and progressing to the more advanced
possibilities, an attempt is made to demystify XSLT.

● Chapter 11, "Ajax Using XSLT," takes the material covered in the first four chapters the next logical
step with the introduction of XSLT. Until relatively recently, this was typically considered a bad idea.
However, with some care, this is no longer the case. XSLT is one of those tools that can further
enhance the site visitor's experience.

● Chapter 12, "Better Living Through Code Reuse," introduces a homegrown client-side JavaScript
library that is used throughout the examples shown in this book. Although this library doesn't
necessarily have to be used, the examples provide an annotated look at what goes on behind the
scenes with most of the Ajax libraries currently in existence.

● Chapter 13, "Traveling with Ruby on Rails," is a gentle introduction to the open source Ruby on Rails
framework. Beginning with where to obtain the various components and their installation, the
chapter shows how to start the WEBrick web server. Following those examples, a simple page that
accesses a MySQL database is demonstrated.

● Chapter 14, "Traveling Farther with Ruby," looks a little deeper into Ruby on Rails, with the
introduction of a simple Ajax application that uses the built-in Rails JavaScript library.

● Chapter 15, "The Essential Cross-Browser HTML DOM," describes the dark and mysterious realm of
the cross-browser HTML Document Object Model. Another unmentioned part of Ajax, the HTML DOM
is essentially how the various parts of an HTML or XHTML document are accessed. This is what
makes the "only update part of a document" feature of Ajax work.

● Chapter 16, "Other Items of Interest," describes some of the resources available via the World Wide
Web. These resources range from prewritten Ajax-capable JavaScript libraries to some of the
numerous browsers available for your personal computer.

Conventions Used in This Book

Listings, code snippets, and code in the text in this book are in monospaced font. This means that the code
could be typed in the manner shown using your editor of choice, and the result would appear as follows:

if(enemy = 'troll')
 runaway();

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/pref03.html (3 of 3) [03.07.2007 11:48:08]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Acknowledgments

Acknowledgments

Even though this book is essentially "my" book, it has been influenced in many ways (all of them good) by
multiple individuals. Because the roles that each of these individuals played in the creative process were
very significant, I would like to take the time to thank as many of them as I can remember here.

Mary Ann Woychowsky, for understanding my "zoning out" when writing and for asking, "I guess the book
is finished, right?" after catching me playing Morrowind when I should have been writing. Benjamin
Woychowsky, for asking, "Shouldn't you be writing?" whenever I played a computer game. Crista
Woychowsky, for disappearing with entire seasons of Star Gate SG-1, after catching me watching them
when I should have been writing.

My mother, Nan Gerling, for sharing her love of reading and keeping me in reading materials.

Eric Garulay, of Prentice Hall, for marketing this book and putting me in touch with Catherine Nolan.
Catherine Nolan, of Prentice Hall, for believing in this book and for her assistance in getting started with a
book. Bruce Perens, for his belief that because I use Firefox, I had not tread too far down the path that
leads to the dark side. Denise Mickelson, of Prentice Hall, for making sure that I kept sending in chapters.
Chris Zahn, of Prentice Hall, for his editing, for answering my often bizarre questions, and for his
knowledge of things in general. Thanks to George Nedeff for managing the editorial and production
workflow and Heather Fox for keeping this project in the loop and on track. Any errors remaining are solely
my own.

I would like to thank the late Jack Chalker for his assistance with what to look for in writing contracts and
for essentially talking me through the process using words that I could understand. Also for his writing a
number of science-fiction novels that have influenced the way that I look upon the world. After all, in the
end, everything is about how we look upon the world.

Dossy Shiobara, for answering several bizarre questions concerning MySQL.

Richard Behrens, for his assistance in formulating my thoughts.

Joan Susski, for making sure that I didn't go totally off the deep end when developing many of the
techniques used in this book.

Premkumar Ekkaladevi, who was instrumental in deciding just how far to push the technology.

Jon (Jack) Foreman, for explaining to me that I can't know everything.

David Sarisohn, who years ago gave a very understandable reason for why code shouldn't be obscure.

Finally, to Francis Burke, Shirley Tainow, Thomas Dunn, Marion Sackrowitz, Frances Mundock, Barbara
Hershey, Beverly Simon, Paul Bhatia, Joseph Muller, Rick Good, Jane Liefert, Joan Litt, Albert Nicolai, and
Bill Ricker for teaching me how to learn.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/pref04.html (1 of 2) [03.07.2007 11:48:08]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Acknowledgments

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/pref04.html (2 of 2) [03.07.2007 11:48:08]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1. Types of Web Pages

Chapter 1. Types of Web Pages

While I was in college, sometime during the Pliocene, I took a science fiction class. The interesting thing
about this class is that one student didn't realize until midterms that it wasn't a physiology class. I bring
this up only because if you've picked up this book expecting Corinthian helmets and hoplites, which,
incidentally, have one-third less fat than regular hops (useful information for Hydras on a diet), this is the
wrong book.

According to legend, the Web was originally created by Tim Berners-Lee to distribute documents of a
technical nature. Think of it as the latetwentieth-century version of leaving a note on the refrigerator
describing how to preheat the oven, put the casserole in, make a salad, and serve it after 1 hour. As you
can well imagine, posting this kind of information on a computer network has a much farther reach than
posting it on a single refrigerator.

The existence of the World Wide Web hit all of us suddenly, like a summer thunderstorm, from clear skies
to cracks of lightning in what felt like 15 minutes. All of a sudden all the friends and relatives who thought I
was a little strange for having a computer were calling Gateway and Dell or were in a store getting a
Toshiba or Compaq. It was as if they were all suddenly afflicted with some illness that made them say
words like bits, bytes, and baud. Instead of strutting around comparing the size of their sailboats, they
were all strutting comparing the size of their hard disks.

In just over a decade of existence, the World Wide Web has transformed dramatically from its humble
beginnings on a single server stuck on a desk in an out-of-the-way office. In the first few years, the growth
of the World Wide Web resembled Fibonacci numbers. If you're unfamiliar with Fibonacci numbers, they are
a mathematical representation of the increase in the numbers of immortal bunnies in a garden with no
predators. Assume an infinite supply of carrots and, well, you get the ideait was that kind of growth.
Unfortunately, growth at that rate cannot be maintained forever; eventually, that many bunnies are bound
to attract something with a taste for hasenpfeffer.

My opinion of this situation is that, contrary to popular belief, the end of growth in leaps and bounds is not
the beginning of the end; it is merely the end of the beginning. Change is good, change is inevitable, and
change rarely comes without pain.

Speaking of change, Ajax is a bit of a change from the earlier types of web pages, be they static HTML or
Dynamic HTML/DHTML. The interesting thing is that all types of web pages rely upon essentially the same
ingredients: HTML, JavaScript, CSS, and sometimes XML. In this chapter, I take our discussion a little
beyond those simple ingredients, though, to consider the only two additional factors that can affect the end
result: the browser and the web server.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch01.html [03.07.2007 11:48:09]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 1.1. Static Web Pages

1.1. Static Web Pages

Static web pages are the original type (and for what seemed like about 10 minutes the only type) of web
pages. When dealing with the distribution of technical documents, there aren't very many changes to the
original document. What you actually see more of is a couple of technical documents getting together,
settling down, and producing litter after litter of little technical documents. However, the technical
documents didn't have this fertile landscape completely to themselves for very long.

If you've ever traveled anywhere in the United States by automobile, you might be familiar with one of the
staples of the driving vacation: the travel brochure. Often describing places like Endless Caverns, Natural
Bridge, Mystic Aquarium, or Roadside America, they're a staple of the American landscape. Designed to
catch attention and draw the traveler in to spend some cash, they've been around seemingly forever.

The web equivalent, sometimes referred to as brochure-ware, also is designed to draw in the virtual
traveler. This type of website is usually used to inform the visitor about subjects as varied as places to visit,
cooking, children, or my nephew Nick and niece Ashley's 2002 visit to Walt Disney World. This is actually a
great medium for information that is relatively unchanging.

Allow me to digress for a little computer history lesson. Back in the old days when dinosaurseh,
mainframesruled computing, there were pseudoconversational systems that faked some of the functionality
seen in web applications. These applications essentially displayed a form on what was called a dumb
terminal. It was called a dumb terminal because it had no real processing power of its own. The user then
filled out the form and hit a program function key, which transferred the input data to the mainframe. The
mainframe processed the data, based upon content and the specific program function key, and the results,
if any, were displayed on the user's dumb terminal. End of history lesson.

Static web pages offer the same functionality as those monster computers of old, in much the same way.
The only real changes are form "buttons" instead of program function keys, the presence of a mouse, and
the price tags for the equipment involved. Well, maybe that isn't entirely true; a dumb terminal will set you
back about as much as one of today's off-the-shelf computers. The real difference lies in the price
difference between a web server and a mainframe: thousands of dollars vs. millions of dollars. Those
dinosaurs didn't come cheap.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch01lev1sec1.html [03.07.2007 11:48:09]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 1.2. Dynamic Web Pages

1.2. Dynamic Web Pages

Static web pages have three major problems. The first is that they're boring. Think of it as visiting the park
down the road on vacation every year. Unless that park is Yellowstone, or there's lots of alcohol involved,
it's going to get old very quickly.

The second problem is that, unlike a dumb terminal, a personal computer has processing power of its own.
Some, in fact, have more processing power than the web servers that they are communicating with. Why
not take advantage of this processing power? It won't cost the server anything to utilize this essentially free
resource.

The final problem with static web pages is that all validation is performed by the server. This means that if
a user enters a telephone number as (999)999-9999 instead of 999-999-9999, it is up to the server to
catch the error and inform the user of the correct format. So the user is forced to endure the entire cycle in
which the form is sent to the server, which finds the error and then sends the whole page back to the web
browser. And unless the web developer took care to retain the information already entered, the user is
forced to re-enter everything. I don't know about you, but this wouldn't give me the warm fuzzes about a
website.

For all of these reasons and the "wouldn't it be cool?" factor, a technique called Dynamic Hypertext Markup
Language, or DHMTL, was created. Even at first glance, it was obvious that there was a vast difference
between static web pages and pages that employed DHTML techniques. The first of these differences is that
things happened on dynamic web pages.

There were events. No, not events like the grand opening of the Wal-Mart Super Center down the
roadbrowser events. When the mouse pointer was moved around the page, things happened, and not just
the pointer changing from an arrow to a hand and back again. Real things happened. Hyperlinks changed
color; menus dropped down.

As incredible as all of this seemed, the biggest difference came when working with HTML forms. Much of
the validation was performed on the client side, right on the browser (which is what client side means, but I
was going for the effect here). The fact was that the user no longer had to wait for the entire unload/reload
cycle to discover that some moron web developer wants dashes separating the parts of a date instead of
forward slashes. This was a real improvement.

In fact, on some websites, techniques were used to prevent the user from entering characters that weren't
allowed. If a numeric value is expected in an input box, well, try as you might, only the numeric keys and
the decimal point will work; if an integer is expected, users don't even get the decimal point.

Of course, it wasn't long before DHTML was taken to the extreme. On some pages the mouse pointer
turned into a magic wand, trailing pixie dust like flies behind a garbage truck. Other web pages seemed to
nearly explode whenever the mouse pointer moved because of the sheer number of drop-down menus,
rollovers, and assorted "features." Basically, too much of a good thing makes it no longer a good thing.

However, as they say on television, "How'd they do that?"

The quick answer is "Very carefully," but if we we're concerned with quick answers, we would all be
millionaires from using a Magic Eight Ball for investment decisions. Of course, this doesn't seem to be
working for my broker, so I could be wrong.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch01lev1sec2.html (1 of 4) [03.07.2007 11:48:10]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 1.2. Dynamic Web Pages

The way DHTML works is through a mixture of HTML, Cascading Style Sheets, and JavaScript. Also, as the
cooking shows demonstrate, it is all in how the ingredients are put together instead of the fact that they
are put together. For example, quite a few people like chicken and chocolate, but with the exception of
mole, how many dishes are there that combine the two?

1.2.1. HTML

Yeah, Hypertext Markup Language was what made static web pages work, but just because the web pages
were static doesn't mean that HTML was static. Time moved forward, as time usually does, and new
capabilities and features were added. Some were, well, not removed, but deprecated, which means that
they're still there, but only for compatibility purposes. These deprecated features, however, were more
than made up for by the addition of the new features.

The big question is, who decides which features stay, which are deprecated, and which are added? The
answer is that all of these decisions are made by the World Wide Web Consortium, which, in secret
midnight meetings, dances around a bonfire, drinks mead, and listens to Jethro Tull CDs. Alright, the truth
is that committees meet periodically in a conference room and discuss modifications to HTML. However, my
explanation accounts for the existence of the marquee tag better than the official explanation.

The World Wide Web Consortium is the governing body that issues "Recommendations" concerning the
more technical aspects of the Web. Starting with Hypertext Markup Language version 1.0 and moving
through the more current version 4.01 and XHTML version 1.1, the World Wide Web Consortium attempts
to keep things standard among the various web browser developers. Theoretically, the end result of these
"Recommendations" is that all web browsers behave identically on any specific website, but as I explain
later, there are degrees of compliance and interpretation. In addition, there are plenty of nonstandard
extensions by browser developers, who, in the hopes of getting a leg up on the competition, continue to
add "features" until their browser resembles a Swiss Army knife more than a web browser.

1.2.2. CSS

The problem with HTML is that it was never intended to deal with anything beyond the structure of a page.
Unfortunately, early on, somebody new to HTML asked the question, "Hey, how do I make text bold?" and
the pure structural language called HTML was polluted by presentation. The end result of this was
documents with more HTML than text. Mostly consisting of b tags, i tags, and the dreaded font tags, these
documents were a nightmare if it became necessary to make a change.

Cascading Style Sheets, Level 1, are an attempt to bring this situation back under control by providing a
way to avoid the b, i, and font tags. Instead, presentation could be dealt with on a per-tag basis, which
makes coding somewhat like being a Roman emperor: "The text in the anchor tags amuses memake it bold
and Tahoma!"

Cascading Style Sheets work by associating style rules to the elements of an HTML document. These rules
can be applied to single tags, tags of a specific type, or developer-specified tags. This eliminates the need
to code tags within tags until the page is so bloated that it is nearly impossible to follow; instead, a CSS is
specified on the page level or tag level to describe the style for the entire page.

Just in case you're wondering, the cascading part of Cascading Style Sheets comes into play when there is
more than one style sheet with rules that can be applied to a specific tag. The specific style sheet rule that
is applied depends exactly on how the applicable Cascading Style Sheet is defined. The problem, for me, at

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch01lev1sec2.html (2 of 4) [03.07.2007 11:48:10]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 1.2. Dynamic Web Pages

least, is remembering cascade sequence. One method of keeping the cascade straight is equating it to
something else, something a bit more familiar, as in the winning hands of poker. In poker, the winning
hands, from high to low, are:

1.

Royal flush

2.

Straight flush

3.

Four of a kind

4.

Full house

5.

Flush

With Cascading Style Sheets, the "winning" hands are as follows:

1.

Inline CSS defined in the element's style attribute

2.

Internal CSS defined using the style tag

3.

External CSS defined using the style tag

4.

External CSS defined using the link tag

5.

The default built into the web browser

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch01lev1sec2.html (3 of 4) [03.07.2007 11:48:10]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 1.2. Dynamic Web Pages

As with poker, when there is a winning hand, any other hands are all for naught.

1.2.3. JavaScript

JavaScript is a lightweight, interpreted, object-based programming language that has become the standard
client-side scripting language. Based upon the C programming language of Kernighan and Richie fame,
JavaScript is how all of those neat and nifty little client-side tricks work. Whether it is event trapping,
validation, or whatever, nine times out of ten, JavaScript is the man behind the curtain pulling the levers to
make things happen.

Even though JavaScript is widespread doesn't mean that there isn't a lot of confusion about JavaScript.
Take, for example, the name; originally called LiveScript, the name was changed to cash in on some of the
press that Java was getting early on. To confuse things further, Microsoft sometimes refers to its
implementation as JScript, while in Europe, the name ECMAScript is used to refer to JavaScript. I, for one,
believe that all of these aliases are designed to hide a gangster past or something along those lines.

Seriously, most of the client-side logic on the Web is coded in JavaScript. This doesn't mean that JavaScript
is innately superior to VBScript, Perl, or even Java itself; it is only because JavaScript is built into practically
every browser currently available. This means that visitors to websites that use JavaScript, as opposed to
any of the alternatives, can jump right into shopping or whatever without waiting for a download to
complete.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch01lev1sec2.html (4 of 4) [03.07.2007 11:48:10]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 1.3. Web Browsers

1.3. Web Browsers

Without a web browser, though, web pages are rather useless. The majority of people wandering around
the Internet wouldn't fully appreciate them. Yes, there is the indentation, but without a browser, there is no
scripting or pictures. A lot can be said about web browsers; after all, they color our web browsing
experience nearly as much as the pages we visit. The decision to use a specific web browser probably says
a great deal about who each of us is as an individual. Unfortunately, I'm not aware of any study along
those lines. I, for one, would like to see what would be said about somebody still running Internet Explorer
version 2 on a 100-MHz Pentium with Windows 95. But come to think of it, that describes some of the
employees on my last consulting assignment.

Nevertheless, a web browser is our window (note the small w) to the World Wide Web, and, as with
windows, quite a few choices are available to us. However, instead of having names like "double hung" and
"casements," web browsers have names like "Firefox" and "Opera." And just as with window styles, web
browsers go in and out of fashion. For example, think for a moment: How many houses in your
neighborhood have arrow slits for windows? However, unlike the majority of windows that either work or do
not work, an added factor must be taken into account when considering web browsers: They are not
stagnant. Even though their evolution has slowed somewhat compared to a few years ago, web browsers
are still evolving.

In some ways, this evolution parallels the evolution that has taken place in the natural world, with the
better adapted supplanting those that don't quite fit in as well. Of course, just as in the natural world, there
are hangerson from earlier ages. Sometimes these holdovers exist in isolated communities, and sometimes
they're lone individuals living among us unnoticed.

However, unlike in the natural world, evolution in web browsers is driven by an intelligence, or, at least, I'd
like to think so. Behind every feature there are individuals who decide what features to include and how to
implement those features. Because of this, web browsers can be both very similar to and very different
from one another. Let's now take the opportunity to explore some of those similarities and differences.

1.3.1. Microsoft Internet Explorer

Love it or hate it, there is no denying that Microsoft Internet Explorer is currently the most used web
browser. In fact, according to one website that measures browser statistics, Internet Explorer comes in
both first and third. Huh? Sounds a little like the 1960s version of The Love Bug, doesn't it? This incredible
feat can be attributed to the estimated 5 percent of people who are still running some incarnation of
version 5, which can be versions 5.0, 5.01, or 5.5your guess is as good as mine.

Although I can't tell you exactly which version of Microsoft Internet Explorer they might be running, I can
give several possible reasons for living in the past. The first of these is simple inertia; a body at rest tends
to stay at rest. Upgrades take time, and there is always the possibility of something going wrong, so why
run the risk of causing problems?

Another possibility is the old "if it ain't broke, why fix it?" reason. Of course, there are different tolerances
for "ain't broke." For example, I knew a professor in college who had a car that lost a quart of oil every 50
miles. For him, 50 miles fell within the boundaries of his "ain't broke" tolerance. Unfortunately, the car had
other tolerances when someone borrowed the car and forgot about the leak.

The third possible reason for still running some flavor of Microsoft Internet Explorer version 5 is that the

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch01lev1sec3.html (1 of 4) [03.07.2007 11:48:10]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 1.3. Web Browsers

machine simply doesn't have the resources for version 6. I know that this can happen; I've seen it with my
own eyes. In fact, it was quite some time before Mary Ann, my wife, let me near her computer or its
replacement.

I can think of one final reason for running version 5 of Internet Explorer: the sheer size of the download for
version 6. When last I looked, it was more than 100MB. This is tolerable with DSL or cable, but with a dial-
up connection, it would finish up around the same time that the sun is a burnt-out cinder.

Now let's look at the users of Internet Explorer as a whole, all of the more recent versions, be they 5.0,
5.01, 5.5, or even 6.0. Why do these individuals use a web browser that, according to many, is several
years out-of-date? Well, the fact that it came with the computer might have a little to do with it.

The average user has problems setting the clock on the VCR; do you really think that users are ready to
install what could be considered a part of the computer's operating system? Some of them know their
limitations, and a computer represents a substantial amount of money. They are more likely to give
themselves a haircut using a bowl and scissors than to risk "breaking" the computer. After all, Internet
Explorer version 6 isn't so bad; it does work, after all.

From a developer's perspective, Internet Explorer also isn't too bad. Yes, it is dated and a little flakey, but
that's nothing that we haven't been able to deal with in the past. We're developers; we have powers like
Super(insert appropriate gender here). Just beware of the deviations from standards, the developer's
version of Kryptonite.

1.3.2. Mozilla-Based Browsers (Netscape, Mozilla, and Firefox)

Before going any further, allow me to come clean. I use Firefox whenever I can, and before Firefox, I used
Mozilla, so I'm a wee bit biased. Just in case you've only recently come out of the Y2K shelter, Firefox is an
open-source browser that is the descendant of the Netscape Navigator that you remember from before
going into the shelter.

Netscape was the original Godzillaeh, Mozillaweb browser, which, in its day, had a market share equally as
impressive as Microsoft Internet Explorer's. In fact, it could be considered more impressive if you consider
that, before 1998, Netscape wasn't free. Unfortunately, without the advantage of being bundled to an
operating system, Netscape lost ground and Internet Explorer has kept nibbling away until the present day.

The Mozilla browser was the first attempt at an open-source browser, which, unfortunately, never achieved
the popularity of the original browser. There is, however, an interesting side note: Version 7 of Netscape
was created using Mozilla version 1 as a starting point. For a really successful open-source browser, one
needs to look at Firefox.

Originally called Firebird, a synonym for Phoenix that led to quite a few comments about rising from the
ashes of Netscape, Firefox is sort of doing to Internet Explorer what Internet Explorer did to Netscape. I
say "sort of" because the nibbles seem larger. Maybe this is due to foxes having relatively larger mouths for
their size. The actual reason is that it seems that when the goal of dominating the market was achieved,
Microsoft lost interest in enhancing Internet Explorer.

As I stated earlier, Firefox is my favorite browser, which doesn't mean that there isn't something that I find
troubling with it. Consider the size of the download compared to other web browsers; it is a fraction of the
size of most of the others, yet every feature is in there. I'm not troubled enough to give up using Firefox or
to lose any sleepwell, maybe just a little sleep. Which is probably how my twisted mind came up with a
logical method of how they did it.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch01lev1sec3.html (2 of 4) [03.07.2007 11:48:10]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 1.3. Web Browsers

Because the majority of web browsers are produced by corporations, they are limited in the number of
potential developers to employees and consultants of the corporation. Firefox, on the other hand, is open
source. This means that although there is still a limited potential pool of developers, the pool is much
largersay, about the population of the planet, minus two (Bill Gates and Steve Baulmer).

This line of reasoning makes the most sense, far more than my other possible explanation. Open source
has better-trained Bit-Gnomes, little people that live in the computer and move the data around. But this
theory really makes sense only after the better part of a bottle of Scotch, so I'll stop here.

1.3.3. Linux Browsers (Konqueror, Ephiphany, Galeon, Opera, and Firefox)

Forgive me, Father, for I have sinned: I really don't use Linux very much. The reason for this omission can
be explained in a brief conversation that occurred between my then boss and me. It started when out of
the blue he said, "It must really piss you off."

My reply was both logical and to the point. "What?"

"The idea that you can't know everything."

After a moment of thought, I replied in the only way I could. I said "Yes, it does!"

For me, Linux is like that. I read about it, but before I get a chance to use what I've read, something comes
up and the promise of knowledge fades like a dream in the first light of day. What I do know, however, is
that Firefox is probably comparable to the Windows versions, and all of the rest are all open source. This
means that if I say that browser A doesn't support B today, by next Thursday, it will, so I'm keeping my
mouth shut. If you want to know whether a browser supports a particular feature, the only way to learn is
to try it.

However, I'd like to point out one thing: Look at the previous subheadingI'll wait. Alright, notice anything?
Yeah, Firefox is listed there. Being open source, Firefox really gets around, which is really comforting. It is
a bit like visiting a city far away, feeling lonely, and finding an old friend there.

1.3.4. The Others (Opera, Safari)

These are the browsers that fight for a percentage of what's left over from the big players: Microsoft
Internet Explorer and Firefox. Although taken together they don't command a large percentage of the
browsers out there, they shouldn't be ignored. It is very possible that the next Internet Explorer or Firefox
will come from this group.

Opera, considered a minor player by some, has taken up two spots in the current top ten. And, no, they're
not being piggy; it's Opera version 8 and Opera version 7. The interesting thing is that Opera appears to be
the sole stand-alone web browser that until very recently charged, although a free version was available for
those willing to tolerate advertisements. In this day of "free" web browsers, any browser that charged and
survived definitely deserves a closer look.

A relative newcomer, Apple Computer's Safari is, at least, according to the specs and everything I've heard
from Mac worshippers, a solid featurepacked browser. Although Apple is currently only a minor player in
the computing world, excluding the iPod, its ease-of-use is bound to keep it going for the foreseeable
future. So Safari shouldn't lightly be ignored.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch01lev1sec3.html (3 of 4) [03.07.2007 11:48:10]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 1.3. Web Browsers

In addition to the aforementioned web browsers, there are a slew of others with much smaller user bases.
These relative unknowns include browsers for the visually impaired, text-only browsers, and browsers that
run on mobile devices. Unfortunately, having used Microsoft's Pocket Internet Explorer 2002 (PIE), I really
wouldn't expect much in the way of Ajax support in the near future.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch01lev1sec3.html (4 of 4) [03.07.2007 11:48:10]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 1.4. A Brief Introduction to Cross-Browser Development

1.4. A Brief Introduction to Cross-Browser Development

Knowledge of different browsers, their capabilities, or merely their existence is often an aid in a discipline
called cross-browser development. Cross-browser development can be one of the most exciting
programming disciplines; unfortunately, in programming, "exciting" isn't usually a good thing. The problem
is that, in most instances, cross-browser development is essentially writing the same routines two or more
times, slightly different each time. Personally, I get a feeling of satisfaction whenever I get a routine to
work, but when coding a cross-browser, getting it to work in one browser is only half the job.

The issue with cross-browser development is that some "features" that are available on one browser either
aren't available on another or have slightly different syntax. Imagine the feeling of satisfaction of solving a
particularly thorny problem in Firefox only to have the same page crash and burn in Internet Explorer.
Take, for example, the serialization of XML in Firefox; it works great, but try the same code in Internet
Explorer, and here be monsters!

To avoid the monsters, it is necessary to understand where they usually hang around waiting for the
unsuspecting developer. But first let's establish where the monsters don't reside; for example, the standard
data types such as Boolean, numeric, and string are pretty safe. The same can be said for the statements,
such as flow-control statements and assignment statements.

It is just too bad the same cannot be said for objects and event handlers. At least for me, this is where
most of the problems arise. Everything will be going along fine, with the page working perfectly right up to
point that either there is a spectacular failure, or worse, the page just simply stops working. Fortunately,
with a little knowledge and a little planning, it is possible to avoid these web development monsters that
live where the standards don't quite mesh with reality.

1.4.1. Casualties of the Browser Wars

Cross-browser compatibility was probably the first casualty of the Browser Wars that began about 20
minutes after the second web browser was developed. In those days, browser developers had a tendency
to play fast and loose with things in an effort to pack features into their browser before the competition. In
the rush to be the first with a new feature, or to play catch-up, no thought was given to the web developers
who would actually have to program for these browsers.

Because of this, it wasn't unusual to see two browsers with essentially the same functionality, but having
entirely different approaches. Look at how the XMLHttpRequest object is implemented in Microsoft Internet
Explorer and in Gecko-based browsers such as Firefox. Internet Explorer, which was the first to implement
this object, made it part of ActiveX. This means that to create an instance of this object in Internet
Explorer, the following syntax is used:

var objXMLHTTP = new ActiveXObject('Microsoft.XMLHTTP');

With Firefox and any other browser that implements the XMLHttpRequest object, the syntax is as follows:

var objXMLHTTP = new XMLHttpRequest();

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch01lev1sec4.html (1 of 2) [03.07.2007 11:48:11]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 1.4. A Brief Introduction to Cross-Browser Development

The reason for this is that ActiveX is a Microsoft-only technology, which means that short of trying to
license it from Microsoft, which I can't imagine would come cheap, it was necessary to find another way.
And, when found, this other way became the standard for all non-Microsoft web browsers.

1.4.2. Market Share Does Not Equal Right

While I'm on the subject of proprietary technologies, I'd like to point out that market share does not equate
to being right. History is full of cases in which the leader, the one with the largest market share, was
blindsided by something that he or she didn't realize was a threat until too late. Does anybody remember
Digital Research's CP/M? If you haven't, CP/M was the premier operating systems in the days when 64K
was considered a lot of memory. In a fractured landscape of operating systems, it had more than half of
the operating system market.

Then there was the release of the IBM PC, which offered a choice of three operating systems: CP/M-86, PC
DOS, and UCSD D-PASCAL. At the time, everybody thought that Digital Research had the new landscape of
the Intel 8086 as theirs for the foreseeable future. Unfortunately, because Microsoft's DOS was $50 less,
market share yielded to economic pressure. Microsoft went on to become the leader in computer operating
systems, while Digital Research faded into history.

1.4.3. The World Wide Web Consortium, Peacekeepers

During the height of the Browser Wars, there was the definite feeling that web browser technology was
advancing at a breakneck pace, so much so that the World Wide Web Consortium seemed to be playing
catch-up. It was a case of putting the cart before the horse, with the web browsers getting features and
then the recommendations being published, which explains the weirdness with the XMLHttpRequest object.

Now the war is, if not over, at least at intermission, giving us time to get some popcorn and a soda. In
addition, whether by accident or by design, this break has given the World Wide Web Consortium time to
move once more into the lead. Unfortunately, the damage is done and we're all forced to code around the
little differences in the various browsers.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch01lev1sec4.html (2 of 2) [03.07.2007 11:48:11]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 1.5. The Server Side of Things

1.5. The Server Side of Things

The purpose of this book is to explain how Ajax works, paying particularly close attention to the web
browser; however, a web browser is only part of the equation. Even for the biggest client-side fan in the
world, it is impossible to totally ignore the web server. A web browser without a web server is totally cut
off, limited to little client-side tasks such as Fahrenheit-to-Celsius conversions or some equivalent. But add
a web server to the mix, and all of a sudden there is an entire universe at your fingertips.

As with the choice of a web browser, the choice of a web server is a deeply personal experience. Requiring
much thought as to the capabilities and features of each and every server available, it is also important to
take into consideration knowledge and training before coming to a decision.

For these reasons and others, in large corporations, decisions like this are usually made by upper
management. After exhausting research consisting of a round of golf and a 17-martini lunch, managers
decide to use whatever their golfing buddy Bob is using and issue a decree. The fact that Bob thinks that a
megabyte is what sharks do to swimmers never really comes up.

But maybe your manager doesn't know Bob, so the decision is up to you. The question comes down to,
what is the middle tier going to be? The answer to this question is totally up to you. Open source or
proprietary? Whether to use PHP, ASP, JSP, ASPX, or Ruby? The answer isn't as clear as you'd think. Feel
like using PHP and Internet Information Server? Not a problem, just download and install PHP. If ASP .Net
and Apache is your thing, try Mono. I'm not here to make the decision for you; regardless of the server
side, Ajax will work on the client side.

1.5.1. Apache

First and foremost, Apache is not a web server developed by Native Americans; the name is, in fact, a pun.
In the early days of the Apache Project, the server was patched nearly daily, leading someone to declare
that it was "a patchy" server. Needless to say, the name stuck.

Things have changed quite a bit since those early days; Apache has been the most popular server since the
latter half of the 1990s. At the time that I'm writing this, more than two-thirds of web servers use Apache,
which says a lot about stability.

1.5.2. Internet Information Server

IIS, as it is known to those of us who use it, is Microsoft's answer to Apache. In fact, most of the examples
in this book use IIS on the server side. Don't get excitedit isn't because it is better; it is only because it
comes bundled with Windows XP Pro. It comes down to the whole Internet Explorer thing; I'm lazy, and I
use it at my day job.

1.5.3. The Remaining Players

Yes, there are other web servers beyond the big two. For example, there is the CERN Server, brought to
you by the same people who created the World Wide Web. Another choice is NCSA HTTPd, from the
National Center for Supercomputing Applications at the University of Illinois in Urbana, Illinois.
Unfortunately it is no longer under development, which is too bad; I, for one, would like a web server from

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch01lev1sec5.html (1 of 2) [03.07.2007 11:48:11]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 1.5. The Server Side of Things

HAL's hometown.

I'd like to mention another "minor" server: WEBrick. Technically considered an "HTTP server library" for
creating web servers, it is included with downloads of the Ruby programming language. Note that the
quotes are mine because it just isn't natural to be able to create a web server with only a few lines of code.
WEBrick falls into the "tools to make tools" category, which I cover later.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch01lev1sec5.html (2 of 2) [03.07.2007 11:48:11]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 1.6. We Learn by Doing

1.6. We Learn by Doing

The problem with working in the computing field is that technology insists on advancing. Learn something
new today, and 2 years down the road, it is obsolete. Because of this, it's necessary to continue learning
the latest new technology, which means lots of reading and lots of training. While at Bell Labs, I formulated
two rules of training that I'd like to share with you:

1.

Training will be given far enough in advance of the project that there is sufficient time to forget
everything learned.

2.

If sufficient time does not exist for the first rule, the training will take place a minimum of 6 months
after the project has been completed.

These rules have proved true every place that I have ever worked throughout my career. Banks, insurance,
manufacturing, whateverit doesn't matter. These rules have always held true.

There is, however, a way to skirt these rules. Simply try the examples, play with them, alter the code,
make it better, break it, and fix it. There is no substitute for immersing yourself in any subject to learn that
subject. It might be difficult at first, and sometimes it might even be painful, but the easiest way to learn is
by doing.

1.6.1. Coding by Hand

Currently, coding web applications by hand has fallen out of favor, and rightly so, replaced by packaged
components that can be dragged and dropped. Unfortunately, although the practice of using components
means that individual pages are developed quicker, it also means that it isn't always easy to determine
what the components are actually doing behind the scenes. This is especially true when the underlying code
isn't fully understood because the developers skipped ahead to the parts that will keep them employed.

However, when learning something new, or trying to explain it to someone else, I have a strong tendency
to code an application by hand. In part, the reason for this is that it gives me a better feel for the new
subject. Of course, the other part is that I coded classic ASP for quite some time and spend a great deal of
time writing client-side workarounds for managers who insisted on the use of design-time controls.
Although it improved developers' JavaScript skills considerably, it had the same effect upon those
developers that mercury had upon hat makers in the nineteenth century. Don't believe me? Go ask Alice.

Seriously, though, the idea of coding at least the first couple of applications by hand is to attempt to get a
feel for the technology. Feel free to ignore my advice on this subject. What does matter, however, is
making it easier for us in the end, which is why tools are important.

1.6.2. Tools to Make Tools

If the idea of coding by hand is repugnant to you, consider this: On some level, somebody coded something

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch01lev1sec6.html (1 of 2) [03.07.2007 11:48:12]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 1.6. We Learn by Doing

by hand. It is a pretty sure bet that there are no software tool trees, although I have used several that
weren't quite ripe yet.

Many developers have issues with the very concept of creating their own common tools for web
development. The first issue probably relates to the idea of job security; after all, if a company has a
"developer in a box," why would it pay for the real thing? The answer to this is relatively simple: What if
they want changes to what's in the box? Let me put it another way: Have you ever written some code and
played the "I bet you can't guess what this does" game? I have, and not only is it good for feeding the old
ego, but it is a blast, too! Of course, there is the tendency to strut around like Foghorn Leghorn afterward,
but as long as you avoid the young chicken hawk developer and the old dog developer, everything will be
fine. Also remember that, by himself, the weasel isn't a real threat.

Another issue is the "I can tell you, but then I'll have to kill you" mindset. A while back, I had a manager
with this mindset; she seemed to withhold required information just for fun from every assignment. For
example, she once gave me the assignment to produce a report from a payroll file and then told me that I
didn't have high enough security to see either the file or the file layout. Somebody once said that
information is power, and some people take it to heart. The danger with this philosophy is that information
can literally be taken to the grave, or it is so out-of-date that it no longer applies.

Finally, there's what I believe to be the biggest issue, which I call "The Wonder Tool"; it dices, it slices, and
it even makes julienne fries. Similar to the "feature creep" that we're all familiar with, but with a difference,
it starts out unrealistic. "The Wonder Tool" is a mouse designed to government specifications, more
commonly called an elephant. For the interest of sanity (yeah, right, me talking about sanity), it makes far
more sense to break up the tool into more manageable pieces. For example, let's say that we need
common tools to do X and Y, both of which need a routine to do Z. Rather than code Z twice as part of X
and Y, it makes more sense to code a separate tool to do Z and have X and Y use this tool. And who
knows? Sometime in the future, you might need a few Zs, and you'll already have them.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch01lev1sec6.html (2 of 2) [03.07.2007 11:48:12]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 1.7. Summary

1.7. Summary

The intention behind this chapter is that it serve as something of an explanation of the humble beginnings
of the World Wide Web, starting with a single server and growing into the globe-spanning network that it is
today.

First there was a brief explanation of both static and dynamic web pages, including the components that go
into building each type of page. Components such as HTML, CSS, and JavaScript were briefly covered.
Several examples of "DHTML out of control" were also mentioned; I, for one, can't wait for the video.

There was also a brief description, or, in some cases, an honorable mention, of several different web
browsers. These browsers included some of the more popular web browsers for Linux, Windows, and Mac
OS X. In addition, mention was made of some of the more annoying problems with cross-browser
development.

The server side of things was briefly covered, to illustrate that there are always alternatives to whatever is
being used currently. Also, I mentioned how it might be possible to mix and match technology, such as ASP.
NET on Linux.

Finally, I covered the biggest problem with technical training today: how to apply it and how to circumvent
it. Regardless of who we are, we learn by doing, and that information is like cookies; it's meant to be
shared.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch01lev1sec7.html [03.07.2007 11:48:12]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2. Introducing Ajax

Chapter 2. Introducing Ajax

A little more than a year ago, an article by Jesse James Garrett was published describing an advanced web
development technique that, even though individual components of it have existed for years, few web
developers had ever stumbled across. I can guess the reason for this lack of knowledge; basically, in the
last few years, the need to produce measurable results has gotten in the way of the need to practice our
craft. Or, as a former manager of mine would say, it's "that mad scientist stuff," except, as I recall, he used
another word in place of stuff. Unfortunately, nine times out of ten, the need to produce measurable results
gets in the way of "that mad scientist stuff."

However, it's the tenth time that's important. The article didn't stop at just describing the technique; it
went on to say that Google used the very same technique. Invoking that single name, Google, was enough
to change a point of view. Quicker than you could say, "Igor, the kites!" the phrase "that mad scientist
stuff" morphed into "Why aren't we doing it this way?" The reason for this change of perception is that the
name Google made this a technique that could produce measurable results. All it took was that single
name, Google, to make using the XMLHttpRequest object so that the browser could communicate with the
server without the page ever unloading and reloading into an acceptable practice.

This chapter introduces you to that practice, the practice of updating web pages with information from the
server. Beyond the XMLHttpRequest object, which has been around for several years as a solution looking for
a problem, there is nothing weird needed. Basically, it is how the individual pieces are put together. When
they're put together in one way, it is nothing more than a pile of parts; however, when put together in
another way, the monster essentially rises from its slab.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02.html [03.07.2007 11:48:12]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.1. Not a Mockup

2.1. Not a Mockup

A few years ago, I demonstrated an application that did what I just described. The demo ran for more than
2 hours with the same questions repeated over and over.

"It's a mockup, right?"

"No, it is the actual application."

"It can't be. The screen doesn't blink."

"That's because XML, HTTP, and SOAP are used to get the data directly from the server. JavaScript then
updates only the parts of the page that have changed."

"It's a mockup, right?"

And so on. It took the client more than 2 hours to realize that the database was actually being updated
without the page "blinking," as he referred to it.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec1.html [03.07.2007 11:48:13]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.2. A Technique Without a Name

2.2. A Technique Without a Name

Now, if I had been smart, I would have given the technology a name then and there, and thus ensured my
place in Web history, shutting up the client as well. After all, a name is a thing of power, and the client, not
wanting to sound stupid for not knowing what the acronym meant, would have saved more than 2 hours of
my life that were spent re-enacting the scene of peasants with pitch forks from the 1931 version of
Frankenstein, minus the tongs. Unfortunately, I drew an absolute blank and just called it as it was.

With apologies to the people who make the cleanser and the detergent, legend has it that the original Ajax
was the second most powerful of the Greek warriors at Troy. Even though he had some issues (who in the
Illiad didn't?), his strength and skill in battle were second to none (well, okay, second only to Achilles). In
naming the technology Ajax, Jesse James Garrett gave the technology both Ajax's strengths and issues.

2.2.1. Names

An old idea dates back to the dawn of human civilization that to know someone's or something's true name
is to have power over that person or thing. It is one of the basic concepts of what is commonly referred to
as magic, and although magic isn't real, the idea that names can hold power isn't very far from the truth.
Consider, if you will, a resumé. If ever a document held names of power, a resumé is it. Not very long ago,
resumés invoking words such as JavaScript, DHTML, and XML were looked upon with envy, perhaps even
awe. After all, for a little while, it seemed as though web developers were rock stars that, thankfully, were
never asked to sing. Unfortunately, those names are now considered passé or even a little old-fashioned.

In his essay describing this web development technique, Mr. Garrett did one final thing; he gave it a name,
Ajax, and thus gave us power over it. The acronym refers to Asynchronous JavaScript And XML, and
whether you love or hate the name, the technology now has a name. At the very least, this naming means
that we can describe what we've been doing at work. Ajax is a lot easier to say than, "I've been using client-
side JavaScript, SOAP, and XML to obtain data directly from the server using XMLHTTP instead of the
standard unload/reload cycle."

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec2.html [03.07.2007 11:48:13]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.3. What Is Ajax?

2.3. What Is Ajax?

As stated previously, Ajax stands for Asynchronous JavaScript And XML, but what exactly does that mean?
Is the developer limited to only those technologies named? Thankfully, no, the acronym merely serves as a
guideline and not a rule. In some ways, Ajax is something of an art, as with cooking. Consider, for a
moment, the dish called shrimp scampi; I've had it in restaurants up and down the East Coast of the United
States, and it was different in every restaurant. Of course, there were some common elements, such as
shrimp, butter, and garlic, but the plethora of little extras added made each dish unique.

The same can be said of Ajax. Starting with a few simple ingredients, such as HTML and JavaScript, it is
possible to cook up a web application with the feel of a Windows or, if you prefer, a Linux application. You
might have noticed earlier that my ingredients list omitted XML; the reason for that omission is that XML is
one of those optional ingredients. This might sound strange because the x in Ajax stands for XML, but it is
also useful in those instances when a particular client does not support XML or doesn't support some of the
more "mad scientist" methods of communicating with the server.

2.3.1. The Ajax Philosophy

How the clientin this case, a web browsercommunicates with the server is one of the cornerstones of Ajax.
Designed with the philosophy of not using bandwidth just because it's there, a web page coded using these
techniques won't go through the unload/reload cycle, or "blink," as some refer to it, unless absolutely
necessary. Why send 100,000 bytes back and forth to the server when 300 bytes will suffice?

Of course, this means that, to the casual observer, the browser is behaving strangely because sometimes
only selected parts of a web page are updated.

This means that the page won't "blink," as the peasanter, clientso elegantly put it. Instead, in a wink of an
eye, parts of the page will update quicker than they believed possible. The speed difference can be
compared to the difference between accessing a file on a floppy disk and accessing a file on the hard disk.
Personally, my reaction was along the lines of "I am never going back!" But individual results can vary, so
consult your doctor.

Another concept that Ajax uses is, why not make the client work for a living? Have the client's web browser
handle parts of the processing rather than just parrot preprocessed information on the screen. The initial
page load would consist of data and JavaScript, instructions on what to do with the data. To expand upon
the earlier mad scientist analogy, imagine a do-it-yourself "mad scientist" kit consisting of a pile of parts
and a minion that answers to Igor, and you'll get the idea.

With an Ajax application, the browser is expected to actually process the data supplied by the server. This
means not only the little things that DHTML did, such as rollovers and hierarchical drop-down navigation
menus, but real things, such as posting to the server and handling the response, whether it is handling it
either synchronously or asynchronously. In addition, Ajax applications need to be able to not only find
objects on the HTML page but also, if necessary, update them.

This leads to the question of how, short of the whole kites and Igor methodology, does one accomplish this
unholy task? The answer is that it depends on just how and how far one wants to pursue this course. There
are three ways to bring life to an Ajax application, and each has its own advantages and disadvantages. It
all depends on just which parts of the Ajax toolset the developers are comfortable with. It also depends on
how comfortable you are with excluding certain members of the planet from the application. Yes, I'm

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec3.html (1 of 2) [03.07.2007 11:48:13]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.3. What Is Ajax?

talking about those people who are still running Internet Explorer version 2.0. Fortunately, it isn't my job to
issue decrees concerning browser compatibility; however, it is my job to cover how to implement an Ajax
application.

2.3.2. Meddling with Unnatural Forces

Earlier I explained how I, and probably quite a few others, stumbled upon the then nameless technique that
was to become Ajax. However, that was not my first brush with what my supervisor called "mad scientist
stuff." Several years earlier, as a consultant for the group insurance division of a large insurance company,
I had the good fortune to get the assignment to automate a paper-based request system.

Armed with a file layout, salespeople would try to sell group insurance to companies and, theoretically,
would explain that enrollee information needed to conform to the file layout. However, possibly in an effort
to make the sale and thereby get the commission, they would accept it in any conceivable electronic
format. XML, Excel, or flat filesit was all the same to them because they would fill out a multipage form and
the minions in systems would take care of it. Needless to say, quite a few of these pieces of paper got lost,
got coffee spilled on them, or simply got filed under "it's real work and I don't want to do it" by the folks in
systems.

Arriving onsite, I quickly got to work researching the various forms and how they were handled, which led
to documenting how the process should work. Because I was the sole designer and developer for this new
system, there was, shall I say, some freedom as to the technologies at my disposal. The back end was
classic ASP and SQL Server, both of which are beyond the scope of this book. The front end, however, was
a combination of HTML, JavaScript, and DOM, with a little CSS thrown in for good measure.

Here's how it worked: The user would enter multiple pages of information concerning the request. This
information would be cached on the client side until the user reached the end of the chain of pages and
clicked the final submit button. The caching was accomplished through the use of HTML frames; the first
frame, as the user input frame, filled the entire browser's window. However, the second frame, the data
frame, was the interesting one because it wasn't visible even though it was always there.

This trick, for lack of a better word, with hidden frames was that they had the advantage of speeding up
the application. The speeding up was due to reduced interaction with both the web server and the database
server. Another benefit was that, in addition to the performance improvements, the application seemed to
flow better because the input was broken into convenient chunks instead of the usual approach of entering
between 80 and 200 items at one time.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec3.html (2 of 2) [03.07.2007 11:48:13]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.4. An Ajax Encounter of the First Kind

2.4. An Ajax Encounter of the First Kind

Now that I've gushed about the why of this technique, let me offer a little insight on the how of this
technique. Let's start with the three HTML documents shown in Listing 2-1, Listing 2-2, and Listing 2-3.
Some readers might not consider this a true example of Ajax, but it does share many of the same qualities
of Ajax, in much the same way that a Star Trek fan and a Star Wars fan share many of the same qualities.

Listing 2-1. HTMLfs.htm

<html>
 <head>
 <title>HTMLfs</title>
 </head>
 <frameset rows="100%,*">
 <frame name="visible_frame" src="visible.htm">
 <frame name="hidden_frame" src="hidden.htm">
 <noframes>Frames are required to use this Web site.</noframes>
 </frameset>
</html>

Listing 2-2. visible.htm

<html>
 <head>
 <title>visible</title>
 <script language="javascript">
/*
 Perform page initialization.
*/
function initialize() { }

/*
 Handle form visible form onchange events. Values from the visible
 form are copied to the hidden form.
*/
function changeEvent(obj)
{
 parent.frames[1].document.getElementById(obj.id).value = obj.value;
}

/*
 Submits the form in the hidden frame then reloads the hidden frame.
*/
function submitForm() {
 parent.frames[1].document.getElementById('hidden_form').submit();
 parent.frames[1].document.location = "hidden.htm";

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec4.html (1 of 5) [03.07.2007 11:48:14]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.4. An Ajax Encounter of the First Kind

}
 </script>
 </head>
 <body onload="initialize()">
 <form name="visible_form" id="visible_form"></form>
 </body>
</html>

Listing 2-3. hidden.htm

<html>
 <head>
 <title>hidden</title>
 <script language="javascript">
var reBrowser = new RegExp('internet explorer','gi');

/*
 Perform page initialization, waits for the visible frame to load and
clones the hidden form to the visible form.
*/
function initialize()
{
 var hiddenForm = document.getElementById('hidden_form');

 if(reBrowser.test(navigator.appName))
 {
 while(parent.document.frames.item(0).document.readyState !=
'complete') { }

 parent.frames[0].document.getElementById('visible_form').innerHTML =
hiddenForm.innerHTML;
 }
 else
 {
 var complete = false;

 while(!complete)
 {
 try
 {

parent.frames[0].document.getElementById('visible_form').appendChild
(hiddenForm.cloneNode(true));

 complete = true;
 }
 catch(e) { }
 }
 }
}
 </script>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec4.html (2 of 5) [03.07.2007 11:48:14]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.4. An Ajax Encounter of the First Kind

 </head>
 <body onload="initialize()">
 <form name="hidden_form" id="hidden_form" action="post.aspx">
 <h1>Address Information</h1>
 <table border="0" width="100%">
 <tr>
 <th width="30%" align="right">Name: </th>
 <td align="left">
 <input type="text" name="name" id="name" value=""
onchange="changeEvent(this)">
 </td>
 </tr>
 <tr>
 <th align="right">Address Line 1: </th>
 <td align="left">
 <input type="text" name="address1" id="address1" value=""
onchange="changeEvent(this)">
 </td>
 </tr>
 <tr>
 <th align="right">Address Line 2: </th>
 <td align="left">
 <input type="text" name="address2" id="address2" value=""
onchange="changeEvent(this)">
 </td>
 </tr>
 <tr>
 <th align="right">City: </th>
 <td align="left">
 <input type="text" name="city" id="city" value=""
onchange="changeEvent(this)">
 </td>
 </tr>
 <tr>
 <th align="right">State: </th>
 <td align="left">
 <input type="text" name="state" id="state" value=""
onchange="changeEvent(this)">
 </td>
 </tr>
 <tr>
 <th align="right">Zip Code: </th>
 <td align="left">
 <input type="text" name="zip" id="zip" value=""
onchange="changeEvent(this)">
 </td>
 </tr>
 </table>

 <input type="button" value="Submit" onclick="submitForm()">
 </form>
 </body>
</html>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec4.html (3 of 5) [03.07.2007 11:48:14]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.4. An Ajax Encounter of the First Kind

2.4.1. A World Unseen

Any developer familiar with the use of frames and framesets will find Listing 2-1 pretty normal looking.
However, one item isn't plain vanilla: the rows="100%,*" attribute on the frameset element, which states
that the first frame gets 100 percent of available rows. The asterisk (*) states that anything left over goes
to the second frame. In this example, there is nothing left over, so it is the equivalent of coding zero. This
results in the first frame being visible and the second frame being hidden. In essence, this is a sneaky way
to hide what's going on from prying eyesnamely, the user. The next two listings are the visible frame,
Listing 2-2, and the hidden frame, Listing 2-3. Listing 2-3 is where the real mad science happens.

2.4.2. Enter JavaScript

Listing 2-2 is short and sweet, basically two short JavaScript functions that don't appear to do anything.
The first of these functions, changeEvent, is just what it says it is, a handler for an on change event. When
fired, it copies the value associated with the current object on the current frame to one with the same ID
on the hidden frame. The second function, submitForm, submits a form; however, like the previous function,
it works with the hidden frame by locating and submitting the form there.

This leaves just one question: Where does the HTML for the visible form come from? The answer lies in
Listing 2-3, the one for the hidden frame. Like the visible frame, it has JavaScript functions and a form.
There is, however, a major difference in the form. Unlike its visible counterpart, it has all of the HTML
necessary to make a nice little form. The trick is getting it from the hidden frame to the visible frame.

This magic is accomplished in the pages' on load event handler, initialize. This function waits for the
other frame to load and then copies this form's inner HTML to the other frame. When this is done, the
result is the normal-looking web page shown in Figure 2-1. The way it behaves, however, is almost
application-like, with parts of the visible page being updated each time the hidden frame does an unload/
reload cycle.

Figure 2-1. A normal-looking web page that functions almost like a desktop
application

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec4.html (4 of 5) [03.07.2007 11:48:14]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/02ajx01_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.4. An Ajax Encounter of the First Kind

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec4.html (5 of 5) [03.07.2007 11:48:14]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.5. An Ajax Encounter of the Second Kind

2.5. An Ajax Encounter of the Second Kind

As flexible and cross-browser capable as the "hidden frames" method of implementing Ajax is, all that has
been accomplished is the "AJ" part of Ajax. Which is sort of like the sound of one hand clapping, and that
usually means that Igor has been slacking off again. Thankfully, there's another parteh, make that
technologyavailable: XML. The problem with XML is that it has developed a reputation of being difficult;
however, it doesn't have to be. Just keep in mind that, in those situations, code has a tendency to follow
you around, like Igor.

2.5.1. XML

In its simplest form, XML is nothing more than a text file containing a single well-formed XML document.
Come to think of it, the same is pretty much true in its most complex form as well. Looking past all of the
hype surrounding XML, it is easy to see that XML is merely the text representation of selfdescribing data in
a tree data structure. When this is understood, all that is left are the nitty-gritty little details, like "What's a
tree data structure?" and "How exactly does data describe itself?"

A tree data structure is built of nodes, with each node having only one node connected above it, called a
parent node. The sole exception to this rule is the root node, which has no parent node. Nodes can also
have other nodes connected below, and these are called child nodes. In addition, nodes on the same level
that have the same parent node are called children. Figure 2-2 is a graphical representation of a tree data
structure.

Figure 2-2. Tree data structure

[View full size image]

Figure 2-2 can also be represented as the XML document shown in Listing 2-4.

Listing 2-4. XML Representation of the Same Information as in Figure 2-2

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec5.html (1 of 5) [03.07.2007 11:48:15]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/02ajx02_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.5. An Ajax Encounter of the Second Kind

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<library>
 <book>
 <series>The Wonderland Gambit</series>
 <title>The Cybernetic Walrus</title>
 <author>Jack L. Chalker</author>
 </book>
 <book>
 <series>The Wonderland Gambit</series>
 <title>The March Hare Network</title>
 <author>Jack L. Chalker</author>
 </book>
 <book>
 <series>The Wonderland Gambit</series>
 <title>The Hot-Wired Dodo</title>
 <author>Jack L. Chalker</author>
 </book>
</library>

The nodes shown in Listing 2-4 are called elements, which closely resemble HTML tags. And like HTML tags,
start tags begin with < while end tags begin with </. However, unlike HTML tags, all XML tags either must
have a closing tag or be self-closing or must be empty elements. Self-closing tags are recognizable by the
ending />; if the forward slash was omitted, the document would not be a well-formed XML document. In
addition, to all elements being either closed or self-closing, the tags must always match up in order. This
means that the XML document in Listing 2-5 is well formed but the XML document in Listing 2-6 is not well
formed. In a nutshell, "well formed" means that there is a right place for everything. Feet are a good
example of this: Imagine if Igor used two left feet; the monster wouldn't be well formed and wouldn't be
able to dance, either.

Listing 2-5. A Well-Formed XML Document

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<one>
 <two>
 <three>
 <four/>
 </three>
 </two>
</one>

Listing 2-6. An XML Document That Is Not Well Formed

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec5.html (2 of 5) [03.07.2007 11:48:15]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.5. An Ajax Encounter of the Second Kind

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<one>
 <two>
 <three>
 <four/>
 </two>
 </three>
</one>

As neat and nifty as the hidden frames method of communicating with the server is, the addition of an XML
document provides another option, XMLHTTP, or, as some refer to it the XMLHttpRequest object. Note all
those capital letters, which are meant to indicate that it is important. The XMLHttpRequest object sends
information to and retrieves information from the server. Although it doesn't have to be, this information is
usually in the form of XML and, therefore, has the advantage of being more compact than the usual HTML
that the server sends. Just in case you're interested, this was the means of communication for that page
that I had handwritten and was using during the "it doesn't blink" fiasco.

2.5.2. The XMLHttpRequest Object

Unlike the hidden frames approach, in which the unload/reload cycle is still there but is tucked out of the
way, using the XMLHttpRequest object means finally saying good-bye to the unload/reload cycle that we've
all come to know and loathe. This means that, in theory, if not in practice, a single page could conceivably
be an entire website. Basically, it's a load-and-go arrangement.

In theory, the original page loads and a user enters information into a form and clicks submit. A JavaScript
event handler sends the user's information to the server via XMLHTTP and either waits penitently for a
response (synchronous) or sets an event handler for the response (asynchronous). When the response is
received, the JavaScript takes whatever action that it is programmed to, including updating parts of the
page, hence the lack of an unload/reload cycle or "blink." This is great theory, but a theory is pretty useless
if it cannot be put into practice; let's take a look in Listings 2-7 and 2-8 at how this can be implemented
from a client-side perspective.

Listing 2-7. Example Ajax Web Page

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec5.html (3 of 5) [03.07.2007 11:48:15]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.5. An Ajax Encounter of the Second Kind

<html>
 <head>
 <title>AJAX Internet Explorer Flavor</title>
 <script language="javascript">
var dom = new ActiveXObject('MSXML2.FreeThreadedDOMDocument.3.0');
var objXMLHTTP = new ActiveXObject('Microsoft.XMLHTTP');

/*
 Obtain the XML document from the web server.
*/
function initialize()
{
 var strURL = 'msas.asmx/getTime';

 objXMLHTTP.open('POST',strURL,true);
 objXMLHTTP.onreadystatechange = stateChangeHandler;

 try
 {
 objXMLHTTP.send();
 }
 catch(e)
 {
 alert(e.description);
 }
}

/*
 Handle server response to XMLHTTP requests.
*/
function stateChangeHandler()
{
 if(objXMLHTTP.readyState == 4)
 try
 {
 dom.loadXML(objXMLHTTP.responseText);
 document.getElementById('time').innerText =
dom.selectSingleNode('time').text;
 }
 catch(e) { }
}
 </script>
 </head>
 <body onload="initialize()">
 <div id="time"></div>
 </body>
</html>

Listing 2-8. XML Document

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec5.html (4 of 5) [03.07.2007 11:48:15]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.5. An Ajax Encounter of the Second Kind

<?xml version="1.0" encoding="utf-8" ?>
<time>3:30 PM</time>

If this were CSI, Columbo or The Thin Man, now is the time when the hero explains how the deed was
done. It goes something like this: The HTML page loads, which causes the onload event handler,
initialize, to fire. In this function, the XMLHttpRequest object's open method is invoked, which only sets the
method (POST), gives the relative URL of a web service, and states that the request will be asynchronous
(true). Next, the onreadystatechage event handler is set; this is the function that handles what to do when
the web service responds. Finally, the send method of the XMLHttpRequest object is invoked, sending our
request on its merry way.

When a response is received from the web service, the stateChangeHandler is fired. You've probably noticed
the test of the readyState property. The reason for this is that there are more than one possible readyState
values, and we're interested in only four, complete. When the response is complete, the result is loaded
into an XML document, the appropriate node is selected, and the HTML is updated.

Listings 2-7 and 2-8 could be considered by some a pure example of Ajax. Unfortunately, the way it is
currently coded, browsers other than Microsoft Internet Explorer would have real issues with it. What sort
of issues? The code simply won't work because of differences in how XML and the XMLHttpRequest object
work in various browsers. This doesn't mean that this form of Ajax is an IE-only technology; it simply
means that careful planning is required to ensure cross-browser compatibility.

On the subject of compatibility, I don't want to scare you off, but let me point out that the more advanced
the client-side coding is, the more likely it is that there will be issues. The majority of these issues are
merely little annoyances, similar to flies buzzing around. These "flies" aren't fatal, but it is a good idea to
keep these things in mind.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec5.html (5 of 5) [03.07.2007 11:48:15]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.6. An Ajax Encounter of the Third Kind

2.6. An Ajax Encounter of the Third Kind

The fifth part of Ajax, an optional part, isn't for the faint of heart. It transcends the "mad scientist stuff"
into the realm of the magical, and it is called eXtensible Stylesheet Language for Transformations, or XSLT.
In other words, if Ajax really was mad science and it was taught in school, this would be a 400-level
course. Why? The reason is that the technology is both relatively new and very, very browser dependent.
However, when it works, this method provides an incredible experience for the user.

2.6.1. XSLT

XSLT is an XML-based language that is used to transform XML into other forms. XSLT applies a style sheet
(XSLT) as input for an XML document and produces outputin most cases, XHTML or some other form of
XML. This XHTML is then displayed on the browser, literally in the "wink of an eye."

One of the interesting things about XSLT is that, other than the XML being well formed, it really doesn't
make any difference where the XML came from. This leads to some interesting possible sources of XML. For
example, as you are probably aware, a database query can return XML. But did you know that an Excel
spreadsheet can be saved as XML? XSLT can be used to transform any XML-derived language, regardless of
the source.

Listing 2-9 shows a simple Internet Exploreronly web page along the same lines as the earlier examples. By
using XSLT and the XMLHttpRequest object to retrieve both the XML and XSLT shown in Listing 2-10, it is
extremely flexible. This is because after the initial page is loaded, any conceivable page can be generated
simply by changing the XML and/or the XSLT. Sounds pretty powerful, doesn't it?

Listing 2-9. A Simple IE-Only Web Page

<html>
 <head>
 <title>AJAX Internet Explorer Flavor</title>
 <script language="javascript">
var dom = new ActiveXObject('MSXML2.FreeThreadedDOMDocument.3.0');
var xslt = new ActiveXObject('MSXML2.FreeThreadedDOMDocument.3.0');
var objXMLHTTP;

/*
 Obtain the initial XML document from the web server.
*/
function initialize()
{
 doPOST(true);
}

/*
 Use the XMLHttpRequest to communicate with a web service.
*/
function doPOST(blnState) {
 var strURL = 'http://localhost/AJAX/msas.asmx';

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec6.html (1 of 5) [03.07.2007 11:48:16]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.6. An Ajax Encounter of the Third Kind

 objXMLHTTP = new ActiveXObject('Microsoft.XMLHTTP');

 objXMLHTTP.open('POST',strURL,true);

 if(blnState)
 objXMLHTTP.setRequestHeader('SOAPAction','http://
tempuri.org/getState');
 else

 objXMLHTTP.setRequestHeader('SOAPAction','http://tempuri.org/getXML');

 objXMLHTTP.setRequestHeader('Content-Type','text/xml');

 objXMLHTTP.onreadystatechange = stateChangeHandler;

 try
 {
 objXMLHTTP.send(buildSOAP(blnState));
 }
 catch(e)
 {
 alert(e.description);
 }
}

/*
 Construct a SOAP envelope.
*/
function buildSOAP(blnState) {
 var strSOAP = '<?xml version="1.0" encoding="UTF-8"?>';
 strSOAP += '<soap:Envelope
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">';
 strSOAP += '<soap:Body>';

 if(blnState)
 {
 strSOAP += '<getState xmlns="http://tempuri.org/">';
 strSOAP += '<state_abbreviation/>';
 strSOAP += '</getState>';
 }
 else
 {
 strSOAP += '<getXML xmlns="http://tempuri.org/">';
 strSOAP += '<name>xsl/state.xsl</name>';
 strSOAP += '</getXML>';
 }

 strSOAP += '</soap:Body>';
 strSOAP += '</soap:Envelope>';

 return(strSOAP);
}

/*

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec6.html (2 of 5) [03.07.2007 11:48:16]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.6. An Ajax Encounter of the Third Kind

 Handle server response to XMLHTTP requests.
*/
function stateChangeHandler()
{
 if(objXMLHTTP.readyState == 4)
 try
 {
 var work = new ActiveXObject('MSXML2.FreeThreadedDOMDocument.3.0');

 work.loadXML(objXMLHTTP.responseText);

 switch(true) {
 case(work.selectNodes('//getStateResponse').length != 0):
 dom.loadXML(objXMLHTTP.responseText);
 doPOST(false);

 break;
 case(work.selectNodes('//getXMLResponse').length != 0):
 var objXSLTemplate = new
ActiveXObject('MSXML2.XSLTemplate.3.0');

xslt.loadXML(work.selectSingleNode('//getXMLResult').firstChild.xml);

 objXSLTemplate.stylesheet = xslt;

 var objXSLTProcessor = objXSLTemplate.createProcessor;

 objXSLTProcessor.input = dom;
 objXSLTProcessor.transform();

 document.getElementById('select').innerHTML =
objXSLTProcessor.output;

 break;
 default:
 alert('error');

 break;
 }
 }
 catch(e) { }
}
 </script>
 </head>
 <body onload="initialize()">
 <div id="select"></div>
</html>

Listing 2-10. The XML and XSLT Part

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec6.html (3 of 5) [03.07.2007 11:48:16]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.6. An Ajax Encounter of the Third Kind

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html" version="1.0" encoding="UTF-8" indent="yes"/>

 <xsl:template match="/">
 <xsl:element name="select">
 <xsl:attribute name="id">state</xsl:attribute>
 <xsl:attribute name="name">selState</xsl:attribute>
 <xsl:apply-templates select="//Table[country_id = 1]"/>
 </xsl:element>
 </xsl:template>

 <xsl:template match="Table">
 <xsl:element name="option">
 <xsl:attribute name="value"><xsl:value-of
select="state_abbreviation"/></xsl:attribute>
 <xsl:value-of select="state_name"/>
 </xsl:element>
 </xsl:template>
</xsl:stylesheet>

2.6.2. Variations on a Theme

At first glance, the JavaScript in the previous example appears to be very similar to that shown in Listing 2-
7; however, nothing could be further from the truth. The first of these differences is due to two calls being
made to a web service and the use of XSLT to generate the HTML to be displayed in the browser. Let's look
at this in a little more detail.

First, the only thing that the initialize function does is call another function, doPOST, passing a TRue.
Examining doPOST reveals that the purpose of the true is to indicate what the SOAPAction in the request
header is, http://tempuri.org/getState to get information pertaining to states and provinces from the web

service, or http://tempuri.org/getXML to get XML/XSLT from the web service. The first time through,

however, we're getting the XML.

The second difference, also in doPOST, is the addition of a call to buildSOAP right smack in the middle of the
XMLHttpRequest object's send. This is how arguments are passed to a web service, in the form of texta SOAP
request, in this instance. Checking out buildSOAP, you'll notice that Boolean from doPOST is passed to
indicate what the body of the SOAP request should be. Basically, this is what information is needed from
the web service, states or XSLT.

You'll remember the stateChangeHandler from the earlier set of examples, and although it is similar, there
are a few differences. The first thing that jumps out is the addition of a "work" XML document that is loaded
and then used to test for specific nodes; getStateResponse and getXMLResponse. The first indicates that the
SOAP response is from a request made to the web service's getState method, and the second indicates a
response from the getXML method. Also notice the doPOST with an argument of false in the part of the
function that handles getState responses; its purpose is to get the XSLT for the XSL transformation.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec6.html (4 of 5) [03.07.2007 11:48:16]

http://tempuri.org/getState
http://tempuri.org/getXML
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.6. An Ajax Encounter of the Third Kind

Speaking of a transformation, that is the purpose of the code that you might not recognize in the getXML
portion of the stateChangeHandler function. Allow me to point out the selectSingleNode method used, the
purpose of which is to remove the SOAP from the XSLT. The reason for this is that the XSLT simply won't
work when wrapped in a SOAP response. The final lines of JavaScript perform the transformation and insert
the result into the page's HTML.

The use of XSLT to generate the HTML "on the fly" offers some interesting possibilities that the other two
methods of implementing Ajax do not. For instance, where in the earlier example the look of the page was
dictated by the hard-coded HTML, this doesn't have to be the case when using XSLT. Consider for a
moment the possibility of a page using multiple style sheets to change the look and feel of a page. Also,
with the speed of XSLT, this change would occur at Windows application speeds instead of the usual crawl
that web applications proceed at.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec6.html (5 of 5) [03.07.2007 11:48:16]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.7. The Shape of Things to Come

2.7. The Shape of Things to Come

The sole purpose of this chapter is to offer a glimpse of the shape of things to come, both in this book and
in the industry. All joking aside, this glimpse wasn't the result of mad science or any other dark art. It is
the result of several years of beating various web browsers into submission, consistently pushing a little
further to create rich application interfaces with consistent behavior.

The wide range of technologies that comprise Ajax can be a double-edged sword. On one hand, there is
extreme flexibility in the tools available to the developer. On the other hand, currently Ajax applications are
often sewn together in much the same way that DHTML pages were in the late 1990s. Unfortunately,
although the hand-crafted approach works for furniture and monsters, it relies heavily on the skill level of
Igoreh, the developer.

In future chapters, it is my intention to elaborate on the various techniques that were briefly touched upon
in this chapter. Also, even though Ajax is currently considered a technique that takes longer to develop
than the "traditional" methods of web development, I'll show some ideas on how to reduce this time. After
all, what self-respecting mad scientist cobbles together each and every monster by hand? It's all about
tools to make toolseh, I mean monsters.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec7.html [03.07.2007 11:48:16]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 2.8. Summary

2.8. Summary

This chapter started with a brief introduction to Ajax that included some of the origins and problems
associated with using "mad scientist stuff," such as the accusations of attempting to pass off a mock-up as
an actual application and the inability to describe just how something works. Of course, some people still
will think Corinthian helmets and hoplites at the very mention of Ajax, but you can't please everyone.

Next there was a brief outline of the philosophy behind Ajax, which centers on the idea of not bothering the
server any more than is necessary. The goal is that of reducing, if not eliminating, the unload/reload
cycleor "blink," as some call it. The Ajax philosophy also includes the idea of making the client's computer
work for a living. After all, personal computers have been around in some form for close to 30 years; they
should do some worktake out the trash, mow the lawn, or something.

Finally, I presented the three simple examples of how Ajax can be implemented. The first example,
although not quite Ajax, does much to show something of the first attempts to implement a web application
with the feel of a Windows application. Although it's primitive by today's standard, it is still better than 99
percent of the web pages out there today.

Using the XMLHttpRequest object, the second example is dead on as to what is expected from an Ajax
application. Broken are the bonds that limit updates to the unload/reload cycle that has been confronting us
on the Web since Day 1. In addition, XML plays well with the concept of reducing traffic.

The third and final example pushes Ajax to the current limits with the addition of XSLT to the mix. XSLT
allows XML to be twisted and stretched into any conceivable shape that we can imagine. No longer are our
creations limited to the parts that we can dig up here and there; we can make our own parts on demand.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch02lev1sec8.html [03.07.2007 11:48:16]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3. HTML/XHTML

Chapter 3. HTML/XHTML

If you've made it this far, you're now in the "road warrior" section of the book, where all the reference
materials and bizarre ideas dwell. The origin of this section goes all the way back to the trunk of my
carunless you're British, in which case, the origin of this section goes all the way back to the boot of my
automobile. Until relatively recently, as I previously stated, I was a consultant, a hired gun, a one-man
medicine show, or a resident visitor. No matter which term you prefer, a permanent office with bookshelves
was not an option. So I was forced to carry books in and out with me each day.

This was a real educational experience. I've learned things from computer books that you wouldn't believe.
First, regardless of the subject and the type, hardcover or paperback, computer books are heavy. Also,
there is a little-known law of computer bookslet's call it Ed's Law of Computer Books. It goes something like
this: "Regardless of the subject, whatever you need to know is in another book."

It is true; I've lost count of the number of times that the information needed was in a book that was still in
my car. So if the car was parked somewhere nearby, I'd trek downstairs and out to my car, grab the book,
and then go back upstairs, only to find that I needed yet another book. This is the purpose of this section:
so that I can plant my tush and not have to travel out to my car.

If, unlike myself, you're not too lazy to carry more than one book, consider this chapter something of a
refresher on a few of the basic building blocks of Ajax. Well, maybe it's technically not a refresher because
XHTML is still considered by some to be a little mysterious. That is probably due to the X.

This chapter covers some of the background material that is necessary to develop an Ajax application,
specifically HTML and XHTML. Odds are, you're familiar with much, if not all, of the material covered here.
But because I'm in Pennsylvania writing this and you're wherever you are reading this, it is kind of hard to
tailor this specifically to your needs.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch03.html [03.07.2007 11:48:16]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 3.1. The Difference Between HTML and XHTML

3.1. The Difference Between HTML and XHTML

From its very beginning, Hypertext Markup Language is what has made the World Wide Web possible. It
both conveys the thoughts of the person who created the page and defines nearly every aspect of what we
see on each and every web page visited. Like English, French, Spanish, Japanese, Russian, or any other
language in use today, it is a living language, evolving and growing.

Early on, this growth was fast and sudden, with "features" often doing an end-run around the World Wide
Web Consortium. Add to that the fact that many of the designers of web pages play fast and loose in an
effort to have more content than the next guy. So what if some corners were cut? It was all about content,
and content was king.

Enter XHTML, considered by some as an effort to reign in the Wild West approach to web development by
making HTML a dialect of XML. XHTML came in three flavors: transitional, strict, and frameset, with each
flavor offering either different capabilities or different degrees of conformance to the XML standard.

3.1.1. Not Well Formed

Probably the biggest single difference between HTML and XHTML is that XHTML must be well formed. "Not a
big deal," you say. Well, it could be. The part of the document that isn't well formed doesn't have to be
glaring, like a foot being attached to the forehead. Because an XHTML document is essentially XML, simply
following the HTML practices that we've followed for years is enough to get us into trouble. Consider the
following two HTML input statements:

<input type="text" name="bad" id="bad" value="Not well-formed">

<input type="text" name="alsobad" id="alsobad"
value="Not well-formed" disabled>

Both statements are perfectly acceptable HTML, but as XHTML, they don't make the grade because neither
is well formed. The problem with the first statement is that the tag isn't closedperfectly acceptable in HTML,
but verboten in XHTML. Fortunately, correcting it is a simple matter; just close the tag in the manner of
self-closing tags or treat it as a container tag. The problem with the second statement might be a little
harder to spot. I'll give you a hint: attributes. Yes, in XML, attributes must always have values, so give it
one. disabled="disabled" might look goofy, but it works.

3.1.2. Well Formed

At first glance, it might appear that all that is required to convert HTML into XHTML is to slap a DTD before
the HTML tag, close some tags, and clean up some attributes. Voilà, instant XHTML! Well, maybe,
sometimes, occasionally, except on Tuesdays or at night during a full moon. You see, unfortunately, there
is still a potential source of problems.

I stumbled on this problem approximately 5 minutes after creating my first XHTML page, and I immediately
felt betrayed. The source of the problem was compares in my JavaScript functions. With the assorted
compares using ampersand (&), greater than (>), and less than (<), the document wasn't well formed. In
my despair, I knew how Victor Frankenstein felt, brought down by creatures of my own creation. Oh, the

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch03lev1sec1.html (1 of 2) [03.07.2007 11:48:17]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 3.1. The Difference Between HTML and XHTML

irony!

3.1.3. A Well-Formed Example

Thankfully, my despair didn't last very long. It wasn't like there was a death in the family, or Stargate SG-1
had been cancelled, or anything important like that. It was merely a technical speed bump (or white tail
deer, to those of you in Pennsylvania) on the road of life. I wasn't worried because I knew a trick that
would make anything well formed.

XHTML is really nothing more than a dialect of XML, in the same way that both XSL and SVG are. This
means that although it falls under the rules of XML, it also falls under the exceptions to those rules. For
example, there are two ways to ensure that a greater than is well formed, but because JavaScript can't
handle > entities aren't an option. This leaves only CDATA as the way to hide the JavaScript from the
browser.

If you're unfamiliar with CDATA, it is the XML equivalent of saying "Pay no attention to that man behind the
curtain." Basically, anything that is within the CDATA won't be parsed as XML, which is quite convenient for
this case. There is, however, one problem with using CDATA; certain web browsers have issues with it, so it
is necessary to hide it from the browser in the manner shown in Listing 3-1.

Listing 3-1. Hiding CDATA

 <!-- <![CDATA[
function xyzzy(a,b) {
 if(a > b)
 alert('a is bigger');
 else
 if(a = b)
 alert('a & b are equal');
 else
 alert('b is bigger')
}
//]]> -->

The purpose of the HTML/XML comments is to hide the CDATA section from HTML. The JavaScript comment
prevents select browsers from having issues from a JavaScript perspective. Although it might not be pretty
to look at, it does work well.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch03lev1sec1.html (2 of 2) [03.07.2007 11:48:17]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 3.2. Elements and Attributes

3.2. Elements and Attributes

I'm not sure why, but there seems to be a law stating that the sections of books intended for reference
must be both dry and boring. Please bear with me as I try to conform to this law while describing the
relationship between elements and attributes. Unfortunately, the American educational system falls short
when attempting to teach students how to write in a monotone, but I'll do my best.

3.2.1. A Very Brief Overview of XHTML Elements and Their Attributes

In the interest of being boring, I put together Table 3-1 which covers attributes along with the elements
associated with them. Because this is a high-level overviewsay, around 30,000 feetthere isn't much beyond
the "this element goes with that attribute" kind of thing. However, it is important to remember two things
when referring to this table.

Table 3-1. XHTML Elements and Associated Attributes

Element Description Deprecated Attributes

a Anchor accesskey, charset, class, coords,
dir, href, hreflang, id, lang, name,
onblur, onclick, ondblclick,
onfocus, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,
rel, rev, shape, style, tabindex,

target, title, type

abbr Abbreviated class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

acronym class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

address Author information class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

applet Java applet Yes align, alt, archive, class, code,
codebase, height, hspace, id, name,

object, style, title, vspace, width

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch03lev1sec2.html (1 of 14) [03.07.2007 11:48:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 3.2. Elements and Attributes

area Client-side image map area accesskey, alt, class, coords, dir,
href, id, lang, nohref, onblur,
onclick, ondblclick, onfocus,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,
shape, style, tabindex, target,

title

b Bold class, dir, id, lang, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,
style, title

base Base URI of document href, lang, target

basefont Document base font size Yes color, face, id, size

bdo BiDi override class, id, lang, style, title

big Large text class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,
style, title

blockqoute Block quotation cite

body Document body alink, background, bgcolor, class,
dir, id, lang, link, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onload, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, onunload,

style, text, title, vlink

br Line break class, clear, id, style, title

button Button object accesskey, class, dir, disabled, id,
lang, name, onblur, onclick,
ondblclick, onfocus, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,

tabindex, title, type, value

caption Table caption align, class, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style and

title

center Center contents Yes class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,
style, title

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch03lev1sec2.html (2 of 14) [03.07.2007 11:48:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 3.2. Elements and Attributes

code Code fragment class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

col Table column align, char, charoff, class, dir,
id, lang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title, valign, width

colgroup Table column group align, char, charoff, class, dir,
id, lang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

span, style, title, valign, width

dd Definition description class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

del Deleted text cite, class, datetime, dir, id,
lang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

dfn Instance definition class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

dir Directory list Yes class, compact, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style, title

div Style container align, class, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,

onmouseover, onmouseup, style, title

dl Definition list class, compact, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,

onmouseover, onmouseup, style, title

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch03lev1sec2.html (3 of 14) [03.07.2007 11:48:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 3.2. Elements and Attributes

dt Definition term class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

em Emphasis class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

fieldset Form control group class, dir, id, lang, style, title

font Font change Yes class, color, dir, face, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, size, style,

title

form Input form accept-charset, accept, action,
class, dir, enctype, id, lang,
method, name, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,
onreset, onsubmit, style, target,

title

frame Frameset window class, frameborder, id, longdesc,
marginheight, marginwidth, name,
noresize, scrolling, src, style,
title, width

frameset Collection of window subdivisions class, cols, id, onload, onunload,

style, title

h1 Heading align, class, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,

onmouseover, onmouseup, style, title

h2 Heading align, class, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,

onmouseover, onmouseup, style, title

h3 Heading align, class, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,

onmouseover, onmouseup, style, title

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch03lev1sec2.html (4 of 14) [03.07.2007 11:48:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 3.2. Elements and Attributes

H4 Heading align, class, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,

onmouseover, onmouseup, style, title

H5 Heading align, class, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,

onmouseover, onmouseup, style, title

h6 Heading align, class, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,

onmouseover, onmouseup, style, title

head HTML document head dir, lang, profile

hr Horizontal rule align, class, dir, id, lang,
noshade, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

size, style, title, width

html HTML document root dir, lang, version

i Italic class, dir, id, lang, marginwidth,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,

onmouseover, onmouseup, style, title

iframe Inline frame align, class, frameborder, height,
id, longdesc, marginheight, name,

scrolling, src, style, title

img Embedded image align, alt, border, class, dir,
height, hspace, id, ismap, lang,
longdesc, name, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,
src, style, title, usemap, vspace,

width

input Form input control accept, accesskey, align, alt,
checked, class, dir, disabled, id,
ismap, lang, maxlength, name,
onblur, onchange, onclick,
ondblclick, onfocus, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, onselect,
readonly, size, src, style,
tabindex, title, type, usemap, value

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch03lev1sec2.html (5 of 14) [03.07.2007 11:48:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 3.2. Elements and Attributes

ins Inserted text cite, class, datetime, dir, id,
lang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

isindex Single-line input prompt Yes class, dir, id, lang, prompt, style,

title

kbd Keyboard text entry class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

label Form text field accesskey, for, onblur, onfocus

legend Fieldset legend accesskey, align, class, dir, id,
lang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

li List item class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,
style, style, title, title, type,

value

link Media-independent link charset, class, dir, href, hreflang,
id, lang, media, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

rel, rev, style, target, title

map Client-side image map class, dir, id, lang, name, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,
style, title

menu Menu list Yes class, compact, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,

onmouseover, onmouseup, style, title

meta Document meta-information content, dir, http-equiv, lang,

name, scheme

noframes Alternate text when frames are not
supported

 class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup,onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch03lev1sec2.html (6 of 14) [03.07.2007 11:48:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 3.2. Elements and Attributes

noscript Alternate text when JavaScript is
not supported

 class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

object Embedded object align, archive, border, class,
classid, codebase, codetype, data,
declare, dir, height, hspace, id,
lang, name, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,
standby, style, tabindex, title,

usemap, vspace, width

ol Ordered list class, compact, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, start,

style, style, title, title, type

optgroup Option group class, dir, disabled, id, label,
lang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,
style, title

option Select option class, dir, disabled, id, label,
lang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

selected, style, title, value

p Paragraph align, class, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,

onmouseover, onmouseup, style, title

param Applet/object parameter id, name, type, value, valuetype

pre Preformatted text class, dir, id, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title, width

q Inline quotation cite, class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch03lev1sec2.html (7 of 14) [03.07.2007 11:48:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 3.2. Elements and Attributes

s Strike-through Yes class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

samp Sample class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

script Container for scripts charset, defer, language, src, type

select Option select class, dir, disabled, id, lang,
multiple, onblur, onchange, onclick,
ondblclick, onfocus, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, size, style,

tabindex, title

small Small text class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

span Style container class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

strike Strike-through Yes class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

strong Strong emphasis class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

style CSS class, dir, lang, media, type

sub Subscript class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

sup Superscript class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,
style, title

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch03lev1sec2.html (8 of 14) [03.07.2007 11:48:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 3.2. Elements and Attributes

table HTML table align, bgcolor, border, cellpadding,
cellspacing, class, dir, frame, id,
lang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

rules, style, summary, title, width

tbody Table body align, char, charoff, class, dir,
id, lang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title, valign

TD Table data cell abbr, align, axis, bgcolor, char,
charoff, class, colspan, dir,
headers, height, id, id, lang,
nowrap, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,
rowspan, scope, style, title,

valign, width

textarea Multiline text-input area accesskey, class, cols, dir,
disabled, id, lang, name, onblur,
onchange, onclick, ondblclick,
onfocus, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,
onselect, readonly, rows, style,

tabindex, title

tfoot Table footer align, char, charoff, class, dir,
id, lang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,
style, title, valign

th Table header cell abbr, align, axis, bgcolor, char,
charoff, class, colspan, dir,
headers, height, id, lang, nowrap,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, rowspan,

scope, style, title, valign

thead Table header align, char, charoff, class, dir,
id, lang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title, valign, width

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch03lev1sec2.html (9 of 14) [03.07.2007 11:48:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 3.2. Elements and Attributes

title Document title cite, class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

tr Table row align, bgcolor, char, charoff,
class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title, valign

tt Teletype text style class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

u Underlined Yes class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,
style, title

ul Unordered list class, compact, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,

title, type

var Variable class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup,

style, title

The first is that although this table was created from the request for HTML 4.01, it is by no means gospel.
There will always be web browsers that either don't support select attributes and/or elements, and
browsers that add some of their own. Also, if you recall our escapade with binding XML and HTML, web
browsers don't get the least bit cranky if developers make up their own attributes and elements, or even
use onchange when it should have been onclick.

3.2.2. Frames Both Hidden and Visible

The question is, exactly what purpose can HTML frames serve in the brave new world of Ajax applications?

To be perfectly honest, I don't exactly know, but I can offer some possible suggestions.

The first suggestion that I can offer is to use an IFRAME with CSS positioning instead of either a JavaScript
alert or a JavaScript prompt to convey information to and from the visitor. Not only would it allow for
additional opportunities regarding the physical layout, but it wouldn't have the stigma associated with pop-
ups. In fact, it might even provide a way around some popup-blocking software.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch03lev1sec2.html (10 of 14) [03.07.2007 11:48:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 3.2. Elements and Attributes

Here's how it would work: A zero-sized IFRAME would be created along with the original page. When
needed, it could be moved about the page using CSS positioning and could be resized to display the
required information. The source of the information could be from the page's JavaScript, another page on
the web server, or a web service.

My second suggestion is to use the frames, especially hidden ones, as somewhere to cache information. I'm
not only referring to the garden variety forms of information, such as XML or XSL stylesheets, but also to in-
line Cascading Style Sheets. Imagine the reaction of visitors discovering that they can customize their
browsing experience on a website that already feels like an application. Think along the likes of using the
CSS from the fifth IFRAME for Bob, and you'll get the idea.

The same technique can also be used to cache large XML documents, of the kind that eat up bandwidth.
Caching whole or nearly whole pages that don't often load is also a possibility, as with the Items page from
earlier examples. Instead of retrieving the XML every time the visitor wanders to the page, just build the
page once and cache. This would also have the advantage of further increasing application speed.

3.2.3. Roll Your Own Elements and Attributes

We use Microsoft Internet Explorer's XML element in both IE and Firefox. The interesting thing is that,
unlike Internet Explorer, Firefox doesn't support the XML element, so how exactly did it work? According to
several recommendations published by the World Wide Web Consortium, when an unrecognized document
element is encountered, it needs to be handled gracefully. Most likely, this is a "plan for future expansion"
thing.

Think about it; this makes a great deal of sense because if you go without it, boom, the web browser would
just roll over and die whenever somebody with sausage fingers mistyped a tag. The World Wide Web
wouldn't be a pretty sight without this feature. Interestingly, the same feature is also available for
attributes, which explains how the home-grown data binding works.

A number of times in the past, I took advantage of this in regard to attributes. I took advantage of this
little trick in several different ways, but I have a couple of favorites. The first was stashing the original
values of HTML input objects for the purposes of resets. Click a button, and a client-side JavaScript event
handler would update the value attribute from the oldvalue attribute.

Another one of my favorite uses was to use it as a "value has changed" indicator. This indicator would be
checked when the form was submitted. Based upon the result of a test, any number of actions could be
taken, including producing a client-side error message.

However, my most favorite was to stash other options for selects. You see, the system that I worked on
had pages with several HTML select objects with the contents of each select based upon the selection
made in the previous select. Originally, whenever a visitor came to the website and made a selection, that
visitor was forced to wait through an unload/reload for each selection.

The "mad scientist" solution was to create a series of attributes consisting of the various attributes. Each
select had an onchange event handler that would update the options of the next logical select object.
Although this wasn't an Ajax application, the change that I made gave it one of the same characteristics; it
didn't bother the server any more than absolutely necessary.

3.2.4. A Little CSS

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch03lev1sec2.html (11 of 14) [03.07.2007 11:48:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 3.2. Elements and Attributes

Before the introduction of Cascading Style Sheets, when a developer wanted to change the font name or
color, there was only one option, the HTML FONT element. If you've never seen a page written using the
FONT element, consider yourself lucky. They were bloated, like a balloon in the Macy's Thanksgiving Day
parade.

They also seemed to attract managers who felt the need to change the font from 11 point to 12 point or
use color for bold text. "You know, it would look better in Magenta or Peach Puff." So there I was looking up
the RGB values for Magenta (#FF00FF) and Peach Puff (#FFDAB9), which was much easier than hunting
throughout the document looking for all the FONT elements. Needless to say, the day I found out that the
FONT element was deprecated was one of my happiest days.

Now instead of being forced to use the HTML FONT element, I'm presented with a choice. Basically, it comes
down to setting the font for the document as a whole, individual element types, or individual elements. This
presents a quandary, unless, of course, you're like me: a bad typist in a career that requires typing. In that
case, I recommend applying Cascading Style Sheets in the following manner:

1. Set the overall style of the document by setting the style for the BODY, TABLE, DIV, and SPAN elements.
This is one area where trickle down economics actually works.

2. Next concentrate on the other elements that you plan to use, such as the INPUT element. This is also
the time and the place for handling any homegrown elements, such as the XML element in Firefox.

3. Third, take care of the classes, those elements that go a long way toward giving a website a
particular look and feel. The rowHeader and rowData classes from the earlier examples reflect this
philosophy.

4. Finally, deal with the style of the individual elements themselves: positional CSS and the scrollable
DIV.

Finally, because the main purpose of this chapter is to serve as a reference, there is Table 3-2, whose
purpose is to describe some of the more common CSS 1 elements.

Table 3-2. Some of the More Common CSS 1 Elements

Property CSS Description

font-family 1 Sets the font name or font family name

font-style 1 Either normal, italics, or oblique

font-variant 1 Either normal or small-caps

font-weight 1 Either normal, bold, bolder, lighter, 100, 200, 300, 400, 500, 600, 700, 800,
or 900.

font-size 1 Size of the font as an absolute, relative, length, or percentage

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch03lev1sec2.html (12 of 14) [03.07.2007 11:48:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 3.2. Elements and Attributes

font 1 Sets all font properties at once

color 1 Sets the color for the element specified

background-color 1 Sets the background color for an element

background-image 1 Sets the background image for an element

background-repeat 1 Sets the repeat for the background image

background-attachment 1 Sets the scroll for the background image

background-position 1 Sets the position of the background image

background 1 Sets all background properties at once

word-spacing 1 Sets the spacing between words

letter-spacing 1 Sets the spacing between letters

text-decoration 1 Sets the text decoration: blink, linethrough, none, overline, or underline

vertical-align 1 Sets the vertical positioning: baseline, bottom, middle, percentage, sub,
super, text-bottom, text-top, or top

text-transform 1 Sets the text transformation: capitalize, lowercase, none, or uppercase

text-align 1 Sets the text alignment: left, right, center, or justify

text-indent 1 Sets the indent property for container elements

line-height 1 Sets the spacing between lines

margin-top 1 Sets the property as a percentage, length, or auto

margin-right 1 Sets the property as a percentage, length, or auto

margin-bottom 1 Sets the property as a percentage, length, or auto

margin-left 1 Sets the property as a percentage, length, or auto

margin 1 Sets all margin properties at once

padding-top 1 Sets the property as either a percentage or a length

padding-left 1 Sets the property as either a percentage or a length

padding-right 1 Sets the property as either a percentage or a length

padding-bottom 1 Sets the property as either a percentage or a length

padding 1 Sets all the padding properties at once

border-top-width 1 Sets the property to thin, medium, thick, or length

border-bottom-width 1 Sets the property to thin, medium, thick, or length

border-right-width 1 Sets the property to thin, medium, thick, or length

border-left-width 1 Sets the property to thin, medium, thick, or length

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch03lev1sec2.html (13 of 14) [03.07.2007 11:48:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 3.2. Elements and Attributes

border-width 1 Sets all of the border properties at once

border-color 1 Sets the color of the border

border-style 1 Sets the border style to one of the following: none, dotted, dashed, solid,
double, groove, ridge, inset, or outset

border-top 1 Sets the border width, style, and color

border-bottom 1 Sets the border width, style, and color

border-right 1 Sets the border width, style, and color

border-left 1 Sets the border width, style, and color

border 1 Sets the border width, style, and color for all the borders at once

width 1 Sets the width for an element

height 1 Sets the height for an element

float 1 Indicates that text can wrap around an element

clear 1 Specifies whether floating elements can float to the side

display 1 Sets how and whether an element will display: lock, inline, list-item, or
none

white-space 1 Sets how whitespace is treated: normal, pre, or nowrap.

list-style-type 1 Specifies the type of a list item marker: disc, circle, square, decimal,
lower-roman, upper-roman, lower-alpha, upper-alpha, or none

list-style-image 1 Sets the image

list-style-position 1 Sets the position

list-style 1 Sets all the list-style properties at once

Although Cascading Style Sheets is about as different as you can get from HTML/XHTML, they work
togetheractually, they work together extremely well. Before the adoption of CSS, the task of giving web
pages a common look and feel was handled using the font tag, which, thankfully, has been deprecated (or,
as I like to think of it, taken out and shot!). Sorry, I have never liked the font tag since the time a little
cosmetic change to a web page took 2 days, mostly because there were about 700 instances scattered
throughout a page. Think of the combination of technologies as a kind of synergy, like deuterium and a
fission bomb or peanut butter and chocolate.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch03lev1sec2.html (14 of 14) [03.07.2007 11:48:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 3.3. Summary

3.3. Summary

In this, hopefully, refresher/reference chapter, some of the differences between the older HTML and the
new and improved XHTML were covered. Special attention was paid to the fact that XHTML, unlike its
cousin HTML, must be well formed and what exactly that means. Additionally, this chapter showed how to
hide JavaScript, which is about as well formed as a platypus, within XHTML.

Next, some of the basics of the HTML/XHTML elements were covered: specifically which attributes go along
with which elements, and which elements are deprecated. Next frames, the visible kind and otherwise,
were discussed, followed by the advantages of being able to add custom elements and attributes. I
wrapped things up with a high-level overview of Cascading Style Sheets.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch03lev1sec3.html [03.07.2007 11:48:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4. JavaScript

Chapter 4. JavaScript

I would like to point out that JavaScript has nothing to do with the Java programming language itself. Many
people unfamiliar with JavaScript have a real problem with this, thinking that the word Java in JavaScript
denotes some kind of relationship. Well, the relationship is similar to the relationship between "pine" trees
and pineapples, or apples and pineapples. Yes, they are all distantly related, but that is the end of it.

My first encounter with coding JavaScript was in a web development class that was taught at Penn State as
part of a web design certificate program. Impatiently I took the precursors, waiting for the class in which
my programming skills would help. About 5 minutes into the class, it quickly became apparent that certain
experiences would be more useful JavaScript precursors than others. For example, other than providing
somewhere for the JavaScript to go, the HTML class wouldn't be of much use. Knowledge of C or any
similar language, such as C++, Java, Pascal, or even PL/I, on the other hand, would go a long way toward
helping to learn JavaScript.

In this chapter, I cover the following aspects of JavaScript:

● Data types
● Variables
● Operators
● Flow-control statements
● Functions
● Recursion
● Constructors
● Event handling

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04.html [03.07.2007 11:48:20]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.1. Data Types

4.1. Data Types

As with its ancestor, the C programming language of Kernighan and Ritchie, JavaScript supports a number
of data types. Although the number isn't nearly as large as C, representatives of the basic data types are all
present, and methods of describing your own data types exist. In fact, with only a little delving into the
"dark arts," it is quite possible that many problems can be solved on the client side using JavaScript.

4.1.1. Numeric

In JavaScript, all numbers are 64-bit double-precision floating-point numbers, whether they are floating
point or integer. This means that 18,437,736,874, 454,810,624 values divided evenly between positive and
negative can be represented in JavaScript. In addition, there are three "special" values, increasing the total
to 18,437,736,874,454,810,627. And you thought that you were being robbed.

The first of the three "special" values is NaN, which means Not a Number or "oops," as I like to think of it.
From my point of view, it means that I made some kind of boneheaded mistake and am doomed to suffer
for it. The second and third values are positive and negative infinity, which are, well, infinite.

4.1.2. String

JavaScript strings are UTF-16 strings or 16-bit Unicode Transformation Formats: character encoding. What
it comes down to is that each character in a string is represented in 2 bytes, which means that the potential
for display of non-English characters exists. This might not seem like a big deal, but it very well could be
when the boss walks into your office and asks about internationalization. Ooh, scary.

Seriously, though, quite a number of things can be done in JavaScript along the lines of string
manipulation. For example, it is quite easy to make an entire line either upper case or lower case, a really
nice feature when testing for a particular string value. In addition, other functions allow for the searching,
extracting, and replacing of substrings. Table 4-1 outlines these features.

Table 4-1. JavaScript String Functions

Name Type Description

escape(string) Method Converts the characters that would be illegal in a URL into
legal escape sequences.

string.charAt(n) Method Returns the character at the position n, where n is a
positive integer.

string.charCodeAt(n) Method Returns the encoded character at the position n, where n is
a positive integer.

string.concat(stringB) Method Returns a string consisting of both strings concatenated.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec1.html (1 of 6) [03.07.2007 11:48:22]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.1. Data Types

String.fromCharCode (u1,...,uN) Static
Method

Returns a string constructed from a series of Unicode
characters.

string.indexOf(stringB, n) Method Starting at position n or 0, if n is omitted, returns the start
position of the second string in the first string. A -1 is
returned when the second string isn't found within the first.

string.lastIndexOf (stringB, n) Method Starting at position n or the end of the string, if n is
omitted, returns the start position of the second string in
the first string starting at the end of the string. A -1 is
returned when the second string isn't found within the first.

string.length Property The length of the string in characters.

string.match(regexp) Method Returns an array consisting of matches to the pattern in
the regular expression regexp.

string.replace (regexp, text) Method Replaces of one or more instances that match the pattern
with text.

string.search(regexp) Method Returns a Boolean indicating whether a match to the
pattern is found in the string.

string.slice(n ,m) Method Returns the portion of the string starting at n and
continuing to m, where both n and m are integers. In
addition, if either value is negative, it indicates the position
from the end of the string.

string.split(regexp) Method Returns an array consisting of the strings that were
separated by instances of the pattern in the regular
expression regexp.

string.substr(n ,m) Method Returns a substring starting at position n for a length of m
characters. In instances where m is omitted or exceeds the
length of the string, the final character is the final character
of the string.

string.substring(n,m) Method Returns a substring starting at position n for a length of m
characters. In instances where m is omitted or exceeds the
length of the string, the final character is the final character
of the string.

string.toLowerCase() Method Converts the string to lower case.

string.toString() Method Returns the string value.

string.toUpperCase() Method Converts the string to upper case.

string.valueOf() Method Returns the value of the string.

unescape(string) Method The inverse of escape; the escape sequences are converted
back into the original characters.

In my opinion, one of the coolest ways to manipulate strings has got to be regular expressions, although,
come to think of it, it is also probably one of the most obscure ways to manipulate strings as well. If you're
unfamiliar with regular expressions, they are an object that stores a pattern for use in the searching of

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec1.html (2 of 6) [03.07.2007 11:48:22]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.1. Data Types

strings. This pattern is then applied to a string using either a regular expression method or a string method.

The theory behind regular expressions is relatively easy to grasp, but the actual practice is not. The reason
for this comes down to the pattern; it needs to be specific enough to find only what you are actually looking
for, yet it also needs to be general enough to be able to find sequences that aren't always easy to find.
Maybe you'll be able to understand how this works a little better after looking at Table 4-2, which describes
the special characters that go into constructing a pattern.

Table 4-2. Characters Used to Create Regular Expressions

Pattern Description

\ Designates the next character as either a literal or a special character.

^ Designates the beginning of a string.

$ Designates the end of a string.

* Specifies a match to the preceding character zero or more times.

+ Specifies a match to the preceding character one or more times.

? Specifies a match to the preceding character zero or one time.

. Matches any single character, excluding newline.

() Matches the contents of the parenthesis. Note that this is a pattern match and is remembered.

a|b Specifies a match to either a or b.

{n} Specifies a match to the preceding pattern exactly n times, where n is a nonzero positive
integer.

{n,} Specifies a match to the preceding pattern at least n times, where n is a nonzero positive
integer.

{n,m} Specifies a match to the preceding pattern at least n times and at most m, where n and m are
nonzero positive integers.

[xyz] Matches any single character enclosed by the brackets.

[^xyz] Matches any single character not enclosed by the brackets.

[0-9] Matches the range of characters enclosed by the brackets.

[^0-9] Matches the characters not included in the range of characters enclosed by the brackets.

\b Matches a word boundary.

\B Matches a nonword boundary.

\d Matches a numeric character, synonym for [0-9].

\D Matches a non-numeric character, synonym for [^0-9].

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec1.html (3 of 6) [03.07.2007 11:48:22]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.1. Data Types

\f Matches a form feed.

\n Matches a newline.

\r Matches a carriage return.

\s Matches any single whitespace character.

\S Matches any single nonwhitespace character.

\t Matches a tab.

\v Matches a vertical tab.

\w Matches any single word character or underscore.

\W Matches any character that is not a word character or an underscore.

\n When preceded by a pattern (), matches n times, where n is a positive integer. When not
preceded by a pattern, matches an octal escape value.

\xn Matches a hexadecimal escape value where n is a positive integer.

Alright, now for a quickie example. Let's say, for instance, that we want to replace all instances of either
the word red or the word blue in a string with the word purple. Although this could be done
programmatically, as shown in Listing 4-1, it isn't the easiest thing in the world. However, with a regular
expression, also shown in Listing 4-1, it really isn't too bad.

Listing 4-1. Programmatic and Regular Expression Approaches to String
Substitution

function initialize() {
 var colors = 'redorangebluegreenblueyellow';

 /*
 Call the substitute function twice, once for blue and once for
 red.
 */
 alert(substitute(substitute(colors,'blue','purple'),'red','purple'));

 /*
 Define the regular expression to search for red or blue, in
 addition set the options for global and ignore case.
 The available options are:
 g = global (all occurrences in a string)
 i = ignore case
 gi = global and ignore case

 */
 var re = new RegExp('red|blue','gi');

 /*
 Perform the replacement.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec1.html (4 of 6) [03.07.2007 11:48:22]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.1. Data Types

 */
 alert(colors.replace(re,'purple'));
}

function substitute(text,word,replacement) {
 var temp = text;

 /*
 perform string replacement using substring.
 */
 while(temp.indexOf(word) >= 0) {
 temp = temp.substr(0,temp.indexOf(word)) + replacement +
temp.substr(temp.indexOf(word)+word.length);
 }

 return(temp);
}

I would like to point out that, at the time of this writing, Microsoft Internet Explorer appears to have a bug
with regular expressions. It occurs when performing regular expressions in a loop. Occasionally, even
though a pattern match exists, it isn't recognized. Fortunately, there is a workaround. Within the body of
the loop, use the compile method to "reset" the pattern. When this is done, pattern matches are always
recognized. Yes, it is something of a kludge, but regular expressions are too useful to ignore, and we
should also be kind to those less fortunate than ourselves by accommodating their broken web browsers.

4.1.3. Boolean

JavaScript Boolean data types are the standard true/false data types that we've all been exposed to
umpteen times, end of story.

4.1.4. Miscellaneous

These are the two data types that don't cleanly fit into any category: null and undefined. The null data type
represents nothing, and the undefined data type represents something that is not defined.

4.1.5. Arrays

Although it's not an object type, I've chosen to include arrays here because they are a useful mechanism
for grouping related information. A relatively simple data structure, arrays permit the access of information
based upon an integer index. In JavaScript arrays, this index begins at zero and increases by one for each
element of the array.

An item of interest about arrays in JavaScript is that it isn't necessary for the individual elements of an
array to all be of the same type, although it might be a good idea to ignore this capability because it
presents a world of opportunities to really screw up. However, some really nice goodies built into JavaScript
more than make up for the potential issues that might arise from weak typing.

First things first. Let's take a look at the three ways to define a JavaScript array: defining an empty array,

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec1.html (5 of 6) [03.07.2007 11:48:22]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.1. Data Types

defining an array with a set number of elements, and defining an array with a set number of elements with
values. Each of these three ways uses the Array() constructor, as shown in the following snippets:

var one = new Array();
var two = new Array(3);
var three = new Array('red', 'green', 'blue');

Earlier I stated that there are some really nice goodies built into JavaScript arrays, but they're rather
numerous, so I've chosen to list them in Table 4-3.

Table 4-3. Features of JavaScript Arrays

Method Description

array.concat(arrayb) Concatenates two arrays into a single array

arraylength() Returns the length of an array, as in the number of elements

array.reverse() Returns the array with the elements in reverse order

array.slice(start,end) Returns a portion of an array

array.sort() Sorts the array into ascending order

array.join() Converts all elements to strings and concatenates them, separated by commas

array.push(item) Adds an element to the end of an array

array.pop() Removes and returns an element from the end of the array

array.splice(r,a...a) Removes the element specified by the first parameter and adds subsequent
elements

array.unshift(item) Adds an element to the beginning of an array

array.shift() Removes and returns an element from the beginning of an array

4.1.6. Object

In JavaScript, the Object type is an unordered collection of name and value pairs. Although this doesn't
sound like much, it is a type of data structure that is commonly referred to as an associative array. I have a
tendency to use an associative array.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec1.html (6 of 6) [03.07.2007 11:48:22]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.2. Variables

4.2. Variables

Unlike many other programming languages, in JavaScript, variables are not strongly typed, which means
that what once contained a number could now be a string. This can sometimes cause some issues when
developing on the client side; think about the idea of running across a string when a number is expected. A
situation like that could prove somewhat embarrassing, especially because applications are like dogs; they
can smell fear. This explains why applications always fail during a demo to upper management.

The names of variables in JavaScript consist of alpha characters followed by a number. The underscore
character is also permitted; I usually use it to remind myself that a particular variable is not to be touched.
Along the line of the wires that hold up Buck Rogers' spaceship, if you mess with it, bad things could
happen.

As with many programming languages, variables in JavaScript have a scope. Before you have an attack of
paranoia ("They're watching me!"), please allow me to explain what scope is in reference to variables.
Variable scope refers to where the variable is defined. In JavaScript, variables can have either local scope
or global scope.

In local scope, the variable is defined within a particular function. The simplest way to explain it is by
examining the two functions in Listing 4-2. The first function, Jeckle, defines a variable named monster. The
second function, Frankenstein, also defines a variable named monster. Because both variables are local,
Jeckle's monster is a different monster than Frankenstein's.

Listing 4-2. Two Local Variables

function Jeckle() {
 var monster = 'Mister Hyde';
}

function Frankenstein() {
 var monster = 'Bob';
}

Global scope refers to variables that are defined throughout the entire page. They are defined in one of two
ways, either using a var and declaring the variable outside a function, or omitting the var and declaring it
within a function. I don't have a problem with the first method of declaring a global variable, but I have
some definite issues with the second. All that it takes is one case of "sausage fingers"; a mistyped variable
name, and I'm debugging for hours.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec2.html [03.07.2007 11:48:22]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.3. Operators

4.3. Operators

JavaScript has a number of operators that you might or might not be familiar with. These include the ever-
present == (equals) and != (not equals), to which you have undoubtedly been exposed; there are a number
of others. Although some of these operators are familiar, some others might not be as familiar, so Table 4-
4 briefly touches upon these.

Table 4-4. JavaScript Operators

Operator Type Description

a + b Arithmetic Addition

a - b Arithmetic Subtraction

a* b Arithmetic Multiplication

a / b Arithmetic Division

a % b Arithmetic Modulus, the remainder to division

++a Arithmetic Increment by one

--a Arithmetic Decrement by one

a = b Assignment Set equal to

a += b Assignment Increment by the value on the right

a -= b Assignment Decrement by the value on the right

a *= b Assignment Multiply by the value on the right

a /= b Assignment Divide by the value on the left

a %= b Assignment Modulus by the value on the right

a == b Comparison Equal to, value

a === b Comparison Equal to, value and type

a != b Comparison Not equal to

a > b Comparison Greater than

a < b Comparison Less than

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec3.html (1 of 2) [03.07.2007 11:48:23]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.3. Operators

a >= b Comparison Greater than/equal to

a <= b Comparison Less than/equal to

a && b Logical And

a || b Logical Or

!a Logical Not

a + b String String concatenation

a=(condition)?b:c Comparison Comparison operator

typeof(a) Special Returns a string consisting of the operand type

void a Special Suppresses the return of a variable

I'll bet you didn't know that typeof was an operator.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec3.html (2 of 2) [03.07.2007 11:48:23]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.4. Flow-Control Statements

4.4. Flow-Control Statements

My first job straight out of college was working on an order-entry system that was developed by the elves
at Bell Labs. Needless to say, I found myself in the Promised Land; although the salary was only alright,
the tools and some of the code were brilliant. Notice that I said "some of the code." There was also some
code that really, really stunk.

One particular "utility" comes to mind. Its purpose was to simulate an order being sent to manufacturing
and billing. It had absolutely no conditions or loopsjust the brute-force changing of the order status, totally
disregarding whether the order was ready for transmittal. I'm not 100 percent sure why, but this inelegant
code bothers me to this day.

One possible reason could be that I visualize code as a river with currents and eddies. As with a river, the
flow of the program slows down and speeds up, depending upon the existing conditions. In my mind, I can
almost see the flow following a particular channel, branching left or right and occasionally looping back
upon itself. Maybe this is a strange way to look at it, but I consider flow-control statements to be elegant.

4.4.1. Conditionals

The granddaddy of all conditional statements has to be the if statement. In some form, the if statement is
present in every programming language that I've ever used, seen, read about, or just plain stumbled
across. Because of JavaScript's C roots, the if statement syntax is like a function with the condition being
enclosed in parenthesis and the following statement being executed only when the condition is TRue.
Sometimes there is an else followed by the statement to execute when the condition is false, and
sometimes there isn't. When multiple statements need to be executed, they are enclosed in curly braces.
Listing 4-3 shows the basics.

Listing 4-3. The Basics of the JavaScript if Statement

if(a == 1)
 alert('a is one');
else {
 alert('a is not one');

 if(b == 1) {
 if(c == 1)
 alert('Both b and c are one');
 } else
 alert('b is not one');
}

Almost as if it were cloned right from the pages of Kernighan and Ritchie's The C Programming Language
(Prentice Hall, 1988), the conditional operator is a ternary operator, essentially an entire if statement/else
statement shrunken into a convenient package for those of us who suffer from the sausage fingers

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec4.html (1 of 5) [03.07.2007 11:48:23]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.4. Flow-Control Statements

affliction. The only problem is that many developers consider it too confusing and, therefore, avoid it. But it
isn't really that hard; just remember that it breaks down in the following manner:

room != 'y2' ? 'xyzzy' : 'plugh'

Most often you'll see the result assigned to a variable like this:

magicWord = room != 'y2' ? 'xyzzy' : 'plugh'

To those of you with mad scientist tendencies, the answer is, yes, conditional operators can be nested. The
answer to the next question is also, yes, I have nested conditional operators.

The next four flow-control statements go together; in fact, you'll never see three of them by themselves. I
am referring to the conditional structure that is known in various programming languages by a number of
names, including case, select, choose, or switch, as it is called in JavaScript.

The switch statement evaluates a series of conditions until a condition is met. When this happens,
execution begins at the case statement with the true condition. If none of the conditions is true, the
execution begins at the default statement or after the switch, if there is no default statement. Listing 4-4
shows the basic structure of the switch statement.

Listing 4-4. Basic Structure of the switch Statement

switch(number) {
 case(0):
 alert('zero');

 break;
 case(1):
 case(3):
 alert('odd < 5');

 break;
 case(2):
 case(4):
 alert('even < 6');

 break;
 default:
 alert('many');

 break;
}

In addition to the "standard" version of the switch statement shown in Listing 4-4, there is a little known

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec4.html (2 of 5) [03.07.2007 11:48:23]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.4. Flow-Control Statements

variant. Instead of using a variable as the expression, true or false can be used. This allows for the
possibility of using a switch statement instead of a series of nested if statements, as Listing 4-5 illustrates.

Listing 4-5. A switch Statement Acting Like a Series of Nested if Statements

switch(true) {
 case(number == 0):
 alert('zero');
 break;
 case(color == 'red'):
 alert('#FF0000');

 break;
 case(color == 'green'):
 alert('#00FF00');

 break;
 case(color == 'blue'):
 alert('#0000FF');

 break;
 case((color % 2) == 0):
 alert('even');

 break;
 default:
 alert('whatever');

 break;
}

4.4.2. Looping

The purpose of looping in programs is to execute a series of statements repeatedly, thus cutting down on
the required lines to code. This reduction in the number of lines has the advantage of improving the overall
readability. In addition, loops allow for a variable number of executions. Personally, loops mean that I don't
have to type any more than I have to, but, hey, I'm a hunt-and-peck typist.

It has been a while since CSC 100, "Introduction to Computer Science," but if I remember correctly, the for
loop was the first type of looping structure taught. Most likely the reason for this is that it is really hard to
mess it up, even for virgin programmers. A block of code is executed a specific number of times,
incrementing a variable for each iteration.

The for/in loop is a close relative of the for loop. However, unlike the for loop, which specifies the number
of iterations using a numeric value, an object is used. The really unfortunate thing about the for/in loop is
that most people forget it exists, myself included. Listing 4-6 has several examples of both for and for/in
loops.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec4.html (3 of 5) [03.07.2007 11:48:23]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.4. Flow-Control Statements

Listing 4-6. Examples of for and for/in Loops

var factorial = 1;
var numbers = new Array(1,2,3,4,5);
var index;

for(var i=1;i < 6;i++)
 factorial *= i;

factorial = 1;

for(var i=5;i > 0;i)
 factorial *= i;

factorial = 1;

for(index in numbers)
 factorial *= numbers[index];

alert(factorial);

Because they are so similar in function, the while loop and the do/while loop offer a quandary concerning
which to use. They both execute a block of instructions while a condition is TRue. So why are there two
different loops, you ask? Go on, ask; I'll wait.

The reason there are two different loops is that one tests before executing the block of code, and the other
tests after executing the block of code. The while loop performs the test and then executes the code block
only if the condition is true. Iteration continues until the condition is no longer TRue, at which time
execution continues with the code immediately following the loop.

On the other hand, the do/while loop executes the code block before performing the test. Because the test
is performed after the execution of the code block, it guarantees that the code block will be executed at
least once. This is quite useful when it is necessary to execute the code block once, regardless of whether
the condition is true.

The majority of times that I code a loop, it is because I'm looking for something. Where I'm looking isn't
important, although it is usually either in an array or in the DOM. However, what is important is that I need
to find it. So I'll write a little routine that loops through whatever, looking for something. Let's say that
there are 600 whatevers and I find what I'm looking for at number 20. Wouldn't it be nice to be able to
stop looking?

It is possible; remember the break statement from the switch? It also terminates a loop-dropping execution
to the statement immediately following the loop. Heck, it is even elegant.

But what if you don't want to exit the loop, but rather continue with the next iteration? Then you use the
continue statement, which causes the current iteration to stop and the next iteration to begin. It is sort of
like going back for a second helping of the entreé when you haven't finished your vegetables, but hey,
unlike your mother, JavaScript doesn't complain.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec4.html (4 of 5) [03.07.2007 11:48:23]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.4. Flow-Control Statements

One more issue arises with exiting loops; JavaScript allows labels to be placed on statements, like looping
statements. This provides a way to refer to the statement from elsewhere in the script. This means that a
break or continue can refer to a specific loop so that it is possible to break or continue an outer loop from
an inner loop. Listing 4-7 gives an example of how this worksa useless example, but an example
nonetheless.

Listing 4-7. A Useless Example of Using break and continue to Refer to a Specific
Loop

var result = 1;

Iloop: for(var i=0;i < 5;i++)
Jloop: for(var j=0;j < 5;j++)
 if(j == 2)
 break Jloop;
 else
Kloop: for(var k=0;k < 5;k++)
 if(k == 3)
 continue Iloop;
 else
 result += k;
alert(result);

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec4.html (5 of 5) [03.07.2007 11:48:23]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.5. Functions

4.5. Functions

Fromsome points of view, JavaScript functions are a little bit on the strange side when compared to other
programming languages. This is because even though they are functions, they don't necessarily return a
value. JavaScript functions are really groupings of code designed to perform a specific task. Quick, imagine
yourself writing a JavaScript function that concatenates two strings. Visualize it fully in your mind before
looking at the example in Listing 4-8.

Listing 4-8. A Function That Concatenates Two Strings

function concatenate(a,b) {
 return a.toString() + b.toString();
}

Don't be surprised if the function that you visualized looks remarkably similar to the one in Listing 4-8.
There is a perfectly logical reason for this similarity; my mind-reading machine has been perfected. Either
that or I'm aware that the majority of developers know only a couple ways to define a JavaScript function.
Which is the truth? I'll give you a hint: It is currently the fall of 2005, and I'm writing this on the SEPTA R5
line on my way to Doylestown, Pennsylvania. If I actually could read minds across space and time, I would
have won Powerball last week and I'd be writing this on the beach in Tahiti.

This means that, as web developers, we're all in a rut, doing the same thing the same way day after day
and year after year. Yeah, I know the drill: "It works, so why change it?" and "I always do it that way" are
usually the statements used. To these statements, I have one response, "You learn more from your
mistakes than you do from your successes!"

When you actually get down to it, there are several separate and distinct ways to define a function in
JavaScript. Why so many ways to define a function? I can't rightfully say, but I can take a guess. It has
always seemed to me that the more ways there are to perform a single task, the more flexible the
language is and the more problems can be solved.

Getting back to our function that concatenates two strings, we've already seen one possible method of
implementing the solution, so let's take a look at another way. JavaScript has the Function() constructor
for, interestingly enough, constructing functions. The Function constructor, an example of which is shown
here, is used to create a function and assign it to a variable or an event handler.

var concatenate = new Function('a','b','return a.toString()
+ b.toString()');

In addition to the Function constructor, the function operator can be used to assign a function to a
variable. One of the more interesting "features" of the Function constructor is that it shows that JavaScript
is really an interpreted language because the function is stored as a string. This is an example of our string
concatenation example defined using the function operator:

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec5.html (1 of 2) [03.07.2007 11:48:24]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.5. Functions

var concatenate = function(a,b) {return a.toString() + b.toString()}

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec5.html (2 of 2) [03.07.2007 11:48:24]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.6. Recursion

4.6. Recursion

Feel free to skip over this section if you're one of those developers with a fear of recursion; not only is this
considered an advanced topic, but it can also literally cause headaches. If you should decide to read on,
good for you! The only real way to get over the headaches is to use recursion as much as possible and
work your way through them. After all, what's a couple of weeks of pain compared to being able to write
some really tight code?

Are you still there? Rats! I guess I'll have to write this part of the chapter. So much for kicking back and
watching My Name Is Nobody on DVD.

In its simplest form, recursion occurs when a function calls itself repeatedly to achieve some kind of result.
Some examples of functions that readily lend themselves to recursion are mathematical, such as the
Euclidean algorithm, the Ackerman Function and the functions to compute factorials, Fibonacci numbers,
and Catalan numbers.

When setting out to create a recursive function, one thing to keep in mind is that anything that can be done
recursively can also be done iteratively. In fact, sometimes it is actually more efficient to code an iterative
function. This is because there are limits on how deep the recursion can go, usually around 32K. Attempts
to exceed this built-in limitation will result in a nicely worded error message that essentially means "stack
overflow." Keep this in mind when implementing recursive functions.

With the disclaimer about the perils of recursion out of the way, let's examine one of the older examples of
recursive algorithms, the Euclidean algorithm. Dating from approximately 200 B.C., the Euclidean algorithm
is a method for computing the Greatest Common Divisor of two integers. Listing 4-9 shows a recursive
implementation of the Euclidean algorithm.

Listing 4-9. A Recursive Implementation of the Euclidean Algorithm

function gcd(m, n) {
 if ((m % n) == 0)
 return n;
 else
 return gcd(n, m % n);
}

To show how this function works, let's call the gcd function with the values 24 and 18. Because 24 % 18 is 6,
the function is called again with the values 18 and 6. Because 18 % 6 is 0, we're done, and the value 6 is
returned as the Greatest Common Divisor.

Just in case you were wondering what an iterative version of the gcd function would look like, it is shown in
Listing 4-10.

Listing 4-10. An Iterative Implementation of the Euclidean Algorithm

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec6.html (1 of 2) [03.07.2007 11:48:24]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.6. Recursion

function gcd(m, n) {
 var t;

 while(n != 0) {
 t = n;
 n = m % n;
 m = t;
 }

 return(m);
}

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec6.html (2 of 2) [03.07.2007 11:48:24]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.7. Constructors

4.7. Constructors

The capability to create custom objects is what separates modern programming languages from the
programming languages of yore. Unfortunately, in JavaScript, this capability is one of those language
features that is often either ignored or overlooked. Believe it or not, there is actually a good reason for this;
it is all a matter of perception. You see, JavaScript is often viewed as a lightweight language or a kid's
programming language, good only for tasks such as creating pop-ups or handling mouseover events.

Although I believe that everybody is entitled to their opinion, I also believe that this opinion has kept web
applications mired in their original unload/reload glory. For this reason, as well as the fact that I'm not
terribly fond of writing hundreds or thousands of lines of custom code, I began to play around with
JavaScript constructors. Yes, with some planning and design work in the beginning, it is very possible to
free up some time for the occasional mad scientist project later.

The first question is, how do we start writing a constructor? Do we just jump in and create a constructor
and use it? Or should we work out the details of how something works and then use that to write a
constructor? Which approach is better?

Tough questions, and, unfortunately, I can't say what will work for you. I can, however, tell you what works
for me. Whenever I'm developing a constructor, the first thing that I do is write a sample application that
does what I want it to do, but not using a constructor. After the sample application is developed the next
step is to rewrite it using a constructor. This might seem like more work than it's worth, but it works for
me. Also, I have a tendency to see a better way to accomplish tasks with each subsequent rewrite.

With that explained, let's take a look at some of the coding details of creating JavaScript constructors. I've
always been fond of palindromes (words, numbers, or sentences that are spelled the same forward and
backward), so let's create a constructor something along those lines. Without further ado, here is an
introduction to the two ways of coding class constructors in JavaScript.

Yes, there are two different ways to code class constructors in JavaScript. The first, which is probably the
easier of the two, involves creating a function and then creating an instance of that function using the new
operator. Listing 4-11 shows an annotated example of using this method to create a constructor.

Listing 4-11. An Annotated Example of Creating a Class Constructor

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec7.html (1 of 4) [03.07.2007 11:48:25]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.7. Constructors

function Monster(text) {
 /*
 The purpose of the following code is to increment a global
 variable for each instance of this class. In the event of the
 global variable being undefined it will be initialized with a
 value of one.
 */
 try {
 ++_monster;
 }
 catch(e) {
 _monster = 1;
 }

 /*
 This code, which is executed whenever a new instance is
 created, initializes new occurrences of this object. Private
 and public properties are defined and initialized. In
 addition, methods are exposed making them public.
 */
 var occurrence = _monster; // Private property
 this.string = text; // Public property
 this.palendrome = _palendrome; // Public method
 this.number = _number; // Public method

 /*
 The following function is a method which has been made public
 by the above: this.palendrome = _palendrome; statement.
 */
 function _palendrome() {
 var re = new RegExp('[,.!;:\']{1,}','g');
 var text = this.string.toLowerCase().replace(re,'');

 return(text == _reverse(text))
 }
 /*
 The following function is a public read only method that gets
 the value of the private property occurrence. Through
 techniques like this it is possible to maintain control over
 the inner workings of objects.
 */
 function _number() {
 return(occurrence);
 }

 /*
 The _reverse function is a private method. Methods are private
 when they are not exposed using the this.[external name] =
 [internal name] statement as _palendrome and _number were.
 */
 function _reverse(string) {
 var work = '';

 for(var i=string.length;i >= 0;i)
 work += string.charAt(i);

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec7.html (2 of 4) [03.07.2007 11:48:25]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.7. Constructors

 return(work);
 }
}

To instantiate (a fancy way to say "create an instance") this class, all that is necessary is to use the new
operator in the following manner:

var myMonster = new Monster();

Using the newly instantiated class is just a matter of using the various public properties and methods that
were defined by the constructor. For example, to set and get the string property for the myMonster instance
of the Monster class, the code would look like this:

myMonster.string = 'Able was I ere I saw Elba!';
alert(myMonster.string);

To use the properties methods, statements would look like the following:

alert(myMonster.palendrome());
alert(myMonster.number());

However, there is another way to create a class constructor in JavaScript: use the prototype property. This
is shown in Listing 4-12.

Listing 4-12. Using the prototype Property to Create an sclass Constructor

Creature.prototype = new Creature;
Creature.prototype.constructor = Creature;

function Creature() {
 /*
 The purpose of the following code is to increment a global
 variable for each instance of this class. In the event of the
 global variable being undefined it will be initialized with a
 value of zero.
 */
 try {
 ++_creature;

 /*
 This is a public property which really shouldn't be accessed
 externally.
 */
 this._instance = _creature;

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec7.html (3 of 4) [03.07.2007 11:48:25]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.7. Constructors

 }
 catch(e) {
 /*
 Zero is used here due to the fact that this constructor is
 executed at class definition time.
 */
 _creature = 0;
 }
}

Creature.prototype.string; // Public property

 /*
 The following function is a method which has been made public
 by the Creature.prototype.palendrome = _Creature_palendrome;
 statement below.
 */
function _Creature_palendrome() {
 var re = new RegExp('[,.!;:\']{1,}','g');
 var text = this.string.toLowerCase().replace(re,'');

 return(text == _reverse(text))

 /*
 The _reverse function is a private method available only within
 the enclosing method.
 */
 function _reverse(string) {
 var work = '';

 for(var i=string.length;i >= 0;i)
 work += string.charAt(i);
 return(work);
 }
}
Creature.prototype.palendrome = _Creature_palendrome;

 /*
 The following function is a method which has been made public
 by the Creature.prototype.number = _Creature_Number; statement
 below.
 */
function _Creature_Number() {
 return(this._instance);
}
Creature.prototype.number = _Creature_Number;

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec7.html (4 of 4) [03.07.2007 11:48:25]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.8. Event Handling

4.8. Event Handling

Bring up the subject of client-side events among a group of web developers, and the first (sometimes the
only) one mentioned is the onclick event handler. Occasionally, someone will acknowledge the onmouseover
and the onmouseout events, but that is usually a rare occurrence, such as leap year or a pay raise after Y2K.
Come to think of it, you're more likely to hear a story about someone holding a door open for Walter
Koenig than to hear the smallest utterance about another event.

The problem is that developers get into a rut, a comfort zone, and use the same events day in and day out.
After a few months of this, we have a tendency to forget that the event handlers are even there. One of the
reasons for this is that developing web applications is like riding a bike; when you don't remember how to
do it right, there isn't even time to scream before the splat. For this reason, I have compiled Table 4-5,
which covers the event handlers common to most browsers. Yes, Bill, that means that the beforeunload
event is omitted.

Table 4-5. Event Handlers Common to Most Browsers

Operator Syntax Description

blur object.onblur = function Fires when an object loses focus, such as when Tab is
pressed or another object is clicked.

focus object.onfocus = function Fires when the object gets focus, either programmatically or
through user interaction.

load window.onload = function Fires when the page is loaded. This event can be simulated
by periodically checking the document's readystate property.

resize window.onresize = function Fires when the window is resized.

scroll window.onscroll = function Fires when the page's scroll bars are used.

unload window.onunload = function Fires just before the page is onloaded. Although it is
commonly used by pop-ups to spawn more pop-ups, it does
have some legitimate uses.

onclick object.onclick = function Fires when an object is clicked.

dblclick object.ondblclick = function Fires when an object is double-clicked.

mousedown object.onmousedown = function Fires when the mouse button is pressed.

mouseup object.onmouseup = function Fires when the mouse button is released.

mousemove object.onmousemove = function Fires when the mouse is moved.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec8.html (1 of 3) [03.07.2007 11:48:26]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.8. Event Handling

mouseover object.onmouseover = function Fires when the mouse pointer moves over the specified
object.

mouseout object.onmouseout = function Fires when the mouse pointer moves off the specified object.

change object.onchange = function Fires when the object's value changes.

reset object.onreset = function Fires when the object (form) is reset.

select object.onselect = function Fires when a different option is selected on the object
(select).

submit object.onsubmit = function Fires when the object (form) is submitted.

keydown object.onkeydown = function Fires when a keyboard key is pressed when the specified
object has focus.

keyup object.onkeyup = function Fires when a keyboard key is released when the specified
object has focus.

keypress object.onkeypress = function A combination of both the keydown and keyup events.

Unfortunately, knowing the events is only half the battle. For this knowledge to be of any use, it is
necessary to know how to assign a JavaScript event to the handler. And as with many endeavors in
JavaScript, there are two ways to accomplish this task. No, I'm not referring to a right way and a wrong
way; I'm referring to assigning via HTML and via JavaScript. Listing 4-13 shows both ways to assign an
event handler.

Listing 4-13. The Two Ways to Assign an Event Handler in JavaScript

document.getElementById('myButton').onclick = new
Function('alert(\'Ouch! You clicked me!\')');

<input type="button" id="myButton" value="Don't click">

<input type="button" id="myButton" value="Click" onclick="alert('Oooh! Do
it again!')">

Before wrapping up this chapter, there are some important items that could fall under the umbrella of
event handling. Although they aren't really events, they do raise events. The items that I am referring to
are the window.setTimeout() and window.setInterval() methods. Don't be surprised if you've never heard of
them; they're a little "out there."

The purpose of these methods is to delay the execution of a JavaScript function for a specific number of
milliseconds. Why? Well, let's say, for example, that you'd like to check later to see if an event has taken
place and leave it at that. The real question is really, why are there two methods instead of one? The
reason for two methods is that setTimeout executes a function once, whereas setInterval executes a
function repeatedly until told otherwise. Think of setInterval as being afflicted with lycanthropy, and you

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec8.html (2 of 3) [03.07.2007 11:48:26]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.8. Event Handling

get the concept. The syntax, shown here, for both of these methods is identical:

var oTime = window.setTimeout('myFunction()',1000);

var oInterval = window.setInterval('myYour()',100);

All that is left is what to do when it is necessary to clear a timeout or an interval. It is simple; just do the
following, and they're cleared:

window.clearTimeout(oTime);

window.clearInterval(oInterval);

Remember one important thing when coding in JavaScript: Bending the rules is allowed. Experiment, and
delve into matters that man, or woman, was not meant to delve into. After all, it is the mad scientist way.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec8.html (3 of 3) [03.07.2007 11:48:26]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 4.9. Summary

4.9. Summary

In this chapter, we started with the basics of JavaScript data types and variables; with a side trip to
operators, we covered the basics and a little more.

Our trek continued through the flow-control statements, the conditional ones such as if-then-else and the
switch statement. In addition, the looping statements were covered, from the common for loop to the
more obscure for-in loop.

Next, JavaScript functions were covered along with the somewhat feared topic of recursive functions. In the
same vein as functions, constructors we covered, starting with the "function" method of creating
constructors. The prototype method also was covered. Finally, event handling was discussedspecifically,
how to set handlers and how to deal with the event when it fires.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch04lev1sec9.html [03.07.2007 11:48:26]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5. Ajax Using HTML and JavaScript

Chapter 5. Ajax Using HTML and JavaScript

Human beings, as well as other life forms, are made up of chemicals such as iron, nitrogen, and water.
However, simply mixing everything together in a cauldron and giving it a quick stir won't result in someone
climbing out of the cauldron. The reason for this is that it isn't the type of ingredients put together; it is
how the ingredients are put together. After all, if girls really were made of sugar and spice and everything
nice, there would be a lot more geeky guys with dates at the prom. If you've ever read Lester Del Rey's
short story Helen O'Loy, you might be accustomed to the concept of building a date from things lying about.

The same is true for web applications. Consider for a moment what is commonly referred to as Dynamic
HTML, or DHTML, for short. Still commonly used in web applications, it is distinguished from plain HTML
only by the fact that things happened based upon events. This is where the dynamic part comes in. I would
like to point out that at no time did I mention the word JavaScript. The reason for this is that not only is it
possible to have DHTML without JavaScript, but it is also possible to have JavaScript without DHTML.

Just in case you're curious, the way to have DHTML without JavaScript is to use Cascading Style Sheets in
event handlers instead of JavaScript. Although it wouldn't be quite as flexible as JavaScript, and it could be
used only for things such as mouseovers and mouseouts, it does fulfill the dynamic requirement. After all, it
really is how the various parts are put together, not the parts themselves. Let's dig a little into the pile of
client-side parts available when starting an Ajax application and see what can be of use in building our
monster.

In this chapter, however, I intend to take advantage of the tools available to us. Most of these tools are
used in the traditional manner. However, some are not; what fun would it be if everything was done
according to the manual? Consider frames, for example. Whether or not you're aware of it, you can abuse
frames in quite a number of ways. Other tools that I use are the cross-browser Document Object Model and
HTML tables for displaying information. Hey, torture the information enough, and eventually it will confess.

In addition to these tools, I cover the ultimate database "tool," stored procedures, but with a quirky
difference. The difference is that I'm using MySQL, not Oracle or Microsoft SQL Server. Just in case you're
wondering why, I have three very good reasons. The first is that MySQL is an open source database. The
second is that stored procedures are rather new in MySQL, so there isn't very much written about them.
The final reason, and, in my opinion the most important, is that my wife keeps me on a budget; alas, no
Tesla coils for me.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05.html [03.07.2007 11:48:26]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.1. Hidden Frames and iframes

5.1. Hidden Frames and iframes

Frames and iframes (in-line frames), for some reason, are one of those things that strike fear into the heart
of web developers everywhere. It is one of those deep-seated fears, like tanning products are to a vampire
or advertisements for having your pet spayed or neutered are to a werewolf. Several reasons for this primal
fear of frames exist; fortunately, there is a countermeasure for each of these reasons.

The first of these reasons is the mistaken belief that frames are nonstandard and, therefore, are supported
by only a handful of "unholy" web browsers. Fortunately, this belief is a total and complete myth because
frames and iframes have the blessing of the World Wide Web Consortium. In fact, the only unholyeh, make
that unusualpart is that the frames are hidden, but, then, that's the entire point of this endeavor.

Now let's get into the actual specifics of making frames behave like Claude Rains, who, if I may digress for
a moment, brilliantly played a mad scientist even if he didn't start that way. First starting with the older
frame instead of the more recent iframe, the hiding entirely takes place in the frameset, as Listing 5-1
shows.

Listing 5-1. The Older Frame

<frameset rows="100%,*">
 <frame name="visible_frame" src="visible.htm">
 <frame name="hidden_frame" src="hidden.htm">
 <noframes>
 Frames are required to use this web site.
 </noframes>
</frameset>

As mentioned in the previous chapter, the rows="100%,*" performs the magic, but it isn't the only method
available to us. In fact, looking at only the opening frameset tag, the following eight examples all produce
the desired results:

<frameset rows="100%,*">

<frameset rows="100%,0">

<frameset rows="*,0%">

<frameset rows="*,0">

<frameset cols="100%,*">

<frameset cols="100%,0">

<frameset cols="*,0%">

<frameset cols="*,0">

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec1.html (1 of 2) [03.07.2007 11:48:27]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.1. Hidden Frames and iframes

The reason for this plethora of choices is that this is one of those times when we really don't care how the
hiding is accomplishedall that matters is that the hiding is accomplished. Oh, this is a good time for me to
point out that when developing a new application using hidden frames, it isn't a violation of the mad
scientist rules to make the hidden frame visible for testing. It is, however, a violation to let others see the
frame with the hidden frame visible, both because it gives the impression that something is wrong with our
fiendish plans and because it looks ugly.

Unlike framesets, in which the hiding is accomplished through the use of either rows or columns, iframes
have the much-easier-to-remember height and width attributes, as the following tag shows:

<iframe height="0" width="0" src="hidden.htm">

That's itjust the one measly little tag, and we've got something that kind of looks a lot like Ajax. Right
about now you're either taking my name in vain or wondering why I didn't start with iframes. In fact, there
are probably some out there who are doing both. Well, the answer is both personal and simple. Whenever I
learn something new, I try to immerse myself totally in it, avoiding all shortcuts until whatever I learned
becomes second nature. To be totally honest, after learning to swim, I was wrinkled for a week.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec1.html (2 of 2) [03.07.2007 11:48:27]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.2. Cross-Browser DOM

5.2. Cross-Browser DOM

Now that we have either classic frames or iframes, we have reached one of the most widespread reasons
for their avoidance: the matter of access. Short of a crystal ball and tea leaves, or maybe two soup cans
and a piece of string, just how do the various frames communicate? I've worked with some web developers
who believed that it was easier to talk with the ghost of Elvis than to have individual frames communicate
with one another. However, to be honest, most of those web developers talked of black helicopters and
wore aluminum foil hats to ward off mind control.

As much as it seems otherwise, interframe communications is relatively simple and can be dealt with using
one word: DOM. Alright, you caught me in a fib; DOM is an acronym, so it's really three words, Document
Object Model. Coming in both HTML and XML flavors, in this instance, the DOM is a hierarchical
representation of a web page that allows JavaScript to access and modify a page. Actually, careless coding
when using the DOM is a most excellent way for a page to self-destruct, a la "Good morning, Mister Phelps."

As formidable as the DOM sounds, it is nothing more than a hierarchical representation of a document,
which, in this case, is an HTML document. Think treesthe data structure trees, not the green woody things.
And, no, not binary trees; we want the ones that can have more than two children.

Just in case you need a little refresher in the structure of trees, it goes like this:

● Each of the tags in an HTML document can be referred to as a node or element.
● There is only one topmost node, which is called the root node.
● All nodes are descendants of the root node, either directly or indirectly.
● With the exception of the root node, all nodes have a single parent node.
● Nodes that occur on the same tree level that share a parent are called siblings.
● The immediate descendants of a particular node are referred to as that node's children.

However, you must remember one thing when accessing the Document Object Model: Here be monsters.
This is one of those places where it is really necessary to test things on several different browsers. The
reason for this is the usual; it is basically a question of interpretation of the World Wide Web Consortium's
DOM specifications. This might sound a little like the schisms that occur between different sects of the same
religion, but depending on the application, it can cause some major headaches. Listing 5-2 shows an
example of this potential problem.

Listing 5-2. Example of a Problem Created by Differing Interpretations of the
W3C's DOM Specs

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec2.html (1 of 13) [03.07.2007 11:48:28]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.2. Cross-Browser DOM

<html>
 <head>
 <title>DOM Test</title>

 <script language="JavaScript">
/*
 Recursively transverse the HTML DOM using the passed
 node as a starting point.
*/
function transverse(obj) {
 var strNode = ancestor(obj) + obj.nodeName.toString() + '\n';

 for(var i=0;i < obj.childNodes.length;i++)
 strNode += transverse(obj.childNodes.item(i));

 return(strNode);

 function ancestor(obj) {
 if(obj.parentNode != null)
 return('>' + ancestor(obj.parentNode));
 else
 return('');

 }
}
 </script>
 </head>
 <body onload="document.getElementById('textarea1').value =
transverse(document)">
 <table width="300" border="1" cellspacing="1" cellpadding="1">
 <tr>
 <td>
 <input type="text" id="input1" name="input1" />
 </td>
 </tr>
 <tr>
 <td>
 <textarea id="textarea1" name="textarea1"
cols="80" rows="20"></textarea>
 </td>
 </tr>
 </table>
 </body>
</html>

Consisting of an HTML document with an embedded JavaScript function whose sole purpose is to transverse
the document, the page just shown yields some interesting results, depending on the web browser. Listings
5-1, 5-2, and 5-3 show the result of loading the document in Microsoft Internet Explorer, Firefox, and
Opera, respectively.

Listing 5-3. Microsoft Internet Explorer

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec2.html (2 of 13) [03.07.2007 11:48:28]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.2. Cross-Browser DOM

#document
>HTML
>>HEAD
>>>TITLE
>>>SCRIPT
>>BODY
>>>TABLE
>>>>TBODY
>>>>>TR
>>>>>>TD
>>>>>>>INPUT
>>>>>>>#text
>>>>>TR
>>>>>>TD
>>>>>>>TEXTAREA
>>>>>>>>#text
>>>>>>>#text

Listing 5-4. Firefox

#document
>HTML
>>HEAD
>>>TITLE
>>>>#text
>>>#text
>>>SCRIPT
>>>>#text
>>#text
>>BODY
>>>#text
>>>TABLE
>>>>#text
>>>>TBODY
>>>>>TR
>>>>>>#text
>>>>>>TD
>>>>>>>#text
>>>>>>>INPUT
>>>>>>>#text
>>>>>>#text
>>>>>#text
>>>>>TR
>>>>>>#text
>>>>>>TD
>>>>>>>#text
>>>>>>>TEXTAREA
>>>>>>>#text
>>>>>>#text
>>>>>#text

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec2.html (3 of 13) [03.07.2007 11:48:28]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.2. Cross-Browser DOM

>>>#text

Listing 5-5. Opera

#document
>HTML
>>HEAD
>>>TITLE
>>>>#text
>>>SCRIPT
>>BODY
>>>#text
>>>TABLE
>>>>TBODY
>>>>>TR
>>>>>>TD
>>>>>>>#text
>>>>>>>INPUT
>>>>>>>#text
>>>>>TR
>>>>>>TD
>>>>>>>#text
>>>>>>>TEXTAREA
>>>>>>>>#text
>>>>>>>#text
>>>#text
>>>#text
>>>#text

Interesting, isn't it? You can't even play the Sesame Street "One of these things ain't like the other" song
because none of them is like the others. However, more similarities exist than differences, such as the
basic structure and the existence of specific nodes. What is important to remember is that, depending on
the web browser, #TEXT elements can be sprinkled here and there.

Now that this is out of the way, let's take a closer look at the HTML document in Listing 5-6, with the goal
of locating specific elements, such as the BODY element. As a matter of fact, grab a number 2 pencil; it's
time for a pop quiz. Which of the following JavaScript statements can be used to locate the BODY element in
the HTML document shown in Listing 5-6?

1.

window.document.body;

2.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec2.html (4 of 13) [03.07.2007 11:48:28]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.2. Cross-Browser DOM

document.body;

3.

self.document.body;

4.

document.getElementsByTagName("body").item(0);

Listing 5-6. Sample HTML Document

<html>
 <head>
 <title>Sample</title>
 </head>
 <body>
 <p>Hello, World!</p>
 </body>
</html>

Pencils down. The correct answer is: all of them. Yes, it is a trick question, but it points out that there are
many ways to reach the same destination. Think of it as an "All roads lead to Rome" thing, and no one will
get hurt. Of course, it might be important to remember that some of the routes to a destination could be
quicker than others.

I'd like to cover one additional, often overlooked, DOM topic. When dealing with frames, there will always
be more than one #document. Not only does the frameset have a #document, but each frame will have a
#document of its own.

5.2.1. JavaScript, ECMAScript, and JScript

Regardless of the name they call it by, people either love or hate JavaScript, which is probably why
opinions range from it being either the greatest thing since sliced bread or the tool of the devil. Personally,
I believe that cheeseburgers are the greatest thing since sliced bread and that the tool of the devil is
cellphones. Nothing worse than enjoying a good cheeseburger, with onion rings on the side, and the damn
phone starts playing "The Monster Mash." But I digress.

JavaScript is a tool, neither good nor bad, like any other tool; it's all in how the tool is used. Give ten
people a box of tools and a job to do, and nine of them will get the job done in various degrees, while the
tenth will require a call to 911. With human nature being what it is, you'll never hear about the first nine;
you'll only hear about poor old Bob who did himself serious bodily harm with a router. For this reason,
people will decide that routers are evil.

JavaScript essentially falls into the same category, a lightweight, interpreted object-based language, and it
is extremely flexible and tightly coupled with the browser. For instance, you're now aware that by using

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec2.html (5 of 13) [03.07.2007 11:48:28]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.2. Cross-Browser DOM

JavaScript and DOM it is possible to modify the contents of the page as previously demonstrated without
bothering the server, but are you also aware that by using JavaScript it is also possible to create objects?

Let's say, for instance, that you've got a website that uses a handful of standard-sized pop-ups. Well,
rather than code them each by hand and possibly have typos on a few pages, why not create an object to
open a number of standard-sized windows? Three different-sized pop-ups should suffice; add to that the
capability to override the various properties, and we end up with the "function," which is really a class
shown in Listing 5-7.

Listing 5-7. JavaScript childWindow Class

function childWindow(strURL, strName, strChildType) {
 /* The purpose of this function is to act as a
 class constructor for the childWindow object.

 The properties for this object are the following:
 url = uniform resource locator
 name = child window name
 child = child window object
 attributes = child window attributes

 The methods for this object are the following:
 open() = Opens and sets focus to the
 childWindow
 close() = Closes the childWindow
 focus() = Sets focus to the childWindow
 closed() = Returns a boolean indicating if the

 childWindow is open.
 */
 var reName = new RegExp('[^a-z]','gi'); // Regular expression
 var e;
// Dummy for error code

// Properties
 this.url = strURL; // Uniform resource locator
 this.name = strName.toString().replace(reName,'');
 this.childType = strChildType; // Child window type
 this.child = null; // Child window object
 this.alwaysRaised = 'no'; // Window always raised
 this.copyhistory = 'yes'; // Copy browser history
 this.height = ''; // Window's height
 this.left = 0; // Window's left start position
 this.location = 'no'; // Window's location box
 this.menubar = 'no'; // Window's menu bar
 this.resizable = 'yes'; // Window's resizable
 this.scrollbars = 'yes'; // Window's scroll bars
 this.status = 'yes'; // Window's status bar
 this.toolbar = 'yes'; // Window's tool bar
 this.width = ''; // Window's width
 this.top = 0; // Window's top start position

// Methods
 this.open = childWindowOpen; // Open method

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec2.html (6 of 13) [03.07.2007 11:48:28]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.2. Cross-Browser DOM

 this.close = childWindowClose; // Close method
 this.focus = childWindowFocus; // Focus method

// Determine attributes based on type
 try {
 if(typeof this.childType != 'undefined')
 switch(this.childType.toLowerCase()) {
 case 'info':
 this.height = Math.round(screen.availHeight
* 0.4);
 this.width = Math.round(screen.availWidth *
0.4);
 this.left = (screen.availWidth -
Math.round(screen.availWidth * 0.4) - 8) / 2;
 this.top = (screen.availHeight -
Math.round(screen.availHeight * 0.3) - 48) / 4;
 this.toolbar = 'no';

 break;
 case 'help':
 this.height = Math.round(screen.availHeight
* 0.7);
 this.width = Math.round(screen.availWidth *
0.8);
 this.left = screen.availWidth -
Math.round(screen.availWidth * 0.8) - 8;
 this.top = (screen.availHeight -
Math.round(screen.availHeight * 0.7) - 48) / 4;

 break;
 case 'full':
 this.height = screen.availHeight - 48;
 this.width = screen.availWidth - 8;
 this.toolbar = 'no';

 break;
 default:
 throw(null);

 break;
 }
 else
 throw(null);
 }
 catch(e) {
 this.height = screen.availHeight - 147;
 this.width = screen.availWidth - 8;
 this.menubar = 'yes';
 this.resizable = 'yes';
 this.scrollbars = 'yes';
 this.status = 'yes';
 this.toolbar = 'yes';
 this.location = 'yes';
 }

 function childWindowOpen() {

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec2.html (7 of 13) [03.07.2007 11:48:28]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.2. Cross-Browser DOM

 /* The purpose of this function is to act as the open
for the childWindow object by
opening a window with attributes based upon
 the window type specified.
 */

 var strAttributes; // Window attributes
 var e;
 // Dummy error

 // Build window attribute string
 strAttributes = 'alwaysRaised=' + this.alwaysRaised;
 strAttributes += ',copyhistory=' + this.copyhistory;

 if(typeof this.height == 'number')
 if(this.height > 0)
 strAttributes += ',height=' + this.height;

 strAttributes += ',left=' + this.left;
 strAttributes += ',location=' + this.location;
 strAttributes += ',menubar=' + this.menubar;
 strAttributes += ',resizable=' + this.resizable;
 strAttributes += ',scrollbars=' + this.scrollbars;
 strAttributes += ',status=' + this.status;
 strAttributes += ',toolbar=' + this.toolbar;
 strAttributes += ',top=' + this.top;

 if(typeof this.width == 'number')
 if(this.width > 0)
 strAttributes += ',width=' + this.width;
 // Try to open a child window
 try {
 this.child = window.open(this.url, this.name,
strAttributes);

 if(window.opener.name == this.name)
 this.child = window.opener;
 else
 if(window.opener.opener.name == this.name)
 this.child = window.opener.opener;
 else
 if(window.opener.opener.opener.name ==
this.name)
 this.child =
window.opener.opener.opener;
 else
 if(window.opener.opener.opener.name ==
this.name)
 this.child =
window.opener.opener.opener;

 this.focus();
 }
 catch (e) {
 this.focus();
 }

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec2.html (8 of 13) [03.07.2007 11:48:28]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.2. Cross-Browser DOM

 }
 function childWindowClose() {
 /* The purpose of this function is to act as the
close method for the childWindow
 object and close the child window.
 */
 var e;
 // Dummy for error code

 try {
 this.child.close();
 }
 catch (e) { }
 }

 function childWindowFocus() {
 /* The purpose of this function is to act as the
focus method for the childWindow
 object. In other words, set focus to the
 child window.
 */
 this.child.focus();
 }
}

As with the more traditional languages, to use our window object, it is necessary to instantiate the classin
other words, create an instance of the class. Listing 5-8 shows how instantiation is accomplished, and
Figure 5-1 displays the result.

Figure 5-1. childWindow class in action

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec2.html (9 of 13) [03.07.2007 11:48:28]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/05ajx01_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.2. Cross-Browser DOM

Listing 5-8. Example of Using the childWindow Class

var child = new childWindow('child.html','child','info');
child.open();

Another often overlooked feature of JavaScript is its recursive capabilities, although, come to think of it,
this might be an intentional omission. For some reason, the majority of developers avoid recursion like it's
an Osmonds' or a Carpenters' album. I'm of the opinion that the reason for this is that, as with the albums
from either of the two mentioned groups, recursion can cause headaches. Of course, it might be more
because, unless trained, our minds don't readily lend themselves to thinking recursively.

Nevertheless, sometimes recursion is the easiest way to handle a particular coding issue. And not
computing Fibonacci numbers or the factorial of a number, which are those "make work tasks" designed to
keep computer science professors off the street. Group those two problems with singly- and doubly-linked
lists, and they're good for a whole semester.

Instead, let's examine the transverse() function from Listing 5-2, which, for convenience, has been copied
here to Listing 5-9. With the exception of the enclosed ancestor() function, the TRansverse() function is

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec2.html (10 of 13) [03.07.2007 11:48:28]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.2. Cross-Browser DOM

pretty much a classic example of recursion coded in JavaScript. The same can be said of the ancestor()
function, whose sole purpose is to return a greater-than sign for every ancestor of the current node.

Listing 5-9. Listing 5-2 Repeated

/*
 Recursively transverse the HTML DOM using the passed
 node as a starting point.
*/
function transverse(obj) {
 var strNode = ancestor(obj) + obj.nodeName.toString() + '\n';

 for(var i=0;i < obj.childNodes.length;i++)
 strNode += transverse(obj.childNodes.item(i));

 return(strNode);

 function ancestor(obj) {
 if(obj.parentNode != null)
 return('>' + ancestor(obj.parentNode));
 else
 return('');
 }
}

5.2.2. A Problem to Be Solved

With all due respect to one of my previous managers who believed that there were no such thing as
problems, only opportunities, there is one problem that I've been meaning to solve for a while now. It's one
of those things that the average person, one without mad scientist tendencies, doesn't realize exists.
Where do mad scientists shop online? Oh, sure, there's Amazon.com and Walmart.com, but have you ever
tried to purchase a cask of Amontillado, or stones and mortar from either website? These essential tools of
the trade just aren't readily available online.

The big websites just don't appreciate the needs of the lonely mad scientist. In fact, it might be a good idea
to include some of the other often-underrepresented groups as well. I imagine that alchemists and
sorcerers have some issues shopping for the tools of their trades as well. I, for one, have never seen either
site offer retorts or grimoires or anything along those lines. Not that I know what a retort is; I imagine that
it is some kind of backup Linzer torte or something along those lines. There is definitely an untapped
market here, so much so that, had I conceived of this idea about six years ago, it would be necessary to
beat off potential investors with a stick.

I envision this website as a pretty normal series of web pages, starting with a splash page that takes the
visitor to a page displaying items for the various guilds: mad scientist, alchemist, and sorcerer. The visitor
would then have the option of browsing all the items available or filtering by guild.

Shoppers could view the details of the individual items and, if desired, add them to their shopping cart,
which can be displayed at any time. When they were sure that they had everything they want, they could
proceed to checkout, enter their shipping and billing information, and be off.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec2.html (11 of 13) [03.07.2007 11:48:28]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.2. Cross-Browser DOM

So with that idea in mind, the various web pages fall into a few simple categories:

● Those that display tabular information that cannot be altered, such as the items for sale
● Pages that display tabular information that can be updated, such as the quantities of items in the

shopping cart
● Static form-type pages, such as those that verify your shipping address page
● Updateable forms, such as the page where the visitor enters the shipping billing information

Oh, and the other thing I forgot to mention: This site needs to work with a selection of different web
browsers. I have a couple of totally logical reasons to require this cross-browser capability. The first reason
is to appeal to as wide a customer base as possible because the more customers, the more sales. The
second is, it might not be a good idea to tick off someone who is potentially creating a Moon-Mounted
Death Ray. Hmm, note to self: Use a P.O. Box as a corporate address.

Before proceeding any further, now is a good time to delve a little into the server-side environment. Let's
start with the operating system and web server; I'm using Windows XP Professional and Internet
Information Server. The reason for this is the usual: It came on the machine, and I'm too lazy to change it.
Besides, I'm pretty sure that "Age of Mythology" doesn't run on Linux. Note to self: Make sure that you
don't get caught by Mary Ann playing when you should be writing.

So far, my environmental choices have been pretty boring, and the open source people are thinking that
Firefox alone doesn't cut it for a book. Alright, how about MySQL version 5? In fact how, about MySQL
version 5 with stored procedures? Interested? Well, then, read on.

In version 5, MySQL introduced a feature that had been in the proprietary databases for quite some time:
stored procedures. Just in case you were abducted by aliens in 1974 and only recently got back to Earth,
let me explain what stored procedures are. Stored procedures are preparsed SQL that accepts parameters
and can return results.

Let's say, for example, that we have a table consisting of the states and territories of the United States and
the provinces of Canada. Let's also say that we'd like the option of passing the procedure a two-character
abbreviation to receive the name of the state or province, or passing a null value to obtain the names and
abbreviations of all. We would create a stored procedure that looks a lot like the one shown in Listing 5-10.

Listing 5-10. A MySQL Stored Procedure

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec2.html (12 of 13) [03.07.2007 11:48:28]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.2. Cross-Browser DOM

DELIMITER $$

DROP PROCEDURE IF EXISTS 'ajax'.'stateSelect'$$
CREATE PROCEDURE 'ajax'.'stateSelect'(
 stateAbbreviation VARCHAR(2)
)
BEGIN
 SELECT state_abbreviation,
 state_name
 FROM state
 WHERE (stateAbbreviation IS NULL OR stateAbbreviation =
state_abbreviation);
END$$

DELIMITER ;

Now that we have a stored procedure, the big question is, what do we do with it? Fortunately, that's an
easy question; we call it as shown in the first example here. However, I'd like to point out that because of
the way the stored procedure is called, when a parameter is null, a null must, in fact, be passed as shown
in the second example.

CALL stateSelect('NJ');

CALL stateSelect(NULL);

Now that the database issue is out of the way, it is time to figure out what to code the server side in. My
first thought was to pick a language that has a proven track record and was widely accepted, but I could
not find a reliable source of punch cards, so COBOL wasn't a viable option. The really scary part is that I've
seen it attempted at companies because they thought that they could port their mainframe CICS code to
the Web, but that is another story.

I finally decided on PHP 5. My reasons for this are several. The first is that I've seen it and know that, not
only does it work, but it works well. Another reason is that it appears to be a combination of C and UNIX
Shell, both of which I've worked with in the past. The third reason is that it plays well with MySQL and
stored proceduresat least, once configured correctly and if I remember to use the mysqli library instead of
the older mysql library.

The final reason is that it is open source, and, therefore, several slick IDEs such as PHP Designer 2005 from
MPSOFTWARE are available to those of us on limited budgets.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec2.html (13 of 13) [03.07.2007 11:48:28]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.3. Tabular Information

5.3. Tabular Information

As stated previously, the first two types of web pages required both deal in some way with tabular
information, either for display or for updates.

When I was in high school, I took quite a few drafting classes, thinking that perhaps a career in
architecture lay in my future. But I discovered computers, and, eh, a career in a different kind of
architecture lay in my future. And that is exactly what we need now: an architecture upon which to build
our creatureeh, er, e-commercesite. So let's send Igor to get a cold beverage and queue the storm sound
effects before we start.

Back already?

Because programming is one of those fields, like politics, in which trotting out an old idea is a virtue, we'll
drag the frameset from Chapter 2, "Introducing Ajax," into this chapter and use it again. If Congress can
recycle the same bills year after year, surely we can do the equivalent with some code. Just in case you've
forgotten what it looks like, Listing 5-11 shows it in its entirety, without commercial interruption.

Listing 5-11. Frameset

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>MSAWSS</title>
 </head>
 <frameset rows="100%,*">
 <frame name="visible_frame" src="visible.html">
 <frame name="hidden_frame"
src="customer.php?email=ewoychowsky@yahoo.com">
 <noframes>
 Frames are required to use this web site.
 </noframes>
 </frameset>
</html>

Unfortunately, because of scope creep, the visible page from Chapter 2 doesn't make the grade for this
chapter. It is almost there, but it needs a little more functionalitybasically, additional logic to make it
bulletproof. By bulletproof, I mean able to withstand attack by Machinegun Kelly or any other "guest" who
can click a mouse button upward of 200 times a minute.

But before adding the necessary logic, let's see what JavaScript functions we already have that can be
cloned for our nefarious purpose. The first JavaScript function to be cloned is changeEvent, which itself does

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec3.html (1 of 18) [03.07.2007 11:48:31]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.3. Tabular Information

a little cloning. The sole purpose of this little cross-browser-capable function is to handle an onchange event
for HTML input, textarea, and select tags. The second function that can be cloned is submitForm, which,
surprisingly, is also cross-browser-capable.

At this point in designing the architecture, I have run out of code to clone and now must write code from
scratch. But before I do, allow me to explain what I'd like to do. After all, explaining plots is a common
weakness that we mad scientists all have, and if I can't explain it to you, I'll have to explain it to Igor, and
the blank, glassy stare that he gets is so unnerving.

First I'd like a routine that ensures that the peasantseh, guestsdon't muck around with the Back button.
This is because the Back button is like fire to Victor's monsterit causes unpredictable results. With any kind
of HTML frames, hitting the Back button is just as likely to cause the hidden page to go back as the visible
page. In short, it is not a good thing. Fortunately, in this instance, a little JavaScript goes a long way, as
the following line of code shows:

window.history.forward(1);

Doesn't look like much, does it? Well, it isn't the size of the boat, but the, um, never mind. Let's just say
that it is all that is necessary to ensure that the current page is always the top page in the history, which is
exactly what this does. Of course, it needs to be included on every page, both visible and hidden. It is also
important to remember to provide some means of navigation; otherwise, shoppers will be lost in a "twisty
little maze of passages, all alike," which isn't real good for repeat business.

The next function isn't really a function at all; it is actually a Boolean global variable that merely indicates
whether the web browser is Microsoft Internet Explorer or another browser. The reason this is an Internet
Explorer indicator isn't because I'm in love with IE; it is because the larger the software company is, the
more likely that it has wandered off the path when it comes to following standards. So with this in mind,
the following code was written:

var _IE = (new RegExp('internet explorer','gi')).test(navigator.appName);

The third function that is necessary to this project is one that "clones" a form on the hidden frame to the
visible. Although this sounds pretty simple, it is anything but simple. In fact, most developers never ask
one major question unless they try this kind of thing for themselves:

When loading the frameset for the first time, which page loads first?

Fortunately, there is a simple answer to this question; unfortunately, the answer is that I don't know, which
is a rather big stumbling block to overcome to complete the website. This means that not only will the
function need to clone the hidden form to the visible form, but it might have to sit around waiting for the
visible form to finish loading. The good thing is that the process of checking for frame completeness is very
similar to what was done in Chapter 2, as shown in Listing 5-12.

Listing 5-12. initialize Function

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec3.html (2 of 18) [03.07.2007 11:48:31]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.3. Tabular Information

/*
 Update the visible frame with information from this page.
*/
function initialize()
{
 var hiddenForm = document.getElementById('hidden_form');

 if(_IE)
 {
 if(parent.document.frames.item('visible_frame').document.readyState
!= 'complete')
 window.setTimeout('initialize()',100);
 else

parent.frames['visible_frame'].document.getElementById('visible_form').
innerHTML = hiddenForm.innerHTML;
 }
 else
 {
 try
 {
 var node =
parent.frames['visible_frame'].document.getElementById('visible_form').
firstChild;

 try
 {

parent.frames['visible_frame'].document.getElementById('visible_form').
removeChild(node);
 }
 catch(e) { }

parent.frames['visible_frame'].document.getElementById('visible_form').
appendChild(hiddenForm.cloneNode(true));
 }
 catch(e)
 {
 window.setTimeout('initialize()',100);
 }
 }
}

The initialize() function is invoked by the hidden frame's onload event handler, and the first thing that it
does is use the _IE Boolean that I created earlier. The reason for this is that occasionally I do give in to
temptation and use a nonstandard browser feature. In this instance, the feature is the document object's
readyState property. Just test it against "complete," and we're good to go (that is, if the browser is
Microsoft Internet Explorer; otherwise, it is necessary to give it the old college try and catch).

If the visible frame isn't ready, it is necessary to use the window.setTimeout() method to invoke the
initialize() function again after waiting the specified number of milliseconds. Don't confuse this method

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec3.html (3 of 18) [03.07.2007 11:48:31]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.3. Tabular Information

with the window. setInterval() method because setTimeout invokes the specified function only once. With
setInterval(), the function repeats like salami does until it is stopped, which is bad, unless you are fond of
debugging really weird client-side happenings.

The next function that I want to add is one to restrict keyboard input to numeric values. Although the
appropriate elements can be tested at submission time, we're dealing with guests who could potentially
unleash a plague of giant hedgehogs on Spotswood, New Jersey, when ticked off. So why not avoid any
problems before they occur? Listing 5-13 shows this function in all its glory.

Listing 5-13. restrict Function

/*
 Restrict keyboard input for the provided object using the
 passed regular
 expression and option.
*/
function restrict(obj,rex,opt) {
 var re = new RegExp(rex,opt);
 var chr = obj.value.substr(obj.value.length - 1);

 if(!re.test(chr)) {
 var reChr = new RegExp(chr,opt);

 obj.value = obj.value.replace(reChr,'');
 }
}

The final two functions are the changeEvent() and the submitForm() functions, which have been copied
directly from Chapter 2. Listing 5-14 shows both of these functions.

Listing 5-14. changeEvent and submitForm Functions

/*
 Handle form visible form onchange events. Values from the
 visible form are copied to the hidden form.
*/
function changeEvent(obj)
{
 parent.frames[1].document.getElementById(obj.id).value = obj.value;
}

/*
 Submits the form in the hidden frame.
*/
function submitForm() {
 parent.frames[1].document.getElementById('hidden_form').submit();
}
 </script>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec3.html (4 of 18) [03.07.2007 11:48:31]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.3. Tabular Information

 </head>
 <body onload="initialize()">
 <form name="visible_form" id="visible_form"></form>
 </body>
</html>

5.3.1. Read Only

As strange as it sounds, when I'm creating a website from scratch, I often find it simpler to begin coding
nearer to the end than the beginning. This is probably some sort of unique mental defect, but it works, so
I'm not about to mess with it. So let's start with the page that shows the garbage that the sucker
orderedeh, the items that the customer selected for purchase. In fact, let's play nice and try to refer to
customers as "guests" instead of "users" or "suckers"at least, to their faces (remember the Moon-Mounted
Death Ray).

So with my new and enlightened attitude, let's determine what information the guests require. Well, the
order number would be nice, if only for our own protection. The same can be said for item numbers, item
names, quantity, and both unit price and total item price. Showing the total along with any shipping
charges and tax (at least, until our own Death Ray is operational) is an absolute must.

So let's see, we have the following:

● One order number
● A variable number of item lines consisting of item numbers, item names, quantity ordered, unit

price, and total item price
● One shipping total
● One tax total, at least for the near future
● One grand total

Now that we've got something that remotely resembles a plan, it is time to implement it. First there are the
database tables that describe the guild (Mad Scientist, Alchemist, or Sorcerer), orders, items, and lines.
From this SQL it is pretty easy to infer what some of the other tables are, but we ignore them for now
because they're not needed at this point. Listing 5-15 shows the SQL necessary to define these tables.

Listing 5-15. SQL to Create MySQL Database Tables

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec3.html (5 of 18) [03.07.2007 11:48:31]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.3. Tabular Information

CREATE TABLE guild (
 guild_id int(6) auto_increment NOT NULL,
 guild_name varchar(255) NOT NULL,
 PRIMARY KEY (guild_id),
 UNIQUE id (guild_id)
);

CREATE TABLE orders (
 orders_id int(6) auto_increment NOT NULL,
 customer_id int(6) NULL,
 ship_address_id int(6) NULL,
 orders_date datetime NOT NULL,
 PRIMARY KEY (orders_id),
 UNIQUE id (orders_id),
 KEY customer_key (customer_id),
 KEY ship_address_key (ship_address_id)
);

CREATE TABLE item (
 item_id int(6) auto_increment NOT NULL,
 item_name varchar(255) NOT NULL,
 item_description varchar(255) NULL,
 item_price decimal(10,2) NOT NULL,
 PRIMARY KEY (item_id),
 UNIQUE id (item_id)
);
CREATE TABLE line (
 line_id int(6) auto_increment NOT NULL,
 orders_id int(6) NOT NULL,
 item_id int(6) NOT NULL,
 line_quantity int NOT NULL,
 line_item_price decimal(10,2) NOT NULL,
 PRIMARY KEY (line_id),
 UNIQUE id (line_id),
 KEY orders_key (orders_id),
 KEY item_key (item_id)
);

If you recall, earlier I stated that MySQL version 5 and higher support stored procedures; in fact, I even
gave you an example. We've just covered the tables we're using for this example, so now is a good time to
cover the stored procedure. The stored procedure lineSelect (see Listing 5-16) is relatively simple, just a
select statement with a bunch of inner joins. Although it isn't heavy dutyno cursors, transactions, or
anything like thatit is an example of a stored procedure in MySQL, currently a thing only slightly more
common than unicorns.

However, there are a number of reasons for the inclusion of stored procedures, especially in MySQL. The
first of these is to avoid the use of Microsoft Access, which is technically a database; however, it really isn't
very robust. Some might argue that Access is a replacement for SQL Server, which I agree to, but I'm on a
budget here and a stripped-down developers' edition isn't what I want. Besides, both Access and SQL
Server are Windows-only databases. Oracle, on the other hand, runs a number of platforms and is robust,
but it isn't open source. As for my final reason for stored procedures, speed thrills.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec3.html (6 of 18) [03.07.2007 11:48:31]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.3. Tabular Information

Listing 5-16. lineSelect stored procedure

DELIMITER $$

DROP PROCEDURE IF EXISTS `ajax`.`lineSelect`$$
CREATE PROCEDURE `ajax`.`lineSelect`(
 ordersId INTEGER(6)
)
BEGIN
 SELECT line_id,
 item_id,
 line_quantity,
 line_item_price
 FROM line
 WHERE (ordersId IS NULL OR ordersId = orders_id)
 ORDER BY line_id ASC;
END$$

DELIMITER ;

Earlier I said that the examples would be in PHP, and because stored procedures are being used, it is
necessary to use the mysqli library instead of the mysql library. This might not sound like a big deal, but it
would be a good idea to provide some basic information on the parts ofmysqli that are used in this
example. Table 5-1 outlines these "parts."

Table 5-1. mysqli

Method/Property Type Description

mysqli Constructor Returns a connection

connect_errno() Property Returns the result of the connection attempt

query Method Executes the provided SQL statement

error Property Returns the result of the command

fetch_array Method Returns the result of a query as an array

close() Method Closes the connection

The odd thing is that after all the little details are covered, such as the client-side JavaScript, database
tables, and stored procedures, there is actually very little code to write. Mostly it comes down to putting
the pieces together and using the Cascading Style Sheets (CSS) shown in Listing 5-17 to give the website a
consistent look and feel.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec3.html (7 of 18) [03.07.2007 11:48:31]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.3. Tabular Information

Listing 5-17. CSS

A:active
{
 color: 0000FF
}
A:visited
{
 color: 0000FF
}
A:hover
{
 color: 800080;
 text-decoration: none
}
BODY
{
 background-color: F0F8FF;
 font-family: tahoma;
 font-size: 12px
}
BUTTON
{
 cursor: hand;
 font-family: tahoma;
 font-size: 12px
}
INPUT
{
 cursor: hand;
 font-family: tahoma;
 font-size: 12px
}
H1
{
 font-family: tahoma;
 font-size: 18px
}
TABLE
{
 border: collapse
}
TH
{
 font-family: tahoma;
 font-size: 12px
}
TD
{
 font-family: tahoma;
 font-size: 12px
}
.cellAlert
{

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec3.html (8 of 18) [03.07.2007 11:48:31]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.3. Tabular Information

 color: FF0000;
 font-weight: bold
}
.pageHeader
{
 background-color: 000080
}
.pageCell
{
 color: FFFFFF;
 font-family: tahoma;
 font-size: 16px;
 font-weight: bold
}
.rowHeader
{
 background-color: 6495ED;
 color: FFFFFF;
 font-weight: bold
}
.rowData
{
 background-color: D3D3D3
}
.numeric
{
 font-family: tahoma;
 text-align: right
}

The end result of this endeavor is the page shown in Figure 5-2, whose code is shown in Listing 5-18 along
with some common PHP variables and routines shown in Listing 5-19. While we're on the subject of
common routines, I should state now that there are several different approaches to handling inclusion of
common code. The first, which I'm using here, is to include everything that could possibly be of any use
from a single file. Later, however, I switch to an approach that breaks up variables and routines by
function. For example, database-related items are here and rendering-related items are there, and
anything else is handled on a case-by-case basis. This might seem like overkill now, but it falls under the
category of defensive programming.

Figure 5-2. The page resulting from our efforts

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec3.html (9 of 18) [03.07.2007 11:48:31]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/05ajx02_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.3. Tabular Information

Listing 5-18. Code for the Page in Figure 5-2

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<?php
include('common.php');

$title="Order Detail";
$order = substr(@$_SERVER['QUERY_STRING'],6);
$order = 1;
$query = "CALL lineSelect(" . $order . ")";
$mysqli = new mysqli($server,$user,$password,$database);

if(mysqli_connect_errno())
{
 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();
}

if(!$result = $mysqli->query($query))
{
 printf("Error: %s\n", $mysqli->error);

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec3.html (10 of 18) [03.07.2007 11:48:31]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.3. Tabular Information

 exit();
}
?>
 <head>
 <link rel="stylesheet" type="text/css" href="common.css"/>
 <title><?php echo $title; ?></title>
 <script language="javascript" src="library.js"></script>
 </head>
 <body onload="initialize()">
 <form name="hidden_form" id="hidden_form" action="post.aspx">
<?php
pageHeader($system,$title);
?>
 <table border="0" width="980px" ID="Table1" border="1"
cellpadding="2" cellspacing="2">
 <tr class="rowHeader">
 <th>Item Name</th>
 <th>Description</th>
 <th>Quanitity</th>
 <th>Unit Price</th>
 <th>Price</th>
 </tr>
<?php
$total = 0;

while($row = $result->fetch_array(MYSQLI_ASSOC))
{
 printf("<tr class='rowData'><td
align='center'>%s</td>",$row["item_name"]);
 printf("<td align='left'>%s</td>",$row["item_description"]);

 printf("<td class='numeric'>%s</td>",$row["line_quantity"]);
 printf("<td class='numeric'>$%s</td>",$row["line_item_price"]);
 printf("<td class='numeric'>$%s</td></tr>",($row["line_item_price"] *
$row["line_quantity"]));

 $total += ($row["line_item_price"] * $row["line_quantity"]);
}
?>
 <tr class="rowData">
 <td> </td>
 <td> </td>
 <td> </td>
 <th class='numeric'>Total</th>
<?
 printf("<td class='numeric'>$%s</td>",$total);
?>
 </tr>
 </table>
 </form>
 </body>
<?php
$result->close();
?>
</html>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec3.html (11 of 18) [03.07.2007 11:48:31]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.3. Tabular Information

Listing 5-19. PHP Variables and Routines

<?php
$server="localhost"; // MySQL database server
$user="root"; // MySQL user id
$password="wyvern"; // MySQL password
$database="ajax"; // MySQL database

$system="Mad Scientist-Alchemist-Sorcerer Sales & Services";

/*
 Write the header for a web page.
*/
function pageHeader($systemName,$pageName)
{
?>
<table border="0" height="60px" width="975px" ID="<?php $pageName ?>"
border="0" cellpadding="0" cellspacing="0">
 <tr class="pageHeader" height="40px">
 <td width="5%"> </td>
 <th class="pageCell" width="45%" align="left">
<?php
 echo $systemName;
?>
 </th>
 <th class="pageCell" width="45%" align="right">
<?php
 echo $pageName;
?>
 </th>
 <td width="5%"> </td>
 </tr>
 <tr>
 <td> </td>
 <td> </td>
 <td> </td>
 <td> </td>
 </tr>
</table>
<?php
}
?>

5.3.2. Updateable

As with the previous page type, the next type of page to be generated is also tabular in nature. However,
unlike the previous example, this page allows for input beyond the navigation to the next page type. In a

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec3.html (12 of 18) [03.07.2007 11:48:31]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.3. Tabular Information

nutshell, here is our first chance to use the majority of the architecture functions, and, in a nutshell, here is
where there is a big chance that things can go seriously wrong.

The big question is, just how can things go seriously wrong? Is it a flaw in the underlying concepts of Ajax?
Nope, it is more of what I refer to as a "Homer Simpson Moment." These moments are caused by coding
while the brain is on autopilot, and for me it usually manifests itself in the form of using the wrong event
handler or forgetting an event handler altogether. Fortunately, by coding the submitForm() handler to deal
with changes to HTML objects, I've managed to avoid one of my more common points of failure.

Alright, now with that out of the way, I feel less likely to screw up in the same old way. If I am going to
screw up, I want it to be in an entirely new and original way. After all, in most cases, more can be learned
from getting something wrong than by getting something right.

Now that we've covered the basics of what can go wrong when working with forms, let's put it into practice.
Hmm, that didn't sound right. Okay, take two. Now that we've covered some of the potential pitfalls of
working with forms, let's create a web page avoiding them. Whew!

The purpose of the next page that we are working with is to display the contents of the guest's virtual
shopping cart. As with its real-world counterpart, shoppers will have several possible actions available to
them. First, they can remove individual items from the cart just like they do in the real world; how else do
you suppose frozen peas find their way to the cookie aisle? The next possible action is to change the
quantity, either up (yeah!) or down (pout!). Oh, I should mention that decreasing an item's quantity to
zero has the same end result as removing the item from the cart. Finally, shoppers will have the option of
giving up and just abandoning their shopping cart.

This is a good time to point out that, unlike some virtual shopping carts where the contents are stored on
the server, this one doesn't. Instead, I chose to follow the "why bother the server any more than absolutely
necessary?" philosophy, so the shopping cart is cached in a hidden text box in a form on the visible frame
as item-quantity pairs. Why? Because after being loaded, with the exception of the cloned form, the visible
frame doesn't change. Although it sounds somewhat strange, it has the advantage of reducing server
traffic. When the time comes to display the shopping cart, it can simply be coded into the URL, which,
although it does have a 4K limit, should be more than enough for our purpose.

Although we already have a lot of the code necessary for this to work (the numeric input function and the
CSS), several bits of code are needed. First, there is the JavaScript function that builds the URL for
displaying the shopping cart (see Listing 5-20). In addition, there is the stored procedure and two stored
functions to retrieve all the necessary information from the tables shown in Listing 5-21. Finally, there is
the page itself in Figure 5-3 and Listing 5-22.

Figure 5-3. The shopping cart page

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec3.html (13 of 18) [03.07.2007 11:48:31]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/05ajx03_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.3. Tabular Information

Listing 5-20. JavaScript Function That Builds the URL for Displaying the
Shopping Cart

function displayCart() {
 if(document.getElementById('cartContents').value.length = 0)
 alert("Your shopping cart is empty.");
 else
 parent.frames['hidden_frame'].document.location =
'displayCart.php?cart=' + document.getElementById('cartContents').value;
}

Listing 5-21. The Stored Procedure and the Two Stored Functions

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec3.html (14 of 18) [03.07.2007 11:48:31]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.3. Tabular Information

DELIMITER $$

DROP PROCEDURE IF EXISTS `ajax`.`shoppingCartSelect`$$
CREATE PROCEDURE `ajax`.`shoppingCartSelect`(
/*

 To display the contents of the shopping cart.
*/
itemIds LONGTEXT
)
BEGIN
 DECLARE work LONGTEXT;

 CREATE TEMPORARY TABLE search (
 id INTEGER(6) AUTO_INCREMENT NOT NULL,
 search_id INTEGER(6) NOT NULL,
 quantity INTEGER NOT NULL,
 PRIMARY KEY (id),
 UNIQUE id (id)
);

 SET work = itemIds;

 WHILE INSTR(work,',') > 0 DO
 INSERT INTO search
 (search_id,
 quantity)
 VALUES (CAST(f_substringBefore(work,'-') AS UNSIGNED),
 CAST(f_subStringAfter(work,'-') AS UNSIGNED));

 SET work = f_substringAfter(work,',');
 END WHILE;

 SELECT s.id,
 i.item_name,
 i.item_description,
 i.item_price,
 s.quantity,
 i.item_price * s.quantity total_price
 FROM search s
 INNER JOIN guild_item_bridge b
 ON s.search_id = b.guild_item_id
 INNER JOIN item i
 ON b.item_id = i.item_id
 ORDER BY s.id ASC;

 DROP TEMPORARY TABLE search;
END$$

DELIMITER ;

DROP FUNCTION IF EXISTS `ajax`.`f_substringAfter`$$
CREATE FUNCTION `ajax`.`f_substringAfter`(
/*
 To return the text after a string.
*/

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec3.html (15 of 18) [03.07.2007 11:48:31]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.3. Tabular Information

 stringOperand LONGTEXT,
 stringSearch LONGTEXT

) RETURNS longtext
BEGIN
 RETURN SUBSTRING(stringOperand,INSTR(stringOperand,stringSearch) + 1);
END$$

DELIMITER ;

DELIMITER $$

DROP FUNCTION IF EXISTS `ajax`.`f_substringBefore`$$
CREATE FUNCTION `ajax`.`f_substringBefore`(
/*
 To return the text before a string.
*/
 stringOperand LONGTEXT,
 stringSearch LONGTEXT
) RETURNS longtext
BEGIN
 RETURN SUBSTRING(stringOperand,1,INSTR(stringOperand,stringSearch) - 1);
END$$

DELIMITER ;

Listing 5-22. Code for the Shopping Cart Page

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<?php
include('common.php');

$title="Item Detail";
$id = substr(@$_SERVER['QUERY_STRING'],3);
$query = "CALL itemSelect(" . $id . ",NULL)";
$mysqli = new mysqli($server,$user,$password,$database);

if (mysqli_connect_errno())
{
 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();
}

if(!$result = $mysqli->query($query))
{
 printf("Error: %s\n", $mysqli->error);

 exit();
}

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec3.html (16 of 18) [03.07.2007 11:48:31]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.3. Tabular Information

?>
 <head>
 <link rel="stylesheet" type="text/css" href="common.css"/>
 <title><?php echo $title; ?></title>
 <script language="javascript" src="library.js"></script>
 </head>
 <body onload="initialize()">
 <form name="hidden_form" id="hidden_form" action="post.aspx">
<?php
pageHeader($system,$title);

$row = $result->fetch_array(MYSQLI_ASSOC);

$rowLabel ="<div class='rowHeader' style='position: absolute; left: 50px;
right: auto%; bottom: auto; width: 200px; top: ";
$rowData = "<div class='rowData' style='position: absolute; left: 255px;
right: auto; bottom: auto; width: 600px; top: ";

echo $rowLabel . "75px'> Guild Name:</div>";
echo $rowLabel . "92px'> Item Name:</div>";
echo $rowLabel . "110px'> Description:</div>";
echo $rowLabel . "127px'> Price:</div>";
echo $rowLabel . "144px'> Quantity:</div>";

printf($rowData . "75px'> %s</div>",$row["guild_name"]);
printf($rowData . "92px'> %s</div>",$row["item_name"]);
printf($rowData . "110px'> %s</div>",$row["item_description"]);
printf($rowData . "127px'> %s</div>",$row["item_price"]);
?>

 <input type='text' id='quantity' name='quantity' value=''
onkeyup='restrict(this,\'[0-9]\',\'gi\')' style='position: absolute; left:
255px; right: auto; bottom: auto; top: 144px; text-align: right'>
<?php
echo "<input type='button' value='Add to cart'
onclick='JavaScript:add2Cart(" . $row["guild_item_id"] . ")'
style='position: absolute; top: 175px; left: 50px; right: auto; bottom:
auto; height: 22px; width: 110px'>";
echo "<input type='button' value='Return to items'
onclick='JavaScript:itemsList()' style='position: absolute; top: 175px;
left: 175px; right: auto; bottom: auto; height: 22px; width: 110px'>";
echo "<input type='button' value='View Cart'
onclick='JavaScript:displayCart()' style='position: absolute; top: 175px;
left: 300px; right: auto; bottom: auto; height: 22px; width: 110px'>";
echo "<input type='button' value='Place Order'
onclick='JavaScript:itemsList()' style='position: absolute; top: 175px;
left: 425px; right: auto; bottom: auto; height: 22px; width: 110px'>";
?>
 </form>
 </body>
<?php
mysqli_close($mysqli);
?>
</html>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec3.html (17 of 18) [03.07.2007 11:48:31]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.3. Tabular Information

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec3.html (18 of 18) [03.07.2007 11:48:31]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.4. Forms

5.4. Forms

This heading does say "Forms," which we briefly touched upon in the previous section, even if it was
because we needed somewhere to cache information, such as the contents of the shopping cart. Because of
this, and the fact that I don't like to code similar functions too often, much of the client-side JavaScript
from the tabular web pages is reused hereor, if you're a friend of nature, recycled. See, not only is Ajax the
wave of the future, it is also environmentally friendly.

5.4.1. Read Only

In my opinion, the classic read-only form on an e-commerce website has to be the shipping information
page. In fact, it is so well known that the page doesn't even have to be coded as a form. It is perfectly
acceptable to "fake it" using Cascading Style Sheets, or simply display the information in some kind of
orderly fashion. The advantage of this is that we can avoid having to use the disabled and readonly
attributes, which, in the case of the disabled attribute, tends to be a little hard on the eyes because the
text is grayed out.

The approach that I've decided upon here is to simply display the information directly from the database.
Also, because I'm feeling somewhat adventurous, I've used CSS positioning for content layout instead of
the method that I normally employ. Just in case you're wondering, using HTML tables is my usual method
of content layout, but I'm undergoing therapy to overcome this shortcoming.

Before going into detail about the SQL that defines the tables needed for this example, I want to clarify one
thing again. I am by no means a DBA; I am, according to some, a mad scientist (or mad, at the very
least). Any of these can be used as an explanation of why I did what I did when designing these tables. In
short, I went a little bit overboard when normalizing.

There isn't a single table to contain information pertaining to a customer. There aren't two tables to contain
the information pertaining to a customer, such as one for the address and one for everything else. I made
three tables: one for the customer name, one for the address, and one for all other customerrelated
information. I'm pretty sure that if you look up the word overkill, this is definition number six, but it does
have some advantages that we'll get into later when doing updates.

Now that my long-winded excuse is over, let's take a gander at the SQL that defines the tables and the
associated stored procedure that retrieves the information. The SQL for this is shown in Listings 5-23 and 5-
24, respectively.

Listing 5-23. SQL to Create MySQL Database Tables

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec4.html (1 of 12) [03.07.2007 11:48:33]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.4. Forms

CREATE TABLE address (
 address_id int(6) auto_increment NOT NULL,
 address_company varchar(255) NULL,
 address_line1 varchar(255) NOT NULL,
 address_line2 varchar(255) NULL,
 address_city varchar(255) NOT NULL,
 state_abbreviation varchar(2) NOT NULL,
 address_postal varchar(10) NOT NULL,
 names_id int(6) NULL,
 PRIMARY KEY (address_id),
 UNIQUE id (address_id)
);

CREATE TABLE country (
 country_id int(6) auto_increment NOT NULL,
 country_name varchar(255) NOT NULL,
 PRIMARY KEY (country_id),
 UNIQUE id (country_id)
);

CREATE TABLE customer (
 customer_id int(6) auto_increment NOT NULL,
 customer_telephone varchar(10) NULL,

 customer_email varchar(255) NOT NULL,
 customer_credit_card varchar(16) NOT NULL,
 customer_credit_pin varchar(6) NULL,
 customer_expiration datetime NOT NULL,
 names_id int(6) NULL,
 address_id int(6) NULL,
 PRIMARY KEY (customer_id),
 UNIQUE id (customer_id),
 KEY names_key (names_id),
 KEY address_key (address_id)
);

CREATE TABLE names (
 names_id int(6) auto_increment NOT NULL,
 names_last varchar(255) NOT NULL,
 names_first varchar(255) NOT NULL,
 names_mi varchar(1) NULL,
 PRIMARY KEY (names_id),
 UNIQUE id (names_id)
);

CREATE TABLE state (
 state_abbreviation varchar(2) NOT NULL,
 state_name varchar(255) NOT NULL,
 country_id int(6) NOT NULL,
 PRIMARY KEY (state_abbreviation),
 UNIQUE id (state_abbreviation),
 KEY country_key (country_id)
);

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec4.html (2 of 12) [03.07.2007 11:48:33]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.4. Forms

Listing 5-24. MySQL Stored Procedure to Select Address Information

DELIMITER $$

DROP PROCEDURE IF EXISTS `ajax`.`addressSelect`$$
CREATE PROCEDURE `ajax`.`addressSelect`(
email VARCHAR(255)
)
BEGIN
 SELECT c.customer_id,
 n.names_last,
 n.names_first,
 n.names_mi,
 c.customer_telephone,
 c.customer_email,
 a.address_company,
 a.address_line1,
 a.address_line2,
 a.address_city,

 a.state_abbreviation,
 s.state_name,
 a.address_postal,
 y.country_name
 FROM customer c
 INNER JOIN names n
 ON c.names_id = n.names_id
 INNER JOIN address a
 ON c.address_id = a.address_id
 INNER JOIN state s
 ON a.state_abbreviation = s.state_abbreviation
 INNER JOIN country y
 ON s.country_id = y.country_id
 WHERE (email IS NULL OR c.customer_email = email);
END$$

DELIMITER ;

The thing that I always find amazing about stored procedures is that they have a tendency to reduce the
amount of code needed on the web server. Consider the example that we're currently going over; the PHP
merely formats the information returned by the stored procedure for the web browser, as Listing 5-25
illustrates.

Listing 5-25. Customer Display

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec4.html (3 of 12) [03.07.2007 11:48:33]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.4. Forms

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<?php
include('common.php');

$title="Customer Display";
$email = substr(@$_SERVER['QUERY_STRING'],6);
$query = "CALL addressSelect(" . $email . ")";
$mysqli = new mysqli($server,$user,$password,$database);

if (mysqli_connect_errno())
{
 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();
}

if(!$result = $mysqli->query($query))
{
 printf("Error: %s\n", $mysqli->error);

 exit();
}

?>
 <head>
 <link rel="stylesheet" type="text/css" href="common.css"/>
 <title><?php echo $title; ?></title>
 <script language="javascript" src="library.js"></script>
 </head>
 <body onload="initialize()">
 <form name="hidden_form" id="hidden_form" action="post.aspx">
<?php
pageHeader($system,$title);

$row = $result->fetch_array(MYSQLI_ASSOC);
$rowLabel ="<div class='rowHeader' style='position: absolute; left: 50px;
right: auto%; bottom: auto; width: 200px; top: ";
$rowData = "<div class='rowData' style='position: absolute; left: 255px;
right: auto; bottom: auto; width: 600px; top: ";

echo $rowLabel . "75px'> Name:</div>";
echo $rowLabel . "92px'> Company:</div>";
echo $rowLabel . "110px'> Address Line 1:</div>";
echo $rowLabel . "127px'> Address Line 2:</div>";
echo $rowLabel . "144px'> City:</div>";
echo $rowLabel . "161px'> State:</div>";
echo $rowLabel . "178px'> Zip/Postal Code:</div>";
echo $rowLabel . "195px'> Country:</div>";
echo $rowLabel . "212px'> Telephone Number:</div>";
echo $rowLabel . "229px'> EMail Address:</div>";

echo $rowData . "75px'> " . $row["names_last"] . ', ' .
$row["names_first"] . ' ' . $row["names_mi"] . "</div>";
echo $rowData . "92px'> " . $row["address_company"] . "</div>";

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec4.html (4 of 12) [03.07.2007 11:48:33]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.4. Forms

echo $rowData . "110px'> " . $row["address_line1"] . "</div>";
echo $rowData . "127px'> " . $row["address_line2"] . "</div>";
echo $rowData . "144px'> " . $row["address_city"] . "</div>";
echo $rowData . "161px'> " . $row["state_name"] . "</div>";
echo $rowData . "178px'> " . $row["address_postal"] . "</div>";
echo $rowData . "195px'> " . $row["country_name"] . "</div>";
echo $rowData . "212px'> " . $row["customer_telephone"] . "</div>";
echo $rowData . "229px'> " . $row["customer_email"] . "</div>";

echo "<input type='button' value='Continue to items' onclick='itemsList()'
style='position: absolute; top: 250px; left: 50px; right: auto; bottom:
auto; height: 22px; width: 120px'>";

hidden($row,'customer_id');
hidden($row,'names_last');
hidden($row,'names_first');
hidden($row,'names_mi');
hidden($row,'customer_email');
hidden($row,'customer_id');
?>

 </form>
 </body>
<?php
mysql_close();
?>

5.4.2. Updateable

In the previous example, we covered the display of information from multiple tables, which was easy
enough because there wasn't much happening on the client side. The server side was also rather easy;
yeah, there were some inner joins, but it is hard to get all worked up about something that easy. There is,
however, something that you might have missedI know that I did.

Let's review my overzealous database normalization from a different point of view. First, customer
information is spread across three tables. Second, the customer table contains the information that
specifies how to find the related information in the other two tables. Third, retrieving the information is
merely a matter of using inner joins. So we know what the data looks like and how to get it out of the
tables, but the big question is, how do I get it in?

On the bright side, I know how the guy who spent years building a sailboat in his basement felt when his
wife said, "Nice, but how are you going to get it out of the basement?" Whoops, didn't think that far ahead.
What he ended up doing was supporting the floor joists along one outside basement wall, digging a ramp
from the outside to that position, and knocking out a boat-sized hole. It worked, but I want a little more
elegant solution. In fact, I want one so elegant that you might think that my earlier screw-up was
intentional so that I could demonstrate some really cool features of MySQL.

All my current issues arise from the fact that data in three different tables needs to be updated. Seems
simple enoughjust use a transaction. Unfortunately, I forgot to mention that during my earlier fit of
normalization, I wrote two stored procedures, shown in Listings 5-26 and 5-27, that I want to use. Waste

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec4.html (5 of 12) [03.07.2007 11:48:33]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.4. Forms

not, want not.

Listing 5-26. Stored Procedure to Insert Names

DELIMITER $$

DROP PROCEDURE IF EXISTS `ajax`.`namesInsert`$$
CREATE PROCEDURE `ajax`.`namesInsert`(
 IN nameLast VARCHAR(255),
 IN nameFirst VARCHAR(255),
 IN nameMI VARCHAR(1),
 OUT namesId INTEGER(6)

)
BEGIN
 INSERT INTO names
 (names_last,
 names_first,
 names_mi)
 VALUES (nameLast,
 nameFirst,
 nameMI);

 SET namesID = LAST_INSERT_ID();
END$$

DELIMITER ;

Listing 5-27. MySQL Stored Procedure to Insert Customer Address Information

DELIMITER $$

DROP PROCEDURE IF EXISTS `ajax`.`addressInsert`$$
CREATE PROCEDURE `ajax`.`addressInsert`(
 IN addressCompany VARCHAR(255),
 IN addressLine1 VARCHAR(255),
 IN addressLine2 VARCHAR(255),
 IN addressCity VARCHAR(255),
 IN stateAbbreviation VARCHAR(255),
 IN addressPostal VARCHAR(10),
 IN namesId INTEGER(6),
 OUT addressId INTEGER(6)
)
BEGIN
 INSERT INTO address
 (address_company,
 address_line1,
 address_line2,
 address_city,
 state_abbreviation,

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec4.html (6 of 12) [03.07.2007 11:48:33]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.4. Forms

 address_postal,
 names_id)
 VALUES (addressCompany,
 addressLine1,
 addressLine2,
 addressCity,
 stateAbbreviation,
 addressPostal,
 namesId);

 SET addressId = LAST_INSERT_ID();
END$$

DELIMITER ;

Alright, if I have it straight and haven't painted myself into another corner, what is needed is a way to tie
these stored procedures together. I suppose that I could somehow stick them together using PHP, but that
seems too much like making the sailboat out of duct tape, and that solution is a little too Red Green for me.
I ended up writing a third stored procedure (see Listing 5-28) that uses transactions and calls the other two
stored procedures.

Listing 5-28. MySQL Stored Procedure That Calls Other Stored Procedures

DELIMITER $$

DROP PROCEDURE IF EXISTS `ajax`.`customerInsert`$$
CREATE PROCEDURE `ajax`.`customerInsert`(
 IN namesLast VARCHAR(255),
 IN namesFirst VARCHAR(255),
 IN namesMI VARCHAR(1),
 IN customerTelephone VARCHAR(10),
 IN customerEmail VARCHAR(255),
 IN customerCreditCard VARCHAR(16),
 IN customerCreditPin VARCHAR(6),
 IN customerExpiration DATETIME,
 IN addressCompany VARCHAR(255),
 IN addressLine1 VARCHAR(255),
 IN addressLine2 VARCHAR(255),
 IN addressCity VARCHAR(255),
 IN stateAbbreviation VARCHAR(2),
 IN addressPostal VARCHAR(10),
 OUT customerId INTEGER(6)
)
BEGIN
 DECLARE errorInd INTEGER DEFAULT 0;
 DECLARE namesId INTEGER(6);
 DECLARE addressId INTEGER(6);
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION SET errorInd = 1;

 START TRANSACTION;

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec4.html (7 of 12) [03.07.2007 11:48:33]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.4. Forms

 CALL namesInsert(namesLast,
 namesFirst,
 namesMI,
 namesId);

 CALL addressInsert(addressCompany,
 addressLine1,
 addressLine2,
 addressCity,
 stateAbbreviation,
 addressPostal,
 namesId,
 addressId);

 INSERT INTO customer
 (customer_telephone,
 customer_email,
 customer_credit_card,
 customer_credit_pin,
 customer_expiration,
 names_id,
 address_id)
 VALUES (customerTelephone,
 customerEmail,
 customerCreditCard,
 customerCreditPin,
 customerExpiration,
 namesId,
 addressId);

 IF errorInd = 0 THEN
 COMMIT;

 SET customerId = LAST_INSERT_ID();
 ELSE
 ROLLBACK;

 SET customerId = 0;
 END IF;
END$$

DELIMITER ;

Now that the sailboat is out of the basement, the remaining task is simply a matter of putting all the pieces
together, as shown in Listing 5-29 and Figure 5-4.

Figure 5-4. Customer display page

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec4.html (8 of 12) [03.07.2007 11:48:33]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/05ajx04_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.4. Forms

Listing 5-29. Customer Display Page

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<?php
include('common.php');

$title="Customer Display";
$email = substr(@$_SERVER['QUERY_STRING'],6);
$query = "CALL addressSelect('" . $email . "')";
$mysqli = new mysqli($server,$user,$password,$database);

if (mysqli_connect_errno())
{
 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

if(!$result = $mysqli->query($query))
{
 printf("Error: %s\n", $mysqli->error);

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec4.html (9 of 12) [03.07.2007 11:48:33]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.4. Forms

 exit();
}
?>
 <head>
 <link rel="stylesheet" type="text/css" href="common.css"/>
 <title><?php echo $title; ?></title>
 <script language="javascript" src="library.js"></script>
 </head>
 <body onload="initialize()">
 <form name="hidden_form" id="hidden_form"
action="customerInput.php">
<?php
pageHeader($system,$title);

$row = $result->fetch_array(MYSQLI_ASSOC);
$rowLabel ="<div class='rowHeader' style='valign: center; height: 20px;
width: 200px;'> %s</div>";
$rowData = "<div class='rowData' style='position: absolute; left: 255px;
right: auto; bottom: auto; width: 600px; top: ";

?>
<table border="0" width="980px" id="Table1" border="1" cellpadding="2"
cellspacing="2">

<?php
echo "<tr><th class='rowHeader' width='20%' align='left'> First
Name:</th>";
printf("<td class='rowData'> <input type='text' name='names_first'
id='names_first' size='50' maxlength='255' value='%s'
onchange='changeEvent(this)'></td></tr>",$row["names_first"]);
echo "<tr><th class='rowHeader' align='left'> Middle Initial:</th>";
printf("<td class='rowData'> <input type='text' name='names_mi'
id='names_mi' size='2' maxlength='1' value='%s'
onchange='changeEvent(this)'></td></tr>",$row["names_mi"]);
echo "<tr><th class='rowHeader' align='left'> Last Name:</th>";
printf("<td class='rowData'> <input type='text' name='names_last'
id='names_last' size='50' maxlength='255' value='%s'
onchange='changeEvent(this)'></td></tr>",$row["names_last"]);
echo "<tr><th class='rowHeader' align='left'> Address Line 1:</th>";
printf("<td class='rowData'> <input type='text' name='address_line1'
id='address_line1' size='50' maxlength='255' value='%s'
onchange='changeEvent(this)'></td></tr>",$row["address_line1"]);
echo "<tr><th class='rowHeader' align='left'> Address Line 2:</th>";
printf("<td class='rowData'> <input type='text' name='address_line2'
id='address_line2' size='50' maxlength='255' value='%s'
onchange='changeEvent(this)'></td></tr>",$row["address_line2"]);
echo "<tr><th class='rowHeader' align='left'> City:</th>";

printf("<td class='rowData'> <input type='text' name='address_city'
id='address_city' size='50' maxlength='255' value='%s'
onchange='changeEvent(this)'></td></tr>",$row["address_city"]);
echo "<tr><th class='rowHeader' align='left'> State:</th><td
class='rowData'>";
stateSelect($server,$user,$password,$database,$row['state_abbreviation']);
echo "</td></tr><tr><th class='rowHeader' align='left'> Postal

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec4.html (10 of 12) [03.07.2007 11:48:33]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.4. Forms

Code:</th>";
printf("<td class='rowData'> <input type='text' name='address_postal'
id='address_postal' size='50' maxlength='10' value='%s'
onchange='changeEvent(this)'></td></tr>",$row["address_postal"]);
echo "<tr><th class='rowHeader' align='left'> Telephone
Number:</th>";
printf("<td class='rowData'> <input type='text'
name='customer_telephone' id='customer_telephone' size='50' maxlength='10'
value='%s'
onchange='changeEvent(this)'></td></tr>",$row["customer_telephone"]);
echo "<tr><th class='rowHeader' align='left'> E-Mail Address:</th>";
printf("<td class='rowData'> <input type='text' name='customer_email'
id='customer_email' size='50' maxlength='255' value='%s'
onchange='changeEvent(this)'></td></tr>",$row["customer_email"]);
?>
</table>
<?php
echo "<input type='button' value='Place Order' onclick='submitForm()'>";
?>
 </form>
 </body>
<?php
mysqli_close($mysqli);

function stateSelect($server,$user,$password,$database,$value)
{
 $query = "CALL stateSelect(null)";
 $mysqli = new mysqli($server,$user,$password,$database);

 if (mysqli_connect_errno())
 {
 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();
 }

 if(!$result = $mysqli->query($query))
 {
 printf("Error: %s\n", $mysqli->error);

 exit();
 }

 echo "<select id='state_abbreviation' name='state_abbreviation'
onchange='changeEvent(this)'>";

 while($row = $result->fetch_array(MYSQLI_ASSOC))
 {
 if($row['state_abbreviation'] == $value)
 printf("<option value='%s'
selected='true'>%s</option>",$row[state_abbreviation],$row[state_name]);
 else
 printf("<option
value='%s'>%s</option>",$row[state_abbreviation],$row[state_name]);
 }

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec4.html (11 of 12) [03.07.2007 11:48:33]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.4. Forms

 echo "</select>";

 mysqli_close($mysqli);

}
?>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec4.html (12 of 12) [03.07.2007 11:48:33]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.5. Advantages and Disadvantages

5.5. Advantages and Disadvantages

The major advantage to developing an application using this technique is that there are very few browsers
for which this method does not work, including older browsers. In fact, the only thing that some web
developers might consider out of the ordinary is the use of hidden frames. Nevertheless, it works, which is
all that really matters when developing an application.

Unfortunately, problems begin to arise when an inexperienced developer attempts to maintain an
application developed using this technique. In fact, several years ago, I developed an application that used
hidden frames for an insurance company. It was one of the few applications for which I received calls after
leaving the company. It was explained to me that there wasn't anything wrong with the applicationin fact,
it worked wonderfullybut the new developers couldn't quite grasp how it worked. To the new developers,
the application was a classic black box; information went in and information came out, but what happened
to it in the box was a complete mystery.

The final problem with this technique is that it really isn't Ajax; it only offers a similar look and feel. Think
of it as a kind of primitive ancestor to Ajax or, if you prefer, as flexing our mental muscles getting ready for
the main event. So now that we're all warmed up, let's push the knuckle-walking ancestor out the door and
move on to the next chapter and something that everybody will agree is Ajax.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec5.html [03.07.2007 11:48:33]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 5.6. Summary

5.6. Summary

Although the technique is somewhat old-fashioned, it demonstrates, to a degree, how processing flows in
an Ajax application. In addition, the "dark art" of communicating information between frames was covered.
However, two items of note from this chapter will be carried into later chapters: JavaScript and MySQL
stored procedures.

Regardless of any opinion to the contrary, JavaScript has become essential in the development of web
applications that feel more like GUI applications. And even though some shortcuts may have been taken
with these examples, they do serve their purpose.

The inclusion of stored procedures in MySQL was a purely personal decision on my part. Originally, I
considered using straight SQL; however, it has been several years since I created any kind of nontrivial
application using anything but stored procedures. In addition, because the topic of stored procedures in
MySQL is so new, trying to find examples is pretty much like looking for a unicorn. So I thought, why not
include a few examples here? And as you've probably determined by now, I like examples.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch05lev1sec6.html [03.07.2007 11:48:33]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6. XML

Chapter 6. XML

What can I say about XML that somebody before me hasn't already said? One little Google search is enough
to learn that XML whitens whites and brightens brights. In short, name an ill that plagues today's world,
and there is probably someone out there who has written an article about it and how XML can fix it.

Alright, I admit it, I'm stretching the truth a little to get my point across. However, it does give something
of the feel of the aura that surrounds XMLwell, at least from an outsider's perspective. XML is another one
of those "I don't know what it is, but I want it" type of things.

The format of this chapter goes along the following lines:

● Elements
● Attributes
● Handling Verboten Characters
● Comments
● Document description
● XML declarations
● Processing instructions
● XML Data Islands

In its simplest form, XML is nothing more than a text file containing a single well-formed XML document.
Come to think of it, the same is pretty much true in its most complex form as well. Looking past all the
hype surrounding XML, it is easy to see that XML is merely the text representation of self-describing data in
a tree data structure. When you understand this, all that is left are the nitty-gritty little details, as in
"What's a tree data structure?" and "How exactly does data describe itself?"

A tree data structure is built of nodes, with each node having only one node connected above it, called a
parent node. The sole exception to this rule is the root node, which has no parent node. Nodes can also
have other nodes connected below; these are called child nodes. In addition, nodes that are on the same
level as the same parent node are called children. Figure 6-1 is a graphical representation of a tree data
structure. If you are thinking to yourself, "I've seen this before," you're rightwe also used this example in
Chapter 2, "Introducing Ajax."

Figure 6-1. An XML document as a tree

[View full size image]

The diagram in Figure 6-1 can also be represented as the XML document shown in Listing 6-1.We used this
listing in Chapter 2 as well. But it doesn't hurt to reiterate the points here.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06.html (1 of 2) [03.07.2007 11:48:33]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/06ajx01_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6. XML

Listing 6-1. An XML Document as Text

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<library>
 <book>
 <series/>
 <title/>
 <author/>
 </book>
 <book>
 <series/>
 <title/>
 <author/>
 </book>
 <book>
 <series/>
 <title/>
 <author/>
 </book>
</library>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06.html (2 of 2) [03.07.2007 11:48:33]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 6.1. Elements

6.1. Elements

The nodes shown in Listing 6-1 are called elements, and they closely resemble HTML tags. And like HTML
tags, start tags begin with < and end tags begin with </. However, unlike HTML tags, all XML tags must
either have a closing tag or be self-closing or empty elements. Self-closing tags are recognizable by the
ending />. If the forward slash was omitted, the document would not be a well-formed XML document. In
addition to all elements being either closed or self-closing, the tags must always match up in order. This
means that the XML document in Listing 6-2 is well formed, whereas the XML document in Listing 6-3 is not
well formed.

Listing 6-2. A Well-Formed XML Document

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<one>
 <two>
 <three>
 <four/>
 </three>
 </two>
</one>

Listing 6-3. A Document That Is Not Well Formed

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<one>
 <two>
 <three>
 <four/>
 </two>
 </three>
</one>

So far, we have covered elements that contain either other elements or empty elements, leaving the
question of what elements that contain actual data look like. Using the XML from Listing 6-1 as a starting
point, you can see that the answer is not very different. Listing 6-4 shows what elements that contain text
data look like.

Listing 6-4. An XML Document with Text Data

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06lev1sec1.html (1 of 2) [03.07.2007 11:48:34]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 6.1. Elements

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<library>
 <book>
 <series>The Lord of the Rings</series>
 <title>The Fellowship of the Ring</title>
 <author>J.R.R. Tolkien</author>
 </book>
 <book>
 <series>The Lord of the Rings</series>

 <title>The Two Towers</title>
 <author>J.R.R. Tolkien</author>
 </book>
 <book>
 <series>The Lord of the Rings</series>
 <title>The Return of the King</title>
 <author>J.R.R. Tolkien</author>
 </book>
</library>

One thing to remember is that elements aren't limited to containing either other elements or text data;
they can do both at the same time. In fact, there is even a way for empty elements to contain text data
through the use of attributes.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06lev1sec1.html (2 of 2) [03.07.2007 11:48:34]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 6.2. Attributes

6.2. Attributes

Attributes are a name-value pair that is contained in an element's start tag. The name portion of an
attribute is separated from the value by an equals sign, and the value is enclosed in either single or double
quotes. Elements can have multiple attributes, separated from one another by whitespace, usually one or
more spaces. It is not unusual for XML documents to use a combination of container elements and
attributes. Listing 6-5 shows what the XML document in Listing 6-4 would look like using attributes.

Listing 6-5. An XML Document with Attributes

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<library>
 <book series="The Lord of the Rings" title="The Fellowship of the
Ring" author="J.R.R. Tolkien"/>
 <book series="The Lord of the Rings" title="The Two Towers"
author="J.R.R. Tolkien"/>
 <book series="The Lord of the Rings" title="The Return of the King"
author="J.R.R. Tolkien"/>
</library>

Before proceeding any further, I want to cover the three rules for the naming of elements and attributes;
these rules are only slightly more complex than the rules for the addressing of cats. The first rule is that
only alphanumeric (az, 09) characters, the underscore (_), the hyphen/dash (-), and the colon (:) are
permissible in names. The second rule is that names can begin only with an alpha, underscore, or hyphen
character. The third and final rule is that names are case sensitive, so Mistoffelees is a different animal
than MISTOFFELEES, and mistoffelees is yet another animal. Think of these rules as a practical guide, and
you won't have any problems with names.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06lev1sec2.html [03.07.2007 11:48:34]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 6.3. Handling Verboten Characters

6.3. Handling Verboten Characters

Occasionally when dealing with XML documents, you will encounter certain characters that will cause a
document to be not well formed. For example, imagine an element that contains a JavaScript function, such
as the one shown in Listing 6-6. Examined from a JavaScript perspective, the function looks like it works,
but when examined from an XML point of view, there is one big glaring error. Here is a hint: Look at the
for loop.

Listing 6-6. A Script Element That Is Not Well Formed

 <script language="JavaScript">
function hello(intTimes) {
 for(var i=0;i < intTimes;i++)
 alert('Hello, World!');
}
 </script>

XML interprets the less-than (<) operator as the beginning of a new element, and from an XML viewpoint,
the new tag is not well formed. Fortunately, you can use one of two methods to get around this issue:
entities or CDATA sections. Each of these methods is suited to a different purpose, so let's examine each to
determine which better suits our problem.

6.3.1. Entities

Entities. A part of me just likes to say the word entities. It's just a fun word to say, especially to a manager
who is unfamiliar with XML. Just imagine someone's reaction when being told that the XML contains
entities. Talk about your flashbacks to late-night horror movies! Of course, there is always the alternative:
being fitted for a jacket with wraparound sleeves. Either way, you've gotten the manager's attention.

XML has five predefined entities whose purpose it to avoid well-formedness issues when encountering
select common characters. Table 6-1 defines these five entities, and later topics cover how to define
additional entities.

Table 6-1. Entities

Character Entity Description

< < Less than

> > Greater than

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06lev1sec3.html (1 of 2) [03.07.2007 11:48:35]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 6.3. Handling Verboten Characters

' ' Apostrophe/single quote

" &qout; Double quote

& & Ampersand

The JavaScript in Listing 6-6 can be made well formed by replacing the character < by its corresponding
entity <. Unfortunately, although the use of entities would correct the issue from an XML point of view,
from a JavaScript perspective, there is a world of difference between < and <. To make both XML and
JavaScript happy, it is necessary to use a CDATA section.

6.3.2. CDATA Sections

A CDATA section is the XML equivalent of "Pay no attention to that man behind the curtain," from The
Wizard of Oz. However, there is no pesky little girl with a little dog to mess things up. Because of this, XML
totally ignores whatever is within a CDATA section's tags, <![CDATA[and]]>, as shown in Listing 6-7.

Listing 6-7. A Well-Formed Script Element

 <script language="JavaScript">
<![CDATA[
function hello(intTimes) {
 for(var i=0;i < intTimes;i++)
 alert('Hello, World!');
}
]]>
 </script>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06lev1sec3.html (2 of 2) [03.07.2007 11:48:35]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 6.4. Comments

6.4. Comments

From an XML point of view, Listing 6-7 is well formed; unfortunately, some web browsers would have an
issue with it as part of a web page. A method is needed to hide the JavaScript from XML, and the CDATA
section tags from both the browser and the browser's JavaScript interpreter. This can be accomplished with
XML comment tags, which, by the way, are identical to the comment tags from HTML. Because the
JavaScript interpreter has problems only with the CDATA section's closing tag, a // is enough to make the
browser look the other way. The end result is the node shown in Listing 6-8.

Listing 6-8. A Well-Formed Cross-Browser Script Element

 <script language="JavaScript">
<!-- <![CDATA[
function hello(intTimes) {
 for(var i=0;i < intTimes;i++)
 alert('Hello, World!');
}
//]]> -->
 </script>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06lev1sec4.html [03.07.2007 11:48:35]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 6.5. Expectations

6.5. Expectations

When the Rolling Stones sang "You Can't Always Get What You Want," they were telling only half of the
story. The other half is, "You Don't Always Want What You Get." Yeah, it doesn't roll off of the tongue the
same way, and I don't sing anything like Mick Jagger; in fact, my children would prefer it if I didn't sing at
all. So when I sing, they're both not getting something they want and getting something that they don't
want. They'll get over it, but how would XML handle getting something expected and getting something
unexpected?

6.5.1. Namespaces

Dealing with both the expected and the unexpected is what namespaces in XML are all about. A namespace
is used to describe vocabularies because in some instances the same element name could have two
different meanings, which is an unexpected occurrence often with undesirable results.

To put it in nontechnical terms, imagine that you have a shipment of cotton that you want to ship from
India to England. Let's say that you want it to be sent on a particular ship that sails in November. Seems
clear, doesn't it? Well, now imagine that there is another ship with the same name that sets sail in
December. See the problem? Simply using the name isn't enough because it can have more than one
meaning.

Namespaces are a URI that is used to get around this type of problem by providing what in law would be
called a "meeting of the minds." It is a way to ensure that when the elements and attribute have the same
names, the correct meaning is used. This is a good way to avoid conflict. The only alternative would be to
guess, which was done in the previous example from the mid-1800s. In case you were wondering, they
guessed wrong.

6.5.2. DTD

A Document Type Definition is used to describe and validate an XML document. Essentially, you spell out
exactly what to expect in a particular XML document, to avoid confusion. Consider the XML document
shown in Listing 6-9, basically a short list of monsters and where they've appeared.

Listing 6-9. An Example XML Document

<?xml version="1.0" encoding="UTF-8"?>
<monsters >
 <monster name="Dracula" books="yes" plays="yes" movies="yes"/>
 <monster name="Alien" books="yes" plays="no" movies="yes"/>
 <monster name="The Thing" books="yes" plays="no" movies="yes"/>
 <monster name="Sweeny Todd" books="yes" plays="yes" movies="no"/>
</monsters>

If confusion concerning names were a possibility, a DTD like the one in Listing 6-10 would then be used.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06lev1sec5.html (1 of 4) [03.07.2007 11:48:35]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 6.5. Expectations

Listing 6-10. The DTD for Listing 6-9

<!ELEMENT monster EMPTY>
<!ATTLIST monster
 name CDATA #REQUIRED
 books CDATA #REQUIRED
 plays CDATA #REQUIRED
 movies CDATA #REQUIRED
>
<!ELEMENT monsters (monster+)>

All that then would be left to do would be to save it in a folder called namespace on the C: drive and assign
the DTD by inserting the following before the first element:

<!DOCTYPE monsters SYSTEM "C:\namespace\sample.dtd">

Just in case you haven't noticed something strange about Document Type Definitions, I want to point out
that they are not XML. However, there is an XML equivalent to Document Type Definitions called schemas.

6.5.3. Schema

Schemas have the advantages of being XML and being able to provide greater validation than DTDs. The
reason for this is that a schema can describe complex data types beyond the basic dateTime, decimal,
integer, and string available with DTDs. This essentially means that it is possible to describe complex types,
as shown in Listing 6-11.

Listing 6-11. Schema for Listing 6-9

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!--W3C Schema generated by XMLSpy v2006 sp2 U (http://www.altova.com)-->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 <xs:complexType name="monsterType">
 <xs:attribute name="name" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Alien"/>
 <xs:enumeration value="Dracula"/>
 <xs:enumeration value="Sweeny Todd"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="books" use="required">
 <xs:simpleType>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06lev1sec5.html (2 of 4) [03.07.2007 11:48:35]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 6.5. Expectations

 <xs:restriction base="xs:string">
 <xs:enumeration value="no"/>
 <xs:enumeration value="yes"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="plays" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="no"/>
 <xs:enumeration value="yes"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="movies" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="no"/>
 <xs:enumeration value="yes"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 <xs:element name="monsters">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="monster" type="monsterType"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Yes, it is longer, but it also better describes the XML document in greater detail than the DTD ever could.
This leaves only the "how to assign it?" question, which Listing 6-12 answers.

Listing 6-12. The Document with the Schema Applied

<?xml version="1.0" encoding="UTF-8"?>
<monsters xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\namespace\sample.xsd">
 <monster name="Dracula" books="yes" plays="yes" movies="yes"/>
 <monster name="Alien" books="yes" plays="no" movies="yes"/>
 <monster name="Sweeny Todd" books="yes" plays="yes" movies="no"/>
</monsters>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06lev1sec5.html (3 of 4) [03.07.2007 11:48:35]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 6.5. Expectations

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06lev1sec5.html (4 of 4) [03.07.2007 11:48:35]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 6.6. XML Declaration

6.6. XML Declaration

Before proceeding any further, I want to explain a little about the stuff between the <? and the ?>. It is
called the XML declaration, which is an example of a META data tag that appears at the beginning of an
XML document. Its purpose is to specify the version of XML, the character encoding, and whether there is
an external markup declaration.

Determining whether the XML document has an external markup declaration (standalone="no") or not
(standalone="true") is based upon three rules. An XML document has an external markup declaration if
attributes have default values, there are entities used other than the five default entities, or either
elements or attributes are subject to whitespace nominalization.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06lev1sec6.html [03.07.2007 11:48:36]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 6.7. Processing Instructions

6.7. Processing Instructions

In addition to the XML declaration META tag, there is something called a processing instruction that also
uses the <? and ?>. At first glance, processing instructions appear to be the same as the XML declaration,
but they have different capabilities and serve a different purpose. For example, unlike an XML declaration,
a processing instruction can appear anywhere in an XML document. Also, processing instructions are used
to pass information to an application that can read the XML document.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06lev1sec7.html [03.07.2007 11:48:36]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 6.8. XML Data Islands

6.8. XML Data Islands

For readers who are unfamiliar with the term XML Data Islands, they refer to the real estate that is usually
purchased with the profits from one's first book. You know, the kind of real estate that isn't there when the
tide is in. Oops, my mistake: wrong definition.

Take two!

For those readers who are unfamiliar with the term XML Data Islands, they are XML that is embedded with
the body of an HTML document. Although this sounds simple enough, there is a little more to it than that;
Microsoft Internet Explorer hides the XML, whereas Firefox and other Geckobased web browsers do not.

6.8.1. Internet Explorer

Because Microsoft Internet Explorer has built-in support for XML data islands, it is simply a matter of
embedding the XML in a web page, as described in more detail in Chapter 8. Binding the XML to the HTML
is merely a matter of defining the datasrc and the datafld, where the datasrc is the ID from the XML
element and the datafld is either an element or an attribute. The idea is that because the HTML is bound to
the XML, changes in one are reflected in the other, which can be a real timesaver when developing a web
application.

6.8.2. Firefox

With Gecko-based web browsers such as Firefox, Flock, Netscape, or Mozilla XML, data islands require a bit
more work to pull off. Let's look at an example of a Cascading Style Sheet shown here in Listing 6-13. Its
purpose is to prevent the XML data island from being rendered, which solved only part of the problem.

Listing 6-13. CSS to Hide XML

xml
{
display: none;
font-size: 0px
}

The rest of the problem, the binding, was resolved using JavaScript and HTML as originally shown in Listing
4-7 and again is shown in Listing 6-14.

Listing 6-14. Cross-Browser Binding XML

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06lev1sec8.html (1 of 5) [03.07.2007 11:48:37]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 6.8. XML Data Islands

<html>
 <head>
 <title>XML Data Island Test</title>
 <style type="text/css">

xml
{
 display: none;
 font-size: 0px
}
 </style>
 <script language="JavaScript">
var _IE = (new RegExp('internet explorer','gi')).test(navigator.appName);

/*
 Function: _bind
 Programmer: Edmond Woychowsky
 Purpose: Handle the logic necessary to bind HTML elements
to XML nodes. Note that in some instances this
binding is a two-way street. For example, if the value in
a text box should change the corresponding value in the
XML data island will also change.
*/
function _bind() {
 if(arguments.length == 0) {
 doBind(document.body.getElementsByTagName('div'));
 doBind(document.body.getElementsByTagName('input'));
 doBind(document.body.getElementsByTagName('select'));
 doBind(document.body.getElementsByTagName('span'));
 doBind(document.body.getElementsByTagName('textarea'));
 } else {
 applyChange(arguments[0],arguments[1]);
 _bind(); // Re-bind
 }

 /*
 Function: doBind
 Programmer: Edmond Woychowsky
 Purpose: To handle data-binds for specific nodes
 based upon HTML element type and browser type.
 */
 function doBind(objects) {
 var strTag; // HTML tag
 var strDI; // XML data island id
 var strNode; // XML node name
 var strValue; // XML node value

 for(var i=0;i < objects.length;i++) {
 strTag = objects[i].tagName;
 strDI = objects[i].getAttribute('xmldi');
 strNode = objects[i].getAttribute('xmlnode');

 if(_IE)
 strValue =
document.getElementById(strDI).XMLDocument.selectNodes('//' +
strNode).item(i).text;

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06lev1sec8.html (2 of 5) [03.07.2007 11:48:37]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 6.8. XML Data Islands

 else

 strValue =
document.getElementById(strDI).getElementsByTagName(strNode)[i].innerHTML;

 switch(strTag) {
 case('DIV'):
 case('SPAN'):
 objects[i].innerHTML = strValue;

 break;
 case('INPUT'):
 switch(objects[i].type) {
 case('text'):
 case('hidden'):
 case('password'):
 objects[i].value = strValue;
 objects[i].onchange = new Function("_bind(this," +
i.toString() + ")");
 break;
 case('checkbox'):
 if(objects[i].value == strValue)
 objects[i].checked = true;
 else
 objects[i].checked = false;

 objects[i].onclick = new Function("_bind(this," +
i.toString() + ")");
 break;
 case('radio'):
 if(_IE)
 strValue =
document.getElementById(strDI).XMLDocument.selectNodes('//' +
strNode).item(0).text;
 else
 strValue =
document.getElementById(strDI).getElementsByTagName(strNode)[0].innerHTML;

 if(objects[i].value == strValue)
 objects[i].checked = true;
 else
 objects[i].checked = false;

 objects[i].onclick = new Function("_bind(this,0)");

 break;
 }

 break;
case('SELECT'):
case('TEXTAREA'):
 objects[i].value = strValue;

 objects[i].onchange = new Function("_bind(this," +
i.toString() + ")");

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06lev1sec8.html (3 of 5) [03.07.2007 11:48:37]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 6.8. XML Data Islands

 break;
 }
 }
 }

 /*
 Function: applyChange
 Programmer: Edmond Woychowsky
 Purpose: To handle changes to the bound HTML elements and apply
 those changes to the appropriate XML node.
 */
 function applyChange(obj,index) {
 var strDI = obj.getAttribute('xmldi');
 var strNode = obj.getAttribute('xmlnode');
 var strValue = obj.value;

 if(obj.type == 'checkbox')
 if(obj.checked)
 strValue = obj.value;
 else
 strValue = '';

 if(_IE)
 document.getElementById(strDI).XMLDocument.selectNodes('//' +
strNode).item(index).text = strValue;
 else

document.getElementById(strDI).getElementsByTagName(strNode)[index].innerH
TML = strValue;
 }
}
 </script>
 </head>
 <body onload="_bind()">
 <xml id="xmlDI">
 <a>

 <c>one</c>

 <c>two</c>

 <c>three</c>

 </xml>
 XML Data Island Test

 <div xmldi="xmlDI" xmlnode="c"></div>

 <div xmldi="xmlDI" xmlnode="c"></div>

 <div xmldi="xmlDI" xmlnode="c"></div>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06lev1sec8.html (4 of 5) [03.07.2007 11:48:37]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 6.8. XML Data Islands

 <input type="text" xmldi="xmlDI" xmlnode="c" value="" />

 <input type="text" xmldi="xmlDI" xmlnode="c" value="" />

 <input type="text" xmldi="xmlDI" xmlnode="c" value="" />

 </body>
</html>

Essentially, the code in this listing searches the HTML document for tags of the type that can be bound to
the XML. As they are encountered, the next value from the XML is used and a change event handler is
attached to the HTML. This way, when the visitor changes the value, the XML Data Island is updated.

Talk about lazy! No need to code-change event handlers by hand. This leads to the possibility of simply
refreshing the XML Data Island from the server and rebinding to display updates. Pretty useful when the
user requests another page of information, not only the next page or the previous page, but maybe even a
search.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06lev1sec8.html (5 of 5) [03.07.2007 11:48:37]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 6.9. Summary

6.9. Summary

This chapter covered some of the basics of XML, including the differences between elements and attributes.
It also delved into what makes an XML document well formed and not well formed. In addition, I covered
how to make script elements in XHTML from both an XML and JavaScript point of view, as well as entities.

The subject of namespaces was covered along with their purpose. This included a brief look at both
Document Type Definitions and schemas, and the role that they play in validation. Finally, this chapter
covered the role that XML Data Islands can play within an HTML document.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch06lev1sec9.html [03.07.2007 11:48:37]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7. XMLHttpRequest

Chapter 7. XMLHttpRequest

Several years ago, I worked for a company that had a reputation for conceiving incredible ideas.
Unfortunately, the company also had a reputation for being unable to either recognize the value of those
ideas or market a product using those ideas. Such was the case with the XMLHttpRequest object, originally
created by Microsoft for use with one of the products in its Office Suite. It languished unused until outsiders
discovered it in Internet Explorer.

These unknown intrepid developers knew immediately that the XMLHttpRequest object was a solution in
search of a problem. The only real question was in finding the problem. And although I can't speak for
anyone else, the problem that I chose was a shopping cart application described in Chapter 2, "Introducing
Ajax." Remember the "mockup" that wasn't a mockup and didn't "blink"? After that particular incident, I
was considerably more careful in my selection of applicationsor, at least, in my selection of attendees at my
demonstrations.

In fact, at times I was so careful in selecting where to use the XMLHttpRequest object that it was necessary
to examine the code to see exactly how it worked. I started by choosing applications in which it appeared
that the information was cached on the client side: the dreaded HTML select whose contents are based
upon another HTML select, which, in turn, is based upon another HTML select. As long as nobody ever
looked at the code, which nobody ever did, the web page wouldn't appear any different from the hundreds
of others in the system. That is, it wouldn't appear different unless you take into account speed. Without all
the cached information, the initial load was considerably faster.

In retrospect, looking back upon several of those "mad scientist" applications, I realize now that not all of
them could be considered Ajax. This is because Ajax is shorthand for Asynchronous JavaScript and XML,
and some of these applications were coded to be synchronous. And whoever heard of Sjax?

Nevertheless, because the XMLHttpRequest object can be used both synchronously and asynchronously, both
are covered. Moreover, we cover the following topics in this chapter:

● Synchronous
● Asynchronous
● Microsoft Internet Explorer
● XML Document Object Model
● RSS
● Web Services

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07.html [03.07.2007 11:48:37]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.1. Synchronous

7.1. Synchronous

Although not nearly as cool as coding an asynchronous client-side application, a synchronous client-side
application is nothing to look down at. In fact, it beats the pants off the average web applicationfiguratively
speaking, of course, because web applications don't wear pants. Thinking about it, using the XMLHttpRequest
object synchronously is actually a good way to expose yourself, also figuratively, to some of the basics.

One of the interesting things about the basics of the XMLHttpRequest object is that these basics are actually
basic. Only a few parameters and a few lines of code separate the synchronous from the asynchronous.
When you understand that, not much is required to change a synchronous application into an asynchronous
application. Don't believe me? Take a look at the XMLHttpRequest object's properties and methods shown in
Table 7-1.

Table 7-1. XMLHttpRequest Object Properties and Methods

Method/Property Description

abort() Terminates the previous outstanding
request.

getAllResponseHeaders() Returns all response headers, labels, and
values, as a string.

getresponseHeader("label") Returns the value for the provided label.

open("method","url", asynchronous,"username","password") Opens/assigns a method: GET or POST and,
optionally, an asynchronous indicator.

send(content) Sends the request with optional content.
This content can be either a string or DOM
data.

setRequestHeader ("label","value") Sets a request header label/value pair.

onreadystatechange Event handler for asynchronous requests;
fires on each change to the readyState
property.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec1.html (1 of 2) [03.07.2007 11:48:38]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.1. Synchronous

readyState Status of the request as an integer.

0 = uninitialize

1 = loading

2 = loaded

3 = interactive

4 = complete

responseText String returned from the server.

responseXML XML document returned from the server.

status HTTP response code returned from the
server.

statusText String message associated with the HTTP a.

Right now, the XMLHttpRequest object might seem like a pile of unrelated parts, but when the individual
parts are assembled in the correct sequence, things are different. To prove my point, let's take a look at
the JavaScript that uses XMLHTTP to synchronously get a file from the server in Gecko-based browsers such
as Firefox, Mozilla, and Flock (see Listing 7-1).

Listing 7-1. Getting a File Synchronously

var objXMLHTTP = new XMLHttpRequest();

objXMLHTTP.open('GET', 'books.xml', false);
objXMLHTTP.send(null);

var objXML = objXMLHTTP.responseXML;

The first step is to create an instance of the XMLHttpRequest object using the JavaScript new operator. Next,
the open method is invoked using the request method, GET, a destination URL, and a Boolean indicating that
the request is not asynchronous. The third and final step is to invoke the send method and assign the
responseXML, an XML document, to a variable. And if you're not interested in using XML, there is always the
responseText property.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec1.html (2 of 2) [03.07.2007 11:48:38]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.2. Asynchronous

7.2. Asynchronous

On the surface, what's required to change the request from synchronous to asynchronous appears to be
simply changing the false parameter to TRue for the open method. Unfortunately, although that would make
the request asynchronous, it would have some issues with the responseXML property. This is because the
request is asynchronous; instead of waiting for a response from the send method, processing just continues
on its merry way. This means that the responseXML property is undefined, which is not exactly what we're
looking for or expecting.

Fortunately, there is a way to correct this issue, but it requires creating an event handler to, er, handle
changes to the readyState property. With the XMLHttpRequest object, the value of the readyState property
changes every time something changes with the response to the request. This change fires the handler
defined by the onreadystatechange property. Let's take a look at the example shown in Listing 7-2.

Listing 7-2. Example of Creating an Event Handler to Correct the Problem

var objXMLHTTP = new XMLHttpRequest();
var objXML;

objXMLHTTP.onreadystatechange = asyncHandler;
objXMLHTTP.open('GET', 'books.xml', true);
objXMLHTTP.send(null);

function asyncHandler() {
 if(objXMLHTTP.readyState == 4)
 objXML = objXMLHTTP.responseXML;
}

In this example, the function asyncHandler is assigned as an event handler using the onreadystatechange
property. This means that the asyncHandler function fires each time the readyState property changes.
Because it fires every time the property changes, it is necessary to verify that the response is actually
complete before doing anything with the response. The if statement in the asyncHandler function takes
care of this issue; a readyState equal to 4 means that everything is fine and we're done. But what if
everything isn't fine?

Anyone who has ever played any of the Mech Assault campaigns knows that something always goes wrong.
What fun would it be if everything worked all the time? Thinking about it, please disregard my last
statement as the ramblings of a sick mind. Nevertheless, the universe is perverse, so bad things happen to
good people, countries, cities, and web applications. Because of this, it is sometimes necessary to code
defensively, to handle the unexpected. Note that I said defensively, not offensively. Don't go looking for
problems; like a mad cat with charged PPCs, they'll find you soon enough.

You can handle this potential problem in several ways. The first possible method involves hoping and
wishing. Unfortunately, management has a tendency to frown upon this method of error handling. Possibly
this is because mangers aren't a particularly hopeful group of people. Maybe because their heads are on

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec2.html (1 of 2) [03.07.2007 11:48:38]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.2. Asynchronous

the chopping block right next to our own.

A better method of handling potential problems, at least from a job longevity point of view, is to consider
what could go wrong. The way that I see it, things can go wrong in two possible ways. The first of these is
getting basic bad information back from the server. During development, this can be handled by an alert
and the responseText property. Beyond the development phase, however, this would probably scare away
the nonmad scientists. At these times, you might want to inform the user that an error has taken place and
use the XMLHttpRequest object to tell development about it. A more common, and much harder to handle,
error is a timeout.

A timeout, for those who have been watching Star Gate SG-1 instead of reading about web development,
occurs when an application either doesn't respond at all or doesn't respond in a reasonable amount of time.
Who defines "reasonable"? You do. Big believer in the 7-second rule? Then use 7 seconds. Like the
Hitchhiker's Guide to the Galaxy? Then use 42 seconds. In short, use whatever time period seems
appropriate. After you decide this, all that is necessary is to figure out how to handle it.

Personally, I'm fond of using the setTimeout method with a variable set to the result from the method. If
the response is received within the specified time limit, clearTimeout can be used to prevent the timeout
function from executing. Otherwise, the function specified by the setTimeout method will execute and any
problems can be dealt with then. All in all, using the setTimeout method is a rather elegant solution to a
potentially fatal problem.

This leaves really only one issue: What to do with those individuals who, for some reason, choose to use
Microsoft Internet Explorer? Keep it clean! Yes, we have to accommodate those people in some way,
beyond the Click Here to Download option.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec2.html (2 of 2) [03.07.2007 11:48:38]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.3. Microsoft Internet Explorer

7.3. Microsoft Internet Explorer

Unlike most other web browsers, Microsoft Internet Explorer uses something called ActiveX, which is a
holdover from an earlier age when object libraries where new, untried, and obscure. Because of this,
ActiveX is like the bowels of a ship: Sometimes nasty things are down there. In the case of ActiveX, the
ship is a spaceship named Nostromo. However, this isn't a "knock Internet Explorer" session. You'll find
enough of those online today.

Unlike most cross-browser differences encountered when developing web applications, this one doesn't
require a lot of code. In fact, the single line of code shown here is enough to do the deed, from an Internet
Explorer point of view. This JavaScript creates in Microsoft Internet Explorer an ActiveX object that is the
XMLHttpRequest object:

var objXMLHTTP = new ActiveXObject('Microsoft.XMLHTTP');

So now that we've got a potential source of XML, the big question is how to handle it.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec3.html [03.07.2007 11:48:38]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.4. XML Document Object Model

7.4. XML Document Object Model

The majority of web developers are familiar with the HTML DOM, but unless they're used to XML
development, they might not even realize that the XML DOM exists. In fact, even if they are aware that
there is a Document Object Model for use with XML, they might not know that there is a difference between
the XML and the HTML DOM. For example, the HTML DOM is geared more toward the various HTML
elements, whereas the XML Document Object Model is somewhat more generic.

The XML Document Object Model is a common API for dealing with XML. It provides a standard interface for
accessing, modifying, and creating the various parts of an XML document. Let's take a look at the XML
document shown in Listing 7-3 as a starting point, and you'll see what I mean.

Listing 7-3. An XML Document

<?xml version="1.0"?>
<garden>
 <plant>
 <name>Foxglove</name>
 <use>heart</use>
 <part>root</part>
 </plant>
 <plant>
 <name>Mandrake</name>
 <use>impotency</use>
 <part>root</part>
 </plant>
 <plant>
 <name>Trillium</name>
 <use>poison</use>
 <part>leave</part>
 </plant>
 <plant>
 <name>Wolfsbane</name>
 <use>werewolf repellent</use>
 <part>flower</part>
 </plant>
 <plant>
 <name>Meadowsweet</name>
 <use>cramps</use>
 <part>leave</part>
 </plant>
</garden>

After the requisite browser-specific JavaScript is executed and the XML document from Listing 7-3 is loaded
into a variablesay, myXMLit is time to try out the DOM. Let's say, for instance, that we're interested in
getting all the plant nodes in a node set. Using the DOM, we could code the following:

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec4.html (1 of 10) [03.07.2007 11:48:40]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.4. XML Document Object Model

var myNodeset = myXML.getElementsByTagName('plant');

Pretty slick, isn't it?

But there's more to the XML Document Object Model than the getElementsByTagName method. In fact, an
entire slew of properties and methods is available by using the XML DOM interfaces in JavaScript. However,
to use these properties and methods, it is necessary to know the various interfaces available in JavaScript,
as outlined in Table 7-2.

Table 7-2. JavaScript Interfaces Relevant to Using the XML DOM

Interface Name Description

DOMException Exception raised by a DOM method when the requested action cannot be
completed

ExceptionCode Integer that indicates the type of error raised by a DOMException

DOMImplementation Provides methods that are independent of any implementation of the XML
Document Object Model

DocumentFragment A lightweight XML document, often used to hold portions of an XML document

Document Used to hold an entire XML document

Node Represents a single node of an XML document

NodeList An indexed list of nodes

NamedNodeMap A collection of nodes that are accessed either by name or by index

CharacterData Extends the Node interface by adding characterspecific properties and methods

Attr Represents the attributes for individual elements

Element Extends the Node interface by adding methods for accessing and adding attributes

Text Represents the text content of an Element

Comment Represents an XML comment, the text between <!-- and -->

CDATASection Interface used to escape text that would normally be parsed as XML

DocumentType Used to define the document type

Notation Represents a notation declared in the Document Type Definition (DTD)

Entity Interface used to represent an XML entity, which can be either parsed or
unparsed

EntityReference Interface that contains a reference to an XML entity

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec4.html (2 of 10) [03.07.2007 11:48:40]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.4. XML Document Object Model

ProcessingInstruction Interface that contains a text-processing instruction

Each of these interfaces has a number of properties and methods that can be used to manipulate an XML
document. Table 7-3 lists the various properties and methods, along with their associated interfaces.

Table 7-3. Properties and Methods for Various Interfaces

Property/Method Interface Description

hasFeature(feature,version) DOMImplementation Returns a Boolean indicating
whether the feature is supported.

Doctype Document The DTD associated with this XML
document.

Implementation Document The DOMImplementation for this
document.

documentElement Document The document's root element.

createElement(tagName) Document Creates the specified element.

createDocumentFragment() Document Creates an empty document
fragment.

createTextNode(data) Document Creates a Text element using the
data provided.

createComment(data) Document Creates a Comment node using the
data provided.

createCDATASection(data) Document Creates a CDATASection node using
the data provided.

createProcessingInstruction (target,data) Document Creates a ProcessingInstruction
node.

createAttribute(name) Document Creates an Attribute.

createEntityReference(name) Document Creates an EntityReference.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec4.html (3 of 10) [03.07.2007 11:48:40]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.4. XML Document Object Model

getElementsByTagName (tagname) Document
Node
CharacterData
Attr
Element
Text
Comment
CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

Returns a node set consisting of
elements with matching tag names.

nodeName Document
Node
CharacterData
Attr
Element
Text
Comment
CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

The name of the node.

nodeValue Document
Node
CharacterData
Attr
Element
Text
Comment
CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

The value of the node.

nodeType Document
Node
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

The type of the node. See Table 7-
4 for accepted values.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec4.html (4 of 10) [03.07.2007 11:48:40]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.4. XML Document Object Model

parentNode Document
Node
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

The parent of the current node.

childNodes Document
Node
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

A node set consisting of the child
nodes of the current node. Note
that the node set may be empty.

firstChild Document
Node
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

The first child node of the current
node.

lastChild Document
Node
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

The last child of the current node.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec4.html (5 of 10) [03.07.2007 11:48:40]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.4. XML Document Object Model

previousSibling Document
Node
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

The previous child of the current
node's parent.

nextSibling Document
Node
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

The next child of the current
node's parent.

Attributes Document
Node
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

A collection consisting of the
attributes for the current node.

ownerDocument Document
Node
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

The Document associated with the
current element.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec4.html (6 of 10) [03.07.2007 11:48:40]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.4. XML Document Object Model

insertBefore(new,reference) Document
Node
the
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

Inserts the new child node before
reference child node.

replaceChild(new,old) Document
Node
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

Replaces the old child node with
the new child node.

removeChild(old) Document
Node
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

Removes the old child node.

appendChild(new) Document
Node
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

Appends the new child node as the
last child.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec4.html (7 of 10) [03.07.2007 11:48:40]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.4. XML Document Object Model

hasChildNodes() Document
Node
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

Returns a true if child nodes exist
and a false if child nodes do not
exist.

cloneNode(deep) Document
Node
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

Duplicates the specified node. The
Boolean parameter deep is used to
indicate a deep copy, which states
whether the children should be
copied.

Length NodeList
NamedNodeList
CharacterData

The number of items in the
collection or the length of the
character data.

item(index) NodeList
NamedNodeList

Returns a single node from a
collection based upon the index.

getNamedItem(name) NamedNodeMap Returns a single node based upon
the node name.

setNamedItem(node) NamedNodeMap Adds a single node.

removeNamedItem(name) NamedNodeMap Removes a node based upon the
node name.

Data CharacterData
Text
Comment CDATASection
ProcessingInstruction

The character data for the node.

substringData(offset,length) CharacterData
Text
Comment CDATASection

Extracts a substring from the
character data for the node.

appendData(string) CharacterData
Text
Comment CDATASection

Appends the string to the end of
the node's character data.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec4.html (8 of 10) [03.07.2007 11:48:40]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.4. XML Document Object Model

insertData(offset,string) CharacterData
Text
Comment CDATASection

Inserts the string into the node's
character data at the offset.

deleteData(offset,length) CharacterData
Text
Comment CDATASection

Deletes the number of characters
specified by the length, starting at
the offset.

replaceData
(offset,length,string)

CharacterData
Text
Comment CDATASection

Replaces the number of characters
specified by the length, starting at
the offset with the specified string.

Name Attr
DocumentType

The attribute name or the DTD
name, in the case of the
DocumentType.

Specified Attr A Boolean indicating whether the
attribute has a value in the original
document.

Value Attr The string value of the attribute.

tagName Element The tag name of the Element.

getAttribute(name) Element Returns the value of an attribute
based upon name.

setAttribute(name,value) Element Creates an attribute and sets its
value.

removeAttribute(name) Element Removes an attribute by name.

getAttributeNode(name) Element Retrieves an Attr node by name.

setAttributeNode(name) Element Adds an Attr node by name.

removeAttributeNode(name) Element Removes an Attr node by name.

normalize() Element Normalizes the specified element
and children of the specified
element.

splitText(offset) Text Splits the Text node into two Text
nodes at the specified offset.

Entities DocumentType A NamedNodeMap containing the
entities declared in the DTD.

Notations DocumentType A NamedNodeMap containing the
notations declared in the DTD.

publicId Notation
Entity

The public identifier for this
notation, or a null if no public
identifier is specified.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec4.html (9 of 10) [03.07.2007 11:48:40]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.4. XML Document Object Model

systemId Notation
Entity

The system identifier for this
notation, or a null if no system
identifier is specified.

notationName Entity The name of the notation for this
entity if the entity is unparsed. If
the entity is parsed, the result is
null.

Target ProcessingInstruction The target for this processing
instruction.

Table 7-4. The Node Types

Node Type Value Interface

ELEMENT_NODE 1 Element

ATTRIBUTE_NODE 2 Attr

TEXT_NODE 3 Text

CDATA_SECTION_NODE 4 CDATASection

ENTITY_REFERENCE_NODE 5 EntityReference

ENTITY_NODE 6 Entity

PROCESSING_INSTRUCTION_NODE 7 ProcessingInstruction

COMMENT_NODE 8 Comment

DOCUMENT_NODE 9 Document

DOCUMENT_TYPE_NODE 10 DocumentType

DOCUMENT_FRAGMENT_NODE 11 DocumentFragment

NOTATION_NODE 12 Notation

By using these interfaces, it is possible to manipulate an XML document without really having to mess
around too much. The only real issue is the vast array of properties and methods available. They can be
rather overwhelming. But personally, I find myself using a narrow range of properties and methods to
perform any task that is needed. This narrow range includes methods such as getElementsByTagname and
attributes.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec4.html (10 of 10) [03.07.2007 11:48:40]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.5. RSS

7.5. RSS

Really Simple Syndication, or RSS, is a dialect of XML that is commonly used for providing news-related
content. Things such as news headlines are the realm of RSS. The only issue is that because RSS is XML, it
doesn't appear as pretty as HTML does in a web browser. Consider the RSS shown in Listing 7-4 as an
example.

Listing 7-4. RSS Example

<?xml version="1.0"?>
<rss version="2.0">
 <channel>
 <title>NEWS!</title>
 <link>http://overlord.gov/</link>
 <description>Latest news</description>
 <language>en-us</language>
 <pubDate>Tue, 29 Nov 2005 03:00:00 GMT</pubDate>

 <lastBuildDate>Tue, 29 Nov 2005 03:07:00 GMT</lastBuildDate>
 <docs>http://blogs.overlord.gov/rss</docs>
 <generator>My Generator</generator>
 <managingEditor>Bob@gol.com</managingEditor>
 <webMaster>webmaster@gol.com</webMaster>

 <item>
 <title>Galactic Overlord Resigns</title>
 <link>http://overlord.gov/news/2005/news-resign.aspx</link>
 <description>
 The much despised Galactic Overlord has announced
 his resignation as the Blorf fleet entered
 orbit.
 </description>
 <pubDate>Tue, 29 Nov 2005 03:07:00 GMT</pubDate>
 <guid>http://overlord.gov/news/2005/11/28.html#item1</guid>
 </item>
 <item>
 <title>Earth's Moon Stolen</title>
 <link>http://overlord.gov/news/2005/news-moon.aspx</link>
 <description>
 Luna, the often photographed natural satellite of
 Earth, has been reported stolen. According to a
 UN spokesperson, at this moment, there are no
 suspects.
 </description>
 <pubDate>Tue, 29 Nov 2005 05:28:00 GMT</pubDate>
 <guid>http://overlord.gov/news/2005/11/28.html#item2</guid>
 </item>
 </channel>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec5.html (1 of 2) [03.07.2007 11:48:40]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.5. RSS

</rss>

Not very pretty, is it? There are, however, ways to prettify it. (Wow, who would have thought that prettify
was a word? Oops, off the subject matter.) Using JavaScript and the DOM methods and properties, it is
possible to extract only the headlines from the RSS shown. For example, the getElementsByTagname or the
getNamedItem properties could be used to obtain the title elements. The content of these elements could
then be displayed on the page as a hyperlink. Clicking on the link could then fire a JavaScript handler that
would display the description element.

The purpose of this side trip into the wonderful world of Really Simple Syndication was to merely show
some of the possibilities of XML. When information is available as XML, it can at times be treated as
something like a database. In essence, XML is not only the data itself, but also the source of subsets of that
data.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec5.html (2 of 2) [03.07.2007 11:48:41]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.6. Web Services

7.6. Web Services

Regardless of where you look, web services are a hot subject, and not just on resumés. Something of a
mystique surrounds web services; like the latest hot video game, everybody wants one, even if nobody is
quite sure what one is. Ah, to be a kid again, wanting something just because I want it. Who am I kidding?
I'm still that way, obsessing over games such as Stargate: The Alliance for XBox, and books such as
Practical Guide to Red Hat Linux: Fedora Core and Red Hat Enterprise Linux. However, unlike businesses,
my pockets aren't full of much other than lint, which means that I have to wait, whereas businesses can
just whip out the checkbook.

7.6.1. What Is a Web Service?

Alright, because everybody wants a web service, there are only two questions. The first question is, what is
a web service? And the second question is, how does a web service work? Let's start by answering the first
question: What is a web service?

A web service is a piece of software designed to respond to requests across either the Internet or an
intranet. In essence, it is a program that executes when a request is made of it, and it produces some kind
of result that is returned to the caller. This might sound a lot like a web page, but there is a significant
difference: With a web page, all the caller is required to know about the page is the URI. With a web
service, the caller needs to know both the URI and at least one of the web service's public methods.
Consider, for example, the C# web service shown in Listing 7-5. Knowing the URI, which, incidentally, is
http://localhost/AJAX4/myService.asmx, isn't enough. It is also necessary to know that the public method
is called monster.

Listing 7-5. Web Service Example

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace AJAX4
{
 public class myService : System.Web.Services.WebService
 {
 public myService()
 {

 InitializeComponent();
 }

 #region Component Designer generated code

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec6.html (1 of 6) [03.07.2007 11:48:41]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.6. Web Services

 //Required by the Web Services Designer
 private IContainer components = null;

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing && components != null)
 {
 components.Dispose();
 }
 base.Dispose(disposing);
 }

 #endregion

 [WebMethod]
 public string monster()
 {
 return "Grrr!";
 }
 }
}

Great, now we have a web servicewhoopee, we're done, right? Wrong! Having a web service is only part of
the battle; it falls into the same category as having a swimming pool and not knowing how to swim. Yeah,
it is impressive, but deep down, there is a nagging feeling of feeling stupid for the unnecessary expense.
What is needed is the knowledge of how to invoke the web service.

Impressive word, invoke; it conjures up images of smoke, candles, pentagrams, and demons, the kind that
could rip a soul from a body and torment it for eternityor, at least, during the annual performance
evaluation. As with invoking a demon, invoking a web service is all a matter of how things are phrased,
knowing both what to ask and how to ask. In both cases, mistakes can lead to, um, undesirable results.

7.6.2. SOAP

Unlike demonology, which requires the use of Latin (of the Roman variety, not the swine variety), invoking
a web service requires the use of a dialect of XML called SOAP. And as with everything even remotely
computer related, SOAP is an acronym standing for Simple Object Access Protocol. Fortunately, with SOAP,
the little elves who name things didn't lie: It is actually simple, and who would have thought it?

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec6.html (2 of 6) [03.07.2007 11:48:41]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.6. Web Services

The basic structure of a SOAP request is an envelope, which is also a pretty good analogy of not only what
it is, but also what it does. It serves as a wrapper around the request and any parameters being passed to
the web service. Consider the example of SOAP shown in Listing 7-6, whose purpose is to invoke the web
service from Listing 7-5.

Listing 7-6. SOAP to Invoke the Web Service

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <monster xmlns="http://tempuri.org/" />
 </soap:Body>
</soap:Envelope>

Doesn't look like much does it? All that the SOAP envelope does is specify the method, monster, along with
a namespacewhich, in this case, is the default, basically a placeholder. If the method requires any
parameters, they would be passed as children of that method. For example, let's add the method shown in
Listing 7-7 to the web service from Listing 7-5.

Listing 7-7. Method to Add to the Web Service

[WebMethod]
public string echo(string text)
{
 return text;
}

Beyond changing the method from monster to echo, there is the little problem of the parameter named text.
Because of the parameter, it is necessary to change the body of the SOAP request to the one shown in
Listing 7-8..

Listing 7-8. The New SOAP Request

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec6.html (3 of 6) [03.07.2007 11:48:41]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.6. Web Services

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <echo xmlns="http://tempuri.org/">
 <text>Dijon Ketchup</text>
 </echo>
 </soap:Body>
</soap:Envelope>

Now that we've got the basics down of the SOAP envelope (yes, there is more) let's consider how to deliver
it to the web service. Unfortunately, FedEx and UPS are both out of the question, although it might be fun
to call and ask the rates for delivering a SOAP envelope to a web serviceat least, until they got a restraining
order. This leaves the XMLRequest object as the best available resource: neither rain, nor snow, and all that
stuff.

Everything necessary to deliver the SOAP envelope is already in there, so the only issue is how to send our
SOAP envelopeafter all, there are no mailboxes with little red flags. Fortunately, we have a good chunk of
the code down already, including the SOAP envelope itself. Instead of beating around the bush, Listing 7-9
shows the client-side JavaScript necessary to invoke the monster method of our web service.

Listing 7-9. JavaScript to Invoke the monster Method

try {
 objXMLHTTP = new XMLHttpRequest();
}
catch(e) {
 objXMLHTTP = new ActiveXObject('Microsoft.XMLHTTP');
}

objXMLHTTP.onreadystatechange = asyncHandler;

objXMLHTTP.open('POST', 'http://localhost/AJAX4/myService.asmx', true);
objXMLHTTP.setRequestHeader('SOAPAction','http://tempuri.org/monster');
objXMLHTTP.setRequestHeader('Content-Type','text/xml');
objXMLHTTP.send(soap);

function asyncHandler() {
 if(objXMLHTTP.readyState == 4)
 alert(objXMLHTTP.responseText);
}

The first noticeable change from the earlier asynchronous request (refer to Listing 7-2) is that the method

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec6.html (4 of 6) [03.07.2007 11:48:41]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.6. Web Services

has been changed from GET to POST; this is because it is necessary to post the SOAP envelope to the web
service. This leads to the second change; the URI in the open method is now the address of the web service
instead of a filename.

Perhaps the biggest changes are the addition of two setRequestHeader methods. The first one sets the
SOAPAction to the web service's namespace and the method to be invoked. It is important to note that it is
absolutely necessary for the SOAPAction header to be identical to the method in the SOAP envelope. If they
aren't identical, it won't work. Personally, I spent a lot of time chasing my tail trying to figure out what was
wrong whenever the methods were different, but, then, I was raised by wolves and have a strong tendency
to chase my tail.

The second setRequestHeader is the easy one; all that it does is set the Content-type to text/xml. As if we'd
be doing anything else. But this raises the question of what the response from the web service will look
like, beyond being XML.

Well, there are essentially two possible responses; either it worked or it didn't. If it worked, it will look a lot
like the response shown in Listing 7-10. However, there could be some differences. For instance, it could be
an XML document instead of the "Grrr!", but this is only an example, so why strain ourselves?

Listing 7-10. The Response

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <monsterResponse xmlns="http://tempuri.org/">
 <monsterResult>Grrr!</monsterResult>
 </monsterResponse>
 </soap:Body>
</soap:Envelope>

The second possible response is broken into two parts. The first part is called a SOAP fault. Basically, it
means that something is wrong with the request, such as the methods not being identical. Listing 7-11
shows a SOAP fault that was created when I changed the SOAPAction in the request header to xxxx when it
should have been monster.

Listing 7-11. A SOAP Fault

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec6.html (5 of 6) [03.07.2007 11:48:41]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.6. Web Services

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <soap:Fault>
 <faultcode>soap:Client</faultcode>
 <faultstring>
 System.Web.Services.Protocols.SoapException: Server
 did not recognize the value of HTTP Header
 SOAPAction: http://tempuri.org/xxxx.
 at
System.Web.Services.Protocols.Soap11ServerProtocolHelper.RouteRequest()
 at System.Web.Services.Protocols.SoapServerProtocol.Initialize()
 at System.Web.Services.Protocols.ServerProtocol.SetContext(Type type,
HttpContext context, HttpRequest request, HttpResponse response)
 at System.Web.Services.Protocols.ServerProtocolFactory.Create(Type
type, HttpContext context, HttpRequest request, HttpResponse response,
Boolean& abortProcessing)
</faultstring>
 <detail/>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

The final two possible responses also cover errors. For example, there could be errors that are not handled
correctly in the web service. This could result in the web service returning text concerning the error instead
of either a SOAP response or a SOAP fault. It is important to take this into consideration when creating a
web service.

Although the language C# was used here for writing the web services, it is important to remember that
these techniques can be applied to a whole slew of languages. In the end, the choice of language is yours,
or it belongs to the powers-that-be, or somewhere in the hierarchy.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec6.html (6 of 6) [03.07.2007 11:48:41]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 7.7. Summary

7.7. Summary

This chapter covered the object essential to Ajax, the XMLHttpRequest object in both Gecko-based browsers
and Microsoft Internet Explorer. In addition, the differences between synchronous and asynchronous
requests were described, along with the care and feeding of both types of requests. The question of how to
handle the XML retrieved was described through the use of the XML Document Object Model.

The ever-present Really Simple Syndication was then covered as a potential source of XML. Finally, the
ultimate source of XML (one which you might already have), web services, was described along with SOAP.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch07lev1sec7.html [03.07.2007 11:48:42]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8. Ajax Using XML and XMLHttpRequest

Chapter 8. Ajax Using XML and XMLHttpRequest

Unlike the previous chapter, which was sort of "mad scientist stuff" with training wheels, here the training
wheels come off. We're free to either fly like the wind or remove large amounts of skin from various body
parts. Based upon my personal experience as a web developer, we'll probably do some of both. From this
chapter forward, nobody, regardless of their personal feelings, can deny that what we do in this chapter
falls under the definition of Ajax.

Up to this point, the only part of Ajax that we've really seen is the JavaScript. Feels like a rip-off, doesn't it?

Don't worry, we're building up to it. It would not do to have the monster rise off the slab in the beginning of
Chapter 1, would it? Alright, I, too have a tendency to fast-forward to the good parts. For example, I don't
care how SG-1 got to Antarctica; I just want to see the ship-to-ship battle over the pole and the battle in
space. Come to think of it, Stargate SG-1 should be required watching for mad scientists because two of
the regular characters could be classified as mad scientists themselves.

The mad scientist stuff covered in this chapter is the basic building block of Ajax applications, the
XMLHttpRequest object and how to determine what's actually going on. Along with this object is XML,
including how to deal with it on the client and some of the ways to deal with it, such as SOAP (basically, a
way to package XML for transport to and from the server). The final item covered is what to do with the
XML on the client, such as put it in an XML Data Island. To skip ahead a little, because mad scientists like
to describe their diabolical plans, XML Data Islands are one of the methods that can be used to both embed
and bind HTML controls and data. The best part is, if you change one, the other changes.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08.html [03.07.2007 11:48:42]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.1. Traditional Versus Ajax Websites

8.1. Traditional Versus Ajax Websites

Before we go any further, this is a good time to review how the average website works, if only to see the
contrast between it and Ajax websites. With a traditional website, it isn't unusual for the same page to go
through the unload/reload cycle several times before progressing to the next logical page. A number of
valid reasons explain why these unload/reload cycles occur, ranging from HTML select objects whose
contents are based on other select objects to simply bad input caught on the server side. In the end, the
result looks quite a lot like Figure 8-1.

Figure 8-1. The traditional unload/reload cycle

Even in the early days, when the paint wasn't yet fully dry on the World Wide Web, the unload/reload cycle
got old pretty quick, especially at dial-up speeds. Now with the improved bandwidth available, things are
different; it is old right from the start. For example, several years ago, I worked as a consultant for a
company that was trying to get a handle on the whole "web thing," as they referred to it. Their approach
was to wave a magic wand, and, "Poof!"a CICS programmer was now a web developer. Although this
approach worked, after a fashion, it led to some rather interesting web development standards.

Their standard went pretty much along the lines of trying to make web pages as much like the mainframe
CICS pages as possible. These standards were a combination of the weird and the scary. An example of the
weird was that initially all scrolling, regardless of the direction, was forbidden because it was thought to be
unprofessional. This meant that it was necessary to break up tabular web pages into single pagesized

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec1.html (1 of 3) [03.07.2007 11:48:43]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.1. Traditional Versus Ajax Websites

chunks and provide the user with some means of navigation.

On the other hand, some of the scary things were really scary. For example, they believed that there was
nothing wrong with giving scripts write permission to the web server. Let's say, for instance, that a
shopping cart for the web application was needed. Following the local standards, it was perfectly acceptable
for the "temporary" shopping cart to be written to the web server. The rationale was that it was easier to
work with flat files than to store information either on the client side or in a database table. Time
permitting, they also could write a "batch job" to clean up the web server of abandoned shopping carts.

The shopping cart was actually coded in the manner that I described, but, thankfully, it was an absolute
pig. It was both slow and temperamental, with items both appearing and disappearing seemingly at
random in the shopping cart. In fact, my wife would probably say that it was like shopping with me: "Where
did those Parmesan Goldfish and Double-Stuff Oreos come from?"

I still shudder whenever I think that there was actually a chance of that page making it into a production
environment and that management thought it was a perfectly acceptable design. Fortunately, the individual
who developed that application was needed to fix a mainframe production problem, so I was assigned the
task of making it work. I spent maybe a total of 10 minutes attempting to determine what was going wrong
before deciding to try a somewhat more modern approach.

The initial concept was to make the client work for a living and to pad my resumé with a whole bunch of
things that I had only played with in the past, such as the XMLHttpRequest object. The result was a
separation between the presentation layer and the web server; it was easily ten times faster than any of
their existing web pages. It could have been faster yet, but, unfortunately, I was unable to bypass the
draconian rules that were in place regarding stored procedures. Stored procedures were, in a word,
forbidden, being considered as both too confusing to write and of no use. Argh! I was one step away from a
three-tiered architecture.

Regardless of the frustration that I felt at the time, I did achieve something wonderful by stumbling upon
what was years later to be named Ajax. The shopping cart application was both similar to and different
from the site's existing pages. The similarity to the existing applications was akin to the similarity between
a soufflé and scrambled eggs. Many of the ingredients are the same; the real differences come from the
technique used in putting the ingredients together. Probably the easiest way to illustrate this difference is
to use a picture, such as the one shown in Figure 8-2.

Figure 8-2. An Ajax application

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec1.html (2 of 3) [03.07.2007 11:48:43]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.1. Traditional Versus Ajax Websites

Very different from Figure 8-1, isn't it? Instead of a page seemingly unloading and reloading forever, the
single page communicates directly with the web server. This greatly reduces the need for the unload/reload
cycle, which has a lot of overhead. Think of it in terms of a trip to the moon. What if the Apollo astronauts
needed to bring every necessity with them? Air, water, food, and anything else that was required had to be
trucked along with them from the Earth to the moon. Now imagine for a moment that the moon had a
breathable atmosphere and McDonald's. All of a sudden, a trip to the moon becomes almost as easy as a
trip to Florida.

Ajax does something similar by establishing an infrastructure on the client side. This infrastructure can be
as simple or as complex as you want. In fact, now is a good time to see what goes into building our Ajax
infrastructure. So queue the storm sound effects and put on the lab coat, and let's get our hands dirty.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec1.html (3 of 3) [03.07.2007 11:48:43]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.2. XML

8.2. XML

As you're aware, if only from the cameo appearance in Chapter 2, "Introducing Ajax," XML stands for
eXtensible Markup Language, but other than the purpose of padding resumés, you're probably not aware of
why XML is used so much. Basically, there are three main reasons for the popularity of XML, not including
the air of mystery surrounding anything with an X in it. (Don't believe me about the air of mystery? What
about The X-Files and X-Men?)

Literally tons has been written about XMLwell, at least when hard copy is taken into account. As for
electronic editions, I can't say because my notebook seems to weigh the same, regardless of the free space
available. For this reason, I won't bore you with the history of XML and how it is the best thing since sliced
bread, or how it cures baldness, because it would be either redundant or an outright lie. Anyone who has
ever developed an application that uses XML knows that there is a good chance of pulling out one's own
hair when attempting to explain XML to fellow developers who still haven't grasped the software equivalent
of the concept of fire. However, I should at least hit the highlights and point out some of the more useful
and obscure topics.

8.2.1. Well Formed

Alright, the concept that XML has to be well formed is not obscure, but it does fall well into the useful
bucket. You'd be surprised at the number of times that I've had to explain the concept of "well formed" to a
particular project leader with mainframe roots. Or, come to think of it, maybe you wouldn't. Let's just say
that, like the Creature from the Black Lagoon, the XML challenged walk among us, and you don't even need
to travel to the now-closed Marineland in Florida to find them. For this reason, it is time for XML 101.

An XML document is well formed when the follow conditions have been met:

● All opening tags either have a closing tag or are self-closing.
● All attributes have values.
● All the values for the attribute are enclosed in either quotes or apostrophes. I should point out,

however, that they need to be consistent. This means no mixing and matching; if a quotation mark
is used on the left side of a value, a quotation mark must be used on the right side.

● Beware of entities! Wow, that sounds spooky, doesn't it? Entities are special characters that need to
be handled with respect because, without special handling, they can be mistaken as something
other than content.

That was relatively easy, wasn't it? I recommend quoting it verbatim whenever it is necessary to explain
the concept to a clueless project leader. But you need to remember to make your eyes big when saying
"Beware of entities!" because they like that.

Alright, now that you're (hopefully) open to XML, the big question is, where does it come from? Well, that
depends on both your web server and database environments; some have built-in methods for producing
XML directly from the result of SQL SELECT statements or stored procedures. If your environment doesn't
support that, there is always the possibility of "rolling" your own XML. Because XML is human
readableessentially, textwith a little work, it is possible to create XML, even where XML isn't supported.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec2.html (1 of 14) [03.07.2007 11:48:44]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.2. XML

Take, for example, MySQL. Although both Oracle and SQL Server can produce XML directly from a stored
procedure, a little more effort is required to produce XML from MySQL. First, a stored function is required to
build the individual nodes by concatenating the node name and value, as in Listing 8-1. Next, a function is
needed that uses a cursor to step through the results of a query and build the XML using the
aforementioned stored function. Listing 8-2 contains a sample stored procedure to do just that.

Listing 8-1. Concatenating a Stored Function

DELIMITER $$

DROP FUNCTION IF EXISTS `ajax`.`f_xmlNode`$$
CREATE FUNCTION `ajax`.`f_xmlNode`(
/*
 To produce the text representation of an XML node.
*/
 nodeName VARCHAR(255), /* XML node name */
 nodeValue LONGTEXT, /* XML node value */
 escape BOOLEAN /* Apply XML entity escaping */
) RETURNS longtext
BEGIN
 DECLARE xml LONGTEXT; /* XML text node/value combination */

 IF nodeValue IS NULL OR LENGTH(nodeValue) = 0 THEN
 SET xml = CONCAT('<',nodeName,' />');
 ELSE
 IF escape THEN
 SET xml =
CONCAT('<',nodeName,'>',REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(nodeValue,
'&','&'),'>','>'),'<','<'),'''','''),'"','"'),'</',nod
eName,'>');
 ELSE
 SET xml = CONCAT('<',nodeName,'>',nodeValue,'</',nodeName,'>');
 END IF;
 END IF;

 RETURN xml;
END$$

DELIMITER ;

Listing 8-2. XML Producing a Stored Procedure

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec2.html (2 of 14) [03.07.2007 11:48:44]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.2. XML

DELIMITER $$

DROP PROCEDURE IF EXISTS `ajax`.`itemSelectXML`$$
CREATE PROCEDURE `ajax`.`itemSelectXML`(
guildItemId INTEGER,
guildId INTEGER
)BEGIN
 DECLARE done BOOLEAN DEFAULT FALSE;
 DECLARE xml LONGTEXT DEFAULT '<items>';
 DECLARE cGuildItemId INTEGER(6);
 DECLARE cGuildId INTEGER(6);
 DECLARE cGuildName VARCHAR(255);
 DECLARE cItemName VARCHAR(255);
 DECLARE cItemDescription VARCHAR(255);
 DECLARE cItemPrice DECIMAL(10,2);
 DECLARE itemCursor CURSOR FOR SELECT b.guild_item_id,
 b.guild_id,
 g.guild_name,
 i.item_name,
 i.item_description,
 i.item_price
 FROM guild_item_bridge b
 INNER JOIN guild g
 ON b.guild_id =
 g.guild_id
 INNER JOIN item i
 ON b.item_id = i.item_id
 WHERE (guildItemId IS NULL
 OR guildItemId =
 b.guild_item_id)
 AND (guildId IS NULL
 OR guildId =
 b.guild_id);
 DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET done = TRUE;

 OPEN itemCursor;

 FETCH itemCursor INTO cGuildItemId,
 cGuildId,
 cGuildName,
 cItemName,
 cItemDescription,
 cItemPrice;

 REPEAT
 SET xml =
CONCAT(xml,'<item><guild_item_id>',cGuildItemId,'</guild_item_id>');
 SET xml = CONCAT(xml,'<guild_id>',cGuildId,'</guild_id>');
 SET xml =
CONCAT(xml,'<guild_item_name>',REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(cGu
ildName,'&','&'),'>','>'),'<','<'),'''','''),'"','"'),
'</guild_item_name>');
 SET xml = CONCAT(xml,f_xmlString('item_name',cItemName));
 SET xml =
CONCAT(xml,'<item_description>',REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(cI
temDescription,'&','&'),'>','>'),'<','<'),'''','''),'"','&q

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec2.html (3 of 14) [03.07.2007 11:48:44]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.2. XML

uot;'),'</item_description>');

 SET xml =
CONCAT(xml,'<item_price>',cItemPrice,'</item_price></item>');

 FETCH itemCursor INTO cGuildItemId,
 cGuildId,
 cGuildName,
 cItemName,
 cItemDescription,
 cItemPrice;
 UNTIL done END REPEAT;

 SET xml = CONCAT(xml,'</items>');

 SELECT xml;

 CLOSE itemCursor;
END$$

DELIMITER ;

Here's how it works: The stored procedure shown in listing 8-2 retrieves the result of a query, builds an
XML string containing the opening root element, and then performs the following steps for each row
retrieved:

1. If the item is numeric, concatenate it, wrapped in the appropriate XML tags, to the XML string.

2. If the item is alpha or alphanumeric, the stored function shown in Listing 8-1 is invoked to handle
any entities and wrap the information in appropriate XML tags. The result of this stored function is
then concatenated to the XML string.

After all the rows have been processed, the closing root element is appended to the XML string and the
process is complete. Now that we have a reliable source of XML, let's examine how we can use it in a web
browser.

8.2.2. Data Islands for Internet Explorer

The official party line about XML Data Islands is that they are a "Microsoft-only" technology and, therefore,
will not work with any other browser. Yeah, right. However, before altering the fabric of reality as only a
mad scientist can, let's take a closer look at what XML data islands are and how they work.

As foreboding as the term XML Data Island is, according to the official definition, it is nothing more than
XML embedded somewhere in an HTML document. Not too badsounds about as scary as a bowl of goldfish.
In fact, Listing 8-3 is a basic HTML page with XML embedded smack in the middle of it, with Figure 8-3
showing what it looks like in Microsoft Internet Explorer.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec2.html (4 of 14) [03.07.2007 11:48:44]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.2. XML

Figure 8-3. HTML with embedded XML in Internet Explorer

[View full size image]

Listing 8-3. HTML with Embedded XML

<html>
 <head>
 <title>XML Data Island Test</title>
 </head>
 <body>
 <xml id="di">
 <states>
 <state>
 <abbreviation>NJ</abbreviation>
 <name>New Jersey</name>
 </state>
 <state>
 <abbreviation>NY</abbreviation>
 <name>New York</name>
 </state>
 <state>
 <abbreviation>PA</abbreviation>
 <name>Pennsylvania</name>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec2.html (5 of 14) [03.07.2007 11:48:44]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/08ajx03_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.2. XML

 </state>
 </states>
 </xml>
 XML Data Island Test
 </body>
</html>

Piece of cake, isn't it? Right up to the point that somebody opens it in Firefox, as Figure 8-4 illustrates.

Figure 8-4. HTML with embedded XML in Firefox

[View full size image]

8.2.3. Data Islands for All!

Right about now, if you're anything like me, you're leaning a little bit toward despair. And why not? A
bunch of ugly stuff is embedded in the middle of the web page, but remember, just because something is
there does not mean it has to be visible. Multiple methods exist for hiding information on a web page, such
as sticking it in the value of a hidden input box or Cascading Style Sheets (CSS), or using white-out.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec2.html (6 of 14) [03.07.2007 11:48:44]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/08ajx04_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.2. XML

Hmm, thinking about it, I'd ignore the first option because, although it will work, it will also be extremely
cumbersome. I'd also ignore the third option as being either too permanent or just plain stupid. This leaves
only the second option, Cascading Style Sheets.

The great part about using CSS is that not only is it an elegant solution, but it is also cross-browser
friendly. So let's make a minor modification to the previous web pagenamely, adding the style sheet shown
in Listing 8-4, and take another look at the page (see Figure 8-5).

Figure 8-5. HTML with embedded XML with CSS in Firefox

[View full size image]

Listing 8-4. CSS to Hide XML

xml
{
display: none;
font-size: 0px
}

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec2.html (7 of 14) [03.07.2007 11:48:44]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/08ajx05_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.2. XML

Okay, now that we have both the XML Data Island and a workable cloaking device for said XML Data Island,
we still need a way to use it. Because with the exception of a "Doomsday Device," something that isn't
being used is essentially useless, and I'm pretty sure that demanding "One million dollars in uncut flawless
diamonds or I use my XML Data Island" wouldn't get much of a responseunless, of course, you count the
nice people with the butterfly nets and jackets with wrap-around sleeves as a response.

The big question is, now that we have it, how do we use it? This is a good although somewhat broad
question that, unfortunately, ignores some of the technical issues yet to be addressed. Perhaps it would be
better to break the single question into two separate questionsfor instance, "Now that we have an XML data
island, how do we find it on the page?" and "How can it be incorporated into the page?"

The first one is easy. Remember the transverse function from Chapter 5, "Ajax Using HTML and
JavaScript"? It was the one that essentially walked through the HTML DOM. Something similar would work.
I, however, prefer the more direct route and would use either the getElementById method or the
getElementsByName method. The getElementById method, which we've used in earlier examples, has the
advantage of returning a single object. However, if for some unforeseen reason the object doesn't exist, an
error will be thrown. On the other hand, the getElementsByName method returns an array consisting of those
nodes with a particular name. This requires a little more typing than the other method. The syntax for both
of these methods is shown here:

document.getElementById('xmldi')

document.getElementsByTagName('xml')

The next question is, "How can it be incorporated into the page?" As with the previous question, there are
several different means to an end. For instance, if you're interested in only replacing existing XHTML
objects with new XHTML objects, you can use getElementById, as the page in Listing 8-5 shows.

Listing 8-5. Using getElementById

<html>
 <head>
 <title>XML Data Island Test - Version 2</title>
 <style type="text/css">
xml
{
 display: none;
 font-size: 0px
}
 </style>
 <script language="javascript">
/*
 Replace one input textbox with another one from an XML
 data island. In addition, the button that invoked this
 function is hidden.
*/
function doReplace() {
 document.getElementById('here').innerHTML =
document.getElementById('xmldi').innerHTML;

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec2.html (8 of 14) [03.07.2007 11:48:44]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.2. XML

 document.getElementById('replace').style.display = 'none';
}
 </script>
 </head>
 <body>
 <xml id="xmldi">
 <input type="text" id="new" name="new"
value="Hello, World!" />
 </xml>
 XML Data Island Test - Version 2

 <div id="here">
 <input type="text" id="old" name="old"
value="Goodbye, cruel world!" />
 </div>

 <input type="button" id="replace" name="replace"
value="Replace" onclick="doReplace()" />
 </body>
</html>

As neat and nifty as this is, essentially, it is only a variation on the DHTML methods that have been used
for the last several years. To turn heads, what is needed is a way to update the page's content dynamically.
Fortunately, a number of approaches can be taken to accomplish this task, which we cover later. The only
question is how much of a tolerance you have for "mad scientist stuff."

8.2.4. Binding

To those of you with impure thoughts about this heading, I'd like to say, "Shame on you!" It simply refers
to the act of binding XML to a web page's HTML. Get your minds out of the gutter. If you've never used this
technique, there are a number of reasons to consider using it. First, when you get the syntax down, it is
relatively easy to understand. Another reason is that, for all of its power, it is quite compact, yet it
separates content from presentation. Finally, it sounds really kinky, and how often do we get to use
something that sounds kinky?

Binding XML to HTML is usually considered a Microsoft Internet Exploreronly kind of thing. In Internet
Explorer, each bound HTML element identifies both the XML data island's ID and the individual node that is
being bound, as shown in Listing 8-6.

Listing 8-6. XML Binding in Internet Explorer

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec2.html (9 of 14) [03.07.2007 11:48:44]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.2. XML

<html>
 <head>
 <title>XML Data Island Test</title>
 <style type="text/css">
xml
{
 display: none;
 font-size: 0px
}
 </style>
 </head>
 <body>
 <xml id="xmlDI">
 <plugh>
 <magic>xyzzy</magic>
 </plugh>
 </xml>
 XML Data Island Test

 <input type="text" name="test" datasrc="#xmlDI"
datafld="magic" value="" />
 </body>
</html>

Each HTML tag to be bound, the input tags in the example above, has both a datasrc to identify the XML
Data Island and a datafld that identifies the specific node. It is important to realize that changes made to
the contents of the text box are reflected in the XML Data Island itself. So type plover over xyzzy, and the
text in the magic node is plover. This is a fine, although somewhat flakey, solution if the visitor is using
Microsoft Internet Explorer, but what if they're using Firefox?

The simple answer is to fake it. Using client-side JavaScript, a number of functions add the same
functionality to Firefox, right down to using the same tags. The interesting thing about most of these tools
is that they're usually more stable than Internet Explorer's own built-in binding. In an effort to work around
IE's flakey-ness, I wrote the page shown in Listing 8-7. In addition, I renamed the datasrc attribute xmldi
and the datafld attribute xmlnode to avoid having Internet Explorer use its own binding.

Listing 8-7. Cross-Browser XML Binding

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec2.html (10 of 14) [03.07.2007 11:48:44]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.2. XML

<html>
 <head>
 <title>XML Data Island Test</title>
 <style type="text/css">
xml
{
 display: none;
 font-size: 0px
}
 </style>
 <script language="JavaScript">
try {
 var x = new DOMParser();
 var _IE = false;
}
catch(e) { var _IE = true; };

/*
 Handle the logic necessary to bind HTML elements to XML
 nodes. Note that in some instances this binding is a two-way
 street. For example, if the value in a text box should
 change the corresponding value in the XML data island will
 also change.
*/
function _bind() {
 if(arguments.length == 0) {
 doBind(document.body.getElementsByTagName('div'));
 doBind(document.body.getElementsByTagName('input'));
 doBind(document.body.getElementsByTagName('select'));
 doBind(document.body.getElementsByTagName('span'));
 doBind(document.body.getElementsByTagName('textarea'));
 } else {
 applyChange(arguments[0],arguments[1]);
 _bind(); // Re-bind
 }

 /*
 To handle data-binds for specific nodes based upon HTML
 element type and browser type.
 */
 function doBind(objects) {
 var strTag; // HTML tag
 var strDI; // XML data island id
 var strNode; // XML node name
 var strValue; // XML node value

 for(var i=0;i < objects.length;i++) {
 strTag = objects[i].tagName;
 strDI = objects[i].getAttribute('xmldi');
 strNode = objects[i].getAttribute('xmlnode');

 if(_IE)
 strValue =
document.getElementById(strDI).XMLDocument.selectNodes('//' +
strNode).item(i).text;
 else

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec2.html (11 of 14) [03.07.2007 11:48:44]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.2. XML

 strValue =
document.getElementById(strDI).getElementsByTagName(strNode)[i].innerHTML;

 switch(strTag) {
 case('DIV'):
 case('SPAN'):
 objects[i].innerHTML = strValue;

 break;
 case('INPUT'):
 switch(objects[i].type) {
 case('text'):
 case('hidden'):
 case('password'):
 objects[i].value = strValue;
 objects[i].onchange = new Function("_bind(this," +
i.toString() + ")");

 break;
 case('checkbox'):
 if(objects[i].value == strValue)
 objects[i].checked = true;
 else
 objects[i].checked = false;

 objects[i].onclick = new Function("_bind(this," +
i.toString() + ")");

 break;
 case('radio'):
 if(_IE)
 strValue =
document.getElementById(strDI).XMLDocument.selectNodes('//' +
strNode).item(0).text;
 else
 strValue =
document.getElementById(strDI).getElementsByTagName(strNode)[0].innerHTML;

 if(objects[i].value == strValue)
 objects[i].checked = true;
 else
 objects[i].checked = false;
 objects[i].onclick = new Function("_bind(this,0)");

 break;
 }

 break;
 case('SELECT'):
 case('TEXTAREA'):
 objects[i].value = strValue;
 objects[i].onchange = new Function("_bind(this," +
i.toString() + ")");

 break;
 }

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec2.html (12 of 14) [03.07.2007 11:48:44]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.2. XML

 }
 }

 /*
 To handle changes to the bound HTML elements and apply
 those changes to the appropriate XML node.
 */
 function applyChange(obj,index) {
 var strDI = obj.getAttribute('xmldi');
 var strNode = obj.getAttribute('xmlnode');
 var strValue = obj.value;

 if(obj.type == 'checkbox')
 if(obj.checked)
 strValue = obj.value;
 else
 strValue = '';

 if(_IE)
 document.getElementById(strDI).XMLDocument.selectNodes('//' +
strNode).item(index).text = strValue;
 else

document.getElementById(strDI).getElementsByTagName(strNode)[index].innerH
TML = strValue;
 }
}
 </script>
 </head>
 <body onload="_bind()">
 <xml id="xmlDI">
 <a>

 <c>one</c>

 <c>two</c>

 <c>three</c>

 </xml>
 XML Data Island Test

 <div xmldi="xmlDI" xmlnode="c"></div>

 <div xmldi="xmlDI" xmlnode="c"></div>

 <div xmldi="xmlDI" xmlnode="c"></div>

 <input type="text" xmldi="xmlDI" xmlnode="c" value="" />

 <input type="text" xmldi="xmlDI" xmlnode="c" value="" />

 <input type="text" xmldi="xmlDI" xmlnode="c" value="" />

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec2.html (13 of 14) [03.07.2007 11:48:44]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.2. XML

 </body>
</html>

The bind() function retrieves all the div, input, select, span, and textarea elements using the DOM. Next,
the ID of the data island and the elements' names are retrieved from HTML using the xmldi and xmlnode
attributes. The XML node values are then copied to the HTML. Finally, an event handler is set for each
HTML element affected. The purpose of this event handler is to update the XML when the visitor modifies
the HTML value, for instance, by changing the value in an input box.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec2.html (14 of 14) [03.07.2007 11:48:44]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.3. The XMLHttpRequest Object

8.3. The XMLHttpRequest Object

As interesting as the previous section may have been, remember that it was only an appetizer. Now the
time has come for the entrée: the XMLHttpRequest object. If you've never used the XMLHttpRequest object, it
is, as described previously, an object that gives web browsers the capability to communicate directly with
the server, without the unload/reload cycleor "blink," as the peasants call it.

8.3.1. Avoiding the Unload/Reload Cycle

The best analogy that I can think of to the XMLHttpRequest object is the transporter from any of the various
incarnations of Star Trek. With the transporter, only the personnel essential to a particular mission need go
down to the planet's surface. The alternative would be to either land the Starship, if it were capable of
planetary landings, or send a shuttlecraft. In either case, there would be a lot of unnecessary equipment
and personnel being moved about at great expense, as opposed to the "move only what you need"
philosophy of the transporter.

The XMLHttpRequest object is the web equivalent of the transporter. Why transmit an entire web page when
all that is really needed is the data itself?

The HTML and JavaScript for presentation are already there, so just change the data and we're good to go.
I should point out that although the data being beamed from the server to the client doesn't necessarily
have to be XML, in all these examples, it is XML.

8.3.2. Browser Differences

Before describing the actual syntax necessary to use XMLHTTP, I recommend that you sit down because I
don't want to shock you or anything. Sitting down? Good. The syntax used for the XMLHttpRequest object is
different in Microsoft Internet Explorer than from every other browser that supports it. In fact, from
Microsoft's perspective, somewhere on the surface of Charon, not even the World Wide Web Consortium
got it right. As a matter of fact, they made exactly the same mistake as Firefox. Fortunately, because the
error is consistent among all nonInternet Explorer browsers all that is necessary is to code for IE and
everybody else. Mmm, I wonder if maybe...nah!

The first thing is to create an instance of the XMLHttpRequest object in the following manner:

try {

 var x = new DOMParser();
 var _IE = false;

}

catch(e) { var _IE = true; };
var _XMLHTTP;

if(_IE)
 _XMLHTTP = new ActiveXObject('Microsoft.XMLHTTP');
else

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec3.html (1 of 12) [03.07.2007 11:48:46]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.3. The XMLHttpRequest Object

 _XMLHTTP = new XMLHttpRequest();

Before proceeding any further, a couple of decisions must be made that involve just how we'd like the page
to work.

Synchronous or asynchronous?

GET or POST?

The choice of synchronous or asynchronous is a relatively big one, but it boils down to waiting for a
response or being notified when there is a response. As long as you remember to specify a state change
handler for responses to asynchronous requests, things should work. The GET or POST question is also an
important decision. Fortunately, it is the same decision that has been around ever since the introduction of
HTML forms, so as long as we follow the same rules, everything will be alright.

Let's say, for instance, that we want to retrieve the XML file of states and provinces shown in Listing 8-8
from the server. The first thing that is needed is to determine the browserbasically, Microsoft Internet
Explorer and everyone else. The next task is to create an instance of the XMLHttpRequest object, followed by
setting the event handler, for asynchronous requests. Finally, the XMLHttpRequest object is opened with
three parameters:

● GET or POST
● The URL for the request
● Either TRue for asynchronous or false for synchronous

However, you must remember one thing about coding a state change handler. It is a state change handler,
not an "I'm finished" handler. There are other states than "complete"; we're interested in 4, which indicates
that the request is complete. Listing 8-9 shows a page that retrieves the XML from Listing 8-8, storing it in
an XML Data Island and binding it for display purposes.

Listing 8-8. Sample XML Document

<states>
 <state>
 <state_abbreviation>AB</state_abbreviation>
 <state_name>Alberta</state_name>
 <country_id>3</country_id>
 </state>
 <state>
 <state_abbreviation>AK</state_abbreviation>
 <state_name>Alaska</state_name>
 <country_id>1</country_id>
 </state>
 <state>
 <state_abbreviation>AL</state_abbreviation>
 <state_name>Alabama</state_name>
 <country_id>1</country_id>
 </state>
 <state>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec3.html (2 of 12) [03.07.2007 11:48:46]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.3. The XMLHttpRequest Object

 <state_abbreviation>AR</state_abbreviation>
 <state_name>Arkansas</state_name>
 <country_id>1</country_id>
 </state>
 <state>
 <state_abbreviation>AS</state_abbreviation>
 <state_name>American Samoa</state_name>
 <country_id>1</country_id>
 </state>
 <state>
 <state_abbreviation>AZ</state_abbreviation>
 <state_name>Arizona</state_name>
 <country_id>1</country_id>
 </state>
</states>

Listing 8-9. HTML Document Using an XML Data Island

<html>
 <head>
 <title>XML Data Island Test</title>
 <style type="text/css">
xml
{
 display: none;
 font-size: 0px
}
 </style>
 <script language="JavaScript">
try {
 var x = new DOMParser();
 var _IE = false;
}
catch(e) { var _IE = true; };
var _URL = 'http://localhost/chapter4/states.xml';
var _XMLHTTP;

/*
 Perform page initialization.
*/
function initialize() {
 if(_IE)
 _XMLHTTP = new ActiveXObject('Microsoft.XMLHTTP');
 else
 _XMLHTTP = new XMLHttpRequest();

 _XMLHTTP.onreadystatechange = stateChangeHandler;

 _XMLHTTP.open('GET',_URL,true); // Asynchronous (true)
 _XMLHTTP.send(null);
}

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec3.html (3 of 12) [03.07.2007 11:48:46]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.3. The XMLHttpRequest Object

/*
 Handle the asynchronous response to a XMLHttpRequest,
 including the loading of the XML Data Island.
*/
function stateChangeHandler() {
 if(_XMLHTTP.readyState == 4) {
 var strHTML = '';
 var nodeCount;

 if(_IE) {

document.getElementById('xmlDI').XMLDocument.load(_XMLHTTP.responseXML);
 nodeCount =
document.getElementById('xmlDI').XMLDocument.getElementsByTagName('state_n
ame').length;
 } else {
 document.getElementById('xmlDI').innerHTML = _XMLHTTP.responseText;
 nodeCount = document.body.getElementsByTagName('state_name').length;
 }
 try {
 _XMLHTTP.close(); // Close XMLHttpRequest
 }
 catch(e) {}

 for(var i=0;i < nodeCount;i++)
 strHTML += '<div xmldi="xmlDI" xmlnode="state_name"></div>';

 document.getElementById('show').innerHTML = strHTML;

 _bind(); // Bind XML and HTML
 }
}

/*
 Handle the logic necessary to bind HTML elements to XML
 nodes. Note that in some instances this binding is a two-way
 street. For example, if the value in a text box should
 change the corresponding value in the XML data island will
 also change.
*/
function _bind() {
 if(arguments.length == 0) {
 doBind(document.body.getElementsByTagName('div'));
 doBind(document.body.getElementsByTagName('input'));
 doBind(document.body.getElementsByTagName('select'));
 doBind(document.body.getElementsByTagName('span'));
 doBind(document.body.getElementsByTagName('textarea'));
 } else {
 applyChange(arguments[0],arguments[1]);
 _bind(); // Re-bind
 }

 /*
 To handle data-binds for specific nodes based upon HTML
 element type and browser type.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec3.html (4 of 12) [03.07.2007 11:48:46]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.3. The XMLHttpRequest Object

 */
 function doBind(objects) {
 var strTag; // HTML tag
 var strDI; // XML data island id
 var strNode; // XML node name
 var strValue; // XML node value

 for(var i=0;i < objects.length;i++) {
 strTag = objects[i].tagName;
 strDI = objects[i].getAttribute('xmldi');
 strNode = objects[i].getAttribute('xmlnode');
 if(strDI != null && strNode != null) {
 if(_IE)
 strValue =
document.getElementById(strDI).XMLDocument.selectNodes('//' +
strNode).item(i).text;
 else
 strValue =
document.getElementById(strDI).getElementsByTagName(strNode)[i].innerHTML;

 switch(strTag) {
 case('DIV'):
 case('SPAN'):
 objects[i].innerHTML = strValue;

 break;
 case('INPUT'):
 switch(objects[i].type) {
 case('text'):
 case('hidden'):
 case('password'):
 objects[i].value = strValue;
 objects[i].onchange = new Function("_bind(this," +
i.toString() + ")");
 break;
 case('checkbox'):
 if(objects[i].value == strValue)
 objects[i].checked = true;
 else
 objects[i].checked = false;
 objects[i].onclick = new Function("_bind(this," +
i.toString() + ")");
 break;
 case('radio'):
 if(_IE)
 strValue =
document.getElementById(strDI).XMLDocument.selectNodes('//' +
strNode).item(0).text;
 else
 strValue =
document.getElementById(strDI).getElementsByTagName(strNode)[0].innerHTML;

 if(objects[i].value == strValue)
 objects[i].checked = true;
 else
 objects[i].checked = false;

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec3.html (5 of 12) [03.07.2007 11:48:46]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.3. The XMLHttpRequest Object

 objects[i].onclick = new
Function("_bind(this,0)");
 break;
 }

 break;
 case('SELECT'):
 case('TEXTAREA'):
 objects[i].value = strValue;
 objects[i].onchange = new Function("_bind(this," +
i.toString() + ")");

 break;
 }
 }
 }
 }

 /*
 To handle changes to the bound HTML elements and apply
 those changes to the appropriate XML node.
 */
 function applyChange(obj,index) {
 var strDI = obj.getAttribute('xmldi');
 var strNode = obj.getAttribute('xmlnode');
 var strValue = obj.value;

 if(obj.type == 'checkbox')
 if(obj.checked)
 strValue = obj.value;
 else
 strValue = '';
 if(_IE)
 document.getElementById(strDI).XMLDocument.selectNodes('//' +
strNode).item(index).text = strValue;
 else

document.getElementById(strDI).getElementsByTagName(strNode)[index].
innerHTML = strValue;
 }
}
 </script>
 </head>
 <body onload="initialize()">
 <xml id="xmlDI">
 </xml>
 XML Data Island Test

 <div id="show"></div>
 </body>
</html>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec3.html (6 of 12) [03.07.2007 11:48:46]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.3. The XMLHttpRequest Object

Essentially, the JavaScript in Listing 8-9 makes an asynchronous XMLHTTP request. This entails, beyond the
usual "which browser is it?" stuff, creating an instance of the XMLHttpRequest object, setting an event
handler for the response, and making the request using the request type, the URL, and TRue for
asynchronous. The state change handler, er, handles the response from the server. If you look closely,
you'll see a condition testing the readyState property to see if it is equal to 4, which is complete. The reason
for testing the readyState property is that this handler fires multiple times for different reasons, ranging
from the equivalent of "I'm sitting here" to "Hey, I'm getting a response."

The previous example illustrated how to use the XMLHttpRequest object to asynchronously obtain an XML
document from a file located on the server. Think of it as something along the lines of a proof of concept
because the odds are against the XML document needed sitting in a folder on the web server. Instead,
there will probably be some script version of Igor sitting around watching Oprah, waiting for some real work
to do.

Several different methods exist for getting data to and from our virtual Igor, ranging from a simple custom
approach to slightly more complex XML-based standards. One of the standards that can be used to get the
virtual Igor moving is called XML Remote Procedure Calling, or XML-RPC, for short. In a nutshell, XML-RPC
is a World Wide Web Consortium Recommendation that describes a request/response protocol. A request is
posted to the web server, and the web server acts upon the request and returns a response. This entire
process might sound rather complex, but it really isn't any more difficult than what we've already
accomplished. The only differences are that instead of a GET, we'll be doing a POST, and the request needs
to be in XML, as shown in Listing 8-10 and the response in Listing 8-11.

Listing 8-10. XML-RPC Request

<?xml version="1.0"?>
<methodCall>
 <methodName>igor.getGuildName</methodName>
 <params>
 <param>
 <value>
 <int>1</int>
 </value>
 </param>
 </params>
</methodCall>

Listing 8-11. XML-RPC Response

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec3.html (7 of 12) [03.07.2007 11:48:46]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.3. The XMLHttpRequest Object

<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value>
 <string>Mad Scientist</string>
 </value>
 </param>
 </params>
</methodResponse>

As you've probably deduced from this, the structure of the XML document goes along the lines of
methodCall, params, param, value, and, finally, data type (integer, in this instance). The rule for the
structure goes along the lines of one methodResponse, one params, and at least one param. In addition,
each param can have only one valueno more, no less. Values, in turn, have a single node that both
describes and holds the data. Table 8-1 shows the valid data types for XML-RPC.

Table 8-1. XML-RPC Data Types

Type Description

int 4-byte signed integer

i4 4-byte signed integer

boolean True = 1 and false = 0

sting Character string

double Double-precision floating point

dateTime.iso8601 Date/time

base64 Base 64 binary

Of course, communicating a single item of information as shown is pretty rare. More common are more
complex data structures, such as arrays or the record-line structs. Both arrays and structs work pretty
much along the same lines as the simpler example earlier. Listing 8-12 shows an example of an array, and
Listing 8-13 shows an example of a struct.

Listing 8-12. XML-RPC Array

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec3.html (8 of 12) [03.07.2007 11:48:46]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.3. The XMLHttpRequest Object

<?xml version="1.0"?>
<array>
 <data>
 <value>
 <int>5</i4>
 </value>
 <value>
 <string>Lab Coat</string>
 </value>
 <value>
 <double>29.95</double>
 </value>
 </data>
</array>

Listing 8-13. XML-RPC Struct

<?xml version="1.0"?>
<struct>
 <member>
 <name>name_last</name>
 <value>
 <string>Woychowsky</>
 </value>
 </member>
 <member>
 <name>name_first</name>
 <value>
 <string>Edmond</string>
 </value>
 </member>
 <member>
 <name>purpose</name>
 <value>
 <int>42</int>
 </value>
 </member>
</struct>

The array example shown is merely an elaboration of the earlier simple XML document, but the struct
example is more complex. Along with specifying the parameter type and value, it specifies the name of the
parameter. This might not seem like much, but it is useful in applications with so many parameters that it
becomes difficult to keep their relative positions straight.

This leads us to the question, what does the response look like when the relative positions aren't kept
straight? That's simple enough; a fault like the one in Listing 8-14 is returned.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec3.html (9 of 12) [03.07.2007 11:48:46]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.3. The XMLHttpRequest Object

Listing 8-14. XML-RPC Fault

<?xml version="1.0"?>
<methodResponse>
 <fault>
 <value>
 <struct>
 <member>
 <name>faultCode</name>
 <value>
 <int>86</int>
 </value>
 </member>
 <member>
 <name>faultString</name>
 <value>
 <string>
 Invalid data type.
 </string>
 </value>
 </member>
 </struct>
 </value>
 </fault>
</methodResponse>

Now that we know what the request looks like ordinarily, the next step is to modify the previous example,
in which the XSLT was retrieved through the XMLHttpRequest object and a GET to use XML-RPC. This time,
however, we skip the examples and progress directly to what is considered by some the protocol of choice
when creating web services: SOAP.

8.3.3. Cleaning Up with SOAP

Other than being something for cleaning, SOAP is an acronym for Simple Object Access Protocol, a protocol
used to communicate between web browsers and web servers. SOAP is probably one of the more difficult
subjects to research on the web, if for no other reason than the multiple websites that deal with the original
SOAP. Nevertheless, when searching, you eventually will obtain the desired results and discover that SOAP
is nothing more than a wrapper for XML.

XML-RPC was designed to provide a standard structure. However, with SOAP, a slightly different approach
was used. Instead of the strict params-param-value used by XML-RPC, which rigidly ties the information with
the wrapper, SOAP uses a more flexible envelope method. As with a physical envelope, a SOAP envelope
both identifies the recipient and contains the message within. The only real difference between a SOAP
envelope and a physical envelope is that the message contained by a SOAP envelope must be well formed,
like the one shown in Listing 8-15.

Listing 8-15. SOAP Request

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec3.html (10 of 12) [03.07.2007 11:48:46]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.3. The XMLHttpRequest Object

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <getItems xmlns="http://tempuri.org/">
 <guild_item_id>string</guild_item_id>
 <guild_id>string</guild_id>
 </getItems>
 </soap:Body>
</soap:Envelope>

As with the XML-RPC example, there are two possible responses to a SOAP request. Either the web service
worked and returned a SOAP response, as shown in Listing 8-16, or some kind of error occurred, and the
request failed and a SOAP fault was returned. Listing 8-17 contains an example of a SOAP fault.

Listing 8-16. SOAP Response

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <getItemsResponse xmlns="http://tempuri.org/">
 <getItemsResult>xml</getItemsResult>
 </getItemsResponse>
 </soap:Body>
</soap:Envelope>

Listing 8-17. SOAP Fault

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec3.html (11 of 12) [03.07.2007 11:48:46]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.3. The XMLHttpRequest Object

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"xmlns:xsd="http://www.w3.org/2001/XMLSchema"xmlns:soap="http://sc
hemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <soap:Fault>
 <faultcode>soap:MustUnderstand</faultcode>
 <faultstring>Mandatory Header error.</faultstring>
 <faultactor>http://localhost/AJAX4/chapter4.asmx</faultactor>
 <detail>Web Service coffee break.</detail>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec3.html (12 of 12) [03.07.2007 11:48:46]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.4. A Problem Revisited

8.4. A Problem Revisited

Now that we have covered some of the necessary background material for using XML, SOAP, and XMLHTTP,
let's apply it to the e-commerce site. As you might recall, the objective of the site is to provide materials
for the often-overlooked market of mad scientists, alchemists, and sorcerers. In Chapter 5, we created
pages using a primitive ancestor of Ajax; now let's give it a shot using the real thing. This doesn't mean
that it is entirely necessary to completely abandon hidden frames. If you decide that you need them, then
by all means, use them; we abandon hidden frames from here on, however.

In addition, we change server-side languages from PHP to C#. The reason for this change isn't that PHP
can't be used to develop web services; it is actually the fact that I'm more comfortable using C# for
developing web services. To those of you who question the presence of C# in an open source book, I have
one word for you: Mono.

No, not the Mono that everybody came down with in high school, college, or, in my case, Bell Labsthe Mono
that is the open source implementation of the .NET Framework. You haven't lived until you've seen a C#
application running under Linux. It doesn't feel wrong; it feels more like when Lieutenant Commander Worf
said: "Assimilate this!" in Star Trek First Contact.

Listing 8-18 contains the web service that will handle the server-side requirements for the remainder of this
chapter.

Listing 8-18. A Web Service

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.IO;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Xml;
using MySql.Data.MySqlClient;
using MySql.Data.Types;
namespace AJAX
{
 /// <summary>
 /// Summary description for msas.
 /// </summary>
 public class msas : System.Web.Services.WebService
 {
 const string CONNECTION_STRING =
 "Persist Security
Info=False;database=ajax;server=localhost;username=root;password=wyvern";

 public msas()
 {

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec4.html (1 of 4) [03.07.2007 11:48:47]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.4. A Problem Revisited

 InitializeComponent();
 }

 #region Component Designer generated code

 //Required by the Web Services Designer
 private IContainer components = null;

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing && components != null)
 {
 components.Dispose();
 }
 base.Dispose(disposing);
 }

 #endregion

 [WebMethod]
 public XmlDocument getState(string state_abbreviation)
 {
 MySqlConnection connection =
 new MySqlConnection(CONNECTION_STRING);
 MySqlDataAdapter adapter = new MySqlDataAdapter();
 DataSet dataSet = new DataSet();
 XmlDocument xml = new XmlDocument();
 string query = "CALL stateSelect(NULL)";
 if(state_abbreviation.Length != 0)
 query = "CALL stateSelect('" + state_abbreviation + "')";

 adapter.SelectCommand =
 new MySqlCommand(query, connection);
 adapter.Fill(dataSet);
 xml.LoadXml(dataSet.GetXml());

 connection.Close();

 return(xml);
 }

 [WebMethod]
 public XmlDocument getXML(string name)
 {
 XmlDocument xml = new XmlDocument();

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec4.html (2 of 4) [03.07.2007 11:48:47]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.4. A Problem Revisited

 try
 {
 xml.Load(Server.MapPath(name));
 }
 catch(Exception e)
 {
 StringWriter writer = new StringWriter();
 Server.UrlEncode(name, writer);
 String encodedName = writer.ToString();
 XmlNode node =
 xml.CreateNode(XmlNodeType.CDATA,"detail","");

 node.Value = encodedName;

 throw(new
SoapException(e.Message,SoapException.ClientFaultCode,"",node));
 }

 return(xml);
 }

 [WebMethod]
 public XmlDocument getItems(string guild_item_id,string guild_id)
 {
 MySqlConnection connection =
 new MySqlConnection(CONNECTION_STRING);
 MySqlDataAdapter adapter = new MySqlDataAdapter();
 DataSet dataSet = new DataSet();
 XmlDocument xml = new XmlDocument();
 string query;

 if(guild_item_id.Length == 0)
 if(guild_id.Length == 0)
 query = "CALL itemSelect(NULL,NULL)";
 else
 query = "CALL itemSelect(NULL," + guild_id + ")";
 else
 if(guild_id.Length == 0)
 query = "CALL itemSelect(" + guild_item_id + ",NULL)";
 else
 query = "CALL itemSelect(" + guild_item_id + "," + guild_id +
")";
 adapter.SelectCommand =
 new MySqlCommand(query, connection);
 adapter.Fill(dataSet);
 xml.LoadXml(dataSet.GetXml());

 connection.Close();

 return(xml);
 }
 }
}

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec4.html (3 of 4) [03.07.2007 11:48:47]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.4. A Problem Revisited

I'd like to point out that the web service shown handles several different jobs. First, if necessary, it
performs database queries against a MySQL database. Immediately following the queries, it builds the
XHTML required to display the page; finally, it creates a node that contains a line of JavaScript. All this is
then incorporated into a single XML document, which is then sent to the client. Although this might seem a
wee bit strange, there is a method to my madness. As with the hidden frames example, there will be a
single HTML document that also has several different jobs to perform.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec4.html (4 of 4) [03.07.2007 11:48:47]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.5. Tabular Information and Forms

8.5. Tabular Information and Forms

With the server side taken care of, there are three ways to proceed with developing on the client side. The
first is to continue developing the way that we've been developing, hand-coding every function. Although
this would give us a really good understanding of how the application works, it would take forever to
develop anything useful.

The second approach is to get online and find a suitable Ajax library, download it, and proceed with
developing. Currently, quite a number of them are out there, such as Sarissa and JSON (pronounced
"Jason"). (However, if memory serves, Jason was the leader or the Argonauts, whereas Ajax was a hero of
the Trojan War.)

The third possibility is to write our own Ajax libraryor, rather, use one that I've already written. This
approach is useful for several reasons, the first being that I'll (hopefully) know exactly how the library
works. The second reason is that I can dissect them in a later chapter so that we'll know exactly how they
work. The final reason is that it will help to pad the page counteh, I mean, to increase the depth of these
examples. Table 8-2 briefly describes the classes in the library, along with their associated methods and
properties.

Table 8-2. Ajax Library Classes

Name Parent Class Type Description

XMLHttpRequest Class Constructor

action XMLHttpRequest Property GET, POST, or HEAD

asynchronous XMLHttpRequest Property true or false

envelope XMLHttpRequest Property SOAP envelope

readyState XMLHttpRequest Method Returns the document readyState

getresponseHeader XMLHttpRequest Method Returns a single HTTP response header

getAllResponseHeaders XMLHttpRequest Method Returns all HTTP response headers

responseText XMLHttpRequest Method Returns the SOAP response as text

responseXML XMLHttpRequest Method Returns the SOAP response as an XML document

stateChangeHandler XMLHttpRequest Method Dummy state change handler

setRequestHeader XMLHttpRequest Method Sets an HTTP response header

removeRequestHeader XMLHttpRequest Method Removes a previously set HTTP response header

Send XMLHttpRequest Method Sends the XMLHttpRequest

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec5.html (1 of 14) [03.07.2007 11:48:49]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.5. Tabular Information and Forms

Cache Class Constructor

insert Cache Method Inserts a name/value pair

retrieve Cache Method Retrieves a value

purge Cache Method Purges one or more name/value pairs

names Cache Method Returns an array of names

XMLDocument Class Constructor

Load XMLDocument Method Loads an\ XML document

serialize XMLDocument Method Serializes an XML document to text

DOMDocument XMLDocument Method Returns an XML document

readyState XMLDocument Method Returns the document readyState

setRequestHeader XMLDocument Method Sets an HTTP response header

getresponseHeader XMLDocument Method Returns a single HTTP response header

getAllResponseHeaders XMLDocument Method Returns all HTTP response headers

setEnvelope XMLDocument Method Sets the envelope for an XMLHttpRequest

selectNodes XMLDocument Method Returns an array of XML nodes

SOAPEnvelope Class Constructor

envelope SOAPEnvelope Method SOAP envelope

Now that the foundations of the application architecture have been covered, albeit lightly, this is a good
time to see what the HTML page built upon that architecture looks like. Figure 8-6 shows what it looks like
in a browser, and Listing 8-19 shows the HTML and JavaScript.

Figure 8-6. Ajax page

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec5.html (2 of 14) [03.07.2007 11:48:49]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/08ajx06_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.5. Tabular Information and Forms

Listing 8-19. Ajax Page

<html>
 <head>
 <title>chapter4</title>
 <link rel="stylesheet" type="text/css" href="common.css"/>
 <script language="JavaScript" src="Cache.js"></script>
 <script language="JavaScript" src="XMLHTTPRequest.js"></script>
 <script language="JavaScript" src="XMLDocument.js"></script>
 <script language="JavaScript" src="SOAPEnvelope.js"></script>
 <script language="javascript">
<!-- <![CDATA[
try {var x = new DOMParser(); var _IE = false; } catch(e)
{ var _IE = true; };
var xml = new XMLDocument();
var soap = new SOAPEnvelope();
var pageName = 'Items';
var itemsXHTMLStart = '<table width="960px" border="1" cellpadding="2"
cellspacing="2"><tr class="rowHeader">
<th width="10%">Guild</th><th width="70%">Item Name</th><th>
Item Price</th></tr>';
var itemsXHTMLEnd = '</table>';
var itemsInnerXHTML = '<tr class="rowData" id="data">

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec5.html (3 of 14) [03.07.2007 11:48:49]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.5. Tabular Information and Forms

<td align="center"><a href="javascript:pageLoad(\'Items\',@guild)"
xmldi="xmlDI" xmlnode="guild_name"></td><td align="left">
<div id="value"
xmldi="xmlDI" xmlnode="item_name"></div></td>
<td class="numeric">$<span xmldi="xmlDI"
xmlnode="item_price"></td></tr>';
var detailXHTML = '<div><div class="rowHeader" style="position: absolute;
left: 50px; right: auto%; bottom: auto; width: 200px; top: 75px"> Guild
Name:</div><div class="rowHeader" style="position: absolute; left: 50px;
right: auto%; bottom: auto; width: 200px; top: 92px"> Item Name:</div><div
class="rowHeader" style="position: absolute; left: 50px; right: auto%;
bottom: auto; width: 200px; top: 110px"> Description:</div><div
class="rowHeader" style="position: absolute; left: 50px; right: auto%;
bottom: auto; width: 200px; top: 127px"> Price:</div><div
class="rowHeader" style="position: absolute; left: 50px; right: auto%;
bottom: auto; width: 200px; top: 144px"> Quantity:</div><div
class="rowData" style="position: absolute; left: 255px; right: auto;
bottom: auto; width: 600px; top: 75px" xmldi="xmlDI"
xmlnode="guild_name"></div><div class="rowData" style="position: absolute;
left: 255px; right: auto; bottom: auto; width: 600px; top: 92px"
xmldi="xmlDI" xmlnode="item_name"></div>
<div class="rowData" style="position: absolute; left: 255px; right: auto;
bottom: auto; width: 600px; top: 110px" xmldi="xmlDI"
xmlnode="item_description"></div><div class="rowData" style="position:
absolute; left: 255px; right: auto; bottom: auto; width: 600px; top:
127px">$</div><input
type="text" id="quantity" name="quantity" value=""
onkeyup="restrict(this,\'[0-9]\',\'gi\')" class="rowData" style="position:
absolute; left: 255px; right: auto; bottom: auto; width: 600px; top:
144px; text-align: right"></div>';

function setEvents() {
 pageLoad();
}

function pageLoad(name,parm) {
 switch(true) {
 case(arguments.length == 0):
 soap.content = '<guild_item_id/><guild_id/>';
 case(name == 'Items'):
 if(arguments.length != 0)
 soap.content =
 '<guild_item_id/><guild_id>' + parm + '</guild_id>';

 soap.operator = 'getItems';
 xml.setEnvelope(soap.envelope());
 xml.setRequestHeader('SOAPAction','http://tempuri.org/getItems');
 xml.setRequestHeader('Content-Type','text/xml');
 xml.load('http://localhost/AJAX4/chapter4.asmx');
 window.setTimeout('pageWait()',10);

 pageName = 'Items';

 break;
 case(name == 'Detail'):
 soap.content =

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec5.html (4 of 14) [03.07.2007 11:48:49]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.5. Tabular Information and Forms

 '<guild_item_id>' + parm + '</guild_item_id><guild_id/>';

 soap.operator = 'getItems';
 xml.setEnvelope(soap.envelope());
 xml.setRequestHeader('SOAPAction','http://tempuri.org/getItems');
 xml.setRequestHeader('Content-Type','text/xml');
 xml.load('http://localhost/AJAX4/chapter4.asmx');

 window.setTimeout('pageWait()',10);

 pageName = name;

 break;
 default:
 alert(name);
 }
}

function pageWait() {
 if(xml.readyState() == 4) {
 var xhtml = itemsXHTMLStart;
 var input =
document.getElementById('buttons').getElementsByTagName('input');

 if(_IE)

document.getElementById('xmlDI').XMLDocument.loadXML(xml.selectSingleNode(
'//NewDataSet').serialize());
 else
 document.getElementById('xmlDI').innerHTML =
xml.selectSingleNode('//NewDataSet').serialize();

 switch(pageName) {
 case('Items'):
 for(var i=0;i < xml.selectNodes('//Table').length;i++) {
 var reGuild = new RegExp('@guild','i');
 var reItem = new RegExp('@item','i');
 var guild =
xml.selectNodes('//guild_id')[i].serialize().replace(new
RegExp('<[^<]{0,}>','g'),'');
 var item =
xml.selectNodes('//guild_item_id')[i].serialize().replace(new
RegExp('<[^<]{0,}>','g'),'');

 xhtml +=
itemsInnerXHTML.replace(reGuild,guild).replace(reItem,item);
 }

 document.getElementById('formBody').innerHTML = xhtml +
itemsXHTMLEnd;

 break;
 case('Detail'):
 document.getElementById('formBody').innerHTML = detailXHTML;

 break;

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec5.html (5 of 14) [03.07.2007 11:48:49]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.5. Tabular Information and Forms

 }

 window.setTimeout('_bind()',10);
 } else
 window.setTimeout('pageWait()',10);
}

function _bind() {
 if(arguments.length == 0) {
 doBind(document.body.getElementsByTagName('a'));
 doBind(document.body.getElementsByTagName('div'));
 doBind(document.body.getElementsByTagName('input'));
 doBind(document.body.getElementsByTagName('select'));
 doBind(document.body.getElementsByTagName('span'));
 doBind(document.body.getElementsByTagName('textarea'));
 } else {
 applyChange(arguments[0],arguments[1]);
 _bind(); // Re-bind
 }

 /*
 Function: doBind
 Programmer: Edmond Woychowsky
 Purpose: To handle data-binds for specific nodes based
 upon HTML element type and browser type.
 */
 function doBind(objects) {
 var strTag; // HTML tag
 var strDI; // XML data island id
 var strNode; // XML node name
 var strValue; // XML node value
 var index = new Object(); // Object to store information

 for(var i=0;i < objects.length;i++) {
 strTag = objects[i].tagName;
 strDI = objects[i].getAttribute('xmldi');
 strNode = objects[i].getAttribute('xmlnode');

 if(strDI != null && strNode != null) {
 if(typeof(index[strNode]) == 'undefined')
 index[strNode] = -1;
 ++index[strNode];

 if(_IE) {
 strValue =
document.getElementById(strDI).XMLDocument.selectNodes('//' +
strNode).item(index[strNode]).text;
 } else {
 strValue =
document.getElementById(strDI).getElementsByTagName(strNode)[index[strNode
]].innerHTML;
 }

 switch(strTag) {
 case('A'):
 case('DIV'):

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec5.html (6 of 14) [03.07.2007 11:48:49]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.5. Tabular Information and Forms

 case('SPAN'):
 objects[i].innerHTML = strValue;

 break;
 case('INPUT'):
 switch(objects[i].type) {
 case('text'):
 case('hidden'):
 case('password'):
 objects[i].value = strValue;
 objects[i].onchange = new Function("_bind(this," +
i.toString() + ")");
 break;
 case('checkbox'):
 if(objects[i].value == strValue)
 objects[i].checked = true;
 else
 objects[i].checked = false;

 objects[i].onclick = new Function("_bind(this," +
i.toString() + ")");
 break;
 case('radio'):
 if(_IE)
 strValue =
document.getElementById(strDI).XMLDocument.selectNodes('//' +
strNode).item(0).text;
 else
 strValue =
document.getElementById(strDI).getElementsByTagName(strNode)[0].innerHTML;

 if(objects[i].value == strValue)
 objects[i].checked = true;
 else
 objects[i].checked = false;
 objects[i].onclick = new
 Function("_bind(this,0)");

 break;
 }

 break;
 case('SELECT'):
 case('TEXTAREA'):
 objects[i].value = strValue;
 objects[i].onchange = new Function("_bind(this," +
 i.toString() + ")");

 break;
 }
 }
 }
 }
 }

 /*

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec5.html (7 of 14) [03.07.2007 11:48:49]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.5. Tabular Information and Forms

 Function: restrict
 Programmer: Edmond Woychowsky
 Purpose: Restrict keyboard input for the provided object
 using the passed regular expression and option.
 */
 function restrict(obj,rex,opt) {
 var re = new RegExp(rex,opt);
 var chr = obj.value.substr(obj.value.length - 1);

 if(!re.test(chr)) {
 var reChr = new RegExp(chr,opt);

 obj.value = obj.value.replace(reChr,'');
 }
 }

 /*
 Function: add2Cart
 Programmer: Edmond Woychowsky
 Purpose: To add an item/quantity pair to an XML Data
 Island that represents a shopping cart.
 */
 function add2Cart() {
 var item =
 xml.selectSingleNode('//guild_item_id').serialize().replace(new
 RegExp('<[^<]{0,}>','g'),'');
 var quantity = document.getElementById('quantity').value;
 var re = new RegExp('<item><id>' + item +
 '</id><quantity>[^<]{1,}</quantity></item>','g');

 if(re.test(document.getElementById('cart').innerHTML))
 document.getElementById('cart').innerHTML =
document.getElementById('cart').innerHTML.replace(re,'');

 document.getElementById('cart').innerHTML += '<item><id>' + item +
'</id><quantity>' + quantity + '</quantity></item>';

 alert('Item added to cart.');
}
//]]> >
 </script>
 </head>
 <body onload="setEvents()">
 <table border="0" height="60px" width="975px" cellpadding="0"
cellspacing="0" ID="Table1">
 <tr class="pageHeader" height="40px">
 <td width="5%"> </td>
 <th id="systemName" class="pageCell" width="45%" align="left">My
System</th>
 <th id="pageName" class="pageCell" width="45%" align="right">My
Page</th>
 <td width="5%"> </td>
 </tr>
 <tr>
 <td> </td>
 <td> </td>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec5.html (8 of 14) [03.07.2007 11:48:49]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.5. Tabular Information and Forms

 <td> </td>
 <td> </td>
 </tr>
 </table>
 <xml id="cart"></xml>
 <xml id="xmlDI"></xml>
 <div id="formBody" style="color: #000000; background-color: F0F8FF;
font-family: tahoma; font-size: 12px; border: solid 1px gray; height:
400px; width: 980px; overflow: scroll"></div>
 <p />
 <div id="buttons">
 <input id="show_all" type="button" value="Show All"
onclick="javascript:pageLoad()" style="height: 22px; width: 110px" />
 <input id="add_to_cart" type="button" value="Add to cart"
onclick="add2Cart()" style="height: 22px; width: 110px" />
 <input id="view_cart" type="button" value="View cart"
onclick="javascript:pageLoad('displayCart')" style="height: 22px; width:
110px" />
 <input id="place_order" type="button" value="Place order" onclick=""
style="height: 22px; width: 110px" />
 </div>
 </body>
</html>

Just as in the earlier HTML examples, Listing 8-19 has bound XML data islands and an asynchronous
XMLHTTP request. The biggest differences are that the XML comes from a web service and that the request
is made using SOAP. This means that although all the code that you see here is custom for this book, there
is absolutely no reason why an Ajax front end cannot be written for existing web services. It's like General
Patten said: "Never pay twice for the same real estate."

Please take note of the HTML DIV tag with the id attribute; there is something special about it. As you've
probably deduced from the style attribute, both its height and its width are static. This is to keep the
buttons along the bottom from moving around. In addition, it provides someplace to display the information
returned from the server, without having to worry about the buttons. An alternative would be to put the
buttons on the top of the page, but scrolling up to find the buttons would get old really quickly. With the
underlying architecture around 90 percent complete, let's revisit the page that displays the items available
for purchase on our site.

8.5.1. Read Only

Again, the purpose of the read-only page is to display our wares to visitors. On the surface, it is just rows
and rows of items that are available for sale. Behind the scenes, however, is a different story. This is a web
service delivering a SOAP response to a request for informationin this instance, the information relating to
the items for sale.

Upon receiving the request, the web service obtains the necessary information from the database, which is
the same MySQL database from the previous chapters. When it has the information, it programmatically
builds the XHTML required to fill the scrollable div. Updates are not permitted on this page, so only the
XHTML is being sent to the client. Hey, conserve bandwidth wherever you can.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec5.html (9 of 14) [03.07.2007 11:48:49]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.5. Tabular Information and Forms

Unfortunately, there is more to it than that. For instance, the page's onload event handler needs to send
the SOAP request so that the previous method is invoked. In addition, buttons need to be activated or
deactivated, clicks need to be handled, and, in short, there is more work to do.

Starting with the handler for the page onload event, we need to build a SOAP request, send the request to
the web service, and activate the appropriate buttons. In addition, eventually the web service will get back
to the page with its response, which will have to be dealt with. Sound like enough? Let's break it down into
a little more detail.

1. Create a global instance of XMLDocument().

2. Build a SOAP request describing the URI of the web service, the method, the namespace, and the
parameters being sent.

3. Send the SOAP request using the XMLHttpRequest that is incorporated into the XMLDocument class.

4. Wait for the SOAP response from the web service.

5. Active the appropriate buttons.

6. Populate the page.

Sound pretty easy? Well, it is easy, after the first time. The first time, however, it is kind of difficult to
figure out what is what and what goes where. The first time that I did this, I stumbled a bit on steps 2 and
4. The problem that I had with step 2 was simply a matter of what goes where; a look at the code will
explain everything. Dealing with step 4 is merely a matter of using window.setTimeout in JavaScript to
repeatedly call a function after a suitable number of milliseconds to check the readyState of the
XMLHttpRequest. If the readyState is 4, it is complete. Table 8-3 shows the possible readyState values and
their meanings.

Table 8-3. readyState
Values

readyState Description

0 Uninitialized

1 Loading

2 Loaded

3 Interactive

4 Complete

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec5.html (10 of 14) [03.07.2007 11:48:49]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.5. Tabular Information and Forms

Probably the hardest thing to get used to with Ajax is the ratio of client-side JavaScript to HTML. With
traditional web development, the number of lines of HTML far exceeds the number of lines of JavaScript.
With Ajax development, it is the other way around, with more JavaScript than HTML. Fortunately, with a
halfway decent library of objects and functions, Ajax development doesn't usually need a lot of custom
code. For example, Listing 8-20 shows the custom JavaScript for our page listing the items available, and
Figure 8-7 shows what it looks like in the browser.

Figure 8-7. Items available

[View full size image]

Listing 8-20. Items Available

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec5.html (11 of 14) [03.07.2007 11:48:49]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/08ajx07_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.5. Tabular Information and Forms

soap.content =

'<guild_item_id>' + parm + '</guild_item_id><guild_id/>';

soap.operator = 'getItems';
xml.setEnvelope(soap.envelope());
xml.setRequestHeader('SOAPAction','http://tempuri.org/getItems');
xml.setRequestHeader('Content-Type','text/xml');
xml.load('http://localhost/AJAX4/chapter4.asmx');

window.setTimeout('pageWait()',10);

pageName = name;

function pageWait() {
 if(xml.readyState() == 4) {
 var xhtml = itemsXHTMLStart;
 var input =
document.getElementById('buttons').getElementsByTagName('input');

 if(_IE)
document.getElementById('xmlDI').XMLDocument.loadXML(xml.selectSingleNode(
'//NewDataSet').serialize());
 else
 document.getElementById('xmlDI').innerHTML =
xml.selectSingleNode('//NewDataSet').serialize();

 switch(pageName) {
 case('Items'):
 for(var i=0;i < xml.selectNodes('//Table').length;i++) {
 var reGuild = new RegExp('@guild','i');
 var reItem = new RegExp('@item','i');
 var guild =
xml.selectNodes('//guild_id')[i].serialize().replace(new
RegExp('<[^<]{0,}>','g'),'');
 var item =
xml.selectNodes('//guild_item_id')[i].serialize().replace(new
RegExp('<[^<]{0,}>','g'),'');

 xhtml +=
itemsInnerXHTML.replace(reGuild,guild).replace(reItem,item);
 }

 document.getElementById('formBody').innerHTML = xhtml +
itemsXHTMLEnd;

 break;
 case('Detail'):
 document.getElementById('formBody').innerHTML =
 detailXHTML;

 break;
 }

 window.setTimeout('_bind()',10);
 } else

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec5.html (12 of 14) [03.07.2007 11:48:49]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.5. Tabular Information and Forms

 window.setTimeout('pageWait()',10);
}

The pageWait() function shown here might seem somewhat formidable, but its sole purpose is to
dynamically build the HTML necessary for the bound table in the page. This is a somewhat slick trick, but
really nothing that hasn't been done for the last five years, although usually for different reasons.

8.5.2. Updateable

Because we've worked out the underlying architecture, an updateable page is merely a variant of the read-
only page shown in the previous example. There are essentially two differences, the first being that,
instead of using SPAN or DIV tags, the bound tags are things such as INPUT and SELECT. The second
difference is that eventually it will be necessary to send an entire XML data island to the server. The
interesting thing about this is that it doesn't have to be the XML Data Island that is bound to the HTML,
although it could be.

Remember the shopping cart from earlier in the book? Well, instead of using the funky item id-dash-
quantity in a text box, now the shopping is itself an XML Data Island. Unfortunately, this means that I can't
be lazy and recycle the function from Chapter 5. Alas, it was necessary to write the function shown in
Listing 8-21. It's not anything fancy; in fact, it treats the XML as text. Not only is that a valid option, but it
also works in a cross-browser environment.

Listing 8-21. Add to Shopping Cart Function

/*
 To add an item/quantity pair to an XML Data Island that
 represents a shopping cart.
*/
function add2Cart() {
 var item =
xml.selectSingleNode('//guild_item_id').serialize().replace(new
RegExp('<[^<]{0,}>','g'),'');
 var quantity = document.getElementById('quantity').value;
 var re =
new RegExp('<item><id>' + item +
'</id><quantity>[^<]{1,}</quantity></item>','g');

 if(re.test(document.getElementById('cart').innerHTML))
 document.getElementById('cart').innerHTML =
document.getElementById('cart').innerHTML.replace(re,'');

 document.getElementById('cart').innerHTML += '<item><id>' + item +
'</id><quantity>' + quantity + '</quantity></item>';

 alert('Item added to cart.');
}

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec5.html (13 of 14) [03.07.2007 11:48:49]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.5. Tabular Information and Forms

The end result of this is the page that was shown in Listing 8-21 and Figures 8-7 and 8-8. It works roughly
the same as the pageWait() function from Listing 8-20. The difference is that, instead of adding elements to
the HTML document based upon an XML document, elements are added to the embedded XML document
based upon the actions of the visitor. The page shown in Figure 8-7 lists the items available for purchase,
and Figure 8-8 handles the add to the shopping cart.

Figure 8-8. Item added to the shopping cart

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec5.html (14 of 14) [03.07.2007 11:48:49]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/08ajx08_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.6. Advantages and Disadvantages

8.6. Advantages and Disadvantages

At the risk of repeating myself, and everyone else who has ever uttered a word about Ajax, the advantage
of Ajax is that a web application has the look and feel of a Windows or Linux application. No more does the
visitor have to click and wait for the entire unload/reload cycle to complete. Instead, only the parts of the
page that actually change are updated, which significantly cuts down on the time required for a page
update.

On the other hand, Ajax requires additional work on the often-ignored client side; also, this technique is
extremely browser dependent. Some people will be left out, including developers who fail to recognize that
we are like deep-water sharks; we either continuously move forward or we begin to die. Some users will
also be left behind, such as those who have not upgraded since they purchased their computer in 1995 and
those who are so paranoid that they've disabled JavaScript. But from some points of view, that could be an
advantage: The first group won't buy anything, and the second group is interested in only aluminum-foil
hats.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec6.html [03.07.2007 11:48:49]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 8.7. Summary

8.7. Summary

With a couple side trips into the magical worlds of XML, XML-RPC, SOAP, and MySQL stored functions and
procedures, we've touched upon every part of Ajax as it stands at the time of this writing. Alright, maybe
the MySQL part doesn't directly apply to Ajax because it would work perfectly well without it, but it does
illustrate some of the possibilities that exist. As a matter of fact, both Oracle and SQL Server have XML
support built in, so why shouldn't we "fake it" in MySQL?

Unarguably, what does directly apply to Ajax is the use of the XMLHttpRequest object, without which the
examples shown in this chapter would be impossible.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch08lev1sec7.html [03.07.2007 11:48:50]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 9. XPath

Chapter 9. XPath

Just what is XPath? Briefly stated, XPath is to XML what an SQL SELECT is to a relational database. This
might at first sound like an oversimplification, but it is essentially true. XPath can be used to locate and
navigate the various parts of an XML document. Unfortunately, as with every other language under the sun,
a number of unique terms should be defined before you can start understanding it. These concepts and
terms might at first seem overwhelming, but they are essential to both querying XML and keeping us
employed.

Although you can choose to fluff over these terms, I actually don't recommend it, if only for the purpose of
job security. Several years ago, I used my understanding of terms to extend a contract when the client,
who is widely known for being frugal, wanted to save money by having their employee mainframe
programmers support a web application. During the turnover process, I described how the site worked
using the precise web and XML terms. To make a long story short, the contract was extended for another
two years.

The first concept is that, even with all the hoopla surrounding all things XML, it is essentially nothing more
than data represented in a tree data structure. Looking at XML from an XPath perspective, XML consists of
only seven types of nodes:

● The root nodeonly one per XML document. All other nodes are child nodes of the root node.
● Element nodes.
● Text nodes.
● Attribute nodes.
● Comment nodes.
● Processing instruction nodes.
● Namespace nodes.

Note that DTDs (Data Type Definitions), CDATA sections, and entity references are not included in this list
of node types, each for different reasons. Because a DTD is not an XML document, XPath is incapable of
addressing it. CDATA, on the other hand, is a part of XML but, by design, is ignored by XPath, as are entity
references.

In addition, it is important to note that the root element and the root node are not different terms for the
same thing. Using the XML document shown in Listing 9-1, an XML document's root node contains both the
processing instruction, <?xml version="1.0" encoding="UTF-8"?>, and the root element, <library>.

Listing 9-1. Example XML Document

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09.html (1 of 2) [03.07.2007 11:48:50]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 9. XPath

<?xml version="1.0" encoding="UTF-8"?>
<library>
 <book publisher="Del Rey">
 <series/>
 <title>Way Station</title>
 <author>Clifford D. Simak</author>
 </book>
 <book publisher="Del Rey">
 <series>The Lord of the Rings</series>
 <title>The Fellowship of the Ring</title>
 <author>J.R.R. Tolkien</author>
 </book>
 <book publisher="Del Rey">
 <series>The Lord of the Rings</series>
 <title>The Two Towers</title>
 <author>J.R.R. Tolkien</author>
 </book>
 <book publisher="Del Rey">
 <series>The Lord of the Rings</series>
 <title>The Return of the King</title>
 <author>J.R.R. Tolkien</author>
 </book>
 <book publisher="Ace">
 <series>Lord Darcy</series>
 <title>Too Many Magicians</title>
 <author>Randall Garrett</author>
 </book>
 <book publisher="Ace">
 <series>Lord Darcy</series>
 <title>Murder and Magic</title>
 <author>Randall Garrett</author>
 </book>
 <book publisher="Ace">
 <series>Lord Darcy</series>
 <title>The Napoli Express</title>
 <author>Randall Garrett</author>
 </book>
 <book publisher="Ace">
 <series>Lord Darcy</series>
 <title>Lord Darcy Investigates</title>
 <author>Randall Garrett</author>
 </book>
</library>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09.html (2 of 2) [03.07.2007 11:48:50]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.1. Location Paths

9.1. Location Paths

For all its power and flexibility, the location path is probably the easiest type of XPath to start with. Using
the XML document in Listing 9-1 as a starting point, let's say that we want to get the root node. This can be
accomplished by using the following XPath:

/

That's all there is to it. Remembering that there is a difference between the root node and the root
element, the root element can be obtained by either of the two following XPath statements:

/library

/*

The first example implicitly specifies the root element by name. The second example uses a wildcard (*).
Wildcards can be used to increase the flexibility of the XPath by making it unnecessary to know the
individual node names. All that is required is the knowledge that we want the root element.

Before going any further, I'd like to introduce one of those pesky new concepts called a node set. A node
set is a collection of nodes returned by an XPath statement; think SQL and SELECT with multiple rows
returned, and you get the idea. With this in mind, let's say that we want the book elements from the XML
document in Listing 9-1. This can be accomplished by any of the following XPath statements:

/library/book

/*/book

/library/*

/*/*

//book

The first four examples shown here are all a logical progression of the basic location path covered
previously. The last example, however, is something else entirely. The double forward slash (//) refers to
descendants of the root node, as well as to the root node itself. For example, //* refers to the root element
and every element node in the document.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec1.html [03.07.2007 11:48:50]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.2. Context Node

9.2. Context Node

A variation on the previous discussion, //*, is the single period (.), which refers to the context node. Most
often used in XSLT to refer to the value of the currently matched node, it works equally well for all node
types.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec2.html [03.07.2007 11:48:51]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.3. Parent Nodes

9.3. Parent Nodes

Sometimes it is necessary to obtain the parent node(s) of a particular node or node set. This is
accomplished by using a double period (..). The following examples show how it can be used to obtain the
parent of the series element (book element).

//series/..
//book/series/..

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec3.html [03.07.2007 11:48:51]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.4. Attribute Nodes

9.4. Attribute Nodes

Attribute nodes are handled in a slightly different manner than the nodes that we have dealt with thus far.
To specify an attribute node, prefix it with an "at" sign (@). This distinguishes attribute nodes from element
nodes. The following XPath statements obtain a node set consisting of all publisher attributes:

//@publisher
//@*

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec4.html [03.07.2007 11:48:51]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.5. Predicates

9.5. Predicates

Predicates are the equivalent to an SQL WHERE clause, basically a way to limit the node set returned by
XPath. The basic format is as follows:

XPath[condition]

Although this isn't very difficult, most mistakes are made in the condition. This is because there is a
difference between evaluating XPath in Altova's XMLSPY XPath Evaluator and evaluating XPath in XSLT. I'll
give you a hint: "well formed". XMLSPY XPath Evaluator uses the standard programming greater than (>)
and less than (<) conditional operators. In XSLT, this would result in the document being not well formed.
Table 9-1 lists the conditional operators used in both.

Table 9-1. Conditional
Operators Used in

XMLSPY XPath Evaluator
and XPath in XSLT

Evaluator XSLT Description

> > Greater than

< < Less than

= = Equal to

!= != Not equal to

Using the XPath Evaluator, the XPath statement to return all the books published by Del Rey would be as
follows:

//book[@publisher = 'Del Rey']

This statement results in a node set of five books: one by Simak and four by Tolkien. But what if we want
only the books that are not part of the Lord of the Rings trilogy? In SQL, we use an "and" condition.
Because XPath supports both "and" and "or," we do the same:

//book[@publisher = 'Del Rey' and series != 'The Lord of the Rings']

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec5.html (1 of 2) [03.07.2007 11:48:52]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.5. Predicates

This results in a single XML book node, Simak's Way Station. An alternate, although more verbose, way of
coding to obtain the same result shows that multiple predicates can be on a single XPath statement:

//book[@publisher = 'Del Rey']/series[. != 'The Lord of the
Rings']/..

In addition to being able to obtain nodes and node sets based upon Boolean conditions, it is possible to
retrieve a particular instance of a node. For example, let's say that we want the third book in the library,
The Two Towers. The easiest method of getting it is this:

//book[3]

This method also can be combined with a Boolean condition to obtain the name of the second book in
Tolkien's trilogy:

//book[series = 'The Lord of the Rings'][2]

Again, the result is The Two Towers.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec5.html (2 of 2) [03.07.2007 11:48:52]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.6. XPath Functions

9.6. XPath Functions

In addition to what we have seen so far, XPath provides functions that either operate on or return one of
the following four data types:

● Boolean
● Numeric
● Node set
● String

9.6.1. Boolean Functions

XPath has four Boolean functions: TRue(), false(), not(), and boolean(). The functions TRue() and false()
return exactly what you would expect, true or false. The not() takes the Boolean value passed and returns
the opposite. This provides yet another roundabout method to find the book Way Station:

//book[@publisher = 'Del Rey' and not(series = 'The Lord of the
Rings')]

The boolean() function operates a little differently; it takes the argument and evaluates it, returning either
true or false. If the event of the argument is a node set, only the first node is evaluated; the rest are
ignored. Omitting the argument results in the current context node (.) being evaluated, with either TRue or
false being returned.

9.6.2. Numeric Functions

Six numeric functions exist: ceiling(), count(), floor(), round(), number(), and sum(). Each of the first
three functions accepts a single argument and acts upon that single argument. The ceiling() function
returns the smallest integer that is greater than or equal to the argument. The function count() returns the
number of nodes in the argument node set. The floor() function returns the largest integer that is less
than or equal to the argument passed. The function round() returns the integer closest to the argument; if
the number is equidistant between two integers, the largest is returned. The number() function evaluates
the argument, or context node, and returns either the numeric value of the node or NaN (Not a Number).
The function sum() operates upon the passed node set, first working like the number() function and then
adding together the individual values and returning the sum.

9.6.3. Node Set Functions

XPath provides five node set functions: last(), position(), local-name(), name(), and namespace-uri(). The
last() function returns the number that corresponds to the last node in a node set. For example, this is the
XPath statement to find the last book:

//book[last()]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec6.html (1 of 4) [03.07.2007 11:48:52]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.6. XPath Functions

The position() function returns the number that corresponds to the context node. This provides an
alternate method of retrieving the same result as the last() function by coding either of the following two
statements:

//book[position() = last()]

//book[position() = 8]

The local-name() function returns the part of a node name following the colon (:). If there is no colon, the
function works like the name() function, returning the full node name for either the argument or the context
node. The namespace-uri() function returns the URI used in a namespace declaration, which is the value of
the xmlns or xmlns: attribute.

9.6.4. String Functions

XPath provides a plethora of string functions that can be used either singly or in combination with one
another to produce the desired results. These functions are concat(), contains(), normalize-space(),
starts-with(), stringlength(), substring(), substring-after(), substring-before(), and translate().

The concat() function converts each of the arguments to strings, concatenates them, and then returns the
result. The arguments can be literals, nodes, or node sets. However, with node sets, only the first node is
evaluated. For example, this produces the string "Clifford D. Simak, Way Station":

concat(//author, ', ', //title)

The function contains() is used to test a string to determine whether it contains another string as a
substring. This can be useful when only partial information is availablefor example, if you're looking for a
book with "Lord" in the title:

//title[contains(., 'Lord')]

The normalize-space() function removes leading and trailing whitespace from a string; in addition, any
multioccurrence of whitespace is replaced with a single space. So the string "Post no bills!" becomes
"Post no bills!".

The starts-with() function operates in the same manner as the contains() function, with the sole
exception that only the beginning of a string is tested. So unless the string begins with the substring, the
result is false.

The string-length() function returns the length of the string argument passed, which is particularly useful
when testing for elements with or without contents. For example, to test for books that are not part of any
series, the following XPath statement could be used:

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec6.html (2 of 4) [03.07.2007 11:48:52]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.6. XPath Functions

//book[string-length(series) = 0]

The next three functions all relate to returning a substring of a string. The substring(), substring-after()
and substring-before() functions each return a substring of the string argument. The substring() function
has the following two formats:

substring(string, start)

substring(string, start, length)

Using the XML document from Listing 9-1, the result of the following XPath would be Station:

substring(//book[1]/title,5)

By specifying the substring function's length argument in the following manner, the result would be Stat:

substring(//book[1]/title,5,4)

Of course, there is an easier way to get the Station results. The substring-after() function returns the
entire substring immediately following the specified argument substring. Using the substring-after()
function, it is not necessary to know that the second word starts in position 5; all that is necessary is
knowing that it follows a space, as shown in the following example:

substring-after(//book[1]/title,' ')

The third substring function is substring-before(), which returns the entire substring immediately before
the argument string.

The final string function is translate(), which substitutes characters in the first string argument based upon
the characters in the second and third strings. This is the basic format:

Translate(string, from-string, to-string)

The capabilities of this function lead to several interesting possibilities. For example, let's say that it is
necessary to convert a string, such as the author of the third book, to all upper case. This can be
accomplished by using the following XPath:

translate(//book[3]/author,'qwertyuiopasdfghjklzxcvbnm','QWERTYUIOPAS
DFGHJKLZXCVBNM')

Another possible use for translate is to remove unwanted characters, such as maybe vowels. The TRanslate

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec6.html (3 of 4) [03.07.2007 11:48:52]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.6. XPath Functions

() function makes this possible. Just specify the characters that you'd like to get rid of in the "from" string,
and omit them from the "to" string as shown in the following example:

translate(//book[3]/author,'aAeEiIoOuUyY','')
All of a sudden, J.R.R. Tolkien becomes J.R.R. Tlkn.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec6.html (4 of 4) [03.07.2007 11:48:52]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.7. XPath Expressions

9.7. XPath Expressions

In addition to material already covered, XPath provides some basic mathematical processing. However, it is
important to remember that all numbers in XPath are floating-point double precision. In addition, there are
special representations for positive and negative infinity, as well as NaN (Not a Number).

XPath also provides the five basic arithmetic operators shown in Table 9-2.

Table 9-2. XPath Arithmetic Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

div Division

mod Modula, sometimes referred to as the remainder, or what's left over after division

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec7.html [03.07.2007 11:48:52]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.8. XPath Unions

9.8. XPath Unions

Going back to my original comparison that XPath is to XML what an SQL SELECT is to a relational database,
there is yet another similarity: unions. In XPath, unions return all nodes in both node sets. This can be
quite useful when you're unsure of exactly what you're looking for or working with. For example, let's say
that we want either the child elements of the third book node or the attributes. One method would be to
use two separate XPath statements. Although this method would work, like most programmers, I'm
basically lazy and would rather do it all in one statement by using the union operator (|), as shown here.

//book[3]/* | //book[3]/@*

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec8.html [03.07.2007 11:48:53]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.9. Axis

9.9. Axis

Although it's not usually associated with evil (although cursing is a different story), an axis is a node set
starting at a particular node that is based on the relationship between the nodes in an XML document. The
basic format for using an axis follows:

axis::context-node

Table 9-3 describes the properties of the various axes available in XPath.

Table 9-3. XPath Axes

Axis Description

ancestor Selects all nodes that are ancestors of the context node, farther up the document
tree, in a direct line to the document root node. The resulting node set is in reverse
document orderin other words, moving up the tree starting from the document's
parent node.

ancestor-or-self Selects the same nodes as the ancestor axis. However, it starts with the context
node instead of the context node's parent.

attribute Selects all the context node's attributes, if any.

child Selects all the child nodes of the context node, excluding attributes and namespace
nodes.

descendant Recursively selects all children of the context node and their children until the end
of each tree branch.

descendant-or-self Selects the same nodes as the descendant axis, with the exception of starting with
the context node.

following Selects, in document order, all nodes at any level in the document tree that follow
the context node.

following-sibling Selects, in document order, all nodes at the same level and with the same parent
node in the document tree that follow the context node.

namespace Selects the namespace nodes that are in scope for the context node. If no
namespace nodes are in scope, the namespace axis is empty.

parent Selects the parent node of the context node. If the context node is the root node,
the parent axis will be empty.

preceding Selects all nodes, in reverse document order, excluding ancestor nodes, in the
document tree that are before the context node.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec9.html (1 of 7) [03.07.2007 11:48:53]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.9. Axis

preceding-sibling Selects all nodes, in reverse document order, that are at the same level that have
the same parent node as the context node.

self Selects the context node.

The use of an axis is arguably the most formidable concept for developers new to XPath, who often have
difficulty trying to visualize the results of using an axis. Fortunately, tools such as the XPath Evaluator in
Altova's XMLSPY make it easier to see the results of specifying a particular axis. Starting with the original
XML document from Listing 9-1, the following sections present examples of each of the various axes.

9.9.1. Ancestor Axis Example

XPath Statement

//book[3]/ancestor::*

Result Node Set

library

Explanation

Because the context node, the third book node, is a child of the root element, there is only a single ancestor.

9.9.2. ancestor-or-self Axis Example

XPath Statement

//book[3]/ancestor-or-self::*

Result Node Set

book
library

Explanation

In addition to the ancestor nodes, the ancestor-or-self axis returns the context node. Also, because the
results are in reverse document order, the context node is the first node in the node set, followed by the
parent node and so on up the tree.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec9.html (2 of 7) [03.07.2007 11:48:54]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.9. Axis

9.9.3. attribute Axis Example

XPath Statement

//book[3]/attribute::*

Result Node Set

publisher

Explanation

Because the context node has only one attribute, it is the only attribute returned in the node set.

9.9.4. child Axis Example

XPath Statement

//book[3]/child::*

Result Node Set

series "The Lord of the Rings"
title "The Two Towers"
author "J.R.R. Tolkien"

Explanation

The resulting node set consists of the three child nodes of the context node. I have shown the contents of
the individual nodes to distinguish these nodes from similar nodes with different contents.

9.9.5. descendant Axis Example

XPath Statement

//book[3]/descendant::*

Result Node Set

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec9.html (3 of 7) [03.07.2007 11:48:54]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.9. Axis

series "The Lord of the Rings"
title "The Two Towers"
author "J.R.R. Tolkien"

Explanation

The results shown here are identical to the results from the child axis. This is because of the structure of
the XML document. For instance, if any of the child nodes shown here had children of their own, the
descendant axis would have returned their children, and so on down the line in document order, whereas
the child axis would not.

9.9.6. descendant-or-self Axis Example

XPath Statement

//book[3]/descendant-or-self::*

Result Node Set

book
series "The Lord of the Rings"
title "The Two Towers"
author "J.R.R. Tolkien"

Explanation

As with the descendant axis, all child nodes are returned recursively. However, instead of starting with the
first child, the context node is the first node in the node set.

9.9.7. following Axis Example

XPath Statement

//book[3]/following::*

Result Node Set

book
series "The Lord of the Rings"
title "The Return of the King"
author "J.R.R. Tolkien"
book
series "Lord Darcy"

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec9.html (4 of 7) [03.07.2007 11:48:54]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.9. Axis

title "Too Many Magicians"
author "Randall Garrett"
book
series "Lord Darcy"
title "Murder and Magic"
author "Randall Garrett"
book
series "Lord Darcy"
title "The Napoli Express"
author "Randall Garrett"
book
series "Lord Darcy"
title "Lord Darcy Investigates"
author "Randall Garrett"

Explanation

The resulting node set for the following axis is always all the nodes that occur after the context node in
document order.

9.9.8. following-sibling Axis Example

XPath Statement

//book[3]/following-sibling::*

Result Node Set

book
book
book
book
book

Explanation

These five book nodes retrieved using the following-sibling axis are the same nodes that were retrieved
by the following axis. The only difference is that the following-sibling axis retrieves only those nodes on
the same level as the context node and have the same parent as the context node.

9.9.9. namespace Axis Example

XPath Statement

//book[3]/namespace::*

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec9.html (5 of 7) [03.07.2007 11:48:54]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.9. Axis

Result Node Set

Empty node set

Explanation

Because no namespace was in scope on the context node, the resulting node set is empty. However, if one
or more namespaces had been in scope, the resulting node set would have contained those in scope.

9.9.10. parent Axis Example

XPath Statement

//book[3]/parent::*

Result Node Set

library

Explanation

The resulting node set will always consist of either an empty node set or a single node. For example, the
parent axis of the library element would have retrieved an empty node set.

9.9.11. preceding Axis Example

XPath Statement

//book[3]/preceding::*

Result Node Set

author "J.R.R. Tolkien"
title "The Fellowship of the Ring"
series "The Lord of the Rings"
book
author "Clifford D. Simak"
title "Way Station"
series
book

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec9.html (6 of 7) [03.07.2007 11:48:54]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.9. Axis

Explanation

The resulting node set of the preceding axis is made up of those nodes that occur in the XML document
before the context node, in reverse document order.

9.9.12. preceding-sibling Axis Example

XPath Statement

//book[3]/preceding-sibling::*

Result Node Set

book
book

Explanation

These book nodes retrieved using the preceding-sibling axis are the same nodes that were retrieved by
the preceding axis. However, the difference is that the preceding-sibling axis retrieves only those nodes
that are on the same level as the context node and that have the same parent as the context node.

9.9.13. self Axis Example

XPath Statement

//book[3]/self::*

Result Node Set

book

Explanation

The self axis returns the context node; essentially, the result is the same as if the axis were omitted.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec9.html (7 of 7) [03.07.2007 11:48:54]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 9.10. Summary

9.10. Summary

The material presented in this chapter completely covers the basic parts of XPath: the various types of
paths, context nodes, functions, and axes. As comprehensive as the walkthrough was, it is important to
remember that XPath by itself is not an end. It is merely a means to an end. To make XPath shine, it is
necessary to use it in conjunction with another tool, such as XLST.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch09lev1sec10.html [03.07.2007 11:48:54]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 10. XSLT

Chapter 10. XSLT

The movie Star Trek: The Wrath of Khan introduced a device called the Genesis Torpedo that rearranged
matter on a subatomic level to produce life-bearing planets. Talk about your mad scientist stuff! eXtensible
Stylesheet Language for Transformations (XSLT) is the XML equivalent to Star Trek's Genesis; it rearranges
XML at the element level to produce the desired results. However, unlike Genesis, the desired results are
not limited to a single type, but rather can be any conceivable XML or text-based format. In addition,
instead of the original document being modified, a new document is created in the desired format, which
could be identical to the original document or vastly different.

An XSLT document, sometimes referred to as a style sheet, is a well-formed XML document that uses the
XSLT namespace (xmlns:xsl=http://www.w3.org/1999/XSL/Transform) to describe the rules for transforming

the source XML document into the result XML document. XSLT is always used in conjunction with XPath,
which specifies the location of various elements within the source document. XSLT, on the other hand,
describes the structure of the result document.

Listing 10-1 contains a simple style sheet whose purpose is to simply copy the source XML document to the
result XML document. Because no specific node names are used, this style sheet works equally well with all
XML documents.

Listing 10-1. Simple Style Sheet to Copy the Source XML Document to the Result
XML Document

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml" version="1.0" encoding="UTF-8"/>
 <xsl:template match="/">

 <xsl:copy-of select="."/>

 </xsl:template>

</xsl:stylesheet>

The XSL style sheet shown in Listing 10-1 works like this. First, the XML declaration describes the version of
XML and the character set encoding. The xsl:stylesheet element describes the document as a style sheet,
and the attributes specify the version of XSLT and the namespace. The xsl:output element defines the
result document's XML declaration. The xsl:template defines a relationship between the source XML
document and the result document. For example, the match attribute with the / specifies the source
document's root node; all child elements of this element will be applied to the root element. Finally, the xsl:
copy-of specifies to perform a deep copy of the context node; in other words, copy the context node and all

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10.html (1 of 2) [03.07.2007 11:48:54]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://www.w3.org/1999/XSL/Transform
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 10. XSLT

descendants recursively.

This chapter covers the following topics:

● Recursive versus iterative style sheets
● XPath in the style sheet
● Elements
● XSLT functions
● XSLT concepts
● Client-side transformations

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10.html (2 of 2) [03.07.2007 11:48:54]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.1. Recursive Versus Iterative Style Sheets

10.1. Recursive Versus Iterative Style Sheets

One of the things about XSLT is that although the capability exists for iteration (looping), it is strongly
frowned upon by the development community. Instead, recursive templates are considered the acceptable
standard. Although this philosophy requires some changes in the way developers think, it also means that
recursive style sheets are often far more compact and not nested nearly as deep as their iterative
counterparts. At the very least, recursive style sheets are always far more structured, which can be a major
advantage in larger style sheets.

Let's say that our goal is to create an XSLT table and the source XML document shown in Listing 10-2. As a
starting point, there are two distinct courses of action: an iterative style sheet (see Listing 10-3) and a
recursive style sheet (see Listing 10-4). Each of these two approaches to coding style sheets has its own
strengths and weaknesses. For example, the iterative style sheet is about the same length, but it is also
nested much deeper than the recursive style sheet.

Listing 10-2. Source XML Document

<?xml version="1.0" encoding="UTF-8"?>
<library>
 <book publisher="Del Rey">
 <series/>
 <title>Way Station</title>
 <author>Clifford D. Simak</author>
 </book>
 <book publisher="Del Rey">
 <series>The Lord of the Rings</series>
 <title>The Fellowship of the Ring</title>
 <author>J.R.R. Tolkien</author>
 </book>
 <book publisher="Del Rey">
 <series>The Lord of the Rings</series>
 <title>The Two Towers</title>
 <author>J.R.R. Tolkien</author>
 </book>
 <book publisher="Del Rey">
 <series>The Lord of the Rings</series>
 <title>The Return of the King</title>
 <author>J.R.R. Tolkien</author>
 </book>
 <book publisher="Ace">
 <series>Lord Darcy</series>
 <title>Too Many Magicians</title>
 <author>Randall Garrett</author>
 </book>
 <book publisher="Ace">
 <series>Lord Darcy</series>
 <title>Murder and Magic</title>
 <author>Randall Garrett</author>
 </book>
 <book publisher="Ace">

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec1.html (1 of 5) [03.07.2007 11:48:55]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.1. Recursive Versus Iterative Style Sheets

 <series>Lord Darcy</series>
 <title>The Napoli Express</title>
 <author>Randall Garrett</author>
 </book>
 <book publisher="Ace">
 <series>Lord Darcy</series>
 <title>Lord Darcy Investigates</title>
 <author>Randall Garrett</author>
 </book>
</library>

Listing 10-3. Iterative Style Sheet

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml" version="1.0" encoding="UTF-8"/>

 <xsl:template match="/">

 <xsl:element name="table">

 <xsl:for-each select="//book">
 <xsl:element name="tr">

 <xsl:for-each select="child::*">
 <xsl:element name="td">
 <xsl:value-of select="."/>
 </xsl:element>
 </xsl:for-each>

 </xsl:element>
 </xsl:for-each>
 </xsl:element>

 </xsl:template>

</xsl:stylesheet>

Listing 10-4. Recursive Style Sheet

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec1.html (2 of 5) [03.07.2007 11:48:55]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.1. Recursive Versus Iterative Style Sheets

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml" version="1.0" encoding="UTF-8"/>

 <xsl:template match="/">

 <xsl:element name="table">
 <xsl:apply-templates select="//book"/>
 </xsl:element>

 </xsl:template>

 <xsl:template match="*">

 <xsl:if test="count(ancestor::*) = 1">
 <xsl:element name="tr">
 <xsl:apply-templates select="child::*"/>
 </xsl:element>
 </xsl:if>
 <xsl:if test="count(ancestor::*) != 1">
 <xsl:element name="td">
 <xsl:value-of select="."/>
 </xsl:element>
 </xsl:if>

 </xsl:template>

</xsl:stylesheet>

The decision to use an iterative design or a recursive design is more a matter of personal taste and comfort
than any rule imposed from on high. For example, many developers new to XSLT start by writing iterative
style sheets and move to recursive methods only when they become more confident in their abilities. But in
the end, the result of the two style sheets is the same as shown in Listing 10-5.

Listing 10-5. Result from Applying Either Style Sheet to the XML in Listing 10-2

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec1.html (3 of 5) [03.07.2007 11:48:55]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.1. Recursive Versus Iterative Style Sheets

<?xml version="1.0" encoding="UTF-8"?>
<library>
 <book publisher="Del Rey">
 <series/>
 <title>Way Station</title>
 <author>Clifford D. Simak</author>
 </book>
 <book publisher="Del Rey">
 <series>The Lord of the Rings</series>
 <title>The Fellowship of the Ring</title>
 <author>J.R.R. Tolkien</author>
 </book>
 <book publisher="Del Rey">
 <series>The Lord of the Rings</series>
 <title>The Two Towers</title>
 <author>J.R.R. Tolkien</author>
 </book>
 <book publisher="Del Rey">
 <series>The Lord of the Rings</series>
 <title>The Return of the King</title>
 <author>J.R.R. Tolkien</author>
 </book>
 <book publisher="Ace">
 <series>Lord Darcy</series>
 <title>Too Many Magicians</title>
 <author>Randall Garrett</author>
 </book>
 <book publisher="Ace">
 <series>Lord Darcy</series>
 <title>Murder and Magic</title>
 <author>Randall Garrett</author>
 </book>
 <book publisher="Ace">
 <series>Lord Darcy</series>
 <title>The Napoli Express</title>
 <author>Randall Garrett</author>
 </book>
 <book publisher="Ace">
 <series>Lord Darcy</series>
 <title>Lord Darcy Investigates</title>
 <author>Randall Garrett</author>
 </book>
</library>

10.1.1. Scope

If you're in a cubical right now, take a moment and look around; you're the absolute ruler of all that you
survey. The desk and its contents all fall under your benevolent influence, as do the coffee cup and its
contents. However, all that is beyond the imaginary line that separates your cubical from the corridor is
beyond the scope of your influence and belongs to another. This simplistic description of office life is
essentially the same as how the concept of scope works in XSLT. In XSLT, scope is applied to both the

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec1.html (4 of 5) [03.07.2007 11:48:55]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.1. Recursive Versus Iterative Style Sheets

context node, the current position in the XML document, and the variables.

It is best to think of scope along the same lines as local and global variables in other programming
languages. For example, if a variable is defined within an if statement, it is accessible only inside that if
statement. Or if a variable is defined within a function (template in XSLT), it can be used only within that
function, not in any subsequent function, unless it is passed as a parameter. Variables defined on the root
level are considered global to the entire XSLT document. Also, while we're on the subject of variables, I
should describe the toughest issue that new developers have with learning XSLT.

10.1.2. Nonvariable Variables

As with other programming languages, XSLT provides the capability to create variables, which can be a
major stumbling block to newcomers. You see, because of the functional nature of XSLT, variables aren't
variable, and after they're created, they cannot be assigned a new value within the same scope. This might
seem at first to be a problem, but it was intentional because XSLT is not a procedural language, like
JavaScript. XSLT variables function more like variables in mathematical functions; you can create them,
you can use them, but you can never change them.

This, probably more than any other aspect of XSLT, has caused more developers to run screaming into the
night, although I'm not sure, having never conducted any research into the subject. After all, how long can
you develop without Jonesing for a fixer, make that needing a way to alter a variable or something along
those lines?

There is, however, a way around this issue; remember what I said about scope? That scope can be both
local and global? Imagine, if you will, a recursive template. Yes, the headaches are starting already, but
bear with me on this. There is absolutely no reason why a template cannot call itself. Okay, that's really
useful information. A template can get around this issue, and it would be even more useful if I were to
explain what a template is.

In XSLT, a template is the equivalent to a function in another language, such as PHP or JavaScript. In fact,
it isn't all that unusual for a template to have a name and be invoked using that name, just like a function.
In addition, templates can accept parameters, just as functions do in other languages. However, there is a
major difference between XSLT functions and, say, JavaScript functions.

In JavaScript, functions are required to have names, whereas, in XSLT, templates aren't required to have
names. This raises the question, if a template doesn't have a name, then how do you call it? The simple
answer is that you don't call it; only named templates can be called. Instead, you apply it. The XSLT apply-
templates element has an attribute named select, which uses XPath to specify which nodes in the source
document the template is to be applied to.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec1.html (5 of 5) [03.07.2007 11:48:55]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.2. XPath in the Style Sheet

10.2. XPath in the Style Sheet

Even though the XSLT elements in the three style sheets shown earlier are unfamiliar, they illustrate that
XPath is an indispensable part of the style sheet. The recursive style sheet particularly shows this
dependence upon XPath because of the heavy use of template and apply-templates elements for pattern
matching, and the if elements for flow control. But because you read the previous chapter on XPath, all
this XPath stuff is already old hat. You did read it, didn't you? Skipping ahead to the good parts, eh? For
shame, no soup for you!

Before continuing, I'd like to take a moment to explain something to one of my former co-workers who
might be reading this (Yeah, right! Like that would ever happenthe last technical book he read was Curious
George Builds a Web Page) before continuing. First, there is no difference in XPath, regardless of where it is
being used. The XPath in Europe is the same as the XPath in Asia, which is the same as the XPath in North
America, and if something on the Mars Rovers use XPath, then that is also the same. It is called a standard,
which means that it is standard throughout the solar system. Sorry to those of you who understand the
concept of standards; I just needed to exercise (exorcise) that particular demon for personal reasons.
Besides, it was getting a little pudgy, and who wants a pudgy demon anyway?

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec2.html [03.07.2007 11:48:55]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.3. Elements

10.3. Elements

Regardless of whether you consider XSLT to be a markup language, a scripting language, or just a pain in
the fanny, it is, first and foremost, a dialect of XML and, therefore, must adhere to all of XML's rules. And I
mean all of XML's rules because if it isn't well formed, then end of game. Fortunately, we've been there and
done that already, which gives us the opportunity to look at the various XSLT elements available to us.
Table 10-1 provides a high-level overview of these elementsnot quite an orbital overview, but close. Don't
worry; we cover some of these elements in much greater detail shortly.

Table 10-1. XSLT Elements

Element Attributes Description

apply-imports Applies external templates that have
been imported using the import element.

apply-templates select optional
mode optional

Applies templates that were defined
locally.

attribute name
namespace optional

Specifies an attribute for the preceding
element.

attribute-set name
use-attribute-sets
optional

Defines a named set of attributes that
can be used to specify a list of attributes
en mass instead of individually.

call-template name Used to invoke a named template.

choose Indicates the beginning of a case
structure.

comment Used to create comments in the output
document.

copy use-attribute-sets
optional

Copies the current node and
namespaces to the output document.
However, it does not copy the children
of the current node.

copy-of select Copies the node or nodes specified by
the select attribute to the output
document.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec3.html (1 of 12) [03.07.2007 11:48:57]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.3. Elements

decimal-format decimal-separator
optional
digit optional
grouping-separator
optional
infinity optional
minus-sign optional
name optional
NaN optional
pattern-separator
optional
per-mille optional
percent optional
zero-digit optional

Defines the appearance of numbers
formatted using the format-number()
function.

element name
namespace
use-attribute-sets
optional

Used to create an element in the output
document.

fallback Specifies to the XSL processor
alternative code to run in case an XSL
element is not supported.

for-each select Loops through the node set specified by
the select attribute.

if test Executes the enclosed XSL when the
result of the test is TRue. It is important
to remember that no else clause exists
for the if element. In these instances,
the choose, when, and otherwise
elements should be used.

import href Imports an external style sheet, which is
the same as including a style sheet.

include href Includes an external style sheet, which
is the same as importing a style sheet.

key name
match
use

Defines a search key that is used to
locate specific nodes based upon their
value or the value of another node.

message terminate optional Writes a programmer-defined message
to the output document.

namespace-alias stylesheet-prefix
result-prefix

Replaces the namespace specified with
the stylesheet-prefix attribute on the
input stylesheet with the namespace
specified with the result-prefix
attribute on the output document.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec3.html (2 of 12) [03.07.2007 11:48:57]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.3. Elements

number level optional
count optional
from optional
value optional
format optional
lang optional
letter-value optional
group-separator optional
grouping-size optional

Used to write a formatted number to the
output document.

otherwise Defines the default action for a case
structure (choose).

output method optional
version optional
encoding optional
omit-xml-declaration
optional
standalone optional
doctype-public optional
doctype-system optional
cdata-section-elements
optional
indent optional
media-type optional

Defines the format of the output
document.

param name
select optional

Used to specify template, stylesheet,
and transform input parameters.

preserve-space elements Defines the elements for which
whitespace is to be preserved on the
output document.

processing-instruction name Writes an XML processing instruction to
the output document.

sort select optional
lang optional
data-type optional
order optional
case-order optional

Sorts a node set.

strip-space elements Defines the elements for which
whitespace is not to be preserved on the
output document.

stylesheet id optional
extension-element-prefixes
optional
exclude-result-prefixes optional
version

Defines the XSL document as a style
sheet to the XSLT processor.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec3.html (3 of 12) [03.07.2007 11:48:57]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.3. Elements

template match optional
name optional
priority optional
mode optional

Defines a template, which is essentially
an XSL function.

text disable-output-escaping optional Indicates that the enclosed is text.

transform id optional
extension-element-prefixes
optional
exclude-result-prefixes optional
version

Defines the XSL document as a style
sheet to the XSLT processor, identical to
the stylesheet element.

value-of select
disable-output-escaping optional

Writes the information specified by the
select attribute to the output document.

variable name select optional Defines either a local or global variable
to the XSLT processor.

when test Defines the individual cases of a case
structure (choose).

with-param name select optional Defines the parameters to a template.

10.3.1. In the Beginning

In the beginning, all your data was painted on the wall of a cave somewhere, and it was good. Depending
on the available light, it was human readable, self-describing, colorful, and even pretty. Unfortunately,
civilization has advanced to the point that cave paintings just can't express the sheer volume of information
available to us today. Enter XML, which, like its distant ancestor, is also human readable, self-describing,
and, if you're using an XML editor such as Stylus Studio, both colorful and pretty.

Although it might seem to some people that we've come full circle in our data storage, from cave paintings
to XML, there is a distinct advantage to XML. Unlike a cave painting, which pretty much just sits there on
the wall looking about the same as it did 40,000 years ago, XML is a bit more portable. With the addition of
XSLT, XML is also elastic and flexible. I'm sold on the concept, how about you? Good. The only issue
remaining is how to start developing an XSL style sheet.

All XSL style sheets begin with one of two elements, either the stylesheet element or the TRansform
element. They are interchangeable because both do exactly the same thing, although I recommend not
using the transform element during months with r's. Wait, maybe that was oystersI have a tendency to
confuse the two.

The next part of the style sheet is the output element, which essentially describes the format of the output.
This is where you make the commitment of whether the output document will be XML, HTML, text, or,
gasp, even XSLT. Not big on commitment? Not a problem. Just leave out the output element, and the
output defaults to XML. Of course, come to think of it, that, too, is a form of commitment.

The next "standard" part of an XSL style sheet is the first template, the one that starts the whole ball
rolling. However, before we get there, I should point out that between the first element and the first
template is where some really useful elements go. Parameters from the outside world and global variables

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec3.html (4 of 12) [03.07.2007 11:48:57]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.3. Elements

are just two examples. In fact, let's take a look at Table 10-2, which indicates where elements can be
defined in a style sheet and what effect location can have on their behavior.

Table 10-2. XSL Style Sheet Elements
and Where They Can Be Defined

Element Defined Where

apply-imports Either root or element level

apply-templates Either root or element level

attribute Element level

attribute-set Root level

call-template Element level

choose Element level

comment Either root or element level

copy Element level

copy-of Element level

decimal-format Root level

element Element level

fallback Element level

if Element level

import Root level

include Root level

key Root level

message Element level

namespace-alias Root level

number Root level

otherwise Element level

output Root level

preserve-space Root level

processing-instruction Root level

sort Element level

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec3.html (5 of 12) [03.07.2007 11:48:57]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.3. Elements

strip-space Root level

stylesheet Root level

template Root level

text Element level

TRansform Root level

value-of Element level

variable Element level

when Element level

with-param Element level

At last we've come to the first template of the style sheet. Unfortunately, it is kind of anticlimatic because
99 percent of all style sheets start with a template element that looks just like this:

<xsl:template match="/">

Boring, isn't it? Yes, you can make it more specific and have it look for a particular element that should be
in the input document. I don't recommend it, though, because it will only cause problems someday when,
for some reason, that specific element is not in the input document. Then comes the inevitable yelling, the
finger pointing, and the peasants with pitchforks and torches again. Not a pretty picture.

10.3.2. Templates and How to Use Them

After the initial template, the one that establishes the current location as the root, what are some of the
other ways to use templates?

Earlier I stated that templates could have names, although it wasn't required. In XSLT, these named
templates fill pretty much the same niche that functions do in a language such as JavaScript or PHP. They
can accept parameters and return results. In my opinion, if it looks like a duck and walks like a duck, the
odds are, it is a duck. Unless it is a goose, but that is kind of like duckzilla, so it isn't a problem.

Let's take a look at what a typical, although useless, named function looks like. Shown in Listing 10-6, its
purpose is to accept two numbers, add them, and return the result.

Listing 10-6. Named Template

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec3.html (6 of 12) [03.07.2007 11:48:57]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.3. Elements

<xsl:template name="add">
 <xsl:param name="a" />
 <xsl:param name="b" />

 <xsl:value-of select="number($a) + number($b)" />
</xsl:template>

Thankfully, this is one of those times when something both seems simple and actually is simple, as long as
you remember that dollar signs aren't required at definition but are required when used. However, the
same thing can't always be said for templates invoked using XPathbut before we go there, perhaps it would
be better to take a look at two more mundane templates. Using the XML shown way back in Listing 10-4,
the style sheets shown in Listings 10-7 and 10-8 do exactly the same thing in a slightly different manner.

Listing 10-7. A Pure XSLT Example

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:preserve-space elements="text"/>

 <xsl:template match="/">

 <xsl:element name="div">
 <xsl:apply-templates select="//library"/>
 </xsl:element>

 </xsl:template>

 <xsl:template match="library">

 <xsl:element name="table">
 <xsl:attribute name="width">100%</xsl:attribute>

 <xsl:for-each select="book">
 <xsl:element name="tr">

 <xsl:for-each select="*">
 <xsl:element name="td">
 <xsl:attribute name="width">33%</xsl:attribute>

 <xsl:value-of select="."/>

 <xsl:if test="string-length(.) = 0">
 <xsl:text> </xsl:text>
 </xsl:if>
 </xsl:element>
 </xsl:for-each>
 </xsl:element>
 </xsl:for-each>
 </xsl:element>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec3.html (7 of 12) [03.07.2007 11:48:57]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.3. Elements

 </xsl:template>

</xsl:stylesheet>

Listing 10-8. An XSLT/XHTML Hybrid Example

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:preserve-space elements="text"/>

 <xsl:template match="/">

 <xsl:element name="div">
 <xsl:apply-templates select="//library"/>
 </xsl:element>

 </xsl:template>

 <xsl:template match="library">

 <xsl:element name="table">
 <xsl:attribute name="width">100%</xsl:attribute>

 <xsl:for-each select="book">
 <tr>
 <xsl:for-each select="*">
 <td width="33%">
 <xsl:value-of select="."/>

 <xsl:if test="string-length(.) = 0">
 <xsl:text> </xsl:text>
 </xsl:if>
 </td>
 </xsl:for-each>
 </tr>
 </xsl:for-each>
 </xsl:element>

 </xsl:template>

</xsl:stylesheet>

Confused? Don't be. Because XSLT and XHTML are both dialects of XML, there is absolutely nothing wrong
with mixing the two. At first glance, the style sheet shown in Listing 10-8 might seem to be a little like a
mutt, part this and part that. But as weird as it seems, it is much more common than the purebred solution
from Listing 10-7.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec3.html (8 of 12) [03.07.2007 11:48:57]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.3. Elements

Earlier I stated that templates invoked using XPath aren't always simple because, at times, more than one
template matches. If you don't expect this, it could, at the very least, be an embarrassment. However,
there is a way to specify which template to use when more than one matches the criteria.

The mode attribute, which is on both the template and apply-templates elements, is used to specify which
template to use when a particular select could result in more than one match. Listing 10-9, a merging of
Listings 10-7 and 10-8, has an example of this. The only difference, other than the merging, is the addition
of a mode attribute for the mutt template and a new applytemplates element, also with a mode attribute.

Listing 10-9. Distinguishing Template Matches Using Mode

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:preserve-space elements="text"/>

 <xsl:template match="/">

 <xsl:element name="div">
 <xsl:apply-templates select="//library" />
 <xsl:apply-templates select="//library" mode="mutt" />
 </xsl:element>

 </xsl:template>

 <xsl:template match="library">

 <xsl:element name="table">
 <xsl:attribute name="width">100%</xsl:attribute>
 <xsl:for-each select="book">
 <xsl:element name="tr">

 <xsl:for-each select="*">
 <xsl:element name="td">
 <xsl:attribute name="width">33%</xsl:attribute>

 <xsl:value-of select="." />

 <xsl:if test="string-length(.) = 0">
 <xsl:text> </xsl:text>
 </xsl:if>
 </xsl:element>
 </xsl:for-each>
 </xsl:element>
 </xsl:for-each>
 </xsl:element>

 </xsl:template>

 <xsl:template match="library" mode="mutt">

 <xsl:element name="table">

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec3.html (9 of 12) [03.07.2007 11:48:57]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.3. Elements

 <xsl:attribute name="width">100%</xsl:attribute>

 <xsl:for-each select="book">
 <tr>
 <xsl:for-each select="*">
 <td width="33%">
 <xsl:value-of select="." />

 <xsl:if test="string-length(.) = 0">
 <xsl:text> </xsl:text>
 </xsl:if>
 </td>
 </xsl:for-each>
 </tr>
 </xsl:for-each>
 </xsl:element>

 </xsl:template>

 </xsl:stylesheet>

The mode attribute provides additional criteria for the match. Instead of the XPath being the only criteria,
the mode is also used. So a simple XPath match alone is not enough; there also has to be a match to the
mode. This leads to some interesting possibilities, such as when the mode name is unknown. Just use an
asterisk as the mode name and use the mode to indicate the depth, or something along those lines.

10.3.3. Decisions, Decisions

As in the majority of programming languages, XSLT provides flow control in the way of decision structures.
Excluding apply-templates, which can be used for some similar functionality, there is the if element and a
case structure, called choose. Basically, it is all easy stuff, but two issues with XSLT decisions can cause
many developers problems.

The first of these issues is how to test for greater than and less than, and still keep the document well
formed. Fortunately, the previous chapter covered this problem when discussing XPath. The only remaining
issue is one that causes quite a number of headaches: a lack of an else for the if element.

Lack of an else might seem like, if not an insurmountable problem, at least an annoying problem. Because
of this lack, the choose element is used more often in languages with an else. Listing 10-10 is an example
of a workaround for this lack of an else statement.

Listing 10-10. A Workaround

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec3.html (10 of 12) [03.07.2007 11:48:57]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.3. Elements

<?xml version='1.0'?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">
 <xsl:variable name="value" select="7" />

 <xsl:element name="div">
 <xsl:choose>
 <xsl:when test="($value mod 2) = 0">Even</xsl:when>
 <xsl:otherwise>Not even</xsl:otherwise>
 </xsl:choose>
 </xsl:element>
 </xsl:template>

</xsl:stylesheet>

10.3.4. Sorting Out Looping

XSL style sheets have a built-in mechanism for sorting node sets, which can be rather useful when
information needs to be arranged in a specific sequence. As with everything in XSL, sorting is accomplished
through the use of an element, which, appropriately, is called sort. Interesting how these things work out,
isn't it?

Listings 10-11 and 10-12 both show examples of the use of the sort element, with a couple minor
differences. For example, Listing 10-11 uses a for-each element to navigate through the node set, which is
sorted into ascending sequence. In Listing 10-12, an apply-templates is used, and the node set is sorted
into descending sequence.

Listing 10-11. A for-each Sort Example

<?xml version='1.0'?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">
 <xsl:element name="table">
 <xsl:attribute name="width">100%</xsl:attribute>

 <xsl:for-each select="//book">
 <xsl:sort select="title" order="ascending" />

 <xsl:element name="tr">
 <xsl:for-each select="*">
 <xsl:element name="td">
 <xsl:value-of select="." />
 </xsl:element>
 </xsl:for-each>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec3.html (11 of 12) [03.07.2007 11:48:57]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.3. Elements

 </xsl:element>
 </xsl:for-each>
 </xsl:element>

 </xsl:template>

</xsl:stylesheet>

Listing 10-12. A template sort Example

<?xml version='1.0'?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">
 <xsl:element name="table">
 <xsl:attribute name="width">100%</xsl:attribute>

 <xsl:apply-templates select="//book">
 <xsl:sort select="title" order="descending" />
 </xsl:apply-templates>
 </xsl:element>

 </xsl:template>

 <xsl:template match="*">

 <xsl:element name="tr">
 <xsl:for-each select="*">
 <xsl:element name="td">
 <xsl:value-of select="." />
 </xsl:element>
 </xsl:for-each>
 </xsl:element>

 </xsl:template>

</xsl:stylesheet>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec3.html (12 of 12) [03.07.2007 11:48:57]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.4. XSLT Functions

10.4. XSLT Functions

Unlike XPath, which has a plethora of functions, the number of XSL functions is significantly lower. Mostly,
the reason for this is that the XPath functions are fully available to supplement the few functions shown in
Table 10-3.

Table 10-3. XSL Functions

Function Description

Current() Returns only the current node in a node set

document() Used to access an XML document other than the source document

element-available() Returns a TRue condition if the passed string is a supported XSL element

Format-number() Returns a formatted numeric string using a number and a pattern as input

function-available() Returns a true condition if the passed string is a supported XSL or XPath function

generate-id(node) Returns an ID that is unique to the node passed, regardless of how the node was
obtained

key() Returns a node set that was previously indexed using the key element

System-property() Returns a value for a specific system property

unparsed-entity-uri() Returns the URI of an unparsed entity

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec4.html [03.07.2007 11:48:58]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.5. XSLT Concepts

10.5. XSLT Concepts

When developing an XSL style sheet, I usually find myself using only two of the XSL functions shown
earlier: the key() function and the generate-id() function, both of which are indispensable when doing
something unique to XSL style sheets. I am referring to something called Muenchian grouping.

Muenchian grouping, invented by Steve Muench, the XML Evangelist of the Oracle Corporation, is a method
of grouping nodes based upon their values. Although I can describe how it works, it is probably a better
idea to take a look at the example of Muenchian grouping shown in Listing 10-13. After that, we take it
apart to see how it works.

Listing 10-13. A Muenchian Grouping Example

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html" version="1.0" encoding="UTF-8" indent="yes" />
 <xsl:key name="keyBook" match="book" use="series" />

 <xsl:template match="/">

 <xsl:element name="table">
 <xsl:attribute name="width">100%</xsl:attribute>

 <xsl:apply-templates select="//book[1]" mode="header" />
 <xsl:apply-templates select="//book[generate-id(.) = generate-
id(key('keyBook',series)[1])]" />
 <xsl:apply-templates select="//book[string-length(series) =
0]/series" />
 </xsl:element>

 </xsl:template>

<xsl:template match="book">

 <xsl:variable name="key">
 <xsl:value-of select="series" />
 </xsl:variable>

 <xsl:apply-templates select="//series[node() = $key]" />

 </xsl:template>

 <xsl:template match="series">

 <xsl:element name="tr">
 <xsl:apply-templates select="parent::node()/*" mode="cell" />
 </xsl:element>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec5.html (1 of 3) [03.07.2007 11:48:58]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.5. XSLT Concepts

</xsl:template>

<xsl:template match="*" mode="cell">

 <xsl:element name="td">
 <xsl:attribute name="align">left</xsl:attribute>

 <xsl:value-of select="." />
 </xsl:element>

 </xsl:template>

 <xsl:template match="book" mode="header">

 <xsl:element name="tr">
 <xsl:apply-templates select="./*" mode="columnHeader" />
 </xsl:element>

 </xsl:template>

 <xsl:template match="*" mode="columnHeader">

 <xsl:variable
name="lowerCase">qwertyuiopasdfghjklzxcvbnm</xsl:variable>
 <xsl:variable
name="upperCase">QWERTYUIOPASDFGHJKLZXCVBNM</xsl:variable>

 <xsl:element name="th">
 <xsl:attribute name="width">33%</xsl:attribute>

 <xsl:value-of select="translate(name(.),$lowerCase,$upperCase)" />
 </xsl:element>

 </xsl:template>

</xsl:stylesheet>

The element that starts the whole ball rolling is the key element, which creates a cross-reference based
upon the node specified by the use attribute. Using the series element as the key results in an index
consisting of The Lord of the Rings and Lord Darcy, with the book The Way Station left out because its
series element is null. This cross-reference is accessed using the key function, which accepts two
parameters: the name from the key element and the node.

Another function that plays an integral part in Muenchian grouping is the generate-id function. This
function, well, generates a unique ID for every node in an XML document every time that the document is
processed. So the XPath statement //book[generate-id(.) = generate-id(key('keyBook',series)[1])]
locates the first element with each unique key from the cross-reference and applies the matching template.
The matching template then uses the unique series to select the matching elements.

It is all pretty basic XSLT and XPath stuff, although it does have a tendency to make grown men whimper

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec5.html (2 of 3) [03.07.2007 11:48:58]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.5. XSLT Concepts

like little scared puppies. If it doesn't, here is one that will put someone over the edge: Imagine trying to
group based upon multiple criteria, such as author and series. Although it isn't done very often, and you'll
probably never have to do it, I'll give you a hint: Concatenate the elements using the concat function.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec5.html (3 of 3) [03.07.2007 11:48:58]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.6. Client-Side Transformations

10.6. Client-Side Transformations

Now that we've got an idea of what an XSL style sheet is and what effect it has on XML, I'm thinking that it
might be a good idea to see how to apply XSL in the browser. Although browsers that support XSLT all use
JavaScript to create the necessary objects, this is yet another one of those instances in which there is
Microsoft Internet Explorer and everybody else. Despite this, the flow is essentially the same, regardless of
the client's browser.

When setting out to perform client-side transformations, the first tasks are always to obtain the XML and
the XSL style sheet. A number of ways exist for doing this, ranging from having the document embedded in
the web page, to loading it directly from the web server, to requesting it from a web service. How the
document is obtained isn't nearly as important as just obtaining it. The next task it to create an XSLT
processor, pass the style sheet and the XML document, and then get the resulting document and use it.
This whole process sounds relatively easy, doesn't it? And my question is loaded, isn't it? The answers to
the questions are "yes" and "no." Applying an XSL style sheet in the browser is actually as easy as it
sounds.

With client-side transformations, the only "gotcha" is being aware of the browser. ActiveX won't work in
Firefox, Flock, Mozilla, or Netscape, and nothing but ActiveX will work in Internet Explorer. Yes, it is an
annoyance, but it is nothing that we haven't lived with for the better part of a decade. Besides, this is one
of those things that, once coded, can be cloned again and again. In short, it is a nice addition to our bag of
tricks.

10.6.1. XSLT in Microsoft Internet Explorer

When working with Internet Explorer, if something isn't part of HTML, or part of CSS, or part of JavaScript,
the odds are, it is part of ActiveX. Think of ActiveX as the bilge of Internet Explorer; a lot of stuff is down
there, and some of it is scary, but that is another story. In reality, ActiveX is the Internet descendant of
Microsoft's original object-based framework, Object Linking and Embedding, or OLE.

ActiveX objects are instantiated using the JavaScript new operator in the following manner:

var XSLTemplate = new ActiveXObject('MSXML2.XSLTemplate.3.0');

The previous statement is merely the first step in applying an XSL style sheet on the client side using
JavaScript. In Internet Explorer, the next step is to specify the XSL style sheet, in the form of an XML
document, to the template, like this:

XSLTemplate.stylesheet = XSL;

The next step is to create an XSLT processor using the instance of the XSL template:

var XSLTProcessor = XSLTemplate.createProcessor;

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec6.html (1 of 3) [03.07.2007 11:48:59]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.6. Client-Side Transformations

Now it is time to specify the XML document to the XSLT processor in the following manner:

XSLTProcessor.input = XML;

Hang in there; the end is in sight. So far, we've created an XSL template, specified the XSL style sheet,
created an XSLT processor, and specified the XML document. This leaves just two steps, the first of which is
applying the style sheet:

XSLTProcessor.transform();

The final step is simply to use the output from the processor, which, incidentally, is text:

document.getElementById('example').innerHTML = XSLTProcessor.output;

Put together as one routine, the entire sequence of JavaScript is shown in Listing 10-14.

Listing 10-14. Internet Explorer

var XSLTemplate = new ActiveXObject('MSXML2.XSLTemplate.3.0');

XSLTemplate.stylesheet = XSL;

var XSLTProcessor = XSLTemplate.createProcessor;

XSLTProcessor.input = XML;

XSLTProcessor.transform();

document.getElementById('example').innerHTML =

XSLTProcessor.output;

If you're a big fan of complicated procedures, such as the one necessary with Microsoft Internet Explorer
shown earlier, be ready to be disappointed. Unlike Internet Explorer, the other browsers that support XSLT,
including open source browsers such as Firefox, Mozilla, and Flock, require a simple three-step process:

1. Create an XSLT processor.

2. Import the style sheet as an XML document.

3. Apply the style sheet and use the resulting XML document or document fragment.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec6.html (2 of 3) [03.07.2007 11:48:59]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.6. Client-Side Transformations

The only oddities, from an Internet Explorer point of view, are the fact that the result is an XML document
or document fragment. This means that there are two methods for applying an XSL style sheet: one for
documents, transformToDocument, and a second for document fragments, transformToFragment. Listing 10-
15 shows how it works using the transformToFragment method.

Listing 10-15. Non-IE

var XSLTProcessor = new XSLTProcessor();

XSLTProcessor.importStylesheet(xslt);

document.getElementById('example').appendChild(objXSLTProcessor.transform
ToFragment(xml, document));

In my opinion, unless the application is an intranet application, the way to go is to code to use both types
of browsers. But that is a personal decision; just remember that sometimes an intranet application doesn't
stay an intranet application.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec6.html (3 of 3) [03.07.2007 11:48:59]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 10.7. Summary

10.7. Summary

XSLT is one of my favorite parts of programming; however, it can be difficult to grasp. To combat this
problem, we started at the beginning with iterative and recursive style sheets. Next I covered scope and
the issues with nonvariable variables. We then took a little step backward to cover XPath and its
relationship to XSLT before rolling up our sleeves and getting down to some serious XSLT.

The basics of templates were discussed, including named templates and the use of the mode attribute.
Following that, we covered how to handle decisions using if and choose, along with sorting. The built-in
XSLT functions were then described, along with how some of them are used in grouping. Finally, we
covered the subject of client-side transformations.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch10lev1sec7.html [03.07.2007 11:48:59]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11. Ajax Using XSLT

Chapter 11. Ajax Using XSLT

"But wait, there's more"

I do so feel like someone hawking my wares on a late-night infomercial, but hey, it's true. There is actually
more to Ajax than what we've already covered. In fact, we're about to get to one of my favorite parts. I've
jokingly referred to the material covered up to this point as "mad scientist stuff," but the material that
we're about to cover transcends everything that we've covered up till now. It is called eXtensible Stylesheet
Language for Transformations, or XSLT, and I like to think of it as magic. Think of XSLT as the part of a
spell that says what to do. The second part of the spell is XPath, which acts as the targeting device for the
spell. Tightly intertwined, XSLT and XPath work together to modify or, if you prefer, transform XML.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch11.html [03.07.2007 11:48:59]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 11.1. XSLT

11.1. XSLT

Transformations are an idea as old as human thought. Primitive societies had werewolves, werebears, and
weretigers. The Greeks had warnings against seeing goddesses bathe, unless one was interested in going
to parties stag, literally. During the renaissance, there was Shakespeare's A Midsummer's Night Dream, in
which Bottom was made an Ass of. Today we have Jack Chalker's Midnight at the Well of Souls and the
Borg from Star Trek. And although the transformations in each of these stories dealt with the physical
world and XSLT can affect only XML, they all share many of the same characteristics: Without change, the
story can progress no further.

As one who has been working in the programming field for a number of years, I can attest to one thing:
About 40 percent of the time, the data is in the wrong format. In ancient times, when great beasts with
names such as System major problem. Programs had to be changed or written from scratch to massage
the data to make it usable. Changing programs and creating programs has always been a costly
undertaking in any day and age.

Now things are different, as time seems to be speeding up. The great beasts are all either dead or behind
glass in museums, where people can stare in awe, never realizing that the old 486 machine that they gave
to their kids had more power.

Today much of the information that we deal with is in the form of XML, which, interestingly enough, can be
transformed by XSLT in much the same manner as Lon Chaney was by the full moon. Thankfully, however,
the XML doesn't get hairyunless, of course, we want it to.

11.1.1. XML Magic

Here's the quandary: On the client side, we have XML and we want HTML. It's a real pain in the gluteus,
isn't it?

Yes, we can write a script to perform the conversion, but it is a time-consuming task accomplished with ill-
suited tools. Face it: The majority of scripting languages aren't really built to handle XML. Although it works
just fine, when messing around with individual nodes, JavaScript's XML support comes across like a Bose
sound system in a Ford Pinto. I'm not saying that it doesn't workit works just fine, but, unfortunately, six
months later it has a tendency to cause questions like, "I wrote this?"

XSLT, as opposed to JavaScript, was designed from the ground up to handle XML. Come to think of it, XSLT
is itself a dialect of XML. This has a tendency to lead to some really interesting style sheets when working
with XSLT, but that is a topic for another day. Another interesting thing is that although the input has to be
XML, nothing says that the output needs to be XML. This means that if you want to transform XML into
HTML as opposed to XHTML, by all means do it, but just remember that if you're using SOAP, the package
must be well formed.

11.1.2. How Microsoft Shot Itself in the Foot

Back in the old days, during the first browser wars, Microsoft released Internet Explorer version 5.0, the
first web browser with XSLT support. It would have been a major victory for Microsoft, if it had not been for
one little detail. In their haste, they forgot one little thing about the World Wide Web Consortium's
recommendations. You see, recommendations are often vastly different from drafts. In an effort to produce

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch11lev1sec1.html (1 of 8) [03.07.2007 11:49:00]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 11.1. XSLT

the first browser with XSLT support, Microsoft used a draft as a guide.

For this reason, you sometimes see references to the namespace http://www.w3.org/TR/WD-xsl instead of
http://www.w3.org/1999/XSL/Transform.

It was only with the advent of Microsoft Internet Explorer 6 that Internet Explorer started following the
recommendation instead of the draft. Personally, I believe that it is a good idea to ignore the old
namespace entirely; I think that Microsoft would like to. And although they're currently considered the third
most popular browser, at most, individuals using versions 5.0, 5.01, and 5.5 of Internet Explorer comprise
only a fraction of the general population. It is a pretty safe bet that you can ignore these web browsers
entirely without alienating anyone but technophobes, the White House, and project leaders who use the
term blink.

11.1.3. XPath, or I Left It Around Here Someplace

Earlier I stated that XPath was the targeting device for XSLT, which is essentially true. XPath is used to
describe the XML node or nodes that we're looking for. As the name suggests, XPath describes the path to
the node that we're looking for. For example, let's say that we want the state_name node in the XML
document shown in Listing 11-1. A number of different ways exist for locating it, some of which are shown
in Listing 11-2.

Listing 11-1. A Sample XML Document

<states>
 <state>
 <state_abbreviation>AB</state_abbreviation>
 <state_name>Alberta</state_name>
 </state>
 <state>
 <state_abbreviation>AK</state_abbreviation>
 <state_name>Alaska</state_name>
 </state>
 <state>
 <state_abbreviation>AL</state_abbreviation>
 <state_name>Alabama</state_name>
 </state>
 <state>
 <state_abbreviation>AR</state_abbreviation>
 <state_name>Arkansas</state_name>
 </state>
</states>

Listing 11-2. Sample XPath

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch11lev1sec1.html (2 of 8) [03.07.2007 11:49:00]

http://www.w3.org/TR/WD-xsl
http://www.w3.org/1999/XSL/Transform
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 11.1. XSLT

/states/state/state_name
/*/*/state_name
/*/*/*[name(.) = 'state_name']
/states/state/*[2]
//state_name

Why so many? With XPath, it is possible to describe complete paths, paths with wildcards, and paths based
upon its location, or to describe only the node itself. From a high level, such as an orbital view, it works as
shown in Table 11-1.

Table 11-1. High-Level View of XPath

XPath Notation Description

/ Either the root node, in the case of the first slash, or a separator between
nodes

// Anywhere in the document that meets the criteria

* Wildcard (I know that there is a node here, but I don't know its name)

. The context node (where we are at this point)

[2] A predicate stating that the second node is the one we want

states Qualified node name

state Qualified node name

state_name Qualified node name

name() A function that returns the name of passed node

[name(.) = 'state_name'] A predicate stating that the desired node name is state_name

Alright, that should be enough XPath to get started. Now let's take a gander at the XSLT shown in Listing
11-3, whose purpose is to build an HTML select object using the XML from Listing 11-1.

Listing 11-3. Sample XSL Style Sheet

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch11lev1sec1.html (3 of 8) [03.07.2007 11:49:00]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 11.1. XSLT

<?xml version='1.0'?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html" indent="yes" media-type="text/html"/>

 <xsl:template match="/">

 <select id="myselect" name="myselect">
 <xsl:for-each select="/states/state">
 <xsl:element name="option">
 <xsl:attribute name="value">
 <xsl:value-of
select="state_abbreviation" />
 </xsl:attribute>
 <xsl:value-of select="state_name" />
 </xsl:element>
 </xsl:for-each>
 </select>

 </xsl:template>

</xsl:stylesheet>

Pretty cool, isn't it? At first glance, not only is it nicely indented, but it also has the advantage of being one
of the most obscure things that you've ever laid your eyes upon. A second glance reveals some details that
you might have missed the first time; for example, the select statement looks remarkably like HTML. There
is a very good reason for the resemblance: It is HTML. In fact, the xsl:output statement even says that it is
HTML, and you can take it from me, xsl:output statements don't lie.

Upon closer examination, some other details might pop out, such as the xsl:template with match="/". From
what we covered earlier, the slash means that we're looking for the root node. And while we're examining
XPath, you'll find xsl:for-each with select="/states/state". Just in case you're wondering, for-each
means exactly what you think it does: Iterate once for every node that matches the predicate.

Another thing that might jump out is the xsl:element node with name="option". This is an alternate method
of specifying an output element. The xsl:attribute also does exactly what you'd expect from its name; it
defines an attribute of the previous xsl:element. Finally, the xsl:value-of simply copies the node's content
from the source document to the output document. In a nutshell, that's pretty much the basics of XSLT and
XPath. The next question, of course, is, "So, what does the output HTML look like?" For the answer, check
out Listing 11-4.

Listing 11-4. HTML Output

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch11lev1sec1.html (4 of 8) [03.07.2007 11:49:00]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 11.1. XSLT

<select id="myselect" name="myselect">
 <option value="AB">Alberta</option>
 <option value="AK">Alaska</option>
 <option value="AL">Alabama</option>
 <option value="AR">Arkansas</option>
</select>

Later, both in this chapter and in others, you'll find more detailed examples of client-side XSLT.

11.1.4. What I Learned from the Gecko

Back when I was first learning XSLT, I was developing with the bare minimum, a text editor and a copy of
Microsoft Internet Explorer version 5.01and I was happy! Well, at least for about 20 minutes or so, right up
to the point I read the World Wide Web Consortium's XSLT recommendation. But we've already covered
that, and after I downloaded a copy of Internet Explorer version 6, I was happy againat least, until I found
Mozilla and then Firefox.

My first impression was that there was something wrong with the Gecko XSLT processor, but there was a
gnawing doubt. The reason for this was that I'd never personally found an error in a Gecko-based browser,
and I had found several in Internet Explorer. So with a critical eye and a hard copy of the recommendation,
I began to examine the "bugs" that I had found in the Gecko XSLT processor.

The results came as no surprise to me. Gecko strictly followed the published recommendation, whereas IE
seemed somewhat looser around the edges. My problem was that I had developed some bad habits
developing in a microcosm and had a tendency to tailor my code to that microcosm. Because of this, I now
try out my style sheets in at least two different XSLT processors before I consider them even partially
tested.

Let's take a look at how to create an instance of the XSLT processor in Microsoft Internet Explorer and
every other web browser on the planeter, I mean Firefox, yeah, Firefox. Listing 11-5 shows a little cross-
browser web page that uses one XML Data Island, the first containing the XML while the XSLT is loaded
from the server via the XMLHttpRequest object. This is nothing flashy, merely a "proof of concept." It just
creates an HTML select object and plops it on a page.

Listing 11-5. XSLT Cross-Browser Web Page Example

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch11lev1sec1.html (5 of 8) [03.07.2007 11:49:00]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 11.1. XSLT

<html>
 <head>
 <title>XML Data Island Test</title>
 <style type="text/css">
xml
{
 display: none;
 font-size: 0px
}
 </style>
 <script language="JavaScript">
var _IE = (new RegExp('internet explorer','gi')).test(navigator.appName);
var _XMLHTTP; //
 XMLHttpRequest object
var _objXML; // XML DOM document
var _objXSL; //
 Stylesheet
var _objXSLTProcessor; // XSL Processor
var _xslt = 'stateSelect.xsl'; // Path to style sheet

/*
 Function: initialize
 Programmer: Edmond Woychowsky
 Purpose: Perform page initialization.
*/
function initialize() {
 if(_IE) {
 _XMLHTTP = new ActiveXObject('Microsoft.XMLHTTP');

 _objXML =
 new ActiveXObject('MSXML2.FreeThreadedDOMDocument.3.0');
 _objXSL =
 new ActiveXObject('MSXML2.FreeThreadedDOMDocument.3.0');

 _objXML.async = false;
 _objXSL.async = false;

 _objXML.load(document.getElementById('xmlDI').XMLDocument);
 } else {
 var _objParser = new DOMParser();

 _XMLHTTP = new XMLHttpRequest();

 _objXSLTProcessor = new XSLTProcessor();
 _objXML =
_objParser.parseFromString(document.getElementById('xmlDI').innerHTML,
"text/xml");

 }

 _XMLHTTP.onreadystatechange = stateChangeHandler;

 _XMLHTTP.open('GET',_xslt,true);
 _XMLHTTP.send(null);
}

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch11lev1sec1.html (6 of 8) [03.07.2007 11:49:00]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 11.1. XSLT

/*
 Function: stateChangeHandler
 Programmer: Edmond Woychowsky
 Purpose: Handle the asynchronous response to an
 XMLHttpRequest, transform the XML Data Island and
 display the resulting XHTML.
*/
function stateChangeHandler() {
 var strXHTML;

 if(_XMLHTTP.readyState == 4) {
 if(_IE) {
 var _objXSLTemplate =
 new ActiveXObject('MSXML2.XSLTemplate.3.0');

 _objXSL.loadXML(_XMLHTTP.responseText);
 _objXSLTemplate.stylesheet = _objXSL;
 _objXSLTProcessor = _objXSLTemplate.createProcessor;
 _objXSLTProcessor.input = _objXML;

 _objXSLTProcessor.transform();

 strXHTML = _objXSLTProcessor.output;
 } else {
 var _objSerializer = new XMLSerializer();

 _objXSL = _XMLHTTP.responseXML;

 _objXSLTProcessor.importStylesheet(_objXSL);

 strXHTML =
_objSerializer.serializeToString(_objXSLTProcessor.transformToFragment
(_objXML, document));
 }

 document.getElementById('target').innerHTML = strXHTML;
 }
}
 </script>
 </head>
 <body onload="initialize()">
 <xml id="xmlDI">
 <states>
 <state>
 <state_abbreviation>AB</state_abbreviation>
 <state_name>Alberta</state_name>
 </state>
 <state>
 <state_abbreviation>AK</state_abbreviation>
 <state_name>Alaska</state_name>
 </state>
 <state>
 <state_abbreviation>AL</state_abbreviation>
 <state_name>Alabama</state_name>
 </state>
 <state>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch11lev1sec1.html (7 of 8) [03.07.2007 11:49:00]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 11.1. XSLT

 <state_abbreviation>AR</state_abbreviation>
 <state_name>Arkansas</state_name>
 </state>
 </states>
 </xml>
 XML client-side transformation test
 <div id="target"></div>
 </body>
</html>

Alright, now that the proof of concept has been successfully completed, all that remains is to see how it can
be applied to our e-commerce website.

A Problem Revisited

Now that we have some of the basics down, let's take a look at how XSLT can be used to
provide additional functionality to our e-commerce website. I should point out, however, that
when I originally proposed this idea to a client, I was called insane. The comments were that
it would be unworkable and that nobody in their right mind would have even suggested it. In
my defense, this was the client that used terms such as blink and was "looking into"
converting all web applications into COBOL so that developers other than the consultants
could understand it.

That's enough introductions; without further ado, allow me to describe what I consider the
ultimate "mad scientist" website.

Excluding pop-ups, the site would be a single web page, with all communication between the
server and the client taking place using the XMLHttpRequest object. Instead of subjecting the
visitor to an endless cycle of unloads and reloads, the page would simply request whatever it
needed directly. In addition, when a particular XSLT was obtained from the server, the client
would cache it, meaning that the next time it was needed, it would already be there. It was
within the realm of possibility that eventually the client would have all the XSLT cached on the
web browser. The more the visitor did, the better the shopping experience would become.

Needless to say, the website was never created, alas, and my contract was terminated
because they felt that resources could be better used supporting their mainframe applications.
Personally, I think that they lacked foresight, and if they had pursued the concept to its logical
conclusion, they'd now be mentioned in the same breath as Google. Instead, they decided to
regress into the future of the 1960s as opposed to the future of the twenty-first century. But
I'm hardly an objective observer.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch11lev1sec1.html (8 of 8) [03.07.2007 11:49:00]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 11.2. Tabular Information

11.2. Tabular Information

The previous chapter introduced several JavaScript class constructors in an effort to keep the client-side
code manageable. Now is a good time to introduce another, a wrapper around the XSLT processor to
handle the browser-specific details involving exactly what is required for XSL transformations. Displaying
my usual lack of imagination, the class constructor is named appropriately enough: XSLTProcessor. Table
11-2 shows the properties and methods for this class.

Table 11-2. XSLTProcessor

Name Parent Class Type Description

XSLTProcessor Class Constructor

importStylesheet XSLTProcessor Method Loads the XSL document for the transformation.

load XSLTProcessor Method Loads the XML document to be transformed.

output XSLTProcessor Method The serialized result of the previous transformation.

readyState XSLTProcessor Method Either the ready state for the XML document or the XSL
document, whichever is lower. When they are equal, the
appropriate ready state value is returned.

setParameter XSLTProcessor Method Set a parameter for the XSLT processor.

transform XSLTProcessor Method Performs the transformation and returns the serialized result.

With the creation of the XSLTProcessor constructor, the only items remaining are those that are absolutely
essential to the website. The essential items are the XSL style sheets themselves, three in total. The first
style sheet creates the HTML for the Items page. The purpose of the second style sheet is to create/render
the Details page. The final style sheet renders the shopping cart in a slightly different manner than you'd
expect. Each of these three items is covered as needed.

11.2.1. Read Only

Please bear with me; what I'm about to say deals only with read-only pages and, to some, might seem to
be heresy. When using XSL for read-only pages, data binding isn't necessary; in fact, it is unnecessary
overhead. Think about it for a moment: First, the information isn't going to change on the client side. In
addition, the transformation process has already taken care of the display of the information. For the
aforementioned reasons, it is perfectly acceptable to skip the bind when dealing with read-only information,
as the style sheet in Listing 11-6 illustrates.

Listing 11-6. XSL Style Sheet to Produce a Nonbound Table

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch11lev1sec2.html (1 of 5) [03.07.2007 11:49:01]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 11.2. Tabular Information

<?xml version='1.0'?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html" indent="yes" media-type="text/html"/>

 <xsl:template match="/">
 <xsl:element name="div">
 <xsl:call-template name="row">
 <xsl:with-param name="string" select="'Guild
Name:'" />
 <xsl:with-param name="top" select="'75px'" />
 </xsl:call-template>
 <xsl:call-template name="row">
 <xsl:with-param name="string" select="'Item
Name:'" />
 <xsl:with-param name="top" select="'92px'" />
 </xsl:call-template>
 <xsl:call-template name="row">
 <xsl:with-param name="string"
select="'Description:'" />
 <xsl:with-param name="top" select="'110px'" />
 </xsl:call-template>
 <xsl:call-template name="row">
 <xsl:with-param name="string" select="'Price:'" />
 <xsl:with-param name="top" select="'127px'" />
 </xsl:call-template>

 <xsl:call-template name="row">
 <xsl:with-param name="string"
select="'guild_name'" />
 <xsl:with-param name="type" select="'data'" />
 <xsl:with-param name="top" select="'75px'" />
 </xsl:call-template>
 <xsl:call-template name="row">
 <xsl:with-param name="string" select="'item_name'"
/>
 <xsl:with-param name="type" select="'data'" />
 <xsl:with-param name="top" select="'92px'" />
 </xsl:call-template>
 <xsl:call-template name="row">
 <xsl:with-param name="string"
select="'item_description'" />
 <xsl:with-param name="type" select="'data'" />
 <xsl:with-param name="top" select="'110px'" />
 </xsl:call-template>
 <xsl:call-template name="row">
 <xsl:with-param name="string"
select="'item_price:'" />
 <xsl:with-param name="type" select="'data'" />
 <xsl:with-param name="top" select="'127px'" />
 </xsl:call-template>
 </xsl:element>
 </xsl:template>

 <xsl:template name="row">
 <xsl:param name="dataisland" select="' '" />

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch11lev1sec2.html (2 of 5) [03.07.2007 11:49:01]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 11.2. Tabular Information

 <xsl:param name="string" />
 <xsl:param name="type" select="'header'" />
 <xsl:param name="top" />

 <xsl:variable name="apostrophe">'</xsl:variable>
 <xsl:variable name="nbsp">&nbsp;</xsl:variable>

 <xsl:element name="div">
 <xsl:attribute name="class">rowHeader</xsl:attribute>
 <xsl:attribute name="style">
 <xsl:choose>
 <xsl:when test="$type = 'header'">
 <xsl:value-of
select="concat($apostrophe,'position: absolute; left: 50px; right: auto%;
bottom: auto; width: 200px; top: ',$top,$apostrophe)" />
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of
select="concat($apostrophe,'position: absolute; left: 255px; right: auto%;
bottom: auto; width: 600px; top: ',$top,$apostrophe)" />
 </xsl:otherwise>
 </xsl:choose>
 </xsl:attribute>

 <xsl:choose>
 <xsl:when test="$type = 'header'">
 <xsl:value-of disable-output-escaping="yes"
select="concat($nbsp,$string)" />
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="xmlDI">
 <xsl:value-of select="$dataisland" />
 </xsl:attribute>
 <xsl:attribute name="xmlNode">
 <xsl:value-of select="$string" />
 </xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:element>
 </xsl:template>
</xsl:stylesheet>

This style sheet first creates an HTML Table element with the required attributes to give the site a common
look and feel. Next, the column headers are rendered and a template is invoked to create the individual
rows, which is the Table element in the source XML document. If there are no Table elements, only the
HTML table headers will be produced. The individual cells are produced based upon the node name, and
we're done.

Before proceeding any further, however, I want to explain two statements in the style sheet. The first of
these is the one that defines the apostrophe variable:

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch11lev1sec2.html (3 of 5) [03.07.2007 11:49:01]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 11.2. Tabular Information

<xsl:variable name="apostrophe">'</xsl:variable>

The second statement is the one that uses the apostrophe variable:

<xsl:value-of select="concat('javascript:pageLoad
(',$apostrophe,'itemsDisplay.xsl',$apostrophe,',
',guild_id,',null)')" />

These two statements might seem somewhat odd because if you're even slightly familiar with XSL, you
know that there is a perfectly acceptable entity that can be used to render apostrophes. The entity that I
refer to is ', which, unfortunately, would cause quite a few headaches if used here. The entity would
be treated as if it were, in fact, an apostrophe. The XSLT processor would then consider the previous
statement to be equivalent to the following.

<xsl:value-of select="concat('javascript:pageLoad
(',','itemsDisplay.xsl',',',',guild_id,',null)')" />

As you can see, this would lead to an error and a nasty error message instead of the page shown in Figure
11-1.

Figure 11-1. The properly rendered page

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch11lev1sec2.html (4 of 5) [03.07.2007 11:49:01]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/11ajx01_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 11.2. Tabular Information

11.2.2. Updateable

Unlike the previous read-only example, binding cannot be ignored when using XSLT to create updateable
web pages. Even so, several advantages exist that were unavailable in earlier chapters. For example, there
are the funky looping and concatenating strings to build the HTML with the correct number of rows. XSL
takes care of those annoying details for us.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch11lev1sec2.html (5 of 5) [03.07.2007 11:49:01]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 11.3. Advantages and Disadvantages

11.3. Advantages and Disadvantages

A number of advantages exist for designing a site that uses client-side XSLT. The first is that it really looks
good on the old resuméstrike that. The first is that it becomes possible to design more dynamic websites
that can take advantage of the client's machine. In addition, the amount of information can be reduced by
caching the XSL style sheets on the client machine. However, if the resources available on the client
become something of an issue, there are always alternatives.

The first alternative that comes to mind is to not cache the XSL at all; instead, it could be sent back and
forth along with the XML. For large sites, another possibility is to cache only a certain number of pages.
This could be handled in sort of a stack: first in, first out.

Concerning caching, one additional idea comes to mind: Forgo the preload entirely. Instead, style sheets
could be loaded on an as-needed basis. After being loaded, they could then be cached. The interesting
thing about this idea is that, from the client's perspective, performance would improve over timealmost as
if the site got better with practice. Talk about mad scientist stuff!

Alas, all of this is for naught if the client's browser doesn't support transformations. Not all of them do. I
suppose that an alternative should be made available for those that, for some reason, are still running
Microsoft Internet Explorer version 3.0. No, I don't mean server-side transformations to accommodate
luddites; I'm thinking more along the lines of a link to www.mozilla.org, where they can join everyone else
in the twenty-first century.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch11lev1sec3.html [03.07.2007 11:49:02]

http://www.mozilla.org/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 11.4. Summary

11.4. Summary

In this chapter, I covered why the idea of performing transformations on the client side is scary, mostly
because of the actions of Microsoft. Additionally, I covered the reason why using XSLT on the client side
now makes sense, with the advent of Gecko-based browsers and Microsoft Internet Explorer.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch11lev1sec4.html [03.07.2007 11:49:02]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 12. Better Living Through Code Reuse

Chapter 12. Better Living Through Code Reuse

At one time in my career, I was a consultant, or, if you prefer, a hired gun. My job was to ride into town,
clean up things, and then ride off into the sunset. It was like being a Wild West hero, just me and my
horsealright, just me and my little blue car. Please believe me when I say that I ride like the late movie star
Lee Marvin; have you ever seen Cat Balloo? If you haven't, let's just say that my posture in the saddle isn't
the best.

The reason that I bring this up is that, like those heroes of old, I lived by my wits, or approximately half of
my wits, and what I could carry with me. However, instead of a Colt Dragoon, I carried a laptop loaded with
every little tool I had ever written or downloaded. Some of the tools were useful and some of them were
not so useful, but nevertheless, it contained everything that I could possibly need, not counting the games.
I suppose another way to look at it is that I'm a packrat, but once I code something, I'd rather not code it
again.

Of course, it wasn't that I was avoiding coding; actually, I was avoiding the debugging. The act of
debugging isn't distasteful, but the act of debugging the same thing again and again gets old really fast.
Ever hear the phrase "don't reinvent the wheel"? Well, I wholeheartedly agree with it. Although, maybe if I
could make it better

The best part of these Ajax tools is that they aren't carved in stone; they are actually more scribbled in
crayon. Because of this, they are fluid, meant to be more of a guide than gospel. However, even if you
choose not to use these, I recommend that you at least look at them. Most of these functions work pretty
much the same.

Why?

The reason is pretty simple. You see, Ajax applications are just like lemonade. In other words, there are a
few basic ingredients, as with lemons, sugar, and water. Of course, not all lemonades are created equal.
This is mostly because of the amounts of each ingredient and the little extras, such as vodka or checking an
object's readyState property.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12.html [03.07.2007 11:49:02]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.1. Reuse = Laziness

12.1. Reuse = Laziness

I'm not really sure whether it is a character flaw or a skill, but I have a tendency to code some routines
twice. The first time is to solve the particular problem at hand; the second time is so that I have a generic
solution if the problem crops up somewhere else. Sometimes it does and sometimes it doesn't, but it is nice
to be able to accept an assignment and have at least part of the solution coded. It is also a great way to
make sure that there is always time to read User Friendly.

Unfortunately, when I started my career, this wasn't the case, mostly because I encountered managers
who believed in the puritan work ethic: Work constantly until you die, or quit before the age of 33, a burnt-
out husk. Basically, the more lines of code, the better, although they sometimes cloaked their philosophy
behind the words "I need it so that everyone can understand it" or avoid "mad scientist stuff." However,
during the years, this type of manager has largely either died off or retired. I suppose that, on some level,
I will miss them, in much the same way as a headache that has gone away. Yes, I will sorely miss the
threats of nonpayment for reusing code to create new applications.

"Hello, my name is Ed. I reuse code to death and I am not lazy!"

12.1.1. Paid by the Line

Several years ago, as a consultant, I was assigned the responsibility to write client-side JavaScript whose
sole purpose was to speed up the client's website. The problem was that they had a vision of what they
wanted, but they didn't quite know how to implement it. For example, let's say that a web page consisted
of 20 rows in an HTML table, each of which had a select created from a database query, and that each
select had the same options. They saw nothing wrong with executing the same query 20 times and using
VBScript 20 times to create the 20 selects. Oh, there were two other things: With the exception of looping
through the results of the query, there were no loops, and there wasn't even a function that was called 20
times. The code was one straight run. Because it had been written by the lead developer only about six
months before and I was only a consultant, I never asked the burning question: Why?

It didn't take me more than a couple of days to figure out the answer. In fact, all it took was one glance at
their JavaScript library. The entire library consisted of a single function whose purpose was to determine
whether a parameter was numeric, not that it was used anywhere. It was almost like I had stepped through
a rift in the fabric of space-time and found myself in an alternate reality. The more I examined the site, the
more I kept looking around expecting to see Rod Serling. To give you an idea, it was after Y2K and they
were still using HTML FONT tags. There was not a single example of Cascading Style Sheets anywhere. The
word deprecated didn't exist in their world.

There were classic ASP pages that were in excess of 30,000 lines of mixed script and HTML. I was a
stranger in a strange land where developers were paid by the line. It was a new application, not yet in
production, so it couldn't have been maintained into incomprehensibility. What else could explain the way
that things were?

12.1.2. Paid by the Page

Fortunately, I was paid by the pagealright, actually, it was by the hour, but I had a limited number of hours
to produce each page. Couple this with the fact that I'm a hunt-and-peck typist, and you'll quickly
understand why I'm a big believer in code reuse. The odd thing was that, with one exception, nobody ever

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec1.html (1 of 2) [03.07.2007 11:49:03]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.1. Reuse = Laziness

noticed that code was being reused left and right.

On one of my last consulting assignments I met an intern who was fresh out of school yet was one of the
sharpest developers I ever met. After working together for about six months, he asked me why it seemed
that whenever possible I wrote reusable code that often used reusable code that I had written previously.
There was only one way to answer: "I like writing tools to make tools."

A simple enough phrase, "tools to make tools," but what does it mean?

Ask me what I mean, and I'll say that it means that there is an underlying architecture that can be built
upon. But to me personally, it goes much deeper than that. Take a moment and look around you; what do
you see? You're surrounded by toolstools that shelter us, tools that entertain us, tools that preserve our
images and thoughts beyond our individual lifespan.

Where did these tools that have become so important come from? Somebody created them, another person
used them, and yet another person improved them. In essence, the Internet is merely an improvement of a
cave painting taken to the nth degree. There's a long history of our species creating "tools to make tools."
Therefore, it is only natural to create tools, share those tools, every once in a while wonder who will
improve them, and lament the fact that you can't get a good mastodon sandwich anymore.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec1.html (2 of 2) [03.07.2007 11:49:03]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

12.2. JavaScript Objects

Although it's not an object-oriented language, JavaScript is an object-based language. This means that,
although it might not be as powerful as PHP, Ruby, or Java, it is still pretty darn powerful. Add the fact that
it is currently the best/only choice available, and you'll quickly understand why objects are important.

Although there are several ways to create objects in JavaScript, I usually use only two. The first method of
creating an object in JavaScript is simply a matter of writing a function and assigning it to a variable using
the new operator to create an instance, as shown in Listing 12-1.

Listing 12-1. Example function Class Constructor

function word() {
 var _setCount = 0; // Protected variable

 this.theWord; // Public property
 this.setWord = _setWord; // Public method setWord
 this.getWord = _getWord; // Public method getWord
 this.count = _getSetCount; // Public method count

 function _setWord(theWord) {
 // Public exposed as getWord
 this.theWord = theWord;
 _incrementCount();
 }
 function _getWord() { // Public exposed as setWord
 return(this.theWord);
 }
 function _getSetCount() { // Public exposed as count
 return(_setCount);
 }
 function _incrementCount() { // Private method
 ++_setCount;
 }
}

var myInstance = new word();

Now we have an instance of the property word assigned to the variable myInstance, and the only question is,
how do we use it? Thankfully, the notation for addressing properties and methods is a relatively standard
instancename.property or instancename.method(). If you're looking at the constructor, the way to
distinguish them is that they are all preceded by the this keyword. The way to tell which are properties and
which are methods is that methods always are equal to a function. It is important to point out that the
parentheses are omitted because including them would cause the method to be invoked as well as exposed.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (1 of 19) [03.07.2007 11:49:05]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

Although the previous class constructor is essentially useless, it does show the details of how to create a
constructor. It has private members, _setCount, and private methods, _incrementCount. Also, as explained
previously, it has both public properties, as in theWord, and public methods, as in setWord, getWord, and
getSetCount. Of course, an example that is actually useful might not have all of these.

12.2.1. Collections

I might be wrong, but I am of the opinion that the most useful type of data structure that has ever been
conceived, excluding the DOM, is perhaps an associative array. If you're unfamiliar with this type of data
structure, information is stored in name/value pairs. If you know the name, you can find the value. And the
value isn't limited to any particular data type; come to think of it, neither is the name. A good use would be
to cache XSL style sheets because they usually don't change very often. After they're cached, it is no longer
necessary to bother the web server to get them; all that is necessary is to retrieve them from the cache.
However, there is one danger, and that danger is caching information that shouldn't be cached because
someone else might change it, as in the results of database queries.

Listing 12-2 is an example of a constructor for a lightweight cache/associative array. The single private
property, _cache, is a JavaScript object that is the cache itself. There are three public methods to handle
inserting name/value pairs, retrieving values, and purging either selected name/value pairs or the entire
contents of the cache.

Listing 12-2. Cache Class Constructor (Associative Array)

<!-- <![CDATA[
/*
 Class: Cache
 Function: Cache
 Purpose: To act as a client-side cache(associative array).
 Data are stored as name/value pairs.
*/
function Cache() {
 var _cache = new Object();
 // Object to store information
 var _namesArray = new Array(); // Array for names

 this.insert = _insert; // Method: cache an object
 this.retrieve = _retrieve; // Method: retrieve object
 this.purge = _purge; // Method: purge object(s)
 this.names = _names; // Method: return names

 /*
 Function: _insert
 Method: insert
 Purpose: Inserts a name/value pair into the cache.
 */
 function _insert(name,value) {
 _cache[name] = value; // Cache object

 _namesArray.push(name); // Store name
 }
 /*

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (2 of 19) [03.07.2007 11:49:05]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

 Function: _retrieve
 Method: retrieve
 Purpose: Retrieves a value from the cache using a name.
 */
 function _retrieve(name) {
 if(typeof(_cache[name]) == 'undefined')
 return(null); // Object not cached
 else
 return(_cache[name]); // Return object
 }

 /*
 Function: _purge
 Method: purge
 Purpose: Purges one or more name/value pairs from
 the cache.
 */
 function _purge() {
 if(arguments.length == 0) {
 _cache = new Object(); // Create new cache object
 _namesArray = new Array(); // Create new names array
 } else {
 var singleName;

 _namesArray = new Array(); // Create new names array

 for(var i=0;i < arguments.length;i++)
 _cache[arguments[i]] = null;

 for(singleName in _cache)
 if(_cache[singleName] != null)
 _namesArray.push(singleName);
 }
 }

 /*
 Function: _names
 Method: names
 Purpose: Returns an array consisting of the names from the
 cache.
 */
 function _names() {
 return(_namesArray);
 }
}
//]]> -->

As with the previous example, it is necessary to create an instance of the object before using it. Listing 12-
3 shows the object being put through its paces, along with the expected results shown in the comments.

Listing 12-3. Listing Head Here

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (3 of 19) [03.07.2007 11:49:05]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

var magicWords = new Cache();

magicWords.insert(1,'xyzzy'); // Insert key = 1, value = 'xyzzy'
magicWords.insert(2,'plugh'); // Insert key = 2, value = 'plugh'
magicWords.insert(3,'plover');
// Insert key = 3, value = 'plover'

alert(magicWords.names()); // 1,2,3
alert(magicWords.retrieve(1)); // 'xyzzy'
alert(magicWords.retrieve(2)); // 'plugh'

magicWords.purge(3);
// Purge key/value pair - key = 3

alert(magicWords.retrieve(3)); // null
alert(magicWords.names()); // 1,2

magicWords.purge(); // Purge all key/value pairs

alert(magicWords.retrieve(1)); // null

The caching class is pretty straightforward; it is only a wrapper around a JavaScript object that has public
methods that allow for changes to the object and retrieval from the object.

12.2.2. XML

Without a doubt, my biggest complaint concerning client-side XML is the lack of a single cross-browser way
to create an XML document. This is one of those areas in which cross-browser coding can be a real drag
because I have a tendency to create a page using a single browser. Only when I get it working in my
browser of choice do I go back and try to make it work for Internet Explorer. In case you are wondering,
this makes for some really ugly JavaScript, all sewn together from various mismatched parts. I may be a
mad scientist, but there is something to be said for reusability.

That's the reason I cobbled together a few class constructors to neaten things up around the old lab. It's
not like I'm using coasters or anything. I'm just trying to make sure that I can understand what I wrote six
months from now. They say that the memory is the first thing to goor is it the hair? Whatever, I can't even
remember who "they" are anyway, so it can't be important.

The first of these class constructors is to handle the details involved with using the XMLHttpRequest object.
It deals with whether the browser is Microsoft Internet Explorer or any other browser, and then it creates
the XMLHTTPRequest object using the syntax appropriate to the specific browser. In addition, it handles
readyState changes for asynchronous requests. Unlike the previous example, which was created in much
the same manner as a regular JavaScript class, this time a prototype object is created. Although they're not
used for these constructors, prototypes offer the advantage of allowing for the possibility of inheritance if it
is deemed necessary in the future. Listing 12-4 shows what the constructor looks like.

Listing 12-4. Cross-Browser (Gecko and IE) XMLHttp Class Constructor

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (4 of 19) [03.07.2007 11:49:05]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

<!-- <![CDATA[
XMLHttpRequest.prototype = new XMLHttpRequest;
XMLHttpRequest.prototype.constructor = XMLHttpRequest;

/*
 Class: XMLHttpRequest
 Function: XMLHttpRequest
 Method: n/a
 Description: Constructor for this class.
*/
function XMLHttpRequest() {
 try {
 var x = new DOMParser();
 this._IE = false;
 }
 catch(e) { this._IE = true; };
 this._XMLHttp; // XMLHttp request object
 this._requestHeader = new Cache();

 if(this._IE)
 this._XMLHttp = new ActiveXObject('Microsoft.XMLHttp');
 else
 this._XMLHttp = new XMLHttpRequest();
}

// Property: GET, POST or HEAD
XMLHttpRequest.prototype.action = 'GET';
 // Property: true/false
XMLHttpRequest.prototype.asynchronous = true;
 // Property: package to send
XMLHttpRequest.prototype.envelope = null

/*
 Class: XMLHttpRequest
 Function: XMLHttpRequest_readyState
 Method: readyState
 Description: Returns the readyState for the XMLHttpRequest
 object.
*/
function XMLHttpRequest_readyState() {
 return(this._XMLHttp.readyState);
}
XMLHttpRequest.prototype.readyState = XMLHttpRequest_readyState;
/*
 Class: XMLHttpRequest
 Function: XMLHttpRequest_getResponseHeader
 Method: getResponseHeader
 Description: Returns a single response header from the last
 XMLHttpRequest.
*/
function XMLHttpRequest_getResponseHeader(name) {
 return(this._XMLHttp.getResponseHeader(name));
}
XMLHttpRequest.prototype.getResponseHeader =

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (5 of 19) [03.07.2007 11:49:05]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

XMLHttpRequest_getResponseHeader;

/*
 Class: XMLHttpRequest
 Function: XMLHttpRequest_getAllResponseHeaders
 Method: getAllResponseHeaders
 Description: Returns all of the response headers from
 the last XMLHttpRequest.
*/
function XMLHttpRequest_getAllResponseHeaders() {
 return(this._XMLHttp.getAllResponseHeaders());
}
XMLHttpRequest.prototype.getAllResponseHeaders =
XMLHttpRequest_getAllResponseHeaders;

/*
 Class: XMLHttpRequest
 Function: XMLHttpRequest_responseText
 Method: responseText
 Description: Returns the text response from the last
 XMLHttpRequest.
*/
function XMLHttpRequest_responseText() {
 return(this._XMLHttp.responseText);
}
XMLHttpRequest.prototype.responseText =
XMLHttpRequest_responseText;

/*
 Class: XMLHttpRequest
 Function: XMLHttpRequest_responseXML
 Method: responseXML
 Description: Returns the XML DOM document response from
 the last XMLHttpRequest.
*/
function XMLHttpRequest_responseXML() {
 if(this._IE) {
 var xml =
 new ActiveXObject('MSXML2.FreeThreadedDOMDocument.3.0');
 xml.async = true;

 xml.loadXML(this._XMLHttp.responseText);

 return(xml);
 } else
 return(this._XMLHttp.responseXML);
}
XMLHttpRequest.prototype.responseXML =
XMLHttpRequest_responseXML;

/*
 Class: XMLHttpRequest
 Function: XMLHttpRequest_stateChangeHandler
 Method: n/a
 Description: Dummy state change handler for
 asynchronous requests.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (6 of 19) [03.07.2007 11:49:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

*/
function XMLHttpRequest_stateChangeHandler() { }
XMLHttpRequest.prototype.stateChangeHandler =
XMLHttpRequest_stateChangeHandler;

/*
 Class: setRequestHeader
 Function: XMLHttpRequest_setRequestHeader
 Method: setRequestHeader
 Description: Inserts to the cache of HTTP request headers.
*/
function XMLHttpRequest_setRequestHeader(name,value) {
 this.removeRequestHeader(name);
 this._requestHeader.insert(name,value);
}
XMLHttpRequest.prototype.setRequestHeader =
XMLHttpRequest_setRequestHeader;

/*
 Class: setRequestHeader
 Function: XMLHttpRequest_removeRequestHeader
 Method: n/a
 Description: Removes from the cache of HTTP
 request headers.
*/
function XMLHttpRequest_removeRequestHeader(name) {
 this._requestHeader.purge(name);
}
XMLHttpRequest.prototype.removeRequestHeader =
XMLHttpRequest_removeRequestHeader;

/*
 Class: XMLHttpRequest
 Function: XMLHttpRequest_send
 Method: send
 Description: Sends XMLHttpRequest.
*/
function XMLHttpRequest_send() {
 var successful = false;

 if(arguments.length != 0)
 this.envelope = arguments[0];

 switch(this._XMLHttp.readyState) {
 case(4):
 case(0):
 try {
 if(this._IE)
 this._XMLHttp.onreadystatechange =
this.stateChangeHandler;
 else
 this._XMLHttp.stateChangeHandler =
this.XMLHttpRequest_stateChangeHandler;

 this._XMLHttp.open(this.action,this.uri,this.asynchronous);

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (7 of 19) [03.07.2007 11:49:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

 var names = this._requestHeader.names();

 for(var i=0;i < names.length;i++)

this._XMLHttp.setRequestHeader(names[i],this._requestHeader.retrieve(names
[i]));

 this._XMLHttp.send(this.envelope);

 successful = true;
 }
 catch(e) { }

 break;
 default:

 break;
 }

 return(successful);
}
XMLHttpRequest.prototype.send = XMLHttpRequest_send;
//]]> -->

The constructor shown does exactly what the handwritten code from the beginning of Chapter 8, "AJAX
Using XML and XMLHttpRequest," does. In a nutshell, it sends an XMLHttpRequest to the server, waits for
the response, and then acts upon the response. This is not a big deal; just create an instance, and it takes
care of everythingunless, of course, you're paid by the line.

Now that we've got a constructor to handle the getting of XML, it might be a good idea to figure out a place
to put it. What's needed, as if you didn't already know, is a generic XML document object. It doesn't have
to be perfect; it only has to workand by "work," I mean offer a single set of properties and methods. From
the previous chapters, you're already aware that this is written, so let's take a gander at it in Listing 12-5.

Listing 12-5. Cross-Browser XML Document Class Constructor

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (8 of 19) [03.07.2007 11:49:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

<!-- <![CDATA[
XMLDocument.prototype = new XMLDocument;
XMLDocument.prototype.constructor = XMLDocument;

/*
 Class: XMLDocument
 Function: XMLDocument
 Method: n/a
 Description: Constructor for this class.
*/
function XMLDocument() {
 try {
 var x = new DOMParser();
 this._IE = false;
 }
 catch(e) { this._IE = true; };
 this._XMLHttpRequest = new XMLHttpRequest();
 this._XML; // XML DOM document
 this._DOMParser; // XML DOM parser (Gecko only)
 this._XMLSerializer; // XML serializer (Gecko only)
 this._state = 0; // Pseudo readyState

 if(!this._IE) {
 this._DOMParser = new DOMParser();
 this._XMLSerializer = new XMLSerializer();

 this._XML =
 document.implementation.createDocument("", "", null);
 }
}

/*
 Class: XMLDocument
 Function: XMLDocument_load
 Method: load
 Description: Loads the specified XML document.
*/
function XMLDocument_load(xml) {
 var isXMLText = false;
 var isXMLDocument = (typeof(xml) == 'object');

 try { // Test for elements
 isXMLText = (new RegExp('<','g')).test(xml);
}
catch(e) { }

switch(true) {
 case(this._IE && isXMLText): // Internet Explorer & text
 this._XML =
 new ActiveXObject('MSXML2.FreeThreadedDOMDocument.3.0');

 this._XML.async = true;

 this._XML.loadXML(xml);
 this._state = 4; // Ready state complete

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (9 of 19) [03.07.2007 11:49:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

 break;
 case(!this._IE && isXMLText): // Not IE & text
 this._XML =
 this._DOMParser.parseFromString(xml,"text/xml");
 this._state = 4; // Ready state is complete

 break;
 case(this._IE && isXMLDocument):
 // Internet Explorer & XML DOM
 this._XML =
 new ActiveXObject('MSXML2.FreeThreadedDOMDocument.3.0');

 this._XML.async = true;

 try {
 this._XML.loadXML(xml.serialize());
 }
 catch(e) {
 this._XML = xml;
 }

 this._state = 4; // Ready state complete

 break;
 case(!this._IE && isXMLDocument): // Not IE & XML DOM
 try {
 this._XML = xml.DOMDocument();
 }
 catch(e) {
 this._XML = xml;
 }

 this._state = 4; // Ready state is complete

 break;
 default:
 this._XMLHttpRequest.uri = xml;

 try {
 this._XMLHttpRequest.send();

 this._state = 1;
 }
 catch(e) {
 if(this._IE) {
 this._XML =
 new ActiveXObject('MSXML2.FreeThreadedDOMDocument.3.0');

 this._XML.async = true;
 } else
 this._XML =
 this._DOMParser.parseFromString(' ','text/xml');

 this._state = 4; // Error - force complete
 }

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (10 of 19) [03.07.2007 11:49:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

 }

 if(this._state == 4)
 this._XMLHttpRequest = new XMLHttpRequest();
}
XMLDocument.prototype.load = XMLDocument_load;

/*
 Class: XMLDocument
 Function: XMLDocument_serialize
 Method: serialize
 Description: Returns the result of the prior transformation
 as a serialize XML DOM document (text).
*/
function XMLDocument_serialize() {
 try {
 if(this.readyState() == 4) {

 if(this._XMLHttpRequest.readyState() == 4)
 this.load(this._XMLHttpRequest.responseXML());

 if(this._IE)
 return(this._XML.xml)
 else
 return(this._XMLSerializer.serializeToString(this._XML));
 } else
 return(null); // Not loaded
 }
 catch(e) {
 return(null); // Invalid document
 }
}
XMLDocument.prototype.serialize = XMLDocument_serialize;

/*
 Class: XMLDocument
 Function: XMLDocument_DOMDocument
 Method: DOMDocument
 Description: Returns the result of the prior transformation
 as a Browser-native XML DOM document.
*/
function XMLDocument_DOMDocument() {
 try {
 if(this.readyState() == 4) {
 if(this._XMLHttpRequest.readyState() == 4)
 this.load(this._XMLHttpRequest.responseXML());

 return(this._XML);
 } else
 return(null); // Document not loaded
 }
 catch(e) {
 return(null); // Invalid document
 }
}
XMLDocument.prototype.DOMDocument = XMLDocument_DOMDocument;

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (11 of 19) [03.07.2007 11:49:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

/*
 Class: XMLDocument
 Function: XMLDocument_readyState
 Method: readyState
 Description: Returns the readyState for the XML document.
*/
function XMLDocument_readyState() {
if(this._XMLHttpRequest.readyState() == 0)
 return(4);
else
 return(this._XMLHttpRequest.readyState());
}
XMLDocument.prototype.readyState = XMLDocument_readyState;

/*
 Class: XMLDocument
 Function: XMLHttpRequest_setRequestHeader
 Method: n/a
 Description: Inserts to the cache of HTTP request headers.
*/
function XMLDocument_setRequestHeader(name,value) {
 this._XMLHttpRequest.setRequestHeader(name,value);
}
XMLDocument.prototype.setRequestHeader =
XMLDocument_setRequestHeader;

/*
 Class: XMLDocument
 Function: XMLDocument_getResponseHeader
 Method: getResponseHeader
 Description: Returns a single response header from the last
 XMLHttpRequest.
*/
function XMLDocument_getResponseHeader(name) {
 return(this._XMLHttpRequest.getResponseHeader(name));
}
XMLDocument.prototype.getResponseHeader =
XMLDocument_getResponseHeader;

/*
 Class: XMLDocument
 Function: XMLDocument_getAllResponseHeaders
 Method: getAllResponseHeaders
 Description: Returns all of the response headers from
 the last XMLHttpRequest.
*/
function XMLDocument_getAllResponseHeaders() {
 return(this._XMLHttpRequest.getAllResponseHeaders());
}
XMLDocument.prototype.getAllResponseHeaders =
XMLDocument_getAllResponseHeaders;

/*
 Class: XMLDocument
 Function: XMLDocument_setEnvelope

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (12 of 19) [03.07.2007 11:49:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

 Method: setEnvelope
 Description: Sets the envelope for an XMLHttpRequest.
*/
function XMLDocument_setEnvelope(value) {
 this._XMLHttpRequest.envelope = value;
 this._XMLHttpRequest.action = 'POST';
}
XMLDocument.prototype.setEnvelope = XMLDocument_setEnvelope;

/*
 Class: XMLDocument
 Function: XMLDocument_selectNodes
 Method: selectNodes
 Description: Returns an array of XMLDocument based upon
 an XPath statement.
*/
function XMLDocument_selectNodes(xpath) {
 var results;
 var resultArray = new Array(); // XML Document result array

 if(this.readyState() == 4)
 if(this._XMLHttpRequest.readyState() == 4)
 this.load(this._XMLHttpRequest.responseXML());

 if(_IE) {
 results = this._XML.selectNodes(xpath);
 for(var i=0;i < results.length;i++) {
 resultArray.push(new XMLDocument());
 resultArray[i].load(results[i].xml);
 }
 } else { // XPath evaluator
 var evaluator = new XPathEvaluator();
 var resolver =
evaluator.createNSResolver(this._XML.documentElement);
 var result; // Single XPath result
 var xml;
 var i = 0; // Counter

 results =
evaluator.evaluate(xpath,this._XML,resolver,XPathResult.ANY_TYPE,null);

 while(result = results.iterateNext()) {
 xml = document.implementation.createDocument("", "",null);

 xml.appendChild(xml.importNode(result,true));
 resultArray.push(new XMLDocument());
 resultArray[i].load(this._XMLSerializer.serializeToString(xml));

 ++i;
 }
 }

 return(resultArray);
}
XMLDocument.prototype.selectNodes = XMLDocument_selectNodes;

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (13 of 19) [03.07.2007 11:49:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

/*
 Class: XMLDocument
 Function: XMLDocument_selectSingleNode
 Method: selectSingleNode
 Description: Returns a single XML document based upon an
 XPath statement.
*/
function XMLDocument_selectSingleNode(xpath) {
 return(this.selectNodes(xpath)[0]);
}
XMLDocument.prototype.selectSingleNode =
XMLDocument_selectSingleNode;
//]]> -->

Now that there is a generic constructor for XML documents and a constructor for the XSLT Request object,
the next task is to ask the nice web service for an XML document. To do this, a quick and easy way of
producing a SOAP envelope is required. In writing this constructor, I learned something about SOAP that I
hadn't realized in the past: SOAP is, in some ways, like a car. With a car, there is a base model, and,
regardless of the options, the base model remains the same. Oh, sure, some cars have better sound
systems and some have bigger engines, but underneath all the little extras, the cars are essentially the
same. Take my car, for example; with the exception of the dirt and the dent on the hood from a flower pot,
when you get past the options, it is just like the other car from that model year.

This same approach was used when writing the SOAPEnvelope constructor. A basic template serves as a
starting point, and all of the other options are then added on. These options consist of things such as the
operator, content, and namespaceall required, but very often different from request to request. Listing 12-6
shows the inner workings of this constructor.

Listing 12-6. Cross-Browser SOAPEnvelope Class Constructor That Uses Regular
Expressions

<!-- <![CDATA[
SOAPEnvelope.prototype = new SOAPEnvelope;
SOAPEnvelope.prototype.constructor = SOAPEnvelope;

/*
 Class: SOAPEnvelope
 Function: SOAPEnvelope
 Method: n/a
 Description: Constructor for this class.
*/
<!-- <![CDATA[
function SOAPEnvelope() {
 this._template = '<?xml version="1.0" encoding="utf-8"?>';

 this._template += '<soap:Envelope
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">';

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (14 of 19) [03.07.2007 11:49:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

 this._template += '<soap:Body>';
 this._template += '<_operator xmlns="_namespace">';
 this._template += '_package';
 this._template += '</_operator>';
 this._template += '</soap:Body>';
 this._template += '</soap:Envelope>';
}

SOAPEnvelope.prototype.operator = null;
SOAPEnvelope.prototype.namespace = 'http://tempuri.org/';
SOAPEnvelope.prototype.content = null;

/*
 Class: SOAPEnvelope
 Function: SOAPEnvelope_envelope
 Method: envelope
 Description: Returns the readyState for the XMLHttpRequest
 object.
*/
function SOAPEnvelope_envelope() {
 var work;

 work = this._template.replace(/_operator/g,this.operator);
 work = work.replace(/_namespace/g,this.namespace);
 work = work.replace(/_package/g,this.content);

 return(work);
}
SOAPEnvelope.prototype.envelope = SOAPEnvelope_envelope;
//]]> -->

12.2.3. XSLT

The final constructor that was used in the examples was the XSLTProcessor constructor, which serves as the
poster child for code reuse. It has two instances of XMLDocument objects, one for the XML document and one
for the XSL style sheet. It also serves fairly well to show some of the difference between Gecko-based
browsers such as Firefox, Mozilla, and Netscape, and Microsoft Internet Explorer.

These differences range from Internet Explorer needing a template to create a processor to something as
simple as Firefox needing a serializer to obtain the text representation of an XML document. Listing 12-7
shows the constructor for the XSLTProcessor.

Listing 12-7. Cross-Browser XSLTProcessor Class, Used for Transformations

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (15 of 19) [03.07.2007 11:49:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

<!-- <![CDATA[
XsltProcessor.prototype = new XsltProcessor;
XsltProcessor.prototype.constructor = XsltProcessor;

/*
 Class: XsltProcessor
 Function: XsltProcessor
 Method: n/a
 Description: Constructor for this class.
*/
function XsltProcessor() {
 try {
 var x = new DOMParser();
 this._IE = false;
 }
 catch(e) { this._IE = true; };
 this._xsl = new XMLDocument(); // Input XSL style sheet
 this._xml = new XMLDocument(); // Input XML document
 this._output; // Output (text)
 this._XMLSerializer; // XML serializer (Gecko only)
 this._XSLTemplate; // XSLT template (IE only)
 this._XsltProcessor; // XSLT processor

 if(!this._IE)
 this._XMLSerializer = new XMLSerializer();
}

/*
 Class: XsltProcessor
 Function: XsltProcessor_initialize
 Method: _initialize
 Description: Initializes/re-initializes the XSLT processor.
*/
function XsltProcessor_initialize() {
 if(this._IE) {
 this._XSLTemplate =
 new ActiveXObject('MSXML2.XSLTemplate.3.0');

 this._XSLTemplate.stylesheet = this._xsl.DOMDocument();

 this._XsltProcessor = this._XSLTemplate.createProcessor;
 } else
 this._XsltProcessor = new XSLTProcessor();
}
XsltProcessor.prototype._initialize = XsltProcessor_initialize;

/*
 Class: XsltProcessor
 Function: XsltProcessor_setParameter
 Method: setParameter
 Description: Inserts an XSLT parameter to the parameter
 cache.
*/
function XsltProcessor_setParameter(name,value) {
 try {

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (16 of 19) [03.07.2007 11:49:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

 if(this._IE)
 this._XsltProcessor.addParameter(name,value);
 else
 this._XsltProcessor.setParameter(null,name,value);
 }
 catch(e) {
 this._initialize();
 this.setParameter(name,value);
 }
}
XsltProcessor.prototype.setParameter =
XsltProcessor_setParameter;

/*
 Class: XsltProcessor
 Function: XsltProcessor_load
 Method: load
 Description: Loads the XML document to be transformed.
*/
function XsltProcessor_load(xml) {
 try {
 this._xml.load(xml);
 }
 catch(e) {
 this._initialize();
 }
}
XsltProcessor.prototype.load = XsltProcessor_load;

/*
 Class: XsltProcessor
 Function: XsltProcessor_importStylesheet
 Method: importStylesheet
 Description: Loads the XSL style sheet for the
 transformation.
*/
function XsltProcessor_importStylesheet(xsl) {
 try {
 this._xsl.load(xsl);
 }
 catch(e) {
 this._initialize();
 }
}
XsltProcessor.prototype.importStylesheet =
XsltProcessor_importStylesheet;

/*
 Class: XsltProcessor
 Function: XsltProcessor_readyState
 Method: readyState
 Description: Returns the readyState for a combination of
 the XML document and the XSL style sheet.
*/
function XsltProcessor_readyState() {
 switch(true) {

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (17 of 19) [03.07.2007 11:49:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

 case((this._xsl.readyState() == 0) && (this._xsl.readyState() == 0)):
 return(this._xsl.readyState());

 break;
 case((this._xsl.readyState() > 0) && (this._xsl.readyState() < 4)):
 return(this._xsl.readyState());

 break;
 case((this._xml.readyState() > 0) && (this._xml.readyState() < 4)):
 return(this._xml.readyState());

 break;
 default:
 return(4);

 break;
 }
}
XsltProcessor.prototype.readyState = XsltProcessor_readyState;

/*
 Class: XsltProcessor
 Function: XsltProcessor_transform
 Method: transform
 Description: Performs the XSL transformation using the
 supplied XML document and XSL style sheet.
 Returns the result as an XML document.
*/
function XsltProcessor_transform() {
 if(this._IE) {
 this._XsltProcessor.input = this._xml.DOMDocument();

 this._XsltProcessor.transform();

 this._output = this._XsltProcessor.output;
 } else {
 this._XsltProcessor.importStylesheet(this._xsl.DOMDocument());

 this._output =
this._XMLSerializer.serializeToString(this._XsltProcessor.transformToDocum
ent(this._xml.DOMDocument(),document));
 }

 this._initialize();

 return(this._output);
}
XsltProcessor.prototype.transform = XsltProcessor_transform;

/*
 Class: XsltProcessor
 Function: XsltProcessor_serialize
 Method: serialize
 Description: Returns the result of the prior transformation
 as a serialize XML document (text).
*/

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (18 of 19) [03.07.2007 11:49:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.2. JavaScript Objects

function XsltProcessor_serialize() {
 return(this._output);
}
XsltProcessor.prototype.serialize = XsltProcessor_serialize;
//]]> -->

12.2.4. Serialization Without Berries

One common item that you'll notice throughout each of the previous constructors is that serialization plays
a big part in handling XML. Several reasons account for this, the first being that XML was designed to be
human readable, and humans read text, not binary. For example, when was the last time you heard,
"ASCII 65, uppercase 'A'"? I'm the one who was called a mad scientist, and I don't deal with that stuff, so I
can't imagine the more mundane members of humanity doing things like that.

The second reason for serialization is the underlying architecture of the web, the Hypertext Transfer
Protocol, or HTTP, for short. The HTML, XHTML, JavaScript, CSS, XML, and XSL travel back and forth from
the server to the client as text. Without serialization, all of the "X-stuff," as an old supervisor of mine put it,
wouldn't be going anywhere.

Another reason for serialization is that, unlike an XML object, very little overhead is associated with text. An
XML DOM document requires between three and ten times the memory of the equivalent text document.
This overhead could cause some issues in the client's browser on older machines. Of course, the issue of
overhead has to be weighted against parsing the text to load a document.

My final reason for serialization is that it is just so easy to load an XML document from a text document. In
Microsoft Internet Explorer, it is simply a matter of using the loadXML method. With Firefox, a little more
work is necessary, but not too much. Just use the DOMParser's parseFromString method and reconstituted
XML, just like freeze-dried coffee or freeze-dried minions.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec2.html (19 of 19) [03.07.2007 11:49:06]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.3. Generic XSLT

12.3. Generic XSLT

Whenever I'm creating an XSL style sheet, unless I'm very, very careful, my style sheets are basically a
one-trick pony. Yeah, they do that one trick well, but as I said before, I'm paid by the page, not by the line.
Maybe this is the reason the style sheets that I create arehmm, how to put it nicely?weird. Yes, that's the
word, weird.

It isn't that they don't workthey work perfectly well. It is more along the lines that I use a lot of relative
positioning. Although this approach might seem somewhat dangerous, there are several ways to decrease
the danger to tolerable levels. More simply put, take cautions to prevent the style sheets from blowing up
and taking the web page out with them. One of these methods is to always make sure that the XML
document has the same basic structure, /root/row/node. This makes it far less likely that you will encounter
any surprises.

Remember back to Chapter 9, "XPath," to the brief introduction to XPath with all the slashes and asterisks?
Well, the asterisks are wildcards, used when the node name is unknown. This means that /*/*/* is the
equivalent to /root/row/nodeat least, when we want all the nodes that are the second descendant of the
root node.

12.3.1. Forms

As long as the structure of the XML document is known, it isn't very difficult to create generic XSL style
sheets. Knowing the names of the individual nodes isn't important, either, although, for the extremely lazy,
like myself, the names can be important when creating either labels or column headers. To show what I
mean, it is necessary to introduce two XSLT functions.

The first of these functions is the name function. It provides the name of the node passed, which, in these
cases, is the context node ".". It returns the actual node name, so if the node name is item_price, then
item_price is returned. Yes, I am aware that a label or header with item_price isn't much better than no
label at all, which is where the second function, translate, comes in.

The translate function, well, translates. It replaces one character with another, so instead of having a label
or a header of item_price, it can be ITEM PRICE. For me, the latter is a lot more like what I expect when
visiting a website. Accepting three parametersthe source string, the from string, and the to stringit returns
a string consisting of one-for-one replacements of characters.

I should cover a couple things before we use the translate function. The first of these is that in instances
when the from string doesn't contain a particular character, that character is copied unchanged. The second
thing is that it is a good idea to verify that characters in the from string and characters in the to string are
in the same position in their respective strings. Or, more simply stated, using a from string of qwerty and a
to string of wertyu will result in a Caesar Cipher. And although a Caesar Cipher might have been state-of-
theart in 40 B.C., I'm reasonably sure that it isn't the result that you've hoped for.

With that out of the way, let's take a look at Listing 12-8, which is an XSL style sheet that creates a basic

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec3.html (1 of 4) [03.07.2007 11:49:06]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.3. Generic XSLT

form.

Listing 12-8. Generic XSL Style Sheet to Produce an HTML Table

<?xml version='1.0'?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html" indent="yes" media-type="text/html"/>

 <xsl:template match="/">

 <xsl:element name="table">
 <xsl:apply-templates select="/*/*/*" />
 </xsl:element>

 </xsl:template>

 <xsl:template match="*">

 <xsl:element name="tr">
 <xsl:element name="td">
 <xsl:value-of
select="translate(name(.),'qwertyuiopasdfghjklzxcvbnm_','QWERTYUIOPASDFGHJ
KLZXCVBNM ')" />
 </xsl:element>
 <xsl:element name="td">
 <xsl:element name="input">
 <xsl:attribute
name="type">text</xsl:attribute>
 <xsl:attribute name="name">
 <xsl:value-of select="name(.)" />
 </xsl:attribute>
 <xsl:attribute name="value">
 <xsl:value-of select="." />
 </xsl:attribute>
 </xsl:element>
 </xsl:element>
 </xsl:element>

 </xsl:template>

</xsl:stylesheet>

This is nothing fancy, but it is a proof of concept that can be taken further to show that it is, in fact,
possible to create a generic XSL style sheet that produces HTML forms. Although it is rather
simpleprimitive, evenit is easy to imagine some possibilities, such as specifying input types via parameters.

12.3.2. Tabular

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec3.html (2 of 4) [03.07.2007 11:49:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.3. Generic XSLT

Applying a generic XSL style sheet to tabular information isn't very different from applying it to create a
form. Really only a couple differences arise when working with tabular information instead of a form. The
first difference is that, instead of labels at the side, they're column headers on the top. All that is required
to do this is to create two templates; the first deals with creating a table row, and the second creates a
table header. Other than that, the only real difference is the addition of a predicate, [1], to ensure that the
header is created only once. We then have an XSL style sheet that looks like the one in Listing 12-9.

Listing 12-9. Generic XSL Style Sheet to Produce an HTML Table with Headers
Based upon the Node Name

<?xml version='1.0'?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html" indent="yes" media-type="text/html"/>

 <xsl:template match="/">
 <xsl:element name="table">
 <xsl:apply-templates select="/*/*[1]" mode="header" />
 <xsl:apply-templates select="/*/*" mode="row" />
 </xsl:element>
 </xsl:template>

 <xsl:template match="*" mode="header">
 <xsl:element name="tr">
 <xsl:apply-templates select="./*" mode="column" />
 </xsl:element>
 </xsl:template>

 <xsl:template match="*" mode="row">
 <xsl:element name="tr">
 <xsl:apply-templates select="./*" mode="node" />
 </xsl:element>
 </xsl:template>

 <xsl:template match="*" mode="column">
 <xsl:element name="th">
 <xsl:value-of
select="translate(name(.),'qwertyuiopasdfghjklzxcvbnm_','QWERTYUIOPASDFGHJ
KLZXCVBNM ')" />
 </xsl:element>
 </xsl:template>

 <xsl:template match="*" mode="node">
 <xsl:element name="td">
 <xsl:value-of select="." />
 </xsl:element>
 </xsl:template>

</xsl:stylesheet>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec3.html (3 of 4) [03.07.2007 11:49:06]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.3. Generic XSLT

Of course, the examples shown here are rather simple, and there are a number of ways to improve them.
One of these ways to dress up the generic style sheets is to write the header template with xsl:when to
output more meaningful headers. Another possibility is to use Cascading Style Sheets to give a more
polished look and feel. Finally, right-justifying numbers wouldn't hurt.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec3.html (4 of 4) [03.07.2007 11:49:06]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 12.4. Summary

12.4. Summary

The advantages of code reuse are obvious; large pieces of code need only be designed, coded, tested, and
documented once. Whether it is a class constructor, a function, or an XSL style sheet, if at least part of a
solution is already written, you're that much closer to delivery of the final application.

Another issue is that developers can be insulated from the ins and outs of the various web browsers. No
longer is there a sharp learning curve ahead or the feeling of hopelessness associated with trying to make
something work in Internet Explorer while trying not to break it in Firefox. I have to admit that at times
I've fixed a web page in one browser only to find that in the other browser it was fixed in the same way
that the vet fixed my cat, Moreta.

The important thing to remember is that if you can complete three web pages in the time that it takes for
Igor to complete one, who do you think will be shown the door the next time that the layoff fairy pays a
visit?

Unfortunately, some development shops still cling to the outmoded idea that the better programmer writes
more lines of code. Thankfully, this idea is going the way of the three-martini lunch. Gin, yuck! When you
get down to it, the biggest possible problem is that if one of the constructors has a bug, every page that
uses that constructor either directly or indirectly has the same bug.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch12lev1sec4.html [03.07.2007 11:49:07]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 13. Traveling with Ruby on Rails

Chapter 13. Traveling with Ruby on Rails

Mention the subject of Ajax, and within five minutes somebody will bring up Ruby on Rails. Just as with
Ajax, Ruby on Rails has become a winning phrase in corporate buzzword bingo. It is kind of sad that both
topics have been relegated to buzzwords, with managers wielding them interchangeably, like they're some
kind of weapons. Unfortunately, managers are just as likely to hurt themselves as somebody else, which
just goes to show that it is a good idea to know what the tools are before attempting to use them.

In this chapter, we cover some of the history of Ruby on Rails, followed by what it is and how to install it on
a system running Windows XP. From there, we examine how to start developing, using Ruby on Rails, and
how to solve a simple problem using it.

Unfortunately, it is beyond the scope of this book to do more than introduce Ruby on Rails. There is
actually a logical reason for this, beyond the fact that I'm more of a JavaScript guy than a Ruby guy. The
reason for this is college.

Huh?

When I was in college, some students, well, complained about how the professors taught. The problem is
that the professors didn't give them the code required for every assignment. We were taught, for example,
how to create a data structure, but not the particular data structure for Question 6 on the midterm. The
professors pointed us in a direction and expected us to reach the destination on our own. Gee, the nerve of
those professorsthey pointed us in a particular direction and expected us to find the way ourselves.

Seriously, this is merely an example, not the answer to Question 6. So if you choose to seriously examine
Ruby on Rails, allow me to point the way.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13.html [03.07.2007 11:49:07]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.1. What Is Ruby on Rails?

13.1. What Is Ruby on Rails?

A single word in the English language, in my opinion, sums up what Ruby on Rails is: synergy. Just in case
you're unaware of the meaning of the word synergy, it roughly means that the whole is greater than the
sum of its parts. Need a few examples of synergy? How about chocolate and peanut butter? Individually,
either ingredient is good, but put them together and, well, yum!

With Ruby on Rails, instead of chocolate and peanut butter, there is Ruby and Rails. This realization leads
me to two additional questions. The first is "Beyond being a deep-red corundum crystal, just what is Ruby?"
There is, after all one thing that I am certain of, and it is that Ruby is a language and not a mineral,
although it is possible to create a laser using a ruby, and lasers are the meat and potatoes of most mad
scientists.

13.1.1. Ruby

The Ruby that is referred to in this chapter is an object-oriented programming language created by Yukihiro
Matsumoto of Japan in 1993. In Japan, not surprisingly, Ruby quickly became quite popular, with home-
field advantage and all that kind of stuff. However, because of its price tag of zero (it is, after all, an open
source language), Ruby began to catch on outside of Japan. Yes, against all odds, Ruby become something
of a phenomenon.

Although some might consider it odd that an open source language from a land far away from our little
piece of the universe planted the seed of the idea of Ajax, I do not. I, for one, am open to ideas, regardless
of the source. Alright, I'm a little more open to the ideas that relate to food, but, then, I'm one of those
developers who eats anything that doesn't try to eat me first.

The interesting thing is that, even with people like me, mad scientists without enough time who like sushi
and green tea ice cream, Ruby's popularity was growing only slowlyfaster than a bonsai tree, but slower
than Godzilla, Pokemon, or Yu-gi-oh. Fortunately, something changed back in 2004. No, radiation was not
involved, but what happened is that Ruby got Rails.

13.1.2. Ruby on Rails

The word Rails is rather interesting; it brings up connotations of a sleek, silent, fast electric train moving
into the future. That's a pretty nice connotation, especially when tied to web development, which, in my
opinion, more often resembles a runaway steam train with no brakes on a downgrade, going into a hairpin
curve during a snowstorm on Monday. In short, the average project is an accident waiting to happen. The
accident might never happen, but the potential is there regardless. Rails is a full-stack programming
framework implemented in Ruby whose purpose is to smooth the development of web applications.

Created by a Danish college student, David Heinemeier Hansson, Rails is open source and is based upon
two simple principles. The first is that fewer lines of code equal fewer coding errors. This is a sensible idea
because smaller, tighter code requires less time to write and debug. This remaining time could then be put
toward testing or toward the inevitable feature creep that rises like a monster from a slab.

The second principle of Rails is configuration. Unlike many environments, Rails doesn't use configuration
files. Instead, Rails uses information in application code itself to determine its configuration. This eliminates
the "Doh!" factor that occurs whenever an application is moved to another environment, even when the

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec1.html (1 of 2) [03.07.2007 11:49:07]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.1. What Is Ruby on Rails?

environment is merely another developer's laptop. Although I can't speak for anyone else, I do know from
personal experience that configuration files are one of those things that fall through the cracks about 20
percent of the time.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec1.html (2 of 2) [03.07.2007 11:49:07]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.2. Installation

13.2. Installation

This entire preamble leads to the two important questions of where to get Ruby and where to get Rails.
That's easy. A simple Google search for "ruby rails" is enough to answer both questions simultaneously. I
do recommend a single search instead of individual searches, unless, of course, you are also interested in
jewelry and traveling by train.

The process of installing Ruby is dependent upon which operating system your machine is running. For
wimps like me who happen to be running Windows XP Professional, listening to Jethro Tull, and writing a
book, installation is simply a matter of downloading an .exe and double-clicking it to get the ball rolling. It
installs just like the shrink-wrapped software that you purchase, minus the autorun CD and price tag, as
Figures 13-1 and 13-2 show.

Figure 13-1. Windows installation wizard

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec2.html (1 of 3) [03.07.2007 11:49:08]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.2. Installation

Figure 13-2. Choosing components in the Windows wizard

If the lack of an autorun CD makes you nervous, then, by all means, create your own autorun CD.
However, if the lack of a price tag makes you nervous, I recommend that you buy a second copy of this
book and give it to a friend as a gift. In this manner, you've got a bill and you've also given the nice people
at Prentice Hall a reason to send me a check. In short, everyone is happy all around.

In a Windows environment, the installation of Ruby on Rails requires a couple additional steps. The first of
these steps is to install Rails itself. If you have an Internet connection, this is just a single line; it is at the
command prompt, but, nevertheless, it is a single line (see Figure 13-3).

Figure 13-3. Installing Rails at the command prompt

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec2.html (2 of 3) [03.07.2007 11:49:08]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.2. Installation

However, if you are a real web developer and not a quiche-eating Windows user, installation will be a little
more complex. Don't worry, it isn't a "Windows is superior" thingin fact, it is more of a "Windows has
training wheels" thing. Now that I've thoroughly confused you, the fact is that the RubyGems package
manager is part of the Windows installer, which isn't the case with Linux. However, because Linux isn't a
stagnant environment, I recommend checking the Ruby website for the latest installation procedures.

Now that you've (hopefully), installed Ruby and Rails, it is time to kick the steel wheels (ouch) and take it
out for a little spin. Woo-hoo!

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec2.html (3 of 3) [03.07.2007 11:49:08]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.3. A Little Ruby on Rails Warm-Up

13.3. A Little Ruby on Rails Warm-Up

As stated previously, Ruby is the object-oriented programming language, and Rails is the framework used
to develop applications. Let's say, for example, that I want to create a mad scientist application using Ruby
on Rails. The steps would be something like the following:

1. If it doesn't exist, create a folder/directory to hold each of my Ruby on Rails applications. In this
example, I created a folder called rails on my C: drive.

2. Using the command prompt, enter cd rails. This changes the current directory to C:\rails.

3. Create an empty web application by running the command rails madscientist, as shown in Figure
13-4.

Figure 13-4. Creating an empty project at the command prompt

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec3.html (1 of 6) [03.07.2007 11:49:08]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx04_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.3. A Little Ruby on Rails Warm-Up

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec3.html (2 of 6) [03.07.2007 11:49:08]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.3. A Little Ruby on Rails Warm-Up

4. Start the web server WEBrick, which is included with Ruby, as shown in Figure 13-5.

Figure 13-5. Starting the WEBrick web server at the command prompt

[View full size image]

5. Check out what is out on the web server in the browser of your choice (see Figure 13-6).

Figure 13-6. The default start page

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec3.html (3 of 6) [03.07.2007 11:49:08]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx05_alt.jpg
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx06_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.3. A Little Ruby on Rails Warm-Up

Not very impressive, is it?

6. Now is a good time to type Ctrl+C in the command prompt window to shut down WEBrick, as shown
in Figure 13-7, before falling back and regrouping.

Figure 13-7. Shutting down the WEBrick web server at the command
prompt

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec3.html (4 of 6) [03.07.2007 11:49:08]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx07_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.3. A Little Ruby on Rails Warm-Up

Well, we're only partway there; in fact, we should consider ourselves lucky that there is anything at all to
show. Satisfied? Neither am I, so to progress further, we need to understand where things go in a Rails
application.

The rails madscientist command created a number of folders and files that perform various functions.
Take, for example, the database.yml file in the config folder; its purpose is to provide the application with
details regarding the database to be used by the application. This is an example of the Rails "place for
everything and everything in its place" approach. Personally, I wish this idea was more widespread. It
would have gotten me out of some embarrassing moments in the past.

Another folder that is of interest is the public folder. Along with its three child folders, images, javascripts,
and stylesheets, it provides a standard location for stashing the aforementioned. In most other
environments, locating these types of files is more akin to a treasure hunt than web development.

The final folders that I'll cover are the app folder, along with the child folders called: controllers, helpers,
models, and views. Still feel like you're in the dark? Give me a moment to illuminate. The first directory,
controllers, contains classes that handle web requests from the visitor. The helpers directory holds helper
classes, which are used by other classes, such as controller classes. Model classes, contained in the models
subdirectory, are used to wrap the data stored in a database. Personally, I think that this is where
application development can get really messy and often goes wrong. Finally, there is the views
subdirectory, which holds the views. Views are the templates that are converted to HTML and returned to
the visitor's web browsers.

Although at first glance it might seem that the application is spread around a bit, that really isn't the case.
Instead of the normal "I know it is around here somewhere" approach usually associated with web
development, Rails provides a consistent location for each class. If only this approach could be applied to
the real world, I would spend a lot less time looking for my watch.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec3.html (5 of 6) [03.07.2007 11:49:08]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.3. A Little Ruby on Rails Warm-Up

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec3.html (6 of 6) [03.07.2007 11:49:08]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.4. A Problem Revisited

13.4. A Problem Revisited

Now that I've got some kind of idea (yeah, right) of what I'm doing with Ruby on Rails, the next question is
how to use it in an application. The first task is to identify exactly what I want to do. For example, let's say
that I want to display the items contained in the item table. The first necessary task is to generate a data
model using the command console, as shown in Figure 13-8.

Figure 13-8. Generating a data model at the command prompt

[View full size image]

The next step is to update the database.yml in the config directory to use the MySQL database from the
previous chapters. The following is a snippet of the necessary code.

development:
 adapter: mysql
 host: localhost
 database: ajax
 username: root
 password: wyvern

These are the subsequent steps:

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec4.html (1 of 6) [03.07.2007 11:49:09]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx08_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.4. A Problem Revisited

1. Generate a controller for the item data model (see Figure 13-9).

Figure 13-9. Generating a controller for the data model at the command
prompt

[View full size image]

2. Add a single line to the generated controller (See Listing 13-1).

Listing 13-1.

class ItemController < ApplicationController
 scaffold :item
end

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec4.html (2 of 6) [03.07.2007 11:49:09]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx09_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.4. A Problem Revisited

3. Fire up WEBrick to see what happens (see Figure 13-10).

Figure 13-10. A "Doh!" moment accessing a database

[View full size image]

Hmm, not exactly what I expected. It seems that Rails changed the table name item to items. Not good.
Being among the lazy, I decided to go into the MySQL Query Browser and change the table name from item
to items (see Figure 13-11) and try again (see Figure 13-12).

Figure 13-11. Changing the database name in MySQL

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec4.html (3 of 6) [03.07.2007 11:49:09]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx10_alt.jpg
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx11_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.4. A Problem Revisited

Figure 13-12. A working example

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec4.html (4 of 6) [03.07.2007 11:49:09]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx12_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.4. A Problem Revisited

That is a little closer to what I am looking for. The trick is that, by default, Rails generates a query
assuming that item is the row and items is the table. This isn't a big deal; it is just something to keep in
mind when creating tables and using the defaults.

But what if you don't want to use the stuff generated by default, and where does Ajax fit into things?

The answer to the first question is simple enough: Just generate a scaffold, as Figure 13-13 shows.

Figure 13-13. Generating a scaffold at the command prompt

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec4.html (5 of 6) [03.07.2007 11:49:09]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx13_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.4. A Problem Revisited

It is then necessary to add the logic to the controller, the view, the layout, and the various templates.

This leaves only one question unanswered: Ajax? Remember the javascripts folder under the public
folder? Well, in there is a file named prototypes.js that has all the logic required for asynchronous
JavaScript and XML in Ruby on Rails. If you're interested, I'll offer a hint: Look at the xml_http_request?
method. There's a lot to it, and I recommend playing.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec4.html (6 of 6) [03.07.2007 11:49:09]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.5. Whither Ajax?

13.5. Whither Ajax?

Considering the number of goodies built into the Rails API, finding exactly where the Ajax functionality is
hidden could take a little work. However, because I'm really crumby at keeping secrets, I'll spill the beans;
everything that we're interested in is in the JavaScriptHelper module, as Table 13-1 shows.

Table 13-1. JavaScriptHelper Methods

Method Description

define_javascript_functions() Includes all the JavaScriptHelper's
JavaScript functions in the page.

draggable_element (element_id, options = {}) Makes the element with the
corresponding ID draggable.

drop_receiving_element (element_id, options = {}) Forces the dropping (drag and drop) of
an element. Also makes an Ajax call.

escape_javascript(javascript) Escapes the provided JavaScript.

evaluate_remote_response() Creates a JavaScript function that can
evaluate a document returned from the
server.

form_remote_tag(options = {}) Creates an HTML form that will be
submitted using the XMLHttpRequest
object.

javascript_tag(content) Creates a JavaScript HTML tag/end tag
that contains the provided content.

link_to_function(name, function, html_options = {}) Creates a hyperlink that links to a client-
side JavaScript function.

link_to_remote(name, options = {}, html_options = {}) Creates a hyperlink that links to the
server via an asynchronous
XMLHttpRequest request.

observe_field(field_id, options = {}) Watches a field with the provided ID for
user changes.

observe_form(form_id, options = {}) Watches the form with the provided ID
for user changes.

periodically_call_remote (options = {}) Calls a provided URL whenever the
interval elapses. If no interval is
provided, a default of 10 seconds is used.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec5.html (1 of 2) [03.07.2007 11:49:09]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.5. Whither Ajax?

remote_function(options) Returns a JavaScript snippet necessary
for a remote function.

sortable_element(element_id, options = {}) Alters the HTML element with the
corresponding element_id so that the
element is sortable via an Ajax call.

submit_to_remote(name, value, options = {}) Displays a button that submits a form
using the XMLHttpRequest object
asynchronously.

update_element_function (element_id, options = {}, &block) Updates the browser's DOM using the
passed arguments.

visual_effect(name, element_id = false, js_options = {}) Returns JavaScript code that uses Ajax
callbacks for visual effects.

Because I find myself in pretty much the same situation as one of the professors when I went to collegeat
least, as far as Ruby on Rails is concernedI'm putting off an example of Ajax using Ruby on Rails until
Chapter 14, "Traveling Farther with Ruby." The reason for this is that I'm a little out of my comfort zone
here; like the professor, I'm essentially taking a class during the day and teaching it at night.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec5.html (2 of 2) [03.07.2007 11:49:09]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 13.6. Summary

13.6. Summary

In this chapter, we covered some of the history of Ruby on Rails, including the fact that Ruby on Rails is
separated into Ruby and Rails. From there, we covered the process of installing Ruby and then installing
Rails and viewing the default page. Then we covered how to create an empty project and fire up the
included WEBrick web server and access a MySQL database, albeit with a little difficulty. In essence, the
purpose of this chapter is to point the reader in the right direction when in search of an environment that
supports Ajax.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch13lev1sec6.html [03.07.2007 11:49:09]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 14. Traveling Farther with Ruby

Chapter 14. Traveling Farther with Ruby

If you're one of those developers who has never ventured outside the world of shrink-wrapped software,
you've probably never heard of Ruby, the programming language I introduced in Chapter 13, "Traveling
with Ruby on Rails," not the gem. As I noted in the last chapter Ruby, the language, is an object-oriented
language that was created by Yukihiro Matsumoto of Japan and released into the wild in 1995. Ruby has
many advantages over other programming languages that fill the same niche.

The first of these advantages is that Ruby is interpreted instead of compiled. On the surface, this might
sound like a disadvantage, but it really isn't. Because I'm currently running only Windows XP, at times
there has been a binary version of a program that only works on another operating system, such as Linux.
However, with a scripted language such as Ruby, as long as I've installed it, I am good to go. Now all I
need is to find a Ruby version of Hunt the Wumpus, and I'm all set.

Like Godzilla, it has expanded beyond its humble roots as a glimmer in its creator's eye to become
something of a cult phenomenon. Oh, I mean cult in the good senseno chanting or wearing funny clothes
like those strange people who get dressed up to go to Renaissance festivals.

Seriously, Ruby is an object-oriented language that has capabilities and features that today's fast-paced
development environment needs. And did I mention that Ruby is open source? Yes, when you get past the
cost of the hardware, all that's required is the cost of an Internet connection and the time that it takes to
download and install. I'd do the math for you, but fractions are not really my strong suit.

Instead, you can take a closer look at Ruby's data types while I take off the sword belt. Because there are
unwritten rules that grapefruit must be served in halves and all introductions to programming languages
must start with data types, we start there.

The layout of this chapter goes pretty much like this:

● Data types
● Operators
● Flow-control statements
● Threads
● Ajax

There is that word again, Ajax. You knew that it would pop up again somewhere. There is, however, a
minor difference; basically, we take a quick look at the generated code to see how it works. I don't know
about you, but I've always paid attention to the man behind the curtain.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch14.html [03.07.2007 11:49:10]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 14.1. Data Types

14.1. Data Types

Data types in Ruby aren't the data types that you're used to from the more traditional languages, such as
C, COBOL, or Pascal. Because Ruby is purely object-oriented, you won't even find the primitive data types
available in Java, for instance. In Ruby, you see, all data types are based upon classes.

This doesn't mean that there is no such thing as an integer or a string in Ruby; it means only that they are
instances of the Integer and String classes. To some, this "everything is a class" approach might sound like
overkill, but it also makes a lot of sense. Personally, I think it would be easier to code without having to
change gears all the time. Just put my mind in OOP gear and go. This leaves the question, go where? I'm
thinking of an island.

14.1.1. Numeric

"I am not a number, I'm a free man!" is the somewhat well-known quote from the British television series
The Prisoner. I really don't see what Number Six was complaining aboutit could have been worse. He could,
for example, have had a job that he hated in a nuclear power plant, like Number Five did. Number Six
does, however, share something in common with Homerer, Number Five. You see, they were both integers.

Integer, with a capital I, is the base class from which all things integer are derived. Examples of classes
derived from Integer are Bignum and Fixnum. Although each has its own characteristics, they both inherit
from the Integer base class, whose properties and methods appear in Table 14-1.

Table 14-1. Integer Properties and Methods

Method Class Description

chr Integer Returns a string containing the character equivalent to the number value.

downto Integer Iterates a block of code.

integer? Integer Returns true.

next Integer Increments the value by 1.

size Bignum Returns the number of bytes used to store the value.

size Fixnum Returns the number of bytes used to store the value.

step Integer Increments the value to an ending value in increments of a set value.

succ Integer Increments the value by 1. Essentially, the same as the next method.

times Integer Executes a block of code a preset number of times.

to_f Bignum Converts the value to a float. When the value is too large to be contained in a float,
infinity is returned.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch14lev1sec1.html (1 of 4) [03.07.2007 11:49:10]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 14.1. Data Types

to_f Fixnum Converts the value to a float.

to_i Bignum Returns a Bignum.

to_i Fixnum Returns a Bignum.

to_s Bignum Returns a String.

to_s Fixnum Returns a String.

upto Integer Executes a block of code, incrementing the value by 1 until the indicated value is
reached.

However, with the exception of those poor souls trapped on the island, there is more to life than integers;
there's floating point, called Float in Ruby. In case you've forgotten, floating-point numbers are those
numbers with fractions, like when the statisticians say that the average American family has 2.6 children.
The number 2.6 is a floating-point number and, depending on my mood, is either of my two half-brothers.

As with the Integer class, the Float class has a number of properties and methods, which are described in
Table 14-2.

Table 14-2. Float Properties and Methods

Method Description

ceil Returns the closest integer, either equal to or greater than the float's value.

finite? A Boolean indicating whether the value is a valid floating-point number.

floor Returns the largest integer that is less than or equal to the value.

infinite? Returns true or false, indicating whether the value is infinite.

nan? Returns true or false, indicating whether the value is Not A Number.

round Rounds the value to the nearest integer.

to_f Returns a Float.

to_i Converts the value to an integer.

to_s Returns a String.

14.1.2. String

For people who program in more than one language, there is a major advantage to strings being instances
of the String class. Think of it as one-stop shopping; if something needs to be done, there's a really good

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch14lev1sec1.html (2 of 4) [03.07.2007 11:49:10]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 14.1. Data Types

chance that there is a method to do it. In fact, there are so many that I recommend going to the Ruby
home page (www.ruby-lang.org/en/) to see them all.

14.1.3. Boolean

In programming, there are always two possible answers to any question: true and false. Maybe that is why
there are two classes, trueclass and Falseclass. Actually, with the dynamic nature of variables in Ruby,
that is the truth. The trueclass represents a logically true value, and the Falseclass represents a logically
false class.

14.1.4. Objects

Possibly because of the total lack of primitives, the built-in objects in Ruby are incredibly rich and varied.
There are objects for hashing, objects for file access, and even an object for arrays. In many instances, if
you can imagine it, an object probably already is available for what is necessary, as the following list of
built-in classes shows:

Array FalseClass

Bignum File::Stat

Binding File

Class Fixnum

Continuation Float

Dir Hash

Exception Integer
IO Regexp

MatchData String

Method Struct

Module Struct::Tms

NilClass ThreadGroup

Numeric Thread

Object Time

Proc TrueClass

Range

With all those built-in properties and methods, it might be a little while before it is necessary to write an
object of our own, but it might be a good idea to give it a try. Let's say, for example, that we want to add a
math class that would have two methods: add and subtract. Through diligent work and clean living, we

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch14lev1sec1.html (3 of 4) [03.07.2007 11:49:10]

http://www.ruby-lang.org/en/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 14.1. Data Types

would create the code shown in Listing 14-1.

Listing 14-1. myMath Class

class MyMath
 def add(a, b)
 puts a + b
 end

 def subtract(a, b)
 puts a - b
 end
end

m = MyMath.new
m.add(1, 1)
m.subtract(4,2)

That's all there is to creating and using a class in Ruby. Unfortunately, I was evil and skipped ahead a little
by using variables and operators. Thinking about it, this is a little like a college class I had. After an
unusually difficult test, the professor announced that no one got Question 10 correct, and perhaps the
reason was that he had forgotten to teach that. Hmm

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch14lev1sec1.html (4 of 4) [03.07.2007 11:49:10]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 14.2. Variables

14.2. Variables

Ruby supports a couple different types of variables, instance variables and class variables. Instead of
making you guess whether their names actually mean what they say, I'll just come out and say it. The
names mean what they say. Instance variables are created for each instance of the class. With class
variables, on the other hand, all instances of the class share one variable. Although instance variables are
common, class variables are somewhat less so. This does not mean that they aren't as useful; in fact,
many times there is simply no substitute for a class variable.

The only question concerning variables is how to distinguish between instance variables and class variables.
Are there little signs hanging off them that say "instance variable" and "class variable"? In a word, yes.

Instance variables and class variables are distinguished by the prefix. Instance variables are prefixed by a
single @, whereas class variables are prefixed by two @. So @Bob is an instance variable, and @@Paul is a class
variable.

Now that we have someplace to put our information, let's do something to it.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch14lev1sec2.html [03.07.2007 11:49:11]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 14.3. Operators

14.3. Operators

Regardless of the language, there is usually some commonality. There's addition, subtraction,
multiplication, division, and assignment. In some languages, including Ruby and JavaScript, the addition
operator does double duty as the concatenation operator. This means that examples such as the following
are pretty much the same, regardless of the language:

X = 1 + 1
X = 1 1
X = 1 * 1
X = 1 / 1

However, occasionally will you see something a little out of the ordinary, usually in languages that borrow
some of their syntax from C. In Ruby, they're called multiple assignments; I like to think of them as less
typing. Consider, for a moment, the following line of code:

X = X + 5

All that it does is increment the variable X by 5, so wouldn't it be easier to type this instead?

X += 5

Yeah, all that I'm saving is two keystrokes, the second X and a space, but it adds up. Imagine for a
moment the variable name was my last name, Woychowsky instead of X. Having to type it only once would
greatly extend the life of the W key. The same shortcut is available for subtraction, multiplication, and
division.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch14lev1sec3.html [03.07.2007 11:49:11]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 14.4. Flow-Control Statements

14.4. Flow-Control Statements

In any type of nontrivial program, flow control is possibly the most important factor in programming.
Without some kind of flow control in programming languages, computers would essentially be very
expensive desktop ornaments. Come to think of it, when you got past the forwarding of every e-mail
received each day to his team, I once had a manager whose computer was a very expensive desktop
ornament. He actually once forwarded the same message 14 times before realizing that he had somehow
been added to his address list for the team. But I'm wandering, so let's get back to flow control, starting
with conditions.

14.4.1. Conditions

In your average run-of-the-mill language, there is the if statement, and that is pretty much all there is to
it. Ruby has an if that looks something like this:

if x == 1
 b = 2
end

Pretty easy. Let's add a layer of complexity with an else:

if x == 1
 b = 2
else
 b = 3
end

In Ruby, it is also possible to take it to a higher degree of complexity by using the elsif statement:

if x == 1
 b = 2
elsif x == 2
 b = 4
else
 b = 3
end

Before I forget, for the purpose of clarity, Ruby permits the addition of a then to the if statement:

if x == 1 then
 b = 2
end

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch14lev1sec4.html (1 of 3) [03.07.2007 11:49:11]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 14.4. Flow-Control Statements

Remember all the way back to Chapter 4, "JavaScript"? Remember conditional operators? Well, they're
back! In fact, here is an example:

b = (x == 1 ? 2 : 3)

A few years ago, I grew a goatee, which I have since shaved off. At the time, my reason for growing it was
strictly personal and strange. You see, I wanted to pass myself off as the evil Ed from a parallel dimension.
My plan for work domination failed, but it gave me the opportunity to appreciate the evil things from
parallel dimensions. For example, did you know that Ruby has an evil if called unless?

The unless statement executes the code within only when the condition is false. If this doesn't fit the
textbook, or, at least Star Trek, example of something from a parallel dimension, I don't know what does.

14.4.2. Looping

Some days I feel like I'm going around in circles, usually in the morning while I'm getting ready for work.
The problem probably stems from a deep-seated need for coffee to get moving in the morning. This wasn't
always the case, but back in high school, I worked in a pancake house and got hooked. The free coffee just
seemed to helpthat is, until I drank fifteen 20-ounce cups in the course of a day. I could have threaded a
sewing machine needle while the machine was running. It hasn't been that bad in a while, but my morning
ritual still requires coffee, as Ruby, shown in Listing 14-2, illustrates.

Listing 14-2. My Morning in Ruby: while Loop

cupsofcoffee = 0

while cupsofcoffee < 4
 puts "hurry..."
 cupsofcoffee += 1
end

The great thing about describing one's morning programmatically is that there are always alternative ways
of expressing one's self. For example, some mornings the blanket monster is holding me back and I just
can't seem to get moving until there is a certain level of coffee in my system. Mornings like these are better
expressed by the code shown in Listing 14-3.

Listing 14-3. My Morning in Ruby: until Loop

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch14lev1sec4.html (2 of 3) [03.07.2007 11:49:11]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 14.4. Flow-Control Statements

cupsofcoffee = 0

until cupsofcoffee >= 4
 puts "hurry..."
 cupsofcoffee += 1
end

A while back, I used to have one of those coffee pots that had a timer. On those mornings when I had
programmed it the night before, coffee was already going. Ah, a set number of cups of coffee just waiting
for cream and sugar. I suppose Listing 14-4 best sums it up.

Listing 14-4. My Morning in Ruby: for/in Loop

puts "for-in loop"
for x in ["hurry...", "hurry...", "hurry...", "hurry..."]
 puts x
end

Nowadays, I have one of those coffee makers that takes a Pod. Just drop in the Pod and hit the button, and
90 seconds later there's coffee. This takes making coffee from being an art to being more of a science, a
feeling that is best conveyed by the example shown in Listing 14-5.

Listing 14-5. My Morning in Ruby: for/in Loop

puts "Iterators"
1.step(4,1) do |x|
 puts "hurry..."
end

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch14lev1sec4.html (3 of 3) [03.07.2007 11:49:11]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 14.5. Threads

14.5. Threads

Ruby has a feature that every language should have: the capability to multithread. Personally, I'm fond of
forking a thread whenever something that I'm about to do is time consuming. For instance, any kind of
input/output operation or attempt to obtain information from another server deserves another thread.

In Ruby, threads are compatible across all platforms, which is quite an accomplishment. However, I
recommend further reading on the subject of multithreading. From personal experience, I know that
multithreading is truly a dark art and is not meant to be undertaken lightly.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch14lev1sec5.html [03.07.2007 11:49:12]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 14.6. Ajax

14.6. Ajax

All this discussion of Ruby leaves us with only one question: Where the (fill-in-the-blank) does Ajax fit in?
Well, remember Rails from Chapter 13? That is where Ajax fits in, but for me to prove it, we have to
generate another controller (see Figure 14-1).

Figure 14-1. Generating a controller

[View full size image]

We're interested in two files: sample_controller.rb under madscientist\ app\controllers, and index.rhtml
under madscientist\app\views\sample. The first file is the Ruby application controller that defines the
sample class. This class, shown in Listing 14-6, will do all our server-side dirty work. The purpose of the
second file (see Listing 14-7), on the other hand, is to handle the client-side part of the Ajax demo.

Listing 14-6. controller.rb

class SampleController < ApplicationController
 def index
 end

 def echo_data
 render_text "<i>" + params[:textinformation] + "</i>"
 end
end

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch14lev1sec6.html (1 of 5) [03.07.2007 11:49:12]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/14ajx01_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 14.6. Ajax

Listing 14-7. index.rhtml

<html>
 <head>
 <title>link_to_remote Demo</title>
 <%= javascript_include_tag "prototype" %>
 </head>
 <body>
 <%= form_remote_tag(:update => "form", :url => { :action => :echo_data
}) %>
 Text
 <%= text_field_tag :textinformation %>
 <%= submit_tag "Echo" %>
 <%= end_form_tag %>

 <div id="form">
 </div>
 </body>
</html>

After these two files have been modified, in the case of controller.rb, or created, as index.rhtml needs to
be, we're ready to start WEBrick (see Figure 14-2) and bring up the page (see Figure 14-3).

Figure 14-2. WEBrick

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch14lev1sec6.html (2 of 5) [03.07.2007 11:49:12]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/14ajx02_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 14.6. Ajax

Figure 14-3. Generated page

[View full size image]

This leaves just trying out the page, whose sole purpose is to echo back from the server anything entered
in the text box when the button is clicked. Figure 14-4 shows the result.

Figure 14-4. Echoed text

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch14lev1sec6.html (3 of 5) [03.07.2007 11:49:12]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/14ajx03_alt.jpg
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/14ajx04_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 14.6. Ajax

Because I'm one of those people who needs to know how something works, I've included Listing 14-8
showing the generated HTML.

Listing 14-8. Generated HTML

 <html>
 <head>
 <title>link_to_remote Demo</title>
 <script src="/javascripts/prototype.js"
type="text/javascript"></script>
 </head>
 <body>
 <form action="/sample/echo_data" method="post" onsubmit="new
Ajax.Updater('form', '/sample/echo_data', {asynchronous:true,
evalScripts:true, parameters:Form.serialize(this)}); return false;">
 Text
 <input id="textinformation" name="textinformation" type="text" />
 <input name="commit" type="submit" value="Echo" />
 </form>

 <div id="form"></div>
 </body>
</html>

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch14lev1sec6.html (4 of 5) [03.07.2007 11:49:12]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 14.6. Ajax

Interesting isn't it? The source from index.rhtml transmogrifies into some pretty neat HTML, with all the
Ajax goodies built right in. The javascript_include_tag includes prototype.js, in which resides all the
necessary client-side JavaScript, while the rest of the tags describe an HTML form. Personally, I am
beginning to feel like I have found the Promised Land, and I'm not leaving. In roughly 24 lines of code,
we've got a simple Ajax application. Of course, there is more to it than that; this example only touches
upon some of the features available in the Rails API. But Ruby on Rails shows some definite promise.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch14lev1sec6.html (5 of 5) [03.07.2007 11:49:12]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 14.7. Summary

14.7. Summary

In this chapter, we lightly touched upon the Ruby programming language, a subject that could take an
entire book in itself. We pointed out the fact that Ruby has no primitives and that all variables are, in fact,
objects. The numeric objects were covered in some detail, and we lightly touched upon strings and
Booleans. An example of creating a custom class was shown to illustrate just how easy it actually is.

We discussed operators, including the more unusual multiple assignment operators, before we covered
loops of various types. Next, we touched upon the possibility of using threads in Ruby. Finally, the chapter
closed with an example of how Ruby on Rails can be used to create an Ajax application with very little
typing.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch14lev1sec7.html [03.07.2007 11:49:12]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 15. The Essential Cross-Browser HTML DOM

Chapter 15. The Essential Cross-Browser HTML DOM

Whether or not the average web developer is aware of it, it is out there, unseen and unnoticed, but
nevertheless out there. Allow me to explain before you decide that I've popped a gasket and need to be
taken to a nice soft room, the kind with padded walls. I am referring to the HTML Document Object
Modelyes, that often ignored application programming interface that can be both a blessing and a curse.

Yes, the average web developer uses the HTML DOM only to the extent that is absolutely necessary to
perform the job, and no further. The reasons for this are many, ranging from the fact that in the early days
of web browsers, everybody did their own thing, to the fact that client-side code is often considered
unreliable because some people are using web browsers that belong more fittingly in a museum than in a
computer that was manufactured in the twenty-first century.

I suppose that this could be considered a major issue, the idea that web applications need to work on every
browser released since the beginning of time. You might consider me something of a snob for saying this,
but why should everyone who is willing to advance beyond the mid-1990s be penalized? You don't see
electrical power being looked down upon because some groups don't approve of it. Regardless of the
reason for ignoring the HTML DOM, unless they're fond of web applications that behave like mainframe
applications from the 1970s, people will have to either get with the program or be left behind.

This chapter is organized along the following lines:

● Interfaces
● Document
● Frames
● Collections

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch15.html [03.07.2007 11:49:13]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 15.1. Interfaces

15.1. Interfaces

The HTML Document Object Model is an application programming interface (API) that defines the structure
of an HTML document in the browser. In addition, it defines how that document can be accessed and
manipulated through the use of JavaScript, sometimes embedded within the very same HTML document
that is being manipulated.

This sounds a little scary doesn't it? The idea that a JavaScript routine could essentially modify the very
fabric of its own universe can be terrifying. Just one oops, and it is overit modified itself right out of
existence. For all intents and purposes, as far as the browser was concerned, it would have never existed.
Fortunately, this takes a little work to accomplish, and only the JavaScript function and possibly the
associated page would cease to exist. Believe me, if this wasn't the case, I would have winked out long ago.

Table 15-1 shows the various HTML Document Object Model interfaces available through JavaScript. I
would like to point out that the majority of these interfaces correspond to actual HTML elements. Yes, name
an HTML element, and there is a corresponding interface; remember, though, that just because an
interface exists for a deprecated element, you don't have to use it. It is still deprecated.

Table 15-1. HTML Document Object Model Interfaces
Available Through JavaScript

Interface Name Description

HTMLCollection A collection of HTML nodes

HTMLDocument The root element of the HTML document

HTMLElement The base class for all HTML elements

HTMLHtmlElement Corresponds to the html element

HTMLHeadElement Corresponds to the head element

HTMLLinkElement Corresponds to the link element

HTMLTitleElement Corresponds to the title element

HTMLMetaElement Corresponds to the meta element

HTMLBaseElement Corresponds to the base element

HTMLIsIndexElement Corresponds to the isindex element

HTMLStyleElement Corresponds to the style element

HTMLBodyElement Corresponds to the body element

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch15lev1sec1.html (1 of 3) [03.07.2007 11:49:13]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 15.1. Interfaces

HTMLFormElement Corresponds to the form element

HTMLSelectElement Corresponds to the select element.

HTMLOptGroupElement Corresponds to the option group element

HTMLOptionElement Corresponds to the option element

HTMLInputElement Corresponds to the input element

HTMLTextAreaElement Corresponds to the text area element

HTMLButtonElement Corresponds to the button element

HTMLLabelElement Corresponds to the label element

HTMLFieldSetElement Corresponds to the field set element

HTMLLegendElement Corresponds to the legend element

HTMLUListElement Corresponds to the unordered list element

HTMLOListElement Corresponds to the ordered list element

HTMLDListElement Corresponds to the dash list element

HTMLDirectoryElement Corresponds to the directory element

HTMLMenuElement Corresponds to the menu element

HTMLLIElement Corresponds to the list element

HTMLBlockquoteElement Corresponds to the block quote element

HTMLDivElement Corresponds to the div element

HTMLParagraphElement Corresponds to the paragraph element

HTMLHeadingElement Corresponds to the heading elements

HTMLQuoteElement Corresponds to the quote element

HTMLPreElement Corresponds to the preformatted element

HTMLBRElement Corresponds to the break element

HTMLBaseFontElement Corresponds to the base font element

HTMLFontElement Corresponds to the font element

HTMLHRElement Corresponds to the horizontal rule element

HTMLModElement Corresponds to the modification elements

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch15lev1sec1.html (2 of 3) [03.07.2007 11:49:13]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 15.1. Interfaces

HTMLAnchorElement Corresponds to the anchor element

HTMLImageElement Corresponds to the image element

HTMLObjectElement Corresponds to the object element

HTMLParamElement Corresponds to the parameter element

HTMLAppletElement Corresponds to the applet element

HTMLMapElement Corresponds to the map element

HTMLAreaElement Corresponds to the area element

HTMLScriptElement Corresponds to the script element

HTMLTableElement Corresponds to the table element

HTMLTableCaptionElement Corresponds to the table caption element

HTMLTableColElement Corresponds to the table column element

HTMLTableSectionElement Corresponds to the table section element

HTMLTableRowElement Corresponds to the table row element

HTMLTableCellElement Corresponds to the table cell element

HTMLFrameSetElement Corresponds to the frame set element

HTMLFrameElement Corresponds to the frame element

HTMLIFrameElement Corresponds to the iframe element

15.1.1. Window

Although it's not officially part of the HTML Document Object Model, the window object is the big kahuna,
the big cheese, or, in web development terms, top of the hierarchy. Many web developers don't realize it,
but all HTML documents are actually children of the window object. This means that it is as valid to code
window.document as it is to code document. You will probably see only the latter as opposed to the former,
but I think it's a good idea to point out the possibility of the former, if only to avoid those Homer Simpson
moments: Doh!

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch15lev1sec1.html (3 of 3) [03.07.2007 11:49:13]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 15.2. Document

15.2. Document

Alright, now we are officially dealing with the HTML Document Object Model in all its hierarchical glory. The
only question is, what does the word hierarchical mean in reference to the HTML DOM?

To me, it means that I envision the structure as a tree, but not the binary kind or the kind growing outside.
It has a single root and branches (elements), and sometimes those branches have branches (more
elements). In my mind, the only difference from the growing kind of tree is that the root is at the top, but
since I'm in Pennsylvania, I think of trees in China and everything is alright. If you happen to be in China,
just envision trees in Pennsylvania, and you'll be fine. Ex-mainframe programmers should think IMS DB to
get themselves through this section.

Seriously, as weird as it sounds, the concept of hierarchical data has been around for a long time. Consider
the HTML document shown in Listing 15-1 for a moment.

Listing 15-1. An HTML Document

<html>
 <head>
 <title>Test</title>
 <script language="JavaScript"></script>
 </head>
 <body>
 <h1>Test 1</h1>
 <h2>Test 2</h2>
 <h3>Test 3</h3>
 </body>
</html>

This document could alternatively be depicted graphically as shown in Figure 15-1.

Figure 15-1. Graphic depiction of HTML document in Listing 15-1

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch15lev1sec2.html (1 of 6) [03.07.2007 11:49:14]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/15ajx01_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 15.2. Document

See, it's hierarchical. There is a single root, the html element, which has two children, the head and body
elements. The head and body elements are siblings because they both share the same parent. The head
element has two children, and the title and script elements and the body element have three children:
the h1, h2, and h3 elements. The title and script elements are siblings, and the H1, H2, and H3 elements
are siblings, but the two groups of elements are not siblings because they have different parents.

So far, this has pretty much been an intellectual exercise, so how excited can someone get about a picture?
Um, I mean, a picture that doesn't come with a rating!

What I mean is, maybe it would help if there were a convenient table that covered the various properties
and methods available through the document interface. Fortunately, Igor has put together Table 15-2 to
give you some idea of what is available.

Table 15-2. HTML DOM Properties/Methods

Property/Method Description

anchors A collection consisting of the anchors in the current
document.

applets A collection consisting of the applets in the current
document.

attributes A collection consisting of the attributes for the current
node.

body The body element of the page.

childNodes A nodeset consisting of the child nodes of the current
node. Please note that the nodeset can be empty.

cookie A collection consisting of the cookies associated with the
current document.

doctype The Document Type Declaration associated with this XML
document.

documentElement The document's root element.

domain The server's domain name.

firstChild The first child node of the current node.

forms A collection consisting of the forms in the current
document.

frames A collection consisting of the frames in the current
document.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch15lev1sec2.html (2 of 6) [03.07.2007 11:49:14]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 15.2. Document

images A collection consisting of the images in the current
document.

implementation The DOMImplementation for this document.

lastChild The last child of the current node.

links A collection consisting of the links in the current document.

nextSibling The next child of the current node's parent.

nodeName The name of the node.

nodeType The type of the node.

nodeValue The value of the node.

ownerDocument The Document associated with the current element.

parentNode The parent of the current node.

previousSibling The previous child of the current node's parent.

referrer The URI of the page that linked to this page.

title The title of the HTML document.

URL The current page's URL.

appendChild(new) Appends the new child node as the last child.

cloneNode(deep) Duplicates the specified node. The Boolean parameter deep
is used to indicate a deep copy, whether or not the
children should be copied.

close() Closes the document stream and also causes the
document to be rendered.

createAttribute(name) Creates an attribute.

createCDATASection(data) Creates a CDATASection node using the data provided.

createComment(data) Creates a comment node using the data provided.

createDocumentFragment() Creates an empty document fragment.

createElement(tagName) Creates the specified element.

createEntityReference(name) Creates an EntityReference.

createProcessingInstruction (target,data) Creates a ProcessingInstruction node.

createTextNode(data) Creates a Text element using the data provided.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch15lev1sec2.html (3 of 6) [03.07.2007 11:49:14]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 15.2. Document

getElementById(elementId) Returns a single element based upon that element's id
attribute. When there is more than one element with the
same id, only the first is returned.

getElementByName(elementName) Returns a collection of elements based upon the element's
name.

getElementsByTagName(tagname) Returns a nodeset consisting of elements with matching
tag names.

hasChildNodes() Returns TRue if child nodes exist and false if child nodes
do not exist.

insertBefore(new,reference) Inserts the new child node before the reference child node.

open() Opens the document stream for writing.

removeChild(old) Removes the old child node.

replaceChild(new, old) Replaces the old child node with the new child node.

write() Writes a text string to the document.

writeln() Writes a text string to the document and appends a
newline character.

Before moving on, I want to remind you that the document is hierarchical. This means that each element
has properties and methods of its own. Rather than go crazy trying to create some kind of uber table with
every possible property and method for the interfaces shown in Table 15-1, I decided to create Table 15-3.
Table 15-3 covers the properties and methods common to the various elements.

Table 15-3. Properties/Methods Common to the Various HTML DOM Interfaces

Property/Method Description

attributes A collection consisting of the attributes for the current node.

childNodes A nodeset consisting of the child nodes of the current node. Please note
that the nodeset can be empty.

className The element's class attribute.

dir The element's text direction.

firstChild The first child node of the current node.

id The element's identifier.

lang The element's language code.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch15lev1sec2.html (4 of 6) [03.07.2007 11:49:14]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 15.2. Document

lastChild The last child of the current node.

nextSibling The next child of the current node's parent.

nodeName The name of the node.

nodeType The type of the node. See Table 15-2 for accepted values.

nodeValue The value of the node.

ownerDocument The document associated with the current element.

parentNode The parent of the current node.

previousSibling The previous child of the current node's parent.

tagName The tag name of the element.

title The element's title.

appendChild(new) Appends the new child node as the last child.

cloneNode(deep) Duplicates the specified node. The Boolean parameter deep is used to
indicate a deep copy, whether or not the children should be copied.

getAttribute(name) Returns the value of an attribute based upon name.

getAttributeNode(name) Retrieves an Attr node by name.

getElementsByTagName(tagname) Returns a nodeset consisting of elements with matching tag names.

hasChildNodes() Returns true if child nodes exist and false if child nodes do not exist.

insertBefore(new,reference) Inserts the new child node before the reference child node.

normalize() Normalizes the specified element and children of the specified element.

removeAttribute(name) Removes an attribute by name.

removeAttributeNode(name) Removes an Attr node by name.

removeChild(old) Removes the old child node.

replaceChild(new,old) Replaces the old child node with the new child node.

setAttribute(name,value) Creates an attribute and sets its value.

setAttributeNode(name) Adds an Attr node by name.

I want to add a little hint on how to find some of the remaining properties or methods for the various
interfaces. Basically, it goes like this: If it is a property or method of the element, there is a really good
chance that it is also a property or method of the interface. It might sound strange that this has to be
mentioned, but I've found that everyone has a blind spot concerning something in their career. In case you
were wondering, mine is peasants with pitchforks and torches.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch15lev1sec2.html (5 of 6) [03.07.2007 11:49:14]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 15.2. Document

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch15lev1sec2.html (6 of 6) [03.07.2007 11:49:14]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 15.3. Frames

15.3. Frames

From an HTML Document Object Model point of view, frames are rather odd creatures because they are
essentially HTML documents within HTML documents. Consider for a moment the fact that it is possible to
have more than one document at a time. For example, the following is perfectly legal:

document.frames[1].document.body

It refers to the body of the document in the frame with an index of 1. This has a tendency to throw off quite
a number of people, probably because it is a "wheels within wheels" kind of relationship, a bit tough to
grasp the first time around. There is also the added complexity that if the script is executing in a frame
itself, it could quite be playing with either the parent document or a sibling document, or even the child of a
sibling. The important thing to remember is that anything that can be done with the current document can
also be done with another document.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch15lev1sec3.html [03.07.2007 11:49:15]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 15.4. Collections

15.4. Collections

As you probably noticed in Table 15-1, there is an interface whose sole purpose is to deal with collections.
Add to this the various collections defined in Tables 15-2 and 15-3, and it becomes apparent very quickly
that somebody really likes collections. Who can blame them?

Collections make for very compact code that can be stepped through in a sequential manner. Table 15-4
details the single property and two methods available through the collection interface.

Table 15-4. The Property and the Methods Available Through the Collection
Interface

Property/Method Description

length The number of items in the collection

item() Retrieves an individual item from a collection based upon that item's index

namedItem() Retrieves an individual item from a collection based upon that item's identifier

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch15lev1sec4.html [03.07.2007 11:49:15]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 15.5. Summary

15.5. Summary

This chapter is by no means a complete explanation of the HTML Document Object Model, but it was never
intended to be. Rather than be an encyclopedic rendition of the HTML DOM, its purpose is to be more of an
overview, with the good parts underlined. I'd like to think that there is a slight possibility that I hit the
mark, but then, maybe I'm delusional.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch15lev1sec5.html [03.07.2007 11:49:15]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 16. Other Items of Interest

Chapter 16. Other Items of Interest

Although I do have a rather loose grip on reality, my grip isn't so loose that I think that the information
contained within these pages is the be all and end all concerning asynchronous JavaScript and XML. Ajax is
nearly unique in having both the excitement associated with a new topic and the maturity that is associated
with only a well-established technique. In fact, the last topic that I can think of that had the same dual
nature was NASA's Apollo program. On one hand, the idea of sending people to the Moon and returning
them safely to Earth was the stuff of science fiction. On the other hand, humanity has been playing with
rockets for centuries, occasionally with disastrous results.

Come to think of it, Ajax and the Apollo program have a great deal in common. On one hand, the idea of
web applications that have the look and feel of Linux and Windows applications is the stuff of science
fiction. On the other hand, humanity has been creating web applications for the last several years,
occasionally with disastrous results. Hmm, there seems to be some kind of pattern going on here.

In this chapter, I address some technologies that are complementary to Ajax, one that is similar or is a
kind of proprietary approach to Ajax, and then finish with some further/final thoughts on browsers.
Essentially, the purpose of this chapter is not only to sum up everything that has been covered in this book,
but also to provide a starting point on where to look for other possible ways of doing things. For example,
about two months ago, I spoke with a developer who did Ajax. However, his technique was to use a Java
applet for communications instead of the XMLHttpRequest object. What I am trying to convey is that there
are multiple answers to every question, all of them equally correct. So here are some of the answers, with
my personal opinions sprinkled about.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch16.html [03.07.2007 11:49:15]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 16.1. Sarissa

16.1. Sarissa

Although it's officially only an open source cross-browser JavaScript XML library, Sarissa is one of those
libraries whose capabilities extend far beyond the basic XML support that I expected. This is a rare
occurrence in today's world, where we can all remember being disappointed by movies, jobs, and most
members of Congress. Sarissa wraps the browser's native XML application programming interfaces with
common interfaces. This makes life much easier for the client-side developer than it would otherwise be.

Unlike my home-grown library, which supports only Microsoft Internet Explorer and Gecko-based browsers
such as Firefox, Flock, Mozilla, and Netscape, Sarissa supports a wide range of browsers on multiple
platforms. This serves as a really good example of what a number of dedicated developers can accomplish
when they put their minds to it, as opposed to the lone mad scientist or even the bloated corporation.
Sarissa supports, at least partially, the following web browsers:

● Firefox
● Konqueror (KDE 3.3)
● Microsoft Internet Explorer (MSXML 3.0)
● Mozilla
● Opera
● Safari

That's quite an impressive list of web browsers; I don't even have a machine capable of running Safari. I
normally just press my nose to the window of the Apple Store and wish. Come to think of it, I usually do
that with most stores that sell computers, including online ones. Well, at least now my wife knows how the
monitor on her computer got the nose prints on it and who the nose prints belong to.

16.1.1. A Brief Overview of Sarissa

Table 16-1 briefly examines the goodies available in Sarissa, which read like a Who's Who of Ajax features.

Table 16-1. Sarissa Features

Action Description

DOM Document Object (create) Creates a new instance of an XML DOM document

DOM Document Object (load) Loads an XML DOM document from either a remote source, such as the
server, or a string either synchronously or asynchronously

Parse Parses an XML DOM document for errors

Serialize Serializes an XML DOM document to a text string

XMLHttpRequest Communicates with the web server via the XMLHttpRequest object

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch16lev1sec1.html (1 of 4) [03.07.2007 11:49:16]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 16.1. Sarissa

XPath Provides the capability to apply an XPath statement with JavaScript

The overall syntax for Sarissa is both logical and consistent. By logical, I mean that if a particular
parameter is necessary for a certain object, it is there. The consistency that I'm referring to is the
capability to write a script once and be able to run it on any of the supported web browsers, without having
to monkey around with the code too much. What a concept!

To see what I mean, let's take a look at how to create an XML DOM document using Sarissa:

var myXMLDocument = Sarissa.getDomDocument();

Relatively simple and painless, isn't it?

Loading the XML document from a remote source is only slightly more complex, unless you're indecisive, in
which case you've got real problems in deciding between synchronous and asynchronous. Never mind, I'll
go out on a limb and show how it is done synchronously in Listing 16-1 and asynchronously in Listing 16-2.

Listing 16-1. Loading Synchronously

var myXMLDocument = Sarissa.getDomDocument();

myXMLDocument.async = false;
myXMLDocument.load("duckzilla.xml");

Listing 16-2. Loading Asynchronously

var myXMLDocument = Sarissa.getDomDocument();

myXMLDocument.async = true;
myXMLDocument.onreadystatechange = readyStateHandler;
myXMLDocument.load("duckzilla.xml");

function readyStateHandler() {
 if(myXMLDocument.readyState == 4)
 alert('Loaded.');
}

But what if the XML isn't remote? Say, for example, that it is already on the page in a JavaScript string. In
that case, Listing 16-3 is the example for you.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch16lev1sec1.html (2 of 4) [03.07.2007 11:49:16]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 16.1. Sarissa

Listing 16-3. Loading an XML Document Already on the Page

var myXMLDocument = Sarissa.getDomDocument();
var myDOMParser = new DOMParser();
var myXMLString = '<xyzzy>plugh</xyzzy>';

myXMLDocument = myDOMParser.parseFromString(myXMLString,'text/xml');

Alright, now through one means or another, we have an XML document loaded. This leaves only the
question of what to do with it. That's a minor detail; it isn't like it's leftover Thanksgiving turkey or anything
like that. We are not going to run out of ideas. Nobody has ever considered making XML enchiladas or XML
stroganoff. XML gives us two possible options; we can either transform it or send it somewhere.

We start with the option to transform it because I consider myself something of an XSLT geek, especially
when performing dangerous acts such as client-side transformations. I'm always up for playing with
anything that could possibly make my job easier, and it doesn't get much easier than this. There are only a
couple simple rules to remember when using XSLT with Sarissa: The XML is an XML document, and the XSL
style sheet is also an XML document. That's all there is to it, and Listing 16-4 presents an example.

Listing 16-4. XSLT with Sarissa

var myXMLDocument = Sarissa.getDomDocument();
var myXSLDocument = Sarissa.getDomDocument();
var myXSLTProcessor = new XSLTProcessor();
var myXMLTransformed;

// Synchronous load of XML document

myXMLDocument.async = false;
myXMLDocument.load("jeckle.xml");

// Synchronous load of XSL stylesheet
myXSLDocument.async = false;
myXSLDocument.load("hyde.xsl");

// Import stylesheet
myXSLTProcessor.importStylesheet(myXSLDocument);

// Add a parameter 'take' value 'formula'
myXSLTProcessor.setParameter(null, 'take', 'formula');

// Transform, result in myXMLTransformed
myXMLTransformed = myXSLTProcessor.transformToDocument(myXMLDocument);

With XSLT out of the way, this leaves Sarissa's implementation of the XMLHttpRequest object as the last

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch16lev1sec1.html (3 of 4) [03.07.2007 11:49:16]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 16.1. Sarissa

piece that I cover here. This implementation of the XMLHttpRequest object offers no surprises, unless you've
jumped ahead to this chapter just to read about Sarissa. If this is the case, allow me to explain that
XMLHttpRequest is available in two distinct flavors: synchronous and asynchronous. Synchronous is the one
that waits quietly in line for its response, and asynchronous is the one that does other things and expects a
callback with periodic updates. Listing 16-5 shows an example of a synchronous request, and Listing 16-6
shows an asynchronous request.

Listing 16-5. Synchronous Request

var myXMLHttpRequest = new XMLHttpRequest();

myXMLHttpRequest.open('GET','manticore.xml',false);
myXMLHttpRequest.send(null);

Listing 16-6. Asynchronous Request

var myXMLHttpRequest = new XMLHttpRequest();

myXMLHttpRequest.open('GET','ELP.xml',true);

myXMLHttpRequest.onreadystatechange = function() {
 if(myXMLHHttpRequest.readyState == 4)
 alert('Done.');
}

myXMLHttpRequest.send(null);

If you're interested in using Sarissa for an Ajax application or any web application of your own, I heartily
recommend it. The source code for Sarissa is available for download from SourceForge.net, whose URL is,
coincidentally, www.sourceforge.net. If you're unfamiliar with SourceForge.net, I recommend that you put
aside an afternoon, and about 30 blank CDs, and peruse their selections of open source goodies. In
addition to a vast array of software, there is, amazingly enough, documentation to go along with the
software. It, like Sarissa, is well worth the time.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch16lev1sec1.html (4 of 4) [03.07.2007 11:49:16]

http://www.sourceforge.net/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 16.2. JSON and JSON-RPC

16.2. JSON and JSON-RPC

There's definitely a Greek theme with many of the names involved with using the XMLHttpRequest object.
First there is Ajax itself, a legendary hero, followed by Microsoft's version called ATLAS, one of the Titans.
Finally, there is JSON, pronounced "Jason," which stands for JavaScript Object Notation.

16.2.1. JavaScript Object Notation

Although I am by no means an expert on the subject, JavaScript Object Notation (JSON) works as a kind of
replacement for XML. This might sound a little weird, but it makes perfect sense when viewed from a cross-
browser point of view. The reason for this is that more web browsers support JavaScript than XML. This is
just another way to distribute applications to as many people as possible.

JSON appears to work something along the lines of children's building blocks. With blocks, a few basic
shapes are used in conjunction with imagination to create complex structures. The same can be said of
JSON: A few basic "shapes" are used in conjunction with imagination to create complex structures. The only
difference is that whereas children's blocks result in physical structures, JSON results in logical structures.

Let's take a look at the two basic data structures (blocks) that are used to create more complex structures
in JSON. The first of these basic data structures is the name-value pair, which really isn't anything that we
have not already seen in earlier chapters. Just think along the lines of a JavaScript collection or associative
array, and you'll be fine.

The second basic data structure in JSON has the formidable description of "an ordered list of values." Ooh,
sounds scary. In fact, it sounds a lot scarier than its actual name, array. Say "an ordered list of values,"
and people will pay attention; say "array," and unless you're talking about an array of missile silos, nobody
cares.

These structures, in turn, are used to create somewhat more complex structures. The first of these more
complex structures is an object; such objects consist of an unordered list of name-value pairs, with the
following syntax for an empty object:

object_name { }

Of course, an empty object isn't very useful, so it is necessary to add members as string-value pairs. Of
course, sometimes saying nothing is enough.

That is a high-level (as in, orbital) view of the concepts behind JSON. All we need to look at now is the
actual syntax. After all, because the information going back and forth from the web server and the web
browser has to be text, an internal representation of a JavaScript array would probably cause some
problems when trying to send it to and fro.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch16lev1sec2.html [03.07.2007 11:49:16]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 16.3. ATLAS

16.3. ATLAS

ATLAS is Microsoft's answer to Ajax. Talk about a group that suffers from the "not invented here"
syndrome. For those of you who are unfamiliar with this syndrome, it goes something along the lines of
this:

1.

If we didn't invent it, then it is evil.

2.

If we can sell a knock-off, then the original is evil and ours is innovative.

3.

In a product this innovative, there are bound to be some bugs, but we're not at fault.

The first time that I encountered this syndrome was in a computer terminal that was manufactured by the
company I worked at. It had a detached keyboard that must have weighed 20 kilos or so, but it was
considered superior to those terminals with keyboards that could be placed on one's lap, which is, in my
opinion, the purpose of a detached keyboard.

Over the years, I've encountered the syndrome in various locations, usually associated with some kind of
kludge. Usually it was a software kludge, either a homegrown procedure or utility that might have filled
some kind of need, probably back during the Pliocene. Nevertheless, whatever it was, it was created locally
and was, therefore, better than anything from any other source.

Of course, there is an alternative reason for Microsoft creating ATLAS beyond the "not invented here"
syndrome. Perhaps Microsoft intends to either Balkanize the technology by creating incompatible
alternatives or attempt to seize control by having their own flavor. There is, however, the additional
possibility that they have allowed themselves to be blindsided again. Personally, I am most fond of the last
possibility because it is kind of reassuring to think that the company that some consider to be "The Evil
Empire" has once again missed the bus.

16.3.1. A Picture of ATLAS

Unfortunately, to use Microsoft's ATLAS technologies, it is necessary to have a machine running Windows
and a copy of Visual Studio 2005. Although my laptop does run Windows XP Professional, I don't have a
copy of Visual Studio 2005, and with a price tag of $549 for the Professional version, it isn't something that
I will be purchasing in the near future. After all, $549 will buy a large number of seasons of Stargate SG1,
Gummi Lab Rats, and turkey club sandwiches. For mad scientists, it is all a matter of priorities.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch16lev1sec3.html [03.07.2007 11:49:17]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 16.4. The World Wide Web Consortium

16.4. The World Wide Web Consortium

As I stated earlier, the World Wide Web Consortium is, in most instances, the source of all things Web
related. For this reason, I recommend that you occasionally visit its website, www.w3.org, to peruse the
home page and see if there is anything new. In fact, this is one of those great spots to determine which
skill to learn next. After all, unless we keep our skills current, or even a little more than current, it is quite
possible that we could go the way of the dinosauror, at least, the way of the majority of American steel
workers.

The World Wide Web Consortium is also one of those websites, like SourceForge, where it is possible to find
some free goodies. However, unlike SourceForge, most people think of only documentation when they think
of the World Wide Web Consortium. Fortunately, there is much more to the World Wide Web Consortium
than a mere collection of HTML pages and PDF files. Many people don't realize that, in addition to the all the
documents describing various technologies, there are quite often documents describing support for those
various technologiessuch as which web browsers support CSS Level 1, information that can be of some use
when shopping for a new web browser.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch16lev1sec4.html [03.07.2007 11:49:17]

http://www.w3.org/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 16.5. Web Browsers

16.5. Web Browsers

The scary part about this section is that I had to actually look to see which web browsers are installed on
my Toshiba notebook. Over the last several months, my collection has grown beyond my usual two
browsers to include the following (in alphabetical order):

● Firefox (www.mozilla.org)
● Flock (www.flock.com)
● Microsoft Internet Explorer (www.microsoft.com)
● Netscape (http://browser.netscape.com)
● Opera (www.opera.com)

In addition to adding browsers beyond the original two, several Firefox upgrades were installed during the
same timeframe.

All in all, I discovered several interesting things about these browsers and myself. The first is that, as
annoying as Microsoft Internet Explorer is, it pales in comparison to Opera. Opera is closed as tight as an
oyster. In addition, some versions of Opera lie, claiming to be Microsoft Internet Explorer. This wouldn't be
a problem if it behaved the same way as Microsoft Internet Explorer, but, unfortunately, it doesn't. In the
end, I was forced to abandon Opera.

Of the remaining browsers, Firefox, Flock, and Netscape are all based upon Gecko, which means that if
something works in one, it should work in all. In fact, I wasn't surprised to find this to be the case. Talk
about consistency!

However, I want to point out one item concerning these browsers. Because they are open source, they
have a tendency to change more often than Microsoft Internet Explorerbut, then, years change more often
than Microsoft Internet Explorer. This could be an issue in testing to keep in mind.

Finally, there is Microsoft Internet Explorer, which, at this time, is still the number one web browser in use.
Unlike the other browsers, unless you're running Windows or have an Apple computer, you're pretty much
hosed if you want to run Internet Explorer. But there's always Firefox or Flock or Netscape.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch16lev1sec5.html [03.07.2007 11:49:17]

http://www.mozilla.org/
http://www.flock.com/
http://www.microsoft.com/
http://browser.netscape.com/
http://www.opera.com/
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Section 16.6. Summary

16.6. Summary

This chapter served as something of a wrap-up for the entire booka weird wrap-up because, although Ajax
has been around for several years, it is still evolving. Examples of this are Sarissa, JSON, and Microsoft's
ATLAS, different approaches to solving what is basically the same problem. I also made mention of both the
World Wide Web Consortium and SourceForge, with the former being useful for documentation and the
latter being useful for development tools. For those of us whose spouses insist upon wasting money on the
mortgage instead of development tools, those SourceForge tools come in handy. Finally, I gave the web
addresses for the web browsers available at the time of this writing.

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/ch16lev1sec6.html [03.07.2007 11:49:18]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/index.html [03.07.2007 11:49:18]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

SYMBOL

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

$ (dollar sign)

() (parentheses)

* (asterisk) 2nd

+ (plus sign)

. (period) 2nd

.. (double period)

/ (slash)

// (double slash) 2nd

? (question mark)

@ (at sign)

[0-9] pattern (regular expressions)

[^0-9] pattern (regular expressions)

\ (backslash)

^ (caret)

| (union operator)

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/SYMBOL.html [03.07.2007 11:49:18]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

a element (XHTML)

abbr element (XHTML)

abort() method

action property (XMLHttpRequest class)

ActiveX, XMLHttpRequest object

add2Cart() function

address element (XHTML)

addressSelect stored procedure

Ajax (Asynchronous JavaScript And XML)

 advantages of

 automated request system example

 definition of

 development of

 hidden frames method of implementation

 hidden.htm

 HTMLfs.htm 2nd

 submitForm() function

 visible.htm

 library classes

 origin of name

 philosophy of

 Ruby on Rails and

Altova XMLSPY XPath Evaluator

ancestor axes (XPath)

ancestor() function

ancestor-or-self axes (XPath)

Apache web server

app folder

appendChild() method

appendData() method

Apple Safari

applet element (XHTML)

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/A.html (1 of 3) [03.07.2007 11:49:18]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A

apply-import element (XSLT)

apply-template element (XSLT)

applying CSS (Cascading Style Sheets)

area element (XHTML)

arithmetic operators 2nd

arraylength() method

arrays

 adding elements to

 array methods

 associative

 concatenating

 defining

 in JSON (JavaScript Object Notation)

 joining

 removing elements from

 reversing order of

 slicing

 sorting

 XML-RPC arrays

assignment operators

associative arrays

asterisk (*) 2nd

asyncHandler() function

Asynchronous JavaScript And XML [See Ajax (Asynchronous JavaScript And XML).]

asynchronous loading with Sarissa

asynchronous pages

asynchronous property (XMLHttpRequest class)

asynchronous requests

asynchronous XMLHttpRequest applications

at sign (@)

ATLAS

Attr interface

attribute axes (XPath)

attribute element (XSLT)

attribute nodes

attribute-set element (XSLT)

attributes (XML) [See also specific attributes.]

Attributes property

automated request system example

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/A.html (2 of 3) [03.07.2007 11:49:18]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A

axes (XPath)

 ancestor axes

 ancestor-or-self axes

 attribute axes

 child axes

 descendant axes

 descendant-or-self axes

 following axes

 following-sibling axes

 namespace axes

 parent axes

 preceding axes

 preceding-sibling axes

 self axes

 table of

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/A.html (3 of 3) [03.07.2007 11:49:18]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

B

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

b element (XHTML)

\b pattern (regular expressions)

background element (CSS)

background-attachment element (CSS)

background-color element (CSS)

background-image element (CSS)

background-position element (CSS)

background-repeat element (CSS)

backslash (\)

base element (XHTML)

basefont element (XHTML)

Berns-Lee, Tim

big element (XHTML)

binding XML

 cross-browser XML binding

 Internet Explorer

blockquote element (XHTML)

blur event handler

body element (XHTML)

Boolean data types 2nd

Boolean functions

boolean() function

border element (CSS)

border-bottom element (CSS)

border-bottom-width element (CSS)

border-color element (CSS)

border-left element (CSS)

border-left-width element (CSS)

border-right element (CSS)

border-right-width element (CSS)

border-style element (CSS)

border-top element (CSS)

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/B.html (1 of 3) [03.07.2007 11:49:19]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

B

border-top-width element (CSS)

border-width element (CSS)

br element (XHTML)

break statement

brochure-ware

browsers

 cross-browser development

 compatibility issues

 market share

 SOAPEnvelope class constructor

 World Wide Web Consortium

 XML document class constructor

 XMLHttpRequest class constructor

 XSLTProcessor class

 cross-browser DOM (Document Object Model)

 Firefox

 Microsoft Internet Explorer

 Opera

 sample HTML document

 Firefox

 Linux browsers

 list of

 Microsoft Internet Explorer

 client-side transformations

 XML Data Islands 2nd

 Mozilla-based browsers

 Opera

 Safari

 Sarissa support for

 XML binding

 cross-browser XML binding

 Internet Explorer

 XMLHttpRequest object syntax

 XSLT support

 cross-browser web page example

 Internet Explorer 5.0

buildSOAP() function

button element (XHTML)

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/B.html (2 of 3) [03.07.2007 11:49:19]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

B

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/B.html (3 of 3) [03.07.2007 11:49:19]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

C

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Cache() function 2nd

caching

call-template element (XSLT)

caption element (XHTML)

caret (^)

Cascading Style Sheets [See CSS (Cascading Style Sheets).]

case statement

CDATASection interface

CDATAsections (XML)

ceiling() function

center element (XHTML)

CERNServer

change event handler

changeEvent() function 2nd

CharacterData interface

charAt() method

charCodeAt() method

child axes (XPath)

child nodes 2nd

childNodes property

childWindow class

choose element (XSLT)

class variables

classes

 Ajax library classes

 childWindow

 constructors

 function class constructor

 Ruby classes, creating

 SOAPEnvelope 2nd

 XMLHttpRequest

 XSLTProcessor

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/C.html (1 of 4) [03.07.2007 11:49:19]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

C

clear element (CSS)

client side

 client-side transformations

cloneNode() method

close() method

code element (XHTML)

code reuse

 advantages of

 JavaScript objects

 associative arrays

 collections

 creating

 cross-browser (Gecko and IE) XMLHttpRequest class constructor

 cross-browser SOAPEnvelope class constructor

 cross-browser XML document class constructor

 cross-browser XSLTProcessor class

 serialization

 XML

 XSLT

 forms

 tabular information

coding by hand

col element (XHTML)

colgroup element (XHTML)

collections 2nd

color element (CSS)

comment element (XSLT)

Comment interface

comments (XML)

comparison operators

concat() method 2nd 3rd

concatenating

 arrays

 stored functions

conditional operators 2nd

conditional statements

 if

 switch

conditions in Ruby

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/C.html (2 of 4) [03.07.2007 11:49:19]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

C

config folder

connect_errno property (mysqli)

constructors

contains() function

context nodes

continue statement

controller.rb

controllers folder

copy element (XSLT)

copy-of element (XSLT)

count() function

CP/M

createAttribute() method

createCDATASection() method

createComment() method

createDocumentFragment() method

createElement() method

createEntityReference() method

createProcessingInstruction() method

createTextNode() method

cross-browser (Gecko and IE) XMLHttpRequest class constructor

cross-browser binding XML

cross-browser development

 compatibility issues

 cross-browser DOM

 Firefox

 JavaScript

 Microsoft Internet Explorer

 Opera

 sample HTML document 2nd

 server-side environment

 stored procedures

 tree structure

 market share

 SOAPEnvelope class constructor

 World Wide Web Consortium

 XML binding

 XML document class constructor

 XSLT web page

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/C.html (3 of 4) [03.07.2007 11:49:19]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

C

 XSLTProcessor class

CSS (Cascading Style Sheets) 2nd

 applying

 elements

 hiding XML with 2nd

 tabular information

Current() function

custom elements (XHTML)

customer display page

customerInsert stored procedure

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/C.html (4 of 4) [03.07.2007 11:49:19]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

D

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

\D pattern (regular expressions)

Data Islands (XML)

 cross-browser solutions

 CSS to hide XML

 getElementById() method

 Firefox

 Internet Explorer 2nd

 sample HTML page with embedded XML

Data property

data types

 JavaScript data types

 Boolean data types

 null data types

 numeric data types

 object

 overview of

 strings

 undefined data types

 Ruby data types

 Boolean

 numeric

 objects

 string

 XML-RPC data types

database access example

dblclick event handler

dd element (XHTML)

decimal-format element (XSLT)

decision structures (XSLT)

declarations (XML)

deep copies

defining arrays

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/D.html (1 of 3) [03.07.2007 11:49:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

D

del element (XHTML)

deleteData() method

descendant axes (XPath)

descendant-or-self axes (XPath)

dfn element (XHTML)

DHTML (Dynamic HTML) 2nd

Digital Research, CP/M

dir element (XHTML)

directory structure

disadvantages of Ajax

display element (CSS)

displayCart() function

div element (XHTML)

dl element (XHTML)

do/while loops

Doctype property (Document interface)

Document interface

Document Object Model [See DOM (Document Object Model).]

Document Type Definitions (DTDs)

document() function

documentElement property (Document interface)

DocumentFragment interface

documents (HTML)

 hierarchical structure

 HTML DOM

 cross-browser issues

 JavaScript

 server-side environment

 stored procedures

 tree structure

DocumentType interface

dollar sign ($)

DOM (Document Object Model)

 HTML DOM

 cross-browser issues

 JavaScript

 server-side environment

 stored procedures

 tree structure

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/D.html (2 of 3) [03.07.2007 11:49:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

D

 XML DOM

 JavaScript interfaces

 node types

 properties and() methods

 sample XML document

DOMDocument() method

DOMException interface

DOMImplementation interface

doPOST() function

double period (..)

double slash (//)

dt element (XHTML)

DTDs (Document Type Definitions)

dumb terminals

Dynamic HTML [See DHTML (Dynamic HTML).]

dynamic web pages

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/D.html (3 of 3) [03.07.2007 11:49:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

E

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

element element (XSLT)

Element interface

element-availability() function

elements

 CSS

 HTML/XHTML

 a

 abbr

 address

 applet

 area

 b

 base

 basefont

 big

 blockquote

 body

 br

 button

 caption

 center

 code

 col

 colgroup

 custom elements

 dd

 definition of

 del

 dfn

 dir

 div

 dl

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/E.html (1 of 4) [03.07.2007 11:49:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

E

 dt

 em

 fieldset

 font

 form

 frame

 frameset

 h1

 h2

 h3

 h4

 h5

 h6

 head

 hr

 html

 i

 iframe

 img

 input

 ins

 isindex

 kbd

 label

 legend

 li

 link

 map

 menu

 meta

 noframes

 noscript

 object

 ol

 optgroup

 option

 p

 param

 pre

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/E.html (2 of 4) [03.07.2007 11:49:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

E

 q

 s

 samp

 script

 select

 small

 span

 strike

 strong

 sub

 sup

 table

 tbody

 td

 textarea

 tfoot

 th

 thread

 title

 tr

 tt

 u

 ul

 var

 XML

 attributes

 forbidden/restricted characters

 naming conventions

 structure of

 XSLT

 defining in style sheets

 output

 sort

 stylesheet

 table of

 transform

else statement (Ruby)

elsif statement (Ruby)

em element (XHTML)

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/E.html (3 of 4) [03.07.2007 11:49:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

E

entities (XML)

Entities property (DocumentType interface)

Entity interface

EntityReference interface

envelope property (XMLHttpRequest class)

envelope() method

Epiphany

error property (mysqli)

escape() method

Euclidean algorithm

 iterative implementation

 recursive implementation

event handlers (JavaScript)

ExceptionCode interface

exiting loops

expressions

 regular expressions

 XPath

Extensible Markup Language [See XML (Extensible Markup Language).]

eXtensible Stylesheet Language for Transformations [See XSLT (eXtensible Stylesheet Language for Transformations).]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/E.html (4 of 4) [03.07.2007 11:49:20]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

F

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

\f pattern (regular expressions)

fallback element (XSLT)

false() function

Falseclass class (Ruby)

faults

 SOAP faults 2nd

 XML-RPC faults

fetch_array() method

fieldset element (XHTML)

files, retrieving synchronously

Firefox 2nd

 cross-browser DOM (Document Object Model)

 XML Data Islands

firstChild property

Float class (Ruby)

float element (CSS)

Flock

floor() function

flow-control

 conditionals

 case

 if

 switch

 in Ruby

 conditions

 loops

 loops

 do/while

 exiting

 for/in

 while

 overview of

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/F.html (1 of 4) [03.07.2007 11:49:21]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

F

focus event handler

following axes (XPath)

following-sibling axes (XPath)

font element

 CSS

 HTML 2nd

 XHTML

font-family element (CSS)

font-size element (CSS)

font-style element (CSS)

font-variant element (CSS)

font-weight element (CSS)

for-each element (XSLT) 2nd

for/in loops 2nd

forbidden characters (XML)

form element (XHTML)

Format-number() function

forms

 code reuse

 read-only

 addressSelect stored procedure

 customer display

 MySQL database tables, creating

 updateable

 customer display page

 customerInsert stored procedure

 nameInsert stored procedure

forward() function

frame element (XHTML)

frames 2nd

 hidden frames method of Ajax implementation

 hidden.htm

 HTMLfs.htm 2nd

 submitForm() function

 visible.htm

 HTML DOM

frameset element 2nd

framesets

fromCharCode() method

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/F.html (2 of 4) [03.07.2007 11:49:21]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

F

function class constructor

function-available() function

functions [See also methods.]

 add2Cart()

 ancestor()

 asyncHandler()

 buildSOAP

 Cache() 2nd

 changeEvent() 2nd

 Current()

 displayCart()

 document()

 doPOST()

 element-availability()

 Format-number()

 forward()

 function-available()

 gcd()

 generate-id()

 initialize() 2nd

 key()

 name()

 pageWait()

 restrict()

 selectSingleNode()

 stateChangeHandler()

 stored functions, concatenating

 submitForm() 2nd

 substringAfter()

 substringBefore()

 system-property()

 translate()

 transverse()

 unparsed-entity-uri()

 xmlNode()

 XPath functions

 Boolean functions

 node set functions

 numeric functions

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/F.html (3 of 4) [03.07.2007 11:49:21]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

F

 string functions

 XSLT functions

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/F.html (4 of 4) [03.07.2007 11:49:21]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

G

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Galeon

Garrett, Jesse James

gcd() function

generate-id() function

GET method

getAllResponseHeaders() method 2nd

getAttribute() method

getAttributeNode() method

getElementById() method

getElementByName() method

getElementsByTagName() method

getNamedItem() method

getResponseHeader() method 2nd

getResponseHeadere() method

Google

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/G.html [03.07.2007 11:49:21]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

H

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

h1 element (XHTML)

h2 element (XHTML)

h3 element (XHTML)

h4 element (XHTML)

h5 element (XHTML)

h6 element (XHTML)

hasChildNodes() method

hasFeature() method

head element (XHTML)

height element (CSS)

helpers folder

hidden frames() method of Ajax implementation

 hidden.htm

 HTMLfs.htm 2nd

 submitForm() function

 visible.htm

hidden.htm

hiding XML

hierarchical structure of HTMLDOM

history of Ruby on Rails

hr element (XHTML)

HTML 2nd [See also DHTML (Dynamic HTML); XHTML.]

 compared to XHTML

 elements [See elements.]

 frames 2nd

 framesets

 HTML DOM (Document Object Model)

 collections

 frames

 hierarchical structure

 interfaces

 properties/methods

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/H.html (1 of 2) [03.07.2007 11:49:21]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

H

 window object

 iframes

html element (XHTML)

HTMLfs.htm 2nd

hybrid XSLT/XHTML template example

Hypertext Markup Language [See HTML.]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/H.html (2 of 2) [03.07.2007 11:49:21]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

i element (XHTML)

if element (XSLT)

if statement

 example

 nesting

iframe element (XHTML)

iframes

IIS (Internet Information Server)

img element (XHTML)

Implementation property (Document interface)

import element (XSLT)

in-line frames

include element (XSLT)

index.rthml

indexOf() method

initialize() function 2nd

input element (XHTML)

ins element (XHTML)

insert() method

insertBefore() method

insertData() method

installing Ruby on Rails

instance variables

Integer class (Ruby)

interfaces

 Attr

 CDATASection

 CharacterData

 Comment

 Document

 DocumentFragment

 DocumentType

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/I.html (1 of 2) [03.07.2007 11:49:22]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I

 DOMException

 DOMImplementation

 Element

 Entity

 EntityReference

 ExceptionCode

 HTMLDOM

 NamedNodeMap

 Node

 NodeList

 Notation

 ProcessingInstruction

 properties and methods of

 Text

Internet Explorer 2nd

 client-side transformations

 cross-browser DOM (Document Object Model)

 XML binding

 XML Data Islands 2nd

Internet Information Server (IIS)

invoking web services

isindex element (XHTML)

item() method

Items Available web page code listing

itemSelectXML stored procedure

iterative style sheets (XSLT)

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/I.html (2 of 2) [03.07.2007 11:49:22]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

J

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

JavaScript 2nd 3rd

 arrays

 adding elements to

 array methods

 concatenating

 defining

 joining

 removing elements from

 reversing order of

 slicing

 sorting

 childWindow class

 conditional statements

 case

 if

 switch

 constructors

 data types

 Boolean data types

 null data types

 numeric data types

 objects

 overview of

 strings

 undefined data types

 event handlers

 functions [See functions.]

 HTML DOM interfaces

 loops

 do/while

 exiting

 for/in

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/J.html (1 of 2) [03.07.2007 11:49:22]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

J

 while

 objects

 collections

 creating

 cross-browser (Gecko and IE) XMLHttpRequest class constructor

 cross-browser SOAPEnvelope class constructor

 cross-browser XML document class constructor

 cross-browser XSLTProcessor class

 serialization

 operators

 recursion 2nd

 regular expressions

 variables

JavaScript Object Notation (JSON)

JavaScriptHelper module (Ruby on Rails)

join() method

joining arrays

JSON (JavaScript Object Notation)

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/J.html (2 of 2) [03.07.2007 11:49:22]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

K

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

kbd element (XHTML)

key element (XSLT)

key() function

keydown event handler

keypress event handler

keyup event handler

Konqueror

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/K.html [03.07.2007 11:49:22]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

L

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

label element (XHTML)

last() function

lastChild property

lastIndexOf() method

legend element (XHTML)

Length property

length() method

letter-spacing element (CSS)

li element (XHTML)

line-height element (CSS)

link element (XHTML)

Linux browsers

list-style element (CSS)

list-style-image element (CSS)

list-style-position element (CSS)

list-style-type element (CSS)

load event handler

Load() method

local-name() function

location paths (XPath)

logical operators

loops

 do/while

 exiting

 for/in

 in Ruby

 while

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/L.html [03.07.2007 11:49:22]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

M

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

map element (XHTML)

margin element (CSS)

margin-bottom element (CSS)

margin-left element (CSS)

margin-right element (CSS)

margin-top element (CSS)

market share of web browsers

match() method

math operators

menu element (XHTML)

message element (XSLT)

meta element (XHTML)

methods [See also functions.]

 abort()

 appendChild()

 appendData()

 arraylength()

 charAt()

 charCodeAt()

 cloneNode()

 close()

 collections

 concat() 2nd

 createAttribute()

 createCDATASection()

 createComment()

 createDocumentFragment()

 createElement()

 createEntityReference()

 createProcessingInstruction()

 createTextNode()

 deleteData()

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/M.html (1 of 4) [03.07.2007 11:49:23]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

M

 DOMDocument()

 envelope()

 escape()

 fetch_array()

 Float class

 fromCharCode()

 getAllResponseHeaders() 2nd

 getAttribute()

 getAttributeNode()

 getElementById()

 getElementByName()

 getElementsByTagName()

 getNamedItem()

 getResponseHeader() 2nd

 hasChildNodes()

 hasFeature()

 HTML DOM

 indexOf()

 insert()

 insertBefore()

 insertData()

 Integer class

 item()

 JavaSciptHelper module

 join()

 lastIndexOf()

 length()

 Load()

 match()

 names()

 normalize()

 open()

 pop()

 purge()

 push()

 query()

 readyState()

 removeAttribute()

 removeAttributeNode()

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/M.html (2 of 4) [03.07.2007 11:49:23]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

M

 removeChild()

 removeNamedItem()

 removeRequestHeader()

 replace()

 replaceChild()

 replaceData()

 responseText()

 responseXML()

 retrieve()

 reverse()

 rSend()

 search()

 selectNodes()

 send()

 serialize()

 setAttribute()

 setAttributeNode()

 setEnvelope()

 setInterval()

 setNamedItem()

 setRequestHeader() 2nd

 setTimeout() 2nd

 shift()

 slice() 2nd

 sort()

 splice()

 split()

 splitText()

 stateChangeHandler()

 substr()

 substring()

 substringData()

 toLowerCase()

 toString()

 toUpperCase()

 transformToDocument()

 transformToFragment()

 unescape()

 unshift()

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/M.html (3 of 4) [03.07.2007 11:49:23]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

M

 valueOf()

Microsoft Internet Explorer 2nd

 client-side transformations

 cross-browser DOM (Document Object Model)

 XML binding

 XML Data Islands 2nd

mode attribute (template element)

models folder

mousedown event handler

mousemove event handler

mouseout event handler

mouseover event handler

mouseup event handler

Mozilla

Mozilla-based browsers

Muench, Steve

Muenchian grouping

multiple assignments (Ruby)

multithreading in Ruby

MySQL database tables, creating 2nd

MySQL stored procedures

 addressSelect

 customerInsert

 itemSelectXML 2nd

 lineSelect

 nameInsert

 producing XML from

 shoppingCartSelect

mysqli() methods and properties

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/M.html (4 of 4) [03.07.2007 11:49:23]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

N

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

{n} pattern (regular expressions)

\n pattern (regular expressions)

{n,} pattern (regular expressions)

{n,m} pattern (regular expressions)

Name property

name() function 2nd

name-value pairs in JSON (JavaScript Object Notation)

named XSLT template example

NamedNodeMap interface

nameInsert stored procedure

names() method

namespace axes (XPath)

namespace-alias element (XSLT)

namespace-uri() function

namespaces (XML)

naming conventions (XML)

NaN special value

NCSA HTTPd

nesting if statements

Netscape 2nd

nextSibling property

Node interface

node set functions

NodeList interface

nodeName property

nodes

 attribute nodes

 child nodes

 context nodes

 parent nodes 2nd

 root nodes

nodeType property

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/N.html (1 of 2) [03.07.2007 11:49:23]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

N

nodeValue property

noframes element (XHTML)

nonbound tables, creating with XSL style sheets

normalize() method

normalize-space() function

noscript element (XHTML)

not() function

Notation interface

notationName property

Notations property (DocumentType interface)

null data types

number element (XSLT)

number() function

numeric data types 2nd

numeric() functions

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/N.html (2 of 2) [03.07.2007 11:49:23]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

O

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Object data type

object element (XHTML)

objects [See also DOM (Document Object Model).]

 JavaScript objects

 collections

 creating

 cross-browser (Gecko and IE) XMLHttpRequest class constructor

 cross-browser SOAPEnvelope class constructor

 cross-browser XML document class constructor

 cross-browser XSLTProcessor class

 serialization

 Ruby objects

 XML DOM (Document Object Model)

 JavaScript interfaces

 node types

 properties and() methods

 sample XML document

 XMLHttpRequest 2nd 3rd

 ActiveX

 asynchronous applications 2nd

 browser differences

 creating instances of

 cross-browser (Gecko and IE) XMLHttpRequest class constructor

 GET versus POST() methods

 properties and() methods

 readyState values

 RSS (Really Simple Syndication)

 sample XML document

 SOAP(Simple Object Access Protocol)

 synchronous applications 2nd

 web services

 XML-RPC data types

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/O.html (1 of 2) [03.07.2007 11:49:24]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

O

 XML-RPC faults

 XML-RPC requests

 XML-RPC responses

ol element (XHTML)

onclick event handler

onreadystatechange event handler

open() method

Opera 2nd 3rd

operators

 arithmetic operators

 conditional operators

 in Ruby

 JavaScript operators

 union operator (|)

optgroup element (XHTML)

option element (XHTML)

otherwise element (XSLT)

output element (XSLT) 2nd

ownerDocument property

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/O.html (2 of 2) [03.07.2007 11:49:24]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

P

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

p element (XHTML)

padding element (CSS)

padding-bottom element (CSS)

padding-left element (CSS)

padding-right element (CSS)

padding-top element (CSS)

pageWait() function

param element

 XHTML

 XSLT

parent axes (XPath)

parent nodes 2nd 3rd

parentheses ()

parentNode property

paths (XPath)

period (.)

philosophy of Ajax

PHP tabular information

plus sign (+)

pop() method

position() function

POST method

pre element (XHTML)

preceding axes (XPath)

preceding-sibling axes (XPath)

predicates (XPath)

preserve-space element (XSLT)

previousSibling property

procedures, stored

 addressSelect

 customerInsert

 itemSelectXML

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/P.html (1 of 2) [03.07.2007 11:49:24]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

P

 lineSelect

 nameInsert

 producing XML from

 shoppingCartSelect

processing instructions (XML)

processing-instruction element (XSLT)

ProcessingInstruction interface

properties [See also specific properties.]

 collections

 Float class (Ruby)

 HTMLDOM

 Integer class (Ruby)

 XMLHttpRequest object

prototype property

public folder

publicid property

purge() method

push() method

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/P.html (2 of 2) [03.07.2007 11:49:24]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Q

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

q element (XHTML)

query() method

question mark (?)

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/Q.html [03.07.2007 11:49:24]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

R

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

\r pattern (regular expressions)

Rails [See Ruby on Rails.]

read-only forms

 addressSelect stored procedure

 customer display

 MySQL database tables, creating

read-only tabular information 2nd

 CSS

 items available page

 lineSelect stored procedure

 MySQL database tables, creating

 mysqli() methods and properties

 PHP variables and routines

 readyState values

 web page code listing

readState property (XMLHttpRequest object) 2nd

readyState() method

Really Simple Syndication (RSS)

recursion

 JavaScript

 recursive style sheets (XSLT)

regular expressions

removeAttribute() method

removeAttributeNode() method

removeChild() method

removeNamedItem() method

removeRequestHeader() method

removing array elements

replace() method

replaceChild() method

replaceData() method

requests

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/R.html (1 of 3) [03.07.2007 11:49:25]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

R

 SOAP requests 2nd

 XML-RPC requests

 XMLHttpRequest object

reset event handler

resize event handler

responses

 SOAP responses 2nd

 XML-RPC responses

responseText property (XMLHttpRequest object)

responseText() method

responseXML property (XMLHttpRequest object)

responseXML() method

restrict() function

restricted characters (XML)

retrieve() method

reusing code [See code reuse.]

reverse() method

reversing arrays

root nodes 2nd

round() function

RSS (Really Simple Syndication)

Ruby

 advantages of

 classes

 data types

 Boolean

 numeric

 objects

 string

 flow control

 conditions

 loops

 history of

 operators

 threads

 variables

Ruby on Rails

 Ajax and 2nd

 database access example

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/R.html (2 of 3) [03.07.2007 11:49:25]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

R

 directory structure

 history of

 installation

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/R.html (3 of 3) [03.07.2007 11:49:25]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

S

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

s element (XHTML)

\S pattern (regular expressions)

Safari

samp element (XHTML)

Sarissa

 asynchronous loading

 browser support

 features

 synchronous loading

 syntax

 XMLHttpRequest implementation

 XSLT with

schemas (XML)

scope

 variables

 XSLT

script element (XHTML)

scroll event handler

search() method

select element (XHTML)

select event handler

selectNodes() method

selectSingleNode() function

self axes (XPath)

send() method 2nd

serialization

serialize() method

server-side environment

servers, web

services, web

 definition of

 example of

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/S.html (1 of 4) [03.07.2007 11:49:25]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

S

 invoking

 SOAP (Simple Object Access Protocol)

setAttribute() method

setAttributeNode() method

setEnvelope() method

setInterval() method

setNamedItem() method

setRequestHeader() method 2nd

setTimeout() method 2nd

shift() method

shopping cart application

 add2Cart() function

 displayCart() function

 Items Available web page code listing

 shopping cart page code listing

 shoppingCartSelect stored procedure

 substringAfter() function

 substringBefore() function

shoppingCartSelect stored procedure

Simple Object Access Protocol [See SOAP (Simple Object Access Protocol).]

slash (/) 2nd

slice() method 2nd

slicing arrays

small element (XHTML)

SOAP (Simple Object Access Protocol) 2nd

 faults 2nd

 invoking web services with

 requests 2nd

 responses 2nd

SOAPEnvelope class 2nd

sort element (XSLT) 2nd

sort() method

sorting

 arrays

 node sets (XSLT)

span element (XHTML)

Specified property (Attr interface)

splice() method

split() method

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/S.html (2 of 4) [03.07.2007 11:49:25]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

S

splitText() method

start-with() function

stateChangeHandler() function 2nd

statements

 break

 conditional statements

 case

 if

 switch

 continue

 loops

 do/while

 exiting

 for/in

 while

static web pages

status property (XMLHttpRequest object)

statusText property (XMLHttpRequest object)

stored procedures

 addressSelect

 customerInsert

 itemSelectXML

 lineSelect

 nameInsert

 producing XML from

 shoppingCartSelect

stored() functions, concatenating

strike element (XHTML)

String class (Ruby)

string functions

string-length() function

strings

 in Ruby

 regular expressions

 string functions

 substitution

strip-space element (XSLT)

strong element (XHTML)

structs, XML-RPC

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/S.html (3 of 4) [03.07.2007 11:49:25]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

S

style sheets [See CSS (Cascading Style Sheets); XSLT (eXtensible Stylesheet Language for Transformations).]

stylesheet element (XSLT)

sub element (XHTML)

submit event handler

submitForm() function 2nd

substituting strings

substr() method

substring() method 2nd

substring-after() function

substring-before() function

substringAfter() function

substringBefore() function

substringData() method

sum() function

sup element (XHTML)

switch statement

synchronous loading with Sarissa

synchronous pages

synchronous requests

synchronous XMLHttpRequest applications

system-property() function

systemid property

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/S.html (4 of 4) [03.07.2007 11:49:25]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

T

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

\t pattern (regular expressions)

table element (XHTML)

tabular information 2nd

 Ajax library classes

 Boolean global variables

 code reuse

 framesets

 JavaScript() functions

 changeEvent() 2nd

 forward()

 initialize()

 restrict()

 submitForm()

 nonbound tables, creating with XSLstyle sheets

 read-only

 CSS

 items available page

 lineSelect stored procedure

 MySQL database tables, creating

 mysqli() methods and properties

 PHPvariables and routines

 readyState values

 web page code listing

 sample Ajax page

 updateable (shopping cart application) 2nd

 add2Cart() function

 displayCart() function

 shopping cart page code listing

 shoppingCartSelect stored procedure

 substringAfter() function

 substringBefore() function

 XSLT

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/T.html (1 of 3) [03.07.2007 11:49:26]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

T

tags [See elements.]

Target property (ProcessingInstruction interface)

tbody element (XHTML)

td element (XHTML)

template element (XSLT)

templates (XSLT)

 distinguishing template matches with mode attribute

 named template example

 pure XSLT template example

 XSLT/XHTML hybrid template example

text element (XSLT)

Text interface

text-align element (CSS)

text-decoration element (CSS)

text-indent element (CSS)

text-transform element (CSS)

textarea element (XHTML)

tfoot element (XHTML)

th element (XHTML)

then statement (Ruby)

thread element (XHTML)

threads in Ruby

title element (XHTML)

toLowerCase() method

tools

toString() method

toUpperCase() method

tr element (XHTML)

traditional versus Ajax websites

training

 coding by hand

 guidelines for

 tools

transform element (XSLT)

transformations [See XSLT (eXtensible Stylesheet Language for Transformations).]

transformToDocument() method

transformToFragment() method

translate() function 2nd

transverse() function

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/T.html (2 of 3) [03.07.2007 11:49:26]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

T

tree data structures 2nd

true() function

Trueclass class (Ruby)

tt element (XHTML)

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/T.html (3 of 3) [03.07.2007 11:49:26]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

U

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

u element (XHTML)

ul element (XHTML)

undefined data types

unescape() method

union operator (|)

unions (XPath)

unless statement (Ruby)

unload event handler

unparsed-entity-uri() function

unshift() method

until loops

updateable forms

 customer display page

 customerInsert stored procedure

 nameInsert stored procedure

updateable tabular information (shopping cart application)

 add2Cart() function

 displayCart() function

 shopping cart page code listing

 shoppingCartSelect stored procedure

 substringAfter() function

 substringBefore() function

updateable web pages, creating with XSLT

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/U.html [03.07.2007 11:49:26]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

V

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

\v pattern (regular expressions)

Value property (Attr interface)

value-of element (XSLT)

valueOf() method

var element (XHTML)

variable element (XSLT)

variables

 JavaScript

 Ruby

 XSLT

vertical-align element (CSS)

views folder

visible.htm

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/V.html [03.07.2007 11:49:26]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

W

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

\W pattern (regular expressions)

web browsers [See browsers.]

web servers

web services

 definition of

 example of

 invoking

 SOAP (Simple Object Access Protocol)

 faults

 invoking web services with

 requests

 responses

web sites

 brochure-ware

 traditional versus Ajax websites

Web, history of

WEBrick

well-formed XHTML documents

well-formed XML documents 2nd 3rd

when element (XSLT)

while loops 2nd

white-space element (CSS)

width element (CSS)

window object

with-param element (XSLT)

word-spacing element (CSS)

World Wide Web Consortium 2nd 3rd

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/W.html [03.07.2007 11:49:26]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

X

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

XHTML [See also HTML.]

 compared to HTML

 elements [See elements.]

 well-formed documents

 XSLT/XHTML hybrid template example

XML (Extensible Markup Language) 2nd 3rd 4th 5th [See also XMLHttpRequest object.]

 asynchronous loading with Sarissa

 binding

 cross-browser XMLbinding

 Internet Explorer

 CDATA sections

 comments

 cross-browser binding XML

 cross-browser XMLdocument class constructor

 DTDs (Document Type Definitions)

 elements [See elements.]

 entities

 forbidden/restricted characters

 hiding with CSS 2nd

 namespaces

 naming conventions

 non-well-formed documents

 processing instructions

 producing from stored procedures

 sample documents 2nd

 schemas

 serialization

 stored functions, concatenating

 synchronous loading with Sarissa

 tree data structure 2nd

 well-formed documents 2nd 3rd

 XML Data Islands

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/X.html (1 of 5) [03.07.2007 11:49:27]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

X

 cross-browser solutions

 Firefox

 Internet Explorer 2nd

 sample HTML page with embedded XML

 XML declarations

 XML DOM (Document Object Model)

 JavaScript interfaces

 node types

 properties and methods

 sample XML document

XML-RPC data types

XML-RPC faults

XML-RPC requests

XML-RPC responses

XMLHttpRequest object 2nd 3rd 4th

 ActiveX

 asynchronous applications 2nd

 browser differences

 creating instances of

 cross-browser (Gecko and IE) XMLHttpRequest class constructor

 GET versus POST methods

 implementation with Sarissa

 properties and methods

 readyState values

 RSS (Really Simple Syndication)

 sample XMLdocument

 SOAP(Simple Object Access Protocol)

 faults

 requests

 responses

 synchronous applications 2nd

 web services

 definition of

 example of

 invoking

 SOAP (Simple Object Access Protocol)

 XML DOM (Document Object Model)

 JavaScript interfaces

 node types

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/X.html (2 of 5) [03.07.2007 11:49:27]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

X

 properties and methods

 sample XML document

 XML-RPC data types

 XML-RPC faults

 XML-RPC requests

 XML-RPC responses

xmlNode() function

XMLSPY XPath Evaluator

\xn pattern (regular expressions)

XPath 2nd

 arithmetic operators

 attribute nodes

 axes

 ancestor axes

 ancestor-or-self axes

 attribute axes

 child axes

 descendant axes

 descendant-or-self axes

 following axes

 following-sibling axes

 namespace axes

 parent axes

 preceding axes

 preceding-sibling axes

 self axes

 table of

 conditional operators

 context nodes

 expressions

 functions

 Boolean functions

 node set functions

 numeric functions

 string functions

 location paths

 parent nodes

 predicates

 unions

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/X.html (3 of 5) [03.07.2007 11:49:27]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

X

 XMLSPY XPath Evaluator

XSLT (eXtensible Stylesheet Language for Transformations) 2nd 3rd 4th [See also XPath.]

 advantages/disadvantages

 benefits of

 browser support

 cross-browser web page example

 Internet Explorer 5.0

 caching

 client-side transformations

 Microsoft Internet Explorer

 overview of

 decision structures

 elements

 defining in style sheets

 output

 sort

 stylesheet

 table of

 transform

 flow control

 forms

 functions

 goals of

 HTML output

 iterative style sheets

 Muenchian grouping

 nonbound tables, creating

 read-only web pages

 recursive style sheets

 sample XSL style sheet

 scope

 simple IE-only web page example

 simple style sheet example

 sorting node sets

 tabular information 2nd

 templates

 distinguishing template matches with mode attribute

 named template example

 pure XSLT template example

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/X.html (4 of 5) [03.07.2007 11:49:27]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

X

 XSLT/XHTML hybrid template example

 updateable web pages

 variables

 with Sarissa

 XSLTProcessor

XSLTProcessor 2nd

[xyz] pattern (regular expressions)

[^xyz] pattern (regular expressions)

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/X.html (5 of 5) [03.07.2007 11:49:27]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Ajax: Creating Web Pages with Asynchronous JavaScript and XML
	Table of Contents
	Copyright
	Bruce Perens' Open Source Series
	About the Author
	Preface
	Acknowledgments

	Chapter 1. Types of Web Pages
	Section 1.1. Static Web Pages
	Section 1.2. Dynamic Web Pages
	Section 1.3. Web Browsers
	Section 1.4. A Brief Introduction to Cross-Browser Development
	Section 1.5. The Server Side of Things
	Section 1.6. We Learn by Doing
	Section 1.7. Summary

	Chapter 2. Introducing Ajax
	Section 2.1. Not a Mockup
	Section 2.2. A Technique Without a Name
	Section 2.3. What Is Ajax?
	Section 2.4. An Ajax Encounter of the First Kind
	Section 2.5. An Ajax Encounter of the Second Kind
	Section 2.6. An Ajax Encounter of the Third Kind
	Section 2.7. The Shape of Things to Come
	Section 2.8. Summary

	Chapter 3. HTML/XHTML
	Section 3.1. The Difference Between HTML and XHTML
	Section 3.2. Elements and Attributes
	Section 3.3. Summary

	Chapter 4. JavaScript
	Section 4.1. Data Types
	Section 4.2. Variables
	Section 4.3. Operators
	Section 4.4. Flow-Control Statements
	Section 4.5. Functions
	Section 4.6. Recursion
	Section 4.7. Constructors
	Section 4.8. Event Handling
	Section 4.9. Summary

	Chapter 5. Ajax Using HTML and JavaScript
	Section 5.1. Hidden Frames and iframes
	Section 5.2. Cross-Browser DOM
	Section 5.3. Tabular Information
	Section 5.4. Forms
	Section 5.5. Advantages and Disadvantages
	Section 5.6. Summary

	Chapter 6. XML
	Section 6.1. Elements
	Section 6.2. Attributes
	Section 6.3. Handling Verboten Characters
	Section 6.4. Comments
	Section 6.5. Expectations
	Section 6.6. XML Declaration
	Section 6.7. Processing Instructions
	Section 6.8. XML Data Islands
	Section 6.9. Summary

	Chapter 7. XMLHttpRequest
	Section 7.1. Synchronous
	Section 7.2. Asynchronous
	Section 7.3. Microsoft Internet Explorer
	Section 7.4. XML Document Object Model
	Section 7.5. RSS
	Section 7.6. Web Services
	Section 7.7. Summary

	Chapter 8. Ajax Using XML and XMLHttpRequest
	Section 8.1. Traditional Versus Ajax Websites
	Section 8.2. XML
	Section 8.3. The XMLHttpRequest Object
	Section 8.4. A Problem Revisited
	Section 8.5. Tabular Information and Forms
	Section 8.6. Advantages and Disadvantages
	Section 8.7. Summary

	Chapter 9. XPath
	Section 9.1. Location Paths
	Section 9.2. Context Node
	Section 9.3. Parent Nodes
	Section 9.4. Attribute Nodes
	Section 9.5. Predicates
	Section 9.6. XPath Functions
	Section 9.7. XPath Expressions
	Section 9.8. XPath Unions
	Section 9.9. Axis
	Section 9.10. Summary

	Chapter 10. XSLT
	Section 10.1. Recursive Versus Iterative Style Sheets
	Section 10.2. XPath in the Style Sheet
	Section 10.3. Elements
	Section 10.4. XSLT Functions
	Section 10.5. XSLT Concepts
	Section 10.6. Client-Side Transformations
	Section 10.7. Summary

	Chapter 11. Ajax Using XSLT
	Section 11.1. XSLT
	Section 11.2. Tabular Information
	Section 11.3. Advantages and Disadvantages
	Section 11.4. Summary

	Chapter 12. Better Living Through Code Reuse
	Section 12.1. Reuse = Laziness
	Section 12.2. JavaScript Objects
	Section 12.3. Generic XSLT
	Section 12.4. Summary

	Chapter 13. Traveling with Ruby on Rails
	Section 13.1. What Is Ruby on Rails?
	Section 13.2. Installation
	Section 13.3. A Little Ruby on Rails Warm-Up
	Section 13.4. A Problem Revisited
	Section 13.5. Whither Ajax?
	Section 13.6. Summary

	Chapter 14. Traveling Farther with Ruby
	Section 14.1. Data Types
	Section 14.2. Variables
	Section 14.3. Operators
	Section 14.4. Flow-Control Statements
	Section 14.5. Threads
	Section 14.6. Ajax
	Section 14.7. Summary

	Chapter 15. The Essential Cross-Browser HTML DOM
	Section 15.1. Interfaces
	Section 15.2. Document
	Section 15.3. Frames
	Section 15.4. Collections
	Section 15.5. Summary

	Chapter 16. Other Items of Interest
	Section 16.1. Sarissa
	Section 16.2. JSON and JSON-RPC
	Section 16.3. ATLAS
	Section 16.4. The World Wide Web Consortium
	Section 16.5. Web Browsers
	Section 16.6. Summary

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

