downloaded from: lib.ommolkefab.ir

o8 HALL

BRUCE PERENS' OPEN SOURCE SERIES

AJAX

Greating Web Pages with
Asynchronous JavaScript and XML

Build Ajax Web applicafions from
the ground up, one slep af o time

Includes extensive code examples and
primars on F:E].r Ajax Ial:hm:ﬂu::rgies, fram
JavaScript and the XMLHtpRequest
object to the HTML DOM

Moaves from simple examples to
increasingly sophisticated applications

b > L Lo

"

-
== [iy |
1 - =y s B = 1
i ¥l ~ W wm o= |
il | I S e I i .

= :n-..___._"-*-— ibar

~ l.|_.-“_“-r|_ s Sl

. -__‘“—'—--.._____“"“ _____ |

- "-n..l_'l-'_""--_“___r """"" :".

T 1] .
- :‘-_“_‘__-' B T :_“"'l . Al

EDMONDIVWOMC HOW Sk

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ajax: Creating Web Pages with Asynchronous JavaScript and XML
By Edmond Woychowsky

Publisher: Prentice Hall

Pub Date: August 08, 2006

Print ISBN-10: 0-13-227267-9

Print ISBN-13: 978-0-13-227267-4
Pages: 432

Table of Contents | Index

Overview

The Easy, Example-Based Guide to Ajax for Every Web Developer

Using Ajax, you can build Web applications with the sophistication and usability of traditional desktop
applications and you can do it using standards and open source software. Now, for the first time,
there's an easy, example-driven guide to Ajax for every Web and open source developer, regardless of

experience.

Edmond Woychowsky begins with simple techniques involving only HTML and basic JavaScript. Then,
one step at a time, he introduces techniques for building increasingly rich applications. Don't worry if
you're not an expert on Ajax's underlying technologies; Woychowsky offers refreshers on them, from
JavaScript to the XMLHttpRequest object. You'll also find multiple open source technologies and open

standards throughout, ranging from Firefox to Ruby and MySQL.

Your'll not onlv learn how to write "functional" code. bhut also master desian natterns for writina rocksolid.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

high-performance Ajax applications. You'll also learn how to use frameworks such as Ruby on

Rails to get the job done fast.

. Learn how Ajax works, how it evolved, and what it's good for

. Understand the flow of processing in Ajax applications

. Build Ajax applications with XML and the XMLHttpRequest object

. Integrate back-end code, from PHP to C#

. Use XSLT and XPath, including XPath Axis

. Develop client-side Ajax libraries to support code reuse

. Streamline development with Ruby on Rails and the Ruby programming language
. Use the cross-browser HTML DOM to update parts of a page

. Discover the best Ajax Web resources, including Ajax-capable JavaScript libraries

NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ajax: Creating Web Pages with Asynchronous JavaScript and XML
By Edmond Woychowsky

Publisher: Prentice Hall

Pub Date: August 08, 2006

Print ISBN-10: 0-13-227267-9

Print ISBN-13: 978-0-13-227267-4

Pages: 432

Table of Contents | Index

Copyright
Bruce Perens' Open Source Series

___About the Author

Preface

___Acknowledgments

Chapter 1. Types of Web Pages

Section 1.1. Static Web Pages

Section 1.2. Dynamic Web Pages

Section 1.3. Web Browsers

Section 1.4. A Brief Introduction to Cross-Browser Development

Section 1.5. The Server Side of Things

Section 1.6. We Learn by Doing

Section 1.7. Summary

___Chapter 2. Introducing Ajax

Section 2.1. Not a Mockup

Section 2.2. A Technique Without a Name

Section 2.3. What Is Ajax?

Section 2.4. An Ajax Encounter of the First Kind

Section 2.5. An Ajax Encounter of the Second Kind

Section 2.6. An Ajax Encounter of the Third Kind

Section 2.7. The Shape of Things to Come

Section 2.8. Summary
Chapter 3. HTML/XHTML
Section 3.1. The Difference Between HTML and XHTML

Section 3.2. Elements and Attributes

Section 3.3. Summary

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Section 4.1. Data Types

Section 4.2. Variables

Section 4.3. Operators

Section 4.4. Flow-Control Statements

Section 4.5. Functions

Section 4.6. Recursion

Section 4.7. Constructors

Section 4.8. Event Handling

Section 4.9. Summary

Chapter 5. Ajax Using HTML and JavaScript

Section 5.1. Hidden Frames and iframes

Section 5.2. Cross-Browser DOM

Section 5.3. Tabular Information

Section 5.4. Forms

Section 5.5. Advantages and Disadvantages

Section 5.6. Summary

Chapter 6. XML

Section 6.1. Elements

Section 6.2. Attributes

Section 6.3. Handling Verboten Characters

Section 6.4. Comments

___Section 6.5. Expectations

Section 6.6. XML Declaration

Section 6.7. Processing Instructions

Section 6.8. XML Data Islands

Section 6.9. Summary

Chapter 7. XMLHttpRequest

Section 7.1. Synchronous

Section 7.2. Asynchronous

Section 7.3. Microsoft Internet Explorer
Section 7.4. XML Document Object Model
Section 7.5. RSS

Section 7.6. Web Services

Section 7.7. Summary

Chapter 8. Ajax Using XML and XMLHttpRequest

Section 8.1. Traditional Versus Ajax Websites

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Section 8.3. The XMLHttpRequest Object

__Section 8.4. A Problem Revisited

Section 8.5. Tabular Information and Forms

Section 8.6. Advantages and Disadvantages

Section 8.7. Summary

Chapter 9. XPath

Section 9.1. Location Paths

Section 9.2. Context Node

Section 9.3. Parent Nodes

Section 9.4. Attribute Nodes

Section 9.5. Predicates

Section 9.6. XPath Functions

Section 9.7. XPath Expressions

Section 9.8. XPath Unions

Section 9.9. Axis

Section 9.10. Summary
Chapter 10. XSLT

Section 10.1. Recursive Versus lterative Style Sheets

Section 10.2. XPath in the Style Sheet

Section 10.3. Elements

Section 10.4. XSLT Functions

Section 10.5. XSLT Concepts

Section 10.6. Client-Side Transformations

Section 10.7. Summary
__Chapter 11. Ajax Using XSLT
Section 11.1. XSLT

Section 11.2. Tabular Information

Section 11.3. Advantages and Disadvantages

Section 11.4. Summary

Chapter 12. Better Living Through Code Reuse

Section 12.1. Reuse = Laziness

Section 12.2. JavaScript Objects
Section 12.3. Generic XSLT

Section 12.4. Summary

Chapter 13. Traveling with Ruby on Rails
Section 13.1. What Is Ruby on Rails?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Section 13.3. A Little Ruby on Rails Warm-Up

Section 13.4. A Problem Revisited
Section 13.5. Whither Ajax?

Section 13.6. Summary

___Chapter 14. Traveling Farther with Ruby

Section 14.1. Data Types

Section 14.2. Variables

Section 14.3. Operators

Section 14.4. Flow-Control Statements
Section 14.5. Threads
Section 14.6. Ajax

Section 14.7. Summary

Chapter 15. The Essential Cross-Browser HTML DOM

Section 15.1. Interfaces

Section 15.2. Document

Section 15.3. Frames

Section 15.4. Collections

Section 15.5. Summary

Chapter 16. Other Items of Interest

Section 16.1. Sarissa
Section 16.2. JSON and JSON-RPC
Section 16.3. ATLAS

Section 16.4. The World Wide Web Consortium

Section 16.5. Web Browsers

Section 16.6. Summary

Index

e prcy exT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data:

Woychowsky, Edmond.
Ajax : creating Web pages with asynchronous JavaScript and XML / Edmond Woychowsky.
p. cm.

ISBN 0-13-227267-9 (pbk. : alk. paper) 1. Web sitesDesignComputer programs. 2. Ajax (Web site
development technology) 3. JavaScript (Computer program language) 4. XML (Document markup lan-
guage) I. Title.

TK5105.8885.A52W69 2006

006.7'86dc22
2006017743

Copyright © 2007 Pearson Education, Inc.

Thin rmraatavial rmaavs lha AictvilviidbAad Anhs AvilhiAaat +A +hAa FAavimnns AnA AAanAdF AKnA AAat FAavth Tnn #hhAa MunAanrx NuilliAaAa+iAn

downloaded from: lib.ommolkefab.ir

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://www.prenhallprofessional.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Text printed in the United States on recycled paper at R. R. Donnelley in Crawfordsville, Indiana. First
printing, August 2006

Dedication

This book is dedicated to my wife, Mary Ann, and my children, Benjamin and Crista. Without
their constant support, the book that you hold in your hands would definitely not exist.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://www.opencontent.org/openpub/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Bruce Perens' Open Source Series

www.prenhallprofessional.com/perens

Bruce Perens' Open Source Series is a definitive series of books on Linux and open source technologies,
written by many of the world's leading open source professionals. It is also a voice for up-and-coming open
source authors. Each book in the series is published under the Open Publication License (www.opencontent.

org), an open source compatible book license, which means that electronic versions will be made available
at no cost after the books have been in print for six months.

Java™ Application Development on Linux®

Carl Albing and Michael Schwarz
o« C++ GUI Programming with Qt 3
Jasmin Blanchette and Mark Summerfield
« Managing Linux Systems with Webmin: System Administration and Module Development
Jamie Cameron
. User Mode Linux®
Jeff Dike
« An Introduction to Design Patterns in C++ with Qt 4
Alan Ezust and Paul Ezust
« Understanding the Linux Virtual Memory Manager
Mel Gorman
« PHP 5 Power Programming
Andi Gutmans, Stig Bakken, and Derick Rethans
o Linux® Quick Fix Notebook
Peter Harrison

« Implementing CIFS: The Common Internet File System

downloaded from: lib.ommolkefab.ir

http://www.prenhallprofessional.com/perens
http://www.opencontent.org/
http://www.opencontent.org/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CHIISWUPIIST 1S et
« Open Source Security Tools: A Practical Guide to Security Applications
Tony Howlett
« Apache Jakarta Commons: Reusable Java™ Components
Will Iverson
o Linux® Patch Management: Keeping Linux® Systems Up To Date
Michael Jang
« Embedded Software Development with eCos
Anthony Massa
« Rapid Application Development with Mozilla
Nigel McFarlane
« Subversion Version Control: Using the Subversion Version Control System in Development Projects
William Nagel

o Intrusion Detection with SNORT: Advanced IDS Techniques Using SNORT, Apache, MySQL, PHP, and
ACID

Rafeeq Ur Rehman
o Cross-Platform GUI Programming with wxWidgets
Julian Smart and Kevin Hock with Stefan Csomor
« Samba-3 by Example, Second Edition: Practical Exercises to Successful Deployment
John H. Terpstra
« The Official Samba-3 HOWTO and Reference Guide, Second Edition
John H. Terpstra and Jelmer R. Vernooij, Editors

« Self-Service Linux®: Mastering the Art of Problem Determination

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

« AJAX: Creating Web Pages with Asynchronous JavaScript and XML

Edmond Woychowsky

e prcy ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

About the Author

A graduate of Middlesex Country College and Penn State, Edmond Woychowsky began his professional life
at Bell Labs as a dinosaur writing recursive assembly-language programs for use in their DOSS order entry
system. Throughout his career, Ed has worked in the banking, insurance, pharmaceutical, and
manufacturing industries, slowly sprouting feathers and evolving into a web developer. He is best known for
his often unique articles on the TechRepublic website, as well as his ability to explain how Muenchian
grouping works in small words. Currently, he can be found working in New Jersey as a consultant, applying
both Ajax and XSLT to problems in often bizarre ways and looking forward to his next meal.

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Preface

The purpose of the book that you hold in your hands, Ajax: Creating Web Pages with Asynchronous
JavaScript and XML, is simply to show you the fundamentals of developing Ajax applications.

What This Book Is About

For the last several years, there has been a quiet revolution taking place in web application development.
In fact, it was so quiet that until February 2005, this revolution didn't have a name, even among the
revolutionaries themselves. Actually, beyond the odd mention of phrases such as XM_Ht t pRequest object,

XML, or SOAP, developers didn't really talk about it much at all, probably out of some fear of being burned
for meddling in unnatural forces. But now that the cat is out of the bag, there is no reason not to show how
Ajax works.

Because | am a member of the "we learn by doing" cult (no Kool Aid required), you'll find more code
examples than you can shake a stick at. So this is the book for those people who enjoyed the labs more
than the lectures. If enjoyed is the wrong word, feel free to substitute the words "learned more from."

uUntil around 2005, the "we learn by doing™ group of developers was obscured by the belief that a piece of
paper called a certification meant more than hands-on knowledge. | suppose that, in a way, it did.
Unfortunately, when jobs became fewer and farther between, developers began to collect certifications the
way that Imelda Marcos collected shoes. Encyclopedic knowledge might have helped in getting interviews
and subsequent jobs, but it really didn't help very much in keeping those jobs. However, now that the
pendulum has begun to swing in the other direction, it is starting to become more important to actually
know a subject than to be certified in it. This leads to the question of "Why learn Ajax?"

The answer to that question can be either short and sweet or as rich and varied as the concept of Ajax
itself. Let's start with the first answer because it looks good on the resumé. We all know that when
something looks good on the resumé, it helps to keep us in the manner in which we have become
accustomed, living indoors and eating regularly. Couple this with the knowledge of actually having hands-
on knowledge, and the odds of keeping the job are greatly increased.

The rich and varied answer is that, to parrot half of the people writing about web development trends, Ajax
is the wave of the future. Of course, this leads to the statement, "I heard the same thing about DHTML,
and nobody has talked about that for five years." Yes, some of the same things were said about DHTML,
but this time it is different.

The difference is that, this time, the technology has evolved naturally instead of being sprung upon the
world just so developers could play buzzword bingo with their resumés. This time, there are actual working
examples beyond the pixie dust following our mouse pointers around. This time, the companies using these
techniques are real companies, with histories extending beyond last Thursday. This time, things are done
with a reason beyond the "it's cool" factor.

What You Need to Know Before Reading This Book

This book assumes a basic understanding of web-development techniques beyond the WYSIWYG drag and
drop that is the current standard. It isn't necessary to have hand-coded HTML; it is only necessary to know

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

perrormed.

Beyond my disdain for the drag-and-drop method of web development, there is a logical reason for the
need to know something about HTMLbasically, we're going to be modifying the HTML document after it is
loaded in the browser. Nothing really outrageous will be done to the documentmerely taking elements out,
putting elements in, and modifying elements in place.

For those unfamiliar with JavaScript, it isn't a problem; I've taken care to explain it in some depth because
there is nothing worse than needing a second book to help understand the first book. Thinking about it
now, of course, | missed a wonderful opportunity to write a companion JavaScript volume. Doh!

If you're unfamiliar with XML, don't be put off by the fact that Ajax is short hand Asynchronous JavaScript
and XML because what you need to know is in here, too. The same is also true of XSLT, which is a language
used to transform XML into other forms. Think of Hogwarts, and you get the concept.

In this book, the evolution (or, if you prefer, intelligent design) of Ajax is described from the beginning of
web development through the Dynamic HTML, right up to Asynchronous JavaScript and XML. Because this
book describes a somewhat newer technique of web development, using a recent vintage web browser such
as Firefox or Flock is a good idea. You also need an Internet connection.

How This Book Is Laid Out

Here is a short summary of this book's chapters:

. Chapter 1, "Types of Web Pages," provides a basic overview of the various ways that web pages

have been coded since the inception of the Web. The history of web development is covered
beginning with static web pages through dynamic web pages. In addition, the various technologies
used in web development are discussed. The chapter closes with a discussion on browsers and the
browser war.

« Chapter 2, "Introducing Ajax," introduces Ajax with an account of what happened when |

demonstrated my first Ajax application. The concepts behind Ajax are described and then are
introduced in a step-by-step manner, from the first primordial Ajax relatives to the current evolution.
o Chapter 3, "HTML/XHTML," describes some of the unmentioned basic building blocks of Ajax, HTML/

XHTML, and Cascading Style Sheets.

. Chapter 4, "JavaScript,"” serves as an overview of JavaScript, including data types, variables, and
operators. Also covered are flow-control statements, recursive functions, constructors, and event
handlers.

o Chapter 5, "Ajax Using HTML and JavaScript," describes one of the earlier ancestors of Ajax.

Essentially, this is how to fake it using stone knives and bear skins. Although the technique
described is somewhat old-fashioned, it demonstrates, to a degree, how processing flows in an Ajax
application. In addition, the "dark art™ of communicating information between frames is covered.
Additionally, in an effort to appease those who believe that this is all old hat, the subject of stored
procedures in MySQL is covered.

« Chapter 6, "XML," covers XML, particularly the parts that come into play when dealing with Ajax.
Elements, attributes and entities, oh my; the various means of describing content, Document Type
Definitions, and Schema are covered. Also included are cross-browser XML data islands.

« Chapter 7, "XMLHttpRequest," dissects the XM_LH: t pRequest object by describing its various
properties and methods. Interested in making it synchronous instead of asynchronous? You'll find
the answer in this chapter. In addition, both web services and SOAP are discussed in this chapter.

« Chapter 8, "Ajax Using XML and XMLHttpRequest," covers what some might consider pure Ajax,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Additionally, various back ends are discussed, ranging from PHP to C#. Also covered are two of the
more popular communication protocols: RPC and SOAP.
« Chapter 9, "XPath," covers XPath in detail. Starting with the basics of what is often considered

XSLT's flunky, this chapter describes just how to locate information contained in an XML document.
Included in this chapter is a detailed description of XPath axis, which is at least worth a look.

« Chapter 10, "XSLT," goes into some detail about the scary subject of XSLT and how it can be fit into
a cross-browser Ajax application. Starting with the basics and progressing to the more advanced
possibilities, an attempt is made to demystify XSLT.

o Chapter 11, "Ajax Using XSLT," takes the material covered in the first four chapters the next logical
step with the introduction of XSLT. Until relatively recently, this was typically considered a bad idea.
However, with some care, this is no longer the case. XSLT is one of those tools that can further
enhance the site visitor's experience.

« Chapter 12, "Better Living Through Code Reuse," introduces a homegrown client-side JavaScript
library that is used throughout the examples shown in this book. Although this library doesn't
necessarily have to be used, the examples provide an annotated look at what goes on behind the
scenes with most of the Ajax libraries currently in existence.

« Chapter 13, "Traveling with Ruby on Rails," is a gentle introduction to the open source Ruby on Rails
framework. Beginning with where to obtain the various components and their installation, the
chapter shows how to start the WEBrick web server. Following those examples, a simple page that
accesses a MySQL database is demonstrated.

« Chapter 14, "Traveling Farther with Ruby," looks a little deeper into Ruby on Rails, with the
introduction of a simple Ajax application that uses the built-in Rails JavaScript library.

« Chapter 15, "The Essential Cross-Browser HTML DOM," describes the dark and mysterious realm of
the cross-browser HTML Document Object Model. Another unmentioned part of Ajax, the HTML DOM
is essentially how the various parts of an HTML or XHTML document are accessed. This is what
makes the "only update part of a document" feature of Ajax work.

« Chapter 16, "Other Items of Interest," describes some of the resources available via the World Wide
Web. These resources range from prewritten Ajax-capable JavaScript libraries to some of the
numerous browsers available for your personal computer.

Conventions Used in This Book

Listings, code snippets, and code in the text in this book are in nonospaced font. This means that the code
could be typed in the manner shown using your editor of choice, and the result would appear as follows:

if(eneny = "troll")
runaway () ;

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Acknowledgments

Even though this book is essentially "my" book, it has been influenced in many ways (all of them good) by
multiple individuals. Because the roles that each of these individuals played in the creative process were
very significant, 1 would like to take the time to thank as many of them as | can remember here.

Mary Ann Woychowsky, for understanding my "zoning out" when writing and for asking, "l guess the book
is finished, right?" after catching me playing Morrowind when | should have been writing. Benjamin
Woychowsky, for asking, "Shouldn't you be writing?" whenever | played a computer game. Crista
Woychowsky, for disappearing with entire seasons of Star Gate SG-1, after catching me watching them
when | should have been writing.

My mother, Nan Gerling, for sharing her love of reading and keeping me in reading materials.

Eric Garulay, of Prentice Hall, for marketing this book and putting me in touch with Catherine Nolan.
Catherine Nolan, of Prentice Hall, for believing in this book and for her assistance in getting started with a
book. Bruce Perens, for his belief that because | use Firefox, | had not tread too far down the path that
leads to the dark side. Denise Mickelson, of Prentice Hall, for making sure that | kept sending in chapters.
Chris Zahn, of Prentice Hall, for his editing, for answering my often bizarre questions, and for his
knowledge of things in general. Thanks to George Nedeff for managing the editorial and production
workflow and Heather Fox for keeping this project in the loop and on track. Any errors remaining are solely
my own.

I would like to thank the late Jack Chalker for his assistance with what to look for in writing contracts and
for essentially talking me through the process using words that | could understand. Also for his writing a

number of science-fiction novels that have influenced the way that | look upon the world. After all, in the
end, everything is about how we look upon the world.

Dossy Shiobara, for answering several bizarre questions concerning MySQL.
Richard Behrens, for his assistance in formulating my thoughts.

Joan Susski, for making sure that | didn't go totally off the deep end when developing many of the
techniques used in this book.

Premkumar Ekkaladevi, who was instrumental in deciding just how far to push the technology.
Jon (Jack) Foreman, for explaining to me that | can't know everything.
David Sarisohn, who years ago gave a very understandable reason for why code shouldn't be obscure.

Finally, to Francis Burke, Shirley Tainow, Thomas Dunn, Marion Sackrowitz, Frances Mundock, Barbara
Hershey, Beverly Simon, Paul Bhatia, Joseph Muller, Rick Good, Jane Liefert, Joan Litt, Albert Nicolai, and
Bill Ricker for teaching me how to learn.

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 1. Types of Web Pages

While | was in college, sometime during the Pliocene, | took a science fiction class. The interesting thing
about this class is that one student didn't realize until midterms that it wasn't a physiology class. | bring
this up only because if you've picked up this book expecting Corinthian helmets and hoplites, which,
incidentally, have one-third less fat than regular hops (useful information for Hydras on a diet), this is the
wrong book.

According to legend, the Web was originally created by Tim Berners-Lee to distribute documents of a
technical nature. Think of it as the latetwentieth-century version of leaving a note on the refrigerator
describing how to preheat the oven, put the casserole in, make a salad, and serve it after 1 hour. As you
can well imagine, posting this kind of information on a computer network has a much farther reach than
posting it on a single refrigerator.

The existence of the World Wide Web hit all of us suddenly, like a summer thunderstorm, from clear skies
to cracks of lightning in what felt like 15 minutes. All of a sudden all the friends and relatives who thought |
was a little strange for having a computer were calling Gateway and Dell or were in a store getting a
Toshiba or Compagq. It was as if they were all suddenly afflicted with some illness that made them say
words like bits, bytes, and baud. Instead of strutting around comparing the size of their sailboats, they
were all strutting comparing the size of their hard disks.

In just over a decade of existence, the World Wide Web has transformed dramatically from its humble
beginnings on a single server stuck on a desk in an out-of-the-way office. In the first few years, the growth
of the World Wide Web resembled Fibonacci numbers. If you're unfamiliar with Fibonacci numbers, they are
a mathematical representation of the increase in the numbers of immortal bunnies in a garden with no
predators. Assume an infinite supply of carrots and, well, you get the ideait was that kind of growth.
Unfortunately, growth at that rate cannot be maintained forever; eventually, that many bunnies are bound
to attract something with a taste for hasenpfeffer.

My opinion of this situation is that, contrary to popular belief, the end of growth in leaps and bounds is not
the beginning of the end; it is merely the end of the beginning. Change is good, change is inevitable, and
change rarely comes without pain.

Speaking of change, Ajax is a bit of a change from the earlier types of web pages, be they static HTML or
Dynamic HTML/DHTML. The interesting thing is that all types of web pages rely upon essentially the same
ingredients: HTML, JavaScript, CSS, and sometimes XML. In this chapter, | take our discussion a little
beyond those simple ingredients, though, to consider the only two additional factors that can affect the end
result: the browser and the web server.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.1. Static Web Pages

Static web pages are the original type (and for what seemed like about 10 minutes the only type) of web
pages. When dealing with the distribution of technical documents, there aren't very many changes to the
original document. What you actually see more of is a couple of technical documents getting together,
settling down, and producing litter after litter of little technical documents. However, the technical
documents didn't have this fertile landscape completely to themselves for very long.

If you've ever traveled anywhere in the United States by automobile, you might be familiar with one of the
staples of the driving vacation: the travel brochure. Often describing places like Endless Caverns, Natural
Bridge, Mystic Aquarium, or Roadside America, they're a staple of the American landscape. Designed to
catch attention and draw the traveler in to spend some cash, they've been around seemingly forever.

The web equivalent, sometimes referred to as brochure-ware, also is designed to draw in the virtual
traveler. This type of website is usually used to inform the visitor about subjects as varied as places to visit,
cooking, children, or my nephew Nick and niece Ashley's 2002 visit to Walt Disney World. This is actually a
great medium for information that is relatively unchanging.

Allow me to digress for a little computer history lesson. Back in the old days when dinosaurseh,
mainframesruled computing, there were pseudoconversational systems that faked some of the functionality
seen in web applications. These applications essentially displayed a form on what was called a dumb
terminal. It was called a dumb terminal because it had no real processing power of its own. The user then
filled out the form and hit a program function key, which transferred the input data to the mainframe. The
mainframe processed the data, based upon content and the specific program function key, and the results,
if any, were displayed on the user's dumb terminal. End of history lesson.

Static web pages offer the same functionality as those monster computers of old, in much the same way.
The only real changes are form "buttons" instead of program function keys, the presence of a mouse, and
the price tags for the equipment involved. Well, maybe that isn't entirely true; a dumb terminal will set you
back about as much as one of today's off-the-shelf computers. The real difference lies in the price
difference between a web server and a mainframe: thousands of dollars vs. millions of dollars. Those
dinosaurs didn't come cheap.

e prcy ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.2. Dynamic Web Pages

Static web pages have three major problems. The first is that they're boring. Think of it as visiting the park
down the road on vacation every year. Unless that park is Yellowstone, or there's lots of alcohol involved,
it's going to get old very quickly.

The second problem is that, unlike a dumb terminal, a personal computer has processing power of its own.
Some, in fact, have more processing power than the web servers that they are communicating with. Why
not take advantage of this processing power? It won't cost the server anything to utilize this essentially free
resource.

The final problem with static web pages is that all validation is performed by the server. This means that if
a user enters a telephone number as (999)999-9999 instead of 999-999-9999, it is up to the server to
catch the error and inform the user of the correct format. So the user is forced to endure the entire cycle in
which the form is sent to the server, which finds the error and then sends the whole page back to the web
browser. And unless the web developer took care to retain the information already entered, the user is
forced to re-enter everything. | don't know about you, but this wouldn't give me the warm fuzzes about a
website.

For all of these reasons and the "wouldn't it be cool?" factor, a technique called Dynamic Hypertext Markup
Language, or DHMTL, was created. Even at first glance, it was obvious that there was a vast difference
between static web pages and pages that employed DHTML techniques. The first of these differences is that
things happened on dynamic web pages.

There were events. No, not events like the grand opening of the Wal-Mart Super Center down the
roadbrowser events. When the mouse pointer was moved around the page, things happened, and not just
the pointer changing from an arrow to a hand and back again. Real things happened. Hyperlinks changed
color; menus dropped down.

As incredible as all of this seemed, the biggest difference came when working with HTML forms. Much of
the validation was performed on the client side, right on the browser (which is what client side means, but I
was going for the effect here). The fact was that the user no longer had to wait for the entire unload/reload
cycle to discover that some moron web developer wants dashes separating the parts of a date instead of
forward slashes. This was a real improvement.

In fact, on some websites, techniques were used to prevent the user from entering characters that weren't
allowed. If a numeric value is expected in an input box, well, try as you might, only the numeric keys and
the decimal point will work; if an integer is expected, users don't even get the decimal point.

Of course, it wasn't long before DHTML was taken to the extreme. On some pages the mouse pointer
turned into a magic wand, trailing pixie dust like flies behind a garbage truck. Other web pages seemed to
nearly explode whenever the mouse pointer moved because of the sheer number of drop-down menus,
rollovers, and assorted "features." Basically, too much of a good thing makes it no longer a good thing.

However, as they say on television, "How'd they do that?"

The quick answer is "Very carefully,” but if we we're concerned with quick answers, we would all be
millionaires from using a Magic Eight Ball for investment decisions. Of course, this doesn't seem to be

[R S N SR T B - -

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The way DHTML works is through a mixture of HTML, Cascading Style Sheets, and JavaScript. Also, as the
cooking shows demonstrate, it is all in how the ingredients are put together instead of the fact that they
are put together. For example, quite a few people like chicken and chocolate, but with the exception of
mole, how many dishes are there that combine the two?

1.2.1. HTML

Yeah, Hypertext Markup Language was what made static web pages work, but just because the web pages
were static doesn't mean that HTML was static. Time moved forward, as time usually does, and new
capabilities and features were added. Some were, well, not removed, but deprecated, which means that
they're still there, but only for compatibility purposes. These deprecated features, however, were more
than made up for by the addition of the new features.

The big question is, who decides which features stay, which are deprecated, and which are added? The
answer is that all of these decisions are made by the World Wide Web Consortium, which, in secret
midnight meetings, dances around a bonfire, drinks mead, and listens to Jethro Tull CDs. Alright, the truth
is that committees meet periodically in a conference room and discuss modifications to HTML. However, my
explanation accounts for the existence of the marquee tag better than the official explanation.

The World Wide Web Consortium is the governing body that issues "Recommendations" concerning the
more technical aspects of the Web. Starting with Hypertext Markup Language version 1.0 and moving
through the more current version 4.01 and XHTML version 1.1, the World Wide Web Consortium attempts
to keep things standard among the various web browser developers. Theoretically, the end result of these
"Recommendations" is that all web browsers behave identically on any specific website, but as | explain
later, there are degrees of compliance and interpretation. In addition, there are plenty of nonstandard
extensions by browser developers, who, in the hopes of getting a leg up on the competition, continue to
add "features" until their browser resembles a Swiss Army knife more than a web browser.

1.2.2. CSS

The problem with HTML is that it was never intended to deal with anything beyond the structure of a page.
Unfortunately, early on, somebody new to HTML asked the question, "Hey, how do | make text bold?" and
the pure structural language called HTML was polluted by presentation. The end result of this was
documents with more HTML than text. Mostly consisting of b tags, i tags, and the dreaded font tags, these

documents were a nightmare if it became necessary to make a change.

Cascading Style Sheets, Level 1, are an attempt to bring this situation back under control by providing a
way to avoid the b, i , and font tags. Instead, presentation could be dealt with on a per-tag basis, which

makes coding somewhat like being a Roman emperor: "The text in the anchor tags amuses memake it bold
and Tahoma!"

Cascading Style Sheets work by associating style rules to the elements of an HTML document. These rules
can be applied to single tags, tags of a specific type, or developer-specified tags. This eliminates the need
to code tags within tags until the page is so bloated that it is nearly impossible to follow; instead, a CSS is
specified on the page level or tag level to describe the style for the entire page.

Just in case you're wondering, the cascading part of Cascading Style Sheets comes into play when there is
more than one style sheet with rules that can be applied to a specific tag. The specific style sheet rule that
is applied depends exactly on how the applicable Cascading Style Sheet is defined. The problem, for me, at

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

sometning else, sometning a bit more Tamiliar, as In the winning hanas oT pokKer. In poker, the winning
hands, from high to low, are:

1.

Royal flush
2.

Straight flush
3.

Four of a kind
4.

Full house
5.

Flush

With Cascading Style Sheets, the "winning" hands are as follows:

1.
Inline CSS defined in the element's styl e attribute
2.
Internal CSS defined using the styl e tag
3.
External CSS defined using the styl e tag
4.
External CSS defined using the | i nk tag
5.

The default built into the web browser

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.2.3. JavaScript

JavaScript is a lightweight, interpreted, object-based programming language that has become the standard
client-side scripting language. Based upon the C programming language of Kernighan and Richie fame,
JavaScript is how all of those neat and nifty little client-side tricks work. Whether it is event trapping,
validation, or whatever, nine times out of ten, JavaScript is the man behind the curtain pulling the levers to
make things happen.

Even though JavaScript is widespread doesn't mean that there isn't a lot of confusion about JavaScript.
Take, for example, the name; originally called LiveScript, the name was changed to cash in on some of the
press that Java was getting early on. To confuse things further, Microsoft sometimes refers to its
implementation as JScript, while in Europe, the name ECMAScript is used to refer to JavaScript. I, for one,
believe that all of these aliases are designed to hide a gangster past or something along those lines.

Seriously, most of the client-side logic on the Web is coded in JavaScript. This doesn't mean that JavaScript
is innately superior to VBScript, Perl, or even Java itself; it is only because JavaScript is built into practically
every browser currently available. This means that visitors to websites that use JavaScript, as opposed to
any of the alternatives, can jump right into shopping or whatever without waiting for a download to
complete.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.3. Web Browsers

Without a web browser, though, web pages are rather useless. The majority of people wandering around
the Internet wouldn't fully appreciate them. Yes, there is the indentation, but without a browser, there is no
scripting or pictures. A lot can be said about web browsers; after all, they color our web browsing
experience nearly as much as the pages we visit. The decision to use a specific web browser probably says
a great deal about who each of us is as an individual. Unfortunately, I'm not aware of any study along
those lines. I, for one, would like to see what would be said about somebody still running Internet Explorer
version 2 on a 100-MHz Pentium with Windows 95. But come to think of it, that describes some of the
employees on my last consulting assignment.

Nevertheless, a web browser is our window (note the small w) to the World Wide Web, and, as with
windows, quite a few choices are available to us. However, instead of having names like "double hung" and
"casements," web browsers have names like "Firefox" and "Opera." And just as with window styles, web
browsers go in and out of fashion. For example, think for a moment: How many houses in your
neighborhood have arrow slits for windows? However, unlike the majority of windows that either work or do
not work, an added factor must be taken into account when considering web browsers: They are not
stagnant. Even though their evolution has slowed somewhat compared to a few years ago, web browsers
are still evolving.

In some ways, this evolution parallels the evolution that has taken place in the natural world, with the
better adapted supplanting those that don't quite fit in as well. Of course, just as in the natural world, there
are hangerson from earlier ages. Sometimes these holdovers exist in isolated communities, and sometimes
they're lone individuals living among us unnoticed.

However, unlike in the natural world, evolution in web browsers is driven by an intelligence, or, at least, I'd
like to think so. Behind every feature there are individuals who decide what features to include and how to
implement those features. Because of this, web browsers can be both very similar to and very different
from one another. Let's now take the opportunity to explore some of those similarities and differences.

1.3.1. Microsoft Internet Explorer

Love it or hate it, there is no denying that Microsoft Internet Explorer is currently the most used web
browser. In fact, according to one website that measures browser statistics, Internet Explorer comes in
both first and third. Huh? Sounds a little like the 1960s version of The Love Bug, doesn't it? This incredible
feat can be attributed to the estimated 5 percent of people who are still running some incarnation of
version 5, which can be versions 5.0, 5.01, or 5.5your guess is as good as mine.

Although | can't tell you exactly which version of Microsoft Internet Explorer they might be running, | can
give several possible reasons for living in the past. The first of these is simple inertia; a body at rest tends
to stay at rest. Upgrades take time, and there is always the possibility of something going wrong, so why
run the risk of causing problems?

Another possibility is the old "if it ain't broke, why fix it?" reason. Of course, there are different tolerances

for "ain't broke." For example, | knew a professor in college who had a car that lost a quart of oil every 50
miles. For him, 50 miles fell within the boundaries of his "ain't broke" tolerance. Unfortunately, the car had
other tolerances when someone borrowed the car and forgot about the leak.

Tha third naccihla raacAn fAar otill riinninAa cAarma flaviar Af Minrracnft lntarnat Cvnlarar viaveinn K ic that tha

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

own eyes. In Tact, It was quite some ume perore Mary Ann, my wite, Iet me near nher computer or Its
replacement.

I can think of one final reason for running version 5 of Internet Explorer: the sheer size of the download for
version 6. When last | looked, it was more than 100MB. This is tolerable with DSL or cable, but with a dial-
up connection, it would finish up around the same time that the sun is a burnt-out cinder.

Now let's look at the users of Internet Explorer as a whole, all of the more recent versions, be they 5.0,
5.01, 5.5, or even 6.0. Why do these individuals use a web browser that, according to many, is several
years out-of-date? Well, the fact that it came with the computer might have a little to do with it.

The average user has problems setting the clock on the VCR; do you really think that users are ready to
install what could be considered a part of the computer's operating system? Some of them know their
limitations, and a computer represents a substantial amount of money. They are more likely to give
themselves a haircut using a bowl and scissors than to risk "breaking" the computer. After all, Internet
Explorer version 6 isn't so bad; it does work, after all.

From a developer's perspective, Internet Explorer also isn't too bad. Yes, it is dated and a little flakey, but
that's nothing that we haven't been able to deal with in the past. We're developers; we have powers like
Super(insert appropriate gender here). Just beware of the deviations from standards, the developer's
version of Kryptonite.

1.3.2. Mozilla-Based Browsers (Netscape, Mozilla, and Firefox)

Before going any further, allow me to come clean. | use Firefox whenever | can, and before Firefox, | used
Mozilla, so I'm a wee bit biased. Just in case you've only recently come out of the Y2K shelter, Firefox is an
open-source browser that is the descendant of the Netscape Navigator that you remember from before
going into the shelter.

Netscape was the original Godzillaeh, Mozillaweb browser, which, in its day, had a market share equally as
impressive as Microsoft Internet Explorer's. In fact, it could be considered more impressive if you consider
that, before 1998, Netscape wasn't free. Unfortunately, without the advantage of being bundled to an
operating system, Netscape lost ground and Internet Explorer has kept nibbling away until the present day.

The Mozilla browser was the first attempt at an open-source browser, which, unfortunately, never achieved
the popularity of the original browser. There is, however, an interesting side note: Version 7 of Netscape
was created using Mozilla version 1 as a starting point. For a really successful open-source browser, one
needs to look at Firefox.

Originally called Firebird, a synonym for Phoenix that led to quite a few comments about rising from the
ashes of Netscape, Firefox is sort of doing to Internet Explorer what Internet Explorer did to Netscape. |

say "sort of" because the nibbles seem larger. Maybe this is due to foxes having relatively larger mouths for
their size. The actual reason is that it seems that when the goal of dominating the market was achieved,
Microsoft lost interest in enhancing Internet Explorer.

As | stated earlier, Firefox is my favorite browser, which doesn't mean that there isn't something that I find
troubling with it. Consider the size of the download compared to other web browsers; it is a fraction of the
size of most of the others, yet every feature is in there. I'm not troubled enough to give up using Firefox or
to lose any sleepwell, maybe just a little sleep. Which is probably how my twisted mind came up with a
logical method of how they did it.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Because tne majority oT wep DroOwsers are proaucea py corporatons, they are Iimited in tne numoer ot
potential developers to employees and consultants of the corporation. Firefox, on the other hand, is open
source. This means that although there is still a limited potential pool of developers, the pool is much
largersay, about the population of the planet, minus two (Bill Gates and Steve Baulmer).

This line of reasoning makes the most sense, far more than my other possible explanation. Open source
has better-trained Bit-Gnomes, little people that live in the computer and move the data around. But this
theory really makes sense only after the better part of a bottle of Scotch, so I'll stop here.

1.3.3. Linux Browsers (Konqueror, Ephiphany, Galeon, Opera, and Firefox)

Forgive me, Father, for | have sinned: I really don't use Linux very much. The reason for this omission can
be explained in a brief conversation that occurred between my then boss and me. It started when out of
the blue he said, "It must really piss you off."

My reply was both logical and to the point. "What?"
"The idea that you can't know everything."
After a moment of thought, | replied in the only way | could. | said "Yes, it does!"

For me, Linux is like that. | read about it, but before | get a chance to use what I've read, something comes
up and the promise of knowledge fades like a dream in the first light of day. What | do know, however, is
that Firefox is probably comparable to the Windows versions, and all of the rest are all open source. This
means that if | say that browser A doesn't support B today, by next Thursday, it will, so I'm keeping my
mouth shut. If you want to know whether a browser supports a particular feature, the only way to learn is
to try it.

However, I'd like to point out one thing: Look at the previous subheadingl'll wait. Alright, notice anything?
Yeah, Firefox is listed there. Being open source, Firefox really gets around, which is really comforting. It is
a bit like visiting a city far away, feeling lonely, and finding an old friend there.

1.3.4. The Others (Opera, Safari)

These are the browsers that fight for a percentage of what's left over from the big players: Microsoft
Internet Explorer and Firefox. Although taken together they don't command a large percentage of the
browsers out there, they shouldn't be ignored. It is very possible that the next Internet Explorer or Firefox
will come from this group.

Opera, considered a minor player by some, has taken up two spots in the current top ten. And, no, they're
not being piggy; it's Opera version 8 and Opera version 7. The interesting thing is that Opera appears to be
the sole stand-alone web browser that until very recently charged, although a free version was available for
those willing to tolerate advertisements. In this day of "free” web browsers, any browser that charged and
survived definitely deserves a closer look.

A relative newcomer, Apple Computer's Safari is, at least, according to the specs and everything I've heard
from Mac worshippers, a solid featurepacked browser. Although Apple is currently only a minor player in
the computing world, excluding the iPod, its ease-of-use is bound to keep it going for the foreseeable
future. So Safari shouldn't liahtlv he ianored.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolketab.ir
In addition to the aforementioned web browsers, there are a slew of others with much smaller user bases.

These relative unknowns include browsers for the visually impaired, text-only browsers, and browsers that
run on mobile devices. Unfortunately, having used Microsoft's Pocket Internet Explorer 2002 (PIE), | really

wouldn't expect much in the way of Ajax support in the near future.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.4. A Brief Introduction to Cross-Browser Development

Knowledge of different browsers, their capabilities, or merely their existence is often an aid in a discipline
called cross-browser development. Cross-browser development can be one of the most exciting
programming disciplines; unfortunately, in programming, "exciting" isn't usually a good thing. The problem
is that, in most instances, cross-browser development is essentially writing the same routines two or more
times, slightly different each time. Personally, | get a feeling of satisfaction whenever | get a routine to
work, but when coding a cross-browser, getting it to work in one browser is only half the job.

The issue with cross-browser development is that some "features” that are available on one browser either
aren't available on another or have slightly different syntax. Imagine the feeling of satisfaction of solving a
particularly thorny problem in Firefox only to have the same page crash and burn in Internet Explorer.
Take, for example, the serialization of XML in Firefox; it works great, but try the same code in Internet
Explorer, and here be monsters!

To avoid the monsters, it is necessary to understand where they usually hang around waiting for the
unsuspecting developer. But first let's establish where the monsters don't reside; for example, the standard
data types such as Boolean, numeric, and string are pretty safe. The same can be said for the statements,
such as flow-control statements and assignment statements.

It is just too bad the same cannot be said for objects and event handlers. At least for me, this is where
most of the problems arise. Everything will be going along fine, with the page working perfectly right up to
point that either there is a spectacular failure, or worse, the page just simply stops working. Fortunately,
with a little knowledge and a little planning, it is possible to avoid these web development monsters that
live where the standards don't quite mesh with reality.

1.4.1. Casualties of the Browser Wars

Cross-browser compatibility was probably the first casualty of the Browser Wars that began about 20
minutes after the second web browser was developed. In those days, browser developers had a tendency
to play fast and loose with things in an effort to pack features into their browser before the competition. In
the rush to be the first with a new feature, or to play catch-up, no thought was given to the web developers
who would actually have to program for these browsers.

Because of this, it wasn't unusual to see two browsers with essentially the same functionality, but having
entirely different approaches. Look at how the XM_Ht t pRequest object is implemented in Microsoft Internet

Explorer and in Gecko-based browsers such as Firefox. Internet Explorer, which was the first to implement
this object, made it part of ActiveX. This means that to create an instance of this object in Internet
Explorer, the following syntax is used:

var obj XMLHTTP = new ActiveXObj ect (' M crosoft. XM.HTTP') ;

With Firefox and any other browser that implements the XM_Ht t pRequest object, the syntax is as follows:

var obj XMLHTTP = new XM_Htt pRequest () ;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The reason for this is that ActiveX i1s a Microsoft-only technology, which means that short of trying to
license it from Microsoft, which I can't imagine would come cheap, it was necessary to find another way.
And, when found, this other way became the standard for all non-Microsoft web browsers.

1.4.2. Market Share Does Not Equal Right

While I'm on the subject of proprietary technologies, I'd like to point out that market share does not equate
to being right. History is full of cases in which the leader, the one with the largest market share, was
blindsided by something that he or she didn't realize was a threat until too late. Does anybody remember
Digital Research's CP/M? If you haven't, CP/M was the premier operating systems in the days when 64K
was considered a lot of memory. In a fractured landscape of operating systems, it had more than half of
the operating system market.

Then there was the release of the IBM PC, which offered a choice of three operating systems: CP/M-86, PC
DOS, and UCSD D-PASCAL. At the time, everybody thought that Digital Research had the new landscape of
the Intel 8086 as theirs for the foreseeable future. Unfortunately, because Microsoft's DOS was $50 less,
market share yielded to economic pressure. Microsoft went on to become the leader in computer operating
systems, while Digital Research faded into history.

1.4.3. The World Wide Web Consortium, Peacekeepers

During the height of the Browser Wars, there was the definite feeling that web browser technology was
advancing at a breakneck pace, so much so that the World Wide Web Consortium seemed to be playing
catch-up. It was a case of putting the cart before the horse, with the web browsers getting features and
then the recommendations being published, which explains the weirdness with the XM_Ht t pRequest object.

Now the war is, if not over, at least at intermission, giving us time to get some popcorn and a soda. In
addition, whether by accident or by design, this break has given the World Wide Web Consortium time to
move once more into the lead. Unfortunately, the damage is done and we're all forced to code around the
little differences in the various browsers.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.5. The Server Side of Things

The purpose of this book is to explain how Ajax works, paying particularly close attention to the web
browser; however, a web browser is only part of the equation. Even for the biggest client-side fan in the
world, it is impossible to totally ignore the web server. A web browser without a web server is totally cut
off, limited to little client-side tasks such as Fahrenheit-to-Celsius conversions or some equivalent. But add
a web server to the mix, and all of a sudden there is an entire universe at your fingertips.

As with the choice of a web browser, the choice of a web server is a deeply personal experience. Requiring
much thought as to the capabilities and features of each and every server available, it is also important to
take into consideration knowledge and training before coming to a decision.

For these reasons and others, in large corporations, decisions like this are usually made by upper
management. After exhausting research consisting of a round of golf and a 17-martini lunch, managers
decide to use whatever their golfing buddy Bob is using and issue a decree. The fact that Bob thinks that a
megabyte is what sharks do to swimmers never really comes up.

But maybe your manager doesn't know Bob, so the decision is up to you. The question comes down to,
what is the middle tier going to be? The answer to this question is totally up to you. Open source or
proprietary? Whether to use PHP, ASP, JSP, ASPX, or Ruby? The answer isn't as clear as you'd think. Feel
like using PHP and Internet Information Server? Not a problem, just download and install PHP. If ASP .Net
and Apache is your thing, try Mono. I'm not here to make the decision for you; regardless of the server
side, Ajax will work on the client side.

1.5.1. Apache

First and foremost, Apache is not a web server developed by Native Americans; the name is, in fact, a pun.
In the early days of the Apache Project, the server was patched nearly daily, leading someone to declare
that it was "a patchy" server. Needless to say, the name stuck.

Things have changed quite a bit since those early days; Apache has been the most popular server since the
latter half of the 1990s. At the time that I'm writing this, more than two-thirds of web servers use Apache,
which says a lot about stability.

1.5.2. Internet Information Server

1S, as it is known to those of us who use it, is Microsoft's answer to Apache. In fact, most of the examples
in this book use IIS on the server side. Don't get excitedit isn't because it is better; it is only because it
comes bundled with Windows XP Pro. It comes down to the whole Internet Explorer thing; I'm lazy, and |
use it at my day job.

1.5.3. The Remaining Players

Yes, there are other web servers beyond the big two. For example, there is the CERN Server, brought to
you by the same people who created the World Wide Web. Another choice is NCSA HTTPd, from the
National Center for Supercomputing Applications at the University of Illinois in Urbana, lllinois.
Unfortunately it is no longer under development, which is too bad; I, for one, would like a web server from

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

I'd like to mention another "minor" server: WEBrick. Technically considered an "HTTP server library" for
creating web servers, it is included with downloads of the Ruby programming language. Note that the
quotes are mine because it just isn't natural to be able to create a web server with only a few lines of code.

WEBFrick falls into the "tools to make tools" category, which | cover later.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.6. We Learn by Doing

The problem with working in the computing field is that technology insists on advancing. Learn something
new today, and 2 years down the road, it is obsolete. Because of this, it's necessary to continue learning
the latest new technology, which means lots of reading and lots of training. While at Bell Labs, | formulated
two rules of training that I'd like to share with you:

1.

Training will be given far enough in advance of the project that there is sufficient time to forget
everything learned.

If sufficient time does not exist for the first rule, the training will take place a minimum of 6 months
after the project has been completed.

These rules have proved true every place that | have ever worked throughout my career. Banks, insurance,
manufacturing, whateverit doesn't matter. These rules have always held true.

There is, however, a way to skirt these rules. Simply try the examples, play with them, alter the code,
make it better, break it, and fix it. There is no substitute for immersing yourself in any subject to learn that
subject. It might be difficult at first, and sometimes it might even be painful, but the easiest way to learn is
by doing.

1.6.1. Coding by Hand

Currently, coding web applications by hand has fallen out of favor, and rightly so, replaced by packaged
components that can be dragged and dropped. Unfortunately, although the practice of using components
means that individual pages are developed quicker, it also means that it isn't always easy to determine
what the components are actually doing behind the scenes. This is especially true when the underlying code
isn't fully understood because the developers skipped ahead to the parts that will keep them employed.

However, when learning something new, or trying to explain it to someone else, | have a strong tendency
to code an application by hand. In part, the reason for this is that it gives me a better feel for the new
subject. Of course, the other part is that | coded classic ASP for quite some time and spend a great deal of
time writing client-side workarounds for managers who insisted on the use of design-time controls.
Although it improved developers' JavaScript skills considerably, it had the same effect upon those
developers that mercury had upon hat makers in the nineteenth century. Don't believe me? Go ask Alice.

Seriously, though, the idea of coding at least the first couple of applications by hand is to attempt to get a
feel for the technology. Feel free to ignore my advice on this subject. What does matter, however, is
making it easier for us in the end, which is why tools are important.

1.6.2. Tools to Make Tools

LI T R e e L [L S o - I I ~_ - _ __ _

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

weren't quite ripe yet.

Many developers have issues with the very concept of creating their own common tools for web
development. The first issue probably relates to the idea of job security; after all, if a company has a
"developer in a box,” why would it pay for the real thing? The answer to this is relatively simple: What if
they want changes to what's in the box? Let me put it another way: Have you ever written some code and
played the "I bet you can't guess what this does" game? | have, and not only is it good for feeding the old
ego, but it is a blast, too! Of course, there is the tendency to strut around like Foghorn Leghorn afterward,
but as long as you avoid the young chicken hawk developer and the old dog developer, everything will be
fine. Also remember that, by himself, the weasel isn't a real threat.

Another issue is the "I can tell you, but then I'll have to kill you" mindset. A while back, | had a manager
with this mindset; she seemed to withhold required information just for fun from every assignment. For
example, she once gave me the assignment to produce a report from a payroll file and then told me that |
didn't have high enough security to see either the file or the file layout. Somebody once said that
information is power, and some people take it to heart. The danger with this philosophy is that information
can literally be taken to the grave, or it is so out-of-date that it no longer applies.

Finally, there's what | believe to be the biggest issue, which I call "The Wonder Tool"; it dices, it slices, and
it even makes julienne fries. Similar to the "feature creep” that we're all familiar with, but with a difference,
it starts out unrealistic. "The Wonder Tool" is a mouse designed to government specifications, more
commonly called an elephant. For the interest of sanity (yeah, right, me talking about sanity), it makes far
more sense to break up the tool into more manageable pieces. For example, let's say that we need
common tools to do X and Y, both of which need a routine to do Z. Rather than code Z twice as part of X
and Y, it makes more sense to code a separate tool to do Z and have X and Y use this tool. And who
knows? Sometime in the future, you might need a few Zs, and you'll already have them.

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.7. Summary

The intention behind this chapter is that it serve as something of an explanation of the humble beginnings
of the World Wide Web, starting with a single server and growing into the globe-spanning network that it is
today.

First there was a brief explanation of both static and dynamic web pages, including the components that go
into building each type of page. Components such as HTML, CSS, and JavaScript were briefly covered.
Several examples of "DHTML out of control” were also mentioned; I, for one, can't wait for the video.

There was also a brief description, or, in some cases, an honorable mention, of several different web
browsers. These browsers included some of the more popular web browsers for Linux, Windows, and Mac
OS X. In addition, mention was made of some of the more annoying problems with cross-browser
development.

The server side of things was briefly covered, to illustrate that there are always alternatives to whatever is
being used currently. Also, | mentioned how it might be possible to mix and match technology, such as ASP.
NET on Linux.

Finally, I covered the biggest problem with technical training today: how to apply it and how to circumvent
it. Regardless of who we are, we learn by doing, and that information is like cookies; it's meant to be
shared.

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 2. Introducing Ajax

A little more than a year ago, an article by Jesse James Garrett was published describing an advanced web
development technique that, even though individual components of it have existed for years, few web
developers had ever stumbled across. | can guess the reason for this lack of knowledge; basically, in the
last few years, the need to produce measurable results has gotten in the way of the need to practice our
craft. Or, as a former manager of mine would say, it's "that mad scientist stuff,” except, as | recall, he used
another word in place of stuff. Unfortunately, nine times out of ten, the need to produce measurable results
gets in the way of "that mad scientist stuff.”

However, it's the tenth time that's important. The article didn't stop at just describing the technique; it
went on to say that Google used the very same technique. Invoking that single name, Google, was enough
to change a point of view. Quicker than you could say, "lgor, the kites!" the phrase "that mad scientist
stuff" morphed into "Why aren't we doing it this way?" The reason for this change of perception is that the
name Google made this a technique that could produce measurable results. All it took was that single
name, Google, to make using the XM_Ht t pRequest oObject so that the browser could communicate with the

server without the page ever unloading and reloading into an acceptable practice.

This chapter introduces you to that practice, the practice of updating web pages with information from the
server. Beyond the XM_Ht t pRequest object, which has been around for several years as a solution looking for

a problem, there is nothing weird needed. Basically, it is how the individual pieces are put together. When
they're put together in one way, it is nothing more than a pile of parts; however, when put together in
another way, the monster essentially rises from its slab.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.1. Not a Mockup

A few years ago, | demonstrated an application that did what | just described. The demo ran for more than
2 hours with the same questions repeated over and over.

"It's a mockup, right?"
"No, it is the actual application."
"It can't be. The screen doesn't blink."

"That's because XML, HTTP, and SOAP are used to get the data directly from the server. JavaScript then
updates only the parts of the page that have changed."

"It's a mockup, right?"

And so on. It took the client more than 2 hours to realize that the database was actually being updated
without the page "blinking," as he referred to it.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.2. A Techniqgue Without a Name

Now, if I had been smart, | would have given the technology a name then and there, and thus ensured my
place in Web history, shutting up the client as well. After all, a name is a thing of power, and the client, not
wanting to sound stupid for not knowing what the acronym meant, would have saved more than 2 hours of
my life that were spent re-enacting the scene of peasants with pitch forks from the 1931 version of
Frankenstein, minus the tongs. Unfortunately, | drew an absolute blank and just called it as it was.

With apologies to the people who make the cleanser and the detergent, legend has it that the original Ajax
was the second most powerful of the Greek warriors at Troy. Even though he had some issues (who in the
llliad didn't?), his strength and skill in battle were second to none (well, okay, second only to Achilles). In
naming the technology Ajax, Jesse James Garrett gave the technology both Ajax's strengths and issues.

2.2.1. Names

An old idea dates back to the dawn of human civilization that to know someone’'s or something's true name
is to have power over that person or thing. It is one of the basic concepts of what is commonly referred to
as magic, and although magic isn't real, the idea that names can hold power isn't very far from the truth.
Consider, if you will, a resumé. If ever a document held names of power, a resumé is it. Not very long ago,
resumeés invoking words such as JavaScript, DHTML, and XML were looked upon with envy, perhaps even
awe. After all, for a little while, it seemed as though web developers were rock stars that, thankfully, were
never asked to sing. Unfortunately, those names are now considered passé or even a little old-fashioned.

In his essay describing this web development technique, Mr. Garrett did one final thing; he gave it a name,
Ajax, and thus gave us power over it. The acronym refers to Asynchronous JavaScript And XML, and
whether you love or hate the name, the technology now has a name. At the very least, this naming means
that we can describe what we've been doing at work. Ajax is a lot easier to say than, "I've been using client-
side JavaScript, SOAP, and XML to obtain data directly from the server using XMLHTTP instead of the
standard unload/reload cycle."

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.3. What Is Ajax?

As stated previously, Ajax stands for Asynchronous JavaScript And XML, but what exactly does that mean?
Is the developer limited to only those technologies named? Thankfully, no, the acronym merely serves as a
guideline and not a rule. In some ways, Ajax is something of an art, as with cooking. Consider, for a
moment, the dish called shrimp scampi; I've had it in restaurants up and down the East Coast of the United
States, and it was different in every restaurant. Of course, there were some common elements, such as
shrimp, butter, and garlic, but the plethora of little extras added made each dish unique.

The same can be said of Ajax. Starting with a few simple ingredients, such as HTML and JavaScript, it is
possible to cook up a web application with the feel of a Windows or, if you prefer, a Linux application. You
might have noticed earlier that my ingredients list omitted XML; the reason for that omission is that XML is
one of those optional ingredients. This might sound strange because the x in Ajax stands for XML, but it is
also useful in those instances when a particular client does not support XML or doesn't support some of the
more "mad scientist” methods of communicating with the server.

2.3.1. The Ajax Philosophy

How the clientin this case, a web browsercommunicates with the server is one of the cornerstones of Ajax.
Designed with the philosophy of not using bandwidth just because it's there, a web page coded using these
techniques won't go through the unload/reload cycle, or "blink,"” as some refer to it, unless absolutely
necessary. Why send 100,000 bytes back and forth to the server when 300 bytes will suffice?

Of course, this means that, to the casual observer, the browser is behaving strangely because sometimes
only selected parts of a web page are updated.

This means that the page won't "blink," as the peasanter, clientso elegantly put it. Instead, in a wink of an
eye, parts of the page will update quicker than they believed possible. The speed difference can be
compared to the difference between accessing a file on a floppy disk and accessing a file on the hard disk.
Personally, my reaction was along the lines of "I am never going back!" But individual results can vary, so
consult your doctor.

Another concept that Ajax uses is, why not make the client work for a living? Have the client's web browser
handle parts of the processing rather than just parrot preprocessed information on the screen. The initial
page load would consist of data and JavaScript, instructions on what to do with the data. To expand upon
the earlier mad scientist analogy, imagine a do-it-yourself "mad scientist" kit consisting of a pile of parts
and a minion that answers to Igor, and you'll get the idea.

With an Ajax application, the browser is expected to actually process the data supplied by the server. This
means not only the little things that DHTML did, such as rollovers and hierarchical drop-down navigation
menus, but real things, such as posting to the server and handling the response, whether it is handling it
either synchronously or asynchronously. In addition, Ajax applications need to be able to not only find
objects on the HTML page but also, if necessary, update them.

This leads to the question of how, short of the whole kites and Igor methodology, does one accomplish this
unholy task? The answer is that it depends on just how and how far one wants to pursue this course. There
are three ways to bring life to an Ajax application, and each has its own advantages and disadvantages. It
all depends on just which parts of the Ajax toolset the developers are comfortable with. It also depends on

hrwnr rarmmfartahla vinn ara wnith avehiidinAa rartain mamhare Af tha nlanat fram tha annlicratinn Vace 1'm

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ISSUe aecrees concerning browser compatipility; however, It IS my Job T0 cover now To Implement an Ajax
application.

2.3.2. Meddling with Unnatural Forces

Earlier |1 explained how I, and probably quite a few others, stumbled upon the then nameless technique that
was to become Ajax. However, that was not my first brush with what my supervisor called "mad scientist
stuff."” Several years earlier, as a consultant for the group insurance division of a large insurance company,
I had the good fortune to get the assignment to automate a paper-based request system.

Armed with a file layout, salespeople would try to sell group insurance to companies and, theoretically,
would explain that enrollee information needed to conform to the file layout. However, possibly in an effort
to make the sale and thereby get the commission, they would accept it in any conceivable electronic
format. XML, Excel, or flat filesit was all the same to them because they would fill out a multipage form and
the minions in systems would take care of it. Needless to say, quite a few of these pieces of paper got lost,
got coffee spilled on them, or simply got filed under "it's real work and | don't want to do it" by the folks in
systems.

Arriving onsite, | quickly got to work researching the various forms and how they were handled, which led
to documenting how the process should work. Because | was the sole designer and developer for this new
system, there was, shall | say, some freedom as to the technologies at my disposal. The back end was
classic ASP and SQL Server, both of which are beyond the scope of this book. The front end, however, was
a combination of HTML, JavaScript, and DOM, with a little CSS thrown in for good measure.

Here's how it worked: The user would enter multiple pages of information concerning the request. This
information would be cached on the client side until the user reached the end of the chain of pages and
clicked the final submit button. The caching was accomplished through the use of HTML frames; the first
frame, as the user input frame, filled the entire browser's window. However, the second frame, the data
frame, was the interesting one because it wasn't visible even though it was always there.

This trick, for lack of a better word, with hidden frames was that they had the advantage of speeding up
the application. The speeding up was due to reduced interaction with both the web server and the database
server. Another benefit was that, in addition to the performance improvements, the application seemed to
flow better because the input was broken into convenient chunks instead of the usual approach of entering
between 80 and 200 items at one time.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.4. An Ajax Encounter of the First Kind

Now that I've gushed about the why of this technique, let me offer a little insight on the how of this
technique. Let's start with the three HTML documents shown in Listing 2-1, Listing 2-2, and Listing 2-3.
Some readers might not consider this a true example of Ajax, but it does share many of the same qualities
of Ajax, in much the same way that a Star Trek fan and a Star Wars fan share many of the same qualities.

Listing 2-1. HTMLfs.htm

<htm >
<head>
<title>HTM.fs</title>
</ head>
<frameset rows="100% *">
<frame nanme="visible frame" src="visible. htn>
<frame nanme="hi dden_frane" src="hidden. htn'>
<nof ranes>Franmes are required to use this Wb site.</nofranes>
</franeset >
</ htm >

Listing 2-2. visible.htm

<htm >
<head>
<title>visible</title>
<script |anguage="javascript">
/*
Perform page initialization.
*/
function initialize() { }

/*
Handl e form visible formonchange events. Values fromthe visible
formare copied to the hidden form

*/

functi on changeEvent (obj)

{
parent. franmes[1]. docunent. get El enent Byl d(obj .id).val ue = obj.val ue;
}
/-k
Submts the formin the hidden frane then rel oads the hidden frane.
*/

function submtForn() {
parent . franmes[1]. docunent. get El enent Byl d(' hi dden_form). submit();
parent.franmes[1]. docunent. | ocation = "hidden. htni;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

NI ovi pL o
</ head>
<body onl oad="initialize()">
<form nane="visible_forni id="visible_forn></fornp
</ body>
</htm >

Listing 2-3. hidden.htm

<htm >
<head>
<title>hidden</title>
<script |anguage="javascript">
var reBrowser = new RegExp('internet explorer','gi');

/*
Perform page initialization, waits for the visible frane to | oad and
cl ones the hidden formto the visible form
*/
function initialize()

{
var hi ddenForm = docunent. get El ement Byl d(' hi dden_form);

i f(reBrowser.test(navigator.appName))

{

whi | e(parent. docurent. franmes.iten(0). docunent.readyState !=
"conplete') { }

parent . franes[0].docunent. get El ementByl d('visible form).innerHTM. =
hi ddenForm i nner HTM_;

}

el se

{

var conplete = fal se

whi | e(! conpl et e)
{

try

{

parent. franes[0]. docunent. get El enent Byl d(' visible form).appendChild
(hi ddenFor m cl oneNode(true));

conmpl ete = true;

}
catch(e) { }

}
}

</script>

}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

SUUUyYy vl vau— 1l v arl 2o\) -
<f or m nane="hi dden_fornm' id="hi dden_fornt action="post.aspx">
<h1>Addr ess | nformation</hl>
<tabl e border="0" w dt h="100% >
<tr>
<th wi dth="30% align="right">Nane: </th>
<td align="left">
<i nput type="text" nane="nane" id="nane" val ue=""
onchange="changeEvent (t hi s) ">
</td>
</tr>
<tr>
<th align="right">Address Line 1. </th>
<td align="left">
<i nput type="text" name="addressl" id="addressl" val ue=
onchange="changeEvent (t his) ">
</td>
</[tr>
<tr>
<th align="right">Address Line 2: </th>
<td align="left">
<i nput type="text" nane="address2" id="address2" val ue=""
onchange="changeEvent (t his)">
</td>
</tr>
<tr>
<th align="right">City: </th>
<td align="left">
<i nput type="text" name="city" id="city" val ue=
onchange="changeEvent (t his) ">
</td>
</tr>
<tr>
<th align="right">State: </th>
<td align="left">
<i nput type="text" nane="state" id="state" val ue=
onchange="changeEvent (this) ">
</td>
</tr>
<tr>
<th align="right">Zi p Code: </th>
<td align="left">
<i nput type="text" name="zip" id="zip" value=""
onchange="changeEvent (this) ">
</td>
</tr>
</tabl e>

<i nput type="button" value="Submt" onclick="submtForm)">
</ forne
</ body>
</htm >

nn

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.4.1. A World unseen

Any developer familiar with the use of frames and framesets will find Listing 2-1 pretty normal looking.
However, one item isn't plain vanilla: the rows="100% *" attribute on the frameset element, which states
that the first frame gets 100 percent of available rows. The asterisk (*) states that anything left over goes

to the second frame. In this example, there is nothing left over, so it is the equivalent of coding zero. This
results in the first frame being visible and the second frame being hidden. In essence, this is a sneaky way
to hide what's going on from prying eyesnamely, the user. The next two listings are the visible frame,
Listing 2-2, and the hidden frame, Listing 2-3. Listing 2-3 is where the real mad science happens.

2.4.2. Enter JavaScript

Listing 2-2 is short and sweet, basically two short JavaScript functions that don't appear to do anything.
The first of these functions, changeEvent, is just what it says it is, a handler for an on change event. When

fired, it copies the value associated with the current object on the current frame to one with the same ID
on the hidden frame. The second function, subni t For m submits a form; however, like the previous function,

it works with the hidden frame by locating and submitting the form there.

This leaves just one question: Where does the HTML for the visible form come from? The answer lies in
Listing 2-3, the one for the hidden frame. Like the visible frame, it has JavaScript functions and a form.

There is, however, a major difference in the form. Unlike its visible counterpart, it has all of the HTML
necessary to make a nice little form. The trick is getting it from the hidden frame to the visible frame.

This magic is accomplished in the pages’ on | oad event handler, initialize. This function waits for the

other frame to load and then copies this form's inner HTML to the other frame. When this is done, the
result is the normal-looking web page shown in Figure 2-1. The way it behaves, however, is almost

application-like, with parts of the visible page being updated each time the hidden frame does an unload/
reload cycle.

Figure 2-1. A normal-looking web page that functions almost like a desktop
application

[View full size image]

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/02ajx01_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir
Fié L YEw FAAOADEE OO FRD

G- O - & & P o= @ @ (2-05 66 L/ H

dudrnss |] hispe ffiocalbost njaohind e

Address Information

Marne:

Addrexy Line 1:
Auldrenn Line 31
City:

Hrate:

Tip Code:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.5. An Ajax Encounter of the Second Kind

As flexible and cross-browser capable as the "hidden frames" method of implementing Ajax is, all that has
been accomplished is the "AJ" part of Ajax. Which is sort of like the sound of one hand clapping, and that
usually means that Igor has been slacking off again. Thankfully, there's another parteh, make that
technologyavailable: XML. The problem with XML is that it has developed a reputation of being difficult;
however, it doesn't have to be. Just keep in mind that, in those situations, code has a tendency to follow
you around, like Igor.

2.5.1. XML

In its simplest form, XML is nothing more than a text file containing a single well-formed XML document.
Come to think of it, the same is pretty much true in its most complex form as well. Looking past all of the
hype surrounding XML, it is easy to see that XML is merely the text representation of selfdescribing data in
a tree data structure. When this is understood, all that is left are the nitty-gritty little details, like "What's a
tree data structure?" and "How exactly does data describe itself?"

A tree data structure is built of nodes, with each node having only one node connected above it, called a
parent node. The sole exception to this rule is the root node, which has no parent node. Nodes can also
have other nodes connected below, and these are called child nodes. In addition, nodes on the same level
that have the same parent node are called children. Figure 2-2 is a graphical representation of a tree data

structure.

Figure 2-2. Tree data structure

[View full size image]

|9.er|e-.=.] [fithe | |auu1ﬂr] |aenes] [tille | author seriag l tillia I [aulhnrl

Figure 2-2 can also be represented as the XML document shown in Listing 2-4.

Listing 2-4. XML Representation of the Same Information as in Figure 2-2

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/02ajx02_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<library>
<book>
<seri es>The Wonderl and Ganbit</series>
<title>The Cybernetic Walrus</title>
<aut hor>Jack L. Chal ker </ aut hor >
</ book>
<book>
<seri es>The Wonder| and Ganbi t</seri es>
<title>The March Hare Network</title>
<aut hor>Jack L. Chal ker </ aut hor >
</ book>
<book>
<seri es>The Wonder| and Ganbi t </ seri es>
<title>The Hot-Wred Dodo</title>
<aut hor>Jack L. Chal ker </ aut hor >
</ book>
</library>

The nodes shown in Listing 2-4 are called elements, which closely resemble HTML tags. And like HTML tags,
start tags begin with < while end tags begin with </ . However, unlike HTML tags, all XML tags either must
have a closing tag or be self-closing or must be empty elements. Self-closing tags are recognizable by the
ending / >; if the forward slash was omitted, the document would not be a well-formed XML document. In
addition, to all elements being either closed or self-closing, the tags must always match up in order. This
means that the XML document in Listing 2-5 is well formed but the XML document in Listing 2-6 is not well
formed. In a nutshell, "well formed" means that there is a right place for everything. Feet are a good

example of this: Imagine if Igor used two left feet; the monster wouldn't be well formed and wouldn't be
able to dance, either.

Listing 2-5. A Well-Formed XML Document

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<one>
<t wo>
<t hr ee>
<four/ >
</three>
</t wo>
</ one>

Listing 2-6. An XML Document That Is Not Well Formed

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<one>
<t wo>
<t hree>
<f our/ >
</t wo>
</three>
</ one>

As neat and nifty as the hidden frames method of communicating with the server is, the addition of an XML
document provides another option, XMLHTTP, or, as some refer to it the XM_Ht t pRequest object. Note all

those capital letters, which are meant to indicate that it is important. The XM_Ht t pRequest object sends

information to and retrieves information from the server. Although it doesn't have to be, this information is
usually in the form of XML and, therefore, has the advantage of being more compact than the usual HTML
that the server sends. Just in case you're interested, this was the means of communication for that page
that | had handwritten and was using during the "it doesn't blink" fiasco.

2.5.2. The XMLHttpRequest Object

Unlike the hidden frames approach, in which the unload/reload cycle is still there but is tucked out of the
way, using the XMLHt t pRequest object means finally saying good-bye to the unload/reload cycle that we've
all come to know and loathe. This means that, in theory, if not in practice, a single page could conceivably
be an entire website. Basically, it's a load-and-go arrangement.

In theory, the original page loads and a user enters information into a form and clicks submit. A JavaScript
event handler sends the user's information to the server via XMLHTTP and either waits penitently for a
response (synchronous) or sets an event handler for the response (asynchronous). When the response is
received, the JavaScript takes whatever action that it is programmed to, including updating parts of the
page, hence the lack of an unload/reload cycle or "blink." This is great theory, but a theory is pretty useless
if it cannot be put into practice; let's take a look in Listings 2-7 and 2-8 at how this can be implemented
from a client-side perspective.

Listing 2-7. Example Ajax Web Page

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<head>
<title>AJAX Internet Explorer Flavor</title>
<script |anguage="javascript">
var dom = new ActiveXCObj ect (' MSXM.2. Fr eeThr eadedDOVDocumnent . 3. 0") ;
var obj XMLHTTP = new ActiveXObj ect (' M crosoft. XM.HTTP') ;

/*
Obtain the XML docunent fromthe web server
*/
function initialize()
{
var strURL = 'nsas. asnx/get Ti ne';

obj XMLHTTP. open(' POST' , strURL, t rue);
obj XMLHTTP. onr eadyst at echange = st at eChangeHandl er

try
{
obj XMLHTTP. send() ;
}
catch(e)
{
alert(e.description);
}
}
/*
Handl e server response to XMLHTTP requests.
*/
function stateChangeHandl er ()
{
i f(obj XMLHTTP. readyState == 4)
try
{

dom | cadXM._(obj XMLHTTP. r esponseText) ;
document . get El ement Byl d(' tine').innerText =
dom sel ect Si ngl eNode('tinme').text;

}
catch(e) { }

}
</script>
</ head>
<body onl oad="initialize()">
<div id="time"></div>
</ body>
</ htm >

Listing 2-8. XML Document

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<?xm version="1.0" encodi ng="utf-8" ?>
<time>3:30 PW/tine>

If this were CSI, Columbo or The Thin Man, now is the time when the hero explains how the deed was
done. It goes something like this: The HTML page loads, which causes the onl oad event handler,

initialize, to fire. In this function, the XM_Ht t pRequest object's open method is invoked, which only sets the
method (PGCsST), gives the relative URL of a web service, and states that the request will be asynchronous
(true). Next, the onreadyst at echage event handler is set; this is the function that handles what to do when
the web service responds. Finally, the send method of the XM_Ht t pRequest object is invoked, sending our
request on its merry way.

When a response is received from the web service, the st at eChangeHand! er is fired. You've probably noticed
the test of the readySt at e property. The reason for this is that there are more than one possible readySt at e

values, and we're interested in only four, complete. When the response is complete, the result is loaded
into an XML document, the appropriate node is selected, and the HTML is updated.

Listings 2-7 and 2-8 could be considered by some a pure example of Ajax. Unfortunately, the way it is
currently coded, browsers other than Microsoft Internet Explorer would have real issues with it. What sort
of issues? The code simply won't work because of differences in how XML and the XM_.Ht t pRequest object
work in various browsers. This doesn’'t mean that this form of Ajax is an IE-only technology; it simply
means that careful planning is required to ensure cross-browser compatibility.

On the subject of compatibility, I don't want to scare you off, but let me point out that the more advanced
the client-side coding is, the more likely it is that there will be issues. The majority of these issues are
merely little annoyances, similar to flies buzzing around. These "flies" aren't fatal, but it is a good idea to
keep these things in mind.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.6. An Ajax Encounter of the Third Kind

The fifth part of Ajax, an optional part, isn't for the faint of heart. It transcends the "mad scientist stuff"
into the realm of the magical, and it is called eXtensible Stylesheet Language for Transformations, or XSLT.
In other words, if Ajax really was mad science and it was taught in school, this would be a 400-level
course. Why? The reason is that the technology is both relatively new and very, very browser dependent.
However, when it works, this method provides an incredible experience for the user.

2.6.1. XSLT

XSLT is an XML-based language that is used to transform XML into other forms. XSLT applies a style sheet
(XSLT) as input for an XML document and produces outputin most cases, XHTML or some other form of
XML. This XHTML is then displayed on the browser, literally in the "wink of an eye.”

One of the interesting things about XSLT is that, other than the XML being well formed, it really doesn't
make any difference where the XML came from. This leads to some interesting possible sources of XML. For
example, as you are probably aware, a database query can return XML. But did you know that an Excel
spreadsheet can be saved as XML? XSLT can be used to transform any XML-derived language, regardless of
the source.

Listing 2-9 shows a simple Internet Exploreronly web page along the same lines as the earlier examples. By
using XSLT and the XM_Ht t pRequest object to retrieve both the XML and XSLT shown in Listing 2-10, it is

extremely flexible. This is because after the initial page is loaded, any conceivable page can be generated
simply by changing the XML and/or the XSLT. Sounds pretty powerful, doesn't it?

Listing 2-9. A Simple IE-Only Web Page

<htm >
<head>
<title>AJAX Internet Explorer Flavor</title>
<script |anguage="javascript">
var dom = new ActiveXCbject (' MSXM.2. FreeThr eadedDOVDocunent . 3. 0") ;
var xslt = new ActiveXObject (' MSXM.2. FreeThr eadedDOVDocunent . 3. 0") ;
var obj XMLHTTP;

/*

otain the initial XM. docunent fromthe web server.
*/
function initialize()
{

doPOST(true);

}
/*

Use the XM_Htt pRequest to conmunicate with a web service.
*/

function doPCST(bl nState) {
var strURL = '"http://local host/ AJAX/ nsas. asnx' ;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

obj XMLHTTP. open(' POST' , strURL, t rue);

i f(blnState)
obj XMLHTTP. set Request Header (' SOAPAction', "' http://
tenpuri.org/getState');
el se

obj XMLHTTP. set Request Header (' SOAPAction', ' http://tenpuri.org/getXM');
obj XMLHTTP. set Request Header (' Cont ent - Type', ' text/xm");

obj XMLHTTP. onr eadyst at echange = st at eChangeHandl er;

try
{
obj XMLHTTP. send(bui | dSOAP(bl nSt ate));

}

catch(e)

{
alert(e.description);
}

}

/*
Construct a SOAP envel ope.

*/

function buil dSOAP(bl nState) {
var strSCAP = '<?xnl version="1.0" encodi ng="UTF-8"?>";
str SOAP += ' <soap: Envel ope

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Scherma"

xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ " >";
st r SOAP += ' <soap: Body>';

i f(blnState)

{
strSOAP += '<getState xm ns="http://tenpuri.org/">";
strSOAP += '<state_abbreviation/>";
strSOAP += '</get State>";

}

el se

{
strSOAP += '<get XML xm ns="http://tenpuri.org/">";
str SOAP += ' <nane>xsl /st at e. xsl </ nanme>' ;
strSOAP += ' </ get XM.>';

}

st r SOAP += ' </ soap: Body>' ;
st r SOAP += ' </soap: Envel ope>';

return(strSOAP) ;
}

/*

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

function stateChangeHandl er ()
{
i f(obj XMLHTTP. readySt ate == 4)
try
{
var work = new ActiveXObj ect (' MSXM.2. Fr eeThr eadedDOVDocunent . 3. 0") ;

wor k. | oadXML(obj XMLHTTP. r esponseText) ;

switch(true) {

case(work. sel ect Nodes('// get St at eResponse').l ength != 0):
dom | cadXM_(obj XMLHTTP. r esponseText) ;
doPOST(f al se);

br eak;

case(wor k. sel ect Nodes(' // get XM_Response').l ength != 0):
var obj XSLTenpl ate = new
Acti veXObj ect (' MBXM_2. XSLTenpl ate. 3.0");

xslt. |l oadXM.(wor k. sel ect Si ngl eNode('//get XM_Result').firstChild.xm);
obj XSLTenpl at e. styl esheet = xslt;

var obj XSLTProcessor = obj XSLTenpl at e. cr eat eProcessor;

obj XSLTPr ocessor. i nput = dom
obj XSLTPr ocessor.transforn();

docunent . get El ement Byl d(' sel ect').innerHTM. =
obj XSLTPr ocessor . out put ;

br eak;
def aul t:
alert('error');

br eak;
}
}
catch(e) { }

</script>
</ head>
<body onload="initialize()">
<div id="sel ect"></div>
</ htm >

Listing 2-10. The XML and XSLT Part

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl :out put nethod="htm " version="1.0" encodi ng="UTF-8" indent="yes"/>

<xsl :tenplate match="/">
<xsl : el enent name="sel ect">
<xsl:attribute name="id">state</xsl:attribute>
<xsl:attribute name="nane">sel State</xsl:attribute>
<xsl :apply-tenpl ates select="//Table[country_id = 1]"/>
</ xsl : el enent >
</ xsl :tenpl at e>

<xsl :tenpl ate match="Tabl e" >
<xsl : el enent name="option">
<xsl:attribute nane="val ue" ><xsl : val ue- of
sel ect ="state_abbreviation"/></xsl:attribute>
<xsl : val ue- of sel ect="state nane"/>
</ xsl : el emrent >
</ xsl :tenpl at e>
</ xsl : styl esheet >

2.6.2. Variations on a Theme

At first glance, the JavaScript in the previous example appears to be very similar to that shown in Listing 2-
7; however, nothing could be further from the truth. The first of these differences is due to two calls being

made to a web service and the use of XSLT to generate the HTML to be displayed in the browser. Let's look
at this in a little more detail.

First, the only thing that the initiali ze function does is call another function, doPOST, passing a TRue.
Examining doPOST reveals that the purpose of the true is to indicate what the SOAPAct i on in the request
header is, http://tenpuri.org/ get State to get information pertaining to states and provinces from the web

service, or http://tenpuri.org/ get XM to get XML/XSLT from the web service. The first time through,
however, we're getting the XML.

The second difference, also in doPOST, is the addition of a call to bui | dSOAP right smack in the middle of the
XMLHt t pRequest object's send. This is how arguments are passed to a web service, in the form of texta SOAP
request, in this instance. Checking out bui | dSOAP, you'll notice that Bool ean from doPCST is passed to

indicate what the body of the SOAP request should be. Basically, this is what information is needed from
the web service, states or XSLT.

You'll remember the st at eChangeHandl er from the earlier set of examples, and although it is similar, there

are a few differences. The first thing that jumps out is the addition of a "work" XML document that is loaded
and then used to test for specific nodes; get St at eResponse and get XM_LResponse. The first indicates that the

SOAP response is from a request made to the web service's get St at e method, and the second indicates a
response from the get XML method. Also notice the doPCST with an argument of f al se in the part of the
function that handles get St at e responses; its purpose is to get the XSLT for the XSL transformation.

downloaded from: lib.ommolkefab.ir

http://tempuri.org/getState
http://tempuri.org/getXML
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

\)'JC(J.I\II Iu Ul A wtalioiviiiiauvili, uiAau 1o uic |JUI IJUOC Ul LIIT LUUT uiIau yUU Illlyl 1L 11VUL ICLzUUI 1L 111 uic HCI. NIV
portion of the st at eChangeHandl er function. Allow me to point out the sel ect Si ngl eNode method used, the
purpose of which is to remove the SOAP from the XSLT. The reason for this is that the XSLT simply won't
work when wrapped in a SOAP response. The final lines of JavaScript perform the transformation and insert
the result into the page's HTML.

The use of XSLT to generate the HTML "on the fly" offers some interesting possibilities that the other two
methods of implementing Ajax do not. For instance, where in the earlier example the look of the page was
dictated by the hard-coded HTML, this doesn't have to be the case when using XSLT. Consider for a
moment the possibility of a page using multiple style sheets to change the look and feel of a page. Also,
with the speed of XSLT, this change would occur at Windows application speeds instead of the usual crawl
that web applications proceed at.

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.7. The Shape of Things to Come

The sole purpose of this chapter is to offer a glimpse of the shape of things to come, both in this book and
in the industry. All joking aside, this glimpse wasn't the result of mad science or any other dark art. It is
the result of several years of beating various web browsers into submission, consistently pushing a little
further to create rich application interfaces with consistent behavior.

The wide range of technologies that comprise Ajax can be a double-edged sword. On one hand, there is
extreme flexibility in the tools available to the developer. On the other hand, currently Ajax applications are
often sewn together in much the same way that DHTML pages were in the late 1990s. Unfortunately,
although the hand-crafted approach works for furniture and monsters, it relies heavily on the skill level of
Igoreh, the developer.

In future chapters, it is my intention to elaborate on the various techniques that were briefly touched upon
in this chapter. Also, even though Ajax is currently considered a technique that takes longer to develop
than the "traditional” methods of web development, I'll show some ideas on how to reduce this time. After
all, what self-respecting mad scientist cobbles together each and every monster by hand? It's all about
tools to make toolseh, I mean monsters.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.8. Summary

This chapter started with a brief introduction to Ajax that included some of the origins and problems
associated with using "mad scientist stuff,” such as the accusations of attempting to pass off a mock-up as
an actual application and the inability to describe just how something works. Of course, some people still
will think Corinthian helmets and hoplites at the very mention of Ajax, but you can't please everyone.

Next there was a brief outline of the philosophy behind Ajax, which centers on the idea of not bothering the
server any more than is necessary. The goal is that of reducing, if not eliminating, the unload/reload
cycleor "blink," as some call it. The Ajax philosophy also includes the idea of making the client's computer
work for a living. After all, personal computers have been around in some form for close to 30 years; they
should do some worktake out the trash, mow the lawn, or something.

Finally, | presented the three simple examples of how Ajax can be implemented. The first example,
although not quite Ajax, does much to show something of the first attempts to implement a web application
with the feel of a Windows application. Although it's primitive by today's standard, it is still better than 99
percent of the web pages out there today.

Using the XMLHt t pRequest object, the second example is dead on as to what is expected from an Ajax

application. Broken are the bonds that limit updates to the unload/reload cycle that has been confronting us
on the Web since Day 1. In addition, XML plays well with the concept of reducing traffic.

The third and final example pushes Ajax to the current limits with the addition of XSLT to the mix. XSLT
allows XML to be twisted and stretched into any conceivable shape that we can imagine. No longer are our
creations limited to the parts that we can dig up here and there; we can make our own parts on demand.

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 3. HTML/XHTML

If you've made it this far, you're now in the "road warrior" section of the book, where all the reference
materials and bizarre ideas dwell. The origin of this section goes all the way back to the trunk of my
carunless you're British, in which case, the origin of this section goes all the way back to the boot of my
automobile. Until relatively recently, as | previously stated, | was a consultant, a hired gun, a one-man
medicine show, or a resident visitor. No matter which term you prefer, a permanent office with bookshelves
was not an option. So | was forced to carry books in and out with me each day.

This was a real educational experience. I've learned things from computer books that you wouldn't believe.
First, regardless of the subject and the type, hardcover or paperback, computer books are heavy. Also,
there is a little-known law of computer bookslet's call it Ed's Law of Computer Books. It goes something like
this: "Regardless of the subject, whatever you need to know is in another book."

It is true; I've lost count of the number of times that the information needed was in a book that was still in
my car. So if the car was parked somewhere nearby, I'd trek downstairs and out to my car, grab the book,
and then go back upstairs, only to find that | needed yet another book. This is the purpose of this section:
so that | can plant my tush and not have to travel out to my car.

If, unlike myself, you're not too lazy to carry more than one book, consider this chapter something of a
refresher on a few of the basic building blocks of Ajax. Well, maybe it's technically not a refresher because
XHTML is still considered by some to be a little mysterious. That is probably due to the X.

This chapter covers some of the background material that is necessary to develop an Ajax application,
specifically HTML and XHTML. Odds are, you're familiar with much, if not all, of the material covered here.
But because I'm in Pennsylvania writing this and you're wherever you are reading this, it is kind of hard to
tailor this specifically to your needs.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.1. The Difference Between HTML and XHTML

From its very beginning, Hypertext Markup Language is what has made the World Wide Web possible. It
both conveys the thoughts of the person who created the page and defines nearly every aspect of what we
see on each and every web page visited. Like English, French, Spanish, Japanese, Russian, or any other
language in use today, it is a living language, evolving and growing.

Early on, this growth was fast and sudden, with "features" often doing an end-run around the World Wide
Web Consortium. Add to that the fact that many of the designers of web pages play fast and loose in an
effort to have more content than the next guy. So what if some corners were cut? It was all about content,
and content was king.

Enter XHTML, considered by some as an effort to reign in the Wild West approach to web development by
making HTML a dialect of XML. XHTML came in three flavors: transitional, strict, and frameset, with each
flavor offering either different capabilities or different degrees of conformance to the XML standard.

3.1.1. Not Well Formed

Probably the biggest single difference between HTML and XHTML is that XHTML must be well formed. "Not a
big deal," you say. Well, it could be. The part of the document that isn't well formed doesn't have to be
glaring, like a foot being attached to the forehead. Because an XHTML document is essentially XML, simply
following the HTML practices that we've followed for years is enough to get us into trouble. Consider the
following two HTML input statements:

<i nput type="text" name="bad" id="bad" value="Not well-fornmed">

<i nput type="text" nane="al sobad" id="al sobad"
val ue="Not wel | -forned" disabl ed>

Both statements are perfectly acceptable HTML, but as XHTML, they don't make the grade because neither
is well formed. The problem with the first statement is that the tag isn't closedperfectly acceptable in HTML,
but verboten in XHTML. Fortunately, correcting it is a simple matter; just close the tag in the manner of
self-closing tags or treat it as a container tag. The problem with the second statement might be a little
harder to spot. I'll give you a hint: attributes. Yes, in XML, attributes must always have values, so give it
one. di sabl ed="di sabl ed" might look goofy, but it works.

3.1.2. Well Formed

At first glance, it might appear that all that is required to convert HTML into XHTML is to slap a DTD before
the HTML tag, close some tags, and clean up some attributes. Voila, instant XHTML! Well, maybe,
sometimes, occasionally, except on Tuesdays or at night during a full moon. You see, unfortunately, there
is still a potential source of problems.

I stumbled on this problem approximately 5 minutes after creating my first XHTML page, and | immediately
felt betrayed. The source of the problem was compares in my JavaScript functions. With the assorted
compares using ampersand (&), greater than (>), and less than (<), the document wasn't well formed. In

B T 1 i P . . o N _a_"_ £ _Wa M- ___ ___V_a _N___ . N . _ . _ _a__._._ _ _€£ ___ _ _____ R —~ .

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.1.3. A Well-Formed Example

Thankfully, my despair didn't last very long. It wasn't like there was a death in the family, or Stargate SG-1
had been cancelled, or anything important like that. It was merely a technical speed bump (or white tail
deer, to those of you in Pennsylvania) on the road of life. | wasn't worried because | knew a trick that
would make anything well formed.

XHTML is really nothing more than a dialect of XML, in the same way that both XSL and SVG are. This

means that although it falls under the rules of XML, it also falls under the exceptions to those rules. For
example, there are two ways to ensure that a greater than is well formed, but because JavaScript can't
handle > ; entities aren't an option. This leaves only CDATA as the way to hide the JavaScript from the

browser.

If you're unfamiliar with CDATA, it is the XML equivalent of saying "Pay no attention to that man behind the
curtain."” Basically, anything that is within the CDATA won't be parsed as XML, which is quite convenient for
this case. There is, however, one problem with using CDATA; certain web browsers have issues with it, so it
is necessary to hide it from the browser in the manner shown in Listing 3-1.

Listing 3-1. Hiding CDATA

<l-- <I[CDATA|
function xyzzy(a,b) {

if(a > h)

alert('a is bigger');
el se

if(a =b)

alert('a & b are equal');
el se

alert('b is bigger')

}
11> -->

The purpose of the HTML/XML comments is to hide the CDATA section from HTML. The JavaScript comment
prevents select browsers from having issues from a JavaScript perspective. Although it might not be pretty
to look at, it does work well.

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.2. Elements and Attributes

I'm not sure why, but there seems to be a law stating that the sections of books intended for reference
must be both dry and boring. Please bear with me as | try to conform to this law while describing the
relationship between elements and attributes. Unfortunately, the American educational system falls short
when attempting to teach students how to write in a monotone, but I'll do my best.

3.2.1. A Very Brief Overview of XHTML Elements and Their Attributes

In the interest of being boring, | put together Table 3-1 which covers attributes along with the elements

associated with them. Because this is a high-level overviewsay, around 30,000 feetthere isn't much beyond
the "this element goes with that attribute" kind of thing. However, it is important to remember two things

when referring to this table.

Table 3-1. XHTML Elements and Associated Attributes

downloaded from: lib.ommolkefab.ir

Element Description Deprecated | Attributes

a Anchor accesskey, charset, class, coords
dir, href, hreflang, id, lang, nane,
onbl ur, onclick, ondblclick
onfocus, onkeydown, onkeypress,
onkeyup, onnbusedown, onnpusenove,
onnobuseout, onnbuseover, onnouseup
rel, rev, shape, style, tabindex,
target, title, type

abbr Abbreviated class, dir, id, lang, onclick,
ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnpbusedown, onnpusenove,
onnobuseout, onnbuseover, onnmouseup
style, title

acronym class, dir, id, lang, onclick,
ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnmousedown, onnousenove
onnobuseout, onnbuseover, onnouseup
style, title

addr ess Author information class, dir, id, lang, onclick
ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnmousedown, onnousenove
onnobuseout, onnobuseover, onnouseup
style, title

appl et Java applet Yes align, alt, archive, class, code,
codebase, height, hspace, id, nane,
object, style, title, vspace, width

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

: href, i1d, lang, nohret, onblur
onclick, ondblclick, onfocus,
onkeydown, onkeypress, onkeyup,
onnobusedown, onnousenove
onnobuseout, onnbuseover, onnmouseup
shape, style, tabindex, target,
title

b Bold class, dir, id, lang, lang, onclick,
ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnbusedown, onnpusenove,
onnobuseout, onnbuseover, onnobuseup,
style, title

base Base URI of document href, lang, target

basef ont Document base font size Yes color, face, id, size

bdo BiDi override class, id, lang, style, title

bi g Large text class, dir, id, lang, onclick,
ondbl cli ck, onkeydown, onkeypress,
onkeyup, onnpbusedown, onnmpusenove,
onnbuseout, onnbuseover, onnmouseup
style, title

bl ockqoute | Block quotation cite

body Document body al i nk, background, bgcolor, class,
dir, id, lang, link, onclick
ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onl oad, onnmousedown,
onnousenobve, onnouseout,
onnobuseover, onmouseup, onunl oad,
style, text, title, vlink

br Line break class, clear, id, style, title

but t on Button object accesskey, class, dir, disabled, id,
| ang, nane, onblur, onclick,
ondbl cli ck, onfocus, onkeydown,
onkeypress, onkeyup, onnpousedown,
onnobusenove, onnouseout,
onnobuseover, onnobuseup, style,
tabi ndex, title, type, value

caption Table caption align, class, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onnousedown,
onnobusenove, onnobuseout,
onnobuseover, onmouseup, style and
title

center Center contents Yes class, dir, id, lang, onclick,
ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnbusedown, onnbusenove,
onnouseout, onnbuseover, onnbuseup,
style, title

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnpbusedown, onnpusenove,
onnobuseout, onnbuseover, onnpuseup,

style, title

col Table column

align, char, charoff, class, dir,
id, lang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onnobusedown, onnbusenove,
onnouseout, onnbuseover, onnobuseup,

style, title, valign, width

colgroup | Table column group

align, char, charoff, class, dir,
id, lang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onnousedown, onnousenove
onnobuseout, onnbuseover, onnmouseup

span, style, title, valign, width

dd Definition description

class, dir, id, lang, onclick,

ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnmousedown, onnousenove,
onnobuseout, onnbuseover, onnmouseup

style, title

del Deleted text

cite, class, datetine, dir, id,

I ang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onnmousedown, onnousenove
onnobuseout, onnbuseover, onnouseup,

style, title

df n Instance definition

class, dir, id, lang, onclick,

ondbl cli ck, onkeydown, onkeypress,
onkeyup, onnpbusedown, onnpusenove,
onnobuseout, onnbuseover, onnpuseup,

style, title

dir Directory list

Yes

class, compact, dir, id, |ang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onnousedown,
onnobusenove, onnouseout,

onnobuseover, onmouseup, style, title

div Style container

align, class, dir, id, |ang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onnousedown,
onnobusenove, onnouseout,

onnouseover, onnouseup, style, title

dl Definition list

downloaded from: lib.ommolkefab.ir

class, compact, dir, id, |ang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onnpbusedown,
onnobusenove, onnouseout,

onnouseover, onnouseup, style, title

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnpbusedown, onnpusenove,
onnouseup

onnobuseout, onnbuseover,
style, title

em

Emphasis

class, dir, id, lang, onclick,
ondbl cli ck, onkeydown, onkeypress,
onkeyup, onnpbusedown, onnpusenove,
onnouseup

onnouseout, onnobuseover,
style, title

fieldset

Form control group

class, dir, id, lang, style, ti

tle

f ont

Font change

Yes

class, color, dir, face,

onnousenobve, onnouseout,
onnmopuseover, onnouseup,

title

id, |ang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onnousedown,

size, style,

form

Input form

accept -charset, accept,
class, dir, enctype, id,

action,
I ang,

met hod, nane, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onnobusedown, onnbusenove,

onnpuseout, onnobuseover,

onreset, onsubmt, style,

title

onnouseup

target,

frame

Frameset window

cl ass, franeborder, id,

mar gi nhei ght, mar gi nwi dt h,
noresi ze, scrolling, src,

title, width

| ongdesc,

nane,
styl e,

frameset

Collection of window subdivisions

class, cols, id, onload,
style, title

onunl oad,

hl

Heading

align, class, dir, id, |

ang,

onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onnousedown,

onnobusenobve, onnobuseout,
onnobuseover, onnobuseup,

styl e,

title

h2

Heading

align, class, dir, id, |

ang,

onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onnpousedown,

onnobusenove, onnobuseout,
onnobuseover, onnobuseup,

styl e,

title

h3

Heading

downloaded from: lib.ommolkefab.ir

align, class, dir, id, |

ang,

onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onnpousedown,

onnobusenove, onnobuseout,
onnobuseover, onnouseup,

styl e,

title

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onnousedown,
onnousenobve, onnouseout,

onnobuseover, onmouseup, style, title

HS Heading

align, class, dir, id, |ang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onnousedown,
onnobusenove, onnouseout,

onnpbuseover, onmouseup, style, title

h6 Heading

align, class, dir, id, |ang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onnobusedown,
onnobusenove, onnouseout,

onnouseover, onnouseup, style, title

head HTML document head

dir, lang, profile

hr Horizontal rule

align, class, dir, id, |ang,
noshade, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onnmousedown, onnousenove,
onnpuseout, onnbuseover, onnouseup

size, style, title, width

ht m HTML document root

dir, lang, version

i Italic

class, dir, id, lang, margi nw dth,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onnpbusedown,
onnobusenove, onnouseout,

onnouseover, onnouseup, style, title

iframe Inline frame

align, class, franmeborder, height,
id, |longdesc, marginheight, nane,

scrolling, src, style, title

ing Embedded image

align, alt, border, class, dir,

hei ght, hspace, id, ismap, |ang,

| ongdesc, nane, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onnousedown, onnmDUSeNDVe,
onnobuseout, onnbuseover, onnouseup
src, style, title, usemap, vspace,

wi dt h

i nput Form input control

downloaded from: lib.ommolkefab.ir

accept, accesskey, align, alt,
checked, class, dir, disabled, id,

i smap, |ang, mexlength, nane,

onbl ur, onchange, oncli ck,
ondbl cli ck, onfocus, onkeydown,
onkeypress, onkeyup, onnousedown,
onnobusenove, onnbuseout,

onnobuseover, onnouseup, onsel ect,
readonly, size, src, style

tabi ndex, title, type, usemap, val ue

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

I ang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onnpusedown, onnbusenove,
onnouseout, onnbuseover, onnouseup

style, title

i si ndex Single-line input prompt

Yes

class, dir, id, lang, pronmpt, style,
title

kbd Keyboard text entry

class, dir, id, lang, onclick,

ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnpbusedown, onnpusenove,
onnouseout, onnbuseover, onnmouseup

style, title

| abel Form text field

accesskey, for, onblur, onfocus

I'egend Fieldset legend

accesskey, align, class, dir, id,

| ang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onnousedown, onnmousenove,
onnouseout, onnbuseover, onnouseup

style, title

li List item

class, dir, id, lang, onclick,
ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnbusedown, onnbusenove,
onnouseout, onnouseover, onnouseup
style, style, title, title, type,

val ue

I'ink Media-independent link

charset, class, dir, href, hreflang,
id, lang, nedia, onclick,
ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnbusedown, onnpusenove,
onnobuseout, onnbuseover, onnobuseup,

rel, rev, style, target, title

map Client-side image map

class, dir, id, lang, name, onclick,
ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnpbusedown, onnpusenove,
onnobuseout, onnbuseover, onnouseup,
style, title

nmenu Menu list

Yes

class, conpact, dir, id, |ang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onnousedown,
onnobusenove, onnobuseout,

onnouseover, onmouseup, style, title

met a Document meta-information

content, dir, http-equiv, |ang,
nane, scheme

supported

downloaded from: lib.ommolkefab.ir

nof rames Alternate text when frames are not

class, dir, id, lang, onclick,
ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnobusedown, onnobusenove,
onnobuseout, onnbuseover, onnouseup

style, title

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

not supported

ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnpbusedown, onnpusenove,
onnobuseout, onnbuseover, onnpuseup,

style, title

obj ect Embedded object

align, archive, border, class,

cl assid, codebase, codetype, data,
decl are, dir, height, hspace, id,

| ang, nane, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onnobusedown, onnbusenove,
onnobuseout, onnbuseover, onnobuseup,
standby, style, tabindex, title,

usemap, vspace, w dth

ol Ordered list

cl ass, compact, dir, id, |ang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onnpousedown,
onnobusenove, onnouseout,
onnobuseover, onnbuseup, start,

style, style, title, title, type

optgroup Option group

class, dir, disabled, id, |abel

| ang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onnousedown, onnmousenove,
onnobuseout, onnbuseover, onnouseup
style, title

option Select option

class, dir, disabled, id, |abel

I ang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onnmousedown, onnousenove
onnobuseout, onnbuseover, onnouseup,

sel ected, style, title, value

p Paragraph

align, class, dir, id, |ang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onnousedown,
onnobusenove, onnouseout,

onnmouseover, onnouseup, style, title

param Applet/object parameter

id, name, type, value, val uetype

pre Preformatted text

class, dir, id, id, lang, onclick,
ondbl cli ck, onkeydown, onkeypress,
onkeyup, onnpbusedown, onnpusenove,
onnobuseout, onnbuseover, onnmouseup,

style, title, width

q Inline quotation

downloaded from: lib.ommolkefab.ir

cite, class, dir, id, lang, onclick,
ondbl cli ck, onkeydown, onkeypress,
onkeyup, onnbusedown, onnpusenove,
onnobuseout, onnbuseover, onnpuseup,

style, title

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

. ondbl cl'i ck, onkeydown, onkeypress,
onkeyup, onnpbusedown, onnpusenove,
onnobuseout, onnbuseover, onnmouseup,
style, title

sanp Sample class, dir, id, lang, onclick,
ondbl cli ck, onkeydown, onkeypress,
onkeyup, onnpbusedown, onnpusenove,
onnobuseout, onnbuseover, onnouseup
style, title

scri pt Container for scripts charset, defer, |anguage, src, type

sel ect Option select class, dir, disabled, id, |ang,
mul ti ple, onblur, onchange, oncli ck,
ondbl cli ck, onfocus, onkeydown,
onkeypress, onkeyup, onnousedown,
onnobusenove, onnouseout,
onnouseover, onnouseup, size, style,
tabi ndex, title

smal | Small text class, dir, id, lang, onclick,
ondbl cli ck, onkeydown, onkeypress,
onkeyup, onnpbusedown, onnpusenove,
onnobuseout, onnbuseover, onnmouseup,
style, title

span Style container class, dir, id, lang, onclick
ondbl cli ck, onkeydown, onkeypress,
onkeyup, onnbusedown, onnpusenove,
onnbuseout, onnbuseover, onnmouseup
style, title

strike Strike-through Yes class, dir, id, lang, onclick,
ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnbusedown, onnpusenove,
onnobuseout, onnbuseover, onnmouseup
style, title

strong Strong emphasis class, dir, id, lang, onclick,
ondbl cli ck, onkeydown, onkeypress,
onkeyup, onnmousedown, onnousenove,
onnobuseout, onnbuseover, onnmouseup
style, title

style CSS class, dir, lang, media, type

sub Subscript class, dir, id, lang, onclick,
ondbl cli ck, onkeydown, onkeypress,
onkeyup, onnbusedown, onnpusenove,
onnbuseout, onnbuseover, onnmouseup
style, title

sup Superscript class, dir, id, lang, onclick
ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnbusedown, onnpusenove,
onnobuseout, onnbuseover, onnmouseup
style, title

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

cel l spacing, class, dir, franme, id,
I ang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onnmousedown, onnousenove
onnobuseout, onnbuseover, onnouseup,

rules, style, summary, title, width

t body Table body glign, char, charoff, cIas;, dir
id, lang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onnobusedown, onnbusenove,
onnobuseout, onnbuseover, onnobuseup,

style, title, valign

TD Table data cell abbr, align, axis, bgcolor, char,
charoff, class, colspan, dir,
headers, height, id, id, |ang,

now ap, onclick, ondblclick
onkeydown, onkeypress, onkeyup,
onnousedown, onnmousenove,
onnobuseout, onnbuseover, onnmouseup
rowspan, scope, style, title,

valign, width

textarea Multiline text-input area accesskey, class, cols, dir,
di sabl ed, id, |ang, nane, onblur,

onchange, onclick, ondblclick,
onfocus, onkeydown, onkeypress,
onkeyup, onnbusedown, onnpusenove,
onnpbuseout, onnbuseover, onnmouseup
onsel ect, readonly, rows, style,

tabi ndex, title

tf oot Table footer align, char, charoff, class, dir,
id, lang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onnousedown, onnousenove
onnpuseout, onnbuseover, onnouseup
style, title, valign

th Table header cell abbr, align, axis, bgcolor, char,
charoff, class, colspan, dir,

headers, height, id, |ang, now ap,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onnousedown,
onnobusenove, onnouseout,
onnobuseover, onnouseup, rowspan

scope, style, title, valign

t head Table header align, char, charoff, class, dir
id, lang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onnousedown, onnmousenove,
onnouseout, onnbuseover, onnouseup

style, title, valign, width

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnpbusedown, onnpusenove,
onnobuseout, onnbuseover, onnpuseup,

style, title

tr Table row align, bgcolor, char, charoff,
class, dir, id, lang, onclick,
ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnbusedown, onnbusenove,
onnouseout, onnbuseover, onnobuseup,

style, title, valign

tt Teletype text style class, dir, id, lang, onclick,
ondbl cl i ck, onkeydown, onkeypress,

onkeyup, onnbusedown, onnpusenove,
onnouseout, onnbuseover, onnobuseup,

style, title

u Underlined Yes class, dir, id, lang, onclick,
ondbl cli ck, onkeydown, onkeypress,

onkeyup, onnbusedown, onnpusenove,
onnpbuseout, onnbuseover, onnouseup,
style, title

ul Unordered list class, compact, dir, id, |ang,
onclick, ondblclick, onkeydown,

onkeypress, onkeyup, onnousedown,
onnousenobve, onnbuseout,
onnouseover, onnouseup, style,

title, type

var Variable class, dir, id, lang, onclick,

ondbl cl i ck, onkeydown, onkeypress,
onkeyup, onnmousedown, onnousenove,
onnobuseout, onnbuseover, onnouseup,

style, title

The first is that although this table was created from the request for HTML 4.01, it is by no means gospel.
There will always be web browsers that either don't support select attributes and/or elements, and
browsers that add some of their own. Also, if you recall our escapade with binding XML and HTML, web
browsers don't get the least bit cranky if developers make up their own attributes and elements, or even
use onchange when it should have been oncl i ck.

3.2.2. Frames Both Hidden and Visible

The question is, exactly what purpose can HTML frames serve in the brave new world of Ajax applications?

To be perfectly honest, | don't exactly know, but | can offer some possible suggestions.

The first suggestion that | can offer is to use an IFRAME with CSS positioning instead of either a JavaScript
alert or a JavaScript prompt to convey information to and from the visitor. Not only would it allow for
additional opportunities regarding the physical layout, but it wouldn't have the stigma associated with pop-
ups. In fact, it might even provide a way around some popup-blocking software.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

needed |t could be moved about the page usmg CSS positioning and could be reS|zed to dlsplay the
required information. The source of the information could be from the page's JavaScript, another page on
the web server, or a web service.

My second suggestion is to use the frames, especially hidden ones, as somewhere to cache information. I'm
not only referring to the garden variety forms of information, such as XML or XSL stylesheets, but also to in-
line Cascading Style Sheets. Imagine the reaction of visitors discovering that they can customize their
browsing experience on a website that already feels like an application. Think along the likes of using the
CSS from the fifth IFRAME for Bob, and you'll get the idea.

The same technique can also be used to cache large XML documents, of the kind that eat up bandwidth.
Caching whole or nearly whole pages that don't often load is also a possibility, as with the Items page from
earlier examples. Instead of retrieving the XML every time the visitor wanders to the page, just build the
page once and cache. This would also have the advantage of further increasing application speed.

3.2.3. Roll Your Own Elements and Attributes

We use Microsoft Internet Explorer's XML element in both IE and Firefox. The interesting thing is that,
unlike Internet Explorer, Firefox doesn't support the XML element, so how exactly did it work? According to
several recommendations published by the World Wide Web Consortium, when an unrecognized document
element is encountered, it needs to be handled gracefully. Most likely, this is a "plan for future expansion”
thing.

Think about it; this makes a great deal of sense because if you go without it, boom, the web browser would
just roll over and die whenever somebody with sausage fingers mistyped a tag. The World Wide Web
wouldn't be a pretty sight without this feature. Interestingly, the same feature is also available for
attributes, which explains how the home-grown data binding works.

A number of times in the past, | took advantage of this in regard to attributes. | took advantage of this
little trick in several different ways, but | have a couple of favorites. The first was stashing the original
values of HTML input objects for the purposes of resets. Click a button, and a client-side JavaScript event
handler would update the value attribute from the ol dval ue attribute.

Another one of my favorite uses was to use it as a "value has changed" indicator. This indicator would be
checked when the form was submitted. Based upon the result of a test, any number of actions could be
taken, including producing a client-side error message.

However, my most favorite was to stash other options for selects. You see, the system that | worked on
had pages with several HTML sel ect objects with the contents of each sel ect based upon the selection

made in the previous sel ect . Originally, whenever a visitor came to the website and made a selection, that
visitor was forced to wait through an unload/reload for each selection.

The "mad scientist" solution was to create a series of attributes consisting of the various attributes. Each
select had an onchange event handler that would update the options of the next logical sel ect object.

Although this wasn't an Ajax application, the change that | made gave it one of the same characteristics; it
didn't bother the server any more than absolutely necessary.

3.2.4. A Little CSS

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

color, there was only one option, thve H'i'ML FONT eiement. If you'v'e never seen a pagé written using the
FONT element, consider yourself lucky. They were bloated, like a balloon in the Macy's Thanksgiving Day
parade.

They also seemed to attract managers who felt the need to change the font from 11 point to 12 point or
use color for bold text. "You know, it would look better in Magenta or Peach Puff." So there | was looking up
the RGB values for Magenta (#FFOOFF) and Peach Puff (#FFDAB9), which was much easier than hunting
throughout the document looking for all the FONT elements. Needless to say, the day | found out that the

FONT element was deprecated was one of my happiest days.

Now instead of being forced to use the HTML FONT element, I'm presented with a choice. Basically, it comes

down to setting the font for the document as a whole, individual element types, or individual elements. This
presents a quandary, unless, of course, you're like me: a bad typist in a career that requires typing. In that
case, | recommend applying Cascading Style Sheets in the following manner:

1. Set the overall style of the document by setting the style for the BODY, TABLE, DI V, and SPAN elements.
This is one area where trickle down economics actually works.

2. Next concentrate on the other elements that you plan to use, such as the | NPUT element. This is also
the time and the place for handling any homegrown elements, such as the XML element in Firefox.

3. Third, take care of the classes, those elements that go a long way toward giving a website a
particular look and feel. The r owHeader and r owDat a classes from the earlier examples reflect this

philosophy.

4. Finally, deal with the style of the individual elements themselves: positional CSS and the scrollable
DIV.

Finally, because the main purpose of this chapter is to serve as a reference, there is Table 3-2, whose
purpose is to describe some of the more common CSS 1 elements.

Table 3-2. Some of the More Common CSS 1 Elements

Property CSS | Description

font-famly 1 Sets the font name or font family name

font-style 1 Either normal , italics, or oblique

font-variant 1 Either normal or snal | - caps

font - wei ght 1 Either normal , bol d, bol der, | i ghter, 100, 200, 300, 400, 500, 600, 700, 800,
or 900.

font-size 1 Size of the font as an absolute, relative, length, or percentage

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

col or 1 Sets the color for the element specified

background- col or 1 Sets the background color for an element

background-i mage 1 Sets the background image for an element

background-repeat 1 Sets the repeat for the background image

background-attachnent |1 Sets the scroll for the background image

background- posi tion 1 Sets the position of the background image

background 1 Sets all background properties at once

wor d- spaci ng 1 Sets the spacing between words

l'etter-spacing 1 Sets the spacing between letters

text-decoration 1 Sets the text decoration: bl i nk, | i net hr ough, none, overline, or underline

vertical-align 1 Sets the vertical positioning: basel i ne, bottom mi ddl e, per cent age, sub,
super, text-bottom text-top, Or top

text-transform 1 Sets the text transformation: capitalize, | ower case, none, Or upper case

text-align 1 Sets the text alignment: | eft, right, center, orjustify

text-indent 1 Sets the indent property for container elements

I'i ne-hei ght 1 Sets the spacing between lines

mar gi n-top 1 Sets the property as a percentage, length, or auto

mar gi n-right 1 Sets the property as a percentage, length, or auto

mer gi n- bot t om 1 Sets the property as a percentage, length, or auto

margi n- 1 eft 1 Sets the property as a percentage, length, or auto

mar gi n 1 Sets all margin properties at once

paddi ng-top 1 Sets the property as either a percentage or a length

paddi ng- | eft 1 Sets the property as either a percentage or a length

paddi ng-ri ght 1 Sets the property as either a percentage or a length

paddi ng- bot t om 1 Sets the property as either a percentage or a length

paddi ng 1 Sets all the padding properties at once

bor der -t op-wi dth 1 Sets the property to thi n, nedi um thi ck, or | ength

border-bottomwi dth |4 Sets the property to t hi n, medi um t hi ck, or | engt h

border-right-width 1 Sets the property to t hin, medi um thi ck, or | ength

border-left-width 1 Sets the property to thin, nedi um thi ck, or | ength

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

bor der - col or 1 Sets the color of the border

border-style 1 Sets the border style to one of the following: none, dott ed, dashed, sol i d,
doubl e, groove, ri dge, i nset, Or out set

bor der -t op 1 Sets the border width, style, and color

bor der - bot t om 1 Sets the border width, style, and color

bor der -ri ght 1 Sets the border width, style, and color

border - | ef t 1 Sets the border width, style, and color

bor der 1 Sets the border width, style, and color for all the borders at once

wi dth 1 Sets the width for an element

hei ght 1 Sets the height for an element

f1 oat 1 Indicates that text can wrap around an element

clear 1 Specifies whether floating elements can float to the side

di spl ay 1 Sets how and whether an element will display: | ock, inline, |ist-item or
none

whi t e- space 1 Sets how whitespace is treated: nor mal , pre, or now ap.

list-style-type 1 Specifies the type of a list item marker: disc, circle, square, deci mal ,
| ower -roman, upper -ronan, | ower - al pha, upper - al pha, or none

l'ist-style-inmage 1 Sets the image

|ist-style-position 1 Sets the position

list-style 1 Sets all the list-style properties at once

Although Cascading Style Sheets is about as different as you can get from HTML/XHTML, they work
togetheractually, they work together extremely well. Before the adoption of CSS, the task of giving web
pages a common look and feel was handled using the font tag, which, thankfully, has been deprecated (or,
as | like to think of it, taken out and shot!). Sorry, | have never liked the font tag since the time a little
cosmetic change to a web page took 2 days, mostly because there were about 700 instances scattered
throughout a page. Think of the combination of technologies as a kind of synergy, like deuterium and a
fission bomb or peanut butter and chocolate.

downloaded from: lib.ommolkefab.ir

NEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.3. Summary

In this, hopefully, refresher/reference chapter, some of the differences between the older HTML and the
new and improved XHTML were covered. Special attention was paid to the fact that XHTML, unlike its
cousin HTML, must be well formed and what exactly that means. Additionally, this chapter showed how to
hide JavaScript, which is about as well formed as a platypus, within XHTML.

Next, some of the basics of the HTML/XHTML elements were covered: specifically which attributes go along
with which elements, and which elements are deprecated. Next frames, the visible kind and otherwise,
were discussed, followed by the advantages of being able to add custom elements and attributes. |
wrapped things up with a high-level overview of Cascading Style Sheets.

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 4. JavaScript

I would like to point out that JavaScript has nothing to do with the Java programming language itself. Many
people unfamiliar with JavaScript have a real problem with this, thinking that the word Java in JavaScript
denotes some kind of relationship. Well, the relationship is similar to the relationship between "pine" trees
and pineapples, or apples and pineapples. Yes, they are all distantly related, but that is the end of it.

My first encounter with coding JavaScript was in a web development class that was taught at Penn State as
part of a web design certificate program. Impatiently | took the precursors, waiting for the class in which
my programming skills would help. About 5 minutes into the class, it quickly became apparent that certain
experiences would be more useful JavaScript precursors than others. For example, other than providing
somewhere for the JavaScript to go, the HTML class wouldn't be of much use. Knowledge of C or any
similar language, such as C++, Java, Pascal, or even PL/I, on the other hand, would go a long way toward
helping to learn JavaScript.

In this chapter, | cover the following aspects of JavaScript:

. Data types
« Variables

o Operators

« Flow-control statements
« Functions

« Recursion

o Constructors

« Event handling

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.1. Data Types

As with its ancestor, the C programming language of Kernighan and Ritchie, JavaScript supports a number
of data types. Although the number isn't nearly as large as C, representatives of the basic data types are all
present, and methods of describing your own data types exist. In fact, with only a little delving into the
"dark arts," it is quite possible that many problems can be solved on the client side using JavaScript.

4.1.1. Numeric

In JavaScript, all numbers are 64-bit double-precision floating-point numbers, whether they are floating
point or integer. This means that 18,437,736,874, 454,810,624 values divided evenly between positive and
negative can be represented in JavaScript. In addition, there are three "special™ values, increasing the total
to 18,437,736,874,454,810,627. And you thought that you were being robbed.

The first of the three "special™ values is NaN, which means Not a Number or "oops," as | like to think of it.

From my point of view, it means that | made some kind of boneheaded mistake and am doomed to suffer
for it. The second and third values are positive and negative infinity, which are, well, infinite.

4.1.2. String

JavaScript strings are UTF-16 strings or 16-bit Unicode Transformation Formats: character encoding. What
it comes down to is that each character in a string is represented in 2 bytes, which means that the potential
for display of non-English characters exists. This might not seem like a big deal, but it very well could be
when the boss walks into your office and asks about internationalization. Ooh, scary.

Seriously, though, quite a number of things can be done in JavaScript along the lines of string
manipulation. For example, it is quite easy to make an entire line either upper case or lower case, a really
nice feature when testing for a particular string value. In addition, other functions allow for the searching,
extracting, and replacing of substrings. Table 4-1 outlines these features.

Table 4-1. JavaScript String Functions

Name Type Description

escape(string) Method | Converts the characters that would be illegal in a URL into
legal escape sequences.

string. charAt(n) Method Returns the character at the position n, where n is a
positive integer.

string. char CodeAt (n) Method [Returns the encoded character at the position n, where n is
a positive integer.

string. concat (stringB) Method | Returns a string consisting of both strings concatenated.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Method | characters.

string.indexOf (stringB, n) Method | Starting at position n or 0, if n is omitted, returns the start
position of the second string in the first string. A -1 is
returned when the second string isn't found within the first.

string.lastlndexCf (stringB, n) Method | Starting at position n or the end of the string, if n is
omitted, returns the start position of the second string in
the first string starting at the end of the string. A -1 is
returned when the second string isn't found within the first.

string.length Property | The length of the string in characters.

string. mat ch(regexp) Method | Returns an array consisting of matches to the pattern in
the regular expression r egexp.

string.replace (regexp, text) Method | Replaces of one or more instances that match the pattern
with text.

string. search(regexp) Method | Returns a Boolean indicating whether a match to the
pattern is found in the string.

string.slice(n ,m Method | Returns the portion of the string starting at n and
continuing to m where both n and mare integers. In
addition, if either value is negative, it indicates the position
from the end of the string.

string. split(regexp) Method | Returns an array consisting of the strings that were
separated by instances of the pattern in the regular
expression regexp.

string.substr(n ,m Method | Returns a substring starting at position n for a length of m
characters. In instances where mis omitted or exceeds the
length of the string, the final character is the final character
of the string.

string. substring(n, m Method | Returns a substring starting at position n for a length of m
characters. In instances where mis omitted or exceeds the
length of the string, the final character is the final character
of the string.

string. toLover Case() Method | Converts the string to lower case.

string. toString() Method | Returns the string value.

string. toUpper Case() Method | Converts the string to upper case.

string. val ued () Method | Returns the value of the string.

unescape(string) Method | The inverse of escape; the escape sequences are converted

back into the original characters.

In my opinion, one of the coolest ways to manipulate strings has got to be regular expressions, although,
come to think of it, it is also probably one of the most obscure ways to manipulate strings as well. If you're
unfamiliar with reqular expressions, they are an object that stores a pattern for use in the searching of

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The theory behind regular expressions is relatively easy to grasp, but the actual practice is not. The reason
for this comes down to the pattern; it needs to be specific enough to find only what you are actually looking
for, yet it also needs to be general enough to be able to find sequences that aren't always easy to find.

Maybe you'll be able to understand how this works a little better after looking at Table 4-2, which describes

the special characters that go into constructing a pattern.

Table 4-2. Characters Used to Create Regular Expressions

Pattern | Description

\ Designates the next character as either a literal or a special character.

Designates the beginning of a string.

$ Designates the end of a string.

Specifies a match to the preceding character zero or more times.

+ Specifies a match to the preceding character one or more times.

Specifies a match to the preceding character zero or one time.

Matches any single character, excluding newline.

() Matches the contents of the parenthesis. Note that this is a pattern match and is remembered.

al b Specifies a match to either a or b.

{n} Specifies a match to the preceding pattern exactly n times, where n is a nonzero positive
integer.

{n} Specifies a match to the preceding pattern at least n times, where n is a nonzero positive
integer.

{n, Specifies a match to the preceding pattern at least n times and at most m where n and mare
nonzero positive integers.

[xyz] Matches any single character enclosed by the brackets.

["xyz] Matches any single character not enclosed by the brackets.

[0-9] Matches the range of characters enclosed by the brackets.

[~0-9] Matches the characters not included in the range of characters enclosed by the brackets.

\b Matches a word boundary.

\B Matches a nonword boundary.

\d Matches a numeric character, synonym for [0- 9] .

\D Matches a non-numeric character, synonym for [~0- 9] .

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

\n Matches a newline.

\r Matches a carriage return.

\'s Matches any single whitespace character.

\S Matches any single nonwhitespace character.

\t Matches a tab.

\v Matches a vertical tab.

\w Matches any single word character or underscore.
\W

Matches any character that is not a word character or an underscore.

preceded by a pattern, matches an octal escape value.

\n When preceded by a pattern (), matches n times, where n is a positive integer. When not

\ xn Matches a hexadecimal escape value where n is a positive integer.

Alright, now for a quickie example. Let's say, for instance, that we want to replace all instances of either

the word red or the word bl ue in a string with the word pur pl e. Although this could be done

programmatically, as shown in Listing 4-1, it isn't the easiest thing in the world. However, with a regular

expression, also shown in Listing 4-1, it really isn't too bad.

Listing 4-1. Programmatic and Regular Expression Approaches to String
Substitution

function initialize() {

var col ors = 'redorangebl uegreenbl ueyel | ow ;

/*
Call the substitute function twi ce, once for blue and once for
red.

*/

al ert (substitute(substitute(colors,'blue', purple'), red ,'purple'));

/*
Define the regul ar expression to search for red or blue, in
addition set the options for gl obal and ignore case.
The avail abl e options are:

g = global (all occurrences in a string)
i = ignore case
gi = global and ignore case

*/
var re = new RegExp('red|blue', 'gi');

/*
Performthe repl acenent.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Al TI L LUIUID.ITPYIALT I T, pPUlpPIcT),

}

function substitute(text,word,replacenent) {
var tenp = text;

/*
perform string replacenment using substring.
*/
whi | e(tenp.indexOf (word) >= 0) {
tenp = tenp.substr(0,tenp.indexd (word)) + replacenent +
tenp. substr(tenp. i ndexOF (wor d) +wor d. | engt h) ;

}

return(tenp);
}

I would like to point out that, at the time of this writing, Microsoft Internet Explorer appears to have a bug
with regular expressions. It occurs when performing regular expressions in a loop. Occasionally, even
though a pattern match exists, it isn't recognized. Fortunately, there is a workaround. Within the body of
the loop, use the compile method to "reset" the pattern. When this is done, pattern matches are always
recognized. Yes, it is something of a kludge, but regular expressions are too useful to ignore, and we
should also be kind to those less fortunate than ourselves by accommodating their broken web browsers.

4.1.3. Boolean

JavaScript Boolean data types are the standard true/false data types that we've all been exposed to
umpteen times, end of story.

4.1.4. Miscellaneous

These are the two data types that don't cleanly fit into any category: null and undefined. The null data type
represents nothing, and the undefined data type represents something that is not defined.

4.1.5. Arrays

Although it's not an object type, I've chosen to include arrays here because they are a useful mechanism
for grouping related information. A relatively simple data structure, arrays permit the access of information
based upon an integer index. In JavaScript arrays, this index begins at zero and increases by one for each
element of the array.

An item of interest about arrays in JavaScript is that it isn't necessary for the individual elements of an
array to all be of the same type, although it might be a good idea to ignore this capability because it
presents a world of opportunities to really screw up. However, some really nice goodies built into JavaScript
more than make up for the potential issues that might arise from weak typing.

First thinas first. Let's take a look at the three wavs to define a JavaScrint arrav: definina an emntv arrav.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

values. eacn o1 these tnree ways uses tne Array() constructor, as snown iIn tne toliowing snippets:

var one = new Array();
var two = new Array(3);
var three = new Array('red', 'green', 'blue');

Earlier | stated that there are some really nice goodies built into JavaScript arrays, but they're rather
numerous, so I've chosen to list them in Table 4-3.

Table 4-3. Features of JavaScript Arrays

Method Description

array. concat (arrayb) Concatenates two arrays into a single array

arrayl ength() Returns the length of an array, as in the number of elements
array.reverse() Returns the array with the elements in reverse order

array.slice(start,end) |Returns a portion of an array

array.sort() Sorts the array into ascending order

array. join() Converts all elements to strings and concatenates them, separated by commas
array. push(item Adds an element to the end of an array

array. pop() Removes and returns an element from the end of the array

array.splice(r,a...a) Removes the element specified by the first parameter and adds subsequent

elements
array.unshift(item Adds an element to the beginning of an array
array.shift() Removes and returns an element from the beginning of an array

4.1.6. Object

In JavaScript, the Object type is an unordered collection of name and value pairs. Although this doesn't
sound like much, it is a type of data structure that is commonly referred to as an associative array. | have a
tendency to use an associative array.

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.2. Variables

Unlike many other programming languages, in JavaScript, variables are not strongly typed, which means
that what once contained a number could now be a string. This can sometimes cause some issues when
developing on the client side; think about the idea of running across a string when a number is expected. A
situation like that could prove somewhat embarrassing, especially because applications are like dogs; they
can smell fear. This explains why applications always fail during a demo to upper management.

The names of variables in JavaScript consist of alpha characters followed by a number. The underscore
character is also permitted; | usually use it to remind myself that a particular variable is not to be touched.
Along the line of the wires that hold up Buck Rogers' spaceship, if you mess with it, bad things could
happen.

As with many programming languages, variables in JavaScript have a scope. Before you have an attack of
paranoia ("They're watching me!"), please allow me to explain what scope is in reference to variables.
Variable scope refers to where the variable is defined. In JavaScript, variables can have either local scope
or global scope.

In local scope, the variable is defined within a particular function. The simplest way to explain it is by
examining the two functions in Listing 4-2. The first function, Jeckl e, defines a variable named nonster. The

second function, Frankenst ei n, also defines a variable named nonst er . Because both variables are local,
Jeckl e's nonst er is a different nonst er than Frankenst ei n's.

Listing 4-2. Two Local Variables

function Jeckle() {

var nmonster = 'M ster Hyde';
}
function Frankenstein() {

var nmonster = 'Bob';
}

Global scope refers to variables that are defined throughout the entire page. They are defined in one of two
ways, either using a var and declaring the variable outside a function, or omitting the var and declaring it

within a function. I don't have a problem with the first method of declaring a global variable, but I have
some definite issues with the second. All that it takes is one case of "sausage fingers"; a mistyped variable
name, and I'm debugging for hours.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.3. Operators

JavaScript has a number of operators that you might or might not be familiar with. These include the ever-
present == (equals) and ! = (not equals), to which you have undoubtedly been exposed; there are a number

of others. Although some of these operators are familiar, some others might not be as familiar, so Table 4-
4 briefly touches upon these.

downloaded from: lib.ommolkefab.ir

Table 4-4. JavaScript Operators
Operator Type Description
a+b Arithmetic Addition
a-b Arithmetic Subtraction
a* b Arithmetic Multiplication
alb Arithmetic Division
a %b Arithmetic Modulus, the remainder to division
++a Arithmetic Increment by one
--a Arithmetic Decrement by one
a=>b Assignment | Set equal to
a+=b Assignment | Increment by the value on the right
a-=b Assignment | Decrement by the value on the right
a*=b Assignment | Multiply by the value on the right
al=Db Assignment | Divide by the value on the left
awb Assignment | Modulus by the value on the right
a==>b Comparison | Equal to, value
a === Comparison | Equal to, value and type
a'=b Comparison | Not equal to
a>b Comparison | Greater than
a<b Comparison | Less than

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

a<=b Comparison | Less than/equal to
a&&hb Logical And

al| b Logical Or

la Logical Not

a+b String String concatenation

a=(condition)?b: c

Comparison

Comparison operator

t ypeof (a)

Special

Returns a string consisting of the operand type

void a

Special

Suppresses the return of a variable

I'll bet you didn't know that t ypeof was an operator.

downloaded from: lib.ommolkefab.ir

NEXT B

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.4. Flow-Control Statements

My first job straight out of college was working on an order-entry system that was developed by the elves
at Bell Labs. Needless to say, | found myself in the Promised Land; although the salary was only alright,
the tools and some of the code were brilliant. Notice that | said "some of the code." There was also some
code that really, really stunk.

One particular "utility” comes to mind. Its purpose was to simulate an order being sent to manufacturing
and billing. It had absolutely no conditions or loopsjust the brute-force changing of the order status, totally
disregarding whether the order was ready for transmittal. I'm not 100 percent sure why, but this inelegant
code bothers me to this day.

One possible reason could be that | visualize code as a river with currents and eddies. As with a river, the
flow of the program slows down and speeds up, depending upon the existing conditions. In my mind, | can
almost see the flow following a particular channel, branching left or right and occasionally looping back
upon itself. Maybe this is a strange way to look at it, but | consider flow-control statements to be elegant.

4.4.1. Conditionals

The granddaddy of all conditional statements has to be the i f statement. In some form, the i f statement is

present in every programming language that I've ever used, seen, read about, or just plain stumbled
across. Because of JavaScript's C roots, the i f statement syntax is like a function with the condition being

enclosed in parenthesis and the following statement being executed only when the condition is TRue.
Sometimes there is an el se followed by the statement to execute when the condition is f al se, and

sometimes there isn't. When multiple statements need to be executed, they are enclosed in curly braces.
Listing 4-3 shows the basics.

Listing 4-3. The Basics of the JavaScriptif Statement

if(a ==1)
alert('a is one');
el se {
alert('a is not one');

if(b ==1) {
if(c == 1)
alert('Both b and ¢ are one');
} else
alert('b is not one');

Almost as if it were cloned right from the pages of Kernighan and Ritchie's The C Programming Language
(Prentice Hall, 1988), the conditional operator is a ternary operator, essentially an entire i f statement/el se

statement shrunken into a convenient package for those of us who suffer from the sausage fingers

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ISN'T really that nhard; Just remembper that It breaks aown In the Toliowing manner:

room!="y2'" ? 'xyzzy' : 'plugh'

Most often you'll see the result assigned to a variable like this:

magi cWword = room!= "'y2' ? 'xyzzy' : 'plugh'

To those of you with mad scientist tendencies, the answer is, yes, conditional operators can be nested. The
answer to the next question is also, yes, | have nested conditional operators.

The next four flow-control statements go together; in fact, you'll never see three of them by themselves. |
am referring to the conditional structure that is known in various programming languages by a number of
names, including case, select, choose, or switch, as it is called in JavaScript.

The swi t ch statement evaluates a series of conditions until a condition is met. When this happens,
execution begins at the case statement with the t rue condition. If none of the conditions is true, the
execution begins at the default statement or after the swi t ch, if there is no default statement. Listing 4-4
shows the basic structure of the swi t ch statement.

Listing 4-4. Basic Structure of the swi t ch Statement

swi t ch(nunber) {
case(0):
alert('zero');

br eak;
case(1):
case(3):
alert('odd < 5");

br eak;
case(2):
case(4):
alert('even < 6');

br eak;
defaul t:
alert (' many');

br eak;

In addition to the "standard" version of the swi t ch statement shown in Listing 4-4, there is a little known

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

possibility of using a swi t ch statement instead of a series of nested i f statements, as Listing 4-5 illustrates.

Listing 4-5. A swi t ch Statement Acting Like a Series of Nested i f Statements

switch(true) {

case(nunmber == 0):
alert('zero');
br eak;

case(color == "'red'):

al ert (' #FF0000') ;

br eak;
case(color == 'green'):
al ert (' #00FF00") ;

br eak;
case(color == '"blue'):
al ert (' #0000FF") ;

br eak;
case((color %2) == 0):
alert('even');

br eak;
defaul t:
al ert (' what ever');

br eak;

4.4.2. Looping

The purpose of looping in programs is to execute a series of statements repeatedly, thus cutting down on
the required lines to code. This reduction in the number of lines has the advantage of improving the overall
readability. In addition, loops allow for a variable number of executions. Personally, loops mean that | don't
have to type any more than | have to, but, hey, I'm a hunt-and-peck typist.

It has been a while since CSC 100, "Introduction to Computer Science," but if | remember correctly, the for

loop was the first type of looping structure taught. Most likely the reason for this is that it is really hard to
mess it up, even for virgin programmers. A block of code is executed a specific number of times,
incrementing a variable for each iteration.

The for/in loop is a close relative of the for loop. However, unlike the for loop, which specifies the number
of iterations using a numeric value, an object is used. The really unfortunate thing about the for/in loop is
that most people forget it exists, myself included. Listing 4-6 has several examples of both for and for/in
loops.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

var factorial = 1;
var nunmbers = new Array(1, 2, 3,4,5);
var index;

for(var i=1;i < 6;i++)
factorial *=i;

factorial = 1;

for(var i=5;i > 0;i)
factorial *=i;

factorial = 1;

for(index in nunbers)
factorial *= nunbers[index];

alert(factorial);

Because they are so similar in function, the whi | e loop and the do/whi | e loop offer a quandary concerning
which to use. They both execute a block of instructions while a condition is TRue. So why are there two
different loops, you ask? Go on, ask; I'll wait.

The reason there are two different loops is that one tests before executing the block of code, and the other
tests after executing the block of code. The whi | e loop performs the test and then executes the code block

only if the condition is true. Iteration continues until the condition is no longer TRue, at which time
execution continues with the code immediately following the loop.

On the other hand, the do/whi | e loop executes the code block before performing the test. Because the test
is performed after the execution of the code block, it guarantees that the code block will be executed at
least once. This is quite useful when it is necessary to execute the code block once, regardless of whether
the condition is true.

The majority of times that | code a loop, it is because I'm looking for something. Where I'm looking isn't
important, although it is usually either in an array or in the DOM. However, what is important is that | need
to find it. So I'll write a little routine that loops through whatever, looking for something. Let's say that
there are 600 whatevers and | find what I'm looking for at number 20. Wouldn't it be nice to be able to
stop looking?

It is possible; remember the break statement from the swi t ch? It also terminates a loop-dropping execution
to the statement immediately following the loop. Heck, it is even elegant.

But what if you don't want to exit the loop, but rather continue with the next iteration? Then you use the
conti nue statement, which causes the current iteration to stop and the next iteration to begin. It is sort of

like going back for a second helping of the entreé when you haven't finished your vegetables, but hey,

R - IR S SR T /St N WA Wt

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

One more issue arises with exiting loops; JavaScript allows labels to be placed on statements, like looping
statements. This provides a way to refer to the statement from elsewhere in the script. This means that a
break or conti nue can refer to a specific loop so that it is possible to break or continue an outer loop from

an inner loop. Listing 4-7 gives an example of how this worksa useless example, but an example
nonetheless.

Listing 4-7. A Useless Example of Using break and conti nue to Refer to a Specific
Loop

var result = 1;

Il oop: for(var i=0;i < 5;i++)

JIl oop: for(var j=0;j < 5;j++)
if(j == 2)
break Jl oop;
el se
Kl oop: for(var k=0;k < 5; k++)
if(k == 3)
continue |l oop;
el se

result += k;
alert(result);

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.5. Functions

Fromsome points of view, JavaScript functions are a little bit on the strange side when compared to other
programming languages. This is because even though they are functions, they don't necessarily return a
value. JavaScript functions are really groupings of code designed to perform a specific task. Quick, imagine
yourself writing a JavaScript function that concatenates two strings. Visualize it fully in your mind before
looking at the example in Listing 4-8.

Listing 4-8. A Function That Concatenates Two Strings

function concatenate(a,b) {
return a.toString() + b.toString();

}

Don't be surprised if the function that you visualized looks remarkably similar to the one in Listing 4-8.
There is a perfectly logical reason for this similarity; my mind-reading machine has been perfected. Either
that or I'm aware that the majority of developers know only a couple ways to define a JavaScript function.
Which is the truth? I'll give you a hint: It is currently the fall of 2005, and I'm writing this on the SEPTA R5
line on my way to Doylestown, Pennsylvania. If | actually could read minds across space and time, | would
have won Powerball last week and I'd be writing this on the beach in Tahiti.

This means that, as web developers, we're all in a rut, doing the same thing the same way day after day
and year after year. Yeah, | know the drill: "It works, so why change it?" and "I always do it that way" are
usually the statements used. To these statements, | have one response, "You learn more from your
mistakes than you do from your successes!"

When you actually get down to it, there are several separate and distinct ways to define a function in
JavaScript. Why so many ways to define a function? | can't rightfully say, but I can take a guess. It has
always seemed to me that the more ways there are to perform a single task, the more flexible the
language is and the more problems can be solved.

Getting back to our function that concatenates two strings, we've already seen one possible method of
implementing the solution, so let's take a look at another way. JavaScript has the Functi on() constructor

for, interestingly enough, constructing functions. The Functi on constructor, an example of which is shown
here, is used to create a function and assign it to a variable or an event handler.

var concatenate = new Function('a','b','return a.toString()
+ b.toString()');

In addition to the Functi on constructor, the functi on operator can be used to assign a function to a
variable. One of the more interesting "features" of the Functi on constructor is that it shows that JavaScript

is really an interpreted language because the function is stored as a string. This is an example of our string
concatenation example defined using the functi on operator:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

var concatenate = 1unctionga,p) {return a.1tosring() + D.tostringg);

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.6. Recursion

Feel free to skip over this section if you're one of those developers with a fear of recursion; not only is this
considered an advanced topic, but it can also literally cause headaches. If you should decide to read on,
good for you! The only real way to get over the headaches is to use recursion as much as possible and
work your way through them. After all, what's a couple of weeks of pain compared to being able to write
some really tight code?

Are you still there? Rats! |1 guess I'll have to write this part of the chapter. So much for kicking back and
watching My Name Is Nobody on DVD.

In its simplest form, recursion occurs when a function calls itself repeatedly to achieve some kind of result.
Some examples of functions that readily lend themselves to recursion are mathematical, such as the
Euclidean algorithm, the Ackerman Function and the functions to compute factorials, Fibonacci numbers,
and Catalan numbers.

When setting out to create a recursive function, one thing to keep in mind is that anything that can be done
recursively can also be done iteratively. In fact, sometimes it is actually more efficient to code an iterative
function. This is because there are limits on how deep the recursion can go, usually around 32K. Attempts
to exceed this built-in limitation will result in a nicely worded error message that essentially means "stack
overflow." Keep this in mind when implementing recursive functions.

With the disclaimer about the perils of recursion out of the way, let's examine one of the older examples of
recursive algorithms, the Euclidean algorithm. Dating from approximately 200 B.c., the Euclidean algorithm
is a method for computing the Greatest Common Divisor of two integers. Listing 4-9 shows a recursive

implementation of the Euclidean algorithm.

Listing 4-9. A Recursive Implementation of the Euclidean Algorithm

function gcd(m n) {
if ((mMm%n) == 0)
return n;
el se
return gcd(n, m%n);

To show how this function works, let's call the gcd function with the values 24 and 18. Because 24 % 18 is 6,
the function is called again with the values 18 and 6. Because 18 % 6 is 0, we're done, and the value 6 is
returned as the Greatest Common Divisor.

Just in case you were wondering what an iterative version of the gcd function would look like, it is shown in
Listing 4-10.

l ictinn A-10 An ltarativve Imnleameaentatinn nf the Firiclidean Alanrithm

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

function gcd(m n) {
var t;

wh

e(n!=0) {
:n;

m % n;
t;

i

t
n
m

}

return(m;
}

downloaded from: lib.ommolkefab.ir

NEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.7. Constructors

The capability to create custom objects is what separates modern programming languages from the
programming languages of yore. Unfortunately, in JavaScript, this capability is one of those language
features that is often either ignored or overlooked. Believe it or not, there is actually a good reason for this;
it is all a matter of perception. You see, JavaScript is often viewed as a lightweight language or a kid's
programming language, good only for tasks such as creating pop-ups or handling mouseover events.

Although | believe that everybody is entitled to their opinion, | also believe that this opinion has kept web
applications mired in their original unload/reload glory. For this reason, as well as the fact that I'm not
terribly fond of writing hundreds or thousands of lines of custom code, | began to play around with
JavaScript constructors. Yes, with some planning and design work in the beginning, it is very possible to
free up some time for the occasional mad scientist project later.

The first question is, how do we start writing a constructor? Do we just jump in and create a constructor
and use it? Or should we work out the details of how something works and then use that to write a
constructor? Which approach is better?

Tough questions, and, unfortunately, | can't say what will work for you. | can, however, tell you what works
for me. Whenever I'm developing a constructor, the first thing that | do is write a sample application that
does what | want it to do, but not using a constructor. After the sample application is developed the next
step is to rewrite it using a constructor. This might seem like more work than it's worth, but it works for
me. Also, | have a tendency to see a better way to accomplish tasks with each subsequent rewrite.

With that explained, let's take a look at some of the coding details of creating JavaScript constructors. I've
always been fond of palindromes (words, numbers, or sentences that are spelled the same forward and
backward), so let's create a constructor something along those lines. Without further ado, here is an
introduction to the two ways of coding class constructors in JavaScript.

Yes, there are two different ways to code class constructors in JavaScript. The first, which is probably the
easier of the two, involves creating a function and then creating an instance of that function using the new

operator. Listing 4-11 shows an annotated example of using this method to create a constructor.

Listing 4-11. An Annotated Example of Creating a Class Constructor

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/*
The purpose of the following code is to increnment a gl obal
variable for each instance of this class. In the event of the
gl obal variable being undefined it will be initialized with a
val ue of one.

*/
try {
++_nonst er;
}
catch(e) {
_nonster = 1;
}
/*
Thi s code, which is executed whenever a new instance is
created, initializes new occurrences of this object. Private
and public properties are defined and initialized. In
addi ti on, nethods are exposed maki ng them public.
*/
var occurrence = _nonster; /1 Private property
this.string = text; /1l Public property
thi s. pal endrone = _pal endr one; /1 Public method
thi s. nunber = _nunber; /1 Public method
/*
The following function is a nethod which has been nade public
by the above: this.palendronme = pal endrone; statenent.
*/
function _pal endrome() {
var re = new RegExp('[,.!';:\'"]1{1,}","9");
var text = this.string.toLowerCase().replace(re,'");
return(text == reverse(text))
}
/*
The following function is a public read only nethod that gets
the value of the private property occurrence. Through
techniques like this it is possible to maintain control over
the inner workings of objects.
*/

function _nunber() {
return(occurrence);

}
/*
The _reverse function is a private nethod. Methods are private
when they are not exposed using the this.[external nanme] =
[internal nane] statenent as _pal endrome and _nunber were.
*/
function _reverse(string) {
var work = "'";

for(var i=string.length;i >= 0;i)
work += string.charAt(i);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

I

}

To instantiate (a fancy way to say "create an instance™) this class, all that is necessary is to use the new
operator in the following manner:

var nyMonster = new Monster();

Using the newly instantiated class is just a matter of using the various public properties and methods that
were defined by the constructor. For example, to set and get the string property for the nyMnst er instance

of the Monst er class, the code would look like this:

nmyMonster.string = 'Able was | ere | saw El bal';
al ert (myMonster.string);

To use the properties methods, statements would look like the following:

al ert (nyMonst er. pal endrone());
al ert (nmyMonst er. nunber ());

However, there is another way to create a class constructor in JavaScript: use the prot ot ype property. This
is shown in Listing 4-12.

Listing 4-12. Using the prot ot ype Property to Create an scl ass Constructor

Creature. prototype = new Creature;
Creature. prototype. constructor = Creature;

function Creature() {

/*
The purpose of the following code is to increnent a gl obal
variable for each instance of this class. In the event of the
gl obal variable being undefined it will be initialized with a
val ue of zero.

*/

try {
++ _creature;

/*
This is a public property which really shouldn't be accessed
external ly.

*/

this. instance = creature;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

}

va

lbII\C) 1
/*
Zero is used here due to the fact that this constructor is
executed at class definition tine.
*/
_Creature = 0;

}
}
Creature. prototype. string; [l Public property
/*
The followi ng function is a nethod which has been nade public
by the Creature. prototype. pal endrone = _Creature_pal endrone;
st at enment bel ow.
*/

function _Creature_pal endrone() {

var re = new RegExp('[,.!';:\'"]{1,}','9");

var text = this.string.toLowerCase().replace(re,'"');
return(text == _reverse(text))

/*

*/

The _reverse function is a private nethod available only within
t he encl osi ng net hod.

function _reverse(string) {

var work = X

for(var i=string.length;i >= 0;i)
work += string.charAt(i);
ret urn(wor k) ;

}
}
Creature. prototype. pal endrone = _Creature_pal endrone;
/*
The following function is a nethod which has been nade public
by the Creature. prototype. nunber = Creature_Nunber; statenent
bel ow.
*/

function _Creature_Number() {

return(this._instance);

Creature. prototype. nunber = _Creature_Nunber;

downloaded from: lib.ommolkefab.ir

NEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.8. Event Handling

Bring up the subject of client-side events among a group of web developers, and the first (sometimes the
only) one mentioned is the oncli ck event handler. Occasionally, someone will acknowledge the onnouseover

and the onnouseout events, but that is usually a rare occurrence, such as leap year or a pay raise after Y2K.

Come to think of it, you're more likely to hear a story about someone holding a door open for Walter
Koenig than to hear the smallest utterance about another event.

The problem is that developers get into a rut, a comfort zone, and use the same events day in and day out.
After a few months of this, we have a tendency to forget that the event handlers are even there. One of the
reasons for this is that developing web applications is like riding a bike; when you don't remember how to
do it right, there isn't even time to scream before the splat. For this reason, | have compiled Table 4-5,

which covers the event handlers common to most browsers. Yes, Bill, that means that the bef or eunl oad
event is omitted.

Table 4-5. Event Handlers Common to Most Browsers

Operator | Syntax Description

bl ur object.onbl ur = function Fires when an object loses focus, such as when Tab is
pressed or another object is clicked.

focus object.onf ocus = function Fires when the object gets focus, either programmatically or
through user interaction.

| oad window.onl oad = function Fires when the page is loaded. This event can be simulated
by periodically checking the document's r eadyst at e property.

resize window. onr esi ze = function Fires when the window is resized.
scrol | window.onscrol I = function Fires when the page's scroll bars are used.
unl oad window. onunl oad = function Fires just before the page is onloaded. Although it is

commonly used by pop-ups to spawn more pop-ups, it does
have some legitimate uses.

onclick object. oncl i ck = function Fires when an object is clicked.

dblclick | object.ondbl click = function | Fires when an object is double-clicked.

mousedown | ppject.onmousedown = function | Fires when the mouse button is pressed.

rouseup object.onmouseup = function Fires when the mouse button is released.

nmousemove | ghject.onnousenove = function | Fires when the mouse is moved.

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

object.

nmouseout object.onmouseout = function | Fires when the mouse pointer moves off the specified object.

change object.onchange = function Fires when the object's value changes.

reset object. onreset = function Fires when the object (form) is reset.

sel ect object.onsel ect = function Fires when a different option is selected on the object
(select).

submi t object.onsubnit = function Fires when the object (form) is submitted.

keydown object.onkeydown = function Fires when a keyboard key is pressed when the specified

object has focus.

keyup object. onkeyup = function Fires when a keyboard key is released when the specified
object has focus.

keypress | object.onkeypress = function | A combination of both the keydown and keyup events.

Unfortunately, knowing the events is only half the battle. For this knowledge to be of any use, it is
necessary to know how to assign a JavaScript event to the handler. And as with many endeavors in
JavaScript, there are two ways to accomplish this task. No, I'm not referring to a right way and a wrong
way; I'm referring to assigning via HTML and via JavaScript. Listing 4-13 shows both ways to assign an
event handler.

Listing 4-13. The Two Ways to Assign an Event Handler in JavaScript

docunent . get El ement Byl d(' nyButton').onclick = new
Function('alert(\' Quch! You clicked nel\')");

<i nput type="button" id="nyButton" value="Don't click">

<i nput type="button" id="nyButton" value="dick" onclick="alert(' Cooh! Do
it again!')">

Before wrapping up this chapter, there are some important items that could fall under the umbrella of
event handling. Although they aren't really events, they do raise events. The items that | am referring to
are the wi ndow. set Ti neout () and wi ndow. set I nterval () methods. Don't be surprised if you've never heard of

them; they're a little "out there."

The purpose of these methods is to delay the execution of a JavaScript function for a specific number of
milliseconds. Why? Well, let's say, for example, that you'd like to check later to see if an event has taken
place and leave it at that. The real question is really, why are there two methods instead of one? The
reason for two methods is that set Ti meout executes a function once, whereas set | nt erval executes a

function repeatedly until told otherwise. Think of set I nterval as being afflicted with lycanthropy, and you

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

var oTine = w ndow. set Ti neout (' myFunction()', 1000);

var olnterval = w ndow. setlnterval (' myYour()', 100);

All that is left is what to do when it is necessary to clear a timeout or an interval. It is simple; just do the
following, and they're cleared:

wi ndow. cl ear Ti meout (oTi ne) ;

wi ndow. cl ear I nterval (ol nterval);

Remember one important thing when coding in JavaScript: Bending the rules is allowed. Experiment, and
delve into matters that man, or woman, was not meant to delve into. After all, it is the mad scientist way.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.9. Summary

In this chapter, we started with the basics of JavaScript data types and variables; with a side trip to
operators, we covered the basics and a little more.

Our trek continued through the flow-control statements, the conditional ones such as i f -t hen-el se and the
swi t ch statement. In addition, the looping statements were covered, from the common f or loop to the
more obscure for-in loop.

Next, JavaScript functions were covered along with the somewhat feared topic of recursive functions. In the
same vein as functions, constructors we covered, starting with the "function™ method of creating
constructors. The prot ot ype method also was covered. Finally, event handling was discussedspecifically,

how to set handlers and how to deal with the event when it fires.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 5. Ajax Using HTML and JavaScript

Human beings, as well as other life forms, are made up of chemicals such as iron, nitrogen, and water.
However, simply mixing everything together in a cauldron and giving it a quick stir won't result in someone
climbing out of the cauldron. The reason for this is that it isn't the type of ingredients put together; it is
how the ingredients are put together. After all, if girls really were made of sugar and spice and everything
nice, there would be a lot more geeky guys with dates at the prom. If you've ever read Lester Del Rey's
short story Helen O'Loy, you might be accustomed to the concept of building a date from things lying about.

The same is true for web applications. Consider for a moment what is commonly referred to as Dynamic
HTML, or DHTML, for short. Still commonly used in web applications, it is distinguished from plain HTML
only by the fact that things happened based upon events. This is where the dynamic part comes in. | would
like to point out that at no time did | mention the word JavaScript. The reason for this is that not only is it
possible to have DHTML without JavaScript, but it is also possible to have JavaScript without DHTML.

Just in case you're curious, the way to have DHTML without JavaScript is to use Cascading Style Sheets in
event handlers instead of JavaScript. Although it wouldn't be quite as flexible as JavaScript, and it could be
used only for things such as mouseovers and mouseouts, it does fulfill the dynamic requirement. After all, it
really is how the various parts are put together, not the parts themselves. Let's dig a little into the pile of
client-side parts available when starting an Ajax application and see what can be of use in building our
monster.

In this chapter, however, | intend to take advantage of the tools available to us. Most of these tools are
used in the traditional manner. However, some are not; what fun would it be if everything was done
according to the manual? Consider frames, for example. Whether or not you're aware of it, you can abuse
frames in quite a number of ways. Other tools that | use are the cross-browser Document Object Model and
HTML tables for displaying information. Hey, torture the information enough, and eventually it will confess.

In addition to these tools, | cover the ultimate database "tool," stored procedures, but with a quirky
difference. The difference is that I'm using MySQL, not Oracle or Microsoft SQL Server. Just in case you're
wondering why, | have three very good reasons. The first is that MySQL is an open source database. The
second is that stored procedures are rather new in MySQL, so there isn't very much written about them.
The final reason, and, in my opinion the most important, is that my wife keeps me on a budget; alas, no
Tesla coils for me.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5.1. Hidden Frames and iframes

Frames and iframes (in-line frames), for some reason, are one of those things that strike fear into the heart
of web developers everywhere. It is one of those deep-seated fears, like tanning products are to a vampire
or advertisements for having your pet spayed or neutered are to a werewolf. Several reasons for this primal
fear of frames exist; fortunately, there is a countermeasure for each of these reasons.

The first of these reasons is the mistaken belief that frames are nonstandard and, therefore, are supported
by only a handful of "unholy" web browsers. Fortunately, this belief is a total and complete myth because
frames and iframes have the blessing of the World Wide Web Consortium. In fact, the only unholyeh, make
that unusualpart is that the frames are hidden, but, then, that's the entire point of this endeavor.

Now let's get into the actual specifics of making frames behave like Claude Rains, who, if | may digress for
a moment, brilliantly played a mad scientist even if he didn't start that way. First starting with the older
frame instead of the more recent iframe, the hiding entirely takes place in the frameset, as Listing 5-1

shows.

Listing 5-1. The Older Frame

<franmeset rows="100% *">
<franme name="visible_frame" src="visible.htnt>
<frame name="hi dden_frane" src="hi dden. ht nf'>
<nof r anes>
Frames are required to use this web site.
</ nofranmes>
</frameset >

As mentioned in the previous chapter, the rows="100% *" performs the magic, but it isn't the only method

available to us. In fact, looking at only the opening frameset tag, the following eight examples all produce
the desired results:

<frameset rows="100% *" >
<frameset rows="100% 0" >
<franmeset rows="*, 0% >
<frameset rows="*,0">
<franmeset col s="100% *">
<frameset col s="100% 0" >
<franmeset col s="*, 0% >

<franeset col s="*.0">

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The reason for this plethora of choices is that this is one of those times when we really don't care how the
hiding is accomplishedall that matters is that the hiding is accomplished. Oh, this is a good time for me to
point out that when developing a new application using hidden frames, it isn't a violation of the mad
scientist rules to make the hidden frame visible for testing. It is, however, a violation to let others see the
frame with the hidden frame visible, both because it gives the impression that something is wrong with our
fiendish plans and because it looks ugly.

Unlike framesets, in which the hiding is accomplished through the use of either rows or columns, iframes
have the much-easier-to-remember hei ght and wi dt h attributes, as the following tag shows:

<i frame hei ght="0" w dth="0" src="hidden. ht >

That's itjust the one measly little tag, and we've got something that kind of looks a lot like Ajax. Right
about now you're either taking my name in vain or wondering why | didn't start with iframes. In fact, there
are probably some out there who are doing both. Well, the answer is both personal and simple. Whenever |

learn something new, | try to immerse myself totally in it, avoiding all shortcuts until whatever | learned
becomes second nature. To be totally honest, after learning to swim, | was wrinkled for a week.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5.2. Cross-Browser DOM

Now that we have either classic frames or iframes, we have reached one of the most widespread reasons
for their avoidance: the matter of access. Short of a crystal ball and tea leaves, or maybe two soup cans
and a piece of string, just how do the various frames communicate? I've worked with some web developers
who believed that it was easier to talk with the ghost of Elvis than to have individual frames communicate
with one another. However, to be honest, most of those web developers talked of black helicopters and
wore aluminum foil hats to ward off mind control.

As much as it seems otherwise, interframe communications is relatively simple and can be dealt with using
one word: DOM. Alright, you caught me in a fib; DOM is an acronym, so it's really three words, Document
Object Model. Coming in both HTML and XML flavors, in this instance, the DOM is a hierarchical
representation of a web page that allows JavaScript to access and modify a page. Actually, careless coding
when using the DOM is a most excellent way for a page to self-destruct, a la "Good morning, Mister Phelps.

As formidable as the DOM sounds, it is nothing more than a hierarchical representation of a document,
which, in this case, is an HTML document. Think treesthe data structure trees, not the green woody things.
And, no, not binary trees; we want the ones that can have more than two children.

Just in case you need a little refresher in the structure of trees, it goes like this:

« Each of the tags in an HTML document can be referred to as a node or element.

« There is only one topmost node, which is called the root node.

« All nodes are descendants of the root node, either directly or indirectly.

« With the exception of the root node, all nodes have a single parent node.

- Nodes that occur on the same tree level that share a parent are called siblings.

- The immediate descendants of a particular node are referred to as that node’s children.

However, you must remember one thing when accessing the Document Object Model: Here be monsters.
This is one of those places where it is really necessary to test things on several different browsers. The
reason for this is the usual; it is basically a question of interpretation of the World Wide Web Consortium's
DOM specifications. This might sound a little like the schisms that occur between different sects of the same
religion, but depending on the application, it can cause some major headaches. Listing 5-2 shows an

example of this potential problem.

Listing 5-2. Example of a Problem Created by Differing Interpretations of the
W3C's DOM Specs

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<head>
<title>DOM Test</title>

<script | anguage="JavaScri pt">
/*
Recursively transverse the HTM. DOM usi ng the passed
node as a starting point.
*/
function transverse(obj) {
var strNode = ancestor(obj) + obj.nodeNane.toString() +

\n';

for(var i=0;i < obj.childNodes.I|ength;i++)
st rNode += transverse(obj.chil dNodes.iten{(i));

ret urn(strNode);
function ancestor(obj) {

i f(obj.parentNode != null)
return('>" + ancestor(obj.parentNode));

el se
return('');
}
}
</script>
</ head>

<body onl oad="docunent. get El erent Byl d('textareal').val ue =
transver se(docunent) ">
<t abl e wi dt h="300" border="1" cell spacing="1" cell paddi ng="1">
<tr>
<t d>
<i nput type="text" id="inputl" name="inputl" />
</td>
</[tr>
<tr>
<t d>
<textarea id="textareal"” nane="textareal"
col s="80" rows="20"></textarea>
</td>
</[tr>
</t abl e>
</ body>
</htm >

Consisting of an HTML document with an embedded JavaScript function whose sole purpose is to transverse
the document, the page just shown yields some interesting results, depending on the web browser. Listings

5-1, 5-2, and 5-3 show the result of loading the document in Microsoft Internet Explorer, Firefox, and
Opera, respectively.

Listing 5-3. Microsoft Internet Explorer

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

#document
>HTM

>>HEAD

>>>T| TLE
>>>SCRI PT
>>BCDY
>>>TABLE
>>>>TBODY
>>>>>TR
>>>>>>TD
>>>>>>>| NPUT
>>>>>>>H#t ext
>>>>>TR
>>>>>>TD
>>>>>>>TEXTAREA
>S>>>>>>>Ht ext
>>>>>>>H#t ext

Listing 5-4. Firefox

#document
>HTML
>>HEAD

>>>T| TLE
>>>>H#t ext
>>>H#Ht ext
>>>SCRI PT
>>>>Ht ext
>>Ht ext
>>BODY

>>>H#t ext
>>>TABLE
>>>>Ht ext
>>>>TBODY
>>>>>TR
>>>>>>H#t ext
>>>>>>TD
>>>>>>>H#1 ext
>>>>>>>| NPUT
>>>>>>>H#t ext
>>>>>>H#Ht ext
>>>>>Ht ext
>>>>>TR
>>>S>S>S>Ht ext
>>>>>>TD
>>>>>>>H#t ext
>>>>>>>TEXTAREA
>>>>>>>H#t ext
>>>>>>H#t ext
>>>>>H#Ht ext

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Listing 5-5. Opera

#document
>HTM

>>HEAD

>>>T| TLE
>>>>H#Ht ext
>>>SCRI PT
>>BODY

>>>Ht ext
>>>TABLE
>>>>TBODY
>>>>>TR
>>>>>>TD
>>>>>>>H#t ext
>>>>>>>| NPUT
>>>>>>>H#t ext
>>>>>TR
>>>>>>TD
>>>>>>>H#t ext
>>>>>>>TEXTAREA
>>>>>>>>Ht ext
>>>>>>>H#t ext
>>>Ht ext
>>>H#t ext
>>>H#Ht ext

Interesting, isn't it? You can't even play the Sesame Street "One of these things ain't like the other" song
because none of them is like the others. However, more similarities exist than differences, such as the
basic structure and the existence of specific nodes. What is important to remember is that, depending on
the web browser, #TEXT elements can be sprinkled here and there.

Now that this is out of the way, let's take a closer look at the HTML document in Listing 5-6, with the goal
of locating specific elements, such as the BODY element. As a matter of fact, grab a number 2 pencil; it's
time for a pop quiz. Which of the following JavaScript statements can be used to locate the BODY element in
the HTML document shown in Listing 5-67

wi ndow. docunent . body;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

sel f. docunent . body;

docunent . get El ement sByTagNane(" body").item(0);

Listing 5-6. Sample HTML Document

<htm >
<head>
<title>Sanple</title>
</ head>
<body>
<p>Hel o, World!</p>
</ body>
</ htm >

Pencils down. The correct answer is: all of them. Yes, it is a trick question, but it points out that there are
many ways to reach the same destination. Think of it as an "All roads lead to Rome" thing, and no one will
get hurt. Of course, it might be important to remember that some of the routes to a destination could be
quicker than others.

I'd like to cover one additional, often overlooked, DOM topic. When dealing with frames, there will always
be more than one #docunent . Not only does the frameset have a #docunent , but each frame will have a

#docunent of its own.

5.2.1. JavaScript, ECMAScript, and JScript

Regardless of the name they call it by, people either love or hate JavaScript, which is probably why
opinions range from it being either the greatest thing since sliced bread or the tool of the devil. Personally,
I believe that cheeseburgers are the greatest thing since sliced bread and that the tool of the devil is
cellphones. Nothing worse than enjoying a good cheeseburger, with onion rings on the side, and the damn
phone starts playing "The Monster Mash.” But | digress.

JavaScript is a tool, neither good nor bad, like any other tool; it's all in how the tool is used. Give ten
people a box of tools and a job to do, and nine of them will get the job done in various degrees, while the
tenth will require a call to 911. With human nature being what it is, you'll never hear about the first nine;
you'll only hear about poor old Bob who did himself serious bodily harm with a router. For this reason,
people will decide that routers are evil.

JavaScript essentially falls into the same category, a lightweight, interpreted object-based language, and it
is extremely flexible and tightly coupled with the browser. For instance, you're now aware that by using

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

potnering the server, put are you also aware tnat by using JavasScCript IT IS alSO possible 1o Ccreate objects?

Let's say, for instance, that you've got a website that uses a handful of standard-sized pop-ups. Well,
rather than code them each by hand and possibly have typos on a few pages, why not create an object to
open a number of standard-sized windows? Three different-sized pop-ups should suffice; add to that the
capability to override the various properties, and we end up with the "function,” which is really a class

shown in Listing 5-7.

Listing 5-7. JavaScript chi | dW ndow Class

function chil dWndow(strURL, strNanme, strChildType) {
/* The purpose of this function is to act as a
class constructor for the chil dWndow object.

The properties for this object are the foll ow ng:

ur | = uni formresource | ocator
nane = child wi ndow nane
child = child w ndow obj ect

attributes child wi ndow attri butes

The nethods for this object are the foll ow ng:

open() = Opens and sets focus to the
chi | dW ndow

cl ose() = Cl oses the chil dW ndow

focus() = Sets focus to the chil dW ndow

cl osed() = Returns a boolean indicating if the

chi | dW ndow i s open.
*/
var reNanme = new RegExp('[”a-z]','gi'); // Regul ar expression
var e;
{1 Dummy for error code

/1 Properties
this.url = strURL; // Uniformresource | ocator

this.nane = strNane.toString().replace(reNane,"'"');
this.childType = strChildType; // Child w ndow type
this.child = null; // Child wi ndow obj ect
this.alwaysRaised = 'no'; // Wndow al ways raised
this.copyhistory = "yes'; // Copy browser history
this.height ="''; // Wndow s hei ght
this.left = 0; // Wndow s |eft start position
this.location = 'no'; // Wndow s | ocation box
this.nmenubar = 'no'; // Wndow s nenu bar
this.resizable = "yes'; // Wndow s resizable
this.scrollbars = "yes'; // Wndow s scroll bars
this.status = "yes'; // Wndow s status bar
this.toolbar = "yes'; // Wndow s tool bar
this.width ="'"; // Wndow s w dth
this.top = 0; // Wndow s top start position

/1 Met hods

t hi s aonen = chil dW ndowtnen: // (nen met hod

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

LI O. 1 ULUD — VI UVY I1TUUWIruuvuo, 1 ruLvud licLi1ivu

/!l Determne attributes based on type
try {
i f(typeof this.childType != '"undefined')
swi tch(this.childType.toLowerCase()) {
case 'info':

thi s. hei ght = Mat h. round(screen. avai | Hei ght
* 0.4);

this.width = Math. round(screen. avai | Wdth *
0.4);

this.left = (screen.avai |l Wdth -
Mat h. round(screen. avai l Wdth * 0.4) - 8) / 2;

this.top = (screen. avail Hei ght -
Mat h. round(screen. avai |l Height * 0.3) - 48) / 4,

this.toolbar = 'no';

br eak;
case 'help':

thi s. hei ght = Mat h. round(screen. avai | Hei ght
* 0.7);

this.width = Math. round(screen. avai | Wdth *
0.8);

this.left = screen.avail Wdth -
Mat h. round(screen. avai lWdth * 0.8) - 8;

this.top = (screen. avail Hei ght -
Mat h. round(screen. avai l Height * 0.7) - 48) [/ 4,

br eak;

case 'full"':
this. height = screen. avail Hei ght - 48;
this.width = screen.avail Wdth - 8;

this.tool bar = 'no';
br eak;
defaul t:
throw(null);
br eak;
}
el se
throw(null);
}
catch(e) {
t hi s. hei ght = screen. avail Hei ght - 147,
this.width = screen.avai |l Wdth - 8;
thi s. nenubar = 'yes';
this.resizable = "yes'
this.scrollbars = 'yes';
this.status = 'yes';
this.tool bar = 'yes';
this.location = 'yes';
}

function chil dW ndowQpen() {

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1 UI LIIT Ul 1T Uvy 11yuuvy UUJ CculL Uy
opening a window with attributes based upon
the wi ndow type specified.
*/

var strAttributes; // Wndow attri butes
var e;
/'l Dummy error

/1 Build window attribute string
strAttributes = 'al waysRai sed='" + this. al waysRai sed;
strAttributes += ', copyhistory=" + this.copyhistory;

i f(typeof this.height == "'nunber')
i f(this.height > 0)
strAttributes += ', height=" + this. height;

strAttributes += ', left=" + this.left;
strAttributes += ',location=" + this.location;
strAttributes += ', nmenubar=" + this. nenubar;
strAttributes += ', resizable=" + this.resizable;
strAttributes += ',scrollbars=" + this.scrollbars;
strAttributes += ',status=" + this. status;
strAttributes += ', tool bar='" + this.tool bar;

strAttributes += ',top=" + this.top;

i f(typeof this.width == 'nunber')
if(this.width > 0)
strAttributes += ', width=" + this.wdth;
[l Try to open a child w ndow
try {
this.child = wi ndow. open(this.url, this.nang,
strAttributes);

i f (Wi ndow. opener. nanme == this.nane)
this.child = w ndow opener;
el se
i f (wi ndow. opener. opener.nane == this. nane)
this.child = wi ndow. opener. opener;
el se
i f (Wi ndow. opener . opener. opener. na ==
t hi s. nanme)
this.child =
Wi ndow. opener. opener. opener;
el se
i f (wi ndow. opener. opener. opener. name ==
t hi s. nane)
this.child =
Wi ndow. opener . opener. opener;

this.focus();

}

catch (e) {
this.focus();

}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

LUlivieln Uil Ul 1 Uvy 1iyuvvaia UDC\) 1
/* The purpose of this function is to act as the
cl ose nmethod for the chil dW ndow
obj ect and close the child w ndow.
*/
var e;
/1 Dummy for error code

try {
this.child.close();
}
catch (e) { }
}
function chil dW ndowrFocus() {

/* The purpose of this function is to act as the
focus nmethod for the chil dW ndow
object. In other words, set focus to the
child w ndow.
*/
this.child.focus();

As with the more traditional languages, to use our window object, it is necessary to instantiate the classin
other words, create an instance of the class. Listing 5-8 shows how instantiation is accomplished, and

Figure 5-1 displays the result.

Figure 5-1. chi | dW ndow class in action

[View full size image]

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/05ajx01_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

] o @G P e @ @ 25600

Bl ﬂ:c:m-mmlmﬂmmwm|mmnrmw.uﬂ L .L'!J L P |

Parend N Clild W worw - MCEoRaTl |vied mel Esplader ol =] m

5y ool - M. T Altoea 1L 50N .. I Bk Phoiooh TN Parent - Mirima.

Listing 5-8. Example of Using the chi | dW ndow Class

var child = new childWndow(' child.htm ', 'child ,"info');
chil d. open();

Another often overlooked feature of JavaScript is its recursive capabilities, although, come to think of it,
this might be an intentional omission. For some reason, the majority of developers avoid recursion like it's
an Osmonds' or a Carpenters' album. I'm of the opinion that the reason for this is that, as with the albums
from either of the two mentioned groups, recursion can cause headaches. Of course, it might be more
because, unless trained, our minds don't readily lend themselves to thinking recursively.

Nevertheless, sometimes recursion is the easiest way to handle a particular coding issue. And not
computing Fibonacci numbers or the factorial of a number, which are those "make work tasks" designed to
keep computer science professors off the street. Group those two problems with singly- and doubly-linked
lists, and they're good for a whole semester.

Instead, let's examine the transverse() function from Listing 5-2, which, for convenience, has been copied
here to Listing 5-9. With the exception of the enclosed ancest or () function, the TRansverse() function is

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

function, whose sole purpose is to return a greater-than sign for every ancestor of the current node.

Listing 5-9. Listing 5-2 Repeated

/*
Recursively transverse the HTM. DOM usi ng the passed
node as a starting point.
*/
function transverse(obj) {
var strNode = ancestor(obj) + obj.nodeNane.toString() + '\n';

for(var i=0;i < obj.childNodes.|ength;i++)
st rNode += transverse(obj.chil dNodes.iten{(i));

return(strNode);

function ancestor(obj) {
i f(obj.parentNode != null)
return('>" + ancestor(obj.parentNode));
el se
return('');

5.2.2. A Problem to Be Solved

With all due respect to one of my previous managers who believed that there were no such thing as
problems, only opportunities, there is one problem that I've been meaning to solve for a while now. It's one
of those things that the average person, one without mad scientist tendencies, doesn't realize exists.
Where do mad scientists shop online? Oh, sure, there's Amazon.com and Walmart.com, but have you ever
tried to purchase a cask of Amontillado, or stones and mortar from either website? These essential tools of
the trade just aren't readily available online.

The big websites just don't appreciate the needs of the lonely mad scientist. In fact, it might be a good idea
to include some of the other often-underrepresented groups as well. | imagine that alchemists and
sorcerers have some issues shopping for the tools of their trades as well. I, for one, have never seen either
site offer retorts or grimoires or anything along those lines. Not that | know what a retort is; | imagine that
it is some kind of backup Linzer torte or something along those lines. There is definitely an untapped
market here, so much so that, had | conceived of this idea about six years ago, it would be necessary to
beat off potential investors with a stick.

I envision this website as a pretty normal series of web pages, starting with a splash page that takes the
visitor to a page displaying items for the various guilds: mad scientist, alchemist, and sorcerer. The visitor
would then have the option of browsing all the items available or filtering by guild.

Shoppers could view the details of the individual items and, if desired, add them to their shopping cart,
which can be dlsplayed at any time. When they were sure that they had everything they want, they could

e —m — 0 A M _ 1 PR PRS I S SN B U U S O DU S —— -1 - _ _rfr

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

So with that idea in mind, the various web pages fall into a few simple categories:

« Those that display tabular information that cannot be altered, such as the items for sale

. Pages that display tabular information that can be updated, such as the quantities of items in the
shopping cart

. Static form-type pages, such as those that verify your shipping address page

« Updateable forms, such as the page where the visitor enters the shipping billing information

Oh, and the other thing | forgot to mention: This site needs to work with a selection of different web
browsers. | have a couple of totally logical reasons to require this cross-browser capability. The first reason
is to appeal to as wide a customer base as possible because the more customers, the more sales. The
second is, it might not be a good idea to tick off someone who is potentially creating a Moon-Mounted
Death Ray. Hmm, note to self: Use a P.O. Box as a corporate address.

Before proceeding any further, now is a good time to delve a little into the server-side environment. Let's
start with the operating system and web server; I'm using Windows XP Professional and Internet
Information Server. The reason for this is the usual: It came on the machine, and I'm too lazy to change it.
Besides, I'm pretty sure that "Age of Mythology" doesn't run on Linux. Note to self: Make sure that you
don't get caught by Mary Ann playing when you should be writing.

So far, my environmental choices have been pretty boring, and the open source people are thinking that
Firefox alone doesn't cut it for a book. Alright, how about MySQL version 5? In fact how, about MySQL
version 5 with stored procedures? Interested? Well, then, read on.

In version 5, MySQL introduced a feature that had been in the proprietary databases for quite some time:
stored procedures. Just in case you were abducted by aliens in 1974 and only recently got back to Earth,
let me explain what stored procedures are. Stored procedures are preparsed SQL that accepts parameters
and can return results.

Let's say, for example, that we have a table consisting of the states and territories of the United States and
the provinces of Canada. Let's also say that we'd like the option of passing the procedure a two-character
abbreviation to receive the name of the state or province, or passing a null value to obtain the names and
abbreviations of all. We would create a stored procedure that looks a lot like the one shown in Listing 5-10.

Listing 5-10. A MySQL Stored Procedure

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

DROP PROCEDURE | F EXI STS 'ajax'.'stateSel ect'$$
CREATE PROCEDURE ' aj ax'.' stateSel ect' (

st at eAbbr evi ati on VARCHAR(2)
)
BEG N

SELECT state_abbreviation,

st at e_name

FROM state

WHERE (stateAbbreviation IS NULL OR stateAbbreviation =
stat e_abbreviation);
END$$

DELI M TER ;

Now that we have a stored procedure, the big question is, what do we do with it? Fortunately, that's an
easy question; we call it as shown in the first example here. However, I'd like to point out that because of
the way the stored procedure is called, when a parameter is null, a null must, in fact, be passed as shown
in the second example.

CALL stateSelect('NJ');

CALL stateSel ect (NULL);

Now that the database issue is out of the way, it is time to figure out what to code the server side in. My
first thought was to pick a language that has a proven track record and was widely accepted, but | could
not find a reliable source of punch cards, so COBOL wasn't a viable option. The really scary part is that I've
seen it attempted at companies because they thought that they could port their mainframe CICS code to
the Web, but that is another story.

I finally decided on PHP 5. My reasons for this are several. The first is that I've seen it and know that, not
only does it work, but it works well. Another reason is that it appears to be a combination of C and UNIX
Shell, both of which I've worked with in the past. The third reason is that it plays well with MySQL and
stored proceduresat least, once configured correctly and if | remember to use the mysqli library instead of
the older mysql library.

The final reason is that it is open source, and, therefore, several slick IDEs such as PHP Designer 2005 from
MPSOFTWARE are available to those of us on limited budgets.

e prcy ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5.3. Tabular Information

As stated previously, the first two types of web pages required both deal in some way with tabular
information, either for display or for updates.

When | was in high school, | took quite a few drafting classes, thinking that perhaps a career in
architecture lay in my future. But | discovered computers, and, eh, a career in a different kind of
architecture lay in my future. And that is exactly what we need now: an architecture upon which to build
our creatureeh, er, e-commercesite. So let's send Igor to get a cold beverage and queue the storm sound
effects before we start.

Back already?

Because programming is one of those fields, like paolitics, in which trotting out an old idea is a virtue, we'll
drag the frameset from Chapter 2, "Introducing Ajax," into this chapter and use it again. If Congress can

recycle the same bills year after year, surely we can do the equivalent with some code. Just in case you've
forgotten what it looks like, Listing 5-11 shows it in its entirety, without commercial interruption.

Listing 5-11. Frameset

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTML 4.0 Transitional//EN'>
<htm >
<head>
<titl e>SMSAWES</title>
</ head>
<franeset rows="100% *" >
<frame nane="visible frane" src="visible.htm">
<frame nane="hi dden_frane"
src="cust oner. php?emnai | =ewoychowsky @ahoo. coni >
<nof r ames>
Frames are required to use this web site.
</ nof ranes>
</franeset >
</htm >

Unfortunately, because of scope creep, the visible page from Chapter 2 doesn't make the grade for this

chapter. It is almost there, but it needs a little more functionalitybasically, additional logic to make it
bulletproof. By bulletproof, | mean able to withstand attack by Machinegun Kelly or any other "guest" who
can click a mouse button upward of 200 times a minute.

But before adding the necessary logic, let's see what JavaScript functions we already have that can be
cloned for our nefarious purpose. The first JavaScript function to be cloned is changeEvent , which itself does

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

for HTML i nput , t ext area, and sel ect tags. The second function that can be cloned is subni t For m; which,
surprisingly, is also cross-browser-capable.

At this point in designing the architecture, | have run out of code to clone and now must write code from
scratch. But before | do, allow me to explain what I'd like to do. After all, explaining plots is a common
weakness that we mad scientists all have, and if I can't explain it to you, I'll have to explain it to Igor, and
the blank, glassy stare that he gets is so unnerving.

First I'd like a routine that ensures that the peasantseh, guestsdon't muck around with the Back button.
This is because the Back button is like fire to Victor's monsterit causes unpredictable results. With any kind
of HTML frames, hitting the Back button is just as likely to cause the hidden page to go back as the visible
page. In short, it is not a good thing. Fortunately, in this instance, a little JavaScript goes a long way, as
the following line of code shows:

wi ndow. hi story. forward(1);

Doesn't look like much, does it? Well, it isn't the size of the boat, but the, um, never mind. Let's just say
that it is all that is necessary to ensure that the current page is always the top page in the history, which is
exactly what this does. Of course, it needs to be included on every page, both visible and hidden. It is also
important to remember to provide some means of navigation; otherwise, shoppers will be lost in a "twisty
little maze of passages, all alike," which isn't real good for repeat business.

The next function isn't really a function at all; it is actually a Boolean global variable that merely indicates
whether the web browser is Microsoft Internet Explorer or another browser. The reason this is an Internet
Explorer indicator isn't because I'm in love with IE; it is because the larger the software company is, the
more likely that it has wandered off the path when it comes to following standards. So with this in mind,
the following code was written:

var _|E = (new RegExp('internet explorer','gi')).test(navigator.appNane);

The third function that is necessary to this project is one that "clones" a form on the hidden frame to the
visible. Although this sounds pretty simple, it is anything but simple. In fact, most developers never ask
one major question unless they try this kind of thing for themselves:

When loading the frameset for the first time, which page loads first?

Fortunately, there is a simple answer to this question; unfortunately, the answer is that | don't know, which
is a rather big stumbling block to overcome to complete the website. This means that not only will the
function need to clone the hidden form to the visible form, but it might have to sit around waiting for the
visible form to finish loading. The good thing is that the process of checking for frame completeness is very
similar to what was done in Chapter 2, as shown in Listing 5-12.

Listing 5-12. initialize Function

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Update the visible frane with infornmation fromthis page.

*/
function initialize()
{
var hi ddenForm = docunent . get El enent Byl d(' hi dden_form) ;
if(_IE)
{
i f (parent.docunent.frames.iten(' visible frame').docunment.readyState
= "conplete')
wi ndow. set Timeout ("initialize()', 100);
el se

parent.franes['visible frane'].docunent. getEl ementByld(' visible form).
i nner HTML = hi ddenFor m i nner HTM_;
}
el se
{
try
{

var node =
parent.franmes['visible franme'].documnent. getEl ementByld(' visible forn).
firstChild,;

try
{

parent.franmes['visible frane'].docunent. getEl ementByld(' visible forn).
renoveChi | d(node) ;

}
catch(e) { }

parent.franes['visible frane'].docunent. getEl enmentByld('visible form).
appendChi | d(hi ddenForm cl oneNode(true));
}

catch(e)
{
wi ndow. set Tineout ("initialize()', 100);
}
}
}

Theinitialize() function is invoked by the hidden frame's onl oad event handler, and the first thing that it
does is use the _| E Boolean that | created earlier. The reason for this is that occasionally | do give in to

temptation and use a nonstandard browser feature. In this instance, the feature is the document object's
readySt at e property. Just test it against "complete," and we're good to go (that is, if the browser is

Microsoft Internet Explorer; otherwise, it is necessary to give it the old college try and cat ch).

If the visible frame isn't ready, it is necessary to use the wi ndow. set Ti meout () method to invoke the

initialivzall fiinftinn anain aftar waitinn tha enacifiad niimhar af millicarnnde DAN't ranfiica thic Mmathand

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

setInterval (), the function repeats like salami does until it is stopped, which is bad, unless you are fond of

debugging really weird client-side happenings.

The next function that | want to add is one to restrict keyboard input to numeric values. Although the
appropriate elements can be tested at submission time, we're dealing with guests who could potentially
unleash a plague of giant hedgehogs on Spotswood, New Jersey, when ticked off. So why not avoid any

problems before they occur? Listing 5-13 shows this function in all its glory.

Listing 5-13. restrict Function

/*
Restrict keyboard input for the provided object using the
passed regul ar
expressi on and opti on.
*/

function restrict(obj,rex,opt) {
var re = new RegExp(rex, opt);
var chr = obj.val ue.substr(obj.value.length - 1);

if(!'re.test(chr)) {
var reChr = new RegExp(chr, opt);

obj . val ue = obj.val ue.replace(reChr,"'");

The final two functions are the changeEvent () and the subnit Forn() functions, which have been copied

directly from Chapter 2. Listing 5-14 shows both of these functions.

Listing 5-14. changeEvent and subni t For mFunctions

/*

Handl e form visible formonchange events. Val ues fromthe

visible formare copied to the hidden form

*/
functi on changeEvent (obj)
{

parent.franes[1].docunent. get El enent Byl d(obj.id).val ue = obj.val ue;
}
/*

Subnmits the formin the hidden frane.
*/
function subm tForm() {

parent.franes[1].docunent. get El enent Byl d(' hi dden_form). submt();
}

<l crrint>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

SPUUUy Ul vau— 11t all ey) -
<form nane="vi si bl e _fornt id="visible form></forne
</ body>
</ htm >

5.3.1. Read Only

As strange as it sounds, when I'm creating a website from scratch, | often find it simpler to begin coding
nearer to the end than the beginning. This is probably some sort of unique mental defect, but it works, so
I'm not about to mess with it. So let's start with the page that shows the garbage that the sucker
orderedeh, the items that the customer selected for purchase. In fact, let's play nice and try to refer to
customers as "guests" instead of "users" or "suckers"at least, to their faces (remember the Moon-Mounted
Death Ray).

So with my new and enlightened attitude, let's determine what information the guests require. Well, the
order number would be nice, if only for our own protection. The same can be said for item numbers, item
names, quantity, and both unit price and total item price. Showing the total along with any shipping
charges and tax (at least, until our own Death Ray is operational) is an absolute must.

So let's see, we have the following:

« One order number

« A variable number of item lines consisting of item numbers, item names, quantity ordered, unit
price, and total item price

« One shipping total

« One tax total, at least for the near future

« One grand total

Now that we've got something that remotely resembles a plan, it is time to implement it. First there are the
database tables that describe the guild (Mad Scientist, Alchemist, or Sorcerer), orders, items, and lines.
From this SQL it is pretty easy to infer what some of the other tables are, but we ignore them for now
because they're not needed at this point. Listing 5-15 shows the SQL necessary to define these tables.

Listing 5-15. SQL to Create MySQL Database Tables

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

guild id int(6) auto_increment NOT NULL,
gui | d_nane varchar (255) NOT NULL,
PRI MARY KEY (guild_id),
UNIQUE id (guild_id)
)

CREATE TABLE orders (
orders_id int(6) auto_increnent NOT NULL,
custoner _id int(6) NULL,
ship_address_id int(6) NULL,
orders_date datetinme NOT NULL,
PRI MARY KEY (orders_id),
UNIQUE id (orders_id),
KEY cust oner _key (customrer_id),
KEY shi p_address_key (ship_address_id)

)

CREATE TABLE item (
itemid int(6) auto_increnent NOT NULL,
i tem nanme varchar (255) NOT NULL,
itemdescription varchar(255) NULL,
itemprice decinal (10,2) NOT NULL,
PRI MARY KEY (item.id),
UNTQUE id (item.id)

);

CREATE TABLE line (
line_id int(6) auto_increment NOT NULL,
orders_id int(6) NOT NULL,
itemid int(6) NOT NULL,
line_quantity int NOT NULL,
line_itemprice decinmal (10,2) NOT NULL,
PRI MARY KEY (line_id),
UNTQUE id (line_id),
KEY orders_key (orders_id),
KEY item key (item.id)

If you recall, earlier | stated that MySQL version 5 and higher support stored procedures; in fact, | even
gave you an example. We've just covered the tables we're using for this example, so now is a good time to
cover the stored procedure. The stored procedure | i neSel ect (see Listing 5-16) is relatively simple, just a
sel ect statement with a bunch of inner joins. Although it isn't heavy dutyno cursors, transactions, or

anything like thatit is an example of a stored procedure in MySQL, currently a thing only slightly more
common than unicorns.

However, there are a number of reasons for the inclusion of stored procedures, especially in MySQL. The
first of these is to avoid the use of Microsoft Access, which is technically a database; however, it really isn't
very robust. Some might argue that Access is a replacement for SQL Server, which | agree to, but I'm on a
budget here and a stripped-down developers' edition isn't what | want. Besides, both Access and SQL
Server are Windows-only databases. Oracle, on the other hand, runs a number of platforms and is robust,
but it isn't open source. As for my final reason for stored procedures, speed thrills.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

LISTIINg o-10. 11 nesel ect storea proceaure

DELI M TER $$%
DROP PROCEDURE | F EXI STS "ajax . lineSel ect $3%
CREATE PROCEDURE "aj ax . |ineSelect (
ordersld | NTEGER(6)
)
BEA N
SELECT line_ id,
itemid,
line_quantity,
line_itemprice
FROM [ine
VWHERE (ordersld I'S NULL OR ordersld = orders_id)
ORDER BY line_id ASC,
END$$
DELI M TER ;

Earlier | said that the examples would be in PHP, and because stored procedures are being used, it is
necessary to use the mysqli library instead of the mysql library. This might not sound like a big deal, but it
would be a good idea to provide some basic information on the parts ofmysqli that are used in this
example. Table 5-1 outlines these "parts."

Table 5-1. mysqli

Method/Property | Type Description

nysql i Constructor | Returns a connection

connect_errno() Property Returns the result of the connection attempt
query Method Executes the provided SQL statement

error Property Returns the result of the command
fetch_array Method Returns the result of a query as an array

cl ose() Method Closes the connection

The odd thing is that after all the little details are covered, such as the client-side JavaScript, database
tables, and stored procedures, there is actually very little code to write. Mostly it comes down to putting
the pieces together and using the Cascading Style Sheets (CSS) shown in Listing 5-17 to give the website a

rnncictant Innk and faeal

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Listing 5-17. CSS

A active

{
col or: OOOOFF

}

A:visited

{
col or: OOOOFF

}

A: hover

{
col or: 800080;
t ext - decoration: none

}

BODY

{
background-col or: FOF8FF
font-famly: tahoma
font-size: 12px

}

BUTTON

{
cursor: hand
font-fanmily: tahoma
font-size: 12px

}

| NPUT

{
cursor: hand
font-fanmily: tahoma
font-size: 12px

}

H1

{
font-fanmly: tahomm;
font-size: 18px

}

TABLE

{
border: coll apse

}

TH

{
font-fanmly: tahoma
font-size: 12px

}

TD

{
font-fanmly: tahoma
font-size: 12px

}

.cell Alert

I

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

I UIIL = VWCI HIIL. VUl U

}

. pageHeader

{
backgr ound- col or: 000080

}

. pagecCel

{
col or: FFFFFF;
font-fanmily: tahomm;
font-size: 16px;
font-weight: bold

}

. rowHeader

{
background-col or: 6495ED
col or: FFFFFF;
font-weight: bold

}

. rowbDat a

{
background-col or: D3D3D3

}

. nuneric

{
font-famly: tahoma
text-align: right

}

The end result of this endeavor is the page shown in Figure 5-2, whose code is shown in Listing 5-18 along
with some common PHP variables and routines shown in Listing 5-19. While we're on the subject of

common routines, | should state now that there are several different approaches to handling inclusion of
common code. The first, which I'm using here, is to include everything that could possibly be of any use
from a single file. Later, however, | switch to an approach that breaks up variables and routines by
function. For example, database-related items are here and rendering-related items are there, and
anything else is handled on a case-by-case basis. This might seem like overkill now, but it falls under the
category of defensive programming.

Figure 5-2. The page resulting from our efforts

downloaded from: lib.ommolkefab.ir

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/05ajx02_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e L T G RS G0 D

G- - B) P [reipiiocshondhupter T ameset. bl “ 0w L
B e Stared L Laiest Headines

blnel Scientist-Alchesnist-Soroerer Sales

IIIIE:EEEIIIﬂ:ﬂ:!llIﬂﬂﬂﬂllllﬁﬂll

Cank: of Brreililachy Dy shwmny rocbod For 3 el atn Bus gt
Cagremi Brare O pownd of Cardy Gimmi Brars, S itk for ary SCCacon. ﬂiﬂ Eu 1:I.-|-.B?|
L Dot Oy whit bl oot rpe | ke E] S 1

N5 Alress TR Tery - P .. £F: fadoba Phwi ke

Listing 5-18. Code for the Page in Figure 5-2

<! DOCTYPE HTML PUBLIC "-//WBC// DTD HTML 4.0 Transitional//EN'>
<htm >

<?php

i ncl ude(' conmon. php');

$title="Order Detail"

$order = substr(@_SERVER[' QUERY_STRING], 6);

$order = 1;

$query = "CALL lineSelect(" . $order . ")";

$mysqli = new nysqli ($server, $user, $passwor d, $dat abase) ;

i f(nysqgli_connect_errno())

{

printf("Connect failed: %\n", nysqli_connect _error());

exit();
}

if(!$result = $nysqli->query($query))
{

printf("Error: 9%\n", $nysqli->error);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CAL L\),
}
?>
<head>
<link rel ="styl esheet" type="text/css" href="comon.css"/>
<title><?php echo $title;, ?></title>
<script | anguage="javascript" src="library.js"></script>
</ head>
<body onload="initialize()">
<f orm nanme="hi dden_fornm' id="hi dden_fornt acti on="post.aspx">
<?php
pageHeader ($system $title);
?>

<tabl e border="0" wi dt h="980px" | D="Tabl el" border="1"
cel | paddi ng="2" cel | spaci ng="2">
<tr class="rowHeader">
<t h>ltem Name</t h>
<t h>Descri ption</th>
<th>Quanitity</th>
<th>Unit Price</th>
<th>Price</th>
</[tr>
<?php
$total = O;

whi | e($row = $resul t->fetch_array(MrSQ.l _ASSCC))
{
printf("<tr class='"rowbata' ><td
align="center' >¥%s</td>", $row "itemnane"]);
printf("<td align="left'>%</td>",$row "itemdescription"]);

printf("<td class="nuneric' >¥%</td>",$row "line_quantity"]);

printf("<td class="nuneric'>$%</td>",$row"line_itemprice"]);

printf("<td class="nuneric' >$%s</td></tr>",($rowm"line_itemprice"] *
$row"line_quantity"]));

$total += ($row"line_itemprice"] * $row"line_quantity"]);

}
?>
<tr class="rowData">
<t d> </t d>
<t d> </t d>
<t d> </t d>
<th class='nuneric' >Total </th>
<?
printf("<td class="nuneric'>$%</td>", $total);
?>
</[tr>
</t abl e>
</forme
</ body>
<?php
$resul t->cl ose();
?>
</htm >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Listing 5-19. PHP Variables and Routines

<?php

$server="1 ocal host"; /1 MySQL dat abase server
$user="root"; /1l MySQ user id
$passwor d="wyvern"; /'l MySQ. password

$dat abase="aj ax"; /'l MySQ. dat abase

$systene"Mad Sci enti st-Al chen st-Sorcerer Sales & Services";

/*
Wite the header for a web page.
*/
function pageHeader ($syst enNane, $pageNane)
{
?>

<t abl e border="0" hei ght="60px" w dt h="975px" | D="<?php $pageNane ?>"
border="0" cell paddi ng="0" cel | spaci ng="0">
<tr class="pageHeader" hei ght ="40px">
<td wi dt h="5% > </t d>
<th class="pageCel | " wi dth="45% align="left">

<?php
echo $syst enNane;
?>
</th>
<th class="pageCel | " wi dth="45% align="right">
<?php
echo $pageNane;
?>
</th>
<td wi dt h="5% > </t d>
</[tr>
<tr>
<t d> </t d>
<t d> </t d>
<t d> </t d>
<t d> </t d>
</[tr>
</tabl e>
<?php
}
?>

5.3.2. Updateable

As with the previous page type, the next type of page to be generated is also tabular in nature. However,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

where there is a big chance that things can go seriously wrong.

The big question is, just how can things go seriously wrong? Is it a flaw in the underlying concepts of Ajax?
Nope, it is more of what | refer to as a "Homer Simpson Moment." These moments are caused by coding
while the brain is on autopilot, and for me it usually manifests itself in the form of using the wrong event
handler or forgetting an event handler altogether. Fortunately, by coding the subni t For n{) handler to deal

with changes to HTML objects, I've managed to avoid one of my more common points of failure.

Alright, now with that out of the way, | feel less likely to screw up in the same old way. If | am going to
screw up, | want it to be in an entirely new and original way. After all, in most cases, more can be learned
from getting something wrong than by getting something right.

Now that we've covered the basics of what can go wrong when working with forms, let's put it into practice.
Hmm, that didn't sound right. Okay, take two. Now that we've covered some of the potential pitfalls of
working with forms, let's create a web page avoiding them. Whew!

The purpose of the next page that we are working with is to display the contents of the guest's virtual
shopping cart. As with its real-world counterpart, shoppers will have several possible actions available to
them. First, they can remove individual items from the cart just like they do in the real world; how else do
you suppose frozen peas find their way to the cookie aisle? The next possible action is to change the
quantity, either up (yeah!) or down (pout!). Oh, I should mention that decreasing an item's quantity to
zero has the same end result as removing the item from the cart. Finally, shoppers will have the option of
giving up and just abandoning their shopping cart.

This is a good time to point out that, unlike some virtual shopping carts where the contents are stored on
the server, this one doesn't. Instead, | chose to follow the "why bother the server any more than absolutely
necessary?" philosophy, so the shopping cart is cached in a hidden text box in a form on the visible frame
as item-quantity pairs. Why? Because after being loaded, with the exception of the cloned form, the visible
frame doesn't change. Although it sounds somewhat strange, it has the advantage of reducing server
traffic. When the time comes to display the shopping cart, it can simply be coded into the URL, which,
although it does have a 4K limit, should be more than enough for our purpose.

Although we already have a lot of the code necessary for this to work (the numeric input function and the
CSS), several bits of code are needed. First, there is the JavaScript function that builds the URL for
displaying the shopping cart (see Listing 5-20). In addition, there is the stored procedure and two stored

functions to retrieve all the necessary information from the tables shown in Listing 5-21. Finally, there is
the page itself in Figure 5-3 and Listing 5-22.

Figure 5-3. The shopping cart page

[View full size image]

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/05ajx03_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir
e L YW L EOERand e0E D
-::::.| - I E’ ‘-"i_"' hang g ot ot Ty et hiwd

W Gemng Staned Lol Latest Headres

blnel Scientist-Alchesnist-Soroerer Sales & Senioes

[T Dy sherry Foted tor 5 collcats houguot
Pz e
agrlity: | 1

| Add o cark | | Aotumn o fema I i “wirsr Cank | Placn Ol I

#* O e Dl

I3 ray ! - Mocdla T T T e e

Listing 5-20. JavaScript Function That Builds the URL for Displaying the

Shopping Cart

function displayCart() {
alert("Your shopping cart is enpty.");

el se
parent.franes[' hidden_frane'].docunent.| ocation

}

i f (document . get El ement Byl d(' cart Contents').value.length

"di splayCart. php?cart=" + docunent. get El ement Byl d(' cart Contents'). val ue;

0)

Listing 5-21. The Stored Procedure and the Two Stored Functions

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

DROP PROCEDURE | F EXI STS "aj ax" . “shoppi ngCart Sel ect * $$
CREATE PROCEDURE " aj ax™ . shoppi ngCart Sel ect " (
/*
To display the contents of the shopping cart.
*/
item ds LONGTEXT
)
BEA N
DECLARE wor k LONGTEXT,;
CREATE TEMPORARY TABLE search (
id | NTEGER(6) AUTO_I NCREMENT NOT NULL,
search_id | NTEGER(6) NOT NULL,
quantity | NTEGER NOT NULL,
PRI MARY KEY (i d),
UNIQUE id (id)
)
SET work = item ds;
VWHI LE I NSTR(work,"',") > 0 DO
| NSERT | NTO search
(search_id,
quantity)
VALUES (CAST(f _substringBefore(work,'-") AS UNSI GNED),
CAST(f _subStringAfter(work,'-") AS UNSI GNED));
SET work = f_substringAfter(work,',");
END WHI LE;
SELECT s.id,
i.itemnane,
i.itemdescription,
i.itemprice,
s.quantity,
i.itemprice * s.quantity total price
FROM search s
INNER JON guild itembridge b
ON s.search_id = b.guild item.id
INNER JON itemi
ON b.itemid =i.itemid
ORDER BY s.id ASC,
DROP TEMPORARY TABLE sear ch;
END$$
DELI M TER ;
DROP FUNCTION I F EXI STS "ajax . f_substringAfter $$
CREATE FUNCTION “ajax . f_substringAfter (
/*
To return the text after a string.
*

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

SLI T Hyoedl LIl LUNOI EAL

) RETURNS [ongt ext
BEG N

RETURN SUBSTRI NG(st ri ngOper and, | NSTR(stri ngOper and, stringSearch) + 1);
END$$

DELI M TER ;
DELI M TER $$

DROP FUNCTION | F EXI STS “ajax . f_substringBefore $$
CREATE FUNCTION “ajax . f_substringBefore (
/*
To return the text before a string.
*/
stringOperand LONGTEXT,
stringSearch LONGTEXT
) RETURNS | ongt ext
BEG N
RETURN SUBSTRI NG st ri ngOperand, 1, | NSTR(stri ngOper and, stringSearch) - 1);
END$$

DELI M TER ;

Listing 5-22. Code for the Shopping Cart Page

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.0 Transitional//EN'>
<htm >

<?php

i ncl ude(' common. php');

$title="ItemDetail";
$id = substr(@_SERVER] ' QUERY_STRING], 3);

$query = "CALL itenSelect(" . $id . ",NULL)";
$nysqgli = new nysqli ($server, $user, $passwor d, $dat abase) ;
if (nysgli_connect _errno())
{
printf("Connect failed: %\n", mysqli_connect_error());
exit();
}
if(!$result = $nysqli->query($query))
{
printf("Error: %\n", $nysqli->error);
exit();
}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<link rel ="styl esheet" type="text/css" href="common.css"/>
<title><?php echo $title; ?></title>
<script | anguage="javascript" src="library.js"></script>
</ head>
<body onload="initialize()">
<f orm nane="hi dden_form' id="hi dden_fornf acti on="post.aspx">
<?php
pageHeader ($system $title);

$row = $result->fetch_array(MYSQLI _ASSCC) ;

$rowLabel ="<div class='rowHeader' style='position: absolute; left: 50px;
right: auto% bottom auto; w dth: 200px; top: ";
$rowbData = "<div class="rowbData' style='position: absolute; left: 255px;

right: auto; bottom auto; w dth: 600px; top:

echo $rowLabel . "75px' >&ibsp; Gui | d Nane: </ di v>";
echo $rowlLabel . "92px' > |tem Nane: </ di v>";
echo $rowLabel . "110px' >&ibsp; Descri ption: </ di v>"
echo $rowLabel . "127px' > Price: </ di v>";

echo $rowLabel . "144px' > Quantity: </di v>";

printf($rowbData . "75px' >&ibsp; ¥%s</di v>", $rowf "guil d_nane"]);
printf($rowData . "92px' > %</ di v>", $row "item nane"]);
printf($rowbData . "110px' >&ibsp; %</ di v>", $rowf "i tem description"]);
printf($rowbata . "127px' > ¥%s</di v>", $ronf "itemprice"]);

?>

<i nput type='text' id="quantity' nanme=' quantity' val ue=
onkeyup="restrict(this,\"[0-9]\'",\"'gi\')"' style="position: absolute; left:
255px; right: auto; bottom auto; top: 144px; text-align: right'>
<?php
echo "<input type='button' value="Add to cart"’
onclick="'JavaScript:add2Cart(" . $rowf"guild_itemid"'] . ")’
style="position: absolute; top: 175px; left: 50px; right: auto; bottom
auto; height: 22px; width: 110px'>";
echo "<input type='button' value="Return to itens'
onclick="JavaScript:itensList()' style=" position: absolute; top: 175px;
left: 175px; right: auto; bottom auto; height: 22px; w dth: 110px' >"
echo "<input type='button' value='View Cart"'
oncl i ck="JavaScript:displayCart()' style="position: absolute; top: 175px;
left: 300px; right: auto; bottom auto; height: 22px; w dth: 110px'>";
echo "<input type='button' val ue='Place O der'
onclick="JavaScript:itensList()' style="position: absolute; top: 175px;
left: 425px; right: auto; bottom auto; height: 22px; w dth: 110px' >"
?>

</form

</ body>

<?php
nysql i _cl ose($nysqli);
?>
</ htm >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

54. Forms

This heading does say "Forms," which we briefly touched upon in the previous section, even if it was
because we needed somewhere to cache information, such as the contents of the shopping cart. Because of
this, and the fact that | don't like to code similar functions too often, much of the client-side JavaScript
from the tabular web pages is reused hereor, if you're a friend of nature, recycled. See, not only is Ajax the
wave of the future, it is also environmentally friendly.

5.4.1. Read Only

In my opinion, the classic read-only form on an e-commerce website has to be the shipping information
page. In fact, it is so well known that the page doesn't even have to be coded as a form. It is perfectly
acceptable to "fake it" using Cascading Style Sheets, or simply display the information in some kind of
orderly fashion. The advantage of this is that we can avoid having to use the di sabl ed and readonl y

attributes, which, in the case of the di sabl ed attribute, tends to be a little hard on the eyes because the
text is grayed out.

The approach that I've decided upon here is to simply display the information directly from the database.
Also, because I'm feeling somewhat adventurous, I've used CSS positioning for content layout instead of
the method that | normally employ. Just in case you're wondering, using HTML tables is my usual method
of content layout, but I'm undergoing therapy to overcome this shortcoming.

Before going into detail about the SQL that defines the tables needed for this example, | want to clarify one
thing again. | am by no means a DBA; | am, according to some, a mad scientist (or mad, at the very
least). Any of these can be used as an explanation of why | did what | did when designing these tables. In
short, | went a little bit overboard when normalizing.

There isn't a single table to contain information pertaining to a customer. There aren't two tables to contain
the information pertaining to a customer, such as one for the address and one for everything else. | made
three tables: one for the customer name, one for the address, and one for all other customerrelated
information. I'm pretty sure that if you look up the word overkill, this is definition number six, but it does
have some advantages that we'll get into later when doing updates.

Now that my long-winded excuse is over, let's take a gander at the SQL that defines the tables and the
associated stored procedure that retrieves the information. The SQL for this is shown in Listings 5-23 and 5-

24, respectively.

Listing 5-23. SQL to Create MySQL Database Tables

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

address_id int(6) auto_increnment NOT NULL,
addr ess_conpany varchar (255) NULL,
address_Ilinel varchar(255) NOT NULL,
address_Iline2 varchar (255) NULL,
address_city varchar (255) NOT NULL,
state_abbrevi ation varchar(2) NOT NULL,
address_postal varchar(10) NOT NULL,
nanmes_id int(6) NULL,
PRI MARY KEY (address_id),
UNIQUE id (address_id)

)

CREATE TABLE country (
country id int(6) auto_increnment NOT NULL,
country_nane varchar (255) NOT NULL,
PRI MARY KEY (country_id),
UNIQUE id (country_id)
)

CREATE TABLE custoner (
custoner _id int(6) auto_increnent NOT NULL,
custoner _tel ephone varchar (10) NULL,

custoner _enmmi | varchar (255) NOT NULL,
custoner _credit_card varchar(16) NOT NULL,
custoner _credit_pin varchar(6) NULL,
custoner _expiration datetime NOT NULL,
nanmes_id int(6) NULL,
address_id int(6) NULL,
PRI MARY KEY (custoner_id),
UNI QUE id (custoner _id),
KEY nanes_key (nanes_id),
KEY address_key (address_id)

)

CREATE TABLE nanes (
names_id int(6) auto_increment NOT NULL,
nanes_| ast varchar (255) NOT NULL,
nanes_first varchar(255) NOT NULL,
nanmes_ni varchar (1) NULL,
PRI MARY KEY (nanes_id),
UNIQUE id (nanes_id)

)

CREATE TABLE state (
state_abbreviation varchar(2) NOT NULL,
state_nane varchar (255) NOT NULL,
country_id int(6) NOT NULL,
PRI MARY KEY (state_abbreviation),
UNIQUE id (state_abbreviation),
KEY country_key (country_id)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Listing 5-24. MySQL Stored Procedure to Select Address Information

DELI M TER $$
DROP PROCEDURE | F EXI STS "aj ax . addressSel ect * 3
CREATE PROCEDURE "aj ax™ . addressSel ect ™ (
emai | VARCHAR(255)
)
BEG N
SELECT c.custoner _id,
n. nanes_| ast,
n. names_first,
n. names_m ,
c. custoner _t el ephone,
c.custoner_emil,
a. addr ess_conpany,
a. address_|inel,
a.address_|ine2,
a.address_city,
a.state_abbreviation,
s. state_nane,
a. address_postal,
y.country_name
FROM custoner c
INNER JO N nanes n
ON c.names_id = n.nanes_id
INNER JO N address a
ON c.address _id = a.address_id
INNER JON state s
ON a.state abbreviation = s.state_abbreviation
INNER JON country y
ON s.country_id = y.country_id
WHERE (email 1S NULL OR c.custoner_email = email);
END$$
DELI M TER ;

The thing that | always find amazing about stored procedures is that they have a tendency to reduce the
amount of code needed on the web server. Consider the example that we're currently going over; the PHP
merely formats the information returned by the stored procedure for the web browser, as Listing 5-25

illustrates.

Listing 5-25. Customer Display

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<htm >
<?php
i ncl ude(' conmon. php');

$title="Custoner Display";

$emai|l = substr (@ _SERVER ' QUERY_STRING], 6);
$query = "CALL addressSelect(" . $emil . ")";
$nysqli = new nmysqli ($server, $user, $passwor d, $dat abase) ;

if (mysqgli_connect_errno())

{
printf("Connect failed: %\n", nysqgli_connect_error());
exit();
}
if(!$result = $nysqli->query($query))
{
printf("Error: %\n", $nysqli->error);
exit();
}
?>
<head>
<link rel ="styl esheet" type="text/css" href="conmmon.css"/>
<title><?php echo $title; ?></title>
<script | anguage="javascript" src="library.js"></script>
</ head>
<body onload="initialize()">
<f orm nane="hi dden_f orm' i d="hi dden_fornt acti on="post.aspx">
<?php

pageHeader ($system $title);

$row = $resul t->fetch_array(MYSQ.I _ASSCC) ;

$rowLabel ="<div class='rowHeader' style='position: absolute; left: 50px;
right: auto% bottom auto; w dth: 200px; top: ";

$rowbData = "<div class='"rowbData' style='position: absolute; left: 255px;

right: auto; bottom auto; w dth: 600px; top:

echo $rowlLabel . "75px' > Nane: </ di v>";

echo $rowLabel . "92px' > Conpany: </ di v>";

echo $rowLabel . "110px' >&bsp; Address Line 1:</div>";
echo $rowlLabel . "127px' > Address Line 2:</div>";
echo $rowLabel . "144px' > Cty: </di v>";

echo $rowLabel . "161px' > St at e: </ di v>";

echo $rowlLabel . "178px' > Zi p/ Post al Code: </ di v>";
echo $rowLabel . "195px' > Country: </ di v>";

echo $rowLabel . "212px' > Tel ephone Nunber: </ di v>";
echo $rowlLabel . "229px' > EMai | Address: </ di v>";

echo $rowbata . "75px' > " . $row "nanes_last"] . ', '
$rowf "nanmes_first"] . " ' . $rowf"names_m "] . "</div>";
echo $rowbData . "92px' > " . $row "address_conpany"] . "</div>";

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CuUIivu 1 vvwart a . J.LIPI\ /OLIIUD}J, . PI UVV|_ auul CDD_I 1 11T J . ~1 uJul v,

echo $rowbData . "144px' > " . $rowf "address_city"] . "</div>";

echo $rowbData . "161px' >&nibsp;" . $row "state_nanme"] . "</div>";

echo $rowbData . "178px' > " . $row "address_postal "] . "</div>";
echo $rowbData . "195px' > " . $rowf "country_nanme"] . "</div>";

echo $rowbData . "212px' > " . $rowf "customner_tel ephone"] . "</div>";
echo $rowbData . "229px' > " . $rowf "custoner_enmail"] . "</div>";

echo "<input type= button' value=" Continue to itens' onclick="itensList()'
style="position: absolute; top: 250px; left: 50px; right: auto; bottom
aut o; height: 22px; w dth: 120px'>";

hi dden($row, ' custoner _id');

hi dden($row, ' names_| ast');

hi dden($row, ' nanes_first');

hi dden($row, ' nanes_mi ') ;

hi dden($row, ' cust oner _email');
hi dden($row, ' custoner _id");

?>
</ fornp
</ body>
<?php
nysql _cl ose();
?>

5.4.2. Updateable

In the previous example, we covered the display of information from multiple tables, which was easy
enough because there wasn't much happening on the client side. The server side was also rather easy;
yeah, there were some inner joins, but it is hard to get all worked up about something that easy. There is,
however, something that you might have missedl know that I did.

Let's review my overzealous database normalization from a different point of view. First, customer
information is spread across three tables. Second, the customer table contains the information that
specifies how to find the related information in the other two tables. Third, retrieving the information is
merely a matter of using inner joins. So we know what the data looks like and how to get it out of the
tables, but the big question is, how do | get it in?

On the bright side, | know how the guy who spent years building a sailboat in his basement felt when his
wife said, "Nice, but how are you going to get it out of the basement?" Whoops, didn't think that far ahead.
What he ended up doing was supporting the floor joists along one outside basement wall, digging a ramp
from the outside to that position, and knocking out a boat-sized hole. It worked, but | want a little more
elegant solution. In fact, | want one so elegant that you might think that my earlier screw-up was
intentional so that I could demonstrate some really cool features of MySQL.

All my current issues arise from the fact that data in three different tables needs to be updated. Seems
simple enoughjust use a transaction. Unfortunately, | forgot to mention that during my earlier fit of
normalization, | wrote two stored procedures, shown in Listings 5-26 and 5-27, that | want to use. Waste

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Listing 5-26. Stored Procedure to Insert Names

DELI M TER $$

DROP PROCEDURE | F EXI STS "aj ax . nanesl nsert $$
CREATE PROCEDURE " aj ax . naneslnsert (

I N naneLast VARCHAR(255),

I N naneFi rst VARCHAR(255),

I N naneM VARCHAR(1),

QUT nanesl d | NTEGER(6)

)
BEG N

| NSERT | NTO nanes
(nanes_| ast,
nanes_first,
nanes_m)
VALUES (nanelLast,
nanmeFi r st
naneM) ;

SET nanes| D = LAST | NSERT_ | () ;
END$$

DELI M TER ;

Listing 5-27. MySQL Stored Procedure to Insert Customer Address Information

DELI M TER $$

DROP PROCEDURE | F EXI STS "aj ax . addresslnsert 3
CREATE PROCEDURE "aj ax™ . addresslnsert (
I N addr essConmpany VARCHAR(255),
I N addressLi nel VARCHAR(255),
I N addr essLi ne2 VARCHAR(255),
I N addressCity VARCHAR(255),
I N stateAbbreviati on VARCHAR(255) ,
I N addressPost al VARCHAR(10),
I N nanmesl d | NTEGER(6) ,
QUT addressld | NTEGER(6)
)
BEG N
I NSERT | NTO address
(addr ess_conpany,
address_|inel,
address_|ine2,

address_city,
st at e ahhrevi ati on

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Hnanc>_1 u)
VALUES (addr essConpany,
addr essLi nel,
addr essLi ne2,
addressCGity,
st at eAbbr evi ati on,
addr essPost al
nanesl d) ;

SET addressld = LAST_I NSERT_ID();
END$$

DELI M TER ;

Alright, if I have it straight and haven't painted myself into another corner, what is needed is a way to tie
these stored procedures together. | suppose that | could somehow stick them together using PHP, but that
seems too much like making the sailboat out of duct tape, and that solution is a little too Red Green for me.
I ended up writing a third stored procedure (see Listing 5-28) that uses transactions and calls the other two

stored procedures.

Listing 5-28. MySQL Stored Procedure That Calls Other Stored Procedures

DELI M TER $$

DROP PROCEDURE | F EXI STS "aj ax” . "custonerlnsert $$
CREATE PROCEDURE "aj ax™ . customerlnsert (

I N nanmesLast VARCHAR(255),

I N namesFi rst VARCHAR(255),

I N namesM VARCHAR(1),

I N cust oner Tel ephone VARCHAR(10),

I N custoner Enai | VARCHAR(255) ,

I N custonerCreditCard VARCHAR(16),

I N custoner CreditPin VARCHAR(6) ,

I N custoner Expirati on DATETI ME,

I N addr essConmpany VARCHAR(255),

I N addressLi nel VARCHAR(255),

I N addr essLi ne2 VARCHAR(255),

IN addressCity VARCHAR(255),

I N stateAbbreviati on VARCHAR(2) ,

I N addressPost al VARCHAR(10),

QUT custonerld | NTEGER(6)
)
BEG N

DECLARE errorl nd | NTEGER DEFAULT O;

DECLARE nanesld | NTEGER(6) ;

DECLARE addressld | NTEGER(6) ;

DECLARE CONTI NUE HANDLER FOR SQLEXCEPTI ON SET errorlnd = 1;

START TRANSACTI ON,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

nailncorii oL,
nanmesM ,
namesl d) ;

CALL addresslnsert (addressConpany,
addr essLi nel,
addr essLi ne2,
addressCity,
st at eAbbrevi ati on,
addr essPost al
nanesl| d,
addressl d);

I NSERT | NTO cust oner
(cust oner _t el ephone,

cust omer _enai |,
customer _credit_card,
custoner _credit_pin,
cust ormer _expiration,
nanes_id,
address_i d)

VALUES (cust oner Tel ephone,
cust oner Emai | ,
cust oner Credi t Card,
cust oner Credi t Pi n,
cust orrer Expi rati on,
nanesl d,
addressl d);

IF errorind = 0O THEN
COW T;

SET custonerld
ELSE
ROLLBACK;

LAST | NSERT | () ;

SET custonerld
END | F;
END$$

I
o

DELI M TER ;

Now that the sailboat is out of the basement, the remaining task is simply a matter of putting all the pieces
together, as shown in Listing 5-29 and Figure 5-4.

Figure 5-4. Customer display page

[View full size image]

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/05ajx04_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e b T 0 EERaNE G D

g - - N E | L Wiseiiocabastchagter Wivamaset.himd » 0w Gl
W e Staned L Laiedt Headires

blnel Sciertist-Alcheendst-Soroerer Sales &

i

L3 Morthamplon Slrest

Prarngbwmnis w

i
E
|

il

g
i

N7 Alrey B Tery - i EF: fadeban P rabop

Listing 5-29. Customer Display Page

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTML 4.0 Transitional//EN'>
<ht m >

<?php

i ncl ude(' conmon. php');

$title="Custoner Display";

$emai | = substr (@ _SERVER ' QUERY_STRING |, 6);

$query = "CALL addressSelect('" . $email . "')";

$nysqli = new nysqli ($server, $Suser, $passwor d, $dat abase) ;

if (nysqgli_connect_errno())

{
printf("Connect failed: %\n", mysqli_connect _error());
exit();

}

if(!$result = $nysqli->query($query))
{

printf("Error: %\n", $nysqli->error);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CAL L\),
}
?>
<head>
<link rel ="styl esheet" type="text/css" href="comon.css"/>
<title><?php echo $title;, ?></title>
<script | anguage="javascript" src="library.js"></script>
</ head>

<body onload="initialize()">
<f orm nane="hi dden_f orm* i d="hi dden_f or nt
action="custoner | nput. php">
<?php
pageHeader ($system $title);

$row = $result->fetch_array(MYSQ.I _ASSCC) ;

$rowLabel ="<div cl ass='rowHeader' style="valign: center; height: 20px;
wi dt h: 200px; ' > ¥s</ di v>";

$rowData = "<div class="rowbata' style='"position: absolute; left: 255px;

right: auto; bottom auto; wi dth: 600px; top:

?>
<tabl e border="0" wi dt h="980px" id="Tabl el" border="1" cel |l paddi ng="2"
cel | spaci ng="2">

<?php

echo "<tr><th class='rowHeader' wi dth="20% align="I|eft'> First
Nanme: </t h>";

printf("<td class='rowDat a' > <i nput type='text' name=' names_first'

i d="nanes_first' size="50" maxl ength=" 255" val ue=' 9"

onchange=' changeEvent (this)' ></td></tr>", $rowf "nanes_first"]);

echo "<tr><th class='rowHeader' align="1eft'>&bsp;Mddle Initial:</th>";
printf("<td class='rowData' > <i nput type='text' nanme=' nanmes_m

i d="nanes_m' size='2'" maxlength="1" val ue=' %'

onchange=' changeEvent (this)' ></td></tr>", $rowf "nanes_m "]);

echo "<tr><th cl ass='rowHeader' align='1eft'>&bsp; Last Nane: </t h>"
printf("<td class='rowDat a' > <i nput type='text' nanme=' names_| ast"'

i d="nanes_l ast' size='50" naxlength='255" val ue='%'

onchange=' changeEvent (this)' ></td></tr>", $row "nanes_|ast"]);

echo "<tr><th class='rowHeader' align="1eft'>&bsp; Address Line 1:</th>";
printf("<td class='"rowDat a' > <i nput type='text' name=" address_|inel’
i d="address_linel" size='50" maxlength=" 255" val ue=' 9"

onchange=' changeEvent (this)' ></td></tr>", $rowf "address_linel"]);

echo "<tr><th cl ass='rowHeader' align='1eft'>&bsp; Address Line 2:</th>";
printf("<td class='rowDat a' > <i nput type='text' nanme='address _|ine2
i d="address_line2' size='"50" maxlength=" 255" val ue=' %'

onchange=' changeEvent (this)' ></td></tr>", $rowf "address_line2"]);

echo "<tr><th class='"rowHeader' align='"left'> Gty:</th>";

printf("<td class='"rowDat a' > <i nput type='text' nanme='address_city'

i d="address_city' size='50" naxlength="255" val ue="'%'

onchange=' changeEvent (this)' ></td></tr>", $row "address_city"]);

echo "<tr><th class='rowHeader' align='1eft'> State: </th><td

cl ass='"rowbat a' >";

st at eSel ect ($server, $user, $passwor d, $dat abase, $rowf ' st at e_abbrevi ation']);
echo "</td></tr><tr><th cl ass="rowHeader' align="Ileft'> Post al

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

pl 1l \ ~LU LI AadSOo— 1 vvwal a /()LIIUDP, ~I1 II|JUL L yIJC— LTAL lHnailc— auul CDD_}JUDL al
i d=" address_postal' size='50" nmaxl ength="10" val ue='9%'

onchange=' changeEvent (this)' ></td></tr>", $row "address_postal "]);

echo "<tr><th cl ass='rowHeader' align='1eft' > Tel ephone
Nunber: </t h>";

printf("<td class='rowbData' > <i nput type='text

nane=' cust oner _t el ephone' id='custoner _tel ephone' size='50" maxlength="10
val ue=' 9%s'

onchange=' changeEvent (this)' ></td></tr>", $rowf "cust ormer _t el ephone"]);
echo "<tr><th class='rowHeader' align='1eft'>&bsp; E-Mai| Address: </th>";
printf("<td class='rowDat a' > <i nput type='text' nanme='custoner_enail
i d="custonmer_emai|l' size='50" naxlength='"255" val ue=' %'

onchange=' changeEvent (this)' ></td></tr>", $rowf "custoner_email"]);

?>

</tabl e>

<?php

echo "<input type=' button' value= Place Oder' onclick= submtForn()'>"
?>

</forme
</ body>
<?php
nysql i _cl ose($nysqli);

function stateSel ect ($server, $Suser, $passwor d, $dat abase, $val ue)

{
$query = "CALL stateSelect(null)";

$nmysqli = new nysqli ($server, $user, $passwor d, $dat abase) ;

if (nmysqgli_connect_errno())

{

printf("Connect failed: %\n", nysqgli_connect _error());

exit();
}

if(!'$result = $nysqli->query($query))

{
printf("Error: 9%\n", $nysqli->error);

exit();
}

echo "<select id='state_abbreviation' nane='state_abbreviation’
onchange=' changeEvent (this)"' >"

whi | e($row = $result->fetch_array(MYSQ.l _ASSCC))
{
if($row'state_abbreviation'] == $val ue)
printf("<option val ue="%"'
sel ected="true' >%</opti on>", $row st ate_abbrevi ati on], $rowf st ate_nane]) ;
el se
printf("<option
val ue=' %' >%s</ opti on>", $rowf st at e_abbrevi ati on], $rowf st ate_nane]);

}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

nysql i _cl ose($nysqli);

e prcy ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5.5. Advantages and Disadvantages

The major advantage to developing an application using this technique is that there are very few browsers
for which this method does not work, including older browsers. In fact, the only thing that some web
developers might consider out of the ordinary is the use of hidden frames. Nevertheless, it works, which is
all that really matters when developing an application.

Unfortunately, problems begin to arise when an inexperienced developer attempts to maintain an
application developed using this technique. In fact, several years ago, | developed an application that used
hidden frames for an insurance company. It was one of the few applications for which | received calls after
leaving the company. It was explained to me that there wasn't anything wrong with the applicationin fact,
it worked wonderfullybut the new developers couldn't quite grasp how it worked. To the new developers,
the application was a classic black box; information went in and information came out, but what happened
to it in the box was a complete mystery.

The final problem with this technique is that it really isn't Ajax; it only offers a similar look and feel. Think
of it as a kind of primitive ancestor to Ajax or, if you prefer, as flexing our mental muscles getting ready for
the main event. So now that we're all warmed up, let's push the knuckle-walking ancestor out the door and
move on to the next chapter and something that everybody will agree is Ajax.

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5.6. Summary

Although the technique is somewhat old-fashioned, it demonstrates, to a degree, how processing flows in
an Ajax application. In addition, the "dark art" of communicating information between frames was covered.
However, two items of note from this chapter will be carried into later chapters: JavaScript and MySQL
stored procedures.

Regardless of any opinion to the contrary, JavaScript has become essential in the development of web
applications that feel more like GUI applications. And even though some shortcuts may have been taken
with these examples, they do serve their purpose.

The inclusion of stored procedures in MySQL was a purely personal decision on my part. Originally, |
considered using straight SQL; however, it has been several years since | created any kind of nontrivial
application using anything but stored procedures. In addition, because the topic of stored procedures in
MySQL is so new, trying to find examples is pretty much like looking for a unicorn. So | thought, why not
include a few examples here? And as you've probably determined by now, | like examples.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 6. XML

What can | say about XML that somebody before me hasn't already said? One little Google search is enough
to learn that XML whitens whites and brightens brights. In short, name an ill that plagues today's world,
and there is probably someone out there who has written an article about it and how XML can fix it.

Alright, | admit it, I'm stretching the truth a little to get my point across. However, it does give something
of the feel of the aura that surrounds XMLwell, at least from an outsider's perspective. XML is another one
of those "l don't know what it is, but | want it" type of things.

The format of this chapter goes along the following lines:

« Elements

« Attributes

« Handling Verboten Characters
« Comments

« Document description
« XML declarations

e« Processing instructions
« XML Data Islands

In its simplest form, XML is nothing more than a text file containing a single well-formed XML document.
Come to think of it, the same is pretty much true in its most complex form as well. Looking past all the
hype surrounding XML, it is easy to see that XML is merely the text representation of self-describing data in
a tree data structure. When you understand this, all that is left are the nitty-gritty little details, as in
"What's a tree data structure?” and "How exactly does data describe itself?"

A tree data structure is built of nodes, with each node having only one node connected above it, called a
parent node. The sole exception to this rule is the root node, which has no parent node. Nodes can also
have other nodes connected below; these are called child nodes. In addition, nodes that are on the same
level as the same parent node are called children. Figure 6-1 is a graphical representation of a tree data
structure. If you are thinking to yourself, "I've seen this before," you're rightwe also used this example in
Chapter 2, "Introducing Ajax."

Figure 6-1. An XML document as a tree

[View full size image]

Dok

|E-E'I'I-E-'E| | ke J |aul:h-::r| |5eriva-e.] [fitla | [Euﬂ'n:-rl |EEFIE'E| | title | |a.utl'u:nr|

The diagram in Figure 6-1 can also be represented as the XML document shown in Listing 6-1.We used this
listina in Chanter 2 as well. Rut it doesn't hurt to reiterate the noints here.

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/06ajx01_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Listing 6-1. An XML Document as Text

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<library>
<book>
<series/>
<titlel>
<aut hor/ >
</ book>
<book>
<series/>
<titlel>
<aut hor/ >
</ book>
<book>
<series/>
<titlel>
<aut hor/ >
</ book>
</library>

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.1. Elements

The nodes shown in Listing 6-1 are called elements, and they closely resemble HTML tags. And like HTML
tags, start tags begin with < and end tags begin with </ . However, unlike HTML tags, all XML tags must
either have a closing tag or be self-closing or empty elements. Self-closing tags are recognizable by the
ending / >. If the forward slash was omitted, the document would not be a well-formed XML document. In
addition to all elements being either closed or self-closing, the tags must always match up in order. This
means that the XML document in Listing 6-2 is well formed, whereas the XML document in Listing 6-3 is not

well formed.

Listing 6-2. A Well-Formed XML Document

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<one>
<t wo>
<t hr ee>
<four/>
</three>
</ t wo>
</ one>

Listing 6-3. A Document That Is Not Well Formed

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<one>
<t wo>
<t hree>
<four/>
</ t wo>
</three>
</ one>

So far, we have covered elements that contain either other elements or empty elements, leaving the
question of what elements that contain actual data look like. Using the XML from Listing 6-1 as a starting

point, you can see that the answer is not very different. Listing 6-4 shows what elements that contain text

data look like.

Listing 6-4. An XML Document with Text Data

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

S X vel si ull— 1.V ercouul 1y— vir-o St dliuadl viie— yes -~
<library>
<book>

<seri es>The Lord of the Ri ngs</series>
<title>The Fellowship of the Ring</title>
<aut hor>J. R R Tol ki en</ aut hor >

</ book>

<book>
<series>The Lord of the Rings</series>

<title>The Two Towers</title>
<aut hor>J. R R Tol ki en</ aut hor >

</ book>

<book>
<seri es>The Lord of the Rings</series>
<title>The Return of the King</title>
<aut hor>J. R R Tol ki en</ aut hor >

</ book>

</library>

One thing to remember is that elements aren't limited to containing either other elements or text data;
they can do both at the same time. In fact, there is even a way for empty elements to contain text data
through the use of attributes.

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.2. Attributes

Attributes are a name-value pair that is contained in an element's start tag. The name portion of an
attribute is separated from the value by an equals sign, and the value is enclosed in either single or double
quotes. Elements can have multiple attributes, separated from one another by whitespace, usually one or
more spaces. It is not unusual for XML documents to use a combination of container elements and
attributes. Listing 6-5 shows what the XML document in Listing 6-4 would look like using attributes.

Listing 6-5. An XML Document with Attributes

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<library>

<book series="The Lord of the Rings" title="The Fell owship of the
Ri ng" author="J.R R Tol kien"/>

<book series="The Lord of the Rings" title="The Two Towers"
author="J. R R Tol kien"/>

<book series="The Lord of the Rings" title="The Return of the King"
author="J. R R Tol kien"/>
</library>

Before proceeding any further, I want to cover the three rules for the naming of elements and attributes;
these rules are only slightly more complex than the rules for the addressing of cats. The first rule is that
only alphanumeric (az, 09) characters, the underscore (), the hyphen/dash (-), and the colon (:) are

permissible in names. The second rule is that names can begin only with an alpha, underscore, or hyphen
character. The third and final rule is that names are case sensitive, so M st of f el ees is a different animal

than M STOFFELEES, and ni st of f el ees is yet another animal. Think of these rules as a practical guide, and
you won't have any problems with names.

e prcy ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.3. Handling Verboten Characters

Occasionally when dealing with XML documents, you will encounter certain characters that will cause a
document to be not well formed. For example, imagine an element that contains a JavaScript function, such
as the one shown in Listing 6-6. Examined from a JavaScript perspective, the function looks like it works,
but when examined from an XML point of view, there is one big glaring error. Here is a hint: Look at the

for loop.

Listing 6-6. A Script Element That Is Not Well Formed

<script | anguage="JavaScript">
function hello(intTines) {
for(var i=0;i < intTinmes;i++)
alert('Hello, World!');

</script>

XML interprets the less-than (<) operator as the beginning of a new element, and from an XML viewpoint,

the new tag is not well formed. Fortunately, you can use one of two methods to get around this issue:
entities or CDATA sections. Each of these methods is suited to a different purpose, so let's examine each to
determine which better suits our problem.

6.3.1. Entities

Entities. A part of me just likes to say the word entities. It's just a fun word to say, especially to a manager
who is unfamiliar with XML. Just imagine someone's reaction when being told that the XML contains
entities. Talk about your flashbacks to late-night horror movies! Of course, there is always the alternative:
being fitted for a jacket with wraparound sleeves. Either way, you've gotten the manager's attention.

XML has five predefined entities whose purpose it to avoid well-formedness issues when encountering
select common characters. Table 6-1 defines these five entities, and later topics cover how to define

additional entities.

Table 6-1. Entities

Character | Entity | Description

< &t Less than

> > ; Greater than

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

&qout; | pouble quote

& &anp; Ampersand

The JavaScript in Listing 6-6 can be made well formed by replacing the character < by its corresponding
entity & t; . Unfortunately, although the use of entities would correct the issue from an XML point of view,
from a JavaScript perspective, there is a world of difference between < and & t; . To make both XML and

JavaScript happy, it is necessary to use a CDATA section.

6.3.2. CDATA Sections

A CDATA section is the XML equivalent of "Pay no attention to that man behind the curtain,” from The
Wizard of Oz. However, there is no pesky little girl with a little dog to mess things up. Because of this, XML
totally ignores whatever is within a CDATA section's tags, <! [CDATA[and]] >, as shown in Listing 6-7.

Listing 6-7. A Well-Formed Script Element

<script | anguage="JavaScript">
<! [CDATA[
function hello(intTines) {
for(var i=0;i < intTinmes;i++)
alert('Hello, World!");

</script>

downloaded from: lib.ommolkefab.ir

NEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.4. Comments

From an XML point of view, Listing 6-7 is well formed; unfortunately, some web browsers would have an
issue with it as part of a web page. A method is needed to hide the JavaScript from XML, and the CDATA
section tags from both the browser and the browser's JavaScript interpreter. This can be accomplished with
XML comment tags, which, by the way, are identical to the comment tags from HTML. Because the
JavaScript interpreter has problems only with the CDATA section’s closing tag, a // is enough to make the

browser look the other way. The end result is the node shown in Listing 6-8.

Listing 6-8. A Well-Formed Cross-Browser Script Element

<script |anguage="JavaScript">
<l-- <I[CDATA
function hello(intTinmes) {
for(var 1=0;i < intTinmes;i++)
alert('Hello, World!');
}
111> -->
</script>

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.5. Expectations

When the Rolling Stones sang "You Can't Always Get What You Want," they were telling only half of the
story. The other half is, "You Don't Always Want What You Get." Yeah, it doesn't roll off of the tongue the
same way, and | don't sing anything like Mick Jagger; in fact, my children would prefer it if I didn't sing at
all. So when 1 sing, they're both not getting something they want and getting something that they don't
want. They'll get over it, but how would XML handle getting something expected and getting something
unexpected?

6.5.1. Namespaces

Dealing with both the expected and the unexpected is what namespaces in XML are all about. A namespace
is used to describe vocabularies because in some instances the same element name could have two
different meanings, which is an unexpected occurrence often with undesirable results.

To put it in nontechnical terms, imagine that you have a shipment of cotton that you want to ship from
India to England. Let's say that you want it to be sent on a particular ship that sails in November. Seems
clear, doesn't it? Well, now imagine that there is another ship with the same name that sets sail in
December. See the problem? Simply using the name isn't enough because it can have more than one
meaning.

Namespaces are a URI that is used to get around this type of problem by providing what in law would be
called a "meeting of the minds." It is a way to ensure that when the elements and attribute have the same
names, the correct meaning is used. This is a good way to avoid conflict. The only alternative would be to
guess, which was done in the previous example from the mid-1800s. In case you were wondering, they
guessed wrong.

6.5.2. DTD

A Document Type Definition is used to describe and validate an XML document. Essentially, you spell out
exactly what to expect in a particular XML document, to avoid confusion. Consider the XML document
shown in Listing 6-9, basically a short list of monsters and where they've appeared.

Listing 6-9. An Example XML Document

<?xm version="1.0" encodi ng="UTF-8"?>

<nonsters >
<nmonster name="Dracul a" books="yes" plays="yes" novi es="yes"/>
<nmonster name="Alien" books="yes" plays="no" novies="yes"/>
<nmonster name="The Thi ng" books="yes" plays="no" novi es="yes"/>
<nonst er nane="Sweeny Todd" books="yes" plays="yes" novi es="no"/>

</ nonst er s>

If confusion concernina names were a possibilitv. a DTD like the one in Listina 6-10 would then be used.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Listing 6-10. The DTD for Listing 6-9

<! ELEMENT nonster EMPTY>

<I ATTLI ST nonster
nanme CDATA #REQUI RED
books CDATA #REQUI RED
pl ays CDATA #REQUI RED
novi es CDATA #REQUI RED

>

<! ELEMENT nonsters (nonster+)>

All that then would be left to do would be to save it in a folder called nanmespace on the C: drive and assign
the DTD by inserting the following before the first element:

<I DOCTYPE nonsters SYSTEM "C. \ nanespace\ sanpl e. dtd">

Just in case you haven't noticed something strange about Document Type Definitions, | want to point out
that they are not XML. However, there is an XML equivalent to Document Type Definitions called schemas.

6.5.3. Schema

Schemas have the advantages of being XML and being able to provide greater validation than DTDs. The
reason for this is that a schema can describe complex data types beyond the basic dat eTi ne, decimal,

integer, and string available with DTDs. This essentially means that it is possible to describe complex types,
as shown in Listing 6-11.

Listing 6-11. Schema for Listing 6-9

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<I--WBC Schena generated by XM.Spy v2006 sp2 U (http://ww.al tova. conm-->
<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
el ement For mDef aul t =" qual i fi ed" >
<xs: conpl exType nane="nonst er Type" >
<xs:attribute nanme="nane" use="required">
<xs: sinpl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="Alien"/>
<xs:enumneration val ue="Dracul a"/>
<xs:enuneration val ue="Sweeny Todd"/>
</xs:restriction>
</ xs: si nmpl eType>
</ xs:attribute>
<xs:attribute name="books" use="required">
<xs:sinpl eType>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

SAD. TlHIUNITT Al Vil val uc— 11v | ~—
<xs:enuneration val ue="yes"/>
</xs:restriction>
</ xs:si nmpl eType>
</xs:attribute>
<xs:attribute name="plays" use="required">
<xs: si npl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="no"/>
<xs:enumneration val ue="yes"/>
</xs:restriction>
</ xs: si nmpl eType>
</xs:attribute>
<xs:attribute nanme="novi es" use="required">
<xs:si nmpl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="no"/>
<xs:enuneration val ue="yes"/>
</xs:restriction>
</ xs: si nmpl eType>
</ xs:attribute>
</ xs: conpl exType>
<xs: el erent name="nonsters">
<xs:conpl exType>
<XS:sequence>
<xs: el emrent nane="nonster" type="nonsterType"
maxCccur s="unbounded"/ >
</ Xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
</ xs: schema>

Yes, it is longer, but it also better describes the XML document in greater detail than the DTD ever could.
This leaves only the "how to assign it?" question, which Listing 6-12 answers.

Listing 6-12. The Document with the Schema Applied

<?xm version="1.0" encodi ng="UTF-8"?>

<nonsters xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xsi : noNamespaceSchemalLocat i on="C: \ nanespace\ sanpl e. xsd" >
<nmonster name="Dracul a" books="yes" plays="yes" novi es="yes"/>
<nonster name="Alien" books="yes" plays="no" novies="yes"/>
<nonster nanme="Sweeny Todd" books="yes" plays="yes" novi es="no"/>

</ nonst er s>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.6. XML Declaration

Before proceeding any further, | want to explain a little about the stuff between the <? and the ?>. It is

called the XML declaration, which is an example of a META data tag that appears at the beginning of an
XML document. Its purpose is to specify the version of XML, the character encoding, and whether there is
an external markup declaration.

Determining whether the XML document has an external markup declaration (st andal one="no") or not
(st andal one="true") is based upon three rules. An XML document has an external markup declaration if

attributes have default values, there are entities used other than the five default entities, or either
elements or attributes are subject to whitespace nominalization.

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.7. Processing Instructions

In addition to the XML declaration META tag, there is something called a processing instruction that also
uses the <? and ?>. At first glance, processing instructions appear to be the same as the XML declaration,

but they have different capabilities and serve a different purpose. For example, unlike an XML declaration,
a processing instruction can appear anywhere in an XML document. Also, processing instructions are used
to pass information to an application that can read the XML document.

e prcy ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.8. XML Data Islands

For readers who are unfamiliar with the term XML Data Islands, they refer to the real estate that is usually
purchased with the profits from one's first book. You know, the kind of real estate that isn't there when the
tide is in. Oops, my mistake: wrong definition.

Take two!

For those readers who are unfamiliar with the term XML Data Islands, they are XML that is embedded with
the body of an HTML document. Although this sounds simple enough, there is a little more to it than that;
Microsoft Internet Explorer hides the XML, whereas Firefox and other Geckobased web browsers do not.

6.8.1. Internet Explorer

Because Microsoft Internet Explorer has built-in support for XML data islands, it is simply a matter of
embedding the XML in a web page, as described in more detail in Chapter 8. Binding the XML to the HTML

is merely a matter of defining the dat asrc and the dat af | d, where the dat asrc is the ID from the XML
element and the dat afl d is either an element or an attribute. The idea is that because the HTML is bound to

the XML, changes in one are reflected in the other, which can be a real timesaver when developing a web
application.

6.8.2. Firefox

With Gecko-based web browsers such as Firefox, Flock, Netscape, or Mozilla XML, data islands require a bit
more work to pull off. Let's look at an example of a Cascading Style Sheet shown here in Listing 6-13. Its

purpose is to prevent the XML data island from being rendered, which solved only part of the problem.

Listing 6-13. CSS to Hide XML

xm
{

di spl ay: none;
font-size: Opx

}

The rest of the problem, the binding, was resolved using JavaScript and HTML as originally shown in Listing
4-7 and again is shown in Listing 6-14.

Listing 6-14. Cross-Browser Binding XML

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<head>
<title>XM. Data |Island Test</title>
<style type="text/css">

xm
{
di spl ay: none;
font-size: Opx
}

</styl e>
<script | anguage="JavaScri pt">
var _|E = (new RegExp('internet explorer',

gi')).test(navi gator. appNane);

/*
Functi on: _bind
Progranmer: Ednond Wychowsky
Pur pose: Handl e the | ogic necessary to bind HTM. el enents

to XML nodes. Note that in sonme instances this
binding is a two-way street. For exanple, if the value in
a text box shoul d change the corresponding value in the
XM. data island will also change.
*/
function _bind() {
if(arguments.length == 0) {
doBi nd(docunent . body. get El enment sByTagNanme(' div'));
doBi nd(docunent . body. get El enent sByTagNanme(' i nput'));
doBi nd(docunent . body. get El enent sByTagNane(' sel ect'));
doBi nd(docunent . body. get El enent sByTagNane(' span'));
doBi nd(docunent . body. get El enent sByTagNane('textarea'));
} else {
appl yChange(argunent s[0], argunents[1]);
_bind(); /1 Re-bind
}

/*

Function: doBind

Programrer: Ednond Wbychowsky

Pur pose: To handl e dat a-bi nds for specific nodes
based upon HTM. el enent type and browser type.

*/
function doBi nd(objects) {
var strTag; /1 HTM. tag
var strDl; /'l XM. data island id
var str Node; /1 XML node nane
var str Val ue; /1 XM. node val ue

for(var i=0;i < objects.length;i++) {
strTag = objects[i].tagNaneg;
strDl = objects[i].getAttribute('xmdi"');
strNode = objects[i].getAttribute('xm node');

if(_IE)
strVal ue =

docunent . get El ement Byl d(str Dl). XM_Docunent . sel ect Nodes('//"' +
et rNnda) itam i) tavt:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

strVal ue =
docunent . get El ement Byl d(strDl). get El ement sByTagNanme(strNode)[i].inner HTM;

swi tch(strTag) {
case('DIV):
case(' SPAN):
objects[i].innerHTM. = strVal ue;

br eak;
case(' I NPUT"):
switch(objects[i].type) {
case('text'):
case(' hidden'):
case(' password'):
objects[i].value = strVal ue;
obj ects[i].onchange = new Function(" _bind(this," +
i.toString() + ")");

br eak;
case(' checkbox'):
i f(objects[i].value == strVal ue)
obj ects[i].checked = true;
el se

obj ects[i].checked = fal se;

objects[i].onclick = new Function(" _bind(this," +
i.toString() + ")");
br eak;
case('radio'):
if(_IE
strVal ue =
docunent . get El enment Byl d(str Dl). XM_Docunent . sel ect Nodes('//"' +
strNode).iten(0).text;
el se
strVal ue =
docurent . get El ement Byl d(str Dl). get El enment sByTagNane(strNode)[0].inner HTM;

i f(objects[i].value == strVal ue)
obj ects[i].checked = true;

el se
obj ects[i].checked = fal se;

objects[i].onclick = new Function(" _bind(this,0)");

br eak;

}

br eak;
case(' SELECT'):
case(' TEXTAREA'):
obj ects[i].value = strVal ue;

obj ects[i].onchange = new Function("_bind(this," +
i.toString() + ")");

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7

}

}

/*
Functi on: appl yChange
Programrer: Ednond Wychowsky
Pur pose: To handl e changes to the bound HTM. el enments and apply

those changes to the appropriate XM. node.
*/

function appl yChange(obj,index) {
var strDl = obj.getAttribute('xmdi');
var strNode = obj.getAttribute(' xm node');
var strVal ue = obj.val ue;

i f(obj.type == 'checkbox')
i f(obj.checked)
strVal ue = obj.val ue;
el se
strValue = '"';

if(_IE)
docunent . get El ement Byl d(str D). XM_Docunent . sel ect Nodes('//" +
strNode).iten(index).text = strVal ue;
el se

docunent . get El ement Byl d(strDl) . get El enent sByTagNane(strNode) [i ndex].innerH
TM. = strVal ue;
}
}
</script>
</ head>
<body onl oad="_bi nd()">
<xml id="xnl Dl ">
<a>

<c>one</ c>
</ b>

<c>t wo</ c>
</ b>

<c>t hree</ c>
</ b>
</ a>
</ xm >
XM. Data |sland Test

<div xmdi ="xm DI" xnm node="c"></div>

<div xmdi ="xm DI" xn node="c" ></di v>

<div xmdi="xm D" xnl node="c"></div>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir
<i nput type="text" xmdi="xm D" xm node="c" val ue="" />

<i nput type="text" xmdi="xm D" xm node="c" val ue="" />

</ body>
</ htm >

Essentially, the code in this listing searches the HTML document for tags of the type that can be bound to
the XML. As they are encountered, the next value from the XML is used and a change event handler is
attached to the HTML. This way, when the visitor changes the value, the XML Data Island is updated.

Talk about lazy! No need to code-change event handlers by hand. This leads to the possibility of simply
refreshing the XML Data Island from the server and rebinding to display updates. Pretty useful when the
user requests another page of information, not only the next page or the previous page, but maybe even a
search.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.9. Summary

This chapter covered some of the basics of XML, including the differences between elements and attributes.
It also delved into what makes an XML document well formed and not well formed. In addition, | covered
how to make script elements in XHTML from both an XML and JavaScript point of view, as well as entities.

The subject of namespaces was covered along with their purpose. This included a brief look at both
Document Type Definitions and schemas, and the role that they play in validation. Finally, this chapter
covered the role that XML Data Islands can play within an HTML document.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 7. XMLHttpRequest

Several years ago, | worked for a company that had a reputation for conceiving incredible ideas.
Unfortunately, the company also had a reputation for being unable to either recognize the value of those
ideas or market a product using those ideas. Such was the case with the XM_Ht t pRequest object, originally

created by Microsoft for use with one of the products in its Office Suite. It languished unused until outsiders
discovered it in Internet Explorer.

These unknown intrepid developers knew immediately that the XM_Ht t pRequest object was a solution in

search of a problem. The only real question was in finding the problem. And although I can't speak for
anyone else, the problem that I chose was a shopping cart application described in Chapter 2, "Introducing

Ajax." Remember the "mockup” that wasn't a mockup and didn't "blink"? After that particular incident, I
was considerably more careful in my selection of applicationsor, at least, in my selection of attendees at my
demonstrations.

In fact, at times | was so careful in selecting where to use the XM_LHt t pRequest object that it was necessary

to examine the code to see exactly how it worked. | started by choosing applications in which it appeared
that the information was cached on the client side: the dreaded HTML sel ect whose contents are based

upon another HTML sel ect, which, in turn, is based upon another HTML sel ect . As long as nobody ever

looked at the code, which nobody ever did, the web page wouldn't appear any different from the hundreds
of others in the system. That is, it wouldn't appear different unless you take into account speed. Without all
the cached information, the initial load was considerably faster.

In retrospect, looking back upon several of those "mad scientist” applications, | realize now that not all of
them could be considered Ajax. This is because Ajax is shorthand for Asynchronous JavaScript and XML,
and some of these applications were coded to be synchronous. And whoever heard of Sjax?

Nevertheless, because the XM_Ht t pRequest object can be used both synchronously and asynchronously, both
are covered. Moreover, we cover the following topics in this chapter:

« Synchronous
« Asynchronous

« Microsoft Internet Explorer

« XML Document Object Model
« RSS

« Web Services

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.1. Synchronous

Although not nearly as cool as coding an asynchronous client-side application, a synchronous client-side
application is nothing to look down at. In fact, it beats the pants off the average web applicationfiguratively
speaking, of course, because web applications don't wear pants. Thinking about it, using the XM_LHt t pRequest

object synchronously is actually a good way to expose yourself, also figuratively, to some of the basics.

One of the interesting things about the basics of the XM_Ht t pRequest object is that these basics are actually

basic. Only a few parameters and a few lines of code separate the synchronous from the asynchronous.
When you understand that, not much is required to change a synchronous application into an asynchronous
application. Don't believe me? Take a look at the XM_Ht t pRequest object's properties and methods shown in

Table 7-1.

Table 7-1. XM_Ht t pRequest Object Properties and Methods

Method/Property Description

abort () Terminates the previous outstanding
request.

get Al | ResponseHeader s() Returns all response headers, labels, and

values, as a string.

get r esponseHeader ("l abel ") Returns the value for the provided label.

open("nethod", "url", asynchronous, "usernanme", "password") | Opens/assigns a method: GET or POST and,
optionally, an asynchronous indicator.

send(content) Sends the request with optional content.
This content can be either a string or DOM
data.

set Request Header ("l abel ", "val ue") Sets a request header label/value pair.

onr eadyst at echange Event handler for asynchronous requests;
fires on each change to the readySt at e

property.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

0 = uninitialize

1 = loading

2 = loaded

3 = interactive

4 = complete

responseText String returned from the server.

responsexm XML document returned from the server.

status HTTP response code returned from the
server.

statusText String message associated with the HTTP a.

Right now, the XMLHt t pRequest object might seem like a pile of unrelated parts, but when the individual

parts are assembled in the correct sequence, things are different. To prove my point, let's take a look at
the JavaScript that uses XMLHTTP to synchronously get a file from the server in Gecko-based browsers such

as Firefox, Mozilla, and Flock (see Listing 7-1).

Listing 7-1. Getting a File Synchronously

var obj XMLHTTP = new XM_Htt pRequest () ;

obj XMLHTTP. open(' GET', 'books.xm ', false);
obj XMLHTTP. send(nul I);

var obj XML = obj XMLHTTP. r esponseXM_;

The first step is to create an instance of the XMLHt t pRequest object using the JavaScript new operator. Next,
the open method is invoked using the request method, GET, a destination URL, and a Boolean indicating that
the request is not asynchronous. The third and final step is to invoke the send method and assign the
responseXM., an XML document, to a variable. And if you're not interested in using XML, there is always the
responseText property.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.2. Asynchronous

On the surface, what's required to change the request from synchronous to asynchronous appears to be
simply changing the f al se parameter to TRue for the open method. Unfortunately, although that would make

the request asynchronous, it would have some issues with the responseXM. property. This is because the
request is asynchronous; instead of waiting for a response from the send method, processing just continues
on its merry way. This means that the r esponseXM. property is undefined, which is not exactly what we're
looking for or expecting.

Fortunately, there is a way to correct this issue, but it requires creating an event handler to, er, handle
changes to the readySt at e property. With the XM_LHt t pRequest object, the value of the readySt at e property

changes every time something changes with the response to the request. This change fires the handler
defined by the onr eadyst at echange property. Let's take a look at the example shown in Listing 7-2.

Listing 7-2. Example of Creating an Event Handler to Correct the Problem

var obj XMLHTTP = new XM_Ht t pRequest () ;
var obj XM;

obj XMLHTTP. onr eadyst at echange = asyncHandl er;
obj XMLHTTP. open(' GET', 'books.xm ', true);
obj XMLHTTP. send(nul I);

function asyncHandl er () {
i f(obj XMLHTTP. readyState == 4)
obj XML = obj XMLHTTP. r esponseXM.;

In this example, the function asyncHandl er is assigned as an event handler using the onr eadyst at echange
property. This means that the asyncHandl er function fires each time the readySt at e property changes.

Because it fires every time the property changes, it is necessary to verify that the response is actually
complete before doing anything with the response. The i f statement in the asyncHandl er function takes

care of this issue; a readySt at e equal to 4 means that everything is fine and we're done. But what if
everything isn't fine?

Anyone who has ever played any of the Mech Assault campaigns knows that something always goes wrong.
What fun would it be if everything worked all the time? Thinking about it, please disregard my last
statement as the ramblings of a sick mind. Nevertheless, the universe is perverse, so bad things happen to
good people, countries, cities, and web applications. Because of this, it is sometimes necessary to code
defensively, to handle the unexpected. Note that | said defensively, not offensively. Don't go looking for
problems; like a mad cat with charged PPCs, they'll find you soon enough.

You can handle this potential problem in several ways. The first possible method involves hoping and
wishing. Unfortunately, management has a tendency to frown upon thls method of error handling. POSS|ny

a0t ot Nl L el WA ot _ N M _€£. 0 _____ . _€ _ _ _ __1_ T T S e T

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A better method of handling potential problems, at least from a job longevity point of view, is to consider
what could go wrong. The way that | see it, things can go wrong in two possible ways. The first of these is
getting basic bad information back from the server. During development, this can be handled by an alert
and the responseText property. Beyond the development phase, however, this would probably scare away

the nonmad scientists. At these times, you might want to inform the user that an error has taken place and
use the XM_Ht t pRequest object to tell development about it. A more common, and much harder to handle,

error is a timeout.

A timeout, for those who have been watching Star Gate SG-1 instead of reading about web development,
occurs when an application either doesn't respond at all or doesn’'t respond in a reasonable amount of time.
Who defines "reasonable"? You do. Big believer in the 7-second rule? Then use 7 seconds. Like the
Hitchhiker's Guide to the Galaxy? Then use 42 seconds. In short, use whatever time period seems
appropriate. After you decide this, all that is necessary is to figure out how to handle it.

Personally, I'm fond of using the set Ti mreout method with a variable set to the result from the method. If
the response is received within the specified time limit, cl ear Ti neout can be used to prevent the timeout
function from executing. Otherwise, the function specified by the set Ti neout method will execute and any
problems can be dealt with then. All in all, using the set Ti neout method is a rather elegant solution to a
potentially fatal problem.

This leaves really only one issue: What to do with those individuals who, for some reason, choose to use
Microsoft Internet Explorer? Keep it clean! Yes, we have to accommodate those people in some way,
beyond the Click Here to Download option.

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.3. Microsoft Internet Explorer

Unlike most other web browsers, Microsoft Internet Explorer uses something called ActiveX, which is a
holdover from an earlier age when object libraries where new, untried, and obscure. Because of this,
ActiveX is like the bowels of a ship: Sometimes nasty things are down there. In the case of ActiveX, the
ship is a spaceship named Nostromo. However, this isn't a "knock Internet Explorer” session. You'll find
enough of those online today.

Unlike most cross-browser differences encountered when developing web applications, this one doesn't
require a lot of code. In fact, the single line of code shown here is enough to do the deed, from an Internet
Explorer point of view. This JavaScript creates in Microsoft Internet Explorer an ActiveX object that is the
XMLHt t pRequest object:

var obj XMLHTTP = new Acti veXQoj ect (' M crosoft. XMHTTP");

So now that we've got a potential source of XML, the big question is how to handle it.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.4. XML Document Object Model

The majority of web developers are familiar with the HTML DOM, but unless they're used to XML
development, they might not even realize that the XML DOM exists. In fact, even if they are aware that
there is a Document Object Model for use with XML, they might not know that there is a difference between
the XML and the HTML DOM. For example, the HTML DOM is geared more toward the various HTML
elements, whereas the XML Document Object Model is somewhat more generic.

The XML Document Object Model is a common API for dealing with XML. It provides a standard interface for
accessing, modifying, and creating the various parts of an XML document. Let's take a look at the XML
document shown in Listing 7-3 as a starting point, and you'll see what I mean.

Listing 7-3. An XML Document

<?xm version="1.0""?>
<gar den>
<pl ant >
<nanme>Foxgl ove</ nanme>
<use>heart </ use>
<part >root</part >
</ pl ant >
<pl ant >
<nanme>Mandr ake</ name>
<use>i npot ency</ use>
<part >root</part >
</ pl ant >
<pl ant >
<nanme>Tril | i unk/ nanme>
<use>poi son</ use>
<part >l eave</ part>
</ pl ant >
<pl ant >
<nanme>Wl f shane</ nane>
<use>wer ewol f repel | ent </ use>
<part>fl ower</part >
</ pl ant >
<pl ant >
<name>Meadowsweet </ nane>
<use>cranps</ use>
<part >l eave</part>
</ pl ant >
</ gar den>

After the requisite browser-specific JavaScript is executed and the XML document from Listing 7-3 is loaded
into a variablesay, nyXM.it is time to try out the DOM. Let's say, for instance, that we're interested in
getting all the plant nodes in a node set. Using the DOM, we could code the following:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Pretty slick, isn't it?

But there's more to the XML Document Object Model than the get El enent sByTagNane method. In fact, an

entire slew of properties and methods is available by using the XML DOM interfaces in JavaScript. However,
to use these properties and methods, it is necessary to know the various interfaces available in JavaScript,

as outlined in Table 7-2.

Table 7-2.

JavaScript Interfaces Relevant to Using the XML DOM

Interface Name

Description

DOVExcept i on

Exception raised by a DOM method when the requested action cannot be
completed

Excepti onCode

Integer that indicates the type of error raised by a DOVExcept i on

DOM npl enent at i on

Provides methods that are independent of any implementation of the XML
Document Object Model

Docunent Fr agnent

A lightweight XML document, often used to hold portions of an XML document

Document Used to hold an entire XML document

Node Represents a single node of an XML document

NodeLi st An indexed list of nodes

NamedNodeMap A collection of nodes that are accessed either by name or by index

Char act er Dat a

Extends the Node interface by adding characterspecific properties and methods

Attr

Represents the attributes for individual elements

El ement Extends the Node interface by adding methods for accessing and adding attributes
Text Represents the text content of an El enent

Comment Represents an XML comment, the text between <!-- and -->

CDATASect i on

Interface used to escape text that would normally be parsed as XML

Docunent Type

Used to define the document type

Not ati on

Represents a notation declared in the Document Type Definition (DTD)

Entity

Interface used to represent an XML entity, which can be either parsed or
unparsed

EntityRef erence

downloaded from: lib.ommolkefab.ir

Interface that contains a reference to an XML entity

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Each of these interfaces has a number of properties and methods that can be used to manipulate an XML
document. Table 7-3 lists the various properties and methods, along with their associated interfaces.

Table 7-3. Properties and Methods for Various Interfaces

Property/Method

Interface

Description

hasFeat ur e(feature, version)

DOM npl enment ati on

Returns a Boolean indicating
whether the feature is supported.

downloaded from: lib.ommolkefab.ir

Doct ype Docurnent The DTD associated with this XML
document.

I npl enent ati on Docunent The DOM npl enent at i on for this
document.

document El ement Docunent The document's root element.

creat eEl enent (t agNane) Documnent Creates the specified element.

cr eat eDocunent Fragment () Docunent Creates an empty document
fragment.

creat eText Node(dat a) Docunent Creates a Text element using the
data provided.

cr eat eComment (dat a) Docurnent Creates a Comment node using the
data provided.

creat eCDATASect i on(dat a) Docurnent Creates a CDATASect i on node using
the data provided.

creat eProcessi nglnstruction (target, data) | Docunent Creates a Processi ngl nstructi on
node.

creat eAttribut e(name) Docunent Creates an Attri bute.

creat eEntityRef erence(nane) Docunent

Creates an Ent it yRef erence.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Node
Char act er Dat a

Attr

El enent

Text

Conmment

CDATASect i on

Docunent Type

Not ation Entity
EntityReference
Processi ngl nstruction

elements with matching tag names.

nodeNane

Docunent

Node

Char act er Dat a
Attr

El enent

Text

Conmment
CDATASect i on
Docunent Type
Not ation Entity
EntityReference
Processi ngl nstruction

The name of the node.

nodeVal ue

Docunent

Node

Char act er Dat a
Attr

El ement

Text

Commrent
CDATASect i on
Docunent Type
Not ation Entity

EntityReference
Processi nglnstruction

The value of the node.

nodeType

downloaded from: lib.ommolkefab.ir

Docunent

Node

Char act er Dat a

Attr

El enent

Text

Conment CDATASect i on
Docunent Type

Not ation Entity

EntityReference
Processi nglnstruction

The type of the node. See Table 7-
4 for accepted values.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Node

Char act er Dat a

Attr

El enent

Text

Conment CDATASecti on
Docunent Type

Not ation Entity

EntityReference
Processi ngl nstruction

chi | dNodes

downloaded from: lib.ommolkefab.ir

Comment CDATASect i on
Docunent Type
Not ation Entity

EntityRef erence
Processi ngl nstruction

Docunent A node set consisting of the child
Node nodes of the current node. Note
Char act er Dat a that the node set may be empty.
Attr
El ement
Text
Conment CDATASecti on
Docunent Type
Not ation Entity
EntityReference
Processi ngl nstruction
firstChild Document The first child node of the current
Node node.
Char act er Dat a
Attr
El ement
Text
Comment CDATASect i on
Docunent Type
Not ation Entity
EntityRef erence
Processi ngl nstruction
l'ast Child Docurnent The last child of the current node.
Node
Char act er Dat a
Attr
El enent
Text

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Node

Char act er Dat a

Attr

El enent

Text

Conment CDATASecti on
Docunent Type

Not ation Entity

EntityReference
Processi ngl nstruction

node's parent.

next Si bl i ng

Docunent

Node

Char act er Dat a

Attr

El ement

Text

Conment CDATASecti on
Docunent Type

Not ation Entity

EntityReference
Processi ngl nstruction

The next child of the current
node's parent.

Attributes

Docunent

Node

Char act er Dat a

Attr

El ement

Text

Comment CDATASect i on
Docunent Type

Not ation Entity

EntityRef erence
Processi ngl nstruction

A collection consisting of the
attributes for the current node.

owner Docunent

downloaded from: lib.ommolkefab.ir

Docunent

Node

Char act er Dat a

Attr

El enent

Text

Comment CDATASect i on
Docunent Type

Not ation Entity

EntityRef erence
Processi ngl nstruction

The Docunent associated with the
current element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Node

the
Char act er Dat a

Attr

El enent

Text

Conment CDATASecti on
Docunent Type

Not ation Entity

EntityReference
Processi ngl nstruction

reference child node.

repl aceChi | d(new, ol d)

Docunent

Node

Char act er Dat a

Attr

El enent

Text

Conment CDATASecti on
Docunent Type

Not ation Entity

EntityReference
Processi ngl nstruction

Replaces the old child node with
the new child node.

renoveChi | d(ol d)

Docunent

Node

Char act er Dat a

Attr

El ement

Text

Conment CDATASecti on
Docunent Type

Not ation Entity

EntityReference
Processi ngl nstruction

Removes the old child node.

appendChi | d(new)

downloaded from: lib.ommolkefab.ir

Docunent

Node

Char act er Dat a

Attr

El enment

Text

Comment CDATASect i on
Docunent Type

Not ation Entity

EntityReference
Processi ngl nstruction

Appends the new child node as the
last child.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Node

Char act er Dat a

Attr

El enent

Text

Conment CDATASecti on
Docunent Type

Not ation Entity

EntityReference
Processi ngl nstruction

and a f al se if child nodes do not
exist.

cl oneNode(deep)

Docunent

Node

Char act er Dat a

Attr

El ement

Text

Conment CDATASecti on
Docunent Type

Not ation Entity

EntityReference
Processi ngl nstruction

Duplicates the specified node. The
Boolean parameter deep is used to
indicate a deep copy, which states
whether the children should be
copied.

Length NodeLi st The number of items in the
NanmedNodeli st collection or the length of the
Char act er Dat a character data.

i ten(index) NodeLi st Returns a single node from a
NanedNodelLi st collection based upon the index.

get Nanedl t en(nane) NarredNodeMap Returns a single node based upon

the node name.
set Naned! t em(node) NanmedNodeMap Adds a single node.
renoveNaned| t en(nane) NamedNodeMap Removes a node based upon the

node name.

Dat a

Char act er Dat a
Text

Conment CDATASect i on
Processi ngl nstruction

The character data for the node.

substringDat a(of f set, | engt h)

Char act er Dat a
Text
Comment CDATASect i on

Extracts a substring from the
character data for the node.

appendDat a(stri ng)

downloaded from: lib.ommolkefab.ir

Char act er Dat a

Text
Coment CDATASect i on

Appends the string to the end of
the node's character data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Text
Comment CDATASect i on

character data at the offset.

del et eDat a(of f set, | engt h)

Char act er Dat a

Text
Comment CDATASect i on

Deletes the number of characters
specified by the length, starting at
the offset.

repl aceDat a
(of fset, |l ength,string)

Char act er Dat a

Text
Comment CDATASect i on

Replaces the number of characters
specified by the length, starting at
the offset with the specified string.

Nane Attr The attribute name or the DTD
Docunent Type name, in the case of the
Docunent Type.

Speci fied Atr A Boolean indicating whether the
attribute has a value in the original
document.

Val ue Attr The string value of the attribute.

t agNare El ement The tag name of the El enent .

getAttribute(nane) El ement Returns the value of an attribute
based upon name.

set Attribute(nane, val ue) El ement Creates an attribute and sets its
value.

renoveAttribut e(name) El ement Removes an attribute by name.

get Attribut eNode(nane) El ement Retrieves an Attr node by name.

set Attri but eNode(name) El ement Adds an Attr node by name.

removeAttri but eNode(nane) El ement Removes an Attr node by name.

normal i ze() El ement Normalizes the specified element
and children of the specified
element.

splitText (offset) Text

Splits the Text node into two Text
nodes at the specified offset.

Entities Docunent Type A NamedNodeMap containing the
entities declared in the DTD.
Not at i ons Docunent Type A NarmredNodeMap containing the
notations declared in the DTD.
publicld Not at i on The public identifier for this
Entity notation, or a null if no public

downloaded from: lib.ommolkefab.ir

identifier is specified.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Entity notation, or a null if no system
identifier is specified.
not ati onNare Entity The name of the notation for this

entity if the entity is unparsed. If
the entity is parsed, the result is
null.

Tar get Processinglnstruction | The target for this processing
instruction.

Table 7-4. The Node Types

Node Type Value | Interface

ELEMENT _NODE 1 El enent

ATTRI BUTE_NODE 2 Attr

TEXT_NODE 3 Text

CDATA_SECTI ON_NODE 4 CDATASect i on

ENTI TY_REFERENCE_NCDE 5 EntityReference

ENTI TY_NCDE 6 Entity

PROCESSI NG _| NSTRUCTI ON_NCDE | 7 Processi ngl nstruction

COMVENT _ NODE 8 Coment

DOCUNMENT_NODE 9 Docunent

DOCUVMENT _TYPE_NODE 10 Docunent Type

DOCUMENT _FRAGVENT _NODE 11 Docunent Fr agnent

NOTATI ON_NODE 12 Not ati on

By using these interfaces, it is possible to manipulate an XML document without really having to mess
around too much. The only real issue is the vast array of properties and methods available. They can be
rather overwhelming. But personally, | find myself using a narrow range of properties and methods to
perform any task that is needed. This narrow range includes methods such as get El enment sByTagnanme and

attributes.

downloaded from: lib.ommolkefab.ir

NEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.5. RSS

Really Simple Syndication, or RSS, is a dialect of XML that is commonly used for providing news-related
content. Things such as news headlines are the realm of RSS. The only issue is that because RSS is XML, it
doesn't appear as pretty as HTML does in a web browser. Consider the RSS shown in Listing 7-4 as an

example.

Listing 7-4. RSS Example

<?xm version="1.0""?7>
<rss version="2.0">
<channel >

<title>SNEWB! </title>
<link>http://overlord. gov/</link>
<descri pti on>Lat est news</description>
<l anguage>en- us</ | anguage>
<pubDat e>Tue, 29 Nov 2005 03: 00: 00 GMr</ pubbDat e>

<| ast Bui | dDat e>Tue, 29 Nov 2005 03: 07: 00 GMI</| ast Bui | dDat e>
<docs>htt p:// bl ogs. over | ord. gov/rss</docs>

<gener at or >My Gener at or </ gener at or >

<managi ngEdi t or >Bob@ol . conx/ managi ngEdi t or >

<webMast er >webmast er @ol . con</ webMast er >

<itenp
<title>Glactic Overlord Resigns</title>
<l i nk>http://overl ord. gov/ news/ 2005/ news-r esi gn. aspx</I|i nk>
<descri pti on>
The nuch despised Gal actic Overlord has announced
his resignation as the Blorf fleet entered
orbit.
</ descri ption>
<pubDat e>Tue, 29 Nov 2005 03:07: 00 GWIT</ pubDat e>
<gui d>http://overl ord. gov/ news/ 2005/ 11/ 28. ht m #i t eml</ gui d>
</itenp
<itenp
<title>Earth's Mwon Stolen</title>
<link>http://overl ord. gov/ news/ 2005/ news- noon. aspx</ | i nk>
<descri pti on>
Luna, the often photographed natural satellite of
Earth, has been reported stolen. According to a
UN spokesperson, at this nonent, there are no
suspects.
</ descri pti on>
<pubDat e>Tue, 29 Nov 2005 05:28: 00 GWIT</ pubDat e>
<gui d>http://overl ord. gov/ news/ 2005/ 11/ 28. ht m #i t en2</ gui d>
<litene
</ channel >

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Not very pretty, is it? There are, however, ways to prettify it. (Wow, who would have thought that prettify
was a word? Oops, off the subject matter.) Using JavaScript and the DOM methods and properties, it is
possible to extract only the headlines from the RSS shown. For example, the get El enent sByTagnane or the

get Nanedl t emproperties could be used to obtain the title elements. The content of these elements could
then be displayed on the page as a hyperlink. Clicking on the link could then fire a JavaScript handler that
would display the description element.

The purpose of this side trip into the wonderful world of Really Simple Syndication was to merely show
some of the possibilities of XML. When information is available as XML, it can at times be treated as
something like a database. In essence, XML is not only the data itself, but also the source of subsets of that

data.

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.6. Web Services

Regardless of where you look, web services are a hot subject, and not just on resumés. Something of a
mystique surrounds web services; like the latest hot video game, everybody wants one, even if nobody is
quite sure what one is. Ah, to be a kid again, wanting something just because | want it. Who am | kidding?
I'm still that way, obsessing over games such as Stargate: The Alliance for XBox, and books such as
Practical Guide to Red Hat Linux: Fedora Core and Red Hat Enterprise Linux. However, unlike businesses,
my pockets aren't full of much other than lint, which means that | have to wait, whereas businesses can
just whip out the checkbook.

7.6.1. What Is a Web Service?

Alright, because everybody wants a web service, there are only two questions. The first question is, what is
a web service? And the second question is, how does a web service work? Let's start by answering the first
question: What is a web service?

A web service is a piece of software designed to respond to requests across either the Internet or an
intranet. In essence, it is a program that executes when a request is made of it, and it produces some kind
of result that is returned to the caller. This might sound a lot like a web page, but there is a significant
difference: With a web page, all the caller is required to know about the page is the URI. With a web
service, the caller needs to know both the URI and at least one of the web service's public methods.
Consider, for example, the C# web service shown in Listing 7-5. Knowing the URI, which, incidentally, is
http://localhost/AJAX4/myService.asmx, isn't enough. It is also necessary to know that the public method
is called nonster.

Listing 7-5. Web Service Example

usi ng System

usi ng System Col | ecti ons;
usi ng Syst em Conponent Model ;
usi ng System Dat a;

usi ng System Di agnosti cs;
usi ng System Web;

usi ng Syst em Web. Servi ces;

nanmespace AJAX4

{
public class nyService : System Wb. Servi ces. WbSer vi ce
{
public nyService()
{
InitializeConmponent();
}

#regi on Conponent Designer generated code

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

prirvate | contal ner components = nuli;

/1l <sunmary>

/1l Required nethod for Designer support - do not nodify
/1l the contents of this method with the code editor.
/1] </ summary>

private void InitializeConponent ()

{

}

/1] <sunmary>
/1l Clean up any resources being used.
/1]l </ summary>
protected override void D spose(bool disposing)
{
i f(disposing &% conmponents != null)
{

}

base. Di spose(di sposi ng);

}

conponent s. Di spose();

#endr egi on

[WebMet hod]
public string nonster()
{
return "Grr!";
}
}
}

Great, now we have a web servicewhoopee, we're done, right? Wrong! Having a web service is only part of
the battle; it falls into the same category as having a swimming pool and not knowing how to swim. Yeah,
it is impressive, but deep down, there is a nagging feeling of feeling stupid for the unnecessary expense.
What is needed is the knowledge of how to invoke the web service.

Impressive word, invoke; it conjures up images of smoke, candles, pentagrams, and demons, the kind that
could rip a soul from a body and torment it for eternityor, at least, during the annual performance
evaluation. As with invoking a demon, invoking a web service is all a matter of how things are phrased,
knowing both what to ask and how to ask. In both cases, mistakes can lead to, um, undesirable results.

7.6.2. SOAP

Unlike demonology, which requires the use of Latin (of the Roman variety, not the swine variety), invoking
a web service requires the use of a dialect of XML called SOAP. And as with everything even remotely
computer related, SOAP is an acronym standing for Simple Object Access Protocol. Fortunately, with SOAP,
the little elves who name things didn't lie: It is actually simple, and who would have thought it?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

IT 1S, bUT alSO what It does. IT Serves as a wrapper arounad tne request ana any parameters being passed to
the web service. Consider the example of SOAP shown in Listing 7-6, whose purpose is to invoke the web

service from Listing 7-5.

Listing 7-6. SOAP to Invoke the Web Service

<?xm version="1.0" encodi ng="utf-8"?>
<soap: Envel ope xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena-i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Scherma"
xm ns: soap="http://schenmas. xm soap. or g/ soap/ envel ope/ ">

<soap: Body>

<nmonster xm ns="http://tenpuri.org/" />

</ soap: Body>

</ soap: Envel ope>

Doesn't look like much does it? All that the SOAP envelope does is specify the method, nonst er, along with

a namespacewhich, in this case, is the default, basically a placeholder. If the method requires any
parameters, they would be passed as children of that method. For example, let's add the method shown in
Listing 7-7 to the web service from Listing 7-5.

Listing 7-7. Method to Add to the Web Service

[WebMet hod]
public string echo(string text)
{

return text;

}

Beyond changing the method from nonst er to echo, there is the little problem of the parameter named t ext .
Because of the parameter, it is necessary to change the body of the SOAP request to the one shown in
Listing 7-8..

Listing 7-8. The New SOAP Request

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<soap: Envel ope xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena-i nst ance"

xm ns: xsd="htt p: // www. w3. or g/ 2001/ XM_Schema"
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ " >
<soap: Body>
<echo xm ns="http://tenpuri.org/">
<t ext >Di j on Ket chup</text>
</ echo>
</ soap: Body>
</ soap: Envel ope>

Now that we've got the basics down of the SOAP envelope (yes, there is more) let's consider how to deliver
it to the web service. Unfortunately, FedEx and UPS are both out of the question, although it might be fun
to call and ask the rates for delivering a SOAP envelope to a web serviceat least, until they got a restraining
order. This leaves the XM_LRequest object as the best available resource: neither rain, nor snow, and all that

stuff.

Everything necessary to deliver the SOAP envelope is already in there, so the only issue is how to send our
SOAP envelopeafter all, there are no mailboxes with little red flags. Fortunately, we have a good chunk of
the code down already, including the SOAP envelope itself. Instead of beating around the bush, Listing 7-9

shows the client-side JavaScript necessary to invoke the nonst er method of our web service.

Listing 7-9. JavaScript to Invoke the nonster Method

try {
obj XMLHTTP = new XM.Htt pRequest () ;
}
catch(e) {
obj XMLHTTP = new Acti veX(hj ect (' M crosoft. XM.HTTP") ;
}

obj XMLHTTP. onr eadyst at echange = asyncHandl er;

obj XMLHTTP. open(' POST', '"http://|ocal host/ AJAX4/ myServi ce.asnx', true);
obj XMLHTTP. set Request Header (' SOAPAction', " http://tenpuri.org/ nonster');
obj XMLHTTP. set Request Header (' Cont ent - Type',"text/xm"');

obj XMLHTTP. send(soap) ;

function asyncHandl er () {
i f(obj XMLHTTP. readyState == 4)
al ert (obj XMLHTTP. r esponseText);

The first noticeable change from the earlier asynchronous request (refer to Listing 7-2) is that the method

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

service. This leads to the second change; the URI in the open method is now the address of the web service
instead of a filename.

Perhaps the biggest changes are the addition of two set Request Header methods. The first one sets the
SOAPAct i on to the web service's namespace and the method to be invoked. It is important to note that it is
absolutely necessary for the SOAPAct i on header to be identical to the method in the SOAP envelope. If they

aren't identical, it won't work. Personally, | spent a lot of time chasing my tail trying to figure out what was
wrong whenever the methods were different, but, then, | was raised by wolves and have a strong tendency
to chase my tail.

The second set Request Header is the easy one; all that it does is set the Content-type to text/xnl . As if we'd

be doing anything else. But this raises the question of what the response from the web service will look
like, beyond being XML.

Well, there are essentially two possible responses; either it worked or it didn't. If it worked, it will look a lot
like the response shown in Listing 7-10. However, there could be some differences. For instance, it could be
an XML document instead of the "Grrr!", but this is only an example, so why strain ourselves?

Listing 7-10. The Response

<?xm version="1.0" encodi ng="utf-8"?>
<soap: Envel ope xm ns: soap="http://schenmas. xnm soap. or g/ soap/ envel ope/"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schemra- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema" >
<soap: Body>
<nonst er Response xm ns="http://tenpuri.org/">
<nmonsterResul t>G rr! </ nonst er Resul t >
</ nonst er Response>
</ soap: Body>
</ soap: Envel ope>

The second possible response is broken into two parts. The first part is called a SOAP fault. Basically, it
means that something is wrong with the request, such as the methods not being identical. Listing 7-11

shows a SOAP fault that was created when | changed the SOAPAct i on in the request header to xxxx when it
should have been nonster.

Listing 7-11. A SOAP Fault

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<soap: Envel ope xm ns: soap="http://schenmas. xm soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema" >
<soap: Body>
<soap: Faul t >
<faul t code>soap: dient</faultcode>
<faul tstring>
System Web. Servi ces. Prot ocol s. SoapExcepti on: Server
did not recognize the value of HTTP Header
SCAPAction: http://tenpuri.org/ xxxx.
at
Syst em Web. Servi ces. Prot ocol s. SoapllSer ver Pr ot ocol Hel per. Rout eRequest ()
at System Web. Servi ces. Protocol s. SoapServerProtocol .Initialize()
at System Web. Servi ces. Protocol s. Server Prot ocol . Set Cont ext (Type type,
Ht t pCont ext context, HttpRequest request, HtpResponse response)
at System Web. Servi ces. Protocol s. Server Prot ocol Factory. Creat e(Type
type, HttpContext context, HttpRequest request, H tpResponse response,
Bool ean&anp; abort Processi ng)
</faultstring>
<detail />
</ soap: Faul t >
</ soap: Body>
</ soap: Envel ope>

The final two possible responses also cover errors. For example, there could be errors that are not handled
correctly in the web service. This could result in the web service returning text concerning the error instead
of either a SOAP response or a SOAP fault. It is important to take this into consideration when creating a
web service.

Although the language C# was used here for writing the web services, it is important to remember that
these techniques can be applied to a whole slew of languages. In the end, the choice of language is yours,
or it belongs to the powers-that-be, or somewhere in the hierarchy.

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.7. Summary

This chapter covered the object essential to Ajax, the XMLHt t pRequest object in both Gecko-based browsers

and Microsoft Internet Explorer. In addition, the differences between synchronous and asynchronous
requests were described, along with the care and feeding of both types of requests. The question of how to
handle the XML retrieved was described through the use of the XML Document Object Model.

The ever-present Really Simple Syndication was then covered as a potential source of XML. Finally, the
ultimate source of XML (one which you might already have), web services, was described along with SOAP.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 8. Ajax Using XML and XMLHttpRequest

Unlike the previous chapter, which was sort of "mad scientist stuff" with training wheels, here the training
wheels come off. We're free to either fly like the wind or remove large amounts of skin from various body
parts. Based upon my personal experience as a web developer, we'll probably do some of both. From this
chapter forward, nobody, regardless of their personal feelings, can deny that what we do in this chapter
falls under the definition of Ajax.

Up to this point, the only part of Ajax that we've really seen is the JavaScript. Feels like a rip-off, doesn't it?

Don't worry, we're building up to it. It would not do to have the monster rise off the slab in the beginning of
Chapter 1, would it? Alright, I, too have a tendency to fast-forward to the good parts. For example, | don't
care how SG-1 got to Antarctica; | just want to see the ship-to-ship battle over the pole and the battle in
space. Come to think of it, Stargate SG-1 should be required watching for mad scientists because two of
the regular characters could be classified as mad scientists themselves.

The mad scientist stuff covered in this chapter is the basic building block of Ajax applications, the

XMLHt t pRequest object and how to determine what's actually going on. Along with this object is XML,
including how to deal with it on the client and some of the ways to deal with it, such as SOAP (basically, a
way to package XML for transport to and from the server). The final item covered is what to do with the
XML on the client, such as put it in an XML Data Island. To skip ahead a little, because mad scientists like
to describe their diabolical plans, XML Data Islands are one of the methods that can be used to both embed
and bind HTML controls and data. The best part is, if you change one, the other changes.

e prcy ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8.1. Traditional Versus Ajax Websites

Before we go any further, this is a good time to review how the average website works, if only to see the
contrast between it and Ajax websites. With a traditional website, it isn't unusual for the same page to go
through the unload/reload cycle several times before progressing to the next logical page. A number of
valid reasons explain why these unload/reload cycles occur, ranging from HTML select objects whose
contents are based on other select objects to simply bad input caught on the server side. In the end, the
result looks quite a lot like Figure 8-1.

Figure 8-1. The traditional unload/reload cycle

[
Page
[I PH'QE d
[Page
| Page
Page 'y
Page
T l ¥ L J
Web Server
Time

Even in the early days, when the paint wasn't yet fully dry on the World Wide Web, the unload/reload cycle
got old pretty quick, especially at dial-up speeds. Now with the improved bandwidth available, things are
different; it is old right from the start. For example, several years ago, | worked as a consultant for a
company that was trying to get a handle on the whole "web thing," as they referred to it. Their approach
was to wave a magic wand, and, "Poof!"a CICS programmer was now a web developer. Although this
approach worked, after a fashion, it led to some rather interesting web development standards.

Their standard went pretty much along the lines of trying to make web pages as much like the mainframe
CICS pages as possible. These standards were a combination of the weird and the scary. An example of the
weird was that initially all scrolling, regardless of the direction, was forbidden because it was thought to be
unprofessional. This meant that it was necessary to break up tabular web pages into single pagesized

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

On the other hand, some of the scary things were really scary. For example, they believed that there was
nothing wrong with giving scripts write permission to the web server. Let's say, for instance, that a
shopping cart for the web application was needed. Following the local standards, it was perfectly acceptable
for the "temporary" shopping cart to be written to the web server. The rationale was that it was easier to
work with flat files than to store information either on the client side or in a database table. Time
permitting, they also could write a "batch job" to clean up the web server of abandoned shopping carts.

The shopping cart was actually coded in the manner that | described, but, thankfully, it was an absolute
pig. It was both slow and temperamental, with items both appearing and disappearing seemingly at
random in the shopping cart. In fact, my wife would probably say that it was like shopping with me: "Where
did those Parmesan Goldfish and Double-Stuff Oreos come from?"

I still shudder whenever | think that there was actually a chance of that page making it into a production
environment and that management thought it was a perfectly acceptable design. Fortunately, the individual
who developed that application was needed to fix a mainframe production problem, so | was assigned the
task of making it work. | spent maybe a total of 10 minutes attempting to determine what was going wrong
before deciding to try a somewhat more modern approach.

The initial concept was to make the client work for a living and to pad my resumé with a whole bunch of
things that | had only played with in the past, such as the XM_Ht t pRequest object. The result was a

separation between the presentation layer and the web server; it was easily ten times faster than any of
their existing web pages. It could have been faster yet, but, unfortunately, | was unable to bypass the
draconian rules that were in place regarding stored procedures. Stored procedures were, in a word,
forbidden, being considered as both too confusing to write and of no use. Argh! | was one step away from a
three-tiered architecture.

Regardless of the frustration that | felt at the time, | did achieve something wonderful by stumbling upon
what was years later to be named Ajax. The shopping cart application was both similar to and different
from the site's existing pages. The similarity to the existing applications was akin to the similarity between
a soufflé and scrambled eggs. Many of the ingredients are the same; the real differences come from the
technique used in putting the ingredients together. Probably the easiest way to illustrate this difference is
to use a picture, such as the one shown in Figure 8-2.

Figure 8-2. An Ajax application

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Web Server

Time

Very different from Figure 8-1, isn't it? Instead of a page seemingly unloading and reloading forever, the
single page communicates directly with the web server. This greatly reduces the need for the unload/reload
cycle, which has a lot of overhead. Think of it in terms of a trip to the moon. What if the Apollo astronauts
needed to bring every necessity with them? Air, water, food, and anything else that was required had to be
trucked along with them from the Earth to the moon. Now imagine for a moment that the moon had a

breathable atmosphere and McDonald's. All of a sudden, a trip to the moon becomes almost as easy as a
trip to Florida.

Ajax does something similar by establishing an infrastructure on the client side. This infrastructure can be
as simple or as complex as you want. In fact, now is a good time to see what goes into building our Ajax
infrastructure. So queue the storm sound effects and put on the lab coat, and let's get our hands dirty.

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8.2. XML

As you're aware, if only from the cameo appearance in Chapter 2, "Introducing Ajax,” XML stands for

eXtensible Markup Language, but other than the purpose of padding resumés, you're probably not aware of
why XML is used so much. Basically, there are three main reasons for the popularity of XML, not including
the air of mystery surrounding anything with an X in it. (Don't believe me about the air of mystery? What
about The X-Files and X-Men?)

Literally tons has been written about XMLwell, at least when hard copy is taken into account. As for
electronic editions, | can't say because my notebook seems to weigh the same, regardless of the free space
available. For this reason, | won't bore you with the history of XML and how it is the best thing since sliced
bread, or how it cures baldness, because it would be either redundant or an outright lie. Anyone who has
ever developed an application that uses XML knows that there is a good chance of pulling out one's own
hair when attempting to explain XML to fellow developers who still haven't grasped the software equivalent
of the concept of fire. However, | should at least hit the highlights and point out some of the more useful
and obscure topics.

8.2.1. Well Formed

Alright, the concept that XML has to be well formed is not obscure, but it does fall well into the useful
bucket. You'd be surprised at the number of times that I've had to explain the concept of "well formed" to a
particular project leader with mainframe roots. Or, come to think of it, maybe you wouldn't. Let's just say
that, like the Creature from the Black Lagoon, the XML challenged walk among us, and you don't even need
to travel to the now-closed Marineland in Florida to find them. For this reason, it is time for XML 101.

An XML document is well formed when the follow conditions have been met:

« All opening tags either have a closing tag or are self-closing.

« All attributes have values.

« All the values for the attribute are enclosed in either quotes or apostrophes. | should point out,
however, that they need to be consistent. This means no mixing and matching; if a quotation mark
is used on the left side of a value, a quotation mark must be used on the right side.

« Beware of entities! Wow, that sounds spooky, doesn't it? Entities are special characters that need to
be handled with respect because, without special handling, they can be mistaken as something
other than content.

That was relatively easy, wasn't it? | recommend quoting it verbatim whenever it is necessary to explain
the concept to a clueless project leader. But you need to remember to make your eyes big when saying
"Beware of entities!" because they like that.

Alright, now that you're (hopefully) open to XML, the big question is, where does it come from? Well, that
depends on both your web server and database environments; some have built-in methods for producing
XML directly from the result of SQL SELECT statements or stored procedures. If your environment doesn’'t
support that, there is always the possibility of "rolling" your own XML. Because XML is human
readableessentially, textwith a little work, it is possible to create XML, even where XML isn't supported.

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir
proceaure, a littie more eTrort IS required to proauce XML Trom MySUL. HIFST, a stored Tuncton IS required to
build the individual nodes by concatenating the node name and value, as in Listing 8-1. Next, a function is

needed that uses a cursor to step through the results of a query and build the XML using the
aforementioned stored function. Listing 8-2 contains a sample stored procedure to do just that.

Listing 8-1. Concatenating a Stored Function

DELI M TER 3
DROP FUNCTION | F EXI STS "aj ax” . f_xnl Node" $$
CREATE FUNCTI ON “aj ax™ . f_xml Node™ (
/-k
To produce the text representation of an XM. node.
*/
nodeNane VARCHAR(255), /* XM. node nane */
nodeVal ue LONGTEXT, /* XM node val ue */
escape BOOLEAN /* Apply XM entity escaping */
) RETURNS | ongt ext
BEA N
DECLARE xml LONGTEXT; [/* XM text node/val ue conbi nati on */
| F nodeVal ue I'S NULL OR LENGTH(nodeVal ue) = 0 THEN
SET xml = CONCAT('<', nodeNane,' />');
ELSE
| F escape THEN
SET xm =
CONCAT(' <', nodeNane, ' >' , REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(nodeVal ue,
"& ' &anp; '), >t >)< N &IE), '), Tt "), </, nod
eNane, ' >');
ELSE
SET xm = CONCAT(' <', nodeNane,'>',h6 nodeVal ue,' </', nodeNane, "' >");
END | F;
END | F;
RETURN xnl ;
END$$
DELI M TER ;

Listing 8-2. XM Producing a Stored Procedure

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

DROP PROCEDURE | F EXI STS "aj ax . itenSel ect XM." $$
CREATE PROCEDURE "aj ax . itenBSel ect XM." (
guildltem d | NTEGER,
gui | dl d | NTEGER
) BEG N
DECLARE done BOOLEAN DEFAULT FALSE;
DECLARE xml LONGTEXT DEFAULT '<itens>';
DECLARE cCuil dltem d | NTEGER(6) ;
DECLARE cCuil dl d | NTEGER(6);
DECLARE cGui | dName VARCHAR(255) ;
DECLARE clt emNane VARCHAR(255);
DECLARE cltenmDescri ption VARCHAR(255) ;
DECLARE cltenPrice DECI MAL(10, 2);

DECLARE itenCursor CURSOR FOR SELECT b.guild item.id,

b. guild_id,
g. gui | d_nane,
i.item nane,
i.itemdescription,
i.itemprice

FROM guild itembridge b

INNER JON guild g

ON b.guild_id =
g.gquild_id

INNER JON itemi

ON b.itemid =i.itemid

VHERE (guildlitemd I'S NULL

OR guildlitemd =
b.guild_item.id)

AND (guildld I'S NULL
OR guildld =
b.guild_ id);

DECLARE CONTI NUE HANDLER FOR SQLSTATE ' 02000' SET done = TRUE;
OPEN i t enCur sor;

FETCH itenCursor |INTO cGuildltenld,
cGui |l dl d,
cCui | dNane,
cl t emNane,
cltenmDescri pti on,
cltenPrice;

REPEAT
SET xm =
CONCAT(xm ,"<itenp<guild itemid> ,cGQuilditemd, </guild itemid>);
SET xml = CONCAT(xm ,'<guild_id>, cauildld,'</guild_id>");

SET xm =
CONCAT(xm , ' <gui I d_i t em nane>' , REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(cCGu
ildName,' & ," &anp;"')," >, ">"),"'<,"&t;"),"" ", &pos;), ", " ;) ,

</guild_itemnanme>");
SET xml = CONCAT(xm ,f _xm String('itemnane', cltenNane));

SET xm =
CONCAT(xm , ' <i t em descri ption>' , REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(cl
t amacerrintinn 'R '"RamMm-')Y 'S' '"Lnat'Y ' rRIt-TY " Y T Ranace 'Y "M T 20

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

SET xm =
CONCAT(xm , ' <itemprice> ,cltenPrice,'</itemprice></itens');

FETCH i tenCursor I NTO cCuildltemd,

cCui |l dl d,
cCui | dNane,
cl t enNane,

cltenmDescri pti on,
cltenPrice;

UNTI L done END REPEAT;

SET xml = CONCAT(xm ,'</itens>");

SELECT xm ;

CLCSE i tenCursor;
END$$

DELI M TER ;

Here's how it works: The stored procedure shown in listing 8-2 retrieves the result of a query, builds an

XML string containing the opening root element, and then performs the following steps for each row
retrieved:

1. If the item is numeric, concatenate it, wrapped in the appropriate XML tags, to the XML string.

2. If the item is alpha or alphanumeric, the stored function shown in Listing 8-1 is invoked to handle

any entities and wrap the information in appropriate XML tags. The result of this stored function is
then concatenated to the XML string.

After all the rows have been processed, the closing root element is appended to the XML string and the
process is complete. Now that we have a reliable source of XML, let's examine how we can use it in a web
browser.

8.2.2. Data Islands for Internet Explorer

The official party line about XML Data Islands is that they are a "Microsoft-only" technology and, therefore,
will not work with any other browser. Yeah, right. However, before altering the fabric of reality as only a
mad scientist can, let's take a closer look at what XML data islands are and how they work.

As foreboding as the term XML Data Island is, according to the official definition, it is nothing more than
XML embedded somewhere in an HTML document. Not too badsounds about as scary as a bowl of goldfish.
In fact, Listing 8-3 is a basic HTML page with XML embedded smack in the middle of it, with Figure 8-3
showing what it looks like in Microsoft Internet Explorer.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[View full size image]

N Nl Daka lsland Test - Micoossln Inieimet Expleier

Fla [Vaw Feaowks Rl ol

o D M E @ P et @ren @ (3-05 G- LA 0

feidress] CDoourmants ared % we 188 Cosurmndalssan ol e arplen | bupber § el alland hiry

XML rata Island Test

oy Cormpaten

[|_’_':.'.Ij"u PRyt

Listing 8-3. HTML with Embedded XML

<htm >
<head>
<title>XM. Data Island Test</title>
</ head>
<body>
<xm id="di">
<st at es>

<st at e>
<abbr evi ati on>NJ</ abbr evi ati on>
<nane>New Jer sey</ nane>
</ st at e>
<state>
<abbr evi at i on>NY</ abbr evi ati on>
<nanme>New Yor k</ name>
</ state>
<st at e>
<abbr evi ati on>PA</ abbrevi ati on>

~narm~Dnanncvul viani Al nanm s

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/08ajx03_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

</ states>
</ xm >
XM. Data |sland Test
</ body>
</htm >

Piece of cake, isn't it? Right up to the point that somebody opens it in Firefox, as Figure 8-4 illustrates.

Figure 8-4. HTML with embedded XML in Firefox

[View full size image]

dl Tesll - harilla Finefe

X i H b
Fe [Yew G0 Boolnars Jwok Help

G- D TR | Ll i ot stand s tings E dooref Hisonythommey Py Tl s mments ape_bock rcsmpiesichaptestide ¥ @ 6 L
W e Staned L) Lstest Headines |
HT Hew Jermy HY Hew Tork PA Permsybvania XHIL Dais Isbased Toesi

[l’_'ii.'lj"u i P8

8.2.3. Data Islands for All!

Right about now, if you're anything like me, you're leaning a little bit toward despair. And why not? A
bunch of ugly stuff is embedded in the middle of the web page, but remember, just because something is
there does not mean it has to be visible. Multiple methods exist for hiding information on a web page, such
as sticking it in the value of a hidden input box or Cascading Style Sheets (CSS), or using white-out.

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/08ajx04_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

cumbersome. I'd also ignore the third option as being either too permanent or just plain stupid. This leaves
only the second option, Cascading Style Sheets.

The great part about using CSS is that not only is it an elegant solution, but it is also cross-browser
friendly. So let's make a minor modification to the previous web pagenamely, adding the style sheet shown

in Listing 8-4, and take another look at the page (see Figure 8-5).

Figure 8-5. HTML with embedded XML with CSS in Firefox

[View full size image]

dl Tesll - harilla Finefe

X i H b
He R tew G0 Boineds Jok bk
G- D TR | Ll i ot s tand s tings E doaref Hibnythomedey Py T s mments apa,_bock rcsmpiesichaptestide ¥ @ 6 L

W ey Stared L Latest Headines |
AIL Trada Txland Texi

[l’_'ii.'lj"u o P

Listing 8-4. CSS to Hide XML

xm
{

di spl ay: none;
font-size: Opx

}

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/08ajx05_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Okay, now that we have both the XML Data Island and a workable cloaking device for said XML Data Island,
we still need a way to use it. Because with the exception of a "Doomsday Device," something that isn't
being used is essentially useless, and I'm pretty sure that demanding "One million dollars in uncut flawless
diamonds or | use my XML Data Island" wouldn't get much of a responseunless, of course, you count the
nice people with the butterfly nets and jackets with wrap-around sleeves as a response.

The big question is, now that we have it, how do we use it? This is a good although somewhat broad
question that, unfortunately, ignores some of the technical issues yet to be addressed. Perhaps it would be
better to break the single question into two separate questionsfor instance, "Now that we have an XML data
island, how do we find it on the page?" and "How can it be incorporated into the page?”

The first one is easy. Remember the transverse function from Chapter 5, "Ajax Using HTML and

JavaScript"? It was the one that essentially walked through the HTML DOM. Something similar would work.
I, however, prefer the more direct route and would use either the get El enent Byl d method or the

get El enent sByName method. The get El enent Byl d method, which we've used in earlier examples, has the

advantage of returning a single object. However, if for some unforeseen reason the object doesn't exist, an
error will be thrown. On the other hand, the get El ement sByNane method returns an array consisting of those

nodes with a particular name. This requires a little more typing than the other method. The syntax for both
of these methods is shown here:

docunent . get El enent Byl d(' xmi di ')

docunent . get El ement sBy TagNanme(' xm ')

The next question is, "How can it be incorporated into the page?" As with the previous question, there are
several different means to an end. For instance, if you're interested in only replacing existing XHTML
objects with new XHTML objects, you can use get El enent Byl d, as the page in Listing 8-5 shows.

Listing 8-5. Using get El enent Byl d

<htn >
<head>
<title>XM. Data Island Test - Version 2</title>
<style type="text/css">
xm
{

di spl ay: none;
font-size: Opx

}
</styl e>
<script |anguage="javascript">
/*
Repl ace one input textbox with another one froman XM
data island. In addition, the button that invoked this
function is hidden.
*/

function doReplace() {
docunent . get El ement Byl d(' here').i nner HTM. =
docunent . get El ement Byl d(' xm di ') . i nner HTM.;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

J
</script>
</ head>
<body>
<xm id="xmdi">
<i nput type="text" id="new' nanme="new'
val ue="Hel l o, World!" />
</ xm >
XM. Data Island Test - Version 2

<div id="here">
<i nput type="text" id="old" name="ol d"
val ue="Goodbye, cruel world!" />
</ div>

<i nput type="button" id="replace" name="repl ace"
val ue="Repl ace" onclick="doRepl ace()" />
</ body>
</htm >

As neat and nifty as this is, essentially, it is only a variation on the DHTML methods that have been used
for the last several years. To turn heads, what is needed is a way to update the page's content dynamically.
Fortunately, a number of approaches can be taken to accomplish this task, which we cover later. The only
question is how much of a tolerance you have for "mad scientist stuff."

8.2.4. Binding

To those of you with impure thoughts about this heading, I'd like to say, "Shame on you!" It simply refers
to the act of binding XML to a web page’'s HTML. Get your minds out of the gutter. If you've never used this
technique, there are a number of reasons to consider using it. First, when you get the syntax down, it is
relatively easy to understand. Another reason is that, for all of its power, it is quite compact, yet it
separates content from presentation. Finally, it sounds really kinky, and how often do we get to use
something that sounds kinky?

Binding XML to HTML is usually considered a Microsoft Internet Exploreronly kind of thing. In Internet
Explorer, each bound HTML element identifies both the XML data island's ID and the individual node that is
being bound, as shown in Listing 8-6.

Listing 8-6. XML Binding in Internet Explorer

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<head>
<title>XM. Data Island Test</title>
<style type="text/css">
xm
{
di spl ay: none;
font-size: Opx
}
</styl e>
</ head>
<body>
<xm id="xm Dl ">
<pl ugh>
<magi c>xyzzy</ magi c>
</ pl ugh>
</ xm >
XM. Data |sland Test

<i nput type="text" nane="test" datasrc="#xm D"
dat af | d="rmagi c" val ue="" />
</ body>
</ htm >

Each HTML tag to be bound, the input tags in the example above, has both a dat asr ¢ to identify the XML
Data Island and a dat af | d that identifies the specific node. It is important to realize that changes made to
the contents of the text box are reflected in the XML Data Island itself. So type pl over over xyzzy, and the
text in the magic node is pl over . This is a fine, although somewhat flakey, solution if the visitor is using

Microsoft Internet Explorer, but what if they're using Firefox?

The simple answer is to fake it. Using client-side JavaScript, a number of functions add the same

functionality to Firefox, right down to using the same tags. The interesting thing about most of these tools
is that they're usually more stable than Internet Explorer's own built-in binding. In an effort to work around
IE's flakey-ness, | wrote the page shown in Listing 8-7. In addition, I renamed the dat asr c attribute xm di

and the dat af | d attribute xnl node to avoid having Internet Explorer use its own binding.

Listing 8-7. Cross-Browser XML Binding

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<head>
<title>XM. Data |Island Test</title>
<style type="text/css">

xm
{
di spl ay: none;
font-size: Opx
}
</styl e>
<script | anguage="JavaScri pt">
try {

var X = new DOWParser();
var _|E = fal se;

}

catch(e) { var _IE = true; };

/*
Handl e the | ogic necessary to bind HTM. el enents to XM
nodes. Note that in sone instances this binding is a two-way
street. For exanple, if the value in a text box should
change the corresponding value in the XM. data island will
al so change
*/
function _bind() {
i f(argunments.length == 0) {
doBi nd(docunent . body. get El enent sByTagNanme('div'));
doBi nd(docurnent . body. get El enent sByTagName(' i nput'));
doBi nd(docunent . body. get El enent sByTagNane(' sel ect'));
doBi nd(docunent . body. get El enent sByTagNane(' span'));
doBi nd(docunent . body. get El enent sByTagNane('textarea'));
} else {
appl yChange(ar gunent s[0], argunents[1]);
_bind(); /1l Re-bind
}

/*
To handl e data-binds for specific nodes based upon HTM-
el ement type and browser type.

*/
function doBi nd(objects) {
var strTag; /1 HTM tag
var strDl; /1 XM data island id
var str Node; /1 XML node nane
var strVal ue; /1 XML node val ue

for(var i=0;i < objects.length;i++) {
strTag = objects[i].tagNaneg;
strDI = objects[i].getAttribute('xmdi"');
strNode = objects[i].getAttribute('xm node');

if(_IE)
strVval ue =
docunent . get El enent Byl d(strDl). XM_Docunent . sel ect Nodes('//"' +
strNode).iten(i).text;

al ca

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

uvvLulielit . yew ol eligiit pyru{sti v) . yew ol elielit spy rayiNnalig(st noue) |1 | . 1 el miive,

switch(strTag) {
case(' DIV):
case(' SPAN):
obj ects[i].innerHTM. = strVal ue;

br eak;
case(' I NPUT"):
switch(objects[i].type) {
case('text'):
case(' hidden'):
case(' password'):
obj ects[i].value = strVal ue;
obj ects[i].onchange = new Function("_bind(this," +
i.toString() + ")");

br eak;
case(' checkbox"'):
i f(objects[i].value == strVal ue)
obj ects[i].checked = true;
el se

obj ects[i].checked = fal se;

objects[i].onclick = new Function(" _bind(this," +
i.toString() +")");

br eak;
case('radio'):
if(_IE
strVal ue =
docunent . get El enment Byl d(str Dl). XM_Docunent . sel ect Nodes('//"' +
strNode).iten(0).text;
el se
strVal ue =
docurent . get El ement Byl d(str Dl). get El enment sByTagNane(strNode)[0].inner HTM;

i f(objects[i].value == strVal ue)
obj ects[i].checked = true;
el se
obj ects[i].checked = fal se;
objects[i].onclick = new Function("_bind(this,0)");

br eak;

}

br eak;
case(' SELECT"):
case(' TEXTAREA'):
obj ects[i].value = strVal ue;
obj ects[i].onchange = new Function("_bind(this," +
i.toString() + ")");

br eak;

}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7

/*
To handl e changes to the bound HTM. el ements and apply
those changes to the appropriate XM. node.
*/
function appl yChange(obj,index) {
var strDl = obj.getAttribute('xmdi"');
var strNode = obj.getAttribute('xm node');
var strVal ue = obj.val ue;

i f(obj.type == 'checkbox')
i f(obj.checked)
strVal ue = obj.val ue;
el se
strvalue = "'";

if(_IE
docunent . get El enent Byl d(str Dl). XM_Docunent . sel ect Nodes('//"' +
strNode).iten(index).text = strVal ue;
el se

docunent . get El ement Byl d(str Dl). get El enent sByTagNane(strNode)[i ndex].innerH
TM. = strVal ue;

}
}

</script>

</ head>

<body onl oad="_bi nd() ">
<xm id="xm Dl">

<a>

<c>one</c>
</ b>

<c>t wo</ c>
</ b>

<c>t hree</c>
</ b>
</ a>
</ xm >
XM. Data Island Test

<div xmdi ="xm DI" xm node="c"></div>

<div xmdi ="xm DI" xnl node="c"></div>

<div xmdi="xnm D" xnl node="c"></div>

<input type="text" xmdi="xm D" xnlnode="c" val ue="" />

<input type="text" xmdi="xm D" xnl node="c" val ue="" />

<i nput type="text" xmdi="xm D" xnl node="c" val ue="" />

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

N1 Vuuy -~

</htm >

The bi nd() function retrieves all the di v, i nput, sel ect, span, and t ext area elements using the DOM. Next,
the ID of the data island and the elements' names are retrieved from HTML using the xm di and xn node

attributes. The XML node values are then copied to the HTML. Finally, an event handler is set for each
HTML element affected. The purpose of this event handler is to update the XML when the visitor modifies
the HTML value, for instance, by changing the value in an input box.

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8.3. The XMLHttpRequest Object

As interesting as the previous section may have been, remember that it was only an appetizer. Now the
time has come for the entrée: the XM_Ht t pRequest object. If you've never used the XM_LHt t pRequest object, it

is, as described previously, an object that gives web browsers the capability to communicate directly with
the server, without the unload/reload cycleor "blink," as the peasants call it.

8.3.1. Avoiding the Unload/Reload Cycle

The best analogy that | can think of to the XM_Ht t pRequest object is the transporter from any of the various

incarnations of Star Trek. With the transporter, only the personnel essential to a particular mission need go
down to the planet's surface. The alternative would be to either land the Starship, if it were capable of
planetary landings, or send a shuttlecraft. In either case, there would be a lot of unnecessary equipment
and personnel being moved about at great expense, as opposed to the "move only what you need"
philosophy of the transporter.

The XMLHt t pRequest oObject is the web equivalent of the transporter. Why transmit an entire web page when
all that is really needed is the data itself?

The HTML and JavaScript for presentation are already there, so just change the data and we're good to go.
I should point out that although the data being beamed from the server to the client doesn't necessarily
have to be XML, in all these examples, it is XML.

8.3.2. Browser Differences

Before describing the actual syntax necessary to use XMLHTTP, | recommend that you sit down because |
don't want to shock you or anything. Sitting down? Good. The syntax used for the XMLHt t pRequest object is

different in Microsoft Internet Explorer than from every other browser that supports it. In fact, from
Microsoft's perspective, somewhere on the surface of Charon, not even the World Wide Web Consortium
got it right. As a matter of fact, they made exactly the same mistake as Firefox. Fortunately, because the
error is consistent among all noninternet Explorer browsers all that is necessary is to code for IE and
everybody else. Mmm, | wonder if maybe...nah!

The first thing is to create an instance of the XMLHt t pRequest object in the following manner:

try {

var x = new DOWParser ();
var | E = fal se;

}

catch(e) { var |E = true; };
var _XM.HTTP;

if(_IE)
_XMLHTTP = new ActiveXObject(' M crosoft. XMLHTTP') ;

al ca

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Before proceeding any further, a couple of decisions must be made that involve just how we'd like the page
to work.

Synchronous or asynchronous?

GET or POST?

The choice of synchronous or asynchronous is a relatively big one, but it boils down to waiting for a
response or being notified when there is a response. As long as you remember to specify a state change
handler for responses to asynchronous requests, things should work. The GET or POST question is also an

important decision. Fortunately, it is the same decision that has been around ever since the introduction of
HTML forms, so as long as we follow the same rules, everything will be alright.

Let's say, for instance, that we want to retrieve the XML file of states and provinces shown in Listing 8-8

from the server. The first thing that is needed is to determine the browserbasically, Microsoft Internet
Explorer and everyone else. The next task is to create an instance of the XM_Ht t pRequest object, followed by

setting the event handler, for asynchronous requests. Finally, the XM_Ht t pRequest object is opened with
three parameters:

e GCET or PCST

« The URL for the request
« Either TRue for asynchronous or f al se for synchronous

However, you must remember one thing about coding a state change handler. It is a state change handler,
not an "I'm finished" handler. There are other states than "complete"; we're interested in 4, which indicates
that the request is complete. Listing 8-9 shows a page that retrieves the XML from Listing 8-8, storing it in

an XML Data Island and binding it for display purposes.

Listing 8-8. Sample XML Document

<st at es>

<state>
<state_abbreviati on>AB</ st at e_abbrevi ati on>
<st at e_nane>Al bert a</ st at e_nane>
<country_i d>3</country_id>

</ state>

<state>
<st at e_abbrevi ati on>AK</ st at e_abbrevi ati on>
<st at e_nane>Al aska</ st at e_nane>
<country_id>1l</country_id>

</state>

<state>
<stat e_abbrevi ati on>AL</ st at e_abbrevi ati on>
<st at e_nane>Al abana</ st at e_nane>
<country_id>l</country_id>

</state>

<state>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

~DLat C_IIGIIU/I"\I nairioas™~ SL ati C_IIO.IIC/
<country_id>1l</country_id>

</state>

<state>
<st at e_abbrevi ati on>AS</ st at e_abbrevi ati on>
<st at e_nane>Aneri can Sanpa</ state_nane>
<country_id>1l</country_id>

</state>

<state>
<st at e_abbrevi ati on>AZ</ st at e_abbrevi ati on>
<st at e_name>Ari zona</ st at e_nane>
<country_id>l</country_id>

</state>

</ st at es>

Listing 8-9. HTML Document Using an XML Data Island

<htm >
<head>
<title>XM. Data Island Test</title>
<style type="text/css">
xm
{

di spl ay: none;
font-size: 0Opx

}
</styl e>
<script |anguage="JavaScri pt">
try {
var x = new DOWParser ();
var | E = fal se;
}

catch(e) { var _|E = true; };
var URL = 'http://local host/chapter4/states.xn";
var _XM.HTTP;

/*
Perform page initialization.
*/
function initialize() {
if(_IE)
XMLHTTP = new ActiveXhject (' M crosoft. XM.HTTP") ;
el se
_XMLHTTP

new XM_Ht t pRequest () ;
_XMLHTTP. onr eadyst at echange = st at eChangeHandl er

_XMLHTTP. open(' GET', _URL, true); /'l Asynchronous (true)
_XMLHTTP. send(nul 1) ;

}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Handl e t he asynchronous response to a XM.HttpRequest,
including the |oading of the XML Data I sl and.
*/
function stateChangeHandl er () {
i f(_XMLHTTP.readyState == 4) {
var strHTM. = '";
var nodeCount ;

if(_1E) {

docunent . get El ement Byl d(' xm DI ') . XM_Docunent . | oad(_XM_HTTP. r esponseXM.) ;
nodeCount =
docunent . get El ement Byl d(' xm DI ') . XM_Docunent . get El enent sByTagNane(' state_n
ane').l ength;
} else {
document . get El ement Byl d(' xm DI ") .innerHTML = _XM_HTTP. r esponseText;
nodeCount = docunent. body. get El enent sByTagNane(' state_nane'). | ength;

try {
_XMLHTTP. cl ose(); /1 O ose XMHttpRequest
}

catch(e) {}

for(var i=0;i < nodeCount;i ++)
StrHTML += '<div xm di ="xml DI" xml node="st at e_nane" ></di v>';

docunent . get El ement Byl d(' show).inner HTML = strHTM;

_bind(); /1 Bind XM. and HTM
}
}
/*
Handl e the [ogic necessary to bind HTM. el enents to XM
nodes. Note that in some instances this binding is a two-way
street. For exanple, if the value in a text box should
change the corresponding value in the XM. data island will
al so change
*/

function _bind() {
if(arguments.length == 0) {
doBi nd(docunent . body. get El emrent sByTagNanme(' div'));
doBi nd(docurent . body. get El enent sByTagNanme(' i nput'));
doBi nd(docunent . body. get El enent sByTagNane(' sel ect'));
doBi nd(docunent . body. get El enent sByTagNane(' span'));
doBi nd(docunent . body. get El enent sByTagNane('textarea'));
} else {
appl yChange(ar gunent s[0], argunent s[1]) ;
_bind(); /'l Re-bind
}

/*
To handl e dat a-bi nds for specific nodes based upon HTM
el emrent type and browser type.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

FUrivie 1 Uil uubil 11iu| Uyj ©utiL o) 1

var strTag; /1 HIM tag

var strDl; I/ XM data island id
var str Node; /1 XML node nane

var str Val ue; /1 XM. node val ue

for(var i=0;i < objects.length;i++) {
strTag = objects[i].tagNaneg;
strDl = objects[i].getAttribute('xmdi"');
strNode = objects[i].getAttribute('xm node');
if(strDl !'= null &&% strNode != null) {
if(_IE
strVal ue =
docunent . get El enent Byl d(str Dl). XM_Docunent . sel ect Nodes('//"' +
strNode).iten(i).text;
el se
strVal ue =
docunent . get El enent Byl d(strDl). get El enent sByTagNane(strNode)[i].inner HTM,;

swi tch(strTag) {
case('DV):
case(' SPAN):
objects[i].innerHTM. = strVal ue;

br eak;
case(' I NPUT"):
switch(objects[i].type) {
case('text'):
case(' hidden'):
case(' password'):
obj ects[i].value = strVal ue;
obj ects[i].onchange = new Function(" _bind(this," +
i.toString() + ")");

br eak;
case(' checkbox"):
i f(objects[i].value == strVal ue)
obj ects[i].checked = true;
el se

obj ects[i].checked = fal se;
objects[i].onclick = new Function("_bind(this," +
i.toString() + ")");
br eak;
case('radio'):
if(_IE)
strVal ue =
docunent . get El enent Byl d(str Dl). XM_Docunent . sel ect Nodes('//"' +
strNode).iten(0).text;
el se
strVal ue =
docunent . get El enent Byl d(strDl). get El enent sByTagNane(strNode)[0].inner HTM,;

i f(objects[i].value == strVal ue)
obj ects[i].checked true;

el se
obj ects[i].checked

fal se;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

UUJ CculL D|_I J . Ulivi 1 UN — 11TV
Function("_bind(this,0)");
br eak;
}
br eak;

case(' SELECT'):
case(' TEXTAREA'):
obj ects[i].value = strVal ue;
obj ects[i].onchange = new Function("_bind(this," +
i.toString() + ")");

br eak;
}
}

}
}
/*

To handl e changes to the bound HTM. el enents and apply

those changes to the appropriate XM. node.
*/

function appl yChange(obj,index) {
var strDl = obj.getAttribute('xmdi');
var strNode = obj.getAttribute('xm node');
var strVal ue = obj.val ue;

i f(obj.type == 'checkbox')
i f(obj.checked)
strVal ue = obj.val ue;
el se
strvValue = "'";
if(_lE)
docunent . get El ement Byl d(str Dl). XM_Docunent . sel ect Nodes('//" +
strNode).iten(index).text = strVal ue;
el se

docunent . get El enment Byl d(strDl). get El enent sByTagNane(str Node) [i ndex] .
i nner HTML = str Val ue;

}
}
</script>
</ head>
<body onload="initialize()">
<xm id="xnlDl">
</ xm >
XM. Data |sland Test

<di v id="show'></di v>
</ body>
</htm >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

usual "which browser is it?" stuff, creating an instance of the XMLHt t pRequest object, setting an event
handler for the response, and making the request using the request type, the URL, and TRue for
asynchronous. The state change handler, er, handles the response from the server. If you look closely,
you'll see a condition testing the readySt at e property to see if it is equal to 4, which is complete. The reason
for testing the readySt at e property is that this handler fires multiple times for different reasons, ranging
from the equivalent of "I'm sitting here" to "Hey, I'm getting a response.”

The previous example illustrated how to use the XM_Ht t pRequest object to asynchronously obtain an XML

document from a file located on the server. Think of it as something along the lines of a proof of concept
because the odds are against the XML document needed sitting in a folder on the web server. Instead,
there will probably be some script version of Igor sitting around watching Oprah, waiting for some real work
to do.

Several different methods exist for getting data to and from our virtual Igor, ranging from a simple custom
approach to slightly more complex XML-based standards. One of the standards that can be used to get the
virtual Igor moving is called XML Remote Procedure Calling, or XML-RPC, for short. In a nutshell, XML-RPC
is a World Wide Web Consortium Recommendation that describes a request/response protocol. A request is
posted to the web server, and the web server acts upon the request and returns a response. This entire
process might sound rather complex, but it really isn't any more difficult than what we've already
accomplished. The only differences are that instead of a GET, we'll be doing a POST, and the request needs

to be in XML, as shown in Listing 8-10 and the response in Listing 8-11.

Listing 8-10. XML-RPC Request

<?xm version="1.0"7?>
<net hodCal | >
<met hodNane>i gor . get Gui | dNane</ et hodName>

<par ans>
<par anmp
<val ue>
<int>1</int>
</ val ue>
</ par an®
</ par ans>

</ met hodCal | >

Listing 8-11. XML-RPC Response

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<net hodResponse>

<par ans>
<par ane
<val ue>
<string>Mad Scientist</string>
</ val ue>
</ par an®
</ par ans>

</ met hodResponse>

As you've probably deduced from this, the structure of the XML document goes along the lines of
met hodCal | , params, param, value, and, finally, data type (integer, in this instance). The rule for the

structure goes along the lines of one net hodResponse, one params, and at least one param. In addition,
each paramcan have only one valueno more, no less. Values, in turn, have a single node that both
describes and holds the data. Table 8-1 shows the valid data types for XML-RPC.

Table 8-1. XML-RPC Data Types

Type Description

int 4-byte signed integer
P4 4-byte signed integer
bool ean True = 1 and false = 0
sting Character string
doubl e

Double-precision floating point

dat eTi ne. i so8601 | pate/time

base64 Base 64 binary

Of course, communicating a single item of information as shown is pretty rare. More common are more
complex data structures, such as arrays or the record-line structs. Both arrays and structs work pretty
much along the same lines as the simpler example earlier. Listing 8-12 shows an example of an array, and
Listing 8-13 shows an example of a struct.

Listing 8-12. XML-RPC Array

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<array>
<dat a>
<val ue>
<i nt >5</i 4>
</val ue>
<val ue>
<string>Lab Coat</string>
</ val ue>
<val ue>
<doubl e>29. 95</ doubl e>
</val ue>
</ dat a>
</ array>

Listing 8-13. XML-RPC Struct

<?xm version="1.0"7?>
<struct>
<nmenber >
<name>nane_| ast </ nanme>
<val ue>
<stri ng>Wychowsky</ >
</val ue>
</ menber >
<nmenber >
<nanme>nane_fi rst </ name>
<val ue>
<string>Ednond</ stri ng>
</ val ue>
</ menber >
<nmenber >
<name>pur pose</ nane>
<val ue>
<i nt>42</int>
</val ue>
</ menber >
</struct>

The array example shown is merely an elaboration of the earlier simple XML document, but the struct
example is more complex. Along with specifying the parameter type and value, it specifies the name of the
parameter. This might not seem like much, but it is useful in applications with so many parameters that it
becomes difficult to keep their relative positions straight.

This leads us to the question, what does the response look like when the relative positions aren't kept
straight? That's simple enough; a fault like the one in Listing 8-14 is returned.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ARl S m— s s NEvaE— s~ v

<?xm version="1.0"?>
<nmet hodResponse>
<faul t>
<val ue>
<struct>
<nmenber >
<name>f aul t Code</ nane>
<val ue>
<i nt >86</int >
</val ue>
</ menber >
<nmenber >
<nane>f aul t St ri ng</ nane>
<val ue>
<string>
Invalid data type.
</string>
</ val ue>
</ nenmber >
</struct>
</ val ue>
</faul t>
</ met hodResponse>

Now that we know what the request looks like ordinarily, the next step is to modify the previous example,
in which the XSLT was retrieved through the XM_Ht t pRequest object and a GET to use XML-RPC. This time,
however, we skip the examples and progress directly to what is considered by some the protocol of choice
when creating web services: SOAP.

8.3.3. Cleaning Up with SOAP

Other than being something for cleaning, SOAP is an acronym for Simple Object Access Protocol, a protocol
used to communicate between web browsers and web servers. SOAP is probably one of the more difficult
subjects to research on the web, if for no other reason than the multiple websites that deal with the original
SOAP. Nevertheless, when searching, you eventually will obtain the desired results and discover that SOAP
is nothing more than a wrapper for XML.

XML-RPC was designed to provide a standard structure. However, with SOAP, a slightly different approach
was used. Instead of the strict par ans- par am val ue used by XML-RPC, which rigidly ties the information with
the wrapper, SOAP uses a more flexible envelope method. As with a physical envelope, a SOAP envelope
both identifies the recipient and contains the message within. The only real difference between a SOAP
envelope and a physical envelope is that the message contained by a SOAP envelope must be well formed,
like the one shown in Listing 8-15.

Listing 8-15. SOAP Request

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<soap: Envel ope xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena-i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: soap="http://schenas. xm soap. or g/ soap/ envel ope/ " >
<soap: Body>
<getltens xm ns="http://tempuri.org/">
<guild_itemid>string</guild_itemid>
<guild_id>string</guild_id>
</ getltens>
</ soap: Body>
</ soap: Envel ope>

As with the XML-RPC example, there are two possible responses to a SOAP request. Either the web service
worked and returned a SOAP response, as shown in Listing 8-16, or some kind of error occurred, and the

request failed and a SOAP fault was returned. Listing 8-17 contains an example of a SOAP fault.

Listing 8-16. SOAP Response

<?xm version="1.0" encodi ng="utf-8"?>
<soap: Envel ope xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena-i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Scherma"
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ " >
<soap: Body>
<get | tensResponse xnm ns="http://tenpuri.org/">
<getltenmsResul t >xnl </ get |l tensResul t >
</ get |t ensResponse>
</ soap: Body>
</ soap: Envel ope>

Listing 8-17. SOAP Fault

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i nstance"xm ns: xsd="http://ww. w3. or g/ 2001/ XM_.Schema" xnm ns: soap="http://sc
henmas. xm soap. or g/ soap/ envel ope/ ">
<soap: Body>
<soap: Faul t >
<f aul t code>soap: Must Under st and</ f aul t code>
<faul tstri ng>Mandat ory Header error.</faultstring>
<faul tactor>http://|ocal host/ AJAX4/ chapt er 4. asnx</ f aul t act or >
<det ai | >\Web Servi ce coffee break.</detail >
</ soap: Faul t >
</ soap: Body>
</ soap: Envel ope>

downloaded from: lib.ommolkefab.ir

NEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8.4. A Problem Revisited

Now that we have covered some of the necessary background material for using XML, SOAP, and XMLHTTP,
let's apply it to the e-commerce site. As you might recall, the objective of the site is to provide materials
for the often-overlooked market of mad scientists, alchemists, and sorcerers. In Chapter 5, we created

pages using a primitive ancestor of Ajax; now let's give it a shot using the real thing. This doesn't mean
that it is entirely necessary to completely abandon hidden frames. If you decide that you need them, then
by all means, use them; we abandon hidden frames from here on, however.

In addition, we change server-side languages from PHP to C#. The reason for this change isn't that PHP
can't be used to develop web services; it is actually the fact that I'm more comfortable using C# for
developing web services. To those of you who question the presence of C# in an open source book, I have
one word for you: Mono.

No, not the Mono that everybody came down with in high school, college, or, in my case, Bell Labsthe Mono
that is the open source implementation of the .NET Framework. You haven't lived until you've seen a C#
application running under Linux. It doesn't feel wrong; it feels more like when Lieutenant Commander Worf
said: "Assimilate this!" in Star Trek First Contact.

Listing 8-18 contains the web service that will handle the server-side requirements for the remainder of this
chapter.

Listing 8-18. A Web Service

usi ng System
usi ng System Col | ecti ons;
usi ng Syst em Conponent Model ;
usi ng System Dat a;
usi ng System Di aghosti cs;
using System |G
usi ng System Web;
usi ng System Web. Servi ces;
usi ng System Web. Servi ces. Protocol s;
usi ng System Xm ;
using MySql . Data. MySqgl Cli ent ;
usi ng MySql . Dat a. Types;
namespace AJAX
{
/1] <sunmary>
/1] Summary description for nsas.
1] </ summary>
public class nmsas : System Web. Servi ces. WebServi ce
{
const string CONNECTI ON_STRI NG =
"Persist Security
I nf o=Fal se; dat abase=aj ax; server =l ocal host ; user nane=r oot ; passwor d=wyvern";

public nmsas()

{

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7

#regi on Conponent Designer generated code

/1 Required by the Wb Servi ces Desi gner
private | Container conponents = null;

/1l <sunmmary>

/1l Required nmethod for Designer support - do not nodify
/1l the contents of this nmethod with the code editor.
/1] </ summary>

private void InitializeConponent()

{
}

/1] <sunmary>
/1l Cean up any resources being used.
/1l <lsunmmary>
protected override void D spose(bool disposing)
{
i f(disposing &% conponents != null)
{

}

base. Di spose(di sposi ng) ;

}

conponent s. Di spose();

#endr egi on

[WebMet hod]
public Xm Docunent getState(string state_abbreviation)
{

MySgl Connecti on connection =
new MySqgl Connecti on(CONNECTI ON_STRI NG) ;
MySqgl Dat aAdapt er adapter = new MySql Dat aAdapter () ;
Dat aSet dataSet = new Dat aSet ();
Xm Docunent xm = new Xnl Docunent () ;
string query = "CALL stateSel ect (NULL)";
i f(state_abbreviation.Length !'= 0)
query = "CALL stateSelect('" + state_abbreviation + "'

adapt er. Sel ect Conmand =

new MySqgl Command(query, connection);
adapter. Fill (dataSet);

xm . LoadXm (dat aSet . Get Xm ());
connection. C ose();

return(xm);

}

[WebMet hod]

publ i ¢ Xm Docunent get XML(string nane)
{

Xm Docunent xm = new Xnl Docunent () ;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

L1y
{
xm . Load(Server. MapPat h(nane)) ;
}
catch(Exception e)
{
StringWiter witer = new StringWiter();
Server. Ul Encode(nanme, witer);
String encodedNane = writer. ToString();
Xm Node node =
xm . Creat eNode(Xnl NodeType. CDATA, "detai l","");
node. Val ue = encodedNane;
t hr ow(new
SoapExcepti on(e. Message, SoapExcepti on. d i ent Faul t Code, "", node)) ;
}
return(xm);
}
[WVebMet hod]
public Xm Docunent getltens(string guild_itemid,string guild_id)
{

MySgl Connecti on connection =

new MySqgl Connecti on(CONNECTI ON_STRI NG) ;
MySqgl Dat aAdapt er adapter = new MySql Dat aAdapter () ;
Dat aSet dataSet = new Dat aSet ();

Xm Docunent xm = new Xmi Docunent () ;

string query;

if(guild itemid.Length == 0)
if(guild_id.Length == 0)
query = "CALL itentel ect (NULL, NULL)";
el se
query = "CALL itentel ect (NULL," + guild_id + ")";
el se
if(guild_id.Length == 0)
query = "CALL itenBelect(" + guild itemid + ",NULL)";
el se
query = "CALL itenBelect(" + guild_itemid + "," + guild_id +

adapt er. Sel ect Conmmand =

new MySqgl Command(query, connection);
adapter. Fill (dataSet);

xm . LoadXm (dat aSet. Get Xm ());
connection. C ose();

return(xm);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

I'd like to point out that the web service shown handles several different jobs. First, if necessary, it
performs database queries against a MySQL database. Immediately following the queries, it builds the
XHTML required to display the page; finally, it creates a node that contains a line of JavaScript. All this is
then incorporated into a single XML document, which is then sent to the client. Although this might seem a
wee bit strange, there is a method to my madness. As with the hidden frames example, there will be a

single HTML document that also has several different jobs to perform.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8.5. Tabular Information and Forms

With the server side taken care of, there are three ways to proceed with developing on the client side. The
first is to continue developing the way that we've been developing, hand-coding every function. Although
this would give us a really good understanding of how the application works, it would take forever to
develop anything useful.

The second approach is to get online and find a suitable Ajax library, download it, and proceed with
developing. Currently, quite a number of them are out there, such as Sarissa and JSON (pronounced
"Jason"). (However, if memory serves, Jason was the leader or the Argonauts, whereas Ajax was a hero of
the Trojan War.)

The third possibility is to write our own Ajax libraryor, rather, use one that I've already written. This
approach is useful for several reasons, the first being that I'll (hopefully) know exactly how the library
works. The second reason is that | can dissect them in a later chapter so that we'll know exactly how they
work. The final reason is that it will help to pad the page counteh, | mean, to increase the depth of these
examples. Table 8-2 briefly describes the classes in the library, along with their associated methods and

properties.

Table 8-2. Ajax Library Classes

Name Parent Class | Type Description

XMLHt t pRequest Class Constructor

action XMLHt t pRequest | property | GET, POST, or HEAD

asynchronous XMLHt t pRequest | property |true or fal se

envel ope XMLHt t pRequest | property | SOAP envelope

readyState XM.Ht t pRequest | Method | Returns the document readySt at e

get r esponseHeader XMLHt t pRequest | Method | Returns a single HTTP response header

get Al | ResponseHeaders | XM.Ht t pRequest | pethod | Returns all HTTP response headers

responseText XMLHt t pRequest | Method | Returns the SOAP response as text

responsexXm. XMLHt t pRequest | Method | Returns the SOAP response as an XML document
st at eChangeHandl er XM.H t pRequest | Method | Dummy state change handler

set Request Header XMLHt t pRequest | Method | Sets an HTTP response header

renoveRequest Header XM.H t pRequest | Method | Removes a previously set HTTP response header

Send XM.Ht t pRequest | Method | Sends the XMLHt t pRequest

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

insert Cache Method Inserts a name/value pair

retrieve Cache Method | Retrieves a value

purge Cache Method | Purges one or more name/value pairs
names Cache Method | Returns an array of names

XM.Docunent Class Constructor

Load XM.Docunent Method | Loads an\ XML document

serialize XM.Docunent Method | Serializes an XML document to text
DOVDocurnent XM.Docunent Method | Returns an XML document

readyState XM.Docunent Method | Returns the document readySt at e

set Request Header XM.Docunent Method | Sets an HTTP response header

get r esponseHeader XM.Document Method | Returns a single HTTP response header
get Al | ResponseHeaders | XM_.Docunent Method | Returns all HTTP response headers

set Envel ope XM.Docunent Method | Sets the envelope for an XM_Ht t pRequest
sel ect Nodes XM.Docunent Method | Returns an array of XML nodes
SCAPEnvel ope Class Constructor

envel ope SOAPEnvel ope Method | SOAP envelope

Now that the foundations of the application architecture have been covered, albeit lightly, this is a good
time to see what the HTML page built upon that architecture looks like. Figure 8-6 shows what it looks like

in a browser, and Listing 8-19 shows the HTML and JavaScript.

downloaded from: lib.ommolkefab.ir

Figure 8-6. Ajax page

[View full size image]

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/08ajx06_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

FE LM Tew L BOMRANE 100N HeE

& - = 01 [L) etniitscabost Ao e haw # O s |Gl

W Gemng Staned Lol Latest Headiras
k]
1
§
E
b
k]
E
¥
]
i)
]
]
i]
k]
¥
£

| wrows || addiwocer || vewort || Paoone |

[LTI h-i'-

ooTe. [ICREES ® LR R a0

Listing 8-19. Ajax Page

<htnm >
<head>

<title>chapterd4</title>
<link rel ="styl esheet" type="text/css" href="conmon.css"/>
<script | anguage="JavaScript" src="Cache.js"></script>
<script | anguage="JavaScript" src="XMHTTPRequest.|s"></script>
<script | anguage="JavaScript" src="XM.Docunent.js"></script>
<script | anguage="JavaScript" src="SOAPEnvel ope.js"></script>
<script |anguage="javascript">

<l-- <I[CDATA

try {var x = new DOWarser(); var _IE = false; } catch(e)

{ var _|E = true; };

var xm = new XM.Docunent ();
var soap = new SQOAPEnvel ope();
var pageNane = 'ltens';

var itensXHTM.Start = '<table wi dt h="960px" border="1" cell paddi ng="2"
cel | spaci ng="2"><tr cl ass="rowHeader" >

<th wi dth="10% >Gui | d</t h><t h w dt h="70% >| t em Nanme</t h><t h>

ltem Price</th></tr>'

var itensXHTMLEnd = ' </t abl e>'

var itenslnner XHTM. = '<tr class="rowbData" id="data">

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ALl Ul — Alll LI Alll 11lVUUT— Uul 1 U_II(J.IIC ~~ A~ LuU~-~Lu al i UII— 1 TI L -

<div id="val ue"

xm di =" xm DI" xm node="item nane" ></di v></t d>

<td class="nuneric">$<span xm di ="xm DI "

xm node="item price"></td></tr>'

var detail XHTM. = '<di v><div cl ass="rowHeader" style="position: absolute;
left: 50px; right: auto% bottom auto; w dth: 200px; top: 75px"> Guild
Nane: </ di v><di v cl ass="rowHeader" style="position: absolute; left: 50px;
right: auto% bottom auto; w dth: 200px; top: 92px"> Item Nane: </ di v><di v
cl ass="rowHeader" style="position: absolute; left: 50px; right: auto%
bottom auto; wi dth: 200px; top: 110px"> Description: </div><div

cl ass="rowHeader" style="position: absolute; left: 50px; right: auto%
bottom auto; wi dth: 200px; top: 127px"> Price: </div><div

cl ass="rowHeader" style="position: absolute; left: 50px; right: auto%
bottom auto; wi dth: 200px; top: 144px"> Quantity: </div><div

cl ass="rowDat a" style="position: absolute; left: 255px; right: auto;
bottom auto; w dth: 600px; top: 75px" xmdi="xm D"

xm node="gqgui | d_nane" ></di v><di v cl ass="rowData" style="position: absolute;
left: 255px; right: auto; bottom auto; w dth: 600px; top: 92px"

xm di =" xm DI xm node="item nanme" ></di v>

<div class="rowDat a" style="position: absolute; left: 255px; right: auto;
bottom auto; w dth: 600px; top: 110px" xm di="xm D"

xm node="item description"></di v><div class="rowbata" style="position
absolute; left: 255px; right: auto; bottom auto; w dth: 600px; top

127px" >$</di v><i nput
type="text" id="quantity" nane="quantity" val ue=""
onkeyup="restrict(this,\"[0-9]\",\"gi\')" class="rowbData" style="position:
absolute; left: 255px; right: auto; bottom auto; w dth: 600px; top

144px; text-align: right"></div>";

function set Events() {
pagelLoad() ;
}

function pagelLoad(nane, parm ({
switch(true) {

case(argunents.length == 0):
soap.content = '<guild item.id/><qguild_id/>";
case(nane == 'ltens'):

i f(argunments.length !'= 0)
soap. content =
"<guild_itemid/><guild_id> + parm+ '</guild_id>

soap.operator = 'getltens';

xm . set Envel ope(soap. envel ope());

xm . set Request Header (' SOAPAction',"' http://tenpuri.org/getltens');
xm . set Request Header (' Cont ent - Type', "text/xm");

xm . load(' http://1ocal host/ AJAX4/ chapter4.asnx');

wi ndow. set Ti meout (' pageVWait()', 10);

pageNane = '"ltens';
br eak;
case(nane == 'Detail")

soap. content =

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

soap. operator = 'getltens';

xm . set Envel ope(soap. envel ope());

xm . set Request Header (' SOAPAction', ' http://tenpuri.org/getltens');
xm . set Request Header (' Content - Type','text/xm");

xm . load(' http://1ocal host/ AJAX4/ chapter4.asnx');

wi ndow. set Ti meout (' pageWait ()", 10);
pageNane = nane;

br eak;
def aul t:
al ert (nane);

}
}

function pageWait() {
if(xm.readyState() == 4) {
var xhtm = itenmsXHTM.Start;
var input =
docunent . get El ement Byl d(' buttons'). get El ement sByTagNane(' i nput');

if(_IE

docunent . get El ement Byl d(' xm DI ") . XM_Docunent . | oadXM_(xmi . sel ect Si ngl eNode(
"// NewDat aSet').serialize());
el se
docunent . get El enent Byl d(' xm DI "). i nner HTM. =
xm . sel ect Si ngl eNode('// NewDat aSet '). serialize();

swi t ch(pageNane) {
case('ltens'):
for(var i=0;i < xm.selectNodes('//Table').length;i++) {

var reGild = new RegExp(' @uild ,"i');
var reltem = new RegExp(' @tem ,"i"');
var guild =

xm . sel ect Nodes('//guild id)[i].serialize().replace(new
RegExp(" <["<]{0,}>","¢9"),"");

var item =
xm . sel ectNodes('//qguild_itemid)[i].serialize().replace(new
RegExp(' <[*<]{0,}>","g"),"");

xhtm +=
i tenmsl nner XHTM_. repl ace(reGuil d, guil d).replace(reltemitem;

}

docunent . get El ement Byl d(' f ormBody'). i nner HTML = xhtm +
i t ens XHTM_End;

br eak;
case('Detail'):
docunent . get El ement Byl d(' f or mBody'). i nner HTML

det ai | XHTM_;

br eak;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

wi ndow. set Ti meout (' _bind()"', 10);
} else
wi ndow. set Ti neout (' pageWait()', 10);
}

function _bind() {
i f(argunments.length == 0) {

doBi nd(docunent . body. get El enent sByTagNanme('a'));
doBi nd(docunent . body. get El enent sByTagName(' div'));
doBi nd(docunent . body. get El enent sByTagNanme(' i nput'));
doBi nd(docunent . body. get El enent sByTagNane(' sel ect'));
doBi nd(docunent . body. get El enent sByTagNane(' span'));
doBi nd(docunent . body. get El enent sByTagNane('textarea'));

} else {
appl yChange(ar gunent s[0], argunent s[1]) ;
_bind(); /'l Re-bind
}
/*
Functi on: doBi nd
Programrer: Ednond Wychowsky
Pur pose: To handl e data-binds for specific nodes based
upon HTM. el enent type and browser type.
*/
function doBi nd(objects) {
var strTag; /1 HTM. tag
var strDl; /1 XML data island id
var st r Node; /1 XM. node narme
var strVal ue; /1 XML node val ue
var index = new bject(); /1 Object to store infornation
for(var i=0;i < objects.length;i++) {

strTag = objects[i].tagNaneg;
strDl = objects[i].getAttribute('xmdi"');
strNode = objects[i].getAttribute('xm node');

if(strDl !'= null && strNode != null) {
i f(typeof (index[strNode]) == 'undefined")
i ndex[strNode] = -1;
++i ndex[st r Node] ;
if(_IE {
strVal ue =

docunent . get El enment Byl d(strDl). XM_Docunent . sel ect Nodes('//"' +
st rNode) . iten(index[strNode]).text;
} else {
strVal ue =
docunent . get El ement Byl d(strDl). get El enent sByTagNane(strNode) [i ndex[st r Node
]1].1nner HTM;

}

swi tch(strTag) {
case(' A):
case('DV):

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Vuj cuLS|p . ririve — oL val ugc,

br eak;
case(' I NPUT"):
switch(objects[i].type) {
case('text'):
case(' hidden'):
case(' password'):
obj ects[i].value = strVal ue;
obj ects[i].onchange = new Function("_bind(this," +
i.toString() + ")");

br eak;
case(' checkbox'):
i f(objects[i].value == strVal ue)
obj ects[i].checked = true;
el se

objects[i].checked = fal se;

obj ects[i].onclick = new Function(" _bind(this," +
i.toString() + ")");
br eak;
case('radio'):
if(_IE
strVal ue =
docunent . get El enment Byl d(str Dl). XM_Docunent . sel ect Nodes('//"' +
strNode).iten(0).text;
el se
strVal ue =
docunent . get El ement Byl d(strDl) . get El ement sByTagNane(strNode)[0].inner HTM;

i f(objects[i].value == strVal ue)
obj ects[i].checked = true;
el se
obj ects[i].checked = fal se;
objects[i].onclick = new

Function("_bind(this,0)");

br eak;

}

br eak;
case(' SELECT"):
case(' TEXTAREA'):
obj ects[i].value = strVal ue;
obj ects[i].onchange = new Function(" _bind(this," +
i.toString() + ")");

br eak;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ri UUI allnicit . uliuviiu VbeIIUVVbI’\y
Purpose: Restrict keyboard input for the provi ded object
usi ng the passed regul ar expression and option
*/
function restrict(obj,rex,opt) {
var re = new RegExp(rex, opt);
var chr = obj.val ue. substr(obj.value.length - 1);

if('re.test(chr)) {
var reChr = new RegExp(chr, opt);

obj .val ue = obj.value.replace(reChr,"'");

}
}

/*

Functi on: add2Cart

Programrer: Ednond Wychowsky

Pur pose: To add an item quantity pair to an XM. Data

I sland that represents a shopping cart.

*/
function add2Cart () {

var item =
xm . sel ect Si ngl eNode('//guild_itemid).serialize().replace(new
RegExp(" <["<]{0,}>","9"),"");

var quantity = docunent. getEl enentByld(' quantity'). val ue;

var re = new RegExp('<itenp<id> + item +
"</id><quantity>["<]{1,}</quantity></item>' , 'g");

if(re.test(docunent. getEl ementByld(' cart').innerHTM))
docunent . get El ement Byl d(' cart').inner HTM. =
docunent . get El ement Byl d(' cart').innerHTM.. repl ace(re,"'");

docunent . get El ement Byl d(' cart').innerHTM. += '<itenmp<id> + item +
"</id><quantity> + quantity + '</quantity></itenp';

alert('ltemadded to cart."');

}
111> >
</script>
</ head>

<body onl oad="set Event s()">
<t abl e border="0" hei ght ="60px" w dt h="975px" cel | paddi ng="0"
cel | spaci ng="0" | D="Tabl el">
<tr class="pageHeader" hei ght ="40px">
<td width="5%> </td>
<th id="systemNane" class="pageCell" w dth="45% align="Ieft">MW
Systenx/t h>
<th id="pageNane" cl ass="pageCel " w dt h="45% align="right">M

Page</t h>
<td width="5%> </td>
</[tr>
<tr>
<td> </td>
<td> </td>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

</tr>
</tabl e>
<xm id="cart"></xm >
<xm id="xm DI "></xm >
<div id="fornBody" style="color: #000000; background-col or: FOF8FF
font-fanmly: tahoma; font-size: 12px; border: solid 1lpx gray; height:
400px; wi dth: 980px; overflow scroll"></div>
<p />
<di v id="buttons">
<input id="show all" type="button" val ue="Show All'
oncl i ck="javascri pt: pageLoad()" style="height: 22px; wi dth: 110px" />
<input id="add to_cart" type="button" value="Add to cart"
onclick="add2Cart ()" style="height: 22px; w dth: 110px" />
<input id="view cart" type="button" value="View cart"
oncl i ck="javascri pt: pageLoad(' di splayCart')" style="height: 22px; w dth:
110px" />
<i nput id="place order" type="button" value="Place order" onclick=""
style="hei ght: 22px; width: 110px" />
</ di v>
</ body>
</ htm >

Just as in the earlier HTML examples, Listing 8-19 has bound XML data islands and an asynchronous

XMLHTTP request. The biggest differences are that the XML comes from a web service and that the request
is made using SOAP. This means that although all the code that you see here is custom for this book, there
is absolutely no reason why an Ajax front end cannot be written for existing web services. It's like General
Patten said: "Never pay twice for the same real estate."

Please take note of the HTML DI vV tag with the i d attribute; there is something special about it. As you've
probably deduced from the styl e attribute, both its height and its width are static. This is to keep the
buttons along the bottom from moving around. In addition, it provides someplace to display the information
returned from the server, without having to worry about the buttons. An alternative would be to put the
buttons on the top of the page, but scrolling up to find the buttons would get old really quickly. With the

underlying architecture around 90 percent complete, let's revisit the page that displays the items available
for purchase on our site.

8.5.1. Read Only

Again, the purpose of the read-only page is to display our wares to visitors. On the surface, it is just rows
and rows of items that are available for sale. Behind the scenes, however, is a different story. This is a web
service delivering a SOAP response to a request for informationin this instance, the information relating to
the items for sale.

Upon receiving the request, the web service obtains the necessary information from the database, which is
the same MySQL database from the previous chapters. When it has the information, it programmatically
builds the XHTML required to fill the scrollable di v. Updates are not permitted on this page, so only the

XHTML is being sent to the client. Hey, conserve bandwidth wherever you can.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

the SOAP request so that the previous method is invoked. In addition, buttons need to be activated or
deactivated, clicks need to be handled, and, in short, there is more work to do.

Starting with the handler for the page onl oad event, we need to build a SOAP request, send the request to

the web service, and activate the appropriate buttons. In addition, eventually the web service will get back
to the page with its response, which will have to be dealt with. Sound like enough? Let's break it down into
a little more detail.

1. Create a global instance of XM.Docunent () .

2. Build a SOAP request describing the URI of the web service, the method, the namespace, and the
parameters being sent.

3. Send the SOAP request using the XMLHt t pRequest that is incorporated into the XM.Docunent class.

4. Wait for the SOAP response from the web service.
5. Active the appropriate buttons.

6. Populate the page.

Sound pretty easy? Well, it is easy, after the first time. The first time, however, it is kind of difficult to
figure out what is what and what goes where. The first time that | did this, | stumbled a bit on steps 2 and
4. The problem that | had with step 2 was simply a matter of what goes where; a look at the code will
explain everything. Dealing with step 4 is merely a matter of using wi ndow. set Ti meout in JavaScript to

repeatedly call a function after a suitable number of milliseconds to check the readySt at e of the
XMLHt t pRequest . If the readyState is 4, it is complete. Table 8-3 shows the possible readySt at e values and
their meanings.

Table 8-3. readyState
Values

readyState | pescription

0 Uninitialized
- Loading

2 Loaded

3 Interactive

4 Complete

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

tradiuonal wep development, the numper OT lInes OT HI ML Tar exceeds the numbper oT lines oT Javascript.
With Ajax development, it is the other way around, with more JavaScript than HTML. Fortunately, with a
halfway decent library of objects and functions, Ajax development doesn't usually need a lot of custom
code. For example, Listing 8-20 shows the custom JavaScript for our page listing the items available, and

Figure 8-7 shows what it looks like in the browser.

Figure 8-7. Items available

[View full size image]

S chaplerd - Merilla Firefax

B [Yew G0 Hoineds Jwob belp

g - B) @) [rimeiicarosindes. hew “ 0w Gl

W Gemng Staned Lol Latest Headires

I e T e BT
| pimd Scenint [t Brate [e
| ARLUESNEE, AAKNLCED L. e
" Madoomnist Tmhiod i
P Sowntnt |Lad0oat | 12095
P Scentiet | Gunomi Lt Rarl | AT
e o
| Mrsanil et Cabof Anonifdy 8 GO
| acheret [privetone et [s
| schers |Aomonn Sulfils | B
;. i
Scherret [Calum Hednwie | s
| ichesgt Ouck Sher | P AT
| achemit |In | et
Sorom | Shae Sy Chale | 4032
e Ak 27

| o A || Aodiocar || vewcwt || Pacoene |

WL e s

Listing 8-20. Items Available

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/08ajx07_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

"<guild_itemid> + parm+ '</guild_item.id><guild_id/>";

soap. operator = 'getltens';

xm . set Envel ope(soap. envel ope());

xm . set Request Header (' SOAPAction', ' http://tenpuri.org/getltens');
xm . set Request Header (' Cont ent - Type', 'text/xm");

xm .l oad(' http://1ocal host/ AJAX4/ chapt er4. asnx');

wi ndow. set Ti meout (' pageWait ()", 10);
pageNanme = nane;

function pageWait() {
if(xm.readyState() == 4) {
var xhtm = itenmsXHTM.Start;
var input =
docunent . get El ement Byl d(' buttons'). get El ement sByTagNane(' i nput');

if(_IE
docunent . get El ement Byl d(' xm DI ") . XM_Docunent . | oadXM_(xmi . sel ect Si ngl eNode(
"// NewDat aSet').serialize());
el se
docunent . get El enent Byl d(' xm DI "). i nner HTM. =
xm . sel ect Si ngl eNode(' // NewDat aSet'). serialize();

swi t ch(pageNane) {
case('ltens'):
for(var i=0;i < xm.selectNodes('//Table').length;i++) {

var re@ild = new RegExp(' @uild ,"i");
var reltem = new RegExp(' @tem ,"i");
var guild =

xm . sel ect Nodes('//guild_id)[i].serialize().replace(new
RegBxp(' <["<]{0,}>,"g'),"");

var item =
xm . sel ect Nodes('//guild_item.id)[i].serialize().replace(new
RegExp(' <["<]{0,}>","g"),"");

xhtm +=
i tenmsl nner XHTM_. repl ace(reGuil d, guil d).replace(reltemitem;

}

docunent . get El ement Byl d(' f or mBody'). i nner HTML xhtm +

i t emrs XHTMLENd;

br eak;

case('Detail'):
docunent . get El ement Byl d(' f or mBody'). i nner HTML
det ai | XHTM.;

br eak;

}

wi ndow. set Ti meout (' _bind()"', 10);

1 al ca

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

I

The pagewii t () function shown here might seem somewhat formidable, but its sole purpose is to

dynamically build the HTML necessary for the bound table in the page. This is a somewhat slick trick, but
really nothing that hasn't been done for the last five years, although usually for different reasons.

8.5.2. Updateable

Because we've worked out the underlying architecture, an updateable page is merely a variant of the read-
only page shown in the previous example. There are essentially two differences, the first being that,
instead of using SPAN or DI V tags, the bound tags are things such as | NPUT and SELECT. The second

difference is that eventually it will be necessary to send an entire XML data island to the server. The
interesting thing about this is that it doesn't have to be the XML Data Island that is bound to the HTML,
although it could be.

Remember the shopping cart from earlier in the book? Well, instead of using the funky item i d- dash-
quantity in a text box, now the shopping is itself an XML Data Island. Unfortunately, this means that | can't
be lazy and recycle the function from Chapter 5. Alas, it was necessary to write the function shown in
Listing 8-21. It's not anything fancy; in fact, it treats the XML as text. Not only is that a valid option, but it
also works in a cross-browser environment.

Listing 8-21. Add to Shopping Cart Function

/*
To add an item quantity pair to an XM. Data |sland that
represents a shopping cart.
*/
function add2Cart () {
var item =
xm . sel ect Singl eNode('//guild_ itemid).serialize().replace(new
RegExp(’ <["<]{0,}>","9g"),"");
var quantity = docunent. getEl emrentByld(' quantity'). val ue;
var re =
new RegExp('<itemp<id> + item +
"</id><quantity>["<]{1,}</quantity></itenr','qg');

if(re.test(docunent.getEl ementByld('cart').innerHTM))
docunent . get El ement Byl d(' cart').inner HTM. =
docunent . get El ement Byl d(' cart').inner HTM.. repl ace(re,"'"');

docunent . get El ement Byl d(' cart').innerHTM. += '<itenp<id> + item +
"</id><quantity> + quantity + '</quantity></itens';

alert('ltemadded to cart."');

}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The end result of this is the page that was shown in Listing 8-21 and Figures 8-7 and 8-8. It works roughly
the same as the pagewvai t () function from Listing 8-20. The difference is that, instead of adding elements to

the HTML document based upon an XML document, elements are added to the embedded XML document
based upon the actions of the visitor. The page shown in Figure 8-7 lists the items available for purchase,

and Figure 8-8 handles the add to the shopping cart.

Figure 8-8. Item added to the shopping cart

[View full size image]

EX chepierd - Mazilla Flrefax

B [Yew G Boolneis Jel o

':-::' i E ""? g el S e e ¥ 0 e 0L

:E::"_i_hﬂn'rmﬂﬂ 5 celcain Dot
_mm
[eatity: 1

| orows || Addwcat || Viewost || Maocide |

i - parel coscl et 4 1)

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/08ajx08_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8.6. Advantages and Disadvantages

At the risk of repeating myself, and everyone else who has ever uttered a word about Ajax, the advantage
of Ajax is that a web application has the look and feel of a Windows or Linux application. No more does the
visitor have to click and wait for the entire unload/reload cycle to complete. Instead, only the parts of the
page that actually change are updated, which significantly cuts down on the time required for a page
update.

On the other hand, Ajax requires additional work on the often-ignored client side; also, this technique is
extremely browser dependent. Some people will be left out, including developers who fail to recognize that
we are like deep-water sharks; we either continuously move forward or we begin to die. Some users will
also be left behind, such as those who have not upgraded since they purchased their computer in 1995 and
those who are so paranoid that they've disabled JavaScript. But from some points of view, that could be an
advantage: The first group won't buy anything, and the second group is interested in only aluminum-foil
hats.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8.7. Summary

With a couple side trips into the magical worlds of XML, XML-RPC, SOAP, and MySQL stored functions and
procedures, we've touched upon every part of Ajax as it stands at the time of this writing. Alright, maybe
the MySQL part doesn't directly apply to Ajax because it would work perfectly well without it, but it does
illustrate some of the possibilities that exist. As a matter of fact, both Oracle and SQL Server have XML
support built in, so why shouldn't we "fake it" in MySQL?

Unarguably, what does directly apply to Ajax is the use of the XM_Ht t pRequest object, without which the
examples shown in this chapter would be impossible.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 9. XPath

Just what is XPath? Briefly stated, XPath is to XML what an SQL SELECT is to a relational database. This

might at first sound like an oversimplification, but it is essentially true. XPath can be used to locate and
navigate the various parts of an XML document. Unfortunately, as with every other language under the sun,
a number of unique terms should be defined before you can start understanding it. These concepts and
terms might at first seem overwhelming, but they are essential to both querying XML and keeping us
employed.

Although you can choose to fluff over these terms, | actually don't recommend it, if only for the purpose of
job security. Several years ago, | used my understanding of terms to extend a contract when the client,
who is widely known for being frugal, wanted to save money by having their employee mainframe
programmers support a web application. During the turnover process, | described how the site worked
using the precise web and XML terms. To make a long story short, the contract was extended for another
two years.

The first concept is that, even with all the hoopla surrounding all things XML, it is essentially nothing more
than data represented in a tree data structure. Looking at XML from an XPath perspective, XML consists of
only seven types of nodes:

« The root nodeonly one per XML document. All other nodes are child nodes of the root node.
« Element nodes.

« Text nodes.

« Attribute nodes.

« Comment nodes.

« Processing instruction nodes.

- Namespace nodes.

Note that DTDs (Data Type Definitions), CDATA sections, and entity references are not included in this list
of node types, each for different reasons. Because a DTD is not an XML document, XPath is incapable of
addressing it. CDATA, on the other hand, is a part of XML but, by design, is ignored by XPath, as are entity
references.

In addition, it is important to note that the root element and the root node are not different terms for the
same thing. Using the XML document shown in Listing 9-1, an XML document's root node contains both the

processing instruction, <?xm versi on="1.0" encodi ng="UTF- 8" ?>, and the root element, <l i brary>.

Listing 9-1. Example XML Document

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<library>

<book publisher="Del Rey">
<series/>
<title>Way Station</title>
<author>Clifford D. Sinmak</author>

</ book>

<book publisher="Del Rey">
<series>The Lord of the Rings</series>
<title>The Fellowship of the Ring</title>
<aut hor>J. R R Tol ki en</ aut hor >

</ book>

<book publisher="Del Rey">
<series>The Lord of the Rings</series>
<title>The Two Towers</title>
<aut hor>J. R R Tol ki en</ aut hor >

</ book>

<book publisher="Del Rey">
<series>The Lord of the Ri ngs</series>
<title>The Return of the King</title>
<aut hor>J. R R Tol ki en</ aut hor >

</ book>

<book publi sher="Ace">
<series>Lord Darcy</series>
<title>Too Many Magicians</title>
<aut hor >Randal | Garrett</author>

</ book>

<book publisher="Ace">
<series>Lord Darcy</series>
<title>Murder and Magic</title>
<aut hor >Randal | Garrett</author>

</ book>

<book publisher="Ace">
<series>Lord Darcy</series>
<title>The Napoli Express</title>
<aut hor >Randal I Garrett</author>

</ book>

<book publisher="Ace">
<series>Lord Darcy</series>
<title>Lord Darcy Investigates</title>
<aut hor >Randal | Garrett</author>

</ book>

</library>

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.1. Location Paths

For all its power and flexibility, the location path is probably the easiest type of XPath to start with. Using
the XML document in Listing 9-1 as a starting point, let's say that we want to get the root node. This can be

accomplished by using the following XPath:

That's all there is to it. Remembering that there is a difference between the root node and the root
element, the root element can be obtained by either of the two following XPath statements:

/library

/*

The first example implicitly specifies the root element by name. The second example uses a wildcard (*).

Wildcards can be used to increase the flexibility of the XPath by making it unnecessary to know the
individual node names. All that is required is the knowledge that we want the root element.

Before going any further, I'd like to introduce one of those pesky new concepts called a node set. A node
set is a collection of nodes returned by an XPath statement; think SQL and SELECT with multiple rows

returned, and you get the idea. With this in mind, let's say that we want the book elements from the XML
document in Listing 9-1. This can be accomplished by any of the following XPath statements:

/11 brary/ book
/ */ book
[libraryl*

I *1*

/] book

The first four examples shown here are all a logical progression of the basic location path covered
previously. The last example, however, is something else entirely. The double forward slash (//) refers to

descendants of the root node, as well as to the root node itself. For example, //* refers to the root element
and every element node in the document.

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.2. Context Node

A variation on the previous discussion, //*, is the single period (.), which refers to the context node. Most
often used in XSLT to refer to the value of the currently matched node, it works equally well for all node

types.

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.3. Parent Nodes

Sometimes it is necessary to obtain the parent node(s) of a particular node or node set. This is
accomplished by using a double period (..). The following examples show how it can be used to obtain the

parent of the series element (book element).

//series/..
/] book/ series/..

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.4. Attribute Nodes

Attribute nodes are handled in a slightly different manner than the nodes that we have dealt with thus far.
To specify an attribute node, prefix it with an "at" sign (@. This distinguishes attribute nodes from element

nodes. The following XPath statements obtain a node set consisting of all publisher attributes:

/| @ubl i sher
1@

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.5. Predicates

Predicates are the equivalent to an SQL WHERE clause, basically a way to limit the node set returned by
XPath. The basic format is as follows:

XPat h[condi ti on]

Although this isn't very difficult, most mistakes are made in the condition. This is because there is a
difference between evaluating XPath in Altova's XMLSPY XPath Evaluator and evaluating XPath in XSLT. I'll
give you a hint: "well formed". XMLSPY XPath Evaluator uses the standard programming greater than (>)

and less than (<) conditional operators. In XSLT, this would result in the document being not well formed.
Table 9-1 lists the conditional operators used in both.

Table 9-1. Conditional
Operators Used in
XMLSPY XPath Evaluator
and XPath in XSLT

Evaluator | XSLT | Description

> > ; Greater than
< &'t; | Less than
= = Equal to

Not equal to

Using the XPath Evaluator, the XPath statement to return all the books published by Del Rey would be as
follows:

/I book[@ubl i sher = 'Del Rey']

This statement results in a node set of five books: one by Simak and four by Tolkien. But what if we want
only the books that are not part of the Lord of the Rings trilogy? In SQL, we use an "and" condition.
Because XPath supports both "and" and "or,"” we do the same:

/I book[@ubl i sher = 'Del Rey' and series != 'The Lord of the Rings']

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

This results in a single XML book node, Simak's Way Station. An alternate, although more verbose, way of
coding to obtain the same result shows that multiple predicates can be on a single XPath statement:

/1 book[@ubl i sher = 'Del Rey']/series[. !="'The Lord of the
Rings']/..

In addition to being able to obtain nodes and node sets based upon Boolean conditions, it is possible to
retrieve a particular instance of a node. For example, let's say that we want the third book in the library,
The Two Towers. The easiest method of getting it is this:

/1 book] 3]

This method also can be combined with a Boolean condition to obtain the name of the second book in
Tolkien's trilogy:

/I book[series = 'The Lord of the Rings'][2]

Again, the result is The Two Towers.

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.6. XPath Functions

In addition to what we have seen so far, XPath provides functions that either operate on or return one of
the following four data types:

« Boolean
« Numeric
« Node set
» String

9.6.1. Boolean Functions

XPath has four Boolean functions: TRue(), fal se(), not (), and bool ean() . The functions TRue() and fal se()
return exactly what you would expect, true or fal se. The not () takes the Boolean value passed and returns
the opposite. This provides yet another roundabout method to find the book Way Station:

/1 book|[@ubl i sher = 'Del Rey' and not(series = 'The Lord of the
Rings')]

The bool ean() function operates a little differently; it takes the argument and evaluates it, returning either
true or fal se. If the event of the argument is a node set, only the first node is evaluated; the rest are
ignored. Omitting the argument results in the current context node (.) being evaluated, with either TRue or
f al se being returned.

9.6.2. Numeric Functions

Six numeric functions exist: ceiling(), count(), floor(), round(), nunber (), and sun() . Each of the first
three functions accepts a single argument and acts upon that single argument. The cei | i ng() function
returns the smallest integer that is greater than or equal to the argument. The function count () returns the
number of nodes in the argument node set. The fl oor () function returns the largest integer that is less
than or equal to the argument passed. The function round() returns the integer closest to the argument; if
the number is equidistant between two integers, the largest is returned. The nunber () function evaluates

the argument, or context node, and returns either the numeric value of the node or NaN (Not a Number).
The function sun() operates upon the passed node set, first working like the nunber () function and then

adding together the individual values and returning the sum.
9.6.3. Node Set Functions

XPath provides five node set functions: | ast (), position(), | ocal -name(), nane(), and namespace-uri (). The
I ast () function returns the number that corresponds to the last node in a node set. For example, this is the
XPath statement to find the last book:

/I book[l ast ()]

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The position() function returns the number that corresponds to the context node. This provides an
alternate method of retrieving the same result as the | ast () function by coding either of the following two
statements:

/ I book[posi tion() last ()]

/ I book[posi tion() 8]

The I ocal - name() function returns the part of a node name following the colon (:). If there is no colon, the

function works like the nane() function, returning the full node name for either the argument or the context
node. The nanespace-uri () function returns the URI used in a namespace declaration, which is the value of
the xm ns or xnl ns: attribute.

9.6.4. String Functions

XPath provides a plethora of string functions that can be used either singly or in combination with one
another to produce the desired results. These functions are concat (), contai ns(), normal i ze- space(),

starts-with(), stringlength(), substring(), substring-after(), substring-before(), and translate().

The concat () function converts each of the arguments to strings, concatenates them, and then returns the

result. The arguments can be literals, nodes, or node sets. However, with node sets, only the first node is
evaluated. For example, this produces the string " ifford D. Sinmak, Way Station":

concat (//author, ", ', //title)

The function cont ai ns() is used to test a string to determine whether it contains another string as a

substring. This can be useful when only partial information is availablefor example, if you're looking for a
book with "Lord" in the title:

[ltitle[contains(., 'Lord)]

The nornmal i ze- space() function removes leading and trailing whitespace from a string; in addition, any
multioccurrence of whitespace is replaced with a single space. So the string "Post no bills!" becomes
"Post no bills!".

The starts-wi th() function operates in the same manner as the cont ai ns() function, with the sole

exception that only the beginning of a string is tested. So unless the string begins with the substring, the
result is f al se.

The string-1ength() function returns the length of the string argument passed, which is particularly useful

when testing for elements with or without contents. For example, to test for books that are not part of any
series, the following XPath statement could be used:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The next three functions all relate to returning a substring of a string. The substring(), substring-after()
and subst ri ng- bef ore() functions each return a substring of the stri ng argument. The substring() function
has the following two formats:

substring(string, start)

substring(string, start, |ength)

Using the XML document from Listing 9-1, the result of the following XPath would be Stati on:

substring(//book[1]/title,5)

By specifying the substri ng function's | engt h argument in the following manner, the result would be St at :

substring(//book[1]/title,5,4)

Of course, there is an easier way to get the St ati on results. The substring-after() function returns the
entire substring immediately following the specified argument substring. Using the substring-after()

function, it is not necessary to know that the second word starts in position 5; all that is necessary is
knowing that it follows a space, as shown in the following example:

substring-after(//book[1l]/title," ")

The third substring function is substri ng- bef ore(), which returns the entire substring immediately before
the argument string.

The final string function is transl at e(), which substitutes characters in the first string argument based upon
the characters in the second and third strings. This is the basic format:

Transl ate(string, fromstring, to-string)

The capabilities of this function lead to several interesting possibilities. For example, let's say that it is
necessary to convert a string, such as the author of the third book, to all upper case. This can be
accomplished by using the following XPath:

transl at e(// book[3]/ aut hor, ' qwert yui opasdf ghj kl zxcvbnmi , ' QAERTYUI OPAS
DFGHIKLZXCVBNM)

Annthar nneccihla 11ea fAr + v anel At A e tn ramnmua niniiantad chavrantare cirirch ac maviha vinnniale Tha TDaneal At A

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

and omit them from the "to" string as shown in the following example:

transl at e(// book[3]/ aut hor, ' aAeEi | oQuUyY' ,"")
Al of a sudden, J.R R Tol ki en becones J.R R Tl kn.

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.7. XPath Expressions

In addition to material already covered, XPath provides some basic mathematical processing. However, it is
important to remember that all numbers in XPath are floating-point double precision. In addition, there are
special representations for positive and negative infinity, as well as NaN (Not a Number).

XPath also provides the five basic arithmetic operators shown in Table 9-2.

Table 9-2. XPath Arithmetic Operators

Operator | Description

+ Addition

- Subtraction

* Multiplication

div Division

mod Modula, sometimes referred to as the remainder, or what's left over after division

downloaded from: lib.ommolkefab.ir

NEXT B

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.8. XPath Unions

Going back to my original comparison that XPath is to XML what an SQL SELECT is to a relational database,

there is yet another similarity: unions. In XPath, unions return all nodes in both node sets. This can be
quite useful when you're unsure of exactly what you're looking for or working with. For example, let's say
that we want either the child elements of the third book node or the attributes. One method would be to
use two separate XPath statements. Although this method would work, like most programmers, I'm
basically lazy and would rather do it all in one statement by using the union operator (|), as shown here.

//book[3]/* | //book[3]/ @

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.9. Axis

Although it's not usually associated with evil (although cursing is a different story), an axis is a node set
starting at a particular node that is based on the relationship between the nodes in an XML document. The
basic format for using an axis follows:

axi s::cont ext - node

Table 9-3 describes the properties of the various axes available in XPath.

Table 9-3. XPath Axes

AXis Description

ancestor Selects all nodes that are ancestors of the context node, farther up the document
tree, in a direct line to the document root node. The resulting node set is in reverse
document orderin other words, moving up the tree starting from the document's
parent node.

ancestor - or - sel f Selects the same nodes as the ancestor axis. However, it starts with the context
node instead of the context node's parent.

attribute Selects all the context node's attributes, if any.

child Selects all the child nodes of the context node, excluding attributes and namespace
nodes.

descendant Recursively selects all children of the context node and their children until the end

of each tree branch.

descendant-or-sel f | gelects the same nodes as the descendant axis, with the exception of starting with
the context node.

fol I owi ng Selects, in document order, all nodes at any level in the document tree that follow
the context node.

following-sibling | gelects, in document order, all nodes at the same level and with the same parent
node in the document tree that follow the context node.

namespace Selects the namespace nodes that are in scope for the context node. If no
namespace nodes are in scope, the namespace axis is empty.

par ent Selects the parent node of the context node. If the context node is the root node,
the parent axis will be empty.

precedi ng Selects all nodes, in reverse document order, excluding ancestor nodes, in the
document tree that are before the context node.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

the same parent node as the context node.

sel f Selects the context node.

The use of an axis is arguably the most formidable concept for developers new to XPath, who often have
difficulty trying to visualize the results of using an axis. Fortunately, tools such as the XPath Evaluator in
Altova's XMLSPY make it easier to see the results of specifying a particular axis. Starting with the original
XML document from Listing 9-1, the following sections present examples of each of the various axes.

9.9.1. Ancestor Axis Example

XPath Statement

/1 book[3]/ ancestor::*

Result Node Set

l'ibrary

Explanation
Because the context node, the third book node, is a child of the root element, there is only a single ancestor.
9.9.2. ancestor-or-self Axis Example

XPath Statement

/1 book[3]/ ancestor-or-sel f::*

Result Node Set

book
[ibrary

Explanation

In addition to the ancestor nodes, the ancestor-or-sel f axis returns the context node. Also, because the

results are in reverse document order, the context node is the first node in the node set, followed by the
parent node and so on up the tree.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

XPath Statement

/1 book[3]/attribute::*

Result Node Set

publ i sher

Explanation
Because the context node has only one attribute, it is the only attribute returned in the node set.
9.9.4. child Axis Example

XPath Statement

/1 book[3]/ child::*

Result Node Set

series "The Lord of the Rings"
title "The Two Towers"
author "J. R R Tol ki en"

Explanation

The resulting node set consists of the three child nodes of the context node. | have shown the contents of
the individual nodes to distinguish these nodes from similar nodes with different contents.

9.9.5. descendant Axis Example

XPath Statement

/1 book[3]/ descendant : : *

Result Node Set

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

LIl © 1Hic 1w TUVWCI O

aut hor "J.R R Tol ki en"

Explanation

The results shown here are identical to the results from the chi | d axis. This is because of the structure of

the XML document. For instance, if any of the child nodes shown here had children of their own, the
descendant axis would have returned their children, and so on down the line in document order, whereas
the chi | d axis would not.

9.9.6. descendant-or-self Axis Example

XPath Statement

/1 book[3] / descendant -or-sel f::*

Result Node Set

book

series "The Lord of the Rings"
title "The Two Towers"

author "J. R R Tol ki en"

Explanation

As with the descendant axis, all child nodes are returned recursively. However, instead of starting with the
first child, the context node is the first node in the node set.

9.9.7. following Axis Example

XPath Statement

/1 book[3] /follow ng::*

Result Node Set

book

series "The Lord of the Rings"
title "The Return of the King"
author "J.R R Tol kien"

book

series "Lord Darcy"

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ault 11vl nailiuai 1 Jal 1 ©LL

book

series "Lord Darcy"

title "Murder and Magic"
aut hor "Randall Garrett"
book

series "Lord Darcy"

title "The Napoli Express”
aut hor "Randall Garrett”
book

series "Lord Darcy"

title "Lord Darcy Investigates"
aut hor "Randall Garrett"

Explanation

The resulting node set for the fol | owi ng axis is always all the nodes that occur after the context node in
document order.

9.9.8. following-sibling Axis Example

XPath Statement

/I book[3] /foll ow ng-sibling::*

Result Node Set

book
book
book
book
book

Explanation

These five book nodes retrieved using the f ol | owi ng-si bl i ng axis are the same nodes that were retrieved
by the following axis. The only difference is that the f ol | owi ng- si bl i ng axis retrieves only those nodes on
the same level as the context node and have the same parent as the context node.

9.9.9. namespace Axis Example

XPath Statement

/ I book][3] / namespace: : *

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Result Node Set

Enpty node set

Explanation

Because no namespace was in scope on the context node, the resulting node set is empty. However, if one
or more namespaces had been in scope, the resulting node set would have contained those in scope.

9.9.10. parent Axis Example

XPath Statement

/1 book[3]/ parent::*

Result Node Set

[ibrary

Explanation

The resulting node set will always consist of either an empty node set or a single node. For example, the
parent axis of the library element would have retrieved an empty node set.

9.9.11. preceding Axis Example

XPath Statement

/1 book[3] / precedi ng: : *

Result Node Set

author "J.R R Tol ki en"

title "The Fell owship of the R ng
series "The Lord of the Rings"
book

author "Clifford D. Sinmak"

title "Way Station”

series

book

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Explanation

The resulting node set of the precedi ng axis is made up of those nodes that occur in the XML document
before the context node, in reverse document order.

9.9.12. preceding-sibling Axis Example

XPath Statement

/1 book[3]/ precedi ng-si bling::*

Result Node Set

book
book

Explanation

These book nodes retrieved using the precedi ng- si bl i ng axis are the same nodes that were retrieved by
the precedi ng axis. However, the difference is that the precedi ng-si bl i ng axis retrieves only those nodes
that are on the same level as the context node and that have the same parent as the context node.

9.9.13. self Axis Example

XPath Statement

/1 book[3]/sel f::*

Result Node Set

book

Explanation

The sel f axis returns the context node; essentially, the result is the same as if the axis were omitted.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.10. Summary

The material presented in this chapter completely covers the basic parts of XPath: the various types of

paths, context nodes, functions, and axes. As comprehensive as the walkthrough was, it is important to
remember that XPath by itself is not an end. It is merely a means to an end. To make XPath shine, it is
necessary to use it in conjunction with another tool, such as XLST.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 10. XSLT

The movie Star Trek: The Wrath of Khan introduced a device called the Genesis Torpedo that rearranged
matter on a subatomic level to produce life-bearing planets. Talk about your mad scientist stuff! eXtensible
Stylesheet Language for Transformations (XSLT) is the XML equivalent to Star Trek's Genesis; it rearranges
XML at the element level to produce the desired results. However, unlike Genesis, the desired results are
not limited to a single type, but rather can be any conceivable XML or text-based format. In addition,
instead of the original document being modified, a new document is created in the desired format, which
could be identical to the original document or vastly different.

An XSLT document, sometimes referred to as a style sheet, is a well-formed XML document that uses the
XSLT namespace (xnl ns: xsl =ht t p: / / www. w3. or g/ 1999/ XSL/ Tr ansf or m) to describe the rules for transforming

the source XML document into the result XML document. XSLT is always used in conjunction with XPath,
which specifies the location of various elements within the source document. XSLT, on the other hand,
describes the structure of the result document.

Listing 10-1 contains a simple style sheet whose purpose is to simply copy the source XML document to the

result XML document. Because no specific node names are used, this style sheet works equally well with all
XML documents.

Listing 10-1. Simple Style Sheet to Copy the Source XML Document to the Result
XML Document

<?xm version="1.0" encodi ng="UTF-8"?>

<xsl : styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl :out put nethod="xm" version="1.0" encodi ng="UTF-8"/>
<xsl:tenplate match="/">

<xsl:copy-of select="."/>
</ xsl :tenpl at e>

</ xsl : styl esheet >

The XSL style sheet shown in Listing 10-1 works like this. First, the XML declaration describes the version of
XML and the character set encoding. The xsl : styl esheet element describes the document as a style sheet,
and the attributes specify the version of XSLT and the namespace. The xsl : out put element defines the
result document’'s XML declaration. The xsl : t enpl at e defines a relationship between the source XML
document and the result document. For example, the nat ch attribute with the / specifies the source
document's root node; all child elements of this element will be applied to the root element. Finally, the xsl| :
copy- of specifies to perform a deep copy of the context node; in other words, copy the context node and all

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://www.w3.org/1999/XSL/Transform
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

This chapter covers the following topics:

o Recursive versus iterative style sheets
« XPath in the style sheet

« Elements

e XSLT functions

« XSLT concepts

« Client-side transformations

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

10.1. Recursive Versus lterative Style Sheets

One of the things about XSLT is that although the capability exists for iteration (looping), it is strongly
frowned upon by the development community. Instead, recursive templates are considered the acceptable
standard. Although this philosophy requires some changes in the way developers think, it also means that
recursive style sheets are often far more compact and not nested nearly as deep as their iterative
counterparts. At the very least, recursive style sheets are always far more structured, which can be a major
advantage in larger style sheets.

Let's say that our goal is to create an XSLT table and the source XML document shown in Listing 10-2. As a
starting point, there are two distinct courses of action: an iterative style sheet (see Listing 10-3) and a
recursive style sheet (see Listing 10-4). Each of these two approaches to coding style sheets has its own

strengths and weaknesses. For example, the iterative style sheet is about the same length, but it is also
nested much deeper than the recursive style sheet.

Listing 10-2. Source XML Document

<?xm version="1.0" encodi ng="UTF-8"?>
<library>

<book publisher="Del Rey">
<series/>
<title>Way Station</title>
<author>Clifford D. Simak</author>

</ book>

<book publisher="Del Rey">
<series>The Lord of the R ngs</series>
<title>The Fellowship of the Ring</title>
<aut hor>J. R R Tol ki en</ aut hor >

</ book>

<book publisher="Del Rey">
<series>The Lord of the Rings</series>
<title>The Two Towers</title>
<aut hor>J. R R Tol ki en</ aut hor >

</ book>

<book publisher="Del Rey">
<seri es>The Lord of the Rings</series>
<title>The Return of the King</title>
<aut hor>J. R R Tol ki en</ aut hor >

</ book>

<book publisher="Ace">
<series>Lord Darcy</series>
<title>Too Many Magicians</title>
<aut hor >Randal I Garrett</author>

</ book>

<book publisher="Ace">
<series>Lord Darcy</series>
<title>Murder and Magic</title>
<aut hor >Randal | Garrett</author>

</ book>

<book publi sher="Ace">

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

~tLILirc-l1l1i1cC I\lapUI 1 I_I\pl TO2O~ LI LI T~
<aut hor >Randal | Garrett</aut hor>
</ book>

<book publi sher="Ace">
<series>Lord Darcy</series>
<title>Lord Darcy Investigates</title>
<aut hor >Randal | Garrett</aut hor>
</ book>
</library>

Listing 10-3. Iterative Style Sheet

<?xm version="1.0" encodi ng="UTF-8"?>
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl :out put nethod="xm " version="1.0" encodi ng="UTF-8"/>

<xsl:tenplate match="/">
<xsl : el ement nanme="t abl e">

<xsl : for-each sel ect="//book">
<xsl : el enment nanme="tr">

<xsl:for-each select="child::*">
<xsl : el ement nane="td">
<xsl :val ue-of select="."/>
</ xsl : el enent >
</ xsl : for-each>

</ xsl : el enent >
</ xsl : for-each>
</ xsl : el ement >

</ xsl:tenpl at e>

</ xsl : styl esheet >

Listing 10-4. Recursive Style Sheet

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put method="xm " version="1.0" encodi ng="UTF-8"/>

<xsl:tenplate match="/">
<xsl : el enent nanme="t abl e" >
<xsl :apply-tenpl ates sel ect="//book"/>
</ xsl : el ement >
</ xsl:tenpl at e>
<xsl:tenplate match="*">
<xsl:if test="count(ancestor::*) = 1">
<xsl : el enent name="tr">

<xsl:apply-tenpl ates select="child::*"/>
</ xsl : el ement >

</xsl:if>
<xsl:if test="count(ancestor::*) != 1">
<xsl : el enent name="td">
<xsl :val ue-of select="."/>
</ xsl : el enent >
</ xsl:if>

</ xsl:tenpl at e>

</ xsl : styl esheet >

The decision to use an iterative design or a recursive design is more a matter of personal taste and comfort
than any rule imposed from on high. For example, many developers new to XSLT start by writing iterative
style sheets and move to recursive methods only when they become more confident in their abilities. But in
the end, the result of the two style sheets is the same as shown in Listing 10-5.

Listing 10-5. Result from Applying Either Style Sheet to the XML in Listing 10-2

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<library>
<book publisher="Del Rey">
<series/>

<title>Way Station</title>
<author>Clifford D. Simak</author>

</ book>

<book publisher="Del Rey">
<seri es>The Lord of the Rings</series>
<title>The Fell owship of the Ring</title>
<aut hor>J. R R Tol ki en</ aut hor >

</ book>

<book publisher="Del Rey">
<seri es>The Lord of the Rings</series>
<title>The Two Towers</title>
<aut hor>J. R R Tol ki en</ aut hor >

</ book>

<book publisher="Del Rey">
<series>The Lord of the Ri ngs</series>
<title>The Return of the King</title>
<aut hor>J. R R Tol ki en</ aut hor >

</ book>

<book publi sher="Ace">
<series>Lord Darcy</series>
<title>Too Many Magi cians</title>
<aut hor >Randal | Garrett </ aut hor>

</ book>

<book publisher="Ace">
<series>Lord Darcy</series>
<title>Murder and Magic</title>
<aut hor >Randal | Garrett</author>

</ book>

<book publisher="Ace">
<series>Lord Darcy</series>
<title>The Napoli Express</title>
<aut hor >Randal I Garrett</author>

</ book>

<book publisher="Ace">
<series>Lord Darcy</series>
<title>Lord Darcy Investigates</title>
<aut hor >Randal | Garrett</author>

</ book>

</library>

10.1.1. Scope

If you're in a cubical right now, take a moment and look around; you're the absolute ruler of all that you
survey. The desk and its contents all fall under your benevolent influence, as do the coffee cup and its
contents. However, all that is beyond the imaginary line that separates your cubical from the corridor is
beyond the scope of your influence and belongs to another. This simplistic description of office life is
essentially the same as how the concept of scope works in XSLT. In XSLT, scope is applied to both the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

It is best to think of scope along the same lines as local and global variables in other programming
languages. For example, if a variable is defined within an i f statement, it is accessible only inside that i f
statement. Or if a variable is defined within a function (template in XSLT), it can be used only within that
function, not in any subsequent function, unless it is passed as a parameter. Variables defined on the root
level are considered global to the entire XSLT document. Also, while we're on the subject of variables, |
should describe the toughest issue that new developers have with learning XSLT.

10.1.2. Nonvariable Variables

As with other programming languages, XSLT provides the capability to create variables, which can be a
major stumbling block to newcomers. You see, because of the functional nature of XSLT, variables aren't
variable, and after they're created, they cannot be assigned a new value within the same scope. This might
seem at first to be a problem, but it was intentional because XSLT is not a procedural language, like
JavaScript. XSLT variables function more like variables in mathematical functions; you can create them,
you can use them, but you can never change them.

This, probably more than any other aspect of XSLT, has caused more developers to run screaming into the
night, although I'm not sure, having never conducted any research into the subject. After all, how long can
you develop without Jonesing for a fixer, make that needing a way to alter a variable or something along
those lines?

There is, however, a way around this issue; remember what | said about scope? That scope can be both
local and global? Imagine, if you will, a recursive template. Yes, the headaches are starting already, but
bear with me on this. There is absolutely no reason why a template cannot call itself. Okay, that's really
useful information. A template can get around this issue, and it would be even more useful if | were to
explain what a template is.

In XSLT, a template is the equivalent to a function in another language, such as PHP or JavaScript. In fact,
it isn't all that unusual for a template to have a name and be invoked using that name, just like a function.
In addition, templates can accept parameters, just as functions do in other languages. However, there is a
major difference between XSLT functions and, say, JavaScript functions.

In JavaScript, functions are required to have names, whereas, in XSLT, templates aren't required to have
names. This raises the question, if a template doesn't have a name, then how do you call it? The simple
answer is that you don't call it; only named templates can be called. Instead, you apply it. The XSLT appl y-

tenpl at es element has an attribute named sel ect, which uses XPath to specify which nodes in the source
document the template is to be applied to.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

10.2. XPath in the Style Sheet

Even though the XSLT elements in the three style sheets shown earlier are unfamiliar, they illustrate that
XPath is an indispensable part of the style sheet. The recursive style sheet particularly shows this
dependence upon XPath because of the heavy use of t enpl at e and appl y-t enpl at es elements for pattern

matching, and the i f elements for flow control. But because you read the previous chapter on XPath, all

this XPath stuff is already old hat. You did read it, didn't you? Skipping ahead to the good parts, eh? For
shame, no soup for youl!

Before continuing, I'd like to take a moment to explain something to one of my former co-workers who
might be reading this (Yeah, right! Like that would ever happenthe last technical book he read was Curious
George Builds a Web Page) before continuing. First, there is no difference in XPath, regardless of where it is
being used. The XPath in Europe is the same as the XPath in Asia, which is the same as the XPath in North
America, and if something on the Mars Rovers use XPath, then that is also the same. It is called a standard,
which means that it is standard throughout the solar system. Sorry to those of you who understand the
concept of standards; | just needed to exercise (exorcise) that particular demon for personal reasons.
Besides, it was getting a little pudgy, and who wants a pudgy demon anyway?

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

10.3. Elements

Regardless of whether you consider XSLT to be a markup language, a scripting language, or just a pain in
the fanny, it is, first and foremost, a dialect of XML and, therefore, must adhere to all of XML's rules. And |
mean all of XML's rules because if it isn't well formed, then end of game. Fortunately, we've been there and
done that already, which gives us the opportunity to look at the various XSLT elements available to us.

Table 10-1 provides a high-level overview of these elementsnot quite an orbital overview, but close. Don't

worry; we cover some of these elements in much greater detail shortly.

Table 10-1. XSLT Elements

Element

Attributes

Description

appl y-inports

Applies external templates that have
been imported using the i nport element.

appl y-tenpl ates

sel ect optiona
nmode opti ona

Applies templates that were defined
locally.

attribute

nane
nanespace optiona

Specifies an attribute for the preceding
element.

attribute-set

name
use-attribute-sets
optiona

Defines a named set of attributes that
can be used to specify a list of attributes
en mass instead of individually.

call-tenplate

name

Used to invoke a named template.

choose

Indicates the beginning of a case
structure.

comment

Used to create comments in the output
document.

copy

use-attribute-sets
optiona

Copies the current node and
namespaces to the output document.
However, it does not copy the children
of the current node.

copy- of

downloaded from: lib.ommolkefab.ir

sel ect

Copies the node or nodes specified by
the sel ect attribute to the output

document.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

opti onal

digit optional

gr oupi ng- separ at or
opti onal

infinity optional
m nus-si gn opti onal
nane opti onal

NaN opt i onal
pattern-separat or
opti onal

per-mlle optional
percent opti onal
zero-digit optional

formatted usi'nrg the f or mat - nunber ()
function.

el ement

name Used to create an element in the output
nanespace document.
use-attribute-sets
opti onal
fal I back Specifies to the XSL processor
alternative code to run in case an XSL
element is not supported.
for-each sel ect Loops through the node set specified by
the sel ect attribute.
if test Executes the enclosed XSL when the
result of the test is TRue. It is important
to remember that no el se clause exists
for the i f element. In these instances,
the choose, when, and ot her wi se
elements should be used.
i mport hr ef Imports an external style sheet, which is
the same as including a style sheet.
i ncl ude hr ef Includes an external style sheet, which
is the same as importing a style sheet.
key name Defines a search key that is used to
mat ch locate specific nodes based upon their
use value or the value of another node.
message term nate opti onal Writes a programmer-defined message

to the output document.

nanespace-al i as

downloaded from: lib.ommolkefab.ir

styl esheet-prefix
resul t-prefix

Replaces the namespace specified with
the styl esheet - prefi x attribute on the

input stylesheet with the namespace
specified with the resul t - prefi x

attribute on the output document.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

count optional

fromopti onal

val ue opti onal

format opti onal

| ang opti onal

| etter-val ue optional

gr oup- separ at or opti onal
groupi ng-si ze opti onal

output document.

ot herw se

Defines the default action for a case
structure (choose).

out put

met hod opt i onal

versi on opti onal

encodi ng opti onal

om t-xm -decl aration
opti onal

st andal one opti onal
doct ype- publ i c optional
doct ype- syst emopti onal
cdat a- secti on-el enents
opti onal

i ndent optional

medi a-t ype opti onal

Defines the format of the output
document.

par am

name
sel ect optional

Used to specify tenpl at e, styl esheet,
and transf or minput parameters.

preserve-space el ement s Defines the elements for which
whitespace is to be preserved on the
output document.
processing-instruction | nane

Writes an XML processing instruction to
the output document.

sort

sel ect optional

| ang opti onal

dat a-t ype opti onal
order optional
case-order optional

Sorts a node set.

downloaded from: lib.ommolkefab.ir

excl ude-result-prefixes optional
ver si on

strip-space el enent s Defines the elements for which
whitespace is not to be preserved on the
output document.
styl esheet i d optional Defines the XSL document as a style
ext ensi on- el ement -pr ef i xes sheet to the XSLT processor.
opti onal

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

nane opti onal an XSL functioh.
priority optional
node opti onal
text di sabl e- out put - escapi ng opt i onal Indicates that the enclosed is text.
transform id opt i onal Defines the XSL document as a style
ext ensi on- el ement - prefi xes sheet to the XSLT processor, identical to
opti onal the styl esheet element.
excl ude-result-prefixes optional
versi on
val ue- of sel ect Writes the information specified by the
di sabl e- out put - escapi ng opti onal sel ect attribute to the output document.
variabl e name sel ect optional Defines either a local or global variable
to the XSLT processor.
when test Defines the individual cases of a case
structure (choose).
wi t h-param name sel ect opti onal Defines the parameters to a template.

10.3.1. In the Beginning

In the beginning, all your data was painted on the wall of a cave somewhere, and it was good. Depending
on the available light, it was human readable, self-describing, colorful, and even pretty. Unfortunately,
civilization has advanced to the point that cave paintings just can't express the sheer volume of information
available to us today. Enter XML, which, like its distant ancestor, is also human readable, self-describing,
and, if you're using an XML editor such as Stylus Studio, both colorful and pretty.

Although it might seem to some people that we've come full circle in our data storage, from cave paintings
to XML, there is a distinct advantage to XML. Unlike a cave painting, which pretty much just sits there on

the wall looking about the same as it did 40,000 years ago, XML is a bit more portable. With the addition of
XSLT, XML is also elastic and flexible. I'm sold on the concept, how about you? Good. The only issue
remaining is how to start developing an XSL style sheet.

All XSL style sheets begin with one of two elements, either the styl esheet element or the TRansform

element. They are interchangeable because both do exactly the same thing, although I recommend not
using the transf or melement during months with r's. Wait, maybe that was oystersl have a tendency to

confuse the two.

The next part of the style sheet is the out put element, which essentially describes the format of the output.

This is where you make the commitment of whether the output document will be XML, HTML, text, or,
gasp, even XSLT. Not big on commitment? Not a problem. Just leave out the out put element, and the

output defaults to XML. Of course, come to think of it, that, too, is a form of commitment.

The next "standard" part of an XSL style sheet is the first template, the one that starts the whole ball
rolling. However, before we get there, | should point out that between the first element and the first

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

defined in a style sheet and what effect location can have on their behavior.

Table 10-2. XSL Style Sheet Elements
and Where They Can Be Defined

Element

Defined Where

appl y-i nports

Either root or element level

appl y-tenpl at es

Either root or element level

attribute

Element level

attribute-set

Root level

call-tenplate

Element level

choose Element level
comment Either root or element level
copy Element level
copy- of Element level
deci mal - f or mat Root level

el enent Element level
fal | back Element level
if Element level
i mport Root level

i ncl ude Root level
key Root level
nessage Element level
nanespace-al i as Root level
nunber Root level

ot herw se Element level
out put Root level
preserve-space Root level
processing-instruction | Rgot level

sort

downloaded from: lib.ommolkefab.ir

Element level

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

styl esheet Root level
tenpl ate Root level
t ext Element level
TRansf orm Root level
val ue- of Element level
vari abl e Element level
when Element level
wi t h- param Element level

At last we've come to the first template of the style sheet. Unfortunately, it is kind of anticlimatic because
99 percent of all style sheets start with a t enpl at e element that looks just like this:

<xsl :tenplate match="/">
Boring, isn't it? Yes, you can make it more specific and have it look for a particular element that should be
in the input document. | don't recommend it, though, because it will only cause problems someday when,

for some reason, that specific element is not in the input document. Then comes the inevitable yelling, the
finger pointing, and the peasants with pitchforks and torches again. Not a pretty picture.

10.3.2. Templates and How to Use Them

After the initial template, the one that establishes the current location as the root, what are some of the
other ways to use templates?

Earlier | stated that templates could have names, although it wasn't required. In XSLT, these named
templates fill pretty much the same niche that functions do in a language such as JavaScript or PHP. They
can accept parameters and return results. In my opinion, if it looks like a duck and walks like a duck, the
odds are, it is a duck. Unless it is a goose, but that is kind of like duckzilla, so it isn't a problem.

Let's take a look at what a typical, although useless, named function looks like. Shown in Listing 10-6, its
purpose is to accept two numbers, add them, and return the result.

Listing 10-6. Named Template

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<xsl : param nane="a" />
<xsl : param nanme="b" />

<xsl :val ue- of sel ect="nunber ($%$a) + nunber($b)" />
</ xsl :tenpl at e>

Thankfully, this is one of those times when something both seems simple and actually is simple, as long as
you remember that dollar signs aren't required at definition but are required when used. However, the
same thing can't always be said for templates invoked using XPathbut before we go there, perhaps it would
be better to take a look at two more mundane templates. Using the XML shown way back in Listing 10-4,

the style sheets shown in Listings 10-7 and 10-8 do exactly the same thing in a slightly different manner.

Listing 10-7. A Pure XSLT Example

<?xm version="1.0"7?>

<xsl : styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : preserve-space el enents="text"/>

<xsl:tenplate match="/">

<xsl : el enment nane="div">
<xsl :apply-tenpl ates select="//library"/>
</ xsl : el ement >

</ xsl :tenpl at e>
<xsl:tenplate match="Ilibrary">

<xsl : el ement nane="t abl e">
<xsl:attribute name="w dt h">100%/ xsl : attri but e>

<xsl| : for-each sel ect ="book">
<xsl : el ement nanme="tr">

<xsl|:for-each select="*">
<xsl : el ement name="td">
<xsl:attribute name="w dt h">33%/ xsl : attri bute>

<xsl : val ue-of select="."/>

<xsl:if test="string-length(.) = 0">
<xsl:text> </ xsl:text>
</ xsl:if>
</ xsl : el ement >
</ xsl :for-each>

</ xsl : el enent >
</ xsl : for-each>
</ xsl : el enent >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

~I ADI1 . LCTIIYI AL T~

</ xsl : styl esheet >

Listing 10-8. An XSLT/XHTML Hybrid Example

<?xm version="1.0"7?>

<xsl : styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : preserve-space el enents="text"/>

<xsl:tenplate match="/">

<xsl : el enment nane="div">
<xsl :apply-tenpl ates select="//library"/>
</ xsl : el enent >

</ xsl:tenpl at e>
<xsl:tenplate match="Ilibrary">

<xsl : el ement nane="t abl e">
<xsl:attribute name="w dt h">100%</ xsl : attri but e>

<xsl : for-each sel ect ="book" >
<tr>
<xsl :for-each select="*">
<td wi dt h="33% >
<xsl :val ue-of select="."/>

<xsl:if test="string-length(.) = 0">
<xsl:text> </xsl:text>

</xsl:if>
</td>
</ xsl : for-each>

</[tr>
</ xsl : for-each>
</ xsl : el erent >
</ xsl:tenpl at e>

</ xsl : styl esheet >

Confused? Don't be. Because XSLT and XHTML are both dialects of XML, there is absolutely nothing wrong
with mixing the two. At first glance, the style sheet shown in Listing 10-8 might seem to be a little like a
mutt, part this and part that. But as weird as it seems, it is much more common than the purebred solution

Frmnina | imdinm~ 1N 77

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Earlier | stated that templates invoked using XPath aren't always simple because, at times, more than one
template matches. If you don't expect this, it could, at the very least, be an embarrassment. However,
there is a way to specify which template to use when more than one matches the criteria.

The node attribute, which is on both the t enpl at e and appl y-t enpl at es elements, is used to specify which
template to use when a particular sel ect could result in more than one match. Listing 10-9, a merging of
Listings 10-7 and 10-8, has an example of this. The only difference, other than the merging, is the addition
of a node attribute for the nutt template and a new appl yt enpl at es element, also with a node attribute.

Listing 10-9. Distinguishing Template Matches Using Mode

<?xm version="1.0"?>

<xsl : styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl| : preserve-space el enents="text"/>

<xsl:tenplate match="/">

<xsl : el enent name="div">

<xsl :apply-tenmpl ates select="//library" />

<xsl :apply-tenpl ates select="//library" node="nmutt" />
</ xsl : el enent >

</ xsl:tenpl at e>
<xsl:tenplate match="Ilibrary">

<xsl : el ement name="t abl e" >
<xsl :attribute nane="w dt h">100%/ xsl : attri but e>
<xsl : for-each sel ect ="book" >
<xsl : el ement nanme="tr">

<xsl|:for-each select="*">
<xsl : el ement name="td">
<xsl:attribute nane="w dt h">33%/ xsl : attri bute>

<xsl : val ue-of select="." />

<xsl:if test="string-length(.) = 0">
<xsl:text> </xsl:text>
</xsl:if>
</ xsl : el enent >
</ xsl :for-each>
</ xsl : el enment >
</ xsl : for-each>
</ xsl : el enent >

</ xsl:tenpl at e>

<xsl:tenplate match="Ilibrary" node="nutt">

<xsl : el ement nane="t ahl e" >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<xsl :for-each sel ect ="book" >
<tr>
<xsl:for-each select="*">
<td wi dth="33% >
<xsl :val ue-of select="." />

<xsl:if test="string-length(.) = 0">
<xsl:text> </xsl:text>

</ xsl:if>
</td>
</ xsl : for-each>

</[tr>
</ xsl : for-each>
</ xsl : el enent >
</ xsl : tenpl at e>

</ xsl : styl esheet >

The node attribute provides additional criteria for the match. Instead of the XPath being the only criteria,

the mode is also used. So a simple XPath match alone is not enough; there also has to be a match to the
mode. This leads to some interesting possibilities, such as when the mode name is unknown. Just use an
asterisk as the mode name and use the mode to indicate the depth, or something along those lines.

10.3.3. Decisions, Decisions

As in the majority of programming languages, XSLT provides flow control in the way of decision structures.
Excluding appl y-t enpl at es, which can be used for some similar functionality, there is the i f element and a

case structure, called choose. Basically, it is all easy stuff, but two issues with XSLT decisions can cause
many developers problems.

The first of these issues is how to test for greater than and less than, and still keep the document well
formed. Fortunately, the previous chapter covered this problem when discussing XPath. The only remaining
issue is one that causes quite a number of headaches: a lack of an el se for the i f element.

Lack of an el se might seem like, if not an insurmountable problem, at least an annoying problem. Because
of this lack, the choose element is used more often in languages with an el se. Listing 10-10 is an example
of a workaround for this lack of an el se statement.

Listing 10-10. A Workaround

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl :tenplate match="/">
<xsl :vari abl e name="val ue" select="7" />

<xsl : el enent name="div">
<xsl : choose>
<xsl :when test="($value nod 2) = 0">Even</xsl:when>
<xsl : ot herwi se>Not even</ xsl : ot herw se>
</ xsl : choose>
</ xsl : el enent >
</ xsl:tenpl at e>

</ xsl : styl esheet >

10.3.4. Sorting Out Looping

XSL style sheets have a built-in mechanism for sorting node sets, which can be rather useful when

information needs to be arranged in a specific sequence. As with everything in XSL, sorting is accomplished
through the use of an element, which, appropriately, is called sort. Interesting how these things work out,

isn't it?

Listings 10-11 and 10-12 both show examples of the use of the sort element, with a couple minor

differences. For example, Listing 10-11 uses a f or - each element to navigate through the node set, which is
sorted into ascending sequence. In Listing 10-12, an appl y-t enpl at es is used, and the node set is sorted

into descending sequence.

Listing 10-11. A for-each Sort Example

<?xm version="1.0"?>
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl :tenplate match="/">
<xsl : el enent nanme="t abl e">
<xsl:attribute nane="w dt h">100%/ xsl : attri but e>

<xsl:for-each select="//book">
<xsl :sort select="title" order="ascendi ng" />

<xsl : el erent nanme="tr">
<xsl :for-each select="*">
<xsl : el enent name="td">
<xsl :val ue-of select="." [>
</ xsl : el enent >
</ xsl : for-each>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

~I ADIl . 1 VI T TaAull~

</ xsl : el enent >
</ xsl :tenpl at e>

</ xsl : styl esheet >

Listing 10-12. Atenpl ate sort Example

<?xm version='"1.0"?>
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl:tenplate match="/">
<xsl : el ement name="t abl e">
<xsl:attribute nane="w dt h">100%/ xsl : attri but e>

<xsl :appl y-tenpl ates sel ect ="//book" >

<xsl:sort select="title" order="descendi ng" />
</ xsl : appl y-t enpl at es>

</ xsl : el ement >

</ xsl :tenpl at e>
<xsl :tenplate match="*">

<xsl : el enent name="tr">
<xsl:for-each select="*">
<xsl : el ement name="td">
<xsl : val ue-of select="." />
</ xsl : el enent >
</ xsl : for-each>
</ xsl : el enent >

</ xsl :tenpl at e>

</ xsl : styl esheet >

downloaded from: lib.ommolkefab.ir

NEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

10.4. XSLT Functions

Unlike XPath, which has a plethora of functions, the number of XSL functions is significantly lower. Mostly,
the reason for this is that the XPath functions are fully available to supplement the few functions shown in
Table 10-3.

Table 10-3. XSL Functions

Function Description

Current () Returns only the current node in a node set

docurent () Used to access an XML document other than the source document

el ement - avai | abl e() Returns a TRue condition if the passed string is a supported XSL element
For mat - nunber () Returns a formatted numeric string using a number and a pattern as input

function-available() |Returns atrue condition if the passed string is a supported XSL or XPath function

gener at e-i d(node) Returns an ID that is unique to the node passed, regardless of how the node was
obtained

key() Returns a node set that was previously indexed using the key element

System property() Returns a value for a specific system property

unparsed-entity-uri() |Returns the URI of an unparsed entity

e prcy ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

10.5. XSLT Concepts

When developing an XSL style sheet, | usually find myself using only two of the XSL functions shown
earlier: the key() function and the generate-i d() function, both of which are indispensable when doing

something unique to XSL style sheets. | am referring to something called Muenchian grouping.

Muenchian grouping, invented by Steve Muench, the XML Evangelist of the Oracle Corporation, is a method
of grouping nodes based upon their values. Although | can describe how it works, it is probably a better
idea to take a look at the example of Muenchian grouping shown in Listing 10-13. After that, we take it

apart to see how it works.

Listing 10-13. A Muenchian Grouping Example

<?xm version="1.0" encodi ng="UTF-8"?>

<xsl : styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put nethod="htm " version="1.0" encodi ng="UTF-8" indent="yes" />
<xsl : key nanme="keyBook" match="book" use="series" />

<xsl :tenplate match="/">

<xsl : el enent nane="t abl e">
<xsl:attribute name="w dt h">100%</ xsl : attri but e>

<xsl : appl y-tenpl ates sel ect="//book[1] " node="header" />
<xsl :apply-tenpl at es sel ect ="//book[generate-id(.) = generate-
i d(key(' keyBook' ,series)[1])]" />
<xsl : apply-tenpl ates sel ect="//book[string-length(series) =
0]/ series" [>
</ xsl : el emrent >

</ xsl:tenpl at e>
<xsl : tenpl ate mat ch="book" >
<xsl : vari abl e nanme="key" >
<xsl :val ue-of select="series" />

</ xsl :vari abl e>

<xsl : apply-tenpl ates sel ect="//series[node() = $key]" />
</ xsl :tenpl at e>
<xsl :tenplate match="series">
<xsl : el enent name="tr">

<xsl :appl y-tenpl ates sel ect ="parent::node()/*" node="cell" />
</ xsl : el enent >

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

~I ADI . LCIIIJI ailw c -~
<xsl :tenplate match="*" node="cel |l ">

<xsl : el enent name="td">
<xsl:attribute nane="align">left</xsl:attribute>

<xsl : val ue-of select="." />
</ xsl : el enent >

</ xsl:tenpl at e>

<xsl :tenpl ate mat ch="book" node="header" >

<xsl : el enent name="tr">

<xsl :apply-tenpl ates select="./*" node="col uimHeader" />

</ xsl : el ement >

</ xsl :tenpl at e>

<xsl :tenplate match="*" node="col unmmHeader" >
<xsl :vari abl e

name="| ower Case" >qwer t yui opasdf ghj kl zxcvbnnx/ xsl : vari abl e>

<xsl :variabl e

nane="upper Case" >QNERT YUl OPASDFGHIKLZXCVBNIVK/ xsl : vari abl e>

<xsl : el ement name="th">
<xsl:attribute name="w dt h">33%/ xsl :attri bute>

<xsl :val ue-of sel ect="transl ate(nanme(.), $l ower Case, Supper Case)" />
</ xsl : el enent >

</ xsl :tenpl at e>

</ xsl : styl esheet >

The element that starts the whole ball rolling is the key element, which creates a cross-reference based
upon the node specified by the use attribute. Using the seri es element as the key results in an index
consisting of The Lord of the Rings and Lord Darcy, with the book The Way Station left out because its
seri es element is null. This cross-reference is accessed using the key function, which accepts two
parameters: the name from the key element and the node.

Another function that plays an integral part in Muenchian grouping is the gener at e-i d function. This

function, well, generates a unique ID for every node in an XML document every time that the document is
processed. So the XPath statement // book[generate-id(.) = generate-id(key('keyBook', series)[1])]

locates the first element with each unique key from the cross-reference and applies the matching template.
The matching template then uses the unique series to select the matching elements.

Bt 00 a0 _ _*_ NsA/Sy T N/~ _ a0 _a €€ _Wad_ _ ___ N a0 _ _ M __ __ _ a_ o N a_ o Nt

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

group based upon multiple criteria, such as author and series. Although it isn't done very often, and you'll
probably never have to do it, I'll give you a hint: Concatenate the elements using the concat function.

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

10.6. Client-Side Transformations

Now that we've got an idea of what an XSL style sheet is and what effect it has on XML, I'm thinking that it
might be a good idea to see how to apply XSL in the browser. Although browsers that support XSLT all use
JavaScript to create the necessary objects, this is yet another one of those instances in which there is
Microsoft Internet Explorer and everybody else. Despite this, the flow is essentially the same, regardless of
the client's browser.

When setting out to perform client-side transformations, the first tasks are always to obtain the XML and
the XSL style sheet. A number of ways exist for doing this, ranging from having the document embedded in
the web page, to loading it directly from the web server, to requesting it from a web service. How the
document is obtained isn't nearly as important as just obtaining it. The next task it to create an XSLT
processor, pass the style sheet and the XML document, and then get the resulting document and use it.
This whole process sounds relatively easy, doesn't it? And my question is loaded, isn't it? The answers to
the questions are "yes" and "no." Applying an XSL style sheet in the browser is actually as easy as it
sounds.

With client-side transformations, the only "gotcha" is being aware of the browser. ActiveX won't work in
Firefox, Flock, Mozilla, or Netscape, and nothing but ActiveX will work in Internet Explorer. Yes, it is an
annoyance, but it is nothing that we haven't lived with for the better part of a decade. Besides, this is one
of those things that, once coded, can be cloned again and again. In short, it is a nice addition to our bag of
tricks.

10.6.1. XSLT in Microsoft Internet Explorer

When working with Internet Explorer, if something isn't part of HTML, or part of CSS, or part of JavaScript,
the odds are, it is part of ActiveX. Think of ActiveX as the bilge of Internet Explorer; a lot of stuff is down
there, and some of it is scary, but that is another story. In reality, ActiveX is the Internet descendant of
Microsoft's original object-based framework, Object Linking and Embedding, or OLE.

ActiveX objects are instantiated using the JavaScript new operator in the following manner:

var XSLTenpl ate = new ActiveXOhject (' MSXM.2. XSLTenpl ate. 3.0");

The previous statement is merely the first step in applying an XSL style sheet on the client side using
JavaScript. In Internet Explorer, the next step is to specify the XSL style sheet, in the form of an XML
document, to the template, like this:

XSLTenpl at e. styl esheet = XSL;

The next step is to create an XSLT processor using the instance of the XSL template:

var XSLTProcessor = XSLTenpl at e. creat eProcessor;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

XSLTProcessor. i nput = XM

Hang in there; the end is in sight. So far, we've created an XSL template, specified the XSL style sheet,
created an XSLT processor, and specified the XML document. This leaves just two steps, the first of which is
applying the style sheet:

XSLTPr ocessor . transforn();

The final step is simply to use the output from the processor, which, incidentally, is text:

docunent . get El enent Byl d(' exanpl e'). i nner HTM. = XSLTProcessor. out put ;

Put together as one routine, the entire sequence of JavaScript is shown in Listing 10-14.

Listing 10-14. Internet Explorer

var XSLTenpl ate = new ActiveXObject (' MSXM.2. XSLTenpl ate. 3.0");
XSLTenpl at e. styl esheet = XSL;

var XSLTProcessor = XSLTenpl at e. cr eat eProcessor;
XSLTProcessor. i nput = XM

XSLTProcessor.transform);

docunent . get El ement Byl d(' exanpl e').innerHTM. =

XSLTProcessor. out put;

If you're a big fan of complicated procedures, such as the one necessary with Microsoft Internet Explorer
shown earlier, be ready to be disappointed. Unlike Internet Explorer, the other browsers that support XSLT,
including open source browsers such as Firefox, Mozilla, and Flock, require a simple three-step process:

1. Create an XSLT processor.
2. Import the style sheet as an XML document.

3. Apply the style sheet and use the resulting XML document or document fragment.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

or aocument Tragment. 1nNIS means that there are Two metnoas Tor applying an XsL style sheet: one Tor
documents, transf or nifoDocunent , and a second for document fragments, t r ansf or mToFr agnent . Listing 10-

15 shows how it works using the transf or niToFr agnent method.

Listing 10-15. Non-IE

var XSLTProcessor = new XSLTProcessor();
XSLTProcessor. i nmport Styl esheet (xslt);

docunent . get El ement Byl d(' exanpl e') . appendChi | d(obj XSLTPr ocessor. transform
ToFragment (xm , docunent));

In my opinion, unless the application is an intranet application, the way to go is to code to use both types
of browsers. But that is a personal decision; just remember that sometimes an intranet application doesn't
stay an intranet application.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

10.7. Summary

XSLT is one of my favorite parts of programming; however, it can be difficult to grasp. To combat this
problem, we started at the beginning with iterative and recursive style sheets. Next | covered scope and
the issues with nonvariable variables. We then took a little step backward to cover XPath and its
relationship to XSLT before rolling up our sleeves and getting down to some serious XSLT.

The basics of templates were discussed, including named templates and the use of the node attribute.
Following that, we covered how to handle decisions using i f and choose, along with sorting. The built-in

XSLT functions were then described, along with how some of them are used in grouping. Finally, we
covered the subject of client-side transformations.

e prcy ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 11. Ajax Using XSLT

"But wait, there's more"

I do so feel like someone hawking my wares on a late-night infomercial, but hey, it's true. There is actually
more to Ajax than what we've already covered. In fact, we're about to get to one of my favorite parts. I've
jokingly referred to the material covered up to this point as "mad scientist stuff,” but the material that
we're about to cover transcends everything that we've covered up till now. It is called eXtensible Stylesheet
Language for Transformations, or XSLT, and I like to think of it as magic. Think of XSLT as the part of a
spell that says what to do. The second part of the spell is XPath, which acts as the targeting device for the
spell. Tightly intertwined, XSLT and XPath work together to modify or, if you prefer, transform XML.

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

11.1. XSLT

Transformations are an idea as old as human thought. Primitive societies had werewolves, werebears, and
weretigers. The Greeks had warnings against seeing goddesses bathe, unless one was interested in going
to parties stag, literally. During the renaissance, there was Shakespeare's A Midsummer's Night Dream, in
which Bottom was made an Ass of. Today we have Jack Chalker's Midnight at the Well of Souls and the
Borg from Star Trek. And although the transformations in each of these stories dealt with the physical
world and XSLT can affect only XML, they all share many of the same characteristics: Without change, the
story can progress no further.

As one who has been working in the programming field for a number of years, | can attest to one thing:
About 40 percent of the time, the data is in the wrong format. In ancient times, when great beasts with
names such as System major problem. Programs had to be changed or written from scratch to massage
the data to make it usable. Changing programs and creating programs has always been a costly
undertaking in any day and age.

Now things are different, as time seems to be speeding up. The great beasts are all either dead or behind
glass in museums, where people can stare in awe, never realizing that the old 486 machine that they gave
to their kids had more power.

Today much of the information that we deal with is in the form of XML, which, interestingly enough, can be
transformed by XSLT in much the same manner as Lon Chaney was by the full moon. Thankfully, however,
the XML doesn't get hairyunless, of course, we want it to.

11.1.1. XML Magic

Here's the quandary: On the client side, we have XML and we want HTML. It's a real pain in the gluteus,
isn't it?

Yes, we can write a script to perform the conversion, but it is a time-consuming task accomplished with ill-
suited tools. Face it: The majority of scripting languages aren't really built to handle XML. Although it works
just fine, when messing around with individual nodes, JavaScript's XML support comes across like a Bose
sound system in a Ford Pinto. I'm not saying that it doesn't workit works just fine, but, unfortunately, six
months later it has a tendency to cause questions like, "l wrote this?"

XSLT, as opposed to JavaScript, was designed from the ground up to handle XML. Come to think of it, XSLT
is itself a dialect of XML. This has a tendency to lead to some really interesting style sheets when working
with XSLT, but that is a topic for another day. Another interesting thing is that although the input has to be
XML, nothing says that the output needs to be XML. This means that if you want to transform XML into
HTML as opposed to XHTML, by all means do it, but just remember that if you're using SOAP, the package
must be well formed.

11.1.2. How Microsoft Shot Itself in the Foot

Back in the old days, during the first browser wars, Microsoft released Internet Explorer version 5.0, the
first web browser with XSLT support. It would have been a major victory for Microsoft, if it had not been for
one little detail. In their haste, they forgot one little thing about the World Wide Web Consortium's
recommendations. You see. recommendations are often vastlv different from drafts. In an effort to produce

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

For this reason, you sometimes see references to the namespace http://www.w3.0rg/TR/WD-xsl instead of
http://www.w3.0rg/1999/XSL/Transform.

It was only with the advent of Microsoft Internet Explorer 6 that Internet Explorer started following the
recommendation instead of the draft. Personally, | believe that it is a good idea to ignore the old
namespace entirely; | think that Microsoft would like to. And although they're currently considered the third
most popular browser, at most, individuals using versions 5.0, 5.01, and 5.5 of Internet Explorer comprise
only a fraction of the general population. It is a pretty safe bet that you can ignore these web browsers
entirely without alienating anyone but technophobes, the White House, and project leaders who use the
term blink.

11.1.3. XPath, or | Left It Around Here Someplace

Earlier | stated that XPath was the targeting device for XSLT, which is essentially true. XPath is used to
describe the XML node or nodes that we're looking for. As the name suggests, XPath describes the path to
the node that we're looking for. For example, let's say that we want the st at e_nanme node in the XML

document shown in Listing 11-1. A number of different ways exist for locating it, some of which are shown
in Listing 11-2.

Listing 11-1. A Sample XML Document

<st at es>
<state>
<stat e_abbrevi ati on>AB</ st at e_abbrevi ati on>
<st ate_nane>Al bert a</ st at e_nane>
</state>
<state>
<st at e_abbrevi ati on>AK</ st at e_abbr evi ati on>
<st at e_nane>Al aska</ st at e_nane>
</ state>
<state>
<stat e_abbrevi ati on>AL</ st at e_abbrevi ati on>
<st at e_nane>Al abama</ st at e_nane>
</state>
<state>
<stat e_abbrevi ati on>AR</ st at e_abbrevi ati on>
<st at e_nane>Ar kansas</ st at e_nane>
</state>
</ st ates>

Listing 11-2. Sample XPath

downloaded from: lib.ommolkefab.ir

http://www.w3.org/TR/WD-xsl
http://www.w3.org/1999/XSL/Transform
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[*[*]state_nane
[*[*/*[nane(.) = 'state_nane']
[states/statel/ *[2]

/] state_nane

Why so many? With XPath, it is possible to describe complete paths, paths with wildcards, and paths based
upon its location, or to describe only the node itself. From a high level, such as an orbital view, it works as
shown in Table 11-1.

Table 11-1. High-Level View of XPath

XPath Notation Description

/ Either the root node, in the case of the first slash, or a separator between
nodes

I Anywhere in the document that meets the criteria

Wildcard (I know that there is a node here, but | don't know its name)

The context node (where we are at this point)

[2] A predicate stating that the second node is the one we want
states Qualified node name

state Qualified node name

state_name Qualified node name

name() A function that returns the name of passed node

[name(.) = "state_nane'] | A predicate stating that the desired node name is state_nane

Alright, that should be enough XPath to get started. Now let's take a gander at the XSLT shown in Listing
11-3, whose purpose is to build an HTML sel ect object using the XML from Listing 11-1.

Listing 11-3. Sample XSL Style Sheet

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl :out put nethod="htm " indent="yes" nedi a-type="text/htm"/>

<xsl:tenplate match="/">

<sel ect id="nysel ect" nanme="nysel ect">
<xsl:for-each select="/states/state">
<xsl : el enrent nanme="option">
<xsl :attribute nanme="val ue">
<xsl : val ue- of
sel ect ="stat e_abbrevi ati on" />
</xsl:attribute>
<xsl :val ue-of sel ect="state nanme" />
</ xsl : el ement >
</ xsl : for-each>
</ sel ect>

</ xsl :tenpl at e>

</ xsl : styl esheet >

Pretty cool, isn't it? At first glance, not only is it nicely indented, but it also has the advantage of being one
of the most obscure things that you've ever laid your eyes upon. A second glance reveals some details that
you might have missed the first time; for example, the sel ect statement looks remarkably like HTML. There

is a very good reason for the resemblance: It is HTML. In fact, the xsl : out put statement even says that it is
HTML, and you can take it from me, xsl : out put statements don't lie.

Upon closer examination, some other details might pop out, such as the xsl : t enpl at e with mat ch="/". From

what we covered earlier, the slash means that we're looking for the root node. And while we're examining
XPath, you'll find xsl:for-each with sel ect="/states/state". Just in case you're wondering, f or - each

means exactly what you think it does: lterate once for every node that matches the predicate.

Another thing that might jump out is the xsl : el enent node with name="opti on". This is an alternate method
of specifying an output element. The xsl : attri but e also does exactly what you'd expect from its name; it
defines an attribute of the previous xsl : el enent . Finally, the xsl : val ue- of simply copies the node's content

from the source document to the output document. In a nutshell, that's pretty much the basics of XSLT and
XPath. The next question, of course, is, "So, what does the output HTML look like?" For the answer, check

out Listing 11-4.

Listing 11-4. HTML Output

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<option val ue="AB">Al berta</option>

<option val ue="AK">Al aska</ opti on>

<option val ue="AL">Al abanma</ opti on>

<option val ue="AR'>Ar kansas</ opti on>
</ sel ect>

Later, both in this chapter and in others, you'll find more detailed examples of client-side XSLT.
11.1.4. What | Learned from the Gecko

Back when | was first learning XSLT, | was developing with the bare minimum, a text editor and a copy of
Microsoft Internet Explorer version 5.01and | was happy! Well, at least for about 20 minutes or so, right up
to the point | read the World Wide Web Consortium's XSLT recommendation. But we've already covered
that, and after | downloaded a copy of Internet Explorer version 6, | was happy againat least, until | found
Mozilla and then Firefox.

My first impression was that there was something wrong with the Gecko XSLT processor, but there was a
gnawing doubt. The reason for this was that 1'd never personally found an error in a Gecko-based browser,
and | had found several in Internet Explorer. So with a critical eye and a hard copy of the recommendation,
I began to examine the "bugs” that | had found in the Gecko XSLT processor.

The results came as no surprise to me. Gecko strictly followed the published recommendation, whereas IE
seemed somewhat looser around the edges. My problem was that | had developed some bad habits
developing in a microcosm and had a tendency to tailor my code to that microcosm. Because of this, | now
try out my style sheets in at least two different XSLT processors before | consider them even partially
tested.

Let's take a look at how to create an instance of the XSLT processor in Microsoft Internet Explorer and
every other web browser on the planeter, | mean Firefox, yeah, Firefox. Listing 11-5 shows a little cross-

browser web page that uses one XML Data Island, the first containing the XML while the XSLT is loaded
from the server via the XM_Ht t pRequest object. This is nothing flashy, merely a "proof of concept.” It just

creates an HTML sel ect object and plops it on a page.

Listing 11-5. XSLT Cross-Browser Web Page Example

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<head>
<title>XM. Data |Island Test</title>
<style type="text/css">

xm
{
di spl ay: none;
font-size: Opx
}

</styl e>
<script | anguage="JavaScri pt">
var _|IE = (new RegExp('internet explorer',

gi')).test(navigator.appNane);

var _XM.HTTP; /1
XML_Ht t pRequest obj ect
var _obj XM; /1 XML DOM docunent
var _obj XSL; /1
Styl esheet
var _obj XSLTProcessor; /1 XSL Processor
var _xslt = '"stateSelect.xsl'; // Path to style sheet
/*
Functi on: initialize
Programrer: Ednond Wychowsky
Pur pose: Perform page initialization.
*/
function initialize() {
if(_IE) {
_XMLHTTP = new ActiveXQbject('M crosoft. XMLHTTP') ;
_obj XML =
new Acti veXCbj ect (" MSXM.2. Fr eeThr eadedDOVDocunent . 3. 0') ;
_obj XSL =

new Acti veX(hj ect (' MSXM.2. Fr eeThr eadedDOVDocunent . 3. 0') ;

obj XM. async = fal se;
_obj XSL. async = fal se;

obj XM. | oad(docunent . get El enent Byl d(' xml DI ') . XM_.Docurment) ;
} else {
var _obj Parser = new DOWParser ();

_XMLHTTP = new XM_Ht t pRequest () ;
_0bj XSLTProcessor = new XSLTProcessor();
_obj XML =

_obj Parser. parseFrontstri ng(docunent. get El emrent Byl d(' xm DI'). i nner HTM.,
"text/xm");

}
_XMLHTTP. onr eadyst at echange = st at eChangeHandl er

_XMLHTTP. open(' GET', _xslt,true);
_XMLHTTP. send(nul |');

}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

rurniete 1 UlIl. Sl dl euldlilyeraliul i
Progranmer: Ednond Wychowsky
Pur pose: Handl e t he asynchronous response to an

XM_Ht t pRequest, transformthe XML Data |sland and
di splay the resulting XHTM.
*/
function stateChangeHandl er () {
var strXHTM;

i f(_XMLHTTP.readyState == 4) {
if(_1E {
var _obj XSLTenpl ate =
new Acti veXQbj ect (' MSXM.2. XSLTenpl ate. 3.0");

0obj XSL. | oadXM(_XM_LHTTP. r esponseText);

_0bj XSLTenpl at e. styl esheet = _obj XSL;

_0obj XSLTProcessor = _obj XSLTenpl at e. cr eat eProcessor
_0bj XSLTPr ocessor.input = _obj XM;

_0bj XSLTPr ocessor.transformn();

strXHTML = _obj XSLTPr ocessor. out put ;
} else {
var _objSerializer = new XM.Serializer();

_0obj XSL = XMLHTTP. responseXM.;
_0bj XSLTPr ocessor. i nport Styl esheet (_obj XSL) ;

strXHTML =
_obj Serializer.serializeToString(_obj XSLTProcessor.transformloFr agment
(_obj XM, docunent));

}

document . get El ement Byl d(' target').inner HTM. = str XHTM;

</script>

</ head>

<body onl oad="initialize()">
<xm id="xm Dl ">

<st at es>

<state>
<state_abbrevi ati on>AB</ st at e_abbrevi ati on>
<st at e_nanme>Al bert a</ st at e_nane>

</state>

<state>
<st at e_abbrevi ati on>AK</ st at e_abbrevi ati on>
<st at e_nanme>Al aska</ st at e_nane>

</ state>

<state>
<state_abbrevi ati on>AL</ st at e_abbrevi ati on>
<st at e_nane>Al abama</ st at e_nane>

</state>

<state>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

~DL atl C_II(J.IIC/I"\I naliioas~ d>dL atl C_IIGIIC/
</ st ate>
</ st at es>
</ xm >
XM. client-side transformati on test
<div id="target"></div>
</ body>
</htm >

Alright, now that the proof of concept has been successfully completed, all that remains is to see how it can

be applied to our e-commerce website.

A Problem Revisited

Now that we have some of the basics down, let's take a look at how XSLT can be used to
provide additional functionality to our e-commerce website. | should point out, however, that
when | originally proposed this idea to a client, | was called insane. The comments were that
it would be unworkable and that nobody in their right mind would have even suggested it. In
my defense, this was the client that used terms such as blink and was "looking into"
converting all web applications into COBOL so that developers other than the consultants
could understand it.

That's enough introductions; without further ado, allow me to describe what | consider the
ultimate "mad scientist” website.

Excluding pop-ups, the site would be a single web page, with all communication between the
server and the client taking place using the XM_Ht t pRequest object. Instead of subjecting the
visitor to an endless cycle of unloads and reloads, the page would simply request whatever it
needed directly. In addition, when a particular XSLT was obtained from the server, the client
would cache it, meaning that the next time it was needed, it would already be there. It was
within the realm of possibility that eventually the client would have all the XSLT cached on the
web browser. The more the visitor did, the better the shopping experience would become.

Needless to say, the website was never created, alas, and my contract was terminated
because they felt that resources could be better used supporting their mainframe applications.
Personally, | think that they lacked foresight, and if they had pursued the concept to its logical
conclusion, they'd now be mentioned in the same breath as Google. Instead, they decided to
regress into the future of the 1960s as opposed to the future of the twenty-first century. But
I'm hardly an objective observer.

downloaded from: lib.ommolkefab.ir

NEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

11.2. Tabular Information

The previous chapter introduced several JavaScript class constructors in an effort to keep the client-side
code manageable. Now is a good time to introduce another, a wrapper around the XSLT processor to

handle the browser-specific details involving exactly what is required for XSL transformations. Displaying
my usual lack of imagination, the class constructor is named appropriately enough: XSLTProcessor. Table

11-2 shows the properties and methods for this class.

Table 11-2. XSLTProcessor

Name Parent Class | Type Description

XSLTProcessor Class Constructor

inport Styl esheet | XSLTProcessor | Method | Loads the XSL document for the transformation.

| oad XSLTProcessor | Method | Loads the XML document to be transformed.
out put XSLTProcessor | Method | The serialized result of the previous transformation.
readySt ate XSLTProcessor | Method | Either the ready state for the XML document or the XSL

document, whichever is lower. When they are equal, the
appropriate ready state value is returned.

set Paranet er XSLTProcessor | Method | Set a parameter for the XSLT processor.

transform XSLTProcessor | Method | Performs the transformation and returns the serialized result.

With the creation of the XSLTProcessor constructor, the only items remaining are those that are absolutely

essential to the website. The essential items are the XSL style sheets themselves, three in total. The first
style sheet creates the HTML for the Items page. The purpose of the second style sheet is to create/render
the Details page. The final style sheet renders the shopping cart in a slightly different manner than you'd
expect. Each of these three items is covered as needed.

11.2.1. Read Only

Please bear with me; what I'm about to say deals only with read-only pages and, to some, might seem to
be heresy. When using XSL for read-only pages, data binding isn't necessary; in fact, it is unnecessary
overhead. Think about it for a moment: First, the information isn't going to change on the client side. In
addition, the transformation process has already taken care of the display of the information. For the
aforementioned reasons, it is perfectly acceptable to skip the bind when dealing with read-only information,
as the style sheet in Listing 11-6 illustrates.

Listing 11-6. XSL Style Sheet to Produce a Nonbound Table

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl :output nethod="htm " indent="yes" nedi a-type="text/htm"/>

<xsl:tenplate match="/">
<xsl : el ement name="div">
<xsl:call-tenpl ate name="row'>
<xsl :wi t h-param nanme="string" select=""'"Qiild

Name: ' " />
<xsl : wi t h-param name="t op" sel ect=""75px"" />
</xsl:call-tenpl ate>
<xsl:call-templ ate name="row'>
<xsl :wi t h- param name="string" select="'Iltem
Name: ' " />

<xsl :wi t h-param nanme="top" sel ect=""92px"" />
</ xsl:call-tenpl ate>
<xsl:call-tenplate nane="row'>
<xsl:wi t h- param nanme="string"
sel ect ="' Description:"" />
<xsl:wi t h- param name="t op" select=""'110px"'" />
</xsl:call-tenpl ate>
<xsl:call-tenplate nane="row'>
<xsl :wi t h-param name="string" select=""Price:"" />
<xsl :wi t h- param name="t op" sel ect=""127px"" />
</ xsl:call-tenpl ate>

<xsl:call-tenplate nane="row'>
<xsl : wi t h- param name="stri ng"
select=""qguild _nanme'" />
<xsl :wi t h-param name="type" select=""'data'" />
<xsl :wi t h- param nanme="t op" sel ect=""75px"'" />
</ xsl:call-tenpl at e>
<xsl:call-tenplate name="row'>

(L}

<xsl :wi t h-param name="string" select="'itemnanme'"
/>
<xsl :wi t h-param name="type" select=""'data'" />
<xsl :wi t h- param name="t op" sel ect=""92px"'" />
</ xsl:call-tenpl at e>
<xsl :call-tenpl ate nane="row"'>
<xsl : wi t h- param name="stri ng"
select=""itemdescription'" />
<xsl :wi t h-param name="type" select=""'data'" />
<xsl :wi t h-param name="t op" select=""110px"" />
</ xsl:call-tenpl at e>
<xsl :call-tenplate nane="row"'>
<xsl:wi t h- param name="string"
select=""itemprice:"" />

<xsl :wi t h-param name="type" select=""'data'" />
<xsl :wi t h- param name="t op" select=""127px"" />
</ xsl:call-tenpl ate>
</ xsl : el ement >
</ xsl:tenpl at e>

<xsl :tenpl ate nane="row'>

cvel " naram nam="Adat ai ¢l and" cal art ="'

[T |~

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

SXS1 . pdl dalll nalie— vtype SEl eclL — lneaucel I
<xsl : param nanme="t op" />

<xsl :vari abl e name="apostrophe">' </ xsl : vari abl e>
<xsl : vari abl e nane="nbsp" >&anp; nbsp; </ xsl : vari abl e>

<xsl : el enent nanme="di v">
<xsl:attribute nane="cl ass">r owHeader </ xsl : attri bute>
<xsl:attribute nane="style">
<xsl : choose>
<xsl :when test="$type = 'header'">
<xsl : val ue- of
sel ect ="concat ($apost rophe, ' position: absolute; left: 50px; right: auto%
bottom auto; w dth: 200px; top: ', $top, $apostrophe)" />
</ xsl : when>
<xsl : ot herw se>
<xsl : val ue- of
sel ect ="concat ($apostrophe, ' position: absolute; left: 255px; right: auto%
bottom auto; wi dth: 600px; top: ', $top, $apostrophe)" />
</ xsl : ot herw se>
</ xsl : choose>
</ xsl:attribute>

<xsl : choose>
<xsl:when test="$type = ' header'">
<xsl : val ue- of di sabl e-out put - escapi ng="yes"
sel ect ="concat ($nbsp, $string)" />
</ xsl : when>
<xsl : ot herwi se>
<xsl:attribute nane="xm DI ">
<xsl : val ue- of sel ect ="$dat ai sl and" />
</xsl:attribute>
<xsl :attribute nane="xm Node" >
<xsl : val ue-of select="$string" />
</xsl:attribute>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl : el enent >
</ xsl:tenpl at e>
</ xsl : styl esheet >

This style sheet first creates an HTML Tabl e element with the required attributes to give the site a common

look and feel. Next, the column headers are rendered and a template is invoked to create the individual
rows, which is the Tabl e element in the source XML document. If there are no Tabl e elements, only the

HTML table headers will be produced. The individual cells are produced based upon the node name, and

we're done.

Before proceeding any further, however, | want to explain two statements in the style sheet. The first of

these is the one that defines the apostrophe variable:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The second statement is the one that uses the apostrophe variable:

<xsl : val ue-of sel ect="concat ('] avascri pt: pagelLoad
(', $apostrophe, 'itensDi spl ay. xsl', $apostrophe, ',
,guild.id,'",null)")" />

These two statements might seem somewhat odd because if you're even slightly familiar with XSL, you
know that there is a perfectly acceptable entity that can be used to render apostrophes. The entity that |
refer to is ' , which, unfortunately, would cause quite a few headaches if used here. The entity would

be treated as if it were, in fact, an apostrophe. The XSLT processor would then consider the previous
statement to be equivalent to the following.

<xsl : val ue- of sel ect="concat ('javascri pt: pagelLoad
(*,'.itemsDisplay.xsl',',', ", guild_id, ", null))" />

As you can see, this would lead to an error and a nasty error message instead of the page shown in Figure
11-1.

Figure 11-1. The properly rendered page

[View full size image]

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/11ajx01_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i L Y e FeNDE Q0E HeD

W H G ﬁ @ {:l-*!- e (1 Do ment i Lo Edmord PR o |~ T e |

Flock Flork Fock Pt Flock Fesdbas, A1) Cragting ‘Wi Fags. P 3 Ii
Gl Itesm Name Itesn Price
Ifad Fopmbet | (e Eaks 249
Bl Seemien (Lab Copt v]
Show Al

¥ unBied : Pard

11.2.2. Updateable

Unlike the previous read-only example, binding cannot be ignored when using XSLT to create updateable
web pages. Even so, several advantages exist that were unavailable in earlier chapters. For example, there
are the funky looping and concatenating strings to build the HTML with the correct number of rows. XSL

takes care of those annoying details for us.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

11.3. Advantages and Disadvantages

A number of advantages exist for designing a site that uses client-side XSLT. The first is that it really looks
good on the old resuméstrike that. The first is that it becomes possible to design more dynamic websites
that can take advantage of the client's machine. In addition, the amount of information can be reduced by
caching the XSL style sheets on the client machine. However, if the resources available on the client
become something of an issue, there are always alternatives.

The first alternative that comes to mind is to not cache the XSL at all; instead, it could be sent back and
forth along with the XML. For large sites, another possibility is to cache only a certain number of pages.
This could be handled in sort of a stack: first in, first out.

Concerning caching, one additional idea comes to mind: Forgo the preload entirely. Instead, style sheets
could be loaded on an as-needed basis. After being loaded, they could then be cached. The interesting
thing about this idea is that, from the client's perspective, performance would improve over timealmost as
if the site got better with practice. Talk about mad scientist stuff!

Alas, all of this is for naught if the client’'s browser doesn't support transformations. Not all of them do. |
suppose that an alternative should be made available for those that, for some reason, are still running
Microsoft Internet Explorer version 3.0. No, | don't mean server-side transformations to accommodate
luddites; I'm thinking more along the lines of a link to www.mozilla.org, where they can join everyone else
in the twenty-first century.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://www.mozilla.org/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

11.4. Summary

In this chapter, | covered why the idea of performing transformations on the client side is scary, mostly
because of the actions of Microsoft. Additionally, | covered the reason why using XSLT on the client side
now makes sense, with the advent of Gecko-based browsers and Microsoft Internet Explorer.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 12. Better Living Through Code Reuse

At one time in my career, | was a consultant, or, if you prefer, a hired gun. My job was to ride into town,
clean up things, and then ride off into the sunset. It was like being a Wild West hero, just me and my
horsealright, just me and my little blue car. Please believe me when | say that | ride like the late movie star
Lee Marvin; have you ever seen Cat Balloo? If you haven't, let's just say that my posture in the saddle isn't
the best.

The reason that | bring this up is that, like those heroes of old, I lived by my wits, or approximately half of
my wits, and what | could carry with me. However, instead of a Colt Dragoon, | carried a laptop loaded with
every little tool | had ever written or downloaded. Some of the tools were useful and some of them were
not so useful, but nevertheless, it contained everything that | could possibly need, not counting the games.
| suppose another way to look at it is that I'm a packrat, but once | code something, I'd rather not code it
again.

Of course, it wasn't that | was avoiding coding; actually, | was avoiding the debugging. The act of
debugging isn't distasteful, but the act of debugging the same thing again and again gets old really fast.
Ever hear the phrase "don't reinvent the wheel"? Well, | wholeheartedly agree with it. Although, maybe if |
could make it better

The best part of these Ajax tools is that they aren't carved in stone; they are actually more scribbled in
crayon. Because of this, they are fluid, meant to be more of a guide than gospel. However, even if you
choose not to use these, | recommend that you at least look at them. Most of these functions work pretty
much the same.

Why?

The reason is pretty simple. You see, Ajax applications are just like lemonade. In other words, there are a
few basic ingredients, as with lemons, sugar, and water. Of course, not all lemonades are created equal.
This is mostly because of the amounts of each ingredient and the little extras, such as vodka or checking an
object's readySt at e property.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

12.1. Reuse = Laziness

I'm not really sure whether it is a character flaw or a skill, but | have a tendency to code some routines
twice. The first time is to solve the particular problem at hand; the second time is so that | have a generic
solution if the problem crops up somewhere else. Sometimes it does and sometimes it doesn't, but it is nice
to be able to accept an assignment and have at least part of the solution coded. It is also a great way to
make sure that there is always time to read User Friendly.

Unfortunately, when | started my career, this wasn't the case, mostly because | encountered managers
who believed in the puritan work ethic: Work constantly until you die, or quit before the age of 33, a burnt-
out husk. Basically, the more lines of code, the better, although they sometimes cloaked their philosophy
behind the words "l need it so that everyone can understand it" or avoid "mad scientist stuff." However,
during the years, this type of manager has largely either died off or retired. | suppose that, on some level,
I will miss them, in much the same way as a headache that has gone away. Yes, | will sorely miss the
threats of nonpayment for reusing code to create new applications.

"Hello, my name is Ed. | reuse code to death and I am not lazy!"
12.1.1. Paid by the Line

Several years ago, as a consultant, | was assigned the responsibility to write client-side JavaScript whose
sole purpose was to speed up the client's website. The problem was that they had a vision of what they
wanted, but they didn't quite know how to implement it. For example, let's say that a web page consisted
of 20 rows in an HTML table, each of which had a sel ect created from a database query, and that each

sel ect had the same options. They saw nothing wrong with executing the same query 20 times and using
VBScript 20 times to create the 20 sel ect s. Oh, there were two other things: With the exception of looping

through the results of the query, there were no loops, and there wasn't even a function that was called 20
times. The code was one straight run. Because it had been written by the lead developer only about six
months before and | was only a consultant, | never asked the burning question: Why?

It didn't take me more than a couple of days to figure out the answer. In fact, all it took was one glance at
their JavaScript library. The entire library consisted of a single function whose purpose was to determine
whether a parameter was numeric, not that it was used anywhere. It was almost like | had stepped through
a rift in the fabric of space-time and found myself in an alternate reality. The more | examined the site, the
more | kept looking around expecting to see Rod Serling. To give you an idea, it was after Y2K and they
were still using HTML FONT tags. There was not a single example of Cascading Style Sheets anywhere. The

word deprecated didn't exist in their world.

There were classic ASP pages that were in excess of 30,000 lines of mixed script and HTML. | was a
stranger in a strange land where developers were paid by the line. It was a new application, not yet in
production, so it couldn't have been maintained into incomprehensibility. What else could explain the way
that things were?

12.1.2. Paid by the Page

Fortunately, | was paid by the pagealright, actually, it was by the hour, but I had a limited number of hours
to produce each page. Couple this with the fact that I'm a hunt-and-peck typist, and you'll quickly

1indarctand why I'mm a hin haliewvar in rada ralica Tha ndd thina wace that with nna averantinn nahndyv ovar

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

On one of my last consulting assignments | met an intern who was fresh out of school yet was one of the
sharpest developers | ever met. After working together for about six months, he asked me why it seemed
that whenever possible | wrote reusable code that often used reusable code that | had written previously.
There was only one way to answer: "I like writing tools to make tools."

A simple enough phrase, "tools to make tools,"” but what does it mean?

Ask me what I mean, and I'll say that it means that there is an underlying architecture that can be built
upon. But to me personally, it goes much deeper than that. Take a moment and look around you; what do
you see? You're surrounded by toolstools that shelter us, tools that entertain us, tools that preserve our
images and thoughts beyond our individual lifespan.

Where did these tools that have become so important come from? Somebody created them, another person
used them, and yet another person improved them. In essence, the Internet is merely an improvement of a
cave painting taken to the nth degree. There's a long history of our species creating "tools to make tools."
Therefore, it is only natural to create tools, share those tools, every once in a while wonder who will
improve them, and lament the fact that you can't get a good mastodon sandwich anymore.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

12.2. JavaScript Objects

Although it's not an object-oriented language, JavaScript is an object-based language. This means that,
although it might not be as powerful as PHP, Ruby, or Java, it is still pretty darn powerful. Add the fact that
it is currently the best/only choice available, and you'll quickly understand why objects are important.

Although there are several ways to create objects in JavaScript, | usually use only two. The first method of
creating an object in JavaScript is simply a matter of writing a function and assigning it to a variable using
the new operator to create an instance, as shown in Listing 12-1.

Listing 12-1. Example functi on Class Constructor

function word() {

var _setCount = 0; /1 Prot ected vari abl e
this.theWrd, /1 Public property
this.setWord = _setWrd; 11 Publi c met hod set Wrd
this.getWord = _getWrd,; /1 Publ i c net hod getWrd
this.count = _get Set Count; /1 Publ i ¢ nmet hod count

function _setWrd(theWrd) {
/1 Publ i c exposed as getWrd
this.theWrd = theWrd;
_increnent Count () ;

}

function _getWrd() { /1 Publ i c exposed as setWrd
return(this.thewrd);

}

function _get Set Count () { /1 Publ i c exposed as count
return(_set Count);

}

function _incrementCount() { // Private nethod
++_set Count ;

}

}

var nylnstance = new word();

Now we have an instance of the property wor d assigned to the variable nyl nst ance, and the only question is,

how do we use it? Thankfully, the notation for addressing properties and methods is a relatively standard

i nst ancenane. property or i nst ancenane. net hod(). If you're looking at the constructor, the way to
distinguish them is that they are all preceded by the t hi s keyword. The way to tell which are properties and
which are methods is that methods always are equal to a function. It is important to point out that the
narentheces are nmitted hecailice inchiidina them wniild calige the methnd tn he invnked as well as exnnsed

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Although the previous class constructor is essentially useless, it does show the details of how to create a
constructor. It has private members, _set Count, and private methods, _i ncrenent Count . Also, as explained
previously, it has both public properties, as in t hewr d, and public methods, as in set Wrd, get Wrd, and
get Set Count . Of course, an example that is actually useful might not have all of these.

12.2.1. Collections

I might be wrong, but | am of the opinion that the most useful type of data structure that has ever been
conceived, excluding the DOM, is perhaps an associative array. If you're unfamiliar with this type of data
structure, information is stored in name/value pairs. If you know the name, you can find the value. And the
value isn't limited to any particular data type; come to think of it, neither is the name. A good use would be
to cache XSL style sheets because they usually don't change very often. After they're cached, it is no longer
necessary to bother the web server to get them; all that is necessary is to retrieve them from the cache.
However, there is one danger, and that danger is caching information that shouldn't be cached because
someone else might change it, as in the results of database queries.

Listing 12-2 is an example of a constructor for a lightweight cache/associative array. The single private
property, _cache, is a JavaScript object that is the cache itself. There are three public methods to handle

inserting name/value pairs, retrieving values, and purging either selected name/value pairs or the entire
contents of the cache.

Listing 12-2. Cache Class Constructor (Associative Array)

<l-- <I[CDATAl

/*
Cl ass: Cache
Function: Cache
Purpose: To act as a client-side cache(associative array).
Data are stored as nane/val ue pairs.
*/

function Cache() {
var _cache = new Qbject();
/] Object to store information

var _namesArray = new Array(); /1 Array for nanmes
this.insert = _insert; /1 Method: cache an obj ect
this.retrieve = _retrieve; /1 Method: retrieve object
this.purge = _purge; /1 Method: purge object(s)
thi s. nanes = _nanes; /1 Method: return nanes
/*
Function: _insert
Met hod: i nsert
Purpose: Inserts a nane/value pair into the cache.
*/
function _insert(nane, val ue) {
_cache[nane] = val ue; /1 Cache obj ect
_namesArray. push(nane) ; /1 Store nane
}

| *

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

IV L 11Vu. ITLI 1 ©TvVvC

Purpose: Retrieves a value fromthe cache using a nane.

*/
function _retrieve(nane) {
i f(typeof (_cache[nane]) == 'undefined')
return(null); /1 nbject not cached
el se
return(_cache[nane]); /1 Return object
}
/*
Function: _purge
Met hod: pur ge
Pur pose: Purges one or nore nane/value pairs from
t he cache.
*/

function _purge() {
i f(argunents.length == 0) {

_cache = new Object(); /1l Create new cache object
_namesArray = new Array(); /1l Create new nanmes array
} else {

var singl eNamne;
_nanesArray = new Array(); /] Create new nanes array

for(var i=0;i < argunents.length;i++)
_cache[argunments[i]] = null

for(singleNanme in _cache)
i f(_cache[singleNane] != null)
_nanesArray. push(si ngl eNane) ;

}
}
/*
Functi on: _hanes
Met hod: names
Purpose: Returns an array consisting of the nanes fromthe
cache.
*/

function _nanmes() {
return(_nanesArray);

}
}
11> -->

As with the previous example, it is necessary to create an instance of the object before using it. Listing 12-
3 shows the object being put through its paces, along with the expected results shown in the comments.

Listing 12-3. Listing Head Here

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

var magi cWwrds = new Cache();

magi cWords.insert(1,"'xyzzy'); // Insert key = 1, value = 'xyzzy'
magi cWwords.insert(2,'plugh'); // Insert key 2, value =" plugh
magi cWords. i nsert(3,"' pl over');

/1 Insert key = 3, value = "'plover’

al ert (magi cWords. nanmes()); /1 1,2,3
alert (nmagi cWrds.retrieve(l)); [l "xyzzy'
alert (magi cWrds.retrieve(2)); /1 " plugh

magi cWor ds. purge(3);
/1l Purge key/value pair - key = 3

alert (magi cWords.retrieve(3)); /1 null
al ert (magi cWor ds. names()) ; /11,2
magi cWor ds. pur ge(); /1 Purge all key/value pairs
alert(magi cWwrds.retrieve(l)); /1 null

The caching class is pretty straightforward; it is only a wrapper around a JavaScript object that has public
methods that allow for changes to the object and retrieval from the object.

12.2.2. XML

Without a doubt, my biggest complaint concerning client-side XML is the lack of a single cross-browser way
to create an XML document. This is one of those areas in which cross-browser coding can be a real drag
because | have a tendency to create a page using a single browser. Only when | get it working in my
browser of choice do | go back and try to make it work for Internet Explorer. In case you are wondering,
this makes for some really ugly JavaScript, all sewn together from various mismatched parts. | may be a
mad scientist, but there is something to be said for reusability.

That's the reason | cobbled together a few class constructors to neaten things up around the old lab. It's
not like I'm using coasters or anything. I'm just trying to make sure that | can understand what | wrote six
months from now. They say that the memory is the first thing to goor is it the hair? Whatever, | can't even
remember who "they" are anyway, so it can't be important.

The first of these class constructors is to handle the details involved with using the XM_LHt t pRequest object.

It deals with whether the browser is Microsoft Internet Explorer or any other browser, and then it creates
the XMLHTTPRequest object using the syntax appropriate to the specific browser. In addition, it handles

readySt at e changes for asynchronous requests. Unlike the previous example, which was created in much

the same manner as a regular JavaScript class, this time a prototype object is created. Although they're not
used for these constructors, prototypes offer the advantage of allowing for the possibility of inheritance if it
is deemed necessary in the future. Listing 12-4 shows what the constructor looks like.

Listing 12-4. Cross-Browser (Gecko and I1E) XMLHttp Class Constructor

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<I-- <I[CDATA[
XM_Ht t pRequest . prot ot ype = new XM.Htt pRequest ;
XM_Ht t pRequest . prot ot ype. constructor = XM.Htt pRequest ;

/*
C ass: XML_Ht t pRequest
Functi on: XM_Ht t pRequest
Met hod: n/ a
Description: Constructor for this class.
*/
function XM_Htt pRequest () {
try {
var x = new DOWParser ();
this. IE = fal se;
}
catch(e) { this. _IE = true; };
this. XMHttp; /1 XMLHttp request object
this. request Header = new Cache();
if(this._IE)
this. XM.Hitp = new ActiveXObject('Mcrosoft. XM_Http');
el se

this. XMHtp

new XM_Ht t pRequest () ;
}

/1 Property: GET, POST or HEAD
XMLHt t pRequest . prot otype. action = ' GET';

/1l Property: true/false
XM_Ht t pRequest . prot ot ype. asynchronous = true;

/1 Property: package to send
XMLHt t pRequest . prot ot ype. envel ope = nul |

/*
C ass: XM_Ht t pRequest
Functi on: XMLHt t pRequest _readySt at e
Met hod: readySt at e
Description: Returns the readyState for the XM.HttpRequest
obj ect .
*/

functi on XMLHt t pRequest _readyState() {
return(this. XM.Htp.readyState);

}

XM_Ht t pRequest . prot ot ype. readyState = XMLHtt pRequest readySt at e;

/*

C ass: XML_Ht t pRequest
Functi on: XML_Ht t pRequest _get ResponseHeader
Met hod: get ResponseHeader

Description: Returns a single response header fromthe | ast
XMLHt t pRequest .
*/
function XMLHt t pRequest get ResponseHeader (nane) {
return(this. XMHttp. get ResponseHeader (nane));

}

VAA LE + nDAaniinct nr nt At vinAa At DAcnAanceAalldAaadaAr —

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/*
C ass: XM_Ht t pRequest
Functi on: XMLHt t pRequest _get Al | ResponseHeader s
Met hod: get Al | ResponseHeader s
Description: Returns all of the response headers from
the last XM.H t pRequest.
*/

functi on XMLH t pRequest _get Al | ResponseHeaders() {
return(this. XMHttp. get Al ResponseHeaders());
}

XM_Ht t pRequest . prot ot ype. get Al | ResponseHeaders =
XM_Ht t pRequest _get Al | ResponseHeader s;

/*
C ass: XM_Ht t pRequest
Functi on: XMLHt t pRequest _responseText
Met hod: responseText
Description: Returns the text response fromthe | ast
XM_Ht t pRequest .
*/

function XM.Htt pRequest _responseText () {
return(this. XM.Htp.responseText);
}

XMLHt t pRequest . prot ot ype. responseText =
XM_Ht t pRequest _r esponseText ;

/*
C ass: XM_Ht t pRequest
Functi on: XMLHt t pRequest _responseXM
Met hod: responseXM
Description: Returns the XM. DOM docunent response from
the last XM.H t pRequest.
*/

function XMLH t pRequest _responseXM.() {
if(this. _IE) {
var xm =
new Acti veX(hj ect (' MSXM.2. Fr eeThr eadedDOVDocunent . 3. 0') ;
xm . async = true;

xm .l oadXM.(this. XM.Htp.responseText);

return(xm);
} else
return(this. XM.Http.responsexXm);
}
XM_LHt t pRequest . prot ot ype. responseXM. =
XMLHt t pRequest _responseXM;

/*
C ass: XML_Ht t pRequest
Functi on: XM_Ht t pRequest _st at eChangeHandl er
Met hod: n/ a

Descri ption: Dummy state change handl er for
asynchronous requests.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

FLUHILLT UL AIVLIL L PISYUTDL _ DL alt culallycrialiut ©i) { j
XM_Ht t pRequest . pr ot ot ype. st at eChangeHandl er =
XM_Ht t pRequest _st at eChangeHandl er ;

/*

C ass: set Request Header

Functi on: XM_Ht t pRequest _set Request Header

Met hod: set Request Header

Description: Inserts to the cache of HITP request
*/

function XMLH t pRequest set Request Header (nane, val ue) {
t hi s. renoveRequest Header (nane) ;
this. _request Header.insert (nane, val ue);
}
XMLHt t pRequest . pr ot ot ype. set Request Header =
XMLHt t pRequest _set Request Header ;

/*
C ass: set Request Header
Functi on: XM_Ht t pRequest _r enoveRequest Header
Met hod: n/ a
Description: Renoves fromthe cache of HITP
request headers.
*/

function XMLHt t pRequest renpveRequest Header (nane) {
this. _request Header. purge(nane);

}

XM_Ht t pRequest . prot ot ype. renbveRequest Header =

XM_Ht t pRequest _r emoveRequest Header ;

/*
C ass: XML_Ht t pRequest
Functi on: XM_Ht t pRequest _send
Met hod: send
Description: Sends XM.H t pRequest.
*/
function XMLH t pRequest _send() {
var successful = false;

i f(argunments.length !'= 0)
this. envel ope = argunents[0];

switch(this. XMHttp.readyState) {
case(4):
case(0):
try {
if(this._IE)
this. XMHttp.onreadyst at echange
thi s. st at eChangeHandl er;
el se
this. XMHttp. stateChangeHandl er
thi s. XMLHt t pRequest _st at eChangeHandl er ;

downloaded from: lib.ommolkefab.ir

headers.

this. XMHttp.open(this.action,this.uri,this.asynchronous);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir
for(var i=0;i < nanes.l|ength;i++)

this. XM.Htp.set Request Header (nanes[i],this. _requestHeader.retrieve(nanes

[i1));
this. XMHttp.send(this.envel ope);

successful = true;

}
catch(e) { }

br eak;
def aul t:

br eak;

}

return(successful);

}
XM_Ht t pRequest . prot ot ype. send = XM.Ht t pRequest _send;

111> -->

The constructor shown does exactly what the handwritten code from the beginning of Chapter 8, "AJAX
Using XML and XMLHttpRequest," does. In a nutshell, it sends an XMLHt t pRequest to the server, waits for
the response, and then acts upon the response. This is not a big deal; just create an instance, and it takes

care of everythingunless, of course, you're paid by the line.

Now that we've got a constructor to handle the getting of XML, it might be a good idea to figure out a place
to put it. What's needed, as if you didn't already know, is a generic XML document object. It doesn't have
to be perfect; it only has to workand by "work,” I mean offer a single set of properties and methods. From
the previous chapters, you're already aware that this is written, so let's take a gander at it in Listing 12-5.

Listing 12-5. Cross-Browser XML Document Class Constructor

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<!-- <I'[CDATA
XMLDocunent . prot ot ype = new XM_Docunent ;
XM_Docunment . pr ot ot ype. constructor = XM.Docunent ;

/*
C ass: XM_Docunent
Functi on: XM_Docunent
Met hod: n/ a
Description: Constructor for this class.
*/
function XM.Document () {
try {

var x = new DOWParser ();
this. IE = fal se;
}
catch(e) { this. IE = true; };
this. XMHttpRequest = new XM_Htt pRequest () ;

this. XM; /1 XML DOM docunent

this. DOVPar ser; /1 XML DOM parser (Gecko only)
this. XM.Serializer; [l XML serializer (Gecko only)
this. state = 0; /1 Pseudo readyState

if(!'this. _IE) {
this. _DOVParser = new DOWPar ser () ;
this. XM.Serializer = new XM.Serializer();

this. XM. =
docurent . i npl enent ati on. creat eDocunent ("", "", null);
}
}
/*
Cl ass: XM_Docunent
Functi on: XM.Docunent _| oad
Met hod: | oad
Description: Loads the specified XM. docunent.
*/

functi on XM_Docunent _| oad(xm) {
var i sXM.Text = fal se;
var i sXM.Docunent = (typeof (xm) == 'object');

try { /1 Test for elenents

i sSXMLText = (new RegExp('<','g")).test(xm);
}
catch(e) { }

switch(true) {
case(this. |IE && i sXM.Text): /'l Internet Explorer & text
this. XM =
new Acti veXCbj ect (' MSXM_2. Fr eeThr eadedDOVDocunent . 3. 0") ;

this. XM..async = true;

this. XM.I|oadXM.(xm);

t hi ctatea = A Il Raadv et ata enml at o

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ul EdKk,
case(!this. _IE & i sXM.Text): /1 Not IE & text
this. XM =
this. DOVParser. parseFronttring(xm , "text/xm");
this. state = 4; /'l Ready state is conplete
br eak;

case(this. I E & i sXM_Docunent):
[l Internet Explorer & XML DOM
this. XM =
new Acti veXObj ect (' MSXM_2. Fr eeThr eadedDOVDocunent . 3. 0') ;

this. XM..async = true;

try {
this. XM.IloadXM. (xm .serialize());
}
catch(e) {
this. XM. = xm;
}
this. _state = 4; /! Ready state conplete
br eak;
case(!this. IE &% i sXM.Docunent): // Not IE & XM. DOM
try {
this. XM. = xm . DOVDocument () ;
}
catch(e) {
this. XM. = xmi;
}
this. _state = 4; /! Ready state is conplete
br eak;
def aul t:

this. XMHttpRequest. uri

xm ;

try {
this. XMHttpRequest.send();

this. _state = 1;

}
catch(e) {
if(this._IE) {
this. XM =
new Acti veXCbj ect (" MSXM.2. Fr eeThr eadedDOVDocunent . 3. 0") ;
this. XM.async = true;
} else
this. XM. =
this. DOMParser. parseFronttring(' ',"'text/xm");
this. _state = 4; /1l Error - force conplete
}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

if(this._state == 4)
this. XMHtpRequest = new XM.Htt pRequest () ;

}
XM_Docunent . prototype. |l oad = XM.Docunent _| oad,;
/*
Cl ass: XMLDocumnent
Functi on: XM_Docunent _seri alize
Met hod: serialize
Description: Returns the result of the prior transformation
as a serialize XM. DOM docunent (text).
*/
functi on XM.Docunent _serialize() {
try {
if(this.readyState() == 4) {
if(this. XMHttpRequest.readyState() == 4)
this.load(this. XM.H tpRequest.responseXv.());
if(this._IE)
return(this. XM.xm)
el se
return(this. XM.Serializer.serializeToString(this. XM));
} else
return(null); /1 Not | oaded
}
catch(e) {
return(null); /1 Invalid docunent
}
}
XM.Docunent . prot ot ype. seri alize = XM_Docunent _seri ali ze;
/*
Cl ass: XMLDocumnent
Functi on: XM_Docunent _DOVDocunment
Met hod: DOvVDocumnent
Description: Returns the result of the prior transformation
as a Browser-native XML DOM docunent.
*/
functi on XM.Docunent _DOVDocunent () {
try {
if(this.readyState() == 4) {
if(this. XMHttpRequest.readyState() == 4)
this.load(this. XM.HtpRequest.responseXv.());
return(this. XM);
} else
return(null); /1 Docunent not | oaded
}
catch(e) {
return(null); /1 Invalid docunent
}
}

XM_Docunent . pr ot ot ype. DOVDocunent = XM.Docunment _DOVDocumnent ;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1

d ass: XM_Docunent
Functi on: XM_Docunent _readySt at e
Met hod: readySt at e

Description: Returns the readyState for the XM. docunent.
*/
function XM.Docunent readyState() {
if(this. XMHttpRequest.readyState() == 0)

return(4);
el se
return(this. XM.Htt pRequest.readyState());
}
XM_Docunent . prototype. readyState = XM.Docunent readySt at e;
/*
Cl ass: XMLDocunent
Functi on: XM_Ht t pRequest _set Request Header
Met hod: n/ a
Description: Inserts to the cache of HITP request headers.
*/

functi on XM.Docunent _set Request Header (nane, val ue) {

this. XMHttpRequest. set Request Header (nane, val ue) ;
}
XM_Docunent . pr ot ot ype. set Request Header =
XM_Docunent _set Request Header ;

/*
Cl ass: XMLDocunent
Functi on: XM_Docunent _get ResponseHeader
Met hod: get ResponseHeader
Description: Returns a single response header fromthe | ast
XM_Ht t pRequest .
*/

functi on XM.Docunent _get ResponseHeader (nane) {

return(this. XMH t pRequest. get ResponseHeader (nane)) ;
}
XM_Docunent . pr ot ot ype. get ResponseHeader =
XM_Docunent _get ResponseHeader ;

/*
Cl ass: XMLDocumnent
Functi on: XM_Docunent _get Al | ResponseHeader s
Met hod: get Al | ResponseHeader s
Description: Returns all of the response headers from
the last XM.H t pRequest.
*/

functi on XM_Docunent _get Al | ResponseHeaders() {
return(this. XMH t pRequest. get Al | ResponseHeaders());
}
XM_Docunent . prot ot ype. get Al | ResponseHeaders =
XM_Docunent _get Al | ResponseHeader s;

/*
d ass: XM_Docunent
Functi on: XM_Docunent _set Envel ope

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

LCOuUl | pll Ull. DJTLO LIIT CTllivel UPC 1 Ul allr NIVLI L L pr\cqucot .
*/
functi on XM.Docunent _set Envel ope(val ue) {
this. XMHtt pRequest. envel ope = val ue;
this. XMHttpRequest.action = 'POST ;

}
XMLDocunent . pr ot ot ype. set Envel ope = XM.Docunent _set Envel ope;
/*
Cl ass: XMLDocunent
Functi on: XM_Docunent _sel ect Nodes
Met hod: sel ect Nodes
Description: Returns an array of XM.Docunent based upon
an XPath statenent.
*/

functi on XM_Docunent _sel ect Nodes(xpath) {
var results;
var resultArray = new Array(); /1 XML Document result array

if(this.readyState() == 4)
if(this. XMHtpRequest.readyState() == 4)
this.load(this. XMHtpRequest.responsexXv.());

if(_IE) {
results = this. XM. sel ect Nodes(xpat h);
for(var i=0;i < results.length;i++) {
resul t Array. push(new XM.Docunent ());
resultArray[i].load(results[i].xm);
}
} else { /1 XPat h eval uat or
var eval uator = new XPat hEval uator ();
var resolver =
eval uat or. creat eNSResol ver (t hi s. XM.. docunent El enent) ;

var result; /1 Single XPath result
var xnl ;

var i = 0; /1 Counter

results =

eval uat or. eval uat e(xpath, this. XM, resol ver, XPat hResul t . ANY_TYPE, nul |);

while(result = results.iterateNext()) {
xm = docunent.inpl enentation. createbDocunent ("", "",null);

xm . appendChi | d(xm . i nport Node(result,true));

resul t Array. push(new XM.Docunent ());

resultArray[i].load(this. XM.Serializer.serializeToString(xm));

+4+i ;
}

}

return(resultArray);

}
XM_Docunent . pr ot ot ype. sel ect Nodes = XM.Docunent _sel ect Nodes;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

“l aAdo>o. NIVLLAUL ULITTIL
Functi on: XM_Docunent _sel ect Si ngl eNode
Met hod: sel ect Si ngl eNode

Description: Returns a single XM. docunent based upon an
XPat h st at enent.
*/
function XM.Docunent _sel ect Si ngl eNode(xpat h) {
return(this.sel ect Nodes(xpath)[0]);
}
XM_Docunent . pr ot ot ype. sel ect Si ngl eNode =
XM_Docunent _sel ect Si ngl eNode;
11> -->

Now that there is a generic constructor for XML documents and a constructor for the XSLT Request object,
the next task is to ask the nice web service for an XML document. To do this, a quick and easy way of
producing a SOAP envelope is required. In writing this constructor, | learned something about SOAP that |
hadn't realized in the past: SOAP is, in some ways, like a car. With a car, there is a base model, and,
regardless of the options, the base model remains the same. Oh, sure, some cars have better sound
systems and some have bigger engines, but underneath all the little extras, the cars are essentially the
same. Take my car, for example; with the exception of the dirt and the dent on the hood from a flower pot,
when you get past the options, it is just like the other car from that model year.

This same approach was used when writing the SOAPEnvel ope constructor. A basic template serves as a

starting point, and all of the other options are then added on. These options consist of things such as the
operator, content, and namespaceall required, but very often different from request to request. Listing 12-6

shows the inner workings of this constructor.

Listing 12-6. Cross-Browser SOAPEnvel ope Class Constructor That Uses Regular
Expressions

<I-- <I[CDATA
SQAPENnvel ope. prot ot ype = new SOAPEnvel ope;
SQAPENnvel ope. prot ot ype. construct or = SOAPEnvel ope;

/*

C ass: SOAPENnvel ope

Functi on: SOAPEnvel ope

Met hod: n/ a

Description: Constructor for this class.
*/

<l-- <I[CDATA
functi on SOAPEnvel ope() {
this. _tenplate = '<?xm version="1.0" encodi ng="utf-8"7>";

this. _tenplate += '<soap: Envel ope
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schemna- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"

vm ne enan="httn"// ecrhame vmM ecnan nrnl/ ecnan/ anval nnal/">'

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

LIS, _LEelprate T— ~_vuvpel at vl X 1I5— _lidligspacte -~
this. _tenplate += ' _package';

this. tenplate += '</_operator>';

this. _tenplate += '</soap: Body>';

this. _tenplate += '</soap: Envel ope>';

}

SOAPENnvel ope. prototype. operator = null;
SOAPENnvel ope. prot ot ype. nanespace = 'http://tenpuri.org/"';
SOAPENnvel ope. prot ot ype. content = null;

/*
C ass: SOAPEnvel ope
Functi on: SQAPEnvel ope_envel ope
Met hod: envel ope
Description: Returns the readyState for the XM.HttpRequest
obj ect .

*/
functi on SOAPEnvel ope_envel ope() {
var work;

wor k
wor k
wor k

this. _tenplate.replace(/_operator/g,this.operator);
wor k. repl ace(/ _nanespace/ g, t hi s. nanespace);
wor k. repl ace(/ _package/ g,this.content);

ret urn(work);

}
SOAPENnvel ope. prot ot ype. envel ope = SOAPEnvel ope_envel ope;

111> -->

12.2.3. XSLT

The final constructor that was used in the examples was the XSLTProcessor constructor, which serves as the
poster child for code reuse. It has two instances of XM.Docunent objects, one for the XML document and one

for the XSL style sheet. It also serves fairly well to show some of the difference between Gecko-based
browsers such as Firefox, Mozilla, and Netscape, and Microsoft Internet Explorer.

These differences range from Internet Explorer needing a template to create a processor to something as
simple as Firefox needing a serializer to obtain the text representation of an XML document. Listing 12-7

shows the constructor for the XSLTPr ocessor .

Listing 12-7. Cross-Browser XSLTProcessor Class, Used for Transformations

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<!-- <I'[CDATA
Xsl t Processor. prototype = new XsltProcessor
Xsl t Processor. prototype. constructor = XsltProcessor

/-k
d ass: Xsl t Processor
Functi on: Xsl t Processor
Met hod: n/ a
Description: Constructor for this class.
*/
function XsltProcessor() {
try {

var x = new DOWParser ();

this. IE = fal se;
}
catch(e) { this. IE = true; };
this. _xsl = new XM.Docunent(); // Input XSL style sheet
this._xm = new XM_Docunent(); // Input XM. docunent
this. output; /1 Qutput (text)
this. XM.Serializer; /'l XML serializer (Gecko only)
this. XSLTenpl at e; /'l XSLT tenplate (I1E only)
this. XsltProcessor; /'l XSLT processor

if(!'this._IE)
this. XM.Serializer = new XM.Serializer();

/*
Cl ass: Xsl t Processor
Functi on: XsltProcessor _initialize
Met hod: _initialize
Description: Initializes/re-initializes the XSLT processor
*/
function XsltProcessor _initialize() {
if(this._IE) {
this. XSLTenpl ate =
new Acti veXCbj ect (' MSXML2. XSLTenpl ate. 3.0');

this. XSLTenpl ate. styl esheet = this. xsl.DOvDocunent ();

this. XsltProcessor = this. XSLTenpl ate. creat eProcessor;
} else
this. XsltProcessor = new XSLTProcessor();

}

Xslt Processor. prototype. initialize = XsltProcessor_initialize;

/*
Cl ass: Xsl t Processor
Functi on: Xsl t Processor _set Par anet er
Met hod: set Par anet er
Description: Inserts an XSLT paraneter to the paraneter

cache.
*/
function XsltProcessor_set Paranet er (nane, val ue) {
trv I

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

LIS, _ASILFITULEDDUI . dUuurdl aligt el (lialig, val ue) ,
el se
this. XsltProcessor. set Paraneter(null,nane, val ue);

catch(e) {
this. _initialize();
t hi s. set Par anet er (nane, val ue) ;
}
}

Xsl t Processor. prototype. set Paraneter =
Xsl t Processor _set Par anet er;

/*
C ass: Xsl t Processor
Functi on: Xsl t Processor | oad
Met hod: | oad
Description: Loads the XM. docunent to be transforned.
*/
function XsltProcessor_|oad(xm) {
try {
this._xm.load(xm);
catch(e) {
this. initialize();
}
}
Xsl t Processor. prototype.load = XsltProcessor_| oad,
/*
C ass: Xsl t Processor
Functi on: Xsl t Processor i nport Styl esheet
Met hod: i nport Styl esheet
Description: Loads the XSL style sheet for the
transformati on.
*/
function XsltProcessor _inportStyl esheet(xsl) {
try {
this. xsl.load(xsl);
}
catch(e) {
this. initialize();
}
}

Xsl t Processor. prototype.inportStyl esheet =
Xsl t Processor _i nmport Styl esheet;

/*
d ass: Xsl t Processor
Functi on: Xsl t Processor _readyState
Met hod: readySt at e
Description: Returns the readyState for a conbi nation of
the XML docunment and the XSL style sheet.
*/

function XsltProcessor_readyState() {
switch(true) {

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ISLUL LI D. _ADI . I TAUuyoLatLcy)),

br eak;
case((this._xsl.readyState() > 0) && (this._xsl.readyState() < 4)):
return(this. xsl.readyState());

br eak;
case((this. _xm.readyState() > 0) & & (this._xml.readyState() < 4)):
return(this._xm.readyState());

br eak;
defaul t:
return(4);
br eak;
}
}
Xsl t Processor. prototype.readyState = XsltProcessor_readyState;
/*
Cl ass: Xsl t Processor
Functi on: Xsl t Processor _transform
Met hod: transform
Description: Perforns the XSL transformation using the
suppl i ed XM. docunent and XSL styl e sheet.
Returns the result as an XML docunent.
*/

function XsltProcessor_transforn() {
if(this. _IE {
this. XsltProcessor.input = this._xm.DOVDocunent ();

this. XsltProcessor.transform();
this. _output = this._XsltProcessor. output;
} else {
this. XsltProcessor.inportStyl esheet (this._xsl.DOvDocunent());
this. output =

this. XM.Serializer.serializeToString(this. XsltProcessor.transformlroDocum
ent (this. _xm .DOVDocunent (), docunent)) ;

}
this. _initialize();

return(this. output);

}
Xslt Processor. prototype.transform = XsltProcessor_transform
/*
Cl ass: Xsl t Processor
Functi on: Xsl t Processor _serialize
Met hod: serialize
Description: Returns the result of the prior transformation
as a serialize XM docunent (text).
*/

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

I SLUL I LI D, _UuLl puL j,
}
Xslt Processor. prototype.serialize = XsltProcessor_serialize;
11> -->

12.2.4. Serialization Without Berries

One common item that you'll notice throughout each of the previous constructors is that serialization plays
a big part in handling XML. Several reasons account for this, the first being that XML was designed to be
human readable, and humans read text, not binary. For example, when was the last time you heard,
"ASCII 65, uppercase 'A™? I'm the one who was called a mad scientist, and | don't deal with that stuff, so |
can't imagine the more mundane members of humanity doing things like that.

The second reason for serialization is the underlying architecture of the web, the Hypertext Transfer
Protocol, or HTTP, for short. The HTML, XHTML, JavaScript, CSS, XML, and XSL travel back and forth from
the server to the client as text. Without serialization, all of the "X-stuff,” as an old supervisor of mine put it,
wouldn't be going anywhere.

Another reason for serialization is that, unlike an XML object, very little overhead is associated with text. An
XML DOM document requires between three and ten times the memory of the equivalent text document.
This overhead could cause some issues in the client's browser on older machines. Of course, the issue of
overhead has to be weighted against parsing the text to load a document.

My final reason for serialization is that it is just so easy to load an XML document from a text document. In
Microsoft Internet Explorer, it is simply a matter of using the | oadXM. method. With Firefox, a little more

work is necessary, but not too much. Just use the DOVPar ser 's par seFronSt ri ng method and reconstituted
XML, just like freeze-dried coffee or freeze-dried minions.

e prcy ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

12.3. Generic XSLT

Whenever I'm creating an XSL style sheet, unless I'm very, very careful, my style sheets are basically a
one-trick pony. Yeah, they do that one trick well, but as | said before, I'm paid by the page, not by the line.
Maybe this is the reason the style sheets that | create arehmm, how to put it nicely?weird. Yes, that's the
word, weird.

It isn't that they don't workthey work perfectly well. It is more along the lines that | use a lot of relative
positioning. Although this approach might seem somewhat dangerous, there are several ways to decrease
the danger to tolerable levels. More simply put, take cautions to prevent the style sheets from blowing up
and taking the web page out with them. One of these methods is to always make sure that the XML
document has the same basic structure, /root/row node. This makes it far less likely that you will encounter

any surprises.

Remember back to Chapter 9, "XPath," to the brief introduction to XPath with all the slashes and asterisks?
Well, the asterisks are wildcards, used when the node name is unknown. This means that /*/*/ * is the
equivalent to / r oot/ r ow nodeat least, when we want all the nodes that are the second descendant of the
root node.

12.3.1. Forms

As long as the structure of the XML document is known, it isn't very difficult to create generic XSL style
sheets. Knowing the names of the individual nodes isn't important, either, although, for the extremely lazy,
like myself, the names can be important when creating either labels or column headers. To show what |
mean, it is necessary to introduce two XSLT functions.

The first of these functions is the nanme function. It provides the name of the node passed, which, in these
cases, is the context node ". ". It returns the actual node name, so if the node name isitem price, then
itemprice is returned. Yes, | am aware that a label or header with i tem pri ce isn't much better than no
label at all, which is where the second function, transl at e, comes in.

The transl at e function, well, translates. It replaces one character with another, so instead of having a label
or a header of i tem pri ce, it can be | TEM PRI CE. For me, the latter is a lot more like what | expect when

visiting a website. Accepting three parametersthe source string, the from string, and the to stringit returns
a string consisting of one-for-one replacements of characters.

I should cover a couple things before we use the transl at e function. The first of these is that in instances

when the from string doesn't contain a particular character, that character is copied unchanged. The second
thing is that it is a good idea to verify that characters in the from string and characters in the to string are
in the same position in their respective strings. Or, more simply stated, using a from string of qwerty and a

to string of wert yu will result in a Caesar Cipher. And although a Caesar Cipher might have been state-of-
theart in 40 B.C., I'm reasonably sure that it isn't the result that you've hoped for.

With that out of the way, let's take a look at Listing 12-8, which is an XSL style sheet that creates a basic

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Listing 12-8. Generic XSL Style Sheet to Produce an HTML Table

<?xm version='1.0"?>
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl:output nmethod="htm " indent="yes" nedia-type="text/htm"/>

<xsl:tenplate match="/">

<xsl : el ement nanme="t abl e">
<xsl :apply-tenpl ates select="/*/*/*" [>
</ xsl : el emrent >

</ xsl:tenpl at e>
<xsl:tenplate match="*">

<xsl : el ement name="tr">
<xsl : el enent nanme="td">
<xsl : val ue- of
sel ect ="transl ate(nane(.), ' qwertyui opasdf ghj kl zxcvbnm ', " QAERTYUl OPASDFCGHJ
KLZXCVBNM ')" [>
</ xsl : el enent >
<xsl : el emrent name="td">
<xsl : el ement name="input">
<xsl:attribute
nane="type">text </ xsl:attribute>
<xsl :attribute nane="nane">
<xsl :val ue-of select="nanme(.)" />
</ xsl:attribute>
<xsl:attribute nane="val ue">
<xsl :val ue-of select="." [>
</xsl:attri bute>
</ xsl : el enment >
</ xsl : el ement >
</ xsl : el enent >

</ xsl :tenpl at e>

</ xsl : styl esheet >

This is nothing fancy, but it is a proof of concept that can be taken further to show that it is, in fact,
possible to create a generic XSL style sheet that produces HTML forms. Although it is rather
simpleprimitive, evenit is easy to imagine some possibilities, such as specifying input types via parameters.

12.3.2. Tabular

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Torm. Really only a couple differences arise wnen working with tapular information instead or a form. I1ne
first difference is that, instead of labels at the side, they're column headers on the top. All that is required
to do this is to create two templates; the first deals with creating a table row, and the second creates a
table header. Other than that, the only real difference is the addition of a predicate, [1], to ensure that the

header is created only once. We then have an XSL style sheet that looks like the one in Listing 12-9.

Listing 12-9. Generic XSL Style Sheet to Produce an HTML Table with Headers

Based upon the Node Name

<?xm version="1.0"?>
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl :output nethod="htm " indent="yes" nedi a-type="text/htm"/>

<xsl:tenplate match="/">
<xsl : el enent name="t abl e">
<xsl :apply-tenpl ates select="/*/*[1]" node="header" />
<xsl :apply-tenpl ates select="/*/*" node="row' />
</ xsl : el emrent >
</ xsl:tenpl at e>

<xsl:tenplate match="*" node="header" >
<xsl :el ement name="tr">
<xsl :apply-tenpl ates select="./*" node="colum" />
</ xsl : el ement >
</ xsl:tenpl at e>

<xsl:tenplate match="*" node="row'>
<xsl : el enent name="tr">
<xsl :apply-tenpl ates select="./*" node="node" />
</ xsl : el emrent >
</ xsl:tenpl at e>

<xsl :tenplate match="*" node="col um" >
<xsl : el enent name="t h">
<xsl : val ue- of
sel ect ="transl ate(nane(.), ' gqwertyui opasdf ghj kl zxcvbnm ', ' QAERTYUl OPASDFGHJ
KLZXCVBNM ") " [>
</ xsl : el ement >
</ xsl:tenpl at e>

<xsl:tenplate match="*" nobde="node">
<xsl : el ement nane="td">
<xsl :val ue-of select="." />
</ xsl : el enment >
</ xsl:tenpl at e>

</ xsl : styl esheet >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

One of these ways to dress up the generic style sheets is to write the header template with xsl : when to

output more meaningful headers. Another possibility is to use Cascading Style Sheets to give a more
polished look and feel. Finally, right-justifying numbers wouldn't hurt.

e Py NEXT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

12.4. Summary

The advantages of code reuse are obvious; large pieces of code need only be designed, coded, tested, and
documented once. Whether it is a class constructor, a function, or an XSL style sheet, if at least part of a
solution is already written, you're that much closer to delivery of the final application.

Another issue is that developers can be insulated from the ins and outs of the various web browsers. No
longer is there a sharp learning curve ahead or the feeling of hopelessness associated with trying to make
something work in Internet Explorer while trying not to break it in Firefox. | have to admit that at times
I've fixed a web page in one browser only to find that in the other browser it was fixed in the same way
that the vet fixed my cat, Moreta.

The important thing to remember is that if you can complete three web pages in the time that it takes for
Igor to complete one, who do you think will be shown the door the next time that the layoff fairy pays a
visit?

Unfortunately, some development shops still cling to the outmoded idea that the better programmer writes
more lines of code. Thankfully, this idea is going the way of the three-martini lunch. Gin, yuck! When you
get down to it, the biggest possible problem is that if one of the constructors has a bug, every page that
uses that constructor either directly or indirectly has the same bug.

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 13. Traveling with Ruby on Rails

Mention the subject of Ajax, and within five minutes somebody will bring up Ruby on Rails. Just as with
Ajax, Ruby on Rails has become a winning phrase in corporate buzzword bingo. It is kind of sad that both
topics have been relegated to buzzwords, with managers wielding them interchangeably, like they're some
kind of weapons. Unfortunately, managers are just as likely to hurt themselves as somebody else, which
just goes to show that it is a good idea to know what the tools are before attempting to use them.

In this chapter, we cover some of the history of Ruby on Rails, followed by what it is and how to install it on
a system running Windows XP. From there, we examine how to start developing, using Ruby on Rails, and
how to solve a simple problem using it.

Unfortunately, it is beyond the scope of this book to do more than introduce Ruby on Rails. There is
actually a logical reason for this, beyond the fact that I'm more of a JavaScript guy than a Ruby guy. The
reason for this is college.

Huh?

When | was in college, some students, well, complained about how the professors taught. The problem is
that the professors didn't give them the code required for every assignment. We were taught, for example,
how to create a data structure, but not the particular data structure for Question 6 on the midterm. The
professors pointed us in a direction and expected us to reach the destination on our own. Gee, the nerve of
those professorsthey pointed us in a particular direction and expected us to find the way ourselves.

Seriously, this is merely an example, not the answer to Question 6. So if you choose to seriously examine
Ruby on Rails, allow me to point the way.

e Py NEXT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

13.1. What Is Ruby on Rails?

A single word in the English language, in my opinion, sums up what Ruby on Rails is: synergy. Just in case
you're unaware of the meaning of the word synergy, it roughly means that the whole is greater than the
sum of its parts. Need a few examples of synergy? How about chocolate and peanut butter? Individually,
either ingredient is good, but put them together and, well, yum!

With Ruby on Rails, instead of chocolate and peanut butter, there is Ruby and Rails. This realization leads
me to two additional questions. The first is "Beyond being a deep-red corundum crystal, just what is Ruby?"
There is, after all one thing that | am certain of, and it is that Ruby is a language and not a mineral,
although it is possible to create a laser using a ruby, and lasers are the meat and potatoes of most mad
scientists.

13.1.1. Ruby

The Ruby that is referred to in this chapter is an object-oriented programming language created by Yukihiro
Matsumoto of Japan in 1993. In Japan, not surprisingly, Ruby quickly became quite popular, with home-
field advantage and all that kind of stuff. However, because of its price tag of zero (it is, after all, an open
source language), Ruby began to catch on outside of Japan. Yes, against all odds, Ruby become something
of a phenomenon.

Although some might consider it odd that an open source language from a land far away from our little
piece of the universe planted the seed of the idea of Ajax, | do not. I, for one, am open to ideas, regardless
of the source. Alright, I'm a little more open to the ideas that relate to food, but, then, I'm one of those
developers who eats anything that doesn't try to eat me first.

The interesting thing is that, even with people like me, mad scientists without enough time who like sushi
and green tea ice cream, Ruby's popularity was growing only slowlyfaster than a bonsai tree, but slower
than Godzilla, Pokemon, or Yu-gi-oh. Fortunately, something changed back in 2004. No, radiation was not
involved, but what happened is that Ruby got Rails.

13.1.2. Ruby on Rails

The word Rails is rather interesting; it brings up connotations of a sleek, silent, fast electric train moving
into the future. That's a pretty nice connotation, especially when tied to web development, which, in my
opinion, more often resembles a runaway steam train with no brakes on a downgrade, going into a hairpin
curve during a snowstorm on Monday. In short, the average project is an accident waiting to happen. The
accident might never happen, but the potential is there regardless. Rails is a full-stack programming
framework implemented in Ruby whose purpose is to smooth the development of web applications.

Created by a Danish college student, David Heinemeier Hansson, Rails is open source and is based upon
two simple principles. The first is that fewer lines of code equal fewer coding errors. This is a sensible idea
because smaller, tighter code requires less time to write and debug. This remaining time could then be put
toward testing or toward the inevitable feature creep that rises like a monster from a slab.

The second principle of Rails is configuration. Unlike many environments, Rails doesn't use configuration
files. Instead, Rails uses information in application code itself to determine its configuration. This eliminates
the "Doh!" factor that occurs whenever an anplication is moved to another environment. even when the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

personal experience that contiguration Tiles are one oT those tnings that 1all through the cracks apout ZuU
percent of the time.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

13.2. Installation

This entire preamble leads to the two important questions of where to get Ruby and where to get Rails.
That's easy. A simple Google search for "ruby rails" is enough to answer both questions simultaneously. |
do recommend a single search instead of individual searches, unless, of course, you are also interested in
jewelry and traveling by train.

The process of installing Ruby is dependent upon which operating system your machine is running. For
wimps like me who happen to be running Windows XP Professional, listening to Jethro Tull, and writing a
book, installation is simply a matter of downloading an . exe and double-clicking it to get the ball rolling. It

installs just like the shrink-wrapped software that you purchase, minus the autorun CD and price tag, as
Figures 13-1 and 13-2 show.

Figure 13-1. Windows installation wizard

& Ruby 1.8.2-15 Setup M=

Welcome 1o the Ruby 1.8.2-15
setup Wizard

This wizard will guide vou through the installation of Rubey
1.8.2-15.,

It is recommended that you close all other applications
before starking Setup. This will make it possible ko update
relevant system files without having ko reboat waur
compuker,

Click Mext to continue,

Mext = | | iCancel

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& Ruby 1.8.2-15 Setup

Choosze Components
Choose which Features of Ruby 1.8,2-15 vou want ko install,

iCheck the components you want ko install and uncheck the components you don't wank to
install. Click Mext to continue,

Select components to install: Base Install (Binaries .Ei'E:.SEi.’Il:It!DI'I s s

Documentation and S
[+ RubyGems Package I
FreeRIDE - & Ruby IC
Dpenssl - Secure Ink
&[] Tl Tk GUI Libraries
Fox GUI Libraries
SoiTE Code Editar

b ! *

Space required: 41.3MB

< Back ” Mext = | | Cancel

If the lack of an autorun CD makes you nervous, then, by all means, create your own autorun CD.
However, if the lack of a price tag makes you nervous, | recommend that you buy a second copy of this
book and give it to a friend as a gift. In this manner, you've got a bill and you've also given the nice people
at Prentice Hall a reason to send me a check. In short, everyone is happy all around.

In a Windows environment, the installation of Ruby on Rails requires a couple additional steps. The first of
these steps is to install Rails itself. If you have an Internet connection, this is just a single line; it is at the

command prompt, but, nevertheless, it is a single line (see Figure 13-3).

Figure 13-3. Installing Rails at the command prompt

[View full size image]

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

] _'..'J.llr.lrJ__ :'“_."' ELIF_'J"?' 16T '5_..1 -:g A]
Copyright 1985-2001 HMicrozoft Cowpp

CisDocumentsz and SettingzsEdmond Wovechowskuyrcd
Ciwrcd ruby
gam install rails —remote
gshinsgem' inztall rails —remote

j.ll'f'L- 11 T_.i.ull af °* 1z*]
; For: http:sosgens . rubuf orge .org

ll.IIEr RDae

1ing RDoc -1 .

1ing RDoc d L 3 i -1.11.2...
talling RDoc d i i i Topr—1.1.5...
alling RDoe doci at i 3 i hzarvica—1.B.8...

Gl d

However, if you are a real web developer and not a quiche-eating Windows user, installation will be a little
more complex. Don't worry, it isn't a "Windows is superior" thingin fact, it is more of a "Windows has
training wheels" thing. Now that I've thoroughly confused you, the fact is that the RubyGems package
manager is part of the Windows installer, which isn't the case with Linux. However, because Linux isn't a
stagnant environment, | recommend checking the Ruby website for the latest installation procedures.

Now that you've (hopefully), installed Ruby and Rails, it is time to kick the steel wheels (ouch) and take it
out for a little spin. Woo-hoo!

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

13.3. A Little Ruby on Rails Warm-Up

As stated previously, Ruby is the object-oriented programming language, and Rails is the framework used
to develop applications. Let's say, for example, that | want to create a mad scientist application using Ruby
on Rails. The steps would be something like the following:

1. If it doesn't exist, create a folder/directory to hold each of my Ruby on Rails applications. In this
example, | created a folder called rail s on my C: drive.

2. Using the command prompt, enter cd rails. This changes the current directory to C:\rail s.
3. Create an empty web application by running the command rail s madsci enti st, as shown in Figure
13-4.
Figure 13-4. Creating an empty project at the command prompt

[View full size image]

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx04_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Cowprailz>rails madscientist
create
craate appsoontrollers
create appshelpers
craate appsmodels
create appSvieswsslayouts
craate configfenvironments
create components
create dhb
create doc
create lih
create libstasks
create log
create publicsinages
create publicsjavascripts
create publicsstyleshects
create scriptsperformance
create
create FE
create testsFunctional
craate tostsmochssdeve loprent
croate test mochks test
craate testosunit
craate wvendor
craates wendorspluging
create HRakefile
cresate READHE
create appscontrollersAsapplication.rh
ereate appshelperssapplication_helpse.eh
create testAstest_helper.rb
create conf i.i_l.-"qlnr.nhnl L g :.rn].
create configsroutes.rh
create publics-htacces:
create conf igshoot oreh
create configSfenvironment.reh
create conf igSenvironmentzsSproduct ion.rb
create configSfenvironmentzAdeve lopment..rh
create conf igsenvironmentzSteszt.rh
create scriptsabout
create script/hreakpointer
create scriptSconsole
craate scriptrsdestroy
create scriptsgensrate
craate scriptsperformancesbanchnarker
create scriptSperformancesprofiles
craate SCcript s PproOcess S reapse
create scriptsprocesssspacvnes
creaate sepiptsprocesssspinnes
create seriptsrunner
create Scriptsoaruver
create scriptsSplugin
create publicAdispatch.eh
create publicAdizspatch.cga
create publicAsdispatch.Fogl
create publics484.htnl
create publicsS5HEH. htnl
create publicsindex.html
create publicAsFavicon.ico
create publicsrobots.txt
create publicAsimagessrails.png
create publicsjavascriptzsprototype.js
create publicsjavaszcriptsseffects.jo
create publicsjavascripts/sdragdrop.js
craate publicsjavascriptsscontrols.js
create docsREADHE_FOR_AFP
craate logscerver. log
creaate logsproduction.log
cereate logSdevelopment.log
create logstest. log

Courailsy

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 13-5. Starting the WEBrick web server at the command prompt

[View full size image]

o+ Command Prompt - ruby script\server L EI

e

Cisrailssnadseientistruby seripthserver "]

3 Hoor 1R Ej WEBrick. . .

» Rails application started on http:/7B8.8.0.8:3888 J

» Cerl-C to shutdown server; call with help for aptions
[2PA5-12-26 1 A:4%] INFO WEBrick 1.3.1

1% -1 6 15:48:4%9]1 INFO yuby 1.8.2 {20B4-12-25%> [i3B6-mswin3d2

[ZAA5-12=26 15:48:4%] IHFO0 WEBrick: :HTITPServerdiztart: pid=3124 port=-30008

5. Check out what is out on the web server in the browser of your choice (see Figure 13-6).

Figure 13-6. The default start page

[View full size image]

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx05_alt.jpg
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx06_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolketab.ir

o T e - P P [
4@ - up - B O P [0 vsanaran. oo T w Pr—
W e Sared L] Latest Headdires

P ngqnme aboard

[Femh]| e mats san
RRILE
ADQUIL Y01 e ST S eniranmant . :
Join thz commumaby
Getting started Buby on Pl
Here's hiow bo I;H't r-:-Fn-;: 'f'E'ﬂl Ughm
Makng lg1s
1. Craate your databases and adit 1B ghannal
configfdatabase . yml bt
Bu trgckpr
Fanls respds £ breow your bgem and passwond
Browse the
2, Usé acript/genacates bo cresta your doournentation
models and controllars
TE fom 6 avmsisbis ophone, non it wilFcut paramatan Bt AR
= khr.
Fuby corg

3, Zat up a default routs and remove or
rename this file

REUSS Snd STUp i COn M) routes. /o

Not very impressive, is it?

6. Now is a good time to type Ctrl+C in the command prompt window to shut down WEBrick, as shown
in Figure 13-7, before falling back and regrouping.

Figure 13-7. Shutting down the WEBrick web server at the command
prompt

[View full size image]

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx07_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ftr Uindows ®XP [Werzion 5.1.26088]
opyright 1985-2001 Microzoft Cowrp.

CisDocumentsz and SettingzsEdmond Wovchowzkyircd wwrails
C:wrailsied madzcientist
radlswmadscientistiruby scriptuserver

on started on http:/»B.0.0.8:3088
daown zerver; call with —help for oaptions
IHFO ick 1.3.1
IHFO suby 1.8.2 <2084-12-25> [1386-
IHFQ o UH = verliztart: pi 1392 %% 5]
IHFO 5 I
IHFO] wrfistart done.

13z
13
13
13
13

Well, we're only partway there; in fact, we should consider ourselves lucky that there is anything at all to
show. Satisfied? Neither am 1, so to progress further, we need to understand where things go in a Rails
application.

The rails madsci enti st command created a number of folders and files that perform various functions.
Take, for example, the dat abase. ym file in the confi g folder; its purpose is to provide the application with

details regarding the database to be used by the application. This is an example of the Rails "place for
everything and everything in its place" approach. Personally, | wish this idea was more widespread. It
would have gotten me out of some embarrassing moments in the past.

Another folder that is of interest is the publ i ¢ folder. Along with its three child folders, i mages, j avascri pts,
and styl esheet s, it provides a standard location for stashing the aforementioned. In most other
environments, locating these types of files is more akin to a treasure hunt than web development.

The final folders that I'll cover are the app folder, along with the child folders called: control |l ers, hel pers,
nmodel s, and vi ews. Still feel like you're in the dark? Give me a moment to illuminate. The first directory,
control |l ers, contains classes that handle web requests from the visitor. The hel pers directory holds helper
classes, which are used by other classes, such as controller classes. Model classes, contained in the nodel s

subdirectory, are used to wrap the data stored in a database. Personally, | think that this is where
application development can get really messy and often goes wrong. Finally, there is the vi ews
subdirectory, which holds the views. Views are the templates that are converted to HTML and returned to
the visitor's web browsers.

Although at first glance it might seem that the application is spread around a bit, that really isn't the case.
Instead of the normal "l know it is around here somewhere" approach usually associated with web
development, Rails provides a consistent location for each class. If only this approach could be applied to
the real world, | would spend a lot less time looking for my watch.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

13.4. A Problem Revisited

Now that I've got some kind of idea (yeah, right) of what I'm doing with Ruby on Rails, the next question is
how to use it in an application. The first task is to identify exactly what | want to do. For example, let's say
that | want to display the items contained in the item table. The first necessary task is to generate a data
model using the command console, as shown in Figure 13-8.

Figure 13-8. Generating a data model at the command prompt

[View full size image]

=+ Command Prompt B - | _ﬁﬂ

L iwrallswadscientist druby scriptwgenegrate model item
B | : appsnode Lo/

identical te

riwrailsswmadscientist s

hd

The next step is to update the dat abase. ynl in the confi g directory to use the MySQL database from the
previous chapters. The following is a snippet of the necessary code.

devel opnent :
adapt er: nmnysql
host: | ocal host
dat abase: aj ax
user name: root
password: wyvern

These are the subsequent steps:

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx08_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 13-9. Generating a controller for the data model at the command
prompt

[View full size image]

| =+ Command Prompt

ontroller.rh
troller_test.rh
.1*h

Ciwrailzwmadscisntist? _

2. Add a single line to the generated controller (See Listing 13-1).

Listing 13-1.

class ItenController < ApplicationController
scaffold :item
end

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx09_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 13-10. A "Doh!" moment accessing a database

[View full size image]

B [e G0 Eeoinads Jak ben

- - B 0 PD (L vepinaran. o * 06 Gl
W Gemng Stared Lin Latest Headlines

ActiveRecord::StatementInvalid in Item#index

Mysiql: cBprar: NISUITabde "sjasx. itemi® desan’'t exivt: FEREET COUNTI") FREOA itemr

EATLS BCOTH ofsoriphi .. contigs.
Appecation Trace | Crarework Trace | [ull Trace

s DUe Srdir s gamd b § S e Yaon e naos-rd= 1 b LA D0 S wam b7 e el enmaer L _ el apt o0 el ru r e _edewyar vk Bicia T legt
= rwy s Db firury S game AL 8 Sy Festiverecerd-l. LE. E7dibSeck ive_recdrdScennect lon_sdaptiar e imyegl_selspter. b 18IS in T esnwswria”
¢ by Ui Sowrfgema £L 8 Sgeme Sact i versctrd-d. L IV libFact bve_rebardSoemnection_sdaptiariimyrglh sdepter.rbl KHitin nalec:’
Arokigs 1k Srobvegema Ll fgess facsiwarecerd-1, L, B b facniva_radandscenneor ian_sdaprera wysgl sdagrar. vk 1TEcin aalecs _one'
ey 1ok Pl e L g S ot e e o=, b, B i e W T e D S et i el Tl P T e Sdatalad s It At smans . v 16 e e W
f by S i S Syeme /L § Sgeme J act ivareoerd=-1. 13, I/ libFfact iva_retord bass. ok E18-ie " cowmE_by_sgl®
frubry s Db S ema L B g Festiwersoerd-1. LE £ ab Mect bve_rerardibars . rbi Lo ie ok
Pl Ll i L g AL O = 1, AL B UL O 10k SOl 0] Ll i Lk 1, B QAT L Souel Oul1a0n 306 POq gLt 3 ¢

kel ik ke e Lo @ el S e L oipa o - 0 3L BAd A Een i, SR T] L r R LTt . O D00 pegliatar el callestian fert
frops hrrubpsgesad L Srgene JarrLoapai=1 . 1L, FATUhraenian_semeral Ler fpaginieisn, P 1F4 0 1n "paginar s’
f by A i Srar S geme AL B Sgeme Fect i onpech-l UL I 1A et Son_cont il berfeenilsldioy. cbo k0L An " dAwt "
= s 1B Sy Sgume AL 0 Fgemr Fect Lenpecie=1 . 11 IS 1Ak et dan sompkral Ler fsesifeldirsg_ ebi0diin " iredan’
g 1ab Sirokey S geEad Ll Vgl SectLonpack -1, 1L, Bl Ecn dan Set ral e Teaidd . il @10 dn " ddnad’
drokig s 11 oy gLl gl S ce L oipecic= 1, 1L, DA IARr e o Sn_ oo 1o] Lier Teiit - ik @0 dR e form seotLon withooo fdltars’
f rulry S Lib SrabrrSgeme £ L. B Fgmmn Fact lompade -1 AL I Libvect dan_cont ral ler/Tiltere. rb: 1Rz in “parices_sction_withesd _beanchesrk”
frubry s Lib Sy gwms L 8 Sgwme Fect Lonpedcic -1 AL I libFect Son_contidd Ler terchaariking. rb: &3 in “per lorm_sect bon_withowt _reicws”
L T B e T I e H L Tt B, e e T I T TR PP TP
o rukey s 3 al Sy gk -l el el Cipeaii - 3 DL BT WO R S T LT ket AR Tl 66 An Cper D Rl o WLt RO T e

ol B A & B DA A &

Lo T - I Y T |

&
o= robeysd Db rolve S gema /Ll fgess Jeceicapacr-1 0L Filibreceian concTaller franoos. thollzin “parfors soviom”

ey s LSS gma L B e Fast i onpedc -1 L T Libect fan_central i tare. nbo 3P in Ciend”

ek ey S b FearpSgems AL 0 Sgeme Fact i onpadh- 1. 1L I/ 1ibFact Soa_comt 4l Ler - bz dilcin “pacscesr_withok jenrion_mandgesant _repport '
a

=

=

< ey 1k ok geEd Ll R S ae L e -1 DL B e SR ra L LT e 0 e R s b L i Cpracaas
oy 11k ok Vgeadl f Agemefraile=1, b 0rlibddLapacstar . rl iz i P dLsparsh
Frub s Lk b eme s F g e mbb el L G babsesbracE_ssrrer. rbE LT e ek gl spet oh

B [L T T T JLIC T T T N SURES R RO & S ——— _|

Do

Hmm, not exactly what | expected. It seems that Rails changed the table name itemto i tens. Not good.
Being among the lazy, | decided to go into the MySQL Query Browser and change the table name from item
toitens (see Figure 13-11) and try again (see Figure 13-12).

Figure 13-11. Changing the database name in MySQL

[View full size image]

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx10_alt.jpg
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx11_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

O Flaveto § | [
. iy s
1 SLECT 4 TROH iten) TobeHems BN Databare | sy w | Comment WD e 5005 KB
Lk e iniaont | bl Dphond | Advenced Dpbond
P T [y . Fln (oI T —
- B H1E # o [LMSGHED [EROFLL Eo
W e LOVRACHARDSS o [ARy
W e deaiption 4, VAACHAR[SN [BHaR cm
B R ik B CERMALY & [LHSIGHED [ZEROFLL
Tirakitn | Fasegn Bat | Golrn Gt
: ; m‘m [i T 18 (i L
¥ berid e a4 ' el "
» 1 Cummi W
7 Tedar i
1 Clan o s
4 Labla
LI =T Y - o E
6 Cak il Lorhing
7 [urm
o -
9 Ehwh
10 Eives iilis e {f = T I [Sl S T T e e P [+
a 5
vy ik s BOCHA 00T il M L | D ek |
[T} 5

Figure 13-12. A working example

[View full size image]

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx12_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

BRI Pew L0 R R e

m - - &5 O P [0 vpanaran. o * e Gl

W Geming Staned Lol Latest Headras

Listing items

Fham maanen Tham devcriplion Tt mams paribcn

Jmmi Brars Cng pound of candy Gummi Brgrg, suilsble for any occanon, 2,48 “muﬂm
Tesla codl O gl wodtage Tesla codl, satable Tor rast labontones. 47385 Show Edit Degtney
Glagd conderdar O lanornong Qlass Covdencar a0 Chiy e it Degtnoe
Lab Coak Ona whake lab coat, larga 28,95 Ghow Edit Dingtrory
Gamen Lads Pl Ona pighl o, Gummi rat L.43 show Edit Degtrey
Caadk of Arontflado Doy skaemy meotid Tor it6 debcate ol 27.85 Show Edit Dagknoy
pammni Bak o pight cearecd UMM Bt L. 7% phow Bt Dagirgy
amni Frogs Four Twe gunce amm frogs .52 Ghow Edit Destroy
Alvar Badl Tradtsomal Brass Ball wik 3 Turrekd wooden handa 24.73 Shuiw Edit Dagkney
Sdver Altar Chaboe Siver plated chabco, holds apprmaratoly so Tued Gunces 47.5F Show Edit Dagtney
Ml

Maw (L@

bt (127 0,00 1= J000FE ey

That is a little closer to what | am looking for. The trick is that, by default, Rails generates a query
assuming that i t emis the row and i t ens is the table. This isn't a big deal; it is just something to keep in
mind when creating tables and using the defaults.

But what if you don't want to use the stuff generated by default, and where does Ajax fit into things?
The answer to the first question is simple enough: Just generate a scaffold, as Figure 13-13 shows.

Figure 13-13. Generating a scaffold at the command prompt

[View full size image]

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/13ajx13_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ntistrruby scripthgenerate scalbfold

llmpess
appshe L |
SR TR T E]
testAFunctionals
reoiliz 1

identical 2 item.rh
ifdentical : r n it tezst.rh
identical fitemz .uml

Cewprailzsmad

fd

It is then necessary to add the logic to the controller, the view, the layout, and the various templates.

This leaves only one question unanswered: Ajax? Remember the javascri pts folder under the public
folder? Well, in there is a file named pr ot ot ypes. j s that has all the logic required for asynchronous
JavaScript and XML in Ruby on Rails. If you're interested, I'll offer a hint: Look at the xnml _http_request ?
method. There's a lot to it, and | recommend playing.

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

13.5. Whither Ajax?

Considering the number of goodies built into the Rails API, finding exactly where the Ajax functionality is
hidden could take a little work. However, because I'm really crumby at keeping secrets, I'll spill the beans;
everything that we're interested in is in the JavaScri pt Hel per module, as Table 13-1 shows.

Table 13-1. JavaScri pt Hel per Methods

Method

Description

define_javascript_functions()

Includes all the JavaScri pt Hel per's
JavaScript functions in the page.

draggabl e_el enent (elenent _id, options = {})

Makes the element with the
corresponding ID draggable.

drop_receiving_element (elenment_id, options = {})

Forces the dropping (drag and drop) of
an element. Also makes an Ajax call.

escape_j avascri pt (j avascri pt)

Escapes the provided JavaScript.

eval uate_renote_response()

Creates a JavaScript function that can
evaluate a document returned from the
server.

formrenote_tag(options = {})

Creates an HTML form that will be
submitted using the XM_Ht t pRequest

object.

javascript_tag(content)

Creates a JavaScript HTML tag/end tag
that contains the provided content.

link_to_function(name, function, htm _options = {})

Creates a hyperlink that links to a client-
side JavaScript function.

link_to_renote(name, options = {}, htm _options = {})

Creates a hyperlink that links to the
server via an asynchronous
XMLHt t pRequest request.

observe_field(field_id, options = {})

Watches a field with the provided ID for
user changes.

observe forn(formid, options = {})

Watches the form with the provided ID
for user changes.

periodically_call _renmote (options = {})

downloaded from: lib.ommolkefab.ir

Calls a provided URL whenever the
interval elapses. If no interval is
provided, a default of 10 seconds is used.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

for a remote function.

sortabl e el ement (el enent _id, options = {}) Alters the HTML element with the
corresponding el enent _i d so that the

element is sortable via an Ajax call.

subnit_to_renote(nane, value, options = {}) Displays a button that submits a form
using the XMLHt t pRequest object

asynchronously.

update_el emrent _function (element_id, options = {}, &bl ock) Updates the browser's DOM using the
passed arguments.

vi sual _effect(name, element_id = false, js_options = {}) Returns JavaScript code that uses Ajax
callbacks for visual effects.

Because | find myself in pretty much the same situation as one of the professors when | went to collegeat
least, as far as Ruby on Rails is concernedl'm putting off an example of Ajax using Ruby on Rails until
Chapter 14, "Traveling Farther with Ruby." The reason for this is that I'm a little out of my comfort zone

here; like the professor, I'm essentially taking a class during the day and teaching it at night.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

13.6. Summary

In this chapter, we covered some of the history of Ruby on Rails, including the fact that Ruby on Rails is
separated into Ruby and Rails. From there, we covered the process of installing Ruby and then installing
Rails and viewing the default page. Then we covered how to create an empty project and fire up the
included WEBrick web server and access a MySQL database, albeit with a little difficulty. In essence, the
purpose of this chapter is to point the reader in the right direction when in search of an environment that

supports Ajax.

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 14. Traveling Farther with Ruby

If you're one of those developers who has never ventured outside the world of shrink-wrapped software,
you've probably never heard of Ruby, the programming language | introduced in Chapter 13, "Traveling
with Ruby on Rails,” not the gem. As | noted in the last chapter Ruby, the language, is an object-oriented
language that was created by Yukihiro Matsumoto of Japan and released into the wild in 1995. Ruby has
many advantages over other programming languages that fill the same niche.

The first of these advantages is that Ruby is interpreted instead of compiled. On the surface, this might
sound like a disadvantage, but it really isn't. Because I'm currently running only Windows XP, at times
there has been a binary version of a program that only works on another operating system, such as Linux.
However, with a scripted language such as Ruby, as long as I've installed it, | am good to go. Now all |
need is to find a Ruby version of Hunt the Wumpus, and I'm all set.

Like Godzilla, it has expanded beyond its humble roots as a glimmer in its creator's eye to become
something of a cult phenomenon. Oh, | mean cult in the good senseno chanting or wearing funny clothes
like those strange people who get dressed up to go to Renaissance festivals.

Seriously, Ruby is an object-oriented language that has capabilities and features that today's fast-paced
development environment needs. And did | mention that Ruby is open source? Yes, when you get past the
cost of the hardware, all that's required is the cost of an Internet connection and the time that it takes to
download and install. I'd do the math for you, but fractions are not really my strong suit.

Instead, you can take a closer look at Ruby's data types while | take off the sword belt. Because there are
unwritten rules that grapefruit must be served in halves and all introductions to programming languages
must start with data types, we start there.

The layout of this chapter goes pretty much like this:

. Data types

« Operators
« Flow-control statements

e« Threads
o Ajax

There is that word again, Ajax. You knew that it would pop up again somewhere. There is, however, a
minor difference; basically, we take a quick look at the generated code to see how it works. | don't know
about you, but I've always paid attention to the man behind the curtain.

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

14.1. Data Types

Data types in Ruby aren't the data types that you're used to from the more traditional languages, such as
C, COBOL, or Pascal. Because Ruby is purely object-oriented, you won't even find the primitive data types
available in Java, for instance. In Ruby, you see, all data types are based upon classes.

This doesn't mean that there is no such thing as an integer or a string in Ruby; it means only that they are
instances of the I nteger and String classes. To some, this "everything is a class" approach might sound like

overkill, but it also makes a lot of sense. Personally, | think it would be easier to code without having to
change gears all the time. Just put my mind in OOP gear and go. This leaves the question, go where? I'm
thinking of an island.

14.1.1. Numeric

"l am not a number, I'm a free man!" is the somewhat well-known quote from the British television series
The Prisoner. | really don't see what Number Six was complaining aboutit could have been worse. He could,
for example, have had a job that he hated in a nuclear power plant, like Number Five did. Number Six
does, however, share something in common with Homerer, Number Five. You see, they were both integers.

I nt eger, with a capital I, is the base class from which all things integer are derived. Examples of classes
derived from | nt eger are Bi gnumand Fi xnum Although each has its own characteristics, they both inherit
from the I nt eger base class, whose properties and methods appear in Table 14-1.

Table 14-1. I nteger Properties and Methods

Method | Class Description

chr Integer | Returns a string containing the character equivalent to the number value.

downt o Integer | |terates a block of code.

integer? |Integer | Returnstrue.

next Integer | increments the value by 1.

si ze Bi gnum | Returns the number of bytes used to store the value.

si ze Fi xnum | Returns the number of bytes used to store the value.

step Integer | increments the value to an ending value in increments of a set value.

succ Integer | increments the value by 1. Essentially, the same as the next method.

times I nteger | Executes a block of code a preset number of times.

to_f Bi gnum | converts the value to a float. When the value is too large to be contained in a float,

infinity is returned.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

to_i Bi gnum | Returns a Bi gnum

to_i Fixnum | Returns a Bi gnum

to_s Bi gnum | Returns a Stri ng.

to_s Fixnum | Returns a Stri ng.

upto Integer | Executes a block of code, incrementing the value by 1 until the indicated value is
reached.

However, with the exception of those poor souls trapped on the island, there is more to life than integers;
there's floating point, called Float in Ruby. In case you've forgotten, floating-point numbers are those

numbers with fractions, like when the statisticians say that the average American family has 2.6 children.
The number 2.6 is a floating-point number and, depending on my mood, is either of my two half-brothers.

As with the I nt eger class, the Fl oat class has a number of properties and methods, which are described in
Table 14-2.

Table 14-2. Fl oat Properties and Methods

Method Description

ceil Returns the closest integer, either equal to or greater than the float's value.

finite? A Boolean indicating whether the value is a valid floating-point number.

floor Returns the largest integer that is less than or equal to the value.

infinite? | Returns true or fal se, indicating whether the value is infinite.

nan? Returns true or fal se, indicating whether the value is Not A Number.
round Rounds the value to the nearest integer.
to_f Returns a Fl oat .
to_i Converts the value to an integer.
to_s Returns a String.
14.1.2. String

For people who program in more than one language, there is a major advantage to strings being instances
of the String class. Think of it as one-stop shopping; if something needs to be done, there's a really good

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

nome page (Www.ruby-lang.orgs/en/) to see tnem aill.

14.1.3. Boolean

In programming, there are always two possible answers to any question: true and f al se. Maybe that is why
there are two classes, truecl ass and Fal secl ass. Actually, with the dynamic nature of variables in Ruby,
that is the truth. The truecl ass represents a logically true value, and the Fal secl ass represents a logically
false class.

14.1.4. Objects

Possibly because of the total lack of primitives, the built-in objects in Ruby are incredibly rich and varied.
There are objects for hashing, objects for file access, and even an object for arrays. In many instances, if
you can imagine it, an object probably already is available for what is necessary, as the following list of
built-in classes shows:

Array Fal sed ass

Bi gnum File::Stat

Bi ndi ng File

Cl ass Fi xnum

Conti nuati on FI oat

Dir Hash
Exception I nt eger

IO Regexp

Mat chDat a String

Met hod St ruct

Modul e Struct:: Tns
Ni | C ass Thr eadG oup
Nuneric Thr ead

hj ect Ti me

Proc Trued ass
Range

With all those built-in properties and methods, it might be a little while before it is necessary to write an
object of our own, but it might be a good idea to give it a try. Let's say, for example, that we want to add a
math class that would have two methods: add and subtract . Throuah diliaent work and clean livina, we

downloaded from: lib.ommolkefab.ir

http://www.ruby-lang.org/en/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Listing 14-1. nyMat h Class

cl ass MyMat h
def add(a, b)
puts a + b
end

def subtract(a, b)
puts a - b
end
end

m = MyMat h. new
m add(1, 1)
m subtract (4, 2)

That's all there is to creating and using a class in Ruby. Unfortunately, | was evil and skipped ahead a little
by using variables and operators. Thinking about it, this is a little like a college class | had. After an
unusually difficult test, the professor announced that no one got Question 10 correct, and perhaps the

reason was that he had forgotten to teach that. Hmm

downloaded from: lib.ommolkefab.ir

NEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

14.2. Variables

Ruby supports a couple different types of variables, instance variables and class variables. Instead of
making you guess whether their names actually mean what they say, I'll just come out and say it. The
names mean what they say. Instance variables are created for each instance of the class. With class
variables, on the other hand, all instances of the class share one variable. Although instance variables are
common, class variables are somewhat less so. This does not mean that they aren't as useful; in fact,
many times there is simply no substitute for a class variable.

The only question concerning variables is how to distinguish between instance variables and class variables.
Are there little signs hanging off them that say "instance variable" and "class variable"? In a word, yes.

Instance variables and class variables are distinguished by the prefix. Instance variables are prefixed by a
single @ whereas class variables are prefixed by two @ So @ob is an instance variable, and @@aul is a class

variable.

Now that we have someplace to put our information, let's do something to it.

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

14.3. Operators

Regardless of the language, there is usually some commonality. There's addition, subtraction,
multiplication, division, and assignment. In some languages, including Ruby and JavaScript, the addition
operator does double duty as the concatenation operator. This means that examples such as the following
are pretty much the same, regardless of the language:

+ 1
1

N

X X X X
~ %

1
1

However, occasionally will you see something a little out of the ordinary, usually in languages that borrow
some of their syntax from C. In Ruby, they're called multiple assignments; I like to think of them as less
typing. Consider, for a moment, the following line of code:

All that it does is increment the variable X by 5, so wouldn't it be easier to type this instead?

X += 5

Yeah, all that I'm saving is two keystrokes, the second X and a space, but it adds up. Imagine for a
moment the variable name was my last name, Wychowsky instead of X. Having to type it only once would

greatly extend the life of the W key. The same shortcut is available for subtraction, multiplication, and
division.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

14.4. Flow-Control Statements

In any type of nontrivial program, flow control is possibly the most important factor in programming.
Without some kind of flow control in programming languages, computers would essentially be very
expensive desktop ornaments. Come to think of it, when you got past the forwarding of every e-mail
received each day to his team, | once had a manager whose computer was a very expensive desktop
ornament. He actually once forwarded the same message 14 times before realizing that he had somehow
been added to his address list for the team. But I'm wandering, so let's get back to flow control, starting
with conditions.

14.4.1. Conditions

In your average run-of-the-mill language, there is the i f statement, and that is pretty much all there is to
it. Ruby has an i f that looks something like this:

if x ==
b =2
end

Pretty easy. Let's add a layer of complexity with an el se:

if x == 1
b =2
el se
b =3
end

In Ruby, it is also possible to take it to a higher degree of complexity by using the el si f statement:

if x == 1
b =2
elsif x ==
b =14

el se
b =3
end

Before | forget, for the purpose of clarity, Ruby permits the addition of a t hen to the i f statement:

if x == 1 then
b =2
end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Remember all the way back to Chapter 4, "JavaScript'? Remember conditional operators? Well, they‘re
back! In fact, here is an example:

b=(x=1722: 3)

A few years ago, | grew a goatee, which | have since shaved off. At the time, my reason for growing it was
strictly personal and strange. You see, | wanted to pass myself off as the evil Ed from a parallel dimension.
My plan for work domination failed, but it gave me the opportunity to appreciate the evil things from
parallel dimensions. For example, did you know that Ruby has an evil i f called unl ess?

The unl ess statement executes the code within only when the condition is false. If this doesn't fit the
textbook, or, at least Star Trek, example of something from a parallel dimension, I don't know what does.

14.4.2. Looping

Some days | feel like I'm going around in circles, usually in the morning while I'm getting ready for work.
The problem probably stems from a deep-seated need for coffee to get moving in the morning. This wasn't
always the case, but back in high school, | worked in a pancake house and got hooked. The free coffee just
seemed to helpthat is, until I drank fifteen 20-ounce cups in the course of a day. | could have threaded a
sewing machine needle while the machine was running. It hasn't been that bad in a while, but my morning
ritual still requires coffee, as Ruby, shown in Listing 14-2, illustrates.

Listing 14-2. My Morning in Ruby: whil e Loop

cupsofcoffee = 0

whi | e cupsofcoffee < 4

puts "hurry..."
cupsofcoffee += 1
end

The great thing about describing one's morning programmatically is that there are always alternative ways
of expressing one’'s self. For example, some mornings the blanket monster is holding me back and I just
can't seem to get moving until there is a certain level of coffee in my system. Mornings like these are better
expressed by the code shown in Listing 14-3.

Listing 14-3. My Morning in Ruby: until Loop

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

until cupsofcoffee >= 4

puts "hurry..."
cupsofcoffee += 1
end

A while back, I used to have one of those coffee pots that had a timer. On those mornings when | had
programmed it the night before, coffee was already going. Ah, a set number of cups of coffee just waiting

for cream and sugar. | suppose Listing 14-4 best sums it up.

Listing 14-4. My Morning in Ruby: for Zi n Loop

puts "for-in | oop”

for x in ["hurry...", "hurry...", "hurry...", "hurry..."]
puts X

end

Nowadays, | have one of those coffee makers that takes a Pod. Just drop in the Pod and hit the button, and
90 seconds later there's coffee. This takes making coffee from being an art to being more of a science, a

feeling that is best conveyed by the example shown in Listing 14-5.

Listing 14-5. My Morning in Ruby: for Zi n Loop

puts "lterators"
1.step(4,1) do |x|

puts "hurry..."
end

downloaded from: lib.ommolkefab.ir

NEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

14.5. Threads

Ruby has a feature that every language should have: the capability to multithread. Personally, I'm fond of
forking a thread whenever something that I'm about to do is time consuming. For instance, any kind of
input/output operation or attempt to obtain information from another server deserves another thread.

In Ruby, threads are compatible across all platforms, which is quite an accomplishment. However, |
recommend further reading on the subject of multithreading. From personal experience, | know that
multithreading is truly a dark art and is not meant to be undertaken lightly.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

14.6. Ajax

All this discussion of Ruby leaves us with only one question: Where the (fill-in-the-blank) does Ajax fit in?
Well, remember Rails from Chapter 13? That is where Ajax fits in, but for me to prove it, we have to

generate another controller (see Figure 14-1).
Figure 14-1. Generating a controller

[View full size image]

commipe WEM

Cosprallssme
8K

We're interested in two files: sanpl e_controll er.rb under madsci entist\ app\controllers, and index.rhtmn
under nmadsci enti st\ app\ vi ews\ sanpl e. The first file is the Ruby application controller that defines the
sample class. This class, shown in Listing 14-6, will do all our server-side dirty work. The purpose of the
second file (see Listing 14-7), on the other hand, is to handle the client-side part of the Ajax demo.

Listing 14-6. controller.rb

cl ass Sanpl eController < ApplicationController
def index
end

def echo_data
render _text "<i>" + parans[:textinformation] + "</i>"

end
end

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/14ajx01_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Listing 14-7. i ndex. rhtmn

<htm >
<head>
<title>link to renote Deno</title>
<% javascript_include_tag "prototype" %
</ head>
<body>
<% formrenote tag(:update => "fornl', :url => { :action => :echo_data
1) %
Text
<U% text _field_ tag :textinformtion %
<% submt_tag "Echo" %
<% end formtag %

<div id="form >
</ div>
</ body>
</ htm >

After these two files have been modified, in the case of control | er.rb, or created, as i ndex. rhtm needs to
be, we're ready to start WEBrick (see Figure 14-2) and bring up the page (see Figure 14-3).

Figure 14-2. WEBrick

[View full size image]

e+ Command Prompt - ruby script\server

2 weadlswmadsc ie
> Hooting WEHrick...
> Rails applicat i started on http:s78.0.68._.8: 3880
> Gerl=0 to 3 m zerver; call with help For options
[2EEG-0E-d1 = 1] IHFO WEBrick 1.3.1
[2PG-H2-81 2 11 IHFO puby 1.8.2 <2084-12-2%2 [i3B6-nswindd]
[Z2EB6-2-g1 2 #:33]1 IHFO WEBrick: :HTTPServerfstart: pid=3288 port-1088

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/14ajx02_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[View full size image]

S0 k_ps_fernate Deins - Mol Fielox

Fe [ew G0 Bocinwls Tk beb
@ - up - & O P [0 vpinaran. ioocosemes Ll el
W Geming Staned L) Latest Healiras

Tz Survy by of informsion

This leaves just trying out the page, whose sole purpose is to echo back from the server anything entered
in the text box when the button is clicked. Figure 14-4 shows the result.

Figure 14-4. Echoed text

[View full size image]

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/14ajx03_alt.jpg
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/14ajx04_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolketab.ir

e LM Vew L) BOERANE DM0H HD

@ - - & D P [rvepinaran. ooooieme * 0w Ol
W e Saed L] Latest Headires

Tew Aury hvpms of informision

Ay pipa af iy ferv tier

Because I'm one of those people who needs to know how something works, I've included Listing 14-8
showing the generated HTML.

Listing 14-8. Generated HTML

<htm >
<head>
<title>ink to renote Denpo</title>
<script src="/javascripts/prototype.js”
type="text/javascript"></script>
</ head>
<body>
<form action="/sanpl e/ echo_data" nethod="post" onsubmit="new
Aj ax. Updater (' form, '/sanple/echo _data', {asynchronous:true,
eval Scripts:true, paraneters:Formserialize(this)}); return false;">
Text
<input id="textinformation" name="textinformation" type="text" />
<i nput name="commit" type="subnmit" val ue="Echo" />
</fornp

<div id="forn ></div>
</ body>
</ htm >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Interesting isn't it? The source from i ndex. rhtnl transmogrifies into some pretty neat HTML, with all the
Ajax goodies built right in. The j avascri pt _i ncl ude_t ag includes prot otype. s, in which resides all the

necessary client-side JavaScript, while the rest of the tags describe an HTML form. Personally, | am
beginning to feel like | have found the Promised Land, and I'm not leaving. In roughly 24 lines of code,
we've got a simple Ajax application. Of course, there is more to it than that; this example only touches
upon some of the features available in the Rails API. But Ruby on Rails shows some definite promise.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

14.7. Summary

In this chapter, we lightly touched upon the Ruby programming language, a subject that could take an
entire book in itself. We pointed out the fact that Ruby has no primitives and that all variables are, in fact,
objects. The numeric objects were covered in some detail, and we lightly touched upon strings and
Booleans. An example of creating a custom class was shown to illustrate just how easy it actually is.

We discussed operators, including the more unusual multiple assignment operators, before we covered
loops of various types. Next, we touched upon the possibility of using threads in Ruby. Finally, the chapter
closed with an example of how Ruby on Rails can be used to create an Ajax application with very little

typing.

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 15. The Essential Cross-Browser HTML DOM

Whether or not the average web developer is aware of it, it is out there, unseen and unnoticed, but
nevertheless out there. Allow me to explain before you decide that I've popped a gasket and need to be
taken to a nice soft room, the kind with padded walls. | am referring to the HTML Document Object
Modelyes, that often ignored application programming interface that can be both a blessing and a curse.

Yes, the average web developer uses the HTML DOM only to the extent that is absolutely necessary to
perform the job, and no further. The reasons for this are many, ranging from the fact that in the early days
of web browsers, everybody did their own thing, to the fact that client-side code is often considered
unreliable because some people are using web browsers that belong more fittingly in a museum than in a
computer that was manufactured in the twenty-first century.

| suppose that this could be considered a major issue, the idea that web applications need to work on every
browser released since the beginning of time. You might consider me something of a snob for saying this,
but why should everyone who is willing to advance beyond the mid-1990s be penalized? You don't see
electrical power being looked down upon because some groups don't approve of it. Regardless of the
reason for ignoring the HTML DOM, unless they're fond of web applications that behave like mainframe
applications from the 1970s, people will have to either get with the program or be left behind.

This chapter is organized along the following lines:

« Interfaces

« Document

« Frames

« Collections

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

15.1. Interfaces

The HTML Document Object Model is an application programming interface (API) that defines the structure
of an HTML document in the browser. In addition, it defines how that document can be accessed and
manipulated through the use of JavaScript, sometimes embedded within the very same HTML document
that is being manipulated.

This sounds a little scary doesn't it? The idea that a JavaScript routine could essentially modify the very
fabric of its own universe can be terrifying. Just one oops, and it is overit modified itself right out of
existence. For all intents and purposes, as far as the browser was concerned, it would have never existed.
Fortunately, this takes a little work to accomplish, and only the JavaScript function and possibly the
associated page would cease to exist. Believe me, if this wasn't the case, | would have winked out long ago.

Table 15-1 shows the various HTML Document Object Model interfaces available through JavaScript. |

would like to point out that the majority of these interfaces correspond to actual HTML elements. Yes, name
an HTML element, and there is a corresponding interface; remember, though, that just because an
interface exists for a deprecated element, you don't have to use it. It is still deprecated.

Table 15-1. HTML Document Object Model Interfaces
Available Through JavaScript

Interface Name Description

HTM.Col | ecti on A collection of HTML nodes
HTM.Docunent The root element of the HTML document
HTMLEI ement The base class for all HTML elements
HTMLHt n El ement Corresponds to the htm element
HTM_HeadEl enent Corresponds to the head element
HTMLLi nkEl enent Corresponds to the |i nk element
HTM.Ti t| eEl enent Corresponds to the titl e element
HTM_Met aEl enent Corresponds to the net a element
HTM_BaseEl enent Corresponds to the base element
HTM.I sI ndexEl enent Corresponds to the i si ndex element
HTM.St yI eEl enent Corresponds to the styl e element
HTM.BodyEl enent Corresponds to the body element

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

HTM_Sel ect El enent

Corresponds to the select element.

HTMLOpt Gr oupEl enent

Corresponds to the option group element

HTM_Opt i onEl enent

Corresponds to the opti on element

HTM.I nput El enent

Corresponds to the i nput element

HTM_.Text Ar eaEl enent

Corresponds to the text area element

HTM_But t onEl enent

Corresponds to the butt on element

HTM_Label El enent

Corresponds to the | abel element

HTMLFi el dSet El enent

Corresponds to the fiel d set element

HTMLLegendEl enent

Corresponds to the | egend element

HTM_ULi st El enent

Corresponds to the unordered |ist element

HTMLCLi st El enent

Corresponds to the ordered |ist element

HTMLDLi st El enent

Corresponds to the dash |ist element

HTMLDi r ect or yEI enment

Corresponds to the directory element

HTM_MenuEl ement

Corresponds to the nenu element

HTMLLI El enent

Corresponds to the i st element

HTMLBI ockquot eEl enent

Corresponds to the bl ock quot e element

HTM_Di vEl enent

Corresponds to the di v element

HTM_Par agr aphEl enent

Corresponds to the par agraph element

HTMLHeadi ngEl enent

Corresponds to the headi ng elements

HTM_Quot eEl enment

Corresponds to the quot e element

HTM_Pr eEl enent

Corresponds to the prefornatted element

HTM_BREI enent

Corresponds to the break element

HTM_BaseFont El ement

Corresponds to the base font element

HTM_Font El emrent

Corresponds to the font element

HTMLHREI enent

Corresponds to the hori zontal rul e element

HTMLMbdEl enent

downloaded from: lib.ommolkefab.ir

Corresponds to the nodi fi cati on elements

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

HTM.I mageEl enent

Corresponds to the i nage element

HTM_Cbj ect El enment

Corresponds to the obj ect element

HTM_Par antl enent

Corresponds to the paranmet er element

HTMLAppl et El enent

Corresponds to the appl et element

HTM_MapE!l enent

Corresponds to the nmap element

HTM_Ar eaEl enment

Corresponds to the area element

HTM_.Scr i pt El enent

Corresponds to the scri pt element

HTM_Tabl eEl enent

Corresponds to the t abl e element

HTM_Tabl eCapt i onEl enent

Corresponds to the tabl e

caption element

HTM_.Tabl eCol El enent

Corresponds to the tabl e

col um element

HTM_Tabl eSect i onEl enent

Corresponds to the tabl e

section element

HTM_Tabl eRowEl enment

Corresponds to the tabl e

row element

HTM_Tabl eCel | El enrent

Corresponds to the tabl e

cel |l element

HTM_Fr ameSet El enent

Corresponds to the frane

set element

HTM.Fr ameEl enent Corresponds to the franme element

HTM.I FrameEl ement Corresponds to the i frame element

15.1.1. Window

Although it's not officially part of the HTML Document Object Model, the wi ndow object is the big kahuna,

the big cheese, or, in web development terms, top of the hierarchy. Many web developers don't realize it,
but all HTML documents are actually children of the wi ndow object. This means that it is as valid to code

wi ndow. docunent as it is to code docunent . You will probably see only the latter as opposed to the former,

but I think it's a good idea to point out the possibility of the former, if only to avoid those Homer Simpson
moments: Doh!

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

15.2. Document

Alright, now we are officially dealing with the HTML Document Object Model in all its hierarchical glory. The
only question is, what does the word hierarchical mean in reference to the HTML DOM?

To me, it means that | envision the structure as a tree, but not the binary kind or the kind growing outside.

It has a single root and branches (elements), and sometimes those branches have branches (more

elements). In my mind, the only difference from the growing kind of tree is that the root is at the top, but
since I'm in Pennsylvania, | think of trees in China and everything is alright. If you happen to be in China,
just envision trees in Pennsylvania, and you'll be fine. Ex-mainframe programmers should think IMS DB to
get themselves through this section.

Seriously, as weird as it sounds, the concept of hierarchical data has been around for a long time. Consider

the HTML document shown in Listing 15-1 for a moment.

Listing 15-1. An HTML Document

<htnmd >
<head>

</ head>
<body>
<hl1>Test 1</ hl>
<h2>Test 2</h2>
<h3>Test 3</h3>
</ body>
</htm >

<title>Test</title>
<script | anguage="JavaScript"></script>

This document could alternatively be depicted graphically as shown in Figure 15-1.

Figure 15-1. Graphic depiction of HTML document in Listing 15-1

head

. e

title

downloaded from: lib.ommolkefab.ir

[View full size image]

hitmil

body

script

b1

h2

h3

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/images/15ajx01_alt.jpg
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

elements. The head and body elements are siblings because they both share the same parent. The head
element has two children, and the titl e and scri pt elements and the body element have three children:
the h1, h2, and h3 elements. The title and scri pt elements are siblings, and the H1, H2, and H3 elements
are siblings, but the two groups of elements are not siblings because they have different parents.

So far, this has pretty much been an intellectual exercise, so how excited can someone get about a picture?
Um, | mean, a picture that doesn't come with a rating!

What | mean is, maybe it would help if there were a convenient table that covered the various properties
and methods available through the document interface. Fortunately, Igor has put together Table 15-2 to

give you some idea of what is available.

Table 15-2. HTML DOM Properties/Methods

Property/Method Description

anchor s A collection consisting of the anchors in the current
document.

appl ets A collection consisting of the applets in the current
document.

attributes A collection consisting of the attributes for the current
node.

body The body element of the page.

chi | dNodes A nodeset consisting of the child nodes of the current

node. Please note that the nodeset can be empty.

cooki e A collection consisting of the cookies associated with the
current document.

doctype The Document Type Declaration associated with this XML
document.

docunent El ement The document's root element.

donai n The server's domain name.

firstChild The first child node of the current node.

forms A collection consisting of the forms in the current
document.

frames A collection consisting of the frames in the current

document.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

document.

i mpl enent ati on

The DOM npl enent at i on for this document.

lastChild The last child of the current node.

I'i nks A collection consisting of the links in the current document.
next Si bl i ng The next child of the current node's parent.

nodeNane The name of the node.

nodeType The type of the node.

nodeVal ue

The value of the node.

owner Docunent

The Document associated with the current element.

par ent Node

The parent of the current node.

previ ousSi bl i ng

The previous child of the current node's parent.

referrer

The URI of the page that linked to this page.

title

The title of the HTML document.

URL

The current page's URL.

appendChi | d(new)

Appends the new child node as the last child.

cl oneNode(deep)

Duplicates the specified node. The Boolean parameter deep

is used to indicate a deep copy, whether or not the
children should be copied.

cl ose()

Closes the document stream and also causes the
document to be rendered.

creat eAttri but e(namne)

Creates an attribute.

creat eCDATASect i on(dat a)

Creates a CDATASect i on node using the data provided.

creat eConment (dat a)

Creates a comment node using the data provided.

cr eat eDocunent Fragmnent ()

Creates an empty document fragment.

creat eEl enent (t agNane)

Creates the specified element.

creat eEntityRef erence(nane)

Creates an EntityReference.

creat eProcessi nglnstruction (target, data)

Creates a Processi ngl nstructi on node.

creat eText Node(dat a)

downloaded from: lib.ommolkefab.ir

Creates a Text element using the data provided.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

attribute. When there is more than one element with the
same i d, only the first is returned.

get El ement ByNane(el enent Nane)

Returns a collection of elements based upon the element's
name.

get El enent sBy TagNane(t agnane)

Returns a nodeset consisting of elements with matching
tag names.

hasChi | dNodes()

Returns TRue if child nodes exist and f al se if child nodes
do not exist.

i nsert Bef ore(new, ref erence)

Inserts the new child node before the reference child node.

open()

Opens the document stream for writing.

renoveChi | d(ol d)

Removes the old child node.

repl aceChi | d(new, ol d)

Replaces the old child node with the new child node.

write()

Writes a text string to the document.

writeln()

Writes a text string to the document and appends a
newline character.

Before moving on, | want to remind you that the document is hierarchical. This means that each element
has properties and methods of its own. Rather than go crazy trying to create some kind of uber table with
every possible property and method for the interfaces shown in Table 15-1, | decided to create Table 15-3.

Table 15-3 covers the properties and methods common to the various elements.

Table 15-3. Properties/Methods Common to the Various HTML DOM Interfaces

downloaded from: lib.ommolkefab.ir

Property/Method Description

attributes A collection consisting of the attributes for the current node.

chi | dNodes A nodeset consisting of the child nodes of the current node. Please note
that the nodeset can be empty.

cl assName The element's cl ass attribute.

dir The element's text direction.

firstChild The first child node of the current node.

id The element's identifier.

I ang The element's language code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

next Si bl i ng The next child of the current node's parent.

nodeName The name of the node.

nodeType The type of the node. See Table 15-2 for accepted values.
nodeVal ue

The value of the node.

owner Docunent

The document associated with the current element.

par ent Node

The parent of the current node.

previ ousSi bl i ng

The previous child of the current node's parent.

t agNane

The tag name of the element.

title

The element's title.

appendChi | d(new)

Appends the new child node as the last child.

cl oneNode(deep)

Duplicates the specified node. The Boolean parameter deep is used to
indicate a deep copy, whether or not the children should be copied.

get Attri but e(nane)

Returns the value of an attribute based upon name.

get Attri but eNode(nane)

Retrieves an Attr node by name.

get El ement sBy TagNane(t agnane)

Returns a nodeset consisting of elements with matching tag names.

hasChi | dNodes()

Returns true if child nodes exist and f al se if child nodes do not exist.

i nsert Bef ore(new, ref erence)

Inserts the new child node before the reference child node.

normal i ze()

Normalizes the specified element and children of the specified element.

renoveAttribut e(nane)

Removes an attribute by name.

renoveAt tri but eNode(nane)

Removes an Attr node by name.

renoveChi | d(ol d)

Removes the old child node.

repl aceChi | d(new, ol d)

Replaces the old child node with the new child node.

set Attri but e(name, val ue)

Creates an attribute and sets its value.

set Attri but eNode(nane)

Adds an Attr node by name.

I want to add a little hint on how to find some of the remaining properties or methods for the various
interfaces. Basically, it goes like this: If it is a property or method of the element, there is a really good
chance that it is also a property or method of the interface. It might sound strange that this has to be
mentioned, but I've found that everyone has a blind spot concerning something in their career. In case you
were wondering, mine is peasants with pitchforks and torches.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

15.3. Frames

From an HTML Document Object Model point of view, frames are rather odd creatures because they are
essentially HTML documents within HTML documents. Consider for a moment the fact that it is possible to
have more than one document at a time. For example, the following is perfectly legal:

docunent . franes[1] . docunent . body

It refers to the body of the document in the frame with an index of 1. This has a tendency to throw off quite

a number of people, probably because it is a "wheels within wheels" kind of relationship, a bit tough to
grasp the first time around. There is also the added complexity that if the script is executing in a frame
itself, it could quite be playing with either the parent document or a sibling document, or even the child of a
sibling. The important thing to remember is that anything that can be done with the current document can
also be done with another document.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

15.4. Collections

As you probably noticed in Table 15-1, there is an interface whose sole purpose is to deal with collections.
Add to this the various collections defined in Tables 15-2 and 15-3, and it becomes apparent very quickly
that somebody really likes collections. Who can blame them?

Collections make for very compact code that can be stepped through in a sequential manner. Table 15-4
details the single property and two methods available through the collection interface.

Table 15-4. The Property and the Methods Available Through the Collection

Interface
Property/Method | Description
I'engt h The number of items in the collection
item() Retrieves an individual item from a collection based upon that item's index
named! t en() Retrieves an individual item from a collection based upon that item's identifier

downloaded from: lib.ommolkefab.ir

NEXT B

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

15.5. Summary

This chapter is by no means a complete explanation of the HTML Document Object Model, but it was never
intended to be. Rather than be an encyclopedic rendition of the HTML DOM, its purpose is to be more of an

overview, with the good parts underlined. I'd like to think that there is a slight possibility that I hit the
mark, but then, maybe I'm delusional.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 16. Other Items of Interest

Although | do have a rather loose grip on reality, my grip isn't so loose that | think that the information
contained within these pages is the be all and end all concerning asynchronous JavaScript and XML. Ajax is
nearly unique in having both the excitement associated with a new topic and the maturity that is associated
with only a well-established technique. In fact, the last topic that | can think of that had the same dual
nature was NASA's Apollo program. On one hand, the idea of sending people to the Moon and returning
them safely to Earth was the stuff of science fiction. On the other hand, humanity has been playing with
rockets for centuries, occasionally with disastrous results.

Come to think of it, Ajax and the Apollo program have a great deal in common. On one hand, the idea of
web applications that have the look and feel of Linux and Windows applications is the stuff of science
fiction. On the other hand, humanity has been creating web applications for the last several years,
occasionally with disastrous results. Hmm, there seems to be some kind of pattern going on here.

In this chapter, | address some technologies that are complementary to Ajax, one that is similar or is a
kind of proprietary approach to Ajax, and then finish with some further/final thoughts on browsers.
Essentially, the purpose of this chapter is not only to sum up everything that has been covered in this book,
but also to provide a starting point on where to look for other possible ways of doing things. For example,
about two months ago, | spoke with a developer who did Ajax. However, his technique was to use a Java
applet for communications instead of the XM_Ht t pRequest object. What | am trying to convey is that there
are multiple answers to every question, all of them equally correct. So here are some of the answers, with
my personal opinions sprinkled about.

e Py ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

16.1. Sarissa

Although it's officially only an open source cross-browser JavaScript XML library, Sarissa is one of those
libraries whose capabilities extend far beyond the basic XML support that | expected. This is a rare
occurrence in today's world, where we can all remember being disappointed by movies, jobs, and most
members of Congress. Sarissa wraps the browser's native XML application programming interfaces with
common interfaces. This makes life much easier for the client-side developer than it would otherwise be.

Unlike my home-grown library, which supports only Microsoft Internet Explorer and Gecko-based browsers
such as Firefox, Flock, Mozilla, and Netscape, Sarissa supports a wide range of browsers on multiple
platforms. This serves as a really good example of what a number of dedicated developers can accomplish
when they put their minds to it, as opposed to the lone mad scientist or even the bloated corporation.
Sarissa supports, at least partially, the following web browsers:

o Firefox

« Konqueror (KDE 3.3)

« Microsoft Internet Explorer (MSXML 3.0)
« Mozilla

« Opera

« Safari

That's quite an impressive list of web browsers; | don't even have a machine capable of running Safari. |
normally just press my nose to the window of the Apple Store and wish. Come to think of it, | usually do
that with most stores that sell computers, including online ones. Well, at least now my wife knows how the
monitor on her computer got the nose prints on it and who the nose prints belong to.

16.1.1. A Brief Overview of Sarissa

Table 16-1 briefly examines the goodies available in Sarissa, which read like a Who's Who of Ajax features.

Table 16-1. Sarissa Features

Action Description

DOM Document Object (create) | Creates a new instance of an XML DOM document

DOM Document Object (load) Loads an XML DOM document from either a remote source, such as the
server, or a string either synchronously or asynchronously

Parse Parses an XML DOM document for errors
Serialize Serializes an XML DOM document to a text string
XM.Ht t pRequest Communicates with the web server via the XM_Ht t pRequest object

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The overall syntax for Sarissa is both logical and consistent. By logical, | mean that if a particular
parameter is necessary for a certain object, it is there. The consistency that I'm referring to is the
capability to write a script once and be able to run it on any of the supported web browsers, without having
to monkey around with the code too much. What a concept!

To see what | mean, let's take a look at how to create an XML DOM document using Sarissa:

var nyXM.Docunent = Sari ssa. get DonDocunent () ;

Relatively simple and painless, isn't it?

Loading the XML document from a remote source is only slightly more complex, unless you're indecisive, in
which case you've got real problems in deciding between synchronous and asynchronous. Never mind, I'll
go out on a limb and show how it is done synchronously in Listing 16-1 and asynchronously in Listing 16-2.

Listing 16-1. Loading Synchronously

var myXM.Docunent = Sari ssa. get DonmDocunent () ;

myXMLDocunent . async = fal se;
myXMLDocunent . | oad("duckzilla.xm");

Listing 16-2. Loading Asynchronously

var nyXM.Docunent = Sari ssa. get DonDocunent () ;

myXMLDocunent . async = true;
my XMLDocunent . onr eadyst at echange = readySt at eHandl er;
myXMLDocunent . | oad("duckzilla.xm");

function readyStateHandl er() {
i f (nyXM_Docunent . readyState == 4)
al ert (' Loaded.");

But what if the XML isn't remote? Say, for example, that it is already on the page in a JavaScript string. In
that case, Listing 16-3 is the example for you.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

var nyXM.Docunent = Sari ssa. get DonDocunent () ;
var myDOWPar ser new DOWPar ser () ;
var nyXM.String ' <xyzzy>pl ugh</ xyzzy>';

nyXM_Docunent = myDOWVPar ser . parseFronString(nyXM.String, 'text/xm"');

Alright, now through one means or another, we have an XML document loaded. This leaves only the
question of what to do with it. That's a minor detail; it isn't like it's leftover Thanksgiving turkey or anything
like that. We are not going to run out of ideas. Nobody has ever considered making XML enchiladas or XML
stroganoff. XML gives us two possible options; we can either transform it or send it somewhere.

We start with the option to transform it because | consider myself something of an XSLT geek, especially
when performing dangerous acts such as client-side transformations. I'm always up for playing with
anything that could possibly make my job easier, and it doesn't get much easier than this. There are only a
couple simple rules to remember when using XSLT with Sarissa: The XML is an XML document, and the XSL
style sheet is also an XML document. That's all there is to it, and Listing 16-4 presents an example.

Listing 16-4. XSLT with Sarissa

var nyXM.Docunent = Sari ssa. get DonDocunent () ;
var nyXSLDocunent = Sari ssa. get DonDocunent () ;
var nmyXSLTProcessor = new XSLTProcessor();
var nyXM.Tr ansf or ned,;

/1 Synchronous | oad of XM. docunent

myXMLDocunent . async = fal se;
myXMLDocunent . | oad("j eckl e. xml ") ;

/1 Synchronous | oad of XSL styl esheet
nyXSLDocunent . async = fal se;
my XSLDocunent . | oad(" hyde. xsl ") ;

/1 lnmport styl esheet
My XSLTPr ocessor. i nport Styl esheet (myXSLDocunent) ;

/!l Add a paraneter 'take' value 'formula’
myXSLTPr ocessor . set Paraneter(null, 'take', 'fornula');

/1 Transform result in nyXM.Transforned
myXMLTr ansf orned = nyXSLTPr ocessor. transf or nifoDocunent (myXM.Docurent) ;

With XSLT out of the way, this leaves Sarissa's implementation of the XMLHt t pRequest object as the last

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

jumped ahead to this chapter just to read about Sarissa. If this is the case, allow me to explain that

XMLHt t pRequest is available in two distinct flavors: synchronous and asynchronous. Synchronous is the one
that waits quietly in line for its response, and asynchronous is the one that does other things and expects a
callback with periodic updates. Listing 16-5 shows an example of a synchronous request, and Listing 16-6

shows an asynchronous request.

Listing 16-5. Synchronous Request

var myXM_Ht t pRequest = new XM.Htt pRequest () ;

myXMLHt t pRequest . open(' GET', ' manti core. xm ', fal se);
my XMLHt t pRequest . send(nul) ;

Listing 16-6. Asynchronous Request

var nmyXM_Ht t pRequest = new XM_Htt pRequest () ;
myXMLHt t pRequest . open(' GET', ' ELP. xm ' , true);
myXMLHt t pRequest . onr eadyst at echange = function() {

i f (myXMLHHt t pRequest . readyState == 4)
alert (' Done.");

}

myXMLHt t pRequest . send(nul |) ;

If you're interested in using Sarissa for an Ajax application or any web application of your own, | heartily
recommend it. The source code for Sarissa is available for download from SourceForge.net, whose URL is,
coincidentally, www.sourceforge.net. If you're unfamiliar with SourceForge.net, | recommend that you put
aside an afternoon, and about 30 blank CDs, and peruse their selections of open source goodies. In
addition to a vast array of software, there is, amazingly enough, documentation to go along with the

software. It, like Sarissa, is well worth the time.

downloaded from: lib.ommolkefab.ir

NEXT B

http://www.sourceforge.net/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

16.2. JSON and JSON-RPC

There's definitely a Greek theme with many of the names involved with using the XM_Ht t pRequest object.

First there is Ajax itself, a legendary hero, followed by Microsoft's version called ATLAS, one of the Titans.
Finally, there is JSON, pronounced "Jason," which stands for JavaScript Object Notation.

16.2.1. JavaScript Object Notation

Although I am by no means an expert on the subject, JavaScript Object Notation (JSON) works as a kind of
replacement for XML. This might sound a little weird, but it makes perfect sense when viewed from a cross-
browser point of view. The reason for this is that more web browsers support JavaScript than XML. This is
just another way to distribute applications to as many people as possible.

JSON appears to work something along the lines of children's building blocks. With blocks, a few basic
shapes are used in conjunction with imagination to create complex structures. The same can be said of
JSON: A few basic "shapes" are used in conjunction with imagination to create complex structures. The only
difference is that whereas children's blocks result in physical structures, JSON results in logical structures.

Let's take a look at the two basic data structures (blocks) that are used to create more complex structures
in JSON. The first of these basic data structures is the name-value pair, which really isn't anything that we
have not already seen in earlier chapters. Just think along the lines of a JavaScript collection or associative
array, and you'll be fine.

The second basic data structure in JSON has the formidable description of "an ordered list of values." Ooh,
sounds scary. In fact, it sounds a lot scarier than its actual name, array. Say "an ordered list of values,"
and people will pay attention; say "array," and unless you're talking about an array of missile silos, nobody
cares.

These structures, in turn, are used to create somewhat more complex structures. The first of these more
complex structures is an object; such objects consist of an unordered list of name-value pairs, with the
following syntax for an empty object:

obj ect _nane { }
Of course, an empty object isn't very useful, so it is necessary to add members as string-value pairs. Of

course, sometimes saying nothing is enough.

That is a high-level (as in, orbital) view of the concepts behind JSON. All we need to look at now is the
actual syntax. After all, because the information going back and forth from the web server and the web
browser has to be text, an internal representation of a JavaScript array would probably cause some
problems when trying to send it to and fro.

e prcy ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

16.3. ATLAS

ATLAS is Microsoft's answer to Ajax. Talk about a group that suffers from the "not invented here"
syndrome. For those of you who are unfamiliar with this syndrome, it goes something along the lines of
this:

1.

If we didn't invent it, then it is evil.
2.

If we can sell a knock-off, then the original is evil and ours is innovative.
3.

In a product this innovative, there are bound to be some bugs, but we're not at fault.

The first time that | encountered this syndrome was in a computer terminal that was manufactured by the
company | worked at. It had a detached keyboard that must have weighed 20 kilos or so, but it was
considered superior to those terminals with keyboards that could be placed on one's lap, which is, in my
opinion, the purpose of a detached keyboard.

Over the years, I've encountered the syndrome in various locations, usually associated with some kind of
kludge. Usually it was a software kludge, either a homegrown procedure or utility that might have filled
some kind of need, probably back during the Pliocene. Nevertheless, whatever it was, it was created locally
and was, therefore, better than anything from any other source.

Of course, there is an alternative reason for Microsoft creating ATLAS beyond the "not invented here"
syndrome. Perhaps Microsoft intends to either Balkanize the technology by creating incompatible
alternatives or attempt to seize control by having their own flavor. There is, however, the additional
possibility that they have allowed themselves to be blindsided again. Personally, | am most fond of the last
possibility because it is kind of reassuring to think that the company that some consider to be "The Evil
Empire" has once again missed the bus.

16.3.1. A Picture of ATLAS

Unfortunately, to use Microsoft's ATLAS technologies, it is necessary to have a machine running Windows
and a copy of Visual Studio 2005. Although my laptop does run Windows XP Professional, | don't have a
copy of Visual Studio 2005, and with a price tag of $549 for the Professional version, it isn't something that
I will be purchasing in the near future. After all, $549 will buy a large number of seasons of Stargate SG1,
Gummi Lab Rats, and turkey club sandwiches. For mad scientists, it is all a matter of priorities.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

16.4. The World Wide Web Consortium

As | stated earlier, the World Wide Web Consortium is, in most instances, the source of all things Web
related. For this reason, | recommend that you occasionally visit its website, www.w3.0rg, to peruse the
home page and see if there is anything new. In fact, this is one of those great spots to determine which
skill to learn next. After all, unless we keep our skills current, or even a little more than current, it is quite
possible that we could go the way of the dinosauror, at least, the way of the majority of American steel
workers.

The World Wide Web Consortium is also one of those websites, like SourceForge, where it is possible to find
some free goodies. However, unlike SourceForge, most people think of only documentation when they think
of the World Wide Web Consortium. Fortunately, there is much more to the World Wide Web Consortium
than a mere collection of HTML pages and PDF files. Many people don't realize that, in addition to the all the
documents describing various technologies, there are quite often documents describing support for those
various technologiessuch as which web browsers support CSS Level 1, information that can be of some use
when shopping for a new web browser.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://www.w3.org/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

16.5. Web Browsers

The scary part about this section is that | had to actually look to see which web browsers are installed on
my Toshiba notebook. Over the last several months, my collection has grown beyond my usual two
browsers to include the following (in alphabetical order):

o Firefox (www.mozilla.org)

o Flock (www.flock.com)

» Microsoft Internet Explorer (www.microsoft.com)
» Netscape (http://browser.netscape.com)

« Opera (www.opera.com)

In addition to adding browsers beyond the original two, several Firefox upgrades were installed during the
same timeframe.

All in all, | discovered several interesting things about these browsers and myself. The first is that, as
annoying as Microsoft Internet Explorer is, it pales in comparison to Opera. Opera is closed as tight as an
oyster. In addition, some versions of Opera lie, claiming to be Microsoft Internet Explorer. This wouldn't be
a problem if it behaved the same way as Microsoft Internet Explorer, but, unfortunately, it doesn't. In the
end, | was forced to abandon Opera.

Of the remaining browsers, Firefox, Flock, and Netscape are all based upon Gecko, which means that if
something works in one, it should work in all. In fact, | wasn't surprised to find this to be the case. Talk
about consistency!

However, | want to point out one item concerning these browsers. Because they are open source, they
have a tendency to change more often than Microsoft Internet Explorerbut, then, years change more often
than Microsoft Internet Explorer. This could be an issue in testing to keep in mind.

Finally, there is Microsoft Internet Explorer, which, at this time, is still the number one web browser in use.
Unlike the other browsers, unless you're running Windows or have an Apple computer, you're pretty much
hosed if you want to run Internet Explorer. But there's always Firefox or Flock or Netscape.

e Py ExT

downloaded from: lib.ommolkefab.ir

http://www.mozilla.org/
http://www.flock.com/
http://www.microsoft.com/
http://browser.netscape.com/
http://www.opera.com/
file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

16.6. Summary

This chapter served as something of a wrap-up for the entire booka weird wrap-up because, although Ajax
has been around for several years, it is still evolving. Examples of this are Sarissa, JSON, and Microsoft's
ATLAS, different approaches to solving what is basically the same problem. | also made mention of both the
World Wide Web Consortium and SourceForge, with the former being useful for documentation and the
latter being useful for development tools. For those of us whose spouses insist upon wasting money on the
mortgage instead of development tools, those SourceForge tools come in handy. Finally, | gave the web
addresses for the web browsers available at the time of this writing.

e prcy ExT

downloaded from: lib.ommolkefab.ir

file:///Z|/Prentice%20Hall/(Prentice%20Hall)%20Ajax%20(2006)/0132272679/31031536.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M] [N [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

$ (dollar sign)

() (parentheses)
* (asterisk) 2nd

+ (plus sign)

. (period) 2nd

.. (double period)

/ (slash)

// (double slash) 2nd
? (question mark)
@ (at sign)

[0-9] pattern (regular expressions)

[*0-9] pattern (reqular expressions)

\ (backslash)
N (caret)

| (union operator)

downloaded from: lib.ommolkefab.ir

NEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] (3] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T [U] [V] [W] [X]

a element (XHTML)

abbr element (XHTML)

abort() method

action property (XMLHttpRequest class)
ActiveX, XMLHttpRequest object
add2Cart() function

address element (XHTML)
addressSelect stored procedure

Ajax (Asynchronous JavaScript And XML)

advantages of
automated request system example

definition of

development of

hidden frames method of implementation
hidden.htm
HTMLfs.htm 2nd
submitForm() function

visible.htm

library classes
origin of name

philosophy of
Ruby on Rails and

Altova XMLSPY XPath Evaluator

ancestor axes (XPath)

ancestor() function

ancestor-or-self axes (XPath)

Apache web server
app folder
appendChild() method
appendData() method

Apple Safari
applet element (XHTML)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

apply-template element (XSLT)

applying CSS (Cascading Style Sheets)
area element (XHTML)
arithmetic operators 2nd

arraylength() method

arrays
adding elements to

array methods

associative

concatenating

defining

in JSON (JavaScript Object Notation)
removing elements from

reversing order of

slicing

sorting

XML-RPC arrays
assignment operators

associative arrays
asterisk (*) 2nd

asyncHandler() function

Asynchronous JavaScript And XML [See Ajax (Asynchronous JavaScript And XML).]

asynchronous loading with Sarissa

asynchronous pages

asynchronous property (XMLHttpRequest class)

asynchronous requests

asynchronous XMLHttpRequest applications
at sign (@)

ATLAS

Attr interface

attribute axes (XPath)

attribute element (XSLT)

attribute nodes

attribute-set element (XSLT)

attributes (XML) [See also specific attributes.]
Attributes property

automated request system example

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ancestor axes

ancestor-or-self axes

attribute axes
child axes
descendant axes

descendant-or-self axes

following axes
following-sibling axes

namespace axes

parent axes
preceding axes

preceding-sibling axes

self axes
table of

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] (3] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

b element (XHTML)

\b pattern (reqular expressions)

background element (CSS)

background-attachment element (CSS)

background-color element (CSS)

background-image element (CSS)

background-position element (CSS)

background-repeat element (CSS)

backslash (\

base element (XHTML)
basefont element (XHTML)
Berns-Lee, Tim

big element (XHTML)

binding XML
cross-browser XML binding

Internet Explorer
blockquote element (XHTML)
blur event handler
body element (XHTML)
Boolean data types 2nd

Boolean functions

boolean() function

border element (CSS)
border-bottom element (CSS)
border-bottom-width element (CSS)

border-color element (CSS)
border-left element (CSS)
border-left-width element (CSS)
border-right element (CSS)
border-right-width element (CSS)
border-style element (CSS)

border-top element (CSS)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

border-width element (CSS)
br element (XHTML)
break statement

brochure-ware
browsers
cross-browser development

compatibility issues

market share

SOAPEnNvelope class constructor
World Wide Web Consortium
XML document class constructor

XMLHttpRequest class constructor

XSLTProcessor class

cross-browser DOM (Document Object Model)

Firefox
Microsoft Internet Explorer

Opera
sample HTML document

Firefox

Linux browsers

list of
Microsoft Internet Explorer

client-side transformations
XML Data Islands 2nd
Mozilla-based browsers

Opera
Safari

Sarissa support for
XML binding
cross-browser XML binding

Internet Explorer

XMLHttpReguest object syntax
XSLT support
cross-browser web page example

Internet Explorer 5.0
buildSOAP() function
button element (XHTML)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

Cache() function 2nd
caching

call-template element (XSLT)
caption element (XHTML)
caret (M)

Cascading Style Sheets [See CSS (Cascading Style Sheets).]
case statement
CDATASection interface
CDATAsections (XML)
ceiling() function

center element (XHTML)
CERNServer

change event handler

changeEvent() function 2nd

CharacterData interface
charAt() method
charCodeAt() method
child axes (XPath)

child nodes 2nd
childNodes property

childWindow class

choose element (XSLT)

class variables

classes
Ajax library classes
childwWindow
constructors

function class constructor

Ruby classes, creating
SOAPEnvelope 2nd
XMLHttpRequest
XSLTProcessor

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

client side
client-side transformations

cloneNode() method

close() method
code element (XHTML)
code reuse

advantages of
JavaScript objects

associative arrays

collections

creating
cross-browser (Gecko and IE) XMLHttpRequest class constructor

cross-browser SOAPEnvelope class constructor

cross-browser XML document class constructor

cross-browser XSLTProcessor class

serialization
XML
XSLT
forms
tabular information

coding by hand
col element (XHTML)
colgroup element (XHTML)

collections 2nd

color element (CSS)

comment element (XSLT)

Comment interface

comments (XML)

comparison operators
concat() method 2nd 3rd
concatenating

arrays
stored functions

conditional operators 2nd

conditional statements
if

switch

conditions in Ruby

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

connect errno property (mysqgli)

constructors

contains() function

context nodes
continue statement

controller.rb
controllers folder

copy element (XSLT)

copy-of element (XSLT)

count() function

CP/M

createAttribute() method
createCDATASection() method
createComment() method

createDocumentFragment() method

createElement() method

createEntityReference() method

createProcessinglnstruction() method

createTextNode() method

cross-browser (Gecko and IE) XMLHttpRequest class constructor

cross-browser binding XML

cross-browser development

compatibility issues

cross-browser DOM

Firefox

JavaScript
Microsoft Internet Explorer

Opera
sample HTML document 2nd

server-side environment

stored procedures

tree structure
market share
SOAPEnNvelope class constructor
World Wide Web Consortium
XML binding
XML document class constructor
XSLT web page

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CSS (Cascading Style Sheets) 2nd

applyin

elements
hiding XML with 2nd

tabular information

Current() function

custom elements (XHTML)

customer display page

customerlnsert stored procedure

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

\D pattern (regular expressions)
Data Islands (XML)
cross-browser solutions
CSS to hide XML
getElementByld() method

Firefox
Internet Explorer 2nd
sample HTML page with embedded XML

Data property
data types

JavaScript data types
Boolean data types

null data types
numeric data types

object
overview of

strings
undefined data types

Ruby data types
Boolean

numeric

objects
string
XML-RPC data types

database access example

dblclick event handler
dd element (XHTML)
decimal-format element (XSLT)

decision structures (XSLT)
declarations (XML)

deep copies
defining arrays

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

deleteData() method

descendant axes (XPath)

descendant-or-self axes (XPath)
dfn element (XHTML)

DHTML (Dynamic HTML) 2nd
Digital Research, CP/M

dir element (XHTML)

directory structure

disadvantages of Ajax

display element (CSS)

displayCart() function
div element (XHTML)
dl element (XHTML)

do/while loops

Doctype property (Document interface)

Document interface

Document Object Model [See DOM (Document Object Model).]

Document Type Definitions (DTDs)

document() function

documentElement property (Document interface)

DocumentFragment interface
documents (HTML)
hierarchical structure
HTML DOM
cross-browser issues

JavaScript
server-side environment

stored procedures

tree structure
DocumentType interface
dollar sign ($)
DOM (Document Object Model)
HTML DOM
cross-browser issues

JavaScript
server-side environment

stored procedures

tree structure

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

JavaScript interfaces

node types
properties and() methods

sample XML document
DOMDocument() method
DOMEXxception interface

DOMImplementation interface
doPOST() function

double period (..)

double slash (//)

dt element (XHTML)

DTDs (Document Type Definitions)

dumb terminals
Dynamic HTML [See DHTML (Dynamic HTML).]

dynamic web pages

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

element element (XSLT)

Element interface

element-availability() function

elements
CSS
HTML/XHTML

base
basefont

lg.

blockquote
body

colgroup
custom elements

dd
definition of

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

em

fieldset

5
%)

@
>
o
)
X

kbd

)
o
@

= @
[¢)
>
o

=]
=

3 |3
o |
5
c

meta
noframes

noscript
object

:

optgrou

E

tio

EF“’E
Q
3 =)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

If—.‘
~+

==

var
XML

attributes

forbidden/restricted characters

naming conventions

structure of
XSLT
defining in style sheets

output
sort

stylesheet
table of

transform

else statement (Ruby)

elsif statement (Ruby)
em element (XHTML)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Entities property (DocumentType interface)

Entity interface

EntityReference interface

envelope property (XMLHttpRequest class)

envelope() method

Epiphany
error property (mysqli)

escape() method

Euclidean algorithm
iterative implementation

recursive implementation

event handlers (JavaScript)

ExceptionCode interface

exiting loops
expressions

regular expressions
XPath
Extensible Markup Language [See XML (Extensible Markup Language).]

eXtensible Stylesheet Language for Transformations [See XSLT (eXtensible Stylesheet Language for Transformations).]

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

\f pattern (reqular expressions)
fallback element (XSLT)

false() function

Falseclass class (Ruby)

faults
SOAP faults 2nd
XML-RPC faults
fetch_array() method
fieldset element (XHTML)
files, retrieving synchronously

Firefox 2nd
cross-browser DOM (Document Object Model)
XML Data Islands

firstChild property

Float class (Ruby)
float element (CSS)
Flock

floor() function

flow-control
conditionals
case
if
switch
in Ruby
conditions

00

(2}

loops

overview of

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

following axes (XPath)

following-sibling axes (XPath)

font element
CSss
HTML 2nd
XHTML
font-family element (CSS)

font-size element (CSS)

font-style element (CSS)

font-variant element (CSS)

font-weight element (CSS)
for-each element (XSLT) 2nd
for/in loops 2nd

forbidden characters (XML)
form element (XHTML)
Format-number() function

forms
code reuse

read-only
addressSelect stored procedure

customer display

MySQL database tables, creating

updateable
customer display page

customerlnsert stored procedure

namelnsert stored procedure

forward() function
frame element (XHTML)
frames 2nd

hidden frames method of Ajax implementation
hidden.htm
HTMLfs.htm 2nd
submitForm() function

visible.htm
HTML DOM

frameset element 2nd

framesets
fromCharCode() method

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

function-available() function

functions [See also methods.]

add2Cart()
ancestor()

asyncHandler()
buildSOAP

Cache() 2nd
changeEvent() 2nd

Current()
displayCart()
document()
doPOST()

element-availability()

Format-number()

forward()
function-available()
acd()

generate-id()
initialize() 2nd

z

>

ame

pageWait()

restrict()
selectSingleNode()

stateChangeHandler()

stored functions, concatenating
submitForm() 2nd
substringAfter()

substringBefore()

system-property()
translate()
transverse()

unparsed-entity-uri()

xmINode()

XPath functions

Boolean functions

node set functions

numeric functions

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

XSLT functions

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

Galeon

Gaurrett, Jesse James

gcd() function

generate-id() function

GET method
getAllResponseHeaders() method 2nd
getAttribute() method
getAttributeNode() method
getElementByld() method

getElementByName() method

getElementsByTagName() method

getNamedltem() method

getResponseHeader() method 2nd

getResponseHeadere() method
Google

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

hl element (XHTML)

h2 element (XHTML)

h3 element (XHTML)

h4 element (XHTML)

h5 element (XHTML)

h6 element (XHTML)

hasChildNodes() method

hasFeature() method

head element (XHTML)

height element (CSS)

helpers folder

hidden frames() method of Ajax implementation
hidden.htm
HTMLfs.htm 2nd

submitForm() function

visible.htm

hidden.htm

hiding XML

hierarchical structure of HTMLDOM

history of Ruby on Rails

hr element (XHTML)

HTML 2nd [See also DHTML (Dynamic HTML); XHTML.]
compared to XHTML
elements [See elements.]

frames 2nd

framesets

HTML DOM (Document Object Model)
collections
frames

hierarchical structure

interfaces

properties/methods

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

iframes
html element (XHTML)
HTMLfs.htm 2nd
hybrid XSLT/XHTML template example
Hypertext Markup Language [See HTML.]

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

i element (XHTML)
if element (XSLT)
if statement

example

nesting
iframe element (XHTML)

iframes

IS (Internet Information Server)
imqg element (XHTML)
Implementation property (Document interface)

import element (XSLT)

in-line frames

include element (XSLT)
index.rthml

indexOf() method
initialize() function 2nd
input element (XHTML)
ins element (XHTML)
insert() method

insertBefore() method

insertData() method

installing Ruby on Rails

instance variables

Integer class (Ruby)

interfaces
Attr
CDATASection
CharacterData

Comment
Document

DocumentFragment

DocumentType

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

DOMImplementation

Element

Entity
EntityReference

ExceptionCode
HTMLDOM
NamedNodeMap
Node

NodeList
Notation

Processinglnstruction

properties and methods of

Text

Internet Explorer 2nd

client-side transformations

cross-browser DOM (Document Object Model)

XML binding
XML Data Islands 2nd

Internet Information Server (11S)

invoking web services
isindex element (XHTML)
item() method

Iltems Available web page code listing

itemSelectXML stored procedure

iterative style sheets (XSLT)

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

JavaScript 2nd 3rd

arrays
adding elements to
array methods
concatenating
defining
joining
removing elements from

reversing order of

slicing

sorting
childWindow class

conditional statements

case
if
switch
constructors
data types
Boolean data types

null data types
numeric data types

objects
overview of

strings
undefined data types

event handlers

functions [See functions.]
HTML DOM interfaces
loops

do/while

exiting

for/in

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

objects
collections

creating
cross-browser (Gecko and IE) XMLHttpRequest class constructor

cross-browser SOAPEnvelope class constructor

cross-browser XML document class constructor

cross-browser XSLTProcessor class

serialization
operators
recursion 2nd

reqular expressions

variables
JavaScript Object Notation (JSON)

JavaScriptHelper module (Ruby on Rails)

join() method

joining arrays
JSON (JavaScript Object Notation)

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

kbd element (XHTML)
key element (XSLT)

key() function

keydown event handler

keypress event handler

keyup event handler
Konqueror

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

label element (XHTML)
last() function

lastChild property
lastindexOf() method
legend element (XHTML)
Length property

length() method
letter-spacing element (CSS)
li element (XHTML)
line-height element (CSS)
link element (XHTML)

Linux browsers

list-style element (CSS)

list-style-image element (CSS)

list-style-position element (CSS)

list-style-type element (CSS)

load event handler
Load() method
local-name() function
location paths (XPath)
logical operators

loops
do/while

downloaded from: lib.ommolkefab.ir

NEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

map element (XHTML)

margin element (CSS)

margin-bottom element (CSS)

margin-left element (CSS)

margin-right element (CSS)

margin-top element (CSS)

market share of web browsers

match() method

math operators

menu element (XHTML)
message element (XSLT)
meta element (XHTML)

methods [See also functions.]

abort()
appendChild()
appendData()
arraylength()
charAt()
charCodeAt()

cloneNode

close

collections

concat() 2nd
createAttribute()
createCDATASection()

createComment()

createDocumentFragment()

createElement()

createEntityReference()

createProcessinglnstruction()

createTextNode()

deleteData()

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

envelope()
escape()
fetch_array()

Float class

fromCharCode()
getAllResponseHeaders() 2nd
getAttribute()
getAttributeNode()
getElementByld()

getElementByName()

getElementsByTagName()

getNamedltem()

getResponseHeader() 2nd
hasChildNodes()

hasFeature()
HTML DOM

indexOf()
insert
insertBefore()
insertData()

nteger class
tem

:

JavaSciptHelper module

join

astindexOf

|

ength

match
ames

ormalize

U

ush

uer

readyState()

removeAttribute()

removeAttributeNode()

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

removeNamedltem()

removeRequestHeader()

replace()
replaceChild()
replaceData()

responseText()

responseXML()

retrieve()
reverse()
rSend()
search()
selectNodes()
send()
serialize()
setAttribute()
setAttributeNode()
setEnvelope()
setinterval()

setNamedIltem()

setRequestHeader() 2nd

setTimeout() 2nd
shift
lice() 2nd

:

0

ort

lit
splitText()
stateChangeHandler()

substr()

substring()
substringData()

n

toLowerCase()

toString()
toUpperCase()

transformToDocument()

transformToFragment()

unescape()
unshift()

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Microsoft Internet Explorer 2nd

client-side transformations

cross-browser DOM (Document Object Model)

XML binding
XML Data Islands 2nd

mode attribute (template element)

models folder

mousedown event handler

mousemove event handler

mouseout event handler

mouseover event handler

mouseup event handler

Mozilla
Mozilla-based browsers

Muench, Steve

Muenchian grouping

multiple assignments (Ruby)

multithreading in Ruby

MySOL database tables, creating 2nd

MySOL stored procedures

addressSelect
customerinsert
itemSelectXML 2nd
lineSelect

namelnsert

producing XML from

shoppingCartSelect

mysgli() methods and properties

downloaded from: lib.ommolkefab.ir

NEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

{n} pattern (reqular expressions)

\n pattern (reqular expressions)

{n,} pattern (reqular expressions)

{n,m} pattern (reqular expressions)

Name property

name() function 2nd

name-value pairs in JSON (JavaScript Object Notation)

named XSLT template example

NamedNodeMap interface

namelnsert stored procedure

names() method

namespace axes (XPath)

namespace-alias element (XSLT)

namespace-uri() function

namespaces (XML)

naming conventions (XML)

NaN special value
NCSA HTTPd
nesting if statements

Netscape 2nd
nextSibling property

Node interface
node set functions

NodelList interface

nodeName property

nodes
attribute nodes

child nodes
context nodes

parent nodes 2nd

root nodes
nodeType property

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

noframes element (XHTML)

nonbound tables, creating with XSL style sheets

normalize() method

normalize-space() function
noscript element (XHTML)

not() function

Notation interface

notationName property

Notations property (DocumentType interface)

null data types
number element (XSLT)

number() function

numeric data types 2nd

numeric() functions

downloaded from: lib.ommolkefab.ir

NEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

Object data type
object element (XHTML)
objects [See also DOM (Document Object Model).]

JavaScript objects
collections

creating
cross-browser (Gecko and IE) XMLHttpRequest class constructor

cross-browser SOAPENvelope class constructor

cross-browser XML document class constructor

cross-browser XSLTProcessor class

serialization

Ruby objects

XML DOM (Document Object Model)
JavaScript interfaces

node types
properties and() methods

sample XML document
XMLHttpRequest 2nd 3rd

ActiveX

asynchronous applications 2nd

browser differences

creating instances of

cross-browser (Gecko and IE) XMLHttpRequest class constructor
GET versus POST() methods
properties and() methods

readyState values

RSS (Really Simple Syndication)
sample XML document

SOAP(Simple Object Access Protocol)
synchronous applications 2nd

web services
XML-RPC data types

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

XML-RPC requests

XML-RPC responses
ol element (XHTML)
onclick event handler

onreadystatechange event handler

open() method
Opera 2nd 3rd
operators

arithmetic operators

conditional operators

in Ruby
JavaScript operators

union operator (|)

optgroup element (XHTML)
option element (XHTML)

otherwise element (XSLT)
output element (XSLT) 2nd

ownerDocument property

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

p element (XHTML)

padding element (CSS)
padding-bottom element (CSS)
padding-left element (CSS)
padding-right element (CSS)
padding-top element (CSS)

pageWait() function

param element
XHTML
XSLT

parent axes (XPath)

parent nodes 2nd 3rd

parentheses ()
parentNode property

paths (XPath)

period (.)
philosophy of Ajax

PHP tabular information

plus sign (+)

op() method

position() function
POST method

pre element (XHTML)
preceding axes (XPath)

preceding-sibling axes (XPath)
predicates (XPath)
preserve-space element (XSLT)

previousSibling property

procedures, stored

addressSelect
customerlinsert
itemSelectXML

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

namelnsert

producing XML from

shoppingCartSelect

processing instructions (XML)

processing-instruction element (XSLT)

Processinglnstruction interface

properties [See also specific properties.]
collections
Float class (Ruby)
HTMLDOM
Integer class (Ruby)
XMLHttpRequest object

prototype property

public folder
publicid property

purge() method
push() method

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

g element (XHTML)
query() method

question mark (?)

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

\r pattern (regular expressions)

Rails [See Ruby on Rails.]
read-only forms

addressSelect stored procedure

customer display

MySOL database tables, creating

read-only tabular information 2nd
CSS
items available page

lineSelect stored procedure

MySQL database tables, creating

mysqli() methods and properties

PHP variables and routines

readyState values

web page code listing

readState property (XMLHttpRequest object) 2nd

readyState() method
Really Simple Syndication (RSS)
recursion

JavaScript
recursive style sheets (XSLT)

reqular expressions

removeAttribute() method

removeAttributeNode() method

removeChild() method

removeNamedltem() method

removeRequestHeader() method

removing array elements

replace() method
replaceChild() method
replaceData() method

requests

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

XML-RPC requests
XMLHttpRequest object
reset event handler

resize event handler

responses
SOAP responses 2nd
XML-RPC responses

responseText property (XMLHttpRequest object)

responseText() method

responseXML property (XMLHttpRequest object)

responseXML() method

restrict() function

restricted characters (XML)

retrieve() method

reusing code [See code reuse.]
reverse() method

reversing arrays

root nodes 2nd

round() function
RSS (Really Simple Syndication)
Ruby

advantages of
classes

data types
Boolean

numeric

objects

string
flow control

conditions

loops
history of

operators
threads

variables

Ruby on Rails

Ajax and 2nd
database access example

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

history of
installation

e prcy ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

s element (XHTML)

\S pattern (reqular expressions)

Safari
samp element (XHTML)
Sarissa

asynchronous loading

browser support

features
synchronous loading
syntax
XMLHttpRequest implementation
XSLT with
schemas (XML)

scope

variables

XSLT
script element (XHTML)
scroll event handler

search() method
select element (XHTML)
select event handler

selectNodes() method

selectSingleNode() function
self axes (XPath)

send() method 2nd
serialization

serialize() method

server-side environment

servers, web
services, web

definition of
example of

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

SOAP (Simple Object Access Protocol)
setAttribute() method
setAttributeNode() method
setEnvelope() method

setinterval() method

setNamedIltem() method

setRequestHeader() method 2nd

setTimeout() method 2nd

shift() method

shopping cart application
add2Cart() function
displayCart() function

Iltems Available web page code listing

shopping cart page code listing

shoppingCartSelect stored procedure

substringAfter() function

substringBefore() function

shoppingCartSelect stored procedure

Simple Object Access Protocol [See SOAP (Simple Object Access Protocol).]
slash (/) 2nd
slice() method 2nd
slicing arrays
small element (XHTML)
SOAP (Simple Object Access Protocol) 2nd
faults 2nd

invoking web services with

requests 2nd

responses 2nd
SOAPEnvelope class 2nd
sort element (XSLT) 2nd
sort() method

sorting

arrays

node sets (XSLT)
span element (XHTML)
Specified property (Attr interface)

splice() method

split() method

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

start-with() function

stateChangeHandler() function 2nd

statements
break

conditional statements

static web pages

status property (XMLHttpRequest object)

statusText property (XMLHttpRequest object)

stored procedures

addressSelect
customerinsert
itemSelectXML
lineSelect

namelnsert

producing XML from

shoppingCartSelect

stored() functions, concatenating
strike element (XHTML)
String class (Ruby)

string functions

string-length() function

strings

in Ruby
reqular expressions

string functions

substitution
strip-space element (XSLT)
strong element (XHTML)
structs, XML-RPC

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

stylesheet element (XSLT)
sub element (XHTML)
submit event handler

submitForm() function 2nd

substituting strings
substr() method
substring() method 2nd

substring-after() function

substring-before() function

substringAfter() function

substringBefore() function

substringData() method

sum() function
sup element (XHTML)

switch statement

synchronous loading with Sarissa

synchronous pages

synchronous requests

synchronous XMLHttpRequest applications

system-property() function

systemid property

downloaded from: lib.ommolkefab.ir

NEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

\t pattern (regular expressions)
table element (XHTML)
tabular information 2nd

Ajax library classes

Boolean global variables

code reuse

framesets

JavaScript() functions
changeEvent() 2nd

forward()

initialize()

restrict()

submitForm()
nonbound tables, creating with XSLstyle sheets
read-only

CSss

items available page

lineSelect stored procedure

MySOL database tables, creating

mysqli() methods and properties

PHPvariables and routines

readyState values

web page code listing

sample Ajax page

updateable (shopping cart application) 2nd
add2Cart() function
displayCart() function

shopping cart page code listing

shoppingCartSelect stored procedure

substringAfter() function

substringBefore() function
XSLT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Target property (Processinglnstruction interface)
tbody element (XHTML)
td element (XHTML)
template element (XSLT)
templates (XSLT)
distinguishing template matches with mode attribute

named template example

pure XSLT template example
XSLT/XHTML hybrid template example
text element (XSLT)
Text interface

text-align element (CSS)

text-decoration element (CSS)
text-indent element (CSS)
text-transform element (CSS)
textarea element (XHTML)
tfoot element (XHTML)

th element (XHTML)

then statement (Ruby)
thread element (XHTML)
threads in Ruby

title element (XHTML)
toLowerCase() method

tools
toString() method

toUpperCase() method
tr element (XHTML)
traditional versus Ajax websites

training
coding by hand

guidelines for
tools

transform element (XSLT)

transformations [See XSLT (eXtensible Stylesheet Language for Transformations).]

transformToDocument() method

transformToFragment() method

translate() function 2nd

transverse() function

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

true() function

Trueclass class (Ruby)
tt element (XHTML)

downloaded from: lib.ommolkefab.ir

NEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

u element (XHTML)
ul element (XHTML)
undefined data types

unescape() method

union operator (|)
unions (XPath)
unless statement (Ruby)

unload event handler

unparsed-entity-uri() function
unshift() method

until loops
updateable forms

customer display page

customerlnsert stored procedure

namelnsert stored procedure

updateable tabular information (shopping cart application)
add2Cart() function
displayCart() function

shopping cart page code listing

shoppingCartSelect stored procedure

substringAfter() function

substringBefore() function

updateable web pages, creating with XSLT

e Py ExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

\v pattern (regular expressions)

Value property (Attr interface)

value-of element (XSLT)
valueOf() method

var element (XHTML)
variable element (XSLT)

variables

JavaScript

Ruby
XSLT

vertical-align element (CSS)

views folder

visible.htm

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

\W pattern (reqular expressions)

web browsers [See browsers.]
web servers
web services

definition of

example of
invoking
SOAP (Simple Object Access Protocol)

faults
invoking web services with

requests

responses
web sites

brochure-ware

traditional versus Ajax websites
Web, history of
WEBrick
well-formed XHTML documents

well-formed XML documents 2nd 3rd
when element (XSLT)
while loops 2nd

white-space element (CSS)
width element (CSS)

window object
with-param element (XSLT)

word-spacing element (CSS)
World Wide Web Consortium 2nd 3rd

downloaded from: lib.ommolkefab.ir

NEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X]

XHTML [See also HTML.]
compared to HTML

elements [See elements.]
well-formed documents
XSLT/XHTML hybrid template example
XML (Extensible Markup Language) 2nd 3rd 4th 5th [See also XMLHttpRequest object.]
asynchronous loading with Sarissa
binding
cross-browser XMLbinding

Internet Explorer
CDATA sections

comments

cross-browser binding XML

cross-browser XMLdocument class constructor

DTDs (Document Type Definitions)

elements [See elements.]
entities

forbidden/restricted characters
hiding with CSS 2nd
namespaces

naming conventions

non-well-formed documents

processing instructions

producing from stored procedures

sample documents 2nd

schemas
serialization

stored functions, concatenating

synchronous loading with Sarissa

tree data structure 2nd

well-formed documents 2nd 3rd
XML Data Islands

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Firefox
Internet Explorer 2nd
sample HTML page with embedded XML
XML declarations
XML DOM (Document Object Model)
JavaScript interfaces

node types
properties and methods

sample XML document
XML-RPC data types
XML-RPC faults
XML-RPC requests
XML-RPC responses
XMLHttpRequest object 2nd 3rd 4th
ActiveX

asynchronous applications 2nd

browser differences

creating instances of

cross-browser (Gecko and IE) XMLHttpRequest class constructor
GET versus POST methods
implementation with Sarissa

properties and methods

readyState values
RSS (Really Simple Syndication)

sample XMLdocument
SOAP(Simple Object Access Protocol)
faults

requests
responses

synchronous applications 2nd

web services
definition of

example of

invoking

SOAP (Simple Object Access Protocol)
XML DOM (Document Object Model)

JavaScript interfaces

node types

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

sample XML document
XML-RPC data types
XML-RPC faults
XML-RPC requests
XML-RPC responses
xmINode() function
XMLSPY XPath Evaluator
\xn pattern (regular expressions)
XPath 2nd
arithmetic operators

attribute nodes

axes
ancestor axes

ancestor-or-self axes

attribute axes
child axes
descendant axes

descendant-or-self axes

following axes
following-sibling axes

namespace axes

parent axes
preceding axes

preceding-sibling axes

self axes
table of

conditional operators

context nodes
expressions
functions

Boolean functions

node set functions

numeric functions

string functions

location paths
parent nodes

predicates
unions

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

XSLT (eXtensible Stylesheet Language for Transformations) 2nd 3rd 4th [See also XPath.]
advantages/disadvantages

benefits of
browser support
cross-browser web page example

Internet Explorer 5.0

caching
client-side transformations

Microsoft Internet Explorer

overview of

decision structures

elements
defining in style sheets

output
sort

stylesheet
table of

transform
flow control
forms
functions

goals of

HTML output
iterative style sheets

Muenchian grouping

nonbound tables, creating

read-only web pages

recursive style sheets

sample XSL style sheet

Scope

simple IE-only web page example

simple style sheet example

sorting node sets

tabular information 2nd

templates
distinquishing template matches with mode attribute

named template example

pure XSLT template example

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

updateable web pages

variables

with Sarissa

XSLTProcessor
XSLTProcessor 2nd
[xyz] pattern (regular expressions)

[*xyz] pattern (reqular expressions)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Ajax: Creating Web Pages with Asynchronous JavaScript and XML
	Table of Contents
	Copyright
	Bruce Perens' Open Source Series
	About the Author
	Preface
	Acknowledgments

	Chapter 1. Types of Web Pages
	Section 1.1. Static Web Pages
	Section 1.2. Dynamic Web Pages
	Section 1.3. Web Browsers
	Section 1.4. A Brief Introduction to Cross-Browser Development
	Section 1.5. The Server Side of Things
	Section 1.6. We Learn by Doing
	Section 1.7. Summary

	Chapter 2. Introducing Ajax
	Section 2.1. Not a Mockup
	Section 2.2. A Technique Without a Name
	Section 2.3. What Is Ajax?
	Section 2.4. An Ajax Encounter of the First Kind
	Section 2.5. An Ajax Encounter of the Second Kind
	Section 2.6. An Ajax Encounter of the Third Kind
	Section 2.7. The Shape of Things to Come
	Section 2.8. Summary

	Chapter 3. HTML/XHTML
	Section 3.1. The Difference Between HTML and XHTML
	Section 3.2. Elements and Attributes
	Section 3.3. Summary

	Chapter 4. JavaScript
	Section 4.1. Data Types
	Section 4.2. Variables
	Section 4.3. Operators
	Section 4.4. Flow-Control Statements
	Section 4.5. Functions
	Section 4.6. Recursion
	Section 4.7. Constructors
	Section 4.8. Event Handling
	Section 4.9. Summary

	Chapter 5. Ajax Using HTML and JavaScript
	Section 5.1. Hidden Frames and iframes
	Section 5.2. Cross-Browser DOM
	Section 5.3. Tabular Information
	Section 5.4. Forms
	Section 5.5. Advantages and Disadvantages
	Section 5.6. Summary

	Chapter 6. XML
	Section 6.1. Elements
	Section 6.2. Attributes
	Section 6.3. Handling Verboten Characters
	Section 6.4. Comments
	Section 6.5. Expectations
	Section 6.6. XML Declaration
	Section 6.7. Processing Instructions
	Section 6.8. XML Data Islands
	Section 6.9. Summary

	Chapter 7. XMLHttpRequest
	Section 7.1. Synchronous
	Section 7.2. Asynchronous
	Section 7.3. Microsoft Internet Explorer
	Section 7.4. XML Document Object Model
	Section 7.5. RSS
	Section 7.6. Web Services
	Section 7.7. Summary

	Chapter 8. Ajax Using XML and XMLHttpRequest
	Section 8.1. Traditional Versus Ajax Websites
	Section 8.2. XML
	Section 8.3. The XMLHttpRequest Object
	Section 8.4. A Problem Revisited
	Section 8.5. Tabular Information and Forms
	Section 8.6. Advantages and Disadvantages
	Section 8.7. Summary

	Chapter 9. XPath
	Section 9.1. Location Paths
	Section 9.2. Context Node
	Section 9.3. Parent Nodes
	Section 9.4. Attribute Nodes
	Section 9.5. Predicates
	Section 9.6. XPath Functions
	Section 9.7. XPath Expressions
	Section 9.8. XPath Unions
	Section 9.9. Axis
	Section 9.10. Summary

	Chapter 10. XSLT
	Section 10.1. Recursive Versus Iterative Style Sheets
	Section 10.2. XPath in the Style Sheet
	Section 10.3. Elements
	Section 10.4. XSLT Functions
	Section 10.5. XSLT Concepts
	Section 10.6. Client-Side Transformations
	Section 10.7. Summary

	Chapter 11. Ajax Using XSLT
	Section 11.1. XSLT
	Section 11.2. Tabular Information
	Section 11.3. Advantages and Disadvantages
	Section 11.4. Summary

	Chapter 12. Better Living Through Code Reuse
	Section 12.1. Reuse = Laziness
	Section 12.2. JavaScript Objects
	Section 12.3. Generic XSLT
	Section 12.4. Summary

	Chapter 13. Traveling with Ruby on Rails
	Section 13.1. What Is Ruby on Rails?
	Section 13.2. Installation
	Section 13.3. A Little Ruby on Rails Warm-Up
	Section 13.4. A Problem Revisited
	Section 13.5. Whither Ajax?
	Section 13.6. Summary

	Chapter 14. Traveling Farther with Ruby
	Section 14.1. Data Types
	Section 14.2. Variables
	Section 14.3. Operators
	Section 14.4. Flow-Control Statements
	Section 14.5. Threads
	Section 14.6. Ajax
	Section 14.7. Summary

	Chapter 15. The Essential Cross-Browser HTML DOM
	Section 15.1. Interfaces
	Section 15.2. Document
	Section 15.3. Frames
	Section 15.4. Collections
	Section 15.5. Summary

	Chapter 16. Other Items of Interest
	Section 16.1. Sarissa
	Section 16.2. JSON and JSON-RPC
	Section 16.3. ATLAS
	Section 16.4. The World Wide Web Consortium
	Section 16.5. Web Browsers
	Section 16.6. Summary

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

