
http://lib.ommolketab.ir
http//lib.ommolketab.ir

ii

Ajax Starter Kit Quick Start Guide

Copyright © 2007 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from the publisher. No
patent liability is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the preparation of this
book, the publisher and author assume no responsibility for errors or omissions.
Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-10: 0-672-32960-3

ISBN-13: 978-0-672-32960-9

Library of Congress Cataloging-in-Publication data is on file.

Printed in the United States of America

First Printing: June 2007

09 08 07 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to the
accuracy of this information. Use of a term in this book should not be regarded
as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on an
“as is” basis. The author and the publisher shall have neither liability nor respon-
sibility to any person or entity with respect to any loss or damages arising from
the information contained in this book or from the use of the CD or programs
accompanying it.

Reader Services
Visit our website and register this product at www.samspublishing.com/
register for convenient access to any updates, downloads, or errata that
may be available.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

iii

Table of Contents

Welcome to Ajax! 1

Part I: A Refresher on Web Technologies

1: Anatomy of a Website 7

Workings of the World Wide Web. 7

2: Writing Web Pages in HTML 13

Introducing HTML 13

Elements of an HTML Page 15

A More Advanced HTML Page 20

Some Useful HTML Tags 22

Cascading Style Sheets in Two Minutes. 23

3: Sending Requests Using HTTP 25

Introducing HTTP 25

The HTTP Request and Response 26

HTML Forms. 28

4: Client-Side Coding Using JavaScript 33

About JavaScript 33

In at the Deep End 35

Manipulating Data in JavaScript. 44

5: Server-Side Programming in PHP 47

Introducing PHP 47

Embedding PHP in HTML Pages 48

Variables in PHP. 49

Controlling Program Flow 51

6: A Brief Introduction to XML 53

Introducing XML 53

XML Basics. 54

JavaScript and XML 57

The Document Object Model (DOM) 58

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax Starter Kit Quick Start Guide

iv

Part II: Introducing Ajax

7: Anatomy of an Ajax Application 61

The Need for Ajax. 61

Introducing Ajax 63

The Constituent Parts of Ajax 66

Putting It All Together 68

8: The XMLHTTPRequest Object 71

More About JavaScript Objects 71

Introducing XMLHTTPRequest 73

Creating the XMLHTTPRequest Object 73

9: Talking with the Server 81

Sending the Server Request . 81

Monitoring Server Status. . . 86

The Callback Function 87

10: Using the Returned Data 91

The responseText and responseXML Properties 91

Another Useful JavaScript DOM Property 95

Parsing responseXML. 96

Providing User Feedback. 97

11: Our First Ajax Application 101

Constructing the Ajax Application 101

The HTML Document 102

Adding JavaScript 103

Putting It All Together 107

Part III: More Complex Ajax Technologies

12: Returning Data as Text 111

Getting More from the responseText Property 111

13: AHAH—Asynchronous HTML and HTTP 119

Introducing AHAH. 119

Creating a Small Library for AHAH 120

Using myAHAHlib.js 122

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Contents

v

14: Returning Data as XML 129

Adding the “x” to Ajax. 129

The responseXML Property. 130

Project—An RSS Headline Reader 133

15: Web Services and the REST Protocol 143

Introduction to Web Services 143

REST—Representational State Transfer 144

Using REST in Practice 146

REST and Ajax 150

16: Web Services Using SOAP 151

Introducing SOAP (Simple Object Access Protocol) 151

The SOAP Protocol 152

Using Ajax and SOAP 155

Reviewing SOAP and REST 156

17: A JavaScript Library for Ajax 157

An Ajax Library 157

Reviewing myAHAHlib.js . 158

Implementing Our Library . 159

Using the Library 163

Extending the Library . . . 166

18: Ajax “Gotchas” 167

Common Ajax Errors 167

The Back Button 167

Bookmarking and Links. 168

Telling the User That Something Is Happening 169

Making Ajax Degrade Elegantly 169

Dealing with Search Engine Spiders 170

Pointing Out Active Page Elements 170

Don’t Use Ajax Where It’s Inappropriate. 171

Security 172

Test Code Across Multiple Platforms. 172

Ajax Won’t Cure a Bad Design 173

Some Programming Gotchas. 173

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax Starter Kit Quick Start Guide

vi

Part IV: Commercial and Open Source Ajax Resources

19: The prototype.js Toolkit 175

Introducing prototype.js 175

Wrapping XMLHTTPRequest—the Ajax Object. 178

Example Project—Stock Price Reader 180

20: Using Rico 183

Introducing Rico. 183

Rico’s Other Interface Tools . 187

21: Using XOAD 193

Introducing XOAD. 193

XOAD HTML 196

Advanced Programming with XOAD 199

Index 201

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Welcome to Ajax!

Ajax is stirring up high levels of interest in the Internet development community.
Ajax allows developers to provide visitors to their websites slick, intuitive user
interfaces somewhat like those of desktop applications instead of using the tradi-
tional page-based web paradigm.

Based on well-known and understood technologies such as JavaScript and XML, Ajax
is easily learned by those familiar with the mainstream web design technologies and
does not require users to have any browser plug-ins or other special software.

About This Book
Part of the Sams Publishing Teach Yourself in 10 Minutes series, this book aims to
teach the basics of building Ajax applications for the Internet. Divided into bite-
sized lessons, each designed to take no more than about 10 minutes to complete,
this volume offers

■ A review of the technologies on which the World Wide Web is based

■ Basic tutorials/refreshers in HTML, JavaScript, PHP, and XML

■ An understanding of the architecture of Ajax applications

■ Example Ajax coding projects

After completing all the lessons you’ll be equipped to write and understand basic
Ajax applications, including all necessary client- and server-side programming.

What Is Ajax?
Ajax stands for Asynchronous Javascript and XML. Although strictly speaking Ajax
itself is not a technology, it mixes well-known programming techniques in an
uncommon way to enable web developers to build Internet applications with much
more appealing user interfaces than those to which we have become accustomed.

When using popular desktop applications, we expect the results of our work to be
made available immediately, without fuss, and without us having to wait for the whole
screen to be redrawn by the program.While using a spreadsheet such as Excel, for
instance, we expect the changes we make in one cell to propagate immediately

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I N T R O D U C T I O N : Welcome to Ajax!

2

through the neighboring cells while we continue to type, scroll the page,
or use the mouse.

Unfortunately, this sort of interaction has seldom been available to
users of web-based applications. Much more common is the experience
of entering data into form fields, clicking on a button or link, and then
sitting back while the page slowly reloads to exhibit the results of the
request. In addition, we often find that the majority of the reloaded
page consists of elements that are identical to those of the previous
page and that have therefore been reloaded unnecessarily; background
images, logos, and menus are frequent offenders.

Ajax promises us a solution to this problem. By working as an extra
layer between the user’s browser and the web server, Ajax handles serv-
er communications in the background, submitting server requests and
processing the returned data. The results may then be integrated seam-
lessly into the page being viewed, without that page needing to be
refreshed or a new one loaded.

In Ajax applications, such server requests are not necessarily synchro-
nized with user actions such as clicking on buttons or links. A well-writ-
ten Ajax application may already have asked of the server, and received,
the data required by the user—perhaps before the user even knew she
wanted it. This is the meaning of the asynchronous part of the Ajax
acronym.

The parts of an Ajax application that happen “under the hood” of the
user’s browser, such as sending server queries and dealing with the
returned data, are written in JavaScript, and XML is an increasingly pop-
ular means of coding and transferring formatted information used by
Ajax to efficiently transfer data between server and client.

We’ll look at all these techniques, and how they can be made to work
together, as we work through the lessons.

About This Starter Kit
The Ajax Starter Kit includes everything a web developer needs to learn
the basics of Ajax and its building-block technologies—HTML,
JavaScript, PHP, and XML.

Aimed primarily at web developers seeking to build better interfaces
for the users of their web applications, this book also should prove use-
ful to web designers eager to learn how the latest techniques can offer
new outlets for their creativity.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

About This Starter Kit

3

Although the nature of Ajax applications means that they require some
programming, all the required technologies are explained from first princi-
ples within the book, so even those with little or no programming experi-
ence should be able to follow the lessons without a great deal of difficulty.

Quick Start Guide
The Ajax Starter Kit Quick Start Guide is the best starting point for the
would-be Ajax developer. Divided into 21 short, easy-to-read lessons,
the booklet offers an overview of the basics and

■ A review of the technologies on which the World Wide Web is
based

■ Basic tutorials/refreshers in HTML, JavaScript, PHP, and XML

■ An understanding of the architecture of Ajax applications

■ Example Ajax coding projects

After completing all the lessons you’ll be equipped to write and under-
stand basic Ajax applications, including all necessary client- and server-
side programming.

Reference Library
The Ajax Starter Kit’s CD-ROM includes—in easy to search and read PDF
format — a complete library of tutorials and how-to’s on all the main
technologies that make up Ajax:

■ Sams Teach Yourself JavaScript in 24 Hours

■ Sams Teach Yourself HTML in 10 Minutes

■ Sams Teach Yourself XML in 10 Minutes

■ Sams Teach Yourself PHP in 10 Minutes

Toolkit
The CD-ROM also includes a complete toolkit of all the technologies you
need to set up a testing environment on your Windows, Mac, or Linux
computer, so you can work with the examples from the book and begin
to create your own:

■ XAMPP for Windows, Mac OS X, and Linux—an easy-to-install
package to set up a PHP- and MySQL-enabled Apache server on
your computer

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I N T R O D U C T I O N : Welcome to Ajax!

4

■ The jEdit programming editor, for Windows, Mac, and Linux

■ Prototype, Rico, and XOAD—three JavaScript and Ajax libraries
that help simplify the tasks of the developer in creating Ajax
applications

■ The source code for all of the examples from the tutorials

Who This Book Is For
This volume is aimed primarily at web developers seeking to build bet-
ter interfaces for the users of their web applications and programmers
from desktop environments looking to transfer their applications to the
Internet.

It also proves useful to web designers eager to learn how the latest
techniques can offer new outlets for their creativity. Although the
nature of Ajax applications means that they require some program-
ming, all the required technologies are explained from first principles
within the book, so even those with little or no programming experi-
ence should be able to follow the lessons without a great deal of diffi-
culty.

What Do I Need To Use This
Book?
The main requirement is to have an interest in exploring how people
and computers might work better together. Although some program-
ming experience, especially in JavaScript, will certainly be useful it is by
no means mandatory because there are introductory tutorials in all the
required technologies.

To try out the program code for yourself you need access to a web
server and the means to upload files to it (for example, via File Transfer
Protocol, usually called FTP). Make sure that your web host allows you
to use PHP scripts on the server, though the majority do these days.

To write and edit program code you need a suitable text editor.
Windows Notepad does the job perfectly well, though some specialized
programmers’ editors offer additional useful facilities such as line num-
bering and syntax highlighting. The appendix contains details of some
excellent examples that may be downloaded and used free of charge.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Online Resources and Errata

5

Conventions Used in This Book
In addition to the main text of each lesson, you will find a number of
boxes labeled as Tips, Notes, and Cautions.

Online Resources and Errata
Visit the Sams Publishing website at www.samspublishing.com where
you can download the example code and obtain further information
and details of errata.

TIPS offer useful shortcuts
or easier ways to achieve
something.

NOTES are snippets of
extra information relevant
to the current theme of the
text.

CAUTIONS detail traps
that may catch the unwary
and advise how to avoid
them.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7

Anatomy of a Website

We have a lot of ground to cover, so let’s get to it. We’ll begin by reviewing in this lesson
what the World Wide Web is and what are the major components that make it work.

Workings of the World Wide Web
The World Wide Web operates using a client/server networking principle. When
you enter the URL (the web address) of a web page into your browser and click on
Go, you ask the browser to make an HTTP request of the particular computer hav-
ing that address. On receiving this request, that computer returns (“serves”) the
required page to you in a form that your browser can interpret and display. Figure
1.1 illustrates this relationship. In the case of the Internet, of course, the server and
client computers may be located anywhere in the world.

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Workings of the World Wide Web

9

Web Servers
A web server is a program that interprets HTTP requests and delivers
the appropriate web page in a form that your browser can understand.
Many examples are available, most running under either UNIX/Linux
operating systems or under some version of Microsoft Windows.

Perhaps the best-known server application is the Apache Web Server from
the Apache Software Foundation (http://www.apache.org), an open
source project used to serve millions of websites around the world (see
Figure 1.2).

CAUTION: The term web
server is often used in pop-
ular speech to refer to both
the web server program—
such as Apache—and the
computer on which it runs.

FIGURE 1.2 The Apache Software Foundation home page at http://www.apache.org/ displayed in Internet
Explorer.

Another example is Microsoft’s IIS (Internet Information Services), often
used on host computers running the Microsoft Windows operating
system.

ON THE CD: Apache for
Windows, Mac, and Linux is
included on the Ajax
Starter Kit CD.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 : Anatomy of a Website

10

Server-Side Programming
Server-side programs, scripts, or languages, refer to programs that run
on the server computer. Many languages and tools are available for
server-side programming, including PHP, Java, and ASP (the latter being
available only on servers running the Microsoft Windows operating sys-
tem). Sophisticated server setups often also include databases of infor-
mation that can be addressed by server-side scripts.

The purposes of such scripts are many and various. In general, however,
they all are designed to preprocess a web page before it is returned to
you. By this we mean that some or all of the page content will have
been modified to suit the context of your request—perhaps to display
train times to a particular destination and on a specific date, or to show
only those products from a catalog that match your stated hobbies and
interests.

In this way server-side scripting allows web pages to be served with
rich and varied content that would be beyond the scope of any design
using only static pages—that is, pages with fixed content.

Web Browsers
A web browser is a program on a web surfer’s computer that is used to
interpret and display web pages. The first graphical web browser,
Mosaic, eventually developed into the famous range of browsers pro-
duced by Netscape.

NOTE: Server-side pro-
gramming in this book is
carried out using the popu-
lar PHP scripting language,
which is flexible, is easy to
use, and can be run on
nearly all servers. Ajax,
however, can function
equally well with any
server-side scripting
language.

NOTE: By graphical web browser we mean one that can display not
only the text elements of an HTML document but also images and col-
ors. Typically, such browsers have a point-and-click interface using a
mouse or similar pointing device.

There also exist text-based web browsers, the best known of which is
Lynx (http://lynx.browser.org/), which display HTML pages on character-
based displays such as terminals, terminal emulators, and operating sys-
tems with command-line interfaces such as DOS.

The Netscape series of browsers, once the most successful available,
were eventually joined by Microsoft’s Internet Explorer offering, which
subsequently went on to dominate the market.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Workings of the World Wide Web

11

Recent competitive efforts, though, have introduced a wide range of
competing browser products including Opera, Safari, Konqueror, and
especially Mozilla’s Firefox, an open source web browser that has
recently gained an enthusiastic following (see Figure 1.3).

Browsers are readily available for many computer operating systems,
including the various versions of Microsoft Windows, UNIX/Linux, and
Macintosh, as well as for other computing devices ranging from mobile
telephones to PDAs (Personal Digital Assistants) and pocket computers.

FIGURE 1.3 The Firefox browser from Mozilla.org browsing the Firefox Project home page.

Client-Side Programming
We have already discussed how server scripts can improve your web
experience by offering pages that contain rich and varied content cre-
ated at the server and inserted into the page before it is sent to you.

Client-side programming, on the other hand, happens not at the server
but right inside the user’s browser after the page has been received.
Such scripts allow you to carry out many tasks relating to the data in

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 : Anatomy of a Website

12

the received page, including performing calculations, changing display
colors and styles, checking the validity of user input, and much more.

Nearly all browsers support some version or other of a client-side
scripting language called JavaScript, which is an integral part of Ajax
and is the language we’ll be using in this book for client-side program-
ming.

DNS—The Domain Name Service
Every computer connected to the Internet has a unique numerical
address (called an IP address) assigned to it. However, when you want to
view a particular website in your browser, you don’t generally want to
type in a series of numbers—you want to use the domain name of the
site in question. After all, it’s much easier to remember www.somedo-
main.com than something like 198.105.232.4.

When you request a web page by its domain name, your Internet ser-
vice provider submits that domain name to a DNS server, which tries to
look up the database entry associated with the name and obtain the
corresponding IP address. If it’s successful, you are connected to the
site; otherwise, you receive an error.

The many DNS servers around the Internet are connected together into
a network that constantly updates itself as changes are made. When
DNS information for a website changes, the revised address information
is propagated throughout the DNS servers of the entire Internet, typi-
cally within about 24 hours.

Summary
In Lesson 1 we discussed the history and development of the Internet
and reviewed the functions of some of its major components including
web servers and web browsers. We also considered the page-based
nature of the traditional website user interface and had a brief look at
what server- and client-side scripting can achieve to improve users’ web
surfing experience.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Writing Web Pages in
HTML

In this lesson we introduce HTML, the markup language behind virtually every page of
the World Wide Web. A sound knowledge of HTML provides an excellent foundation for
the Ajax applications discussed in later lessons.

Introducing HTML
It wouldn’t be appropriate to try to give an exhaustive account of HTML
(Hypertext Markup Language)—or, indeed, any of the other component technolo-
gies of Ajax. Instead we’ll review the fundamental principles and give some code
examples to illustrate them, paying particular attention to the subjects that will
become relevant when we start to develop Ajax applications.

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 : Writing Web Pages in HTML

14

What Is HTML?
The World Wide Web is constructed from many millions of individual
pages, and those pages are, in general, written in Hypertext Markup
Language, better known as HTML.

That name gives away a lot of information about the nature of HTML.
We use it to mark up our text documents so that web browsers know
how to display them and to define hypertext links within them to pro-
vide navigation within or between them.

Anyone who (like me) can remember the old pre-WYSIWYG word pro-
cessing programs will already be familiar with text markup. Most of
these old applications required that special characters be placed at the
beginning and end of sections of text that you wanted to be displayed
as (for instance) bold, italic, or underlined text.

What Tools Are Needed to Write HTML?
Because the elements used in HTML markup employ only ordinary key-
board characters, all you really need is a good text editor to construct
HTML pages. Many are available, and most operating systems have at
least one such program already installed. If you’re using some version of
Windows, for example, the built-in Notepad application works just fine,
or you can use Text Edit on Macs.

Our First HTML Document
Let’s jump right in and create a simple HTML document. Open Notepad
(or whatever editor you’ve chosen to use) and enter the text shown in
Listing 2.1. The HTML markup elements (often referred to as tags) are
the character strings enclosed by < and >.

LISTING 2.1 testpage.html
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥Transitional//EN” ”http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<title>A Simple HTML Document</title>
</head>
<body>
<h1>My HTML Page</h1>
Welcome to my first page written in HTML.

This is simply a text document with HTML markup to show some
words in bold and some other words in <i>italics</i>.

ON THE CD: Look for
Sams Teach Yourself HTML in
10 Minutes on the Ajax
Starter Kit CD.

ON THE CD: Although
Notepad or Text Edit are
perfectly serviceable text
editors, many so-called pro-
grammers’ editors are avail-
able offering useful addi-
tional functions such as
line numbering and syntax
highlighting. A full-fea-
tured, cross-platform editor
called jEdit is included on
the Ajax Starter Kit CD.

CAUTION: Although text
editors are ideal for writing
program code, the use of
word processing software
can cause problems due to
unwanted markup and
other symbols that such
programs often embed in
the output code. If you
choose to use a word
processor, make sure that it
is capable of saving files as
plain ASCII text.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Elements of an HTML Page

15

</body>
</html>

Now save the document somewhere on your computer, giving it the
name testpage.html.

If you now load that page into your favorite browser, such as Internet
Explorer or Firefox, you should see something like the window displayed
in Figure 2.1.

FIGURE 2.1 Our test document displayed in Internet Explorer.

Elements of an HTML Page
Let’s look at Listing 2.1 in a little more detail.

The first element on the page is known as the DOCTYPE element. Its pur-
pose is to notify the browser of the “flavor” of HTML used in the docu-
ment. The DOCTYPE element used throughout this book refers to HTML
4.0 Transitional, a fairly forgiving version of the HTML specification that

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 : Writing Web Pages in HTML

16

allows the use of some earlier markup styles and structures in addition
to the latest HTML 4.0 specifications.

The DOCTYPE element must always occur right at the beginning of the
HTML document.

Next, note that the remainder of the document is enclosed by the ele-
ments <html> at the start of the page and </html> at the end. These
tags notify the browser that what lies between should be interpreted
and displayed as an HTML document.

The document within these outer tags is split into two further sections.
The first is enclosed in <head> and </head> tags, and the second is con-
tained between <body> and </body>. Essentially, the document’s head
section is used to store information about the document that is not to
be displayed in the browser window, whereas the body of the docu-
ment contains text to be interpreted and displayed to the user via the
browser window.

The <head> of the Document
From Listing 2.1 we can see that the head section of our simple HTML
document contains only one line—the words A Simple HTML
Document enclosed in <title> and </title> tags.

Remember that the head section contains information that is not to be
displayed in the browser window. This is not, then, the title displayed at
the top of our page text, as you can confirm by looking again at Figure
2.1. Neither does the document title refer to the filename of the docu-
ment, which in this case is testpage.html.

In fact, the document title fulfils a number of functions, among them:

■ Search engines often use the page title (among other factors) to
help them decide what a page is about.

■ When you bookmark a page, it is generally saved by default as
the document title.

■ Most browsers, when minimized, display the title of the current
document on their icon or taskbar button.

It’s important, therefore, to choose a meaningful and descriptive title
for each page that you create.

CAUTION: Although
many modern browsers
correctly display HTML
without these tags, it is bad
practice to omit them. Even
if the page is shown cor-
rectly on your own PC, you
have no idea what operat-
ing system and browser a
visitor may be using—he
may not be so lucky.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Elements of an HTML Page

17

Many other element types are used in the head section of a document,
including link, meta, and script elements. Although we don’t give an
account of them here, they are described throughout the book as they
occur.

The Document <body>
Referring again to Listing 2.1, we can clearly see that the content of the
document’s body section is made up of the text we want to display on
the page, plus some tags that help us to define how that text should
look.

To define that certain words should appear in bold type, for example,
we enclose those words in and tags. Similarly, to convert cer-
tain words into an italic typeface, we can use the <i> and </i> tags.

The heading, My HTML Page, is enclosed between <h1> and </h1> tags.
These indicate that we intend the enclosed text to be a heading. HTML
allows for six levels of headings, from h1 (the most prominent) to h6.
You can use any of the intermediate values h2, h3, h4, and h5 to display
pages having various levels of subtitles, for instance corresponding to
chapter, section, and paragraph headings. Anything displayed within
header tags is displayed on a line by itself.

All the tags discussed so far have been containers—that is, they consist
of opening and closing tags between which you place the text that you
want these tags to act upon. Some elements, however, are not contain-
ers but can be used alone. Listing 2.1 shows one such element: the
 tag, which signifies a line break. Another example is <hr /> (a hori-
zontal line).

Adding Attributes to HTML Elements
Occasionally there is a need to specify exactly how a markup tag should
behave. In such cases you can add (usually within the opening tag)
parameter and value pairs, known as attributes, to change the behavior
of the element:

<body bgcolor=”#cccccc”>
… page content goes here …
</body>

TIP: If you want to write in
the body section of the
HTML page but don’t want
it to be interpreted by the
browser and therefore dis-
played on the screen, you
may do so by writing it as a
comment. HTML comments
start with the character
string <!-- and end with
the string --> as in this
example:

<!-- this is just a
comment and won’t
be displayed in the
browser -->

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 : Writing Web Pages in HTML

18

In this example, the behavior of the <body> tag has been modified by
adjusting its BGCOLOR (background color) property to a light gray.
Figure 2.2 shows the effect this has if applied to our file testpage.html:

FIGURE 2.2 Our test page with the body color changed to gray.

Images
Images can be inserted in our page by means of the tag. In this
case we specify the source file of the image as a parameter by using the

TIP: Color values in HTML are coded using a hexadecimal system. Each
color value is made up from three component values, corresponding to
red, green, and blue. Each of the color values can range from hex 00 to
hex ff (zero to 255 in decimal notation). The three hex numbers are
concatenated into a string prefixed with a hash character #. The color
value #000000 therefore corresponds to black, and #ffffff to pure
white.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Elements of an HTML Page

19

src attribute. Other aspects of the image display that we can alter this
way include the borders, width, and height of the image:

<img src=”myimagefile.jpg” border=”2” width=”250”
height=”175” />

Border width, image width, and image height are in numbers of pixels
(the “dots” formed by individual picture elements on the screen).

TIP: A further useful attribute for images is alt, which is an abbrevia-
tion of alternative text. This specifies a short description of the image
that will be offered to users whose browsers cannot, or are configured
not to, display images. Alternative text can also be important in making
your website accessible to those with visual impairment and other dis-
abilities:

<img src=”myimagefile.jpg” alt=”Description of Image”
➥/>

Tables
Often you want to display information in tabular format, and HTML has
a set of elements designed specifically for this purpose:

<table>
<tr><th>Column Header 1</th><th>Column Header 2</th></tr>
<tr><td>Data Cell 1</td><td>Data Cell 2</td></tr>
<tr><td>Data Cell 3</td><td>Data Cell 4</td></tr>
</table>

The <table> and </table> tags contain a nested hierarchy of other
tags, including <tr> and </tr>, which define individual table rows;
<th> and </th>, which indicate cells in the table’s header; and <td> and
</td>, which contain individual cells of table data.

Look ahead to Figure 2.3 to see an example of how a table looks when
displayed in a browser window.

Hyperlinks
Hypertext links (hyperlinks) are fundamental to the operation of HTML.
By clicking on a hyperlink, you can navigate to a new location, be that
to another point on the current page or to some point on a different
page on another website entirely.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 : Writing Web Pages in HTML

20

Links are contained within an <a>, or anchor tag, a container tag that
encloses the content that will become the link. The destination of the
link is passed to this tag as a parameter href:

Here is my hyperlink

Clicking on the words my hyperlink in the above example results in
the browser requesting the page newpage.html.

TIP: A hyperlink can contain images as well as, or instead of, text. Look
at this example:

Here, a user can click on the image picfile.gif to navigate to
newpage.html.

A More Advanced HTML Page
Let’s revisit our testpage.html and add some extra elements. Listing 2.2
shows seville.html, developed from our original HTML page but with
different content in the <body> section of the document. Figure 2.3
shows how the page looks when displayed, this time in Mozilla Firefox.

Now we have applied a background tint to the body area of the docu-
ment. The content of the body area has been centered on the page, and
that content now includes an image (which we’ve given a two-pixel-
wide border), a heading and a subheading, a simple table, and some
text.

LISTING 2.2 seville.html
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥Transitional//EN” “http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<title>A Simple HTML Document</title>
</head>
<body bgcolor=”#cccccc”>
<center>

<h1>Guide to Seville</h1>
<h3>A brief guide to the attractions</h3>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A More Advanced HTML Page

21

<table border=”2”>
<tr>
<th bgcolor=”#aaaaaa”>Attraction</th>
<th bgcolor=”#aaaaaa”>Description</th>

</tr>
<tr>
<td>Cathedral</td>
<td>Dating back to the 15th century</td>

</tr>
<tr>
<td>Alcazar</td>
<td>The medieval Islamic palace</td>

</tr>
</table>
<p>Enjoy your stay in beautiful Seville.</p>
</center>
</body>
</html>

Let’s take a closer look at some of the code.

First, we used the BGCOLOR property of the <body> tag to provide the
overall background tint for the page:

<body bgcolor=”#cccccc”>

Everything in the body area is contained between the <center> tag
(immediately after the body tag) and its partner </center>, immediately
before the closing body tag.This ensures that all of our content is centered
on the page.

The main heading is enclosed in <h1> … </h1> tags as previously, but
is now followed by a subheading using <h3> … </h3> tags to provide
a slightly smaller font size.

By using the border property in our opening <table> tag, we set a bor-
der width of two pixels for the table:

<table border=”2”>

Meanwhile we darkened the background of the table’s header cells
slightly by using the BGCOLOR property of the <th> elements:

<th bgcolor=”#aaaaaa”>Attraction</th>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 : Writing Web Pages in HTML

22

Some Useful HTML Tags
Table 2.1 lists some of the more popular HTML tags.

TABLE 2.1 Some Common HTML Markup Elements

DOCUMENT TAGS

<html>..</html> The entire document

<head>..</head> Document head

<body>..</body> Document body

<title>..</title> Document title

STYLE TAGS

<a>.. Hyperlink

.. Bold text

.. Emphasized text

.. Changed font

FIGURE 2.3 seville.html shown in Mozilla Firefox.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Cascading Style Sheets in Two Minutes

23

STYLE TAGS

<i>..</i> Italic text

<small>..</small> Small text

<table>..</table> Table

<tr>..</tr> Table row

<th>..</th> Cell in table header

<td>..</td> Cell in table body

.. Bulleted list

.. Ordered (numbered) list

.. List item in bulleted or ordered list

Cascading Style Sheets in Two
Minutes
The preceding approach to styling web pages has a few downsides.

First, you need to explicitly state the attributes of each page element.
When you want to change the look of the page, you need to go
through the source code line by line and change every instance of
every attribute. This may be okay with a few simple pages, but as the
amount of content increases, the pages become more difficult to main-
tain. Additionally, the attributes applied to HTML elements allow only
limited scope for you to adjust how they are displayed.

Wouldn’t it be better to make one change to the code and have that
change applied to all HTML elements of a given type? As I’m sure
you’ve already guessed, you can.

To achieve this goal you use styles. Styles may be embedded within
your HTML document by using style tags in the head of the document:

<style type=”text/css”>
… style definition statements …

</style>

TIP: The World Wide Web
Consortium is responsible
for administering the defin-
itions of HTML, HTTP, XML,
and many other web tech-
nologies. Its website is at
http://www.w3.org/.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 : Writing Web Pages in HTML

24

Alternatively, they may be linked from an external file, using a link ele-
ment, once again placed in the head section of the document:

<link rel=stylesheet href=”mystylesheet.css”
type=”text/css” />

TIP: You can even define styles on-the-fly. These are known as inline
styles and can be applied to individual HTML elements. Taking the body
tag of Listing 2.2 as an example:

<body bgcolor=”#cccccc”>

You could achieve the same effect using an inline style:

<body style=”background-color:#cccccc”>

Setting Style Sheet Rules
Style sheets allow you to set styling rules for the various HTML ele-
ments. A rule has two components: the selector, which identifies which
HTML tag the rule should affect, and the declaration, which contains
your styling rule. The following example defines a style for the para-
graph element, <p>:

P {color: #333333}

This example determines that any text enclosed in paragraph tags
<p> … </p> should be displayed using dark gray text.You may also
specify more than one rule for each tag. Suppose that, in addition to gray
text, you want all text in the paragraph element to be displayed in italics:

P {color: #333333; font-style: italic}

A style sheet can contain as many such rules as you require.

You may also apply a declaration to more than one tag at once, by sepa-
rating the tag selectors with commas. The following rule determines
that all h1, h2, and h3 headings appear in blue text:

H1, H2, H3 {color: blue}

Summary
This lesson discussed the basics of web page layout using Hypertext
Markup Language, including the structure of HTML documents, exam-
ples of HTML page elements, and page styling using both element
attributes and cascading style sheets.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

25

Sending Requests Using
HTTP

Various protocols are used for communication over the World Wide Web, perhaps the
most important being HTTP, the protocol that is also fundamental to Ajax applica-
tions. This lesson introduces the HTTP protocol and shows how it is used to request and
receive information.

Introducing HTTP
HTTP or Hypertext Transfer Protocol is the main protocol of the World Wide Web.
When you request a web page by typing its address into your web browser, that
request is sent using HTTP. The browser is an HTTP client, and the web page server
is (unsurprisingly) an HTTP server.

In essence, HTTP defines a set of rules regarding how messages and other data
should be formatted and exchanged between servers and browsers.

Why Do I Need To Know About This?
Ajax sends server requests using the HTTP protocol. It’s important to recognize the
different types of HTTP requests and the responses that the server may return.
Ajax applications need to construct HTTP requests to query the server and will
base decisions about what to do next on the content of HTTP responses from the
server.

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3 : Sending Requests Using HTTP

26

What Is (and Isn’t) Covered in This Lesson
It would be possible to fill the whole book with information on the
HTTP protocol, but here we simply discuss it in terms of its roles in
requesting web pages and passing information between them.

In this lesson you’ll look at the construction of HTTP requests and
responses and see how HTML forms use such requests to transfer data
between web pages.

The HTTP Request and Response
The HTTP protocol can be likened to a conversation based on a series
of questions and answers, which we refer to respectively as HTTP
requests and HTTP responses.

The contents of HTTP requests and responses are easy to read and
understand, being near to plain English in their syntax.

This section examines the structure of these requests and responses,
along with a few examples of the sorts of data they may contain.

The HTTP Request
After opening a connection to the intended server, the HTTP client
transmits a request in the following format:

■ An opening line

■ Optionally, a number of header lines

■ A blank line

■ Optionally, a message body

The opening line is generally split into three parts; the name of the
method, the path to the required server resource, and the HTTP version
being used. A typical opening line might read:

GET /sams/testpage.html HTTP/1.0

In this line we are telling the server that we are sending an HTTP
request of type GET (explained more fully in the next section), we are
sending this using HTTP version 1.0, and the server resource we require
(including its local path) is

/sams/testpage.html.

TIP: For a detailed
account of HTTP, see Sams
Publishing’s HTTP
Developer’s Handbook by
Chris Shiflett.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The HTTP Request and Response

27

Header lines are used to send information about the request, or about
the data being sent in the message body. One parameter and value
pair is sent per line, the parameter and value being separated by a
colon. Here’s an example:

User-Agent: [name of program sending request]

For instance, Internet Explorer v5.5 offers something like the following:

User-agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT
5.0)

A further example of a common request header is the Accept: header,
which states what sort(s) of information will be found acceptable as a
response from the server:

Accept: text/plain, text/html

By issuing the header in the preceding example, the request is inform-
ing the server that the sending application can accept either plain text
or HTML responses (that is, it is not equipped to deal with, say, an audio
or video file) .

The HTTP Response
In answer to such a request, the server typically issues an HTTP
response, the first line of which is often referred to as the status line. In
that line the server echoes the HTTP version and gives a response sta-
tus code (which is a three-digit integer) and a short message known as
a reason phrase. Here’s an example HTTP response:

HTTP/1.0 200 OK

The response status code and reason phrase are essentially intended as
machine-and human-readable versions of the same message, though
the reason phrase may actually vary a little from server to server. Table
3.1 lists some examples of common status codes and reason phrases.
The first digit of the status code usually gives some clue about the
nature of the message:

■ 1**—Information

■ 2**—Success

■ 3**—Redirected

■ 4**—Client error

■ 5**—Server error

NOTE: In this example
the server resource we
seek is on our own server,
so we have quoted a rela-
tive path. It could of course
be on another server else-
where, in which case the
server resource would
include the full URL.

NOTE: HTTP request
methods include POST,
GET, PUT, DELETE, and
HEAD. By far the most inter-
esting in our pursuit of
Ajax are the GET and POST
requests. The PUT, DELETE,
and HEAD requests are not
covered here.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3 : Sending Requests Using HTTP

28

TABLE 3.1 Some Commonly Encountered HTTP Response Status
Codes

STATUS CODE EXPLANATION

200 - OK The request succeeded.

204 - No Content The document contains no data.

301 - Moved Permanently The resource has permanently moved
to a different URI.

401 - Not Authorized The request needs user authentica-
tion.

403 - Forbidden The server has refused to fulfill the
request.

404 - Not Found The requested resource does not exist
on the server.

408 - Request Timeout The client failed to send a request in
the time allowed by the server.

500 - Server Error Due to a malfunctioning script, server
configuration error or similar.

The response may also contain header lines each containing a header
and value pair similar to those of the HTTP request but generally con-
taining information about the server and/or the resource being
returned:

Server: Apache/1.3.22
Last-Modified: Fri, 24 Dec 1999 13:33:59 GMT

HTML Forms
Web pages often contain fields where you can enter information.
Examples include select boxes, check boxes, and fields where you can
type information. Table 3.2 lists some popular HTML form tags.

TABLE 3.2 Some Common HTML Form Tags

TAG DESCRIPTION

<form>...</form> Container for the entire form

<input /> Data entry element; includes text, pass-
word, check box and radio button fields,
and submit and reset buttons

<select>...</select> Drop-down select box

TIP: A detailed list of sta-
tus codes is maintained by
the World Wide Web
Consortium, W3C, and is
available at http://www.w3.
org/Protocols/rfc2616/
rfc2616-sec10.html.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

HTML Forms

29

TAG DESCRIPTION

<option>...</option> Selectable option within select box

<textarea>...</textarea> Text entry field with multiple rows

After you have completed the form you are usually invited to submit it,
using an appropriately labeled button or other page element.

At this point, the HTML form constructs and sends an HTTP request
from the user-entered data. The form can use either the GET or POST
request type, as specified in the method attribute of the <form> tag.

GET and POST Requests
Occasionally you may hear it said that the difference between GET and
POST requests is that GET requests are just for GETting (that is, retrieving)
data, whereas POST requests can have many uses, such as uploading
data, sending mail, and so on.

Although there may be some merit in this rule of thumb, it’s instructive
to consider the differences between these two HTTP requests in terms
of how they are constructed.

A GET request encodes the message it sends into a query string, which is
appended to the URL of the server resource. A POST request, on the
other hand, sends its message in the message body of the request. What
actually happens at this point is that the entered data is encoded and
sent, via an HTTP request, to the URL declared in the action attribute of
the form, where the submitted data will be processed in some way.

Whether the HTTP request is of type GET or POST and the URL to which
the form is sent are both determined in the HTML markup of the form.
Let’s look at the HTML code of a typical form:

<form action=”http://www.sometargetdomain.com/somepage.htm”
➥ method=”post”>
Your Surname: <input type=”text” size=”50” name=”surname”
/>

<input type=”submit” value=”Send” />
</form>

This snippet of code, when embedded in a web page, produces the sim-
ple form shown in Figure 3.1.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3 : Sending Requests Using HTTP

30

Let’s take a look at the code, line by line. First, we begin the form by
using the <form> tag, and in this example we give the tag two attribut-
es. The action attribute determines the URL to which the submitted
form will be sent. This may be to another page on the same server and
described by a relative path, or to a remote domain, as in the code
behind the form in Figure 3.1.

Next we find the attribute method, which determines whether we want
the data to be submitted with a GET or a POST request.

Now suppose that we completed the form by entering the value
Ballard into the surname field. On submitting the form by clicking the
Send button, we are taken to http://www.sometargetdomain.com/
somepage.htm, where the submitted data will be processed—perhaps
adding the surname to a database, for example.

The variable surname (the name attribute given to the Your Surname
input field) and its value (the data we entered in that field) will also
have been sent to this destination page, encoded into the body of the
POST request and invisible to users.

FIGURE 3.1 A simple HTML form.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

HTML Forms

31

Now suppose that the first line of the form code reads as follows:

<form action=”http://www.sometargetdomain.com/somepage.htm”
➥ method=”get”>

On using the form, we would still be taken to the same destination, and
the same variable and its value would also be transmitted. This time,
however, the form would construct and send a GET request containing
the data from the form. Looking at the address bar of the browser, after
successfully submitting the form, we would find that it now contains:

http://www.example.com/page.htm?surname=Ballard

Here we can see how the parameter and its value have been appended
to the URL. If the form had contained further input fields, the values
entered in those fields would also have been appended to the URL as
parameter=value pairs, with each pair separated by an & character.
Here’s an example in which we assume that the form has a further text
input field called firstname:

http://www.example.com/page.htm?surname=Ballard&firstname=
Phil

Some characters, such as spaces and various punctuation marks, are not
allowed to be transmitted in their original form. The HTML form encodes
these characters into a form that can be transmitted correctly. An equiva-
lent process decodes these values at the receiving page before process-
ing them, thus making the encoding/decoding operation essentially
invisible to the user. We can, however, see what this encoding looks like
by making a GET request and examining the URL constructed in doing so.

Suppose that instead of the surname field in our form we have a full-
name field that asks for the full name of the user and encodes that infor-
mation into a GET request. Then, after submitting the form, we might see
the following URL in the browser:

http://www.example.com/page.htm?fullname=Phil+Ballard

Here the space in the name has been replaced by the + character; the
decoding process at the receiving end removes this character and
replaces the space.

The XMLHTTPRequest object at the heart of all Ajax applications uses
HTTP to make requests of the server and receive responses. The content
of these HTTP requests are essentially identical to those generated
when an HTML form is submitted.

NOTE: In many cases, you
may use either the POST or
GET method for your form
submissions and achieve
essentially identical results.
The difference becomes
important, however, when
you learn how to construct
server calls in Ajax applica-
tions.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3 : Sending Requests Using HTTP

32

Summary
This lesson covered some basics of server requests and responses using
the HTTP protocol, the main communications protocol of the World
Wide Web. In particular, we discussed how GET and POST requests are
constructed, and how they are used in HTML forms. Additionally, we
saw some examples of responses to these requests that we might
receive from the server.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Client-Side Coding Using
JavaScript

In this lesson we introduce the concept of client-side scripting using JavaScript. Client-
side scripts are embedded in web pages and executed by a JavaScript interpreter built
into the browser. They add extra functionality to an otherwise static HTML page.

About JavaScript
JavaScript was developed from a language called LiveScript, which was developed
by Netscape for use in its early browsers. JavaScript source code is embedded
within the HTML code of web pages and interpreted and executed by the browser
when the page is displayed.

Using JavaScript, you can add extra functionality to your web pages. Examples
include

■ Change the way page elements are displayed

■ Add animation and other image effects

■ Open pop-up windows and dialogs

■ Check the validity of user-entered data

Nearly all modern browsers support JavaScript, though with a few differences in
some commands. Where these occur, they are described in the text.

4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4 : Client-Side Coding Using JavaScript

34

Why Do I Need To Know About JavaScript?
The j in Ajax stands for JavaScript; you use functions written in this lan-
guage and embedded within your web pages to formulate Ajax server
calls and to handle and process the response returned from the server.

What Is (and Isn’t) Covered in This Lesson
There is no room here for an exhaustive guide to all JavaScript’s func-
tions. Instead this lesson concentrates on those aspects of the language
necessary for later developing Ajax applications.

After completing this lesson, you’ll have experience with the following:

■ Embedding JavaScript commands and external JavaScript files
into web pages

■ Using some of the common JavaScript commands

■ Using event handlers to launch JavaScript commands

■ Working with JavaScript variables and objects

■ Abstracting JavaScript commands into functions

JavaScript Basics
JavaScript commands can be embedded directly into HTML pages by
placing them between <script> …</script> tags. It is also common
for JavaScript functions to be kept in a separate file on the server (usu-
ally with a file extension .js) and linked to HTML files where required, by
placing a line like this into the head of the HTML file:

<SCRIPT language=”JavaScript” SRC=”myJS.js”></SCRIPT>

This allows you to call any JavaScript within the file myJS.js, just as if
that source code had been typed directly into your own web page.

CAUTION: Although
JavaScript is likely to be
supported by your brows-
er, it is usually possible for
the browser options to be
configured so as to disable
its use. If you find that you
cannot get any JavaScript
commands to work, consult
your browser’s help files to
find out how to check
whether JavaScript is cor-
rectly enabled.

NOTE: Microsoft’s
Internet Explorer browser
actually runs a proprietary
Microsoft language called
Jscript, instead of
JavaScript. The two are,
however, virtually identical
and therefore largely com-
patible. Where differences
occur, they are described in
the text.

ON THE CD: For a much
more thorough course in
JavaScript, try Sams Teach
Yourself JavaScript in 24
Hours by Michael Moncur,
included on the Ajax
Starter Kit CD.

TIP: Placing JavaScript functions into external files allows them to be
made available to a number of different web pages without having to
retype any code. It also makes them easier to maintain because the lat-
est version is automatically linked into the calling HTML page each time
that page is requested.

It is possible to build up substantial JavaScript libraries in this way, link-
ing them into web pages when their particular functions are required.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In at the Deep End

35

In at the Deep End
Let’s get right to it and add a JavaScript command to the simple web
page we developed in Lesson 2,“Writing Web Pages in HTML.”

Open your favorite text editor and load up seville.html (Listing 2 2 from
Lesson 2). We’re going to add the following code to the page, immedi-
ately after the </p> (the closing paragraph tag) on line 24:

<script language=”JavaScript” type=”text/javascript”>
document.writeln(“This line was written using
JavaScript!”);
</script>

The whole of the source code with the extra lines added is shown in
Listing 4.1. Make sure that you have added the code correctly; then save
the file as testpage3.html and load it into your favorite browser.

LISTING 4.1 Adding JavaScript to an HTML Page
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥Transitional//EN” “http://www.w3.org/TR/html4/
➥loose.dtd”>
<html>
<head>
<title>A Simple HTML Document</title>
</head>
<body bgcolor=”#cccccc”>
<center>

<h1>A More Advanced HTML Page</h1>
<h3>Welcome to my second page written in HTML.</h3>
<table border=”2”>
<tr>
<th bgcolor=”#aaaaaa”>Vegetables</th>
<th bgcolor=”#aaaaaa”>Fruits</th>

</tr>
<tr>
<td>Carrot</td>
<td>Apple</td>

</tr>
<tr>
<td>Cabbage</td>
<td>Orange</td>

</tr>
</table>

<p>... and here’s some text in a paragraph.</p>

CAUTION: JavaScript,
unlike HTML, is case sensi-
tive. When entering
JavaScript commands, be
careful not to enter charac-
ters in the incorrect case, or
errors will occur.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4 : Client-Side Coding Using JavaScript

36

<script language=”JavaScript” type=”text/javascript”>
document.writeln(“This line was written using JavaScript!”)
</script>
</center>
</body>
</html>

If all has gone well, the page should now be like that shown in Figure
4.1. You should now be able to see an extra line of text toward the bot-
tom of the page saying “This line was written using JavaScript!”

FIGURE 4.1 HTML document including one line written by JavaScript.

Let’s look at our JavaScript code. The first item is the <script> tag, and
here we have included the definition

Language=”JavaScript”

which tells the browser that the statements contained within this script
element should be interpreted as JavaScript.

Also in this tag appears the attribute

type=”text/javascript”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In at the Deep End

37

This declares that the script enclosed in the element is written in
JavaScript.

The script is ended on the next to the last line with the familiar
</script> tag.

Now for the meat in the sandwich:

document.writeln(“This line was written using JavaScript!”)

JavaScript (in common with many other programming languages) uses
the concept of objects. The word document in this line of code refers to
the object on which we want our JavaScript command to operate. In
this case, we are dealing with the document object, which is the entire
HTML document (including any embedded JavaScript code) that we are
displaying in the browser. We’ll have a further look at objects later in the
lesson.

The term writeln describes the operation we want JavaScript to per-
form on the document object. We say it is a method of the document
object, in this case one that writes a line of text into the document.

The string within the parentheses we refer to as the argument that we
pass to the writeln method. In this case it tells the method what to
write to the document object.

Including JavaScript in HTML Pages
We can include as many <script>…</script> tags in our page as we
need. However, we must pay some attention to where in the document
they are placed.

JavaScript commands are executed in the order in which they appear in
the page. Note from Listing 4.1 that we entered our JavaScript code at
exactly the place in the document where we want the new text to
appear.

JavaScript can also be added to the head section of the HTML page.
This is a popular place to keep JavaScript functions, which we’ll describe
shortly.

Event Handlers
Often you want your JavaScript code to be executed because some-
thing specific has occurred. In an HTML form, for instance, you may
decide to have JavaScript check the validity of the data entered by the

TIP: There are other possi-
ble languages in which
such scripts could be writ-
ten; each has its own type
declaration such as

type=”text/vbscript”

or

type=”text/xml”

NOTE: In addition to
methods, objects also pos-
sess properties. Such prop-
erties tell you something
about the object, as
opposed to the object’s
methods, which perform
actions upon it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4 : Client-Side Coding Using JavaScript

38

user at the moment when the form is submitted. On another occasion,
you may want to alert your user by opening a warning dialog whenever
a particular button is clicked.

To achieve these effects you use special interfaces provided by the
browser and known as event handlers. Event handlers allow you to call
JavaScript methods automatically when certain types of events occur.
Consider the following code:

<form>
<input type=”button” value=”Click Here”
➥ onClick=”alert(‘Thanks for clicking!’)”>
</form>

Here we capture the action of the user clicking the button, using the
onClick event handler. When the user’s click is detected, the script car-
ries out the instructions listed in the onClick attribute of the input tag:

onClick=”alert(‘Thanks for clicking!’)”

This line calls the JavaScript alert method, which pops up a dialog box
displaying a message and an OK button. The message to be displayed in
the alert dialog is contained in the string passed to the alert method as
an argument.

Let’s add this code to our HTML document, as shown in Listing 4 2. Save
the page as testpage4.html after you’ve made the changes and load it
into the browser.

LISTING 4.2 Calling alert() from the onClick Event Handler
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional
➥//EN” “http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<title>A Simple HTML Document</title>
</head>
<body bgcolor=”#cccccc”>
<center>

<h1>A More Advanced HTML Page</h1>
<h3>Welcome to my second page written in HTML.</h3>
<table border=”2”>
<tr>
<th bgcolor=”#aaaaaa”>Vegetables</th>
<th bgcolor=”#aaaaaa”>Fruits</th>

</tr>
<tr>
<td>Carrot</td>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In at the Deep End

39

<td>Apple</td>
</tr>
<tr>
<td>Cabbage</td>
<td>Orange</td>

</tr>
</table>

<p>... and here’s some text in a paragraph.</p>
<script language=”JavaScript” type=”text/javascript”>
document.writeln(“This line was written using JavaScript!”)
</script>
<form>
<input type=”button” value=”Click Here” onClick=”alert
➥(‘Thanks for clicking!’)”>
</form>
</center>
</body>
</html>

Our HTML page should now show our new button, as in Figure 4.2.

FIGURE 4.2 The new Click Here button in our web page.

Go ahead and click on the button. If everything goes according to plan,
an alert dialog pops open as shown in Figure 4.3. You can click OK to
clear the dialog.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4 : Client-Side Coding Using JavaScript

40

Creating Functions
Often you will need to combine various JavaScript methods and
objects, perhaps using many lines of code. JavaScript allows you to
compose such blocks of instructions and name them, making your
code easier to write, understand, and maintain.

For example, let’s use another event handler, but this time we’ll use it to
call a function rather than to directly call a JavaScript method.

FIGURE 4.3 The dialog that appears after you click on the new button.

NOTE: Note that a func-
tion definition always starts
with the word function
followed by the function’s
name. The statements with-
in a function are contained
within curly braces {}.

Here’s the code for our function, which we’ll place in the head section
of our HTML document:

<script language=”JavaScript”>
function showAlert()
{
alert(“A Picture of Seville”)

}
</script>

Within the usual <script> tags, we have now defined a function called
showAlert, which carries out the commands contained within the curly
braces. In this case, there is only one command, a call to the previously
encountered alert method.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In at the Deep End

41

We want this alert dialog to appear when the user’s mouse passes over
the photograph in our web page. We are therefore going to add an
attribute to the tag that contains the image, as follows:

<img src=”cathedral.jpg” border=”2”
➥ onMouseOver=”showAlert()” alt=”Cathedral” />

This line uses the onMouseOver event handler to detect when the cursor
enters the area occupied by the photograph. When this happens, our
new function showAlert is called.

Listing 4.3 shows the revised code.

LISTING 4.3 Using the onMouseOver Event Handler
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<title>A Simple HTML Document</title>
<script language=”JavaScript” type=”text/javascript”>
function showAlert()
{
alert(“A Picture of Seville”)
}
</script>
</head>
<body bgcolor=”#cccccc”>
<center>
<img src=”cathedral.jpg” border=”2” alt=”Cathedral”
➥onMouseOver=”showAlert()” />
<h1>A More Advanced HTML Page</h1>
<h3>Welcome to my second page written in HTML.</h3>
<table border=”2”>
<tr>
<th bgcolor=”#aaaaaa”>Vegetables</th>
<th bgcolor=”#aaaaaa”>Fruits</th>

</tr>
<tr>
<td>Carrot</td>
<td>Apple</td>

</tr>
<tr>
<td>Cabbage</td>
<td>Orange</td>

</tr>
</table>

<p>... and here’s some text in a paragraph.</p>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4 : Client-Side Coding Using JavaScript

42

<script language=”JavaScript” type=”text/javascript”>
document.writeln(“This line was written using JavaScript!”)
</script>
<form>
<input type=”button” value=”Click Here” onClick=”alert
➥(‘Thanks for clicking!’)”>
</form>
</center>
</body>
</html>

With this HTML document loaded into your browser, roll your mouse
over the photograph. An alert box should appear with the message “A
Picture of Seville”.

Passing Arguments to Functions
Of course, we could easily call our function from a wide variety of event
handlers within our page and have it pop open an alert dialog.
Unfortunately, the alert would always contain the message “A Picture of
Seville”, which is not very useful!

Wouldn’t it be good if we could tell the function what message to display
so that we could have different alert messages for different circum-
stances? We can achieve this by passing the message to our function as
an argument:

<script language=”JavaScript” type=”text/javascript”>
function showAlert(message)
{
alert(message)

}
</script>

The function now “expects” to find the text for the message defined
passed as an argument within the call. Rewrite the onMouseOver event
handler for the image to provide this:

<img src=”cathedral.jpg” border=”2”
➥ onMouseOver=”showAlert(‘A Picture of Seville’)”
➥ alt=”cathedral” />

We’ll also rewrite the button’s onClick event handler to use this func-
tion but with a different message:

<input type=”button” value=”Click Here”
➥ onClick=”showAlert(‘Thanks for clicking!’)” />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In at the Deep End

43

Listing 4.4 shows the revised code.

LISTING 4.4 Calling JavaScript Functions from Event Handlers
<html>
<head>
<title>A Simple HTML Document</title>
<script language=”JavaScript” type=”text/javascript”>
function showAlert(message)
{
alert(message)
}
</script>
</head>
<body bgcolor=”#cccccc”>
<center>
<img src=”cathedral.jpg” border=”2” alt=”Cathedral”
➥ onMouseOver=”showAlert(‘A Picture of Seville’)” />
<h1>A More Advanced HTML Page</h1>
<h3>Welcome to my second page written in HTML.</h3>
<table border=”2”>
<tr>
<th bgcolor=”#aaaaaa”>Vegetables</th>
<th bgcolor=”#aaaaaa”>Fruits</th>

</tr>
<tr>
<td>Carrot</td>
<td>Apple</td>

</tr>
<tr>
<td>Cabbage</td>
<td>Orange</td>

</tr>
</table>

<p>... and here’s some text in a paragraph.</p>
<script language=”JavaScript” type=”text/javascript”>
document.writeln(“This line was written using JavaScript!”)
</script>
<form>
<input type=”button” value=”Click Here” onClick=
➥”showAlert(‘Thanks for clicking!’)”>
</form>
</center>
</body>
</html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4 : Client-Side Coding Using JavaScript

44

Other Event Handlers
So far you have seen examples of the onClick and onMouseOver event
handlers. Many others are available for use; Table 4.1 lists a selection of
the most popular event handlers.

TABLE 4.1 Some Common JavaScript Event Handlers

EVENT HANDLER COMMENTS

onChange Occurs when the value in an input field changes

onClick Occurs when a user clicks the mouse on the element
in question

onLoad Occurs when the page has finished loading

onMouseOver Occurs when the mouse pointer enters the screen
area occupied by the element in question …

onMouseOut … and when it leaves

onSubmit Occurs at the point a form is submitted

Manipulating Data in JavaScript
You can use JavaScript to achieve much more than popping up dialog
boxes. JavaScript gives you the opportunity to define and use variables
and arrays, work with date and time arithmetic, and control program
flow with loops and conditional branches.

Variables
The concept of a variable might already be familiar to you if you’ve ever
done any algebra, or programmed in just about any computer language.
A variable is a piece of data given a name by which you can conveniently
refer to it later. In JavaScript, you declare variables with the keyword var:

var speed = 63;

The preceding line of code declares the variable speed and by using the
assignment operator = assigns it a value of 63.

We may now use this variable in other statements:

var speedlimit = 55;
var speed = 63;
var excess_speed = speed – speedlimit;

Variables need not be numeric; the statement

var lastname = ‘Smith’;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Manipulating Data in JavaScript

45

assigns a string to the variable lastname.

Both numeric and string variables may be manipulated within
JavaScript statements. Consider the following code:

var firstname = ‘Susan’;
var lastname = ‘Smith’;
document.writeln(‘Hello, ‘+ firstname + ‘ ‘ + lastname);

This code would write Hello, Susan Smith into our document.

Objects
You met the concept of an object earlier in the lesson and saw how
objects have both properties that describe them and methods that per-
form actions on them.

Objects in JavaScript have a hierarchical relationship. References begin
with the highest-level object, with subsequent levels appended separat-
ed by a period:

document.image1.src

This string starts with the object document, then refers to an object
image1 within that object, and finally the property src (the source file
for the image).

Suppose that we have the following HTML code somewhere in our page:

<form name=”form1” action=”somepage.html” method=”post”>
<input type=”text” name=”lastname”>
<input type=”submit” value=”Submit”>
</form>

We can refer, in JavaScript, to the string that the user has typed into the
lastname field by referring to the property value of the object corre-
sponding to that field:

document.form1.lastname.value

Example—Form Validation
Let’s use this technique to check a user’s entered form data for validity.
We want to trap the event of the user attempting to submit the form
and use this event to trigger our JavaScript function, which checks the
data for validity. Here’s the HTML code for our form:

<form name=”form1” method=”post” action=”otherpage.html”>
Enter a number from 1 to 10: <input size=”4” type=”text”
➥ name=”usernumber”>

NOTE: In fact, the object
that truly has the highest
level in the object hierar-
chy is window, which refers
to the browser screen and
everything within it. In
general, you don’t need to
include this object;
JavaScript assumes it to be
there.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4 : Client-Side Coding Using JavaScript

46

<input type=”submit” value=”Enter”
➥ onSubmit=”return numcheck()”>
</form>

We can see here that the onSubmit event handler is called when the
Submit button is clicked and calls a JavaScript function called num-
check(). We need this function to check what our user has entered for
validity, and either submit the form or (if the entry is invalid) issue an
error. Note the word return prior to the function call. This is here
because on this occasion we want the function to tell us whether the
submit method should be allowed to go ahead. We want our function
to return a value of false to the form if the form submission is to be
stopped. Here’s the function:

<script language=”JavaScript” type=”text/javascript”>
function numcheck()
{

var numentered = document.form1.usernumber.value;
if((numentered>=1)&&(numentered<=10))
{

return true;
} else
{

alert(“Your entry was invalid. Please try
again.”);

return false;
}

}

The first action of the function is to assign the user’s entered value to
the variable numentered. We then test that number for validity by
checking that it is greater than or equal to 1 and less than or equal to
10. Depending on the result, we either return a value of true to the call-
ing form (thus allowing the form to be submitted) or pop up a dialog
informing of the error. In the latter case, when the user clicks OK to clear
the dialog, a value of false is returned to the calling form, preventing
the form from being submitted until the user enters appropriate data.

Summary
This lesson covered the basics of JavaScript programming. We saw how
JavaScript commands may be integrated into HTML pages, discussed
grouping JavaScript commands into functions, and learned how event
handlers are employed to launch JavaScript commands and functions.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Server-Side Programming
in PHP

Ajax applications can work with virtually any server-side language, requiring only that
the server should return correctly formatted responses to its HTTP requests. This lesson
introduces PHP, a popular open source scripting language used on a huge number of
web servers throughout the world.

Introducing PHP
Like JavaScript, PHP is composed of commands that can be embedded within the
HTML code of your pages. PHP however is a server-side programming language—
that is, it works hand-in-hand with your web server to process the source code of a
page before that page is sent to the browser.

Why Do I Need To Know This?
As you are already aware, Ajax applications make calls to the web server and sub-
sequently use the returned information within the page currently being viewed.
You need a way to run programs on the server to process the Ajax request and
return the required data.

Ajax can work with various server-side technologies including PHP, ASP, Java, and
others. This book uses PHP, arguably the most popular and easy to use of the avail-
able server-side languages.

This lesson provides an introduction to PHP for those who have never encoun-
tered it and a refresher of the basics for any who have.

5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5 : Server-Side Programming in PHP

48

What Is (and Isn’t) Covered in This Lesson
As with every lesson in this part of the book, it is neither feasible nor
appropriate to give an exhaustive course on every aspect of the sub-
ject.

This lesson covers the basics of PHP programming with some practical
examples, concentrating mainly on those aspects of PHP most relevant
to our explorations of Ajax.

Embedding PHP in HTML Pages
PHP statements are embedded into HTML documents by surrounding
the PHP statements with <?php and ?> tags. Anything between such
tags is evaluated by the web server and replaced with appropriate
HTML code, prior to the page being served to the browser.

You can have as many sets of <?php and ?> tags in your page as you
want.

Outputting HTML from PHP
Several PHP commands can help you write text and HTML code directly
into your page. Perhaps the simplest is the echo command:

echo “I wrote this line using PHP”;

The preceding statement simply places “I wrote this line using PHP” into
the HTML document at precisely the place where the PHP statement
occurs.

Listing 5.1 shows the source code of a PHP file to print Hello World in
the browser window.

LISTING 5.1 Printing Hello World in PHP
<html>
<head>
<title>A Simple PHP Script</title>
</head>
<body>
<?php echo “<h1>Hello World!</h1>”; ?>
</body>
</html>

Note that in this script, the output string also contains some HTML tags,
<h1> and </h1>. As the PHP statements are executed by the web

ON THE CD: PHP for
Windows, Mac, and Linux is
included on the Ajax
Starter Kit CD.

TIP: For a more complete
course on PHP, try Sams
Teach Yourself PHP in 10
Minutes by Chris Newman
on the Ajax Starter Kit CD.

TIP: Web servers normally
recognize by the file exten-
sion which files contain
PHP code and process
them accordingly. The most
used file extension for PHP
files is .php, but you may
also see .php3, .php4,
.phtml, and various others.
To make your code
portable to as many web
server environments as
possible, it’s best to stick
with .php.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Variables in PHP

49

server before serving the page to us, these tags are written into the
document’s HTML along with the “Hello World” text and evaluated by
our browser along with all other HTML markup in the document. Figure
5.1 shows the browser displaying our “Hello World” page.

If we ask the browser to show us the source of this page, it displays the
following code, in which we can see that the PHP elements have been
completely evaluated by the web server, which has inserted the rele-
vant HTML into the page:

<html>
<head>
<title>A Simple PHP Script</title>
</head>
<body>
<h1>Hello World!</h1></body>
</html>

FIGURE 5.1 ”Hello World” in PHP.

Variables in PHP
Variables in PHP, much like in any programming language, are named
pockets in which pieces of data are stored. All variable names in PHP
must begin with a “$” character, followed by a string made up of letters,
numbers, and underscores.

We can assign values to variables in PHP without declaring the vari-
ables beforehand:

CAUTION: Variable
names are case sensitive
in PHP. For example,
$varname and $VarName
represent two distinct vari-
ables. Take care to enter
the names of variables in
the correct case.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5 : Server-Side Programming in PHP

50

$score = 71;
$player = ‘Harry Scott’;

Variables can take a number of data types, including strings, integers,
floats, and Boolean (true or false). When a variable is assigned a value,
such as in the preceding examples, PHP assigns a data type automati-
cally.

Numbers
All the basic mathematical operators are available in PHP, as shown in
the following examples:

$answer = 13 + 4;
$answer = 13 * 4;
$answer = 13 / 4;
$answer = 13 – 4;

You can also calculate the modulus, for which we use the % character:

$answer = 13 % 4;

Strings
In PHP you enclose strings within single or double quotes:

$mystring = “The quick brown fox”;

Strings may be concatenated using the period character:

$newstring = “ jumped over the lazy dog”;
$concat = $mystring.$newstring;

TIP: PHP offers the date() command, which allows you to get the
server time and date and format it to your liking; for example, the line

echo date(‘D F Y H:I’);

outputs the current date in a form similar to Fri 16 December 2005
11:36.

Arrays
PHP also supports arrays. An array is a variable that can contain a set of
values rather than just one. Here’s a PHP array containing some of the
days of the week:

$daynames = array(“Monday”,”Tuesday”,”Wednesday”,
➥ “Thursday”,”Friday”);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Controlling Program Flow

51

The items in an array are referenced by a key, which is an integer start-
ing at zero and incrementing for each item in the array. The following
line outputs Thursday to an HTML page:

echo $daynames[3];

Note that, because the index value begins at zero, the preceding state-
ment actually echoes the fourth element of the array.

This type of array is known as a numeric array, but you may also use
associative arrays. In this case, the key value of each element is not
numeric but instead is a string of your choosing. The syntax to declare
such an array and assign values to it is slightly different:

$lunch = array(“Susan” => “Chicken”, “Matthew” => “Beef”,
➥ “Louise” => “Salmon”);

You can now select the elements of such an array using the key value:

echo $lunch[“Louise”];

This command would output the word Salmon to our page.

Controlling Program Flow
PHP contains various structures for controlling the flow of your pro-
grams. One of the most useful is the simple if statement, which allows
you to alter the flow of program execution depending on the outcome
of a condition. Let’s have a look at a code snippet using the if state-
ment:

if($temp > 80)
{

echo $temp.” degrees is too hot. Turn down
➥ the thermostat.”;
}

This if statement simply evaluates the condition contained in the
brackets. If the condition is satisfied, the statements within the curly
braces are executed; otherwise, these statements are ignored.

We can also add an else clause to our if statement:

if($temp > 80)
{

echo $temp.” degrees is too hot. Turn down
➥ the thermostat.”;
}
else

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5 : Server-Side Programming in PHP

52

{
echo $temp.” degrees is cool enough.”;

}

PHP also has loop constructs, which allow you to repeat the same code
instructions a number of times until the conditions are satisfied for the
loop to be terminated. This is the code for a while loop:

$x = 1;
while($x<=12)
{

echo “This is trip number “.$x.” through the loop
”;

$x++;
}

The statement $x++ means “increment x by one.”The loop executes
over and over until the condition

$x<=12

is no longer met (because $x has become greater than 12), and the
statements within the curly braces will then be ignored. Program exe-
cution then carries on from below the closing curly brace.

You can also make a similar loop using PHP’s for construct:

for($x = 1; $x <= 12; $x++)
{
echo “This is trip number “.$x.” through the loop
”;
}

The for statement takes an argument with three components. The first
is evaluated before the first loop and provides a starting value for $x.
The second component of the argument is the condition that will be
evaluated on each loop to test whether the loop should be executed,
and the third is a statement that will be carried out after each loop, and
in this case increments $x.

The operation of this loop is identical to that of the while example.

Summary
This lesson introduced the principles of programming in the PHP serv-
er-side language, including the use of variables and program flow con-
trol constructs. You have also seen how PHP statements may be
embedded into HTML pages.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A Brief Introduction
to XML

The “x” of Ajax stands for XML, a powerful markup language that can allow your Ajax
applications to transfer and process complex, structured information. This lesson dis-
cusses the basics of creating and using XML documents.

Introducing XML
Anyone who has carried out any HTML markup will already be somewhat familiar
with the nature of XML code. XML (eXtensible Markup Language) has many simi-
larities in markup style to HTML.

However, whereas HTML is intended to determine how web pages are displayed,
XML has a rather more wide-ranging use. XML documents can be used in all man-
ner of data storage and data exchange applications ranging from document stor-
age and retrieval to roles traditionally fulfilled by database programs.

Why Do I Need To Know This?
One of the many uses of XML is for the transfer of structured information between
applications. In Ajax you can use XML to return information from the server to your
Ajax application, where it may be parsed and used.

6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6 : A Brief Introduction to XML

54

What Is (and Isn’t) Covered in This Lesson
In common with the other lessons in this section of the book, we do
not attempt to offer a complete and thorough treatise on XML. Rather,
this lesson covers the basics of the language and its application, con-
centrating mainly on those aspects relevant to your work with Ajax.

XML Basics
XML is a markup language that allows data to be stored and transmit-
ted in a structured, hierarchical manner. It has similarities in markup
style to HTML, but whereas HTML has a fixed list of element definitions
and is designed primarily to allow you to define how a document
should be displayed, XML elements may be defined within a particular
XML document to suit the data being described there.

In common with HTML, markup elements (normally referred to as tags)
enclosed by < and > are used to annotate the contents of a text file,
describing the information it contains.

Unlike the tags in HTML, though, whose definitions are fixed, XML tags
can be defined to be anything you want, allowing you to describe virtu-
ally any kind of data. Consider this example of an XML document:

<race>
<yacht raceNo=’74’>
<name>Wanderer</name>
<skipper>Walter Jeffries</skipper>
<helm>Sally Jacobs</helm>

</yacht>
<yacht raceNo=’22’>
<name>Free Spirit</name>
<skipper>Jennifer Scully</skipper>
<helm>Paul Thomas</helm>

</yacht>
</race>

This short XML document describes a yacht race, including the two
competing yachts and their respective personnel. Note how the tag
names are descriptive of the data they contain, and how the tag struc-
tures are hierarchical. You may also notice that XML tags, like those of
HTML, can also have attributes. The end effect is that the XML file is
quite readable—that is, the meaning of the data may be readily
inferred by a human reader.

ON THE CD: If you want
a more in-depth tutorial in
XML, see Sams Teach
Yourself XML in 10 Minutes
by Andrew H. Watt, on the
Ajax Starter Kit CD.

NOTE: The similarities
between XML and HTML
are not purely accidental.
Both are based on SGML
(Standard Generalized
Markup Language), a sys-
tem for organizing the ele-
ments of a document.
SGML was developed and
standardized by the
International Organization
for Standards (ISO).

CAUTION: Unlike HTML,
tagnames in XML are case
sensitive, so <yacht> and
<Yacht> would be treated
as two distinct elements.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

XML Basics

55

XML Document Structure
The permitted structure of an XML document has only one mandatory
element, the so-called document element. In the preceding yacht race
example, this would be the <race> element.

TIP: XML uses the same syntax as HTML for the display of comments.
Any information beginning with the character string <!-- and ending
with the string --> will be ignored:

<!-- This is a comment -->

NOTE: The document element need not necessarily have elements
nested within it; the following is an allowable XML document:

<competition>Farlington Summer Cup</competition>

Document Prolog
Other information may be optionally included before the document ele-
ment, forming the document’s prolog. An example is the XML declara-
tion:

<?xml version=”1.0” ?>

The prolog may also contain, in addition to various comments and pro-
cessing instructions, a Document Type Declaration.

Document Type Declaration
The optional Document Type Declaration (often referred to as a
DOCTYPE declaration) is a statement of the permitted structure of an
XML document. It usually contains (or refers to another file that con-
tains) information about the names of the elements in the document
and the relationships between those elements.

Let’s look at an example Document Type Declaration for the yacht race
document:

<!DOCTYPE race SYSTEM race.dtd>

This declaration, which would appear in the document before the
<race> element, specifies that the document element will be called
<race> and that document structure definitions may be found in an

CAUTION: If such a dec-
laration exists, it must be
the first thing in the docu-
ment. Not even white
space is allowed before it.

CAUTION: Take care not
to confuse the Document
Type (DOCTYPE)
Declaration with the
Document Type Definition
(DTD). The DTD is com-
prised of both the markup
declarations contained in
the DOCTYPE Declaration
and those contained in any
external file to which the
DOCTYPE Declaration
refers.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6 : A Brief Introduction to XML

56

external file, race.dtd, which would perhaps contain something like
the following:

<!ELEMENT race (yacht+) >
<!ELEMENT yacht (name, skipper, helm) >
<!ATTLIST yacht raceNo #CDATA #REQUIRED >
<!ELEMENT name (#PCDATA) >
<!ELEMENT skipper (#PCDATA) >
<!ELEMENT helm (#PCDATA) >

Alternatively, this information could be quoted in the DOCTYPE
Declaration itself, placed between [and] characters:

<!DOCTYPE race [
<!ELEMENT race (yacht+) >
<!ATTLIST yacht raceNo #CDATA #REQUIRED >
<!ELEMENT yacht (name, skipper, helm) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT skipper (#PCDATA) >
<!ELEMENT helm (#PCDATA) >
]>

In either case we define four elements—namely, race, yacht, skipper, and
helm—and one attribute list.

Element Declarations
The line

<!ELEMENT race (yacht+) >

declares that the <race> element will contain elements of type
<yacht>, whereas the + character indicates that there may be any num-
ber of occurrences from one upward of such <yacht> elements.
Alternatively, we could use the character * to indicate any number of
occurrences including zero, or the character ? to indicate zero or one
occurrence. The absence of all of these characters indicates that there
should be exactly one <yacht> element within <race>.

The <yacht> element is declared to contain three further elements,
<name>, <skipper>, and <helm>. The #PCDATA term contained in the
declarations for those elements stands for parsed character data and
indicates that these elements must contain character-based data and
may not contain further elements. Other possible content types include
MIXED (text and elements) and ANY (any valid content).

TIP: DOCTYPE
Declarations can contain
both internal and external
references, known as the
internal and external sub-
sets of the DTD.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

JavaScript and XML

57

Attribute List Declarations
Our example also contains the line

<!ATTLIST yacht raceNo #CDATA #REQUIRED >

Such declarations are used to specify what attributes are permitted or
required for any given element. In our example, we specify that the
<yacht> element has an attribute called raceNo, the value of which is
comprised of #CDATA (character data).

The term #REQUIRED indicates that, in this example, the <yacht> ele-
ment must have such an attribute. Other possibilities include #IMPLIED,
specifying that such an attribute is optional; #DEFAULT followed by a
value in quotation marks, specifying a default value for the attribute
should none be declared in the XML document; or #FIXED followed by
a value in quotation marks, fixing the value of the attribute to that
quoted.

Valid XML
If an XML document contains a DOCTYPE Declaration and complies fully
with the declarations it contains, it is said to be a valid XML document.

JavaScript and XML
Most modern browsers already contain some tools to help you deal
with XML documents.

A JavaScript object must exist to contain the XML document. Creating a
new instance of such an object is done slightly differently depending
on whether you use a non-Microsoft browser, such as Mozilla’s Firefox,
or Microsoft Internet Explorer:

For Firefox and other non-Microsoft browsers, use the following code to
create a JavaScript XML document object:

<script type=”text/javascript”>
var myxmlDoc =

➥ document.implementation.createDocument(“”,””,null);

myxmlDoc.load(“exampleDoc.xml”);

Program statements

</script>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6 : A Brief Introduction to XML

58

To create a JavaScript XML document object with Internet Explorer, use
this code:

<script type=”text/javascript”>
var myxmlDoc=new ActiveXObject(“Microsoft.XMLDOM”)
myxmlDoc.async=”false”
myxmlDoc.load(“exampleDoc.xml”)

Program statements

</script>

After you have an object to represent the XML document, you may use
the properties and methods of that object to gain access to the XML
data contained within the document. Effectively, the hierarchical struc-
ture and data of the XML document now have equivalents in the
JavaScript hierarchy of objects, the Document Object Model (DOM).

The Document Object Model
(DOM)
Let’s take a look at some of the methods and properties that help you
access and manipulate this information, often called Walking The DOM.

Nodes
Suppose that our JavaScript object myxmlDoc contains the XML listing
of the yacht race. The document element, <race>, contains two ele-
ments of type <yacht>; we say it has two children.

In general, you can get the number of children belonging to a particu-
lar element by using the childNodes.length property of the object.
Because <race> is the document element, it is at the top of the object
hierarchy, and we can refer to it simply with the variable myxmlDoc:

var noYachts = myxmlDoc.childNodes.length;

We can also determine information about individual children by
appending the node number in parentheses:

myxmlDoc.childNode(0)

The preceding line refers to the first <yacht> element appearing in the
document.

CAUTION: As in many
programming constructs,
the first element has the
number zero, the second
element has the number
one, and so forth.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Document Object Model (DOM)

59

We can test for the presence of children for a particular element by
using the hasChildNodes() method:

myxmldoc.childNodes(1).hasChildNodes()

This line returns true because the second yacht in the document has
three children (with tag names name, skipper, and helm). However,

myxmldoc.childNodes(1).childNodes(0).hasChildNodes()

returns false because the <name> element within that <yacht> ele-
ment has no children.

Getting Tagnames
The tagname property allows you to find the tagname associated with a
particular element:

myxmldoc.childNodes(0).childNodes(1).tagname

The preceding line returns skipper.

Getting Element Attributes
The method getAttribute(“AttributeName”) can be used to return
the attribute values for a given element:

myxmldoc.childNodes(0).getAttribute(“raceNo”)

This line returns 74.

Tag Contents
The text property can be used to return the contents of a particular
element. The line

myxmldoc.childNodes(0).childNodes(1).text

would return Walter Jeffries.

You’ll learn about these and similar methods in more detail in Lesson
14,“Returning Data as XML.”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6 : A Brief Introduction to XML

60

Summary
This lesson discussed the basics of XML, including XML document
structures and Document Type Declarations. We also briefly examined
how JavaScript may be used to deal with XML data using object prop-
erties and methods, much like using any other JavaScript object. This
knowledge will be useful when we use Ajax to retrieve XML data from
the server.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Anatomy of an Ajax
Application

In this lesson you will learn about the individual building blocks of Ajax and how they
fit together to form the architecture of an Ajax application. Subsequent lessons here in
Part II,“Introducing Ajax,” examine these components in more detail, finally assembling
them into a working Ajax application.

The Need for Ajax
In Part I,“A Refresher on Web Technologies,” we reviewed the core technologies
that form the components of an Ajax application. By now, you will hopefully have
at least a rudimentary knowledge of JavaScript, PHP, and XML, all of which we’ll use
here in Part II.

Before discussing the individual components, let’s look in more detail at what we
want from our Ajax application.

Traditional Versus Ajax Client-Server Interactions
Lesson 1,“Anatomy of a Website,” discussed the traditional page-based model of a
website user interface. When you interact with such a website, individual pages
containing text, images, data entry forms, and so forth are presented one at a time.
Each page must be dealt with individually before navigating to the next.

For instance, you may complete the data entry fields of a form, editing and re-edit-
ing your entries as much as you want, knowing that the data will not be sent to the
server until the form is finally submitted.

Figure 7.1 illustrates this interaction.

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing Ajax

63

The Rich User Experience
The combined effect of the issues just described is to offer a much infe-
rior user experience compared to that provided by the vast majority of
desktop applications.

On the desktop, you expect the display contents of a program to
remain visible and the interface elements to respond to commands
while the computing processes occur quietly in the background. As I
write this lesson using a word processor, for example, I can save the
document to disk, scroll or page up and down, and alter font faces and
sizes without having to wait on each occasion for the entire display to
be refreshed.

Ajax allows you to add to your web application interfaces some of this
functionality more commonly seen in desktop applications and often
referred to as a rich user experience.

Introducing Ajax
To improve the user’s experience, you need to add some extra capabili-
ties to the traditional page-based interface design. You want your user’s
page to be interactive, responding to the user’s actions with revised
content, and be updated without any interruptions for page loads or
screen refreshes.

FIGURE 7.2 Many page items are reloaded unnecessarily.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing Ajax

65

is listed the number of results that would be expected for a search con-
ducted using that phrase. At any point the user has the option to select
one of these suggestions instead of continuing to type and have
Google process the selected search.

Because the server is queried with every keypress, this drop-down list
updates dynamically as the user types—with no waiting for page
refreshes or similar interruptions.

Figure 7.4 shows the program in action. You can try it for yourself by fol-
lowing the links from Google’s home page at http://www.google.com/
webhp?complete=1&hl=en.

FIGURE 7.4 An example of an Ajax application—Google Suggest.

Next let’s identify the individual components of such an Ajax applica-
tion and see how they work together.

NOTE: Google has presented other Ajax-enabled applications that you
can try, including the gmail web mail service and the Google Maps street
mapping program. See the Google website at http://www.google.com/
for details.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7 : Anatomy of an Ajax Application

66

The Constituent Parts of Ajax
Now let’s examine the components of an Ajax application one at a
time.

The XMLHTTPRequest Object
When you click on a hyperlink or submit an HTML form, you send an
HTTP request to the server, which responds by serving to you a new or
revised page. For your web application to work asynchronously, howev-
er, you must have a means to send HTTP requests to the server without
an associated request to display a new page.

You can do so by means of the XMLHTTPRequest object. This JavaScript
object is capable of making a connection to the server and issuing an
HTTP request without the necessity of an associated page load.

In following lessons you will see how an instance of such an object can
be created, and how its properties and methods can be used by
JavaScript routines included in the web page to establish asynchronous
communications with the server.

Lesson 8,“The XMLHTPPRequest Object,” discusses how to create an
instance of the XMLHTTPRequest object and reviews the object’s prop-
erties and methods.

Talking with the Server
In the traditional style of web page, when you issue a server request via
a hyperlink or a form submission, the server accepts that request, car-
ries out any required server-side processing, and subsequently serves
to you a new page with content appropriate to the action you have
undertaken.

While this processing takes place, the user interface is effectively frozen.
You are made quite aware of this, when the server has completed its
task, by the appearance in the browser of the new or revised page.

With asynchronous server requests, however, such communications
occur in the background, and the completion of such a request does
not necessarily coincide with a screen refresh or a new page being
loaded. You must therefore make other arrangements to find out what
progress the server has made in dealing with the request.

The XMLHTTPRequest object possesses a convenient property to report
on the progress of the server request. You can examine this property

TIP: As a security measure,
the XMLHTTPRequest
object can generally only
make calls to URLs within
the same domain as the
calling page and cannot
directly call a remote server.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Constituent Parts of Ajax

67

using JavaScript routines to determine the point at which the server
has completed its task and the results are available for use.

Your Ajax armory must therefore include a routine to monitor the status
of a request and to act accordingly. We’ll look at this in more detail in
Lesson 9,“Talking with the Server.”

What Happens at the Server?
So far as the server-side script is concerned, the communication from the
XMLHTTPRequest object is just another HTTP request. Ajax applications
care little about what languages or operating environments exist at the
server; provided that the client-side Ajax layer receives a timely and cor-
rectly formatted HTTP response from the server, everything will work just
fine.

It is possible to build simple Ajax applications with no server-side
scripting at all, simply by having the XMLHTTPRequest object call a static
server resource such as an XML or text file.

Ajax applications may make calls to various other server-side resources
such as web services. Later on we’ll look at some examples of calling
web services using protocols such as SOAP and REST.

Dealing with the Server Response
Once notified that an asynchronous request has been successfully com-
pleted, you may then utilize the information returned by the server.

Ajax allows for this information to be returned in a number of formats,
including ASCII text and XML data.

Depending on the nature of the application, you may then translate,
display, or otherwise process this information within the current page.

We’ll look into these issues in Lesson 10,“Using the Returned Data.”

Other Housekeeping Tasks
An Ajax application will be required to carry out a number of other
duties too. Examples include detecting error conditions and handling
them appropriately, and keeping the user informed about the status of
submitted Ajax requests.

You will see various examples in later lessons.

NOTE: Here we’ll be using
the popular PHP scripting
language for our server-
side routines, but if you are
more comfortable with
ASP, JSP, or some other
server-side language, go
right ahead and use it in
your Ajax applications.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7 : Anatomy of an Ajax Application

68

Putting It All Together
Suppose that you want to design a new Ajax application, or update a
legacy web application to include Ajax techniques. How do you go
about it?

First you need to decide what page events and user actions will be
responsible for causing the sending of an asynchronous HTTP request.
You may decide, for example, that the onMouseOver event of an image will
result in a request being sent to the server to retrieve further information
about the subject of the picture; or that the onClick event belonging to a
button will generate a server request for information with which to popu-
late the fields on a form.

You saw in Lesson 4,“Client-Side Coding Using JavaScript,” how
JavaScript can be used to execute instructions on occurrences such as
these, by employing event handlers. In your Ajax applications, such
methods will be responsible for initiating asynchronous HTTP requests
via XMLHTTPRequest.

Having made the request, you need to write routines to monitor the
progress of that request until you hear from the server that the request
has been successfully completed.

Finally, after receiving notification that the server has completed its
task, you need a routine to retrieve the information returned from the
server and apply it in the application. You may, for example, want to use
the newly returned data to change the contents of the page’s body
text, populate the fields of a form, or pop open an information window.

Figure 7.5 shows the flow diagram of all this.

In Lesson 11,“Our First Ajax Application,” we’ll use what we have
learned to construct a complete Ajax application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

71

The XMLHTTPRequest Object

In this lesson you will learn how to create an instance of the XMLHTTPRequest object
regardless of which browser your user may have. The object’s properties and methods
will be introduced.

More About JavaScript Objects
Lesson 7,“Anatomy of an Ajax Application,” introduced the building blocks of an
Ajax application and discussed how these pieces fit together.

This lesson examines the object at the heart of every Ajax application—the
XMLHTTPRequest object.

8

NOTE: You briefly met objects in Lesson 4,“Client-Side Coding Using JavaScript,”
when we discussed the document object associated with a web page. The
XMLHTTPRequest object, after it has been created, becomes a further such object
within the page’s object hierarchy and has its own properties and methods.

An object can be thought of as a single package containing a set of properties,
which contain and classify data, and a set of methods with which the object can
perform actions on that data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8 : The XMLHTTPRequest Object

72

Suppose, for example, that we had an object of type wheelbarrow. Such
an object might have a property contents, which describes how many
items the wheelbarrow holds at any given moment. Methods might
include fill(), tip(), forward(), and stop(). When using JavaScript
you can design such objects as you see fit.

However, in addition to user-defined objects, JavaScript has a range of
ready-made objects for use in scripts. These are referred to as native
objects. Examples of JavaScript’s native objects include Math(),
String(), and Date().

Creating an Instance of an Object
Many objects, such as the document object that you saw in Lesson 4,
already exist and therefore do not need you to create an instance of
them. Others, however, require you to create an instance of the object
in question before you can use it.

You can create an instance of an object by calling a method known as
the object’s constructor, using the new keyword:

var myBarrow = new Wheelbarrow();

Having created an instance myBarrow of the object wheelbarrow, prop-
erties and methods for the object may be manipulated using a simple
syntax:

myBarrow.contents = 20;
myBarrow.forward();
myBarrow.stop();
myBarrow.tip();

Of course, you are at liberty to create other instances of the same
object and have them exist concurrently:

var myBarrow = new Wheelbarrow();
var yourBarrow = new Wheelbarrow();
myBarrow.contents = 20;
yourBarrow.contents = 50;

The Document Object Model or DOM
We mentioned briefly in Lesson 4 the hierarchy of objects “built in” to a
web page and known as the Document Object Model. You access these
objects and their properties and methods in the same way as native
objects and objects that you devise and create yourself.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating the XMLHTTPRequest Object

73

In later lessons you’ll see how the XMLHTTPRequest object can use XML
data returned from the server in response to XMLHTTPRequest calls to
create additional DOM objects that you can use in your scripts.

Introducing XMLHTTPRequest
XMLHTTPRequest is supported by virtually all modern browsers, includ-
ing Microsoft’s Internet Explorer 5+ and a variety of non-Microsoft
browsers, including Mozilla, Firefox, Konqueror, Opera, and Safari, and is
supported on a wide range of platforms, including Microsoft Windows,
UNIX/Linux, and Mac OS X.

The purpose of the XMLHTTPRequest object is to allow JavaScript to for-
mulate HTTP requests and submit them to the server. Traditionally pro-
grammed web applications normally make such requests
synchronously, in conjunction with a user-initiated event such as click-
ing on a link or submitting a form, resulting in a new or updated page
being served to the browser.

Using XMLHTTPRequest, however, you can have your page make such
calls asynchronously in the background, allowing you to continue using
the page without the interruption of a browser refresh and the loading
of a new or revised page.

This capability underpins all Ajax applications, making the
XMLHTTPRequest object the key to Ajax programming.

Creating the XMLHTTPRequest
Object
You cannot make use of the XMLHTTPRequest until you have created an
instance of it. Creating an instance of an object in JavaScript is usually
just a matter of making a call to a method known as the object’s con-
structor. In the case of XMLHTTPRequest, however, you must change this
routine a little to cater for the peculiarities of different browsers, as you
see in the following section.

Different Rules for Different Browsers
Microsoft first introduced the XMLHTTPRequest object, implementing it
in Internet Explorer 5 as an ActiveX object.

NOTE: The Document
Object Model or DOM is
really not a part of
JavaScript but a separate
entity existing outside it.
Although you can use
JavaScript to manipulate
DOM objects, other script-
ing languages may equally
well access them too.

CAUTION: Some
browsers may require
attention to their security
settings to allow the
XMLHTTPRequest object to
operate correctly. See your
browser’s documentation
for details.

TIP: Although the object’s
name begins with XML, in
fact, any type of document
may be returned from the
server; ASCII text, HTML,
and XML are all popular
choices, and we will
encounter all of these in
the course of the book.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8 : The XMLHTTPRequest Object

74

Most other browser developers have now included into their products
an equivalent object, but implemented as a native object in the brows-
er’s JavaScript interpreter.

Because you don’t know in advance which browser, version, or operat-
ing system your users will have, your code must adapt its behavior on-
the-fly to ensure that the instance of the object will be created success-
fully.

For the majority of browsers that support XMLHTTPRequest as a native
object (Mozilla, Opera, and the rest), creating an instance of this object
is straightforward. The following line creates an XMLHTTPRequest object
called request:

var request = new XMLHTTPRequest();

Here we have declared a variable request and assigned to it the value
returned from the statement new XMLHTTPRequest(), which is invok-
ing the constructor method for the XMLHTTPRequest object.

To achieve the equivalent result in Microsoft Internet Explorer, you
need to create an ActiveX object. Here’s an example:

var request = new ActiveXObject(“Microsoft.XMLHTTP”);

Once again, this assigns the name request to the new object.

To complicate matters a little more, some versions of Internet Explorer
have a different version of MSXML, the Microsoft XML parser, installed;
in those cases you need to use the following instruction:

var request = new ActiveXObject(“Msxml2.XMLHTTP”);

A Solution for All Browsers
You need, therefore, to create a script that will correctly create an
instance of a XMLHTTPRequest object regardless of which browser you
are using (provided, of course, that the browser supports
XMLHTTPRequest).

TIP: ActiveX is a propri-
etary Microsoft technology
for enabling active objects
into web pages. Among the
available web browsers, it
is currently only supported
in Microsoft’s Internet
Explorer. Internet Explorer
uses its built-in XML parser,
MSXML, to create the
XMLHTTPRequest object.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating the XMLHTTPRequest Object

75

A good solution to this problem is to have your script try in turn each
method of creating an instance of the object, until one such method
succeeds. Have a look at Listing 8.1, in which such a strategy is used.

LISTING 8.1 Using Object Detection for a Cross-Browser
Solution
function getXMLHTTPRequest()
{
var request = false;
try
{
request = new XMLHttpRequest(); /* e.g. Firefox */

}
catch(err1)
{
try
{
vrequest = new ActiveXObject(“Msxml2.XMLHTTP”);

/* some versions IE */
}

catch(err2)
{
try
{
request = new ActiveXObject(“Microsoft.XMLHTTP”);

/* some versions IE */
}
catch(err3)
{
request = false;
}

}
}

return request;
}

Listing 8.1 uses the JavaScript statements try and catch. The try state-
ment allows us to attempt to run a piece of code. If the code runs with-
out errors, all is well; however, should an error occur we can use the
catch statement to intervene before an error message is sent to the
user and determine what the program should then do about the error.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8 : The XMLHTTPRequest Object

76

An alternative, and equally valid, technique would be to detect which
type of browser is in use by testing which objects are defined in the
browser. Listing 8.2 shows this technique.

LISTING 8.2 Using Browser Detection for a Cross-Browser
Solution
function getXMLHTTPRequest()
{
var request = false;
if(window.XMLHTTPRequest)

{
request = new XMLHTTPRequest();
} else {
if(window.ActiveXObject)
{
try

{
request = new ActiveXObject(“Msml2.XMLHTTP”);
}

catch(err1)
{
try

{
request =

➥new ActiveXObject(“Microsoft.XMLHTTP”);
}

catch(err2)
{
request = false;
}

}
}

TIP: Note the syntax:

catch(identifier)

Here identifier is an object created when an error is caught. It con-
tains information about the error; for instance, if you wanted to alert the
user to the nature of a JavaScript runtime error, you could use a code
construct like this:

catch(err)
{
alert(err.description);
}

to open a dialog containing details of the error.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating the XMLHTTPRequest Object

77

}
return request;
}

In this example we’ve used the test

if(window.XMLHTTPRequest) { … }

to determine whether XMLHTTPRequest is a native object of the brows-
er in use; if so, we use the constructor method

request = new XMLHTTPRequest();

to create an instance of the XMLHTTPRequest object; otherwise, we try
creating a suitable ActiveX object as in the first example.

Whatever method you use to create an instance of the XMLHTTPRequest
object, you should be able to call this function like this:

var myRequest = getXMLHTTPRequest();

NOTE: JavaScript also makes available a navigator object that holds
information about the browser being used to view the page. Another
method we could have used to branch our code is to use this object’s
appName property to find the name of the browser:

var myBrowser = navigator.appName;

This would return “Microsoft Internet Explorer” for IE.

Methods and Properties
Now that we have created an instance of the XMLHTTPRequest object,
let’s look at some of the object’s properties and methods, listed in
Table 8.1.

TABLE 8.1 XMLHTTPRequest Objects and Methods

PROPERTIES DESCRIPTION

onreadystatechange Determines which event handler will be

called when the object’s readyState

property changes

readyState Integer reporting the status of the

request:

0 = uninitialized

1 = loading

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8 : The XMLHTTPRequest Object

78

TABLE 8.1 Continued

PROPERTIES DESCRIPTION

2 = loaded

3 = interactive

4 = completed

responseText Data returned by the server in text

string form

responseXML Data returned by the server expressed

as a document object

status HTTP status code returned by server

statusText HTTP reason phrase returned by server

METHODS DESCRIPTION

abort() Stops the current request

getAllResponseHeaders() Returns all headers as a string

getResponseHeader(x) Returns the value of header x as a string

open(‘method’, specifies the HTTP method (for example,

’URL’,’a’) GET or POST), the target URL, and whether

the request should be handled asynchro-

nously (If yes, a=’true’—the default; if

no, a=’false’.)

send(content) Sends the request, optionally with POST

data

setRequestHeader Sets a parameter and value pair x=y and

(‘x’,’y’) assigns it to the header to be sent with

the request

Over the next few lessons we’ll examine how these methods and prop-
erties are used to create the functions that form the building blocks of
Ajax applications.

For now, let’s examine just a few of these methods.

The open() Method
The open() method prepares the XMLHTTPRequest object to communi-
cate with the server. You need to supply at least the two mandatory
arguments to this method:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating the XMLHTTPRequest Object

79

■ First, specify which HTTP method you intend to use, usually GET
or POST. (The use of GET and POST HTTP requests was discussed in
Lesson 3,“Sending Requests Using HTTP.”)

■ Next, the destination URL of the request is included as the sec-
ond argument. If making a GET request, this URL needs to be suit-
ably encoded with any parameters and their values as part of the
URL.

For security reasons, the XMLHTTPRequest object is allowed to commu-
nicate only with URLs within its own domain. An attempt to connect to
a remote domain results in a “permission denied” error message.

Optionally you may include a third argument to the send request, a
Boolean value to declare whether the request is being sent in asynchro-
nous mode. If set to false, the request will not be sent in asynchronous
mode, and the page will be effectively locked until the request is com-
pleted. The default value of true will be assumed if the parameter is
omitted, and requests will then be sent asynchronously.

The send() Method
Having prepared the XMLHTTPRequest using the open() method, you
can send the request using the send() method. One argument is
accepted by the send() function.

If your request is a GET request, the request information will be encoded
into the destination URL, and you can then simply invoke the send()
method using the argument null:

objectname.send(null);

However, if you are making a POST request, the content of the request
(suitably encoded) will be passed as the argument.

objectname.setRequestHeader(‘Content-Type’,
➥’application/x-www-form-urlencoded’);
objectname.send(var1=value1&var2=value2);

In this case we use the setRequestHeader method to indicate what
type of content we are including.

CAUTION: A common
mistake is to reference your
domain as mydomain.com
in a call made from
www.mydomain.com. The
two will be regarded as dif-
ferent by the JavaScript
interpreter, and connection
will not be allowed.

NOTE: A Boolean data
type has only two possible
values, 1 (or true) and 0 (or
false).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8 : The XMLHTTPRequest Object

80

Summary
This lesson introduced the XMLHTTPRequest object, the driving force
behind any Ajax application, and illustrated how an instance of such an
object is created both for Internet Explorer and for other, non-Microsoft
browsers. We also briefly examined some of the object’s properties and
methods.

Following lessons will show how more of the object’s methods and
properties are used.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Talking with the Server

In this lesson you’ll learn how to use the properties and methods of the
XMLHTTPRequest object to allow the object to send requests to and receive data from
the server.

Sending the Server Request
Lesson 8,“The XMLHTPPRequest Object,” discussed at some length the JavaScript
XMLHTTPRequest object and how an instance of it may be created in various differ-
ent browsers.

Now that we have our XMLHTTPRequest object, let’s consider how to create and
send server requests, and what messages we might expect to receive back from
the server.

We’re going to jump right in and first write some code using what you learned in
Lesson 8 to create an XMLHTTPRequest object called myRequest. We’ll then write a
JavaScript function called callAjax() to send an asynchronous request to the
server using that object. Afterward we’ll break down the code line by line to see
what it’s doing.

Listing 9.1 shows our prototype function to prepare and send an Ajax request
using this object.

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9 : Talking with the Server

82

LISTING 9.1 Sending a Server Request
function getXMLHTTPRequest()
{
var req = false;
try
{
req = new XMLHttpRequest(); /* e.g. Firefox */
}

catch(err1)
{
try
{
req = new ActiveXObject(“Msxml2.XMLHTTP”);

/* some versions IE */
}

catch(err2)
{
try
{
req = new ActiveXObject(“Microsoft.XMLHTTP”);

/* some versions IE */
}
catch(err3)
{
req = false;
}

}
}

return req;
}

var myRequest = getXMLHTTPRequest();

function callAjax() {
// declare a variable to hold some information
// to pass to the server
var lastname = ‘Smith’;
// build the URL of the server script we wish to call
var url = “myserverscript.php?surname=” + lastname;
// ask our XMLHTTPRequest object to open a
// server connection
myRequest.open(“GET”, url, true);
// prepare a function responseAjax() to run when
// the response has arrived
myRequest.onreadystatechange = responseAjax;
// and finally send the request
myRequest.send(null);
}

TIP: Lines starting with //
are treated as comments
by JavaScript. You may use
lines like these to docu-
ment your code or add
other useful notes, and
your browser’s JavaScript
interpreter will ignore
them when executing code
instructions.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sending the Server Request

83

First, we need to create an instance of an XMLHTTPRequest object and
call it myRequest. You’ll no doubt recognize the code for this from
Lesson 8.

Next we’ll look at the function callAjax().

The first line simply declares a variable and assigns a value to it:

var lastname = ‘Smith’;

This is the piece of data that our function intends to send to the server,
as the value of a variable called surname that is required by our server-
side script. In reality, of course, the value of such data would usually be
obtained dynamically by handling a page event such as a mouse click
or a keyboard entry, but for now this will serve as a simple example.

The server request we intend to make is a GET request, so we must con-
struct a suitable target URL having our parameter and value pairs suit-
ably coded on the end; the next line carries this out:

var url = “myserverscript.php?surname=” + lastname;

We dealt briefly with the open() method in Lesson 8. We use it in the
next line to prepare our server request:

myRequest.open(“GET”, url, true);

This line specifies that we are preparing a GET request and passes to it
the destination URL complete with the appended content of the GET
request.

The third parameter, true, indicates that we want our request to be
handled asynchronously. In this case it could have been omitted
because the default value of true is assumed in such cases. However, it
does no harm to include it for clarity.

Next, we need to tell our XMLHTTPRequest object myRequest what it
should do with the “progress reports” it will receive from the server. The
XMLHTTPRequest object has a property onreadystatechange that con-
tains information about what JavaScript function should be called
whenever the server status changes, and in the next line

myRequest.onreadystatechange = responseAjax;

we assign the function responseAjax() to do this job. We will write this
function later in the lesson.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9 : Talking with the Server

84

Dealing with the Browser Cache
All browsers maintain a so-called cache of visited web pages, a local
record of page contents stored on the hard disk of the browser’s com-
puter. When you request a particular web page, the browser first tries to
load the page from its cache, rather than submitting a new HTTP
request.

Although this can sometimes be advantageous in terms of page load
times, it creates a difficulty when trying to write Ajax applications. Ajax
is all about talking to the server, not reloading information from cache;
so when you make an asynchronous request to the server, a new HTTP
request must be generated every time.

It is possible to add HTTP headers to the data returned by server-side
routines, intended to tell the browser not to cache a particular page.
Examples include

“Pragma: no-cache”

and

“Cache-Control: must-revalidate”

among others.

Unfortunately such strategies vary widely in their effectiveness.
Different browsers have different cache handling strategies and sup-
port different header declarations, making it difficult to ensure that
pages are not cached.

A commonly used trick to work around this problem involves the
adding of a parameter with a random and meaningless value to the
request data. In the case of a GET request, this necessitates adding a fur-
ther parameter and value pair to the end of the URL.

If the random part of the URL is different each time, this effectively
“fools” the browser into believing that it is to send the asynchronous
request to an address not previously visited. This results in a new HTTP
request being sent on every occasion.

Let’s see how to achieve this. In JavaScript, you can generate random
numbers using the Math.random() method of the native Math()
object. Listing 9.2 contains a couple of changes to our callAjax()
function.

NOTE: This appears to be
more of a problem with IE
than with the non-
Microsoft browsers. Only
GET requests are affected;
POST requests are not
cached.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sending the Server Request

85

LISTING 9.2 Dealing with the Browser Cache
function getXMLHTTPRequest()
{
var req = false;
try
{
req = new XMLHttpRequest(); /* e.g. Firefox */
}

catch(err1)
{
try
{
req = new ActiveXObject(“Msxml2.XMLHTTP”);

/* some versions IE */
}

catch(err2)
{
try
{
req = new ActiveXObject(“Microsoft.XMLHTTP”);

/* some versions IE */
}
catch(err3)
{
req = false;
}

}
}

return req;
}

var myRequest = getXMLHTTPRequest();

function callAjax() {
// declare a variable to hold some information
// to pass to the server
var lastname = ‘Smith’;
// build the URL of the server script we wish to call
var url = “myserverscript.php?surname=” + lastname;
// generate a random number
var myRandom=parseInt(Math.random()*99999999);
// ask our XMLHTTPRequest object to open
// a server connection
myRequest.open(“GET”, url + “&rand=” + myRandom, true);
// prepare a function responseAjax() to run when
// the response has arrived

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9 : Talking with the Server

86

LISTING 9.2 Continued
myRequest.onreadystatechange = responseAjax;
// and finally send the request
myRequest.send(null);
}

We can see from Listing 9.2 that the script will now generate a destina-
tion URL for our Ajax request that looks something like this:

myserverscript.php?surname=Smith&rand=XXXX

where XXXX will be some random number, thereby preventing the page
from being returned from cache and forcing a new HTTP request to be
sent to the server.

NOTE: Some programmers prefer to add the current timestamp rather
than a random number. This is a string of characters derived from the
current date and time. In the following example, the JavaScript Date()
and getTime() methods of the native Date() object are used:

myRand= + new Date().getTime()

Monitoring Server Status
The XMLHTTPRequest object contains mechanisms by which we can
stay informed of the progress of our Ajax request and determine when
the information returned by the server is ready to use in our applica-
tion.

Let’s now have a look at the relevant properties.

The readyState Property
The readyState property of the XMLHTTPRequest object gives you
information from the server about the current state of a request you
have made. This property is monitored by the onreadystatechange
property, and changes in the value of readyState cause onreadystat-
echange to become true and therefore cause the appropriate function
(responseAjax() in our example) to be executed.

TIP: The function called on
completion of the server
request is normally referred
to as the callback function.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Callback Function

87

readyState can take the following values:

0 = uninitialized

1 = loading

2 = loaded

3 = interactive

4 = completed

When a server request is first made, the value of readyState is set to
zero, meaning uninitialized.

As the server request progresses, data begins to be loaded by the serv-
er into the XMLHTTPRequest object, and the value of the readyState
property changes accordingly, moving to 1 and then 2.

An object readyState value of 3, interactive, indicates that the object is
sufficiently progressed so that certain interactivity with it is possible,
though the process is not yet fully complete.

When the server request has completed fully and the object is available
for further processing, the value of readyState changes finally to 4.

In most practical cases, you should look for the readyState property to
achieve a value of 4, at which point you can be assured that the server
has finished its task and the XMLHTTPRequest object is ready for use.

Server Response Status Codes
In addition to the readyState property, you have a further means to
check that an asynchronous request has executed correctly: the HTTP
server response status code.

HTTP responses were discussed in Lesson 3,“Sending Requests Using
HTTP.” If you refer to Table 3.1 you’ll see that a response status code of
200 corresponds to an OK message from the server.

We’ll see how to test for this as we further develop our callback function.

The Callback Function
By now, then, you have learned how to create an instance of an
XMLHTTPRequest object, declare the identity of a callback function, and
prepare and send an asynchronous server request. You also know which
property tells you when the server response is available for use.

TIP: Not all of the possible
values may exist for any
given object. The object
may “skip” certain states if
they bear no relevance to
the object’s content type.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9 : Talking with the Server

88

Let’s look at our callback function, responseAjax().

First, note that this function is called every time there is a change in the
value of the onreadystatechange property. Usually, then, when this
function is called, it is required to do absolutely nothing because the
value of the readyState property has not yet reached 4 and we there-
fore know that the server request has not completed its processing.

We can achieve this simply by using a JavaScript if statement:

function responseAjax() {
// we are only interested in readyState of 4,
// i.e. “completed”
if(myRequest.readyState == 4) {

… program execution statements …
}

}

In addition to checking that the server request has completed, we also
want to check the HTTP response status code to ensure that it is equal
to 200, indicating a successful response to our asynchronous HTTP
request.

Referring quickly back to Table 8.1, we can see that our
XMLHTTPRequest object myRequest has two properties that report the
HTTP status response. These are

myRequest.status

which contains the status response code, and

myRequest.statusText

containing the reason phrase.

We can employ these properties by using a further loop:

function responseAjax() {
// we are only interested in readyState of 4,
// i.e. “loaded”
if(myRequest.readyState == 4) {

// if server HTTP response is “OK”
if(myRequest.status == 200) {

… program execution statements …
} else {

// issue an error message for any
// other HTTP response
alert(“An error has occurred: “

➥+ myRequest.statusText);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Callback Function

89

}
}

}

This code introduces an else clause into our if statement. Any server
status response other than 200 causes the contents of this else clause
to be executed, opening an alert dialog containing the text of the rea-
son phrase returned from the server.

Using the Callback Function
So how do we go about calling our callAjax() function from our
HTML page? Let’s see an example. Here’s the code for a simplified form
in an HTML page:

<form name=’form1’>
Name: <input type=’text’ name=’myname’>

Tel: <input type=’text’ name=’telno’>

<input type=’submit’>
</form>

We’ll launch the function using the onBlur event handler of a text input
field in a form:

<form name=’form1’>
Name: <input type=’text’ name=’myname’
➥onBlur=’callAjax()’>

Tel: <input type=’text’ name=’telno’>

<input type=’submit’>
</form>

The onBlur event handler is activated when the user leaves the field in
question. In this case, when the user leaves the field, callAjax() will be
executed, creating an instance of the XMLHTTPRequest object and mak-
ing an asynchronous server request to

myserverscript.php?surname=Smith

That doesn’t sound very useful. However, what if we were to now make
a slight change to the code of callAjax()?

function callAjax() {
// declare a variable to hold some
// information to pass to the server
var lastname = document.form1.myname.value;
…..

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9 : Talking with the Server

90

Now we can see that, as the user leaves the form field myname, the value
she had typed into that field would be passed to the server via our
asynchronous request. Such a call may, for example, check a database
to verify the existence of the named person, and if so return informa-
tion to populate other fields on the form.

The result, so far as the user is concerned, is that she sees the remaining
fields magically populated with data before submitting—or even com-
pleting—the form.

How we might use the returned data to achieve such a result is dis-
cussed in Lesson 10,“Using the Returned Data.”

Summary
This lesson looked at the ways in which our XMLHTTPRequest object
can communicate with the server, including sending asynchronous
requests, monitoring the server status, and executing a callback
function.

In Lesson 10, you will see how Ajax applications can deal with the data
returned by the server request.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the Returned Data

In this lesson you will learn how to process the information returned from the server in
response to an Ajax request.

The responseText and responseXML
Properties
Lesson 9,“Talking with the Server,” discussed the server communications that
allow you to send and monitor asynchronous server requests. The final piece of
the Ajax jigsaw is the information returned by the server in response to a request.

This lesson discusses what forms that information can take, and how you can
process it and use it in an application. We will use two of the XMLHTTPRequest
object’s properties, namely responseText and responseXML.

Table 8.1 listed several properties of the XMLHTTPRequest object that we have yet
to describe. Among these are the responseText and responseXML properties.

Lesson 9 discussed how we could use the readyState property of the
XMLHTTPRequest object to determine the current status of the XMLHTTPRequest
call. By the time our server request has completed, as detected by the condition
myRequest.readyState == 4 for our XMLHTTPRequest object myRequest, then
the two properties responseText and responseXML will respectively contain text
and XML representations of the data returned by the server.

In this lesson you’ll see how to access the information contained in these two
properties and apply each in an Ajax application.

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The responseText Property
The responseText property tries to represent the information returned
by the server as a text string.

Let’s look again at the callback function prototype:

function responseAjax() {
// we are only interested in readyState of 4, i.e.

“loaded”
if(myRequest.readyState == 4) {

// if server HTTP response is “OK”
if(myRequest.status == 200) {

… program execution statements …
} else {

// issue an error message for any other HTTP ➥re-
sponse

alert(“An error occurred: “ +
myRequest.statusText);

}
}

}

Let’s add a program statement to the branch of the if statement that is
executed on success, as in Listing 10.1.

LISTING 10.1 Displaying the Value of responseText
function responseAjax() {

// we are only interested in readyState of 4,
// i.e. “completed”
if(myRequest.readyState == 4) {

// if server HTTP response is “OK”
if(myRequest.status == 200) {

alert(“The server said: “

➥+ myRequest.responseText);

} else {
// issue an error message for
// any other HTTP response
alert(“An error has occurred: “

➥+ myRequest.statusText);
}

}
}

1 0 : Using the Returned Data

92

TIP: If the
XMLHTTPRequest call fails
with an error, or has not yet
been sent, responseText
will have a value null.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In this simple example, our script opens an alert dialog to display the
text returned by the server. The line

alert(“The server said: “ + myRequest.responseText);

takes the text returned by the server-side routine and appends it to the
string “The server said: “ before presenting it in a JavaScript alert
dialog.

Let’s look at an example using a simple PHP file on the server:

<?php echo “Hello Ajax caller!”; ?>

A successful XMLHTTPRequest call to this file would result in the
responseText property containing the string Hello Ajax caller!,
causing the callback function to produce the dialog shown in
Figure 10.1.

The responseText and responseXML Properties

93

FIGURE 10.1 Output generated by Listing 10.1.

Because the responseText contains a simple text string, we can manip-
ulate it using any of JavaScript’s methods relating to strings. Table 10.1
includes some of the available methods.

TABLE 10.1 Some JavaScript String Manipulation Methods

METHOD DESCRIPTION

charAt(number) Selects the single character at the
specified position within the string

indexOf(substring) Finds the position where the speci-
fied substring starts

lastIndexOf(substring) Finds the last occurrence of the sub-
string within the string

substring(start,end) Gets the specified part of the string

toLowerCase() Converts the string to lowercase

toUpperCase() Converts the string to uppercase

CAUTION : The
responseText property is
read-only, so there’s no
point in trying to manipu-
late its value until that
value has first been copied
into another variable.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

We’ll be looking at how responseText may be used in real situations in
Lesson 12,“Returning Data as Text,” and Lesson 13,“AHAH—
Asynchronous HTML and HTTP.”

The responseXML Property
Now suppose that the PHP script we used on the server in the previous
example had instead looked like Listing 10.2.

LISTING 10.2 A Server-Side Script to Return XML
<?php
header(‘Content-Type: text/xml’);
echo “<?xml version=\”1.0\” ?><greeting>
➥Hello Ajax caller!</greeting>”;
?>

Although this is a short script, it is worthwhile to look at it in some
detail.

The first line inside the <?php and ?> delimiters uses PHP’s header
instruction to add an HTTP header to the returned data.

The header returned is the parameter and value pair

Content-Type: text/xml

which announces to our XMLHTTPRequest object to expect that the fol-
lowing data from the server will be formatted as XML.

The next line is a PHP echo statement that outputs this simple, but
complete, XML document:

<?xml version=”1.0” ?>
<greeting>
Hello Ajax caller!
</greeting>

1 0 : Using the Returned Data

94

CAUTION: Make sure that
your PHP script does not
output anything—even
white space characters
such as spaces and line
returns—prior to issuing a
header() instruction; oth-
erwise, an error will occur.

NOTE: In PHP you need to escape any quotes that occur within a quot-
ed string to ensure that the meaning of the statement is unambiguous.
You do so using a backslash character, hence the PHP command

echo “”;

produces the output:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When the server call is completed, we now find this XML document
loaded into the responseXML property of our XMLHTTPRequest object.

We can now access the content of the XML document via JavaScript’s
DOM methods and properties.

Another Useful JavaScript DOM
Property
You will no doubt recall that we described some of these methods in
Lesson 6,“A Brief Introduction to XML.” Let’s now examine one more of
these methods, namely getElementsByTagName().

The getElementsByTagName() Method
This useful method allows you to build a JavaScript array of all the ele-
ments having a particular tagname. You can then access elements of
that array using normal JavaScript statements. Here’s an example:

var myElements = object.getElementsByTagName(‘greeting’);

This line creates the array myElements and populates it with all the ele-
ments with tagname greeting. As with any other array, you can find
out the length of the array (that is, the number of elements having the
declared tagname) by using the length property:

myElements.length

You can access a particular element individually if you want; the first
occurring element with tagname greeting can be accessed as
myElements[0], the second (if there is a second) as myElements[1], and
so:

var theElement = myElements[0];

Another Useful JavaScript DOM Property

95

TIP: It is important to
note that the responseXML
property does not contain
just a string that forms a
text representation of the
XML document, as was the
case with the responseText
property; instead, the
entire data and hierarchical
structure of the XML docu-
ment has been stored as a
DOM-compatible object.

TIP: You could also access these individual array elements directly:
var theElement = object.getElementsByTagName
➥(‘greeting’)[0];

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Parsing responseXML
Listing 10.3 gives an example of how we can use
getElementsByTagName(), alongside some other methods discussed in
Lesson 6, to return the text of our greeting in an alert dialog.

LISTING 10.3 Parsing responseXML using

getElementsByTagName()
function responseAjax() {

// we are only interested in readyState
// of 4, i.e. “completed”
if(myRequest.readyState == 4) {

// if server HTTP response is “OK”
if(myRequest.status == 200) {

var greetNode = http.responseXML
➥.getElementsByTagName(“greeting”)[0];

var greetText = greetNode.childNodes[0]
➥.nodeValue;

alert(“Greeting text: “ + greetText);
} else {

// issue an error message for
// any other HTTP response
alert(“An error has occurred: “

➥+ myRequest.statusText);
}

}
}

After the usual checks on the values of the readyState and status
properties, the code locates the required element from responseXML
using the getElementsByTagName() method and then uses
childNodes[0].nodeValue to extract the text content from this ele-
ment, finally displaying the returned text in a JavaScript alert dialog.

Figure 10.2 shows the alert dialog, showing the text string recovered
from the <greeting> element of the XML document.

1 0 : Using the Returned Data

96

FIGURE 10.2 Displaying the returned greeting.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Providing User Feedback
In web pages with traditional interfaces, it is clear to the user when the
server is busy processing a request; the interface is effectively unusable
while a new page is being prepared and served.

The situation is a little different in an Ajax application. Because the
interface remains usable during an asynchronous HTTP request, it may
not be apparent to the user that new information is expected from the
server. Fortunately there are some simple ways to warn that a server
request in is progress.

Recall that our callback function is called each time the value of
readyState changes, but that we are only really interested in the con-
dition myRequest.readyState == 4, which indicates that the server
request is complete.

Let’s refer again to Listing 10.3. For all values of readyState other than
4, the function simply terminates having done nothing. We can use
these changes to the value of readyState to indicate to the user that a
server request is progressing but has not yet completed. Consider the
following code:

function responseAjax() {
if(myRequest.readyState == 4) {

if(myRequest.status == 200) {
… [success – process the server response] …

} else {
… [failed – report the HTTP error] …

}
} else { // if readyState has changed

// but readyState <> 4
… [do something here to provide user feedback] …

}
}

A commonly used way to do this is to modify the contents of a page
element to show something eye-catching, such as a flashing or animat-
ed graphic, while a request is being processed and then remove it
when processing is complete.

Providing User Feedback

97

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The getElementById() Method
JavaScript’s getElementById() method allows you to locate an individ-
ual document element by its id value. You can use this method in your
user feedback routine to temporarily change the contents of a particu-
lar page element to provide the visual clue that a server request is in
progress.

Suppose that we have, say, a small animated graphic file anim.gif that
we want to display while awaiting information from the server. We want
to display this graphic inside a <div> element within the HTML page.
We begin with this <div> element empty:

<div id=”waiting”></div>

Now consider the code of the callback function:

function responseAjax() {
if(myRequest.readyState == 4) {

document.getElementById(‘waiting’).innerHTML = ‘’;
if(myRequest.status == 200) {

… [success – process the server response] …

} else {
… [failed – report the HTTP error] …

}
} else { // if readyState has changed

// but readyState <> 4
document.getElementById(‘waiting’)

➥.innerHTML = ‘’;
}

}

On each change in value of the property readyState, the callback func-
tion checks for the condition readyState == 4. Whenever this condi-
tion fails to be met, the else condition of the outer loop uses the
innerHTML property to ensure that the page element with id waiting
(our <div> element) contains an image whose source is the animated
GIF. As soon as the condition readyState == 4 is met, and we there-
fore know that the server request has concluded, the line

document.getElementById(‘waiting’).innerHTML = ‘’;

once more erases the animation.

We’ll see this technique in action in Lesson 11,“Our First Ajax
Application,” when we create a complete Ajax application.

1 0 : Using the Returned Data

98

TIP: Elements within a
page that have had id val-
ues declared are expected
to each have a unique id
value. This allows you to
identify a unique element.
Contrast this with the
class attribute, which can
be applied to any number
of separate elements in a
page and is more common-
ly used to set the display
characteristics of a group of
objects.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary
This lesson examined the last link in the Ajax chain: how to deal with
server responses containing both text and XML information.

We also introduced a further JavaScript DOM method,
getElementsByTagName().

In the next lesson, the last in Part II, we use this knowledge along with
that gained from earlier lessons, to construct a complete and working
Ajax application.

Summary

99

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Our First Ajax Application

In this lesson you will learn how to construct a complete and working Ajax application
using the techniques discussed in previous lessons.

Constructing the Ajax Application
The previous lessons have introduced all the techniques involved in the design
and coding of a complete Ajax application. In this lesson, we’re going to construct
just such an application.

Our first application will be simple in function, merely returning and displaying the
time as read from the server’s internal clock; nevertheless it will involve all the
basic steps required for any Ajax application:

■ An HTML document forming the basis for the application

■ JavaScript routines to create an instance of the XMLHTTPRequest object and
construct and send asynchronous server calls

■ A server-side routine (in PHP) to configure and return the required informa-
tion

■ A callback function to deal with the returned data and use it in the applica-
tion

Let’s get to it, starting with the HTML file that forms the foundation for our
application.

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 1 : Our First Ajax Application

102

The HTML Document
Listing 11.1 shows the code for our HTML page.

LISTING 11.1 The HTML Page for Our Ajax Application
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥Transitional//EN”
➥“http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<title>Ajax Demonstration</title>
<style>
.displaybox {
width:150px;
background-color:#ffffff;
border:2px solid #000000;
padding:10px;
font:24px normal verdana, helvetica, arial, sans-serif;
}
</style>
</head>
<body style=”background-color:#cccccc;
➥text-align:center”>

<h1>Ajax Demonstration</h1>
<h2>Getting the server time without page refresh</h2>
<form>
<input type=”button” value=”Get Server Time” />
</form>
<div id=”showtime” class=”displaybox”></div>

</body>
</html>

This is a simple HTML layout, having only a title, subtitle, button, and
<div> element, plus some style definitions.

Figure 11.1 shows what the HTML page looks like.

TIP: In HTML the <div> …
</div> element stands for
division and can be used to
allow a number of page
elements to be grouped
together and manipulated
in a block.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Adding JavaScript

103

Adding JavaScript
We can now add our JavaScript routines to the HTML page. We’ll do so
by adding them inside a <script> … </script> container to the
<head> section of the page.

FIGURE 11.1 The HTML file of Listing 11.1.

TIP: Alternatively we could have added the routines in an external
JavaScript file (ajax.js, say) and called this file from our document by
using a statement like:

<script language=”JavaScript” type=”text/javascript”
➥src=”ajax.js”></script>

in the <head> section of the document.

The XMLHTTPRequest Object
First, let’s add our function to create our XMLHTTPRequest object:

function getXMLHTTPRequest() {
try {
req = new XMLHttpRequest();
} catch(err1) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 1 : Our First Ajax Application

104

} catch (err2) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);
} catch (err3) {
req = false;

}
}

}
return req;
}

It’s now a simple matter to create our XMLHTTPRequest object, which
on this occasion we’re going to call http:

var http = getXMLHTTPRequest();

The Server Request
Now we need a function to construct our server request, define a call-
back function, and send the request to the server. This is the function
that will be called from an event handler in the HTML page:

function getServerTime() {
var myurl = ‘telltimeXML.php’;
myRand = parseInt(Math.random()*999999999999999);
// add random number to URL to avoid cache problems
var modurl = myurl+”?rand=”+myRand;
http.open(“GET”, modurl, true);
// set up the callback function
http.onreadystatechange = useHttpResponse;
http.send(null);

}

Once again we have added a parameter with a random value to the
URL to avoid any cache problems. Our callback function is named
useHttpResponse and is called each time a change is detected in the
value of http’s readyState property.

Our PHP Server-Side Script
Before explaining the operation of the callback function, we need to
refer to the code of the simple PHP server routine telltimeXML.php,
shown in Listing 11.2.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Adding JavaScript

105

LISTING 11.2 telltimeXML.php
<?php
header(‘Content-Type: text/xml’);
echo “<?xml version=\”1.0\” ?><clock1><timenow>”
➥.date(‘H:i:s’).”</timenow></clock1>”;
?>

This short program reports the server time using PHP’s date() function.
The argument passed to this function defines how the elements of the
date and time should be formatted. Here we’ve ignored the date-relat-
ed elements completely and asked for the time to be returned as
Hours:Minutes:Seconds using the 24-hour clock.

Our server script returns an XML file in the following format:

<?xml version=”1.0” ?>
<clock1>

<timenow>
XX:XX:XX
</timenow>

</clock1>

with XX:XX:XX replaced by the current server time. We will use the call-
back function to extract this time information and display it in the
<div> container of the HTML page.

The Callback Function
Here is the code for the callback function useHttpResponse:

function useHttpResponse() {
if (http.readyState == 4) {
if(http.status == 200) {

var timeValue = http.responseXML
➥.getElementsByTagName(“timenow”)[0];

document.getElementById(‘showtime’).innerHTML
➥ = timeValue.childNodes[0].nodeValue;

}
} else {
document.getElementById(‘showtime’).innerHTML

➥ = ‘’;
}

}

Once again we have used the getElementsByTagname method, this
time to select the <timenow> element of the XML data, which we have
stored in a variable timeValue. However, on this occasion we’re not

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 1 : Our First Ajax Application

106

going to display the value in an alert dialog as we did in Lesson 10,
“Using the Returned Data.”

This time we want instead to use the information to update the con-
tents of an element in the HTML page. Note from Listing 11.1 how the
<div> container is defined in our HTML page:

<div id=”showtime” class=”displaybox”></div>

In addition to the class declaration (which is used in the <style>
definitions to affect how the <div> element is displayed), we see that
there is also defined an id (identity) for the container, with a value set
to showtime.

Currently the <div> contains nothing. We want to update the content
of this container to show the server time information stored in
timeValue. We do so by selecting the page element using JavaScript’s
getElementById() method, which we met in Lesson 10. We’ll then use
the JavaScript innerHTML property to update the element’s contents:

document.getElementById(‘showtime’).innerHTML
➥ = timeValue.childNodes[0].nodeValue;

Employing Event Handlers
Finally, we must decide how the server requests will be triggered. In
this case we shall slightly edit the HTML document to use the
onClick() event handler of the <button> object:

<input type=”button” value=”Get Server Time”
➥ onClick=”getServerTime()”>

This will correctly deal with the occasion when the Get Server Time
button is clicked. It does, however, leave the <div> element empty
when we first load the page.

To overcome this little problem, we can use the onLoad() event han-
dler of the page’s <body> element:

<body style=”background-color:#cccccc”
➥ onLoad=”getServerTime()”>

This event handler fires as soon as the <body> area of the page has fin-
ished loading.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Putting It All Together

107

Putting It All Together
Listing 11.3 shows the complete client-side code for our Ajax applica-
tion.

LISTING 11.3 The Complete Ajax Application
<html>
<head>
<title>Ajax Demonstration</title>
<style>
.displaybox {
width:150px;
background-color:#ffffff;
border:2px solid #000000;
padding:10px;
font:24px normal verdana, helvetica, arial, sans-serif;
}
</style>
<script language=”JavaScript” type=”text/javascript”>
function getXMLHTTPRequest() {
try {
req = new XMLHttpRequest();
} catch(err1) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);
} catch (err2) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);
} catch (err3) {
req = false;

}
}

}
return req;
}

var http = getXMLHTTPRequest();

function getServerTime() {
var myurl = ‘telltimeXML.php’;
myRand = parseInt(Math.random()*999999999999999);
var modurl = myurl+”?rand=”+myRand;
http.open(“GET”, modurl, true);
http.onreadystatechange = useHttpResponse;
http.send(null);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 1 : Our First Ajax Application

108

LISTING 11.3 Continued
}

function useHttpResponse() {
if (http.readyState == 4) {
if(http.status == 200) {

var timeValue = http.responseXML
➥.getElementsByTagName(“timenow”)[0];

document.getElementById(‘showtime’).innerHTML
➥ = timeValue.childNodes[0].nodeValue;

}
} else {
document.getElementById(‘showtime’).innerHTML

➥ = ‘’;
}

}
</script>
</head>
<body style=”background-color:#cccccc”
➥ onLoad=”getServerTime()”>
<center>
<h1>Ajax Demonstration</h1>
<h2>Getting the server time without page refresh</h2>
<form>
<input type=”button” value=”Get Server Time”
➥ onClick=”getServerTime()”>
</form>
<div id=”showtime” class=”displaybox”></div>
</center>
</body>
</html>

Loading the page into our browser, we can see that the server time is
displayed in the <div> container, indicating that the onLoad event han-
dler for the <body> of the page has fired when the page has loaded.

User Feedback
Note also that we have provided user feedback via the line

document.getElementById(‘showtime’).innerHTML
➥ = ‘’;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Putting It All Together

109

which executes on each change to the value readyState until the con-
dition

readyState == 4

is satisfied. This line loads into the time display element an animated
GIF with a rotating pattern, indicating that a server request is in
progress, as shown in Figure 11.2. This technique was described in more
detail in Lesson 10.

TIP: If you have a fast server and a good Internet connection, it may be
difficult to see this user feedback in action because the time display is
updated virtually instantaneously. To demonstrate the operation of the
animated GIF image, we can slow down the server script to simulate the
performance of a more complex script and/or an inferior connection, by
using PHP’s sleep() command:

<?php
header(‘Content-Type: text/xml’);
sleep(3);
echo “<?xml version=\”1.0\” ?><clock1><timenow>”
➥.date(‘H:i:s’).”</timenow></clock1>”;
?>

The line

sleep(x);

Forces the server to pause program execution for x seconds.

FIGURE 11.2 An animated image provides user feedback.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 1 : Our First Ajax Application

110

Now, each time we click on the Get Server Time button, the time dis-
play is updated. Figure 11.3 shows the completed application.

FIGURE 11.3 Our completed Ajax application.

Summary
In this lesson, we constructed a simple yet complete Ajax application
that does the following:

■ Creates an instance of the XMLHTTPRequest object

■ Reacts to JavaScript event handlers built into an HTML page

■ Constructs and sends asynchronous server requests

■ Parses XML received from the server using JavaScript DOM meth-
ods

■ Provides user feedback that a request is in progress

■ Updates the displayed page with the received data

This completes Part II of the book. Part III,“More Complex Ajax
Technologies,” investigates some more advanced Ajax techniques.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Returning Data as Text

In this lesson you will learn some more techniques for using the responseText prop-
erty to add functionality to Ajax applications.

Getting More from the responseText
Property
The lessons of Part II,“Introducing Ajax,”discussed the individual components that
make Ajax work, culminating in a complete Ajax application. In Part III,“More Complex
Ajax Technologies,”each lesson examines how you can extend what you know to
develop more sophisticated Ajax applications.

For this lesson, we’ll look a little more closely at the responseText property of the
XMLHTTPRequest object and see how we can give our application some extra
functionality via its use.

As you have seen in previous lessons, the XMLHTTPRequest object provides two
properties that contain information received from the server, namely
responseText and responseXML. The former presents the calling application with
the server data in string format, whereas the latter provides DOM-compatible XML
that can be parsed using JavaScript methods.

Although the responseXML property allows you to carry out some sophisticated
programming tasks, much can be achieved just by manipulating the value stored
in the responseText property.

12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 2 : Returning Data as Text

112

Returning Text
The term text is perhaps a little misleading. The responseText property
contains a character string, the value of which you can assign to a
JavaScript variable via a simple assignment statement:

var mytext = http.responseText;

There is no rule saying that the value contained in such a string must be
legible text; in fact, the value can contain complete gibberish provided
that the string contains only characters that JavaScript accepts in a string
variable.

This fact allows a degree of flexibility in what sorts of information you
can transfer using this property.

Using Returned Text Directly in Page
Elements
Perhaps the simplest example is to consider the use of the value held in
responseText in updating the textual part of a page element, say a
<div> container. In this case you may simply take the returned string
and apply it to the page element in question.

Here’s a simple example. The following is the HTML code for an HTML
page that forms the basis for an Ajax application:

<html>
<head>
<title>My Ajax Application</title>

</head>
<body>
Here is the text returned by the server:

<div id=”myPageElement”></div>
</body>
</html>

Clearly this is a simple page that, as it stands, would merely output the
line “Here is the text returned by the server:” and nothing else.

Now suppose that we add to the page the necessary JavaScript rou-
tines to generate an instance of a XMLHTTPRequest object (in this case
called http) and make a server request in response to the onLoad()
event handler of the page’s <body> Element. Listing 12.1 shows the
source code for the revised page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting More from the responseText Property

113

LISTING 12.1 A Basic Ajax Application Using the
responseText Property
<html>
<head>
<title>My Ajax Application</title>
<script Language=”JavaScript”>
function getXMLHTTPRequest() {
try {
req = new XMLHttpRequest();
} catch(err1) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);
} catch (err2) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);
} catch (err3) {
req = false;

}
}

}
return req;
}

var http = getXMLHTTPRequest();

function getServerText() {
var myurl = ‘textserver.php’;
myRand = parseInt(Math.random()*999999999999999);
var modurl = myurl+”?rand=”+myRand;
http.open(“GET”, modurl, true);
http.onreadystatechange = useHttpResponse;
http.send(null);

}

function useHttpResponse() {
if (http.readyState == 4) {
if(http.status == 200) {
var mytext = http.responseText;
document.getElementById(‘myPageElement’)

➥.innerHTML = mytext;
}

} else {
document. getElementById(‘myPageElement’)

➥.innerHTML = “”;
}

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 2 : Returning Data as Text

114

LISTING 12.1 Continued
</head>
<body onLoad=”getServerText()”>
Here is the text returned by the server:

<div id=”myPageElement”></div>
</body>
</html>

Most, and probably all, of this code will be familiar from previous
lessons. The part that interests us here is the callback function
useHttpResponse(), which contains these lines:

var mytext = http.responseText;
document.getElementById(‘myPageElement’).innerHTML =
mytext;

Here we have simply assigned the value received in responseText to
become the content of our chosen <div> container.

Running the preceding code with the simple server-side script

<?php
echo “This is the text from the server”;
?>

produces the screen display of Figure 12.1.

FIGURE 12.1 Displaying text in a page element via responseText.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting More from the responseText Property

115

Including HTML in responseText
Now let’s modify the code from the preceding example.

As you know from previous lessons, HTML markup is entirely composed
of tags written using text characters. If the value contained in the
responseText property is to be used for modifying the display of the
page from which the server request is being sent, there is nothing to
stop us having our server script include HTML markup in the informa-
tion it returns.

Suppose that we once again use the code of Listing 12.1 but with a
modified server script:

<?php
echo “<h3>Returning Formatted Text</h3>”;
echo “<hr />”;
echo “We can use HTML to format
➥ text before we return it!”;
?>

Figure 12.2 shows the resulting browser display.

FIGURE 12.2 Display showing HTML formatted at the server.

As a slightly more involved example, consider the case where the server
script generates more complex output. We want our application to take
this server output and display it as the contents of a table.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 2 : Returning Data as Text

116

This time we’ll use our server-side PHP script to generate some tabular
information:

<?php
$days = array(‘Monday’,’Tuesday’,’Wednesday’,
➥’Thursday’,’Friday’,’Saturday’,’Sunday’);
echo “<table border=’2’>”;
echo “<tr><th>Day Number</th><th>Day Name</th></tr>”;
for($i=0;$i<7;$i++)
{
echo “<tr><td>”.$i.”</td><td>”.$days[$i].”</td></tr>”;

}
echo “</table>”;
?>

Once again using the code of Listing 12.1 to call the server-side script
via XMLHTTPRequest, we obtain a page as displayed in Figure 12.3.

FIGURE 12.3 Returning more complex HTML.

More Complex Formatted Data
So far we have demonstrated ways to return text that may be directly
applied to an element on a web page. So far, so good. However, if you
are willing to do a little more work in JavaScript to manipulate the
returned data, you can achieve even more.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting More from the responseText Property

117

Provided that the server returns a string value in the responseText
property of the XMLHTTPRequest object, you can use any data format
you may devise to encode information within it.

Consider the following server-side script, which uses the same data
array as in the previous example:

<?php
$days = array(‘Monday’,’Tuesday’,’Wednesday’,
➥’Thursday’,’Friday’,’Saturday’,’Sunday’);
$numdays = sizeof($days);
for($i=0;$i<($numdays - 1);$i++)
{
echo $days[$i].”|”;
}
echo $days[$numdays-1];
?>

The string returned in the responseText property now contains the
days of the week, separated—or delimited—by the pipe character |. If
we copy this string into a JavaScript variable mystring,

var mystring = http.responseText;

we will find that the variable mystring contains the string

Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday

We may now conveniently divide this string into an array using
JavaScript’s split() method:

var results = http.responseText.split(“|”);

TIP: The JavaScript split() method slices up a string, making each cut
wherever in the string it locates the character that it has been given as an
argument. That character need not be a pipe; popular alternatives are com-
mas or slashes.

We now have a JavaScript array results containing our data:

results[0] = ‘Monday’
results[1] = ‘Tuesday’
etc…

Rather than simply displaying the received data, we now can use it in
JavaScript routines in any way we want.

NOTE: Note the use of
the PHP sizeof() func-
tion to determine the num-
ber of items in the array. In
PHP, as in JavaScript, array
keys are numbered from 0
rather than 1.

TIP: For complex data for-
mats, XML may be a better
way to receive and handle
data from the server.
However, it is remarkable
how much can be done
just by using the
responseText property.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 2 : Returning Data as Text

118

Summary
With little effort, the XMLHTTPRequest object’s responseText property
can be persuaded to do more than simply return some text to display
in a web page.

For all but the most complex data formats, it may prove simpler to
manipulate responseText than to deal with the added complexity of
XML.

In this lesson you saw several examples of this technique, ranging from
the simple update of text content within a page element, to the manip-
ulation of more complex data structures.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AHAH—Asynchronous
HTML and HTTP

In this lesson you will learn how to use AHAH (Asynchronous HTML and HTTP) to build
Ajax-style applications without using XML.

Introducing AHAH
You saw in Lesson 12,“Returning Data as Text,” just how much can be achieved
with an Ajax application without using any XML at all. Many tasks, from simply
updating the text on a page to dealing with complicated data structures, can be
carried out using only the text string whose value is returned in the
XMLHTTPRequest object’s responseText property.

It is possible to build complete and useful applications without any XML at all. In
fact, the term AHAH (Asynchronous HTML and HTTP) has been coined for just such
applications.

This lesson takes the concepts of Lesson 12 a little further, examining in more
detail where—and how—AHAH can be applied.

13

NOTE: This technique, a kind of subset of Ajax, has been given various acronyms.
These include AHAH (asynchronous HTML and HTTP), JAH (Just Asynchronous
HTML), and HAJ (HTML And JavaScript). In this book we’ll refer to it as AHAH.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 3 : AHAH—Asynchronous HTML and HTTP

120

Why Use AHAH Instead of Ajax?
There is no doubt that XML is an important technology with diverse
and powerful capabilities. For complex Ajax applications with sophisti-
cated data structures it may well be the best—or perhaps the only—
option. However, using XML can sometimes complicate the design of
an application, including:

■ Work involved in the design of custom schemas for XML data.

■ Cross-browser compatibility issues when using JavaScript’s DOM
methods.

■ Performance may suffer from having to carry out processor-
intensive XML parsing.

Using AHAH can help you avoid these headaches, while offering a few
more advantages too:

■ Easy reworking of some preexisting web pages.

■ HTML can be easier to fault-find than XML.

■ Use of CSS to style the returned information, rather than having
to use XSLT.

Creating a Small Library for
AHAH
The Ajax applications examined in the last couple of lessons, although
complete and functional, involved embedding a lot of JavaScript code
into our pages. As you have seen, each application tends to contain
similar functions:

■ A method to create an instance of the XMLHTTPRequest object,
configure it, and send it

■ A callback function to deal with the returned text contained in
the responseText property

You can abstract these functions into simple JavaScript function calls,
especially in cases where you simply want to update a single page ele-
ment with a new value returned from the server.

NOTE: XSLT is a transfor-
mation language used to
convert XML documents
into other formats—for
example, into HTML suitable
for a browser to display.

In the following sections
we’ll package our AHAH
scripts into a neat external
JavaScript file that we can
call from our applications.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a Small Library for AHAH

121

Introducing myAHAHlib.js
Consider Listing 13.1; most of this code will be instantly recognizable
to you.

LISTING 13.1 myAHAHlib.js
function callAHAH(url, pageElement, callMessage) {

document.getElementById(pageElement)
➥.innerHTML = callMessage;

try {
req = new XMLHttpRequest(); /* e.g. Firefox */
} catch(e) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);

/* some versions IE */
} catch (e) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);

/* some versions IE */
} catch (E) {
req = false;
}

}
}
req.onreadystatechange

➥ = function() {responseAHAH(pageElement);};
req.open(“GET”,url,true);
req.send(null);

}

function responseAHAH(pageElement) {
var output = ‘’;
if(req.readyState == 4) {

if(req.status == 200) {
output = req.responseText;
document.getElementById(pageElement)

➥.innerHTML = output;
}

}
}

The function callAHAH() encapsulates the tasks of creating an instance
of the XMLHTTPRequest object, declaring the callback function, and
sending the request.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 3 : AHAH—Asynchronous HTML and HTTP

122

Note that instead of simply declaring

req.onreadystatechange = responseAHAH;

we instead used the JavaScript construct

req.onreadystatechange
➥ = function() {responseAHAH(pageElement);};

This type of declaration allows us to pass an argument to the declared
function, in this case identifying the page element to be updated.

callAHAH() also accepts an additional argument, callMessage. This
argument contains a string defining the content that should be dis-
played in the target element while we await the outcome of the server
request. This provides a degree of feedback for the user, indicating that
something is happening on the page. In practice this may be a line of
text, such as

‘Updating page; please wait a moment ….’

Once again, however, you may choose to embed some HTML code into
this string. Using an animated GIF image within an element pro-
vides an effective way of warning a user that a process is underway.

The callback function responseAHAH() carries out the specific task of
applying the string returned in the responseText property to the
innerHTML property of the selected page element pageElement:

output = req.responseText;
document.getElementById(pageElement).innerHTML = output;

This code has been packaged into a file named myAHAHlib.js, which you
can call from an HTML page, thus making the functions available to your
AHAH application. The next section shows some examples of its use.

Using myAHAHlib.js
In Lesson 4,“Client-Side Coding Using JavaScript,” we encountered the
concept of JavaScript functions being located in an external file that is
referred to within our page.

That’s how we’ll use our new file myAHAHlib.js, using a statement in this
form:

<SCRIPT language=”JavaScript” SRC=”myAHAHlib.js”></SCRIPT>

We will then be at liberty to call the functions within the script whenev-
er we want.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using myAHAHlib.js

123

The following is the skeleton source code of such an HTML page:

<html>
<head>
<title>Another Ajax Application</title>
<SCRIPT language=”JavaScript” SRC=”myAHAHlib.js”></SCRIPT>
</head>
<body>
<form>
<input type=”button” onClick=
➥”callAHAH(‘serverscript.php?parameter=x’,
➥’displaydiv’, ‘Please wait – page updating …’)” >
This is the place where the server response
will be posted:

<div id=”displaydiv”></div>
</form>
</body>
</html>

In this simple HTML page, a button element is used to create the event that
causes the callAHAH() method to be called.This method places the text string

‘Please wait – page updating …’

in the <div> element having id displaydiv and sends the asynchronous
server call to the URL serverscript.php?parameter=x.

When responseAHAH() detects that the server has completed its response,
the <div> element’s content is updated using the value stored in
responseText; instead of showing the “please wait” message, the <div>
now displays whatever text the server has returned.

Applying myAHAHlib.js in a Project
We can demonstrate these techniques with a further simple Ajax applica-
tion. This time, we’ll build a script to grab the ‘keywords’ metatag informa-
tion from a user-entered URL.

NOTE: Metatags are optional HTML container elements in the <head> sec-
tion of an HTML page. They contain data about the web page that is useful
to search engines and indexes in deciding how the page’s content should be
classified. The ‘keywords’ metatag, where present, typically contains a
comma-separated list of words with meanings relevant to the site content.
An example of a ‘keywords’ metatag might look like this:

<meta name=”keywords” content=”programming, design,
➥ development, Ajax, JavaScript, XMLHTTPRequest,
➥script”>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 3 : AHAH—Asynchronous HTML and HTTP

124

Listing 13.2 shows the HTML code.

LISTING 13.2 getkeywords.html
<html>
<head>
<title>A ‘Keywords’ Metatag Grabber</title>
<SCRIPT language=”JavaScript” SRC=”myAHAHlib.js”>
</SCRIPT>
</head>
<body>
<script type=”text/javascript” src=”ahahLib.js”>
</script>
<form>
<table>
<tr>
<td>
URL: http://

</td>

<td>
<input type=”text” id=”myurl” name=”myurl” size=30>
<input type=”button” onclick =

➥”callAHAH(‘keywords.php?url=’+document
➥.getElementById(‘myurl’).value,’displaydiv’,
➥ ‘Please wait; loading content …’)” value=”Fetch”>
</td>

</tr>
<tr><td colspan=2 height=50 id=”displaydiv”></td></tr>
</table>
</form>
</body>
</html>

Finally, consider the server-side script:

<?php
$tags = @get_meta_tags(‘http://’.$url);
$result = $tags[‘keywords’];
if(strlen($result) > 0)
{

echo $result;
} else {

echo “No keywords metatag is available”;
}
?>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using myAHAHlib.js

125

We present the selected URL to the PHP method get_meta_tags() as
an argument:

$tags = @get_meta_tags(‘http://’.$url);

This method is specifically designed to parse the metatag information
from HTML pages in the form of an associative array. In this script, the
array is given the name $tags, and we can recover the ‘keywords’
metatag by examining the array entry $tags[‘keywords’]; we can
then check for the presence or absence of a ‘keywords’ metatag by
measuring the length of the returned string using PHP’s strlen()
method.

When the file getkeywords.html is first loaded into the browser, we are
presented with the display shown in Figure 13.1.

TIP: The @ character
placed before a PHP
method tells the PHP inter-
preter not to output an
error message if the method
should encounter a prob-
lem during execution.We
require it in this instance
because not all web pages
contain a ‘keywords’
metatag; in the cases where
none exists, we would prefer
the method to return an
empty string so that we can
add our own error handling.

FIGURE 13.1 The browser display after first loading the application.

Here we are invited to enter a URL. When we then click on the Fetch
button, callAHAH() is executed and sends our chosen URL as a para-
meter to the server-side script. At the same time, the message “Please
wait; loading content … “ is placed in the <div> container. Although
possibly only visible for a fraction of a second, we now have a display
such as that shown in Figure 13.2.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 3 : AHAH—Asynchronous HTML and HTTP

126

Finally, when the server call has concluded, the contents of the
responseText property are loaded into the <div> container, producing
the display of Figure 13 3.

FIGURE 13.2 Awaiting the server response.

FIGURE 13.3 The keywords are successfully returned.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary

127

Extending myAHAHlib.js
As it stands, myAHAHlib.js is a simple implementation of AHAH. There
are many ways it could be improved and extended, depending on how
it is to be used. Rather than cover these in this lesson, we’ll leave these
for your own experimentation. Here’s a few suggestions to get you
started:

■ Currently only GET requests are supported. How might the func-
tions be modified to allow POST requests too?

■ Much of the user feedback discussed in Lesson 11,“Our First Ajax
Application,” is not yet implemented in responseAHAH().

■ Is it possible for callAHAH() to be modified to accept an array
of page elements for updating and (with the aid of a suitable
server-side script) process them all at once?

TIP: One option we haven’t yet considered is the idea of passing back
JavaScript code within responseText. Because JavaScript source code
(like everything else in an HTML page) is made up of statements written
in plain text, you can return JavaScript source from the server in the
responseText property.

You can then execute this JavaScript code using JavaScript’s eval()
method:

eval(object.responseText);

Consider the situation where your server script returns the string:

“alert(‘Hello World!);”

In this case the eval() method would execute the content as a
JavaScript statement, creating a dialog saying ‘Hello World!’ with an OK
button.

Summary
It will hopefully have become clear, in the course of this lesson and
Lesson 12, that Ajax can achieve a lot of functionality without using any
XML at all.

By carefully using combinations of client-side coding in JavaScript and
server-side scripting in your chosen language, you can create data
schemes of high complexity.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 3 : AHAH—Asynchronous HTML and HTTP

128

In simpler applications, where all you want to do is update the text of
page elements, the XMLHTTPRequest object’s functionality may be
abstracted into a JavaScript function library and called from an HTML
page via straightforward methods.

For some tasks, however, you need to leverage the power of XML. We’ll
look at this subject in Lesson 14,“Returning Data as XML.”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Returning Data as XML

In this lesson you will learn to use XML data returned from the server via the
responseXML property of the XMLHTTPRequest object.

Adding the “x” to Ajax
Lesson 12,“Returning Data as Text,” and Lesson 13,“AHAH—Asynchronous HTML
and HTTP,” dealt at some length with the string value contained in responseText
and looked at several techniques for using this information in applications. These
examples ranged from simple updates of page element text to applications using
more sophisticated data structures encoded into string values that can be stored
and transferred in the responseText property.

The X in Ajax does, of course, stand for XML, and there are good reasons for using
the power of XML in your applications. This is particularly true when you need to
use highly structured information and/or perform complex translations between
different types of data representation.

As discussed previously, the XMLHTTPRequest object has a further property called
responseXML, which can be used to transfer information from the server via XML,
rather than in text strings.

You saw in Lesson 11,“Our First Ajax Application,” how JavaScript’s document
object model (DOM) methods can help you process this XML information. This les-
son looks at these techniques in a little more detail and hopefully gives you a taste
of what Ajax applications can achieve when leveraging the power of XML.

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 4 : Returning Data as XML

130

The responseXML Property
Whereas the responseText property of the XMLHTTPRequest object
contains a string, responseXML can be treated as if it were an XML doc-
ument.

CAUTION: You need to
make sure that your server
presents valid and well-
formed XML to be returned
via the responseXML prop-
erty. In situations where XML
cannot be correctly parsed
by the XMLHTTPRequest
object, perhaps due to well-
formedness errors or prob-
lems with unsupported
character encoding, the con-
tent of the responseXML is
unpredictable and also likely
to be different in different
browsers.

NOTE: Like the responseText property, the value stored in
responseXML is read-only, so you cannot write directly to this property;
to manipulate it you must copy the value to another variable:

var myobject = http.responseXML;

The complete structure and data contained in the XML document can now
be made available by using JavaScript’s DOM methods. Later in the lesson
we’ll demonstrate this with another working Ajax application, but first let’s
revisit the JavaScript DOM methods and introduce a few new ones.

More JavaScript DOM Methods
You met some of the JavaScript DOM methods, such as getElementById
and getElementsByTagName, in previous lessons. In those cases, we were
mostly concerned with reading the values of the nodes to write those
values into HTML page elements.

This lesson looks at the DOM methods that can be used to actually cre-
ate elements, thereby changing the structure of the page.

The Document Object Model can be thought of as a treelike structure of
nodes. As well as reading the values associated with those nodes, you
can create and modify the nodes themselves, thereby changing the
structure and content of your document.

To add new elements to a page, you need to first create the elements
and then attach them to the appropriate point in your DOM tree. Let’s
look at a simple example using the following HTML document:

<html>
<head>
<title>Test Document</title>

</head>
<body>
We want to place some text here:

<div id=”displaydiv></div>
</body>
</html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The responseXML Property

131

In this example, we want to add the text “Hello World!” to the <div>
container in the document body. We’ll put our JavaScript routine into a
function that we’ll call from the body’s onLoad() event handler.

First, we’ll use the JavaScript DOM method createTextNode() to, well,
create a text node:

var textnode = createTextNode(‘Hello World!’);

We now need to attach textnode to the DOM tree of the document at
the appropriate point.

You first learned about child nodes in Lesson 4,“Client-Side Coding
Using JavaScript”; hopefully, you recall that nodes in a document are
said to have children if they contain other document elements.
JavaScript has an appendChild() method, which allows us to attach
our new text node to the DOM tree by making it a child node of an
existing document node.

In this case, we want our text to be inside the <div> container having
the id displaydiv:

var textnode = document.createTextNode(‘Hello World!);
document.getElementById(‘displaydiv’).appendChild(textn-
ode);

Let’s look at the complete source of the page, after wrapping up this
JavaScript code into a function and adding the onLoad() event handler
to execute it:

<html>
<head>
<title>Test Document</title>
<script Language=”JavaScript”>
function hello()
{
var textnode = document.createTextNode(‘Hello World!’);
document.getElementById(‘displaydiv’).appendChild(textn-

ode);
}
</script>
</head>
<body onLoad=”hello()”>
We want to place some text here:

<div id=”displaydiv”></div>
</body>
</html>

Figure 14.1 shows the browser display after loading this page.

NOTE: Compare this
DOM-based method of
writing content to the page
with the innerHTML
method used in the project
in Lesson 11.

NOTE: If you display the
source code of this docu-
ment in your browser, you
won’t see the ‘Hello
World!’ text inside the
<div> container. The
browser builds its DOM
representation of the HTML
document and then uses
that model to display the
page. The amendments
made by your code are
made to the DOM, not to
the document itself.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 4 : Returning Data as XML

132

When you want to create other page elements besides text nodes, you
can do so using the createElement() method, which works pretty
much like createTextNode(). We could, in fact, have used
createElement() to create the <div> container itself, prior to adding
our ‘Hello World!’ text node:

var newdiv = document.createElement(“div”);

In general, you simply pass the type of the required page element as an
argument to createElement() to generate the required type of ele-
ment.

An Overview of DOM Methods
This book is about Ajax, not just about JavaScript DOM techniques, so
we’re not going to reproduce here a comprehensive guide to all the
available methods and properties. However, Table 14.1 itemizes some of
the more useful ones.

TABLE 14.1 Some JavaScript DOM Properties and Methods

NODE PROPERTIES

childNodes Array of child nodes

firstChild The first Child node

lastChild The last Child node

FIGURE 14.1 The DOM says “Hello World!”

TIP: If you need a more
comprehensive account of
the JavaScript DOM meth-
ods and properties, Andrew
Watt gives a useful list in
his excellent book Sams
Teach Yourself XML in 10
Minutes, which is on the
Ajax Starter Kit CD.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Project—An RSS Headline Reader

133

NODE PROPERTIES

nodeName Name of the node

nodeType Type of node

nodeValue Value contained in the node

nextSibling Next node sharing the same parent

previousSibling Previous node sharing same parent

parentNode Parent of this node

NODE METHODS

AppendChild Add a new child node

HasChildNodes True if this node has children

RemoveChild Deletes a child node

DOCUMENT METHODS

CreateAttribute Make a new attribute for an element

CreateElement Make a new document element

CreateTextNode Make a text item

GetElementsByTagName Create an array of tagnames

GetElementsById Find an element by its ID

Project—An RSS Headline Reader
Let’s now take what we’ve learned about returning XML data from the
server and use these techniques to tackle a new project.

XML data is made available on the Internet in many forms. One of the
most popular is the RSS feed, a particular type of XML source usually
containing news or other topical and regularly updated items. RSS
feeds are available from many sources on the Web, including most
broadcast companies and newspaper publishers, as well as specialist
sites for all manner of subjects.

We’ll write an Ajax application to take a URL for an RSS feed, collect the
XML, and list the titles and descriptions of the news items contained in
the feed.

The following is part of the XML for a typical RSS feed:

<rss version=”0.91”>
<channel>
<title>myRSSfeed.com</title>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 4 : Returning Data as XML

134

<link>http://www.********.com/</link>
<description>My RSS feed</description>
<language>en-us</language>
<item>
<title>New Store Opens</title>
<link>http://www.**********.html</link>
<description>A new music store opened today in Canal Road.
➥The new business, Ajax Records, caters for a wide range of
➥musical tastes.</description>
</item>
<item>
<title>Bad Weather Affects Transport</title>
<link>http://www.***********.html</link>
<description>Trains and buses were disrupted badly today
➥due to sudden heavy snow. Police advised people not to
➥travel unless absolutely necessary.</description>
</item>
<item>
<title>Date Announced for Mayoral Election</title>
<link>http://www.*********.html</link>
<description>September 4th has been announced as the date
➥for the next mayoral election. Watch local news for more
➥details.</description>
</item>
</channel>
</rss>

From the first line

<rss version=”0.91”>

we see that we are dealing with RSS version 0.91 in this case. The ver-
sions of RSS differ quite a bit, but for the purposes of our example we
only care about the <title>, <link>, and <description> elements for
the individual news items, which remain essentially unchanged from
version to version.

The HTML Page for Our Application
Our page needs to contain an input field for us to enter the URL of the
required RSS feed and a button to instruct the application to collect the
data. We also will have a <div> container in which to display our parsed
data:

<html>
<head>
<title>An Ajax RSS Headline Reader</title>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Project—An RSS Headline Reader

135

</head>
<body>
<h3>An Ajax RSS Reader</h3>
<form name=”form1”>
URL of RSS feed: <input type=”text” name=”feed” size=”50”
➥value=”http://”><input type=”button” value=”Get Feed”>

<div id=”news”><h4>Feed Titles</h4></div>
</form>
</html>

If we save this code to a file rss.htm and load it into our browser, we see
something like the display shown in Figure 14 2.

FIGURE 14.2 Displaying the base HTML document for our RSS headline reader.

Much of the code for our reader will be familiar by now; the means of
creating an instance of the XMLHTTPRequest object, constructing and
sending a server request, and checking when that request has been
completed are all carried out much as in previous examples.

This time, however, instead of using responseText we will be receiving
data in XML via the responseXML property. We’ll use that data to modify
the DOM of our HTML page to show the news items’ titles and descrip-
tions in a list within the page’s <div> container. Each title and descrip-
tion will be contained in its own paragraph element (which we’ll also
construct for the purpose) and be styled via a style sheet to display as
we want.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 4 : Returning Data as XML

136

The Code in Full
Let’s jump right in and look at the code, shown in Listing 14.1.

LISTING 14.1 Ajax RSS Headline Reader
<html>
<head>
<title>An Ajax RSS Headline Reader</title>
</head>
<style>
.title {
font: 16px bold helvetica, arial, sans-serif;
padding: 0px 30px 0px 30px;
text-decoration:underline;
}
.descrip {
font: 14px normal helvetica, arial, sans-serif;
text-decoration:italic;
padding: 0px 30px 0px 30px;
background-color:#cccccc;
}
.link {
font: 9px bold helvetica, arial, sans-serif;
padding: 0px 30px 0px 30px;
}
.displaybox {
border: 1px solid black;
padding: 0px 50px 0px 50px;
}
</style>
<script language=”JavaScript” type=”text/javascript”>
function getXMLHTTPRequest() {
try {
req = new XMLHttpRequest(); /* e.g. Firefox */
} catch(e) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);
/* some versions IE */
} catch (e) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);
/* some versions IE */
} catch (E) {
req = false;

}
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Project—An RSS Headline Reader

137

}
return req;
}

var http = getXMLHTTPRequest();

function getRSS() {
var myurl = ‘rssproxy.php?feed=’;
var myfeed = document.form1.feed.value;
myRand = parseInt(Math.random()*999999999999999);
// cache buster

var modurl = myurl+escape(myfeed)+”&rand=”+myRand;
http.open(“GET”, modurl, true);
http.onreadystatechange = useHttpResponse;
http.send(null);

}

function useHttpResponse() {
if (http.readyState == 4) {
if(http.status == 200) {

// first remove the childnodes
// presently in the DM
while (document.getElementById(‘news’)

➥.hasChildNodes())
{

document.getElementById(‘news’).removeChild(document
➥.getElementById(‘news’).firstChild);

}
var titleNodes = http.responseXML

➥.getElementsByTagName(“title”);
var descriptionNodes = http.responseXML

➥.getElementsByTagName(“description”);
var linkNodes = http.responseXML

➥.getElementsByTagName(“link”);
for(var i =1;i<titleNodes.length;i++)
{
var newtext = document

➥.createTextNode(titleNodes[i]
➥.childNodes[0].nodeValue);

var newpara = document.createElement(‘p’);
var para = document.getElementById(‘news’)

➥.appendChild(newpara);
newpara.appendChild(newtext);
newpara.className = “title”;

var newtext2 = document

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 4 : Returning Data as XML

138

LISTING 14.1 Continued
➥.createTextNode(descriptionNodes[i]
➥.childNodes[0].nodeValue);

var newpara2 = document.createElement(‘p’);
var para2 = document

➥.getElementById(‘news’).appendChild(newpara2);
newpara2.appendChild(newtext2);
newpara2.className = “descrip”;
var newtext3 = document

➥.createTextNode(linkNodes [i]
➥.childNodes[0].nodeValue);

var newpara3 = document.createElement(‘p’);
var para3 = document.getElementById(‘news’)

➥.appendChild(newpara3);
newpara3.appendChild(newtext3);
newpara3.className = “link”;

}
}

}
}
</script>
<body>
<center>
<h3>An Ajax RSS Reader</h3>
<form name=”form1”>
URL of RSS feed: <input type=”text” name=”feed”
➥size=”50” value=”http://”><input type=”button”
➥onClick=”getRSS()” value=”Get Feed”>

<div id=”news” class=”displaybox”>
➥<h4>Feed Titles</h4></div>
</form>
</center>
</html>

Mostly we are concerned with describing the workings of the callback
function useHttpResponse().

The Callback Function
In addition to the usual duties of checking the XMLHTTPRequest
readyState and status properties, this function undertakes for us the
following tasks:

■ Remove from the display <div> any display elements from previ-
ous RSS listings.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Project—An RSS Headline Reader

139

■ Parse the incoming XML to extract the title, link, and description
elements.

■ Construct DOM elements to hold and display these results.

■ Apply CSS styles to these elements to change how they are dis-
played in the browser.

To remove the DOM elements installed by previous news imports
(where they exist), we first identify the <div> element by using its ID
and then use the hasChildNodes() DOM method, looping through and
deleting the first child node from the <div> element each time until
none remain:

while (document.getElementById(‘news’).hasChildNodes())
{
document.getElementById(‘news’)
➥.removeChild(document.getElementById(‘news’).firstChild);
}

The following explanation describes the processing of the title ele-
ments, but, as can be seen from Listing 14.1, we repeat the process
identically to retrieve the description and link information too.

To parse the XML content to extract the item titles, we build an array
titleNodes from the XML data stored in responseXML:

var titleNodes
➥ = http.responseXML.getElementsByTagName(“title”);

We can then loop through these items, processing each in turn:

for(var i =1;i<titleNodes.length;i++)
{ … processing instructions … }

For each title, we need to first extract the title text using the nodeValue
property:

var newtext = document.createTextNode(titleNodes[i]
➥.childNodes[0].nodeValue);

We can then create a paragraph element:

var newpara = document.createElement(‘p’);

append the paragraph as a child node of the <div> element:

var para = document.getElementById(‘news’)
➥.appendChild(newpara);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 4 : Returning Data as XML

140

and apply the text content to the paragraph element:

newpara.appendChild(newtext);

Finally, using the className property we can define how the paragraph
is displayed. The class declarations appear in a <style> element in the
document head and provide a convenient means of changing the look
of the RSS reader to suit our needs.

newpara.className = “title”;

Each time we enter the URL of a different RSS feed into the input field
and click the button, the <div> content is updated to show the items
belonging to the new RSS feed. This being an Ajax application, there is
of course no need to reload the whole page.

The Server-Side Code
Because of the security constraints built into the XMLHTTPRequest
object, we can’t call an RSS feed directly; we must use a script having a
URL on our own server, and have this script collect the remote XML file
and deliver it to the Ajax application.

In this case, we do not require that the server-side script rssproxy.php
should modify the XML file but simply route it back to us via the
responseXML property of the XMLHTTPRequest object. We say that the
script is acting as a proxy because it is retrieving the remote resource
on behalf of the Ajax application.

Listing 14.2 shows the code of the PHP script.

LISTING 14.2 Server Script for the RSS Headline Reader
<?php
$mysession = curl_init($_GET[‘feed’]);
curl_setopt($mysession, CURLOPT_HEADER, false);
curl_setopt($mysession, CURLOPT_RETURNTRANSFER, true);
$out = curl_exec($mysession);
header(“Content-Type: text/xml”);
echo $out;
curl_close($mysession);
?>

The script uses the cURL PHP library, a set of routines for making
Internet file transfer easier to program. A full description of cURL would
not be appropriate here; suffice to say that this short script first receives
the URL of the required RSS feed by referring to the feed variable sent

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary

141

by the Ajax application. The two lines that call the curl_setopt() func-
tion declare, respectively, that we don’t want the headers sent with the
remote file, but we do want the file contents. The curl_exec() function
then makes the data transfer.

After that it’s simply a matter of adding an appropriate header by using
the familiar PHP header() command and returning the data to our Ajax
application.

Figure 14.3 shows the RSS reader in action, in this case displaying con-
tent from a CNN newsfeed.

TIP: For a full description
of using cURL with PHP, see
the PHP website at
http://uk2.php.net/curl
and/or the cURL site at
http://curl.haxx.se/.

FIGURE 14.3 The Ajax RSS reader in action.

Summary
The JavaScript DOM methods, when used with the XMLHTTPRequest
object and XML data, provide a powerful means of transferring, organiz-
ing, and either displaying or otherwise processing data that has a sophisti-
cated structure.

In this lesson you saw how DOM elements can be added, deleted, and
manipulated to restructure an application’s DOM in accordance with
XML data received in the XMLHTTPRequest object’s responseXML prop-
erty.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Web Services and the
REST Protocol

In this lesson you will learn the basics of web services and how to implement them
using the REST (Representational State Transfer) protocol.

Introduction to Web Services
So far you have seen several example applications in which we have called server-
side scripts to carry out tasks. In each case we devised data structures to transfer
the information and written routines to handle data transfer both to and from the
server.

Suppose, though, that you wanted to make your server-side programs more gen-
erally available. Perhaps you can imagine that several different web applications
might interface with such scripts for their own purposes. As well as browsers
requesting pages directly, perhaps other applications (for example Ajax applica-
tions operating via XMLHTTPRequest calls) might also make data requests and
expect to receive, in response, data that they can understand and manipulate.

In such cases it would be beneficial to have some form of standardization in the
interfaces that your program makes available. This principle provides the basis of
what have come to be known as web services.

As an example, suppose that our server application produces XML-
formatted weather forecast data in response to a request containing geographical
information.

15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 5 : Web Services and the REST Protocol

144

The nature of this type of service makes it broadly applicable; such an
application might have a wide variety of “clients” ranging from simple
web pages that present weather forecasts in their local area to complex
aviation or travel planning applications that require the data for more
demanding uses.

This type of service is just one small example of what a web service
might be capable of doing. Thousands of web services are active on the
Internet, providing a mind-boggling array of facilities including user
authentication, payment processing, content syndication, messaging,
and a host of others.

In general, a web service makes available an application programming
interface (API), which allows client applications to build interfaces to
the service. Although any Internet protocol might be used to create
web services, XML and HTTP are popular options.

A number of protocols and techniques have emerged that help you to
create and utilize web services. This lesson looks at perhaps the sim-
plest of those, called REST (Representational State Transfer), and Lesson
16,“Web Services Using SOAP,” discusses another protocol, this time
called SOAP (the Simple Object Access Protocol). Each lesson highlights in
particular how they may be useful in Ajax applications.

REST—Representational State
Transfer
REST is centered on two main principles for generalized network
design:

■ Resources are represented by URLs—A resource can be thought
of as a “noun” and refers to some entity we want to deal with in
the API of a web service; this could be a document, a person, a
meeting, a location, and so on. Each resource in a REST applica-
tion has a unique URL.

■ Operations are carried out via standard HTTP methods—HTTP
methods such as GET, POST, PUT, and DELETE are used to carry out
operations on resources. In this way we can consider such opera-
tions as “verbs” acting on resources.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

REST—Representational State Transfer

145

A Hypothetical REST Example
To understand how and why we might apply these ideas, let’s look at a
hypothetical example.

Suppose that we have a web service that allows writers to submit, edit,
and read articles. Applying so-called RESTful principles to the design of
this application, the following occurs:

■ Each submitted article has a unique URL, for example:

http://somedomain.com/articles/173

We only require that the URL be unique for each article; for
instance

http://somedomain.com/articles/list.php?id=173

also fulfils this requirement.

■ To retrieve an article to read or edit, our client application would
simply use an HTTP GET request to the URL of the article in ques-
tion.

■ To upload a new article, a POST request would be used, contain-
ing information about the article. The server would respond with
the URL of the newly uploaded article.

■ To upload an edited article, a PUT request would be used, con-
taining the revised content.

■ HTTP DELETE would be employed to delete a particular article.

In this way, the web service is using an interface familiar to anyone who
has used the World Wide Web. We do not need to devise a library of API
methods for sending or retrieving information; we already have them in
the form of the standard HTTP methods.

Query Information Using GET
An important issue concerning the use of the HTTP GET request in a
RESTful application is that it should never change the server state. To
put it another way: We only use GET requests to ask for information
from the server, never to add or alter information already there.

POST, PUT, and DELETE calls can all change the server status in some
way.

TIP: Although REST
requires that URLs be
unique, it does not follow
that each resource must
have a corresponding phys-
ical page. In many cases the
resource is generated by
the web service at the time
of the request—for exam-
ple, by reference to a data-
base.

NOTE: The World Wide
Web itself is a REST applica-
tion.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 5 : Web Services and the REST Protocol

146

Stateless Operation
All server exchanges within a RESTful application should be stateless. By
stateless we mean that the call itself must contain all the information
required by the server to carry out the required task, rather than depend-
ing on some state or context currently present on the server.We cannot,
for example, require the server to refer to information sent in previous
requests.

Using REST in Practice
Let’s expand on the example quoted earlier involving our articles web
service.

Reading a List of Available Articles
The list of available articles is a resource. Because the web service con-
forms to REST principles, we expect the service to provide a URL by
which we can access this resource, for instance:

http://somedomain.com/articles/list.php

Because we are querying information, rather than attempting to
change it, we simply use an HTTP GET request to the preceding URL.
The server may return, for example, the following XML:

<articles>
<article>

<id>173</id>
<title>New Concepts in Ajax</title>
<author>P.D. Johnstone</author>

</article>
<article>

<id>218</id>
<title>More Ajax Ideas</title>
<author>S.N. Braithwaite</author>

</article>
<article>

<id>365</id>
<title>Pushing the Ajax Envelope</title>
<author>Z.R. Lawson</author>

</article>
</articles>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using REST in Practice

147

Retrieving a Particular Article
Because this is another request for information, we are again required
to submit an HTTP GET request. Our web service might perhaps allow us
to make a request to

http://somedomain.com/articles/list.php?id=218

and receive in return

<article>
<id>218</id>
<title>More Ajax Ideas</title>
<author>S.N. Braithwaite</author>

</article>

Uploading a New Article
In this instance we need to issue a POST request rather than a GET
request. In cases similar to the hypothetical one outlined previously, it is
likely that the server will assign the id value of a new article, leaving us
to encode parameter and value pairs for the title and author ele-
ments:

var articleTitle = ‘Another Angle on Ajax’;
var articleAuthor = ‘K.B. Schmidt’;
var url = ‘/articles/upload.php’;
var poststring = “title=”+encodeURI(articleTitle)
➥+”&author=”+encodeURI(articleAuthor);
http.onreadystatechange = callbackFunction();
http.open(‘POST’, url, true);
http.setRequestHeader(“Content-type”,
➥”application/x-www-form-urlencoded”);
http.setRequestHeader(“Content-length”, poststring.length);
http.send(poststring);

Real World REST—the Amazon REST API
Leading online bookseller Amazon.com makes available a set of REST
web services to help developers integrate Amazon browsing and shop-
ping facilities into their web applications.

By first creating a URL containing parameter/value pairs for the required
search parameters (such as publisher, sort order, author, and so on) and
then submitting a GET request to this URL, the Amazon web service can
be persuaded to return an XML document containing product details.
We may then parse that XML to create DOM objects for display in a web

NOTE: Amazon.com often
refers to the REST protocol
as XML-over-HTTP or
XML/HTTP.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 5 : Web Services and the REST Protocol

148

page or to provide data for further processing as required by our appli-
cation.

TIP: Amazon requires that you obtain a developer’s token to develop
client applications for its web services. You will need this token in con-
structing REST requests to Amazon’s web services. You can also obtain an
Amazon Associate’s ID to enable you to earn money by carrying Amazon
services on your website. See http://www.amazon.com for details.

Let’s see this in practice by developing a REST request to return a list of
books. Many types of searches are possible, but in this example, we
request a list of books published by Sams.

We start to construct the GET request with the base URL:

$url = ‘http://xml.amazon.com/onca/xml3’;

We then need to add a number of parameter/value pairs to complete
the request:

$assoc_id = “XXXXXXXXXX”; // your Amazon Associate’s ID
$dev_token = “ZZZZZZZZZZ”; // Your Developer Token
$manuf = “Sams”;
$url = “http://xml.amazon.com/onca/xml3”;
$url .= “?t=”.$assoc_id;
$url .= “&dev-t=”.$dev_token;
$url .= “&ManufacturerSearch=”.$ manuf;
$url .= “&mode=books”;
$url .= “&sort=+salesrank”;
$url .= “&offer=All”;
$url .=”&type=lite”;
$url .= “&page=1”;
$url .= “&f=xml”;

Submitting this URL, we receive an XML file containing details of all
matching books. I won’t reproduce the whole file here (there are more
than 5,000 titles!), but Listing 15.1 shows an extract from the XML file,
including the first book in the list.

LISTING 15.1 Example of XML Returned by Amazon Web

Service
<?xml version=”1.0” encoding=”UTF-8” ?>
<ProductInfo xmlns:xsi=”http://www.w3.org/

➥2001/XMLSchema-instance”
➥ xsi:noNamespaceSchemaLocation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using REST in Practice

149

➥=”http://xml.amazon.com/schemas3/dev-lite.xsd”>
<Request>
<Args>
<Arg value=”Mozilla/4.0 (compatible; MSIE 6.0;

➥Windows NT 5.1; SV1; .NET CLR 1.1.4322)”
➥ name=”UserAgent” />
<Arg value=”0G2CGCT7MRWB37PXAS4B” name=”RequestID” />
<Arg value=”All” name=”offer” />
<Arg value=”us” name=”locale” />
<Arg value=”1” name=”page” />
<Arg value=”ZZZZZZZZZZZ” name=”dev-t” />
<Arg value=”XXXXXXXXXXX” name=”t” />
<Arg value=”xml” name=”f” />
<Arg value=”books” name=”mode” />
<Arg value=”Sams” name=”ManufacturerSearch” />
<Arg value=”lite” name=”type” />
<Arg value=”salesrank” name=”sort” />
</Args>
</Request>
<TotalResults>5051</TotalResults>
<TotalPages>506</TotalPages>

<Details url=”http://www.amazon.com/exec/obidos/ASIN/
➥0672327236/themousewhisp-20?dev-t=
➥1WPTTG90FS816BXMNFG2%26camp=2025%26link_code=xm2”>
<Asin>0672327236</Asin>
<ProductName>Sams Teach Yourself Microsoft SharePoint

➥2003 in 10 Minutes (Sams Teach Yourself
➥in 10 Minutes)</ProductName>
<Catalog>Book</Catalog>

<Authors>
<Author>Colin Spence</Author>
<Author>Michael Noel</Author>
</Authors>
<ReleaseDate>06 December, 2004</ReleaseDate>
<Manufacturer>Sams</Manufacturer>
<ImageUrlSmall>http://images.amazon.com/images/P/

➥0672327236.01.THUMBZZZ.jpg</ImageUrlSmall>
<ImageUrlMedium>http://images.amazon.com/images/P/

➥0672327236.01.MZZZZZZZ.jpg</ImageUrlMedium>
<ImageUrlLarge>http://images.amazon.com/images/P/

➥0672327236.01.LZZZZZZZ.jpg</ImageUrlLarge>
<Availability>Usually ships in 24 hours</Availability>
<ListPrice>$14.99</ListPrice>
<OurPrice>$10.19</OurPrice>
<UsedPrice>$9.35</UsedPrice>
</Details>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 5 : Web Services and the REST Protocol

150

Clearly we can now process this XML document in any way we want.
For example, Lesson 14,“Returning Data as XML,” discussed how to use
JavaScript DOM methods to select information from the XML docu-
ment and place it in page elements added to the DOM of our docu-
ment.

REST and Ajax
You know already that the XMLHTTPRequest object has methods that
allow you to directly deal with HTTP request types and URLs.

Accessing RESTful web services is therefore simplified to a great extent.
Because you know that each resource exposed by the web service API
has a unique URL, and that the methods made available by the service
are standard HTTP methods, it becomes a simple matter to construct
the required XMLHTTPRequest calls.

The prospect of being able to access a wide variety of web services
from within Ajax applications, and use the returned information within
those applications, is attractive—even more so if you can use a consis-
tent and simple interface protocol.

Summary
This lesson introduced the concept of web services and the principles
underlying the REST protocol.

REST requires that all resources be made accessible via unique URLs
and that all required actions can be carried out on those resources by
means of the standard HTTP methods. This makes RESTful web services
interface comfortably with Ajax applications, due to the
XMLHTTPRequest object having methods that directly reference URLs
and HTTP methods to create server requests.

Lesson 16 discusses a different style of web service using SOAP and
how it relates to Ajax development.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Web Services Using SOAP

In this lesson you will learn about using web services with the SOAP
protocol.

Introducing SOAP (Simple Object
Access Protocol)
In Lesson 15,“Web Services and the REST Protocol,” we discussed web services and
in particular saw how the REST (Representational State Transfer) protocol can be
used to provide a consistent application programming interface (API) to such ser-
vices.

REST is a good example of a protocol designed to operate with resource-oriented
services, those that provide a simple mechanism to locate a resource and a set of
basic methods that can manipulate that resource. In a resource-oriented service,
those methods normally revolve around creating, retrieving, modifying, and delet-
ing pieces of information.

In the case of REST, the methods are those specified in the HTTP specifications—
GET, POST, PUT, and DELETE.

In certain cases, however, we are more interested in the actions a web service can
carry out than in the resources it can control. We might perhaps call such services
action-oriented. In these situations the resources themselves may have some
importance, but the key issues concern the details of the activities undertaken by
the service.

Perhaps the most popular and widely used protocol for designing action-oriented
web services is SOAP, the Simple Object Access Protocol.

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 6 : Web Services Using SOAP

152

This lesson looks at SOAP, comparing and contrasting it where appropri-
ate with the REST protocol discussed in Lesson 15.

The Background of the SOAP Protocol
SOAP began in the late 1990s when XML was itself a fledgling web tech-
nology and was offered to the W3C in 2000. SOAP and another XML-
based web service protocol, called XML-RPC, had a joint upbringing.

SOAP was designed essentially as a means of packaging remote proce-
dure calls (requests to invoke programs on remote machines) into XML
wrappers in a standardized way.

Numerous enterprises contributed to the early development of SOAP,
including IBM, Microsoft, and Userland. The development of SOAP later
passed to the XML Protocols Working Group of the W3C.

The SOAP Protocol
SOAP is an XML-based messaging protocol. A SOAP request is an XML
document with the following main constituents:

■ An envelope that defines the document as a SOAP request

■ A body element containing information about the call and the
expected responses

■ Optional header and fault elements that carry supplementary
information

Let’s look at a skeleton SOAP request:

<?xml version=”1.0”?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=
➥”http://schemas.xmlsoap.org/soap/encoding/”>
<SOAP-ENV:Header>
... various commands . . .

</SOAP-ENV:Header>
<SOAP-ENV:Body>
... various commands . . .
<SOAP-ENV:Fault>

... various commands . . .
</SOAP-ENV:Fault>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

NOTE: The full name
Simple Object Access
Protocol has been dropped
in the later versions of the
SOAP specifications, as it
was felt that the direction of
the project had shifted and
the name was no longer
appropriate. The protocol
continues to be referred to
as SOAP.

TIP: You can get the latest
information on the SOAP
specification from the W3C
website at http://www.w3.
org/2000/xp/Group/.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The SOAP Protocol

153

Note that the SOAP request is an XML file, which has as its root the
Envelope element.

The first line of the Envelope is

<SOAP-ENV:Envelope xmlns:SOAP-EN =
➥”http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=
➥”http://schemas.xmlsoap.org/soap/encoding/”>

This line declares the xmlns:soap namespace, which must always have the
value xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”.

The encodingStyle attribute contains information defining the data
types used in the message.

Next appears the Header element, which is optional but must, if present, be
the first element in the message. Attributes defined in the Header element
define how the message is to be processed by the receiving application.

The body element of the SOAP message contains the message intended
for the final recipient.

The serialized method arguments are contained within the SOAP
request’s body element. The call’s XML element must immediately follow
the opening XML tag of the SOAP body and must have the same name
as the remote method being called.

The body may also contain a Fault element (but no more than one).
This element is defined in the SOAP specification and is intended to
carry information about any errors that may have occurred. If it exists, it
must be a child element of the body element. The Fault element has
various child elements including faultcode, faultstring, and detail,
which contain specific details of the fault condition.

Code Example of a SOAP Request
Let’s see how a typical SOAP request might look:

<?xml version=”1.0”?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=
➥”http://schemas.xmlsoap.org/soap/envelope/” SOAP
➥ENV:encodingStyle=”http://schemas.xmlsoap.org/
➥soap/encoding/”>
<SOAP-ENV:Body>

<m:GetInvoiceTotal xmlns:m=
➥”http://www.somedomain.com/invoices”>

<m:Invoice>77293</m:Invoice>
</m:GetInvoiceTotal>

TIP: A namespace is an
identifier used to uniquely
group a set of XML ele-
ments or attributes, provid-
ing a means to qualify their
names, so that names in
other schemas do not con-
flict with them.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 6 : Web Services Using SOAP

154

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In the preceding example, the m:GetInvoiceTotal and m:Invoice elements
are specific to the particular application, and are not part of SOAP itself.
These elements constitute the message contained in the SOAP envelope.

Let’s see what the SOAP response from the web service might look like:

<?xml version=”1.0”?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=
➥”http://schemas.xmlsoap.org/soap/envelope/” SOAP
➥ENV:encodingStyle=”http://schemas.xmlsoap.org/
➥soap/encoding/”>
<SOAP-ENV:Body>

<m:ShowInvoiceTotal xmlns:m=
➥”http://www.somedomain.com/invoices”>

<m:InvoiceTotal>3295.00</m:InvoiceTotal>
</m:ShowInvoiceTotal>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sending the SOAP Request Via HTTP
A SOAP message may be transmitted via HTTP GET or HTTP POST. If sent
via HTTP POST, the SOAP message requires at least one HTTP header to be
set; this defines the Content-Type:

Content-Type: text/xml

After a successful SOAP exchange, you would expect to receive the SOAP
response preceded by an appropriate HTTP header:

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: yyy
<?xml version=”1.0”?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=
➥”http://schemas.xmlsoap.org/soap/envelope/” SOAP-
ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encod-
ing/”>
<SOAP-ENV:Body>

<m:ShowInvoiceTotal xmlns:m=
➥”http://www.somedomain.com/invoices”>

<m:InvoiceTotal>3295.00</m:InvoiceTotal>
</m:ShowInvoiceTotal>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Ajax and SOAP

155

Using Ajax and SOAP
To use SOAP with Ajax, you need to perform a number of separate steps:

1. Create the SOAP envelope.

2. Serialize the application-specific information into XML.

3. Create the SOAP body containing a serialized version of your
application-specific code.

4. Send an HTTP request via the XMLHTTPRequest object, containing
the SOAP message as a payload.

The callback function then needs to be responsible for unpacking the
SOAP response and parsing the XML contained inside it.

Code Example
How might the resulting code look? Let’s see an example using the ficti-
tious SOAP web service of the previous example:

var invoiceno = ‘77293’;
http.open(“POST”, “http://somedomain.com/invoices”,true);
http.onreadystatechange=function() {
if (http.readyState==4) {
if(http.status==200) {
alert(‘The server said: ‘+ http.responseText)
}

}
}
http.setRequestHeader(“Content-Type”, “text/xml”)
var mySOAP = ‘<?xml version=”1.0”?>’
+ ‘<SOAP-ENV:Envelope xmlns:SOAP-ENV=

➥”http://schemas.xmlsoap.org/soap/envelope/”’
+ ‘ SOAP-ENV:encodingStyle=

➥”http://schemas.xmlsoap.org/soap/encoding/”>’
+ ‘<SOAP-ENV:Body>’
+ ‘<m:GetInvoiceTotal xmlns:m=

➥”http://www.somedomain.com/invoices”>’
+

‘<m:Invoice>’+invoiceno+’</m:Invoice></m:GetInvoiceTotal>’
+ ‘</SOAP-ENV:Body></SOAP-ENV:Envelope>’;

http.send(mySOAP);

Here we have constructed the entire SOAP envelope in a JavaScript
string variable, before passing it to the send() function of the
XMLHTTPRequest object.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 6 : Web Services Using SOAP

156

The value returned from the server needs to be parsed first to remove
the SOAP response wrapper and then to recover the application data
from the body section of the SOAP message.

Reviewing SOAP and REST
Over the course of this lesson and Lesson 15, we’ve looked at the REST
and SOAP approaches to using web services.

Although other web services protocols exist, a significant REST versus
SOAP argument has been waged among developers over the last cou-
ple of years.

I don’t intend to join that argument in this book. Instead, let’s summa-
rize the similarities and differences between the two approaches:

■ REST leverages the standard HTTP methods of PUT, GET, POST, and
DELETE to create remote procedure calls having comparable
functions. Web service implementations using the REST protocol
seem particularly suited toward resource-based services, where
the most-used methods generally involve creating, editing,
retrieving, and deleting information. On the downside, REST
requires a little more knowledge about the HTTP protocol.

■ The SOAP protocol adds substantial complexity, with the necessi-
ty to serialize the remote call and then construct a SOAP envelope
to contain it. Further work arises from the need to “unpack” the
returned data from its SOAP envelope before parsing the data.
These extra steps can also have an impact on performance, with
SOAP often being a little slower in operation than REST for a simi-
lar task. SOAP does, however, make a more complete job of sepa-
rating the remote procedure call from its method of transport, as
well as add a number of extra features and facilities, such as the
Fault element and type checking via namespaces.

Summary
In this lesson we considered SOAP, the Simple Object Access Protocol.
SOAP is a popular web service protocol with a rather different
approach to the REST protocol utilized in Lesson 15.

Either style of web service can be used via XMLHTTPRequest requests,
though they differ somewhat in the complexity of the code involved.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A JavaScript Library for
Ajax

In this lesson you will learn how to encapsulate some of the techniques studied up to
now into a small JavaScript library that you can call from your applications.

An Ajax Library
Through the lessons and code examples up to now, we have developed a number
of JavaScript code techniques for implementing the various parts of an Ajax appli-
cation. Among these methods are:

■ A method for generating an instance of the XMLHTTPRequest object, which
works across the range of currently popular browsers

■ Routines for building and sending GET and POST requests via the
XMLHTTPRequest object

■ Techniques for avoiding unwanted caching of GET requests

■ A style of callback function that checks for correct completion of the
XMLHTTPRequest call prior to carrying out your wishes

■ Methods of providing user feedback

■ Techniques for dealing with text data returned in responseText

■ Techniques for dealing with XML information returned in responseXML

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 7 : A JavaScript Library for Ajax

158

In addition, you saw in Lesson 13,“AHAH—Asynchronous HTML and
HTTP,” how some of these methods could be abstracted into a small
JavaScript “library” (in that case containing only two functions).

This lesson extends that idea to build a more fully featured library that
allows Ajax facilities to be added simply to an HTML page with minimal
additional code.

Of necessity, our Ajax library will not be as complex or comprehensive
as the open source projects described later on; however, it will be com-
plete enough to use in the construction of functional Ajax applications.

Reviewing myAHAHlib.js
Listing 17.1 shows the code of myAHAHlib.js, reproduced from Lesson 13.

LISTING 17.1 myAHAHlib.js
function callAHAH(url, pageElement, callMessage) {

document.getElementById(pageElement).innerHTML
➥ = callMessage;

try {
req = new XMLHttpRequest(); /* e.g. Firefox */
} catch(e) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);
/* some versions IE */
} catch (e) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);
/* some versions IE */
} catch (E) {
req = false;
}

}
}
req.onreadystatechange =

➥function() {responseAHAH(pageElement);};
req.open(“GET”,url,true);
req.send(null);

}

function responseAHAH(pageElement) {
var output = ‘’;
if(req.readyState == 4) {

if(req.status == 200) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Implementing Our Library

159

output = req.responseText;
document.getElementById(pageElement).innerHTML

➥ = output;
}

}
}

Let’s consider how we may extend the capabilities of this library:

■ There is currently support only for HTTP GET requests. It would be
useful to be able to support at least the HTTP POST request too,
especially if you intend to build applications using the REST pro-
tocol (as described in Lesson 15,“Web Services and the REST
Protocol”).

■ The library currently only deals with text information returned via
responseText and has no means to deal with responseXML.

Implementing Our Library
Having identified what needs to be done, we’ll now put together a
more capable Ajax library.

Creating XMLHTTPRequest Instances
Let’s turn our attention first to the routine for creating instances of the
XMLHTTPRequest object.

Currently this function is coupled tightly with the routine for construct-
ing and sending HTTP GET requests. Let’s decouple the part responsible
for the creation of the XMLHTTPRequest instance and put it into a func-
tion of its own:

function createREQ() {
try {

req = new XMLHttpRequest(); /* e.g. Firefox */
} catch(err1) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);
/* some versions IE */
} catch (err2) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);
/* some versions IE */
} catch (err3) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 7 : A JavaScript Library for Ajax

160

req = false;
}

}
}
return req;

}

We can now create XMLHTTPRequest object instances by simply calling
the following function:

var myreq = createREQ();

HTTP GET and POST Requests
We’ll start with the GET request because we already support that type
of request:

function requestGET(url, query, req) {
myRand=parseInt(Math.random()*99999999);
req.open(“GET”,url+’?’+query+’&rand=’+myRand,true);
req.send(null);
}

To this request we must pass as arguments the URL to which the
request will be sent and the identity of the XMLHTTPRequest object
instance.

We could exclude the query argument because, in a GET request, it’s
encoded into the URL. We keep the two arguments separate here to
maintain a similar interface to the function for making POST requests.

The query argument must be suitably encoded prior to calling the
function, though the cache-busting random element is added by the
function.

Next, the POST function:

function requestPOST(url, query, req) {
req.open(“POST”, url,true);
req.setRequestHeader(‘Content-Type’,
➥’application/x-www-form-urlencoded’);
req.send(query);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Implementing Our Library

161

The Callback Function
How do we deal with the callback function? We are going to add a fur-
ther function:

function doCallback(callback,item) {
eval(callback + ‘(item)’);
}

This function uses JavaScript’s eval() function to execute another
function whose name is passed to it as an argument, while also passing
to that function an argument of its own, via item.

Let’s look at how these functions might interact when called from an
event handler:

function doAjax(url,query,callback,reqtype,getxml) {
// create the XMLHTTPRequest object instance
var myreq = createREQ();
myreq.onreadystatechange = function() {
if(myreq.readyState == 4) {

if(myreq.status == 200) {
var item = myreq.responseText;
if(getxml==1) {

item = myreq.responseXML;
}

doCallback(callback, item);
}

}
}
if(reqtype==’post’) {
requestPOST(url,query,myreq);
} else {
requestGET(url,query,myreq);
}
}

Our function doAjax now takes five arguments:

■ url—The target URL for the Ajax call

■ query—The encoded query string

■ callback—Identity of the callback function

■ reqtype—’post’ or ‘get’

■ getxml—1 to get XML data, 0 for text

Listing 17.2 shows the complete JavaScript source code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 7 : A JavaScript Library for Ajax

162

LISTING 17.2 The Ajax Library myAJAXlib.js
function createREQ() {
try {

req = new XMLHttpRequest(); /* e.g. Firefox */
} catch(err1) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);

➥ /* some versions IE */
} catch (err2) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);

➥ /* some versions IE */
} catch (err3) {
req = false;
}

}
}
return req;

}

function requestGET(url, query, req) {
myRand=parseInt(Math.random()*99999999);
req.open(“GET”,url+’?’+query+’&rand=’+myRand,true);
req.send(null);
}

function requestPOST(url, query, req) {
req.open(“POST”, url,true);
req.setRequestHeader(‘Content-Type’, ‘application/
➥x-www-form-urlencoded’);
req.send(query);
}

function doCallback(callback,item) {
eval(callback + ‘(item)’);
}

function doAjax(url,query,callback,reqtype,getxml) {
// create the XMLHTTPRequest object instance
var myreq = createREQ();

myreq.onreadystatechange = function() {
if(myreq.readyState == 4) {

if(myreq.status == 200) {
var item = myreq.responseText;
if(getxml==1) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the Library

163

item = myreq.responseXML;
}
doCallback(callback, item);

}
}

}
if(reqtype==’post’) {
requestPOST(url,query,myreq);
} else {
requestGET(url,query,myreq);
}
}

Using the Library
To demonstrate the use of the library, we’re going to start with another
simple HTML page, the code for which is shown here:

<html>
<head>
</head>
<body>
<form name=”form1”>
<input type=”button” value=”test”>
</form>
</body>
</html>

This simple page displays only a button labeled “Test”. All the functional-
ity on the form will be created in JavaScript, using our new Ajax library.

The steps required to “Ajaxify” the application are

1. Include the Ajax library myAJAXlib.js in the <head> area of the
page.

2. Write a callback function to deal with the returned information.

3. Add an event handler to the page to invoke the server call.

We’ll start by demonstrating a GET request and using the information
returned in the responseText property. This is similar to the situation
we faced when dealing with AHAH in Lesson 13.

Including the Ajax library is straightforward:

<head>
<script Language=”JavaScript” src=”myAJAXlib.js”></script>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 7 : A JavaScript Library for Ajax

164

Next, we need to define our callback function to deal with the value
stored in the responseText property. For these examples, we’ll simply
display the returned text in an alert:

<head>
<script Language=”JavaScript” src=”myAJAXlib.js”></script>
<script Language=”JavaScript”>
function cback(text) {
alert(text);
}
</script>

Finally, we need to add an event handler call to our button:

onClick=”doAjax(‘libtest.php’,’param=hello’,
➥’cback’,’get’,’0’)”

Our server-side script libtest.php simply echoes back the parameter
sent as the second argument:

<?php
echo “Parameter value was “.$param;
?>

Meanwhile the remaining parameters of the function call declare that
the callback function is called cback, that we want to send an HTTP GET
request, and that we expect the returned data to be in responseText.
Listing 17.3 shows the complete code of our revised HTML page.

LISTING 17.3 HTML Page Rewritten to Call myAJAXlib.js
<html>
<head>
<script Language=”JavaScript” src=”myAJAXlib.js”>
➥</script>
<script Language=”JavaScript”>
function cback(text) {
alert(text);
}
</script>
</head>
<body>
<form name=”form1”>
<input type=”button” value=”test” onClick=
➥”doAjax(‘libtest.php’,’param=hello’,
➥’cback’,’get’,’0’)”>
</form>
</body>
</html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the Library

165

Figure 17.1 shows the result of running the program.

FIGURE 17.1 Returning text following an HTTP GET request.

To use the same library to retrieve XML data, we’ll once again use the
server-side script of Lesson 11,“Our First Ajax Application,” which you
may recall delivers the current server time in a small XML document:

<?php
header(‘Content-Type: text/xml’);
echo “<?xml version=\”1.0\” ?><clock1><timenow>”
➥.date(‘H:i:s’).”</timenow></clock1>”;
?>

Our callback function must be modified because we now need to
return the parsed XML. We’ll use some DOM methods that should by
now be familiar:

<script>
function cback(text) {
var servertime = text.getElementsByTagName(“timenow”)[0]
➥.childNodes[0].nodeValue;
alert(‘Server time is ‘+servertime);
}
</script>

The only other thing we need to change is the call to our doAjax()
function:

onClick=”doAjax(‘telltimeXML.php’,’’,’cback’,’post’,’1’)”

Here we have decided to make a POST request. Our server-side script
telltimeXML.php does not require a query string, so in this case the
second argument is left blank. The final parameter has been set to ‘1’
indicating that we expect the server to respond with XML in the prop-
erty responseXML.

Figure 17.2 shows the result of running the program.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 7 : A JavaScript Library for Ajax

166

Extending the Library
The current library might be improved in a number of ways. These will
be left as an exercise for the reader, though in many cases the tech-
niques have been covered elsewhere in the book.

User feedback, for example, has not been addressed; we previously dis-
cussed how the display of suitable text or a graphic image can alert the
user that a request is currently in progress. It would be useful to revise
the library to include the techniques discussed in Lesson 11 and else-
where.

Error handling, too, has been excluded from the code and would prove
a useful addition. For example, it should not be too difficult to modify
the library to detect XMLHTTPRequest status properties other than 200
and output a suitable error message to the user.

Feel free to experiment with the code and see what you can achieve.

Summary
This lesson combined many of the techniques discussed to date to pro-
duce a compact and reusable JavaScript library that can be called sim-
ply from an HTML page.

The code supports both HTTP GET and HTTP POST requests and can
deal with data returned from the server as text or XML.

Using such a library allows Ajax to be introduced to web pages using
relatively small additions to the HTML markup. This not only keeps the
code clean and easy to read but also simplifies the addition of Ajax
facilities to upgrade legacy HTML.

In Lesson 18,“Ajax ‘Gotchas,’” the last lesson of Part III, we’ll discuss
some potential problems and pitfalls awaiting the programmer in
developing Ajax applications.

FIGURE 17.2 Returning the server time in XML via a POST request.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax “Gotchas”

In this lesson you’ll learn about some of the common Ajax mistakes and how to avoid
them.

Common Ajax Errors
Ajax has some common pitfalls waiting to catch the unwary developer. In this les-
son, the last lesson of Part III, we’ll review some of these pitfalls and discuss possi-
ble approaches to finding solutions.

The list is not exhaustive, and the solutions offered are not necessarily appropriate
for every occasion. They should, however, provide some food for thought.

The Back Button
All browsers in common use have a Back button on the navigation bar. The brows-
er maintains a list of recently visited pages in memory and allows you to step back
through these to revisit pages you have recently seen.

Users have become used to the Back button as a standard part of the surfing
experience, just as they have with the other facets of the page-based web para-
digm.

Ajax, as you have learned, does much to shake off the idea of web-based informa-
tion being delivered in separate, page-sized chunks; with an Ajax application, you
may be able to change page content over and over again without any thought of
reloading the browser display with a whole new page.

18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 8 : Ajax “Gotchas”

168

What then of the Back button?

This issue has caused considerable debate among developers recently.
There seem to be two main schools of thought:

■ Create a means of recording state programmatically, and use that
to re-create a previous state when the Back button is pressed.

■ Persuade users that the Back button is no longer necessary.

Artificially re-creating former states is indeed possible but adds a great
deal of complexity to Ajax code and is therefore somewhat the
province of the braver programmer!

Although the latter option sounds a bit like it’s trying to avoid the issue,
it does perhaps have some merit. If you use Ajax to re-create desktop-
like user interfaces, it’s worthy of note that desktop applications gener-
ally don’t have—or need—a Back button because the notion of sepa-
rate “pages” never enters the user’s head!

Bookmarking and Links
This problem is not unrelated to the Back button issue.

When you bookmark a page, you are attempting to save a shortcut to
some content. In the page-based metaphor, this is not unreasonable;
although pages can have some degree of dynamic content, being able
subsequently to find the page itself usually gets us close enough to
seeing what we saw on our previous visit.

Ajax, however, can use the same page address for a whole application,
with large quantities of dynamic content being returned from the serv-
er in accordance with a user’s actions.

TIP: JavaScript has its own equivalent of the Back button written into
the language. The statements

onClick = “history.back()”

and

onClick = “history.go(-1)”

both mimic the action of clicking the Back button once.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making Ajax Degrade Elegantly

169

What happens when you want to bookmark a particular screen of infor-
mation and/or pass that link to a friend or colleague? Merely using the
URL of the current page is unlikely to produce the results you require.

Although it may be difficult to totally eradicate this problem, it may be
possible to alleviate it somewhat by providing permanent links to spe-
cially chosen states of an application.

Telling the User That Something
Is Happening
This is another issue somewhat related to the change of interface style
away from separate pages.

The user who is already familiar with browsing web pages may have
become accustomed to program activity coinciding with the loading of
a new or revised page.

Many Ajax applications therefore provide some consistent visual clue
that activity is happening; perhaps a stationary graphic image might be
replaced by an animated version, the cursor style might change, or a
pop-up message appear. Some of these techniques have been men-
tioned in some of the lessons in this book.

Making Ajax Degrade Elegantly
The lessons in this book have covered the development of Ajax applica-
tions using various modern browsers. It is still possible, though, that a
user might surprise you by attempting to use your application with a
browser that is too old to support the necessary technologies.
Alternatively, a visitor’s browser may have JavaScript and/or ActiveX dis-
abled (for security or other reasons).

It is unfortunate if an Ajax application should break down under these
conditions.

At the least, the occurrence of obvious errors (such as a failure to create
an instance of the XMLHTTPRequest object) should be reported to the
user. If the Ajax application is so complex that it cannot be made to
automatically revert to a non-Ajax mode of operation, perhaps the user
can at least be redirected to a non-Ajax version of the application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 8 : Ajax “Gotchas”

170

Dealing with Search Engine
Spiders
Search engines gather information about websites through various means,
an important one being the use of automated programs called spiders.

Spiders, as their name suggests,“crawl the web” by reading web pages
and following links, building a database of content and other relevant
information about particular websites. This database, better known as
an index, is queried by search engine visitors using their key words and
phrases and returns suggestions of relevant pages for them to visit.

This can create a problem for highly dynamic sites, which rely on user
interaction (rather than passive surfing) to invoke the loading of new
content delivered on-demand by the server. The visiting spider may not
have access to the content that would be loaded by dynamic means
and therefore never gets to index it.

The problem can be exacerbated further by the use of Ajax, with its ten-
dency to deliver even more content in still fewer pages.

It would seem wise to ensure that spiders can index a static version of
all relevant content somewhere on the site. Because spiders follow links
embedded in pages, the provision of a hypertext linked site map can be
a useful addition in this regard.

Pointing Out Active Page
Elements
Without careful design, it may not be apparent to users which items on
the page they can click on or otherwise interface with to make some-
thing happen.

TIP: You can detect whether JavaScript is unavailable by using the

<noscript> … </noscript> tags in your HTML page. Statements

between these tags are evaluated only if JavaScript is NOT available:

<noscript>
JavaScript is not available in this browser.

Please go HERE for
the HTML-only version.

</noscript>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Don’t Use Ajax Where It’s Inappropriate

171

It is worth trying to use a consistent style throughout an application to
show which page elements cause server requests or some other
dynamic activity. This is somewhat reminiscent of the way that hyper-
text links in HTML pages tend to be styled differently than plain text so
that it’s clear to a user that they perform an additional function.

At the expense of a little more coding effort, instructions and informa-
tion about active elements can be incorporated in ToolTip-style pop-
ups. This is, of course, especially important when a click on an active link
can have a major effect on the application’s state. Figure 18.1 shows an
example of such a pop-up information box.

FIGURE 18.1 Pop-up information helps users to understand interfaces.

Don’t Use Ajax Where It’s
Inappropriate
Attractive as Ajax undoubtedly is for improving web interfaces, you
need to accept that there are many situations where the use of Ajax
detracts from the user experience instead of adding to it.

This is especially true where the page-based interface metaphor is per-
fectly adequate for, perhaps even of greater relevance to, the content and
style of the site.Text-based sites with subjects split conveniently into
chapter-styled pages can often benefit as much from intelligently
designed hyperlinking as they can from the addition of Ajax functionality.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 8 : Ajax “Gotchas”

172

Small sites in particular may struggle to get sufficient benefit from an
Ajax interface to balance the associated costs of additional code and
added complexity.

Security
Ajax does not itself seem to present any security issues that are not
already present when designing web applications. It is notable, howev-
er, that Ajax-enhanced applications tend to contain more client-side
code than they did previously.

Because the content of client-side code can be viewed easily by any user
of the application, it is important that sensitive information not be
revealed within it. In this context, sensitive information is not limited to
such things as usernames and passwords (though they are, of course,
sensitive), but also includes business logic. Make the server-side scripts
responsible for carrying out such issues as database connection. Validate
data on the server before applying it to any important processing.

Test Code Across Multiple
Platforms
It will be clear from the content of this book that the various browsers
behave differently in their implementation of JavaScript. The major dif-
ference in the generation of XMLHTTPRequest object instances between
Microsoft and non-Microsoft browsers is a fundamental example, but
there is a host of minor differences, too.

The DOM, in particular, is handled rather differently, not only between
browsers but also between different versions of the same browser. CSS
implementation is another area where minor differences still proliferate.

Although it has always been important to test new applications on vari-
ous browsers, this is perhaps more important than ever when faced
with the added complexity of Ajax applications.

Hopefully browsers will continue to become more standards-compliant,
but until then test applications on as many different platforms and with
as many different browsers as possible.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Some Programming Gotchas

173

Ajax Won’t Cure a Bad Design
All the dynamic interactivity in the world won’t correct a web applica-
tion with a design that is fundamentally flawed.

All the tenets of good web design still apply to Ajax applications:

■ Write for multiple browsers and validate your code.

■ Comment and document your code well so that you can debug it
later.

■ Use small graphics wherever possible so that they load quickly.

■ Make sure that your choices of colors, backgrounds, font sizes,
and styles don’t make pages difficult to read.

Some Programming Gotchas
Some of these have been alluded to in various lessons, but it’s worth
grouping them here. These are probably the most common program-
ming issues that Ajax developers bump up against at some time or
other!

Browser Caching of GET Requests
Making repeated GET requests to the same URL can often lead to the
response coming not from the server but from the browser cache. This
problem seems especially significant when using Internet Explorer.

Although in theory this can be cured with the use of suitable HTTP
headers, in practice the cache can be stubborn.

An effective way of sidestepping this problem is to add a random ele-
ment to the URL to which the request is sent; the browser interprets
this as a request to a different page and returns a server page rather
than a cached version.

In the text we achieved this by adding a random number. Another
approach favored by many is to add a number derived from the time,
which will of course be different every time:

var url = “serverscript.php”+”?rand=”+new Date().getTime();

TIP: The W3C offers a
free online validator at
http://validator.w3.org/.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 8 : Ajax “Gotchas”

174

Permission Denied Errors
Receiving a Permission Denied error usually means that you have fallen
foul of the security measure preventing cross-domain requests from
being made by an XMLHTTPRequest object.

Calls must be made to server programs existing in the same domain as
the calling script.

Escaping Content
When constructing queries for GET or POST requests, remember to
escape variables that could contain spaces or other nontext characters.
In the
following code, the value idValue has been collected from a text input
field on a form, so we escape it to ensure correct encoding:

http.open(“GET”, url + escape(idValue) + “&rand=” +
myRandom, true);

Summary
Ajax undoubtedly has the potential to greatly improve web interfaces.
However, the paradigm change from traditional page-based interfaces
to highly dynamic applications has created a few potholes for develop-
ers to step into. In this lesson we’ve tried to round up a few of the
better-known ones.

Some of these issues have already been encountered in the other
lessons, whereas others will perhaps not become apparent until you
start to develop real-world applications.

This lesson concludes Part III,“More Complex Ajax Technologies.” If you
have followed the lessons through to this point, you will by now have a
good grip on the fundamentals of the XMLHTTPRequest object,
JavaScript, XML, and the Document Object Model, and be capable of
creating useful Ajax applications from first principles.

Fortunately, you don’t have to always work from first principles. Many
open source and commercial projects on the Internet offer a wide vari-
ety of Ajax frameworks, tools, and resources.

Part IV,“Commercial and Open Source Ajax Resources,” concludes our
journey through Ajax development by looking at some of these
resources and their capabilities.

CAUTION: Be careful
that the domain is written
in exactly the same way.
Somedomain.com may be
interpreted as referring to
a different domain from
www.somedomain.com,
and permission will be
denied.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The prototype.js Toolkit

In this lesson you will learn about the prototype.js JavaScript library and how it can
reduce the work required for building capable Ajax applications.

Introducing prototype.js
Part IV,“Commercial and Open Source Ajax Resources,” looks at some available
code libraries and frameworks for Ajax development.

We begin this lesson with Sam Stephenson’s prototype.js, a popular JavaScript
library containing an array of functions useful in the development of cross-brows-
er JavaScript routines, and including specific support for Ajax. You’ll see how your
JavaScript code can be simplified by using this library’s powerful support for DOM
manipulation, HTML forms, and the XMLHTTPRequest object.

The latest version of the prototype.js library can be downloaded from http://
prototype.conio.net/.

Including the library in your web application is simple, just include in the <head>
section of your HTML document the line:

<script src=”prototype.js” Language=”JavaScript”
➥type=”text/javascript”></script>

19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 9 : The prototype.js Toolkit

176

prototype.js contains a broad range of functions that can make writing
JavaScript code quicker, and the resulting scripts cleaner and easier to
maintain.

The library includes general-purpose functions providing shortcuts to
regular programming tasks, a wrapper for HTML forms, an object to
encapsulate the XMLHTTPRequest object, methods and objects for sim-
plifying DOM tasks, and more.

Let’s take a look at some of these tools.

The $() Function
$() is essentially a shortcut to the getElementById() DOM method.
Normally, to return the value of a particular element you would use an
expression such as

var mydata = document.getElementById(‘someElementID’);

The $() function simplifies this task by returning the value of the ele-
ment whose ID is passed to it as an argument:

var mydata = $(‘someElementID’);

Furthermore, $() (unlike getElementById()) can accept multiple ele-
ment IDs as an argument and return an array of the associated element
values. Consider this line of code:

mydataArray = $(‘id1’,’id2’,’id3’);

In this example:

■ mydataArray[0] contains value of element with ID id1.

■ mydataArray[1] contains value of element with ID id2.

■ mydataArray[2] contains value of element with ID id3.

The $F() Function
The $F() function returns the value of a form input field when the
input element or its ID is passed to it as an argument. Look at the fol-
lowing HTML snippet:

<input type=”text” id=”input1” name=”input1”>
<select id=”input2” name=”input2”>
<option value=”0”>Option A</option>
<option value=”1”>Option B</option>
<option value=”2”>Option C</option>
</select>

ON THE CD: Version
1.5.1 of Prototype is includ-
ed on the Ajax Starter Kit
CD. If you download a dif-
ferent version, check the
documentation to see
whether there are differ-
ences between your ver-
sion and the one described
here.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing prototype.js

177

Here we could use

$F(‘input1’)

to return the value in the text box and

$F(‘input2’)

to return the value of the currently selected option of the select box.
The $F() function works equally well on check box and text area input
elements, making it easy to return the element values regardless of the
input element type.

The Form Object
prototype.js defines a Form object having several useful methods for
simplifying HTML form manipulation.

You can return an array of a form’s input fields by calling the
getElements() method:

inputs = Form.getElements(‘thisform’);

The serialize() method allows input names and values to be format-
ted into a URL-compatible list:

inputlist = Form.serialize(‘thisform’);

Using the preceding line of code, the variable inputlist would now
contain a string of serialized parameter and value pairs:

field1=value1&field2=value2&field3=value3…

Form.disable(‘thisform’) and Form.enable(‘thisform’) each do
exactly what it says on the tin.

The Try.these() Function
Previous lessons discussed the use of exceptions to enable you to catch
runtime errors and deal with them cleanly. The Try.these() function
provides a convenient way to encapsulate these methods to provide a
cross-browser solution where JavaScript implementation details differ:

return Try.these(function1(),function2(),function3(), …);

The functions are processed in sequence, operation moving on to the
next function when an error condition causes an exception to be
thrown. Operation stops when any of the functions completes success-
fully, at which point the function returns true.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 9 : The prototype.js Toolkit

178

Applying this function to the creation of an XMLHTTPRequest instance
shows the simplicity of the resulting code:

return Try.these(
function() {return new ActiveXObject(‘Msxml2.XMLHTTP’)},
function() {return new ActiveXObject(‘Microsoft.XML-

HTTP’)},
function() {return new XMLHttpRequest()}
)

Wrapping XMLHTTPRequest—the
Ajax Object
prototype.js defines an Ajax object designed to simplify the develop-
ment of your JavaScript code when building Ajax applications. This
object has a number of classes that encapsulate the code you need to
send server requests, monitor their progress, and deal with the
returned data.

Ajax.Request

Ajax.Request deals with the details of creating an instance of the
XMLHTTPRequest object and sending a correctly formatted request.
Calling it is straightforward:

var myAjax = new Ajax.Request(url, {method: ‘post’,
➥parameters: mydata, onComplete: responsefunction});

In this call, url defines the location of the server resource to be called,
method may be either post or get, mydata is a serialized string contain-
ing the request parameters, and responsefunction is the name of the
callback function that handles the server response.

The onComplete parameter is one of several options corresponding to
the possible values of the XMLHTTPRequest readyState properties, in
this case a readyState value of 4 (Complete). You might instead specify
that the callback function should execute during the prior phases
Loading, Loaded, or Interactive, by using the associated parameters
onLoading, onLoaded, or onInteractive.

There are several other optional parameters, including

asynchronous:false

to indicate that a server call should be made synchronously. The default
value for the asynchronous option is true.

NOTE: You may want to
compare this code snippet
with Listing 8.1 to see just
how much code complexi-
ty has been reduced and
readability improved.

TIP: The second argument
is constructed using a nota-
tion often called JSON
(JavaScript Object Notation).
The argument is built up
from a series of parameter:
value pairs, the whole con-
tained within braces.The
parameter values them-
selves may be JSON objects,
arrays, or simple values.

JSON is popular as a data
interchange protocol due to
its ease of construction, ease
of parsing, and language
independence.You can find
out more about it at
http://www.json.org.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Wrapping XMLHTTPRequest—the Ajax Object

179

Ajax.Updater

On occasions when you require the returned data to update a page ele-
ment, the Ajax.Updater class can simplify the task. All you need to do is
to specify which element should be updated:

var myAjax = new Ajax.Updater(elementID, url, options);

The call is somewhat similar to that for Ajax.Request but with the addi-
tion of the target element’s ID as the first argument. The following is a
code example of Ajax.Updater:

<script>
function updateDIV(mydiv)
{

var url = ‘http://example.com/serverscript.php’;
var params = ‘param1=value1¶m2=value2’;
var myAjax = new Ajax.Updater

(
mydiv,
url,
{method: ‘get’, parameters: params}
);

}
</script>
<input type=”button” value=”Go”
onclick=”updateDIV(targetDiv)”>
<div id=”targetDiv”></div>

Once again, several additional options may be used when making the
call. A noteworthy one is the addition of

evalscripts:true

to the options list. With this option added, any JavaScript code returned
by the server will be evaluated.

Ajax.PeriodicalUpdater

The Ajax.PeriodicalUpdater class can be used to repeatedly create an
Ajax.Updater instance. In this way you can have a page element updat-
ed after a certain time interval has elapsed. This can be useful for such
applications as a stock market ticker or an RSS reader because it ensures
that the visitor is always viewing reasonably up-to-date information.

Ajax.PeriodicalUpdater adds two further parameters to the
Ajax.Updater options:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 9 : The prototype.js Toolkit

180

■ frequency—The delay in seconds between successive updates.
Default is two seconds.

■ decay—The multiplier by which successive delays are increased if
the server should return unchanged data. Default value is 1, which
leaves the delay constant.

Here’s an example call to Ajax.PeriodicalUpdater:

var myAjax = new Ajax.PeriodicalUpdater(elementID, url,
➥{frequency: 3.0, decay: 2.0});

Here we elected to set the initial delay to 3 seconds and have this delay
double in length each time unchanged data is returned by the server.

Example Project—Stock Price
Reader
Let’s use the prototype.js library to build a simple reader that updates period-
ically to show the latest value returned from the server. In this example, we’ll
use a simple server-side script rand.php to simulate a changing stock price:

<?php
srand ((double) microtime()*1000000);
$price = 50 + rand(0,5000)/100;
echo “$price”;
?>

This script first initializes PHP’s random number routine by calling the
srand() function and passing it an argument derived from the current
time. The rand(0,5000) function is then used to generate a random num-
ber that is manipulated arithmetically to produce phony “stock prices” in
the range 50.00 to 100.00.

Now let’s build a simple HTML page to display the current stock price. This
page forms the basis for our Ajax application:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
Transitional//EN”
➥“http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<script src=”prototype.js” Language=”JavaScript”
➥type=”text/javascript”></script>
<title>Stock Reader powered by Prototype.js</title>
</head>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Example Project—Stock Price Reader

181

<body>
<h2>Stock Reader</h2>
<h4>Powered by Prototype.js</h4>
<p>Current Stock Price:</p>
<div id=”price”></div>
</body>
</html>

Note that we included the prototype.js library by means of a <script>
tag in the document head. We also defined a <div> with id set to
“price”, which will be used to display the current stock price.

We now need to implement the Ajax.PeriodicalUpdater class, which
we’ll attach to the document body element’s onLoad event handler.
Listing 19.1 shows the complete script.

LISTING 19.1 Ajax Stock Price Reader Using prototype.js
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥ Transitional//EN”
➥”http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<script src=”prototype.js” Language=”JavaScript”
➥type=”text/javascript”></script>
<script>
function checkprice()
{
var myAjax = new Ajax.PeriodicalUpdater(‘price’,
➥’rand.php’, {method: ‘post’, frequency: 3.0,
➥ decay: 1});
}
</script>
<title>Stock Reader powered by Prototype.js</title>
</head>
<body onLoad=”checkprice()”>
<h2>Stock Reader</h2>
<h4>Powered by Prototype.js</h4>
<p>Current Stock Price:</p>
<div id=”price”></div>
</body>
</html>

Look how simple the code for the application has become through
using prototype.js. Implementing the application is merely a matter of
defining a one-line function checkprice() to instantiate our repeating
Ajax call and calling that function from the body element’s onLoad
event handler.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 9 : The prototype.js Toolkit

182

From the arguments passed to Ajax.PeriodicalUpdater, you’ll see that
a 3-second repeat interval has been specified. This period does not
change with subsequent calls because the decay value has been set to 1.

Figure 19.1 shows the application running. What cannot be seen from
the figure, of course, is the stock price updating itself every 3 seconds to
show a new value.

FIGURE 19.1 Ajax stock reader.

This simple example does not come close to showing off the power
and versatility of the prototype.js library. Rather, it is intended to get
you started with your own experiments by offering an easy point of
access to this great resource.

Summary
In this first lesson in Part IV, we discussed the use of the powerful and
elegant prototype.js JavaScript library.

The functions made available by this library greatly simplify some of
the trickier programming tasks when developing Ajax applications.

The library offers good support for the XMLHTTPRequest object, along
with time-saving shortcuts for DOM handling, HTML forms, and many
other techniques relevant to Ajax development.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Rico

In this lesson you will learn the basics of using Rico, a powerful Ajax and user interface
development framework.

Introducing Rico
In Lesson 19,“The prototype.js Toolkit,” we looked at prototype.js, a powerful and
useful JavaScript library that simplifies many of the programming tasks facing the
Ajax developer.

In this lesson we’ll take a look at using Rico, a sophisticated Ajax framework
employing the prototype.js library.

Rico is an open source library that extends the capabilities of prototype.js to pro-
vide a rich set of interface development tools. In addition to the Ajax development
techniques discussed so far, Rico offers a whole range of tools such as drag-and-
drop, cinematic effects, and more.

Tip Rico is the Spanish word for rich, which seems appropriate for a toolkit designed
for building rich user interfaces!

Using Rico in Your Applications
To start using Rico to build applications with rich user interfaces, you need to
include both Rico and prototype.js libraries in the <head>…</head> section of your
web pages.

<script src=”scripts/prototype.js”></script>
<script src=”scripts/rico.js”></script>

20

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 0 : Using Rico

184

Rico’s AjaxEngine
The inclusion of rico.js causes an instance called ajaxEngine of an
AjaxEngine object to be created automatically ready for you to use.
The AjaxEngine is Rico’s mechanism for adding Ajax capabilities to
your web pages.

The AjaxEngine requires a three-step process to update page elements
via Ajax:

1. Register the request handler. Registering the request handler
associates a unique name with a particular URL to be called via
Ajax.

2. Register the response handler. Rico can deal with the return of
both HTML data and JavaScript code within the XML returned
from the server. In the former case, the response handler identi-
fies a page element that is to be updated using the returned
data; in the latter case, a JavaScript object that handles the server
response.

3. Make the Ajax call from the page by using an appropriate event
handler.

We first register our request handler by making a call to the
registerRequest() method of ajaxEngine:

ajaxEngine.registerRequest(‘getData’,’getData.php’);

We have now associated the name getData with a request to the server
routine getData.php. That server-side routine is required to return a
response in well-formed XML. The following is an example of a typical
response:

<ajax-response>
<response type=”element” id=”showdata”>
<div class=”datadisplay”>
The cat sat on the mat

</div>
</response>

</ajax-response>

Such responses always have a root element <ajax-response>. The
<response> element it contains in this example has two attributes, type
element and id showdata. These signify, respectively, that the response
contains HTML, and that this HTML is to be used to update the page
element having id showdata. This element is updated via its innerHTML
property.

TIP: Rico is capable of
updating multiple page
elements from one
request. To achieve this, the
<ajax-response> ele-
ment may contain multiple
<response> elements.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing Rico

185

The other form of response that Rico can return is a JavaScript object.
Here’s an example:

<ajax-response>
<response type=”object” id=”myHandler”>
<sentence>The cat sat on the mat.</sentence>

</response>
</ajax-response>

Here the type has been set to object, indicating that the content is to
be dealt with by a JavaScript object, the identity of which is contained
in the id value (here myHandler). The content of the response is always
passed to the ajaxUpdate method of this object.

How the response handler is registered depends on which type of
response we are dealing with. For responses of type element, you can
simply call:

ajaxEngine.registerAjaxElement(‘showdata’);

In the case of responses containing a JavaScript object, you will need:

ajaxEngine.registerAjaxObject(‘myHandler’, new
myHandler());

Whereas responses of type element are simply intended for the updat-
ing of HTML page elements, responses of type object can have han-
dlers to process responses in any way they want. This allows Rico appli-
cations to be built ranging from simple to sophisticated.

A Simple Example
We can see Rico in action by using the simple script of Listing 20.1. This
application updates two HTML elements with a single call to Rico’s
ajaxEngine object. The script for the application is in Listing 20.1.

LISTING 20.1 A Simple Rico Application
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥ Transitional//EN”
➥”http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<title>Testing OpenRico</title>
<script src=”prototype.js”></script>
<script src=”rico.js”></script>
<script type=”text/javascript”>
function callRICO()
{
ajaxEngine.registerRequest(‘myRequest’, ‘ricotest.php’);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 0 : Using Rico

186

LISTING 20.1 Continued
ajaxEngine.registerAjaxElement(‘display’);
ajaxEngine.registerAjaxElement(‘heading’);
}
</script>
</head>
<body onload=” callRICO();”>
<div id=”heading”><h3>Demonstrating Rico</h3></div>
<input type=”button” value=”Get Server Data”
➥ onclick=”ajaxEngine.sendRequest(‘myRequest’);”/>
<div id=”display”><p>This text should be replaced with
➥server data ...</p></div>
</body>
</html>

You will see from the code that the single function callRICO() is used
to register both the single request handler myRequest and two
response handlers. The response handlers are used to update two
<div> containers; one of these contains the page’s heading, the other a
short text message. On making the Rico request, the contents of both
are updated, leaving the page with a new title and now displaying
some server information instead of the previous text message. Figure
20.1 shows before and after screenshots.

FIGURE 20.1 Updating multiple page elements with Rico.

The server routine is a simple PHP script that outputs the required XML
data. The script uses PHP’s $_SERVER[‘SERVER_SIGNATURE’] global
variable. Note that the script constructs and returns two separate

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Rico’s Other Interface Tools

187

<response> elements, each responsible for updating a particular ele-
ment in the HTML page.

Listing 20.2 shows the server script.

LISTING 20.2 The Server Script for Generating

<ajax-response>
<?php
header(“Content-Type:text/xml”);
header(“Cache-Control:no-cache”);
header(“Pragma:no-cache”);
echo “<ajax-response><response type=\”element\”
➥id=\”display\”><p>”
➥.$_SERVER[‘SERVER_SIGNATURE’]
➥.”</p></response>
➥<response type=\”element\” id=\”heading\”>
➥<h3>Some Information about the Server</h3>
➥</response></ajax-response>”;
?>

TIP: Lesson 9,“Talking with the Server,” discussed problems that can
occur due to the browser cache. In that lesson we used a workaround
involving adding a parameter of random value to the URL of the server
resource that we wanted to call.

This script example uses another technique, including the header com-
mands

header(“Cache-Control:no-cache”);
header(“Pragma:no-cache”);

instructing the browser not to cache this page, but to collect a new
copy from the server each time.

CAUTION: PHP’s $_SERVER global array variable was introduced in
PHP 4.1.0. If you have an older version of PHP installed, you’ll need the
global variable $HTTP_SERVER_VARS instead.

Rico’s Other Interface Tools
Rico’s capabilities aren’t limited to aiding the development of Ajax
applications. Let’s now look at some other capabilities you can add to
your user interfaces using the Rico toolkit. Although these techniques
do not themselves use Ajax, it takes little imagination to realize what
they might achieve when combined with Rico’s Ajax tools.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 0 : Using Rico

188

Drag-and-Drop
Both desktop applications and the operating systems on which they
run make widespread use of drag-and-drop to simplify the user inter-
face. The JavaScript techniques required to implement drag-and-drop
can be tricky to master, not least because of the many cross-browser
issues that arise.

Drag-and-drop using Rico, however, is simple.

Including the rico.js file in your application automatically causes the
creation of an object called dndMgr, Rico’s Drag and Drop Manager.
Using the dndMgr object is much like using AjaxEngine; this time,
though, we need to register not Ajax requests and responses, but drag-
gable items and drop zones (page elements that can receive dragged
items).

These tasks are carried out via the registerDraggable and
registerDropZone methods:

dndMgr.registerDraggable(new Rico.Draggable(‘test’,
➥’dragElementID’));
dndMgr.registerDropZone(new Rico.Dropzone
➥(‘dropElementID’));

These two simple commands declare, respectively, a page element with
ID dragElementID as being draggable, and another element with ID
dropElementID as a drop zone. The argument ‘test’ of the
registerDraggable() method defines a type for the draggable item,
which can be tested and used by subsequent code, if required.

Example of a Drag-and-Drop Interface
Listing 20.3 shows how simple it is to implement drag-and-drop using
Rico. The displayed HTML page is shown in Figure 20.2.

LISTING 20.3 Simple Drag-and-Drop Using Rico
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥ Transitional//EN”
➥”http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<script src=”prototype.js”></script>
<script src=”rico.js”></script>
<style>
body {
font: 10px normal arial, helvetica, verdana;
background-color:#dddddd;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Rico’s Other Interface Tools

189

}

div.simpleDropPanel {
width : 260px;
height : 180px;
background-color: #ffffff;
padding : 5px;
border : 1px solid #333333;
}

div.box {
width : 200px;
cursor : hand;
background-color: #ffffff;
-moz-opacity : 0.6;
filter : alpha(Opacity=60);
border: 1px solid #333333;
}
</style>

</head>
<body>
<table width=”550”>
<tr>
<td><h3>Drag and Drop</h3>
<p>Drag and drop data items into the target fields

➥using the left mouse button in the usual way.
➥Note how available target fields change colour
➥during the drag operation.</p>
<p>Reload the page to start again.</p>
<div class=”box” id=”draggable1”>This is a piece

➥of draggable data</div>
<div class=”box” id=”draggable2”>

➥This is another</div>
<div class=”box” id=”draggable3”>

➥And this is a third</div>

<table>
<tr>
<td>
<div id=”droponme” class=”simpleDropPanel”>

Drop Zone 1
A simple text area
</div>

</td>
<td>
Drop Zone 2

A form text entry field.
<form><textarea name=”dropzone” id=”droponme2”

➥ rows=”6” cols=”30”></textarea></form>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 0 : Using Rico

190

LISTING 20.3 Continued
</td>
</tr>
</table>
</td>

</tr>
</table>
<script>

dndMgr.registerDraggable(new
➥Rico.Draggable(‘foo’,’draggable1’));

dndMgr.registerDraggable(new
➥Rico.Draggable(‘foo’,’draggable2’));

dndMgr.registerDraggable(new Rico.
➥Draggable(‘foo’,’draggable3’));

dndMgr.registerDropZone(new Rico.Dropzone
➥(‘droponme’));

dndMgr.registerDropZone(new Rico.Dropzone
➥(‘droponme2’));
</script>
</body>
</html>

FIGURE 20.2 The simple drag-and-drop application.

The two JavaScript libraries rico.js and prototype.js are included in the
<head> of the document along with style definitions for various page
elements.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Rico’s Other Interface Tools

191

Note that two page elements in particular, a <div> container and a
<textarea> input field, have been given IDs of dropzone1 and drop-
zone2. Further down the listing, these two elements are defined as drop
zones for our drag-and-drop operations by the lines

dndMgr.registerDropZone(new Rico.Dropzone(‘droponme’));
dndMgr.registerDropZone(new Rico.Dropzone(‘droponme2’));

You’ll see too that three small <div> containers have been defined in
the page and given IDs of draggable1, draggable2, and draggable3. As
you have no doubt guessed, they are to become draggable page ele-
ments and are defined as such by the following code lines:

dndMgr.registerDraggable(new Rico.Draggable(‘foo’,
➥’draggable1’));
dndMgr.registerDraggable(new Rico.Draggable(‘foo’,
➥’draggable2’));
dndMgr.registerDraggable(new Rico.Draggable(‘foo’,
➥’draggable3’));

That’s all there is to it! Rico takes care of all the details, even changing
the look of the available drop zones while something is being dragged,
as shown in Figure 20.3.

FIGURE 20.3 Drop zones highlighted during drag operation.

When released above an available drop zone, draggable items position
themselves inline with the HTML code of the drop zone element, as can
be seen in Figure 20.4.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 0 : Using Rico

192

FIGURE 20.4 After completing the drag-and-drop.

Cinematic Effects
In addition to Ajax and drag-and-drop tools, Rico also makes available a
host of user interface gadgets known collectively as cinematic effects.

NOTE: Rico’s cinematic effects are extensions to the Effect class found
in prototype.js.

These effects include animation of page elements (changing their sizes
and/or shapes), fading effects (altering the opacity of page elements),
applying rounded corners to objects, and manipulating object colors.

Used alongside the interface techniques previously discussed, these
effects can help you to build sophisticated, eye-catching, and user-
friendly interfaces much more reminiscent of desktop applications than
of web pages.

Summary
Following our examination of the prototype.js library in the Lesson 19,
this lesson moved on to experiment with Rico. Rico is an open source
framework based on prototype.js that offers a simple way to integrate
Ajax, along with drag-and-drop and other visual effects, into user inter-
face designs.

Finally, in Lesson 21,“Using XOAD,” we will look into an Ajax framework
that uses an alternative approach—the server-side, PHP-based XOAD.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using XOAD

In this lesson you will learn about XOAD, a server-side framework with Ajax support
written by Stanimir Angeloff.

Introducing XOAD
So far in this part of the book we have looked at the prototype.js and Rico libraries
and how they can help you to develop Ajax applications. Unlike these client-side
libraries, which are written in JavaScript, XOAD is a server-side Ajax toolkit written
in PHP.

This lesson discusses some of the concepts behind XOAD and the basics of its use.

All our work so far has concentrated on the use of JavaScript to handle both the
server request and the returned data in Ajax applications. XOAD is a server-based
solution written in PHP that takes a slightly different approach.

XOAD applications make server-based PHP functions available to the client-side
JavaScript interpreter by passing serialized versions of them as JavaScript objects.

Downloading and Installing XOAD
XOAD is made up of many PHP and supporting scripts and can be downloaded as an
archive file from http://sourceforge.net/projects/xoad.To install XOAD success-
fully, you need FTP access to a web server that supports PHP and (to use the more
advanced features of XOAD) the MySQL database. Detailed instructions for installing
XOAD can be found in the downloaded material, and there is a public forum at
http://forums.xoad.org/.

21

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 1 : Using XOAD

194

A Simple XOAD Page
Let’s take a look at an example of the simplest XOAD page. Suppose
that you have a PHP class that you want to use in your XOAD applica-
tion. This class is stored in the PHP file myClass.class.php:

<?php
class myClass {
function stLength($mystring) {

return strlen($mystring);
}

function xoadGetMeta() {
XOAD_Client::mapMethods($this, array(‘stLength’));
XOAD_Client::publicMethods($this, array(‘stLength’));

}
}
?>

This simple class has only one function, stLength(), which merely
returns the length of a string variable. We also added some metadata to
the class in the form of the function xoadGetMeta(). This information
tells XOAD which methods from the class are available to be exported
to the main application. In this case there is just one, stLength().

Now you need to start constructing the main application script
xoad.php.

Listing 21.1 shows the XOAD application. This is a fairly pointless pro-
gram that simply returns the length of a string,“My XOAD Application”.
Nevertheless, it demonstrates the concept of methods from server-side
PHP classes being made available on the client side as JavaScript
objects.

LISTING 21.1 A Simple XOAD Application
<?php
require_once(‘myClass.class.php’);
require_once(‘xoad.php’);
XOAD_Server::allowClasses(‘myClass’);
if (XOAD_Server::runServer()) {
exit;
}

?>

CAUTION: It is not
absolutely necessary to
include metadata in the
class, but it is recommend-
ed. Without metadata, all
methods will be public, and
method names will be con-
verted to lowercase.

TIP: The Ajax applications
developed in previous
lessons were HTML files
with file extensions .htm or
.html. Because our XOAD
application contains PHP
code, it must have a suit-
able file extension. Most
web server and PHP imple-
mentations will accept a
file extension of .php, and
some will allow other
extensions such as .php4
or .phtml.

ON THE CD: All the
needed tools—XOAD, PHP,
MySQL, and Apache—are
included on the Ajax
Starter Kit CD.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing XOAD

195

<?= XOAD_Utilities::header(‘.’) ?>
<script type=”text/javascript”>
var myobj = <?= XOAD_Client::register(new myClass()) ?>;
var mystring = ‘My XOAD Application’;
myobj.onStLengthError = function(error) {
alert(error.message);
return true;
}

myobj.stLength(mystring, function(result) {
document.write(‘String: ‘ + mystring

➥ + ‘
Length: ‘ + result);
});

</script>

On loading the preceding document into a browser, the page simply
says:

String: My XOAD Application
Length: 19

I won’t go into much detail about how the PHP code works; this is after
all about Ajax, not advanced PHP. It’s important, though, to understand
the concepts that underpin the code, so let’s step through Listing 21.1
and try to understand what’s happening:

<?php
require_once(‘myClass.class.php’);
require_once(‘xoad.php’);
XOAD_Server::allowClasses(‘myClass’);
if (XOAD_Server::runServer()) {
exit;
}

?>
<?= XOAD_Utilities::header(‘.’) ?>

The first part of the script includes both xoad.php and the required
class file myClass.class.php, and informs XOAD which classes it may
access (in this case only one).

The XOAD function runServer() checks whether the XOAD request is a
client callback, and if so handles it appropriately. The header() function
is used to register the client header files.

Now let’s look at the remainder of the script:

<script type=”text/javascript”>
var myobj = <?= XOAD_Client::register(new myClass()) ?>;
var mystring = ‘My XOAD Application’;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 1 : Using XOAD

196

myobj.onStLengthError = function(error) {
alert(error.message);
return true;
}

myobj.stLength(mystring, function(result) {
document.write(‘String: ‘ + mystring

➥+ ‘
Length: ‘ + result);
});

</script>

See how the remainder of the script is a <script>…</script> element?
The line

var myobj = <?= XOAD_Client::register(new myClass()) ?>;

exports the public methods declared in myClass.class.php to a
JavaScript object.We now have a JavaScript object with a method
stLength() that allows us to use the method of the same name from the
PHP class myClass.

XOAD HTML
XOAD HTML is an extension that allows for the easy updating of
HTML page elements using XOAD. The following examples show
the use of the XOAD_HTML::getElementByID() and XOAD_HTML::
getElementsByTagName() methods, which do exactly the same thing as
their equivalent JavaScript DOM methods.

XOAD_HTML::getElementById()

You will recognize the layout of the code in Listing 21.2 as being similar
in structure to the basic XOAD program discussed earlier.

Rather than include an external class file, in this example we have
defined a class, Updater, within the application itself. The class contains
a single function, change().

The first line in that function uses XOAD_HTML::getElementById() to iden-
tify the page element with and ID of display. Subsequent program lines
proceed to change the text and background color of the page element.

The function change() is made available as a method of the JavaScript
object myobj and can then be called like any other JavaScript method:

<a href=”#server” onclick=”myobj.change();
➥return false;”>Change It!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

XOAD HTML

197

Figure 21.1 shows the program’s operation.

LISTING 21.2 Application to Use

XOAD_HTML::getElementById
<?php
class Updater
{

function change()
{
$mytext =& XOAD_HTML::getElementById(‘display’);
$mytext->style[‘backgroundColor’] = ‘yellow’;
$mytext->innerHTML = ‘My background

➥ color has changed.’;
}

}
define(‘XOAD_AUTOHANDLE’, true);
require_once(‘xoad.php’);
?>
<?= XOAD_Utilities::header(‘.’) ?>
<div id=”display”>My background color is white.</div>
<script type=”text/javascript”>
var myobj = <?= XOAD_Client::register(new Updater()) ?>;
</script>
<a href=”#server” onclick=”myobj.change();
➥return false;”>Change It!

FIGURE 21.1 Using XOAD_HTML::getElementById().

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 1 : Using XOAD

198

XOAD_HTML::getElementsByTagName()

The XOAD_HTML::getElementsByTagName() method, like its JavaScript
equivalent, returns an array of elements with a certain element type.
Listing 21.3 identifies all page elements of type <div> and changes
some of their style attributes.

LISTING 21.3 Changing All Page Elements of a Given Type
<?php
class Updater
{

function change()
{

$mydivs =& XOAD_HTML::getElementsByTagName(‘div’);
$mydivs->style[‘height’] = ‘60’;
$mydivs->style[‘width’] = ‘350’;
$mydivs->style[‘backgroundColor’] = ‘lightgreen’;

$mydivs->innerHTML =
➥’Size and color changed by XOAD’;

}
}
define(‘XOAD_AUTOHANDLE’, true);
require_once(‘xoad.php’);
?>
<?= XOAD_Utilities::header(‘.’) ?>
<script type=”text/javascript”>
var myobj = <?= XOAD_Client::register(new Updater()) ?>;
</script>
<style>
div {
border:1px solid black;
height:80;
width:150
}
</style>
<div>Div 1</div>

<div>Div 2</div>

<div>Div 3</div>
<a href=”#server” onclick=”myobj.change();
➥return false;”>Update All Divs

The three <div> elements in the page are identified by XOAD_HTML::
getElementsByTagName() and have their styles and sizes changed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Advanced Programming with XOAD

199

Figure 21.2 shows the program in operation.

FIGURE 21.2 Selecting multiple page elements with XOAD_HTML.

Advanced Programming with
XOAD
XOAD has a range of advanced capabilities over and above those dis-
cussed in this lesson. In case you want to investigate the limits of what
is possible using XOAD, here is an overview of the currently supported
techniques.

XOAD Events
The XOAD framework also has support for events. A XOAD event insti-
gated on one client’s computer can be stored on the server and subse-
quently detected by other clients, making it possible to build complex
applications in which users can interact. Such applications might, for
instance, include chat, groupware, or similar collaborative tools.

TIP: XOAD_HTML has many
other capabilities. Details of
all the functions available
within XOAD_HTML are in
the XOAD download.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 1 : Using XOAD

200

Cache Handling with XOAD
XOAD allows for the caching on the server using the XOAD_Cache class.
Caching results gives significant performance improvements, especially
when server-side routines are time-intensive (such as sorting a large
data set or performing queries on a sizeable database table).

XOAD Controls
You can define custom client controls in XOAD using the XOAD_
Controls class.

Summary
This lesson examined a server-side implementation of an Ajax toolkit, in
the form of XOAD.

XOAD allows the methods contained within PHP classes stored on the
server to be made available to client programs using JavaScript. This
forms an interesting contrast in approach compared to the client-side
techniques discussed in Lessons 19 and 20.

This concludes Part IV. You should now have a good understanding of
Ajax application architecture and the coding techniques on which it is
based.

Good luck with your experiments in Ajax!

TIP: At the time of writ-
ing, the current version of
XOAD is 0.6.0.0. If the ver-
sion you download is dif-
ferent, consult the docu-
mentation included in the
download.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

201

SYMBOLS
@ characters, PHP methods, 125
$ SERVER global array variable, 187
$() function, 176
$F() function, 176-177
<ajax-response> elements, Rico, 184, 187
<div>…<div> elements, 102
<div> containers, 105
<response> elements, Rico, 184, 187
<script>…<script> elements, 103

A
abort method, 78
active page elements, designing, 171
AHAH (Asynchronous HTML and HTTP). See also

HTML; HTTP
advantages of, 120
callAHAH() functions, 121-123
myAHAHlib.js, 121-123

metatag information, retrieving from URL,
124-125

responseText property, 127
responseAHAH() functions, 122-123

Ajax
application examples, Google Suggest, 64-65
application flow diagram, 68
client-server interaction, 61-64

objects
Ajax.PeriodicalUpdater class, 179-180
Ajax.request class, 178
Ajax.Updater class, 179

using, inappropriate situations for, 171
Ajax Engines, 64
Ajax.PeriodicalUpdater class, 179-180
Ajax.request class, 178
Ajax.Updater class, 179
AjaxEngine objects, instances in Rico, 184-185
alt attribute (image tags), 19
Amazon.com REST API, 147-150
anchor tags (HTML), 20
Apache Web Server website, 9
AppendChild method, 131-133
applications

designing, 101, 171
callback functions, 105-106
completed application, 107-108
event handlers, 106
HTML document, 102
PHP scripts, 104-105
server requests, 104
troubleshooting, 173
user feedback, 109-110
XMLHTTPRequest objects, 103-104

flow diagrams, 68
prototype.js, adding to, 175
Rico, adding to, 183

arguments (JavaScript), 37, 42

INDEX

http://lib.ommolketab.ir
http//lib.ommolketab.ir

articles

202

articles, REST
lists of available articles, reading, 146
particular articles, retrieving, 147
uploading, 147

ASCII text, server responses, 67
asynchronous servers

communications, 64
requests, 66, 81-86

ATTLIST declarations (XML), 57

B
Back button, 167
bandwidth, defining, 62
body tags (HTML), 16-18
bookmarks, troubleshooting, 168-169
browser caches

callAjax() functions, 84-86
GET requests, 173
server requests, 84-86

browsers
availability of, 11
defining, 10
graphical browsers, 10
HTML documents, loading, 15
text-based browsers, 10
unsupported browsers, troubleshooting,

169-170
web server interaction, 7

C
caches (browser)

GET requests, 173
server requests, 84-86

callAHAH() functions, 121-123
callAjax() function, 83

browser caches, 84-86
launching, 89-90

callback functions, 86-88
AHAH, 122-123
basic application creation example, 105-106
JavaScript libraries, 161-162
launching, 89-90
myAJAXlib.js, 164
RSS headline readers, creating, 138-140

callRICO() function, 186
center tags (HTML), 21
change() function, 196-197
character strings, split() method, 117
charAt method, responseText property, 93
child nodes, adding to DOM, 131
childNodes property, 132
cinematic effects (Rico), 192
client-server interactions, traditional interactions

verus Ajax, 61-62
client-side programming, defining, 11
code, troubleshooting, 172
color, HTML, 18
comments (HTML), 17
constructors, creating instances, 72
CreateAttribute method, 133
CreateElement method, 132-133
CreateTextNode method, 131-133

D
data() function, 105
date command (PHP), 50
DELETE requests, 145
design applications, troubleshooting, 173
developer’s tokens, 148
DNS (Domain Name Service) servers, 12
doAjax function, 161, 164-165
DOCTYPE declarations (XML), 55-56
DOCTYPE elements, 15-16
document elements (XML), 55
DOM (Document Object Model), 72-73

appendChild() method, 131
child nodes, adding to, 131

http://lib.ommolketab.ir
http//lib.ommolketab.ir

functions

203

createElement() method, 132
createTextNode() method, 131
document methods table, 133
elements, deleting, 139
getAttribute method, 59
getElementByID method, 130
getElementsByTagName method, 130
node methods table, 133
node properties table, 132
nodes, 58-59
tagname properties, 59
text properties, 59

DTD (Document Type Definitions) versus
DOCTYPE declarations, 55

E
ELEMENT declarations (XML), 56
Engines (Ajax), 64
error handling

application design, 173
Back button codes, 167
bookmarks, 168-169
browser caches, 173
code, platform tests, 172
GET requests, 173-174
JavaScript libraries, 166
links, 168-169
page design, 171
Permission Denied errors, 174
POST requests, 174
security, 172
spiders, 170
unsupported browsers, 169-170
user feedback, 169

eval() function, JavaScript libraries, 161-162
event handlers

basic application creation example, 106
JavaScript functions, calling, 43
myAJAXlib.js, calls for, 164

onChange event handler, 44
onClick event handler, 38-39, 44
onLoad event handler, 44
onMouseOut event handler, 44
onMouseOver event handler, 41-44
onSubmit event handler, 44-46

F
feedback (user)

basic application creation example, 109-110
JavaScript libraries, 166
server requests, 97
troubleshooting, 169

file extensions, PHP files, 48
firstChild property, 132
for loops, 52
Form objects, prototype.js, 177
form tags (HTML), 28-30
form validation example (JavaScript), 45-46
Frameworks (Ajax), 64
functions

$(), 176
$F(), 176-177
callAHAH(), 121-123
callAjax, 83

browser caches, 84-86
launching, 89-90

callback, 86-88
AHAH, 122-123
basic application creation example, 105-106
JavaScript libraries, 161-162
launching, 89-90
myAJAXlib.js, 164
RSS headline readers, creating, 138-140

callRICO(), 186
change(), 196-197
date(), 105
doAjax, 161, 164-165

http://lib.ommolketab.ir
http//lib.ommolketab.ir

functions

204

eval(), JavaScript libraries, 161-162
header(), 195
JavaScript

arguments, passing to, 42
calling, 41
event handlers, calling from, 43
numcheck, 46
structure of, 40

responseAHAH(), 122-123
responseAjax(), 83, 88
runServer(), 195
sizeof(), 117
Try.these(), 177

G
GET requests, 83

browser caches, 84-86, 173
HTTP requests, 29-31
JavaScript libraries, 160
myAJAXlib.js, 163
query strings, 29
REST, 145-147
troubleshooting, 174

getAllResponseHeaders method, 78
getAttribute method (DOM), 59
getElementByID method, 98, 106, 130
getElementByTagname method, 105-106
getElements() method, prototype.js, 177
GetElementsById method, 133
getElementsByTagName method, 95-96, 130, 133
getResponseHeader method, 78
gmail web mail service (Google), 65
Google Maps, 65
Google Suggest, 64-65
graphics web browsers, 10

H
HasChildNodes method, 133
head tags (HTML), 16

header lines (HTTP)
requests, 27
responses, 28

header() function, 195
headers, outputing prior to issuing PHP scripts, 94
Hello World example, printing in PHP, 48
hexadecimal numbering system, HTML color

values, 18
HTML (Hypertext Markup Language), 13. See also

AHAH
<div>…<div> elements, 102
<div> containers, 105
<script>…<script> elements, 103
advanced document example, 20-21
basic application creation example, 102
basic document example, 14

body tags, 16-17
DOCTYPE elements, 15
head tags, 16
HTML tags, 16
tags, adding attributes to, 18
title tags, 16

color values, 18
comments, 17
defining, 14
DOCTYPE elements, 15-16
forms

attributes, 30
attributes methods, 30
parameter values, 31
processing, 30
simple form example, 30-31
special characters, transmitting, 31
tags, 28-30
variables, 30

GET requests, 29-31
hyperlinks, 19-20
JavaScript, 34-37
loading documents, 15
metatags

keywords, 123-125
myAHAHlib.js, 124-125

http://lib.ommolketab.ir
http//lib.ommolketab.ir

JavaScript

205

myAJAXlib.js, 164
PHP, 48
POST requests, 29-31
responseText property, 115-116
RSS headline readers, creating, 134
saving documents, 15
script tags, 34
seville.html document example, 20-21
styles, 23

inline styles, 24
style sheet rules, setting, 24

tags, 14
adding attributes to, 18
anchor tags, 20
as containers, 17
body tags, 16-17
body tags, adding attributes to, 18
center tags, 21
common tags table, 22-23
head tags, 16
images tags, 19
table tags, 19-21
title tags, 16

testpage.html document example, 14
body tags, 16-17
body tags, adding attributes to, 18
DOCTYPE elements, 15-16
head tags, 16
HTML tags, 16
loading, 15
saving, 15
title tags, 16

tool requirements, 14
word processors, 14
XML, similarities to, 54
XOAD, 199

change() function, 196-197
XOAD HTML::getElementByID() method,

196-197
XOAD HTML::getElementByTagName()

method, 198

HTTP (Hypertext Transfer Protocol), 25. See also
AHAH

requests, 7
GET requests, 29-31
header lines, 27
opening lines, 26
POST requests, 29-31

responses
header lines, 28
reason phrases, 27
status lines, 27

server response status codes, 87
SOAP requests, sending, 154
versions (HTTP requests), 26

hyperlinks, HTML, 19-20

I - J
id values, 98
if statements (PHP), 51
image tags (HTML), 19
images, defining pixels, 19
indexOf method, responseText property, 93
inline styles, 24
instances (objects), creating, 72-77
Internet, HTTP requests, 7
Internet Explorer (MS), Jscript, 34
IP addresses, defining, 12

JavaScript, 33
arguments, 37, 42
Back button codes, 167
case sensitivity, 35
commands, execution order, 37
enabling, 34
form validation example, 45-46
functions

arguments, passing to, 42
calling, 41

http://lib.ommolketab.ir
http//lib.ommolketab.ir

JavaScript

206

event handlers, calling from, 43
numcheck, 46
structure of, 40

HTML pages, adding to, 35-37
methods, 37-42
objects, 37, 45, 57-58
script tags, 34
variables, 44
XML, 57-59

JavaScript libraries, 158
callback functions, 161-162
doAjax functions, 161, 164-165
error handling, 166
eval() function, 161-162
GET requests, 160
myAJAXlib.js, 158-162

callback functions, 164
event handler calls, 164
GET requests, 163
HTML pages, 164
PHP scripts, 164
responseText properties, 164
usage example, 163-165
XML data, retrieving, 165

POST requests, 160, 165
prototype.js

$() function, 176
$F() function, 176-177
Ajax.PeriodicalUpdater class, 179-180
Ajax.request class, 178
Ajax.Updater class, 179
download website, 175
Form objects, 177
getElements() method, 177
Rico, 183-192
serialize() method, 177
Stock Price Reader build example, 180-182
Try.these() function, 177
web applications, adding to, 175

user feedback, 166
XMLHTTPRequest instances, creating, 159-160

Jscript, 34
JSON (JavaScript Object Notation) website, 178

K - L
keywords metatag, 123-125

lastChild property, 132
lastIndexOf method, responseText property, 93
libraries (JavaScript)

callback functions, 161-162
doAjax functions, 161, 164-165
error handling, 166
eval() function, 161-162
GET requests, 160
myAHAHlib.js, 158-159
myAJAXlib.js, 161-162

callback functions, 164
event handler calls, 164
GET requests, 163
HTML pages, 164
PHP scripts, 164
responseText properties, 164
usage example, 163-165
XML data, retrieving, 165

POST requests, 160, 165
prototype.js

$() function, 176
$F() function, 176-177
Ajax.PeriodicalUpdater class, 179-180
Ajax.request class, 178
Ajax.Updater class, 179
download website, 175
Form objects, 177
getElements() method, 177
Rico, 183-192
serialize() method, 177
Stock Price Reader build example, 180-182

http://lib.ommolketab.ir
http//lib.ommolketab.ir

myAJAXlib.js

207

Try.these() function, 177
web applications, adding to, 175

user feedback, 166
XMLHTTPRequest instances, creating, 159-160

libraries (open source), Rico, 183
<response> elements, 184, 187
AjaxEngine instances, 184-185
callRICO() function, 186
cinematic effects, 192
drag-and-drop, 188-191
multiple page element updates, 184
usage example, 185-186
web applications, adding to, 183

links, troubleshooting, 168-169
loading HTML documents, 15
loop constructs (PHP), 52
Lynx text-based web browsers, 10

M
markup elements (HTML). See tags, HTML
Math.random() method, 84
metatags

keywords, 123-125
myAHAHlib.js, retrieving metatag information,

124-125
methods, 71

abort, 78
AppendChild, 131-133
charAt, responseText property, 93
CreateAttribute, 133
CreateElement, 132-133
CreateTextNode, 131-133
getAllResponseHeaders, 78
getElementByID, 98, 106, 130
getElementByTagname, 105-106
getElements(), protoype.js, 177
GetElementsById, 133
getElementsByTagName, 95-96, 130, 133

getResponseHeader, 78
HasChildNodes, 133
HTTP requests, 26-27
indexOf, responseText property, 93
JavaScript, event handlers, 37

onClick event handler, 38-39
onMouseOver event handler, 41-42

lastIndexOf, responseText property, 93
Math.random(), 84
open, 78-79
registerDraggable, 188
registerDropZone, 188
RemoveChild, 133
send, 78-79
serialize(), protoype.js, 177
setRequestHeader, 78-79
split(), 117
substring, responseText property, 93
toLowerCase(), responseText property, 93
toUpperCase(), responseText property, 93
XMLHTTPRequest object, list of, 78
XOAD HTML::getElementByID(), 196-197
XOAD HTML::getElementByTagName(), 198

multiplatform code tests, 172
myAHAHlib.js, 121-123, 158-159

metatag information, retrieving from URL,
124-125

responseText property, 127
myAJAXlib.js, 161-162

callback functions, 164
event handler calls, 164
GET requests, 163
HTML pages, 164
PHP scripts, 164
responseText properties, 164
usage example, 163-165
XML data, retrieving, 165

http://lib.ommolketab.ir
http//lib.ommolketab.ir

namespaces

208

N - O
namespaces, SOAP, 153
native objects, 72
nextSibling property, 133
nodeName property, 133
nodes

child nodes, adding to DOM, 131
DOM, 58-59

DOM document methods table, 133
DOM node methods table, 133
DOM node properties table, 132

nodeType property, 133
nodeValue property, 133
numcheck function (JavaScript), 46
numeric arrays, 51

objects
Ajax

Ajax.PeriodicalUpdater class, 179-180
Ajax.request class, 178
Ajax.Updater class, 179

AjaxEngine, instances in Rico, 184-185
constructors, 72
DOM, 72-73
Form, protoype.js, 177
instances, creating, 72-77
JavaScript, 45

methods, 37
XML, 57-58

methods, 71
native objects, 72
properties, 71
XMLHTTPRequest

basic application creation example, 103-104
callAjax() function, 83
instances, creating, 74-77
JavaScript libraries, creating, 159-160
methods

open, 78-79
send, 79

methods, list of, 78
properties, list of, 77
responseAjax() function, 83
server requests, browser caches, 84-86
server requests, callback functions, 88-90
server requests, sending, 81-83
server requests, status monitoring, 86-87
server requests, timestamps, 86
status property, 88
statusText property, 88
uses of, 73

XMLHTTPRequest, readyState property, 86-87
onBlur event handler, 89-90
onChange event handler, 44
onClick event handler, 38-39, 44
onLoad event handler, 44, 106
onMouseOut event handler, 44
onMouseOver event handler, 41-44
onreadystatechange property, 77
onSubmit event handler, 44-46
open method, 78-79
open source libraries

Rico, 183
<response> elements, 184, 187
AjaxEngine instances, 184-185
callRICO() function, 186
cinematic effects, 192
drag-and-drop, 188-191
multiple page element updates, 184
usage example, 185-186
web applications, adding, 183

opening lines (HTTP requests)
HTTP versions, 26
methods, 26-27
server resources, 26

http://lib.ommolketab.ir
http//lib.ommolketab.ir

properties

209

P
page design, troubleshooting, 171
page elements, designing, 171
parentNode property, 133
parsing, responseXML property, 96
Permission Denied errors, troubleshooting, 174
PHP, 47

$ SERVER global array variable, 187
date command, 50
file extensions, 48
Hello World example, printing, 48
HTML, 48
if statements, 51
loop constructs, 52
methods, @ characters, 125
php tags, 48
program flow, controlling, 51-52
resource websites, 48
scripts

basic application creation example, 104-105
header() instructions, outputing prior to

issues, 94
myAJAXlib.js, 164
quotes, escaping, 94

tags, 48
variables

arrays, 50
case sensitivity, 49
naming conventions, 49
numbers, 50
strings, 50
values, assigning, 49

XOAD
cache handling, 200
client controls, customizing, 200
downloading/installing, 193
events, 199
header() function, 195
runServer() function, 195

simple page example, 194-196
XOAD Controls class, 200
XOAD HTML, 196-199

PHP interpreter, @ characters, 125
pixels, defining, 19
platform code tests, 172
pop-ups, 171
POST requests, 145-147, 165

HTTP requests, 29-31
JavaScript libraries, 160
message bodies, 29
troubleshooting, 174

previousSibling property, 133
programmer’s editors, HTML, 14
prologs (XML), 55
properties, 71

childNodes, 132
DOM document methods table, 133
DOM node methods table, 133
DOM node properties table, 132
firstChild, 132
lastChild, 132
nextSibling, 133
nodeName, 133
nodeType, 133
nodeValue, 133
onreadystatechange, 77
parentNode, 133
previousSibling, 133
readystate, 77, 86-87
responseText, 78, 111

character strings, 112-114
formatted data, 117
HTML, 115-116
manipulation methods list, 93-94
myAHAHlib.js, 127
myAJAXlib.js, 164
null values, 92
returned text, 112-114
values, displaying, 92-93
values, manipulating, 93

http://lib.ommolketab.ir
http//lib.ommolketab.ir

properties

210

responseXML, 78, 94-95, 130
parsing, 96
stored values, 130
web pages, adding elements to, 130-132

status, 78, 88
statusText, 78, 88
XMLHTTPRequest object, list of, 77

prototype.js
$() function, 176
$F() function, 176-177
Ajax objects

Ajax.PeriodicalUpdater class, 179-180
Ajax.request class, 178
Ajax.Updater class, 179

download website, 175
Form objects, 177
getElements() method, 177
Rico

<response> elements, 184, 187
AjaxEngine instances, 184-185
callRICO() function, 186
cinematic effects, 192
drag-and-drop, 188-191
multiple page element updates, 184
usage example, 185-186
web applications, adding to, 183

serialize() method, 177
Stock Price Reader build example, 180-182
Try.these() function, 177
web applications, adding to, 175

PUT requests, 145

Q - R
query strings, GET requests, 29
quotes, escaping in PHP scripts, 94

readystate property, 77, 86-87
reason phrases (HTTP responses), 27
registerDraggable method, 188

registerDropZone method, 188
RemoveChild method, 133
requests (HTTP), opening lines

GET requests, 29-31
header lines, 27
HTTP versions, 26
methods, 26-27
POST requests, 29-31
server resources, 26

responseAHAH() functions, 122-123
responseAjax() function, 83, 88
responses (HTTP)

header lines, 28
reason phrases, 27
status lines, 27

responseText property, 78, 111
character strings, using in page elements,

112-114
formatted data, 117
HTML, 115-116
manipulation methods list, 93-94
myAHAHlib.js, 127
myAJAXlib.js, 164
null values, 92
returned text, using in page elements, 112-114
values

displaying, 92-93
manipulating, 93

responseXML property, 78, 94-95
parsing, 96
stored values, 130
web pages, adding elements to, 130-132

REST (Representational State Transfer)
Amazon.com REST API, 147-150
articles, uploading, 147
DELETE requests, 145
example of, 145
GET requests, 145-147
lists of available articles, reading, 146
particular articles, retrieving, 147

http://lib.ommolketab.ir
http//lib.ommolketab.ir

style sheets

211

POST requests, 145-147
principles of, 144
PUT requests, 145
SOAP versus, 156
stateless operations, 146

Rico
<response> elements, 184, 187
AjaxEngine instances, 184-185
callRICO() function, 186
cinematic effects, 192
drag-and-drop, 188-191
multiple page element updates, 184
usage example, 185-186
web applications, adding to, 183

RSS feeds, 133
RSS headline readers, creating, 133, 136-137

callback functions, 138-140
HTML page, 134
server scripts, 140-141

runServer() function, 195

S
saving HTML documents, 15
script tags (HTML), 34
search engine spiders, troubleshooting, 170
security

troubleshooting, 172
XMLHTTPRequest objects, 66

send method, 78-79
serialize() method, prototype.js, 177
server-side programming, defining, 10
server-side scripts, 67
servers

asynchronous communications, 64
requests

asynchronous requests, 66
basic application creation example, 104
browser caches, 84-86
callback functions, 86

GET requests, 83
in progress notifications, 97
readyState property, 86-87
sending, XMLHTTPRequest objects, 81-86
status, monitoring, 86-87
timestamps, 86
user feedback, 97

resources (HTTP requests), 26
responses, 67

getElementsByTagName() method, 95
in progress notifications, 97
responseText property, 92-93
responseXML property, 94-96
user feedback, 97

scripts
RSS headline readers, creating, 140-141
server-side scripts, 67

setRequestHeader method, 78-79
seville.html document example, 20-21
sizeof() function, 117
SOAP (Simple Object Access Protocol), 151

development of, 152
namespaces, 153
requests

Ajax usage example, 155
code example, 153-154
components of, 152-153
HTTP, sending via, 154

REST versus, 156
specification information website, 152

spiders, troubleshooting, 170
split() method, 117
src attribute (image tags), 19
status codes table (HTTP responses), 27
status lines (HTTP responses), 27
status property, 78, 88
statusText property, 78, 88
Stock Price Reader build example, 180-182
style sheets, setting rules, 24

http://lib.ommolketab.ir
http//lib.ommolketab.ir

styles

212

styles
HTML documents, 23
inline styles, 24
style sheet rules, setting, 24

substring method, responseText property, 93

T
table tags (HTML), 19-21
tagname properties (DOM), 59
tags

HTML, 14-15
adding attributes to, 18
anchor tags, 20
as containers, 17
body tags, 16-18
center tags, 21
common tags table, 22-23
head tags, 16
image tags, 19
table tags, 19-21
title tags, 16

XML, 54
testpage.html document example, 14

body tags, 16-18
DOCTYPE elements, 15-16
head tags, 16
HTML tags, 16
loading, 15
saving, 15
title tags, 16

text editors, HTML, 14
text properties (DOM), 59
text-based web browsers, 10
timestamps, server requests, 86
title tags (HTML), 16
toLowerCase() method, responseText property, 93
toUpperCase() method, responseText property, 93
troubleshooting

application design, 173
Back button codes, 167

bookmarks, 168-169
browser caches, 173
code, platform tests, 172
GET requests, 173-174
links, 168-169
page design, 171
Permission Denied errors, 174
POST requests, 174
security, 172
spiders, 170
unsupported browsers, 169-170
user feedback, 169

Try.these() function, 177

U - V
unsupported browsers, troubleshooting, 169-170
URL

RSS headline readers, creating, 133, 136-138
callback functions, 138-140
HTML page, 134
server scripts, 140-141

user feedback
basic application creation example, 109-110
JavaScript libraries, 166
server requests, 97
troubleshooting, 169

valid XML documents, defining, 57
variables

JavaScript, 44
PHP

arrays, 50
case sensitivity, 49
naming conventions, 49
numbers, 50
strings, 50
values, assigning, 49

http://lib.ommolketab.ir
http//lib.ommolketab.ir

XMLHTTPRequest object

213

W
W3C validator website, 173
W3C website, 152
Web (World Wide), HTTP requests, 7
web browsers

availability of, 11
defining, 10
graphical web browsers, 10
HTML documents, loading, 15
text-based web browsers, 10
unsupported browser, troubleshooting,

169-170
web server interaction, 7

web pages
defining, 8
elements, adding to via responseXML property,

130-132
HTTP requests, 7
id values, 98

web servers
Apache Web Server website, 9
defining, 9
web browser interaction, 7

web services
example of, 144
REST

Amazon.com REST API, 147-150
articles, uploading, 147
DELETE requests, 145
example of, 145
GET requests, 145-147
lists of available articles, reading, 146
particular articles, retrieving, 147
POST requests, 145-147
principles of, 144
PUT requests, 145
SOAP versus, 156
stateless operations, 146

SOAP, 151
development of, 152
namespaces, 153

requests, Ajax usage example, 155
requests, code example, 153-154
requests, components of, 152-153
requests, sending via HTTP, 154
REST versus, 156
specification information website, 152

while loops, 52
word processors, HTML, 14

X - Y - Z
XML (eXtensible Markup Language), 53

ATTLIST declarations, 57
comments, displaying, 55
data, retrieving via myAJAXlib.js, 165
DOCTYPE declarations, 55-56
document elements, 55
ELEMENT declarations, 56
HTML, similarities to, 54
JavaScript, 57-59
prologs, 55
responseXML property, 130-132
RSS headline readers, creating, 133, 136-137

callback functions, 138-140
HTML page, 134
server scripts, 140-141

server responses, 67
tags, 54
valid documents, defining, 57

XMLHTTPRequest object
basic application creation example, 103-104
callAjax() function, 83
instances, creating, 74-77
JavaScript libraries, creating, 159-160
methods

list of, 78
open, 78-79
send, 79

http://lib.ommolketab.ir
http//lib.ommolketab.ir

XMLHTTPRequest object

214

properties
readyState, 86-87
status, 88
statusText, 88

responseAjax() function, 83
security, 66
server requests, 66

browser caches, 84-86
callback functions, 88-90
sending, 81-83
status, monitoring, 86-87
timestamps, 86

server-side scripts, 67
uses of, 73

XOAD (XMLHTTP Object-oriented Application
Development)

cache handling, 200
client controls, customizing, 200
downloading/installing, 193
events, 199
header() function, 195
runServer() function, 195
simple page example, 194-196
XOAD Controls class, 200
XOAD HTML, 196-199

XOAD Controls class, 200
XOAD HTML, 196

change() function, 196-197
XOAD HTML::getElementByID() method,

196-197
XOAD HTML::getElementByTagName() method,

198
XOAD HTML::getElementByID() method, 196-197
XOAD HTML::getElementByTagName() method,

198
XSLT, 120

http://lib.ommolketab.ir
http//lib.ommolketab.ir

