

•
Table of

Contents

• Index

• Reviews

•
Reader

Reviews

• Errata

• Academic

QuickTime for Java: A Developer's Notebook

By Chris Adamson

Publisher: O'Reilly

Pub Date: January 2005

ISBN: 0-596-00822-8

Pages: 255

Java developers who need to add audio, video, or interactive media
creation and playback to their applications find that QuickTime Java is a
powerful toolkit, but one that's not easy to get into. This book offers the
first real look at this important software with an informal, code-intensive
style that lets impatient early adopters focus on learning by doing. You get
just the functionality you need.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

•
Table of

Contents

• Index

• Reviews

•
Reader

Reviews

• Errata

• Academic

QuickTime for Java: A Developer's Notebook

By Chris Adamson

Publisher: O'Reilly

Pub Date: January 2005

ISBN: 0-596-00822-8

Pages: 255

 Copyright

 The Developer's Notebook Series

 Notebooks Are...

 Notebooks Aren't...

 Organization

 Preface

 Enter Biscotti

 Why a QuickTime for Java Book?

 Assumptions and Definitions

 Organization

 About the Examples

 Conventions Used in This Book

 Using Code Examples

 How to Contact Us

 Safari Enabled

 Acknowledgments

 Chapter 1. Getting Up and Running with QuickTime for Java

 Section 1.1. Setting Up QTJ on Windows

 Section 1.2. Embedding QuickTime in HTML

 Section 1.3. Preflighting a QTJ Installation

 Section 1.4. Compiling QTJ Code

 Section 1.5. Opening and Closing the QuickTime Session

 Section 1.6. Playing an Audio File from the Command Line

 Chapter 2. Playing Movies

 Section 2.1. Building a Simple Movie Player

 Section 2.2. Adding a Controller

 Section 2.3. Getting a Movie-Playing JComponent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 2.4. Controlling a Movie Programmatically

 Section 2.5. Showing a Movie's Current Time

 Section 2.6. Listening for Movie State-Changes

 Section 2.7. Moving Frame by Frame

 Section 2.8. Playing Movies from URLs

 Section 2.9. Preventing "Tasking" Problems

 Chapter 3. Editing Movies

 Section 3.1. Copying and Pasting

 Section 3.2. Performing "Low-Level" Edits

 Section 3.3. Undoing an Edit

 Section 3.4. Undoing and Redoing Multiple Edits

 Section 3.5. Saving a Movie to a File

 Section 3.6. Flattening a Movie

 Section 3.7. Saving a Movie with Dependencies

 Section 3.8. Editing Tracks

 Chapter 4. Working with Components

 Section 4.1. Specifying a Component's Type

 Section 4.2. Exporting Movies

 Section 4.3. Exporting Movies to Any Installed Format

 Section 4.4. Importing and Exporting Graphics

 Section 4.5. Discovering All Installed Components

 Chapter 5. Working with QuickDraw

 Section 5.1. Getting and Saving Picts

 Section 5.2. Getting a Pict from a Movie

 Section 5.3. Converting a Movie Image to a Java Image

 Section 5.4. A Better Movie-to-Java Image Converter

 Section 5.5. Drawing with Graphics Primitives

 Section 5.6. Getting a Screen Capture

 Section 5.7. Matrix-Based Drawing

 Section 5.8. Compositing Graphics

 Chapter 6. Capture

 Section 6.1. Capturing and Previewing Audio

 Section 6.2. Selecting Audio Inputs

 Section 6.3. Capturing Audio to Disk

 Section 6.4. Capturing Video to Disk

 Section 6.5. Capturing Audio and Video to the Same File

 Section 6.6. Making a Motion Detector

 Chapter 7. Audio Media

 Section 7.1. Reading Information from MP3 Files

 Section 7.2. Reading Information from iTunes AAC Files

 Section 7.3. Providing Basic Audio Controls

 Section 7.4. Providing a Level Meter

 Section 7.5. Building an Audio Track from Raw Samples

 Chapter 8. Video Media

 Section 8.1. Combining Video Tracks

 Section 8.2. Overlaying Video Tracks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 8.3. Building a Video Track from Raw Samples

 Section 8.4. Overlaying Video Tracks

 Chapter 9. Miscellaneous Media

 Section 9.1. Creating Captions with Text Media

 Section 9.2. Creating Links with HREF Tracks

 Section 9.3. Adding Timecodes

 Section 9.4. Creating Zero-Source Effects

 Section 9.5. Creating One-Source Effects (Filters)

 Section 9.6. Creating Two-Source Effects (Transitions)

 Colophon

 Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Copyright © 2005 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Developer's Notebook series designations, QuickTime for Java: A Developer's
Notebook, the look of a laboratory notebook, and related trade dress are trademarks of O'Reilly
Media, Inc.

Java? and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O'Reilly Media, Inc. is independent of
Sun Microsystems, Inc.

Apple, the Apple logo, AppleScript, AppleTalk, AppleWorks, Carbon, Cocoa, Finder, FireWire, iBook,
iMac, iPod, Mac, Mac logo, Macintosh, PowerBook, QuickTime, QuickTime logo, and WebObjects are
trademarks of Apple Computer, Inc., registered in the United States and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Developer's Notebook Series
So, you've managed to pick this book up. Cool. Really, I'm excited about that! Of course, you may be
wondering why these books have the odd-looking, college notebook sort of cover. I mean, this is
O'Reilly, right? Where are the animals? And, really, do you need another series? Couldn't this just be
a cookbook? How about a nutshell, or one of those cool hacks books that seems to be everywhere?
The short answer is that a developer's notebook is none of those thingsin fact, it's such an important
idea that we came up with an entirely new look and feel, complete with cover, fonts, and even some
notes in the margin. This is all a result of trying to get something into your hands you can actually
use.

It's my strong belief that while the nineties were characterized by everyone wanting to learn
everything (Why not? We all had six-figure incomes from dot-com companies), the new millennium is
about information pain. People don't have time (or the income) to read through 600 page books,
often learning 200 things, of which only about 4 apply to their current job. It would be much nicer to
just sit near one of the uber-coders and look over his shoulder, wouldn't it? To ask the guys that are
neck-deep in this stuff why they chose a particular method, how they performed this one tricky task,
or how they avoided that threading issue when working with piped streams. The thinking has always
been that books can't serve that particular needthey can inform, and let you decide, but ultimately a
coder's mind was something that couldn't really be captured on a piece of paper.

This series says that assumption is patently wrongand we aim to prove it.

A Developer's Notebook is just what it claims to be: the often-frantic scribbling and notes that a true-
blue alpha geek mentally makes when working with a new language, API, or project. It's the no-
nonsense code that solves problems, stripped of page-filling commentary that often serves more as a
paperweight than an epiphany. It's hackery, focused not on what is nifty or might be fun to do when
you've got some free time (when's the last time that happened?), but on what you need to simply
"make it work." This isn't a lecture, folksit's a lab. If you want a lot of concept, architecture, and UML
diagrams, I'll happily and proudly point you to our animal and nutshell books. If you want every
answer to every problem under the sun, our omnibus cookbooks are killer. And if you are into arcane
and often quirky uses of technology, hacks books simply rock. But if you're a coder, down to your
core, and you just want to get on with it, then you want a Developer's Notebook. Coffee stains and
all, this is from the mind of a developer to yours, barely even cleaned up enough for print. I hope you
enjoy it...we sure had a good time writing them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notebooks Are...

Example-driven guides

As you'll see in the Organization section, developer's notebooks are built entirely around
example code. You'll see code on nearly every page, and it's code that does somethingnot
trivial "Hello World!" programs that aren't worth more than the paper they're printed on.

Aimed at developers

Ever read a book that seems to be aimed at pointy-haired bosses, filled with buzzwords, and
feels more like a marketing manifesto than a programming text? We have tooand these books
are the antithesis of that. In fact, a good notebook is incomprehensible to someone who can't
program (don't say we didn't warn you!), and that's just the way it's supposed to be. But for
developers...it's as good as it gets.

Actually enjoyable to work through

Do you really have time to sit around reading something that isn't any fun? If you do, then
maybe you're into thousand-page language referencesbut if you're like the rest of us,
notebooks are a much better fit. Practical code samples, terse dialogue centered around
practical examples, and even some humor here and therethese are the ingredients of a good
developer's notebook.

About doing, not talking about doing

If you want to read a book late at night without a computer nearby, these books might not be
that useful. The intent is that you're coding as you go along, knee deep in bytecode. For that
reason, notebooks talk code, code, code. Fire up your editor before digging in.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notebooks Aren't...

Lectures

We don't let just anyone write a developer's notebookyou've got to be a bona fide
programmer, and preferably one who stays up a little too late coding. While full-time writers,
academics, and theorists are great in some areas, these books are about programming in the
trenches, and are filled with instruction, not lecture.

Filled with conceptual drawings and class hierarchies

This isn't a nutshell (there, we said it). You won't find 100-page indices with every method
listed, and you won't see full-page UML diagrams with methods, inheritance trees, and flow
charts. What you will find is page after page of source code. Are you starting to sense a
recurring theme?

Long on explanation, light on application

It seems that many programming books these days have three, four, or more chapters before
you even see any working code. I'm not sure who has authors convinced that it's good to keep
a reader waiting this long, but it's not anybody working on this series. We believe that if you're
not coding within ten pages, something's wrong. These books are also chock-full of practical
application, taking you from an example in a book to putting things to work on your job, as
quickly as possible.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Organization

Developer's Notebooks try to communicate different information than most books, and as a result,
are organized differently. They do indeed have chapters, but that's about as far as the similarity
between a notebook and a traditional programming book goes. First, you'll find that all the headings
in each chapter are organized around a specific task. You'll note that we said task, not concept.
That's one of the important things to get about these booksthey are first and foremost about doing
something. Each of these headings represents a single lab. A lab is just what it sounds likesteps to
accomplish a specific goal. In fact, that's the first heading you'll see under each lab: "How do I do
that?" This is the central question of each lab, and you'll find lots of down-and-dirty code and detail in
these sections. Many labs offer alternatives and address common questions about different
approaches to similar problems. These are the "What about . . . " sections, which will help give each
task some context within the programming big picture.

And one last thingon many pages, you'll find notes scrawled in the margins of the page. These aren't
for decoration; they contain tips, tricks, insights from the developers of a product, and sometimes
even a little humor, just to keep you going. These notes represent part of the overall communication
flowgetting you as close to reading the mind of the developer-author as we can. Hopefully they'll get
you that much closer to feeling like you are indeed learning from a master.

And most of all, rememberthese books are...

All Lab, No Lecture

Brett McLaughlin, Series Creator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface
Java has been a huge success in many fieldsdistributed enterprise applications, mobile phones, web
applicationsbut one field that it has clearly flopped in is media. A sound API, javax.sound, suffices for
simple playback and mixing of a handful of old formats, and was added to the Java core (the classes
any Java runtime must include) in Java 2 Standard Edition (J2SE) 1.3. The optional package for
media, Java Media Framework (JMF), fared much worse. After two releases, a 1.0 that provided only
playback and a 2.0 that added streaming, transcoding, and some lower-level access, the product was
slipped into maintenance mode and has seen little attention since 1999. In fact, the most
monumental change to JMF in this time was the loss of a feature: MP3 support was removed in 2002,
due to licensing concerns. Making things worse, JMF's all-Java version had weak support for popular
formats and codecs. Native editions could play more media, but Sun initially created versions only for
Windows and Solaris, later providing minimal support to a third-party Linux port and absolutely no
support for a Mac version. Setting aside the dubious premise of Solaris as a media production OS,
this effectively made JMF practical only on Windows, eliminating Java's cross-platform advantage.

Enter QuickTime, a multimedia framework originally introduced by Apple for the ("Classic") Mac OS in
late 1991. QuickTime defines both a file format (the QuickTime .mov format) and many APIs for
working with time-based media. The provided functions allow applications to create media (either
synthetically or via capture), manipulate it, and present it. Media types supported by QuickTime
include sound and video, timed text (captions), graphics, interactivity, and a panoramic-image style
of virtual reality (VR).

Unfortunately, despite having an industry-leading multimedia framework, in 1998 there was no
straightforward means of exposing QuickTime to Java developers. And whereas most APIs start with
an interface and then gain a reference implementation, Apple had an implementation and the native
QuickTime libraries, but no Java interface. Compounding the problem, QuickTime was designed to be
called from C (sometimes called "straight C" or "procedural C") and thus lacked the object orientation
a Java interface would call for.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Enter Biscotti

Apple's "Biscotti" project took a remarkable approach to this problemnot only did the Biscotti
designers provide a Java layer to make QuickTime calls, but they also fashioned an object-oriented
API out of a non-OO framework. It helps that QuickTime is made up of a number of fairly elaborate
structures, along with functions that work with them. The Biscotti designers saw that these structures
could be combined into Java objects. For example, they took the Movie struct and many of the
functions that worked with a movie, and fashioned these into the quicktime.std.Movie class.
Functions such as StartMovie(), StopMovie(), CopyMovieSelection(), and
PasteMovieSelection() became the Java instance methods start(), stop(), copySelection(
), and pasteSelection(), respectively. Biscotti, now known as QuickTime for Java, still has its

quirks, but it's a lot more Java-like than some other "wrapper" frameworks for Java.

Note: By comparison, the JOGL API, which offers a Java wrapper to the OpenGL graphics library, simply dumps the functions defined in

the C header files into pseudo-objects with upward of 2,000 methods each!

Whatever Apple's reasons for creating QuickTime for Java (QTJ), the application has been the
beneficiary of many fortuitous advances. The most significant comes from QTJ's nature as a Java
wrapper around a native framework: as the native QuickTime grows, so does QTJ. In particular,
when QuickTime supports a new format or codec, it is almost always available to QTJ immediately,
without requiring any new QTJ development. When QuickTime added MPEG-4 support, QTJ picked it
up for free. When Apple started selling songs on the iTunes Music Store, QTJ was able to play the
encrypted AAC audio files right away.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Why a QuickTime for Java Book?

The strangest thing about QuickTime for Java might be that if you read Apple's documentation, you
get the idea that it was originally aimed not at Java developers, but at QuickTime developers. One of
the introductory docs, "Summary of QuickTime for Java," says as much: "QuickTime for Java came
about to meet developers' need for a way to get at QuickTime besides using C calls." It then goes on
to define Java concepts like classes, objects, and instance methods...it even has a gentle introduction
to the idea of garbage collection.

To a Java developer, this seems wildly backward. The Java developer, evaluating QTJ as a
multimedia toolkit, already knows about garbage collection, and instead he needs an introduction to
the QuickTime concepts that are taken for granted: the idea of the movie as an "organizing principle"
rather than an explicit media stream, the relationship of movies, tracks, and media, and odd legacies
left over from the old Mac OS. The existing documentation doesn't help muchthe Javadoc for a given
method often gives a one-line description (at best), followed by a reference to the underlying C
function it calls.

The goal of this book is to offer a guide to QTJ from a Java point of view. That means introducing
QuickTime concepts as necessary, treating it as essentially new material. Hopefully, this will present
QTJ as an end in itself, meaning you can write effective QTJ applications without having to
understand the native QuickTime API or constantly consult its documentation. It also means that as a
book for Java developers, we'll always adhere to Java coding conventions, taking particular care to
note where QTJ's way of doing something might not seem "normal" from a Java perspective.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Assumptions and Definitions

This book assumes that you are comfortable with Java 2 Standard Edition, Version 1.4 (J2SE 1.4).
You should understand the core language and packages, particularly AWT and Swing. I use both AWT
and Swing extensivelysometimes in the same example, when it's clearer to do it that wayAWT is
much faster, but Swing has some space-saving conveniences that keep the examples short and
focused.

Note: If you don't think AWT is overly verbose, try building a choice dialog sometime.

You should also have at least a passing familiarity with concepts of digital media. Although the
Developer's Notebooks aren't about theory, there are a few terms you should know off the bat.

Movie

In QuickTime, a "movie" isn't just an audio/video fileit is an organization of media elements
that can include audio, graphics, video, text, interactivity, etc. For the purposes of this book,
anything that can be represented by the Movie class is a "movie," including remote MP3

streams, wired-sprite video games, etc.

Codec

A codec is a piece of code that can encode and/or decode media in a given format. Apple's
documentation often breaks this down into media handlers, which understand a given
encoding, and compressors and decompressors to compress or extract data.

Container format

File formats like QuickTime .mov or Microsoft's AVI are containers that can hold different kinds
of content, such as a combination of audio, video, or other kinds of media. Note that parsing
the format and parsing its contents are two separate things: QuickTime can handle the format
of a given AVI file but might not support a codec used in it (and vice versa for libraries that
support the QuickTime file format). Also, a container like QuickTime can refer to remote data,
such as media in another file or out on the network, so a given .mov file does not necessarily
contain all the media needed to play the movie.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Organization

This book is organized into chapters of related material, but as you'll see, this is no "animal book,"
nor is it an Inside Macintosh, for that matter. Each chapter is broken down into tasks, most of which
can be understood fairly independently. In some cases, a chapter will start off with a complete
running application, like the movie player in Chapter 2 or the editor in Chapter 3, then gradually add
features (undo, redo, save, etc.) in successive tasks by indicating only what new code needs to be
added to implement the feature. The only exception is a startup/teardown convenience class,
QTSessionCheck, introduced in Chapter 1 and used by nearly all the other examples as a means of

reducing distracting boilerplate code throughout the book.

Each task exists as a complete example in the downloadable sample code, which is hosted at
http://www.oreilly.com/catalog/quicktimejvaadn.

http://www.oreilly.com/catalog/quicktimejvaadn
http://lib.ommolketab.ir
http://lib.ommolketab.ir

About the Examples

When unzipped, the examples will create a directory whose contents look like this:

build.xml my.ant.properties.win
classes/ src/
jars/

build.xml is the build file for Ant, the de facto standard for building Java projects. You don't have to
use Ant, but considering the classpath challenges in dealing with Java builds, particularly with QTJ
(see Chapter 1), you'll probably find it well worth your while. If you don't already have it, you can get
Ant from http://ant.apache.org/, and you can learn more in Ant: The Definitive Guide (O'Reilly).

Tip: The classes and jars directories are created by Ant, and will not be present when you first unzip the archive.

Using the command line, type ant in this directory to run the default target. In this case, it's the help

message:

cadamson% ant
Buildfile: build.xml

help:
 [echo] Available targets:
 [echo] ch0n -- compile source for chapter n (eg "ch01", "ch02", etc.)
 [echo] all -- compile source for all chapters
 [echo] ch0n.jar -- make a .jar file for chapter n
 [echo] qtj-notebook.jar -- compile source for all chapters and make jar
 [echo] all.jar -- synonym for qtj-notebook.jar
 [echo] run-example -- compile and run "example"
 [echo] help-names -- echo all example names for use with run-example
 [echo] clean -- remove .class files
 [echo] help -- this help message (default)
 [echo]

BUILD SUCCESSFUL
Total time: 2 seconds

You can look in the build.xml file for more information. One important note is that compiling requires
the path to the QTJava.zip file, as described in Chapter 1. The default is the Mac OS X path,
/System/Library/Java/Extensions/QTJava.zip. If you're using Windows, you need to override this. The
provided file my.ant.properties.win has a sample path that looks like this:

qtjavazip.file=c:\\Progra~1\\Java\\j2re1.4.2\\lib\\ext\\QTJava.zip

http://ant.apache.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Edit this so that it refers to the path to QTJava.zip on your system, and then rename the file to
my.ant.properties, so build.xml will pick it up. Because any Ant properties are picked up from this
file, it also gives you the opportunity to make other Ant tweaks, such as repointing jvm.home to use
one of several Java installations on your box, or to change the java.compiler to jikes.

To compile all the book examples into a JAR file, type:

ant qtj-notebook.jar

This will produce output like the following:

cadamson% ant qtj-notebook.jar
Buildfile: build.xml

init:
 [echo] qtjavazip.file = /System/Library/Java/Extensions/QTJava.zip

all:
 [javac] Compiling 53 source files to /Users/cadamson/Documents/
O'Reilly/books/qtj
developer's notebook/code/classes

qtj-notebook.jar:
 [jar] Building jar: /Users/cadamson/Documents/O'Reilly/books/qtj
developer's notebook/code/jars/qtj-notebook.jar

BUILD SUCCESSFUL
Total time: 7 seconds

You can then run any of the examples by extending the classpath to include the qtj-notebook.jar file,
as in:

java -cp jars/qtj-notebook.jar com.oreilly.qtjnotebook.ch02.SimpleQTPlayer

There are also Ant targets to compile and run every example in the book. Use ant help-examples to

see a list of example names.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conventions Used in This Book

The following typographical conventions are used in this book.

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and
Ctrl).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories,
and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, events, event
handlers, XML tags, HTML tags, macros, the contents of files, or the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

Tip: This icon signifies a tip, suggestion, or general note.

Warning: This icon indicates a warning or caution.

Note: This icon indicates a Developer's Note.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "QuickTime for Java: A Developer's Notebook by Chris Adamson.
Copyright 2005 O'Reilly Media, Inc., 0-596-00822-8."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/quicktimejvaadn

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/quicktimejvaadn
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Safari Enabled

When you see a Safari® enabled icon on the cover of your favorite technology book
that means the book is available online through the O'Reilly Network Safari Bookshelf. Safari offers a
solution that's better than e-books. It's a virtual library that lets you easily search thousands of top
tech books, cut and paste code samples, download chapters, and find quick answers when you need
the most accurate, current information. Try it for free at http://safari.oreilly.com.

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Acknowledgments

Brett McLaughlin deserves huge thanks for getting this book to you. Not only is he the creator of the
Developer's Notebook series and the editor of this book, but he also saw that QuickTime for Java was
a topic whose need for practical know-how (to navigate the media jargon, obtuse concepts, and
teeming "gotchas") was well-suited for this series. Chuck Toporek at O'Reilly was also very helpful in
getting people excited about the book. And, of course, I wouldn't even be writing for O'Reilly if I
hadn't bumped into Daniel Steinberg at the Mac OS X conference a few years ago, which ultimately
led to our working together to edit the ONJava and java.net web sites.

The members of the quicktime-java and quicktime-api mailing lists, and the OpenQTJ project at
java.net, have also been extremely helpful in working through problematic material and passing
along those nuggets of knowledge that you're somehow "just supposed to know." In particular, the
material in Chapter 6 about working around the incomplete state of video capture came in many
ways from bits of discussion here and there saying, "you can get it to work by passing in your own
GWorld." After I posted an early version of this book's "motion detector" example, some quicktime-
java members developed it further into a more general-purpose capture preview. Tech reviewers Rolf
Howarth, Anthony "aNt" Rogers, Dmitry Markman, and Sean Gilligan have also been generous with
their time, attention, and knowledge, and have made this a far better book than it would have been
without them.

I couldn't contact my friends on the QuickTime team while working on this bookanother publisher has
exclusive access to those developers for QuickTime titlesso they were probably wondering where I
was while this book was in silent running. But they've been very supportive in the past and I'm
looking forward to being able to work with them again.

I wouldn't even have a programming career if Tammie Childs at Pathfire hadn't taken a chance on
me when all I had to speak of for my programming skills were a couple of crazy applets. She also
took me back in when Piece Of Crap Wireless Companies No.s 1 and 2 crashed and burned, and still
encouraged me to pursue my interests when articles led to editing and then to books.

Finally, I want to thank my wife Kelly, and our son Keagan, for being supportive while I took a big
chance on writing a book, and for cutting Daddy some slack when he needed to go downstairs and do
more writing. I hope that Keagan hasn't picked up the more extreme expressions that I emitted while
working through some of the less stable parts of QuickTime for Java. By the way, you'll notice that
Keagan is all over this book for two reasons: first, I don't have to pay license fees on media I own,
such as my own iMovies, and second, he's quite cute.

Obligatory O'Reilly music check: this time it was Roxy Music, the Kinks, Nellie McKay, Elvis Costello,
Thelonious Monk, a bunch of anime soundtracks (notably .hack//SIGN, Nadia, FLCL, and Cowboy
Bebop), and the streaming audio stations Radio Dupree, Armitage's Dimension, and Gamer Girl
Radio.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Getting Up and Running with
QuickTime for Java
Do you need to do anything special to start developing QuickTime for Java applications? The answer
to that question is easily answered by another question: are you using Mac OS X? If so, you have
everything you need: Java, QuickTime, and QuickTime for Java (QTJ). If you're using Windows, you
might have some downloading to do.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1. Setting Up QTJ on Windows

First, you must have Java installed, presumably the latest developer kit release from Sun. As of this
writing, that would be the J2SE 1.4.2 SDK, which lives at
http://java.sun.com/j2se/1.4.2/download.html. Now you must install and/or update QuickTime.

1.1.1. How do I do that?

If you don't already have QuickTime (or iTunes, which includes QuickTime in its install), you can get
it from http://quicktime.apple.com/. What's perhaps more common is that you have QuickTime, but
you don't have QuickTime for Java, which is not installed by default.

In this case, you can use the QuickTime Updater to update your copy of QuickTime and install custom
pieces like QTJ. If you have the QuickTime icon down in your System Tray, you can right-click it to
launch the Updater, as seen in Figure 1-1. You can also get to the Updater via Start Programs

 QuickTime QuickTime Updater.

Figure 1-1. Launching the QuickTime Updater from the system tray

Whether you're updating or installing QuickTime for the first time, you need to click the Custom
button to perform a custom install. This will give you the opportunity to install nondefault features,
most of which are optional codecs , or software components to handle various video and audio
encoding formats. Scroll down the list and you should see QuickTime for Java, as shown in Figure 1-
2.

Figure 1-2. Custom install of QuickTime for Java

http://java.sun.com/j2se/1.4.2/download.html
http://quicktime.apple.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Continue by clicking Update Now (or Install, if this is a new install) to put the latest version of
QuickTime and QuickTime for Java on your PC.

1.1.2. What just happened?

The installer installed QuickTime's various pieces in your system, adding a QuickTime group to your
Start Menu, a QuickTime icon in your System Tray, various pieces in
C:\WINDOWS\System32\QuickTime, etc. It puts QTJava.zip in the lib/ext directory of any valid Java
installations it finds, adds a systemwide environment variable called QTJAVA with the path to this file,
and adds the file's path to the CLASSPATH system environment variable, creating it if necessary.

Figure 1-3 shows what this looks like in Windows Explorer.

Figure 1-3. QTJava.zip file installed into a Java 1.4.2 lib/ext folder

It should be obvious that it's important to do the installs in the order shown here: Java first, then
QuickTime. That way, QuickTime can find the existing Java directories into which to install
QTJava.zip. Unfortunately, this can still get messed up if you add another Java Runtime Environment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(JRE) laterQuickTime might think QTJ is installed, but the new JRE won't have QTJava.zip in its lib/ext
directory. In this case, copying QTJava.zip manually might be the most practical option.

Note: Note that QTJava is a zip file, not a JAR, which gives it this archive-like icon. You don't need, or want, to ever unzip this file.

1.1.3. What about...

...installing QTJ on Linux? Sorry. The thing that makes QTJ fast and powerfulthe fact that it's a
wrapper to an underlying native frameworkis also its cross-platform downfall. QuickTime for Java can
exist only on platforms that Apple develops QuickTime for, and right now, that means Mac and
Windows. On the other hand, if Apple ever did port QuickTime to Linux, bringing QTJ along for the
ride probably wouldn't be hard.

And what about installing QTJ on (Classic) Mac OS? Of course. QTJ was originally developed on and
for Mac OS 8 and 9. It is part of the standard QuickTime install for Mac OS and thus gets picked up
as part of a regular update (which you'd launch with the QuickTime Settings control panel, under the
Update Check section). On Classic, the QTJava.zip file lives in System Folder/Extensions/MRJ
Libraries/MRJClasses (yes, there's a space in MRJ Libraries , but not in MRJClasses).

Note: MRJ means Macintosh Runtime for Java, the name of Classic's JRE. The name and its confusing versioning were dropped for OS

X.

However, development of QuickTime for Classic stopped at Version 6.0.3 and does not include the
much-changed version of QTJ that this book covers, QTJ 6.1. Furthermore, it's worth remembering
that Java on Classic Mac OS never got past Java 1.1.8, which means it doesn't include Swing,
Collections, or many other J2SE classes and conveniences that modern Java developers would expect
to be present.

Where's the API documentation? Even though QTJava.zip is all you need to compile, some
documentation and demos would be really helpful, right? The good news is that there is a QTJ SDK
that offers Javadocs and demos. Unfortunately, much of what's on Apple's web site as of this writing
refers to an earlier version of QTJ that won't work with Java 1.4 on Mac OS X. The most complete
SDK right now is labeled as the "QuickTime for Java Windows SDK," and is located at
http://developer.apple.com/sdk/index.html#QTJavaWin. This package contains a complete set of
current Javadocs and demos that have been updated to represent the new API calls in QTJ 6.1. You
can also view the Javadoc online at
http://developer.apple.com/documentation/Java/Reference/1.4.1/Java141API_QTJ/index.html.

Tip: When you look at the Javadoc, many methods will have a boldface reference to their equivalent C function. For example,

Movie.start(), which starts playing a movie (see the next chapter), wraps the native function QuickTime::StartMovie.

You can usually find the native documentation by doing a search on Apple's page for the function name or by Googling for it with a

search term like site:apple.com StartMovie.Why would you ever look at the native docs when you're programming in

Java? Because a lot of the parameters aren't described in the Javadoc, particularly when methods take behavior flags.

http://developer.apple.com/sdk/index.html#QTJavaWin
http://developer.apple.com/documentation/Java/Reference/1.4.1/Java141API_QTJ/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2. Embedding QuickTime in HTML

Every once in a while, a developer new to QuickTime will post to one of the developer lists, saying he
needs QTJ to put a QuickTime movie in a web page.

QTJ is great, but this is way, way overkill. For this task, you don't need QTJ. In fact, you'd just be
creating headaches for yourself by requiring QTJ and dealing with the hassles of applets. Instead, you
can just embed QuickTime content in HTML.

Note: The mailing lists at http://lists.apple.com/ are a great source of information, particularly quicktime-java, quicktime-users

(authoring), and quicktime-api (native programming). java-dev is also helpful for figuring out issues with Mac OS X's Java

implementation.

1.2.1. How do I do that?

In your HTML page, use an <object> tag, which wraps an <embed>, as shown in Example 1-1.

Example 1-1. Embedding QuickTime in HTML

<object classid="clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B"
 width="160" height="136"
 codebase="http://www.apple.com/qtactivex/qtplugin.cab">
 <param name="src" VALUE="buhbuhbuh.mov"/>
 <param name="autoplay" VALUE="true"/>
 <param name="loop" VALUE="true"/>
 <param name="controller" value="true"/>
<embed src="buhbuhbuh.mov" width="160" height="136"
 scale="tofit"
 controller="true"
 autoplay="true"
 loop="true"
 pluginspage="http://www.apple.com/quicktime/download/"/>
</object>

The parameters are generally self-explanatory: height, width, and src are the only ones that are
actually required. Because I've chosen to include a controller widget, I add 16 to the height
parameter and use the scale parameter with the value tofit.

A web page using this tag is shown in Figure 1-4.

http://lists.apple.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 1-4. Embedding QuickTime movie in HTML

1.2.2. What just happened?

The weird thing about this is, of course, the tag-within-a-tag arrangement. We do this because
although most browsers use the <embed> tag to use plug-ins, Internet Explorer on Windows is special
and insists that we use an <object> tag to talk to a QuickTime ActiveX control.

Because of this arrangement, you have to list all the parameters twice, once in each tag. In the
<embed> tag they're attributes, and in the <object> tag they're child <param> elements. Each tag
also has some boilerplate code, such as the <embed>'s pluginspage and the <object>'s classid and
codebase.

1.2.3. What about...

...other options for the plug-in? There are too many to cover here. Check out
http://www.apple.com/quicktime/authoring/embed.html. There's also some support for controlling a
movie via JavaScript in some browsers (including IE and Mozilla derivatives, but not Safari as of this
writing), using the attribute enablejavascript.

http://www.apple.com/quicktime/authoring/embed.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3. Preflighting a QTJ Installation

Given the hassle of setting up your own box with a custom QuickTime installation, the idea of having
to walk your Windows users through such a process is probably unappealing. Installing the various
QuickTime .dlls and such by yourself is not an alternative, because you promised not to redistribute
QuickTime when you clicked "agree" on that license.

Tip: You know the license I meanit's the one you didn't read! That's OK, I didn't read it either.

Fortunately, QuickTime 6 offers a "preflighting" feature that allows you to create an XML file that
describes what QuickTime features you need, open the file with QuickTime, and have QuickTime
download and install your features if they're absent.

1.3.1. How do I do that?

In your favorite text editor, create an XML file, as seen in Example 1-2.

Example 1-2. Preflighting to install QTJ

<?xml version="1.0"?>
<?quicktime type="application/x-qtpreflight"?>
<qtpreflight>
 <component type="null" subtype="qtj "/>
</qtpreflight>

Save this file with a .mov extension to associate it with QuickTime.

Have QuickTime open this file in whatever means is appropriate for your applicationembed it in a web
page, have an installer script open it with QuickTimePlayer.exe, etc. When you do, QuickTime will
check to see if QuickTime for Java has been installed; if QTJ hasn't been installed, this will give the
user a chance to download and install it, as seen in Figure 1-5.

Figure 1-5. Installing QuickTime for Java via preflighting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3.2. What just happened?

The XML file specifies a list of QuickTime components that the application knows it needs to run.
These components are classified in a type/subtype scheme. For example, to test for MPEG-4 support,
you'd use type "imdc" (short for image decompressor) and subtype "mp4v". QuickTime for Java is
something of a special case, so it gets type "null" and subtype "qtj". The trailing space on the

subtype is really important, because all types and subtypes must be exactly four characters long.

Note: Chapter 4 has much more information about components and the FOUR_CHAR_CODES that identify them.

If any of the specified components are found to be absent, QuickTime brings up a dialog and offers
the user a chance to download and install them on the spot.

Tip: Because the XML file is pretending to be a movie, QuickTime Player will open it up with a typical movie window, which will hang

around whether or not the install is approved and succeeds. Apple recommends embedding the preflight movie in an HTML page and

using the width and height parameters of the <embed> tag to give it an unobtrusive size of 2 pixels by 2 pixels, so the user

probably won't even see it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.4. Compiling QTJ Code

Once you've installed QuickTime and QuickTime for Java, you have everything you need to start
developing QTJ applicationsno separate SDK is required.

1.4.1. How do I do that?

You can begin by compiling a trivial application to check the QuickTime and QTJ versions, as shown in
Example 1-3.

Example 1-3. Checking the version of QuickTime

package com.oreilly.qtjnotebook.ch01;

import quicktime.QTSession;
import quicktime.util.QTBuild;

public class QTVersionCheck {

 public static void main (String[] args) {
 try {
 QTSession.open();
 System.out.println ("QT version: " +
 QTSession.getMajorVersion() +
 "." +
 QTSession.getMinorVersion());
 System.out.println ("QTJ version: " +
 QTBuild.getVersion() +
 "." +
 QTBuild.getSubVersion());
 QTSession.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

}

The compilation is the tricky step here. If you do a straightforward javac, bad things happen:

cadamson% javac src/com/oreilly/qtjnotebook/ch01/QTVersionCheck.java
src/com/oreilly/qtjnotebook/ch01/QTVersionCheck.java:3:
 package quicktime does not exist

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import quicktime.QTSession;
 ^
src/com/oreilly/qtjnotebook/ch01/QTVersionCheck.java:4:
 package quicktime.util does not exist
import quicktime.util.QTBuild;
 ^
src/com/oreilly/qtjnotebook/ch01/QTVersionCheck.java:10:
 cannot resolve symbol
symbol : variable QTSession
location: class com.oreilly.qtjnotebook.ch01.QTVersionCheck
 QTSession.open();
 ^

Instead, you have to explicitly provide the path to QTJava.zip, which contains the QTJ classes. On the
Mac OS X command line, you would do this as follows:

Note: Here, as in many examples, you should type the entire command on one line. It's broken up in the text for printing purposes.

cadamson% javac -classpath /System/Library/Java/Extensions/QTJava.zip
 src/com/oreilly/qtjnotebook/ch01/QTVersionCheck.java

On Windows, the path to QTJava.zip would point to wherever the QuickTime installer put the file,
which presumably means into your Java installation's lib/ext:

C:\qtjtests\book stuff\code>javac -classpath
 "c:\Program Files\Java\j2re1.4.2\lib\ext\QTJava.zip"
 src\com\oreilly\qtjnotebook\ch01\QTVersionCheck.java

Once the code compiles, running it is a lot easieryou don't need to explicitly put QTJava.zip in the
runtime classpath to run a QTJ application. Just supply the class name to run, as the following output
illustrates:

Note: Using the ant buildfile provided with the downloaded book code (and described in the Preface) makes compiling a lot easier!

cadamson% java -cp classes com.oreilly.qtjnotebook.ch01.QTVersionCheck
QT version: 6.5
QTJ version: 6.1
cadamson%

1.4.2. What just happened?

As for what this trivial first application actually does, a read-through of the main() method shows it

doing four things:

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Opening the QuickTime session1.

Printing the QuickTime version by making calls to quicktime.QTSession2.

Printing the QuickTime for Java version by making calls to quicktime.util.QTBuild3.

Closing the QuickTime session4.

If any of these throws an exception, it's caught and printed to standard-out.

1.4.3. What about...

...the mismatch between the version numbers? QuickTime and QuickTime for Java versions are
somewhat independent, because not every QT update merits a QTJ update. Typically, you'll see both
roll out a major version at the same time, but then a number of QuickTime updates will be issued,
usually bug-fix updates or minor feature releases, without any changes to QTJ.

The Latest and Greatest

This book covers QTJ 6.1, which was released alongside QuickTime 6.4. If your software
reports a lower version, be sure to update with the QuickTime Updater because QTJ 6.1
has massive differences from previous versions, and this book covers only QTJ 6.1.

How different is QTJ 6.1 from its predecessors? Try "every QTJ application broke with
6.1."

The problem was caused by Apple changing the internals of its Java implementation from
the Carbon framework to Cocoa for its Java 1.4 implementation. QTJ was heavily
dependent on Carbon for its native binding, and a full-blown rewrite for Cocoa was
impractical.

However, only the parts involving the AWT/Swing bridge were affectedmost of QTJ still
worked just fine. So, Apple rolled out a radically simplified GUI layer for QTJ in the new
quicktime.app.view package. All the incompatible packages, particularly
quicktime.app.display and its subpackages, were deprecated. A few nice-to-have

features, like live-video compositing, weren't ported to 6.1.

QTJ 6.1 can be used on Mac OS X with either Java 1.4 or Java 1.3, and on Windows.
Earlier versions work on Windows and with Java 1.3 on Mac OS X, but will throw runtime
exceptions with Java 1.4.

Parts of Apple's web site and older books still cover the old API. If you see code that uses
quicktime.app.display, or any of its classes (like QTCanvas, SGDrawer, or
SWCompositor), beware: it won't work on Java 1.4 on Mac OS X and won't be supported

going forward. These packages are also in the Javadocs, but they're clearly marked as
deprecated.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.5. Opening and Closing the QuickTime Session

All QTJ applications are responsible for managing the QuickTime "session." The call to
QTSession.open() gives QuickTime an opportunity to initialize itself, and it must be made before
any other QTJ call, or you'll get an exception. Similarly, you must call QTSession.close() when

you're done with QuickTime to give it a chance to clean up.

In general, this means you might want to call QTSession.open() as early as possible and
QTSession.close() as late as possible. The former is easy enough to do: just put it in your
application's entry point or even in a static initializer so that it precedes main(). On the other hand,
ensuring that you call QTSession.close() gracefully is trickier, because your user could quit your
application with a menu item you provide, a Ctrl-C, a Cmd-Q (on Mac), or (heaven forbid) a kill -9

your-pid from the command line. Ideally, you'd like to have a fighting chance of properly closing

QuickTime in as many cases as possible.

1.5.1. How do I do that?

One way to close QuickTime late is to put QTSession.close() in a Java shutdown hook, which will

get called as the JVM goes away. There are no guarantees, but it's better than nothing.

Note: You can also run this example with the provided ant run-ch01-qtversioncheck task.

You can use the class in Example 1-4 as a general-purpose session handler for QTJ. It is presented
here so that none of the other examples in the book will need to explicitly handle opening or closing
the QTSession beyond calling this class.

Example 1-4. Session handler for QuickTime for Java

package com.oreilly.qtjnotebook.ch01;

import quicktime.*;

public class QTSessionCheck {

 private Thread shutdownHook;
 private static QTSessionCheck instance;
 private QTSessionCheck() throws QTException {
 super();
 // init
 QTSession.open();
 // create shutdown handler
 shutdownHook = new Thread() {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void run() {
 QTSession.close();
 }
 };
 Runtime.getRuntime().addShutdownHook(shutdownHook);
 }
 private static QTSessionCheck getInstance() throws QTException {
 if (instance = = null)
 instance = new QTSessionCheck();
 return instance;
 }

 public static void check() throws QTException {
 // gets instance. if a new one needs to be created,
 // it calls QTSession.open() and creates a shutdown hook
 // to call QTSession.close()
 getInstance();
 }
}

Warning: It looks like QTSession.close() hangs on some Windows installations. It might be safer to use

QTSession.exitMovies().

1.5.2. What just happened?

The QTSessionHandler class uses a singleton pattern. The idea is that all the work is done in the

constructor, which will be called only once (to create the singleton), so you're free to call the static
QTSessionHandler.check() method wherever and whenever you like, knowing it will have to run

only once.

When you call check(), it makes a trivial call to getInstance(), which creates a new instance if
and only if one hasn't been created yet. The constructor calls QTSession.open() to initialize
QuickTime, and then sets up a shutdown handler that will call QTSession.close() when Java is

shutting down.

1.5.3. What about...

...managing the QTSession myself? Absolutely. If some other arrangement works for your
application, go for it. This class is merely a convenience, and is arguably overkillclosing the QuickTime
session is handled automatically on Mac OS X when you use the default Quit menu item, and I've
never seen a problem that was definitely caused by improperly shutting down QuickTime on
Windows. But, as this class shows, getting it right isn't that hard.

...making multiple open() or close() calls? According to QTSession's Javadocs, if you issue
multiple open() calls, QuickTime won't be shut down until an equal number of close() calls are
received. There's no benefit (or harm) to multiple open() calls, so this is probably just trivia.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Running inside an applet? In an applet, it might make more sense to put your open() and close()
calls in the applet's init() and destroy() methods, respectively, instead of banking on a

particular browser's behavior vis-à-vis taking down the entire JVM and executing shutdown hooks.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.6. Playing an Audio File from the Command Line

To finish this chapter, we'll look at a very simple example of QTJ code that actually plays some
media. To keep things simple, I'll completely ignore the GUI, so all this will do is take a file path from
the command linepresumably an MP3 or other audio fileand play it in QTJ.

1.6.1. How do I do that?

Compile and run the source for TrivialAudioPlayer.java, shown in Example 1-5.

Example 1-5. Playing an audio file from the command line

package com.oreilly.qtjnotebook.ch01;

import quicktime.*;
import quicktime.app.time.*;
import quicktime.io.*;
import quicktime.std.*;
import quicktime.std.movies.*;

import java.io.*;

public class TrivialAudioPlayer {

 public static void main (String[] args) {
 if (args.length != 1) {
 System.out.println (
 "Usage: TrivialAudioPlayer <file>");
 return;
 }
 try {
 QTSessionCheck.check();
 QTFile f = new QTFile (new File(args[0]));
 OpenMovieFile omf = OpenMovieFile.asRead(f);
 Movie movie = Movie.fromFile (omf);
 TaskAllMovies.addMovieAndStart();
 movie.start();
 } catch (QTException e) {
 e.printStackTrace();
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once compiled, run it with the path to an audio file as a command-line argument. Note that if you
downloaded the book examples and compiled with the ant buildfile, the classes will be in the classes

directory, so you'll need to extend your classpath into there:

cadamson% java -classpath classes
 com.oreilly.qtjnotebook.ch01.TrivialAudioPlayer
 ~/mp3testing/Breakaway.mp3

1.6.2. What just happened?

This application provides a bare-bones load-and-play example. After checking that there's a valid
argument, it does the QTSessionCheck from the previous task to set up the QuickTime session.

Note: Any dynamic content in QuickTime is going to be a "movie," even if it's an audio-only file, like an MP3. This program also works for

AACs, WAVs, iTunes Music Store songs, and anything else QuickTime can open.

The interesting part is in converting the argument to a java.io.File, then to a
quicktime.io.OpenMovieFile, from which we can create a quicktime.std.Movie, which

represents any kind of playable QuickTime content, in this case our audio file.

The start() method begins playing the movie, so once the program is running, you'll hear your

MP3 over your speakers or headphones. This program doesn't provide a way to stop playback, so
when you want to end the program, you'll need to type ctrl-c, use the Windows Task Manager, or

hit the Quit menu item that's provided on Mac OS X.

1.6.3. What about...

Note: There's more information on taksing in the next chapter.

...that weird TaskAllMovies call? This is required because our program doesn't have a GUI, which

ordinarily gives QTJ some cycles for decoding and playing the audio. Most of the programs in this
book have on-screen GUIs, so they don't need to do this.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. Playing Movies
Even if you have more elaborate plans for QuickTime for Java, I'm going to assume that your plans
will, at some point in time, require reading in a movie or other QuickTime-compatible file, locally or
from the network. This chapter presents basic techniques of getting a Movie object, getting it into the

Java display space, and adding more sophisticated controls so that your user (or just your code) can
know what's happening inside a playing movie and take control.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1. Building a Simple Movie Player

I'll begin with "the simplest thing that could possibly work:" an application to ask the user for the
location of a QuickTime file, which is then opened and put in a Java AWT Frame.

2.1.1. How do I do that?

Example 2-1 shows the code for a simple movie player.

Example 2-1. Simple movie player

package com.oreilly.qtjnotebook.ch02;

import quicktime.*;
import quicktime.app.view.*;
import quicktime.std.movies.*;
import quicktime.io.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

import java.awt.*;

public class BasicQTPlayer extends Frame {
 public BasicQTPlayer (Movie m) throws QTException {
 super ("Basic QT Player");
 QTComponent qc = QTFactory.makeQTComponent (m);
 Component c = qc.asComponent();
 add (c);
 }

 public static void main (String[] args) {
 try {
 QTSessionCheck.check();
 QTFile file =
 QTFile.standardGetFilePreview (
 QTFile.kStandardQTFileTypes);
 OpenMovieFile omFile = OpenMovieFile.asRead (file);
 Movie m = Movie.fromFile (omFile);
 Frame f = new BasicQTPlayer (m);
 f.pack();
 f.setVisible(true);
 m.start();
 } catch (Exception e) {
 e.printStackTrace();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }
}

Compile this from the command line (remember, as shown in the previous chapter, you must specify
QTJava.zip in the classpath; this is the Mac OS X version):

Note: If you've downloaded the book code, compile and run with ant run-ch02-basicqtplayer.

cadamson% javac -d classes -classpath
 src:/System/Library/Java/Extensions/QTJava.zip
 src/com/oreilly/qtjnotebook/ch02/BasicQTPlayer.java

Then run the program from the command line:

cadamson% java -classpath classes
 com.oreilly.qtjnotebook.ch02.BasicQTPlayer

When the program starts up, the user will initially see QuickTime's file selector, shown in Figure 2-1.

Figure 2-1. QuickTime file selector

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After the user selects a file (note that I have not provided any error handling if the user clicks
Cancel!), the movie will open in a window at its default size and start playing, as seen in Figure 2-2.

Figure 2-2. Simple movie player

Note that this program does not provide any means of quitting the application once the movie
finishes playing (or before then, for that matter). Press Ctrl-C from the command line to kill the app.
Mac users will also get a "Quit com.oreilly.qtjnotebook.ch02.BasicQTPlayer" menu item.

2.1.2. What just happened?

Take a look at the application. The class extends java.awt.Frame and supplies a constructor that
takes a quicktime.std.movies.Movie object. Given this Movie, it asks the QTFactory (in package
quicktime.app.view) for a QTComponent. From this object, it gets a java.awt.Component, which is
added to the Frame.

The main() method starts by doing the QuickTime session check from the last chapter. Then it
brings up a file selector dialog, from which it gets a quicktime.io.QTFile, from which it gets an
OpenMovieFile, which leads to the creation of a Movie object with Movie.fromFile(). This Movie
is then passed to the QTBasicPlayer constructor, and the resulting Frame is pack()ed and shown.
Finally, main() calls the Movie's start() method to play the movie.

Notice how practically every line of code in this application either declares that it throws QTException

or is wrapped in a try-catch block. That's because pretty much every QuickTime Java call can
potentially throw a QTException, which means you either need to catch it or (more frequently)

declare that your method throws it to the caller. Presumably at some point further up the call chain,
you'll catch the exception and do something responsible with it, such as bringing up an error dialog.

Another point of interest is the QTComponent. This is an interface that exposes methods that allow
you to change the movie (or image) displayed by an on-screen widget. asComponent() returns an
AWT Component that can be added to an AWT layout just like any other component. Now here's the
dirty little secret: all QTComponents received from the QTFactory really are AWT Components, and
can be cast safely. That means the asComponent() call:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Component c = qc.asComponent();

is functionally equivalent to:

Component c = (Component) qc;

Meaning that asComponent() is really there just for compile-time type safety.

2.1.3. What about...

...using the AWT or Swing file selector? Sure, you can use thesethey'll return a java.io.File object,
which can then be used to get a QTFile. But the QuickTime file selector is arguably nicer, because on

Windows it shows a little preview of the selected movie. Another thing to notice is the odd little
constant kStandardQTFileTypes. The standardGetFilePreview() call takes an int[] of up to

four "types" of files to allow the user to select. The constant is a very convenient way to specify "just
show typical file types that QuickTime can handle." You can also pass in null to show all files.

Note: Chapter 4 has more on the FOUR_CHAR_CODE integers used for these "types."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2. Adding a Controller

This application isn't particularly user-friendly yetthe user can't start or stop the movie, move
through it, or set the volume. Fortunately, it's easy to use a MovieController to get the standard

QuickTime controller bar, an on-screen control widget that provides a play/pause button, a volume
control, and the movie position control (typically called a "scrubber" in QuickTime parlance).

2.2.1. How do I do that?

Create a new class in the source file BasicQTController.java. The main() is exactly the same as

before, while the constructor adds one new line and changes another, as seen in Example 2-2.

Example 2-2. Getting a movie component with a controller

public class BasicQTController extends Frame {

 public BasicQTController (Movie m) throws QTException {
 super ("Basic QT Controller");
 MovieController mc = new MovieController(m);
 QTComponent qc = QTFactory.makeQTComponent (mc);
 Component c = qc.asComponent();
 add (c);
 pack();
 }

Note: Compile and run this example with ant run-ch02-basicqtcontroller.

The result, when run, looks like the application in Figure 2-3. Notice the presence of the classic
QuickTime control bar at the bottom of the window.

Figure 2-3. Movie with on-screen controller

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2.2. What just happened?

This time, instead of asking the QTFactory to make a QTComponent from the Movie, the program
creates a MovieController object from the Movie and asks the QTFactory to make a QTComponent
from that. This eliminates the need for main() to call start(), because the user can start and

stop the movie from the play/pause button on the control bar.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3. Getting a Movie-Playing JComponent

The previous tasks have used the AWT, which seemingly nobody uses anymore. Many developers will
want to create a Swing GUI, and thus they need a movie-playing JComponent. QuickTime for Java

can provide one.

2.3.1. How do I do that?

Example 2-3 presents a rewrite of the previous BasicQTPlayer that does everything with Swing
equivalents (JFrame instead of Frame, JComponent instead of Component, etc.).

Example 2-3. All-Swing simple movie player

package com.oreilly.qtjnotebook.ch02;

import quicktime.*;
import quicktime.app.view.*;
import quicktime.std.movies.*;
import quicktime.io.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

import java.awt.*;
import javax.swing.*;

public class BasicSwingQTPlayer extends JFrame {

 public BasicSwingQTPlayer (Movie m) throws QTException {
 super ("Basic Swing QT Player");
 MoviePlayer mp = new MoviePlayer (m);
 QTJComponent qc = QTFactory.makeQTJComponent (mp);
 JComponent jc = qc.asJComponent();
 getContentPane().add (jc);
 pack();
 }

 public static void main (String[] args) {
 try {
 QTSessionCheck.check();
 QTFile file =
 QTFile.standardGetFilePreview (
 QTFile.kStandardQTFileTypes);
 OpenMovieFile omFile = OpenMovieFile.asRead (file);
 Movie m = Movie.fromFile (omFile);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JFrame f = new BasicSwingQTPlayer (m);
 f.pack();
 f.setVisible(true);
 m.start();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Note: Compile and run this example with ant run-ch02-basicswingqtplayer.

This produces a simple movie-player windowas seen in Figure 2-4using Swing, but visually
indistinguishable from its AWT equivalent.

Figure 2-4. Playing a movie with a Swing JComponent

2.3.2. What just happened?

Creating a QTJComponent (read that as "QT JComponent," not "QTJ Component"I know, it confused
everyone on the developer list at first, too) requires an object called a MoviePlayer, which can be
simply created from a Movie. This is passed to QTFactory's makeQTJComponent() method to get a
QTJComponent, which in turn can be turned into a Swing JComponent with asJComponent().

2.3.3. What about...

...getting a control bar? Good question. QTJ doesn't provide one for Swing. Remember, the movie's
display and the control bar are both native widgetsto display the movie in Swing, the movie has to be
drawn to an off-screen region, then painted by Java onto the JComponent so that everything is

"lightweight," in Java parlance. QTJ provides this for the movie but not for the control bar (perhaps

http://lib.ommolketab.ir
http://lib.ommolketab.ir

because it would be difficult for the native QuickTime to keep track of your mouse movements in the
Java space), so a developer would need to roll her own Swing widget for controlling the Movie,
TRapping mouse actions and calling appropriate methods on the Movie or MovieController.

Note: Methods to control a Movie or MovieController are introduced in the next task.

And what about the awful performance? Good catchdepending on your source, the frame rate of this
version might be far worse than the AWT equivalent. Think about the earlier paragraph that says the
movie needs to be drawn into an off-screen buffer and then reimaged into Swing. Doesn't that sound
a little redundant? Think the overhead is going to add up if you need to do it 30 times a second? It is,
and it does. Performance of the QTJComponent is awful compared to that of the QTComponent. Not

only does QTJ have to do extra work, but it also doesn't score hardware-accelerated graphics benefits
it might otherwise be able to achieve by using its native rendering pipeline.

So, I'm going to tell you something that clashes with every other Java GUI book you've ever read: go
ahead and mix Swing and AWT widgets . That's right. It's not going to cause blindness, the end of the
world, or a drop in your home's resale value.

To be specific, you can freely mix AWT widgets, like the QTComponent, and Swing widgets in the same

container as long as they don't overlap. Unless you're doing something tricky with Swing's "glass
pane," or possibly the JLayeredPane, you're probably safe.

The common overlap problem comes from menus, both those that descend from the menu bar and
pop-up menus. A lightweight Swing menu will go behind any AWT component, and the result isn't
pretty. The way around this is to call setLightweightPopupEnabled(false) on all your menus that
might overlap with your QTComponent.

By the way, this problem isn't limited to QTJ. Most Java toolkits that use native drawing spaces for
performance reasons run into the same issue. Sun's JMF defaults to heavyweight components, as
does the OpenGL-to-Java library JOGL. Getting AWT and Swing to play nice is a common issue for
Java multimedia developers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.4. Controlling a Movie Programmatically

For various reasons, an application might want to control the movie via its own method calls, in lieu
of or in addition to the GUI provided by QuickTime's MovieController. One example of this is
Movie.start(). You can programmatically issue many more commands, some of which you can't

issue with the default control.

2.4.1. How do I do that?

Example 2-4 shows a new class, BasicQTButtons.java. The main() is exactly the same as
BasicQTPlayer, but the constructor has extra work to create some control buttons, and an
actionPerformed() method implements AWT's ActionListener.

Note: Compile and run this example with ant run-ch02-basicqtbuttons..

Example 2-4. Programmatic control of a movie

package com.oreilly.qtjnotebook.ch02;

import quicktime.*;
import quicktime.app.view.*;
import quicktime.std.movies.*;
import quicktime.io.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

import java.awt.*;
import java.awt.event.*;

public class BasicQTButtons extends Frame
 implements ActionListener {

 Button revButton,
 stopButton,
 startButton,
 fwdButton;

 Movie theMovie;

 public BasicQTButtons (Movie m) throws QTException {
 super ("Basic QT Player");
 theMovie = m;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 QTComponent qc = QTFactory.makeQTComponent (m);
 Component c = qc.asComponent();
 setLayout (new BorderLayout());
 add (c, BorderLayout.CENTER);
 Panel buttons = new Panel();
 revButton = new Button("<");
 revButton.addActionListener (this);
 stopButton = new Button ("0");
 stopButton.addActionListener (this);
 startButton = new Button ("1");
 startButton.addActionListener (this);
 fwdButton = new Button (">");
 fwdButton.addActionListener (this);
 buttons.add (revButton);
 buttons.add (stopButton);
 buttons.add (startButton);
 buttons.add (fwdButton);
 add (buttons, BorderLayout.SOUTH);
 pack();
 }

 public void actionPerformed (ActionEvent e) {
 try {
 if (e.getSource() = = revButton)
 theMovie.setRate (theMovie.getRate() - 0.5f);
 else if (e.getSource() = = stopButton)
 theMovie.stop();
 else if (e.getSource() = = startButton)
 theMovie.start();
 else if (e.getSource() = = fwdButton)
 theMovie.setRate (theMovie.getRate() + 0.5f);
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }

 public static void main (String[] args) {
 try {
 QTSessionCheck.check();
 QTFile file =
 QTFile.standardGetFilePreview (
 QTFile.kStandardQTFileTypes);
 OpenMovieFile omFile = OpenMovieFile.asRead (file);
 Movie m = Movie.fromFile (omFile);
 Frame f = new BasicQTButtons (m);
 f.pack();
 f.setVisible(true);
 m.start();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

Run this program to see a display like that shown in Figure 2-5. The buttons call functions to set the
rate of the movie. The rate is 0 for a stopped movie, a negative number for a movie playing
backward, and a positive number for a movie playing forward. A rate of 1.0 represents normal
playing speed, so 0.5 would be half speed, and 2.0 would be double speed. The buttons have the
following functions:

<

Reduces the rate by 0.5. For a playing movie (rate = 1.0), clicking this once will cut it to half
speed (0.5), twice will stop it (0.0), three times will go to half-speed reverse (-0.5), four times
to normal-speed reverse (-1.0), etc.

0

Stops the movie, by way of a call to Movie.stop(), which is the same as Movie.setRate(0).

1

Plays the movie forward at normal speed, equivalent to Movie.setRate(1).

>

Increases the rate by 0.5.

Figure 2-5. Controlling movie play rate with AWT buttons

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.4.2. What just happened?

This is a very simple example of methods that can be called to affect a movie's playback. These are
the methods a developer creating his own control widget (i.e., ignoring the warning in the previous
section) would need to use.

Another useful method is setVolume(), a self-explanatory method that takes values from 0.0
(silence) to 1.0 (maximum). Also useful is a setTime() method, which changes the current position

in the movie.

Note: The next task covers QuickTime's concept of time, which is used as the parameter for setTime().

2.4.3. What about...

...using some similar methods in MovieController? A MovieController object, even if it's not used

to get an on-screen control widget, provides some methods with equivalent functionality, but with
different names and conventions. For example, stop(), start(), and setRate() are all effectively
wrapped by a single method, play(), which takes a rate argument. MovieController also has

some unique functionality, such as only playing the selection, setting "looping" behavior (immediately
returning to the beginning when the end is reached, or vice versa), and a method called
setPlayEveryFrame() , which will force the movie to not drop frames, even if that requires it to play

more slowly than it should.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.5. Showing a Movie's Current Time

Advanced users, particularly those doing editing, would like to know a movie's current timei.e., where
they are in the movie. The scrubber can provide a general idea of the movie's current time, but
certain applications call for an exact value.

2.5.1. How do I do that?

Example 2-5s BasicQTTimeDisplay code extends the BasicQTController by adding a Label to the
bottom of the Frame. A Swing Timer calls actionPerformed() every 250 milliseconds, and this

method checks the current time of the movie and resets the label.

Note: The Swing version of Timer is used to ensure that changing the label occurs on the AWT event-dispatch thread. Compile and run

this examnple with ant run-ch02-basicqttimedisplay.

Example 2-5. Displaying the current time of a movie

package com.oreilly.qtjnotebook.ch02;

import quicktime.*;
import quicktime.app.view.*;
import quicktime.std.movies.*;
import quicktime.io.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

import java.awt.*;
import java.awt.event.*;

public class BasicQTTimeDisplay extends Frame
 implements ActionListener {
 Movie theMovie;
 Label timeLabel;

 public BasicQTTimeDisplay (Movie m) throws QTException {
 super ("Basic QT Controller");
 theMovie = m;
 MovieController mc = new MovieController(m);
 QTComponent qc = QTFactory.makeQTComponent (mc);
 Component c = qc.asComponent();
 setLayout (new BorderLayout());
 add (c, BorderLayout.CENTER);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 timeLabel = new Label ("-:--", Label.CENTER);
 add (timeLabel, BorderLayout.SOUTH);
 javax.swing.Timer timer =
 new javax.swing.Timer (250, this);
 timer.start();
 pack();
 }

 public void actionPerformed (ActionEvent e) {
 if (theMovie = = null)
 return;
 try {
 int totalSeconds = theMovie.getTime() /
 theMovie.getTimeScale();
 int seconds = totalSeconds % 60;
 int minutes = totalSeconds / 60;
 String secString = (seconds > 9) ?
 Integer.toString (seconds) :
 ("0" + Integer.toString (seconds));
 String minString = Integer.toString (minutes);
 timeLabel.setText (minString + ":" + secString);
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }

 public static void main (String[] args) {
 try {
 QTSessionCheck.check();
 QTFile file =
 QTFile.standardGetFilePreview (
 QTFile.kStandardQTFileTypes);
 OpenMovieFile omFile = OpenMovieFile.asRead (file);
 Movie m = Movie.fromFile (omFile);
 Frame f = new BasicQTTimeDisplay (m);
 f.pack();
 f.setVisible(true);
 m.start();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

This produces the application seen in Figure 2-6.

Figure 2-6. Displaying the current time of a movie

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.5.2. What just happened?

Obviously, some funky math is happening in the actionPerformed() method, which uses the Movie
's getTime() and getTimeScale() methods to figure out the current time in seconds, from which

the program calculates the minutes and seconds portions of label.

QuickTime has a concept of a "time scale," which represents the time-keeping system of a Movie. For
a given time scale, n, one unit of time in that time scale is 1/n seconds. So, if a Movie had a time
scale of 1,000, the units would be milliseconds. Movies actually default to a time scale of 600, but the

actual value is irrelevantyou just have to be sure to work with whatever value the movie uses.
getTime() returns the movie's current time in terms of the time scale, so for a time scale of 600, if
getTime() returns 3,600, the current time is exactly 6 seconds into the movie. Other prominent
methods that work with the time scale are setTime() and geTDuration().

Note: When we work with editing commands, we'll see that the Movie selection is also represented with time-scale values like these.

2.5.3. What about...

...just using milliseconds or nanoseconds or something normal instead of this crazy time-scale stuff?
Actually, this flexible system of time scales is one of the best things about QuickTime. There needs to
be some system of keeping track of time in a Movie, and it's generally desirable for the units to be of
a sufficient resolution so that all important times divide evenlyi.e., they can be represented as ints.

Most Java programmers are used to thinking about time in terms of milliseconds, but that's totally
inadequate for media. For example, CD audio has 44,100 samples a second, meaning that each
sample takes 0.02267 . . . ms. So, that's obviously not going to work. Insisting on some smaller unit
(microseconds, nanoseconds, picoseconds, etc.) won't help, because you can never know that it will
be good enough for some arbitrary piece of time-based data. QuickTime's system of time scales
allows the system of measurement to be ideally suited to the media itself.

An interesting thought about the preceding example is that Movie's default time base of 600 is also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inadequate for CD audio. As it turns out, the tracks of a movie (more accurately, the "media" they
refer to) can have their own time scales. So, a Movie can have one time scale, its video can have

another, and the audio can have a third.

So, why is the default time scale 600? It appears to have originated with the 60 "ticks" per second
used for time keeping on the oldest Macs, but it turns out to be a wonderfully common multiple of:

24 (frames per second in film)

25 (frames per second in PAL and SECAM video, used in Europe, Africa, South America, and
parts of Asia)

30 (frames per second in NTSC video, used in North America and Japan)

Actually, that last example is not entirely true. NTSC color video is broadcast at an overall rate of
29.97 frames/sec, so to keep things straight, two frame numbers are dropped every minute (except
for every 10th minute) to compensate for a synchronization problem in the color signal. QuickTime
can handle these "drop-frame" video tracks by making the time scale 2,997 and each frame 100
units long. I told you it was handy!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.6. Listening for Movie State-Changes

One problem with polling to show the current time in the movie is that it's wasteful and inaccurate:
it's optimal to check the time only when the movie's playing, and to eliminate latency, it would be
nice to be notified when there's a sudden change in the current time, such as when the user slides
the scrubber. Fortunately, there's a callback API to notify a program when things like this occur.

2.6.1. How do I do that?

This example revises the BasicQTButtons program. The new version, BasicQTCallback, asks to be

notified when the rate changes. When the rate is 0, it will disable the stop button (labeled "0"), and
when the rate is 1, it disables the play button (labeled "1"). For space, I'll list only the lines that have
changed from BasicQTButtons.

First, there are two new imports: quicktime.std.clocks, which is where callbacks are defined, and
quicktime.std, whose StdQTConstants provides constants to specify the callbacks' behavior:

import quicktime.std.*;
import quicktime.std.clocks.*;

Next, the constructor is changed to pass the Movie to an inner class' constructor:

MyQTCallback myCallback = new MyQTCallback (m);

And here's the inner class. It has a constructor that takes a Movie argument and an execute()

method:

class MyQTCallback extends RateCallBack {
 public MyQTCallback (Movie m) throws QTException {
 super (m.getTimeBase(),
 0,
 StdQTConstants.triggerRateChange);
 callMeWhen();
 }
 public void execute() {
 if (rateWhenCalled = = 0.0) {
 startButton.setEnabled (true);
 stopButton.setEnabled (false);
 } else if (rateWhenCalled = = 1.0) {
 startButton.setEnabled (false);
 stopButton.setEnabled (true);
 }
 // indicate that we want to be called again

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 try {
 callMeWhen();
 } catch (QTException qte) {
 qte.printStackTrace();

 }
 }
}

The result looks like the window in Figure 2-7. Notice how in the screenshot, the stop button ("0") is
dimmed, indicating that the movie is already stopped. If the user hits "1," the movie will play and the
play button will be disabled.

Figure 2-7. Disabling buttons via callbacks

2.6.2. What just happened?

The inner class creates a QTCallBack, specifically a subclass of RateCallBack. In its constructor, it
indicates the conditions under which it wants to be calledby passing the triggerRateChange flag, it
asks to be called any time the rate changes. It then invokes callMeWhen() to actually register the

callback.

QuickTime invokes the callback via the execute() method. This implementation checks the
rateWhenCalled value, inherited from RateCallBack, to determine if the movie is stopped or
started, and enables or disables buttons appropriately. Finally, it issues a new callMeWhen() call to

ask to get called back on future rate changesQuickTime callbacks are one-time-only deals, not like
the EventListeners that are typical in Java, so programmers have to remember to reregister for
new callbacks after every execute().

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.6.3. What about...

...that 0 argument to the RateCallBack's constructor? Good question. This is one of those times

where all the interesting values are defined only in the native documentation, not the Javadocs. The
third argument, used to trigger the callback on any rate change, can be used with the constants
triggerRateEquals, triggerRateNotEqual, triggerRateLT ("less than"), triggerRateLTE ("less

than or equals"), etc., to define a behavior when the callback is made only when a certain condition is
true. When using these triggers, the middle argument specifies the rate to be compared. For
example, a callback could be set up to run only when the movie is playing, by passing 0 and
triggerRateNotEquals as the second and third arguments, respectively.

Note: In the previous lab, a "rate not equal to 0" callback could be used to start or stop the time-label polling thread, so it would run only

when the movie has a non-zero rate.

Are there other kinds of callbacks? Glad you asked. There are four major callbacks, each with its own
class in quicktime.std.clocks:

RateCallBack

Calls back when the rate changes, as seen in the earlier example.

ExtremesCallBack

Calls back when playback reaches the beginning or end of the Movie. Behavior is specified with
triggerAtStart or TRiggerAtStop.

TimeCallBack

Calls back when playback reaches a specific time in the movie. The behavior flag determines if
the callback occurs when moving forward (TRiggerTimeFwd), backward (triggerTimeBwd), or
either forward or backward (TRiggerTimeEither).

TimeJumpCallBack

Calls back when the movie's current time changes in a way that is not consistent with its
current play rate. The typical case here is that the user is grabbing the scrubber to move
around the movie. Setting up this callback takes no parameters or behavior flags.

And what about more sophisticated callback setup and teardown? This example doesn't need to clean
up anything, but a more sophisticated application, one that opens and closes multiple movies, would
need to release callback resources. This is done with a call to the QTCallBack's cancelAndCleanup()

method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is also a simple cancel() method that can be used to cancel a callback previously registered
with callMeWhen(). To change a callback, you must cancel() it, then construct a new callback and
register it with callMeWhen().

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.7. Moving Frame by Frame

One popular feature for playback is the ability to step forward exactly one frame. It turns out to be
trickier than one might initially expect: it's not like there's a Movie.nextFrame() method. Indeed, a
Movie might not have a video track at all, if it represents an MP3 or some other audio-only media.
So, finding the next frame requires being a little smarter about looking inside the Movie's structure.

2.7.1. How do I do that?

This example builds on the earlier BasicQTButtons code. In this example, the implementations of the

forward and back buttons are altered so that instead of changing the play rate, they change the
current time to be the next frame before or after the current time. For space, this example shows
only the changes from the original BasicQTButtons.

This example needs to import quicktime.std to use StdQTConstants, and quicktime.std.clocks
for some time-related classes. It also adds an instance variable visualTrack, which is found with the

following call:

theMovie = m;
// find video track
visualTrack =
 m.getIndTrackType (1,
 StdQTConstants.visualMediaCharacteristic,
 StdQTConstants.movieTrackCharacteristic);

If a visual track isn't found, the revButton and fwdButton are disabled later in the constructor.

Finally, a new implementation of actionPerformed() does the frame-step logic when the revButton
or fwdButton is clicked:

if (e.getSource() = = revButton) {
 TimeInfo ti =
 visualTrack.getNextInterestingTime (
 StdQTConstants.nextTimeMediaSample,
 theMovie.getTime(),
 -1);
 theMovie.setTime (new TimeRecord (theMovie.getTimeScale(),
 ti.time));
}
else if (e.getSource() = = stopButton)
 theMovie.stop();
else if (e.getSource() = = startButton)
 theMovie.start();
else if (e.getSource() = = fwdButton) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 TimeInfo ti =
 visualTrack.getNextInterestingTime (
 StdQTConstants.nextTimeMediaSample,
 theMovie.getTime(),
 1);
 theMovie.setTime (new TimeRecord (theMovie.getTimeScale(),
 ti.time));
}

Note: Compile and run this example with ant run-ch02-basicqtstepper.

There's no screenshot for this example, because it's difficult to show a frame step in a static medium
like a book.

2.7.2. What just happened?

This program finds the video track with a call to Movie.getIndTrackType() , which takes three

arguments:

Which instance to find

This is 1-based, so passing 1 means "find the first matching track."

A search criterion

This is a constant from StdQTConstants that can be a media "type" (videoMediaType,
soundMediaType, etc.), or it can be a "characteristic" (videoMediaCharacteristic,
audioMediaCharacteristic). The characteristics are helpful in cases like this when several

kinds of media are acceptable matches ("visual" media includes video, MPEG, Flash, and more).

Flags to control the search

This should be the value movieTrackMediaType if the previous argument is a media type or
movieTrackCharacteristic if it is a characteristic.

An alternative way to find a suitable track would be to iterate over the tracks with
Movie.getIndTrack(), get the Media object from each discovered track, and use instanceof to
see if it matches a given media class (VideoMedia, SoundMedia, etc.).

Assuming you can find such a track, the trick to finding the next frame is to use the media's
getNextInterestingTime() method. There are several kinds of "interesting times," and to indicate

interest in the next frame, which is more accurately the next "sample," you pass the behavior flag
nextTimeMediaSample. The method also takes a parameter representing the time in the movie

http://lib.ommolketab.ir
http://lib.ommolketab.ir

where it should start searching for the next frame (in this case, it's the current time) and the desired
search direction (any positive int for a forward search, and any negative int for a backward

search).

The value returned by getNextInterestingTime() is a TimeInfo object. This program is interested
only in the time field of this object, which is represented in the Movie's time scale (not the Media's,

interestingly enough). It takes that value and advances the movie to the interesting timei.e., the next
framewith a call to Movie.setTime() .

2.7.3. What about...

...other kinds of times? The native GetMediaNextInterestingTime function offers the following

behavior flags:

NextTimeMediaSample

The behavior used in this example.

NextTimeMediaEdit

Finds the next group of samplesi.e., the next thing that has been edited into the movie (editing
is covered in the next chapter).

NextTimeSyncSample

Finds the next "sync sample"i.e., the next sample that is completely self-contained. Many video
compression formats send a sync sample (also known as a "key frame"), which is a complete
image, while subsequent samples are just information about what has changed since the sync
sample. In other words, these later frames aren't complete and cannot be rendered without
information from one or more other samples.

NextTimeEdgeOK

Can be OR'ed in with other flags to indicate that it's OK to return the beginning or the end of

the media as a valid "interesting time."

What's up with the first track being 1 instead of 0? As a curious legacy, one that feels more like
Pascal than Java, most QuickTime methods that do an index-based get are one-based, not zero-
based. In fact, if you try to getTRack(0), you'll get a QTException.

Warning: The other gotcha is that although this example is written to work with any visual media, it won't work for MPEG-1 or MPEG-2

files. These files multiplex (or "mux") the audio and video into one stream, and QuickTime doesn't de-mux them in memory, so it has no

http://lib.ommolketab.ir
http://lib.ommolketab.ir

easy way to find the next video sample. This is why there are separate MPEGMedia and MPEGMediaHandler classes in QTJ; the

latter is a subclass of VisualMediaHandler, but it is also implementing AudioMediaHandler. Fortunately, MPEG-4, whose

internal structure is friendlier to QuickTime, appears as separate audio and video tracks just like other QuickTime movies.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.8. Playing Movies from URLs

Along with loading movies from disk, QuickTime can also load them from URLs, and is pretty smart
about network latency.

2.8.1. How do I do that?

Example 2-6 shows a totally new class, BasicQTURLController.java. This is a significant rethinking
of the earlier BasicQTController class. This example creates a GUI from an empty "dummy" movie,
then asks the user for a URL, gets a Movie from that, and replaces the dummy movie. By getting the

movie last, it tempts fate to see how well QTJ can deal with loading a movie over the network.

Example 2-6. Loading and playing a movie from a URL

package com.oreilly.qtjnotebook.ch02;

import quicktime.*;
import quicktime.std.*;
import quicktime.app.view.*;
import quicktime.std.movies.*;
import quicktime.std.movies.media.*;
import quicktime.io.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

import java.awt.*;

public class BasicQTURLController extends Frame {

 QTComponent qc;

 public BasicQTURLController () throws QTException {
 super ("Basic QT DataRef/Controller");
 Movie dummyMovie = new Movie();
 qc = QTFactory.makeQTComponent (dummyMovie);
 Component c = qc.asComponent();
 add (c);
 pack();
 }

 public static void main (String[] args) {
 try {
 QTSessionCheck.check();
 BasicQTURLController f =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 new BasicQTURLController ();
 String url =
 javax.swing.JOptionPane.showInputDialog (f,
 "Enter URL");
 DataRef dr = new DataRef (url);
 Movie m = Movie.fromDataRef (dr,
 StdQTConstants.newMovieActive);
 MovieController mc = new MovieController (m);
 f.qc.setMovieController (mc);
 f.setVisible(true);
 f.pack();
 m.prePreroll(0, 1.0f);
 m.preroll(0, 1.0f);
 m.start();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Note: Compile and run this example with ant run-ch02-basicqturlcontroller.

When this app is first run, the user sees a dialog asking for a URL. Enter a valid URL (notice that
again, for simplicity, the examples don't meaningfully check input or handle errors gracefully).
Assuming the URL has valid QuickTime content, the user will see a window like the one shown in
Figure 2-8.

Figure 2-8. Movie played from a URL DataRef

2.8.2. What just happened?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some different techniques are in play in this example, the most important of which is showing that
the Movie or MovieController displayed by a QTComponent can be replaced. The constructor creates
a QTComponent from the empty dummyMovie, but after creating a Movie from the URL, a
MovieController is created for it and is used to replace the contents of the visible QTComponent via
the setMovieController() call.

Two helper calls, prePreroll() and preroll(), allocate movie-playing resources up front, to

reduce jitter and dropped frames when the movie starts playing. These methods take the same two
arguments: the movie time and the rate that the program intends to start playing at.

This example uses a MovieController to make a point. As seen in Figure 2-8, the scrubber has an

inner bar that is only partially filled in. This is a graphic representation of how much of the movie
data has been downloaded. This example goes ahead and plays the movie immediately, trusting that
it will download data faster than we can consume it. This isn't a safe assumption at alldial-up users
will stop almost immediately, though the controller gives them the ability to see how much they have
and to play when they're ready.

As for getting the Movie, it's a pretty simple process: pass the URL to a DataRef constructor. These
DataRef objects are something of a general-purpose media locator in QuickTime, used here for
network access. The new Movie is then created with the fromDataRef() call.

Notice the second argument to fromDataRef(). This is an example of using QuickTime behavior

flags , which are found throughout QuickTime. One of the more interesting concepts about the flags
is that these behaviors can be combined. The flags are ints with a single bit turned on (meaning
their actual values are powers of 2). The idea is that you can mathematically OR them together to
combine multiple behaviors. The constants of the java.awt.Font class, like BOLD and ITALIC, work

pretty much the same way. In this case, in addition to making the movie active, the program could
set a behavior flag to tell QuickTime not to enable alternate tracks (if there are any), by making a call
like this:

Movie m = Movie.fromDataRef (dr,
 StdQTConstants.newMovieActive |
 StdQTConstants.newMovieDontAutoAlternate);

The other flags mentioned for this call, newMovieDontResolveDataRefs and
newMovieDontAskUnresolvedDataRefs, deal with esoteric cases where a movie is not self-contained

and some of the media it refers to can't be found.

Warning: The Javadocs for Movie.fromDataRef() advocate using the behavior flag

StdQTConstants4.newMovieAsyncOK . That was useful in the old QTJ, but when used in this example in QTJ 6.1, it might

allow the QTComponent to decide that your movie has zero height and zero width, because the movie gets handed to the

QTComponent before the size metadata gets downloaded. As Figure 2-8 shows, the preceding code does not block and wait for the

whole movie to be downloaded. Advice for now: don't use it unless you think you're blocking on Movie.fromDataRef().

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.9. Preventing "Tasking" Problems

All the tasks in this chapter have managed to avoid one of the more obscure hazards in QuickTime.
This example tempts fate and exposes the problem by playing a movie that would otherwise freeze
up.

2.9.1. How do I do that?

Example 2-7 reprises the command-line audio player from the first chapter, which takes a path to a
file as a command-line argument, builds a Movie, and plays it, without getting any kind of GUI.

Example 2-7. Playing audio from the command line

package com.oreilly.qtjnotebook.ch01;

import quicktime.*;
import quicktime.app.time.*;
import quicktime.io.*;
import quicktime.std.*;
import quicktime.std.movies.*;

import java.io.*;

public class BasicAudioPlayer {

 public static void main (String[] args) {
 if (args.length != 1) {
 System.out.println (
 "Usage: BasicAudioPlayer <file>");
 return;
 }
 try {
 QTSessionCheck.check();
 QTFile f = new QTFile (new File(args[0]));
 OpenMovieFile omf = OpenMovieFile.asRead(f);
 Movie movie = Movie.fromFile (omf);
 TaskAllMovies.addMovieAndStart();
 movie.start();
 } catch (QTException e) {
 e.printStackTrace();
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice the line in bold. Take it out, recompile, and watch what happens. The program will likely hang
or immediately exit, playing just a spurt of audio or none at all.

2.9.2. What just happened?

QuickTime movies need to explicitly be given CPU time to do their work: reading from disk or the
network, decompressing and decoding, rendering to the screen, or playing to the speakers. This
process is called "tasking." Looking at the Javadocs reveals that the Movie class has a task()
method that could be called to give time to a specific movie, and a static taskAll() method that

tasks all active movies.

Managing all these calls manually and being sure to call them frequently enough would be, of course,
incredibly tedious. That's why QTJ provides TaskAllMovies, a wrapper for a Thread whose job is to
call task() on all active movies. This example kicks off TaskAllMovies (assuming nothing else has

done so), thereafter allowing it to be blissfully unaware of tasking.

2.9.3. What about...

...all the other examples? Why are we only hearing about this now? Well, TaskAllMovies is so useful

that QTJ itself uses it extensively. Any time a program works with QTJ's GUI classes, by getting a
Component for a Movie or MovieController, it picks up calls to TaskAllMovies automatically. In

fact, it's a little difficult not to pick up automatic tasking calls from QTJ, short of opening audio-only
movies with non-QTJ GUI widgets, or no GUI at all, as seen here.

Note: It's still important to know about tasking in case you stumble intosuch a case and can't figure out why your application is just sitting

there.

Tip: In the last section, a warning mentioned an edge case where using the newMovieAsyncOK flag might give you a

QTComponent with zero size because Movie.fromDataRef() returned immediately, before enough of the movie could be

loaded to know how big it was.Tasking helps you solve this problem. After fromDataRef(), you would go into a while loop,

testing whether Movie.getBox() returns non-zero dimensions. If it doesn't, call task() on the movie to give QuickTime a

chance to load more of it, maybe do a Thread.sleep() or Thread.yield() to keep Java happy, and go back to the top of

the while. Because QuickTime movies usually, but don't always, have metadata early in the file, an alternative to testing the size of the

movie would be to call maxLoadedTimeInMovie() on the Movie object and wait for a non-zero valuethis would also be better if

there's any chance the Movie is audio only.But seriously, it's not going to happen because you don't need newMovieAsyncOK.

Chill.

In QTJ 6.0 and earlier, there were also URL-loading scenarios where a program might need to task(
) a few times to download enough of the Movie to read in the metadata and get a valid size, but this

behavior seems to have changed in 6.1, making explicit tasking even more of an edge case.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. Editing Movies
Playback is nice, but you have nothing to play if you lack tools to create media, and the most critical
of these are editing tools. If you've ever used iMovie with your home movies, you know what I'm
talking about: there's a huge difference between watching a cute collection of scenes of your kids
playing, set to music, and watching the two hours of unedited raw footage you started with.
Sometimes, less is more.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1. Copying and Pasting

The most familiar form of editing is copy-and-paste, which many users already are familiar with from
the "pro" version of QuickTime Player. The metaphor is identical to how copy-and-paste works in
nonmedia applications such as text editors and spreadsheets: select some source material of interest,
do a "copy" to put it on the system clipboard, select an insertion point in this or another document,
and do a "paste" to put the contents of the clipboard into that target.

In the simplest form of a QuickTime copy-and-paste, the controller bar (from MovieController) is

used to indicate where copies and pastes should occur. By shift-clicking, a user can select a time-
range from the current time (indicated by the play head) to wherever the user shift-clicks (or, if he is
dragging, wherever the mouse is released).

Note: QuickTime Pro costs money ($29.99 as of this writing), but it allows you to exercise much of the QuickTime API from QuickTime

Player, which can be a useful debugging tool.

3.1.1. How do I do that?

BasicQTEditor, shown in Example 3-1, will be the basis for the examples in this chapter. It offers a

single empty movie window (with the ability to open movies from disk in new windows or to create
new empty movie windows), and an Edit menu with cut, copy, and paste options.

Example 3-1. A copy-and-paste movie editor

package com.oreilly.qtjnotebook.ch03;

import quicktime.*;
import quicktime.qd.QDRect;
import quicktime.std.*;
import quicktime.std.movies.*;
import quicktime.app.view.*;
import quicktime.io.*;

import java.awt.*;
import java.awt.event.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

public class BasicQTEditor extends Frame
 implements ActionListener {

 Component comp;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Movie movie;
 MovieController controller;
 Menu fileMenu, editMenu;
 MenuItem openItem, closeItem, newItem, quitItem;
 MenuItem copyItem, cutItem, pasteItem;
 static int newFrameX = -1;
 static int newFrameY = -1;
 static int windowCount = 0;

 /** no-arg constructor for "new" movie
 */
 public BasicQTEditor () throws QTException {
 super ("BasicQTEditor");
 setLayout (new BorderLayout());
 QTSessionCheck.check();
 movie = new Movie(StdQTConstants.newMovieActive);
 controller = new MovieController (movie);
 controller.enableEditing(true);
 doMyLayout();
 }

 /** file-based constructor for opening movies
 */
 public BasicQTEditor (QTFile file) throws QTException {
 super ("BasicQTEditor");
 setLayout (new BorderLayout());
 QTSessionCheck.check();
 OpenMovieFile omf = OpenMovieFile.asRead (file);
 movie = Movie.fromFile (omf);
 controller = new MovieController (movie);
 controller.enableEditing(true);
 doMyLayout();
 }
 /** gets component from controller, makes menus
 */
 private void doMyLayout() throws QTException {
 // add movie component
 QTComponent qtc =
 QTFactory.makeQTComponent (controller);
 comp = qtc.asComponent();
 add (comp, BorderLayout.CENTER);
 // file menu
 fileMenu = new Menu ("File");
 newItem = new MenuItem ("New Movie");
 newItem.addActionListener (this);
 fileMenu.add (newItem);
 openItem = new MenuItem ("Open Movie...");
 openItem.addActionListener (this);
 fileMenu.add (openItem);
 closeItem = new MenuItem ("Close");
 closeItem.addActionListener (this);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 fileMenu.add (closeItem);
 fileMenu.addSeparator();
 quitItem = new MenuItem ("Quit");
 quitItem.addActionListener (this);
 fileMenu.add(quitItem);
 // edit menu
 editMenu = new Menu ("Edit");
 copyItem = new MenuItem ("Copy");
 copyItem.addActionListener(this);
 editMenu.add(copyItem);
 cutItem = new MenuItem ("Cut");
 cutItem.addActionListener(this);
 editMenu.add(cutItem);
 pasteItem = new MenuItem ("Paste");
 pasteItem.addActionListener(this);
 editMenu.add(pasteItem);
 // make menu bar
 MenuBar bar = new MenuBar();
 bar.add (fileMenu);
 bar.add (editMenu);
 setMenuBar (bar);
 // add close-button handling
 addWindowListener (new WindowAdapter() {
 public void windowClosing (WindowEvent e) {
 doClose();
 }
 });
 }

 /** handles menu actions
 */
 public void actionPerformed (ActionEvent e) {
 Object source = e.getSource();
 try {
 if (source = = quitItem) doQuit();
 else if (source = = openItem) doOpen();
 else if (source = = closeItem) doClose();
 else if (source = = newItem) doNew();
 else if (source = = copyItem) doCopy();
 else if (source = = cutItem) doCut();
 else if (source = = pasteItem) doPaste();
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }

 public void doQuit() {
 System.exit(0);
 }

 public void doNew() throws QTException {
 makeNewAndShow();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 public void doOpen() throws QTException {
 QTFile file =
 QTFile.standardGetFilePreview (QTFile.kStandardQTFileTypes);
 Frame f = new BasicQTEditor (file);
 f.pack();
 if (newFrameX >= 0)
 f.setLocation (newFrameX+=16, newFrameY+=16);
 f.setVisible(true);
 windowCount++;
 }

 public void doClose() {
 setVisible(false);
 dispose();
 // quit if no windows now showing
 if (--windowCount = = 0)
 doQuit();
 }

 public void doCopy() throws QTException {
 Movie copied = controller.copy();
 copied.putOnScrap(0);
 }

 public void doCut() throws QTException {
 Movie cut = controller.cut();
 cut.putOnScrap(0);
 }

 public void doPaste() throws QTException {
 controller.paste();
 pack();
 }

/** Force frame's size to respect movie size
 */
 public Dimension getPreferredSize() {
 System.out.println ("getPreferredSize");
 if (controller = = null)
 return new Dimension (0,0);
 try {
 QDRect contRect = controller.getBounds();
 Dimension compDim = comp.getPreferredSize();
 if (contRect.getHeight() > compDim.height) {
 return new Dimension (contRect.getWidth() +
 getInsets().left +
 getInsets().right,
 contRect.getHeight() +
 getInsets().top +
 getInsets().bottom);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } else {
 return new Dimension (compDim.width +
 getInsets().left +
 getInsets().right,
 compDim.height +
 getInsets().top +
 getInsets().bottom);

 }
 } catch (QTException qte) {
 return new Dimension (0,0);
 }
 }

 /** opens a single new movie window
 */
 public static void main (String[] args) {
 try {
 Frame f = makeNewAndShow();
 // note its x, y for future calls
 newFrameX = f.getLocation().x;
 newFrameY = f.getLocation().y;
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 /** creates "new" movie frame, packs and shows.
 used by main() and "new"
 */
 private static Frame makeNewAndShow()
 throws QTException {
 Frame f = new BasicQTEditor();
 f.pack();
 if (newFrameX >= 0)
 f.setLocation (newFrameX+=16, newFrameY+=16);
 f.setVisible(true);
 windowCount++;
 return f;
 }
}

Note: With the downloaded book code, compile and run this with ant run-ch03-basicqteditor.

Figure 3-1 shows the BasicQTEditor class in action, with two windows open. The window on the left

is the original empty movie window, with the user about to paste in some contents. The window on
the right is a movie that was opened from a file. Note the small stretch of darker gray in the timeline,
under the play head, which indicates the selected segment that was copied from the movie to the
system clipboard.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-1. BasicQTEditor with two movies open

Also note that when running in Windows, as pictured here, the menus are inside the windows. On
Mac OS X, the usage of AWT means the File and Edit menus will be at the top of the screen in the
Mac's "One True Menu Bar."

One usability note: for simplicity, I haven't tried to make this particularly smart about what the user
"really wants," and that can be bad on the paste . The paste will replace whatever is selected in the
target movie, and if there is no selection, it will paste to the beginning of the movie. It's probably
more typical to add clips either to the end of the movie, or to the current time as indicated by the
play head (i.e., to behave as if a lack of a selection should be interpreted as a zero-length selection
beginning and ending at the movie's current time). It's simple enough to add this kind of intelligence
to doPaste() and find a behavior that feels better.

3.1.2. What just happened?

This is a big example, so here's an overview.

The no-arg constructor, BasicQTEditor(), initializes QuickTime with Chapter 1s QTSessionCheck,
then creates a new empty Movie, gets a MovieController for it, and calls doMyLayout. A second
constructor, BasicQTEditor (QTFile), is essentially identical, except that instead of creating an
empty movie, it gets a movie from the provided QTFile. The movie and the controller instance

variables are used by many methods throughout the application.

The doMyLayout() method sets up the menus and their ActionListeners and reminds us that

building GUIs in code is a pain.

actionPerformed (ActionEvent) is used to farm out method calls from clicks on the various menu

items.

doQuit() is a trivial call to System.exit(0). Remember that the QTSessionCheck call has set up a

shutdown handler to close QuickTime when Java goes away.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

doNew() trivially calls makeNewAndShow(), which is a convenience method to call the no-arg
constructor (which creates an empty Movie), pack the frame, and move it down and to the right 16

pixels from the last place a new window was created.

Tip: Note that there's nothing here to keep new windows from going off-screen if the user creates enough of them. In a more polished

application, you'd check the proposed x and y against the screen size reported by the AWT's Toolkit.getScreenSize() .

doOpen() brings up a file-open dialog and calls the file-aware constructor. It then pack()s the
window and positions it in the same way makeNewAndShow() does.

doClose() closes the frame and, if it is the last open window, quits the application via doQuit()

(yes, this is Windows-like behavior, as opposed to the typical Mac application which can hang around
with no open windows).

doCopy() and doCut() are practically identical, and each needs only two lines to do its thing. They
make a call to the MovieController to cut or copy the current selection and return the result as a
new Movie. Then they put this movie on the system clipboard with the movie's putOnScrap() call.

doPaste() is even simpler: it just calls the controller's paste() method and then re-pack()s the

window.

The getPreferredSize() method overrides the default by indicating that the window needs to be

large enough to contain the movie, its control bar, and any insets that might be set. This is why you
should pack() after each paste: the original empty movie has no size other than its control bar, so

when you paste into it, the size of the movie (and thus its controller) changes to accommodate the
pasted contents, and you need the frame to adjust to that.

Warning: This really should be taken care of automatically in Java, because the use of a BorderLayout should allow the contents

to achieve their preferred size on a pack(). Unfortunately, on Mac OS X, the QTComponent exhibits a bizarre behavior where its

preferred size is set once, when it's packed, and never again. So, a component built from an empty movie always thinks it's supposed to

be zero pixels high by 160 pixels wide, even if you paste in contents much larger than that. Fixing this reveals the opposite problem on

Windows: sometimes there's a good preferred size and a zero-height controller bound. The version here prefers whichever set of

bounds has a greater height.

3.1.3. What about...

...that weird play head? That is odd, isn't it? The call to enableEditing(true) has changed the play

head ball to an hourglass shape. Figure 3-2 shows it at an enlarged size.

Figure 3-2. MovieController scrubber bar with editing enabled

My guess is that the shape is supposed to help you select the exact point for making a selection,
instead of burying it under the center of the ball. That said, there's a reason you don't see this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

elsewhere: this default widget isn't terribly well-suited to editing. The QuickTime Player application
that comes with QuickTime has a custom controller widget with two little triangles under the timeline
to mark in and out points. But that control, like this one, shares the flaw that the accuracy of your
edit is limited by the on-screen size of your movie. More serious editing applications, like Premiere
and Final Cut Pro, have custom GUI components for editing, usually based on a timeline that can be
"zoomed" to an arbitrary accuracy. Of course, one could do the same with AWT or Swing, tracking
MouseEvents, paint()ing as necessary, and making programmatic calls to QTJ to perform actions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2. Performing "Low-Level" Edits

Low-level edits are a separate set of editing calls that don't involve the clipboard or selection
metaphors. They're called "low level" because instead of operating at the conceptual level of "paste
the contents of the clipboard into the user's current selection," they work at the level of "insert a
segment from movie M1, ranging from time A to time B, into movie M2 at time C."

Note: By way of comparison, although QuickTime has two sets of editing functions, Sun's Java Media Framework has no editing API at

all.

3.2.1. How do I do that?

This version reimplements doCopy(), doCut(), and doPaste() to use low-level editing calls on
the Movie instead of cut/copy/paste-type calls on the MovieController.

First, LowLevelQTEditor needs a static Movie, called copiedMovie, to keep track of what's on its
virtual "clipboard" so that it can be shared across the new doCopy(), doCut(), and doPaste()

methods:

public void doCopy() throws QTException {
 copiedMovie = new Movie();
 TimeInfo selection = movie.getSelection();
 movie.insertSegment (copiedMovie,
 selection.time,
 selection.duration,
 0);
 }

public void doCut() throws QTException {
 copiedMovie = new Movie();
 TimeInfo selection = movie.getSelection();
 movie.insertSegment (copiedMovie,
 selection.time,
 selection.duration,
 0);
 movie.deleteSegment (selection.time,
 selection.duration);
 controller.movieChanged();
 }

public void doPaste() throws QTException {
 if (copiedMovie = = null)
 return;
 copiedMovie.insertSegment (movie,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 0,
 copiedMovie.getDuration(),
 movie.getSelection().time);
 controller.movieChanged();
 pack();
 }

Note: You can make ant compile and run this example with ant run-ch03-lowlevelqteditor.

The only thing the user might see as being different or odd in this example is that the cut or copied
clip does not get put on the system clipboard because low-level edits don't touch the clipboard.

Tip: For what it's worth, this example was intended originally to be a drag-and-drop demo, for which these low-level, segment-oriented

calls are particularly well-suited. Unfortunately, the QTComponent won't generate an AWT "drag gesture." I suppose it would be a little

unnatural to drag the current image as a metaphor for copying a segment of a movie. Anyway, if you decide to do your own controller

GUI, you can use this low-level stuff for your drag-and-drop.

3.2.2. What just happened?

The doCut(), doCopy(), and doPaste() methods all call Movie.insertSegment() ; either to put
some part of a source movie into the clipboard-like copiedMovie or to put the copiedMovie into the

target movie. This method takes four arguments:

The Movie to insert into

The start time of the segment, in the movie's time scale

The end time of the segment, in the movie's time scale

The time in the target movie when the segment should be inserted

In the case of a cut, the deleteSegment() call removes the segment that was just copied out. This

method simply takes the beginning and end times of the segment to delete.

Note: Time scales are covered in Chapter 2, in the section Section 2.5."

In the doPaste() and doCut() methods, a call to MovieController.movieChanged() lets the

controller know that the movie was changed in a way that didn't involve a method call on the
controller, and that the controller now needs to update itself to adjust to the changed duration,
current time, etc.

3.2.3. What about...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

...any other low-level calls? There is an interesting method in the Movie class, called scaleSegment()

, which changes the duration of a segment, meaning it either slows it down or speeds it up to suit the
specified duration. This could be handy for creating a " slow-motion" or "fast-motion" effect from a
normal-speed source, or stretching it out to fit a piece of audio.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3. Undoing an Edit

Critical to any kind of editing is the ability to back out of a change that had unintended or undesirable
effects. Fortunately, controller-based cuts and pastes can be undone with some fairly simple calls.

3.3.1. How do I do that?

UndoableQTEditor builds on the original BasicQTEditor by adding an "undo" menu item. The
doUndo() method it calls has an utterly trivial implementation:

public void doUndo() throws QTException {
 controller.undo();
}

Note: Compile and run this example with ant run-ch03-undoableqteditor.

3.3.2. What just happened?

With a simple call to MovieController.undo() , the program gained the ability to undo a cut or

paste, or any other destructive change made through the controller.

3.3.3. What about...

...multiple undoes? Or redoes? Ah, there's the rub. Hit undo again and the cut or paste is redone, in
effect undoing the undo.

Sadly, this is your dad's "undo"...the undo from back in 1990, when a single level of undo was a
pretty cool thing. Today, when users expect to perform multiple destructive actions with impunity, it's
not too impressive.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4. Undoing and Redoing Multiple Edits

Fortunately, QTJ offers a unique opportunity to combine Swing's thoughtfully designed undo API,
javax.swing.undo, with QuickTime's support for reverting a movie to a previous state. Combined,

these features provide the ability to support a long trail of undoes and redoes.

3.4.1. How do I do that?

RedoableQTEditor again builds on BasicQTEditor, adding a Swing UndoManager that is used by
both the doUndo() and doRedo() methods:

Note: Compile and run this example with ant run-ch03-redoableqteditor.

public void doUndo() throws QTException {
 if (! undoanager.canUndo()) {
 System.out.println ("can't undo");
 return;
 }
 undoManager.undo();
}

public void doRedo() throws QTException {
 if (! undoManager.canRedo()) {
 System.out.println ("can't redo");
 return;
 }
 undoManager.redo();
}

The information about a destructive edit is encapsulated by an inner class called QTEdit:

class QTEdit extends AbstractUndoableEdit {
 MovieEditState previousState;
 MovieEditState newState;
 String name;
 public QTEdit (MovieEditState pState,
 MovieEditState nState,
 String n) {
 previousState = pState;
 newState = nState;
 this.name = n;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public String getPresentationName() {
 return name;
 }
 public void redo() throws CannotRedoException {
 super.redo();
 try {
 movie.useEditState (newState);
 controller.movieChanged();
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }
 public void undo () throws CannotUndoException {
 super.undo();
 try {
 movie.useEditState (previousState);
 controller.movieChanged();
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }
 public void die() {
 previousState = null;
 newState = null;
 }
}

Finally, doCut() and doPaste() are amended to create suitable QTEdits and hand them to the
UndoManager:

public void doCut() throws QTException {
 MovieEditState oldState = movie.newEditState();
 Movie cut = movie.cutSelection();
 MovieEditState newState = movie.newEditState();
 QTEdit edit = new QTEdit (oldState, newState, "Cut");
 undoManager.addEdit (edit);
 cut.putOnScrap(0);
 controller.movieChanged();
}

public void doPaste() throws QTException {
 MovieEditState oldState = movie.newEditState();
 Movie pasted = Movie.fromScrap(0);
 movie.pasteSelection (pasted);
 MovieEditState newState = movie.newEditState();
 QTEdit edit = new QTEdit (oldState, newState, "Paste");
 undoManager.addEdit (edit);
 controller.movieChanged();
 pack();
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When clicked, the Undo menu item now undoes a cut or paste. Redo redoes the edit, while a second
"undo" will undo the previous edit, etc.

3.4.2. What just happened?

Obviously, the fun parts involve the destructive actions and how they save enough information to be
undoable and redoable. In each case, they call Movie.newEditState() to create a MovieEditState,

a QuickTime object that contains the information needed to revert the movie to the current state at
some point in the future. Then they do the destructive action and create another MovieEditState to
represent the post-edit state. These objects are passed to the QTEdit, which is then sent to the
UndoManager to join its stack of edits.

Note: For more on Swing's undo framework, see Chapter 18 of O'Reilly's Java Swing, 2nd Edition, by Mark Loy, Robert Eckstein, Dave

Wood, James Elliot, and Brian Cole.

When the UndoManager.undo() method is called, it takes the first undoable edit, if there is one, and
calls its undo() method. In this case, that means the manager is calling the QTEdit.undo()
method, which takes the pre-edit MovieEditState and passes it to Movie.useEditState() to
return the movie to that state. Similarly, a post-undo call to QTEdit.redo() also uses
useEditState() to get to the post-edit state.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.5. Saving a Movie to a File

Once a user has performed a number of edits and has a finished project, she presumably needs to
save the movie to disk. In QuickTime, many different actions can be thought of as "saving" a movie.
Perhaps the simplest and most flexible option is to let the user decide.

3.5.1. How do I do that?

The SaveableQTEditor uses a QTFile to keep track of where a movie was loaded from (null in the
case of a new movie). This is used by the doSave() method to indicate where the saved file goes:

public void doSave() throws QTException {
 // if no existing file, then prompt for one
 if (file = = null) {
 file = new QTFile (new File ("simplemovie.mov"));
 }
 int flags = StdQTConstants.createMovieFileDeleteCurFile |
 StdQTConstants.createMovieFileDontCreateResFile |
 StdQTConstants.showUserSettingsDialog;
 movie.convertToFile (file, // file
 StdQTConstants.kQTFileTypeMovie, // filetype,
 StdQTConstants.kMoviePlayer, // creator
 IOConstants.smSystemScript, // scriptTag
 flags);
}

Note: Compile and run this example with ant run-ch03-saveableqteditor.

When the user hits the Save menu item, she'll see the QuickTime Save As dialog as shown in Figure
3-3.

Figure 3-3. QuickTime Save As dialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This dialog's Export selector gives the user four choices:

Movie

Saves a QuickTime reference movie, a tiny (typically 4 or 8 KB) file that contains just
references (pointers) to the media in their original locations

Movie, self-contained

Copies all the media, in their original encodings, into a new QuickTime movie file

Movie to Hinted Movie

Creates a self-contained movie but lets the user adjust the hinting settings for use in a
streaming server

Movie to QuickTime Movie

Creates a self-contained movie, but lets the user choose different compressors and settings to
re-encode the audio and video

Some of these options give the user additional choices. Saving a "self-contained" movie presents an
Options... button that lets the user specify the audio and video codecs to be used in the saved movie,
their quality and bitrate settings, etc. A "Use" pop up contains canned settings with appropriate
choices for distributing the movie on CD-ROM, over dial-up, etc.

Once the user clicks Save, the program saves the movie to disk. This is a very fast operation for the
reference movie option and a potentially slow operation for the other options because the media
might be re-encoded into a new format as part of the save.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.5.2. What just happened?

The key is the Movie.convertToFile() method. The version shown here takes five parameters:

The QTFile to save to.

An int to represent the old Mac OS file "type." Use the constant kQTFileTypeMovie, which
gives it the QuickTime movie type moov.

An int to represent the old Mac OS file "creator." The boilerplate option is kMoviePlayer, which

associates it with the default QuickTime Player application.

An int to represent the old Mac OS "scriptTag," which indicates what kind of "script system"

(character encoding, writing direction, etc.) is to be used. Common practice is to use the
constant smSystemScript to use whatever the operating system's current script is.

Behavior flags to affect the save operation, logically ORed together. The most important flag for
this example is the showUserSettingsDialog; without it, the program would silently save the

file with Apple's ancient "Video" codec and uncompressed sound. This example also uses the
flag createMovieFileDeleteCurFile to delete any file already at the target location and
createMovieFileDontCreateResFile to force the file to exist in a single data "fork," instead of

using the old Mac OS' "resource" fork. This is required for making QuickTime movies that run on
multiple platforms.

Note: Most of the time, it's appropriate to use boilerplate code for things like type, creator, and system script, and not to have to read

some Inside Macintosh book from 10 years ago.

3.5.3. What about...

...other interesting behavior flags? The docs for the native ConvertMovieToFile function offer two

that aren't shown here because they seem to indicate behavior that is already the default:

movieFileSpecValid indicates that the file passed in actually exists and should be shown as

the default save location.

movieToFileOnlyExport restricts the dialog to showing only the data export components that

are actually present.

Can anything be done about the interminable wait when saving "Movie to QuickTime Movie"? One
thing that helps is to provide a "progress function," which provides a visual representation of the
progress being made on the long save operation. You can set up the default progress function with a
one-line call right before convertToFile():

movie.setProgressProc()

This will bring up a progress dialog like the one shown in Figure 3-4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-4. Default QuickTime progress dialog

The Movie class also has a setProgressProc() method that takes a MovieProgress object as a

parameter. The idea here is that of a typical callback arrangementduring a long save,
MovieProgress.execute() is called repeatedly with four parameters: the movie being monitored, a
"message" int, a "what operation" int, and a float that represents the percentage done on a scale

from 0.0 to 1.0. Unfortunately, this interface has a couple of problems. First, the constants for the
"message" aren't defined in QTJ (a few printlns here and there show that the values are 0 for start,
1 for update, and 2 for done). More importantly, using this callback seems extremely unstable in QTJ

6.1I find I often get an exception with an "Unknown Error Code," and the movie doesn't save. So,
maybe the default behavior is the safe choice for now.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.6. Flattening a Movie

Saving a movie can mean different things in QuickTime: saving a reference movie, saving a self-
contained movie, or exporting to a different format. Typically, though, the idea of creating a self-
contained movie is what users think of as "saving"they want a single file that doesn't depend on any
others, so they can put it on a server, email it to mom, etc. This process is called "flattening."

Note: "Flattening" is also an old Mac OS term for turning a file with both a resource fork and a data fork into a single-fork file, suitable for

use on non-Mac disk formats. In this book, we use "flatten" only in its QuickTime sense.

3.6.1. How do I do that?

The FlattenableQTEditor is similar to the SaveableQTEditor, adding the menu item and its typical
GUI and action-handling support. The flattening is done in a doFlatten() method:

public void doFlatten() throws QTException {
 // always attempts to save to a new location,
 // so prompt for filename
 FileDialog fd = new FileDialog (this,
 "Flatten...",
 FileDialog.SAVE);
 fd.setVisible(true); // blocks
 if ((fd.getDirectory() = = null) ||
 (fd.getFile() = = null))
 return;
 QTFile flatFile =
 new QTFile (new File (fd.getDirectory(),
 fd.getFile()));
 if (flatFile.exists()) {
 // JOptionPane is a bit of cheat-for-clarity here,
 // building a working AWT dialog would be punitive
 int choice =
 JOptionPane.showConfirmDialog (this,
 "Overwrite " +
 flatFile.getName() + "?",
 "Flatten",
 JOptionPane.OK_CANCEL_OPTION);
 if (choice != JOptionPane.OK_OPTION)
 return;
 }
 movie.flatten(StdQTConstants.flattenAddMovieToDataFork |
 StdQTConstants.flattenForceMovieResourceBeforeMovieData,
 flatFile, // fileOut

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 StdQTConstants.kMoviePlayer, // creator
 IOConstants.smSystemScript, // scriptTag
 StdQTConstants.createMovieFileDeleteCurFile,
 StdQTConstants.movieInDataForkResID, // resID
 null); // resName
}

Note: Compile and run this example with ant run-ch03-flattenableqt-editor.

When run, this creates a self-contained QuickTime movie file at the specified location, using whatever
video and audio encoding was used in the original sources. This can result in some playback jitters if
the user has mixed in different kinds of codecsfor example, pasting in some MPEG-4 video with some
Sorenson 3 video. Flattening doesn't change encoding; it just resolves references and puts all the
media into one file.

3.6.2. What just happened?

The Movie.flatten() call creates the self-contained movie file, taking seven parameters to control

its behavior:

Note: Many of these are the same parameters used by Movie.convertToFile(), covered in the previous lab.

Behavior flags for the flatten operation, logically ORed together. This example uses
flattenAddMovieToDataFork to create a single-fork movie that is more suitable for non-Mac
operating systems. Using flattenForceMovieResourceBeforeMovieData creates a "quick

start" movie, so named because all its metadata comes before its media samples, which allows
QuickTime to start playing the movie from a stream, even an http://-style URL, before all the
data is loaded, because all the information QuickTime needs (what tracks are present, what size
the video is, how loud the audio is, etc.) is loaded first.

The file to flatten to.

The Mac OS "creator," typically kMoviePlayer.

The Mac OS script tag, typically smSystemScript.

The behavior flags that are used for the create file operation. createMovieFileDeleteCurFile

is used here to delete any file already at the target file location.

Resource ID. For cross-platform reasons, it's usually best to use movieInDataForkResID

instead of old Mac OS-style resources.

Resource name. Irrelevant here, so null will do.

3.6.3. What about...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

...behavior flags for the flatten operation? The native docs for FlattenMovie define a bunch, but the

ones not used here are largely esoteric.

flattenDontInterleaveFlatten

Turns off "interleaving," an optimization that mixes audio and video samples together so that
they're easier to read at playback time (if a movie had a couple of megabytes' worth of video
samples, followed by a couple of megabytes' worth of audio samples, the hard drive would
have a difficult time zipping back and forth between the two; interleaving puts the samples for
the same time period in the same place so that they can be read together). The default
behavior is a good thing, so this constant isn't used often.

flattenActiveTracksOnly

Doesn't include disabled tracks from the movie in the flattened file.

flattenCompressMovieResource

Compresses the movie's resource, and its organizational and metadata structure, if stored in
the data fork. Like you care.

flattenFSSpecPtrIsDataRefRecordPtr

This is meaningless in QTJ.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.7. Saving a Movie with Dependencies

The opposite of flattening is saving a movie with dependencies. In this type of a save, the resulting
file just contains pointers to the sources of the media in each track. The file typically is tiny, usually
just 8 KB or less.

3.7.1. How do I do that?

The RefSaveableQTEditor example extends the FlattenableQTEditor with a "Save w/Refs" menu
item that calls doRefSave():

public void doRefSave() throws QTException {
 // if no home file, then prompt for one
 if (file = = null) {
 FileDialog fd = new FileDialog (this,
 "Save...",
 FileDialog.SAVE);
 fd.setVisible(true); // blocks
 if ((fd.getDirectory() = = null) ||
 (fd.getFile() = = null))
 return;
 file = new QTFile (new File (fd.getDirectory(),
 fd.getFile()));
 }
 // save ref movie to file
 if (! file.exists()) {
 file.createMovieFile(StdQTConstants.kMoviePlayer,
 StdQTConstants.createMovieFileDontCreateResFile);
 }
 OpenMovieFile outFile =
 OpenMovieFile.asWrite(file);
 movie.updateResource (outFile,
 StdQTConstants.movieInDataForkResID,
 null);
}

Note: Compile and run this example with ant run-ch03-refsaveableqt-editor.

When run, this creates a movie file that, despite its tiny size, behaves exactly like any other movie
file. Double-click it and it will open in QuickTime Player, just like a self-contained movie. QuickTime
completely isolates the user from the fact that the file contains nothing more than metadata and
pointers to the source media files.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Of course, there are limits to what QuickTime can do if those pointers cease to be valid. A user can
move the source files and the movie still will play, but if the source movies are deleted, or if the
reference movie is transferred to another system, QuickTime won't be able to resolve the references.
This typically will result in a "searching..." dialog, followed by a dialog asking the user to locate the
missing media, as shown in Figure 3-5.

Figure 3-5. Unresolvable media reference dialog

3.7.2. What just happened?

First, a call to QTFile.createMovieFile() creates the file on disk, if it doesn't exist already. This

method takes two parameters:

A Mac OS "creator," for which StdQTConstants.kMoviePlayer is the typical boilerplate value.

Behavior flags. The constant createMovieFileDontCreateResFile commonly is used to create

cross-platform, single-fork files.

With the file created, the reference movie data can be put into the file with the updateResource()

method. This method takes three parameters:

Note: The name updateResource() seems to be another Classic Mac OS legacy that doesn't make much sense today.

An OpenMovieFile, opened for writing.

A resource ID, for which the appropriately cross-platform, no-resource-fork value is
movieInDataForkResId.

An updated name for the resource; null is appropriate here.

3.7.3. What about...

...the fragility of reference movies? Because a reference movie is fragile, why would anyone ever
create one? This technique is very handy for the saving state in editing applications because it allows
the user to quickly save his edited movie without the I/O grinding of flattening. Editing, after all, can

http://lib.ommolketab.ir
http://lib.ommolketab.ir

be seen as a process of arranging pointers to source materials; in the professional realm, a document
called an Edit Decision List (EDL) is a simple list of "in" and "out" points from source media that you
can use to produce the edited media. The reference movie is equivalent to the EDL: it's just a
collection of pointers, with the nice advantage that it continues to behave as a normal QuickTime
movie. So, the reference movie can be used to save the progress of the user's editing work, and
when finished, a final self-contained movie can be generated via flattening or exporting (see Chapter
4).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.8. Editing Tracks

Often, it makes sense to perform edits on all tracks of a movie. But for serious editing applications,
sometimes you need to work at the track level, to add and remove tracks, or to work on just one
track in isolation from the others. This task will provide a taste of that by adding a second audio track
to a movie.

3.8.1. How do I do that?

The AddAudioTrackQTEditor builds on FlattenableQTEditor by adding another Add Audio Track...
menu item, calling the doAddAudioTrack() method:

public void doAddAudioTrack() throws QTException {
 // ask for an audio file
 QTFile audioFile =
 QTFile.standardGetFilePreview (QTFile.kStandardQTFileTypes);
 OpenMovieFile omf = OpenMovieFile.asRead (audioFile);
 Movie audioMovie = Movie.fromFile (omf);
 // find the audio track, if any
 Track audioTrack =
 audioMovie.getIndTrackType (1,
 StdQTConstants.audioMediaCharacteristic,
 StdQTConstants.movieTrackCharacteristic);
 if (audioTrack = = null) {
 JOptionPane.showMessageDialog (this,
 "Didn't find audio track",
 "Error",
 JOptionPane.ERROR_MESSAGE);
 return;
 }
 // now make new audio track and insert segment
 // from the loaded track
 Track newTrack =
 movie.newTrack (0.0f, // width
 0.0f, // height
 audioTrack.getVolume());
 // ick, need a dataref for our "new" media
 // http://developer.apple.com/qa/qtmtb/qtmtb58.html
 SoundMedia newMedia =
 new SoundMedia (newTrack,
 audioTrack.getMedia().getTimeScale(),
 new DataRef (new QTHandle()));
 newTrack.getMedia().beginEdits();
 audioTrack.insertSegment (newTrack,
 0,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 audioTrack.getDuration(),
 0);
 controller.movieChanged();
}

Note: Compile and run this example with ant run-ch03-addaudiotrackqteditor.

This method is admittedly contrivedit prompts the user to open another file, and if an audio track can
be found in the file, the program adds that track to the movie, starting at time 0. If the user has
done only a few short pastes and then adds an audio track from a typical iTunes MP3 or AAC, the
result probably will be a movie in which the new soundtrack is much longer than the pasted contents.

Also, QuickTime will eat more CPU cycles playing this movie, because it has to decode two
compressed soundtracks at once. Like I said, it's a contrived example, but it covers some interesting
ground.

3.8.2. What just happened?

The program tries to find an audio track with Movie.getIndTrackType() , passing
audioMediaCharacteristic as the search criterion. Assuming an audio track is found in this movie,
the program needs to create a new track in the movie being edited. Movie.newTrack() creates the

new track, taking as parameters the width, height, and volume of the new track.

This new track is useless without a Media object to hold the actual sound data, so the next step is to
construct a new SoundMedia object. The constructor takes the track that the media is to be
associated with, a time scale, and a DataRef to indicate where media samples can be stored.

Interestingly, although the edit methods this program uses are in the track class, first I have to call
Media.beginEdits() to inform the track's underlying media that it's about to get edited. Having
done this, the program then can call track.insertSegment(), which is identical to its low-level-
editing Movie equivalent, taking a target track, source in and out times, and a destination-in time.
Following this, the program calls movieChanged() on the movie controller to let it know that a

change was made to the movie behind the controller's back.

The result is an additional audio track in the movie. If the user then flattens the movie and opens it
up with QuickTime Player, a "Get Info" shows the extra audio track, as seen in Figure 3-6. In this
case, I imported clips from an MPEG-4 file and added an MP3 soundtrack.

Note: No, I'm not swearing in this filename. I combined a video of my son in an inflatable boat with an MP3 of a song called "Dam

Dariram" from the video game "Dance Dance Revolution"; thus, "dam-boat.mov".

Figure 3-6. QuickTime Player "Get Info" for movie with multiple audio
tracks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.8.3. What about...

...that crazy-looking new DataRef (new QTHandle()) parameter in the SoundMedia constructor?

OK, scary edge casehere's the story. Zoom out for a second: movies have tracks, tracks have media,
media have samples. Those samples need to live somewhere. It's not a problem when you open a
movie from disk, but when you create new media in a new movie, QuickTime has no idea where it's
supposed to put any samples that you add, whether by way of inserting segments from other tracks
or by adding individual samples one by one (which will be covered in Chapters Chapter 7, Chapter 8,
and Chapter 9). So, this example uses the SoundMedia constructor that takes a DataRef, which
represents a location to store the samples. This DataRef can be practically anything, even a zero-

length buffer in memory, which is pretty much what this example passes in by constructing a new
DataRef out of a new, empty QTHandle.

Tip: For more on this icky little gotcha, and if you don't mind a C-oriented technote, see "BeginMediaEdits -2050 badDataRefIndex error

after calling NewMovie" at http://developer.apple.com/qa/qtmtb/qtmtb58.html.

Also, what about the control bar? It tells the user nothing about the tracks in the movie. You're
absolutely right. Being playback-oriented, the provided GUI is weak for editing movies, and utterly
useless for editing tracks. It gives the user no idea how many tracks a movie has, where there's
video without sound or vice versa, etc. Moreover, there's no default widget in QTJ to replace it. If you
want to provide track-oriented editing, you'll need to develop your own GUI components to display
tracks and their contents. I haven't provided one here, because the appearance and behavior of such
a component would vary wildly with the kind of application it was needed for (a home movie editor,
an MP3 playlist builder, etc.) and because it easily could contain more than 1,000 lines of AWT code
with maybe a dozen lines of QuickTime...not exactly ideal for the format of this book.

What about other track-editing methods? Fortunately, many of the concepts from the low-level Movie
editing lab from earlier in the chapter apply to tracks. Along with track.insertSegment() are a
deleteSegment() and a scaleSegment() that work like their Movie equivalents. The
insertEmptySegment() does what its name implies, and could be useful for building a track in
nonconsecutive segments. There's also a TRack.insertMedia() that will be used in later chapters to
build up a Media object from raw samples.

http://developer.apple.com/qa/qtmtb/qtmtb58.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

As for how the tracks relate to their parent movies, this example uses Movie.newTrack() , though
it also is possible to use addEmptyTrack() , which takes a prototype track and a DataRef. tracks can
be removed with Movie.removeTrack() and temporarily turned on and off with
track.setEnabled() .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. Working with Components
When QuickTime came out in 1990, it could play movies the size of a postage stampbarelyon $7,000
hardware. It used audio and video codecs that, although still supported today, have long since been
abandoned by users. Yet it's been a smooth transition from Apple Video to Cinepak to MPEG-4. This is
thanks to an extraordinarily modular designmost of the heavy lifting in QuickTime is performed by
components, or shared code fragments that can be discovered and used dynamically. Components
provide support for importing and exporting image and movie formats, performing image and sound
compression and decompression, accessing system resources, and much more. The QuickTime
installer provides components for many features, and components added later by the end user, from
either Apple or third parties, can provide more functionality, like support for more media formats.

Components aren't always front-and-center in the APIafter all, the first few chapters have managed
to avoid mentioning them entirely. QuickTime has been assumed to just "do the right thing" when it
comes to opening files and turning them into movies, decompressing and rendering the data, saving
it to disk, etc. When needed, QuickTime looks through its catalog of components for required
functionality and gets what it needs.

But sometimes it's desirable or necessary for the developer to work with components more directly,
to figure out what's available or to specify behavior. Figuring out what tools are available at runtime
can be a powerful asset.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1. Specifying a Component's Type

In QuickTime, components are identified by a type and a subtype. The type specifies a broad area of
functionality, while the subtype is a specific implementation of that functionality. For example, there's
a "movie exporter" type, which identifies components that can write a movie into a non-QuickTime
format, with subtypes identifying the exporters for AVI, MPEG-4, etc.

These identifiers are 32-bit int values, but typically they're not enumerated constants like you might

expect from Java. Usually, the 32 bits are read as four 8-bit ASCII characters, making a short,
human-readable name. These are defined in the native API as OSTypes, but when populated with
meaningful values, they're called "four character codes," from the native FOUR_CHAR_CODE function
that returns an OSType for a string. This often is abbreviated as FCC, or 4CC.

The scheme makes a lot of sense from the C programmer's point of view. For example, defining the
4CC for a movie requires a nice, simple one-liner, as seen in the native Movies.h header file:

MovieResourceType = 'moov'

Note: "moov" shows up a lot in QuickTime: as an identifier for a movie's copy-and-paste type, as its Carbon file type, as the top-level

"atom" in the file format, etc. Say it out loud if you don't get the joke: moo-vee.

It turns out that dealing with 4CCs is harder in Java, thanks to Java's more modern approach to text.
Specifically, the use of Unicode means Java characters are 2 bytes each, which means help is needed
to turn a Java string into a 4CC.

4.1.1. How do I do that?

Fortunately, the QTUtils class provides two methods for converting to and from 4CCs: toOSType()
and fromOSType(). Example 4-1 exercises these methods by converting a Java string to and from

its 4CC representation.

Note: Compile and run this example from the downloaded book code with ant run-ch04-fourcharcodetest.

Example 4-1. Converting to and from FOUR_CHAR_CODEs

package com.oreilly.qtjnotebook.ch04;

import quicktime.util.QTUtils;

public class FourCharCodeTest extends Object {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static void main (String[] args) {
 if (args.length < 1) {
 System.out.println ("Usage: FourCharCodeTest <fcc>");
 return;
 }
 System.out.println (args[0]);
 int fcc = QTUtils.toOSType (args[0]);
 System.out.println (fcc);
 System.out.println (Integer.toHexString (fcc));
 String fccString = QTUtils.fromOSType(fcc);
 System.out.println (fccString);
 }

}

The main() method takes a String from the command line, converts it to a 4CC, prints that value
in decimal and hex, then converts it back to a String. When it's run with moov as an argument, the

output looks like this:

cadamson% java -classpath classes
 com.oreilly.qtjnotebook.ch04.FourCharCodeTest moov
moov
1836019574
6d6f6f76
moov

Note: Really hard-core QuickTime developers can read 4CCs in hex without thinking about it. Drop a movie file on a hex editor and you'll

probably see 6d6f6f76 (moov) as bytes 4-8.

4.1.2. What just happened?

These utility methods provide some good, old-fashioned bit-munging to do their conversions.
toOSType() takes a String as its argument, grabbing the low 8 bits of each character and putting
them in the proper place in the returned int. In other words, the bottom 8 bits of the first character
take up the first 8 bits of the int, then the next character is used for the next 8 bits, and so on.
Figure 4-1 shows where the bits end up in the bit-shifted "moov".

Figure 4-1. Bit-wise, hex, and character representation of a
FOUR_CHAR_CODE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fromOSType() does the opposite conversion, masking off the bits of an int and returning a four-

character Java string.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2. Exporting Movies

One of the most obviously useful components is the MovieExporter, which you can use to convert a

QuickTime movie into a non-QuickTime format, such as AVI or MPEG-4.

4.2.1. How do I do that?

The quicktime.std.qtcomponents.MovieExporter class provides a convenient Java wrapper

around movie exporter components. It requires that you pass it a subtype indicating which exporter
you wanti.e., which format you want to export to. Example 4-2 shows how a MovieExporter can be

created and used from a canned list of subtypes.

Note: Compile and run this example with ant run-ch04-simplemovieexport.

Example 4-2. Simple MovieExporter creation and use

package com.oreilly.qtjnotebook.ch04;

import quicktime.*;
import quicktime.std.*;
import quicktime.std.movies.*;
import quicktime.io.*;
import quicktime.std.qtcomponents.*;
import quicktime.utils.QTUtils;

import java.awt.*;
import javax.swing.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

public class SimpleMovieExport extends Object {

 public static final void main (String[] args) {
 new SimpleMovieExport();
 }

 public SimpleMovieExport() {
 // build choices
 ExportChoice[] choices = new ExportChoice[3];
 choices[0] =
 new ExportChoice ("QuickTime Movie",
 StdQTConstants.kQTFileTypeMovie);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 choices[1] =
 new ExportChoice ("AVI file",
 StdQTConstants.kQTFileTypeAVI);
 choices[2] =
 new ExportChoice ("MPEG-4 file",
 QTUtils.toOSType("mpg4"));

 try {
 // query user for a movie to open
 QTSessionCheck.check();
 QTFile file =
 QTFile.standardGetFilePreview (QTFile.kStandardQTFileTypes);
 OpenMovieFile omFile = OpenMovieFile.asRead (file);
 Movie movie = Movie.fromFile (omFile);

 // offer a choice of movie exporters
 JComboBox exportCombo = new JComboBox (choices);
 JOptionPane.showMessageDialog (null,
 exportCombo,
 "Choose exporter",
 JOptionPane.PLAIN_MESSAGE);
 ExportChoice choice =
 (ExportChoice) exportCombo.getSelectedItem();

 // create an exporter
 MovieExporter exporter =
 new MovieExporter (choice.subtype);

 QTFile saveFile =
 new QTFile (new java.io.File("Untitled"));

 // do the export
 movie.setProgressProc();
 movie.convertToFile (null,
 saveFile,
 StdQTConstants.kQTFileTypeMovie,
 StdQTConstants.kMoviePlayer,
 IOConstants.smSystemScript,
 StdQTConstants.showUserSettingsDialog |
 StdQTConstants.movieToFileOnlyExport |
 StdQTConstants.movieFileSpecValid,
 exporter);

 // need to explicitly quit (since awt is running)
 System.exit(0);
 } catch (QTException qte) {
 qte.printStackTrace();
 }

 }

 public class ExportChoice {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String name;
 int subtype;
 public ExportChoice (String n, int st) {
 name = n;
 subtype = st;
 }
 public String toString() {
 return name;
 }
 }
}

When run, this program prompts the user to open a movie file. Once the movie loads, the program
offers a dialog with a choice of formats to export to, as shown in Figure 4-2.

Figure 4-2. Choice dialog with canned MovieExporter types

Next, it shows the user a save dialog detailing the proposed export (e.g., "Movie to MPEG-4") and an
Options button. The button brings up a dialog specific to the export format. For example, the AVI
export dialog is fairly simple, offering only a few settings to choose from. On the other hand, the
MPEG-4 export dialog, seen in Figure 4-3, is extraordinarily busy, packed with descriptions of the
many options to help end users understand their choices and potentially keep their exported file
compliant with MPEG-4 standards.

Figure 4-3. MPEG-4 export dialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After the user makes his choices and clicks OK, the long export process begins. Because movie
export is very computationally intensivepotentially every frame of video and every audio sample must
be re-encodeda progress dialog appears, so the user can see how much of the export has completed
and how much longer it will take.

4.2.2. What just happened?

This program uses an inner class called ExportType to wrap a subtype, int, and a String, largely
for the purpose of simplifying the JComboBox used in the format-choice dialog. These subtypes come
from constants defined in the StdQTConstants class.

Once a choice is made, the program instantiates a MovieExporter by passing the subtype to its
constructor. Next, it requests a progress dialog by calling setProgressProc() on the movie.

Finally, the export is performed by calling convertToFile() and passing in the exporter. This

method takes several parameters:

A track to indicate that only this track should be exported, or null for all tracks.

A QTFile to export to.

A file type, such as StdQTConstants.kQTFileTypeMovie.

A creator, such as StdQTConstants.kMoviePlayer.

A script tag, typically IOConstants.smSystemScript.

Behavior flags. This example uses all three of the valid values: showUserSettingsDialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

makes the export bring up the Save As dialog that includes the filename and the options button;
movieToFileOnlyExport limits the export choices to formats supported by the exporter
component; and movieFileSpecValid asserts that the QTFile is valid and should be used as

the default name in the dialog.

Note: Including showUserSettingsDialog allows you to pick up the settings and the save-as GUIs in one call, instead of having to show

separate dialogs for each. Too bad flags like this aren't described in Javadoc.

The MovieExporter to use for the export.

4.2.3. What about...

...using the MovieExporter itself to do the export? That's an alternative. The exporter's toFile()
exports the movie to a file, and its toHandle() exports to memory. This also has the advantage of
being able to export just part of a movie, as specified by the startTime and duration arguments.
Note that doing this requires a different program flow, because first you'd need to get a valid QTFile
(perhaps with an AWT file dialog) and then you'd need to call the exporter's doUserDialog() to
configure the export. Also the Movie class's convertToFile() method can be more convenient,
because, as seen here, it allows use of the default progress dialog. When using the MovieExporter

methods, there's no access to the default dialog. In that case, the only alternative is to provide a
custom progress dialog and handle progress callbacks with setProgressProc().

Also, a complaint: I tried exporting to MPEG-4 on Windows and didn't get any audio options. When I
click the Audio Track menu in the Exporter dialog, I get the useless panel as shown in Figure 4-4.

Figure 4-4. Audio non-options for MPEG-4 export on Windows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is not a technical issue but a legal one. Apple has licensed MPEG-4 audio encoding for its Mac-
based QuickTime users, but not for Windows users. The codecs exist, but apparently you have to
contact Dolby about license terms to enable them for Windows.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3. Exporting Movies to Any Installed Format

Exporting to a list of known formats is limitingif the end user has installed new movie exporters,
either from third parties or via an update to QuickTime itself, a program that uses a canned list of
exporters won't be able to pick them up. Fortunately, QuickTime provides a means of querying for
installed components of a given type. You can use this strategy to offer a list of all available
exporters.

4.3.1. How do I do that?

The AdvancedMovieExport eliminates the three canned entries in the choices array that were used
by SimpleMovieExport (shown in Example 4-2) and instead builds the array through a process of

discovery; this code would replace the short "build choices" block in the constructor for
SimpleMovieExport but needs to go inside the try-catch, because it makes calls that can throw
QTException:

Vector choices = new Vector();
ComponentIdentifier ci = null;
ComponentDescription cd =
 new ComponentDescription(StdQTConstants.movieExportType);
while ((ci = ComponentIdentifier.find(ci, cd)) != null) {
 // check to see that the movie can be exported
 // with this component (this throws some obnoxious
 // exceptions, maybe a bit expensive?)
 try {
 MovieExporter exporter = new MovieExporter (ci);
 if (exporter.validate (movie, null)) {
 ExportChoice choice =
 new ExportChoice (ci.getInfo().getName(),
 ci);
 choices.addElement(choice);
 }
 } catch (StdQTException expE) {
 System.out.println ("** can't validate " +
 ci.getInfo().getName() + " **");

Note: Run this example with ant run-ch04-advancedmovieexport.

 // expE.printStackTrace();
 } // ow!
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When run, the list of supported exporters is surprisingly large, as seen in Figure 4-5. In this case, a
"normal" movie, consisting of a video track and an audio track, is being exported, meaning that any
audio-only format (Wave, AIFF, etc.) or audio/video format (QuickTime, AVI, MPEG-4, etc.) will work.

Figure 4-5. Discovered Movie Exporters

Note: Hinted Movie, the format selected in Figure 4-5, is a QuickTime movie with "hints" to optimize streaming.

You also should take note of the discovered exporters that cannot export the movie. These are
logged to standard out:

run-ch04-advancedmovieexport:
 [java] ** can't validate BMP **
 [java] ** can't validate Standard MIDI **
 [java] ** can't validate Picture **
 [java] ** can't validate Text **
 [java] ** can't validate QuickTime TeXML **
 [java] ** can't validate QuickTime Media Link **

These fail because the source movie doesn't contain tracks that can be exported to these formats.
With a source movie with different kinds of tracks, some of these would succeed and others would
fail.

4.3.2. What just happened?

The process of discovering components by subtype is rather peculiar. It hinges on making repeated
calls to a "find" method, passing in the last matching component. Doing this requires a
ComponentDescription, used as a template to match against, and a ComponentIdentifier, which

refers to a specific component (though not a specific instance of that component). To find movie
exporters, initialize a ComponentDescription template with the constant movieExporterType.

The static ComponentIdentifier.find() method finds matching components, but instead of offering

an array or other collection of matches, it requires you to repeatedly pass in the
ComponentDescription template, along with the previous ComponentIdentifier found by the
method. For the first iteration, this will be null. The find() call returns a ComponentIdentifier,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

which you pass to the MovieExporter constructor to create a new exporter. When find() returns
null, there are no more matches.

Note: Yes, this is totally weird, at least from a Java perspective.

The matched ComponentIdentifier provides information about itself via the getInfo() method.
This returns another ComponentDescription object, different from the one used as a template. You
can use this to get type and subtype information (as FOUR_CHAR_CODE ints, of course), a name, an
information String, a manufacturer code, etc.

Finding a MovieExporter is no guarantee that it actually will work. You can call validate(), as this

example does, to check that the instantiated exporter can do an export from the given movie. In this
example, if validate throws an exception, it's logged to standard out and the exporter is not added to
the JComboBox.

4.3.3. What about...

...setting the export parameters programmatically, instead of using the export dialog every time?
This is possible, although it will require using the export dialog at least once in development. A
configured MovieExporter can return its configured state in the form of an AtomContainer object,
by way of the getExportSettingsFromAtomContainer() method. This object can be passed to an
exporter via the setExportSettingsFromAtomContainer() method.

Note: "Atoms" are a low-level data structure that do almost all of QuickTime's heavy lifting. Application-level code uses them only for

really advanced stuff (see Chapter 9).

Within a single running application, this is pretty straightforward. To persist between sessions, you
must save off the native structure by calling getBytes() on the AtomContainer and then persist it

to disk, database, etc. To recreate the settings in the future, read the bytes into a byte array, create
a QTHandle from the array, and then pass that to AtomContainer.fromQTHandle() to create the
AtomContainer.

QuickTime 6.3 introduced a new API for setting exporters programmatically, but as of this writing, it
has not been exposed via QTJ method calls.

Also, if I specify type and subtype, will I always get one match? No, in some cases, you'll get multiple
matching components, and you might need to use other criteria to pick which one to use. In a rather
infamous case pointed out by one of my tech reviewers:

Sometimes you get more than one exporter with the same subtype and need to use the
"manufacturer" code to distinguish them. This applies particularly to AIFF exportersthe first
exporter you find of that type only exports MIDI. To export an arbitrary QT audio file to AIFF
you need to explicitly iterate and pick the second one!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4. Importing and Exporting Graphics

QuickTime offers many components whose job is to import from and export to different graphics
formats. As you might expect, these components are wrapped by classes called GraphicsImporter
and GraphicsExporter.

The GraphicImportExport example application (shown in Example 4-3) uses both of these classes to

illustrate the dynamic lookup of importers and exporters.

Note: Compile and run this example with ant run-ch04-graphicimport-export..

Example 4-3. Graphics import and export

package com.oreilly.qtjnotebook.ch04;

import quicktime.*;
import quicktime.io.*;
import quicktime.std.*;
import quicktime.std.comp.*;
import quicktime.std.image.*;
import quicktime.app.view.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.Vector;
import java.io.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

public class GraphicImportExport extends Object {

 Button exportButton;
 Frame frame;
 GraphicsImporter importer;

 static final int[] imagetypes =
 { StdQTConstants.kQTFileTypeQuickTimeImage};
 /* other interesting values:
 StdQTConstants.kQTFileTypeGIF,
 StdQTConstants.kQTFileTypeJPEG,
 StdQTConstants4.kQTFileTypePNG,
 StdQTConstants4.kQTFileTypeTIFF
 StdQTConstants.kQTFileTypeMacPaint,
 StdQTConstants.kQTFileTypePhotoShop,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 StdQTConstants.kQTFileTypePICS,
 StdQTConstants.kQTFileTypePicture,
 */

 public static void main (String[] args) {
 new GraphicImportExport();
 }

 public GraphicImportExport() {
 try {
 QTSessionCheck.check();
 QTFile inFile = QTFile.standardGetFilePreview (imagetypes);
 importer = new GraphicsImporter (inFile);
 // put image onscreen
 QTComponent qtc = QTFactory.makeQTComponent (importer);
 java.awt.Component c = qtc.asComponent();
 frame = new Frame ("Imported image");
 frame.setLayout (new BorderLayout());
 frame.add (c, BorderLayout.CENTER);
 exportButton = new Button ("Export");
 exportButton.addActionListener (new ActionListener() {
 public void actionPerformed (ActionEvent ae) {
 try {
 doExport();
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }
 });
 frame.add (exportButton, BorderLayout.SOUTH);
 frame.pack();
 frame.setVisible(true);
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }

 public void doExport() throws QTException {
 // build list of GraphicExporters
 Vector choices = new Vector();
 ComponentDescription cd =
 new ComponentDescription (
 StdQTConstants.graphicsExporterComponentType);
 ComponentIdentifier ci = null;
 while ((ci = ComponentIdentifier.find(ci, cd)) != null) {
 choices.add (new ExportChoice (ci.getInfo().getName(),
 ci.getInfo().getSubType()));
 }

 // offer a choice of movie exporters
 JComboBox exportCombo = new JComboBox (choices);
 JOptionPane.showMessageDialog (frame,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 exportCombo,
 "Choose exporter",
 JOptionPane.PLAIN_MESSAGE);
 ExportChoice choice =
 (ExportChoice) exportCombo.getSelectedItem();
 System.out.println ("chose " + choice.name);

 // build a GE, wire up to the GraphicsImporter
 GraphicsExporter exporter =
 new GraphicsExporter (choice.subtype);
 exporter.setInputGraphicsImporter (importer);

 // ask for destination, settings
 FileDialog fd =
 new FileDialog (frame, "Save As",
 FileDialog.SAVE);
 fd.setVisible(true);
 String filename = fd.getFile();
 if (filename.indexOf('.') = = -1)
 filename = filename + "." +
 exporter.getDefaultFileNameExtension();
 File file = new File (fd.getDirectory(), filename);
 exporter.setOutputFile (new QTFile(file));
 exporter.requestSettings();

 // export
 exporter.doExport();

 // need to explicitly quit (since awt is running)
 System.exit(0);
 }

 public class ExportChoice {
 String name;
 int subtype;
 public ExportChoice (String n, int st) {
 name = n;
 subtype = st;
 }
 public String toString() {
 return name;
 }
 }

}

When run, the program shows a dialog to select a graphic to be imported. On Windows, the "file
type" in this dialog is QuickTime Image. Once an image is selected, it appears in a window with an
"export" button. When the user clicks the button, she is asked for an export type, as shown in Figure
4-6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note: GraphicsImporter and GraphicsExporter are in quicktime.std.image, not quicktime.std.qtcomponents like most other components.

Figure 4-6. Selecting a GraphicsExporter

After this, the program displays a configuration dialog specific to the type of exporter selectedat a
minimum, this dialog usually offers a choice of color depths (256 colors, 256 grays, millions of colors,
etc.). Next, a save dialog requests the location of the exported file. Once approved, the program
converts the image to the specified format and saves it to the supplied location.

4.4.1. What just happened?

Notice the QTFile.standardGetFilePreview(). This shows a file-open dialog and takes an array of
up to four ints, representing FOUR_CHAR_CODEs of various file format constants, which are used as a
filter of what file types to make selectable. You can use kQTFileTypeQuickTimeImage as a

convenient wildcard that matches any kind of image QuickTime can open, though it seems to work
only on Windows (on the Mac, any file can be selected).

Tip: If you want to specify formats, interesting constants in StdQTConstants include kQTFileTypeGIF,

kQTFileTypeJPEG, and kQTFileTypePhotoShop. The StdQTConstants4 class adds similarly named constants for

PNG and TIFF. Unfortunately, you can send only four.

Given a file, you can construct a GraphicsImporter object to load it into QuickTime. To put the
imported image on-screen, pass the importer to QTFactory.makeQTComponent() , which returns a
QTComponent that you can either cast to an AWT Component or, to be type-safe, convert with the
asComponent() method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Warning: java.awt and quicktime.std.comp both define a class called Component. If you're casually importing every

class from these packages, you're probably headed for a compile-time error. You'll have to make your imports more selective or use a

fully qualified class name for one of the Components, like this example does.

To export an image to another format, you can search for graphics exporter subtypes by creating a
ComponentDescription template to match components of the graphicsExporterComponentType. In
the example, the names of matching components are shown in a JComboBox. With a subtype
selected, create the GraphicsExporter by passing the subtype to its constructor.

Note: This method of looking up exporter components was shown in the previous lab.

A GraphicsExporter needs to be wired up to some kind of source image. With a GraphicsImporter,
you wire the two together with setInputGraphicsImporter(). The exporter also needs a
destination. If writing to a file (as opposed to, say, memory), you set this with setOutputFile()just

to be safe, it's wise to sanity-check the user-provided filename extension against the value returned
by the exporter's getdefaultFileNameExtension().

The user probably wants some say in the color depth, image quality, and other settings for the
export, a dialog for which is provided with a requestSettings().

After all that, you finally can do the export with...doExport().

4.4.2. What about...

...other sources for the export? The Javadoc for GraphicsExporter shows a bunch of setInputXXX(
) methods. True enough, and in the next chapter, we'll explore some of these, including Picts,
QDGraphics, and PixMaps.

And what about setting export parameters programmatically? QTJ exposes some methods that could
be used instead of the user dialog, such as setDepth() and setCompressionMethod(). One
interesting method, setTargetDataSize(), lets exporters with a "quality" option (like JPEG) find a

value that will result in a file of the given size in bytes.

Note: GraphicsExporters have an AtomContainer-based settings scheme that's just as painful as the MovieExporter equivalent from the

last lab.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.5. Discovering All Installed Components

I hope that by this point you're at least a little interested in what other kinds of components are
available in QuickTime. It's easy to discover them all, in much the same way we discovered the
various MovieExporter s and GraphicExporter s: by providing a ComponentDescription template
and using ComponentIdentifier.find() . With a "blank" template, all components can be

revealed.

4.5.1. How do I do that?

Example 4-4 discovers all installed components and logs their type, subtype, and description to
standard out.

Example 4-4. Discovering all installed components

package com.oreilly.qtjnotebook.ch04;

import quicktime.*;
import quicktime.std.*;
import quicktime.std.comp.*;
import quicktime.util.QTUtils;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

public class ComponentTour {

 public static void main (String[] args) {
 try {
 QTSessionCheck.check();
 /* use this wildcard to show all components in QT
 */
 ComponentDescription wildcard =
 new ComponentDescription();
 ComponentIdentifier ci = null;
 while ((ci = ComponentIdentifier.find(ci, wildcard)) != null) {
 ComponentDescription cd = ci.getInfo();
 System.out.println (cd.getName() +
 " (" +
 QTUtils.fromOSType (cd.getType()) +
 "/" +
 QTUtils.fromOSType (cd.getSubType()) +
 ") " +
 cd.getInformationString());
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }

}

The resulting output is hundreds of lines long, looking something like this:

run-ch04-componenttour:
 [java] Apple MP3 Decoder (adec/.mp3) An AudioCodec that decodes MPEG-1, MPEG-2,
MPEG-2.5 Layer III into linear PCM data
 [java] MPEG-4 AAC Decoder (adec/aac) An AudioCodec that decodes MPEG-4 AAC into
linear PCM data
 [java] Apple Lossless Decoder (adec/alac) An AudioCodec that decodes Apple Lossless
into linear PCM data
 [java] Apple IMA4 Decoder (adec/ima4) An AudioCodec that decodes IMA4 into linear
PCM data
 [java] MPEG-4 AAC Encoder (aenc/aac) An AudioCodec that encodes linear PCM data
into MPEG-4 AAC
 [java] Apple Lossless Encoder (aenc/alac) An AudioCodec that encodes linear PCM
data into Apple Lossless
 [java] Apple IMA4 Encoder (aenc/ima4) An AudioCodec that encodes linear PCM data
into IMA4
 [java] Applet (aplt/scpt) The component that runs script applications
 [java] Apple: AUConverter (aufc/conv) AudioConverter unit
 [java] Apple: AUVarispeed (aufc/vari) Apple's varispeed playback
[...]

4.5.2. What just happened?

The key is the line that gets a ComponentDescriptor via a no-arg constructor. This creates a
completely blank template for ComponentIdentifier.find() to run against. Of course, if you just

wanted to tour components of a specific type, you could pass in a type constant such as
StdQTConstants.movieImportType , which would limit the search to MovieImporter s, and thus

indicate what kinds of formats QuickTime can import.

Documenting and explaining every kind of component is beyond the scope of this bookin fact, it filled
up a whole volume of the old Inside Macintosh series. Still, a few of the important ones are listed in
Table 4-1 . Note that not all components have (or need) a Java wrapper class.

Table 4-1. Some important QuickTime for Java components

Type Java wrapper class Sample subtypes

"eat " MovieImporter "AVI ", "AIFF ", "MP3 ", "SWF "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type Java wrapper class Sample subtypes

"spit

"
MovieExporter "VfW ", "MooV ", "mpg4 "

"grip

"
GraphicsImporter "BMP ", "GIF ", "JPEG "

"grex

"
GraphicsExporter "BMP ", "JPEG "

"clok

"
Clock (provides timing and callback services) "tick ", "micr "

"mhlr

"
MediaHandler "vide ", "soun ", "text "

"imco

"
None; image compressor (used for still images and video) "jpeg ", "mp4v ", "H263 "

"imdc

"
None; image decompressor (used for still images and
video)

"jpeg ", "mp4v ", "h263 "

"rtpm

"
None; real-time packetizer (used for streaming)

"263+ ", "mpeg ", "mp4a ", "mp4v

"

Note: Yep, "eat" and "spit" for movie importers and exporters. Hardy har har .

It's important to remember that all types and subtypes are FOUR_CHAR_CODE sany type or subtype

seemingly shorter than that is padded with space characters.

"spit

"
MovieExporter "VfW ", "MooV ", "mpg4 "

"grip

"
GraphicsImporter "BMP ", "GIF ", "JPEG "

"grex

"
GraphicsExporter "BMP ", "JPEG "

"clok

"
Clock (provides timing and callback services) "tick ", "micr "

"mhlr

"
MediaHandler "vide ", "soun ", "text "

"imco

"
None; image compressor (used for still images and video) "jpeg ", "mp4v ", "H263 "

"imdc

"
None; image decompressor (used for still images and
video)

"jpeg ", "mp4v ", "h263 "

"rtpm

"
None; real-time packetizer (used for streaming)

"263+ ", "mpeg ", "mp4a ", "mp4v

"

Note: Yep, "eat" and "spit" for movie importers and exporters. Hardy har har .

It's important to remember that all types and subtypes are FOUR_CHAR_CODE sany type or subtype

seemingly shorter than that is padded with space characters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. Working with QuickDraw
And now, on to the oldest, cruftiest, yet can't-live-without-it-iest part of QTJ: QuickDraw. QuickDraw
is a graphics API that can be traced all the way back to that first Mac Steve Jobs pulled out of a bag
and showed the press more than 20 years ago. You knowback when Mac supported all of two colors:
black and white.

Don't worry; it's gotten a lot better since then.

To be fair, a native Mac OS X application being written today from scratch probably would use the
shiny new "Quartz 2D" API. And as a Java developer, the included Java 2D API is at least as capable
as QuickDraw, with extension packages like Java Advanced Imaging (JAI) only making things better.

The real advantage to understanding QuickDraw is that it's what's used to work with captured images
(see Chapter 6) and individual video samples (see Chapter 8). It is also a reasonably capable
graphics API in its own right, supporting import from and export to many formats (most of which
J2SE lacked until 1.4), affine transformations, compositing, and more.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1. Getting and Saving Picts

If you had a Mac before Mac OS X, you probably are very familiar with picts, because they were the
native graphics file format on the old Mac OS. Taking screenshots would create pict files, as would
saving your work in graphics applications. Developers used pict resources in their applications to
provide graphics, splash screens, etc.

Actually, a number of tightly coupled concepts relate to picts. The native structure for working with a
series of drawing commands is called a Picture actually. This struct, along with the functions that
use it, are wrapped by the QTJ class quicktime.qd.Pict. There's also a file format for storing picts,

which can contain either drawing commands or bit-mapped imagesfiles in this format usually have a
.pct or .pict extension. QTJ's Pict class has methods to read and write these files, and because it's
easy to create Picts from Movies, TRacks, GraphicsImporters, SequenceGrabbers (capture

devices), etc., it's a very useful class.

5.1.1. How do I do that?

The PictTour.java application, shown in Example 5-1, exercises the basics of getting, saving, and
loading Picts.

Note: Compile and run this example with ant run-ch05-picttour from the downloadable book code.

Example 5-1. Opening and saving Picts

package com.oreilly.qtjnotebook.ch05;

import quicktime.*;
import quicktime.app.view.*;
import quicktime.std.*;
import quicktime.std.image.*;
import quicktime.io.*;
import quicktime.qd.*;

import java.awt.*;
import java.io.*;
import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

public class PictTour extends Object {

 static final int[] imagetypes =
 { StdQTConstants.kQTFileTypeQuickTimeImage};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 static int frameX = -1;
 static int frameY = -1;

 public static void main (String[] args) {
 try {
 QTSessionCheck.check();

 // import a graphic
 QTSessionCheck.check();
 QTFile inFile = QTFile.standardGetFilePreview (imagetypes);
 GraphicsImporter importer =
 new GraphicsImporter (inFile);
 showFrameForImporter (importer,
 "Original Import");
 // get a pict object and then save it
 // then load again and show
 Pict pict = importer.getAsPicture();
 String absPictPath = (new File ("pict.pict")).getAbsolutePath();
 File pictFile = new File (absPictPath);
 if (pictFile.exists())
 pictFile.delete();
 try { Thread.sleep (1000); } catch (InterruptedException ie) { }
 pict.writeToFile (pictFile);
 QTFile pictQTFile = new QTFile (pictFile);
 GraphicsImporter pictImporter =
 new GraphicsImporter (pictQTFile);
 showFrameForImporter (pictImporter,
 "pict.pict");
 // write to a pict file from importer
 // then load and show it
 String absGIPictPath = (new File ("gipict.pict")).getAbsolutePath();
 QTFile giPictQTFile = new QTFile (absGIPictPath);
 if (giPictQTFile.exists())
 giPictQTFile.delete();
 try { Thread.sleep (1000); } catch (InterruptedException ie) { }
 importer.saveAsPicture (giPictQTFile,
 IOConstants.smSystemScript);
 GraphicsImporter giPictImporter =
 new GraphicsImporter (giPictQTFile);
 showFrameForImporter (giPictImporter,
 "gipict.pict");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static void showFrameForImporter (GraphicsImporter gi,
 String frameTitle)
 throws QTException {
 QTComponent qtc = QTFactory.makeQTComponent (gi);
 Component c = qtc.asComponent();
 Frame f = new Frame (frameTitle);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 f.add (c);
 f.pack();
 if (frameX = = -1) {
 frameX = f.getLocation().x;
 frameY = f.getLocation().y;
 } else {
 Point location = new Point (frameX += 20,
 frameY += 20);
 f.setLocation (location);
 }

 f.setVisible (true);
 }
}

Warning: The two Thread.sleep() calls are here only as a workaround to a problem I saw while developing this

examplereading a file I'd just written proved crashy (maybe the file wasn't fully closed?). Because it's unlikely you'll write a file and

immediately reread it, this isn't something you'll want or need to do in your code.

When run, this example prompts the user for a graphics file, which then is displayed in three
windows, as shown in Figure 5-1. These represent three different means of loading the pict.

Figure 5-1. Writing and reading PICT files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1.2. What just happened?

You can get picts in a number of ways in QTJ. The first example here is to use a GraphicsImporter
to load an image file in some arbitrary format, and then call getAsPicture() to get a Pict object.
This is the easiest way to get a Pict from an arbitrary fileif you knew for sure that a given file was in
the pict file format, you could use Pict.fromFile() instead, but that does not check to ensure the
file really is a pict. So, the safe thing to do is to use a GraphicsImporter, let it figure out the format
of the source file, and then convert to pict if necessary with getAsPicture().

Writing a pict file to disk is easy: just call writeToFile() .

Tip: Curiously, this takes a java.io.File, not a QTFile, like so many other I/O routines in QTJ.

You also can write a Pict to disk by using the GraphicsImporter's saveAsPicture() method.

Note: Yes, it is kind of weird to use the "importer" for what is effectively an "export."

The example uses both of these methods to write pict files to diskPict.writeToFile() creates
pict.pict and GraphicsImporter.saveAsPicture() creates gipict.pict. Each file is then reloaded
with GraphicsImporters. Conveniently, a GraphicsImporter can be used with a QTFactory to
create a QTComponent (see Section 4.4 in Chapter 4), which is how the imported picts are shown on-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

screen.

5.1.3. What about . . .

. . . other ways to get pictures? Look at the Pict class and you'll see several static fromXXX()
methods that provide Picts from GraphicsImporters, GraphicsExporters, Movies, tracks, and

other QTJ classes.

Also, why does this example go through the hassle of creating absolute path strings and passing
those to the QTFile constructor? It's a workaround to an apparent bug in QTJ for Windows: when
you use a relative path (like Pict.writeToFile (new File("MyPict.pict"))), QTJ sometimes

writes the file not to the current directory, but rather to the last directory it accessed. In this case,
that means the directory it read the source image from. Specifying absolute paths works around this
problem.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2. Getting a Pict from a Movie

If you're working with movies, you'll probably want to be able to get a pict from some arbitrary time
in the movie. You could use this for identifying movies via thumbnail icons, identifying segments on a
timeline GUI, etc. This action is so common, and it's really easy.

5.2.1. How do I do that?

To grab a movie at a certain time, you just need a one-line call to Movie.getPict() , as exercised
by the dumpToPict() method shown here:

Note: Notice I don't say "grab the current movie frame" because the movie could have other on-screen elements like text, sprites, other

movies, etc., not just one frame of one video track.

public void dumpToPict () {
 try {
 float oldRate = movie.getRate();
 movie.stop();
 Pict pict = movie.getPict(movie.getTime());
 String absPictPath =
 (new File ("movie.pict")).getAbsolutePath();
 pict.writeToFile (new File (absPictPath));
 movie.setRate (oldRate);
 } catch (Exception e) {
 e.printStackTrace();
 }
}

This method stops the movie if it's playing and stores the previous play rate. Then it creates a Pict

on the movie's current time and saves it to a file called movie.pict. Then it restarts the movie.

Note: The downloadable book code exercises this in a demo called PictFromMovie. Run it with ant run-ch05-pictfrommovie.

5.2.2. What about . . .

. . . not stopping the movie? I haven't had good results with this call unless the movie is stopped. At
best, it makes the playback choppy for a few seconds; at worst, it crashes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3. Converting a Movie Image to a Java Image

It's possible you'll want to grab the current display of the movie and get it into a java.awt.Image. A

convenient method call has been provided for just this task; unfortunately, it doesn't work very well,
so a Pict-based workaround is needed.

5.3.1. How do I do that?

QTJ provides QTImageProducer , an implementation of the AWT ImageProducer interface.
ImageProducer dates back to Java 1.0, and was designed to handle latency and unreliability when

loading images over the networkissues that are irrelevant in typical desktop cases.

The most straightforward way to get an image from a movie is to get a QTImageProducer from a
MoviePlayer, the object typically used to create a lightweight, Swing-ready QTJComponent. The
ConvertToImageBad application in Example 5-2 demonstrates this approach.

Note: Makes sense, doesn't it? The MoviePlayer needs to generate AWT images for the lightweight QTJComponent, so that's what you

get an ImageProducer from.

Example 5-2. Using MoviePlayer's QTImageProducer

package com.oreilly.qtjnotebook.ch05;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import quicktime.*;
import quicktime.app.view.*;
import quicktime.io.*;
import quicktime.qd.*;
import quicktime.std.*;
import quicktime.std.clocks.*;
import quicktime.std.movies.*;

public class ConvertToJavaImageBad extends Frame
 implements ActionListener {

 Movie movie;
 MoviePlayer player;
 MovieController controller;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 QTComponent qtc;
 static int nextFrameX, nextFrameY;
 QTImageProducer ip;

 public static void main (String[] args) {
 ConvertToJavaImageBad ctji = new ConvertToJavaImageBad();
 ctji.pack();
 ctji.setVisible(true);
 Rectangle ctjiBounds = ctji.getBounds();
 nextFrameX = ctjiBounds.x + ctjiBounds.width;
 nextFrameY = ctjiBounds.y + ctjiBounds.height;
 }

 public ConvertToJavaImageBad() {
 super ("QuickTime Movie");
 try {
 // get movie
 QTSessionCheck.check();
 QTFile file =
 QTFile.standardGetFilePreview (QTFile.kStandardQTFileTypes);
 OpenMovieFile omFile = OpenMovieFile.asRead(file);
 movie = Movie.fromFile(omFile);
 player = new MoviePlayer (movie);
 controller = new MovieController (movie);
 // build gui
 qtc = QTFactory.makeQTComponent (controller);
 Component c = qtc.asComponent();
 setLayout (new BorderLayout());
 add (c, BorderLayout.CENTER);
 Button imageButton = new Button ("Make Java Image");
 add (imageButton, BorderLayout.SOUTH);
 imageButton.addActionListener (this);
 movie.start();
 // set up close-to-quit
 addWindowListener (new WindowAdapter() {
 public void windowClosing (WindowEvent we) {
 System.exit(0);
 }
 });
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }

 public void actionPerformed (ActionEvent e) {
 grabMovieImage();
 }

 public void grabMovieImage() {
 try {
 // lazy instantiation of ImageProducer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (ip = = null) {
 QDRect bounds = movie.getBounds();
 Dimension dimBounds =
 new Dimension (bounds.getWidth(), bounds.getHeight());
 ip = new QTImageProducer (player, dimBounds);
 }

 // stop movie to take picture
 boolean wasPlaying = false;
 if (movie.getRate() > 0) {
 movie.stop();
 wasPlaying = true;
 }

 // convert from MoviePlayer to java.awt.Image
 Image image = Toolkit.getDefaultToolkit().createImage (ip);
 // make a swing icon out of it and show it in a frame
 ImageIcon icon = new ImageIcon (image);
 JLabel label = new JLabel (icon);
 JFrame frame = new JFrame ("Java image");
 frame.getContentPane().add(label);
 frame.pack();
 frame.setLocation (nextFrameX += 10,
 nextFrameY += 10);
 frame.setVisible(true);
 // restart movie
 if (wasPlaying)
 movie.start();
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }
}

This application is shown in Figure 5-2. When you click the Make Java Image button, the movie is
stopped, an AWT Image of the current display is made, and that Image is opened in another window.

Figure 5-2. Converting movie to Java AWT Image

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Warning: This is a negative example. Keep reading for why you don't want to use this code, and for a superior alternative.

5.3.2. What just happened?

The grabMovieImage() method creates a QTImageProducer from the MoviePlayer and hands it to
the AWT Toolkit method createImage(). This call returns an AWT Image that (because it's a nice,
clean, one-line call) is stuffed into a Swing ImageIcon and put on-screen.

This is more of a "what the heck" than a "what just happened." If your results are anything like mine,
you're probably wondering why the movie stopped the first time you snapped a picture, even though
the sound continued. Or why, for that matter, subsequent pictures seem to be later in the movie,
meaning the decompression and decoding of the video is still working, but that it's just not getting to
the screen.

Tip: Or notmaybe they'll have fixed it by the time you read this. At any rate, as of this writing, the QTImageProducer provided by a

MoviePlayer is not to be trusted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4. A Better Movie-to-Java Image Converter

The code shown in Section 5.3 is error-prone and nasty. On the other hand, a QTImageProducer is
available from the GraphicsImporterDrawer. It does not have to work with a moving target like the
MoviePlayer does. If only you could use that one instead

5.4.1. How do I do that?

The example program ConvertToJavaImageBetter has a different implementation of the
grabMovieImage() method, as shown in Example 5-3.

Note: Run this example with ant run-ch05-convert-tojava-imagebetter.

Example 5-3. In-memory pict import to use GraphicsImporterDrawer's
QTImageProducer

 public void grabMovieImage() {
 try {
 // stop movie to take picture
 boolean wasPlaying = false;
 if (movie.getRate() > 0) {
 movie.stop();
 wasPlaying = true;
 }

 // take a pict
 Pict pict = movie.getPict (movie.getTime());

 // add 512-byte header that pict would have as file
 byte[] newPictBytes =
 new byte [pict.getSize() + 512];
 pict.copyToArray (0,
 newPictBytes,
 512,
 newPictBytes.length - 512);
 pict = new Pict (newPictBytes);

 // export it
 DataRef ref = new DataRef (pict,
 StdQTConstants.kDataRefQTFileTypeTag,
 "PICT");
 gi.setDataReference (ref);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 QDRect rect = gi.getSourceRect ();
 Dimension dim = new Dimension (rect.getWidth(),
 rect.getHeight());
 QTImageProducer ip = new QTImageProducer (gid, dim);

 // convert from MoviePlayer to java.awt.Image
 Image image = Toolkit.getDefaultToolkit().createImage (ip);
 // make a swing icon out of it and show it in a frame
 ImageIcon icon = new ImageIcon (image);
 JLabel label = new JLabel (icon);
 JFrame frame = new JFrame ("Java image");
 frame.getContentPane().add(label);
 frame.pack();
 frame.setLocation (nextFrameX += 10,
 nextFrameY += 10);
 frame.setVisible(true);

 // restart movie
 if (wasPlaying)
 movie.start();
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }

Try out this example and you should be able to create multiple AWT Images without harming

playback of the movie, as exhibited in Figure 5-3.

Figure 5-3. Converting movie to Java AWT image (a better way)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4.2. What just happened?

This isn't a hack. It's close, though.

Once the movie is paused, the key is to get the movie's display into a GraphicsImporter. Once
that's done, it's easy to get a QTImageProducer from a GraphicsImporterDrawer and an image

from the AWT Toolkit.

Note: Note to self: pitch QuickTime for Java Hacks to O'Reilly!

The problem is getting the image into a GraphicsImporter. If you look at the Javadoc, you might
see one way to connect the dots: get a Pict from the Movie, save that to disk, then turn around and

import. It would look something like this:

Pict pict = movie.getPict (movie.getTime());
QTFile tempFile = new QTFile (new java.io.File ("temppict.pict"));
pict.writeToFile (tempFile);
GraphicsImporter importer = new GraphicsImporter (tempFile);

With the pict imported into a GraphicsImporter, you would get a QTImageProducer from the
GraphicsImporterDrawer and generate AWT Images from the image producer, without messing up

the movie playback.

The drawback of this approach is that you must read and write data to the hard drive, which is
obviously much slower than an operation that takes place purely in memory.

In fact, an in-memory equivalent is possible. Look back at the GraphicsImporter Javadoc. Several
setData() methods allow you to use sources other than just flat files for input to a
GraphicsImporter. Two of them allow you to pass in more or less opaque pointers:
setDataReference() and setDataHandle(). With these calls, the importer will read from memory

the same way it would read from disk.

Note: And they say Java doesn't have pointers!

The trick in this case is to make the GraphicsImporter think it's reading a .pict file from disk, but

actually it's reading from memory. One gotcha in this case is that pict files have a 512-byte header
before their datathe header doesn't have to contain anything meaningful, it just has to be present.
So, allocate a byte array 512 bytes longer than the size of the Pict data (getSize() and getBytes(
), inherited from QTHandleRef, respectively, return the size and contents of the native structure
pointed to by the Pict object, not the Java object itself), and copy those bytes over with an offset of

512.

Next, you need a GraphicsImporter for the Pict format, and a GraphicsImporterDrawer to
provide the QTImageProducer. The example code creates these in its constructor:

// set up graphicsimporter
gi = new GraphicsImporter (StdQTConstants.kQTFileTypePicture);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

gid = new GraphicsImporterDrawer (gi);

Build a DataRef to point to the byte array and pass it to the GraphicsImporter with
setDataReference(). You've now replaced the file write and file read with equivalent in-memory
operations. Now it's a simple matter of getting a GraphicsImporterDrawer and, from that, a
QTImageProducer to create Java images.

Tip: This technique is adapted from "Technical Q&A QTMTB56: Importing Image Data from Memory," at

http://developer.apple.com/qa/qtmtb/qtmtb56.html. Check it out for a comparison of QTJ versus straight-C QuickTime coding styles.

http://developer.apple.com/qa/qtmtb/qtmtb56.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5. Drawing with Graphics Primitives

In AWT, a Graphics object represents a drawing surfaceeither on-screen or off-screenand supplies
various methods for drawing on it. QuickTime has a GWorld object that's so similar, the QT
developers renamed it QDGraphics just to make Java developers feel at home. As with the AWT

class, painting is driven by a callback mentality.

5.5.1. How do I do that?

Example 5-4 shows the GWorldToPict example, which creates a QDGraphics object and performs

some simple drawing operations.

Example 5-4. Drawing on a QDGraphics object

package com.oreilly.qtjnotebook.ch05;

import quicktime.*;
import quicktime.std.*;
import quicktime.std.image.*;
import quicktime.qd.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

public class GWorldToPict extends Object implements QDDrawer {

 public static void main (String[] args) {
 new GWorldToPict();
 }

 public GWorldToPict() {
 try {
 QTSessionCheck.check();
 QDRect bounds = new QDRect (0, 0, 200, 250);
 ImageDescription imgDesc =
 new ImageDescription(QDConstants.k32RGBAPixelFormat);
 imgDesc.setHeight (bounds.getHeight());
 imgDesc.setWidth (bounds.getWidth());
 QDGraphics gw = new QDGraphics (imgDesc, 0);
 System.out.println ("GWorld created: " + gw);

 OpenCPicParams params = new OpenCPicParams(bounds);

 Pict pict = Pict.open (gw, params);
 gw.beginDraw (this);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 pict.close();

 try {
 pict.writeToFile (new java.io.File ("gworld.pict"));
 } catch (java.io.IOException ioe) {
 ioe.printStackTrace();
 }
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 System.exit(0);
 }

 public void draw (QDGraphics gw) throws QTException {
 System.out.println ("draw() called with GWorld " + gw);
 QDRect bounds = gw.getBounds();
 System.out.println ("bounds: " + bounds);
 // clear drawing surface, set up colors
 gw.setBackColor (QDColor.lightGray);
 gw.eraseRect (bounds);
 // draw some shapes
 gw.penSize (2, 2);
 gw.moveTo (20,20);
 gw.setForeColor (QDColor.green);
 gw.line (30, 100);
 gw.moveTo (20,20);
 gw.setForeColor (QDColor.blue);
 gw.lineTo (30, 100);

 // draw some text
 gw.setForeColor (QDColor.red);
 gw.textSize (24);
 gw.moveTo (10, 150);
 gw.drawText ("QDGraphics", 0, 10);

 // draw some shapes
 gw.setForeColor (QDColor.magenta);
 QDRect rect = new QDRect (0, 170, 40, 30);
 gw.paintRoundRect (rect, 0, 0);
 QDRect roundRect = new QDRect (50, 170, 40, 30);
 gw.paintRoundRect (roundRect, 10, 10);
 QDRect ovalRect = new QDRect (100, 170, 40, 30);
 gw.paintOval (ovalRect);
 QDRect arcRect = new QDRect (150, 170, 40, 30);
 gw.paintArc (arcRect, 15, 215);
 }

}

This is a headless application. When run, it does its imaging off-screen and writes the file to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

gworld.pict. Open this file in a pict-aware editor or viewer to see the output, as shown in Figure 5-4.

Figure 5-4. Graphics primitives drawn with QDGraphics

5.5.2. What just happened?

The program sets up an ImageDescription, specifying a color model and size information, and
creates a QDGraphics drawing surface according to its specs. Next, a new Pict is created from the
QDGraphics and an object called OpenCPicParams, which provides size and resolution information.

For on-screen work, the default 72dpi is fine.

Next, it issues a Pict.beginDraw() command, passing in a QDDrawer object. QDDrawer is an
interface for setting up callbacks to a draw() method that specifies the QDGraphics to be drawn on.

This redraw-oriented API is kind of overkill for this headless, off-screen example, but it does get the
job done. The Pict records the drawing commands made in the draw() call and saves the result to

disk as gworld.pict.

So, what can you do with QDGraphics primitives? Some basics of geometry are shown in this
example. QDGraphics work with a system of foreground and background colors, a pen of some

number of horizontal and vertical pixels, and a concept of a current position. This example begins
with two variants of line drawing: the first drawing a line specified by an offset in horizontal and
vertical pixels, and the second drawing a line to a specific point. Next, it draws some text in the
default fontnote that as with AWT, the text will go above the current point. Finally, the example
iterates through some of the simpler shapes available as graphics primitives: ovals, optionally
rounded rectangles, and arcs.

5.5.3. What about . . .

. . . drawing an image into the QDGraphics, like with AWT's Graphics.drawImage() ? Ah, you're

getting ahead of me. That will be covered later in the chapter.

Also, why are all the variables and comments here GWorld and gw instead of QDGraphics and qdg?
Like I said at the start of this lab, QDGraphics is something of an analogy to an AWT Graphics.
Unfortunately, it's a flawed analogy. It wraps a native drawing surface called a GWorld , and all the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

calls throughout QTJ that take or return it use the "GWorld" verbiage, such as the setGWorld() and
getGWorld() calls that you'll see throughout the Javadoc. Once you start getting into QTJ, the
desire to understand it from QuickTime's point of view, as a GWorld, outweighs the benefits of
making an appeal to the AWT Graphics analogy. So, to me, it's a GWorld.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.6. Getting a Screen Capture

One frequently useful source of image data is, unsurprisingly, the screenor screens, if you're so
fortunate. Each screen is represented by an object that can give you its current contents, though it
takes a little work to do anything with it.

5.6.1. How do I do that?

ScreenToPNG, shown in Example 5-5, is a headless application that starts up, grabs the screen, and

writes out the image to a PNG file called screen.png.

Note: I use PNG for screenshots because it's lossless, widely supported, compressed, and patent-unencumbered.

Example 5-5. Grabbing screen pixels

package com.oreilly.qtjnotebook.ch05;

import quicktime.*;
import quicktime.std.*;
import quicktime.std.image.*;
import quicktime.qd.*;
import quicktime.io.*;
import quicktime.util.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

public class ScreenToPNG extends Object {

 public static void main (String[] args) {
 new ScreenToPNG();
 }

 public ScreenToPNG() {
 try {
 QTSessionCheck.check();

 GDevice gd = GDevice.getMain();
 System.out.println ("Got GDevice: " + gd);
 PixMap pm = gd.getPixMap();
 System.out.println ("Got PixMap: " + pm);
 ImageDescription id = new ImageDescription (pm);
 System.out.println ("Got ImageDescription: " + id);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 QDRect bounds = pm.getBounds();
 RawEncodedImage rei = pm.getPixelData();

 QDGraphics decompGW = new QDGraphics (id, 0);
 QTImage.decompress (rei,
 id,
 decompGW,
 bounds,
 0);

 GraphicsExporter exporter =
 new GraphicsExporter (StdQTConstants4.kQTFileTypePNG);
 exporter.setInputPixmap (decompGW);
 QTFile outFile = new QTFile (new java.io.File ("screen.png"));
 exporter.setOutputFile (outFile);
 System.out.println ("Exported " +
 exporter.doExport() +
 " bytes");

 } catch (QTException qte) {
 qte.printStackTrace();
 }
 System.exit(0);
 }
}

When finished, open the screen.png file with your favorite image editor or browser. A shot of my
iBook's screen while writing the demo is shown in Figure 5-5.

Figure 5-5. Screen capture

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice at the bottom left that I have the DVD Player application running. Apple's tools for doing
screen grabsthe Grab application and the Cmd-Shift-3 and Cmd-Shift-4 key combinationswon't work
if you have the DVD Player running. However, this proves that those pixels are available to
QuickDraw. That said, if you grab the screen while a DVD is playing, you might get tearing (if the
capture grabs between frames) or even a blank panel (if the capture catches the repaint at a bad
time). If you're going to use this to grab images from DVDs, hit Pause first.

Note: Also, don't do anything with a DVD that will get you or me sued.

5.6.2. What just happened?

The program asks for the main screen by means of the static GDevice.getMain() method. From
this, you can get a PixMap, which is an object that represents metadata about a stored image, such

as its color table, pixel format, packing scheme, etc. This metadata also can be stored as an
ImageDescription, which is a structure that many graphics methods take as a parameter. The
PixMap also has a pointer to the byte array that holds the image data, which you can retrieve as the
wrapper object RawEncodedImage.

Note: Java 2D analogy: a PixMap is like a Raster, an ImageDescription is like a Sample-Model, and an EncodedImage is like a

DataBuffer. Not exactly the same, but the same ideas throughout.

So now you have an image of what's on the screenwhat can you do with it? The goal is to get that
image into a format suitable for a GraphicsExporter. One means of doing this is to render into a
QDGraphics and send that to the exporter. To do this, look to the QTImage class, which has methods
to compress (from a QDGraphics drawing surface to an EncodedImage) and decompress (from a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

possibly compressed EncodedImage to a QDGraphics). In this case, use decompress() to make a
QDGraphics, then pass that to the exporter's setInputPixMap() method (yes, despite the name, it
takes a QDGraphics, not a PixMap) and do the export.

Tip: It's odd that EncodedImage is an interface, yet its relevant methods, like decompress(), are static in QTImage (which is

in another package!). Maybe EncodedImage should have been an abstract class?

5.6.3. What about . . .

. . . getting other screens? If you do have multiple monitors, GDevice has a scheme for iterating
through the screens. Call the static GDevice.getList() to getwait for itnot a list of GDevices, but
just the first one. You then call its instance method getNext() to return another GDevice, and so
on, until getNext() returns null.

And why is the PNG file-type constant defined in StdQTConstants4? PNG came late to the QuickTime
party and wasn't supported until QuickTime 4. The later constants classes (StdQTContants4,
StdQTContants5, and StdQTContants6) define constants that were added in later versions of
QuickTime. kQTFileTypeTIFF is also in StdQTConstants4, but most other values you'd want to use
are in the original StdQTConstants.

Also, it's getting difficult to remember the various means of converting between EncodedImages,
Picts, QDGraphics, etc. To keep track of all this for myself, I created the diagram in Figure 5-6 while

writing this chapter and have found myself consulting it frequently since then.

Figure 5-6. Converting between QuickDraw objects

Note: Why, oh why, are these methods named like this?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.7. Matrix-Based Drawing

Primitives and copying blocks of pixels are nice, but they're kind of limiting. Oftentimes, you must
take pixels and scale them, rotate them, and move them around. Of course, if you've worked with
Java 2D, you know this as the concept of affine transformations, which maps one set of pixels to
another set of pixels, keeping straight lines straight and parallel lines parallel.

If you've really worked with Java 2D's affine transformations, you probably know that they're
represented as a linear algebra matrix, with coordinates mapped from source to destination by
multiplying and/or adding pixel values against coefficients of the matrix. By changing the coefficients
in the matrix to interesting values (or trigonometric functions), you can define different kinds of
transformations.

QuickTime does exactly the same thing, with the minor exception that rather than hiding the matrix
in a wrapper (like J2D's AffineTransformation class), it puts the matrix front-and-center

throughout the API. One reason for this is that it's also a major part of the file formattracks in a
movie all have a matrix in their metadata to determine how they're rendered at runtime.

QuickTime matrix manipulation can basically do three things for you:

Translation

Move a block of pixels from one location to another

Rotation

Rotate pixels around a given point

Scaling

Make block bigger or smaller, or change its shape

Tip: This is a lab, not a lecture, so you don't get the all-singing, all-dancing, all-algebra introduction to matrix theory here. If you must

have this, Apple provides a pretty straightforward intro in "The Transformation Matrix," part of the "Introductions to QuickTime"

documentation anthology on its web site.

5.7.1. How do I do that?

The example GraphicImportMatrix shows the effect of setting up a Matrix and then using it for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

drawing operations. A full listing is in Example 5-6.

Note: Run this example with ant run-ch05-graphic-importmatrix.

Example 5-6. Drawing with matrix-based transformations

package com.oreilly.qtjnotebook.ch05;

import quicktime.*;
import quicktime.std.*;
import quicktime.std.image.*;
import quicktime.qd.*;
import quicktime.io.*;
import quicktime.util.*;
import quicktime.app.view.*;
import java.io.*;
import java.awt.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

public class GraphicImportMatrix extends Object {

 public static void main (String[] args) {
 try {
 QTSessionCheck.check();

 File graphicsDir = new File ("graphics");
 QTFile pngFile1 = new QTFile (new File (graphicsDir, "1.png"));
 QTFile pngFile2 = new QTFile (new File (graphicsDir, "2.png"));
 GraphicsImporter gi1 = new GraphicsImporter (pngFile1);
 GraphicsImporter gi2 = new GraphicsImporter (pngFile2);

 // define some matrix transforms on importer 1
 QDRect bounds = gi1.getBoundsRect();
 // combine translation (movement) and scaling into
 // one call to rect
 QDRect newBounds =
 new QDRect (bounds.getWidth()/4,
 bounds.getHeight()/4,
 bounds.getWidth()/2,
 bounds.getHeight()/2);
 Matrix matrix = new Matrix();
 matrix.rect(bounds, newBounds);
 // rotate about its center
 matrix.rotate (30,
 (bounds.getWidth() - bounds.getX())/2,
 (bounds.getHeight() - bounds.getY())/2);
 gi1.setMatrix (matrix);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // draw somewhere
 QDGraphics scratchWorld = new QDGraphics (gi2.getBoundsRect());
 System.out.println ("Scratch world: " + scratchWorld);
 // draw background
 gi2.setGWorld (scratchWorld, null);
 gi2.draw();
 // draw foreground
 gi1.setGWorld (scratchWorld, null);
 gi1.draw();

 int bufSize =
 QTImage.getMaxCompressionSize (scratchWorld,
 scratchWorld.getBounds(),
 0,
 StdQTConstants.codecNormalQuality,
 StdQTConstants4.kPNGCodecType,
 CodecComponent.anyCodec);
 byte[] compBytes = new byte[bufSize];
 RawEncodedImage compImg = new RawEncodedImage (compBytes);
 ImageDescription id =
 QTImage.compress(scratchWorld,
 scratchWorld.getBounds(),
 StdQTConstants.codecNormalQuality,
 StdQTConstants4.kPNGCodecType,
 compImg);
 System.out.println ("rei compressed from gw is " +
 compImg.getSize());

 System.out.println ("exporting");
 GraphicsExporter exporter =
 new GraphicsExporter (StdQTConstants4.kQTFileTypePNG);
 exporter.setInputPtr (compImg, id);
 QTFile outFile = new QTFile (new File ("matrix.png"));
 exporter.setOutputFile (outFile);
 exporter.doExport();
 System.out.println ("did export");

 } catch (QTException qte) {
 qte.printStackTrace();
 }
 System.exit(0);
 }
}

Note: Run this example with ant run-ch05-screentopng.

This headless app begins by importing two PNG files, the number 1 on a green background and the
number 2 on cyan. Then it creates a GWorld (oops, I mean a QDGraphicssorry!) big enough to hold
the 2 image, which will serve as the background. Both GraphicsImporters call setGWorld() with the
scratchWorld, which allows them to draw() into it. A Matrix defines a scale, translate, and rotate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

transformation for the 1, which is drawn atop the 2. The result is compressed as a PNG and saved as
matrix.png, which is shown in Figure 5-7.

Figure 5-7. Drawing with a Matrix

5.7.2. What just happened?

Using setMatrix() with a GraphicsImporter allows you to tell the importer to use the
transformation specified by the Matrix when you call the importer's draw() method. Of the three

typical transformations, two can be combined into one callscaling and translating can be expressed
with a single call, Matrix.rect() , which defines a mapping from one source rectangle to a target
rectangle. In the example, rect() maps from the full size of the image to a quarter-size image,

centered horizontally and vertically.

Tip: The same thing can be done with separate calls to Matrix.translate() and Matrix.scale(), if you prefer.

The example also calls Matrix.rotate() to rotate the scaled and moved box by 30 degrees

clockwise.

Tip: You also can define matrix transformations by calling the various setXXX() methods that set individual coordinates in the

Matrix, if you've read Apple's Matrix docs and understand each coefficient. But why bother when you've got the convenience calls?

Having set this Matrix on 1's GraphicsImporter, the example draws 2 into scratchWorld as a

background, and then draws 1 on top of it, scaled, translated, and rotated.

But what to do with the pixels that have been drawn into the QDGraphics? It's not like the Section
5.5 lab, in which a QDGraphics was wrapped by a Pict that could be saved off to disk. Instead, use
QTImage to create an EncodedImage from the drawing surface. In the Section 5.6 lab,
QTImage.decompress() converted an image to a QDGraphics. In this case, QTImage.compress()

can return the favor by compressing the possibly huge pixel map into a compressed format.

Compressing is harder than decompressing. You need to know up front how big of a byte array will
be needed to hold the compressed bytes, so first you call getMaxCompressionSize(). This takes six

parameters:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A QDGraphics to compress from.

A QDRect defining the region to be compressed.

Color depth, as an int. Set this to 0 to let QuickTime decide.

Codec quality. These are in StdQTConstants. From the worst to best, they are:
codecMinQuality, codecLowQuality, codecNormalQuality, codecHighQuality,
codecMaxQuality, codecLosslessQuality. Note that not all codecs support all these values.

Codec type. These constants are identified as XXXCodecType constants in the StdQTConstants

classes.

Codec identifier. If you have a CodecComponent object you want to use for the compression,
pass it here. Typically, you pass null to let QuickTime decide.

Most of these parameters are used in the subsequent compress() call. It goes without saying that
you need to use the same values for each call, or else getMaxCompressionSize() will lead you to

create a byte array that is the wrong size.

Along with many of the preceding parameters, the compress() call takes a RawEncodedImage created
from a suitably large byte array. compress() puts the compressed and encoded image data into the
RawEncodedImage and returns an ImageDescription. Taken together, these are enough to provide
an input to a GraphicsExporter, in the form of a call to setInputPtr() .

Note: Passing pointers again! This is one of those cases where QTJ is very un-Java-like.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.8. Compositing Graphics

Matrix transformations are nice, but you can do more with image drawing. QuickDraw supports a
number of graphics modes so that instead of just copying pixels from a source to a destination, you
can combine them to create interesting visual effects. The graphics mode defines the combination:
blending, translucency, etc.

5.8.1. How do I do that?

Specifying a graphics mode for drawing is trivial. Create a GraphicsMode object and call
setGraphicsMode() on the GraphicsImporter. In the included example,

GraphicImportCompositing.java, the mode is set with the following code:

// draw foreground
GraphicsMode alphaMode =
 new GraphicsMode (QDConstants.blend,
 QDColor.green);
gi1.setGraphicsMode (alphaMode);

Note: Run this with ant-ch05-graphic-importcompositing.

This is another headless app, producing the composite.png file as shown in Figure 5-8. Notice that
where the images overlap, the 2 can now show through the 1.

Figure 5-8. Drawing with blend graphics mode

5.8.2. What just happened?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The "blend" GraphicsMode instructs QuickDraw to average out colors where they overlap. In this

case, 1's black pixels are lightened up by averaging when averaged with cyan, and the green is
slightly tinted where it overlaps with cyan or black.

The QDColor.green is irrelevant in this case, but change the first argument to
QDConstants.transparent and suddenly the result is very different, as shown in Figure 5-9.

Figure 5-9. Drawing with transparent graphics mode

A GraphicsMode takes a constant to specify behavior, and a color that is used by some of the
available modes. In the case of transparent, any pixels of the specified color (green in this case)

become invisible, allowing the background picture to show through.

Warning: Don't jump to the conclusion that this is similar to transparency in a GIF or a PNG. Those are indexed color formats, where

one of the index values can be made transparent. But in such a format, you could have 254 index values that all represented the same

shade of green, and a 255th that becomes invisible. In this QuickDraw example, all green pixels are transparent. If you've worked with

television equipment, this should be familiar as the chroma key concept frequently used in news and weather, where someone will stand

in front of a green wall, and an effects box will replace all green pixels with video from another source.

There are too many supported graphics mode values to list here, but some of the most useful are as
follows:

srcCopy

Copies source to destination. This is the normal behavior.

transparent

Punches out specified color and lets background show through.

blend

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Mixes foreground and background colors.

addPin

Adds foreground and background colors, up to a maximum value.

subPin

Calculates the difference between sum and destination colors, to a minimum value.

ditherCopy

Replaces destination with a dither mix of source and destination.

A complete list of values is provided in "Graphic Transfer Modes" on Apple's developer web site at
http://developer.apple.com/.

http://developer.apple.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. Capture
Much of this book has assumed you already had media of some kind to play and editbut where does
this media come from in the first place? Digital media has to come from one of two places: either it's
completely synthetic or it's captured from a real-world source. Capture, via devices like microphones
and video cameras, is far more common.

The problem is that capture doesn't officially work in QuickTime for Java. The problem dates back to
Apple's Java 1.4.1 rearchitecture, which broke QTJ and forced massive changes to the API in QTJ 6.1.
One of the things that was not updated for QTJ was the ability to get an on-screen component from a
SequenceGrabber, which is the QuickTime capture component. Instead, Apple just put a statement in

the QTJ 6.1 documentation:

Although sequence grabbing is currently not supported in QuickTime for Java 1.4.1, it may be
provided in future releases.

But if you think back to how the QTJ 6.1 situation was described in Chapter 1, you might recall that
QTJ classes that didn't require working with AWTsuch as the quicktime.std classes that simply

wrapped straight-C callswere unaffected by the Java 1.4.1 changes and still worked. Given that,
notice in the Javadoc the package called quicktime.std.sg, which contains the SequenceGrabber

class among several others. Besides, capture, per se, doesn't necessarily imply using the screen, so
shouldn't it still work?

The good news is that it does. In this chapter, I'll introduce the parts of the capture API that still work
in QTJ, even without official support: capturing audio, capturing to disk, and even getting captured
video on screen with a little QuickDraw voodoo. QTJ still needs proper support for on-screen, video-
capture preview, but there's plenty to do in the meantime.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1. Capturing and Previewing Audio

Audio capture is a good place to start because that sidesteps the problem of the broken video
preview. There's plenty to be learned in just opening up the default microphone and looking at the
incoming level datathat is, how loud or soft the incoming sound data is.

6.1.1. How do I do that?

Setting up audio capture requires a number of steps. You start by constructing a SequenceGrabber.

This object coordinates all the capture channels (audio, video...even text capture), and allows you to
set capture parameters like whether to save the captured data to disk, set a maximum amount of
time to let the capture run, etc.

Note: Don't scoffthere really are text-capture devices. For example, you could capture the closed captions off regular TV (also called

"line 21" data).

Once you have the SequenceGrabber, you use an optional prepare() call to indicate whether you

intend to preview the captured media, record it to disk, or both.

To work with sound, you need to create a sound channel, by calling the SGSoundChannel constructor
and passing in the SequenceGrabber. This object allows you to configure the audio capture, choose

among audio capture devices (see the next lab), and get the device's driver. The driver, exposed by
the SPBDevice class, provides methods for checking the input line level.

As an example, compile and run the AudioCapturePreview application as shown in Example 6-1.

Note that you need to have at least one audio capture device hooked up to your computer. Most
Macs come with a built-in microphone. If you don't have one, you can use a USB capture device (like
a headset or external microphone) or a FireWire device (like an iSight).

Note: Compile and run this example from the book's downloadable code with ant run-ch06-audiocapture-preview.

Example 6-1. Previewing captured audio

package com.oreilly.qtjnotebook.ch06;

import quicktime.*;
import quicktime.io.*;
import quicktime.std.*;
import quicktime.std.sg.*;
import quicktime.std.movies.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import quicktime.std.image.*;
import quicktime.qd.*;
import quicktime.sound.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.Timer;
import com.oreilly.qtjnotebook.ch01.QTSessionCheck;
public class AudioCapturePreview extends Frame
 implements ItemListener {
 static final Dimension meterDim = new Dimension (200, 25);
 Checkbox previewCheck;
 AudioLevelMeter audioLevelMeter;
 SequenceGrabber grabber;
 SGSoundChannel soundChannel;
 SPBDevice inputDriver;
 boolean grabbing = true;
 public AudioCapturePreview() throws QTException {
 super ("Audio Preview");
 QTSessionCheck.check();
 setLayout (new GridLayout (3, 1));
 add (new Panel()); // reserved for next lab
 previewCheck = new Checkbox ("Preview", false);
 previewCheck.addItemListener (this);
 add (previewCheck);
 audioLevelMeter = new AudioLevelMeter();
 add (audioLevelMeter);
 // 4th row is reserved for later lab
 setUpAudioGrab();
 grabbing = true;
 }
 public void itemStateChanged (ItemEvent e) {
 try {
 if (e.getSource() = = previewCheck) {
 if (previewCheck.getState())
 soundChannel.setVolume (1.0f);
 else
 soundChannel.setVolume (0.0f);
 }
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }
 protected void setUpAudioGrab() throws QTException {
 grabber = new SequenceGrabber();
 soundChannel = new SGSoundChannel (grabber);
 System.out.println ("Got SGAudioChannel");
 System.out.println ("SGChannelInfo = " +
 soundChannel.getSoundInputParameters());
 System.out.println ("SoundDescription = " +
 soundChannel.getSoundDescription());
 // prepare and start previewing
 grabber.prepare(true,false);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 soundChannel.setUsage (StdQTConstants.seqGrabPreview);
 soundChannel.setVolume (0.0f);
 grabber.startPreview();
 inputDriver = soundChannel.getInputDriver();
 inputDriver.setLevelMeterOnOff (true);
 int[] levelTest = inputDriver.getActiveLevels();
 System.out.println (levelTest.length + " active levels");
 // set up thread to update level meter
 ActionListener timerCallback =
 new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 if (grabbing) {
 try {
 grabber.idle();
 audioLevelMeter.repaint();
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }
 }
 };
 Timer timer = new Timer (50, timerCallback);
 timer.start();
 }
 public static void main (String[] args) {
 try {
 Frame f = new AudioCapturePreview();
 f.pack();
 f.setVisible(true);
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }
 public class AudioLevelMeter extends Canvas {
 public void paint (Graphics g) {
 // get current level if available
 int level = 0;
 if (inputDriver != null) {
 try {
 int[] levels = inputDriver.getActiveLevels();
 if (levels.length > 0)
 level = levels[0];
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }
 float levelPercent = level / 256f;
 System.out.println (level + ", " + levelPercent);
 // draw box
 g.setColor (Color.green);
 g.fillRect (0, 0,
 (int) (levelPercent * getWidth()),

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 getHeight());
 }
 public Dimension getPreferredSize() { return meterDim; }
 }
}

When run, the application brings up a small window with a green bar that indicates the current level
on the line, as seen in Figure 6-1. At maximum input volumeif you're speaking loudly and directly into
the microphoneit will stretch all the way to the right of the window.

Figure 6-1. Audio capture preview window

There is also a Preview checkbox that is off initially. Clicking this will play the captured audio over the
headset or speakers.

6.1.2. What just happened?

The constructor does some simple AWT business, adding the Preview checkbox and an
AudioLevelMeter, which is an inner class that will be explained shortly. Then it calls
setUpAudioGrab().

setUpAudioGrab() is responsible for initializing the audio capture. As described earlier, the first step
is to create a new SequenceGrabber object. Next, tell the grabber what you intend to do with it, via
the prepare() method, which takes two self-explanatory booleans: prepareForPreview and
prepareForRecord.

Tip: You don't have to call prepare(). If you don't, SequenceGrabber will take care of its setup when you start grabbing,

possibly making the startup take longer.

You also need to tell the SGSoundChannel what you want to do via setUsage(), inherited from
SGChannel. As with all methods that take behavior flags, you logically OR together constants to
describe your desired usage. In this case, seqGrabPreview indicates that the application is only

previewing the captured sound, but you can use (and combine) four other usage constants:

seqGrabRecord

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Include this if you want to record the captured media to disk.

seqGrabPlayDuringRecord

Add this to play while recording.

seqGrabLowLatencyCapture

Used to get the freshest frame possible (used for video conferencing and live image
processing).

seqGrabAlwaysUseTimeBase

Used by video channels to get more accurate audio/video sync.

At this point, the capture is initialized. Begin capturing audio with SequenceGrabber 's
startPreview() method.

To create the level meter, it's necessary to get an SPBDevice, which provides low-level access to the
incoming data. This object provides level meters as an array of ints by first enabling monitoring with
setLevelMeterOnOff(true) and then followed by getActiveLevels(). The returned ints range
from 0 (silence), to 255 (maximum input volume). In the example, the AudioLevelMeter inner class

gets the first level on each repaint and draws a box whose width is proportional to the audio level. A
Swing Timer calls repaint() on the meter every 50 milliseconds to keep it up to date.

Note: There may be multiple levels in the array, usually two for stereo input.

The repaint thread also calls idle() on the SequenceGrabber, which is something you have to call as
frequently as possible to give the SequenceGrabber time to operate.

Note: SequenceGrabber.idle() is a lot like "tasking" back in Chapter 2, except there's no convenience class to do it for you.

6.1.3. What about...

...defaulting the volume off with SoundChannel.setVolume() ? This is a common practice because

some users' speakers will be close enough to their microphones to cause feedback when previewing
the audio to the speakers. On the other hand, users with headphones probably do want to hear the
preview. So, the best practice is "default off, but let the user turn it on."

Warning: One thing this demo lacks is a call to SequenceGrabber.stop() when the user quits. This is something you should

usually do, but I've left it out to make a point. On Mac OS X, if you don't stop the SequenceGrabber and you leave the volume on,

you will keep grabbing soundfeedback includedeven after the application quits. I've even seen this behavior survive a restart. So, try it

http://lib.ommolketab.ir
http://lib.ommolketab.ir

out, don't blow your speakers, and then remember to have your programs turn off the volume and call SequenceGrabber.stop(
) when they quit.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2. Selecting Audio Inputs

It's not realistic to think the user has only one audio input device. The computer might be connected
to a headset for audio conferencing, a webcam for video conferencing, and a camcorder for dumping
pictures of the summer vacation into iMovie. Ideally, it should be possible to discover connected
devices at runtime and specify which is to be used for capture.

6.2.1. How do I do that?

To provide a list of devices, you need to query the SGAudioChannel for what devices are available,

and then present the choice to the user. So, take the code from the previous lab and add an AWT
Choice called deviceChoice in the constructor (replacing a line with a comment that said "reserved
for next lab"). Next, after the SGSoundChannel is created in setUpAudioGrab(), insert this block of
code to search for audio devices, adding the name of each to the deviceChoice:

// create list of input devices
SGDeviceList devices = soundChannel.getDeviceList(0);
int deviceCount = devices.getCount();
for (int i=0; i<deviceCount; i++) {
 SGDeviceName deviceName = devices.getDeviceName(i);
 // is it available?
 if ((deviceName.getFlags() &
 StdQTConstants.sgDeviceNameFlagDeviceUnavailable) = = 0)
 deviceChoice.add(deviceName.getName());
}

You need to update the itemStateChanged() callback to handle AWT events on the deviceChoicein

other words, when the user changes the selection. Fortunately, QuickTime allows you to change the
input device by passing in a name, so switching devices is pretty easy. Add this to
itemStateChanged(), inside the TRy-catch block:

} else if (e.getSource() = = deviceChoice) {
 System.out.println ("changed device to "+
 deviceChoice.getSelectedItem());
 grabbing = false;
 // grabber.stop();
 soundChannel.setDevice (deviceChoice.getSelectedItem());
 // also reset inputDriver
 inputDriver = soundChannel.getInputDriver();
 inputDriver.setLevelMeterOnOff (true);

 grabbing = true;
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The boolean named grabbing is a simple gate to keep the repaint thread from trying to get levels
while this device change is underway, because the old inputDriver will be invalid once the new

device is set.

A demo of this technique, SelectableAudioCapturePreview, is shown in Figure 6-2.

Figure 6-2. Discovering and displaying audio capture devices

Note: Run this example with ant run-ch06-selectableaudiocapturepreview.

6.2.2. What just happened?

The key to switching capture devices is a single call, SGSoundChannel.setDevice() , which lets you

change device mid-grab, without pausing or doing other reinitializations. It takes a device by name,
the same name that was retrieved by walking through the SGDeviceList.

6.2.3. What about...

...the "0" parameter on getdeviceList()? This method takes flags, only one of which is even

relevant to QTJ.

Actually, it's easier to explain by starting further down, with the test for whether to add a device to
the Choice. The SGDeviceName used to identify the capture devices wraps not just a name string, but
also an int with some flag values. sgDeviceNameFlagDeviceUnavailable is the only publicly
documented flag. As seen in this example, to test for whether such a flag is set, you AND the value

with the flag you're interested in and check whether the result is nonzero. If so, it means that bit is
set. So, in this case, if the value is 0, the device is available (literally, it's "not unavailable"), so it's
OK to let the user select it.

If we were to return to the getdeviceList(), the only flag available would be
sgDeviceListDontCheckAvailability, which skips the device availability check, meaning that flag
in SGDeviceName would never be set, and thus the device would never be reported as unavailable.

That's clearly undesirable behavior hereyou don't want to give the user an option that's only going to
throw an exception when she chooses it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3. Capturing Audio to Disk

Typically, you don't just capture media and immediately dispose of ityou want to save the media to
disk as you capture so that you can use it later. Fortunately, the SequenceGrabber makes this pretty

easy.

6.3.1. How do I do that?

Adding to the previous labs' code, the calls to set up the SequenceGrabber need to be changed to
prepare for grabbing to disk. Specifically, the SGSoundChannel 's setUsage() call gets a flag to

indicate that it will be writing the captured audio to disk:

soundChannel.setUsage (StdQTConstants.seqGrabPreview |
 StdQTConstants.seqGrabRecord);

Next, add a call to give the user an opportunity to configure the audio capture:

soundChannel.settingsDialog();

Warning: The settingsDialog() call will crash Java 1.4.2 on Mac OS X if called from the AWT event-dispatch thread. Yes, it's

a bug. To work around this until the bug is fixed, you can stash the call in another thread and block on it. For instance, in this example

you could replace the settingsDialog() call with the following:

final SGSoundChannel sc = soundChannel;
Thread t = new Thread() {
public void run() {
try {
sc.settingsDialog();
} catch (QTException qte) {
qte.printStackTrace();
}
}
};
t.start();
while (t.isAlive())
Thread.yield();

After starting the preview, tell the SequenceGrabber where it should save the captured audio:

// create output file
grabFile = new QTFile (new java.io.File ("audiograb.mov"));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

if (grabFile.exists())
 grabFile.delete();
grabber.setDataOutput(grabFile,
 StdQTConstants.seqGrabToDisk
 //seqGrabDontAddMovieResource);
);

Finally, start recording to this file with startRecord() :

grabber.startRecord();

The last step is to provide a Stop button because the data is written to disk only when the
SequenceGrabber.stop() method is called. This Stop button is added near the bottom of the
constructor, before the SequenceGrabber is set up:

stopButton = new Button ("Stop");
stopButton.addActionListener (this);
add (stopButton);

The button requires a new ActionEventListener to make the SequenceGrabber.stop() call and

close down the sample program:

public void actionPerformed (ActionEvent e) {
 if (e.getSource() = = stopButton) {
 System.out.println ("Stop grabbing");
 try {
 if (grabber != null) {
 grabber.stop();
 }
 } catch (QTException qte) {
 qte.printStackTrace();
 } finally {
 System.exit (0);
 }
 }
}

Note: Run this example with ant run-ch06-audiocapturetodisk.

When this AudioCaptureToDisk sample program runs, the user sees an audio settings dialog, as

shown in Figure 6-3.

Figure 6-3. Audio channel settings dialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After OKing the settings dialog, the capture begins. When the user clicks Stop, the SequenceGrabber

writes and closes the audiograb.mov file and the program exits.

6.3.2. What just happened?

Requesting that the SequenceGrabber save to disk requires just the few extra steps detailed earlier:

Add seqGrabRecord to the channel's setUsage() call.

Tip: At this point, you optionally can call the channel's settingsDialog() to give the user a chance to configure the

capture.

1.

Call setOutput() on the SequenceGrabber.2.

Call SequenceGrabber.startRecord().3.

Also, the SequenceGrabber must be explicitly stop()ped to write the captured data to disk.

6.3.3. What about...

...the SequenceGrabber.prepare() call? If the second argument is prepareForRecord, why isn't
that set to TRue for this example? Well, inexplicably, when I did set it to TRue, I started getting
erroneous "dskFulErr" exceptions every time I idle()d, even though I had 9 GB free. No, I don't

know whyit's totally insane. But given the choice of what should work and what does work, I'll go
with the latter.

And what is the deal with the settings dialog? Could that have been used in the preview examples?
Yes, absolutely. In fact, it's important to let the user adjust things like gain, or to specify a
compressor before grabbing begins. But that's more important when you're actually grabbing to disk,
so I held off introducing it until now.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note: Actually, it's usually best to capture uncompressed, so the CPU doesn't get bogged down with compression and possibly slow

down the capture rate.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4. Capturing Video to Disk

Audio capture is nice, but if you bought this book because the sticky-note on the cover lists "capture"
as one of the topics to be covered, you probably figured it meant video capture. Is there an iSight on
the top of your monitor that wants some attention? OK, here's how to turn it on and grab some
video.

6.4.1. How do I do that?

As with audio capture, the basics of setting up capture are:

Create a SequenceGrabber.1.

Create and configure (with setUsage() and the settingsDialog()) the channels you're
interested inin this case, an SGVideoChannel.

2.

Call SequenceGrabber.setOutput() to indicate the file to capture to.3.

Call SequenceGrabber.startRecord() to begin grabbing to disk.4.

Finish up with SequenceGrabber.stop().5.

There is, however, a big difference with video. With no on-screen preview component available in QTJ
6.1, you must indicate where the SequenceGrabber can draw to. The workaround is to create an off-
screen QDGraphics and hand it to the SequenceGrabber via the setGWorld() call.

The VideoCaptureToDisk program, presented in Example 6-2, offers a bare-bones video capture to

a file called videograb.mov.

Note: Run this example with ant run-ch06-videocapturetodisk

Example 6-2. Recording captured video to disk

package com.oreilly.qtjnotebook.ch06;

import quicktime.*;
import quicktime.io.*;
import quicktime.std.*;
import quicktime.std.sg.*;
import quicktime.std.movies.*;
import quicktime.std.image.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import quicktime.qd.*;
import quicktime.sound.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.Timer;
import com.oreilly.qtjnotebook.ch01.QTSessionCheck;
public class VideoCaptureToDisk extends Frame
 implements ActionListener {
 SequenceGrabber grabber;
 SGVideoChannel videoChannel;
 QDGraphics gw;
 QDRect grabBounds;
 boolean grabbing;
 Button stopButton;
 QTFile grabFile;
 public VideoCaptureToDisk() throws QTException {
 super ("Video Capture");
 QTSessionCheck.check();
 setLayout (new GridLayout (2, 1));
 add (new Label ("Capturing video..."));
 stopButton = new Button ("Stop");
 stopButton.addActionListener (this);
 add (stopButton);
 setUpVideoGrab();
 }
 public void actionPerformed (ActionEvent e) {
 if (e.getSource() = = stopButton) {
 System.out.println ("Stop grabbing");
 try {
 grabbing = false;
 if (grabber != null) {
 grabber.stop();
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 } finally {
 System.exit (0);
 }
 }
 }

 protected void setUpVideoGrab() throws QTException {
 grabber = new SequenceGrabber();
 System.out.println ("got grabber");
 // force an offscreen gworld
 grabBounds = new QDRect (320, 240);
 gw = new QDGraphics (grabBounds);
 grabber.setGWorld (gw, null);
 // get videoChannel and set its bounds
 videoChannel = new SGVideoChannel (grabber);
 System.out.println ("Got SGVideoChannel");
 videoChannel.setBounds (grabBounds);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // get settings
 // yikes! this crashes java 1.4.2 on mac os x!
 videoChannel.settingsDialog();
 // prepare and start previewing
 // note - second prepare arg should seemingly be false,
 // but if it is, you get erroneous dskFulErr's
 videoChannel.setUsage (StdQTConstants.seqGrabRecord);
 grabber.prepare(false, true);
 grabber.startPreview();
 // create output file
 grabFile = new QTFile (new java.io.File ("videograb.mov"));
 grabber.setDataOutput(grabFile,
 StdQTConstants.seqGrabToDisk
 //seqGrabDontAddMovieResource);
);
 grabber.startRecord();
 grabbing = true;
 // set up thread to idle
 ActionListener timerCallback =
 new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 if (grabbing) {
 try {
 grabber.idle();
 grabber.update(null);
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }
 }
 };
 Timer timer = new Timer (50, timerCallback);
 timer.start();
 }
 public static void main (String[] args) {
 try {
 Frame f = new VideoCaptureToDisk();
 f.pack();
 f.setVisible(true);
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }
}

Note: Run this example with ant run-ch06-videocapturetodisk.

When it starts up, the program shows a settings dialog for your default camera, as seen in Figure 6-
4. The video settings dialog is even more important for users than the audio settings dialog, as the
video dialog gives them a chance to aim the camera, check the lighting, adjust brightness and color,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

etc.

Figure 6-4. Video channel settings dialog

Warning: Just like its audio equivalent, calling SGVideoChannel.settingsDialog() will crash the virtual machine in Mac

OS X Java 1.4.2 if called from the AWT event-dispatch thread. And just as before, you can work around this bug by firing off the

settingsDialog() call in its own thread and blocking until the thread finishes. I've filed it as a bug, but feel free to file a

duplicate to get Apple's attention.

Once you click the Stop button, the video is written to videograb.mov and the application terminates.
You can view the captured movie in any QuickTime applicationFigure 6-5 shows it in the
BasicQTController demo from Chapter 2.

Figure 6-5. Captured video playing in a window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4.2. What just happened?

The critical step in doing video capture, at least until QuickTime adds on-screen preview, is to create
an off-screen QDGraphics and set that as the SequenceGrabber's GWorld:

// force an offscreen gworld
grabBounds = new QDRect (320, 240);
gw = new QDGraphics (grabBounds);
grabber.setGWorld (gw, null);

In previous versions of QTJ, this wasn't necessary because the on-screen preview provided a GWorld

that the grabber could use. With no on-screen preview currently available in QTJ, this is a handy
technique.

The next step is to create an SGVideoChannel from the SequenceGrabber and set its bounds. After
optionally showing a settings dialog, set the usage (just seqGrabRecord this time because there's no
preview) and then call prepare(false, true), which prepares the SequenceGrabber for recording

but not for previewing.

Note: This time, setting the second prepare() argument to true is the right thing to do.

Just as with audio, the final steps are to call setDataOutput() on the SequenceGrabber, followed
by startRecord(). When SequenceGrabber.stop() is called, the file is written out and closed up.

6.4.3. What about...

...using this on Windows...it doesn't find my webcam! This example presupposes that a video digitizer
component for your camera will be found, and a lot of video cameras don't ship with a Windows
QuickTime "vdig", supporting only Microsoft's media APIs instead. However, there's hope: you can

use SoftVDIG from Abstract Plane (http://www.abstractplane.com.au), which acts as a proxy to bring
captured video from the Microsoft DirectShow world into QuickTime.

http://www.abstractplane.com.au
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.5. Capturing Audio and Video to the Same File

So, it's possible to capture audio and video in isolation. With QuickTime's editing API, it would be
possible to put them in the same movie by adding each as a separate track (see Chapter 3). But
wouldn't it be nice to just capture both audio and video into the same file at once, presumably
keeping them in sync along the way? Fortunately, SequenceGrabber supports this, too.

6.5.1. How do I do that?

Starting with the previous lab's video-only example, you just need to add an SGSoundChannel in the
setUpVideoGrab() method:

soundChannel = new SGSoundChannel (grabber);

The setUsage() and prepare() commands are identical to what was shown in the audio-only and

video-only labs:

// prepare and start previewing
videoChannel.setUsage (StdQTConstants.seqGrabRecord);
soundChannel.setUsage (StdQTConstants.seqGrabPreview |
 StdQTConstants.seqGrabRecord);
soundChannel.setVolume (0.0f);
grabber.prepare(false, true);
grabber.startPreview();

Beyond that, everything is the same as in the video-only case. Because the setDataOutput() call is
made on the SequenceGrabbernot just on an individual channelthe grabber writes data from all the

channels it's capturing into the same file, called audiovideograb.mov in this case.

Note: Run this example with ant run-ch06-audiovideocapturetodisk.

6.5.2. What just happened?

For once, the SequenceGrabber APIs behave pretty much as you might expect them to. With no
obvious prohibition on creating both audio and video channels from the same SequenceGrabber, and

assigning the grabber's output to a file, the captured data from both channels goes into a single
movie file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.6. Making a Motion Detector

Capture isn't just about writing data to disk. You can grab images as they come in and analyze or
manipulate them.

Tip: A great example of "grabbing different" is Lisa Lippincott's ScrollPlate, a demo shown at ADHOC 2004. She used her iSight camera

as a scroll wheel, by holding up a Styrofoam plate with either a large green arrow (for up) or a large red arrow (for down). Her code

presumably grabbed from the camera, looked at the grabbed image for an abundance of green or red, and scrolled the top window in

response.

This example offers a simple motion detector, which will display an alarm message if two subsequent
grabs are markedly different. The idea is that if the camera is not moving, a significant difference
between two subsequent grabs indicates that something in view of the camera has moved.

6.6.1. How do I do that?

In this case, what you want to do is to set up video-only capture, but instead of saving the data to
disk, you do a little bit of image processing each time you idle(). Specifically, there is a method in
QTImage called getSimilarity(), which compares two images (one as a QDGraphics and the other
as an EncodedImage). Motionobjects entering, exiting, or significantly moving within the camera's

field of visioncan be understood as a significant difference between two consecutive grabbed images.

Note: See Chapter 5 for more on QTImage, QDGraphics, and EncodedImage.

Unfortunately, this requires jumping through quite a bit of QuickDraw hoops once an image is
grabbed from the camera. Example 6-3 shows the SimpleMotionDetector code.

Note: Run this example with ant run-ch06-simplemotiondetector.

Example 6-3. Detecting motion by comparing grabbed images

package com.oreilly.qtjnotebook.ch06;

import quicktime.*;
import quicktime.io.*;
import quicktime.std.*;
import quicktime.std.sg.*;
import quicktime.std.movies.*;
import quicktime.std.movies.media.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import quicktime.std.image.*;
import quicktime.qd.*;
import quicktime.sound.*;
import quicktime.app.view.*;
import quicktime.util.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.Timer;
import java.text.*;
import com.oreilly.qtjnotebook.ch01.QTSessionCheck;
public class SimpleMotionDetector extends Frame
 implements ActionListener {
 SequenceGrabber grabber;
 SGVideoChannel videoChannel;
 QDGraphics gw;
 QDRect grabBounds;
 boolean grabbing;
 Button stopButton;
 Pict grabPict;
 byte[] importPictBytes;
 Component importerComponent;
 Label motionLabel;
 GraphicsImporter importer;
 RawEncodedImage lastImage;
 ImageDescription lastImageDescription;
 byte[] lastImageBytes;
 QDGraphics newImageGW;
 int thumbcount = 0;
 // lesser numbers are more different (0 = = totally different)
 // public static float trigger = 0.0002f;
 public static float trigger = 0.002f;

 public SimpleMotionDetector() throws QTException {
 super ("Simple Motion Detector");
 QTSessionCheck.check();
 setLayout (new BorderLayout());
 motionLabel = new Label ();
 motionLabel.setForeground (Color.red);
 add (motionLabel, BorderLayout.NORTH);
 stopButton = new Button ("Stop");
 stopButton.addActionListener (this);
 add (stopButton, BorderLayout.SOUTH);
 importer = new GraphicsImporter (StdQTConstants.kQTFileTypePicture);
 importerComponent =
 QTFactory.makeQTComponent(importer).asComponent();
 add (importerComponent, BorderLayout.CENTER);
 setUpVideoGrab();
 }
 public void actionPerformed (ActionEvent e) {
 if (e.getSource() = = stopButton) {
 System.out.println ("Stop grabbing");
 try {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 grabbing = false;
 if (grabber != null) {
 grabber.stop();
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 } finally {
 System.exit (0);
 }
 }
 }
 protected void setUpVideoGrab() throws QTException {
 grabber = new SequenceGrabber();
 System.out.println ("got grabber");
 // force an offscreen gworld
 grabBounds = new QDRect (320, 240);
 gw = new QDGraphics (grabBounds);
 grabber.setGWorld (gw, null);
 // get videoChannel and set its bounds
 videoChannel = new SGVideoChannel (grabber);
 System.out.println ("Got SGVideoChannel");
 videoChannel.setBounds (grabBounds);
 // get settings
 // yikes! this crashes java 1.4.2 on mac os x!
 // videoChannel.settingsDialog();
 // prepare and start previewing
 videoChannel.setUsage (StdQTConstants.seqGrabPreview);
 grabber.prepare(true, false);
 grabber.startPreview();
 // get first grab, so we're ready
 // to calc diff's and draw component
 scanForDifference();
 updateImportedPict();
 grabbing = true;
 // set up thread to idle
 ActionListener timerCallback =
 new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 if (grabbing) {
 try {
 grabber.idle();
 grabber.update(null);
 scanForDifference();
 updateImportedPict();
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }
 }
 };
 Timer timer = new Timer (2000, timerCallback);
 timer.start();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 protected void scanForDifference() throws QTException {
 // this seems like overkill, but the GW we give
 // the grabber doesn't get updated. Picts returned
 // from grabber are different each time, so use 'em
 if (newImageGW = = null)
 newImageGW = new QDGraphics (grabBounds);
 grabPict = grabber.grabPict (grabBounds, 0, 0);
 grabPict.draw (newImageGW, grabBounds);
 if (lastImage != null) {
 // compare to last image
 float similarity = QTImage.getSimilarity (newImageGW,
 grabBounds,
 lastImageDescription,
 lastImage);
 System.out.println ("similarity = = " +
 formatter.format(similarity));
 if (similarity < trigger) {
 System.out.println ("*** Motion detect ***");
 motionLabel.setText ("motion detect");
 } else {
 motionLabel.setText ("");
 }
 }
 // create a new lastImage from grabber GWorld
 int bufSize =
 QTImage.getMaxCompressionSize (newImageGW,
 newImageGW.getBounds(),
 0,
 StdQTConstants.codecNormalQuality,
 StdQTConstants.kRawCodecType,
 CodecComponent.anyCodec);
 // make new lastImage
 lastImageBytes = new byte[bufSize];
 lastImage = new RawEncodedImage (lastImageBytes);
 lastImageDescription =
 QTImage.compress(newImageGW,
 newImageGW.getBounds(),
 StdQTConstants.codecNormalQuality,
 StdQTConstants.kRawCodecType,
 lastImage);

 protected void updateImportedPict() throws QTException {
 importPictBytes = new byte [grabPict.getSize() + 512];
 grabPict.copyToArray (0,
 importPictBytes,
 512,
 importPictBytes.length - 512);
 Pict wrapperPict = new Pict (importPictBytes);
 DataRef ref = new DataRef (wrapperPict,
 StdQTConstants.kDataRefQTFileTypeTag,
 "PICT");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 importer.setDataReference (ref);
 importer.draw();
 if (importerComponent != null)
 importerComponent.repaint();
 // wrapperPict.disposeQTObject();
 }

 public static void main (String[] args) {
 try {
 Frame f = new SimpleMotionDetector();
 f.pack();
 f.setVisible(true);
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }
}

When running, if two frames differ by more than a specified amount, the label "motion detect" will
appear at the top of the window. Figure 6-6 shows the running application.

Figure 6-6. Video motion detector window

6.6.2. What just happened?

This is a huge example, but much of it draws on the video-grabbing techniques of the previous two
labs. setUpVideoGrab() sets up the SequenceGrabber for grabbing video, but in this case, it doesn't
need to save to disk, so the setUsage() argument is seqGrabPreview, and the arguments to
prepare() are true and false (for preview and record, respectively). A Swing Timer calls back

every two secondsthe long delay is intentional, so the potential for change between grabbed frames

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is greaterand calls the SequenceGrabber idle() and update() methods, followed by calls to the
brains of this example: scanForDifference() and updatePict().

scanForDifference() evaluates the difference between the current frame and the last one. It does
this by grabbing a Pict from the SequenceGrabber and drawing it into a QDGraphics (also known as
a GWorld). It compares this GWorld to an EncodedImage of the last grab, via the
QTImage.getSimilarity() method. This method returns a float that expresses the similarity of the
two grabbed images, where 0 means the images are totally different and 1 means they're identical.
At the end of this method, QTImage.compress() is used to compress the grabbed GWorld into a new
EncodedImage for use on the next call to scanForDifference().

Note: It might be better to call scanFor-Difference() on another thread, so the image analysis doesn't block the repeated calls to

SequenceGrabber.idle().

updatePict() updates a GraphicsImporter that is used to provide the preview image in the
middle of the window. This uses a Pict-to-GraphicsImporter TRick that was introduced in Chapter
5s Section 5.4 lab. In this case, it's used not to get a Java AWT Image, but to get new pixels into a
GraphicsImporter, which is wired up to a QTComponent for on-screen preview.

6.6.3. What about...

...the ideal value for triggering a difference? It probably depends on lighting, your camera, and other
factors. In a professional application, you'd want to give the user a slider or some similar means of
configuring the sensitivity of the detection.

Also, there seems to be a lot of inefficient code here, particularly with drawing into the newImageGW.
Why is that necessary when the Grabber was initially set up with a brand-new off-screen QDGraphics
/GWorld? This, admittedly, is weird. When I was debugging, I found that the GWorld used to set up
the Grabber is drawn to once and never again. On the other hand, the Pict generated from
SequenceGrabber.grabPict() is always fresh, so that's what's used for testing similarity. However,
to apply the getSimilarity() method, you need to have a GWorld, so you Pict.draw() the pixels
from the Pict into the GWorld.

Come to think of it, with this application updating the component with a new grab every couple of
seconds, isn't that effectively an on-screen preview? Yes, it is, in an extraordinarily roundabout way.
You could take out the motion-detecting stuff and make a preview component by just grabbing a
Pict each time, making a new Pict with a 512-byte header, setting the GraphicsImporter to read
that, and calling GraphicsImporter.draw() to draw into its on-screen component. I didn't split that

out as its own lab because the performance is pathologically bad (one frame per secondat best), and
because it's an awkward workaround in lieu of a better way of getting a component from a
SequenceGrabber. Presumably, someday there will be a proper call to get a QTComponent from a
SequenceGrabbermaybe another overload of QTFactory.makeQTComponent()and kludgery like this

won't be necessary.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. Audio Media
This is the first of three chapters dealing with specific media types. Video will be covered in Chapter
8, and several other kinds of mediaincluding things you might not have thought of as media, such as
text and time codeswill be covered in Chapter 9.

It's possible that you've never thought of QuickTime as being the engine for audio-only
applicationsthe ubiquity of QuickTime's .mov file format probably makes it more readily recognized as
a video standard. But QuickTime's support for audio has been critical to many applications. For
example, the fact that QuickTime was already ported to Windows made bringing iTunes and its music
store over to Windows a lot easier.

In fact, iTunes is probably responsible for getting QuickTime onto a lot more Windows machines than
it would have reached otherwise. So, I'll begin with a few labs that are particularly applicable to the
MP3s and AACs collected by iTunes users.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.1. Reading Information from MP3 Files

If you've ever listened to an MP3 music fileand at this point, who hasn'tyou've surely appreciated the
fact that useful information like artist, song title, album title, etc., is stored inside the file. Not only
does this make it convenient to organize your music, but also, when you move a song from one
device to another, this metadata travels with it.

The most widely accepted standard for doing this is the ID3 standard, which puts this metadata into
parts of the file that are not interpreted as containing audio dataMP3s arrange data in frames, and
ID3 puts metadata between these frames. ID3 tags typically are found at the beginning of a file,
which makes them stream-friendly, although some files tagged with earlier versions of the standard
have the metadata at the end of the file.

Note: Visit http://www.id3.org/ to learn more about ID3.

When QuickTime imports an MP3 file, it reads ID3 tags and makes them available to your program
through the movie's user data, allowing you to display the tags to the user, or use them in any other
way you see fit.

7.1.1. How do I do that?

Once you open an MP3 as a movie, you need to get at the user data, which contains the imported
ID3 tags. Fortunately, it's wrapped as an object called UserData:

UserData userData = movie.getUserData();

The user data is something of a grab bag of data that you can read from and write to freely. Items
are keyed by FOUR_CHAR_CODEs, and the contents aren't required to adhere to any particular

standard or format (after all, you're free to write whatever you like in user data). For example,
QuickTime Player writes a "WLOC" enTRy that stores the window location last used for the movie.

Apple has a standard set of keys that you can use to retrieve the data parsed from an MP3's ID3
tags. Because these are text values, you use UserData's getTextAsString() method to pull them
out. getTextAsString() takes three arguments: the type you're requesting; an index to indicate

whether you want the first, second, etc., instance of that type; and a region tag that's irrelevant in
the ID3 case.

Example 7-1 shows a basic exercise of this technique, getting the UserData object and asking for

album, artist, creation date, and song title information.

Note: Run this example from the downloadable book code with ant run-ch07-id3tagreader.

http://www.id3.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 7-1. Retrieving ID3 metadata

package com.oreilly.qtjnotebook.ch07;

import quicktime.*;
import quicktime.std.*;
import quicktime.std.movies.*;
import quicktime.std.movies.media.*;
import quicktime.io.*;
import java.util.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

public class ID3TagReader extends Object {

 /* these values are straight out of Movies.h
 */
 final static int kUserDataTextAlbum = 0xA9616C62; /*'©alb' */
 final static int kUserDataTextArtist = 0xA9415254;
 final static int kUserDataTextCreationDate = 0xA9646179; /*'©day' */
 final static int kUserDataTextFullName = 0xA96E616D; /*'©nam' */

 /* This array maps all the tag constants to human-readable strings
 */
 private static final Object[][] TAG_NAMES = {
 {new Integer (kUserDataTextAlbum), "Album"},
 {new Integer (kUserDataTextArtist),"Artist" },
 {new Integer (kUserDataTextCreationDate), "Created"},
 {new Integer (kUserDataTextFullName), "Full Name"}
 };

 private static final HashMap TAG_MAP =
 new HashMap(TAG_NAMES.length);
 static {
 for (int i=0; i<TAG_NAMES.length; i++) {
 TAG_MAP.put (TAG_NAMES[i][0],
 TAG_NAMES[i][1]);
 }
 }

 public static void main (String[] args) {
 new ID3TagReader();
 System.exit(0);
 }

 public ID3TagReader() {
 try {
 QTSessionCheck.check();
 QTFile f = QTFile.standardGetFilePreview (null);
 OpenMovieFile omf = OpenMovieFile.asRead(f);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Movie movie = Movie.fromFile (omf);
 // get user data
 UserData userData = movie.getUserData();
 dumpTagsFromUserData(userData);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 protected static void dumpTagsFromUserData (UserData userData) {
 // try for each key in TAG_MAP
 Iterator it = TAG_MAP.keySet().iterator();
 while (it.hasNext()) {
 Integer key = (Integer) it.next();
 int tag = key.intValue();
 String tagName = (String) TAG_MAP.get(key);
 try {
 String value =
 userData.getTextAsString (tag,
 1,
 IOConstants.langUnspecified);
 System.out.println (tagName + ": " + value);
 } catch (QTException qte) { } // no such tag
 }
 }
}

When run, this dumps the found tags to standard out, as seen in the following console output:

cadamson% ant run-ch07-id3tagreader
Buildfile: build.xml

run-ch07-id3tagreader:
 [java] Album: Arthur Or The Decline And Fall Of The British Empire
 [java] Full Name: Victoria
 [java] Artist: The Kinks

7.1.2. What just happened?

The application sets up some static values for keys it is interested in and maps them to human-
readable names. For example, the FOUR_CHAR_CODE "@alb" is mapped to "Album."

The program prompts the user to select an MP3 file and imports it as a movie, from which it gets a
UserData object. In dumpTagsFromUserData(), it calls getTextAsString() to attempt to get a

value for each known tag. If successful, it writes the key and value to the console. If a given tag is
absent from the user data, QuickTime throws an exception, which this program quietly ignores.

QuickTime has an important and disappointing limitation: it does not import tags written in non-
Western scripts. For example, here's the output when I run the application against an MP3 whose

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"artist" tag is in Japanese kana (characters):

cadamson% ant run-ch07-id3tagreader
Buildfile: build.xml

run-ch07-id3tagreader:
 [java] Album: COWBOY BEBOP O.S.T.1
 [java] Created: 1998
 [java] Full Name: SPACE LION

Because the artist (, or "Yoko Kanno" in romaji) is written in non-Western characters,
QuickTime doesn't attempt to import it, and thus there's no artist item to retrieve from the user data.

7.1.3. What about...

...other tags? A big list of metadata tags are defined in the native API's Movies.h file. Unfortunately,
these aren't in the StdQTConstants classes, or anywhere else in QTJ, so you have to define your own

constants for them. Table 7-1 is the list of supported values.

Table 7-1. Audio metadata tag constants

Constant name Hex value 4CC

kUserDataTextAlbum 0xA9616C62 ©alb

kUserDataTextArtist 0xA9415254 ©ART

kUserDataTextAuthor 0xA9617574 ©aut

kUserDataTextChapter 0xA9636870 ©chp

kUserDataTextComment 0xA9636D74 ©cmt

kUserDataTextComposer 0xA9636F6D ©com

kUserDataTextCopyright 0xA9637079 ©cpy

kUserDataTextCreationDate 0xA9646179 ©day

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant name Hex value 4CC

kUserDataTextDescription 0xA9646573 ©des

kUserDataTextDirector 0xA9646972 ©dir

kUserDataTextDisclaimer 0xA9646973 ©dis

kUserDataTextEncodedBy 0xA9656E63 ©enc

kUserDataTextFullName 0xA96E616D ©nam

kUserDataTextGenre 0xA967656E ©gen

kUserDataTextHostComputer 0xA9687374 ©hst

kUserDataTextInformation 0xA9696E66 ©inf

kUserDataTextKeywords 0xA96B6579 ©key

kUserDataTextMake 0xA96D616B ©mak

kUserDataTextModel 0xA96D6F64 ©mod

kUserDataTextOriginalArtist 0xA96F7065 ©ope

kUserDataTextOriginalFormat 0xA9666D74 ©fmt

kUserDataTextOriginalSource 0xA9737263 ©src

kUserDataTextPerformers 0xA9707266 ©prf

kUserDataTextProducer 0xA9707264 ©prd

kUserDataTextProduct 0xA9505244 ©PRT

kUserDataTextSoftware 0xA9737772 ©swr

kUserDataTextDescription 0xA9646573 ©des

kUserDataTextDirector 0xA9646972 ©dir

kUserDataTextDisclaimer 0xA9646973 ©dis

kUserDataTextEncodedBy 0xA9656E63 ©enc

kUserDataTextFullName 0xA96E616D ©nam

kUserDataTextGenre 0xA967656E ©gen

kUserDataTextHostComputer 0xA9687374 ©hst

kUserDataTextInformation 0xA9696E66 ©inf

kUserDataTextKeywords 0xA96B6579 ©key

kUserDataTextMake 0xA96D616B ©mak

kUserDataTextModel 0xA96D6F64 ©mod

kUserDataTextOriginalArtist 0xA96F7065 ©ope

kUserDataTextOriginalFormat 0xA9666D74 ©fmt

kUserDataTextOriginalSource 0xA9737263 ©src

kUserDataTextPerformers 0xA9707266 ©prf

kUserDataTextProducer 0xA9707264 ©prd

kUserDataTextProduct 0xA9505244 ©PRT

kUserDataTextSoftware 0xA9737772 ©swr

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant name Hex value 4CC

kUserDataTextSpecialPlayback
Requirements

0xA9726571 ©req

kUserDataTextTrack 0xA974726B ©trk

kUserDataTextWarning 0xA977726E ©wrn

kUserDataTextWriter 0xA9777274 ©wrt

kUserDataTextURLLink 0xA975726C ©url

kUserDataTextEditDate1 0xA9656431 ©ed1

Also, instead of requesting specific keys from the user data, can I just tour what's in there? Yes, you
can use UserData.getNextType() to discover the types of items in the user data. This method takes
an int of the last discovered type (use 0 on the first call), and returns the next type after that one.
When it returns 0, there are no more types to discover. Given a type, you can get its data with
getTextAsString(), but because you can't know that a discovered piece of user data necessarily
represents textual data, it might be safer to call getdata(), which returns a QTHandle, from which
you can get a byte array with getBytes() .

Note: This technique is a lot like the "Discovering All Installed Components" lab in Chapter 4.

kUserDataTextSpecialPlayback
Requirements

0xA9726571 ©req

kUserDataTextTrack 0xA974726B ©trk

kUserDataTextWarning 0xA977726E ©wrn

kUserDataTextWriter 0xA9777274 ©wrt

kUserDataTextURLLink 0xA975726C ©url

kUserDataTextEditDate1 0xA9656431 ©ed1

Also, instead of requesting specific keys from the user data, can I just tour what's in there? Yes, you
can use UserData.getNextType() to discover the types of items in the user data. This method takes
an int of the last discovered type (use 0 on the first call), and returns the next type after that one.
When it returns 0, there are no more types to discover. Given a type, you can get its data with
getTextAsString(), but because you can't know that a discovered piece of user data necessarily
represents textual data, it might be safer to call getdata(), which returns a QTHandle, from which
you can get a byte array with getBytes() .

Note: This technique is a lot like the "Discovering All Installed Components" lab in Chapter 4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2. Reading Information from iTunes AAC Files

If you read the last lab and thought about how ID3 metadata is imported into a QuickTime movie's
UserData, you might well expect that the same thing would be true of AAC files created by iTunes:

.m4a files for songs "ripped" by the user and .m4p files sold by the iTunes Music Store. In fact,
because these files use an MPEG-4 file format that is itself based on QuickTime, you might think that
using the same user data scheme would be a slam dunk.

But...you'd be wrong.

These AAC files do put the metadata in the user data, but they do so in a way that resists
straightforward retrieval via QuickTime. Fortunately, it's not too hard to get the values out with some
parsing.

Note: Buckle up, this one is rough.

7.2.1. How do I do that?

For once, theory needs to come before codeyou need to see the format to understand how to parse
it. Here's a /usr/bin/hexdump of an iTunes Music Store AAC file from my collection, Toto Dies.m4p:

0000b010 00 3d 5f 3c 00 3d 7d 5e 00 3d 9a fb 00 03 18 da |.=_<.=}^.=......|
0000b020 75 64 74 61 00 03 18 d2 6d 65 74 61 00 00 00 00 |udta....meta....|
0000b030 00 00 00 22 68 64 6c 72 00 00 00 00 00 00 00 00 |..."hdlr........|
0000b040 6d 64 69 72 61 70 70 6c 00 00 00 00 00 00 00 00 |mdirappl........|
0000b050 00 00 00 03 11 9b 69 6c 73 74 00 00 00 21 a9 6e |......ilst...!.n|
0000b060 61 6d 00 00 00 19 64 61 74 61 00 00 00 01 00 00 |am....data......|
0000b070 00 00 54 6f 74 6f 20 44 69 65 73 00 00 00 24 a9 |..Toto Dies...$.|
0000b080 41 52 54 00 00 00 1c 64 61 74 61 00 00 00 01 00 |ART....data.....|
0000b090 00 00 00 4e 65 6c 6c 69 65 20 4d 63 4b 61 79 00 |...Nellie McKay.|
0000b0a0 00 00 24 a9 77 72 74 00 00 00 1c 64 61 74 61 00 |..$.wrt....data.|
0000b0b0 00 00 01 00 00 00 00 4e 65 6c 6c 69 65 20 4d 63 |.......Nellie Mc|
0000b0c0 4b 61 79 00 03 0e 76 63 6f 76 72 00 03 0e 6e 64 |Kay...vcovr...nd|
0000b0d0 61 74 61 00 00 00 0d 00 00 00 00 ff d8 ff e0 00 |ata.............|
0000b0e0 10 4a 46 49 46 00 01 01 01 02 f9 02 f9 00 00 ff |.JFIF...........|

Granted, this is not easy to read, but I'll bet you can pick out the artist (Nellie McKay) and the song
title ("Toto Dies"), so you know this is the relevant section of the file. In fact, you also might notice
the string "udta"...sounds a little like "user data," doesn't it?

At work here is the QuickTime file format and its concept of atoms, which are tree-structured pieces
of data used to describe a movie, its contents, and its metadata. Without going too deeply into the
detailsthere's a whole book on the formateach atom consists of 4 bytes of size, a 4-byte type, and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

then data. Atoms contain either data or other atoms, but not both. The 4 bytes before "udta",
0x000318da, indicate the size of all the user data. The first child is an atom called "meta". Because its
size is 0x000318d2, just 8 less than the size of "udta", the "meta" atom is clearly the only child of
"udta".

Unfortunately, because this is user data, the contents don't have to adhere to any published
standard, and they don't. The first thing after "meta" should be the 4-byte size of its first child atom,
but the value is 0x00000000an illegal "no size" valueso, a normal QuickTime parser would ignore the
contents of "meta".

Funny thing is, although these contents aren't real QuickTime atoms, they're awfully close. Start with
the stuff that's obviously the metadata and work backward: "Toto Dies" is preceded by an 8-byte pad
(0x00000001 and 0x00000000), and before that is "data" and a 4-byte number. That number,
0x00000019, is the size of itself, plus "data", plus the 8-byte pad, plus the string "Toto Dies." And
just before that, you'll find the string "©nam", preceded by a 4-byte size. Better yet, "©nam" is one of

the constants defined in Movies.h for metadata tagging.

Note: See the previous lab for a list of QuickTime's metadata tags.

Dig further and you'll find that there's a run of these tag-name/data structures, each of which has
the structure discovered earlier:

Full size

4 bytes

Type

4 bytes

Contents size

4 bytes

"data"

4 bytes

Unknown

8 bytes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value

Variable number of bytes (size is implicit from earlier size data)

The run of metadata blocks exists within a single pseudo-atom parent called "ilst". So, this analysis

provides a strategy for getting iTunes AAC metadata:

Get the user data.1.

Look for a user data item called "meta" and get it as a byte array.2.

Inside this array, find "ilst".3.

Start reading 8-byte blocks as possible size/type combinations. If the type is known as a
metadata type, skip past the 24 bytes of junk (the 8-byte pad, the "data", etc.) and read the
String.

4.

The sample program in Example 7-2 implements this strategy.

Note: Run this example with ant run-ch07-aactagreader.

Example 7-2. Retrieving iTunes AAC metadata

package com.oreilly.qtjnotebook.ch07;

import quicktime.*;
import quicktime.std.*;
import quicktime.std.movies.*;
import quicktime.std.movies.media.*;
import quicktime.io.*;
import quicktime.util.*;
import java.util.*;
import java.math.BigInteger;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

public class AACTagReader extends Object {

 /* these values are straight out of Movies.h
 */
 final static int kUserDataTextAlbum = 0xA9616C62; /*'©alb' */
 final static int kUserDataTextArtist = 0xA9415254;
 final static int kUserDataTextCreationDate = 0xA9646179; /*'©day' */
 final static int kUserDataTextFullName = 0xA96E616D; /*'©nam' */

 /* This array maps all the tag constants to human-readable strings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 */
 private static final Object[][] TAG_NAMES = {
 {new Integer (kUserDataTextAlbum), "Album"},
 {new Integer (kUserDataTextArtist),"Artist" },
 {new Integer (kUserDataTextCreationDate), "Created"},
 {new Integer (kUserDataTextFullName), "Full Name"}
 };

 private static final HashMap TAG_MAP =
 new HashMap(TAG_NAMES.length);
 static {
 for (int i=0; i<TAG_NAMES.length; i++) {
 TAG_MAP.put (TAG_NAMES[i][0],
 TAG_NAMES[i][1]);
 }
 }

 public static void main (String[] args) {
 new AACTagReader();
 System.exit(0);
 }

 public AACTagReader() {
 try {
 QTSessionCheck.check();
 QTFile f = QTFile.standardGetFilePreview (null);
 OpenMovieFile omf = OpenMovieFile.asRead(f);
 Movie movie = Movie.fromFile (omf);
 // get user data
 UserData userData = movie.getUserData();
 dumpTagsFromUserData(userData);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 protected void dumpTagsFromUserData (UserData userData)
 throws QTException {
 int metaFCC = QTUtils.toOSType("meta");
 QTHandle metaHandle = userData.getData (metaFCC, 1);
 System.out.println ("Found meta");
 byte[] metaBytes = metaHandle.getBytes();

 // locate the "ilst" pseudo-atom, ignoring first 4 bytes
 int ilstFCC = QTUtils.toOSType("ilst");
 PseudoAtomPointer ilst = findPseudoAtom (metaBytes, 4, ilstFCC);

 // iterate over the pseudo-atoms inside the "ilst"
 // building lists of tags and values from which we'll
 // create arrays for the DefaultTableModel constructor
 int off = ilst.offset + 8;
 ArrayList foundTags = new ArrayList (TAG_NAMES.length);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ArrayList foundValues = new ArrayList (TAG_NAMES.length);
 while (off < metaBytes.length) {
 PseudoAtomPointer atom = findPseudoAtom (metaBytes, off, -1);
 String tagName = (String) TAG_MAP.get (new Integer(atom.type));
 if (tagName != null) {
 // if we match a type, read everything after byte 24
 // which skips size, type, size, 'data', 8 junk bytes
 byte[] valueBytes = new byte [atom.atomSize - 24];
 System.arraycopy (metaBytes,
 atom.offset+24,
 valueBytes,
 0,
 valueBytes.length);
 String value = new String (valueBytes);
 System.out.println (tagName + ": " + value);
 } // if tagName != null
 off = atom.offset + atom.atomSize;
 }
 }

 /** find the given type in the byte array, starting at
 the start position. Returns the offset within the
 byte array that begins this pseudo-atom. a helper method
 to populateFromMetaAtom().
 @param bytes byte array to search
 @param start offset to start at
 @param type type to search for. if -1, returns first
 atom with a plausible size
 */
 private PseudoAtomPointer findPseudoAtom (byte[] bytes,
 int start,
 int type) {
 // read size, then type
 // if size is bogus, forget it, increment offset, and try again
 int off = start;
 boolean found = false;
 while ((! found) &&
 (off < bytes.length-8)) {
 // read 32 bits of atom size
 // use BigInteger to convert bytes to long
 // (instead of signed int)
 byte sizeBytes[] = new byte[4];
 System.arraycopy (bytes, off, sizeBytes, 0, 4);
 BigInteger atomSizeBI = new BigInteger (sizeBytes);
 long atomSize = atomSizeBI.longValue();

 // don't bother if the size would take us beyond end of
 // array, or is impossibly small
 if ((atomSize > 7) &&
 (off + atomSize <= bytes.length)) {
 byte[] typeBytes = new byte[4];
 System.arraycopy (bytes, off+4, typeBytes, 0, 4);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 int aType = QTUtils.toOSType (new String (typeBytes));

 if ((type = = aType) ||
 (type = = -1))
 return new PseudoAtomPointer (off, (int) atomSize, aType);
 else
 off += atomSize;

 } else {
 System.out.println ("bogus atom size " + atomSize);
 // well, how did this happen? increment off and try again
 off++;
 }
 } // while
 return null;
 }

 /** Inner class to represent atom-like structures inside
 the meta atom, designed to work with the byte array
 of the meta atom (i.e., just wraps pointers to the
 beginning of the atom and its computed size and type)
 */
 class PseudoAtomPointer {
 int offset;
 int atomSize;
 int type;
 public PseudoAtomPointer (int o, int s, int t) {
 offset=o;
 atomSize=s;
 type=t;
 }

 }

}

When run with Toto Dies.m4p, the output to the console looks like this:

cadamson% ant run-ch07-aactagreader
Buildfile: build.xml

run-ch07-aactagreader:
 [java] Found meta
 [java] Full Name: Toto Dies
 [java] Artist: Nellie McKay
 [java] Album: Get Away from Me
 [java] Created: 2004-02-10T08:00:00Z

Note: The "album" and "created" data didn't appear in the earlier hexdump because in the file they occur after the cover art data, which

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is several kilobytes long.

7.2.2. What just happened?

The program gets the UserData, gets its "meta" atom as a byte array, and looks for the "ilst"
pseudo-atom. If it finds one, it skips ahead 8 bytes (over "ilst" and its size) and goes into a loop of

discovering and parsing potential pseudo-atoms.

To parse, you look at the first 4 bytes and consider whether it's a plausible sizein other words,
whether it's big enough to contain data, but small enough to not run past the end of the byte array.
If so, interpret the next 4 bytes as a FOUR_CHAR_CODE type and check against the list of known

metadata types. If it matches one of the known types, you've got a valid piece of metadata, which
this program simply writes to standard out.

7.2.3. What about...

...combining this with the MP3 approach of the previous lab so that there's just one codebase? A
good strategy for that would be to get the UserData and look for a "meta" atom. If you get one,

assume you have iTunes AAC and do the previous parsing. If not, assume you have an MP3, and
start asking for the various metadata types with UserData.getTextAsString(), as in the previous

lab.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3. Providing Basic Audio Controls

Most audio applications provide some basic audio controls to allow the user to customize the sound
output to suit his environment. The MovieController provides a volume control, but you can do

better than that: you can control balance, bass, and treble with simple method calls.

7.3.1. How do I do that?

The AudioMediaHandler class provides the methods setBalance() and setSoundBassAndTreble(
), so it's just a matter of getting the handler object. The key is to remember that:

Movies have tracks.

Tracks have exactly one Media each.

Each Media has a MediaHandler.

Iterate over the movie's tracks to get each track's media and handler. To figure out whether a given
track is audio, you can use a simple instanceof to see if the handler is an AudioMediaHandler.

setBalance() takes a float, which ranges from -1.0 (all the way to the left) to 1.0 (all the way to
the right), with 0 representing equal balance.

setSoundBassAndTreble() is interesting because it's officially undocumented. As it turns out, you
pass in ints for bass and treble, where 0 is normal, -256 is minimum bass or treble, and 256 is

maximum.

Note: Well, the native version is undocumented. For once, the Javadocs have the useful info.

Example 7-3 provides a simple GUI to exercise these methods.

Note: Run this example with ant run-ch07-basicaudiocontrolsplayer.

Example 7-3. Providing balance, bass, and treble controls

package com.oreilly.qtjnotebook.ch07;

import quicktime.*;
import quicktime.std.*;
import quicktime.std.movies.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import quicktime.std.movies.media.*;
import quicktime.app.view.*;
import quicktime.io.*;

import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

public class BasicAudioControlsPlayer extends Frame
 implements ChangeListener {

 JSlider balanceSlider, trebleSlider, bassSlider;

 AudioMediaHandler audioMediaHandler;

 public static void main (String[] args) {
 try {
 QTSessionCheck.check();
 Frame f= new BasicAudioControlsPlayer();
 f.pack();
 f.setVisible(true);
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }

 public BasicAudioControlsPlayer () throws QTException {
 super ("Basic Audio Controls");
 // prompt for audio file
 QTFile file = QTFile.standardGetFilePreview(null);
 OpenMovieFile omf = OpenMovieFile.asRead (file);
 Movie movie = Movie.fromFile (omf);
 MovieController controller = new MovieController (movie);
 // get AudioMediaHandler for first audio track
 for (int i=1; i<=movie.getTrackCount(); i++) {
 Track t = movie.getTrack(i);
 Media m = t.getMedia();
 MediaHandler mh = m.getHandler();
 if (mh instanceof AudioMediaHandler) {
 audioMediaHandler = (AudioMediaHandler) mh;
 break;
 }
 }
 if (audioMediaHandler = = null) {
 System.out.println ("No audio track");
 System.exit(-1);
 }
 // add controller to GUI
 setLayout (new BorderLayout());
 Component comp =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 QTFactory.makeQTComponent(controller).asComponent();
 add (comp, BorderLayout.NORTH);
 // build balance, treble, bass controls in a panel
 Panel controls = new Panel(new GridLayout (3,2));
 controls.add (new JLabel ("Balance"));
 balanceSlider = new JSlider (-1000, 1000, 0);
 balanceSlider.addChangeListener (this);
 controls.add (balanceSlider);
 controls.add (new JLabel ("Treble"));
 trebleSlider = new JSlider (-256, 256, 0);
 trebleSlider.addChangeListener (this);
 controls.add (trebleSlider);
 controls.add (new JLabel ("Bass"));
 bassSlider = new JSlider (-256, 256, 0);
 bassSlider.addChangeListener (this);
 controls.add (bassSlider);
 add (controls, BorderLayout.SOUTH);
 }

 public void stateChanged (ChangeEvent ev) {
 Object source = ev.getSource();
 try {
 if (source = = balanceSlider) {
 // balance
 float newBal =
 (float) (balanceSlider.getValue() / 1000f);
 audioMediaHandler.setBalance (newBal);
 } else {
 // bass & treble
 audioMediaHandler.setSoundBassAndTreble (
 bassSlider.getValue(),
 trebleSlider.getValue());
 }

 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }
}

When run, the program asks the user to select a file to play, and then shows a GUI, as seen in Figure
7-1.

Figure 7-1. Balance, treble, and bass controls

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3.2. What just happened?

The key to this example is the use of Swing JSliders, which can be configured with appropriate
bounds for the features they represent. For example, the bass and treble sliders run in a -256 to 256
range, with 0 as a default:

trebleSlider = new JSlider (-256, 256, 0);

The balance slider needs to pass a float between -1 and 1, but JSliders work with ints, so it uses
a range of -1000 to 1000, which is scaled to an appropriate float before calling setBalance():

balanceSlider = new JSlider (-1000, 1000, 0);

All the sliders share a ChangeListener implementation that reads the new value from the affected
JSlider and make a corresponding call to the AudioMediaHandler.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4. Providing a Level Meter

Many audio applications also provide a graphical " level meter," which is an on-screen display of the
loudness or softness of certain frequencies within the audio. In QuickTime Player, this is shown as a
set of bars on the right side of the control bar, as seen in Figure 7-2.

Figure 7-2. Audio level meter in QuickTime Player

The intensity of lower frequencies, like bass, is shown in the leftmost columns, while higher
frequencies are to the right.

7.4.1. How do I do that?

AudioMediaHandler provides two key methods: setSoundEqualizerBands() to set up monitoring
and getSoundLevelMeterLevels() to actually get the data. setSoundEqualizerBands() indicates

which frequencies you want to monitor for your graphics display. These are passed in the form of a
MediaEqSpectrumBands object, which is built up by constructing it with the number of bands you
intend to monitor, then repeatedly calling setFrequency() to indicate which frequency a given band

will monitor.

Note: Unfortunately, most of the level-metering methods are officially undocumented.

As the audio plays, you can repeatedly call getSoundLevelMeterLevels(), which returns an array
of ints representing the measured levels.

Example 7-4 creates a basic audio level meter in an AWT Canvas.

Note: Run this example with ant run-ch07-levelmeterplayer.

Example 7-4. Providing an audio level meter

package com.oreilly.qtjnotebook.ch07;

import quicktime.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import quicktime.std.*;
import quicktime.std.movies.*;
import quicktime.std.movies.media.*;
import quicktime.app.view.*;
import quicktime.io.*;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

public class LevelMeterPlayer extends Frame {

 // bands used by apple sndequalizer example; equivalent to qt player's
 // http://developer.apple.com/samplecode/sndequalizer/sndequalizer.html
 int[] EQ_LEVELS = {
 200,
 400,
 800,
 1600,
 3200,
 6400,
 12800,
 21000
 };
 static final Dimension meterMinSize =
 new Dimension (300, 150);
 LevelMeter meter;
 AudioMediaHandler audioMediaHandler;

 public static void main (String[] args) {
 try {
 QTSessionCheck.check();
 Frame f= new LevelMeterPlayer();
 f.pack();
 f.setVisible(true);
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 }

 public LevelMeterPlayer () throws QTException {
 super ("Basic Audio Controls");
 // prompt for audio file
 QTFile file = QTFile.standardGetFilePreview(null);
 OpenMovieFile omf = OpenMovieFile.asRead (file);
 Movie movie = Movie.fromFile (omf);
 MovieController controller = new MovieController (movie);
 // get AudioMediaHandler for first audio track
 for (int i=1; i<=movie.getTrackCount(); i++) {
 Track t = movie.getTrack(i);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Media m = t.getMedia();
 MediaHandler mh = m.getHandler();
 if (mh instanceof AudioMediaHandler) {
 audioMediaHandler = (AudioMediaHandler) mh;
 break;
 }
 }
 if (audioMediaHandler = = null) {
 System.out.println ("No audio track");
 System.exit(-1);
 }
 // add controller to GUI
 setLayout (new BorderLayout());
 Component comp =
 QTFactory.makeQTComponent(controller).asComponent();
 add (comp, BorderLayout.NORTH);
 // add level meter to GUI
 meter = new LevelMeter();
 add (meter, BorderLayout.SOUTH);
 // set up repainting timer
 Timer t = new Timer (50, new ActionListener() {
 public void actionPerformed (ActionEvent ae) {
 meter.repaint();
 }
 });
 t.start();
 }

 class LevelMeter extends Canvas {
 public Dimension getPreferredSize() { return meterMinSize; }
 public Dimension getMinimumSize() { return meterMinSize; }
 public LevelMeter() throws QTException {
 MediaEQSpectrumBands bands =
 new MediaEQSpectrumBands (EQ_LEVELS.length);
 for (int i=0; i<EQ_LEVELS.length; i++) {
 bands.setFrequency (i, EQ_LEVELS[i]);
 audioMediaHandler.setSoundEqualizerBands (bands);
 audioMediaHandler.setSoundLevelMeteringEnabled (true);
 }
 }

 public void paint (Graphics g) {
 int gHeight = this.getHeight();
 int gWidth = this.getWidth();

 // draw baseline
 g.drawLine (0, gHeight, gWidth, gHeight);
 try {
 if (audioMediaHandler != null) {
 int[] levels =
 audioMediaHandler.getSoundEqualizerBandLevels(
 EQ_LEVELS.length);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 int maxHeight = gHeight - 1;
 int barWidth = gWidth / levels.length;
 int segInterval = gHeight / 20;
 for (int i=0; i<levels.length; i++) {
 // calculate height of each set of boxes,
 // proportional to level
 float levPct = ((float)levels[i]) / 255.0f;
 // math is a little weird here; y axis has 0 at top,
 // but we have 0 at bottom of this graph
 int barHeight = (int) (levPct * maxHeight);
 // draw the bar as set of 0-20 rectangles
 int barCount = 0;
 for (int j=maxHeight;
 j > (maxHeight - barHeight);
 j-=segInterval) {
 switch (barCount) {
 case 20:
 case 19:
 case 18:
 g.setColor (Color.red);
 break;
 case 17:
 case 16:
 case 15:
 g.setColor (Color.yellow);
 break;
 default:
 g.setColor (Color.green);
 }
 g.fillRect (i * barWidth,
 j - segInterval,
 barWidth - 1,
 segInterval - 1);
 barCount++;
 }
 }

 }
 } catch (QTException qte) {
 qte.printStackTrace();
 }

 }

 }
}

When run, this example provides the graphics-level display as shown in Figure 7-3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 7-3. Frequency bands displayed as a level meter

7.4.2. What just happened?

This example sets up levels that, according to a demo in the native API, correspond to the same
frequency bands metered by QuickTime Player:

 int[] EQ_LEVELS = {
 200,
 400,
 800,
 1600,
 3200,
 6400,
 12800,
 21000
 };

When the user opens a movie, the program finds the AudioMediaHandler of the first audio track and
calls setSoundEqualizerBands() with these bands. Then it creates an instance of the LevelMeter
inner class, along with a Swing Timer to repaint the level meter every 50 milliseconds.

When the repaint calls the meter's paint() method, it divides its width by the number of bands to

figure out how wide each bar should be. The height takes a little more work: the returned levels are
in the range 0 to 255, so the program calculates a "level percent" float by dividing by 255, then

multiplying this by the height of the component. With the height and width of each frequency band,
the component can draw a set of boxes, up to that height, to represent the band's level.

7.4.3. What about...

...the values passed in for frequencies and the number that can be passed in? Unfortunately, with no
documentation for this feature, there's only trial-and-error to fall back on. One thing I've found is
that you can have only 10 bandsyou can pass in as many frequencies as you want, and you'll get that
many back in the int array returned by getSoundLevelMeterLevels(), but only the first 10 will

have nonzero values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.5. Building an Audio Track from Raw Samples

As I've said many times before: movies have tracks, tracks have media, media have samples. But
what are these samples? In the case of sound, they indicate how much voltage should be applied to a
speaker at an instant of time. By itself, a sample is meaningless, but as a speaker is repeatedly
excited and relaxed, it creates waves of sound that move through the air and can be picked up by the
ear.

So, why would you want to do this? One plausible scenario is that you have code that generates this
uncompressed pulse code modulation (PCM) data, like a decoder for some format that QuickTime
doesn't support. By writing the raw samples to an empty movie, you can expose it to QuickTime and
then play it, export it to QT-supported formats, and use other QuickTime-related functions.

7.5.1. How do I do that?

SoundMedia inherits an addSample() method from the Media class. This can be used to pack
samples into a Media, which in turn can be added to a TRack, which then can be added to a Movie.

But what values do you provide to create an audible sound? The example shown in Example 7-5
creates a square wave at a constant frequency. A square wave is one in which the voltage is either
fully on or completely off. To create a 1000-hertz (Hz) tone, you write samples to alternate between
full voltage and zero voltage, 1,000 times per second. Figure 7-4 shows a graph of sample values for
the square wave.

Note: Run this example with ant run-ch07-audiosamplebuilder.

Figure 7-4. Square wave

Example 7-5. Building audio media by adding samples

package com.oreilly.qtjnotebook.ch07;

import quicktime.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import quicktime.std.*;
import quicktime.std.movies.*;
import quicktime.std.movies.media.*;
import quicktime.io.*;
import quicktime.util.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

public class AudioSampleBuilder extends Object {

static final int SAMPLING = 44100;
static final byte[] ONE_SECOND_SAMPLE = new byte [SAMPLING * 2];
static final int FREQUENCY = 262;

public static void main (String[] args) {
 try {
 QTSessionCheck.check();

 QTFile movFile = new QTFile (new java.io.File("buildaudio.mov"));
 Movie movie =
 Movie.createMovieFile(movFile,
 StdQTConstants.kMoviePlayer,
 StdQTConstants.createMovieFileDeleteCurFile |
 StdQTConstants.createMovieFileDontCreateResFile);

 System.out.println ("Created Movie");

 // create an empty audio track
 int timeScale = SAMPLING; // 44100 units per second
 Track soundTrack = movie.addTrack (0, 0, 1);

 System.out.println ("Added empty Track");

 // create media for this track
 Media soundMedia = new SoundMedia (soundTrack,
 timeScale);
 System.out.println ("Created Media");

 // add samples
 soundMedia.beginEdits();

 // see native docs for other format consts
 int format = QTUtils.toOSType ("NONE");

 SoundDescription soundDesc = new SoundDescription(format);
 System.out.println ("Created SoundDescription");

 soundDesc.setNumberOfChannels(1);
 soundDesc.setSampleSize(16);
 soundDesc.setSampleRate(SAMPLING);

 for (int i=0; i<5; i++) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // build the one-second sample
 QTHandle mediaHandle = buildOneSecondSample (i);

 soundMedia.addSample(mediaHandle, // QTHandleRef data,
 0, // int dataOffset,
 mediaHandle.getSize(), // int dataSize,
 1, // int durationPerSample,
 soundDesc, // SampleDescription sampleDesc,
 SAMPLING, // int numberOfSamples,
 0 // int sampleFlags)
);
 }

 // finish editing and insert media into track
 soundMedia.endEdits();
 System.out.println ("Ended edits");
 soundTrack.insertMedia (0, // trackStart
 0, // mediaTime
 soundMedia.getDuration(), // mediaDuration
 1); // mediaRate
 System.out.println ("inserted media");

 // save up
 System.out.println ("Saving...");
 OpenMovieFile omf = OpenMovieFile.asWrite (movFile);
 movie.addResource (omf,
 StdQTConstants.movieInDataForkResID,
 movFile.getName());
 System.out.println ("Done");

 System.exit(0);

 } catch (QTException qte) {
 qte.printStackTrace();
 }
} // main

/** Fill ONE_SECOND_SAMPLE with two-byte samples, according
 to some scheme (like square wave, sine wave, etc.)
 then wrap with QTHandle
 */
public static QTHandle buildOneSecondSample (int inTime)
 throws QTException {
 // convert inTime to sample count (i.e., how many samples
 // past 0 we are)
 int wavelengthInSamples = SAMPLING / FREQUENCY;
 int halfWavelength = wavelengthInSamples / 2;
 int sample = inTime * SAMPLING;
 for (int i=0; i<SAMPLING*2; i+=2) {
 int offset = sample % wavelengthInSamples;
 // square wave - bytes are either 7fff or 0000
 if (offset < halfWavelength) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ONE_SECOND_SAMPLE[i] = (byte) 0x7f;
 ONE_SECOND_SAMPLE[i+1] = (byte) 0xff;
 } else {
 ONE_SECOND_SAMPLE[i] = (byte) 0x00;
 ONE_SECOND_SAMPLE[i+1] = (byte) 0x00;
 }
 sample ++;
 }
 return new QTHandle (ONE_SECOND_SAMPLE);
}
}

Note: Run this example with ant-ch07-audiosamplebuilder.

When run, this creates a five-second, audio-only movie file called buildaudio.mov. Open it in
QuickTime Player or an equivalent (like the level meter player from the previous lab) to listen to the
file.

Note: Square waves are not easy on the ears. Turn down your speakers or headphones before you play this file.

7.5.2. What just happened?

Two constants at the beginning define important values. SAMPLING is the number of samples to be

played every second. This example uses 44,100, which is the same as on a compact disc.

Tip: An important consideration for choosing a sampling frequency is the Nyquist-Shannon Sampling Theorem, which states that you

need to sample at a rate double the highest frequency you want to capture. So, a sampling rate of 44,100 will properly reproduce

frequencies less than 22,050 Hz. Given that human hearing typically ranges from 20 to 20,000 Hz, this effectively covers any humanly

audible sound.

The FREQUENCY constant is the frequency of the sound wave to be produced. This example uses 262,

which is approximately middle C on a piano.

Note: To be more precise, middle C is approximately 261.625565 Hz.

To start writing samples, you need a SoundMedia object and a place to put your data. The example

does this by:

Creating a new Movie with createMovieFile() . Using this approachinstead of the no-arg
Movie constructorhas the benefit of indicating where the samples are to be stored.

1.

Adding a new track to the movie, with no size, and a volume of 1 (full volume).2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

Creating a new SoundMedia object. This constructor takes the track the media is associated

with and a time scale for the media. In this case, 44,100 is a good choice because then each
sample will correspond to one unit of the media's time scale. You could use higher values, but
not lower ones, because a sample can't be expressed as less than one unit of the time scale.

3.

Calling beginEdits() on the media to indicate that the program will be making changes to the

media.

4.

Most of the rest of the code in the example has to do with setting up the call to addSample(), which

is somewhat tricky. The method takes seven arguments:

A QTHandleRef that points to the data to be added

An offset into the handle

The size of the data to be inserted

The durationPerSamplehow much time the sample represents, in the media's time scale

A SampleDescription to describe the data in the handle

The number of samples being added with this call

Behavior flags

Note: See Chapter 2 for more on time scales.

The first thing to do is to create a SampleDescription that can be reused on every call to
addSample(). To do this, create a SoundDescription object. The constructor takes a "format"
FOUR_CHAR_CODE, which for uncompressed data is "NONE".

Tip: Other valid formats are defined in "QuickTime API Reference: S0und Formats" on Apple's developer site.

Next, you customize the SampleDescription object with some setter methods to indicate the

number of channels, the size of each sample in bits, and the sampling frequency. For this example, I
used one channel and 16 bits per sample. This means that when the byte array with the data is
parsed, QuickTime will take the data 2 bytes at a time and assume it to be a 16-bit value. If there
were two channels, there would be 4 bytes per sample: two 2-byte samples, one for each speaker.

You might expect that you'd then simply loop through, adding one sample at a time to the Media and

creating one second of audio every 44,100 times through the loop. Although this is legal, the
resulting file won't actually play. The problem is that QuickTime wants you to put audio data in larger
and more manageable chunks. To quote from the native AddMediaSample docs:

You should set the value of this parameter so that the resulting sample size represents a
reasonable compromise between total data retrieval time and the overhead associated with
input and output. [. . .] For a sound media, choose a number of samples that corresponds to
between 0.5 and 1.0 seconds of sound. In general, you should not create groups of sound
samples that are less than 2 KB in size or greater than 15 KB.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

So, in this example, I've created a byte array to represent one second of samples, which is filled in a
method called buildOneSecondSample(). This method figures out where the waveform is at each
sample time and writes either 0x7fff or 0x0000 to each 2-byte pair. Because the "NONE" format
assumes signed shorts, 0x7fff is the maximum, not 0xffff.

With the byte array filled, you can wrap it with a QTHandle, and you're ready to call addSample() .

The call looks like this:

soundMedia.addSample(mediaHandle, // QTHandleRef data,
 0, // int dataOffset,
 mediaHandle.getSize(), // int dataSize,
 1, // int durationPerSample,
 soundDesc, // SampleDescription sampleDesc,
 SAMPLING, // int numberOfSamples,
 0 // int sampleFlags)
);

Once you're done adding samples, it's cleanup time. You use endEdits() to tell the Media you're
done editing, then actually put the media into the track with TRack.insertMedia() , which tells the

track what parts of the media object to use and where it goes relative to the track's time scale.
Finally, the movie is written to disk with the curiously named Movie.addResource() .

7.5.3. What about...

...some other kind of wave because hearing that square wave is really unpleasant? A sine wave offers
a nicer alternative, because it is much more like a naturally occurring sound. Figure 7-5 shows what
its waveform looks like.

Figure 7-5. Sine wave

The following alternate implementation of buildOneSecondSample() produces a sine waveI didn't

want to put it in the preceding example, which is already complicated enough without having to use
trigonometry, like this does:

public static QTHandle buildOneSecondSample (int inTime)
 throws QTException {
 // convert inTime to sample count (i.e., how many samples
 // past 0 we are)
 int wavelengthInSamples = SAMPLING / FREQUENCY;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 int sample = inTime * SAMPLING;
 double twoPi = 2 * Math.PI;
 double radiansPerSample = twoPi / wavelengthInSamples;
 // each sample should be one n/th of twoPi

 for (int i=0; i<SAMPLING*2; i+=2) {
 int offset = sample % wavelengthInSamples;
 // sine wave
 double angle = offset * radiansPerSample;
 double sine = Math.sin (angle);
 // sines are -1<x<1. we want from 0 to 0x7fff
 double heightD = (sine + 1) * (0x7fff / 2);
 // cast to int and fix endianness if on little (x86, etc.)
 short height = (short) heightD;
 // pack this into array as two bytes
 ONE_SECOND_SAMPLE [i] = (byte) ((height & 0xff00) >> 8);
 ONE_SECOND_SAMPLE [i+1] = (byte) (height & 0xff);
 sample ++;
 }
 return new QTHandle (ONE_SECOND_SAMPLE);
}

This implementation calculates the width of a wavelength in samples, then divides that into equal
segments of a 2 radius for its calls to Math.sin() . The returned values are then translated so that
instead of running from -1.0 to 1.0, they run from 0 to 0x7fff.

It's also worth noting that the middle C sine wave is pretty hard to hear over basic computer
speakers. You might have better results with a frequency of 440, which is the A above middle C.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. Video Media
It probably seems like half of this book has already been about videoI've assumed you had video
media for the chapters on playback, editing, and components (Chapter 2 and Chapter 4), even
though the material there would be perfectly well suited for use on audio-only media like MP3 files.
Well, this chapter is only about video, showing a handful of useful tricks for working with video.

Because video is simply a progression of images, alternated quickly enough to suggest movement,
you probably won't be too surprised to know that the material covered in the QuickDraw graphics
chapter (Chapter 5) pays off in this chapter. QuickDraw and QD-like APIs are the means by which
you create and/or manipulate video media. If you skipped that chapter and have problems herein
with QDGraphics (a.k.a. GWorlds), Matrixes, GraphicsImporters, or compression, you might need

to check back there. But I'll try to keep things fairly self-explanatory.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1. Combining Video Tracks

It's not hard to understand how two audio tracks can coexist in a moviethe sounds are mixed and
played together. But the idea of combining video tracks is less intuitive.

By default, if you have two video tracks of the same size in a movie, one will totally overlap the
other. But you can change the default behavior by specifying 2D transformations with Matrix

objects, and the Z-axis ordering by setting "layering" behavior.

One way to play with Matrix-based spatial arrangement is to set up a picture-in-picture movie. In

such a movie, the foreground video is scaled and moved into a corner relative to the background
video.

8.1.1. How do I do that?

To do a picture-in-picture effect, you must have a movie with two video tracks and you must do
three things to the foreground video track:

Scale it to a size smaller than the background track.

Optionally move it to a location other than (0,0).

Set layering to ensure it appears above the background track.

Fortunately, a few methods in the track class provide all of this. The application in Example 8-1

brings up a window with a picture-in-picture effect achieved with matrix transformations and
layering.

Note: Run this example from the downloaded book code with ant run-ch08-matrixvideotracks.

Example 8-1. Matrix-based video picture-in-picture

package com.oreilly.qtjnotebook.ch08;

import quicktime.*;
import quicktime.std.*;
import quicktime.std.movies.*;
import quicktime.std.movies.media.*;
import quicktime.std.image.*;
import quicktime.io.*;
import quicktime.qd.*;
import quicktime.util.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import quicktime.app.view.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

import java.awt.*;

public class MatrixVideoTracks extends Frame {

static Movie foreMovie, backMovie;

public static void main(String[] args) {
 try {
 QTSessionCheck.check();
 // get background movie
 QTFile file =
 QTFile.standardGetFilePreview (QTFile.kStandardQTFileTypes);
 OpenMovieFile omf = OpenMovieFile.asRead(file);
 backMovie = Movie.fromFile (omf);
 // get foreground movie
 file = QTFile.standardGetFilePreview (QTFile.kStandardQTFileTypes);
 omf = OpenMovieFile.asRead(file);
 foreMovie = Movie.fromFile (omf);
 // get frame
 Frame frame = new MatrixVideoTracks (backMovie, foreMovie);
 frame.pack();
 frame.setVisible (true);
 } catch (QTException qte) {
 qte.printStackTrace();
 }
}

public MatrixVideoTracks (Movie backMovie, Movie foreMovie)
 throws QTException {
 super ("Matrix Video Tracks");
 Movie matrixMovie = new Movie();
 // build tracks
 Track foreTrack = addVideoTrack (foreMovie, matrixMovie);
 Track backTrack = addVideoTrack (backMovie, matrixMovie);
 // set matrix transformation
 Matrix foreMatrix = new Matrix();
 // set matrix to move fore to bottom right 1/4 or back
 QDRect foreFrom =
 new QDRect (0, 0,
 foreTrack.getSize().getWidth(),
 foreTrack.getSize().getHeight());
 QDRect foreTo =
 new QDRect (backTrack.getSize().getWidth() / 2,
 backTrack.getSize().getHeight() / 2,
 backTrack.getSize().getWidth() / 2,
 backTrack.getSize().getHeight() / 2);
 System.out.println ("foreTo is = " + foreTo);
 foreMatrix.rect (foreFrom, foreTo);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 foreTrack.setMatrix (foreMatrix);
 // set foreTrack's layer
 foreTrack.setLayer (-1);
 // now get component and add to frame
 MovieController controller = new MovieController(matrixMovie);
 Component c = QTFactory.makeQTComponent(controller).asComponent();
 add (c);
}

public Track addVideoTrack (Movie sourceMovie, Movie targetMovie)
 throws QTException {
 // find first video track
 Track videoTrack =
 sourceMovie.getIndTrackType (1,
 StdQTConstants.videoMediaType,
 StdQTConstants.movieTrackMediaType);
 if (videoTrack = = null)
 throw new QTException ("can't find a video track");
 // add videoTrack to targetMovie
 Track newTrack =
 targetMovie.newTrack (videoTrack.getSize().getWidthF(),
 videoTrack.getSize().getHeightF(),
 1.0f);
 VideoMedia newMedia =
 new VideoMedia (newTrack,
 videoTrack.getMedia().getTimeScale(),
 new DataRef(new QTHandle()));
 videoTrack.insertSegment (newTrack,
 0,
 videoTrack.getDuration(),
 0);
 return newTrack;
}
}

When this is run, the user is shown two consecutive movie-opening dialogs, for the background and
foreground movies, respectively. Assuming that both have video tracks, the result looks like Figure 8-
1.

Note: This example looks for a track with video media, so don't use audio-only files, or MPEG-1, which has a special "MPEG media"

track instead of video.

8.1.2. What just happened?

After the two movies are loaded, this demo creates a new empty target movie and, through a
convenience method called addVideoTrack(), finds the video tracks of the selected movies, creates
new video tracks in the target movie, and inserts the VideoMedia from the source movies. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

produces a movie with two concurrent video tracks.

Figure 8-1. Matrix-based transformation of foreground video track

To scale and move the foreground track, you use a Matrix transformation. In this case, the example

takes the background movie's video track size and finds its center point, then sets up a destination
rectangle with that point as its upper-left corner, with width and height equal to half the foreground's
width and height, respectively. Finally, it tells the foreground track to use this matrix by calling
track.setMatrix() :

Note: Chapter 5 introduced Matrix. It's a mathematical object used in QuickTime to describe 2D transformations like scaling, rotation,

etc.

QDRect foreFrom =
 new QDRect (0, 0,
 foreTrack.getSize().getWidth(),
 foreTrack.getSize().getHeight());
QDRect foreTo =
 new QDRect (backTrack.getSize().getWidth() / 2,
 backTrack.getSize().getHeight() / 2,
 backTrack.getSize().getWidth() / 2,
 backTrack.getSize().getHeight() / 2);
foreMatrix.rect (foreFrom, foreTo);
foreTrack.setMatrix (foreMatrix);

Next, to ensure that the foreground track draws above the backgroundif it doesn't, all this matrix
work will be wastedthe demo calls TRack.setLayer(-1) . The layers are numbered from -32,767 to

32,767, with lower-numbered layers appearing above higher-numbered layers. The background track
keeps its default layer, 0, so setting the foreground to -1 forces it to be on top.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1.3. What about...

...the point of this? Am I really ever going to want to overlay video tracks? It's more common than
you might think. Consider Apple's iChat AV applicationit uses a very similar picture-in-picture effect,
so you can see yourself when you videoconference with a friend.

But there's one other interesting thing that iChat AV does: it shows the video of you as a mirror
image. This, presumably, is more natural for usersif you raise your right hand, it somehow makes
more sense to see your hand go up on the right side of the preview window, even if that's not what
the camera is really seeing. Fortunately, a mirror image is really simple to do with a Matrix

transformation.

In the preceding example, add the following two lines right after the Matrix is created:

foreMatrix.scale (-1, 1, 0, 0);
foreMatrix.translate ((float) foreTrack.getSize().getWidth(), 0f);

The scale() call makes the matrix multiply all pixels by -1, effectively "flipping" them around the x-

axis. The y-coordinates are unchanged, so the scaling factor there is 1. The last two arguments
define the "anchor point." By using 0, this says "flip around the x-axis" (the y-coordinate is similar
but irrelevant here). Given an image width of w, this scaling operation makes the pixels run from -w
to 0. The translate() call moves the coordinates back into positive coordinate space. Figure 8-2

shows this transformation conceptually.

Figure 8-2. Matrix-based mirror image transformation steps: original,
scaled by x-factor of -1, translated by adding width

For this to work you also need to change the Matrix.rect() call to Matrix.map(). rect() clears

out any previous transformations, essentially defining a new matrix that represents only the
translate-and-scale from one rectangle to another, while map() maintains the previous

transformations and then applies the translate-and-scale.

Figure 8-3 shows the demo running with this mirror image added to the foreground transformation.
For this figure, I've used the same video source for foreground and background, to make the mirror
transformation more obvious.

Figure 8-3. Matrix-based mirror image of foreground video track

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This mirror effect is pretty handy, and you might use it all by itself for doing something like a capture
preview. Because the Matrix can be used on movie tracks, GraphicsImporters, and various other
parts of the QuickTime API, mastering Matrix transformations will get you pretty far.

Note: Did you notice the capture settings dialog in Chapter 6 showed a mirror image? You could use a Matrix to make the motion

detector in that chapter render a mirror image, too.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2. Overlaying Video Tracks

When one video track is drawn on top of another, the top doesn't necessarily have to obscure the
bottom. QuickTime gives you the option of specifying a GraphicsMode to combine pixels from

multiple video layers to create interesting effects.

8.2.1. How do I do that?

You can create a GraphicsMode object to describe the means of combining overlapping colors. To try
it out, take the previous lab's code and replace all the matrix stuff (after the foreTrack and
backTrack are created, but before the MovieController is created) with the following:

GraphicsMode gm = new GraphicsMode (QDConstants.addMax,
 QDColor.green);
VisualMediaHandler foreHandler =
 (VisualMediaHandler) foreTrack.getMedia().getHandler();
foreHandler.setGraphicsMode(gm);
foreTrack.setLayer(-1);

Note: Run this example with ant run-ch08-composit-evideotracks.

When run, this sample program asks you to open two movies, then creates a new movie with video
tracks from the source movies' media, and combines the pixels of the foreground movie with the
background, so the foreground appears atop the background. The result is shown in Figure 8-4.

Figure 8-4. Composited video tracks with addMax graphics mode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2.2. What just happened?

Setting a GraphicsMode instructs QuickTime to apply a specific behavior to combine overlapping
pixels. The GraphicsMode has a "mode" int, which indicates which kind of behavior to use, and a
QDColor that is used by some behaviors to indicate a color to operate on. For example, you might
use mode QDConstants.transparent and QDColor.green to make all green pixels transparent. The
default mode is srcCopy, which simply copies one set of pixels on top of another.

Note: Chapter 5 showed how to set up GraphicsMode compositing of still images. Video works in pretty much the same way.

To apply this GraphicsMode to overlapping video tracks, you call setGraphicsMode() , a method
not defined by track but, rather, by the VideoMediaHandler. As a reminder, movies have tracks,
tracks have media, and media have handlers. Actually, the setGraphicsMode() is defined by the
VisualMediaHandler interface, making it available for all visual media (MPEGMedia, TextMedia,

etc.).

The addMax behavior combines background and foreground pixels, using the maximum red, green,

and blue values of each. This has the effect of producing something of a washed-out combination of
the two video tracks, because bright colors in either source will be copied over to the screen.

The available QDConstant modes offer several dozen behaviorscheck them out in the QuickTime

documentation by searching Apple's site for "Graphics Transfer Modes"though some of them aren't
suitable for color images, and many of them produce garish results with real-world video. For
example, Figure 8-5 shows the rather psychedelic effect of using the srcBic mode.

Figure 8-5. Composited video tracks with srcBic graphics mode

8.2.3. What about...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

...practical uses for this? Granted, compositing two full-frame natural images is atypical, but
composited video is used all the time in TV production. Modern video often represents many layers of
overlapping sources. Watch a football game and you might see a shot of the game, overlaid by a
graphic of a player and his stats (and maybe a video "head shot" of him), overlaid with a scoreboard
for the corner, overlaid with a moving "bug" of the network's logo in another corner. Each source
contains some amount of "useful" video, and the rest is a solid color (often black for synthetic video,
green or blue for real-world video). The solid color becomes transparent, so only the useful data is
copied over to the target. In terms of GraphicsModes, this would be the transparent mode, with the

specified color as the operand.

Tip: If you're serious about shooting bluescreen video, there are sites on the Internet that list the supplies you'll need. For example,

http://www.studiodepot.com/ sells chroma-key-friendly fabric and tape for making bluescreen and greenscreen backdrops.

http://www.studiodepot.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3. Building a Video Track from Raw Samples

You can create a video track "from scratch" by adding video samples, one by one, to the video media.
This is perhaps the ultimate in low-level access to QuickTime video, because it makes you responsible
for every pixel in every frame. One way to demonstrate this is by making a movie from a still image and
using slightly different parts of it in each frame to suggest a camera moving across the image.

Tip: This concept is called the "Ken Burns Effect" in Apple's iMovie, after the documentary filmmaker who used the technique extensively in

documentaries like The Civil War , for which no film or video sources were available.

8.3.1. How do I do that?

To build a movie from samples taken from an image, use the following approach:

Import an image.1.

Pick source and destination rectangles.2.

Calculate a series of rectangles between the source and destination. These represent which part of
the source image will be used for each frame.

3.

Create an empty movie, new video track, and new video media.4.

Use a Matrix to convert each source rectangle to the size of the movie.5.

Compress each frame and add it to the VideoMedia .6.

You might already know how to do some of this; the new part is how to compress frames into a movie.
Chapter 5 made use of the QTImage.compress() method to compress QDGraphics (a.k.a. GWorld s)
into EncodedImage s, but video is a little different in that you use a CSequence , short for compression

sequence . The difference is that in many video compression formats, you may need information from
previous or subsequent frames to render a specific frame. In other words, some frames are encoded as
just the data that has changed from a previous frame. So, you can't compress a single image in
isolation; you must work with a sequence of images. This is called temporal compression because it is
time-based.

The VideoSampleBuilder demo, shown in Example 8-2 , creates a movie called videotrack.mov from a

source graphic.

Tip: This is the most involved example in the book and uses concepts from several chapters, such as enabling editing and adding a new

track (Chapter 3), using a GraphicsImporter (Chapter 4), setting up an off-screen GWorld (Chapter 5), using Matrix -

based image manipulation (Chapter 5 and this chapter), and adding raw samples to a Media (a sound equivalent was shown in Chapter 7

). So, don't be intimidated if it seems a little complicated the first time you read it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 8-2. Building a video track from image samples

package com.oreilly.qtjnotebook.ch08;

import quicktime.*;
import quicktime.io.*;
import quicktime.util.QTPointer;
import quicktime.qd.*;
import quicktime.std.*;
import quicktime.std.movies.*;
import quicktime.std.movies.media.*;
import quicktime.std.image.*;
import quicktime.util.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

import java.io.*;
import java.util.Random;
import java.util.Properties;

public class VideoSampleBuilder extends Object {

 public static final int VIDEO_TRACK_WIDTH = 320;
 public static final int VIDEO_TRACK_HEIGHT = 240;
 public static final int VIDEO_TRACK_VOLUME = 0;
 public static final int KEY_FRAME_RATE = 30;

 Properties userProps = new Properties();
 QDRect startRect = null;
 QDRect endRect = null;

 public VideoSampleBuilder() throws QTException, IOException {

 /* try to load "videoSampleBuilder.properties" from
 current directory. this contains file.location and
 start.x/y/width/height and end.x/y/width/height params
 */
 try {
 userProps.load (new FileInputStream (
 new File ("videosamplebuilder.properties")));
 System.out.println ("Loaded properties");
 } catch (Exception e) {
 System.out.println ("Couldn't load properties");
 }

 int CODEC_TYPE = QTUtils.toOSType ("SVQ3");

 // create a new empty movie
 QTFile movFile = new QTFile (new java.io.File("videotrack.mov"));
 Movie movie =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Movie.createMovieFile(movFile,
 StdQTConstants.kMoviePlayer,
 StdQTConstants.createMovieFileDeleteCurFile |
 StdQTConstants.createMovieFileDontCreateResFile);
 System.out.println ("Created Movie");

 // now create an empty video track
 int timeScale = 600; // 100 units per second
 Track videoTrack = movie.addTrack (VIDEO_TRACK_WIDTH,
 VIDEO_TRACK_HEIGHT,
 VIDEO_TRACK_VOLUME);
 System.out.println ("Added empty Track");

 // now we need media for this track
 VideoMedia videoMedia = new VideoMedia(videoTrack,
 timeScale);

 // get image file from props or dialog
 QTFile imgFile = getImageFile();
 if (imgFile = = null)
 return;

 // get a GraphicsImporter
 GraphicsImporter importer = new GraphicsImporter (imgFile);
 System.out.println ("Got GraphicsImporter - Bounds are " +
 importer.getNaturalBounds());

 // Create an offscreen QDGraphics / GWorld that's the
 // size of our frames. Importer will draw into this,
 // and we'll then hand it to the CSequence
 QDGraphics gw =
 new QDGraphics (new QDRect (0, 0,
 VIDEO_TRACK_WIDTH,
 VIDEO_TRACK_HEIGHT));
 System.out.println ("Created GWorld, - Bounds are " +
 gw.getBounds());

 // get start, end rects
 getRects (importer);
 System.out.println ("startRect = " + startRect);
 System.out.println ("endRect = " + endRect);

 // set importer's gworld
 importer.setGWorld (gw, null);
 System.out.println ("Reset importer's GWorld, now: " +
 importer.getGWorld());

 // get to work
 videoMedia.beginEdits();

 // figure out per-frame offsets
 QDRect gRect = new QDRect (0, 0,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 VIDEO_TRACK_WIDTH,
 VIDEO_TRACK_HEIGHT);
 int frames = 300;
 int startX = startRect.getX();
 int startY = startRect.getY();
 int endX = endRect.getX();
 int endY = endRect.getY();
 float xOffPerFrame = ((float)(endX - startX) / (float)frames);
 float yOffPerFrame = ((float)(endY - startY) / (float)frames);
 float widthOffPerFrame = ((float) (endRect.getWidth() -
 startRect.getWidth()) /
 (float) frames);
 float heightOffPerFrame = ((float) (endRect.getHeight() -
 startRect.getHeight()) /
 (float) frames);

 System.out.println ("xOffPerFrame=" + xOffPerFrame +
 ", yOffPerFrame=" + yOffPerFrame +
 ", widthOffPerFrame=" + widthOffPerFrame +
 ", heightOffPerFrame=" + heightOffPerFrame);

 // reserve an image with enough space to hold compressed image
 // this is needed by the last arg of CSequence.compressFrame
 int rawImageSize =
 QTImage.getMaxCompressionSize (gw,
 gRect,
 gw.getPixMap().getPixelSize(),
 StdQTConstants.codecNormalQuality,
 CODEC_TYPE,
 CodecComponent.bestFidelityCodec);
 QTHandle imageHandle = new QTHandle (rawImageSize, true);
 imageHandle.lock();
 RawEncodedImage compressedImage =
 RawEncodedImage.fromQTHandle(imageHandle);

 // create a CSequence
 CSequence seq = new CSequence (gw,
 gRect,
 gw.getPixMap().getPixelSize(),
 CODEC_TYPE,
 CodecComponent.bestFidelityCodec,
 StdQTConstants.codecNormalQuality,
 StdQTConstants.codecNormalQuality,
 KEY_FRAME_RATE,
 null,
 StdQTConstants.codecFlagUpdatePrevious);

 // remember an ImageDescription from this sequence definition
 ImageDescription imgDesc = seq.getDescription();

 // loop through the specified number of frames, drawing
 // scaled instances into our GWorld and compressing those

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // to the CSequence
 for (int i=1; i<frames; i++) {
 System.out.println ("i= =" + i);

 // compute a rect for this frame
 int x = startX + (int) (xOffPerFrame * i);
 int y = startY + (int) (yOffPerFrame * i);
 int width = startRect.getWidth() + (int) (widthOffPerFrame * i);
 int height = startRect.getHeight() + (int) (heightOffPerFrame * i);
 QDRect fromRect = new QDRect (x, y, width, height);

 // create a Matrix to represent the move/scale from
 // the fromRect to the GWorld and make importer use it
 Matrix drawMatrix = new Matrix();
 drawMatrix.rect (fromRect, gRect);
 System.out.println ("fromRect = " + fromRect);
 importer.setMatrix (drawMatrix);

 // have importer draw (scaled) into our GWorld
 importer.draw();
 System.out.println ("Importer drew");

 // compress a frame
 CompressedFrameInfo cfInfo =
 seq.compressFrame (gw,
 gRect,
 StdQTConstants.codecFlagUpdatePrevious,
 compressedImage);
 System.out.println ("similarity = " + cfInfo.getSimilarity());

 // is this a key frame?
 boolean syncSample = (cfInfo.getSimilarity() = = 0);
 int flags = syncSample ? 0 : StdQTConstants.mediaSampleNotSync;

 // add compressed frame to the video media
 videoMedia.addSample (imageHandle,
 0,
 cfInfo.getDataSize(),
 20, // time per frame, in timescale
 imgDesc,
 1, // one sample
 flags
);
 } // for

 // done editing
 videoMedia.endEdits();

 // now insert this media into track
 videoTrack.insertMedia (0, // trackStart
 0, // mediaTime
 videoMedia.getDuration(), // mediaDuration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1); // mediaRate
 System.out.println ("inserted media into video track");

 // save up
 System.out.println ("Saving...");
 OpenMovieFile omf = OpenMovieFile.asWrite (movFile);
 movie.addResource (omf,
 StdQTConstants.movieInDataForkResID,
 movFile.getName());
 System.out.println ("Done");

 }

 /** Gets imageFile from props file, or file-preview if
 that doesn't work.
 */
 protected QTFile getImageFile () throws QTException {
 // is it in the props?
 QTFile imageFile = null;
 if (userProps.containsKey ("file")) {
 imageFile = new QTFile (userProps.getProperty("file"));
 if (! imageFile.exists())
 imageFile = null;
 }

 // if not, or if that failed, then use a dialog
 if (imageFile = = null) {
 int[] types = { };
 imageFile = QTFile.standardGetFilePreview (types);
 }
 return imageFile;
 }

 /** Gets startRect, endRect from userProps, or selects
 randomly if that doesn't work
 */
 protected void getRects (GraphicsImporter importer) throws QTException {
 Random rand = new Random();
 int rightStop =
 importer.getNaturalBounds().getWidth() - VIDEO_TRACK_WIDTH;
 int bottomStop =
 importer.getNaturalBounds().getHeight() - VIDEO_TRACK_HEIGHT;

 // try to get startRect from userProps
 try {
 int startX = Integer.parseInt (userProps.getProperty("start.x"));
 int startY = Integer.parseInt (userProps.getProperty("start.y"));
 int startWidth =
 Integer.parseInt (userProps.getProperty("start.width"));
 int startHeight =
 Integer.parseInt (userProps.getProperty("start.height"));
 startRect = new QDRect (startX, startY, startWidth, startHeight);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } catch (Exception e) {
 // make random start rect
 int startX = Math.abs (rand.nextInt() % rightStop);
 int startY = Math.abs (rand.nextInt() % bottomStop);
 startRect = new QDRect (startX, startY,
 VIDEO_TRACK_WIDTH,
 VIDEO_TRACK_HEIGHT);
 }

 // try to get endRect from userProps
 try {
 int endX = Integer.parseInt (userProps.getProperty("end.x"));
 int endY = Integer.parseInt (userProps.getProperty("end.y"));
 int endWidth = Integer.parseInt (userProps.getProperty("end.width"));
 int endHeight = Integer.parseInt (userProps.getProperty("end.height"));
 endRect = new QDRect (endX, endY, endWidth, endHeight);

 } catch (Exception e) {
 float zoom = (rand.nextFloat() - 0.5f); // -0.5 <= zoom <= 0.5
 System.out.println ("zoom = " + zoom);
 int endX = Math.abs (rand.nextInt() % rightStop);
 int endY = Math.abs (rand.nextInt() % bottomStop);
 endRect = new QDRect (endX, endY,
 VIDEO_TRACK_WIDTH * zoom,
 VIDEO_TRACK_HEIGHT * zoom);
 }
 }

 public static void main (String[] arrrImAPirate) {
 try {
 QTSessionCheck.check();
 new VideoSampleBuilder();
 } catch (Exception e) {
 e.printStackTrace();
 }
 System.exit(0);
 }
}

Note: Run this demo with ant run-ch08-videosamplebuilder .

When run, the demo looks for a file called videosamplebuilder.properties , in which you can define the
source image and the start and end rectangles. The properties file should have entries like this:

file=/Users/cadamson/Pictures/keagy/DSC01763.jpg

start.x=545
start.y=370
start.width=1500
start.height=1125

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end.x=400
end.y=390
end.width=800
end.height=600

If no properties file is found, the demo queries the user for an image and randomly selects the start and
end rectangles.

As each frame is compressed, the program prints an update to the console indicating the frame count,
the source frame, and how "similar" the CSequence decided the frame was to its predecessor. The

console log looks something like this:

cadamson% ant run-ch08-videosamplebuilder
Buildfile: build.xml

run-ch08-videosamplebuilder:
 [java] Couldn't load properties
 [java] Created Movie
 [java] Added empty Track
 [java] Got GraphicsImporter - Bounds are quicktime.qd.QDRect[x=0.0,y=0.0,width=800.0,
height=600.0]
 [java] Created GWorld, - Bounds are quicktime.qd.QDRect[x=0.0,y=0.0,width=320.0,
height=240.0]
 [java] zoom = -0.45799363
 [java] startRect = quicktime.qd.QDRect[x=158.0,y=30.0,width=320.0,height=240.0]
 [java] endRect = quicktime.qd.QDRect[x=282.0,y=158.0,width=146.55795,height=109.91846]
 [java] Reset importer's GWorld, now: quicktime.qd.QDGraphics@8f10820[size=108]
[PortRect=quicktime.qd.QDRect[x=0.0,y=0.0,width=320.0,height=240.0],isOffscreen=true]
 [java] xOffPerFrame=0.41333333, yOffPerFrame=0.42666668, widthOffPerFrame=-0.58,
heightOffPerFrame=-0.43666667
 [java] i= =1
 [java] fromRect = quicktime.qd.QDRect[x=158.0,y=30.0,width=320.0,height=240.0]
 [java] Importer drew
 [java] similarity = 0
 [java] i= =2
 [java] fromRect = quicktime.qd.QDRect[x=158.0,y=30.0,width=319.0,height=240.0]
 [java] Importer drew
 [java] similarity = 128

When finished, you can play the videotrack.mov file in QuickTime Player, the player and editor examples
in Chapters Chapter 2 and Chapter 3 , or equivalent. Figure 8-6 shows two screenshots from different
times in the movie to indicate the zoom effect that is created by using different parts of the picture.

Figure 8-6. Movie built via addSample() from portions of a static image

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3.2. What just happened?

One of the first things to notice is the constant CODEC_TYPE , which is used later on in setting up the
CSequence . This indicates which of the supported QuickTime video codecs is to be used for the video
track. The codec is indicated by a FOUR_CHAR_CODE int , in this case "SVQ3 ", which identifies the
Sorenson Video 3 codec. Most of the usable codecs exist as constants in the StdQTConstants classesfor
example, I could have put this as StdQTConstants6.kSorenson3CodecType . The advantage of using
the FOUR_CHAR_CODE directly is that you can use any supported codec, even those that don't have

constants defined in QTJ yet. In fact, Sorenson Video 3 and MPEG-4 video
(StdQTConstants6.kMPEG4VisualCodecType) didn't have constants in QTJ until I filed a bug report for
them, and the Pixlet codec (whose 4CC is "pxlt ") still doesn't, as of this writing.

Tip: "So, what's the best codec?" I hear someone asking. Don't go there. There's no such thing as a best codec. There are so many different

codecs, because they're engineered to serve different purposes. For example, some codecs are difficult to compress (in terms of CPU

power, encoder expertise, etc.) but easy to decompress, making them well suited for mass-distribution media like DVDs where the encoding

is done only once. On the other hand, a codec used for video conferencing must be light enough to do on the fly, with minimal configuration.

Others are tuned to specific bitrates and uses, losing their advantages outside their preferred realm. The new MPEG-4 codec, H.264 (AVC),

claims to be able to scale from cell phone to HDTV bandwidths...we'll see if it delivers on this.

To build the image movie, create an empty movie file, add a track, and create a VideoMedia for the
track. You do this by creating a Movie with the constructor that takes a file reference (so that QuickTime
knows where to put the samples you'll be adding), calling Movie.addTrack() to create the track, and
constructing a VideoMedia . Then call Media.beginEdits() to signal that you're going to be altering
the VideoMedia .

Note: These steps are similar to those in Chapter 7 s square-wave sample-building example .

The next step is to get the image with a GraphicsImporter . This will be the source of every frame of
the movie. However, it's not the right size. So create an off-screen QDGraphics (a.k.a. GWorld , the

term used in the native API and all its getters and setters in QTJ) with the desired movie dimensions. By
calling GraphicsImporter.setGWorld() , you tell the importer that subsequent calls to draw() will
draw pixels from the imported graphic into the off-screen GWorld , which will be the source of the

compressed frames later on.

Next, after calculating how far the source rectangle will move each frame, you set up the compression

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sequence. To do this, you need a buffer big enough to hold compressed images, which in turn requires a
call to figure out how big that buffer needs to be. QTImage.getMaxCompression() size provides this

size. You need to pass in the following data (in the order shown):

The QDGraphics /GWorld to compress from.1.

A QDRect indicating what part of the QDGraphics will be used.2.

The color depth of the pixels (i.e., how many bits are in each pixel).3.

A constant to indicate the compressed image quality level.4.

The codec's FOUR_CHAR_CODE .5.

A constant to indicate which codec component to pick if several can handle the codec. You can
pass a specific component, or the behavior constants anyCodec , bestSpeedCodec ,
bestFidelityCodec , and bestCompressionCodec .

6.

Given this, you can allocate memory for the image by constructing a new QTHandle , and then wrap it
with a RawEncodedImage object. This is where the compressed frames will go.

Now you have enough information to create the CSequence . Its constructor takes a whopping 10

arguments:

The QDGraphics /GWorld to compress from

A QDRect indicating what part of the QDGraphics will be used

The color depth of the pixels (i.e., how many bits are in each pixel)

The codec's FOUR_CHAR_CODE

A specific codec component or a selection strategy constant (anyCodec , bestSpeedCodec , etc.)

Spatial quality (in other words, the quality of images after 2D compression, using one of the
constants codecMinQuality , codecLowQuality , codecNormalQuality , codecHighQuality ,
codecMaxQuality , or codecLosslessQuality)

Temporal quality (this uses the same constants as for spatial quality, but refers to quality
maintained or lost when using data from adjacent frames; you also can set this to 0 to not use

temporal compression)

Key frame rate (the maximum number of frames allowed between "key frames" [those that have
all image data for a frame and don't depend on other frames], or 0 to not use key frames)

A custom color lookup table, or null to use the table from the source image

Behavior flags (these can include the codecFlagWasCompressed flag, which indicates the source

image was previously compressed and asks the codec to compensate, and
codecFlagUpdatePrevious and codecFlagUpdatePreviousComp , both of which hold on to

previously compressed frames for temporal-compression codecs, the latter of which may produce

http://lib.ommolketab.ir
http://lib.ommolketab.ir

better results but consumes more CPU power)

Now you've got everything you need to build the frames: a GWorld for source images, a
RawEncodedImage to compress into, a CSequence to compress frames, and a VideoMedia to put them

into.

So, start looping. Each time through the loop, you draw a different part of the source image into the off-
screen GWorld . This is done by resetting the GraphicImporter 's Matrix , using rect() to scale-and-

translate from a source rectangle to a new rectangle at (0,0) and with the dimensions of the off-screen
GWorld . Use GraphicsImporter.draw() to draw from the source image into the GWorld .

With the frame's pixels in the GWorld , call CSequence.compressFrame() to compress the pixels into the
RawEncodedImage . This returns a CompressedFrameInfo object that wraps the size of the compressed

image and a "similarity" value that represents the similarity or difference between the current frame and
the previous frame. The similarity is used to determine if this sample is a " key frame" (also called a "
sync sample" in Apple's terminology), which in this context means an image so different from its
predecessors that the compressor should encode all the data for this image in this frame instead of
depending on any previous frames.

Finally, you call addSample() to add the frame to the VideoMedia . This call, inherited from Media ,

takes a pointer to the sample data, an offset into the data, the data size, the time represented by the
sample (in the media's time scale), a description of the data (here an ImageDescription retrieved from
the CSequence), the number of samples being added with the call, and a flag that indicates whether
this sample is a key frame (if it's not, pass StdQTConstants.mediaSampleNotSync).

Note: Notice addSample() has the same signature for any kind of media. That's why it needs a parameter like the ImageDescription to

explain what's in the essentially untyped QTHandle .

When you're done adding frames, call Media.endEdits() , then insert the media into the track with
track.insertMedia() . Finally, save the movie with the Movie.addResource() call.

Note: Run this demo with ant run-ch08-videosamplebuilder .

When run, the demo looks for a file called videosamplebuilder.properties , in which you can define the
source image and the start and end rectangles. The properties file should have entries like this:

file=/Users/cadamson/Pictures/keagy/DSC01763.jpg

start.x=545
start.y=370
start.width=1500
start.height=1125

end.x=400
end.y=390
end.width=800
end.height=600

If no properties file is found, the demo queries the user for an image and randomly selects the start and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end rectangles.

As each frame is compressed, the program prints an update to the console indicating the frame count,
the source frame, and how "similar" the CSequence decided the frame was to its predecessor. The

console log looks something like this:

Note: Did you notice the capture settings dialog in Chapter 6 showed a mirror image? You could use a Matrix to make the motion detector in

that chapter render a mirror image, too .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.4. Overlaying Video Tracks

When one video track is drawn on top of another, the top doesn't necessarily have to obscure the
bottom. QuickTime gives you the option of specifying a GraphicsMode to combine pixels from

multiple video layers to create interesting effects.

8.4.1. How do I do that?

You can create a GraphicsMode object to describe the means of combining overlapping colors. To try
it out, take the previous lab's code and replace all the matrix stuff (after the foreTrack and
backTrack are created, but before the MovieController is created) with the following:

GraphicsMode gm = new GraphicsMode (QDConstants.addMax,
 QDColor.green);
VisualMediaHandler foreHandler =
 (VisualMediaHandler) foreTrack.getMedia().getHandler();
foreHandler.setGraphicsMode(gm);
foreTrack.setLayer(-1);

Note: Run this example with ant run-ch08-composit-evideotracks.

When run, this sample program asks you to open two movies, then creates a new movie with video
tracks from the source movies' media, and combines the pixels of the foreground movie with the
background, so the foreground appears atop the background. The result is shown in Figure 8-4.

8.4.2. What just happened?

Setting a GraphicsMode instructs QuickTime to apply a specific behavior to combine overlapping
pixels. The GraphicsMode has a "mode" int, which indicates which kind of behavior to use, and a
QDColor that is used by some behaviors to indicate a color to operate on. For example, you might
use mode QDConstants.transparent and QDColor.green to make all green pixels transparent. The
default mode is srcCopy, which simply copies one set of pixels on top of another.

Note: Chapter 5 showed how to set up GraphicsMode compositing of still images. Video works in pretty much the same way.

To apply this GraphicsMode to overlapping video tracks, you call setGraphicsMode(), a method not
defined by track but, rather, by the VideoMediaHandler. As a reminder, movies have tracks, tracks
have media, and media have handlers. Actually, the setGraphicsMode() is defined by the
VisualMediaHandler interface, making it available for all visual media (MPEGMedia, TextMedia,

etc.).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note: Again, this wrap-up is the same as Chapter 7 s audio sample-building technique.

8.4.3. What about...

...appropriate codecs to use? I've pointed out Sorenson Video 3 and MPEG-4 Visual, because they
have very nice compression ratios and still look pretty good with natural images. Other codecs of
interest in a standard QuickTime installation are shown in Table 8-1.

Table 8-1. Some standard QuickTime codecs

Name Constant 4CC Description

Animation kAnimationCodecType "rle "
Good for long runs of solid colors, such as those found
in simple synthetic 2D graphics.

Cinepak kCinepakCodecType "cvid"

This was the most popular codec of the early to mid-
1990s, thanks to a good compression/quality tradeoff,
wide support (even Sun's JMF handles it), and the fact
that it could run on very modest CPUs. Today, there
are better options.

H.263 kH263CodecType "h263"
This standard originally was designed for
videoconferencing, yet is surprisingly good in a wide
range of bitrates.

Pixlet N/A "pxlt"

This wavelet-based codec, introduced in 2003, achieves
high compression rates (20:1) without showing
graphics artifacts like other codecs at similar
compression levels. It requires powerful CPUs (PowerPC
G4 or G5 at 1GHz and up) to decode.

As of this writing, Apple has demonstrated but not released an H.264 (aka AVC) codec for QuickTime.
This is the newest and most powerful MPEG-4 codec, offering broadcast-quality video at 1.5 megabits
per second (Mbps) and HDTV quality at 5-9Mbps, assuming your computer is powerful enough to
decode it.

Also, other than making these "Ken Burns Effects," what am I going to do with writing video
samples? This technique is the key to creating anything you want in a video track. Want to make a
movie of your screen? Use the screen-grab lab from Chapter 5 and compress its GWorld into a video

track. Have some code to decode a format that QuickTime doesn't understand? Now you can
transcode to any QuickTime-supported format. You even can take 3D images from an OpenGL or
JOGL application and make them into movies.

Note: Considering Chapter 5 showed how to grab the screen (even with the DVD Player running) into a GWorld, and considering you

http://lib.ommolketab.ir
http://lib.ommolketab.ir

can make video tracks from any GWorld...uh-oh.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. Miscellaneous Media
Audio and video are the most obvious and prominent kinds of media that can be found in a
QuickTime movie, but the story doesn't end there. Take a look at quicktime.std.movies.media,
and you'll find more than a dozen subclasses of Media, each representing media types that can be

referenced by tracks in QuickTime movies.

This chapter is going to show off four of these, as much to show the variety of QuickTime as to
illuminate their practical uses. These four are:

Text media

HREF media (actually a special case of text)

Timecode media

Effects media (actually a special case of video)

Elsewhere in the book, I've also mentioned MPEG media, which isn't so much a new media type as it
is a disappointing compromiseQuickTime can't present the audio and video of a multiplexed MPEG-1
or MPEG-2 file as separate tracks, so instead it uses a single track pointing to "MPEGMedia," which
has both visual and audio characteristics (i.e., its media handler implements both
VisualMediaHandler and AudioMediaHandler).

I'm not covering several media types for reasons of space and concision. Sprites (represented by
SpriteMedia) and QuickTime VR (QTVRMedia) are plenty cool; however, each required an entire

volume of the old Inside Macintosh series, making them too involved to handle in this format.
ThreeDMedia is effectively deprecated and isn't even present in Mac OS X. A few other media types
are present largely as implementations for higher-level featuresfor instance, MovieMedia came about

as part of the implementation of SMIL (an XML markup that lets authors, among other things, make
movies that contain movies).

Tip: If you really think I should cover one of these other media types, send an email to cadamson@oreilly.com, and I'll see about

covering it in an online article or a future revision.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1. Creating Captions with Text Media

Have you ever turned on captions on a DVD, perhaps for a foreign-language film? Have you ever
wondered how that works, especially given that the DVD might have captions for several different
languages? QuickTime can do the same thing, easily and efficiently.

The idea is that a movie can have zero-to-many text tracks (literally, tracks with text media), each of
which has a collection of text samples. Each sample contains some text and a time to display it. In
that sense, they're like any other media samplesthey have some data to be presented and a time
and duration indicating when to present it. So, to do a caption, you'd just have a single text sample
that begins at a relevant time in the movie (like when someone on-screen starts speaking) and has
an appropriate duration (how long the person speaks).

9.1.1. How do I do that?

To keep things simple, I'll focus on creating a movie with a single text track. Once you know how to
do that, it's easy to add your own text track to existing movies.

If you read the sample-building examples in Chapters Chapter 7 or Chapter 8, you probably already
know what's coming. To build a text track, you:

Add a track to a movie.1.

Create new media for the track.2.

Call Media.beginEdits().3.

Add samples.4.

Call Media.endEdits().5.

Insert the media into the track.6.

Save the movie.7.

Note: These are the steps for adding any kind of media.

The biggest difference between adding different kinds of media is the setup you have to do for the
Media.addSample() call. In the case of text, use TextMedia.getTextHandler() to get a
TextMediaHandler object, which offers a convenient addTextSample() call. This method lets you

specify font, size, color, and various other options. In fact, it takes 14 parameters (amazingly, in this
exact order):

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A QTPointerRef to the string to be added (typically, you call getBytes() on a Java string and
wrap them with a QTPointer to provide this argument)

A font number (you can look up the font number from a font family's name via the
QDFont.getFNum() method, or just pass 0 for a sensible default font)

Font size

Text face, meaning style information like QDConstants.bold, QDConstants.italic, or
QDConstants.underline, combined with the | operator

Text color, as a QDColor value (this defaults to black if you pass null)

Background color, as a QDColor value (this defaults to white if you pass null)

Text justification, using one of the QDConstants values teFlushLeft, teFlushRight, teCenter,
or teFlushDefault (the "teJust..." constants in this class seem to do the same thing, too)

Text box, a QDRect defining the bounding rectangle of the text (don't worry about this matching

the size of a movie you want to add it toyou can make a small text box at (0,0) and move it
into position by adding a Matrix translation to the text track)

Display flags (covered later)

Scroll delay (covered later)

Highlight start (this is the index of the first character to be highlighted)

Highlight end (this is the index of the last character to be highlighted)

Highlight color, as a QDColor value

Duration, in the media's time scale

The display flags parameter takes any number of the df constants from StdQTConstants, combined
with the | operator. The possible behaviors are shown in Table 9-1.

Note: Who knew QuickTime was optimized for karaoke?

Table 9-1. Text sample display flags

Display flag Behavior

dfDontDisplay
Don't show this sample.

dfDontAutoScale
Don't scale text if bounding rectangle is resized.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Display flag Behavior

dfClipToTextBox
Clips to the size of the bounding rectangle; useful if overlaying video.

dfShrinkTextBoxToFit
Recalculates the size of the text box parameter to just fit the text.

dfScrollIn Scrolls the text in. If set, the scroll delay argument determines how long
the text lingers before being scrolled out.

dfScrollHoriz
Makes the text scroll in horizontally, instead of vertically (the default).

dfReverseScroll Reverses the typical scroll direction, which is bottom-to-top for vertical
scrolling and left-to-right for horizontal.

dfContinuousScroll Causes new samples to force previous samples to scroll out. You must set
dfScrollIn and/or dfScrollOut for this to do anything.

dfFlowHoriz Allows text to flow within the bounding rectangle instead of going off to
the right.

dfContinuousKaraoke Ignores the highlight start argument and highlights from the beginning of
the text to "highlight end." This allows you to progressively "grow" a
highlight through a line of lyrics, presumably for a karaoke application.

dfDropShadow
Displays text with a drop shadow.

dfAntiAlias
Displays text with anti-aliasing.

dfKeyedText Displays text without drawing a background color. This is ideal for putting
captions on top of video.

dfInverseHilite
Highlights with inverse video instead of the highlight color.

Example 9-1 shows a simple application that creates a movie with a single text track, containing four
samples, each lasting 2.5 seconds.

Example 9-1. Creating a text track

package com.oreilly.qtjnotebook.ch09;

import quicktime.*;
import quicktime.std.*;
import quicktime.std.movies.*;
import quicktime.std.movies.media.*;
import quicktime.io.*;
import quicktime.util.*;

dfClipToTextBox
Clips to the size of the bounding rectangle; useful if overlaying video.

dfShrinkTextBoxToFit
Recalculates the size of the text box parameter to just fit the text.

dfScrollIn Scrolls the text in. If set, the scroll delay argument determines how long
the text lingers before being scrolled out.

dfScrollHoriz
Makes the text scroll in horizontally, instead of vertically (the default).

dfReverseScroll Reverses the typical scroll direction, which is bottom-to-top for vertical
scrolling and left-to-right for horizontal.

dfContinuousScroll Causes new samples to force previous samples to scroll out. You must set
dfScrollIn and/or dfScrollOut for this to do anything.

dfFlowHoriz Allows text to flow within the bounding rectangle instead of going off to
the right.

dfContinuousKaraoke Ignores the highlight start argument and highlights from the beginning of
the text to "highlight end." This allows you to progressively "grow" a
highlight through a line of lyrics, presumably for a karaoke application.

dfDropShadow
Displays text with a drop shadow.

dfAntiAlias
Displays text with anti-aliasing.

dfKeyedText Displays text without drawing a background color. This is ideal for putting
captions on top of video.

dfInverseHilite
Highlights with inverse video instead of the highlight color.

Example 9-1 shows a simple application that creates a movie with a single text track, containing four
samples, each lasting 2.5 seconds.

Example 9-1. Creating a text track

package com.oreilly.qtjnotebook.ch09;

import quicktime.*;
import quicktime.std.*;
import quicktime.std.movies.*;
import quicktime.std.movies.media.*;
import quicktime.io.*;
import quicktime.util.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import quicktime.qd.*;
import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

public class TextTrackBuilder extends Object {

 public static int TEXT_TRACK_WIDTH = 320;
 public static int TEXT_TRACK_HEIGHT = 24;

 static String[] MESSAGES = {
 "QuickTime for Java",
 "A Developer's Notebook",
 "from O'Reilly Media",
 "Coming Fall 2004"
 };
 static QDRect textBox = new QDRect(0, 0,
 TEXT_TRACK_WIDTH,
 TEXT_TRACK_HEIGHT);

 public static void main (String[] args) {
 try {
 QTSessionCheck.check();

 QTFile movFile = new QTFile (new java.io.File("buildtext.mov"));
 Movie movie =
 Movie.createMovieFile(movFile,
 StdQTConstants.kMoviePlayer,
 StdQTConstants.createMovieFileDeleteCurFile |
 StdQTConstants.createMovieFileDontCreateResFile);

 System.out.println ("Created Movie");

 // create an empty text track
 int timeScale = 10; // time measured in 1/10ths of a sec
 Track textTrack = movie.addTrack (TEXT_TRACK_WIDTH,
 TEXT_TRACK_HEIGHT, 0);
 System.out.println ("Added empty Track");

 // create media for this track
 Media textMedia = new TextMedia (textTrack,
 timeScale);
 TextMediaHandler handler =
 (TextMediaHandler) textMedia.getHandler();
 System.out.println ("Created Media");

 textMedia.beginEdits();
 for (int i=0; i<MESSAGES.length; i++) {
 byte[] msgBytes = MESSAGES[i].getBytes();
 QTPointer msgPoint = new QTPointer (msgBytes);
 // add sample
 handler.addTextSample (msgPoint, // text
 0, // font number
 14, // font size,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 QDConstants.bold, // style,
 QDColor.yellow, // fg color,
 QDColor.black, // bg color,
 QDConstants.teCenter,// justification
 textBox, // box
 0, // displayFlags
 0, // scrollDelay
 0, // hiliteStart
 0, // hiliteEnd
 QDColor.white, // rgbHiliteColor
 25 // duration
);
 } // for

 // done editing
 textMedia.endEdits();

 // now insert this media into track
 textTrack.insertMedia (0, // trackStart
 0, // mediaTime
 textMedia.getDuration(), // mediaDuration
 1); // mediaRate

 // save up at this point
 System.out.println ("Saving...");
 OpenMovieFile omf = OpenMovieFile.asWrite (movFile);
 movie.addResource (omf,
 StdQTConstants.movieInDataForkResID,
 movFile.getName());

 System.out.println ("Done");

 } catch (QTException qte) {
 qte.printStackTrace();
 }
 System.exit(0);
 } // main

}

Note: If you downloaded the book code, run this example with ant run-ch09-texttrackbuilder.

Running this example creates a file called buildtext.mov in the current directory. It's a normal
QuickTime movie, so you can open it with QuickTime Player, or the various players and editors from
Chapter 2 and Chapter 3. Figure 9-1 shows what it looks like when played.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 9-1. Text track movie

9.1.2. What just happened?

The application walks through the basic steps of creating a text track as described earlier. First, it
creates an empty movie on disk (giving the movie a place to store the samples), and then adds an
empty track and creates a TextMedia object for this track.

From there, it's a pretty simple matter of getting a TextMediaHandler and using it to make calls to
addTextSample(), looping through the array of Strings that are used as samples. For each
String, get its bytes and wrap them with a QTPointer , creating a QTPointerRef that can be used
for addTextSample(). When this is done, add the media to the track, then save the movie to disk
with Movie.addResource().

9.1.3. What about...

...adding this text track on top of an existing movie I've opened, to make actual captions? To do this,
you'd want to do a few extra things. First, you'd add your samples with the dfKeyedText display flag,

to remove the background color and thus have only the text appear above the video. You might also
consider using dfAntiAlias to make the text easier to read, though this is a little more CPU-

intensive at playback time.

Next, you'd want to move the captions to the bottom of the movie's box because this example uses a
box anchored at (0,0). You do this by setting a Matrix on the text track, defining it as a translation

to a box along the bottom of the movie's box (e.g., where the y-coordinate is the movie's height
minus the height of the text track).

Note: Run this example with ant run-ch09-transitiontrackbuilder.

Once an effect is selected, the resulting movie is saved as transition.mov. Figure 9-9 shows an
example of a movie in mid-transition, using a vertical "barn door" wipe with 5-pixel-wide borders.

9.1.4. What just happened?

In general, this isn't very different from the one-source case: an effects description defines the effect,
and an input map indicates where the sources come from. Probably the biggest hassle is that
because an effect by itself isn't very interesting, this example rips out the pre-effect and post-effect
video as separate tracks so that you can actually see the one video clip transitioning into another.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1.5. What about...

...all these tracks? Who sends out QuickTime movies with five tracks, one of which QuickTime Player
identifies by the name of the effect, like "Wipe"? Fair enoughthis is the form you would want your
movie in while editing it so that you can make changes easily, tossing the effect or reworking it on
the fly, with minimal CPU or I/O cost to do so (because, as always, you're mostly just copying
pointers). For end-user delivery, you probably would want to export the movie. Even if you export to
another QuickTime movie (as opposed to a foreign format like MPEG-4), the export process will
render and compress each frame of the transition, leaving you with just a single video track.

Also, is there a list of all the effects I can check out? Sure, but there are more than 100...too many to
list here. If you look in Inside Macintosh: QuickTime (on Apple's web site or installed by developer
tools for Mac OS X), the section "Built-in QuickTime Video Effects" lists all the effects provided by
QuickTime, with examples and information about the parameters each one takes. Several dozen of
them are defined and standardized by the industry trade group SMPTE (Society of Motion Picture and
Television Engineers) and will be familiar to anyone who's worked with a television switcher.
Remember, though, the user may have installed third-party effects, so it's important to be able to
use the EffectsList to do runtime discovery of what's available to your program.

Note: If you downloaded the book code, run this example with ant run-ch09-texttrackbuilder.

Running this example creates a file called buildtext.mov in the current directory. It's a normal
QuickTime movie, so you can open it with QuickTime Player, or the various players and editors from
Chapter 2 and Chapter 3. Figure 9-2 shows what it looks like when played.

Note: See Chapter 8 for coverage of transforming tracks with Matrix objects. The timecode example later in this chapter does this, too.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2. Creating Links with HREF Tracks

One peculiar trick you can do with text tracks is to use them to turn your movie into a set of time-
based hyperlinks. The idea is that by adding a so-called "HREF track," you can make portions of your
movie act like an anchor tag in HTMLclicking the movie takes you to a specified web page.

9.2.1. How do I do that?

Creating an HREF track is virtually identical to creating a text trackit is a real text track, after allwith
URLs as the text samples. To actually activate its special features, though, you have to rename the
track to HREFTrack. Also, because the URLs are not meant to be seen, you typically want to hide
them by calling setEnabled(false) on the track.

Assuming there is an array of URL Strings called URLS, you can make the previous lab's movie

linkable by adding the following code after the first text media has been inserted into its track:

// add HREF track
Track hrefTrack = movie.addTrack (TEXT_TRACK_WIDTH,
 TEXT_TRACK_HEIGHT, 0);
// create media for this track
Media hrefMedia = new TextMedia (hrefTrack,
 timeScale);
handler = (TextMediaHandler) hrefMedia.getHandler();
System.out.println ("Created HREF Media");

hrefMedia.beginEdits();
for (int i=0; i<URLS.length; i++) {
 byte[] msgBytes = URLS[i].getBytes();
 QTPointer msgPoint = new QTPointer (msgBytes);
 // add sample
 handler.addTextSample (msgPoint, // text
 0, // font number
 14, // font size,
 QDConstants.bold, // style,
 QDColor.yellow, // fg color,
 QDColor.black, // bg color,
 QDConstants.teJustCenter,// justification
 textBox, // box
 0, // displayFlags
 0, // scrollDelay
 0, // hiliteStart
 0, // hiliteEnd
 QDColor.white, // rgbHiliteColor
 25 // duration
);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

} // for

// done editing
hrefMedia.endEdits();

// now insert this media into track
hrefTrack.insertMedia (0, // trackStart
 0, // mediaTime
 hrefMedia.getDuration(), // mediaDuration
 1); // mediaRate

// disable href track because we don't want it visible

Note: Run this example with ant run-ch09-hreftrackbuilder.

hrefTrack.setEnabled(false);

// change track name to HREFTrack
UserData userData = hrefTrack.getUserData();
String trackName = "HREFTrack";
QTPointer namePtr = new QTPointer(trackName.getBytes());
userData.setDataItem (namePtr,
 QTUtils.toOSType("name"),
 0);

When run, this demo creates a file called buildhref.mov. However, HREF tracks work only in the
QuickTime plug-ini.e., in a browser. In the book's downloadable code, the HTML file
src/other/html/embed-hrefmovie.html has a simple web page that embeds this movie.

Note: To embed a QuickTime movie with HTML <embed> and <object> tags, see Chapter 1.

Figure 9-4 shows the page with the embedded buildhref.mov. If you click when you're on the first
text sample (QuickTime for Java), a new window opens up and goes to Apple's QTJ home page. The
other text samples each have a different corresponding HREF. The last one launches its page
automatically.

Figure 9-2. Browser showing movie with an HREF track; the page opened
by clicking the movie is shown in the second window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tip: Note that the arrangement of HREF samples to other tracks and samples in the movie is totally arbitraryit depends only on when

and for how long the HREF text sample appears. If you wanted to link a certain segment of video to a URL, you might add the sample at

the time the video begins and make it have the same duration as the segment. This example makes the URLs correspond exactly to the

text samples in the other track because that makes sense when you're playing with it, but it doesn't have to work like that.

9.2.2. What just happened?

As QuickTime parses each URL in the HREF track, it enables a link to that URL. However, the URLs
can be specially formatted to achieve different behaviors. Here's what the demo's URLS array looks

like:

static String[] URLS = {
 "<http://developer.apple.com/quicktime/qtjava/> T<_blank>",
 "<http://devnotebooks.oreilly.com/> T<_blank>",
 "<http://www.oreilly.com/> T<_blank>",
 "A<http://www.oreilly.com/catalog/> T<_blank>"
};

As you can see, the URL itself is enclosed in angle brackets. In each case, there's a second entry,
T<_blank>, which is used to indicate a target frame. By using the special value _blank, clicking these

URLs will always open them in a new window. However, you could also use a consistent name to
open URLs in a single new window, or a frame. If the T<...> is absent, the URL will be opened in the

current window (which will, of course, exit the page that contains the movie).

The last sample shows another interesting syntax. By preceding the URL and its angle brackets with
an A, you can force the URL to be opened as soon as it is read, either by playing up to that point or

scrubbing to it. There are lots of interesting uses for this approach, like an introductory movie (titles
and credits) pulling up another movie, or automatically refreshing another frame on the page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3. Adding Timecodes

In the professional realm, videotapes often have a timecode track in addition to their audio and video
tracks. This track enumerates every video frame, and is used typically for various purposes: editing,
logging what's on a tape, etc. Professional tape decks usually have an LED or LCD display of the
timecode, and optionally can display timecodes on-screen.

You might think the text track provides a convenient way to embed timecodesthey're string
valuesyou can have one for every frame of video (or many, if you set your time scale really high),
you can read them from the TextMedia object, you can turn their display on and off by enabling and

disabling the track, etc.

And this would be fine. But fortunately, QuickTime has a real timecode track that goes much further.
Adding timecodes to a movie, in a format and resolution suitable for professional work, is a snap.

9.3.1. How do I do that?

No surprise, once again the key is to create a new track with a specific kind of media and to add
samples to it. This time, the desired media class is TimeCodeMedia.

What's really interesting is that you don't actually write a sample for every video frame. You need to
write only a single sample to define the timecode format and a start time, at the beginning of the
period for which you want to provide timecodes. Because QuickTime already is measuring time in
your track, at an arbitrary precision (i.e., the time scale you set for it), it can figure out the timecode
for any time later in the movie.

To create the sample, first you need a TimeCodeDef object, which defines the timecode standard in

terms of frames per second, duration per frame, and a time scale, each set with a method call. You
also need a TimeCodeTime, which defines the starting point for your timecodes. Its constructor takes

four arguments: hours, minutes, seconds, and frames.

Next, you need a TimeCoder, which is a MediaHandler for TimeCodeMedia. This object allows you to

set flags to determine whether the time code is displayed and to set display options (font size, style,
color, etc.) by passing it a TCTextOptions object. It also can generate a frame number, given the
TimeCodeDef and TimeCodeTime, which is the data you need to pass to addSample().

Note: You would think this would be called a Time-CodeHandler, wouldn't you?

The application in Example 9-2 takes an existing QuickTime movie and adds a visible timecode track.

Note: Run this example with ant run-ch09-timecodetrackerbuilder.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 9-2. Creating a timecode track

package com.oreilly.qtjnotebook.ch09;

import quicktime.*;
import quicktime.std.*;
import quicktime.std.image.*;
import quicktime.std.movies.*;
import quicktime.std.movies.media.*;
import quicktime.std.qtcomponents.*;
import quicktime.io.*;
import quicktime.qd.*;
import quicktime.app.view.*;
import quicktime.util.*;
import java.awt.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

public class TimeCodeTrackBuilder {

public static final int TIMECODE_TRACK_HEIGHT=24;
public static final int TIMECODE_TRACK_WIDTH=120;

public static void main (String[] args) {
 try {
 QTSessionCheck.check();
 // open a movie
 QTFile file = QTFile.standardGetFilePreview (
 QTFile.kStandardQTFileTypes);
 OpenMovieFile omf = OpenMovieFile.asRead(file);
 Movie movie = Movie.fromFile(omf);
 // add a timecode track
 addTimeCodeTrack (movie);

 // create GUI
 Frame f = new Frame ("Movie with TimeCode track");
 MovieController controller = new MovieController(movie);
 Component c = QTFactory.makeQTComponent(controller).asComponent();
 f.add(c);
 f.pack();
 f.setVisible(true);

 } catch (QTException qte) {
 qte.printStackTrace();
 }
}

public static Track addTimeCodeTrack (Movie movie)
 throws QTException {
 int timescale = movie.getTimeScale();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 TimeCodeDef tcDef = new TimeCodeDef();
 tcDef.setTimeScale (2997); // ntsc drop-frame
 tcDef.setFrameDuration (100); // 1 frame in 30 fps dropframe
 tcDef.setFramesPerSecond (30);
 tcDef.setFlags (StdQTConstants.tcDropFrame);

 // first record at 0 hrs, 0 min, 0 sec, 0 frames
 TimeCodeTime tcTime = new TimeCodeTime (0, 0, 0, 0);

 // create timecode track and media
 Track tcTrack = movie.addTrack (TIMECODE_TRACK_WIDTH,
 TIMECODE_TRACK_HEIGHT,
 0);
 TimeCodeMedia tcMedia = new TimeCodeMedia (tcTrack, timescale);
 TimeCoder timeCoder = tcMedia.getTimeCodeHandler();

 // turn on timecode display, set colors
 timeCoder.setFlags (timeCoder.getFlags() |
 StdQTConstants.tcdfShowTimeCode,
 StdQTConstants.tcdfShowTimeCode);
 TCTextOptions tcTextOptions = timeCoder.getDisplayOptions();
 tcTextOptions.setTXSize (14);
 tcTextOptions.setTXFace (QDConstants.bold);
 tcTextOptions.setForeColor (QDColor.yellow);
 tcTextOptions.setBackColor (QDColor.black);
 timeCoder.setDisplayOptions (tcTextOptions);

 // set up a sample as a 4-byte array in a QTHandle
 int frameNumber = timeCoder.toFrameNumber (tcTime, tcDef);
 int frameNums[] = new int[1];
 frameNums[0] = frameNumber;
 QTHandle frameNumHandle = new QTHandle (4, false);
 frameNumHandle.copyFromArray (0, frameNums, 0, 1);

 // create a timecode description (the sample to be added)
 TimeCodeDescription tcDesc = new TimeCodeDescription();
 tcDesc.setTimeCodeDef (tcDef);

 // add the sample to the TimeCodeMedia
 tcMedia.beginEdits();
 tcMedia.addSample (frameNumHandle,
 0,
 frameNumHandle.getSize(),
 movie.getDuration(),
 tcDesc,
 1,
 0);
 tcMedia.endEdits();

 // now insert this media into track
 tcTrack.insertMedia (0, // trackStart
 0, // mediaTime

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 tcMedia.getDuration(), // mediaDuration
 1); // mediaRate

 // move the timecode to the bottom of the movie and
 // set a transparent-background GraphicsMode
 int x = (movie.getBox().getWidth()/2) - (TIMECODE_TRACK_WIDTH / 2);
 int y = movie.getBox().getHeight() - TIMECODE_TRACK_HEIGHT;
 QDRect moveFrom = new QDRect (0, 0,
 TIMECODE_TRACK_WIDTH,
 TIMECODE_TRACK_HEIGHT);
 QDRect moveTo = new QDRect (x, y,
 TIMECODE_TRACK_WIDTH,
 TIMECODE_TRACK_HEIGHT);
 Matrix matrix = new Matrix();
 matrix.rect (moveFrom, moveTo);
 tcTrack.setMatrix (matrix);
 timeCoder.setGraphicsMode (new GraphicsMode (QDConstants.transparent,
 QDColor.black));

 return tcTrack;
}

}

When this is run, the user is prompted to open a QuickTime movie. It adds the timecode track and
opens the movie in a new window, as shown in Figure 9-3. Notice that the timecode stays accurate
whether you play the movie, jump to a specific time by clicking the time bar, or scrub back and forth.

Figure 9-3. Time code track added to a movie

9.3.2. What just happened?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The addTimeCode() method begins by creating a TimeCodeDef object and setting its time scale,
frame duration, and frames per second. Then it creates a TimeCodeTime for 0 hours, 0 minutes, 0

seconds, and 0 frames (typically represented in the form 00:00:00;00, though you need to
remember the digits after the semicolon are in frames per second, not hundredths of a second, so in
this case they'll run from 0 to 29). It also creates a new track with TimeCodeMedia.

With these objects, you can create the sample you'll need for the track, so you need the
MediaHandler, namely the TimeCoder, which you get from the TimeCodeMedia via
getTimeCodeHandler(). But some things are worth setting up on the TimeCoder first, before you

worry about the sample. If you want to make the timecodes visible, you need to set the
tcdfShowTimeCode behavior flag. TimeCoder has a really weird syntax for behavior flags, requiring

you to pass in two values, the new values of all the flags, plus a mask indicating which one you
changed. So, to set tcdfShowTimeCode, you have to do this:

timeCoder.setFlags (timeCoder.getFlags() |
 StdQTConstants.tcdfShowTimeCode,
 StdQTConstants.tcdfShowTimeCode);

Use the TimeCoder to set any display options: font, size, style, and foreground and background
colors. To do this, get the TimeCoder's TCTextDisplay object and make method calls to set each

parameter.

Finally, you're ready to create the sample. The data needed for the addSample() call is just a 4-byte
frame number, calculated by the TimeCoder from the TimeCodeDef and TimeCodeTime in the
toFrameNumber() method. To get it into a QTHandleRef required by addSample(), put it in a one-
element int array, create a 4-byte QTHandle , and use the handle's copyFromArray() method to
copy the int's bytes into the handle. The addSample() call also needs a SampleDescription to
indicate what's in the QTHandleget this by creating a new TimeCodeDescription object and setting
its fields with setTimeCodeDef().

After adding the sample, and inserting the media into the track as always, the timecode is ready to
display. However, it defaults to a position at the upper right of the movie, and it has a background
box that obscures the movie below it. You can fix these problems by setting a track Matrix to move
the timecode display to the bottom of the movie's box and by setting a transparent GraphicsMode to

make the background color disappear.

Note: See Chapter 8 for information on how to reposition tracks with matrices and composite them with GraphicsModes.

9.3.3. What about...

...those weird values for TimeCodeDef? What's with the "2997"? This shows off the power of

QuickTime's timecode support. Imagine you had perfectly normal, 30-frames-per-second video. In
that case, you'd expect the values for the TimeCodeDef would be:

Time scale 3000

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Time scale 3000

Frame duration 100

Frames per second 30

Notice how this is redundant: if the time scale is 3000 and there are 30 frames per second, of course
each frame is 100 "beats" long. So, why did they define it this way?

Because "normal 30-frames-per-second video" isn't necessarily how things work in the real world.

In North America, most broadcast video is actually in a format called "drop frame," a misnamed
concept indicating that two timecodes (but not actual frames) are dropped every minute, except for
the tenth, to sync the color video signal with the audio. This format is defined by:

Timescale 2997

Frame duration 100

Frames per second 30

You can use these values with the TimeCodeDef methods setTimeScale() , setFrameDuration(),
and setFramesPerSecond() to represent NTSC broadcast video in QuickTime. You'll also need to
call setFlags() with the flag StdQTConstants.tcDropFrame to tell QuickTime you're doing drop-
frame video. While you're at it, two other real-world flags to consider setting are tcNegTimesOK to
allow negative times and tc24HoursMax, which limits timecodes to go up only to 24 hours (mimicking

the behavior of analog broadcast equipment).

And by the way, what is the timecode system buying me, other than accuracy? One important
consideration with QuickTime's timecoding is to support the way things are done in the professional
realm, with both digital and analog equipment. There are many different schemes for timecoding
media, and QuickTime is designed to support any such system. Also, one of the nice things you can
do with timecodes is to capture the timecode from an original tape and maintain it in QuickTime,
even through editing, so the user always has a frame-accurate representation of where his original
material came from. There are even advanced techniques to "name" timecode tracks, presumably
after their original tapes (or "sources," as we move to a tapeless media world), which would allow
you to use QuickTime as the basis of a content management system.

Frame duration 100

Frames per second 30

Notice how this is redundant: if the time scale is 3000 and there are 30 frames per second, of course
each frame is 100 "beats" long. So, why did they define it this way?

Because "normal 30-frames-per-second video" isn't necessarily how things work in the real world.

In North America, most broadcast video is actually in a format called "drop frame," a misnamed
concept indicating that two timecodes (but not actual frames) are dropped every minute, except for
the tenth, to sync the color video signal with the audio. This format is defined by:

Timescale 2997

Frame duration 100

Frames per second 30

You can use these values with the TimeCodeDef methods setTimeScale() , setFrameDuration(),
and setFramesPerSecond() to represent NTSC broadcast video in QuickTime. You'll also need to
call setFlags() with the flag StdQTConstants.tcDropFrame to tell QuickTime you're doing drop-
frame video. While you're at it, two other real-world flags to consider setting are tcNegTimesOK to
allow negative times and tc24HoursMax, which limits timecodes to go up only to 24 hours (mimicking

the behavior of analog broadcast equipment).

And by the way, what is the timecode system buying me, other than accuracy? One important
consideration with QuickTime's timecoding is to support the way things are done in the professional
realm, with both digital and analog equipment. There are many different schemes for timecoding
media, and QuickTime is designed to support any such system. Also, one of the nice things you can
do with timecodes is to capture the timecode from an original tape and maintain it in QuickTime,
even through editing, so the user always has a frame-accurate representation of where his original
material came from. There are even advanced techniques to "name" timecode tracks, presumably
after their original tapes (or "sources," as we move to a tapeless media world), which would allow
you to use QuickTime as the basis of a content management system.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.4. Creating Zero-Source Effects

QuickTime comes with an extensive collection of video effects, which you use by making movies with
effects tracksi.e., a track whose media defines a video effect.

These effects are grouped based on how many sources they operate on.

Zero-source effects

These effects are meant to be seen just by themselves. Apple includes a few of these, like fire,
clouds, and water "ripples."

One-source effects (or filters)

These effects are applied to a single source. Examples of this kind of effect include color
correction or tinting, edge detection, lens flare, etc.

Two-source effects (or transitions)

These are effects that apply to two sources at once. Typically, they're used to visually change
the display from one video source to another. Examples of these include dissolves and wipes.

The simplest of these are the zero-source effects, because they don't require wiring up the effect to
sources. Instead, you just put an appropriate effects sample into a video track and you're done.

9.4.1. How do I do that?

An effects track is really just a video track (literally, a track with VideoMedia), whose samples are

descriptions of effects: the ID of the effect and any parameters it might take. In QuickTime, these
are passed in the form of AtomContainers: tree-structures in which each "atom" can contain children
or data, but not both. Each atom has a size and a FOUR_CHAR_CODE type, and can be accessed by

index and/or type (i.e., you can get the nth atom of type m from a parent). For effects, you basically
need to pack an AtomContainer with an Atom to specify the desired effect and possibly other Atoms
to specify behavior parameters. This AtomContainer is the QTHandle you pass to the addSample()
method. Fortunately, you can get a properly structured AtomContainer from a user dialog, instead of

having to build it yourself.

Note: Almost everything you do in QuickTime involves atom manipulation, but most of the time the API isolates you from it. Not this time,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

though.

To generate the user dialog, use an EffectsList object to create a list of installed effectsremember,

the user could have installed third-party effect components, so you want to get the list of effects at
runtime. Pass to ParameterDialog.showParameterDialog(), which will return an AtomContainer

of the selected and configured effect.

The sample program in Example 9-3 shows how to create a zero-source effect movie, which is saved
to disk as effectonly.mov.

Example 9-3. Creating a zero-source effect

package com.oreilly.qtjnotebook.ch09;

import quicktime.*;
import quicktime.std.*;
import quicktime.std.movies.*;
import quicktime.std.movies.media.*;
import quicktime.io.*;
import quicktime.std.image.*;
import quicktime.util.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

public class EffectOnlyTrackBuilder {

public static final int EFFECT_TRACK_WIDTH = 320;
public static final int EFFECT_TRACK_HEIGHT = 240;
public static final int TIMESCALE = 600;

public static void main (String[] args) {
 try {
 new EffectOnlyTrackBuilder();
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 System.exit(0);
}

public EffectOnlyTrackBuilder() throws QTException {
 QTSessionCheck.check();

 QTFile movFile = new QTFile (new java.io.File("effectonly.mov"));
 Movie movie =
 Movie.createMovieFile(movFile,
 StdQTConstants.kMoviePlayer,
 StdQTConstants.createMovieFileDeleteCurFile |
 StdQTConstants.createMovieFileDontCreateResFile);
 Track effectsTrack = movie.addTrack (EFFECT_TRACK_WIDTH,
 EFFECT_TRACK_HEIGHT,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 0);
 int TIMESCALE = 600;
 VideoMedia effectsMedia = new VideoMedia(effectsTrack,
 TIMESCALE);
 // get list of effects
 // StdQTConstants.elOptionsIncludeNoneInList)
 EffectsList effectsList = new EffectsList (0, 0, 0);
 // show list of effects
 // flags are in StdQTConstants.pdOptions...
 AtomContainer effect =
 ParameterDialog.showParameterDialog (effectsList, // effectsList
 0, // dialogOptions
 null, // parameters
 "Pick an effect", // title
 null //pictArray
);
 // find out the effect type by getting the "what" atom,
 // whose data is a FOUR_CHAR_CODE
 Atom what = effect.findChildByIndex_Atom (null,
 StdQTConstants.kParameterWhatName,
 1);
 int effectType = effect.getAtomData(what).getInt(0);
 effectType = EndianOrder.flipBigEndianToNative32(effectType);
 System.out.println ("User chose " +
 QTUtils.fromOSType(effectType) +
 " effect type");

 // make a sample description for the effect description
 ImageDescription imgDesc = ImageDescription.forEffect (effectType);
 imgDesc.setWidth (EFFECT_TRACK_WIDTH);
 imgDesc.setHeight (EFFECT_TRACK_HEIGHT);

 // add effect to the video media
 effectsMedia.beginEdits();

 effectsMedia.addSample (effect, // QTHandleRef data,
 0, // int dataOffset,
 effect.getSize(), // int dataSize,
 1200, //int durationPerSample,
 imgDesc, // SampleDescription sampleDesc,
 1, // int numberOfSamples,
 0 // int sampleFlags
);

 effectsMedia.endEdits();

 // now insert this media into track
 effectsTrack.insertMedia (0, // trackStart
 0, // mediaTime
 effectsMedia.getDuration(), // mediaDuration
 1); // mediaRate
 System.out.println ("inserted media into effects track");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // save up
 System.out.println ("Saving...");
 OpenMovieFile omf = OpenMovieFile.asWrite (movFile);
 movie.addResource (omf,
 StdQTConstants.movieInDataForkResID,
 movFile.getName());
 System.out.println ("Done");
}
}

When run, it presents the user with an effects dialog, as seen in Figure 9-4.

Figure 9-4. ParameterDialog for a zero-source effect

This allows the user to choose the effect and configure it. For example, the fire effect allows the user
to set the height of the flames, how quickly they burn out and restart, how much "water" is doused
on them to vary their burn, etc. The resulting movie is shown in Figure 9-5.

Figure 9-5. An effect-only movie

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.4.2. What just happened?

After setting up an empty movie, track, and video media (effects tracks are actually a special case of
video), ask QuickTime for a list of installed effects:

EffectsList effectsList = new EffectsList (0, 0, 0);

To specify which effects are returned, this call takes a minimum number of sources, a maximum
number of sources, and a flag. To signal that you want only zero-source effects, set the first two
parameters to 0. elOptionsIncludeNoneInList is the only flag that can be passed to the third

parameter, because it causes a no-op "none" effect to be included.

Then pass this to ParameterDialog.showParameterDialog() to present the user with the list of

discovered effects, as well as controls to configure each one. This call takes five parameters:

The EffectsList.

A dialog options int, which alters the dialog for effects that have "tweening" valuesin other

words., those that change the effect over time (like how much of a transition is actually
performed). pdOptionsCollectOneValue causes tweenable options to not be tweenable, while
pdOptionsAllowOptionalInterpolations puts tweenable parameters into a more advanced

user-interface mode.

A "parameters" AtomContainer, which contains canned values for an effect. You could create
such an AtomContainer by carefully studying the QuickTime native docs and constructing it
manually with AtomContainer calls, or by getting an AtomContainer from this dialog and
"canning" its bytes for future use. By passing null, you get the default values for all effects.

A String title for the dialog.

An array of Picts to use for previewing the effect. If none is provided, default images of the

letters A and B are used for showing filter and transition effects.

When the user selects and configures an effect, it's returned as an AtomContainer. This is what you

http://lib.ommolketab.ir
http://lib.ommolketab.ir

need to use for the addSample() call on the VideoMedia object. What's tricky is getting the
SampleDescription to tell addSample() what to do with the effect AtomContainer.
ImageDescription.forEffect() will create such a description, but you need to pass it the
FOUR_CHAR_CODE of the effecteasy to do if you built the AtomContainer by hand, less easy if you got
it from the dialog. The effect type is in an atom whose type is "what", so you can retrieve the
AtomContainer by calling findChildByIndex_Atom() and asking for the first instance of the type
kParameterWhatName. Atom.getData() will return an AtomData object, from which you can get an
int with getInt().

There's an interesting concern with this int, because you must account for "endianness." QuickTime

structures are defined as being "big-endian," meaning that in a given 32-bit value, the most
significant 16 bits come first. That's convenient for 680x0 and PowerPC CPUs, which Macs run on, but
not Intel CPUs. On Windows, when you get this int from the AtomContainer, it's big-endian, making
it wrong for use with calls to any QuickTime method that takes an int. You fix this with the self-
describing convenience method EndianOrder.flipBigEndianToNative32(). On the Mac, this call

does nothing, because the native endianness is already big-endian.

Finally, you have everything you need to add the sample. It's interesting to note that zero-source
effects aren't necessarily "played" in the same sense that other movie data is. When you open the
resulting movie, the flame starts immediately, regardless of whether the movie is playing, and it
keeps burning even if you stop the movie.

9.4.3. What about...

...the simpler version of showParameterDialog()? Because this example just wants default values

for everything, why not use that? Unfortunately, as of this writing, it's buggy. The native API has
separate calls for creating the dialog, getting an event from it, and dismissing it. QTJ is supposed to
catch the event and dismiss the dialog for you if you click OK, whereas a "cancel" throws an
exception, like with other QTJ dialogs. Unfortunately, clicking OK also throws an exception, meaning
you don't get the returned AtomContainer, and because there's not a ParameterDialog instance
you can hold on tothe showParameterDialog() call was static, after allthere's no way to go back

and find out what the user selected. Oops.

Note: Always file bugs at bugreport.apple.com when you find things that are obviously wrong. This one is #3792083.

Anyway, the fancy version of the dialog doesn't have the bug, so that's what I've used here.

Also, what can I do with these zero-source effects other than just look at them? Remember, they're
normal video tracks, so they can be composited with other tracks, as shown in Chapter 8. For
example, you could take the fire effect, put it in the foreground by setting its layer to a lower value,
use a transparent GraphicsMode to punch out the black background, and voilà, the contents of your

movie are on fire! And that's always a nice way to spice up your boring home movies.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.5. Creating One-Source Effects (Filters)

Filtering a video track by applying an effect to it is a critically important tool for doing color
correction, adding special effects like lens flare, or offering novelties such as converting the video to
black and white or pseudo-antique sepia tone. The technique of creating the effect is effectively the
same as with zero-source effects, although in this case you need to create an object that tells the
effect where its video source comes from.

9.5.1. How do I do that?

You create a one-source effect just like you do the zero-source versioncreate a track, create video
media, get an EffectsList (this time of one-source effects), and get an AtomContainer describing
an effect from a ParameterDialog.

But before adding the AtomContainer as the effects media sample, you need to map it to a video

source, which is another video track in the movie. You do this by creating an input map, which is an
AtomContainer indicating the sources that are inputs to an effect. Next, create a track modifier
reference to redirect the track's output to the effect. You use the reference in building up the Atoms in
the input map. Once built, the input map is set on the effect's media with setInputMap().

Example 9-4 exercises this technique by opening a movie, getting its first video track, and applying a
user-selected filter to it.

Note: Run this example with ant run-ch09-filtertrackbuilder.ks.

Example 9-4. Creating a one-source effect (filter)

package com.oreilly.qtjnotebook.ch09;

import quicktime.*;
import quicktime.std.*;
import quicktime.std.movies.*;
import quicktime.std.movies.media.*;
import quicktime.io.*;
import quicktime.std.image.*;
import quicktime.util.*;
import quicktime.qd.*;

import com.oreilly.qtjnotebook.ch01.QTSessionCheck;

public class FilterTrackBuilder {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static final int EFFECT_TRACK_WIDTH = 320;
 public static final int EFFECT_TRACK_HEIGHT = 240;
 public static final int TIMESCALE = 600;

 public static void main (String[] args) {
 try {
 new FilterTrackBuilder();
 } catch (QTException qte) {
 qte.printStackTrace();
 }
 System.exit(0);
 }
 public FilterTrackBuilder() throws QTException {
 QTSessionCheck.check();

 QTFile movFile = new QTFile (new java.io.File("filter.mov"));
 Movie movie =
 Movie.createMovieFile(movFile,
 StdQTConstants.kMoviePlayer,
 StdQTConstants.createMovieFileDeleteCurFile |
 StdQTConstants.createMovieFileDontCreateResFile);

 Movie sourceMovie = queryUserForMovie();
 Track sourceTrack = addVideoTrack (sourceMovie,
 movie,
 0,
 sourceMovie.getDuration(),
 0);

 Track effectsTrack = movie.addTrack (EFFECT_TRACK_WIDTH,
 EFFECT_TRACK_HEIGHT,
 0);
 effectsTrack.setLayer(-1);

 int TIMESCALE = 600;
 VideoMedia effectsMedia = new VideoMedia(effectsTrack,
 TIMESCALE);

 // set up input map here
 AtomContainer inputMap = new AtomContainer();

 int trackRef =
 effectsTrack.addReference (sourceTrack,
 StdQTConstants.kTrackModifierReference);
 // add input reference atom
 Atom inputAtom =
 inputMap.insertChild (null,
 StdQTConstants.kTrackModifierInput,
 trackRef,
 0);

 // add name and type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 inputMap.insertChild (inputAtom,
 StdQTConstants.kTrackModifierType,
 1,
 0,
 EndianOrder.flipNativeToBigEndian32(StdQTConstants.videoMediaType));

 inputMap.insertChild (inputAtom,
 StdQTConstants.kEffectDataSourceType,
 1,
 0,
 EndianOrder.flipNativeToBigEndian32(QTUtils.toOSType ("srcA")));
 System.out.println ("set up input map atom");

 // show list of effects
 // flags are in StdQTConstants.pdOptions...
 Pict[] previewPicts = new Pict[1];
 previewPicts[0] = sourceMovie.getPosterPict();
 // get list of effects
 EffectsList effectsList = new EffectsList (1, 1, 0);
 AtomContainer effect =
 ParameterDialog.showParameterDialog (effectsList,
 0, // dialogOptions
 null, // parameters
 "Pick an effect", // title
 previewPicts //pictArray
);
 // find out the effect type by getting the "what" atom,
 // whose data is a FOUR_CHAR_CODE
 Atom what = effect.findChildByIndex_Atom (null,
 StdQTConstants.kParameterWhatName,
 1);
 int effectType = effect.getAtomData(what).getInt(0);
 effectType = EndianOrder.flipBigEndianToNative32(effectType);
 System.out.println ("User chose " +
 QTUtils.fromOSType(effectType) +
 " effect type");

 // make a sample description for the effect description
 ImageDescription imgDesc = ImageDescription.forEffect (effectType);
 imgDesc.setWidth (EFFECT_TRACK_WIDTH);
 imgDesc.setHeight (EFFECT_TRACK_HEIGHT);

 // give the effect description a ref to the source
 effect.insertChild (null,
 StdQTConstants.kEffectSourceName,
 1,
 0,
 QTUtils.toOSType ("srcA"));

 // add effect to the video media
 effectsMedia.beginEdits();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 effectsMedia.addSample (effect, // QTHandleRef data,
 0, // int dataOffset,
 effect.getSize(), // int dataSize,
 sourceTrack.getDuration(), //int durPerSample,
 imgDesc, // SampleDescription sampleDesc,
 1, // int numberOfSamples,
 0 // int sampleFlags
);
 effectsMedia.setInputMap (inputMap);

 effectsMedia.endEdits();

 // now insert this media into track
 effectsTrack.insertMedia (0, // trackStart
 0, // mediaTime
 sourceTrack.getDuration(), // mediaDuration
 1); // mediaRate
 System.out.println ("inserted media into effects track");

 // save up
 System.out.println ("Saving...");
 OpenMovieFile omf = OpenMovieFile.asWrite (movFile);
 movie.addResource (omf,
 StdQTConstants.movieInDataForkResID,
 movFile.getName());
 System.out.println ("Done");

 }

 public static Movie queryUserForMovie()
 throws QTException {
 QTFile file =
 QTFile.standardGetFilePreview (QTFile.kStandardQTFileTypes);
 OpenMovieFile omf = OpenMovieFile.asRead (file);
 return Movie.fromFile (omf);
 }

 public static Track addVideoTrack (Movie sourceMovie,
 Movie targetMovie,
 int srcIn,
 int srcDuration,
 int targetTime)
 throws QTException {
 // find first video track
 Track videoTrack =
 sourceMovie.getIndTrackType (1,
 StdQTConstants.videoMediaType,
 StdQTConstants.movieTrackMediaType);
 if (videoTrack = = null)
 throw new QTException ("can't find a video track");
 // add videoTrack to targetMovie
 Track newTrack =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 targetMovie.newTrack (videoTrack.getSize().getWidthF(),
 videoTrack.getSize().getHeightF(),
 1.0f);
 VideoMedia newMedia =
 new VideoMedia (newTrack,
 videoTrack.getMedia().getTimeScale(),
 new DataRef(new QTHandle()));
 videoTrack.insertSegment (newTrack,
 srcIn, // 0
 srcDuration, // videoTrack.getDuration()
 targetTime);
 return newTrack;
 }
}

When run, this application queries the user to open a QuickTime movie. Then it opens a dialog to
choose and configure the effect, as seen in Figure 9-6. Notice that a frame from the movie is used in
the preview section of the dialog.

Figure 9-6. ParameterDialog for a one-source effect

After the effect is chosen, the new movieconsisting of just a video track and an effects trackis written
to filter.mov. Figure 9-7 shows a video that is modified by the emboss effect.

Figure 9-7. Video track filtered through emboss effect

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.5.2. What just happened?

After grabbing the source movie's first video track and adding it as a video track in a new movie, the
example creates an effects track. The video track's output is redirected by adding a reference to it to
the effects track, via the addReference() call.

Next, you need to set up the input map. This is a normal AtomContainer, into which you'll insert

child atoms. First, create the "track modifier" atom, with the four-argument version of
insertChild()this creates and returns a parent atom (the five-argument versions all create leaf
atoms). To work, this atom requires two children: an atom of type ktrackModifierType whose data
is the type of track being modified (videoMediaType in this case), and an atom of type
kEffectDataSourceType whose data is a name for the track as a FOUR_CHAR_CODE int. Apple's

recommended standard is that source tracks be named "srcA," "srcB," etc.; you can get this 4CC
name with QTUtils.toOSType ("srcA") .

Again, there is an endianness issueQuickTime expects what you're building to be big-endian, so you
have to be careful to account for the endianness of the data you insert. In this case, the
videoMediaType constant and the srcA name are native ints, so they need to be flipped to big-
endianness with EndianOrder.flipNativeToBigEndian32().

Now that it's initialized, set this atom aside while creating the effect and adding its sample to the
effects media. Two important to-dos for filters are to ask the EffectsList constructor for only one-

source effects (by passing 1 for the minimum and maximum number of sources to get effects for)
and to provide the ParameterDialog with a Pict[] that contains an image from your source movie

for previewing the effect. Once the effect has been added, provide the input map with a call to
Media.setInputMap() .

9.5.3. What about...

...applying the filter to just part of the source track? Ah, this will turn up a nasty surprise . . . go
ahead and make the effect cover just half the length of the source video, by changing the duration
parameters in effectsMedia.addSample() and effectsTrack.insertMedia() from
sourceTrack.getDuration() to sourceTrack.getDuration() / 2. You might reasonably expect

that halfway through your movie, the filter simply would go away, because the duration of the effect

http://lib.ommolketab.ir
http://lib.ommolketab.ir

would have expired and the video would be the only valid media at that point. Instead, the display
goes blank!

Here's the deal: using a track for an effect makes it usable only by the effect. Setting up the track
reference redirects the output of the source video track into the effect.

So, what can you do about it? One option is to use two different video tracks in addition to the effect.
The first is the source to the effect and the second is all the source media not to be used in the effect.
In adding this second track, you set its in-time (the "destination in" argument of
track.insertSegment()) to come after the end of the effect. A somewhat cheesier alternative is to

add another, "no-op" effect, like a color conversion configured to not actually do anything, allowing
the source video to get to the screen by way of the effect.

Note: The next lab shows this first technique.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.6. Creating Two-Source Effects (Transitions)

Effects that combine two sources are called transitions, such as dissolves and wipes. You've probably
seen wipes on TV and less frequently in film, although they're considered somewhat artificial in film
because they call attention to themselves (the Star Wars films are probably the most prominent films
to use wipes, perhaps as a nod to old black-and-white adventure films and weekly cliff-hangers).

Note: Technically, a cut from one scene to another is also a transition, but that doesn't involve any kind of effect.

To show off a transition, this lab will open two movies and create a user-selected transition between
them.

9.6.1. How do I do that?

In coding terms, the only significant difference from a one-source effect is, predictably, that you need
to set up an input map that references both source tracks for the effect.

But in terms of practicality, although you might apply a filter to a long sequence of video, a transition
will be very short typicallyonly a few seconds at most. Because a video track used as a source to an
effect is shown only as part of that effect, to show all of one video source transitioning into all of
another, you need five tracks:

All of source A, up to the beginning of the transition (i.e., its last n seconds)

The portion of source A to be used for the transition

The portion of source B to be used for the transition

All of source B after the transition (i.e., everything but its first n seconds)

The effects track

So, to change the previous filter example into a transition example, ask for two source movies and
create the new target movie:

Movie sourceAMovie = queryUserForMovie();
Movie sourceBMovie = queryUserForMovie();
QTFile movFile = new QTFile (new java.io.File("transition.mov"));
Movie movie =
 Movie.createMovieFile(movFile,
 StdQTConstants.kMoviePlayer,
 StdQTConstants.createMovieFileDeleteCurFile |
 StdQTConstants.createMovieFileDontCreateResFile);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, add the four video tracks, with the addVideoTrack() convenience method from the last lab,

which grabs the first video track from the source, creates a new track, and inserts the specified
segment of video media into the new track:

Track preEffectTrack = addVideoTrack (sourceAMovie,
 movie,
 0,
 sourceAMovie.getDuration() - TRANSITION_DURATION,
 0);
Track sourceATrack = addVideoTrack (sourceAMovie,
 movie,
 sourceAMovie.getDuration() - TRANSITION_DURATION,
 TRANSITION_DURATION,
 sourceAMovie.getDuration() - TRANSITION_DURATION);

Track sourceBTrack = addVideoTrack (sourceBMovie,
 movie,
 0,
 TRANSITION_DURATION,
 movie.getDuration() - TRANSITION_DURATION);
Track postEffectTrack = addVideoTrack (sourceBMovie,
 movie,
 TRANSITION_DURATION,
 sourceBMovie.getDuration() - TRANSITION_DURATION,
 movie.getDuration());

After this, create the effect track as before, except that:

You ask the EffectsList constructor for two-source effects.

You provide two Picts to ParameterDialog, one from each source.

You create the input map with two track modifier atoms, each of which refers to a different
track reference (as returned by calls to addReference()). Their contents differ only by name:

one is srcA, and the other is srcB:

int trackARef =
 effectsTrack.addReference (sourceATrack,
 StdQTConstants.kTrackModifierReference);
int trackBRef =
 effectsTrack.addReference (sourceBTrack,
 StdQTConstants.kTrackModifierReference);

// add input reference atoms
Atom aInputAtom =
 inputMap.insertChild (null,
 StdQTConstants.kTrackModifierInput,
 trackARef,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 0);
inputMap.insertChild (aInputAtom,
 StdQTConstants.kTrackModifierType,
 1,
 0,
 EndianOrder.flipNativeToBigEndian32(StdQTConstants.videoMediaType));
inputMap.insertChild (aInputAtom,
 StdQTConstants.kEffectDataSourceType,
 1,
 0,
 EndianOrder.flipNativeToBigEndian32(QTUtils.toOSType ("srcA")));

Atom bInputAtom =
 inputMap.insertChild (null,
 StdQTConstants.kTrackModifierInput,
 trackBRef,
 0);
inputMap.insertChild (bInputAtom,
 StdQTConstants.kTrackModifierType,
 1,
 0,
 EndianOrder.flipNativeToBigEndian32(StdQTConstants.videoMediaType));

inputMap.insertChild (bInputAtom,
 StdQTConstants.kEffectDataSourceType,
 1,
 0,
 EndianOrder.flipNativeToBigEndian32(QTUtils.toOSType ("srcB")));

Because you have two input atoms, you need to make two calls to insert them into the effects
description:

effect.insertChild (null,
 StdQTConstants.kEffectSourceName,
 1,
 0,
 EndianOrder.flipNativeToBigEndian32(QTUtils.toOSType ("srcA")));
effect.insertChild (null,
 StdQTConstants.kEffectSourceName,
 2,
 0,
 EndianOrder.flipNativeToBigEndian32(QTUtils.toOSType ("srcB")));

When run, this example queries the user twice for input movies, then shows a dialog of all installed
two-source effects, as seen in Figure 9-8.

Figure 9-8. ParameterDialog for a two source effect

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note: Run this example with ant run-ch09-transitiontrackbuilder.

Once an effect is selected, the resulting movie is saved as transition.mov. Figure 9-9 shows an
example of a movie in mid-transition, using a vertical "barn door" wipe with 5-pixel-wide borders.

Figure 9-9. Two video tracks as sources to a transition effect

9.6.2. What just happened?

In general, this isn't very different from the one-source case: an effects description defines the effect,
and an input map indicates where the sources come from. Probably the biggest hassle is that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

because an effect by itself isn't very interesting, this example rips out the pre-effect and post-effect
video as separate tracks so that you can actually see the one video clip transitioning into another.

9.6.3. What about...

...all these tracks? Who sends out QuickTime movies with five tracks, one of which QuickTime Player
identifies by the name of the effect, like "Wipe"? Fair enoughthis is the form you would want your
movie in while editing it so that you can make changes easily, tossing the effect or reworking it on
the fly, with minimal CPU or I/O cost to do so (because, as always, you're mostly just copying
pointers). For end-user delivery, you probably would want to export the movie. Even if you export to
another QuickTime movie (as opposed to a foreign format like MPEG-4), the export process will
render and compress each frame of the transition, leaving you with just a single video track.

Also, is there a list of all the effects I can check out? Sure, but there are more than 100...too many to
list here. If you look in Inside Macintosh: QuickTime (on Apple's web site or installed by developer
tools for Mac OS X), the section "Built-in QuickTime Video Effects" lists all the effects provided by
QuickTime, with examples and information about the parameters each one takes. Several dozen of
them are defined and standardized by the industry trade group SMPTE (Society of Motion Picture and
Television Engineers) and will be familiar to anyone who's worked with a television switcher.
Remember, though, the user may have installed third-party effects, so it's important to be able to
use the EffectsList to do runtime discovery of what's available to your program.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The Developer's Notebook series is modeled on the tradition of laboratory notebooks. Laboratory
notebooks are an invaluable tool for researchers and their successors.

Sarah Sherman was the production editor and the proofreader for QuickTime for Java: A Developer's
Notebook, and Audrey Doyle was the copyeditor. Marlowe Shaeffer and Claire Cloutier provided
quality control. Ellen Troutman-Zaig wrote the index.

Edie Freedman designed the cover of this book. Emma Colby produced the cover layout with
QuarkXPress 4.1 using the Officina Sans and JuniorHandwriting fonts.

David Futato designed the interior layout, with contributions from Edie Freedman. This book was
converted by Joe Wizda to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray,
Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is
Adobe Boton; the heading font is ITC Officina Sans; the code font is LucasFont's TheSans Mono
Condensed, and the handwriting font is a modified version of JuniorHandwriting made by Tepid
Monkey Foundry and modified by O'Reilly. The illustrations that appear in the book were produced by
Robert Romano and Jessamyn Read using Macromedia FreeHand MX and Adobe Photoshop CS. This
colophon was written by Colleen Gorman.

The online edition of this book was created by the Safari production group (John Chodacki, Ellie
Cutler, and Ken Douglass) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

2D transformations with Matrix objects

4CCs (four character codes) 2nd [See also FOUR_CHARACTER_CODEs]

ÒmanufacturerÓ code for exporters

| operator

 combining behavior flags

 combining

 combining display flags for text sample

 combining text face constants

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

AAC files (iTunes)

 metadata, getting

absolute paths, QTJ and

Abstract Plane, SoftVDIG

addEmptyTrack() (Movie)

addReference()

addResource() (Movie) 2nd

addSample() 2nd

 Media class 2nd

 SoundMedia class 2nd

 VideoMedia class 2nd

addTextSample() (TextMediaHandler) 2nd

addTimeCode()

addTrack() (Movie)

addVideoTrack()

affine transformations

anchor point

Ant

Apple

 Biscotti project

 H.264 (aka AVC) codec for QuickTime

 iChat AV application

 QuickTime, introduction of

applets, opening and closing QT sessions

asComponent()

asJComponent()

Atom class, getData()

AtomContainer class 2nd

 describing one-source effect

 fromQTHandle()

AtomData object

atoms

 atom-like structures in AAC metadata

 AtomContainers

audio

 adding second track to a movie

 basic controls, providing

 building a track from raw samples

 capturing [See capturing, audio]

 level meter for applications, providing

 metadata tag constants

 playing from command line 2nd

 reading information from iTunes AAC files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 reading information from MP3 files

AudioMediaHandler class

 getSoundLevelMeterLevels()

 setBalance()

 setSoundBassAndTreble()

 setSoundEqualizerBands() 2nd

AVI file format (Microsoft)

AWT

 file selector

 Frame class

 Graphics class

 ImageProducer interface

 Mac OS X menus and

 mixing with Swing widgets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

background color

barn door wipe

beginDraw() (Pict)

beginEdits() (Media) 2nd 3rd

behavior flags

 for callbacks

 for capture

 for create file operation

 for finding interesting times

 for flattening operation

 for movie export

 newMovieAsyncOK 2nd

 previously compressed frames

 for saving a movie to a file

 for saving a movie with dependencies

big-endian

Biscotti

blend (graphics mode)

bluescreen video, information about

BorderLayout class

browsers

 controlling a movie via JavaScript

 showing movie with an HREF track

build.xml file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C language, documentation for native functions

callbacks

 disabling buttons via

 releasing resources

 types of in quicktime.std.clocks

callMeWhen()

 canceling callback registered with

cancel() (QTCallBack)

cancelAndCleanup() (QTCallBack)

captions, creating with text media

capturing

 audio

 to disk

 selecting audio inputs

 audio and video to same file

 video

 making a motion detector

 to disk

channels, number of

character codes, component types/subtypes

chroma key concept

Classic Mac OS [See Macintosh]

CODEC_TYPE constant

codecs 2nd

 commonly-used video codecs

 determining the best one to use

 FOUR_CHAR_CODEs

 H.264 (aka AVC) codec for QT

 indicating which supported QT video codec to use

 mixed, flattening process and

 in StdQTConstants classes

color

 background

 blending colors

 foreground and background, for timecodes

 highlighted text

 text

command line, playing audio from 2nd

compiling QTJ code

 path to QTJava.zip file

Component class 2nd

ComponentDescription class 2nd

ComponentIdentifier class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 find()

 getInfo()

components 2nd

 definition of

 discovering all installed

 exporting movies to any installed format

 importing and exporting graphics

 listing of important types

 movie exporter

 type and subtype

composited video, uses of

compositing graphics

compositing movie tracks, zero-source effects

compress() (QTImage) 2nd

CompressedFrameInfo object

compressFrame() (CSequence)

compression

 audio capture and

 buffer size for holding compressed images

constants [See StdConstants class]

containers

 AtomContainers

 definition of

 mixing AWT and Swing widgets

controller, adding for movies

controlling a movie programmatically

controls, providing for audio

convertToFile() (Movie) 2nd 3rd

copyFromArray() (QRHandle)

copying and pasting

 BasicQTEditor class (example)

 pasting

createImage() (Toolkit)

createMovieFile()

 Movie class

 QTFile class

createMovieFileDeleteCurFile flag

createMovieFileDontCreateResFile flag

CSequence class 2nd

 compressFrame()

current time

 adjustment after editing

 showing for a movie

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

DataRef objects

 location for storing media samples

 pointing to Pict byte array

decompression

deleteSegment()

 Track class

dependencies, saving a movie with

detecting motion by comparing grabbed images

dialogs

 export options

 GraphicsExporter settings

 missing media in reference movie

 opening a movie

 save progress dialog

 saving a movie

 selecting effects 2nd 3rd 4th

 providing Picts to 2nd

 settings for capture 2nd

 threading problem with

DirectShow video, bringing into QT

display flags for text samples 2nd

dissolves

draw() 2nd

 GraphicsImporter class 2nd

 Pict class

drawImage() (Graphics)

drawing with Graphics primitives

drop frame format

duration (segment), changing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Edit Decision List (EDL)

editing movies

 copying and pasting

 BasicQTEditor class (example)

 pasting

 flattening a movie

 low-level edits

 saving a movie with dependencies

 saving movie to a file

 progress indication

 tracks

 undoing an edit

 undoing/redoing multiple edits

effects media

 creating zero-source effects

 listing installed effects

 listing of

 one-source effects

 two-source effects

effects tracks

EffectsList objects 2nd

<embed> tag (HTML)

enableEditing()

EncodedImage interface 2nd

encoding formats, video and audio

endEdits() (Media) 2nd

endianness 2nd

EndianOrder class

 flipBigEndianToNative32()

 flipNativeToBigEndian32()

execute()

 MovieProgress class

exitMovies() (QTSession)

exporting graphics

 setting export parameters programmatically

exporting movies 2nd

 to any installed format

 setting export parameters programmatically

 using MovieExporter class

ExportType class

ExtremesCallBack class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

face, text

fast-motion effect

File class

filters [See one-source effects]

Final Cut Pro (editing application)

find() (ComponentIdentifier)

flags [See behavior flags]

flatten() (Movie)

flattening a movie

flipBigEndianToNative32() (EndianOrder)

flipNativeToBigEndian32() (EndianOrder)

font number

font size

forEffects() (ImageDescription)

foreground video track

four character codes

FOUR_CHAR_CODEs

 atoms

 codecs

 converting to/from

 graphics file format constants

 movie user data

 padding with space characters

 video codec

Frame class

 adding a Label

frames

 forcing movie not to drop

 key frame or sync sample

 key frame rate

 moving frame by frame

 MP3 files

frequencies

 frequency of the sound wave to be produced

 level meter display of loudness/softness

 sine wave

 square wave at constant frequency

fromDataRef() (Movie)

fromFile()

 Movie class

 Pict class

fromOSType() (QTUtils)

fromQTHandle() (AtomContainer)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

functions (native C), documentation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

GDevice class

 getList()

 getMain()

getAsPicture() (GraphicsImporter)

getBytes() 2nd

getData()

 Atom class

getDefaultFileNameExtension() (GraphicsExporter)

getDeviceList()

getDuration() (Movie)

getExportSettingsFromAtomContainer()

getFNum() (QDFont)

getIndTrackType() (Movie) 2nd

getInfo() (ComponentIdentifier)

getList() (GDevice)

getMain() (GDevice)

getMaxCompression() (QTImage)

getMaxCompressionSize()

GetMediaNextInterestingTime function

getNextInterestingTime()

getNextType() (UserData)

getPict() (Movie)

getPreferredSize()

getScreenSize() (Toolkit)

getSimilarity() (QTImage) 2nd

getSoundLevelMeterLevels() (AudioMediaHandler)

getTextAsString() (UserData) 2nd 3rd

getTextHandler() (TextMedia)

getTime() (Movie)

getTimeCodeHandler() (TimeCodeMedia)

getTimeScale() (Movie)

grabMovieImage() 2nd

grabPict() (SequenceGrabber)

graphics [See also QuickDraw]

 importing/exporting

 Picts file format (Mac OS)

Graphics class, drawImage()

graphics modes

 blend

 listing of

 transparent

Graphics primitives, drawing with

GraphicsExporter class 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GraphicsImporter class 2nd 3rd

 draw() 2nd

 getAsPicture()

 saveAsPicture()

 setDataHandle()

 setDataReference()

 setGraphicsMode()

 setGWorld()

GraphicsImporterDrawer, QTImageProducer provided by

GraphicsMode objects

 combining colors in overlaid video tracks

 mode int

GWorld objects 2nd 3rd

 drawing from source image into the GWorld

 drawing pixels off-screen from imported graphic

 as represented by QDGraphics

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

H.264 (aka AVC) codec for QuickTime

handlers, media

highlighted text

 color

 start and end points

hinted movie

HREF media

 arrangement of HREF samples to other tracks and samples

 creating tracks

HTML, embedding QuickTime in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

iChat AV application

ID3 standard

 retrieving metadata

 tags in non-Western scripts

idle() (SequenceGrabber) 2nd 3rd

ImageDescription class

 forEffect()

ImageProducer interface

images, building video track from image samples

importing/exporting graphics

index-based get, QT methods

indexed color formats

input map for effects sources 2nd

 creating for two-source effects

 two-source effects

insertChild()

insertEmptySegment() (Track)

insertMedia() (Track) 2nd 3rd

insertSegment()

 Movie class

 Track class 2nd

installed components, discovering

installing QTJ

 on Classic Mac OS

 preflighting an installation

 on Windows

int, endianness of 2nd

interesting times

Internet Explorer, QuickTime embedded in HTML

itemStateChanged()

iTunes AAC files

 metadata, getting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Java

 converting movie image to Java

 better converter

 converting movie image to Java image

 developer kit, J2SE 1.4.2 SDK

 MRJ (Macintosh Runtime for Java)

Java 2D API

 affine transformations

Java Media Framework (JMF)

Java Runtime Environment (JRE), QuickTime installation and

Javadocs and demos, QTJ SDK on Mac OS X

JavaScript, browser support for

JComponent class

JMF (Java Media Framework)

JSlider class

justification, text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

key frame 2nd

key frame rate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Label class

layers in multi-track movie

level meters

 creating for audio capture

 providing for audio applications

LevelMeter class

lightweight components

links, creating with HREF tracks

looping behavior, setting with MovieController

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Macintosh

 installing QTJ on (Classic) Mac OS

 menus on Mac OS X with usage of AWT

 Picts graphics file format

 preferred size of QTComponent on Mac OS X

 QTJ SDK

main()

makeQTComponent() (QTFactory)

makeQTJComponent() (QTFactory)

map() (Matrix)

Math class, sin()

Matrix class

 map()

 rect() 2nd 3rd

 rotate()

matrix-based drawing

Matrix-based transformations

 foreground video track

 mirror image video

 moving timecode display

 using on text track

maxLoadedTimeInMovie()

media

 audio [See audio]

 effects

 listing of

 one-source effects

 two-source effects

 zero-source effects

 HREF tracks, creating links with

 samples

 text

 timecodes

 video [See video]

Media class

 addSample()

 setup for text media

 beginEdits() 2nd

 endEdits()

 setInputMap()

media handlers 2nd

MediaEqSpectrumBands object

menus

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 on Mac OS X with usage of AWT

 overlap problem with mixed AWT and Swing components

metadata

 audio metadata tag constants

 iTunes AAC files

 getting

 MP3 files

 ID3 tags in non-Western scripts

 retrieving

 Quicktime tags

middle C sine wave

mirror image video

motion detector, creating

.mov file format

Movie class

 addEmptyTrack()

 addResource() 2nd

 addTrack()

 convertToFile() 2nd

 createMovieFile()

 flatten()

 fromDataRef()

 behavior flags

 fromFile()

 getIndTrackType() 2nd

 getPict()

 getTime()

 getTimeScale()

 insertSegment()

 newEditState()

 newTrack() 2nd

 removeTrack()

 scaleSegment()

 setProgressProc()

 setTime()

 task()

 taskAll()

 useEditState()

movie exporter components

 exporting to any installed format

movieChanged() 2nd

MovieController class

 methods similar to on-screen control widget

 movieChanged()

 undo()

MovieEditState objects

MovieExporter class

 toFile()

 toHandle()

MoviePlayer class, QTImageProducer provided by

MovieProgress class

movies

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 converting movie image to Java image

 better converter

 creating with single text track

 definition of

 editing

 copying and pasting

 flattening a movie

 low-level edits

 saving to a file

 saving with dependencies

 tracks

 undoing an edit

 undoing/redoing multiple edits

 embedded in web page

 exporting

 picture-in-picture movie

 playing

 adding a controller

 building simple player

 controlling programmatically

 current time, showing

 JComponent

 listening for state changes

 mvoing frame by frame

 preventing tasking problems

 from URLs

 user data

MP3 files, reading information from

MPEG files

 H.264 codec

 MPEG media

 MPEG-4 visual codec

 testing for MPEG-4 support

MPEGMedia class

MPEGMediaHandler class

MRJ (Macintosh Runtime for Java)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

native functions (C), documentation

newEditState() (Movie)

newMovieAsyncOK behavior flag 2nd

newTrack() (Movie) 2nd

NextTimeEdgeOK

NextTimeMediaEdit

NextTimeMediaSample

NextTimeSyncSample

NTSC broadcast video

Nyquist-Shannon Sampling Theorem

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

<object> tag (HTML)

one-source effects 2nd

 applying filter to just one part of source track

overlaying video tracks

 uses of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

pack()

 calling after each paste()

paint() (LevelMeter)

<param> elements (HTML)

ParameterDialog class

 showParameterDialog() 2nd

 zero-source effect

paste()

PCM (pulse code modulation)

performance, mixing AWT and Swing widgets

Pict class

 beginDraw()

 draw()

 fromFile()

 writeToFile()

Picts

 getting and saving

 getting from a movie

 importing from memory

picture-in-picture movies

 Apple iChat AV application

Pixlet codec

PixMap objects

play() (MovieController)

playing movies

 adding a controller

 building a simple player

 JComponent class

 listing for state changes

 moving frame by frame

 preventing tasking problems

 programmatic control

 showing movie's current time

 from URLs

PNG files

 file-type constant

 use for screenshots

pointers 2nd

 to sample data

preflighting a QTJ installation

Premiere (editing application)

prepare() (SequenceGrabber) 2nd 3rd 4th

previewing captured audio

http://lib.ommolketab.ir
http://lib.ommolketab.ir

progress of movie save operation

properties file (videosamplebuilder)

pulse code modulation (PCM)

putOnScrap()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

QDColor class

 background color

 text color

QDConstants class

 graphics modes 2nd

 text face

QDDrawer class

QDFont class, getFNum()

QDGraphics class 2nd 3rd 4th

 as wrapper for GWorld

QDRect class

QTCallBack class

 cancelAndCleanup()

QTComponent class

 performance vs. QTJComponent

 preferred size on Mac OS X

QTEdit class

 redo()

QTException

QTFactory class

 makeQTComponent()

 makeQTJComponent()

QTFile class

 createMovieFile()

 standardGetFilePreview()

QTHandle class

 copyFromArray()

QTHandleRef class

 timecode samples

QTImage class

 compress() 2nd

 getMaxCompression()

 getSimilarity() 2nd

QTImageProducer class

 provided by GraphicsImporterDrawer

 provided by MoviePlayer

QTJava.zip file 2nd

QTJComponent class

 performance vs. QTComponent

QTPointer class

QTPointerRef objects

 for text string to be added to movie

QTSession class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 exitMovies()

 multiple open() or close() calls

QTUtils class

 toOSType()

 toOSType() and fromOSType()

Quartz 2D API

QuickDraw 2nd

 compositing graphics

 converting between objects

 converting movie image to Java image

 creation/manipulation of video media

 drawing with Graphics primitives

 getting a Pict from a movie

 getting and saving Picts

 matrix-based drawing

 movie-to-Java image converter (better)

 screen capture, getting

QuickTime

QuickTime for Java (QTJ)

 documentation

 downloading

 setting up on Windows

QuickTime Player, audio level meter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

RateCallBack class 2nd

RawEncodedImage objects 2nd 3rd

 compressing frame pixels in GWorld into

rect() (Matrix) 2nd 3rd

redoing multiple edits

reference movies

 saving a movie with dependencies

 usefulness in save operations

removeTrack() (Movie)

repaint() (Timer)

requestSettings()

rotate() (Matrix)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

SampleDescription objects

 customizing with setter methods

 timecode samples

samples

 building video track from raw samples

 HREF, arrangement of

 key frame or sync sample

 raw, building audio track from

 sample size, setting for audio track

 text

 display flags

saveAsPicture() (GraphicsImporter)

saving movies

 with dependencies

 to a file

 flattening

scale()

scaleSegment()

 Movie class

 Track class

scanForDifference()

screen capture

screen size

 movie editing and

self-contained movie

SequenceGrabber class

 grabPict()

 idle() 2nd

 prepare()

 startPreview()

 startRecord()

 stop() 2nd

 update()

session handler for QTJ (example)

setBalance() (AudioMediaHandler)

setCompressionMethod()

setDataHandle() (GraphicsImporter)

setDataOutput()

setDataReference() (GraphicsImporter)

setDepth()

setDevice() (SGSoundChannel)

setEnabled() (Track)

setExportSettingsFromAtomContainer()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

setFlags()

setFrameDuration() (TimeCodeDef)

setFramesPerSecond() (TimeCodeDef)

setFrequency()

setGraphicsMode()

 GraphicsImporter class

 VideoMediaHandler class

setGWorld() (GraphicsImporter)

setInputGraphicsImporter()

setInputMap()

 Media class

setInputPtr()

setLayer() (Track)

setLightweightPopupEnabled()

setMatrix() (Class)

setOutput()

setOutputFile() (GraphicsExporter)

setPlayEveryFrame() (MovieController)

setProgressProc() (Movie) 2nd

setSoundBassAndTreble() (AudioMediaHandler)

setSoundEqualizerBands() (AudioMediaHandler) 2nd

setTargetDataSize()

setTime() (Movie) 2nd

setTimeCodeDef()

setTimeScale() (TimeCodeDef)

settingsDialog()

 SGSoundChannel class 2nd

setUsage() 2nd

 SGSoundChannel class 2nd 3rd

 SGVideoChannel class

setVolume() (SoundChannel)

SGDeviceName class

SGSoundChannel class

 setDevice()

 setUsage() 2nd

showParameterDialog() (ParameterDialog) 2nd 3rd

showUserSettingsDialog flag

shutdown hook for QT sessions

sin() (Math)

sine waves

sleep() (Thread)

sliders

slow-motion effect

SoftVDIG from Abstract Plane

Sorenson Video 3 codec

sound channel

SoundChannel class, setVolume()

SoundDescription objects

SoundMedia class

 addSample() 2nd

source tracks for effects

 Apple recommendation for naming

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 two-source effects

spatial quality of images after 2D compression

SPBDevice class

square wave 2nd

standardGetFilePreview() (QTFile) 2nd

start() (Movie)

startPreview() (SequenceGrabber)

startRecord() (SequenceGrabber) 2nd

StdQTConstants

 constants for finding tracks

StdQTConstants class

 codecs

 compression quality, specifying

 constants for callback behavior

 constants for finding tracks

 df (display flag) constants for text samples

 for flattening a movie

 image file formats

 kMoviePlayer

 kQTFileTypeAVI

 kQTFileTypeMovie

 metadata tag names

 movieToFileOnlyExport

 newMovieAsyncOK 2nd

 resource file creation, preventing

 for saving a movie

 for setting capture usage

 showUserSettingsDialog

 timecode flags

 "what" effect identifier

StdQTConstants4 class

 constants for image formats

 PNG file-type constant

stop() (SequenceGrabber) 2nd

String class, getting string bytes and wrapping in QTPointer

style information for text

subtypes, component 2nd

Swing

 file selector

 mixing with AWT widgets

 simple movie player (example)

 Timer class

 undo API

sync sample

 finding next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

tags

 audio metadata tag constants

 ID3 2nd [See also ID3 standard]

 QuickTime metadata

task() (Movie)

taskAll() (Movie)

TaskAllMovies class

tasking, preventing problems

TCTextDisplay objects

TCTextOptions objects

temporal quality of images when using data from adjacent frames

text

 display options for timecodes

 timecode, display options for

text box

text face

text media

 captions

 display flags for text sample

 HREF tracks, URLs in

TextMedia class, getTextHandler()

TextMediaHandler class 2nd

Thread class

 sleep()

 yield()

time

 adjustment after editing movie

 showing a movie's current time

time scales 2nd

 for NTSC drop-frame

TimeCallBack class

TimeCodeDef objects 2nd

 values

TimeCodeDescription objects

TimeCodeMedia class 2nd

TimeCoder class

 behavior flags for timecode display

timecodes

 behavior flags for display

 timecode track

TimeCodeTime class 2nd

TimeInfo objects

TimeJumpCallBack class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Timer class

 repaint()

toFile() (MovieExporter)

toFrameNumber()

toHandle() (MovieExporter)

Toolkit class

 createImage()

 getScreenSize()

toOSType() (QTUtils) 2nd

Track class

 editing methods

 foreground video track preparation methods

 insertMedia() 2nd

 setLayer()

 setMatrix()

track modifier

tracks

 1-based numbering

 audio, building from raw samples

 editing

 effects tracks

 HREF, creating links with

 source, naming of

 text

 timecode

 video

 building from raw samples

 combining

 overlaying

transformations, Matrix-based

 of foreground video track

 mirror image video

 video transformations

transitions

translate()

transparent graphics mode 2nd

triggering callback on any rate change

two-source effects 2nd

types/subtypes, component 2nd

 listing of important types

 matching

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

undo()

 MovieController class

 UndoManager class

undoing

 a single edit

 multiple edits

UndoManager class

update() (SequenceGrabber)

Updater (QuickTime)

updateResource()

URLs

 in HREF tracks

 linking and other behaviors

 playing movies from

useEditState() (Movie)

UserData class

 getNextType()

 getTextAsString()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

video

 building track from raw samples

 capturing [See capturing, video]

 combining tracks

 effects tracks [See effects media]

 overlaying tracks

video digitizer component

VideoMedia class, addSample() 2nd

VideoMediaHandler class, setGraphicsMode()

videosamplebuilder.properties file

VisualMediaHandler class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

web page with embedded movie

window size for movies

Windows

 exporting to MPEG-4

 Internet Explorer

 QT embedded in HTML

 QTJ bug workaround using absolute paths

 setting up QTJ

 video digitizer component

wipes 2nd

writeToFile() (Pict)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

XML file for QTJ installation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

yield() (Thread)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zero-source effects

 ParameterDialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	QuickTime for Java: A Developer's Notebook
	Table of Contents
	Copyright
	The Developer's Notebook Series
	Notebooks Are...
	Notebooks Aren't...
	Organization

	Preface
	Enter Biscotti
	Why a QuickTime for Java Book?
	Assumptions and Definitions
	Organization
	About the Examples
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari Enabled
	Acknowledgments

	Chapter 1. Getting Up and Running with QuickTime for Java
	Section 1.1. Setting Up QTJ on Windows
	Section 1.2. Embedding QuickTime in HTML
	Section 1.3. Preflighting a QTJ Installation
	Section 1.4. Compiling QTJ Code
	Section 1.5. Opening and Closing the QuickTime Session
	Section 1.6. Playing an Audio File from the Command Line

	Chapter 2. Playing Movies
	Section 2.1. Building a Simple Movie Player
	Section 2.2. Adding a Controller
	Section 2.3. Getting a Movie-Playing JComponent
	Section 2.4. Controlling a Movie Programmatically
	Section 2.5. Showing a Movie's Current Time
	Section 2.6. Listening for Movie State-Changes
	Section 2.7. Moving Frame by Frame
	Section 2.8. Playing Movies from URLs
	Section 2.9. Preventing

	Chapter 3. Editing Movies
	Section 3.1. Copying and Pasting
	Section 3.2. Performing
	Section 3.3. Undoing an Edit
	Section 3.4. Undoing and Redoing Multiple Edits
	Section 3.5. Saving a Movie to a File
	Section 3.6. Flattening a Movie
	Section 3.7. Saving a Movie with Dependencies
	Section 3.8. Editing Tracks

	Chapter 4. Working with Components
	Section 4.1. Specifying a Component's Type
	Section 4.2. Exporting Movies
	Section 4.3. Exporting Movies to Any Installed Format
	Section 4.4. Importing and Exporting Graphics
	Section 4.5. Discovering All Installed Components

	Chapter 5. Working with QuickDraw
	Section 5.1. Getting and Saving Picts
	Section 5.2. Getting a Pict from a Movie
	Section 5.3. Converting a Movie Image to a Java Image
	Section 5.4. A Better Movie-to-Java Image Converter
	Section 5.5. Drawing with Graphics Primitives
	Section 5.6. Getting a Screen Capture
	Section 5.7. Matrix-Based Drawing
	Section 5.8. Compositing Graphics

	Chapter 6. Capture
	Section 6.1. Capturing and Previewing Audio
	Section 6.2. Selecting Audio Inputs
	Section 6.3. Capturing Audio to Disk
	Section 6.4. Capturing Video to Disk
	Section 6.5. Capturing Audio and Video to the Same File
	Section 6.6. Making a Motion Detector

	Chapter 7. Audio Media
	Section 7.1. Reading Information from MP3 Files
	Section 7.2. Reading Information from iTunes AAC Files
	Section 7.3. Providing Basic Audio Controls
	Section 7.4. Providing a Level Meter
	Section 7.5. Building an Audio Track from Raw Samples

	Chapter 8. Video Media
	Section 8.1. Combining Video Tracks
	Section 8.2. Overlaying Video Tracks
	Section 8.3. Building a Video Track from Raw Samples
	Section 8.4. Overlaying Video Tracks

	Chapter 9. Miscellaneous Media
	Section 9.1. Creating Captions with Text Media
	Section 9.2. Creating Links with HREF Tracks
	Section 9.3. Adding Timecodes
	Section 9.4. Creating Zero-Source Effects
	Section 9.5. Creating One-Source Effects (Filters)
	Section 9.6. Creating Two-Source Effects (Transitions)

	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

