downloaded from: lib.ommolkefab.ir

QuickTime for Java: A Developer's Notebook

By Chris Adamson

Publisher: O'Reilly
Pub Date: January 2005
ISBN: 0-596-00822-8

Pages: 255

Table of
) Contents
* Index
* Reviews

Reader Java developers who need to add audio, video, or interactive media
" Reviews creation and playback to their applications find that QuickTime Java is a
+ Errata powerful toolkit, but one that's not easy to get into. This book offers the
« Academic first real look at this important software with an informal, code-intensive

style that lets impatient early adopters focus on learning by doing. You get
just the functionality you need.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

QuickTime for Java: A Developer's Notebook

By Chris Adamson

Publisher: O'Reilly
Pub Date: January 2005
ISBN: 0-596-00822-8
Pages: 255

Table of
Contents
¢ Index

* Reviews
Reader
Reviews

- Errata

» Academic

Copyright
The Developer's Notebook Series

Notebooks Are...
Notebooks Aren't...
Organization
Preface
Enter Biscotti
Why a QuickTime for Java Book?
Assumptions and Definitions

Organization
About the Examples

Conventions Used in This Book

Using Code Examples

How to Contact Us

Safari Enabled

Acknowledgments

Chapter 1. Getting Up and Running with QuickTime for Java
Section 1.1. Setting Up QTJ on Windows

Section 1.2. Embedding QuickTime in HTML

Section 1.3. Preflighting a QTJ Installation

Section 1.4. Compiling QTJ Code

Section 1.5. Opening and Closing the QuickTime Session

Section 1.6. Playing an Audio File from the Command Line
Chapter 2. Playing Movies

Section 2.1. Building a Simple Movie Player

Section 2.2. Adding a Controller

Section 2.3. Getting a Movie-Playing JComponent

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Section 2.4.

Controlling a Movie Programmatically

Section 2.5.

Showing a Movie's Current Time

Section 2.6.

Listening for Movie State-Changes

Section 2.7.

Moving Frame by Frame

Section 2.8.

Playing Movies from URLS

Section 2.9.

Preventing "Tasking" Problems

Chapter 3. Editing Movies

Section 3.1.

Copying and Pasting

Section 3.2.

Performing "Low-Level" Edits

Section 3.3.

Undoing an Edit

Section 3.4.

Undoing and Redoing Multiple Edits

Section 3.5.

Saving a Movie to a File

Section 3.6.

Flattening a Movie

Section 3.7.

Saving a Movie with Dependencies

Section 3.8.

Editing Tracks

Chapter 4. Working with Components

Section 4.1.

Specifying a Component's Type

Section 4.2.

Exporting Movies

Section 4.3.

Exporting Movies to Any Installed Format

Section 4.4.

Importing and Exporting Graphics

Section 4.5.

Discovering All Installed Components

Chapter 5. Working with QuickDraw

Section 5.1.

Getting and Saving Picts

Section 5.2.

Getting a Pict from a Movie

Section 5.3.

Converting a Movie Image to a Java Image

Section 5.4.

A Better Movie-to-Java Image Converter

Section 5.5.

Drawing with Graphics Primitives

Section 5.6.

Getting a Screen Capture

Section 5.7.

Matrix-Based Drawing

Section 5.8.

Compositing Graphics

Chapter 6. Capture

Section 6.1.

Capturing and Previewing Audio

Section 6.2.

Selecting Audio Inputs

Section 6.3.

Capturing Audio to Disk

Section 6.4.

Capturing Video to Disk

Section 6.5.

Capturing Audio and Video to the Same File

Section 6.6.

Making a Motion Detector

Chapter 7. Audio Media

Section 7.1.

Reading Information from MP3 Files

Section 7.2.

Reading Information from iTunes AAC Files

Section 7.3.

Providing Basic Audio Controls

Section 7.4.

Providing a Level Meter

Section 7.5.

Building an Audio Track from Raw Samples

Chapter 8. Video Media

Section 8.1.

Combining Video Tracks

Section 8.2.

Overlaying Video Tracks

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Section 8.3. Building a Video Track from Raw Samples

Section 8.4. Overlaying Video Tracks

Chapter 9. Miscellaneous Media

Section 9.1. Creating Captions with Text Media
Section 9.2. Creating Links with HREF Tracks
Section 9.3. Adding Timecodes

Section 9.4. Creating Zero-Source Effects

Section 9.5. Creating One-Source Effects (Filters)

Section 9.6. Creating Two-Source Effects (Transitions)

Colophon
Index

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Copyright © 2005 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions

are also available for most titles (http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Developer's Notebook series designations, QuickTime for Java: A Developer's
Notebook, the look of a laboratory notebook, and related trade dress are trademarks of O'Reilly
Media, Inc.

Java? and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O'Reilly Media, Inc. is independent of
Sun Microsystems, Inc.

Apple, the Apple logo, AppleScript, AppleTalk, AppleWorks, Carbon, Cocoa, Finder, FireWire, iBook,
iMac, iPod, Mac, Mac logo, Macintosh, PowerBook, QuickTime, QuickTime logo, and WebObjects are
trademarks of Apple Computer, Inc., registered in the United States and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

[reevions Juers

downloaded from: lib.ommolkefab.ir

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

The Developer's Notebook Series

So, you've managed to pick this book up. Cool. Really, I'm excited about that! Of course, you may be
wondering why these books have the odd-looking, college notebook sort of cover. | mean, this is
O'Reilly, right? Where are the animals? And, really, do you need another series? Couldn't this just be
a cookbook? How about a nutshell, or one of those cool hacks books that seems to be everywhere?
The short answer is that a developer's notebook is none of those thingsin fact, it's such an important
idea that we came up with an entirely new look and feel, complete with cover, fonts, and even some
notes in the margin. This is all a result of trying to get something into your hands you can actually
use.

It's my strong belief that while the nineties were characterized by everyone wanting to learn
everything (Why not? We all had six-figure incomes from dot-com companies), the new millennium is
about information pain. People don't have time (or the income) to read through 600 page books,
often learning 200 things, of which only about 4 apply to their current job. It would be much nicer to
just sit near one of the uber-coders and look over his shoulder, wouldn't it? To ask the guys that are
neck-deep in this stuff why they chose a particular method, how they performed this one tricky task,
or how they avoided that threading issue when working with piped streams. The thinking has always
been that books can't serve that particular needthey can inform, and let you decide, but ultimately a
coder's mind was something that couldn't really be captured on a piece of paper.

This series says that assumption is patently wrongand we aim to prove it.

A Developer's Notebook is just what it claims to be: the often-frantic scribbling and notes that a true-
blue alpha geek mentally makes when working with a new language, API, or project. It's the no-
nonsense code that solves problems, stripped of page-filling commentary that often serves more as a
paperweight than an epiphany. It's hackery, focused not on what is nifty or might be fun to do when
you've got some free time (when's the last time that happened?), but on what you need to simply
"make it work." This isn't a lecture, folksit's a lab. If you want a lot of concept, architecture, and UML
diagrams, I'll happily and proudly point you to our animal and nutshell books. If you want every
answer to every problem under the sun, our omnibus cookbooks are Killer. And if you are into arcane
and often quirky uses of technology, hacks books simply rock. But if you're a coder, down to your
core, and you just want to get on with it, then you want a Developer's Notebook. Coffee stains and
all, this is from the mind of a developer to yours, barely even cleaned up enough for print. | hope you
enjoy it...we sure had a good time writing them.

[rrevious e s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Notebooks Are...

Example-driven guides

As you'll see in the Organization section, developer's notebooks are built entirely around
example code. You'll see code on nearly every page, and it's code that does somethingnot
trivial "Hello World!" programs that aren't worth more than the paper they're printed on.

Aimed at developers

Ever read a book that seems to be aimed at pointy-haired bosses, filled with buzzwords, and
feels more like a marketing manifesto than a programming text? We have tooand these books
are the antithesis of that. In fact, a good notebook is incomprehensible to someone who can't
program (don't say we didn't warn you!), and that's just the way it's supposed to be. But for
developers...it's as good as it gets.

Actually enjoyable to work through

Do you really have time to sit around reading something that isn't any fun? If you do, then
maybe you're into thousand-page language referencesbut if you're like the rest of us,
notebooks are a much better fit. Practical code samples, terse dialogue centered around
practical examples, and even some humor here and therethese are the ingredients of a good
developer's notebook.

About doing, not talking about doing

If you want to read a book late at night without a computer nearby, these books might not be
that useful. The intent is that you're coding as you go along, knee deep in bytecode. For that
reason, notebooks talk code, code, code. Fire up your editor before digging in.

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Notebooks Aren't...

Lectures

We don't let just anyone write a developer's notebookyou've got to be a bona fide
programmer, and preferably one who stays up a little too late coding. While full-time writers,
academics, and theorists are great in some areas, these books are about programming in the
trenches, and are filled with instruction, not lecture.

Filled with conceptual drawings and class hierarchies

This isn't a nutshell (there, we said it). You won't find 100-page indices with every method
listed, and you won't see full-page UML diagrams with methods, inheritance trees, and flow
charts. What you will find is page after page of source code. Are you starting to sense a
recurring theme?

Long on explanation, light on application

It seems that many programming books these days have three, four, or more chapters before
you even see any working code. I'm not sure who has authors convinced that it's good to keep
a reader waiting this long, but it's not anybody working on this series. We believe that if you're
not coding within ten pages, something's wrong. These books are also chock-full of practical
application, taking you from an example in a book to putting things to work on your job, as
quickly as possible.

[rreviovs fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Organization

Developer's Notebooks try to communicate different information than most books, and as a result,
are organized differently. They do indeed have chapters, but that's about as far as the similarity
between a notebook and a traditional programming book goes. First, you'll find that all the headings
in each chapter are organized around a specific task. You'll note that we said task, not concept.
That's one of the important things to get about these booksthey are first and foremost about doing
something. Each of these headings represents a single lab. A lab is just what it sounds likesteps to
accomplish a specific goal. In fact, that's the first heading you'll see under each lab: "How do | do
that?" This is the central question of each lab, and you'll find lots of down-and-dirty code and detail in
these sections. Many labs offer alternatives and address common questions about different
approaches to similar problems. These are the "What about . . . " sections, which will help give each
task some context within the programming big picture.

And one last thingon many pages, you'll find notes scrawled in the margins of the page. These aren't
for decoration; they contain tips, tricks, insights from the developers of a product, and sometimes
even a little humor, just to keep you going. These notes represent part of the overall communication
flowgetting you as close to reading the mind of the developer-author as we can. Hopefully they'll get
you that much closer to feeling like you are indeed learning from a master.

And most of all, rememberthese books are...
All Lab, No Lecture

Brett McLaughlin, Series Creator

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Preface

Java has been a huge success in many fieldsdistributed enterprise applications, mobile phones, web
applicationsbut one field that it has clearly flopped in is media. A sound API, javax.sound, suffices for
simple playback and mixing of a handful of old formats, and was added to the Java core (the classes
any Java runtime must include) in Java 2 Standard Edition (J2SE) 1.3. The optional package for
media, Java Media Framework (JMF), fared much worse. After two releases, a 1.0 that provided only
playback and a 2.0 that added streaming, transcoding, and some lower-level access, the product was
slipped into maintenance mode and has seen little attention since 1999. In fact, the most
monumental change to JMF in this time was the loss of a feature: MP3 support was removed in 2002,
due to licensing concerns. Making things worse, JMF's all-Java version had weak support for popular
formats and codecs. Native editions could play more media, but Sun initially created versions only for
Windows and Solaris, later providing minimal support to a third-party Linux port and absolutely no
support for a Mac version. Setting aside the dubious premise of Solaris as a media production OS,
this effectively made JMF practical only on Windows, eliminating Java's cross-platform advantage.

Enter QuickTime, a multimedia framework originally introduced by Apple for the (“Classic™) Mac OS in
late 1991. QuickTime defines both a file format (the QuickTime .mov format) and many APIs for
working with time-based media. The provided functions allow applications to create media (either
synthetically or via capture), manipulate it, and present it. Media types supported by QuickTime
include sound and video, timed text (captions), graphics, interactivity, and a panoramic-image style
of virtual reality (VR).

Unfortunately, despite having an industry-leading multimedia framework, in 1998 there was no
straightforward means of exposing QuickTime to Java developers. And whereas most APIs start with
an interface and then gain a reference implementation, Apple had an implementation and the native
QuickTime libraries, but no Java interface. Compounding the problem, QuickTime was designed to be
called from C (sometimes called "straight C" or "procedural C") and thus lacked the object orientation
a Java interface would call for.

[rrevious e s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Enter Biscotti

Apple's "Biscotti" project took a remarkable approach to this problemnot only did the Biscotti
designers provide a Java layer to make QuickTime calls, but they also fashioned an object-oriented
APl out of a non-0O0 framework. It helps that QuickTime is made up of a number of fairly elaborate
structures, along with functions that work with them. The Biscotti designers saw that these structures
could be combined into Java objects. For example, they took the Movi e struct and many of the
functions that worked with a movie, and fashioned these into the qui ckti ne. st d. Movi e class.
Functions such as Start Movie(), StopMvi e(), CopyMvi eSel ection(), and

Past eMbvi eSel ecti on() became the Java instance methods start(), stop(), copySel ecti on(
), and past eSel ecti on(), respectively. Biscotti, now known as QuickTime for Java, still has its
quirks, but it's a lot more Java-like than some other "wrapper" frameworks for Java.

Note: By comparison, the JOGL API, which offers a Java wrapper to the OpenGL graphics library, simply dumps the functions defined in
the C header files into pseudo-objects with upward of 2,000 methods each!

Whatever Apple’s reasons for creating QuickTime for Java (QTJ), the application has been the
beneficiary of many fortuitous advances. The most significant comes from QTJ's nature as a Java
wrapper around a native framework: as the native QuickTime grows, so does QTJ. In particular,
when QuickTime supports a new format or codec, it is almost always available to QTJ immediately,
without requiring any new QTJ development. When QuickTime added MPEG-4 support, QTJ picked it
up for free. When Apple started selling songs on the iTunes Music Store, QTJ was able to play the
encrypted AAC audio files right away.

(erevious fluexr

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Why a QuickTime for Java Book?

The strangest thing about QuickTime for Java might be that if you read Apple's documentation, you
get the idea that it was originally aimed not at Java developers, but at QuickTime developers. One of
the introductory docs, "Summary of QuickTime for Java," says as much: "QuickTime for Java came
about to meet developers' need for a way to get at QuickTime besides using C calls." It then goes on
to define Java concepts like classes, objects, and instance methods...it even has a gentle introduction
to the idea of garbage collection.

To a Java developer, this seems wildly backward. The Java developer, evaluating QTJ as a
multimedia toolkit, already knows about garbage collection, and instead he needs an introduction to
the QuickTime concepts that are taken for granted: the idea of the movie as an "organizing principle"
rather than an explicit media stream, the relationship of movies, tracks, and media, and odd legacies
left over from the old Mac OS. The existing documentation doesn't help muchthe Javadoc for a given
method often gives a one-line description (at best), followed by a reference to the underlying C
function it calls.

The goal of this book is to offer a guide to QTJ from a Java point of view. That means introducing
QuickTime concepts as necessary, treating it as essentially new material. Hopefully, this will present
QTJ as an end in itself, meaning you can write effective QTJ applications without having to
understand the native QuickTime APl or constantly consult its documentation. It also means that as a
book for Java developers, we'll always adhere to Java coding conventions, taking particular care to
note where QTJ's way of doing something might not seem "normal” from a Java perspective.

(erevious fluexr

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Assumptions and Definitions

This book assumes that you are comfortable with Java 2 Standard Edition, Version 1.4 (J2SE 1.4).
You should understand the core language and packages, particularly AWT and Swing. | use both AWT
and Swing extensivelysometimes in the same example, when it's clearer to do it that wayAWT is
much faster, but Swing has some space-saving conveniences that keep the examples short and
focused.

Note: If you don't think AWT is overly verbose, try building a choice dialog sometime.

You should also have at least a passing familiarity with concepts of digital media. Although the
Developer's Notebooks aren't about theory, there are a few terms you should know off the bat.

Movie

In QuickTime, a "movie" isn't just an audio/video fileit is an organization of media elements
that can include audio, graphics, video, text, interactivity, etc. For the purposes of this book,
anything that can be represented by the Movi e class is a "movie,” including remote MP3
streams, wired-sprite video games, etc.

Codec

A codec is a piece of code that can encode and/or decode media in a given format. Apple's
documentation often breaks this down into media handlers, which understand a given
encoding, and compressors and decompressors to compress or extract data.

Container format

File formats like QuickTime .mov or Microsoft's AVI are containers that can hold different kinds
of content, such as a combination of audio, video, or other kinds of media. Note that parsing
the format and parsing its contents are two separate things: QuickTime can handle the format
of a given AVI file but might not support a codec used in it (and vice versa for libraries that
support the QuickTime file format). Also, a container like QuickTime can refer to remote data,
such as media in another file or out on the network, so a given .mov file does not necessarily
contain all the media needed to play the movie.

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Organization

This book is organized into chapters of related material, but as you'll see, this is no "animal book,"
nor is it an Inside Macintosh, for that matter. Each chapter is broken down into tasks, most of which
can be understood fairly independently. In some cases, a chapter will start off with a complete
running application, like the movie player in Chapter 2 or the editor in Chapter 3, then gradually add
features (undo, redo, save, etc.) in successive tasks by indicating only what new code needs to be
added to implement the feature. The only exception is a startup/teardown convenience class,
QrSessi onCheck, introduced in Chapter 1 and used by nearly all the other examples as a means of
reducing distracting boilerplate code throughout the book.

Each task exists as a complete example in the downloadable sample code, which is hosted at
http://www.oreilly.com/catalog/quicktimejvaadn.

[rreviovs fluexrs

downloaded from: lib.ommolkefab.ir

http://www.oreilly.com/catalog/quicktimejvaadn
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

About the Examples

When unzipped, the examples will create a directory whose contents look like this:

bui I d. xm nmy.ant.properties.wn
cl asses/ src/
jars/

build.xml is the build file for Ant, the de facto standard for building Java projects. You don't have to
use Ant, but considering the classpath challenges in dealing with Java builds, particularly with QTJ
(see Chapter 1), you'll probably find it well worth your while. If you don't already have it, you can get
Ant from http://ant.apache.org/, and you can learn more in Ant: The Definitive Guide (O'Reilly).

Tip: The classes and jars directories are created by Ant, and will not be present when you first unzip the archive.

Using the command line, type ant in this directory to run the default target. In this case, it's the help
message:

cadanson% ant
Buil dfile: build.xm

hel p:
[echo] Avail able targets:
[echo] chOn -- conpile source for chapter n (eg "ch0l", "ch02", etc.)
[echo] all -- conpile source for all chapters
[echo] chOn.jar -- nmake a .jar file for chapter n
[echo] qtj-notebook.jar -- conpile source for all chapters and make jar
[echo] all.jar -- synonym for qtj-notebook.jar
[echo] run-exanmple -- conmpile and run "exanpl e"
[echo] hel p-nanmes -- echo all exanple nanes for use with run-exanple
[echo] clean -- renpbve .class files
[echo] help -- this help nessage (default)
[echo]

BUI LD SUCCESSFUL
Total tinme: 2 seconds

You can look in the build.xml file for more information. One important note is that compiling requires
the path to the QTJava.zip file, as described in Chapter 1. The default is the Mac OS X path,
/System/Library/Java/Extensions/QTJava.zip. If you're using Windows, you need to override this. The
provided file my.ant.properties.win has a sample path that looks like this:

gtjavazip.file=c:\\Progra~1\\Java\\j2rel. 4. 2\\ i b\\ ext\\ QlJava. zi p

downloaded from: lib.ommolkefab.ir

http://ant.apache.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Edit this so that it refers to the path to QTJava.zip on your system, and then rename the file to
my.ant.properties, so build.xml will pick it up. Because any Ant properties are picked up from this
file, it also gives you the opportunity to make other Ant tweaks, such as repointing j vm hone to use
one of several Java installations on your box, or to change the j ava. conpi l er toji kes.

To compile all the book examples into a JAR file, type:

ant qtj-notebook.jar

This will produce output like the following:

cadanmson% ant qtj - not ebook. j ar
Buildfile: build.xm
init:
[echo] qtjavazip.file = /Systent Library/Javal Extensi ons/ QTJava. zi p
all:
[javac] Compiling 53 source files to /Users/cadanson/ Docunents/

O Rei |l y/ books/ qt |
devel oper's notebook/ code/ cl asses

gtj - not ebook. jar:
[jar] Building jar: /Users/cadanson/ Docunents/ O Reilly/books/qt]j
devel oper' s not ebook/ code/jars/qgtj-notebook. jar

BUI LD SUCCESSFUL
Total tine: 7 seconds

You can then run any of the examples by extending the classpath to include the gtj-notebook.jar file,
asin:

java -cp jars/qtj-notebook.jar comoreilly.qgtjnotebook.ch02. Sinpl eQTPl ayer

There are also Ant targets to compile and run every example in the book. Use ant hel p- exanpl es to
see a list of example names.

(erevious fluexr

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Conventions Used in This Book

The following typographical conventions are used in this book.

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and
Ctrl).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories,
and Unix utilities.

Constant w dth
Indicates commands, options, switches, variables, attributes, keys, functions, types, classes,

namespaces, methods, modules, properties, parameters, values, objects, events, event
handlers, XML tags, HTML tags, macros, the contents of files, or the output from commands.

Constant w dth bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

Tip: This icon signifies a tip, suggestion, or general note.

Warning: This icon indicates a warning or caution.

Note: This icon indicates a Developer's Note.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "QuickTime for Java: A Developer's Notebook by Chris Adamson.
Copyright 2005 O'Reilly Media, Inc., 0-596-00822-8."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

[rrevious e s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/quicktimejvaadn

To comment or ask technical questions about this book, send email to:

bookqguestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

[rrevious e s

downloaded from: lib.ommolkefab.ir

http://www.oreilly.com/catalog/quicktimejvaadn
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Safari Enabled

BOOKS ONLINE

When you see a Safari® enabled icon on the cover of your favorite technology book
that means the book is available online through the O'Reilly Network Safari Bookshelf. Safari offers a
solution that's better than e-books. It's a virtual library that lets you easily search thousands of top
tech books, cut and paste code samples, download chapters, and find quick answers when you need
the most accurate, current information. Try it for free at http://safari.oreilly.com.

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Acknowledgments

Brett McLaughlin deserves huge thanks for getting this book to you. Not only is he the creator of the
Developer's Notebook series and the editor of this book, but he also saw that QuickTime for Java was
a topic whose need for practical know-how (to navigate the media jargon, obtuse concepts, and
teeming "gotchas") was well-suited for this series. Chuck Toporek at O'Reilly was also very helpful in
getting people excited about the book. And, of course, | wouldn't even be writing for O'Reilly if |
hadn't bumped into Daniel Steinberg at the Mac OS X conference a few years ago, which ultimately
led to our working together to edit the ONJava and java.net web sites.

The members of the quicktime-java and quicktime-api mailing lists, and the OpenQTJ project at
java.net, have also been extremely helpful in working through problematic material and passing
along those nuggets of knowledge that you're somehow "just supposed to know." In particular, the
material in Chapter 6 about working around the incomplete state of video capture came in many
ways from bits of discussion here and there saying, "you can get it to work by passing in your own
GWorld." After | posted an early version of this book's "motion detector" example, some quicktime-
java members developed it further into a more general-purpose capture preview. Tech reviewers Rolf
Howarth, Anthony "aNt" Rogers, Dmitry Markman, and Sean Gilligan have also been generous with
their time, attention, and knowledge, and have made this a far better book than it would have been
without them.

I couldn't contact my friends on the QuickTime team while working on this bookanother publisher has
exclusive access to those developers for QuickTime titlesso they were probably wondering where |
was while this book was in silent running. But they've been very supportive in the past and I'm
looking forward to being able to work with them again.

I wouldn't even have a programming career if Tammie Childs at Pathfire hadn't taken a chance on
me when all | had to speak of for my programming skills were a couple of crazy applets. She also
took me back in when Piece Of Crap Wireless Companies No.s 1 and 2 crashed and burned, and still
encouraged me to pursue my interests when articles led to editing and then to books.

Finally, I want to thank my wife Kelly, and our son Keagan, for being supportive while | took a big
chance on writing a book, and for cutting Daddy some slack when he needed to go downstairs and do
more writing. | hope that Keagan hasn't picked up the more extreme expressions that | emitted while
working through some of the less stable parts of QuickTime for Java. By the way, you'll notice that
Keagan is all over this book for two reasons: first, | don't have to pay license fees on media | own,
such as my own iMovies, and second, he's quite cute.

Obligatory O'Reilly music check: this time it was Roxy Music, the Kinks, Nellie McKay, Elvis Costello,
Thelonious Monk, a bunch of anime soundtracks (notably .hack//SIGN, Nadia, FLCL, and Cowboy

Bebop), and the streaming audio stations Radio Dupree, Armitage's Dimension, and Gamer Girl
Radio.

[oreviovs fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir
[eeeviovs e

Chapter 1. Getting Up and Running with
QuickTime for Java

Do you need to do anything special to start developing QuickTime for Java applications? The answer
to that question is easily answered by another question: are you using Mac OS X? If so, you have
everything you need: Java, QuickTime, and QuickTime for Java (QTJ). If you're using Windows, you
might have some downloading to do.

(ereviovs e s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

1.1. Setting Up QTJ on Windows

First, you must have Java installed, presumably the latest developer kit release from Sun. As of this
writing, that would be the J2SE 1.4.2 SDK, which lives at
http://java.sun.com/j2se/1.4.2/download.html. Now you must install and/or update QuickTime.

1.1.1. How do | do that?

If you don't already have QuickTime (or iTunes, which includes QuickTime in its install), you can get
it from http://quicktime.apple.com/. What's perhaps more common is that you have QuickTime, but
you don't have QuickTime for Java, which is not installed by default.

In this case, you can use the QuickTime Updater to update your copy of QuickTime and install custom
pieces like QTJ. If you have the QuickTime icon down in your System Tray, you can right-click it to
launch the Updater, as seen in Figure 1-1. You can also get to the Updater via Start = Programs
=+ QuickTime =% QuickTime Updater.

Figure 1-1. Launching the QuickTime Updater from the system tray

M|

[abeut QuickTime
CuuickTime 'Web Site

CuuickTime Prafarances
CuickTime Info

Check: For QuickTime Updates

Open QuickTime Player

Opeen Picturebiewer

Cpen Favorites . RecyceBn
Open Recert 4

Exit;

L w3

Whether you're updating or installing QuickTime for the first time, you need to click the Custom
button to perform a custom install. This will give you the opportunity to install nondefault features,
most of which are optional codecs , or software components to handle various video and audio
encoding formats. Scroll down the list and you should see QuickTime for Java, as shown in Figure 1-
2.

Figure 1-2. Custom install of QuickTime for Java

downloaded from: lib.ommolkefab.ir

http://java.sun.com/j2se/1.4.2/download.html
http://quicktime.apple.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

DuickTime Component Install

Check #erms pou wanl bo updats or nstal

[Lipdate component? [Update available?

QuckTime for Java

' QuckTime Diagroshics Tes

[1BeHere Mideo Mat Irstalled

| nden Yidea 5 Mol Irstaled

| FE 3D Component Mat Installed
Microcosm Mat Irstalled

| el Mat Install=d

QuickTime™ |1om2 Notinstdled .,

Ibem Diesciipkian

This software adds: QuickTme support for Java You must separately
nztal the appropsiate Java Runlime. [download appeoe 10627 KB

Easy Update How I Clusit

Continue by clicking Update Now (or Install, if this is a new install) to put the latest version of
QuickTime and QuickTime for Java on your PC.

1.1.2. What just happened?

The installer installed QuickTime's various pieces in your system, adding a QuickTime group to your
Start Menu, a QuickTime icon in your System Tray, various pieces in
C:\WINDOWS\System32\QuickTime, etc. It puts QTJava.zip in the lib/ext directory of any valid Java
installations it finds, adds a systemwide environment variable called QTJAVA with the path to this file,
and adds the file's path to the CLASSPATH system environment variable, creating it if necessary.
Figure 1-3 shows what this looks like in Windows Explorer.

Figure 1-3. QTJava.zip file installed into a Java 1.4.2 lib/ext folder

® o =19
File Edk View Favoekes Tooks Help o

¥

_Jlﬂul:k] J b / Seanch Folders

Byddress | CProgram Flesdaval@rel 4. 2ibext il h} G0
ey
0 QT Java
49 KB

It should be obvious that it's important to do the installs in the order shown here: Java first, then
QuickTime. That way, QuickTime can find the existing Java directories into which to install
QTJava.zip. Unfortunately, this can still get messed up if you add another Java Runtime Environment

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

(JRE) laterQuickTime might think QTJ is installed, but the new JRE won't have QTJava.zip in its lib/ext
directory. In this case, copying QTJava.zip manually might be the most practical option.

Note: Note that QTJava is a zip file, not a JAR, which gives it this archive-like icon. You don't need, or want, to ever unzip this file.

1.1.3. What about...

...installing QTJ on Linux? Sorry. The thing that makes QTJ fast and powerfulthe fact that it's a
wrapper to an underlying native frameworkis also its cross-platform downfall. QuickTime for Java can
exist only on platforms that Apple develops QuickTime for, and right now, that means Mac and
Windows. On the other hand, if Apple ever did port QuickTime to Linux, bringing QTJ along for the
ride probably wouldn't be hard.

And what about installing QTJ on (Classic) Mac OS? Of course. QTJ was originally developed on and
for Mac OS 8 and 9. It is part of the standard QuickTime install for Mac OS and thus gets picked up
as part of a regular update (which you'd launch with the QuickTime Settings control panel, under the
Update Check section). On Classic, the QTJava.zip file lives in System Folder/Extensions/MRJ
Libraries/MRJClasses (yes, there's a space in MRJ Libraries , but not in MRJClasses).

Note: MRJ means Macintosh Runtime for Java, the name of Classic's JRE. The name and its confusing versioning were dropped for OS
X.

However, development of QuickTime for Classic stopped at Version 6.0.3 and does not include the
much-changed version of QTJ that this book covers, QTJ 6.1. Furthermore, it's worth remembering
that Java on Classic Mac OS never got past Java 1.1.8, which means it doesn't include Swing,
Collections, or many other J2SE classes and conveniences that modern Java developers would expect
to be present.

Where's the APl documentation? Even though QTJava.zip is all you need to compile, some
documentation and demos would be really helpful, right? The good news is that there is a QTJ SDK
that offers Javadocs and demos. Unfortunately, much of what's on Apple's web site as of this writing
refers to an earlier version of QTJ that won't work with Java 1.4 on Mac OS X. The most complete
SDK right now is labeled as the "QuickTime for Java Windows SDK," and is located at
http://developer.apple.com/sdk/index.html#QTJavaWin. This package contains a complete set of
current Javadocs and demos that have been updated to represent the new API calls in QTJ 6.1. You
can also view the Javadoc online at
http://developer.apple.com/documentation/Java/Reference/1.4.1/Javal41APl_QTJ/index.html.

Tip: When you look at the Javadoc, many methods will have a boldface reference to their equivalent C function. For example,

Movi e. start (), which starts playing a movie (see the next chapter), wraps the native function Qui ckTi ne: : St art Movi e.
You can usually find the native documentation by doing a search on Apple's page for the function name or by Googling for it with a
search term like Si t e: appl e. com St art Movi e.Why would you ever look at the native docs when you're programming in
Java? Because a lot of the parameters aren't described in the Javadoc, particularly when methods take behavior flags.

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://developer.apple.com/sdk/index.html#QTJavaWin
http://developer.apple.com/documentation/Java/Reference/1.4.1/Java141API_QTJ/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

1.2. Embedding QuickTime in HTML

Every once in a while, a developer new to QuickTime will post to one of the developer lists, saying he
needs QTJ to put a QuickTime movie in a web page.

QTJ is great, but this is way, way overkill. For this task, you don't need QTJ. In fact, you'd just be
creating headaches for yourself by requiring QTJ and dealing with the hassles of applets. Instead, you
can just embed QuickTime content in HTML.

Note: The mailing lists at http://lists.apple.com/ are a great source of information, particularly quicktime-java, quicktime-users
(authoring), and quicktime-api (native programming). java-dev is also helpful for figuring out issues with Mac OS X's Java
implementation.

1.2.1. How do | do that?

In your HTML page, use an <obj ect > tag, which wraps an <enbed>, as shown in Example 1-1.

Example 1-1. Embedding QuickTime in HTML

<obj ect classid="cl sid: 02BF25D5- 8C17- 4B23- BC80- D3488ABDDC6B"
wi dt h="160" hei ght="136"
codebase="http://ww. appl e. coml gt acti vex/ gt pl ugi n. cab" >
<param nane="src" VALUE="buhbuhbuh. nov"/>
<par am nane="aut opl ay" VALUE="true"/>
<param nane="| oop" VALUE="true"/>
<param nane="control ler" value="true"/>
<enbed src="buhbuhbuh. nov" w dt h="160" hei ght="136"
scale="tofit"
control | er="true"
aut opl ay="true"
| oop="true"
pl ugi nspage="http://ww. appl e. com qui ckti ne/ downl oad/ "/ >
</ obj ect >

The parameters are generally self-explanatory: hei ght , wi dt h, and sr ¢ are the only ones that are
actually required. Because I've chosen to include a controller widget, | add 16 to the hei ght
parameter and use the scal e parameter with the valuetofit.

A web page using this tag is shown in Figure 1-4.

downloaded from: lib.ommolkefab.ir

http://lists.apple.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 1-4. Embedding QuickTime movie in HTML

BanNa Simple QuickTime page

{ [l & Al &| = file:///Users/cadamson/Document

Simple use of <embed> or <object> to put a
QuickTime movie on a web page

1.2.2. What just happened?

The weird thing about this is, of course, the tag-within-a-tag arrangement. We do this because
although most browsers use the <enbed> tag to use plug-ins, Internet Explorer on Windows is special
and insists that we use an <obj ect > tag to talk to a QuickTime ActiveX control.

Because of this arrangement, you have to list all the parameters twice, once in each tag. In the
<enbed> tag they're attributes, and in the <obj ect > tag they're child <par an> elements. Each tag
also has some boilerplate code, such as the <enbed>'s pl ugi nspage and the <obj ect >'s cl assi d and
codebase.

1.2.3. What about...

...other options for the plug-in? There are too many to cover here. Check out
http://www.apple.com/quicktime/authoring/embed.html. There's also some support for controlling a

movie via JavaScript in some browsers (including IE and Mozilla derivatives, but not Safari as of this
writing), using the attribute enabl ej avascri pt .

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://www.apple.com/quicktime/authoring/embed.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

1.3. Preflighting a QTJ Installation

Given the hassle of setting up your own box with a custom QuickTime installation, the idea of having
to walk your Windows users through such a process is probably unappealing. Installing the various
QuickTime .dlls and such by yourself is not an alternative, because you promised not to redistribute
QuickTime when you clicked "agree" on that license.

Tip: You know the license | meanit's the one you didn't read! That's OK, | didn't read it either.

Fortunately, QuickTime 6 offers a "preflighting" feature that allows you to create an XML file that
describes what QuickTime features you need, open the file with QuickTime, and have QuickTime
download and install your features if they're absent.

1.3.1. How do | do that?

In your favorite text editor, create an XML file, as seen in Example 1-2.

Example 1-2. Preflighting to install QTJ

<?xm version="1.0"?>
<?qui cktinme type="application/x-qtpreflight"?>
<qt preflight>

<conponent type="null" subtype="qtj "/>
</qtpreflight>

Save this file with a .mov extension to associate it with QuickTime.
Have QuickTime open this file in whatever means is appropriate for your applicationembed it in a web
page, have an installer script open it with QuickTimePlayer.exe, etc. When you do, QuickTime wiill

check to see if QuickTime for Java has been installed; if QTJ hasn't been installed, this will give the
user a chance to download and install it, as seen in Figure 1-5.

Figure 1-5. Installing QuickTime for Java via preflighting

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

QuickTime

Thiz operation requires addbonal QuickTime software. Chick Do [t Mow o
download the software.

@ QuckTme Java

[Dart resind me again loday

Cancel | | D It How |

1.3.2. What just happened?

The XML file specifies a list of QuickTime components that the application knows it needs to run.
These components are classified in a type/subtype scheme. For example, to test for MPEG-4 support,
you'd use type "i mdc" (short for image decompressor) and subtype "np4v". QuickTime for Java is
something of a special case, so it gets type "nul | " and subtype "qt j ". The trailing space on the
subtype is really important, because all types and subtypes must be exactly four characters long.

Note: Chapter 4 has much more information about components and the FOUR_CHAR_CODES that identify them.

If any of the specified components are found to be absent, QuickTime brings up a dialog and offers
the user a chance to download and install them on the spot.

Tip: Because the XML file is pretending to be a movie, QuickTime Player will open it up with a typical movie window, which will hang
around whether or not the install is approved and succeeds. Apple recommends embedding the preflight movie in an HTML page and
using the Wi dt h and hei ght parameters of the <enmbed> tag to give it an unobtrusive size of 2 pixels by 2 pixels, so the user
probably won't even see it.

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

1.4. Compiling QTJ Code

Once you've installed QuickTime and QuickTime for Java, you have everything you need to start
developing QTJ applicationsno separate SDK is required.

1.4.1. How do | do that?

You can begin by compiling a trivial application to check the QuickTime and QTJ versions, as shown in
Example 1-3.

Example 1-3. Checking the version of QuickTime

package comoreilly.gtjnotebook.ch01;

i mport qui cktinme. QrSessi on;
i mport quicktinme.util.QIBuild;

public class QrVersionCheck {

public static void main (String[] args) {

try {

QrSessi on. open();

Systemout.println ("QI version: " +
QrSessi on. get Maj or Version() +
Wy
QrSessi on. get M nor Version());

Systemout.println ("QIJ version: " +
QrBui | d. get Version() +
"+

QrBui | d. get SubVersion());
QrSession. cl ose();
} catch (Exception e) {
e.printStackTrace();

}

The compilation is the tricky step here. If you do a straightforward j avac, bad things happen:
cadanson% j avac src/conforeilly/qtjnotebook/ch0l/ QTVersi onCheck. java

src/comoreilly/qtjnotebook/ch01l/ QTVersi onCheck. j ava: 3:
package quicktine does not exist

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i nport quicktinme. QTSessi on;
N
src/com oreilly/qtjnotebook/chOl/ QTVersi onCheck. j ava: 4:
package quicktine.util does not exist
i nport quicktinme.util.QrIBuild;
N

src/com oreilly/qtjnotebook/ch0l/ QTrVersi onCheck. java: 10:
cannot resol ve synbol
synmbol : variable QISession
| ocation: class comoreilly.qtjnotebook.chOl. QrVersi onCheck
QrSessi on. open();
AN

Instead, you have to explicitly provide the path to QTJava.zip, which contains the QTJ classes. On the
Mac OS X command line, you would do this as follows:

Note: Here, as in many examples, you should type the entire command on one line. It's broken up in the text for printing purposes.

cadanson% j avac -classpath /SysteniLibrary/Javal/ Ext ensi ons/ QlJava. zi p
src/ comoreilly/qtjnotebook/ch01l/ QrVersi onCheck. java

On Windows, the path to QTJava.zip would point to wherever the QuickTime installer put the file,
which presumably means into your Java installation's lib/ext:

C\qgtjtests\book stuff\code>javac -cl asspath
"c:\Program Fil es\Java\j2rel. 4. 2\1i b\ ext\QlJava. zi p"
src\comoreill y\qgtjnot ebook\ chOl1l\ QrVver si onCheck. j ava

Once the code compiles, running it is a lot easieryou don't need to explicitly put QTJava.zip in the
runtime classpath to run a QTJ application. Just supply the class name to run, as the following output
illustrates:

Note: Using the ant buildfile provided with the downloaded book code (and described in the Preface) makes compiling a lot easier!

cadanson% j ava -cp classes comoreilly.qtjnotebook.ch01l. Qrversi onCheck
Qr version: 6.5

QrJ version: 6.1

cadanmson%

1.4.2. What just happened?

As for what this trivial first application actually does, a read-through of the nai n() method shows it
doing four things:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1. Opening the QuickTime session

2. Printing the QuickTime version by making calls to qui ckti nme. QTSessi on

3. Printing the QuickTime for Java version by making calls to qui cktinme. util. QrBuild
4. Closing the QuickTime session

If any of these throws an exception, it's caught and printed to standard-out.

1.4.3. What about...

...the mismatch between the version numbers? QuickTime and QuickTime for Java versions are
somewhat independent, because not every QT update merits a QTJ update. Typically, you'll see both
roll out a major version at the same time, but then a number of QuickTime updates will be issued,
usually bug-fix updates or minor feature releases, without any changes to QTJ.

The Latest and Greatest

This book covers QTJ 6.1, which was released alongside QuickTime 6.4. If your software
reports a lower version, be sure to update with the QuickTime Updater because QTJ 6.1
has massive differences from previous versions, and this book covers only QTJ 6.1.

How different is QTJ 6.1 from its predecessors? Try "every QTJ application broke with
6.1."

The problem was caused by Apple changing the internals of its Java implementation from
the Carbon framework to Cocoa for its Java 1.4 implementation. QTJ was heavily
dependent on Carbon for its native binding, and a full-blown rewrite for Cocoa was
impractical.

However, only the parts involving the AWT/Swing bridge were affectedmost of QTJ still
worked just fine. So, Apple rolled out a radically simplified GUI layer for QTJ in the new
qui ckti me. app. vi ewpackage. All the incompatible packages, particularly

qui ckti me. app. di spl ay and its subpackages, were deprecated. A few nice-to-have
features, like live-video compositing, weren't ported to 6.1.

QTJ 6.1 can be used on Mac OS X with either Java 1.4 or Java 1.3, and on Windows.
Earlier versions work on Windows and with Java 1.3 on Mac OS X, but will throw runtime
exceptions with Java 1.4.

Parts of Apple's web site and older books still cover the old API. If you see code that uses
qui ckti me. app. di spl ay, or any of its classes (like QTrCanvas, SGDr awer , or

SWConposi t or), beware: it won't work on Java 1.4 on Mac OS X and won't be supported
going forward. These packages are also in the Javadocs, but they're clearly marked as
deprecated.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

1.5. Opening and Closing the QuickTime Session

All QTJ applications are responsible for managing the QuickTime "session." The call to

QrSessi on. open() gives QuickTime an opportunity to initialize itself, and it must be made before
any other QTJ call, or you'll get an exception. Similarly, you must call QTSessi on. cl ose() when
you're done with QuickTime to give it a chance to clean up.

In general, this means you might want to call QTSessi on. open() as early as possible and

QrSessi on. cl ose() as late as possible. The former is easy enough to do: just put it in your
application’s entry point or even in a static initializer so that it precedes mai n() . On the other hand,
ensuring that you call QTSessi on. cl ose() gracefully is trickier, because your user could quit your
application with a menu item you provide, a Ctrl-C, a Cmd-Q (on Mac), or (heaven forbid) akill -9
your - pi d from the command line. Ideally, you'd like to have a fighting chance of properly closing
QuickTime in as many cases as possible.

1.5.1. How do | do that?

One way to close QuickTime late is to put QTSessi on. cl ose() in a Java shutdown hook, which will
get called as the JVM goes away. There are no guarantees, but it's better than nothing.

Note: You can also run this example with the provided ant run-ch01-qgtversioncheck task.

You can use the class in Example 1-4 as a general-purpose session handler for QTJ. It is presented
here so that none of the other examples in the book will need to explicitly handle opening or closing
the QTSessi on beyond calling this class.

Example 1-4. Session handler for QuickTime for Java
package comoreilly.qtjnotebook.ch01;

i nport quicktine.*;

public class QIrSessi onCheck {

private Thread shut downHook;
private static QIrSessi onCheck i nstance;
private QIrSessi onCheck() throws QIException {
super ();
/1 init
QrSessi on. open();
/'l create shutdown handl er
shut downHook = new Thread() {

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

public void run() {
QrSessi on. cl ose();

}
b
Runti ne. get Runti ne().addShut downHook(shut downHook) ;
}
private static QISessi onCheck getlnstance() throws QIException {
if (instance = = null)
i nstance = new QISessi onCheck();
return instance;
}

public static void check() throws QIException {
/'l gets instance. if a new one needs to be created,
/1l it calls QISession.open() and creates a shutdown hook
/1 to call QTSession.close()
getlnstance();

Warning: It looks like QTSessi on. cl ose() hangs on some Windows installations. It might be safer to use
QrSessi on. exi t Movies().

1.5.2. What just happened?

The QT'Sessi onHandl er class uses a singleton pattern. The idea is that all the work is done in the
constructor, which will be called only once (to create the singleton), so you're free to call the static
QrSessi onHandl er. check() method wherever and whenever you like, knowing it will have to run
only once.

When you call check(), it makes a trivial call to get | nst ance(), which creates a new instance if
and only if one hasn't been created yet. The constructor calls QTSessi on. open() to initialize
QuickTime, and then sets up a shutdown handler that will call QTSessi on. cl ose() when Java is
shutting down.

1.5.3. What about...

...managing the QTSession myself? Absolutely. If some other arrangement works for your
application, go for it. This class is merely a convenience, and is arguably overkillclosing the QuickTime
session is handled automatically on Mac OS X when you use the default Quit menu item, and I've
never seen a problem that was definitely caused by improperly shutting down QuickTime on
Windows. But, as this class shows, getting it right isn't that hard.

...making multiple open() or cl ose() calls? According to QTSessi on's Javadocs, if you issue
multiple open() calls, QuickTime won't be shut down until an equal number of cl ose() calls are
received. There's no benefit (or harm) to multiple open() calls, so this is probably just trivia.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Running inside an applet? In an applet, it might make more sense to put your open() and cl ose()
calls in the applet'sinit() and destroy() methods, respectively, instead of banking on a
particular browser's behavior vis-a-vis taking down the entire JVM and executing shutdown hooks.

[rrevious e s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

1.6. Playing an Audio File from the Command Line

To finish this chapter, we'll look at a very simple example of QTJ code that actually plays some
media. To keep things simple, I'll completely ignore the GUI, so all this will do is take a file path from
the command linepresumably an MP3 or other audio fileand play it in QTJ.

1.6.1. How do | do that?

Compile and run the source for TrivialAudioPlayer.java, shown in Example 1-5.

Example 1-5. Playing an audio file from the command line
package comoreilly.gtjnotebook.ch01;

i mport quicktine.*;

i mport quicktine.app.tine.*;

i mport quicktine.io.*;

i mport quicktine.std.*;

i mport quicktine.std. novies. *;

i mport java.io.*;
public class Trivial Audi oPl ayer {

public static void main (String[] args) {
if (args.length !'= 1) {
Systemout.println (
"Usage: Trivial Audi oPl ayer <file>");
return;

try {
QTSessi onCheck. check();

QrFile f = new QIFile (new File(args[0]));
OpenhMbvi eFil e onf = OpenMovi eFi | e. asRead(f);
Movie nmovie = Movie.fronFile (onf);
TaskAl | Movi es. addMovi eAndStart();
novi e.start();

} catch (QIException e) {
e.printStackTrace();

}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Once compiled, run it with the path to an audio file as a command-line argument. Note that if you
downloaded the book examples and compiled with the ant buildfile, the classes will be in the cl asses
directory, so you'll need to extend your classpath into there:

cadanson% j ava -cl asspath cl asses
comoreilly.qtjnotebook.chOl. Trivi al Audi oPl ayer
~/ nmp3t esti ng/ Br eakaway. np3

1.6.2. What just happened?

This application provides a bare-bones load-and-play example. After checking that there's a valid
argument, it does the QTSessi onCheck from the previous task to set up the QuickTime session.

Note: Any dynamic content in QuickTime is going to be a "movie," even if it's an audio-only file, like an MP3. This program also works for
AACs, WAVSs, iTunes Music Store songs, and anything else QuickTime can open.

The interesting part is in converting the argumentto ajava.io. Fil e, thento a
qui cktime. i o. OpenMovi eFi | e, from which we can create a qui ckti ne. std. Movi e, which
represents any kind of playable QuickTime content, in this case our audio file.

The start() method begins playing the movie, so once the program is running, you'll hear your
MP3 over your speakers or headphones. This program doesn't provide a way to stop playback, so
when you want to end the program, you'll need to type ctrl - c, use the Windows Task Manager, or
hit the Quit menu item that's provided on Mac OS X.

1.6.3. What about...

Note: There's more information on taksing in the next chapter.

...that weird TaskAl | Movi es call? This is required because our program doesn't have a GUI, which
ordinarily gives QTJ some cycles for decoding and playing the audio. Most of the programs in this
book have on-screen GUIs, so they don't need to do this.

[rreviovs fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Chapter 2. Playing Movies

Even if you have more elaborate plans for QuickTime for Java, I'm going to assume that your plans
will, at some point in time, require reading in a movie or other QuickTime-compatible file, locally or
from the network. This chapter presents basic techniques of getting a Movi e object, getting it into the
Java display space, and adding more sophisticated controls so that your user (or just your code) can

know what's happening inside a playing movie and take control.

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

2.1. Building a Simple Movie Player

I'll begin with "the simplest thing that could possibly work:" an application to ask the user for the
location of a QuickTime file, which is then opened and put in a Java AWT Fr ane.

2.1.1. How do | do that?

Example 2-1 shows the code for a simple movie player.

Example 2-1. Simple movie player

package comoreilly.gtjnotebook.ch02;

i mport quicktine.*;

i mport quicktine.app.view *;

i mport quicktine.std. novies. *;
i mport quicktine.io.*;

import comoreilly.qtjnotebook.chOl. QTSessi onCheck;
i mport java.aw.?*;

public class Basi cQIPl ayer extends Frane {
public BasicQTrPl ayer (Mwvie n) throws QTException {
super ("Basic QT Player");
QrConponent qc = QTFactory. makeQrConponent (nj;
Conponent ¢ = qc. asConponent ();

add (c);
}
public static void main (String[] args) {
try {
QrSessi onCheck. check();
QTFile file =

QIFi | e. standar dGet Fi | ePrevi ew (
QrFi | e. kSt andar dQTFi | eTypes) ;
OpenMovi eFil e onFile = OpenMovi eFil e. asRead (file);

Movie m= Movie.fronFile (onFile);
Frame f = new Basi cQIPl ayer (m;
f. pack();

f.setVisible(true);

mstart();

} catch (Exception e) {
e.printStackTrace();

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Compile this from the command line (remember, as shown in the previous chapter, you must specify
QlJava. zi p in the classpath; this is the Mac OS X version):

Note: If you've downloaded the book code, compile and run with ant run-ch02-basicqtplayer.

cadanson% j avac -d cl asses -classpath
src:/ Systeni Li brary/ Javal/ Ext ensi ons/ QTJava. zi p
src/comoreilly/qgtjnotebook/ch02/ Basi cQIPl ayer.java

Then run the program from the command line:

cadanmson% j ava -cl asspath cl asses
comoreilly.qgtjnotebook.ch02. Basi cQTPI ayer

When the program starts up, the user will initially see QuickTime's file selector, shown in Figure 2-1.

Figure 2-1. QuickTime file selector

Y S QOpen File... {
L = 'm! = Movies]
B Tanbe anime i i
i 0 . - -
iDisk | anime music videos | | .
= T
&% Newwork = bulbuhbuh,moy | |
~\ Tonberry 2 dancemonkeyboy. mpeg || |
) Weapon | diva sample | |
¥ 1 = p | |
Chris Ad - i 2wy
| |
2 finding_n...r_m480.mov || MOVIE .
Daskio - @ :
i] __I:f " CatsbyMovied copy.mov |1 \o o peaon christmas-2 |1
CACAmSa @ GarsbyMov.. xport.mp4d) 003 mov |
o Applications @ CarsbyMovie3-h263.av Kind: QuickTime Movie |
- Size: 16.4 MBon disk |
Documents = CarsbyMov.. xport.mov (19,370,544 bytes) ||
Daownloads = GarsbyMovied.mov Created: Dec 26, 2003 243 ||
o L agy-0a Modified E: 26, 2003 2:55 e
i (gl - Lo s El
O'Reilly eagy-chr...-2003.mov Pt X
v Developer I e ——— 3.
{ Mew Folder | { Cancel) { Open)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

After the user selects a file (note that | have not provided any error handling if the user clicks
Cancel!), the movie will open in a window at its default size and start playing, as seen in Figure 2-2.

Figure 2-2. Simple movie player

a8nn Basic QT Player

Note that this program does not provide any means of quitting the application once the movie
finishes playing (or before then, for that matter). Press Ctrl-C from the command line to Kill the app.
Mac users will also get a "Quit com.oreilly.gtjnotebook.ch02.BasicQTPlayer" menu item.

2.1.2. What just happened?

Take a look at the application. The class extends j ava. awt . Fr ane and supplies a constructor that
takes a qui ckti ne. std. novi es. Movi e object. Given this Movi e, it asks the QTFact ory (in package
qui ckti me. app. vi ew) for a QrConponent . From this object, it gets a j ava. awt . Conponent, which is
added to the Fr ane.

The mai n() method starts by doing the QuickTime session check from the last chapter. Then it
brings up a file selector dialog, from which it gets a qui ckti ne. i o. QTFi | e, from which it gets an
OpenMovi eFi | e, which leads to the creation of a Movi e object with Movi e. fronFil e(). This Movi e
is then passed to the QTBasi cPl ayer constructor, and the resulting Fr ane is pack() ed and shown.
Finally, mai n() calls the Movi e's start () method to play the movie.

Notice how practically every line of code in this application either declares that it throws QTExcepti on
or is wrapped in a try-catch block. That's because pretty much every QuickTime Java call can
potentially throw a QTExcept i on, which means you either need to catch it or (more frequently)
declare that your method throws it to the caller. Presumably at some point further up the call chain,
you'll catch the exception and do something responsible with it, such as bringing up an error dialog.

Another point of interest is the QTConponent . This is an interface that exposes methods that allow
you to change the movie (or image) displayed by an on-screen widget. asConponent () returns an
AWT Conponent that can be added to an AWT layout just like any other component. Now here's the
dirty little secret: all QrConponent s received from the QTFact ory really are AWT Conponent s, and
can be cast safely. That means the asConponent () call:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Component ¢ = gc. asConponent ();

is functionally equivalent to:

Conponent ¢ = (Conponent) qc;

Meaning that asConponent () is really there just for compile-time type safety.

2.1.3. What about...

...using the AWT or Swing file selector? Sure, you can use thesethey'll return a j ava. i o. Fi | e object,
which can then be used to get a QTFi | e. But the QuickTime file selector is arguably nicer, because on
Windows it shows a little preview of the selected movie. Another thing to notice is the odd little
constant kSt andar dQTFi | eTypes. The st andardGet Fi |l ePreview() call takesanint[] of up to
four "types" of files to allow the user to select. The constant is a very convenient way to specify "just
show typical file types that QuickTime can handle.” You can also pass in nul | to show all files.

Note: Chapter 4 has more on the FOUR_CHAR_CODE integers used for these "types."

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

2.2. Adding a Controller

This application isn't particularly user-friendly yetthe user can't start or stop the movie, move
through it, or set the volume. Fortunately, it's easy to use a Movi eCont rol | er to get the standard

QuickTime controller bar, an on-screen control widget that provides a play/pause button, a volume
control, and the movie position control (typically called a "scrubber" in QuickTime parlance).

2.2.1. How do | do that?

Create a new class in the source file BasicQTController.java. The mai n() is exactly the same as
before, while the constructor adds one new line and changes another, as seen in Example 2-2.

Example 2-2. Getting a movie component with a controller

public class BasicQrController extends Frame {

public BasicQrController (Mvie m throws QIException {
super ("Basic QI Controller");
Movi eControl l er nt = new MyvieController(m;
QrConponent qc = QTFactory. makeQTConponent (nt);
Conponent ¢ = qc. asConponent ();
add (c);
pack();

Note: Compile and run this example with ant run-ch02-basicqtcontroller.

The result, when run, looks like the application in Figure 2-3. Notice the presence of the classic
QuickTime control bar at the bottom of the window.

Figure 2-3. Movie with on-screen controller

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

£ Basic OT Contraller

2.2.2. What just happened?

This time, instead of asking the QTFact ory to make a QTrConponent from the Movi e, the program
creates a Movi eCont r ol | er object from the Movi e and asks the QTFact ory to make a QTrConponent
from that. This eliminates the need for mai n() to call start(), because the user can start and
stop the movie from the play/pause button on the control bar.

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

2.3. Getting a Movie-Playing JComponent

The previous tasks have used the AWT, which seemingly nobody uses anymore. Many developers will
want to create a Swing GUI, and thus they need a movie-playing JConponent . QuickTime for Java

can provide one.

2.3.1. How do | do that?

Example 2-3 presents a rewrite of the previous Basi cQTP| ayer that does everything with Swing
equivalents (JFr ane instead of Fr ane, JConponent instead of Conponent, etc.).

Example 2-3. All-Swing simple movie player
package comoreilly.gtjnotebook.ch02;

i mport quicktine.*;

i mport quicktine.app.view *;

i mport quicktine.std. novies. *;
i mport quicktine.io.*;

import comoreilly.qtjnotebook.chOl. QTSessi onCheck;

i mport java.aw.?*;
i mport javax.sw ng.*;

public class Basi cSwi ngQrPl ayer extends JFrane {

public BasicSwi ngQTPl ayer (Movie m throws QIrException {
super ("Basic Swing QT Player");
Movi ePl ayer np = new Movi ePl ayer (m;
QrJConponent qc = QIFactory. nekeQrJConponent (np);
JConponent jc = qc.asJConponent();
get Cont ent Pane().add (jc);

pack();
}
public static void main (String[] args) {
try {
QrSessi onCheck. check();
QTFile file =

QIFi | e. standar dGet Fi | ePrevi ew (
QIFi | e. kSt andar dQTFi | eTypes) ;
OpenMovi eFil e onFile = OpenMvi eFil e. asRead (file);
Movie m= Movie.fronFile (onFile);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

JFrame f = new Basi cSwi ngQrPl ayer (m;
f.pack();
f.setVisible(true);
mstart();

} catch (Exception e) {
e.printStackTrace();

}

Note: Compile and run this example with ant run-ch02-basicswingqtplayer.

This produces a simple movie-player windowas seen in Figure 2-4using Swing, but visually
indistinguishable from its AWT equivalent.

Figure 2-4. Playing a movie with a Swing JComponent

ana Basic Swing QT Player

2.3.2. What just happened?

Creating a QTJConponent (read that as "QT JComponent,” not "QTJ Component”l know, it confused
everyone on the developer list at first, too) requires an object called a Movi ePl ayer , which can be
simply created from a Movi e. This is passed to QTFact or y's nakeQTrJConponent () method to get a
QrJComponent , which in turn can be turned into a Swing JConponent with asJConponent ().

2.3.3. What about...

...getting a control bar? Good question. QTJ doesn't provide one for Swing. Remember, the movie's
display and the control bar are both native widgetsto display the movie in Swing, the movie has to be
drawn to an off-screen region, then painted by Java onto the JConponent so that everything is

"lightweight," in Java parlance. QTJ provides this for the movie but not for the control bar (perhaps

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

because it would be difficult for the native QuickTime to keep track of your mouse movements in the
Java space), so a developer would need to roll her own Swing widget for controlling the Movi e,
TRapping mouse actions and calling appropriate methods on the Movi e or Movi eControl | er.

Note: Methods to control a Movie or MovieController are introduced in the next task.

And what about the awful performance? Good catchdepending on your source, the frame rate of this
version might be far worse than the AWT equivalent. Think about the earlier paragraph that says the
movie needs to be drawn into an off-screen buffer and then reimaged into Swing. Doesn't that sound
a little redundant? Think the overhead is going to add up if you need to do it 30 times a second? It is,
and it does. Performance of the QTJConponent is awful compared to that of the QTrConponent . Not
only does QTJ have to do extra work, but it also doesn't score hardware-accelerated graphics benefits
it might otherwise be able to achieve by using its native rendering pipeline.

So, I'm going to tell you something that clashes with every other Java GUI book you've ever read: go
ahead and mix Swing and AWT widgets . That's right. It's not going to cause blindness, the end of the
world, or a drop in your home's resale value.

To be specific, you can freely mix AWT widgets, like the QTConponent , and Swing widgets in the same

container as long as they don't overlap. Unless you're doing something tricky with Swing's "glass
pane,” or possibly the JLayer edPane, you're probably safe.

The common overlap problem comes from menus, both those that descend from the menu bar and
pop-up menus. A lightweight Swing menu will go behind any AWT component, and the result isn't
pretty. The way around this is to call set Li ght wei ght PopupEnabl ed(f al se) on all your menus that
might overlap with your QTrConponent .

By the way, this problem isn't limited to QTJ. Most Java toolkits that use native drawing spaces for
performance reasons run into the same issue. Sun's JMF defaults to heavyweight components, as

does the OpenGL-to-Java library JOGL. Getting AWT and Swing to play nice is a common issue for
Java multimedia developers.

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

2.4. Controlling a Movie Programmatically

For various reasons, an application might want to control the movie via its own method calls, in lieu
of or in addition to the GUI provided by QuickTime's Movi eCont rol | er. One example of this is

Movi e. start(). You can programmatically issue many more commands, some of which you can't
issue with the default control.

2.4.1. How do | do that?

Example 2-4 shows a new class, Basi cQTButt ons. j ava. The nmai n() is exactly the same as
Basi cQTPI ayer, but the constructor has extra work to create some control buttons, and an
actionPerforned() method implements AWT's Acti onLi st ener.

Note: Compile and run this example with ant run-ch02-basicqtbuttons..

Example 2-4. Programmatic control of a movie

package comoreilly.gtjnotebook.ch02;

i mport quicktine.*;

i mport quicktine.app.view*;

i mport quicktine.std. novies. *;
i mport quicktine.io.*;

import comoreilly.qtjnotebook.chOl. QTSessi onCheck;

i mport java.awt.?*;
i mport java.awt.event.*;

public class Basi cQIrButtons extends Frame
i mpl enents ActionLi stener {

Button revButton,
st opButt on,
startButton,
f wdBut t on;

Movi e t heMovi e;
public BasicQrButtons (Mvie nm) throws QIException {

super ("Basic QT Player");
theMovie = m

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

QTrConmponent qc = QTFactory. makeQrConmponent (n;
Conmponent ¢ = qc. asConmponent () ;

set Layout (new BorderLayout());

add (c, BorderLayout. CENTER);

Panel buttons = new Panel ();
revButton = new Button("<");
revButton. addActi onLi stener (this);
stopButton = new Button ("0");

st opButt on. addAct i onLi st ener (this);
startButton = new Button ("1");
startButton. addActi onLi stener (this);
fwdButton = new Button (">");

fwdBut t on. addAct i onLi stener (this);
buttons. add (revButton);

buttons. add (stopButton);

buttons. add (startButton);

buttons. add (fwdButton);

add (buttons, BorderLayout.SOUTH);

pack();
}
public void actionPerformed (ActionEvent e) {
try {
if (e.getSource() = = revButton)
theMovi e. set Rate (theMovie.getRate() - 0.5f);
else if (e.getSource() = = stopButton)
t heMovi e. stop();
else if (e.getSource() = = startButton)

theMovie.start();
else if (e.getSource() = fwdBut t on)
theMovi e. set Rate (theMovie.getRate() + 0.5f);
} catch (QTrException qte) {
qte.printStackTrace();

}
}
public static void main (String[] args) {
try {
QrSessi onCheck. check();
QTFile file =

QTFi |l e. standardGet Fi | ePrevi ew (
QTFi | e. kSt andar dQTFi | eTypes) ;
OpenMovi eFil e onFile = OpenMovi eFil e. asRead (file);
Movie m= Mowvie.fronFile (onFile);
Frame f = new Basi cQIButtons (m;
f.pack();
f.setVisible(true);
mstart();
} catch (Exception e) {
e.printStackTrace();

}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Run this program to see a display like that shown in Figure 2-5. The buttons call functions to set the
rate of the movie. The rate is O for a stopped movie, a negative number for a movie playing
backward, and a positive number for a movie playing forward. A rate of 1.0 represents normal
playing speed, so 0.5 would be half speed, and 2.0 would be double speed. The buttons have the
following functions:

<
Reduces the rate by 0.5. For a playing movie (rate = 1.0), clicking this once will cut it to half
speed (0.5), twice will stop it (0.0), three times will go to half-speed reverse (-0.5), four times
to normal-speed reverse (-1.0), etc.
0
Stops the movie, by way of a call to Movi e. st op() , which is the same as Movi e. set Rat e(0) .
1
Plays the movie forward at normal speed, equivalent to Movi e. set Rate(1) .
=>

Increases the rate by 0.5.

Figure 2-5. Controlling movie play rate with AWT buttons

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.4.2. What just happened?

This is a very simple example of methods that can be called to affect a movie's playback. These are
the methods a developer creating his own control widget (i.e., ignoring the warning in the previous
section) would need to use.

Another useful method is set Vol une(), a self-explanatory method that takes values from 0.0
(silence) to 1.0 (maximum). Also useful is a set Ti re() method, which changes the current position
in the movie.

Note: The next task covers QuickTime's concept of time, which is used as the parameter for setTime().

2.4.3. What about...

...using some similar methods in Movi eControl | er? A Movi eControl | er object, even if it's not used
to get an on-screen control widget, provides some methods with equivalent functionality, but with
different names and conventions. For example, stop(), start(), and set Rate() are all effectively
wrapped by a single method, pl ay(), which takes a rate argument. Movi eControl | er also has
some unique functionality, such as only playing the selection, setting "looping" behavior (immediately
returning to the beginning when the end is reached, or vice versa), and a method called

set Pl ayEver yFrane() , which will force the movie to not drop frames, even if that requires it to play

more slowly than it should.

[reevions Juers

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

2.5. Showing a Movie's Current Time

Advanced users, particularly those doing editing, would like to know a movie's current timei.e., where
they are in the movie. The scrubber can provide a general idea of the movie's current time, but
certain applications call for an exact value.

2.5.1. How do | do that?

Example 2-5s Basi cQTTi neDi spl ay code extends the Basi cQTControl | er by adding a Label to the
bottom of the Frane. A Swing Ti mer calls acti onPerforned() every 250 milliseconds, and this
method checks the current time of the movie and resets the label.

Note: The Swing version of Timer is used to ensure that changing the label occurs on the AWT event-dispatch thread. Compile and run
this examnple with ant run-ch02-basicqttimedisplay.

Example 2-5. Displaying the current time of a movie

package comoreilly.gtjnotebook.ch02;

i mport quicktine.*;

i mport quicktine.app.view*;

i mport quicktine.std. novies. *;
i mport quicktine.io.*;

import comoreilly.qtjnotebook.chOl. QTSessi onCheck;

i mport java.awt.?*;
i mport java.awt.event.*;

public class BasicQITi neDi spl ay extends Frane
i mpl enents ActionLi stener {
Movi e t heMovi e;
Label tineLabel;

public BasicQITi neDi splay (Mwvie m throws QIException {
super ("Basic QT Controller");
theMovie = m
Movi eControl l er nt = new MyvieController(m;
QrConponent qc = QTFactory. makeQTConponent (nt);
Conponent ¢ = qc. asConponent();
set Layout (new BorderLayout());
add (c, BorderLayout. CENTER);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ti meLabel = new Label ("-:--", Label.CENTER);
add (tinmeLabel, BorderLayout.SOUTH);
javax.swi ng. Tinmer timer =

new j avax.swi ng. Ti mer (250, this);
timer.start();

pack();
}
public void actionPerfornmed (ActionEvent e) {
if (theMovie = = null)
return;
try {

int total Seconds = theMovie.getTine() /
t heMovi e. get Ti neScal e();
i nt seconds t ot al Seconds % 60;
int minutes = total Seconds / 60;
String secString = (seconds > 9) ?
Integer.toString (seconds)
("0" + Integer.toString (seconds));
String mnString = Integer.toString (mnutes);
ti meLabel . set Text (mnString + ":" + secString);
} catch (QTrException qgqte) {
qgqte.printStackTrace();

}
}
public static void main (String[] args) {
try {
QrSessi onCheck. check();
QTFile file =

QTFi |l e. standardGet Fi | ePrevi ew (
QTFi | e. kSt andar dQTFi | eTypes) ;
OpenMovi eFil e onfFile = OpenMovi eFil e. asRead (file);
Movie m= Mowvie.fronFile (onFile);
Frame f = new Basi cQITi neDi splay (m;
f.pack();
f.setVisible(true);
mstart();
} catch (Exception e) {
e.printStackTrace();

}

This produces the application seen in Figure 2-6.

Figure 2-6. Displaying the current time of a movie

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

£ Basic OT Controller

2.5.2. What just happened?

Obviously, some funky math is happening in the acti onPer f or mred() method, which uses the Movi e
's get Ti ne() and get Ti meScal e() methods to figure out the current time in seconds, from which
the program calculates the minutes and seconds portions of label.

QuickTime has a concept of a "time scale," which represents the time-keeping system of a Movi e. For
a given time scale, n, one unit of time in that time scale is 1/n seconds. So, if a Movi e had a time
scale of 1,000, the units would be milliseconds. Movi es actually default to a time scale of 600, but the
actual value is irrelevantyou just have to be sure to work with whatever value the movie uses.

get Ti me() returns the movie's current time in terms of the time scale, so for a time scale of 600, if
get Ti me() returns 3,600, the current time is exactly 6 seconds into the movie. Other prominent
methods that work with the time scale are set Ti me() and geTDurati on().

Note: When we work with editing commands, we'll see that the Movie selection is also represented with time-scale values like these.

2.5.3. What about...

...just using milliseconds or nanoseconds or something normal instead of this crazy time-scale stuff?
Actually, this flexible system of time scales is one of the best things about QuickTime. There needs to
be some system of keeping track of time in a Movi e, and it's generally desirable for the units to be of
a sufficient resolution so that all important times divide evenlyi.e., they can be represented as i nts.

Most Java programmers are used to thinking about time in terms of milliseconds, but that's totally
inadequate for media. For example, CD audio has 44,100 samples a second, meaning that each
sample takes 0.02267 . . . ms. So, that's obviously not going to work. Insisting on some smaller unit
(microseconds, nanoseconds, picoseconds, etc.) won't help, because you can never know that it will
be good enough for some arbitrary piece of time-based data. QuickTime's system of time scales
allows the system of measurement to be ideally suited to the media itself.

An interesting thought about the preceding example is that Movi e's default time base of 600 is also

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

inadequate for CD audio. As it turns out, the tracks of a movie (more accurately, the "media"” they
refer to) can have their own time scales. So, a Movi e can have one time scale, its video can have
another, and the audio can have a third.

So, why is the default time scale 6007? It appears to have originated with the 60 "ticks" per second
used for time keeping on the oldest Macs, but it turns out to be a wonderfully common multiple of:
e 24 (frames per second in film)

e 25 (frames per second in PAL and SECAM video, used in Europe, Africa, South America, and
parts of Asia)

e 30 (frames per second in NTSC video, used in North America and Japan)

Actually, that last example is not entirely true. NTSC color video is broadcast at an overall rate of
29.97 frames/sec, so to keep things straight, two frame numbers are dropped every minute (except
for every 10th minute) to compensate for a synchronization problem in the color signal. QuickTime
can handle these "drop-frame" video tracks by making the time scale 2,997 and each frame 100
units long. | told you it was handy!

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

2.6. Listening for Movie State-Changes

One problem with polling to show the current time in the movie is that it's wasteful and inaccurate:
it's optimal to check the time only when the movie's playing, and to eliminate latency, it would be
nice to be notified when there's a sudden change in the current time, such as when the user slides
the scrubber. Fortunately, there's a callback API to notify a program when things like this occur.

2.6.1. How do | do that?

This example revises the Basi cQTBut t ons program. The new version, Basi cQTCal | back, asks to be
notified when the rate changes. When the rate is O, it will disable the stop button (labeled "0"), and
when the rate is 1, it disables the play button (labeled "1™). For space, I'll list only the lines that have
changed from Basi cQIBut t ons.

First, there are two new imports: qui ckti ne. st d. cl ocks, which is where callbacks are defined, and
qui ckti me. st d, whose St dQTConst ant s provides constants to specify the callbacks' behavior:

i mport quicktine.std.*;
i mport quicktine.std.clocks. *;

Next, the constructor is changed to pass the Mvi e to an inner class' constructor:

MyQrCal | back nyCal | back = new MyQrcCal | back (m;

And here's the inner class. It has a constructor that takes a Movi e argument and an execut e()
method:

cl ass MyQrCal | back extends RateCall Back {
public MyQrCal | back (Movie m throws QIException {
super (m get Ti neBase(),
0,
St dQrConst ant s. tri gger Rat eChange) ;
cal | MeWhen();
}
public void execute() {
if (rateWenCalled = = 0.0) {
startButton. set Enabl ed (true);
st opButton. set Enabl ed (fal se);
} else if (ratewenCalled = = 1.0) {
startButton. set Enabl ed (fal se);
st opButton. set Enabl ed (true);

}

/1 indicate that we want to be called again

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

try {
cal | MeWhen();

} catch (QTException qte) {
gte.printStackTrace();

The result looks like the window in Figure 2-7. Notice how in the screenshot, the stop button ("0") is
dimmed, indicating that the movie is already stopped. If the user hits "1," the movie will play and the
play button will be disabled.

Figure 2-7. Disabling buttons via callbacks

0 6 Basic QT Player

2.6.2. What just happened?

The inner class creates a QI'Cal | Back, specifically a subclass of Rat eCal | Back. In its constructor, it
indicates the conditions under which it wants to be calledby passing the t ri gger Rat eChange flag, it
asks to be called any time the rate changes. It then invokes cal | MeWhen() to actually register the
callback.

QuickTime invokes the callback via the execut e() method. This implementation checks the
r at ehenCal | ed value, inherited from Rat eCal | Back, to determine if the movie is stopped or
started, and enables or disables buttons appropriately. Finally, it issues a new cal | MeWhen() call to

ask to get called back on future rate changesQuickTime callbacks are one-time-only deals, not like
the Event Li st ener s that are typical in Java, so programmers have to remember to reregister for
new callbacks after every execut e() .

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.6.3. What about...

...that 0 argument to the Rat eCal | Back's constructor? Good question. This is one of those times
where all the interesting values are defined only in the native documentation, not the Javadocs. The
third argument, used to trigger the callback on any rate change, can be used with the constants
trigger Rat eEqual s, tri gger Rat eNot Equal , tri gger Rat eLT ("less than™), tri gger Rat eLTE ("less
than or equals"), etc., to define a behavior when the callback is made only when a certain condition is
true. When using these triggers, the middle argument specifies the rate to be compared. For
example, a callback could be set up to run only when the movie is playing, by passing 0 and

tri gger Rat eNot Equal s as the second and third arguments, respectively.

Note: In the previous lab, a "rate not equal to 0" callback could be used to start or stop the time-label polling thread, so it would run only
when the movie has a non-zero rate.

Are there other kinds of callbacks? Glad you asked. There are four major callbacks, each with its own
class in qui ckti ne. std. cl ocks:

Rat eCal | Back

Calls back when the rate changes, as seen in the earlier example.

Ext renesCal | Back

Calls back when playback reaches the beginning or end of the Movi e. Behavior is specified with
triggerAtStart or TRi gger At St op.

Ti meCal | Back

Calls back when playback reaches a specific time in the movie. The behavior flag determines if
the callback occurs when moving forward (TRi gger Ti neFwd), backward (t ri gger Ti neBwd), or
either forward or backward (TRi gger Ti neEi t her).

Ti meJunpCal | Back

Calls back when the movie's current time changes in a way that is not consistent with its
current play rate. The typical case here is that the user is grabbing the scrubber to move
around the movie. Setting up this callback takes no parameters or behavior flags.

And what about more sophisticated callback setup and teardown? This example doesn't need to clean
up anything, but a more sophisticated application, one that opens and closes multiple movies, would
need to release callback resources. This is done with a call to the QTCal | Back's cancel AndCl eanup()
method.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

There is also a simple cancel () method that can be used to cancel a callback previously registered
with cal | MeWhen() . To change a callback, you must cancel () it, then construct a new callback and
register it with cal | MeWhen().

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

2.7. Moving Frame by Frame

One popular feature for playback is the ability to step forward exactly one frame. It turns out to be
trickier than one might initially expect: it's not like there's a Movi e. next Frane() method. Indeed, a
Movi e might not have a video track at all, if it represents an MP3 or some other audio-only media.
So, finding the next frame requires being a little smarter about looking inside the Mvi e's structure.

2.7.1. How do | do that?

This example builds on the earlier Basi cQTBut t ons code. In this example, the implementations of the
forward and back buttons are altered so that instead of changing the play rate, they change the
current time to be the next frame before or after the current time. For space, this example shows
only the changes from the original Basi cQTButt ons.

This example needs to import qui ckti ne. st d to use St dQTConst ant's, and qui ckti me. std. cl ocks
for some time-related classes. It also adds an instance variable vi sual Tr ack, which is found with the

following call:

theMovie = m
/1 find video track
vi sual Track =
m get | ndTrackType (1,
St dQTConst ant s. vi sual Medi aCharacteri stic,
St dQTConst ant s. novi eTr ackChar acteri stic);

If a visual track isn't found, the r evButt on and f wdBut t on are disabled later in the constructor.

Finally, a new implementation of acti onPer f or med() does the frame-step logic when the r evBut t on
or fwdBut t on is clicked:

if (e.getSource() = = revButton) {
Tinelnfo ti =
vi sual Track. get Next I nt eresti ngTi me (
St dQTConst ant s. next Ti neMedi aSanpl e,
t heMovi e. get Ti ne(),
-1);
theMovi e. set Ti ne (new Ti neRecord (theMovie. getTi neScal e(),
ti.tinme));
}
else if (e.getSource()
t heMovi e. stop();
else if (e.getSource()
theMovie.start();
else if (e.getSource()

st opBut t on)

startButton)

fwdBut t on) {

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Timelnfo ti =
vi sual Track. get Next I nt eresti ngTi me (
St dQTConst ant s. next Ti neMedi aSanpl e,
t heMovi e. get Ti ne(),
1);
theMovi e. set Ti ne (new Ti neRecord (theMovie.getTi neScal e(),
ti.tinme));

Note: Compile and run this example with ant run-ch02-basicqtstepper.

There's no screenshot for this example, because it's difficult to show a frame step in a static medium
like a book.

2.7.2. What just happened?

This program finds the video track with a call to Movi e. get | ndTr ackType() , which takes three
arguments:

Which instance to find

This is 1-based, so passing 1 means "find the first matching track."

A search criterion

This is a constant from St dQTConst ant s that can be a media "type" (vi deoMedi aType,
soundMedi aType, etc.), or it can be a "characteristic" (vi deoMedi aChar acteri sti c,

audi oMedi aChar act eri sti ¢). The characteristics are helpful in cases like this when several
kinds of media are acceptable matches ("visual" media includes video, MPEG, Flash, and more).

Flags to control the search

This should be the value novi eTr ackMedi aType if the previous argument is a media type or
movi eTrackChar act eri sti c if it is a characteristic.

An alternative way to find a suitable track would be to iterate over the tracks with
Movi e. get I ndTrack(), get the Medi a object from each discovered track, and use i nst anceof to
see if it matches a given media class (Vi deoMedi a, SoundMedi a, etc.).

Assuming you can find such a track, the trick to finding the next frame is to use the media's
get Next I nt eresti ngTi ne() method. There are several kinds of "interesting times," and to indicate

interest in the next frame, which is more accurately the next "sample," you pass the behavior flag
next Ti meMedi aSanpl e. The method also takes a parameter representing the time in the movie

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

where it should start searching for the next frame (in this case, it's the current time) and the desired
search direction (any positive i nt for a forward search, and any negative i nt for a backward

search).

The value returned by get Next I nt eresti ngTi ne() is a Ti nel nf o object. This program is interested
only in the time field of this object, which is represented in the Movi e's time scale (not the Medi a's,
interestingly enough). It takes that value and advances the movie to the interesting timei.e., the next
framewith a call to Movi e. set Time() .

2.7.3. What about...

...other kinds of times? The native Get Medi aNext | nt er esti ngTi ne function offers the following
behavior flags:

Next Ti meMedi aSanpl e

The behavior used in this example.

Next Ti neMedi aEdi t

Finds the next group of samplesi.e., the next thing that has been edited into the movie (editing
is covered in the next chapter).

Next Ti neSyncSanpl e

Finds the next "sync sample"i.e., the next sample that is completely self-contained. Many video
compression formats send a sync sample (also known as a "key frame"), which is a complete
image, while subsequent samples are just information about what has changed since the sync
sample. In other words, these later frames aren't complete and cannot be rendered without
information from one or more other samples.

Next Ti mreEdgeOK

Can be OR'ed in with other flags to indicate that it's OK to return the beginning or the end of
the media as a valid "interesting time."

What's up with the first track being 1 instead of 0? As a curious legacy, one that feels more like
Pascal than Java, most QuickTime methods that do an index-based get are one-based, not zero-
based. In fact, if you try to get TRack(0), you'll get a QTExcept i on.

Warning: The other gotcha is that although this example is written to work with any visual media, it won't work for MPEG-1 or MPEG-2
files. These files multiplex (or "mux") the audio and video into one stream, and QuickTime doesn't de-mux them in memory, so it has no

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

easy way to find the next video sample. This is why there are separate MVPEGVEdi a and MPEGVedi aHandl er classes in QTJ; the
latter is a subclass of Vi sual Medi aHandl er, but it is also implementing Audi oMedi aHandl| er . Fortunately, MPEG-4, whose
internal structure is friendlier to QuickTime, appears as separate audio and video tracks just like other QuickTime movies.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

2.8. Playing Movies from URLS

Along with loading movies from disk, QuickTime can also load them from URLs, and is pretty smart
about network latency.

2.8.1. How do | do that?

Example 2-6 shows a totally new class, Basi cQTURLCont rol | er. j ava. This is a significant rethinking
of the earlier Basi cQTControl | er class. This example creates a GUI from an empty "dummy" movie,
then asks the user for a URL, gets a Movi e from that, and replaces the dummy movie. By getting the
movie last, it tempts fate to see how well QTJ can deal with loading a movie over the network.

Example 2-6. Loading and playing a movie from a URL
package comoreilly.gtjnotebook.ch02;

i mport quicktine.*;

i mport quicktine.std.*;

i mport quicktine.app.view *;

i mport quicktine.std. novies. *;

i mport quicktine.std. novi es. nedi a. *;
i mport quicktine.io.*;

import comoreilly.qtjnotebook.chOl. QTSessi onCheck;

i mport java.aw.?*;

public class Basi cQTURLControl |l er extends Franme {
QrConponent qc;

public Basi cQTURLController () throws QIException {
super ("Basic QT DataRef/Controller");
Movi e dunmyMovi e = new Movie();
gc = QTFactory. makeQTrConponent (dunmyMovi e);
Conponent ¢ = qc. asConponent ();
add (c);
pack();

}

public static void main (String[] args) {

try {
QTSessi onCheck. check();

Basi cQTURLControl ler f =

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

new Basi cQTURLController ();
String url =

j avax. swi ng. JOpt i onPane. showl nput Di al og (f,

"Enter URL");
Dat aRef dr = new DataRef (url);
Movi e m = Movi e. fronDat aRef (dr,
St dQTConst ant s. newMbvi eAct i ve);
Movi eControl l er nt = new Movi eController (n;
f.qc.setMovieController (nt);
f.setVisible(true);
f.pack();
m prePrerol | (0, 1.0f);
mpreroll (0, 1.0f);
mstart();
} catch (Exception e) {

e.printStackTrace();

}

Note: Compile and run this example with ant run-ch02-basicqturlcontroller.

When this app is first run, the user sees a dialog asking for a URL. Enter a valid URL (notice that
again, for simplicity, the examples don't meaningfully check input or handle errors gracefully).
Assuming the URL has valid QuickTime content, the user will see a window like the one shown in
Figure 2-8.

Figure 2-8. Movie played from a URL DataRef

& O M Basic QT DataRef/Controller

2.8.2. What just happened?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Some different techniques are in play in this example, the most important of which is showing that
the Movi e or Movi eControl | er displayed by a QrConponent can be replaced. The constructor creates
a QTConponent from the empty durmyMovi e, but after creating a Movi e from the URL, a

Movi eCont rol | er is created for it and is used to replace the contents of the visible QTConponent via
the set Movi eControl ler() call.

Two helper calls, prePrerol | () and prerol | (), allocate movie-playing resources up front, to
reduce jitter and dropped frames when the movie starts playing. These methods take the same two
arguments: the movie time and the rate that the program intends to start playing at.

This example uses a Movi eControl | er to make a point. As seen in Figure 2-8, the scrubber has an
inner bar that is only partially filled in. This is a graphic representation of how much of the movie
data has been downloaded. This example goes ahead and plays the movie immediately, trusting that
it will download data faster than we can consume it. This isn't a safe assumption at alldial-up users
will stop almost immediately, though the controller gives them the ability to see how much they have
and to play when they're ready.

As for getting the Movi e, it's a pretty simple process: pass the URL to a Dat aRef constructor. These
Dat aRef objects are something of a general-purpose media locator in QuickTime, used here for
network access. The new Mvi e is then created with the f r onDat aRef () call.

Notice the second argument to f r onDat aRef () . This is an example of using QuickTime behavior
flags , which are found throughout QuickTime. One of the more interesting concepts about the flags
is that these behaviors can be combined. The flags are i nt s with a single bit turned on (meaning
their actual values are powers of 2). The idea is that you can mathematically OR them together to
combine multiple behaviors. The constants of the j ava. awt . Font class, like BOLD and | TALI C, work
pretty much the same way. In this case, in addition to making the movie active, the program could
set a behavior flag to tell QuickTime not to enable alternate tracks (if there are any), by making a call
like this:

Movi e m = Movi e. fronDat aRef (dr,
St dQTConst ant s. newMovi eActi ve |
St dQTConst ant s. newibvi eDont Aut oAl t er nat e) ;

The other flags mentioned for this call, newibvi eDont Resol veDat aRef s and
newMbvi eDont AskUnr esol vedDat aRef s, deal with esoteric cases where a movie is not self-contained
and some of the media it refers to can't be found.

Warning: The Javadocs for Movi e. f r onDat aRef () advocate using the behavior flag

St dQTConst ant s4. newVbvi eAsync K. That was useful in the old QTJ, but when used in this example in QTJ 6.1, it might
allow the QTConponent to decide that your movie has zero height and zero width, because the movie gets handed to the
QrConponent before the size metadata gets downloaded. As Figure 2-8 shows, the preceding code does not block and wait for the
whole movie to be downloaded. Advice for now: don't use it unless you think you're blocking on Movi e. f r onDat aRef ().

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

2.9. Preventing "Tasking" Problems

All the tasks in this chapter have managed to avoid one of the more obscure hazards in QuickTime.
This example tempts fate and exposes the problem by playing a movie that would otherwise freeze

up.

2.9.1. How do | do that?

Example 2-7 reprises the command-line audio player from the first chapter, which takes a path to a
file as a command-line argument, builds a Movi e, and plays it, without getting any kind of GUI.

Example 2-7. Playing audio from the command line
package comoreilly.gtjnotebook.ch01;

i mport quicktine.*;

i mport quicktine.app.tine.*;

i mport quicktine.io.*;

i mport quicktine.std.*;

i mport quicktine.std. novies. *;

i mport java.io.*;
public class Basi cAudi oPl ayer {

public static void main (String[] args) {
if (args.length !'= 1) {
Systemout.println (
"Usage: Basi cAudi oPl ayer <file>");
return;

try {
QTSessi onCheck. check();

QrFile f = new QIFile (new File(args[0]));
OpenhMbvi eFil e onf = OpenMovi eFi | e. asRead(f);
Movie nmovie = Movie.fronFile (onf);
TaskAl | Movi es. addMovi eAndStart () ;
novi e.start();

} catch (QIException e) {
e.printStackTrace();

}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Notice the line in bold. Take it out, recompile, and watch what happens. The program will likely hang
or immediately exit, playing just a spurt of audio or none at all.

2.9.2. What just happened?

QuickTime movies need to explicitly be given CPU time to do their work: reading from disk or the
network, decompressing and decoding, rendering to the screen, or playing to the speakers. This
process is called "tasking." Looking at the Javadocs reveals that the Movi e class has at ask()
method that could be called to give time to a specific movie, and a static t askAl | () method that
tasks all active movies.

Managing all these calls manually and being sure to call them frequently enough would be, of course,
incredibly tedious. That's why QTJ provides TaskAl | Movi es, a wrapper for a Thr ead whose job is to
call t ask() on all active movies. This example kicks off TaskAl | Movi es (assuming nothing else has
done so), thereafter allowing it to be blissfully unaware of tasking.

2.9.3. What about...

...all the other examples? Why are we only hearing about this now? Well, TaskAl | Movi es is so useful
that QTJ itself uses it extensively. Any time a program works with QTJ's GUI classes, by getting a
Conponent for a Movi e or Movi eControl | er, it picks up calls to TaskAl | Movi es automatically. In
fact, it's a little difficult not to pick up automatic tasking calls from QTJ, short of opening audio-only
movies with non-QTJ GUI widgets, or no GUI at all, as seen here.

Note: It's still important to know about tasking in case you stumble intosuch a case and can't figure out why your application is just sitting
there.

Tip: In the last section, a warning mentioned an edge case where using the newiVbvi eAsync OK flag might give you a
QrComponent with zero size because Movi e. f r onDat aRef () returned immediately, before enough of the movie could be
loaded to know how big it was.Tasking helps you solve this problem. After f r onDat aRef () , you would go into a whi | e loop,
testing whether Movi e. get Box() returns non-zero dimensions. If it doesn't, callt ask() on the movie to give QuickTime a
chance to load more of it, maybe do a Thr ead. sl eep() or Thread. yi el d() to keep Java happy, and go back to the top of
the whi | e. Because QuickTime movies usually, but don't always, have metadata early in the file, an alternative to testing the size of the
movie would be to call maxLoadedTi mel nMovi e() onthe Movi e object and wait for a non-zero valuethis would also be better if
there's any chance the Movi e is audio only.But seriously, it's not going to happen because you don't need newiVbvi eAsync OK.
Chill.

In QTJ 6.0 and earlier, there were also URL-loading scenarios where a program might need to t ask(
) a few times to download enough of the Movi e to read in the metadata and get a valid size, but this
behavior seems to have changed in 6.1, making explicit tasking even more of an edge case.

[oreviovs fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Chapter 3. Editing Movies

Playback is nice, but you have nothing to play if you lack tools to create media, and the most critical
of these are editing tools. If you've ever used iMovie with your home movies, you know what I'm
talking about: there's a huge difference between watching a cute collection of scenes of your kids
playing, set to music, and watching the two hours of unedited raw footage you started with.
Sometimes, less is more.

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

3.1. Copying and Pasting

The most familiar form of editing is copy-and-paste, which many users already are familiar with from
the "pro" version of QuickTime Player. The metaphor is identical to how copy-and-paste works in
nonmedia applications such as text editors and spreadsheets: select some source material of interest,
do a "copy" to put it on the system clipboard, select an insertion point in this or another document,
and do a "paste" to put the contents of the clipboard into that target.

In the simplest form of a QuickTime copy-and-paste, the controller bar (from Movi eControl | er) is
used to indicate where copies and pastes should occur. By shift-clicking, a user can select a time-
range from the current time (indicated by the play head) to wherever the user shift-clicks (or, if he is
dragging, wherever the mouse is released).

Note: QuickTime Pro costs money ($29.99 as of this writing), but it allows you to exercise much of the QuickTime API from QuickTime
Player, which can be a useful debugging tool.

3.1.1. How do | do that?

Basi cQTEdi t or, shown in Example 3-1, will be the basis for the examples in this chapter. It offers a
single empty movie window (with the ability to open movies from disk in new windows or to create
new empty movie windows), and an Edit menu with cut, copy, and paste options.

Example 3-1. A copy-and-paste movie editor

package comoreilly.gtjnotebook.ch03;

i mport quicktine.*;

i mport qui cktinme.qd. QDRect ;

i mport quicktine.std.*;

i mport quicktine.std. novies. *;
i mport quicktine.app.view *;

i mport quicktine.io.*;

i mport java.aw.?*;
i mport java.awt.event.*;

import comoreilly.qtjnotebook.chOl. QTSessi onCheck;

public class BasicQrEditor extends Frane
i mpl enents ActionLi stener {

Conponent conp;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Movi e novi e;

Movi eControl |l er controller;

Menu fil eMenu, editMenu;

Menul tem openltem closeltem newlitem quitltem
Menultem copyltem cutltem pasteltem

static int newFraneX = -1;

static int newFraneY = -1;

static int w ndowCount = O;

/** no-arg constructor for "new' novie
*/

public BasicQrEditor () throws QIException {
super ("BasicQrEditor");
set Layout (new BorderLayout());
QrSessi onCheck. check();
nmovi e = new Movi e(St dQTConst ant s. newbvi eActi ve) ;
controller = new MovieController (novie);
controll er.enabl eEditing(true);
doMyLayout ();

}

/** file-based constructor for opening novies
*/

public BasicQIrEditor (QTFile file) throws QIException {
super ("BasicQrEditor");
set Layout (new BorderLayout());
QrSessi onCheck. check();
OpenMovi eFil e onf = OpenMovi eFil e. asRead (file);
movie = Movie.fronFile (onf);
controller = new MovieController (novie);
controll er.enabl eEditing(true);
doMyLayout ();

}

/** gets conponent from controller, nakes nenus

*/

private void doMyLayout() throws QIException {
/1 add novi e conponent
QrConponent qtc =

QTFact ory. makeQrConmponent (controller);

conmp = qtc.asConponent ();
add (conp, BorderlLayout.CENTER);
/1 file menu
fileMenu = new Menu ("File");
newl tem = new Menultem (" New Movie");
newl t em addActi onLi stener (this);
fileMenu.add (new ten);
openltem = new Menultem (" Open Mwvie...");
openl t em addAct i onLi st ener (this);
fileMenu.add (openltem;
closeltem = new Menultem ("C ose");
cl oseltem addActi onLi stener (this);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

fileMenu.add (closelten);
fileMenu. addSeparator();
quitltem = new Menultem ("Quit");
quitltem addActi onLi stener (this);
fileMenu.add(quitlten);
/1 edit menu
edit Menu = new Menu ("Edit");
copyltem = new Menultem (" Copy");
copyl t em addAct i onLi st ener (t hi s);
edi t Menu. add(copyltem ;
cutltem = new Menultem ("Cut");
cutltem addActi onLi stener(this);
edi t Menu. add(cutlten);
pasteltem = new Menul tem (" Paste");
pasteltem addActi onLi stener(this);
edi t Menu. add(pastelten);
/1 make menu bar
MenuBar bar = new MenuBar();
bar.add (fileMenu);
bar.add (editMenu);
set MenuBar (bar);
/'l add cl ose-button handling
addW ndowLi st ener (new W ndowAdapter() {
public void w ndowCl osi ng (W ndowEvent e) {
dod ose();
}
1)
}

/** handl es nmenu actions
*/
public void actionPerfornmed (ActionEvent e) {
(bj ect source = e.getSource();

try {
if (source = qmtlten’) doQuit();
else if (source = openlten) doOpen();
else if (source = = closeltem) doC ose();
else if (source = = newtem) doNew);
else if (source = = copyltenm) doCopy();
else if (source = = cutltem doCut();
else if (source = = pasteltem doPaste();

} catch (QrException qte) {
gte.printStackTrace();

}
}

public void doQuit() {
System exit(0);
}

public void doNew() throws QIException {
makeNewAndShow() ;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

}

public void doOpen() throws QTException {
QlFile file =
QTFi |l e. standardGet Fi | ePrevi ew (QrIFi | e. kSt andar dQTFi | eTypes) ;
Frame f = new Basi cQIEditor (file);
f.pack();
if (newFrameX >= 0)
f.setLocation (newkFrameX+=16, newFraneY+=16);
f.setVisible(true);
wi ndowCount ++;

public void doC ose() {
set Vi si bl e(fal se);

di spose();
/1l quit if no wi ndows now show ng
if (--w ndowCount = = 0)

doQuit();

public void doCopy() throws QTException {
Movi e copied = controller.copy();
copi ed. put OnScrap(0);

public void doCut() throws QIException {
Movie cut = controller.cut();
cut . put OnScrap(0);

public void doPaste() throws QIException {
controller.paste();
pack();

}

/** Force frane's size to respect novie size
*/
public Dinension getPreferredSize() {
Systemout.println ("getPreferredSi ze");

if (controller = = null)
return new Di nension (0, 0);
try {

(DRect contRect = controller.getBounds();

Di nensi on conpDi m = conp. get PreferredSi ze();

if (contRect.getHeight() > conpDi mheight) {

return new Di nension (contRect.getWdth() +

getlnsets().left +
getlnsets().right,
contRect.getHeight() +
getlnsets().top +
getlnsets().bottom;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

} else {
return new Di nension (conmpDimw dth +
getlnsets().left +
getlnsets().right,
compDi m hei ght +
getlnsets().top +
getlnsets().bottom;

}
} catch (QTException qte) {
return new Di nension (0, 0);

}
}
/** opens a single new novie wi ndow
*/
public static void main (String[] args) {

try {
Frame f = makeNewAndShow();
/'l note its x, y for future calls
newkFrameX = f.getLocation(). Xx;
newFraneY = f.getLocation().vy;

} catch (Exception e) {
e.printStackTrace();

}

}

/** creates "new' novie frame, packs and shows.
used by main() and "new'

*/

private static Frane makeNewAndShow()
throws QTException {
Frame f = new Basi cQTEditor();
f.pack();
if (newFrameX >= 0)

f.setLocation (newkFrameX+=16, newFraneY+=16);

f.setVisible(true);
wi ndowCount ++;
return f;

Note: With the downloaded book code, compile and run this with ant run-ch03-basicqgteditor.

Figure 3-1 shows the Basi cQTEdi t or class in action, with two windows open. The window on the left
is the original empty movie window, with the user about to paste in some contents. The window on
the right is a movie that was opened from a file. Note the small stretch of darker gray in the timeline,
under the play head, which indicates the selected segment that was copied from the movie to the
system clipboard.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 3-1. BasicQTEditor with two movies open

B BasicOTEditor (=13} =

File Edit

Also note that when running in Windows, as pictured here, the menus are inside the windows. On
Mac OS X, the usage of AWT means the File and Edit menus will be at the top of the screen in the
Mac's "One True Menu Bar."

One usability note: for simplicity, | haven't tried to make this particularly smart about what the user
"really wants," and that can be bad on the paste . The paste will replace whatever is selected in the
target movie, and if there is no selection, it will paste to the beginning of the movie. It's probably
more typical to add clips either to the end of the movie, or to the current time as indicated by the
play head (i.e., to behave as if a lack of a selection should be interpreted as a zero-length selection
beginning and ending at the movie's current time). It's simple enough to add this kind of intelligence
to doPast e() and find a behavior that feels better.

3.1.2. What just happened?

This is a big example, so here's an overview.

The no-arg constructor, Basi cQTEdi t or (), initializes QuickTime with Chapter 1s QTSessi onCheck,
then creates a new empty Movi e, gets a Movi eCont rol | er for it, and calls doMyLayout . A second
constructor, Basi cQTEdi tor (QTFi | e), is essentially identical, except that instead of creating an
empty movie, it gets a movie from the provided QTFi | e. The novi e and the control | er instance
variables are used by many methods throughout the application.

The doMyLayout () method sets up the menus and their Act i onLi st ener s and reminds us that
building GUIs in code is a pain.

actionPerfornmed (ActionEvent) is used to farm out method calls from clicks on the various menu
items.

doQuit() isatrivial call to Syst em exit(0). Remember that the QTSessi onCheck call has set up a
shutdown handler to close QuickTime when Java goes away.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

doNew() trivially calls makeNewAndShow() , which is a convenience method to call the no-arg
constructor (which creates an empty Movi e), pack the frame, and move it down and to the right 16
pixels from the last place a new window was created.

Tip: Note that there's nothing here to keep new windows from going off-screen if the user creates enough of them. In a more polished
application, you'd check the proposed x and y against the screen size reported by the AWT's Tool ki t . get ScreenSi ze() .

doOpen() brings up a file-open dialog and calls the file-aware constructor. It then pack() s the
window and positions it in the same way makeNewAndShow() does.

dod ose() closes the frame and, if it is the last open window, quits the application via doQui t ()
(yes, this is Windows-like behavior, as opposed to the typical Mac application which can hang around
with no open windows).

doCopy() and doCut () are practically identical, and each needs only two lines to do its thing. They
make a call to the Movi eCont r ol | er to cut or copy the current selection and return the result as a
new Movi e. Then they put this movie on the system clipboard with the movie's put OnScrap() call.

doPast e() is even simpler: it just calls the controller's past e() method and then re-pack() s the
window.

The get Pref erredSi ze() method overrides the default by indicating that the window needs to be
large enough to contain the movie, its control bar, and any insets that might be set. This is why you
should pack() after each paste: the original empty movie has no size other than its control bar, so
when you paste into it, the size of the movie (and thus its controller) changes to accommodate the
pasted contents, and you need the frame to adjust to that.

Warning: This really should be taken care of automatically in Java, because the use of a Bor der Layout should allow the contents
to achieve their preferred size on apack() . Unfortunately, on Mac OS X, the QTConponent exhibits a bizarre behavior where its
preferred size is set once, when it's packed, and never again. So, a component built from an empty movie always thinks it's supposed to
be zero pixels high by 160 pixels wide, even if you paste in contents much larger than that. Fixing this reveals the opposite problem on
Windows: sometimes there's a good preferred size and a zero-height controller bound. The version here prefers whichever set of
bounds has a greater height.

3.1.3. What about...

...that weird play head? That is odd, isn't it? The call to enabl eEdi ti ng(true) has changed the play
head ball to an hourglass shape. Figure 3-2 shows it at an enlarged size.

Figure 3-2. MovieController scrubber bar with editing enabled

di B - 4P 4 I

My guess is that the shape is supposed to help you select the exact point for making a selection,
instead of burying it under the center of the ball. That said, there's a reason you don't see this

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

elsewhere: this default widget isn't terribly well-suited to editing. The QuickTime Player application
that comes with QuickTime has a custom controller widget with two little triangles under the timeline
to mark in and out points. But that control, like this one, shares the flaw that the accuracy of your
edit is limited by the on-screen size of your movie. More serious editing applications, like Premiere
and Final Cut Pro, have custom GUI components for editing, usually based on a timeline that can be
"zoomed" to an arbitrary accuracy. Of course, one could do the same with AWT or Swing, tracking
MouseEvent s, pai nt () ing as necessary, and making programmatic calls to QTJ to perform actions.

[rrevious e s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

3.2. Performing "Low-Level" Edits

Low-level edits are a separate set of editing calls that don't involve the clipboard or selection
metaphors. They're called "low level" because instead of operating at the conceptual level of "paste
the contents of the clipboard into the user's current selection," they work at the level of "insert a
segment from movie M1, ranging from time A to time B, into movie M2 at time C."

Note: By way of comparison, although QuickTime has two sets of editing functions, Sun's Java Media Framework has no editing API at
all.

3.2.1. How do | do that?

This version reimplements doCopy(), doCut(), and doPaste() to use low-level editing calls on
the Movi e instead of cut/copy/paste-type calls on the Movi eControl | er.

First, LowLevel QTEdi t or needs a static Movi e, called copi edMovi e, to keep track of what's on its
virtual "clipboard" so that it can be shared across the new doCopy(), doCut (), and doPaste()
methods:

public void doCopy() throws QIException {

copi edMovi e = new Movie();

Timel nfo sel ection = novie. get Sel ection();

novi e. i nsert Segrment (copi edMovi e,
sel ection. tine,
sel ection. durati on,
0);

}

public void doCut() throws QTException {
copi edMovi e = new Movie();
Timel nfo sel ection = novie. get Sel ection();
novi e. i nsert Segnent (copi edMovi e,
sel ection.tine,
sel ection. durati on,
0);
novi e. del et eSegnent (sel ection.tine,
sel ection. duration);
control |l er. novi eChanged();

}
public void doPaste() throws QIException {
if (copiedMovie = = null)
return;

copi edMbvi e. i nsert Segnent (novi e,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

0,
copi edMovi e. get Duration(),
nmovi e. get Sel ection().tine);
controll er.novi eChanged();
pack();

Note: You can make ant compile and run this example with ant run-ch03-lowlevelgteditor.

The only thing the user might see as being different or odd in this example is that the cut or copied
clip does not get put on the system clipboard because low-level edits don't touch the clipboard.

Tip: For what it's worth, this example was intended originally to be a drag-and-drop demo, for which these low-level, segment-oriented
calls are particularly well-suited. Unfortunately, the QTComponent won't generate an AWT "drag gesture." | suppose it would be a little
unnatural to drag the current image as a metaphor for copying a segment of a movie. Anyway, if you decide to do your own controller
GUI, you can use this low-level stuff for your drag-and-drop.

3.2.2. What just happened?

The doCut (), doCopy(), and doPaste() methods all call Movi e. i nsert Segnent () ; either to put
some part of a source movie into the clipboard-like copi edMbvi e or to put the copi edMbvi e into the
target movie. This method takes four arguments:

e The Movi e to insert into

e The start time of the segment, in the movie's time scale

e The end time of the segment, in the movie's time scale

e The time in the target movie when the segment should be inserted

In the case of a cut, the del et eSegnent () call removes the segment that was just copied out. This
method simply takes the beginning and end times of the segment to delete.

Note: Time scales are covered in Chapter 2, in the section Section 2.5."

In the doPast e() and doCut () methods, a call to Movi eControl | er. novi eChanged() lets the
controller know that the movie was changed in a way that didn't involve a method call on the
controller, and that the controller now needs to update itself to adjust to the changed duration,
current time, etc.

3.2.3. What about...

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

...any other low-level calls? There is an interesting method in the Movi e class, called scal eSegnent ()
, Which changes the duration of a segment, meaning it either slows it down or speeds it up to suit the
specified duration. This could be handy for creating a " slow-motion™ or "fast-motion" effect from a
normal-speed source, or stretching it out to fit a piece of audio.

[rrevious e s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

3.3. Undoing an Edit

Critical to any kind of editing is the ability to back out of a change that had unintended or undesirable
effects. Fortunately, controller-based cuts and pastes can be undone with some fairly simple calls.

3.3.1. How do | do that?

Undoabl eQTEdi t or builds on the original Basi cQTEdi t or by adding an "undo™ menu item. The
doUndo() method it calls has an utterly trivial implementation:

public void doUndo() throws QIException {
controller.undo();

}

Note: Compile and run this example with ant run-ch03-undoableqteditor.

3.3.2. What just happened?

With a simple call to Movi eControl | er. undo() , the program gained the ability to undo a cut or
paste, or any other destructive change made through the controller.

3.3.3. What about...

...multiple undoes? Or redoes? Ah, there's the rub. Hit undo again and the cut or paste is redone, in
effect undoing the undo.

Sadly, this is your dad's "undo...the undo from back in 1990, when a single level of undo was a

pretty cool thing. Today, when users expect to perform multiple destructive actions with impunity, it's
not too impressive.

(erevious fluexr

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

3.4. Undoing and Redoing Multiple Edits

Fortunately, QTJ offers a unique opportunity to combine Swing's thoughtfully designed undo API,
j avax. swi ng. undo, with QuickTime's support for reverting a movie to a previous state. Combined,

these features provide the ability to support a long trail of undoes and redoes.

3.4.1. How do | do that?

Redoabl eQTEdi t or again builds on Basi cQTEdi t or, adding a Swing UndoManager that is used by
both the doUndo() and doRedo() methods:

Note: Compile and run this example with ant run-ch03-redoableqteditor.

public void doUndo() throws QIException {
i f (! undoanager.canUndo()) {
Systemout.println ("can't undo");
return;

}

undoManager . undo();

}

public void doRedo() throws QIException {
if (! undoManager.canRedo()) {
Systemout.println ("can't redo");
return;

}

undoManager . redo();

}

The information about a destructive edit is encapsulated by an inner class called QTEdi t :

class QTEdit extends AbstractUndoabl eEdit {
Movi eEdi t St at e previ ousSt at e;
Movi eEdi t St at e newSt at e;
String nane;
public QTEdit (MovieEditState pState,
Movi eEdi t St ate nSt at e,
String n) {
previousState = pState;
newState = nState;
this. name = n;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

public String getPresentationName() {
return nane;
}
public void redo() throws Cannot RedoException {
super.redo();
try {
nmovi e. useEdit State (newState);
controll er.novi eChanged();
} catch (QTrException qgqte) {
gqte.printStackTrace();
}

}
public void undo () throws Cannot UndoException {

super . undo();
try {
nmovi e. useEdit State (previousState);
controll er.novi eChanged();
} catch (QTException qte) {
gqte.printStackTrace();
}
}
public void die() {

previ ousState = null;
newState = null;

Finally, doCut () and doPast e() are amended to create suitable QTEdi t s and hand them to the
UndoManager :

public void doCut() throws QTException {
Movi eEdi t State ol dState = novie.neweditState();
Movi e cut = novie. cut Sel ection();
Movi eEdi t State newState = novie.neweditState();
QTEdit edit = new QTEdit (oldState, newState, "Cut");
undoManager . addEdit (edit);
cut. put OnScrap(0);
controll er. novi eChanged();

}

public void doPaste() throws QIException {
Movi eEdit State ol dState = novie.neweditState();
Movi e pasted = Movi e. fronScrap(0)
novi e. past eSel ecti on (pasted);
Movi eEdi t State newState = novie.neweditState();
QTEdit edit = new QTEdit (oldState, newState, "Paste");
undoManager . addEdit (edit);
controll er. novi eChanged();
pack();

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

When clicked, the Undo menu item now undoes a cut or paste. Redo redoes the edit, while a second
"undo" will undo the previous edit, etc.

3.4.2. What just happened?

Obviously, the fun parts involve the destructive actions and how they save enough information to be
undoable and redoable. In each case, they call Movi e. newkdi t St at e() to create a Movi eEdi t St at e,
a QuickTime object that contains the information needed to revert the movie to the current state at
some point in the future. Then they do the destructive action and create another Movi eEdi t St at e to
represent the post-edit state. These objects are passed to the QTEdi t , which is then sent to the
UndoManager to join its stack of edits.

Note: For more on Swing's undo framework, see Chapter 18 of O'Reilly's Java Swing, 2nd Edition, by Mark Loy, Robert Eckstein, Dave
Wood, James Elliot, and Brian Cole.

When the UndoManager . undo() method is called, it takes the first undoable edit, if there is one, and
calls its undo() method. In this case, that means the manager is calling the QTEdi t . undo()
method, which takes the pre-edit Movi eEdi t St at e and passes it to Movi e. useEdit State() to
return the movie to that state. Similarly, a post-undo call to QTEdi t . redo() also uses

useEdit St ate() to get to the post-edit state.

[oreviovs fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

3.5. Saving a Movie to a File

Once a user has performed a number of edits and has a finished project, she presumably needs to
save the movie to disk. In QuickTime, many different actions can be thought of as "saving" a movie.
Perhaps the simplest and most flexible option is to let the user decide.

3.5.1. How do | do that?

The Saveabl eQrEdi t or uses a QTFi | e to keep track of where a movie was loaded from (nul | in the
case of a new movie). This is used by the doSave() method to indicate where the saved file goes:

public void doSave() throws QIException {
/1 if no existing file, then pronpt for one
if (file= =null) {
file = new QTFile (new File ("sinplenovie.nov"));
}
int flags = StdQrConstants. createMvieFil eDel eteCurFile |
St dQTConst ant s. cr eat eMbvi eFi | eDont Creat eResFil e |
St dQTConst ant s. showUser Set ti ngsDi al og;
novi e. convertToFile (file, // file
St dQrConst ant s. KQTFi | eTypeMovie, // filetype,
St dQTConst ant s. kMovi ePl ayer, // creator
| OConst ants. snBystenfScri pt, // scriptTag
flags);

Note: Compile and run this example with ant run-ch03-saveableqteditor.

When the user hits the Save menu item, she'll see the QuickTime Save As dialog as shown in Figure
3-3.

Figure 3-3. QuickTime Save As dialog

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Save exported file as. ..

Save As: simplemovie. mov f=
Where: [Desktop _:'l
Export: Maowvie to QuickTimea Movie T" | Options...
Use: Most Recent Settings T"

[Cancel { Save)

This dialog's Export selector gives the user four choices:

Movie

Saves a QuickTime reference movie, a tiny (typically 4 or 8 KB) file that contains just
references (pointers) to the media in their original locations

Movie, self-contained

Copies all the media, in their original encodings, into a new QuickTime movie file

Movie to Hinted Movie

Creates a self-contained movie but lets the user adjust the hinting settings for use in a
streaming server

Movie to QuickTime Movie

Creates a self-contained movie, but lets the user choose different compressors and settings to
re-encode the audio and video

Some of these options give the user additional choices. Saving a "self-contained” movie presents an
Options... button that lets the user specify the audio and video codecs to be used in the saved movie,
their quality and bitrate settings, etc. A "Use" pop up contains canned settings with appropriate
choices for distributing the movie on CD-ROM, over dial-up, etc.

Once the user clicks Save, the program saves the movie to disk. This is a very fast operation for the
reference movie option and a potentially slow operation for the other options because the media
might be re-encoded into a new format as part of the save.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.5.2. What just happened?

The key is the Movi e. convert ToFi | e() method. The version shown here takes five parameters:

e The QTFi | e to save to.

e Ani nt to represent the old Mac OS file "type." Use the constant kQTFi | eTypeMvi e, which
gives it the QuickTime movie type noov.

e Ani nt to represent the old Mac OS file “creator.” The boilerplate option is kMovi ePl ayer , which
associates it with the default QuickTime Player application.

e Ani nt to represent the old Mac OS "scriptTag,” which indicates what kind of "script system™

(character encoding, writing direction, etc.) is to be used. Common practice is to use the
constant snSyst enfScri pt to use whatever the operating system's current script is.

e Behavior flags to affect the save operation, logically ORed together. The most important flag for
this example is the showUser Set t i ngsDi al og; without it, the program would silently save the
file with Apple's ancient "Video" codec and uncompressed sound. This example also uses the
flag cr eat eMovi eFi | eDel et eCur Fi | e to delete any file already at the target location and
creat eMovi eFi | eDont Cr eat eResFi | e to force the file to exist in a single data "fork," instead of
using the old Mac OS' "resource" fork. This is required for making QuickTime movies that run on
multiple platforms.

Note: Most of the time, it's appropriate to use boilerplate code for things like type, creator, and system script, and not to have to read
some Inside Macintosh book from 10 years ago.

3.5.3. What about...

...other interesting behavior flags? The docs for the native Convert Movi eToFi | e function offer two
that aren't shown here because they seem to indicate behavior that is already the default:

e novi eFi | eSpecVal i d indicates that the file passed in actually exists and should be shown as
the default save location.

e novi eToFi | eOnl yExport restricts the dialog to showing only the data export components that
are actually present.

Can anything be done about the interminable wait when saving "Movie to QuickTime Movie"? One
thing that helps is to provide a "progress function," which provides a visual representation of the
progress being made on the long save operation. You can set up the default progress function with a
one-line call right before convert ToFi | e() :

nmovi e. set ProgressProc()

This will bring up a progress dialog like the one shown in Figure 3-4.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 3-4. Default QuickTime progress dialog

Exporting Mowvie

Stop

The Movi e class also has a set ProgressProc() method that takes a Movi ePr ogr ess object as a
parameter. The idea here is that of a typical callback arrangementduring a long save,

Movi ePr ogr ess. execut e() is called repeatedly with four parameters: the movie being monitored, a
"message" i nt, a "what operation" i nt, and a f| oat that represents the percentage done on a scale
from 0.0 to 1.0. Unfortunately, this interface has a couple of problems. First, the constants for the
"message" aren't defined in QTJ (a few pri nt | ns here and there show that the values are 0 for start,
1 for update, and 2 for done). More importantly, using this callback seems extremely unstable in QTJ
6.11 find | often get an exception with an "Unknown Error Code," and the movie doesn't save. So,
maybe the default behavior is the safe choice for now.

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

3.6. Flattening a Movie

Saving a movie can mean different things in QuickTime: saving a reference movie, saving a self-
contained movie, or exporting to a different format. Typically, though, the idea of creating a self-
contained movie is what users think of as "saving"they want a single file that doesn't depend on any
others, so they can put it on a server, email it to mom, etc. This process is called "flattening."

Note: "Flattening" is also an old Mac OS term for turning a file with both a resource fork and a data fork into a single-fork file, suitable for
use on non-Mac disk formats. In this book, we use "flatten" only in its QuickTime sense.

3.6.1. How do | do that?

The Fl att enabl eQTEdi t or is similar to the Saveabl eQIEdi t or , adding the menu item and its typical
GUI and action-handling support. The flattening is done in a doFl atten() method:

public void doFlatten() throws QIException {
/'l always attenpts to save to a new | ocati on,
/1 so pronpt for filenane
FileDialog fd = new FileDialog (this,
"Flatten...",
Fi | eDi al og. SAVE) ;
fd.setVisible(true); // blocks

if ((fd.getDirectory() = = null) ||
(fd.getFile() = = null))
return;

QTFile flatFile =
new QTFile (new File (fd.getDirectory(),
fd.getFile()));
if (flatFile.exists()) {
/1 JOptionPane is a bit of cheat-for-clarity here,
/1 building a worki ng AWI di al og woul d be punitive
int choice =
JOpt i onPane. showConfirnDi al og (this,
"Overwite " +
flatFile.getName() + "?",
"Flatten",
JOpt i onPane. OK_CANCEL_OPTI ON) ;
if (choice !'= JOptionPane. OK_OPTI ON)
return;
}
novi e. fl atten(St dQTConst ants. fl att enAddMbvi eToDat aFork |
St dQTConst ants. fl att enFor ceMovi eResour ceBef or eMovi eDat a,
flatFile, // fileQut

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

St dQTConst ant s. kMovi ePl ayer, // creator

| OConst ant s. snBystenscript, // scriptTag

St dQrConst ant s. creat eMovi eFi | eDel eteCurFil e,
St dQTConst ant s. novi el nDat aForkResI D, // reslD
null); // resNane

Note: Compile and run this example with ant run-ch03-flattenableqt-editor.

When run, this creates a self-contained QuickTime movie file at the specified location, using whatever
video and audio encoding was used in the original sources. This can result in some playback jitters if
the user has mixed in different kinds of codecsfor example, pasting in some MPEG-4 video with some
Sorenson 3 video. Flattening doesn't change encoding; it just resolves references and puts all the
media into one file.

3.6.2. What just happened?

The Movi e. fl atten() call creates the self-contained movie file, taking seven parameters to control
its behavior:

Note

: Many of these are the same parameters used by Movie.convertToFile(), covered in the previous lab.

Behavior flags for the flatten operation, logically ORed together. This example uses

fl att enAddMovi eToDat aFor k to create a single-fork movie that is more suitable for non-Mac
operating systems. Using f | att enFor ceMovi eResour ceBef or eMovi eDat a creates a "quick
start"” movie, so named because all its metadata comes before its media samples, which allows
QuickTime to start playing the movie from a stream, even an http://-style URL, before all the
data is loaded, because all the information QuickTime needs (what tracks are present, what size
the video is, how loud the audio is, etc.) is loaded first.

The file to flatten to.
The Mac OS "creator,” typically kMovi ePl ayer .
The Mac OS script tag, typically snSyst enfScri pt .

The behavior flags that are used for the create file operation. cr eat eMovi eFi | eDel et eCurFi l e
is used here to delete any file already at the target file location.

Resource ID. For cross-platform reasons, it's usually best to use novi el nDat aFor kResl D
instead of old Mac OS-style resources.

Resource name. Irrelevant here, so nul | will do.

3.6.3. What about...

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

...behavior flags for the flatten operation? The native docs for Fl at t enMovi e define a bunch, but the
ones not used here are largely esoteric.

flattenDontlInterl eaveFl atten
Turns off "interleaving,” an optimization that mixes audio and video samples together so that
they're easier to read at playback time (if a movie had a couple of megabytes’ worth of video
samples, followed by a couple of megabytes' worth of audio samples, the hard drive would
have a difficult time zipping back and forth between the two; interleaving puts the samples for

the same time period in the same place so that they can be read together). The default
behavior is a good thing, so this constant isn't used often.

flattenActiveTracksOnly

Doesn't include disabled tracks from the movie in the flattened file.

flattenConpresshovi eResour ce

Compresses the movie's resource, and its organizational and metadata structure, if stored in
the data fork. Like you care.

flattenFSSpecPtr| sDat aRef Recor dPt r

This is meaningless in QTJ.

[reevions Juers

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.7. Saving a Movie with Dependencies

The opposite of flattening is saving a movie with dependencies. In this type of a save, the resulting
file just contains pointers to the sources of the media in each track. The file typically is tiny, usually

just 8 KB or less.

3.7.1. How do | do that?

The Ref Saveabl eQTEdi t or example extends the Fl at t enabl eQTEdi t or with a "Save w/Refs" menu

item that calls doRef Save() :

public void doRefSave() throws QIException {
/1 if no honme file, then pronpt for one
if (file= =null) {
FileDialog fd = new FileDi alog (this,
"Save...",
Fi | eDi al og. SAVE) ;
fd.setVisible(true); // blocks

if ((fd.getDirectory() = =null) ||
(fd.getFile() = = null))
return;

file = new QIFile (new File (fd.getDirectory(),
fd.getFile()));
}
/|l save ref novie to file
if (! file.exists()) {
file.createMvieFile(StdQrConstants. kMovi ePl ayer,

St dQTConst ant s. cr eat eMbvi eFi | eDont Cr eat eResFi | e) ;

}
OpenMbvieFile outFile =

OpenhMovi eFil e.asWite(file);
novi e. updat eResource (outFil e,
St dQTConst ant s. novi el nDat aFor kRes| D,
null);

Note: Compile and run this example with ant run-ch03-refsaveableqt-editor.

When run, this creates a movie file that, despite its tiny size, behaves exactly like any other movie
file. Double-click it and it will open in QuickTime Player, just like a self-contained movie. QuickTime
completely isolates the user from the fact that the file contains nothing more than metadata and

pointers to the source media files.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Of course, there are limits to what QuickTime can do if those pointers cease to be valid. A user can
move the source files and the movie still will play, but if the source movies are deleted, or if the
reference movie is transferred to another system, QuickTime won't be able to resolve the references.
This typically will result in a "searching..." dialog, followed by a dialog asking the user to locate the
missing media, as shown in Figure 3-5.

Figure 3-5. Unresolvable media reference dialog

The movie file *keagy-tarch-boat-
short.mov" cannot be found.
Without this file, the movie cannot

play properly.

f Cancel) | Search

3.7.2. What just happened?

First, a call to QTFi | e. creat eMovi eFi | e() creates the file on disk, if it doesn't exist already. This
method takes two parameters:

e A Mac OS "creator," for which St dQTConst ant s. kMbvi ePl ayer is the typical boilerplate value.

e Behavior flags. The constant cr eat eMovi eFi | eDont Cr eat eResFi | e commonly is used to create
cross-platform, single-fork files.

With the file created, the reference movie data can be put into the file with the updat eResour ce()
method. This method takes three parameters:

Note: The name updateResource() seems to be another Classic Mac OS legacy that doesn't make much sense today.

e An OpenMovi eFi | e, opened for writing.

e A resource ID, for which the appropriately cross-platform, no-resource-fork value is
novi el nDat aFor kResl d.

e An updated name for the resource; nul | is appropriate here.

3.7.3. What about...

...the fragility of reference movies? Because a reference movie is fragile, why would anyone ever
create one? This technique is very handy for the saving state in editing applications because it allows
the user to quickly save his edited movie without the 1/0 grinding of flattening. Editing, after all, can

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

be seen as a process of arranging pointers to source materials; in the professional realm, a document
called an Edit Decision List (EDL) is a simple list of "in" and "out" points from source media that you
can use to produce the edited media. The reference movie is equivalent to the EDL: it's just a
collection of pointers, with the nice advantage that it continues to behave as a normal QuickTime
movie. So, the reference movie can be used to save the progress of the user's editing work, and
when finished, a final self-contained movie can be generated via flattening or exporting (see Chapter

4).
(erevious fluexr

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

3.8. Editing Tracks

Often, it makes sense to perform edits on all tracks of a movie. But for serious editing applications,
sometimes you need to work at the track level, to add and remove tracks, or to work on just one
track in isolation from the others. This task will provide a taste of that by adding a second audio track
to a movie.

3.8.1. How do | do that?

The AddAudi oTr ackQTEdi t or builds on Fl att enabl eQTEdi t or by adding another Add Audio Track...
menu item, calling the doAddAudi oTr ack() method:

public void doAddAudi oTrack() throws QIException {
/1 ask for an audio file
QTFile audioFile =
QrIFi |l e. standardCet Fi | ePrevi ew (QTFi | e. kSt andar dQTFi | eTypes) ;
OpenMovi eFil e onf = OpenMvi eFi |l e. asRead (audi oFil e);
Movi e audi oMovie = Movie.fronFile (onf);
/1 find the audio track, if any
Track audi oTrack =
audi oMovi e. get | ndTrackType (1,
St dQTConst ant s. audi oMedi aChar acteri stic,
St dQTConst ant s. novi eTrackCharacteristic);
if (audioTrack = = null) {
JOpt i onPane. showessageDi al og (this,
"Didn't find audio track",
"Error",
JOpt i onPane. ERROR_MESSAGE) ;
return;
}
/1 now make new audi o track and insert segnent
/1 fromthe | oaded track
Track newTrack =
nmovi e. newTrack (0.0f, // width
0. 0f, // height
audi oTrack. get Vol une());
/'l ick, need a dataref for our "new' nedia
/'l http://devel oper. appl e. com ga/ qt nt b/ qt nt b58. ht
SoundMedi a newMedi a =
new SoundMedi a (newTr ack,
audi oTrack. get Medi a(). get Ti neScal e(),
new Dat aRef (new QTHandl e()));
newTr ack. get Medi a(). begi nEdits();
audi oTrack. i nsert Segrment (newTr ack,
0,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

audi oTr ack. get Duration(),
0);
control |l er. novi eChanged();

}

Note: Compile and run this example with ant run-ch03-addaudiotrackqteditor.

This method is admittedly contrivedit prompts the user to open another file, and if an audio track can
be found in the file, the program adds that track to the movie, starting at time 0. If the user has
done only a few short pastes and then adds an audio track from a typical iTunes MP3 or AAC, the
result probably will be a movie in which the new soundtrack is much longer than the pasted contents.

Also, QuickTime will eat more CPU cycles playing this movie, because it has to decode two
compressed soundtracks at once. Like | said, it's a contrived example, but it covers some interesting
ground.

3.8.2. What just happened?

The program tries to find an audio track with Movi e. get | ndTrackType() , passing

audi oMedi aChar act eri sti c as the search criterion. Assuming an audio track is found in this movie,
the program needs to create a new track in the movie being edited. Movi e. newTr ack() creates the
new track, taking as parameters the width, height, and volume of the new track.

This new track is useless without a Medi a object to hold the actual sound data, so the next step is to
construct a new SoundMedi a object. The constructor takes the track that the media is to be
associated with, a time scale, and a Dat aRef to indicate where media samples can be stored.

Interestingly, although the edit methods this program uses are in the t r ack class, first | have to call
Medi a. begi nEdi t s() to inform the track's underlying media that it's about to get edited. Having
done this, the program then can call tr ack. i nsert Segnent (), which is identical to its low-level-
editing Movi e equivalent, taking a target track, source in and out times, and a destination-in time.
Following this, the program calls novi eChanged() on the movie controller to let it know that a
change was made to the movie behind the controller's back.

The result is an additional audio track in the movie. If the user then flattens the movie and opens it
up with QuickTime Player, a "Get Info" shows the extra audio track, as seen in Figure 3-6. In this
case, | imported clips from an MPEG-4 file and added an MP3 soundtrack.

Note: No, I'm not swearing in this filename. | combined a video of my son in an inflatable boat with an MP3 of a song called "Dam
Dariram" from the video game "Dance Dance Revolution"; thus, "dam-boat.mov".

Figure 3-6. QuickTime Player "Get Info" for movie with multiple audio
tracks

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

aon Movie Info
dam-boat.mov

» More Info:

Source: Tonberry-Users cadamson:Desktop:dam-
boat.mov

Formail: MPEG-4 Audio, Stereo, 44100 Hz
MPEG-4 Videa, 320 x 240, Millions
MPEG Layer-3 Audio, 5tereo, 44100 Hz
Movie FPS: 2097
Playing FPS: (Available when playing)
Data 5ize: 5.2 MB
Data Rave: 59.3 K bytes sec
Current Timae: 00:00:00.00
Duration: 00:01:31.03
Mormal Size: 320 x 240 pixels
Current Size: 320 x 240 pixels (Normal)

3.8.3. What about...

...that crazy-looking new Dat aRef (new QTHandl e()) parameter in the SoundMedi a constructor?
OK, scary edge casehere's the story. Zoom out for a second: movies have tracks, tracks have media,
media have samples. Those samples need to live somewhere. It's not a problem when you open a
movie from disk, but when you create new media in a new movie, QuickTime has no idea where it's
supposed to put any samples that you add, whether by way of inserting segments from other tracks
or by adding individual samples one by one (which will be covered in Chapters Chapter 7, Chapter 8,
and Chapter 9). So, this example uses the SoundMedi a constructor that takes a Dat aRef , which
represents a location to store the samples. This Dat aRef can be practically anything, even a zero-
length buffer in memory, which is pretty much what this example passes in by constructing a new
Dat aRef out of a new, empty QTrHandl e.

Tip: For more on this icky little gotcha, and if you don't mind a C-oriented technote, see "BeginMediaEdits -2050 badDataReflndex error
after calling NewMovie" at http://developer.apple.com/ga/qtmtb/gtmtb58.html.

Also, what about the control bar? It tells the user nothing about the tracks in the movie. You're
absolutely right. Being playback-oriented, the provided GUI is weak for editing movies, and utterly
useless for editing tracks. It gives the user no idea how many tracks a movie has, where there's
video without sound or vice versa, etc. Moreover, there's no default widget in QTJ to replace it. If you
want to provide track-oriented editing, you'll need to develop your own GUI components to display
tracks and their contents. | haven't provided one here, because the appearance and behavior of such
a component would vary wildly with the kind of application it was needed for (a home movie editor,
an MP3 playlist builder, etc.) and because it easily could contain more than 1,000 lines of AWT code
with maybe a dozen lines of QuickTime...not exactly ideal for the format of this book.

What about other track-editing methods? Fortunately, many of the concepts from the low-level Movi e
editing lab from earlier in the chapter apply to tracks. Along with t rack. i nsert Segnent () are a

del et eSegnent () and a scal eSegnent () that work like their Movi e equivalents. The

i nsert Enpt ySegnent () does what its name implies, and could be useful for building a track in
nonconsecutive segments. There's also a TRack. i nsert Medi a() that will be used in later chapters to
build up a Medi a object from raw samples.

downloaded from: lib.ommolkefab.ir

http://developer.apple.com/qa/qtmtb/qtmtb58.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

As for how the tracks relate to their parent movies, this example uses Movi e. newTr ack() , though
it also is possible to use addEnpt yTrack() , which takes a prototype track and a Dat aRef . tracks can

be removed with Movi e. renoveTrack() and temporarily turned on and off with
track. set Enabl ed() .

[rrevious e s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Chapter 4. Working with Components

When QuickTime came out in 1990, it could play movies the size of a postage stampbarelyon $7,000
hardware. It used audio and video codecs that, although still supported today, have long since been
abandoned by users. Yet it's been a smooth transition from Apple Video to Cinepak to MPEG-4. This is
thanks to an extraordinarily modular designmost of the heavy lifting in QuickTime is performed by
components, or shared code fragments that can be discovered and used dynamically. Components
provide support for importing and exporting image and movie formats, performing image and sound
compression and decompression, accessing system resources, and much more. The QuickTime
installer provides components for many features, and components added later by the end user, from
either Apple or third parties, can provide more functionality, like support for more media formats.

Components aren't always front-and-center in the APlafter all, the first few chapters have managed
to avoid mentioning them entirely. QuickTime has been assumed to just "do the right thing" when it
comes to opening files and turning them into movies, decompressing and rendering the data, saving
it to disk, etc. When needed, QuickTime looks through its catalog of components for required
functionality and gets what it needs.

But sometimes it's desirable or necessary for the developer to work with components more directly,
to figure out what's available or to specify behavior. Figuring out what tools are available at runtime
can be a powerful asset.

[rrevious e s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

4.1. Specifying a Component's Type

In QuickTime, components are identified by a type and a subtype. The type specifies a broad area of
functionality, while the subtype is a specific implementation of that functionality. For example, there's
a "movie exporter"” type, which identifies components that can write a movie into a non-QuickTime
format, with subtypes identifying the exporters for AVI, MPEG-4, etc.

These identifiers are 32-bit i nt values, but typically they're not enumerated constants like you might
expect from Java. Usually, the 32 bits are read as four 8-bit ASCII characters, making a short,
human-readable name. These are defined in the native APl as OSTypes, but when populated with
meaningful values, they're called "four character codes,” from the native FOUR_CHAR_CCDE function
that returns an OSType for a string. This often is abbreviated as FCC, or 4CC.

The scheme makes a lot of sense from the C programmer's point of view. For example, defining the
4CC for a movie requires a nice, simple one-liner, as seen in the native Movi es. h header file:

Movi eResour ceType = ' nooVv'

Note: "moov" shows up a lot in QuickTime: as an identifier for a movie's copy-and-paste type, as its Carbon file type, as the top-level
"atom" in the file format, etc. Say it out loud if you don't get the joke: moo-vee.

It turns out that dealing with 4CCs is harder in Java, thanks to Java's more modern approach to text.
Specifically, the use of Unicode means Java characters are 2 bytes each, which means help is needed
to turn a Java string into a 4CC.

4.1.1. How do | do that?

Fortunately, the QTUt i | s class provides two methods for converting to and from 4CCs: t 0OSType()
and fromOSType(). Example 4-1 exercises these methods by converting a Java string to and from
its 4CC representation.

Note: Compile and run this example from the downloaded book code with ant run-chO4-fourcharcodetest.

Example 4-1. Converting to and from FOUR_CHAR_CODEs
package comoreilly.gtjnotebook.ch04;
import quicktime.util.QrUtils;

public class FourChar CodeTest extends Object {

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

public static void main (String[] args) {
if (args.length < 1) {
Systemout. println ("Usage: Four Char CodeTest <fcc>");
return;
}
Systemout.println (args[0]);
int fcc = QrUtils.toOSType (args[0]);
Systemout.println (fcc);
Systemout.println (Integer.toHexString (fcc));
String fcecString = QrUtils. fronOSType(fcc);
Systemout.println (fccString);

The mai n() method takes a Stri ng from the command line, converts it to a 4CC, prints that value
in decimal and hex, then converts it back to a St ri ng. When it's run with noov as an argument, the
output looks like this:

cadanson% j ava -cl asspath cl asses
comoreilly.qtjnotebook. ch04. Four Char CodeTest npov

noov

1836019574

6d6f 6f 76

noov

Note: Really hard-core QuickTime developers can read 4CCs in hex without thinking about it. Drop a movie file on a hex editor and you'll
probably see 6d6f6f76 (moov) as bytes 4-8.

4.1.2. What just happened?

These utility methods provide some good, old-fashioned bit-munging to do their conversions.

t oOSType() takes a String as its argument, grabbing the low 8 bits of each character and putting
them in the proper place in the returned i nt . In other words, the bottom 8 bits of the first character
take up the first 8 bits of the i nt, then the next character is used for the next 8 bits, and so on.
Figure 4-1 shows where the bits end up in the bit-shifted "noov".

Figure 4-1. Bit-wise, hex, and character representation of a
FOUR_CHAR_CODE

alr el ool af e e el el jeli]o
6d &f af Ta
m [+ [L}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

fromOSType() does the opposite conversion, masking off the bits of an i nt and returning a four-
character Java string.

[rreviovs fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

4.2. Exporting Movies

One of the most obviously useful components is the Movi eExport er, which you can use to convert a
QuickTime movie into a non-QuickTime format, such as AVI or MPEG-4.

4.2.1. How do | do that?

The qui ckti nme. std. gt conponent s. Movi eExport er class provides a convenient Java wrapper

around movie exporter components. It requires that you pass it a subtype indicating which exporter
you wanti.e., which format you want to export to. Example 4-2 shows how a Movi eExport er can be

created and used from a canned list of subtypes.

Note: Compile and run this example with ant run-ch04-simplemovieexport.

Example 4-2. Simple MovieExporter creation and use

package comoreilly.gtjnotebook.ch04;

i mport quicktine.*;

i mport quicktine.std.*;

i mport quicktine.std. novies. *;

i mport quicktine.io.*;

i mport quicktine.std. qtconponents. *;
import quicktine.utils.Qrutils;

i mport java.awt.?*;
i mport javax.sw ng.*;

import comoreilly.qtjnotebook.chOl. QTSessi onCheck;
public class SinpleMvieExport extends Object {

public static final void main (String[] args) {
new Si nmpl eMovi eExport();

}

public SinpleMvieExport() {
/1 build choices
Export Choice[] choices = new Export Choice[3];
choi ces[0] =
new Export Choice ("QuickTine Myvie",
St dQTConst ant s. KQTFi | eTypeMovi e) ;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

choi ces[1] =
new Export Choice ("AVl file",
St dQTConst ant s. KQTFi | eTypeAVl) ;
choi ces[2] =
new Export Choice ("MPEG 4 file",
Qrutils.toCSType("nmpgd"));

try {
/'l query user for a novie to open
QrSessi onCheck. check();
QTFile file =
QTFi |l e. standardGet Fi |l ePrevi ew (QrIFi | e. kSt andar dQTFi | eTypes) ;
OpenMovi eFil e onFile = OpenMovi eFil e. asRead (file);
Movi e novie = Movie.fronFile (onFile);

/'l offer a choice of nobvie exporters
JConboBox export Conbo = new JConmboBox (choices);
JOpt i onPane. showMessageDi al og (nul |,
export Conbo,
"Choose exporter",

JOpt i onPane. PLAI N_MESSAGE) ;
Export Choi ce choice =

(Export Choi ce) export Conbo. get Sel ectedlten();

/'l create an exporter
Movi eExporter exporter =
new Movi eExporter (choice. subtype);

QTFil e saveFile =
new QTFile (new java.io.File("Untitled"));

/'l do the export

novi e. set ProgressProc();

novi e. convert ToFil e (null,
saveFi | e,
St dQrConst ant s. KQTFi | eTypeMovi e,
St dQrConst ant s. kMovi ePl ayer,
| OConst ant s. snByst enfScri pt,
St dQTConst ant s. showUser Setti ngsDi al og |
St dQTConst ant s. novi eToFi | eOnl yExport |
St dQTConst ant s. novi eFi | eSpecVal i d,
exporter);

/'l need to explicitly quit (since awt is running)
System exit(0);
} catch (QTException qgqte) {

qgqte.printStackTrace();
}

}

public class ExportChoice {

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

String nane;

i nt subtype;

public ExportChoice (String n, int st) {
name = n;
subtype = st;

}

public String toString() {
return nane;

}

When run, this program prompts the user to open a movie file. Once the movie loads, the program
offers a dialog with a choice of formats to export to, as shown in Figure 4-2.

Figure 4-2. Choice dialog with canned MovieExporter types

&) Choose exporter
i
¥ QuickTime Movie -
AV file
MPEG=4 file j

Next, it shows the user a save dialog detailing the proposed export (e.g., "Movie to MPEG-4") and an
Options button. The button brings up a dialog specific to the export format. For example, the AVI
export dialog is fairly simple, offering only a few settings to choose from. On the other hand, the
MPEG-4 export dialog, seen in Figure 4-3, is extraordinarily busy, packed with descriptions of the
many options to help end users understand their choices and potentially keep their exported file
compliant with MPEG-4 standards.

Figure 4-3. MPEG-4 export dialog

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

MPEG-4 Settings

[Gereral = video Audio Streaming Compatibility

Video Track: Improved T‘
Size: 320 x 240 3
Audio Track: Music T‘

Yided will make use of improved MPEC-4 features (known as ISMA Prafile 1), This
produces files of higher quality, while potentially being incompatible with some MPEG-4
devices. The video will have a data rate of 900 kbits/second and a frame rate of 30.0
frames per second. The resulting movie will be 320 by 2440 pixels.

Audis will be aptimized for music (known as Low Complexity AAC) The audio will have
the current sarmple rate in stereo. The data rate of the audio will be 128 kbits fsecond. The
audio encoding will be done in better quality mode

This MPEG-4 file will support I5MA {Internet Streaming Media Alliance) specifications

Cancel | f OK }

After the user makes his choices and clicks OK, the long export process begins. Because movie
export is very computationally intensivepotentially every frame of video and every audio sample must
be re-encodeda progress dialog appears, so the user can see how much of the export has completed
and how much longer it will take.

4.2.2. What just happened?

This program uses an inner class called Export Type to wrap a subtype, i nt, and a Stri ng, largely
for the purpose of simplifying the JConboBox used in the format-choice dialog. These subtypes come
from constants defined in the St dQTConst ant s class.

Once a choice is made, the program instantiates a Movi eExport er by passing the subtype to its
constructor. Next, it requests a progress dialog by calling set Pr ogr essProc() on the movie.

Finally, the export is performed by calling convert ToFi | e() and passing in the exporter. This
method takes several parameters:

e Atrack to indicate that only this track should be exported, or nul | for all tracks.

e AQTFil e to export to.

e A file type, such as St dQTConst ant s. kQTFi | eTypeMvi e.

e A creator, such as St dQTConst ant s. KMovi ePl ayer .

e A script tag, typically | OConst ant s. snSyst enScri pt .

e Behavior flags. This example uses all three of the valid values: showUser Setti ngsDi al og

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

makes the export bring up the Save As dialog that includes the filename and the options button;
novi eToFi | eOnl yExport limits the export choices to formats supported by the exporter
component; and novi eFi | eSpecVal i d asserts that the QTFi | e is valid and should be used as

the default name in the dialog.

Note: Including showUserSettingsDialog allows you to pick up the settings and the save-as GUIs in one call, instead of having to show
separate dialogs for each. Too bad flags like this aren't described in Javadoc.

e The Movi eExport er to use for the export.

4.2.3. What about...

...using the Movi eExport er itself to do the export? That's an alternative. The exporter'st oFi | e()
exports the movie to a file, and its t oHandl e() exports to memory. This also has the advantage of
being able to export just part of a movie, as specified by the st art Ti ne and dur ati on arguments.
Note that doing this requires a different program flow, because first you'd need to get a valid QTFi | e
(perhaps with an AWT file dialog) and then you'd need to call the exporter's doUser Di al og() to
configure the export. Also the Movi e class's convert ToFi | e() method can be more convenient,
because, as seen here, it allows use of the default progress dialog. When using the Movi eExport er
methods, there's no access to the default dialog. In that case, the only alternative is to provide a
custom progress dialog and handle progress callbacks with set ProgressProc().

Also, a complaint: | tried exporting to MPEG-4 on Windows and didn't get any audio options. When |
click the Audio Track menu in the Exporter dialog, | get the useless panel as shown in Figure 4-4.

Figure 4-4. Audio non-options for MPEG-4 export on Windows

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

MPEG-4 Settings

| General ﬂ
Widen Track: | Impreved =|
Size [320x210 |
Ao Track: | None v|

Sideo will make use of improved MPEG-4 features (known as I1SMA Profile 1), This
produces fles of higher guallty, while potentially being incomp atible with some MPEG-4
desdces. The wideowill have a data rate of 200 kbits/second and a frame rate of 30.00
frarmas per second. The resulling movie will be 220 by 240 pisels.

Mo audio will be output because you hawve selected "Mang” for the audio aption

This MPEG-4 file will support ISMA drfernst Straaming Media Alliance) specifications,

=]

Cancel

This is not a technical issue but a legal one. Apple has licensed MPEG-4 audio encoding for its Mac-
based QuickTime users, but not for Windows users. The codecs exist, but apparently you have to

contact Dolby about license terms to enable them for Windows.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

4.3. Exporting Movies to Any Installed Format

Exporting to a list of known formats is limitingif the end user has installed new movie exporters,
either from third parties or via an update to QuickTime itself, a program that uses a canned list of
exporters won't be able to pick them up. Fortunately, QuickTime provides a means of querying for
installed components of a given type. You can use this strategy to offer a list of all available
exporters.

4.3.1. How do | do that?

The AdvancedMovi eExport eliminates the three canned entries in the choi ces array that were used
by Si npl eMovi eExport (shown in Example 4-2) and instead builds the array through a process of
discovery; this code would replace the short "build choices™ block in the constructor for

Si npl eMovi eExport but needs to go inside the try-catch, because it makes calls that can throw
QrException:

Vector choices = new Vector();
Conponent ldentifier ci = null;
Conponent Descri ption cd =
new Conponent Descri ption(StdQrConst ants. novi eExport Type);
while ((ci = Conponentldentifier.find(ci, cd)) !'= null) {
/'l check to see that the novie can be exported
/1 with this conponent (this throws sone obnoxious
/'l exceptions, nmaybe a bit expensive?)
try {
Movi eExporter exporter = new Movi eExporter (ci);
if (exporter.validate (rmovie, null)) {
Export Choi ce choice =
new Export Choice (ci.getlnfo().getName(),
ci);
choi ces. addEl enent (choi ce) ;
}
} catch (StdQTrException expE) ({
Systemout.println ("** can't validate " +
ci.getlnfo().getNanme() + " **");

Note: Run this example with ant run-chO4-advancedmovieexport.

/'l expE. printStackTrace();
} Il ow

}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

When run, the list of supported exporters is surprisingly large, as seen in Figure 4-5. In this case, a
"normal™ movie, consisting of a video track and an audio track, is being exported, meaning that any
audio-only format (Wave, AIFF, etc.) or audio/video format (QuickTime, AVI, MPEG-4, etc.) will work.

Figure 4-5. Discovered Movie Exporters

Chomse gxporter

Note: Hinted Movie, the format selected in Figure 4-5, is a QuickTime movie with "hints" to optimize streaming.

You also should take note of the discovered exporters that cannot export the movie. These are
logged to standard out:

run-ch04- advancednovi eexport:
[java] ** can't validate BMP **
[java] ** can't validate Standard M D **
[java] ** can't validate Picture **
[java] ** can't validate Text **
[java] ** can't validate QuickTime TeXM **
[java] ** can't validate QuickTime Media Link **

These fail because the source movie doesn't contain tracks that can be exported to these formats.
With a source movie with different kinds of tracks, some of these would succeed and others would
fail.

4.3.2. What just happened?

The process of discovering components by subtype is rather peculiar. It hinges on making repeated
calls to a "find" method, passing in the last matching component. Doing this requires a

Conponent Descri pti on, used as a template to match against, and a Conponent | denti fi er, which
refers to a specific component (though not a specific instance of that component). To find movie
exporters, initialize a Conponent Descri pti on template with the constant novi eExport er Type.

The static Conponent I dentifier.find() method finds matching components, but instead of offering

an array or other collection of matches, it requires you to repeatedly pass in the
Conponent Descri pti on template, along with the previous Conponent | denti fi er found by the
method. For the first iteration, this will be nul | . The fi nd() call returns a Conponent | dentifier,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

which you pass to the Movi eExport er constructor to create a new exporter. When fi nd() returns
nul I, there are no more matches.

Note: Yes, this is totally weird, at least from a Java perspective.

The matched Conponent | denti fi er provides information about itself via the get | nf o() method.
This returns another Conponent Descri pti on object, different from the one used as a template. You
can use this to get type and subtype information (as FOUR_CHAR CODE i nt s, of course), a name, an
information St ri ng, a manufacturer code, etc.

Finding a Movi eExport er is no guarantee that it actually will work. You can call val i date(), as this
example does, to check that the instantiated exporter can do an export from the given movie. In this

example, if validate throws an exception, it's logged to standard out and the exporter is not added to
the JConmboBox.

4.3.3. What about...

...setting the export parameters programmatically, instead of using the export dialog every time?
This is possible, although it will require using the export dialog at least once in development. A
configured Movi eExport er can return its configured state in the form of an At onCont ai ner object,
by way of the get Export Set ti ngsFr omAt onCont ai ner () method. This object can be passed to an
exporter via the set Export Setti ngsFr omAt omCont ai ner () method.

Note: "Atoms" are a low-level data structure that do almost all of QuickTime's heavy lifting. Application-level code uses them only for
really advanced stuff (see Chapter 9).

Within a single running application, this is pretty straightforward. To persist between sessions, you
must save off the native structure by calling get Byt es() on the At onCont ai ner and then persist it
to disk, database, etc. To recreate the settings in the future, read the bytes into a byte array, create
a QTHandl e from the array, and then pass that to At onCont ai ner. f ronQTHandl e() to create the
At onCont ai ner .

QuickTime 6.3 introduced a new API for setting exporters programmatically, but as of this writing, it
has not been exposed via QTJ method calls.

Also, if | specify type and subtype, will I always get one match? No, in some cases, you'll get multiple
matching components, and you might need to use other criteria to pick which one to use. In a rather
infamous case pointed out by one of my tech reviewers:

Sometimes you get more than one exporter with the same subtype and need to use the
"manufacturer” code to distinguish them. This applies particularly to AIFF exportersthe first
exporter you find of that type only exports MIDI. To export an arbitrary QT audio file to AIFF
you need to explicitly iterate and pick the second one!

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

4.4. Importing and Exporting Graphics

QuickTime offers many components whose job is to import from and export to different graphics
formats. As you might expect, these components are wrapped by classes called Gr aphi csl nport er
and Graphi csExporter.

The G aphi cl nport Export example application (shown in Example 4-3) uses both of these classes to
illustrate the dynamic lookup of importers and exporters.

Note: Compile and run this example with ant run-ch04-graphicimport-export..

Example 4-3. Graphics import and export
package comoreilly.gtjnotebook.ch04;

i mport quicktine.*;

i mport quicktime.io.*;

i mport quicktinme.std.*;

i mport quicktine.std.comp. *;
i mport qui cktine.std.inage. *;
i mport quicktine.app.view *;
i mport java.aw.*;

i mport java.awt.event.*;

i mport javax.sw ng. *;

import java.util.Vector;
import java.io.*;

import comoreilly.qtjnotebook.chOl. QTSessi onCheck;
public class G aphiclnportExport extends Object {

Butt on exportButton;
Frame frane;
Graphi csl nporter inporter;

static final int[] inagetypes =
{ StdQrConstants. kQTFi | eTypeQui ckTi el mage};

/* other interesting val ues:

St dQTConst ant s. kQTFi | eTyped F,

St dQTConst ant s. kQTFi | eTypeJPEG

St dQTConst ant s4. kQTFi | eTypePNG

St dQTConst ant s4. kQTFi | eTypeTl FF

St dQTConst ant s. kQTFi | eTypeMacPai nt ,

St dQTConst ant s. kQTFi | eTypePhot oShop,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

St dQTConst ant s. KQTFi | eTypePI CS,
St dQTConst ant s. KQTFi | eTypePi cture,
*/

public static void main (String[] args) {
new G aphi cl nport Export();

}

public GaphiclnportExport() {
try {
QrSessi onCheck. check();
QTFile inFile = QIFile.standardGetFil ePrevi ew (i magetypes);
i nporter = new Graphicslnporter (inFile);
/'l put inage onscreen
QTrConponent qtc = QrFactory. nakeQrConponent (i nporter);
java. awt . Conponent ¢ = qtc.asConponent();
frame = new Frame ("I nported i nmage");
frame. set Layout (new BorderLayout());
frame.add (c, BorderLayout. CENTER);
exportButton = new Button ("Export");
export Button. addActi onLi stener (new ActionListener() {
public void actionPerformed (ActionEvent ae) {
try {
doExport();
} catch (QTException qgte) {
gte.printStackTrace();
}
}
1)
frame. add (exportButton, BorderlLayout.SCOUTH);
frame. pack();
frame. setVisible(true);
} catch (QTrException qte) {
qte.printStackTrace();
}
}

public void doExport() throws QIException {

/1 build list of G aphicExporters
Vect or choices = new Vector();
Component Descri ption cd =

new Component Descri ption (

St dQTConst ant s. gr aphi csExport er Conponent Type) ;

Conponentldentifier ci = null;
while ((ci = Conponentldentifier.find(ci, cd)) !'= null) {

choi ces. add (new ExportChoice (ci.getlnfo().getNane(),

ci.getlnfo().getSubType()));

}

/'l offer a choice of novie exporters
JConmboBox export Conbo = new JConboBox (choices);
JOpt i onPane. showMessageDi al og (frane,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

export Conbo,
"Choose exporter",
JOpt i onPane. PLAI N_NVESSAGE) ;
Export Choi ce choice =
(Export Choi ce) export Conbo. get Sel ectedlten();
Systemout.println ("chose " + choice. nane);

/1l build a GE, wire up to the G aphicslnporter
Gr aphi csExporter exporter =

new G aphi csExporter (choice. subtype);
exporter.setlnput Gaphicslnporter (inporter);

/1 ask for destination, settings
FileDialog fd =

new Fil eDi alog (frane, "Save As",

Fi | eDi al og. SAVE) ;

fd.setVisible(true);
String filenanme = fd.getFile();
if (filenanme.indexO('."') = = -1)

filenane = filenane + "." +

exporter. get Def aul t Fi | eNaneExt ensi on();

File file = new File (fd.getDirectory(), filenane);
exporter.setQutputFile (new QIFile(file));
exporter.request Settings();

/'l export
exporter.doExport();

/'l need to explicitly quit (since awt is running)
System exit(0);

public class ExportChoice {

String nane;

i nt subtype;

public ExportChoice (String n, int st) {
name = n;
subtype = st;

}

public String toString() {
return nane;

}

When run, the program shows a dialog to select a graphic to be imported. On Windows, the "file
type" in this dialog is QuickTime Image. Once an image is selected, it appears in a window with an
"export" button. When the user clicks the button, she is asked for an export type, as shown in Figure
4-6.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Note: Graphicsimporter and GraphicsExporter are in quicktime.std.image, not quicktime.std.qtcomponents like most other components.

Figure 4-6. Selecting a GraphicsExporter

Imported image

1 ™ Choose exporter

Photoshop
SGI1

EMP
JPEG
PICT
PMG
MacPaint
TIFF

Export

After this, the program displays a configuration dialog specific to the type of exporter selectedat a
minimum, this dialog usually offers a choice of color depths (256 colors, 256 grays, millions of colors,
etc.). Next, a save dialog requests the location of the exported file. Once approved, the program
converts the image to the specified format and saves it to the supplied location.

4.4.1. What just happened?

Notice the QTFi | e. st andar dGet Fi | ePr evi ew() . This shows a file-open dialog and takes an array of
up to four i nts, representing FOUR_CHAR_CODEs of various file format constants, which are used as a
filter of what file types to make selectable. You can use kQTFi | eTypeQui ckTi nmel nage as a
convenient wildcard that matches any kind of image QuickTime can open, though it seems to work
only on Windows (on the Mac, any file can be selected).

Tip: If you want to specify formats, interesting constants in St dQTConst ant s include KQTFi | eTyped F,

kQTFi | eTypeJPEG and kQTFi | eTypePhot oShop. The St dQTConst ant s4 class adds similarly named constants for
PNG and TIFF. Unfortunately, you can send only four.

Given a file, you can construct a G aphi csl nport er object to load it into QuickTime. To put the
imported image on-screen, pass the importer to QTFact ory. makeQTConponent () , which returns a

QrConponent that you can either cast to an AWT Conponent or, to be type-safe, convert with the
asConponent () method.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Warning: j ava. awt and qui ckti nme. st d. conp both define a class called Conponent . If you're casually i mpor t ing every
class from these packages, you're probably headed for a compile-time error. You'll have to make your imports more selective or use a
fully qualified class name for one of the Conponent s, like this example does.

To export an image to another format, you can search for graphics exporter subtypes by creating a
Conponent Descri pti on template to match components of the gr aphi csExport er Conponent Type. In
the example, the names of matching components are shown in a JConboBox. With a subtype
selected, create the G- aphi csExporter by passing the subtype to its constructor.

Note: This method of looking up exporter components was shown in the previous lab.

A Graphi csExport er needs to be wired up to some kind of source image. With a G aphi csl nporter,
you wire the two together with set | nput Gr aphi csl nporter (). The exporter also needs a
destination. If writing to a file (as opposed to, say, memory), you set this with set Qut put Fi | e() just
to be safe, it's wise to sanity-check the user-provided filename extension against the value returned
by the exporter's get def aul t Fi | eNaneExt ensi on() .

The user probably wants some say in the color depth, image quality, and other settings for the
export, a dialog for which is provided with a r equest Setti ngs() .

After all that, you finally can do the export with...doExport ().

4.4.2. What about...

...other sources for the export? The Javadoc for G aphi csExport er shows a bunch of set | nput XXX(
) methods. True enough, and in the next chapter, we'll explore some of these, including Pi ct s,
Q@G aphi cs, and Pi xMVaps.

And what about setting export parameters programmatically? QTJ exposes some methods that could
be used instead of the user dialog, such as set Dept h() and set Conpr essi onMet hod(). One
interesting method, set Tar get Dat aSi ze(), lets exporters with a "quality" option (like JPEG) find a
value that will result in a file of the given size in bytes.

Note: GraphicsExporters have an AtomContainer-based settings scheme that's just as painful as the MovieExporter equivalent from the
last lab.

(erevious fluexr

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

4.5. Discovering All Installed Components

| hope that by this point you're at least a little interested in what other kinds of components are
available in QuickTime. It's easy to discover them all, in much the same way we discovered the
various Movi eExporter s and Graphi cExporter s: by providing a Conponent Descri pti on template
and using Conponent I dentifier.find() . With a "blank" template, all components can be
revealed.

45.1. How do | do that?

Example 4-4 discovers all installed components and logs their type, subtype, and description to
standard out.

Example 4-4. Discovering all installed components
package comoreilly.gtjnotebook.ch04;

i mport quicktime.*;

i mport quicktime.std.*;

i mport quicktine.std.comp. *;
import quicktime.util.QruUtils;

import comoreilly.qtjnotebook.chOl. QTSessi onCheck;
public class Conponent Tour {

public static void main (String[] args) {
try {
QrSessi onCheck. check();
/* use this wildcard to show all conponents in QI
*/
Conponent Descri ption wildcard =
new Conponent Descri ption();
Conponent ldentifier ci = null;
while ((ci = Conponentldentifier.find(ci, wildcard)) !'= null) {
Conponent Description cd = ci.getlnfo();
Systemout.println (cd.getName() +
" (Il +
Qrutils. fromOSType (cd. getType()) +
II/II +
Qrutils. fromOSType (cd. get SubType()) +
Il) n +
cd.getInformationString());

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

} catch (QTrException qgqte) {
qte.printStackTrace();

}

The resulting output is hundreds of lines long, looking something like this:

run- ch04- conponent t our:

[java]l Apple MP3 Decoder (adec/.nmp3) An Audi oCodec that decodes MPEG 1, MPEG 2,
MPEG 2.5 Layer IIll into linear PCM data

[javal] MPEG 4 AAC Decoder (adec/aac) An Audi oCodec that decodes MPEG 4 AAC into
| i near PCM dat a

[java]l Apple Lossless Decoder (adec/alac) An Audi oCodec that decodes Apple Lossless
into linear PCM data

[java]l Apple | MA4 Decoder (adec/inmad4) An Audi oCodec that decodes IMA4 into |inear
PCM dat a

[javal] MPEG 4 AAC Encoder (aenc/aac) An Audi oCodec that encodes |inear PCM data
into MPEG 4 AAC

[java]l Apple Lossless Encoder (aenc/alac) An Audi oCodec that encodes |inear PCM
data into Apple Lossless

[java]l Apple | MA4 Encoder (aenc/inmad4) An Audi oCodec that encodes |inear PCM data
into | MM

[java]l Applet (aplt/scpt) The conponent that runs script applications

[java]l Apple: AUConverter (aufc/conv) Audi oConverter unit
[java]l Apple: AWvarispeed (aufc/vari) Apple's varispeed playback

[..]

4.5.2. What just happened?

The key is the line that gets a Conponent Descri pt or via a no-arg constructor. This creates a
completely blank template for Conponent I dentifier.find() to run against. Of course, if you just

wanted to tour components of a specific type, you could pass in a type constant such as
St dQTConst ant s. novi el npor t Type , which would limit the search to Movi el nporter s, and thus
indicate what kinds of formats QuickTime can import.

Documenting and explaining every kind of component is beyond the scope of this bookin fact, it filled
up a whole volume of the old Inside Macintosh series. Still, a few of the important ones are listed in
Table 4-1 . Note that not all components have (or need) a Java wrapper class.

Table 4-1. Some important QuickTime for Java components

Type Java wrapper class Sample subtypes

eat Movi el nporter "AVI ", "ALFEY, "MP3 Y, "SWF

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Type Java wrapper class

Movi eExporter

‘grip G aphi csl nporter

"gr ex Graphi csExporter

"cl ok . o .

. Cl ock (provides timing and callback services)
"nhl " | Medi aHandl er

"i nto

None; image compressor (used for still images and video)

"i mdc | None; image decompressor (used for still images and
" video)

None; real-time packetizer (used for streaming)

Sample subtypes

"V W', "MooV ", "npg4 "

"BMP", "Gl F", "IPEG"

"BMP ", "JPEG"

"tick ™, "mcr

"vide", "soun ", "t ext

Y| peg ", "npav ", "H263

"j peg " III'T}'J4V ", "h263 "

"263+ ", "npeg ", "npda ", "npdv

Note: Yep, "eat" and "spit" for movie importers and exporters. Hardy har har .

It's important to remember that all types and subtypes are FOUR_CHAR_CODE sany type or subtype

seemingly shorter than that is padded with space characters.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Chapter 5. Working with QuickDraw

And now, on to the oldest, cruftiest, yet can't-live-without-it-iest part of QTJ: QuickDraw. QuickDraw
is a graphics API that can be traced all the way back to that first Mac Steve Jobs pulled out of a bag
and showed the press more than 20 years ago. You knowback when Mac supported all of two colors:
black and white.

Don't worry; it's gotten a lot better since then.

To be fair, a native Mac OS X application being written today from scratch probably would use the
shiny new "Quartz 2D" API. And as a Java developer, the included Java 2D API is at least as capable
as QuickDraw, with extension packages like Java Advanced Imaging (JAI) only making things better.

The real advantage to understanding QuickDraw is that it's what's used to work with captured images

(see Chapter 6) and individual video samples (see Chapter 8). It is also a reasonably capable
graphics API in its own right, supporting import from and export to many formats (most of which
J2SE lacked until 1.4), affine transformations, compositing, and more.

[rrevious e s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

5.1. Getting and Saving Picts

If you had a Mac before Mac OS X, you probably are very familiar with picts, because they were the
native graphics file format on the old Mac OS. Taking screenshots would create pict files, as would
saving your work in graphics applications. Developers used pict resources in their applications to
provide graphics, splash screens, etc.

Actually, a number of tightly coupled concepts relate to picts. The native structure for working with a
series of drawing commands is called a Pi ct ure actual | y. This struct, along with the functions that
use it, are wrapped by the QTJ class qui ckti me. gd. Pi ct . There's also a file format for storing picts,
which can contain either drawing commands or bit-mapped imagesfiles in this format usually have a
.pct or .pict extension. QTJ's Pi ct class has methods to read and write these files, and because it's
easy to create Pi cts from Movi es, TRacks, Graphi csl nporters, SequenceG abber s (capture
devices), etc., it's a very useful class.

5.1.1. How do | do that?

The Pi ct Tour . j ava application, shown in Example 5-1, exercises the basics of getting, saving, and
loading Pi ct s.

Note: Compile and run this example with ant run-ch05-picttour from the downloadable book code.

Example 5-1. Opening and saving Picts
package comoreilly.gtjnotebook. ch05;

i mport quicktine.*;

i mport quicktine.app.view *;
i mport quicktine.std.*;

i mport quicktine.std.inage.*;
i mport quicktine.io.*;

i mport quicktine.qd.*;

i mport java.aw.?*;
i mport java.io.*;
import comoreilly.qtjnotebook.chOl. QTSessi onCheck;

public class PictTour extends Object {

static final int[] inagetypes =
{ StdQrConstants. kQTFi | eTypeQui ckTi nel mage};

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

static int frameX -1;
static int frameyY = -1;

public static void main (String[] args) {

try {
QrSessi onCheck. check();

/'l inport a graphic
QrSessi onCheck. check();
QTFile inFile = QIFile.standardGetFil ePreview (i magetypes);
Graphi cslnporter inporter =
new Graphi cslnporter (inFile);
showFr aneFor | nporter (inporter,
"Original lnport");
/1l get a pict object and then save it
/'l then | oad again and show
Pict pict = inporter.getAsPicture();
String absPictPath = (new File ("pict.pict")).get Absol utePath();
File pictFile = new File (absPictPath);
if (pictFile.exists())
pictFile.delete();
try { Thread.sleep (1000); } catch (InterruptedException ie) { }
pict.witeToFile (pictFile);
QTFile pictQIFile = new QITFile (pictFile);
G aphi csl nporter pictlnporter =
new G aphi cslnporter (pictQIFile);
showFr aneFor | nporter (pictlnporter,
"pict.pict");
/1 wite to a pict file frominporter
/1 then | oad and show it
String abs@ PictPath = (new File ("gipict.pict")).getAbsol utePath();
QTFile giPictQIFile = new QTFil e (abs@ Pi ct Pat h);
if (giPictQIFile.exists())
gi PictQIFile.delete();
try { Thread.sleep (1000); } catch (InterruptedException ie) { }
i nporter.saveAsPi cture (giPictQrIFile,
| OConst ant s. snBByst enfScri pt) ;
Graphi cslnporter giPictlnporter =
new Graphi cslnporter (giPictQIFile);
showFr anmeFor | nporter (giPictlnporter,
"gipict.pict");
} catch (Exception e) {
e.printStackTrace();
}
}

public static void showrFranmeFor| nporter (G aphicslnporter gi,
String frameTitle)
throws QIException {
QTConponent qtc = QIFactory. makeQrConponent (gi);
Conmponent ¢ = qtc. asConponent();
Frame f = new Frane (franeTitle);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

f.add (c);
f.pack();
if (frameX = = -1) {
frameX = f.getLocation().Xx;

frameY = f.getLocation().vy;
} else {
Poi nt

ocation = new Point (frameX += 20,
frameY += 20);
f.setlLocation (location);

}

f.setVisible (true);

Warning: The two Thr ead. sl eep() calls are here only as a workaround to a problem | saw while developing this
examplereading a file I'd just written proved crashy (maybe the file wasn't fully closed?). Because it's unlikely you'll write a file and
immediately reread it, this isn't something you'll want or need to do in your code.

When run, this example prompts the user for a graphics file, which then is displayed in three
windows, as shown in Figure 5-1. These represent three different means of loading the pict.

Figure 5-1. Writing and reading PICT files

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

¢ com.oreilly.qtjnotebook.ch0s.PictTour

Original Impart |_

_ I pict.pict |
8ansé gipict, pict

5.1.2. What just happened?

You can get picts in a number of ways in QTJ. The first example here is to use a G aphi csl nporter
to load an image file in some arbitrary format, and then call get AsPi cture() to get a Pi ct object.
This is the easiest way to get a Pi ct from an arbitrary fileif you knew for sure that a given file was in
the pict file format, you could use Pi ct. fronFi |l e() instead, but that does not check to ensure the
file really is a pict. So, the safe thing to do is to use a Gr aphi csl nporter, let it figure out the format
of the source file, and then convert to pict if necessary with get AsPi cture().

Writing a pict file to disk is easy: just callwiteToFil e() .

Tip: Curiously, this takes aj ava. i 0. Fi | e, nota QTFi | e, like so many other I/O routines in QTJ.

You also can write a Pi ct to disk by using the Graphi csl nporter's saveAsPi cture() method.

Note: Yes, itis kind of weird to use the "importer" for what is effectively an "export.”

The example uses both of these methods to write pict files to diskPi ct . witeToFi |l e() creates
pict.pict and G- aphi csl nporter. saveAsPi ct ure() creates gipict.pict. Each file is then reloaded
with Graphi csl nport ers. Conveniently, a Graphi csl nport er can be used with a QTFact ory to
create a QTConponent (see Section 4.4 in Chapter 4), which is how the imported picts are shown on-

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

screen.

5.1.3. What about . ..

. . . other ways to get pictures? Look at the Pi ct class and you'll see several static f r onXXX()
methods that provide Pi ct s from G- aphi csl nporters, G aphi csExporters, Mvi es, tracks, and
other QTJ classes.

Also, why does this example go through the hassle of creating absolute path strings and passing
those to the QTFi | e constructor? It's a workaround to an apparent bug in QTJ for Windows: when
you use a relative path (like Pict.witeToFile (new File("MPict.pict"))), QTJ sometimes
writes the file not to the current directory, but rather to the last directory it accessed. In this case,
that means the directory it read the source image from. Specifying absolute paths works around this
problem.

[erevious [lvexrs)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

5.2. Getting a Pict from a Movie

If you're working with movies, you'll probably want to be able to get a pict from some arbitrary time
in the movie. You could use this for identifying movies via thumbnail icons, identifying segments on a
timeline GUI, etc. This action is so common, and it's really easy.

5.2.1. How do | do that?

To grab a movie at a certain time, you just need a one-line call to Movi e. get Pi ct () , as exercised
by the dunpToPi ct () method shown here:

Note: Notice | don't say "grab the current movie frame" because the movie could have other on-screen elements like text, sprites, other
movies, etc., not just one frame of one video track.

public void dunpToPict () {
try {
float ol dRate = novie.getRate();
novi e. stop();
Pict pict = novie.getPict(novie.getTine());
String absPictPath =
(new File ("novie.pict")).getAbsol utePath();
pict.witeToFile (new File (absPictPath));
novi e. set Rate (ol dRate);
} catch (Exception e) {
e.printStackTrace();
}
}

This method stops the movie if it's playing and stores the previous play rate. Then it creates a Pi ct
on the movie's current time and saves it to a file called movie.pict. Then it restarts the movie.

Note: The downloadable book code exercises this in a demo called PictFromMovie. Run it with ant run-ch05-pictfrommovie.

5.2.2. What about . ..

. . not stopping the movie? | haven't had good results with this call unless the movie is stopped. At
best, it makes the playback choppy for a few seconds; at worst, it crashes.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

5.3. Converting a Movie Image to a Java Image

It's possible you'll want to grab the current display of the movie and get it into a j ava. aw . | rage. A

convenient method call has been provided for just this task; unfortunately, it doesn't work very well,
so a Pi ct -based workaround is needed.

5.3.1. How do | do that?

QTJ provides QTI magePr oducer , an implementation of the AWT | nagePr oducer interface.
I magePr oducer dates back to Java 1.0, and was designed to handle latency and unreliability when
loading images over the networkissues that are irrelevant in typical desktop cases.

The most straightforward way to get an image from a movie is to get a QTl ragePr oducer from a
Movi ePl ayer , the object typically used to create a lightweight, Swing-ready QrJConponent . The
Convert Tol mageBad application in Example 5-2 demonstrates this approach.

Note: Makes sense, doesn't it? The MoviePlayer needs to generate AWT images for the lightweight QTJComponent, so that's what you
get an ImageProducer from.

Example 5-2. Using MoviePlayer's QTImageProducer

package comoreilly.gtjnotebook. ch05;
import comoreilly.qtjnotebook.chOl. QTSessi onCheck;

i mport java.aw.?*;

i mport java.awt.event.*;

i mport javax.sw ng.*;

i mport quicktine.*;

i mport quicktine.app.view *;

i mport quicktine.io.*;

i mport quicktine.qd.*;

i mport quicktine.std.*;

i mport quicktine.std.clocks. *;
i mport quicktine.std. novi es. *;

public class ConvertToJaval mageBad extends Frane
i mpl enents ActionLi stener {

Movi e novi e;

Movi ePl ayer pl ayer;
Movi eControl |l er controller;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

QrConponent qtc;
static int nextFranmeX, nextFraney;
Qrl magePr oducer i p;

public static void main (String[] args) {
Convert ToJaval mageBad ctji = new Convert ToJaval nageBad();
ctji.pack();
ctji.setVisible(true);
Rectangl e ctjiBounds = ctji.getBounds();
next FrameX = ctji Bounds.x + ctji Bounds. w dth;
next FrameY = ctjiBounds.y + ctji Bounds. hei ght;

}

publ i ¢ Convert ToJaval nageBad() {

super (" Qui ckTinme Mvie");

try {
/'l get novie
QrSessi onCheck. check();
QTFile file =

QTFi |l e. standardGet Fi |l ePrevi ew (QrIFi | e. kSt andar dQTFi | eTypes) ;
OpenMovi eFil e onFile = OpenMovi eFi |l e. asRead(file);
nmovie = Movie.fronFile(onFile);
pl ayer = new Movi ePl ayer (novie);
controller = new MovieController (novie);
/1l build gui
qtc = QlFactory. makeQIrConponent (controller);
Conmponent ¢ = qtc.asConponent ();
set Layout (new BorderLayout());
add (c, BorderLayout. CENTER);
Button i mageButton = new Button ("Make Java | nmage");
add (i mageButton, BorderLayout.SOUTH);
i mageButt on. addActi onLi stener (this);
novie.start();
/'l set up close-to-quit
addW ndowLi st ener (new W ndowAdapter() {
public void w ndowC osi ng (W ndowEvent we) {
Systemexit(0);
}
1)

} catch (QIException qte) {

qte.printStackTrace();

}

public void actionPerformed (ActionEvent e) {
gr abMovi el mage();

}

public void grabMvielmge() {

try {
/'l lazy instantiation of |nmageProducer

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

if (ip= =null) {
(DRect bounds = novi e. get Bounds();
Di mensi on di mBounds =
new Di mensi on (bounds.getWdth(), bounds.getHeight());
ip = new QrIl mageProducer (player, dinBounds);

}

/1l stop novie to take picture
bool ean wasPl ayi ng = fal se;
if (nmovie.getRate() > 0) {
nmovi e. stop();
wasPl ayi ng = true;

}

/'l convert from Movi ePlayer to java.awt. | nage
I mage i mage = Tool kit.getDefaul t Toolkit().createl mage (ip);
/'l make a swing icon out of it and showit in a frame
I magel con icon = new | magel con (i nage);
JLabel |abel = new JLabel (icon);
JFrane frane = new JFrane ("Java inmage");
f rame. get Cont ent Pane(). add(I abel);
frame. pack();
frame. set Locati on (nextFraneX += 10,
next FrameY += 10);
frame. setVisible(true);
/1 restart novie
if (wasPl ayi ng)
nmovi e.start();
} catch (QTrException qte) {
qte.printStackTrace();

}

This application is shown in Figure 5-2. When you click the Make Java Image button, the movie is
stopped, an AWT | mage of the current display is made, and that | mage is opened in another window.

Figure 5-2. Converting movie to Java AWT Image

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ané QuickTime Movie

Make Java Image

Warning: This is a negative example. Keep reading for why you don't want to use this code, and for a superior alternative.

5.3.2. What just happened?

The gr abMovi el mage() method creates a QTl nagePr oducer from the Movi ePl ayer and hands it to
the AWT Toolkit method cr eat el mage() . This call returns an AWT | nmage that (because it's a nice,
clean, one-line call) is stuffed into a Swing | magel con and put on-screen.

This is more of a "what the heck” than a "what just happened.” If your results are anything like mine,
you're probably wondering why the movie stopped the first time you snapped a picture, even though
the sound continued. Or why, for that matter, subsequent pictures seem to be later in the movie,
meaning the decompression and decoding of the video is still working, but that it's just not getting to
the screen.

Tip: Or notmaybe they'll have fixed it by the time you read this. At any rate, as of this writing, the QT1 magePr oducer provided by a
Movi ePl ayer is not to be trusted.

[reevions Juers

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

5.4. A Better Movie-to-Java Image Converter

The code shown in Section 5.3 is error-prone and nasty. On the other hand, a QTl magePr oducer is
available from the Graphi csl nport er Drawer . It does not have to work with a moving target like the
Movi ePl ayer does. If only you could use that one instead

5.4.1. How do | do that?

The example program Convert ToJaval mageBet t er has a different implementation of the
grabMovi el mage() method, as shown in Example 5-3.

Note: Run this example with ant run-ch05-convert-tojava-imagebetter.

Example 5-3. In-memory pict import to use GraphicslmporterDrawer's
QTImageProducer

public void grabMvielmage() {
try {
/1 stop novie to take picture
bool ean wasPl ayi ng = fal se;
if (nmovie.getRate() > 0) {
nmovi e. stop();
wasPl ayi ng = true;

}

/'l take a pict
Pict pict = novie.getPict (novie.getTinme());

/1 add 512-byte header that pict would have as file
byte[] newPictBytes =
new byte [pict.getSize() + 512];
pi ct.copyToArray (O,
newPi ct Byt es,
512,
newPi ct Bytes.l ength - 512);
pi ct = new Pict (newPictBytes);

/'l export it

Dat aRef ref = new DataRef (pict,
St dQTConst ant s. kDat aRef QTFi | eTypeTag,
"PICT");

gi . set Dat aRef erence (ref);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

@Rect rect = gi.getSourceRect ();

Di nensi on dim = new Di nension (rect.getWdth(),
rect.getHeight());

QTl mageProducer ip = new QTl mageProducer (gid, dim;

/1 convert from MoviePlayer to java.awt.|nage
I mage image = Tool kit.getDefaultToolkit().createlnmage (ip);
/1l make a swing icon out of it and showit in a frane
| magel con i con = new | magel con (inege);
JLabel |abel = new JLabel (icon);
JFrame franme = new JFranme ("Java inage");
frame. get Cont ent Pane(). add(l abel);
frame. pack();
frame. set Locati on (nextFranmeX += 10,
next FrameY += 10);
frame. setVisible(true);

/Il restart novie
i f (wasPl ayi ng)
novi e.start();
} catch (QIException qte) {
gte.printStackTrace();

}

Try out this example and you should be able to create multiple AWT | mages without harming
playback of the movie, as exhibited in Figure 5-3.

Figure 5-3. Converting movie to Java AWT image (a better way)

" ¢ comorellly.giinotebosk.chis ConvertTolavalmageBeiter
¥ e
4 ik Time Movie) Jawa irmags

ans Java image

Mlake Java Irmdape

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5.4.2. What just happened?

This isn't a hack. It's close, though.

Once the movie is paused, the key is to get the movie's display into a G- aphi csl nporter. Once
that's done, it's easy to get a QTl magePr oducer from a Gr aphi csl nporter Drawer and an image
from the AWT Toolkit.

Note: Note to self: pitch QuickTime for Java Hacks to O'Reilly!

The problem is getting the image into a Gr aphi csl nport er . If you look at the Javadoc, you might
see one way to connect the dots: get a Pi ct from the Movi e, save that to disk, then turn around and
import. It would look something like this:

Pict pict = novie.getPict (novie.getTine());

QIFile tenpFile = new QTFile (new java.io.File ("temppict.pict"));
pict.witeToFile (tenmpFile);

Graphi cslnporter inporter = new G aphicslnporter (tenpFile);

With the pict imported into a Gr aphi csl nport er, you would get a QTl nagePr oducer from the
Graphi csl npor t er Dr awer and generate AWT | nages from the image producer, without messing up
the movie playback.

The drawback of this approach is that you must read and write data to the hard drive, which is
obviously much slower than an operation that takes place purely in memory.

In fact, an in-memory equivalent is possible. Look back at the Gr aphi csl nport er Javadoc. Several
set Dat a() methods allow you to use sources other than just flat files for input to a

Gr aphi csl nmpor t er . Two of them allow you to pass in more or less opaque pointers:

set Dat aRef erence() and set Dat aHandl e() . With these calls, the importer will read from memory
the same way it would read from disk.

Note: And they say Java doesn't have pointers!

The trick in this case is to make the G- aphi csl nporter think it's reading a .pict file from disk, but
actually it's reading from memory. One gotcha in this case is that pict files have a 512-byte header
before their datathe header doesn't have to contain anything meaningful, it just has to be present.
So, allocate a byte array 512 bytes longer than the size of the Pi ct data (get Si ze() and get Byt es(
), inherited from QTHandl eRef , respectively, return the size and contents of the native structure
pointed to by the Pi ct object, not the Java object itself), and copy those bytes over with an offset of
512.

Next, you need a G aphi csl nporter for the Pi ct format, and a G aphi csl nport er Drawer to
provide the QTl magePr oducer . The example code creates these in its constructor:

/1 set up graphicsinporter
gi = new Graphicslnporter (StdQTConstants.kQTFileTypePicture);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

gid = new G aphicslnporterDrawer (gi);

Build a Dat aRef to point to the byte array and pass it to the G- aphi csl nporter with

set Dat aRef erence(). You've now replaced the file write and file read with equivalent in-memory
operations. Now it's a simple matter of getting a G- aphi csl nport er Drawer and, from that, a

QT magePr oducer to create Java images.

Tip: This technique is adapted from "Technical Q&A QTMTB56: Importing Image Data from Memory," at
http://developer.apple.com/ga/qtmtb/qtmtb56.html. Check it out for a comparison of QTJ versus straight-C QuickTime coding styles.

[reevions Juers

downloaded from: lib.ommolkefab.ir

http://developer.apple.com/qa/qtmtb/qtmtb56.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

5.5. Drawing with Graphics Primitives

In AWT, a G- aphi cs object represents a drawing surfaceeither on-screen or off-screenand supplies
various methods for drawing on it. QuickTime has a GW\r | d object that's so similar, the QT
developers renamed it QDG aphi ¢s just to make Java developers feel at home. As with the AWT
class, painting is driven by a callback mentality.

5.5.1. How do | do that?

Example 5-4 shows the GWor | dToPi ct example, which creates a QDGr aphi ¢cs object and performs
some simple drawing operations.

Example 5-4. Drawing on a QDGraphics object
package comoreilly.gtjnotebook.ch05;

i mport quicktine.*;

i mport quicktine.std.*;

i mport quicktine.std.inage.*;
i mport quicktine.qd.*;

import comoreilly.qtjnotebook.chOl. QTSessi onCheck;
public class GWrl dToPi ct extends Ohject inplenents QDrawer {

public static void main (String[] args) {
new GW\or | dToPict();

}

public GWrldToPict() {
try {
QrSessi onCheck. check();
DRect bounds = new Q@Rect (0, 0, 200, 250);
| mageDescri ption ingDesc =
new | mageDescri pti on(Q>Const ant s. k32RGBAPi xel For mat) ;
i rgDesc. set Hei ght (bounds. getHei ght());
i rgDesc. set Wdth (bounds.getWdth());
Q@G aphi cs gw = new QDG aphi cs (i ngDesc, 0);
Systemout.println ("GArld created: " + gw;

OpenCPi cPar ans parans = new OpenCPi cPar ans(bounds) ;

Pict pict = Pict.open (gw, parans);
gw. begi nDraw (this);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

pict.close();

try {
pict.witeToFile (new java.io.File ("gworld.pict"));

} catch (java.io.lOexception ioe) {
i oe.printStackTrace();
}
} catch (QTrException qgqte) {
gqte.printStackTrace();

}
System exit(0);

public void draw (QG aphics gw) throws QTException {
Systemout.println ("dram) called with GMrid " + gw;
(DRect bounds = gw. get Bounds();
Systemout. println ("bounds: " + bounds);
/'l clear drawi ng surface, set up colors
gw. set BackCol or (QDCol or. |ight Gay);
gw. eraseRect (bounds);
/'l draw sone shapes
gw. penSi ze (2, 2);
gw. noveTo (20, 20);
gw. set For eCol or (QDCol or. green);
gw. line (30, 100);
gw. noveTo (20, 20);
gw. set For eCol or (QDCol or. bl ue);
gw. lineTo (30, 100);

/1 draw some text

gw. set For eCol or (QDCol or.red);

gw. text Si ze (24);

gw. noveTo (10, 150);

gw. drawText (" QDG aphics", 0, 10);

/'l draw sone shapes

gw. set ForeCol or (QDCol or. magent a) ;

(DRect rect = new QDRect (0, 170, 40, 30);

gw. pai nt RoundRect (rect, 0, 0);

(DRect roundRect = new (DRect (50, 170, 40, 30);
gw. pai nt RoundRect (roundRect, 10, 10);

(DRect oval Rect = new Q@Rect (100, 170, 40, 30);
gw. pai nt Oval (oval Rect);

DRect arcRect = new (DRect (150, 170, 40, 30);
gw. pai nt Arc (arcRect, 15, 215);

This is a headless application. When run, it does its imaging off-screen and writes the file to

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

gworld.pict. Open this file in a pict-aware editor or viewer to see the output, as shown in Figure 5-4.

Figure 5-4. Graphics primitives drawn with QDGraphics

5.5.2. What just happened?

The program sets up an | mrageDescri pti on, specifying a color model and size information, and
creates a QDGr aphi ¢s drawing surface according to its specs. Next, a new Pi ct is created from the
Q@G aphi cs and an object called OpenCPi cPar ans, which provides size and resolution information.
For on-screen work, the default 72dpi is fine.

Next, it issues a Pi ct . begi nDraw() command, passing in a QDDr awer object. QDDr awer is an
interface for setting up callbacks to a draw() method that specifies the QDG aphi cs to be drawn on.
This redraw-oriented API is kind of overkill for this headless, off-screen example, but it does get the
job done. The Pi ct records the drawing commands made in the draw) call and saves the result to
disk as gworld.pict.

So, what can you do with QDG aphi cs primitives? Some basics of geometry are shown in this
example. QDG aphi ¢cs work with a system of foreground and background colors, a pen of some
number of horizontal and vertical pixels, and a concept of a current position. This example begins
with two variants of line drawing: the first drawing a line specified by an offset in horizontal and
vertical pixels, and the second drawing a line to a specific point. Next, it draws some text in the
default fontnote that as with AWT, the text will go above the current point. Finally, the example
iterates through some of the simpler shapes available as graphics primitives: ovals, optionally
rounded rectangles, and arcs.

5.5.3. What about . ..

. . . drawing an image into the QDG aphi cs, like with AWT's Gr aphi cs. drawi mage() ? Ah, you're
getting ahead of me. That will be covered later in the chapter.

Also, why are all the variables and comments here GAr | d and gw instead of QDG aphi cs and qdg?
Like I said at the start of this lab, QDG aphi cs is something of an analogy to an AWT G aphi cs.
Unfortunately, it's a flawed analogy. It wraps a native drawing surface called a GAr | d , and all the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

calls throughout QTJ that take or return it use the "GWorld" verbiage, such as the set GWr 1 d() and
get GWrl d() calls that you'll see throughout the Javadoc. Once you start getting into QTJ, the
desire to understand it from QuickTime's point of view, as a GMr | d, outweighs the benefits of
making an appeal to the AWT Gr aphi cs analogy. So, to me, it's a GMr | d.

[rrevious e s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

5.6. Getting a Screen Capture

One frequently useful source of image data is, unsurprisingly, the screenor screens, if you're so
fortunate. Each screen is represented by an object that can give you its current contents, though it
takes a little work to do anything with it.

5.6.1. How do | do that?

ScreenToPNG, shown in Example 5-5, is a headless application that starts up, grabs the screen, and
writes out the image to a PNG file called screen.png.

Note: | use PNG for screenshots because it's lossless, widely supported, compressed, and patent-unencumbered.

Example 5-5. Grabbing screen pixels
package comoreilly.gtjnotebook.ch05;

i mport quicktine.*;

i mport quicktine.std.*;

i mport quicktine.std.inage.*;
i mport quicktine.qd.*;

i mport quicktine.io.*;

import quicktinme.util.*;

import comoreilly.qtjnotebook.chOl. QTSessi onCheck;
public class ScreenToPNG extends Object {

public static void main (String[] args) {
new ScreenToPNE);

}

public ScreenToPNG) {

try {
QTSessi onCheck. check();

GDevi ce gd = GDevice.getMain();

Systemout.println ("Got CGDevice: " + gd);

Pi xMap pm = gd. get Pi xMap();

Systemout.println ("Got PixMap: " + pm;

| mmgeDescription id = new | nageDescription (pm;
Systemout.println ("Got |InageDescription: " + id);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

(DRect bounds = pm get Bounds();
RawEncodedl mage rei = pm get Pi xel Data();

QDG aphi cs deconpGW = new QDG aphics (id, 0);
Qrl mage. deconpress (rei,

id,

deconmpGW

bounds,

0);

Gr aphi csExporter exporter =
new Graphi csExporter (StdQrConstants4. kQTFil eTypePNG) ;
exporter.setlnputPi xmap (deconpGW ;
QTFile outFile = new QTFile (new java.io.File ("screen.png"));
exporter.setQutputFile (outFile);
Systemout.println ("Exported " +
exporter.doExport() +
" bytes");

} catch (QTException qte) {
gqte.printStackTrace();

}
System exit(0);

When finished, open the screen.png file with your favorite image editor or browser. A shot of my
iBook's screen while writing the demo is shown in Figure 5-5.

Figure 5-5. Screen capture

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

" # comarsillvainoebsok chil s SoreenToPHG TS W wed 152 (a0

g i VoY e T B e PRI (R T T = e 1 soie oD 1
g il CEl Opiorn Balisn Teah 5ok Heols e ———

4l LLif -
ﬂ; e ——
Lo rl-\flnl"_ll.n.l.l .\,Ml o' ol o] cedewrdl ol roreohi e L 0
furtl Bailc®ile: msld.m [T
it | Lt .

1 [mctn] qhlmarie T le 1 SursenLibr s RaseTobans e | L, 15 1

ali fid, 0
Cpmane] CompiNing 3 smee 9ot ta Alriadmmers Taomeb s Fr | 1]

uu'ﬂ ...'ln.-ul: el] R
oot L bowrdren oy W[19

4 T oL IR an o B ol e v @ad Lond i OF i ph e sl
'm Inkaraion o e g e forra fegrh, reacderizn and celkor o ¥ A

:_ — iH:ch!urnl'rury ‘ i
Y bl B |rr 145 i (e s ey o bt hiad e segueired Yor 1 i
\._l_ﬁ,g_@frgm anfﬂnlu;'ﬂ-‘yg“ w |I

Notice at the bottom left that | have the DVD Player application running. Apple's tools for doing
screen grabsthe Grab application and the Cmd-Shift-3 and Cmd-Shift-4 key combinationswon't work
if you have the DVD Player running. However, this proves that those pixels are available to
QuickDraw. That said, if you grab the screen while a DVD is playing, you might get tearing (if the
capture grabs between frames) or even a blank panel (if the capture catches the repaint at a bad
time). If you're going to use this to grab images from DVDs, hit Pause first.

Note: Also, don't do anything with a DVD that will get you or me sued.

5.6.2. What just happened?

The program asks for the main screen by means of the static GDevi ce. get Mai n() method. From
this, you can get a Pi xMap, which is an object that represents metadata about a stored image, such
as its color table, pixel format, packing scheme, etc. This metadata also can be stored as an

I mgeDescri pti on, which is a structure that many graphics methods take as a parameter. The

Pi xMap also has a pointer to the byte array that holds the image data, which you can retrieve as the
wrapper object RawEncoded| mage.

Note: Java 2D analogy: a PixMap is like a Raster, an ImageDescription is like a Sample-Model, and an Encodedimage is like a
DataBuffer. Not exactly the same, but the same ideas throughout.

So now you have an image of what's on the screenwhat can you do with it? The goal is to get that
image into a format suitable for a G- aphi csExport er . One means of doing this is to render into a
QDG aphi ¢cs and send that to the exporter. To do this, look to the QTl nage class, which has methods
to compress (from a QDG aphi ¢cs drawing surface to an Encodedl mage) and decompress (from a

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

possibly compressed Encodedl nage to a QDG aphi ¢s). In this case, use deconpress() to make a
QDG aphi cs, then pass that to the exporter's set | nput Pi xMap() method (yes, despite the name, it
takes a QDG aphi cs, not a Pi xMap) and do the export.

Tip: It's odd that Encoded| nmage is an interface, yet its relevant methods, like deconpr ess(), are static in QT mage (which is
in another package!). Maybe Encoded| nmage should have been an abstract class?

5.6.3. What about . ..

. . . getting other screens? If you do have multiple monitors, GDevi ce has a scheme for iterating
through the screens. Call the static GDevi ce. get Li st () to getwait for itnot a list of GDevi ces, but
just the first one. You then call its instance method get Next () to return another GDevi ce, and so
on, until get Next () returns nul | .

And why is the PNG file-type constant defined in St dQTConst ant s4? PNG came late to the QuickTime
party and wasn't supported until QuickTime 4. The later constants classes (St dQTrCont ant s4,

St dQrCont ant s5, and St dQTrCont ant s6) define constants that were added in later versions of
QuickTime. kQTFi | eTypeTl FF is also in St dQTConst ant s4, but most other values you'd want to use
are in the original St dQrConst ant s.

Also, it's getting difficult to remember the various means of converting between Encoded| nages,
Pi cts, QDG aphi cs, etc. To keep track of all this for myself, | created the diagram in Figure 5-6 while
writing this chapter and have found myself consulting it frequently since then.

Figure 5-6. Converting between QuickDraw objects

Graphicsimporter .
File QDGraphics

n '\ GraphicsExporter 4
= -
= T E E
2|2 2l |§
& 4]
I HIRE
2l |2 3l | %
P = E
=
,
- &
& &
u \
v Pict.toEncodedimaged) !
Pict : = Encodedimage

Note: Why, oh why, are these methods named like this?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

5.7. Matrix-Based Drawing

Primitives and copying blocks of pixels are nice, but they're kind of limiting. Oftentimes, you must
take pixels and scale them, rotate them, and move them around. Of course, if you've worked with
Java 2D, you know this as the concept of affine transformations, which maps one set of pixels to
another set of pixels, keeping straight lines straight and parallel lines parallel.

If you've really worked with Java 2D's affine transformations, you probably know that they're
represented as a linear algebra matrix, with coordinates mapped from source to destination by
multiplying and/or adding pixel values against coefficients of the matrix. By changing the coefficients
in the matrix to interesting values (or trigonometric functions), you can define different kinds of
transformations.

QuickTime does exactly the same thing, with the minor exception that rather than hiding the matrix
in a wrapper (like J2D's Af f i neTr ansf or mat i on class), it puts the matrix front-and-center

throughout the API. One reason for this is that it's also a major part of the file formattracks in a
movie all have a matrix in their metadata to determine how they're rendered at runtime.

QuickTime matrix manipulation can basically do three things for you:

Translation

Move a block of pixels from one location to another

Rotation

Rotate pixels around a given point

Scaling

Make block bigger or smaller, or change its shape

Tip: This is a lab, not a lecture, so you don't get the all-singing, all-dancing, all-algebra introduction to matrix theory here. If you must
have this, Apple provides a pretty straightforward intro in "The Transformation Matrix," part of the "Introductions to QuickTime"
documentation anthology on its web site.

5.7.1. How do | do that?

The example Graphi cl nport Mat ri x shows the effect of setting up a Mat ri x and then using it for

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

drawing operations. A full listing is in Example 5-6.

Note: Run this example with ant run-ch05-graphic-importmatrix.

Example 5-6. Drawing with matrix-based transformations
package comoreilly.gtjnotebook. ch05;

i nport quicktine.*;

i nport quicktine.std.*;

i nport quicktine.std.inage.*;
i nport quicktinme.qd.*;

i nport quicktinme.io.*;

inport quicktime.util.*;

i nport qui cktinme.app. view *;
inport java.io.?*;

inport java.awt.*;

inport comoreilly.qgtjnotebook.ch0l. QrSessi onCheck;
public class G aphiclnmportMatrix extends Object {

public static void main (String[] args) {

try {
QrSessi onCheck. check();

File graphicsDir = new File ("graphics");

QTFil e pngFilel new QTFile (new File (graphicsDir, "1.png"));
QTFile pngFile2 = new QIFile (new File (graphicsDir, "2.png"));
G aphi cslnporter gil = new G aphicslnporter (pngFilel);

G aphi csl nporter gi 2 = new G aphicslnporter (pngFile2);

/1l define some matrix transfornms on inporter 1
(DRect bounds = gi 1. get BoundsRect ();
/'l conmbine translation (nmovenent) and scaling into
/1 one call to rect
(DRect newBounds =
new (DRect (bounds.getWdth()/4,
bounds. get Hei ght ()/ 4,
bounds. getWdt h()/ 2,
bounds. get Hei ght ()/ 2);
Matrix matrix = new Matrix();
matri x. rect (bounds, newBounds);
/1 rotate about its center
matri x.rotate (30,
(bounds. getWdth() - bounds.getX())/2,
(bounds. getHei ght () - bounds.getY())/2);
gil.setMatrix (matrix);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/1 draw sonewhere

QDG aphics scratchwrld = new QDG aphics (gi 2. get BoundsRect());
Systemout.println ("Scratch world: " + scratchwrld);

/1 draw background

gi 2.setGWrld (scratchworld, null);

gi2.draw();

/1 draw foreground

gil.setGWrld (scratchworld, null);

gil.draw);

int bufSize =
Qrl mage. get MaxConpr essi onSi ze (scratchWwrl d,
scrat chWor | d. get Bounds(),
0,
St dQTConst ant s. codecNor mal Qual ity,
St dQTConst ant s4. KPNGCodecType,
CodecConponent . anyCodec) ;
byte[] conpBytes = new byt e[buf Si ze] ;
RawEncodedl mage conpl ng = new RawEncodedl mage (conpBytes);
| mageDescription id =
QrTl mage. conpress(scrat chwrl d,
scrat chwrl d. get Bounds(),
St dQTConst ant s. codecNor mal Qual i ty,
St dQTConst ant s4. kPNGCodec Ty pe,
conpl ng) ;
Systemout.println ("rei conpressed fromgwis " +

conpl ny. get Si ze());

Systemout.println ("exporting");
Graphi csExporter exporter =
new G aphi csExporter (StdQrConstants4. kQIFil eTypePNG ;
exporter.setlnputPtr (conplng, id);
QTFile outFile = new QTFile (new File ("matrix.png"));
exporter.setQutputFile (outFile);
exporter.doExport();
Systemout.println ("did export");

} catch (QTException qte) {
gte.printStackTrace();
}
System exit(0);
}
}

Note: Run this example with ant run-ch05-screentopng.

This headless app begins by importing two PNG files, the number 1 on a green background and the
number 2 on cyan. Then it creates a GMr | d (oops, | mean a QDG aphi cssorry!) big enough to hold
the 2 image, which will serve as the background. Both G- aphi csl nporters call set GAr | d() with the
scrat chWr | d, which allows them to draw() into it. A Matri x defines a scale, translate, and rotate

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

transformation for the 1, which is drawn atop the 2. The result is compressed as a PNG and saved as
matrix.png, which is shown in Figure 5-7.

Figure 5-7. Drawing with a Matrix

5.7.2. What just happened?

Using set Matri x() with a Graphi csl nmport er allows you to tell the importer to use the
transformation specified by the Mat ri x when you call the importer's draw() method. Of the three
typical transformations, two can be combined into one callscaling and translating can be expressed
with a single call, Mat ri x. rect () , which defines a mapping from one source rectangle to a target
rectangle. In the example, rect () maps from the full size of the image to a quarter-size image,
centered horizontally and vertically.

Tip: The same thing can be done with separate callsto Mat ri x. transl ate() andMatri x. scal e(), if you prefer.

The example also calls Matri x. rot at e() to rotate the scaled and moved box by 30 degrees
clockwise.

Tip: You also can define matrix transformations by calling the various set XXX() methods that set individual coordinates in the
Mat ri X, if you've read Apple's Matrix docs and understand each coefficient. But why bother when you've got the convenience calls?

Having set this Matri x on 1's G aphi csl nporter, the example draws 2 into scratchWrl d as a
background, and then draws 1 on top of it, scaled, translated, and rotated.

But what to do with the pixels that have been drawn into the QDG aphi cs? It's not like the Section
5.5 lab, in which a QDG aphi cs was wrapped by a Pi ct that could be saved off to disk. Instead, use
Qrl mage to create an Encodedl mage from the drawing surface. In the Section 5.6 lab,

Qrl mage. deconpr ess() converted an image to a QDGr aphi ¢s. In this case, QTl nage. conpress()
can return the favor by compressing the possibly huge pixel map into a compressed format.

Compressing is harder than decompressing. You need to know up front how big of a byte array will

be needed to hold the compressed bytes, so first you call get MaxConpr essi onSi ze() . This takes six
parameters:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A QDG aphi cs to compress from.

A (DRect defining the region to be compressed.
e Color depth, as ani nt. Set this to 0 to let QuickTime decide.

e Codec quality. These are in St dQTConst ant s. From the worst to best, they are:
codecM nQual i ty, codecLowQual i ty, codecNor mal Qual i ty, codecH ghQuality,
codecMaxQual i ty, codecLossl essQual i ty. Note that not all codecs support all these values.

e Codec type. These constants are identified as XXXCodecType constants in the St dQTConst ant s
classes.

e Codec identifier. If you have a CodecConponent object you want to use for the compression,
pass it here. Typically, you pass nul | to let QuickTime decide.

Most of these parameters are used in the subsequent conpr ess() call. It goes without saying that
you need to use the same values for each call, or else get MaxConpr essi onSi ze() will lead you to
create a byte array that is the wrong size.

Along with many of the preceding parameters, the conpr ess() call takes a RaweEncoded| mage created
from a suitably large byte array. conpr ess() puts the compressed and encoded image data into the
RawEncodedl mage and returns an | nrageDescri pti on. Taken together, these are enough to provide
an input to a Gr aphi csExporter, in the form of a call to set | nput Ptr() .

Note: Passing pointers again! This is one of those cases where QTJ is very un-Java-like.

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5.8. Compositing Graphics

Matrix transformations are nice, but you can do more with image drawing. QuickDraw supports a
number of graphics modes so that instead of just copying pixels from a source to a destination, you
can combine them to create interesting visual effects. The graphics mode defines the combination:
blending, translucency, etc.

5.8.1. How do | do that?

Specifying a graphics mode for drawing is trivial. Create a Gr aphi csMbde object and call
set G aphi csMode() on the Graphi csl nporter. In the included example,
GraphiclmportCompositing.java, the mode is set with the following code:

/1 draw foreground
Graphi csMode al phaMode =
new G aphi csMbde (Q@Constants. bl end,

QCol or. green);
gi 1. set Graphi csMbde (al phaMbde);

Note: Run this with ant-ch05-graphic-importcompositing.

This is another headless app, producing the composite.png file as shown in Figure 5-8. Notice that
where the images overlap, the 2 can now show through the 1.

Figure 5-8. Drawing with blend graphics mode

5.8.2. What just happened?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The "blend"” Gr aphi csMode instructs QuickDraw to average out colors where they overlap. In this
case, 1's black pixels are lightened up by averaging when averaged with cyan, and the green is
slightly tinted where it overlaps with cyan or black.

The QDCol or. gr een is irrelevant in this case, but change the first argument to
@Const ant s. t ranspar ent and suddenly the result is very different, as shown in Figure 5-9.

Figure 5-9. Drawing with transparent graphics mode

A Graphi csMode takes a constant to specify behavior, and a color that is used by some of the
available modes. In the case of t ranspar ent , any pixels of the specified color (green in this case)
become invisible, allowing the background picture to show through.

Warning: Don't jump to the conclusion that this is similar to transparency in a GIF or a PNG. Those are indexed color formats, where
one of the index values can be made transparent. But in such a format, you could have 254 index values that all represented the same
shade of green, and a 255th that becomes invisible. In this QuickDraw example, all green pixels are transparent. If you've worked with
television equipment, this should be familiar as the chroma key concept frequently used in news and weather, where someone will stand
in front of a green wall, and an effects box will replace all green pixels with video from another source.

There are too many supported graphics mode values to list here, but some of the most useful are as
follows:

sr cCopy

Copies source to destination. This is the normal behavior.

t ranspar ent

Punches out specified color and lets background show through.

bl end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Mixes foreground and background colors.

addPi n

Adds foreground and background colors, up to a maximum value.

subPi n

Calculates the difference between sum and destination colors, to a minimum value.

di t her Copy
Replaces destination with a dither mix of source and destination.

A complete list of values is provided in "Graphic Transfer Modes™ on Apple's developer web site at
http://developer.apple.com/.

[oreviovs fluexrs

downloaded from: lib.ommolkefab.ir

http://developer.apple.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Chapter 6. Capture

Much of this book has assumed you already had media of some kind to play and editbut where does
this media come from in the first place? Digital media has to come from one of two places: either it's
completely synthetic or it's captured from a real-world source. Capture, via devices like microphones
and video cameras, is far more common.

The problem is that capture doesn't officially work in QuickTime for Java. The problem dates back to
Apple's Java 1.4.1 rearchitecture, which broke QTJ and forced massive changes to the API in QTJ 6.1.
One of the things that was not updated for QTJ was the ability to get an on-screen component from a
SequenceG abber , which is the QuickTime capture component. Instead, Apple just put a statement in
the QTJ 6.1 documentation:

Although sequence grabbing is currently not supported in QuickTime for Java 1.4.1, it may be
provided in future releases.

But if you think back to how the QTJ 6.1 situation was described in Chapter 1, you might recall that
QTJ classes that didn't require working with AWTsuch as the qui ckti ne. st d classes that simply

wrapped straight-C callswere unaffected by the Java 1.4.1 changes and still worked. Given that,
notice in the Javadoc the package called qui ckti ne. st d. sg, which contains the SequenceG abber

class among several others. Besides, capture, per se, doesn't necessarily imply using the screen, so
shouldn't it still work?

The good news is that it does. In this chapter, I'll introduce the parts of the capture API that still work
in QTJ, even without official support: capturing audio, capturing to disk, and even getting captured
video on screen with a little QuickDraw voodoo. QTJ still needs proper support for on-screen, video-
capture preview, but there's plenty to do in the meantime.

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

6.1. Capturing and Previewing Audio

Audio capture is a good place to start because that sidesteps the problem of the broken video
preview. There's plenty to be learned in just opening up the default microphone and looking at the
incoming level datathat is, how loud or soft the incoming sound data is.

6.1.1. How do | do that?

Setting up audio capture requires a number of steps. You start by constructing a SequenceG abber .
This object coordinates all the capture channels (audio, video...even text capture), and allows you to
set capture parameters like whether to save the captured data to disk, set a maximum amount of
time to let the capture run, etc.

Note: Don't scoffthere really are text-capture devices. For example, you could capture the closed captions off regular TV (also called
"line 21" data).

Once you have the SequenceG abber, you use an optional prepare() call to indicate whether you
intend to preview the captured media, record it to disk, or both.

To work with sound, you need to create a sound channel, by calling the SGSoundChannel constructor
and passing in the SequenceG abber . This object allows you to configure the audio capture, choose
among audio capture devices (see the next lab), and get the device's driver. The driver, exposed by
the SPBDevi ce class, provides methods for checking the input line level.

As an example, compile and run the Audi oCapt ur ePr evi ew application as shown in Example 6-1.
Note that you need to have at least one audio capture device hooked up to your computer. Most
Macs come with a built-in microphone. If you don't have one, you can use a USB capture device (like
a headset or external microphone) or a FireWire device (like an iSight).

Note: Compile and run this example from the book's downloadable code with ant run-ch06-audiocapture-preview.

Example 6-1. Previewing captured audio
package comoreilly.gtjnotebook. ch06;

i mport quicktine.*;

i mport quicktine.io.*;

i mport quicktine.std.*;

i mport quicktine.std.sg.*;

i mport quicktine.std. novies. *;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i nport quicktine.std.inage.*;
i nport quicktinme.qd. *;
i nport quicktinme.sound. *;
inport java.awt.*;
i nport java.awt.event.*;
i nport javax.sw ng. Ti ner;
inport comoreilly.qgtjnotebook.ch0l. QrSessi onCheck;
public class Audi oCapturePrevi ew extends Frane
i mpl enents Itenli stener {
static final Dinension nmeterDim= new Di nension (200, 25);
Checkbox previ enCheck;
Audi oLevel Met er audi oLevel Meter;
SequenceG abber grabber;
SGSoundChannel soundChannel ;
SPBDevi ce inputDriver;
bool ean grabbing = true;
publ i c Audi oCapturePreview() throws QTException {
super ("Audio Preview');
QrSessi onCheck. check();
set Layout (new GidLayout (3, 1));
add (new Panel ()); // reserved for next |ab
previ enCheck = new Checkbox ("Preview', false);
previ enCheck. addl t enli stener (this);
add (previ ewCheck);
audi oLevel Meter = new Audi oLevel Meter();
add (audi oLevel Meter);
/1 4th rowis reserved for later lab
set UpAudi oG ab();
grabbing = true;

}
public void itenttateChanged (ltenEvent e) {
try {
if (e.getSource() = = previewCheck) {
if (previewCheck.getState())
soundChannel . set Vol une (1. 0f);
el se
soundChannel . set Vol une (0. 0f);
}
} catch (QIException qte) {
qgqte.printStackTrace();
}
}

protected void set UpAudi oG ab() throws QIrException {
grabber = new SequenceG abber();
soundChannel = new SGSoundChannel (grabber);
Systemout.println ("Got SGAudi oChannel ") ;
Systemout. println ("SGChannelInfo =" +
soundChannel . get Soundl nput Paraneters());
Systemout. println ("SoundDescription =" +
soundChannel . get SoundDescription());
/'l prepare and start preview ng
gr abber . prepare(true, fal se);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

soundChannel . set Usage (St dQrConstants. seqG abPrevi ew);
soundChannel . set Vol une (0. 0f);
grabber.startPreview);
i nput Driver = soundChannel . getlnputDriver();
i nput Driver. setLevel MeterOnO'f (true);
int[] level Test = inputDriver.getActivelLevels();
Systemout.println (level Test.length + " active |levels");
/1l set up thread to update |evel neter
ActionLi stener tinerCallback =
new ActionListener() {
public void actionPerformed(Acti onEvent e) {
if (grabbing) {
try {
grabber.idle();
audi oLevel Meter.repaint();
} catch (QTException qte) {
gte.printStackTrace();

}

}
b
Timer timer = new Tinmer (50, timerCallback);
timer.start();
}
public static void main (String[] args) {
try {
Frame f = new Audi oCapturePreview);
f.pack();
f.setVisible(true);
} catch (QTrException qte) {
qte.printStackTrace();
}
}

public class Audi oLevel Met er extends Canvas {
public void paint (Gaphics g) {
/'l get current level if available

int level = 0;
if (inputDriver !'= null) {
try {
int[] levels = inputDriver.getActivelLevels();
if (levels.length > 0)
l evel = levels[0];

} catch (QTException gte) {
gte.printStackTrace();

}
}
float |evel Percent = level |/ 256f;
Systemout.println (level + ", " + |evel Percent);

/1 draw box
g. set Col or (Col or. green);
g.fill Rect (0, O,
(int) (level Percent * getWdth()),

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

getHeight());
}

public Di nension getPreferredSize() { return neterDim }

When run, the application brings up a small window with a green bar that indicates the current level
on the line, as seen in Figure 6-1. At maximum input volumeif you're speaking loudly and directly into
the microphoneit will stretch all the way to the right of the window.

Figure 6-1. Audio capture preview window

& O O Audio Preview

' Preview

There is also a Preview checkbox that is off initially. Clicking this will play the captured audio over the
headset or speakers.

6.1.2. What just happened?

The constructor does some simple AWT business, adding the Preview checkbox and an
Audi oLevel Met er, which is an inner class that will be explained shortly. Then it calls
set UpAudi oGrab().

set UpAudi oGrab() is responsible for initializing the audio capture. As described earlier, the first step
is to create a new SequenceGr abber object. Next, tell the grabber what you intend to do with it, via
the prepare() method, which takes two self-explanatory bool eans: pr epar eFor Previ ew and

pr epar eFor Record.

Tip: You don't have to call pr epar e() . Ifyoudon't, SequenceG abber will take care of its setup when you start grabbing,
possibly making the startup take longer.

You also need to tell the SGSoundChannel what you want to do via set Usage(), inherited from
SGChannel . As with all methods that take behavior flags, you logically OR together constants to

describe your desired usage. In this case, seqG abPr evi ewindicates that the application is only
previewing the captured sound, but you can use (and combine) four other usage constants:

seqG abRecord

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Include this if you want to record the captured media to disk.

seqG abPl ayDuri ngRecord

Add this to play while recording.

seqG abLowlLat encyCapt ure

Used to get the freshest frame possible (used for video conferencing and live image
processing).

seqG abAl waysUseTi neBase

Used by video channels to get more accurate audio/video sync.

At this point, the capture is initialized. Begin capturing audio with SequenceG abber 's
start Preview) method.

To create the level meter, it's necessary to get an SPBDevi ce, which provides low-level access to the
incoming data. This object provides level meters as an array of i nt s by first enabling monitoring with
set Level Meter OnOF f (t rue) and then followed by get Acti veLevel s(). The returned i nt s range
from O (silence), to 255 (maximum input volume). In the example, the Audi oLevel Met er inner class
gets the first level on each repaint and draws a box whose width is proportional to the audio level. A
Swing Ti ner calls r epai nt () on the meter every 50 milliseconds to keep it up to date.

Note: There may be multiple levels in the array, usually two for stereo input.

The repaint thread also calls i dl e() on the SequenceG abber, which is something you have to call as
frequently as possible to give the SequenceG abber time to operate.

Note: SequenceGrabber.idle() is a lot like "tasking" back in Chapter 2, except there's no convenience class to do it for you.

6.1.3. What about...

...defaulting the volume off with SoundChannel . set Vol une() ? This is a common practice because
some users' speakers will be close enough to their microphones to cause feedback when previewing
the audio to the speakers. On the other hand, users with headphones probably do want to hear the
preview. So, the best practice is "default off, but let the user turn it on."

Warning: One thing this demo lacks is a call to SequenceG abber . st op() when the user quits. This is something you should
usually do, but I've left it out to make a point. On Mac OS X, if you don't stop the SequenceG abber and you leave the volume on,
you will keep grabbing soundfeedback includedeven after the application quits. I've even seen this behavior survive a restart. So, try it

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

out, don't blow your speakers, and then remember to have your programs turn off the volume and call SequenceG abber . st op(
) when they quit.

[rrevious e s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

6.2. Selecting Audio Inputs

It's not realistic to think the user has only one audio input device. The computer might be connected
to a headset for audio conferencing, a webcam for video conferencing, and a camcorder for dumping
pictures of the summer vacation into iMovie. Ideally, it should be possible to discover connected
devices at runtime and specify which is to be used for capture.

6.2.1. How do | do that?

To provide a list of devices, you need to query the SGAudi oChannel for what devices are available,
and then present the choice to the user. So, take the code from the previous lab and add an AWT
Choi ce called devi ceChoi ce in the constructor (replacing a line with a comment that said "reserved
for next lab™). Next, after the SGSoundChannel is created in set UpAudi oGrab(), insert this block of
code to search for audio devices, adding the name of each to the devi ceChoi ce:

/'l create list of input devices
SCDevi celLi st devices = soundChannel . get Devi ceLi st (0);
i nt deviceCount = devices.getCount();
for (int i=0; i<deviceCount; i++) {
SCDevi ceNane devi ceNane = devi ces. get Devi ceNane(i);
/1 is it available?
if ((deviceNane.getFlags() &
St dQTConst ant s. sgDevi ceNaneFl agDevi ceUnavai | able) = = 0)
devi ceChoi ce. add(devi ceNane. get Nane());

You need to update the i t enfst at eChanged() callback to handle AWT events on the devi ceChoi cein
other words, when the user changes the selection. Fortunately, QuickTime allows you to change the
input device by passing in a name, so switching devices is pretty easy. Add this to

i t entt at eChanged(), inside the TRy-cat ch block:

} else if (e.getSource() = = deviceChoice) {
Systemout.println ("changed device to "+
devi ceChoi ce. get Sel ectedlten());
grabbing = fal se;
/1 grabber.stop();
soundChannel . set Devi ce (devi ceChoi ce. get Sel ectedlten());
/1 also reset inputDriver
i nput Dri ver = soundChannel . get | nputDriver();
i nput Driver. setLevel MeterOnOFf (true);

grabbi ng = true;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The boolean named gr abbi ng is a simple gate to keep the repaint thread from trying to get levels
while this device change is underway, because the old i nput Dri ver will be invalid once the new
device is set.

A demo of this technique, Sel ect abl eAudi oCapt ur ePr evi ew, is shown in Figure 6-2.

Figure 6-2. Discovering and displaying audio capture devices

| & OO Audio Preview
¥ Bullt-in Audio |
isight
Logitech USE Headset
P

Note: Run this example with ant run-ch06-selectableaudiocapturepreview.

6.2.2. What just happened?

The key to switching capture devices is a single call, SGSoundChannel . set Devi ce() , which lets you
change device mid-grab, without pausing or doing other reinitializations. It takes a device by name,
the same name that was retrieved by walking through the SGDevi celLi st .

6.2.3. What about...

...the "0" parameter on get devi ceLi st () ? This method takes flags, only one of which is even
relevant to QTJ.

Actually, it's easier to explain by starting further down, with the test for whether to add a device to
the Choi ce. The SGevi ceName used to identify the capture devices wraps not just a name string, but
also an i nt with some flag values. sgDevi ceNaneFl agDevi ceUnavai | abl e is the only publicly
documented flag. As seen in this example, to test for whether such a flag is set, you AND the value
with the flag you're interested in and check whether the result is nonzero. If so, it means that bit is
set. So, in this case, if the value is 0, the device is available (literally, it's "not unavailable™), so it's
OK to let the user select it.

If we were to return to the get devi celLi st (), the only flag available would be

sgDevi celLi st Dont CheckAvai | abi |'i ty, which skips the device availability check, meaning that flag
in SGevi ceName would never be set, and thus the device would never be reported as unavailable.
That's clearly undesirable behavior hereyou don't want to give the user an option that's only going to
throw an exception when she chooses it.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

6.3. Capturing Audio to Disk

Typically, you don't just capture media and immediately dispose of ityou want to save the media to
disk as you capture so that you can use it later. Fortunately, the SequenceGr abber makes this pretty

easy.

6.3.1. How do | do that?

Adding to the previous labs' code, the calls to set up the SequenceG abber need to be changed to
prepare for grabbing to disk. Specifically, the SGSoundChannel 's set Usage() call gets a flag to
indicate that it will be writing the captured audio to disk:

soundChannel . set Usage (StdQTConst ants. seqG abPrevi ew |
St dQTConst ant s. seqG abRecord) ;

Next, add a call to give the user an opportunity to configure the audio capture:

soundChannel . settingsDi al og();

Warning: The set ti ngsDi al og() call will crash Java 1.4.2 on Mac OS X if called from the AWT event-dispatch thread. Yes, it's
a bug. To work around this until the bug is fixed, you can stash the call in another thread and block on it. For instance, in this example
you could replace the set t i ngsDi al og() call with the following:

final SGSoundChannel sc = soundChannel ;
Thread t = new Thread() {
public void run() {

try {

sc.settingsDi al og();

} catch (QTException qte) ({
gte.printStackTrace();

}

}

}

t.start();

while (t.isAlive())
Thread.yield();

After starting the preview, tell the SequenceG abber where it should save the captured audio:

/'l create output file
grabFile = new QTFile (new java.io.File ("audiograb.nmv"));

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

if (grabFile.exists())
grabFile.delete();
gr abber . set Dat aCut put (gr abFi | e,
St dQTConst ant s. seqG abToDi sk
/1 seqG abDont AddMovi eResour ce) ;

)

Finally, start recording to this file with start Record() :

grabber . start Record();

The last step is to provide a Stop button because the data is written to disk only when the
SequenceG abber. st op() method is called. This Stop button is added near the bottom of the
constructor, before the SequenceG abber is set up:

stopButton = new Button ("Stop");
st opButt on. addActi onLi stener (this);
add (stopButton);

The button requires a new Acti onEvent Li st ener to make the SequenceG abber. st op() call and
close down the sample program:

public void actionPerformed (ActionEvent e) {

if (e.getSource() = = stopButton) {
Systemout.println ("Stop grabbing");
try {

if (grabber !'= null) {
gr abber. stop();
}
} catch (QTException qte) {
gte.printStackTrace();

} finally {
Systemexit (0);
}

Note: Run this example with ant run-ch06-audiocapturetodisk.

When this Audi oCapt ur eToDi sk sample program runs, the user sees an audio settings dialog, as
shown in Figure 6-3.

Figure 6-3. Audio channel settings dialog

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Sound

Compressien Sample | Source |

¥ Bullt-in Audio Speaker: | Off While Recording |51
Internal microphone
Yolume: Bk
isight m
Gain: = b
oooooopoooon

Level: gopopOO0O0C00

Im; 44104 kiz 16 bat Stereo Hone
Rec: 44100 kMz 16 bit Stereo None - 1
Cancel | & QK—)

After OKing the settings dialog, the capture begins. When the user clicks Stop, the SequenceG abber
writes and closes the audiograb.mov file and the program exits.

6.3.2. What just happened?

Requesting that the SequenceG abber save to disk requires just the few extra steps detailed earlier:

1. Add seqGrabRecord to the channel's set Usage() call.

Tip: At this point, you optionally can call the channel's set t i ngsDi al og() to give the user a chance to configure the
capture.

2. CallsetQut put() on the SequenceG abber .
3. Call SequenceG abber. start Record() .

Also, the SequenceG abber must be explicitly st op() ped to write the captured data to disk.

6.3.3. What about...

...the SequenceG abber . prepare() call? If the second argument is pr epar eFor Recor d, why isn't
that set to TRue for this example? Well, inexplicably, when I did set it to TRue, | started getting
erroneous "dskFulErr" exceptions every time 1 i dl e() d, even though | had 9 GB free. No, | don't
know whyit's totally insane. But given the choice of what should work and what does work, I'll go
with the latter.

And what is the deal with the settings dialog? Could that have been used in the preview examples?
Yes, absolutely. In fact, it's important to let the user adjust things like gain, or to specify a
compressor before grabbing begins. But that's more important when you're actually grabbing to disk,
so | held off introducing it until now.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Note: Actually, it's usually best to capture uncompressed, so the CPU doesn't get bogged down with compression and possibly slow
down the capture rate.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

6.4. Capturing Video to Disk

Audio capture is nice, but if you bought this book because the sticky-note on the cover lists "capture"
as one of the topics to be covered, you probably figured it meant video capture. Is there an iSight on
the top of your monitor that wants some attention? OK, here's how to turn it on and grab some
video.

6.4.1. How do | do that?

As with audio capture, the basics of setting up capture are:

1. Create a SequenceG abber.

2. Create and configure (with set Usage() and the settingsDi al og()) the channels you're
interested inin this case, an SGVi deoChannel .

3. Call SequenceG abber. set Qut put () to indicate the file to capture to.

4. Call SequenceG abber. start Record() to begin grabbing to disk.

5. Finish up with SequenceG abber. stop().
There is, however, a big difference with video. With no on-screen preview component available in QTJ
6.1, you must indicate where the SequenceG abber can draw to. The workaround is to create an off-

screen QDGr aphi ¢cs and hand it to the SequenceG abber via the set G\r | d() call.

The Vi deoCapt ur eToDi sk program, presented in Example 6-2, offers a bare-bones video capture to
a file called videograb.mov.

Note: Run this example with ant run-ch06-videocapturetodisk

Example 6-2. Recording captured video to disk

package comoreilly.gtjnotebook. ch06;

i mport quicktine.*;

i mport quicktine.io.*;

i mport quicktine.std.*;

i mport quicktine.std.sg.*;

i mport quicktine.std. novies. *;
i mport quicktine.std.inage.*;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i nport quicktinme.qd. *;
i nport quicktinme.sound. *;
inport java.awt.*;
i nport java.awt.event.*;
i nport javax.sw ng. Ti ner;
inport comoreilly.qgtjnotebook.ch0l. QrSessi onCheck;
public class VideoCaptureToDi sk extends Frane
i mpl ements ActionListener {
SequenceG abber grabber;
SGVi deoChannel vi deoChannel ;
QDG aphi cs gw,
(QDRect grabBounds;
bool ean grabbi ng;
Button stopButton;
QTFil e grabFile;
public Vi deoCaptureToDi sk() throws QIrException {
super ("Video Capture");
QrSessi onCheck. check();
set Layout (new GidLayout (2, 1));
add (new Label ("Capturing video..."));
st opButton = new Button ("Stop");
st opBut t on. addAct i onLi stener (this);
add (stopButton);
set UpVi deoGrab();

public void actionPerfornmed (ActionEvent e) {
if (e.getSource() = = stopButton) {
Systemout.println ("Stop grabbing");
try {
grabbing = fal se;
if (grabber !'= null) {
gr abber. stop();
}
} catch (Exception ex) {
ex. print StackTrace();

} finally {
Systemexit (0);
}

}

protected void setUpVideoGab() throws QIException {
grabber = new SequenceG abber();
Systemout.println ("got grabber");
/1 force an offscreen gworld
grabBounds = new @Rect (320, 240);
gw = new QDG aphics (grabBounds);
grabber.setGMrlid (gw, null);
/'l get videoChannel and set its bounds
vi deoChannel = new SGVi deoChannel (grabber);
Systemout.println ("Got SGVi deoChannel ") ;
vi deoChannel . set Bounds (grabBounds);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/'l get settings
/'l yikes! this crashes java 1.4.2 on nmac os x!
vi deoChannel . settingsDi al og();
/'l prepare and start preview ng
/'l note - second prepare arg should seem ngly be false,
/1l but if it is, you get erroneous dskFul Err's
vi deoChannel . set Usage (StdQrConstants. seqG abRecord);
grabber. prepare(fal se, true);
grabber.startPreview);
/'l create output file
grabFile = new QTFile (new java.io.File ("videograb.nov"));
gr abber . set Dat aQut put (gr abFi |l e,
St dQTConst ant s. seqGr abToDi sk
/| seqG abDont AddMovi eResour ce) ;
);
grabber.startRecord();
grabbing = true;
/'l set up thread to idle
ActionLi stener tinerCallback =
new ActionListener() {
public void actionPerformed(Acti onEvent e) {
if (grabbing) {
try {
grabber.idle();
gr abber . update(nul) ;
} catch (QTException qte) {
gte.printStackTrace();

}

}
b
Timer timer = new Tinmer (50, timerCallback);
timer.start();

}

public static void main (String[] args) {
try {
Frame f = new Vi deoCapt ureToDi sk();
f.pack();
f.setVisible(true);
} catch (QTException qgqte) {
qgqte.printStackTrace();

}

Note: Run this example with ant run-ch06-videocapturetodisk.

When it starts up, the program shows a settings dialog for your default camera, as seen in Figure 6-
4. The video settings dialog is even more important for users than the audio settings dialog, as the
video dialog gives them a chance to aim the camera, check the lighting, adjust brightness and color,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

etc.

Figure 6-4. Video channel settings dialog

WVidaa

Addpastimerts - Domgreision SOUrCE

Comporant Vides - CCIR-G0T uwsy =]

Chaality

3
Leawt Liras Sadum High Bt

Pl ostizen

Frames par spiond G}

Captare fram: iSight
Camgress with

Cancel | o)

Warning: Just like its audio equivalent, calling SGVi deoChannel . setti ngsDi al og() will crash the virtual machine in Mac
OS X Java 1.4.2 if called from the AWT event-dispatch thread. And just as before, you can work around this bug by firing off the

settingsDi al og() callinits own thread and blocking until the thread finishes. I've filed it as a bug, but feel free to file a
duplicate to get Apple's attention.

Once you click the Stop button, the video is written to videograb.mov and the application terminates.
You can view the captured movie in any QuickTime applicationkFigure 6-5 shows it in the
Basi cQrControl | er demo from Chapter 2.

Figure 6-5. Captured video playing in a window

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.4.2. What just happened?

The critical step in doing video capture, at least until QuickTime adds on-screen preview, is to create
an off-screen QDGr aphi cs and set that as the SequenceG abber's G\r | d:

/1l force an offscreen gworld
grabBounds = new Q@Rect (320, 240);
gw = new QDG aphi cs (grabBounds);
grabber.setGMrlid (gw, null);

In previous versions of QTJ, this wasn't necessary because the on-screen preview provided a G\r | d
that the grabber could use. With no on-screen preview currently available in QTJ, this is a handy
technique.

The next step is to create an SGVi deoChannel from the SequenceG abber and set its bounds. After
optionally showing a settings dialog, set the usage (just seqG- abRecor d this time because there's no
preview) and then call prepar e(fal se, true), which prepares the SequenceG abber for recording
but not for previewing.

Note: This time, setting the second prepare() argument to true is the right thing to do.

Just as with audio, the final steps are to call set Dat aQut put () on the SequenceG abber , followed
by start Record(). When SequenceG abber. stop() is called, the file is written out and closed up.

6.4.3. What about...

...using this on Windows...it doesn't find my webcam! This example presupposes that a video digitizer
component for your camera will be found, and a lot of video cameras don't ship with a Windows
QuickTime "vdi g", supporting only Microsoft's media APIs instead. However, there's hope: you can
use SoftVDIG from Abstract Plane (http://www.abstractplane.com.au), which acts as a proxy to bring
captured video from the Microsoft DirectShow world into QuickTime.

downloaded from: lib.ommolkefab.ir

http://www.abstractplane.com.au
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

6.5. Capturing Audio and Video to the Same File

So, it's possible to capture audio and video in isolation. With QuickTime's editing API, it would be
possible to put them in the same movie by adding each as a separate track (see Chapter 3). But
wouldn't it be nice to just capture both audio and video into the same file at once, presumably
keeping them in sync along the way? Fortunately, SequenceG abber supports this, too.

6.5.1. How do | do that?

Starting with the previous lab's video-only example, you just need to add an SGSoundChannel in the
set UpVi deoGrab() method:

soundChannel = new SGSoundChannel (grabber);

The set Usage() and prepar e() commands are identical to what was shown in the audio-only and
video-only labs:

/'l prepare and start preview ng

vi deoChannel . set Usage (StdQrConstants. seqG abRecord);

soundChannel . set Usage (StdQrConstants. seqG abPrevi ew |
St dQrConst ant s. seqG abRecord) ;

soundChannel . set Vol une (0. 0f);

grabber . prepare(fal se, true);

grabber.startPreview);

Beyond that, everything is the same as in the video-only case. Because the set Dat aCut put () call is
made on the SequenceG abber not just on an individual channelthe grabber writes data from all the
channels it's capturing into the same file, called audiovideograb.mov in this case.

Note: Run this example with ant run-ch06-audiovideocapturetodisk.

6.5.2. What just happened?

For once, the SequenceG abber APIs behave pretty much as you might expect them to. With no
obvious prohibition on creating both audio and video channels from the same SequenceG abber, and
assigning the grabber's output to a file, the captured data from both channels goes into a single
movie file.

[oreviovs fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

6.6. Making a Motion Detector

Capture isn't just about writing data to disk. You can grab images as they come in and analyze or
manipulate them.

Tip: A great example of "grabbing different" is Lisa Lippincott's ScrollPlate, a demo shown at ADHOC 2004. She used her iSight camera
as a scroll wheel, by holding up a Styrofoam plate with either a large green arrow (for up) or a large red arrow (for down). Her code
presumably grabbed from the camera, looked at the grabbed image for an abundance of green or red, and scrolled the top window in
response.

This example offers a simple motion detector, which will display an alarm message if two subsequent
grabs are markedly different. The idea is that if the camera is not moving, a significant difference
between two subsequent grabs indicates that something in view of the camera has moved.

6.6.1. How do | do that?

In this case, what you want to do is to set up video-only capture, but instead of saving the data to
disk, you do a little bit of image processing each time you i dl e() . Specifically, there is a method in
Qrl mage calledget Simlarity(), which compares two images (one as a QDG aphi cs and the other
as an Encodedl nage). Motionobjects entering, exiting, or significantly moving within the camera'’s
field of visioncan be understood as a significant difference between two consecutive grabbed images.

Note: See Chapter 5 for more on QTImage, QDGraphics, and Encodedimage.

Unfortunately, this requires jumping through quite a bit of QuickDraw hoops once an image is
grabbed from the camera. Example 6-3 shows the Si npl eMot i onDet ect or code.

Note: Run this example with ant run-ch06-simplemotiondetector.

Example 6-3. Detecting motion by comparing grabbed images

package comoreilly.gtjnotebook. ch06;

i mport quicktine.*;

i mport quicktine.io.*;

i mport quicktine.std.*;

i mport quicktine.std.sg.*;

i mport quicktine.std. novies. *;

i mport quicktine.std. novi es. nedi a. *;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i nport quicktine.std.inage.*;
i nport quicktinme.qd. *;
i nport quicktinme.sound. *;
i nport qui cktinme.app. view *;
inport quicktime.util.*;
inport java.awt.*;
i nport java.awt.event.*;
i nport javax.sw ng. Ti ner;
i nport java.text.?*;
inport comoreilly.qgtjnotebook.ch0l. QrSessi onCheck;
public class SinpleMtionDetector extends Frane
i mpl ements ActionListener {
SequenceG abber grabber;
SGVi deoChannel vi deoChannel ;
QDG aphi cs gw,
(QDRect grabBounds;
bool ean grabbi ng;
Button stopButton;
Pi ct grabPict;
byte[] inportPictBytes;
Component i nport er Conponent ;
Label notionLabel;
Graphi csl nporter inporter;
RawEncodedl nmage | ast| nage;
| mageDescri ption | astlnmageDescription;
byte[] IastlnageBytes;
QDG aphi cs new mageGW
int thunmbcount = O;
/'l lesser nunbers are nore different (0 = = totally different)
/'l public static float trigger = 0.0002f;
public static float trigger = 0.002f;

public SinpleMtionDetector() throws QIException {
super ("Sinple Mtion Detector");
QrSessi onCheck. check();
set Layout (new BorderLayout());
not i onLabel = new Label ();
not i onLabel . set For eground (Col or.red);
add (notionLabel, BorderLayout.NORTH);
st opButton = new Button ("Stop");
st opBut t on. addAct i onLi st ener (this);
add (stopButton, BorderlLayout.SOUTH);
inporter = new G aphicslnporter (StdQrConstants. kQIFil eTypePi cture);
i mport er Conponent =
QTFact ory. makeQrConponent (i nporter).asConponent ();
add (i nporterConponent, BorderLayout. CENTER);
set UpVi deoGrab();

}
public void actionPerfornmed (ActionEvent e) {
if (e.getSource() = = stopButton) {
Systemout.println ("Stop grabbing");
try {

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

grabbing = fal se;
if (grabber !'= null) {
gr abber. stop();
}
} catch (Exception ex) {
ex. printStackTrace();

} finally {
Systemexit (0);
}

}

}
protected void setUpVideoGab() throws QIException {

grabber = new SequenceG abber();
Systemout.println ("got grabber");
/1l force an offscreen gworld
grabBounds = new @Rect (320, 240);
gw = new QDG aphi cs (grabBounds);
grabber.setGMrlid (gw, null);
/'l get videoChannel and set its bounds
vi deoChannel = new SGVi deoChannel (grabber);
Systemout.println ("Got SGVi deoChannel ") ;
vi deoChannel . set Bounds (grabBounds);
/'l get settings
/'l yikes! this crashes java 1.4.2 on nmac os x!
/'l videoChannel . settingsDi al og();
/'l prepare and start preview ng
vi deoChannel . set Usage (St dQrConstants. seqG abPrevi ew);
gr abber. prepare(true, false);
grabber.startPreview);
/'l get first grab, so we're ready
/'l to calc diff's and draw conponent
scanForDi fference();
updat el nportedPict();
grabbing = true;
/1l set up thread to idle
Acti onLi stener tinerCallback =
new ActionListener() {
public void actionPerformed(Acti onEvent e) {
if (grabbing) {
try {
grabber.idle();
gr abber . update(nul) ;
scanFor Di fference();
updat el nportedPict();
} catch (QTException qte) {
gte.printStackTrace();

}

}
b
Timer tinmer = new Tinmer (2000, timerCallback);
timer.start();

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

}
protected void scanForDifference() throws QTException {
/'l this seens |ike overkill, but the GWwe give
/'l the grabber doesn't get updated. Picts returned
/'l from grabber are different each tinme, so use 'em
if (newl mageGW = = null)
new mageGW = new QDG aphi cs (grabBounds);
grabPi ct = grabber. grabPict (grabBounds, 0, 0);
grabPi ct. draw (newl mnageGW grabBounds) ;
if (lastlmage !'= null) {
/'l conpare to |ast inmage
float simlarity = QTlnmage.getSinmlarity (newl mageGW
gr abBounds,
| ast | mageDescri pti on,
| ast | mage) ;
Systemout.println ("simlarity = =" +
formatter.format(simlarity));
if (simlarity < trigger) {
Systemout.println ("*** Mtion detect ***");
not i onLabel . set Text ("notion detect");
} else {
nmot i onLabel . set Text ("");

}
}
/'l create a new |l astlnage from grabber GMrld
int bufSize =

Qrl mage. get MaxConpr essi onSi ze (nhew nageGW
newl mageGW get Bounds(),
0,
St dQTConst ant s. codecNor mal Qual i ty,
St dQrConst ant s. kRawCodecType,

CodecConponent . anyCodec) ;
/'l make new | astl mage

| ast | mageByt es = new byt e[buf Si ze] ;

| ast | mage = new RawEncodedl mage (I astl nageBytes);

| ast | mageDescri ption =

Qrl mage. conpr ess(hewl nageGW

newl mageGW get Bounds(),
St dQTConst ant s. codecNor mal Qual i ty,
St dQTConst ant s. kRawCodecType,
| ast | mage) ;

protected void updatel nportedPict() throws QIException {
i mport Pi ctBytes = new byte [grabPict.getSize() + 512];
grabPi ct. copyToArray (O,
i mport Pi ct Byt es,
512,
i nportPi ctBytes.length - 512);
Pict wapperPict = new Pict (inportPictBytes);
Dat aRef ref = new DataRef (w apperPict,
St dQTConst ant s. kDat aRef QTFi | eTypeTag,
"PICT");

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i nporter.setDataReference (ref);
i mporter.draw();
if (inporterConmponent != null)
i mport er Conponent.repaint();
/1 wrapperPict.di sposeQTObj ect();

}
public static void main (String[] args) {
try {
Frame f = new Sinpl eMbtionDetector();
f.pack();

f.setVisible(true);
} catch (QTException qte) {
gte.printStackTrace();
}

When running, if two frames differ by more than a specified amount, the label "motion detect" will
appear at the top of the window. Figure 6-6 shows the running application.

Figure 6-6. Video motion detector window

-

rﬂ ™ O Simple Motion Detector |

ation detect

6.6.2. What just happened?

This is a huge example, but much of it draws on the video-grabbing techniques of the previous two
labs. set UpVi deoGr ab() sets up the SequenceG abber for grabbing video, but in this case, it doesn't
need to save to disk, so the set Usage() argument is seqG abPr evi ew, and the arguments to
prepare() are true and f al se (for preview and record, respectively). A Swing Ti ner calls back
every two secondsthe long delay is intentional, so the potential for change between grabbed frames

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

is greaterand calls the SequenceGr abber i dl e() and update() methods, followed by calls to the
brains of this example: scanFor Di f f erence() and updatePict().

scanForDi fference() evaluates the difference between the current frame and the last one. It does
this by grabbing a Pi ct from the SequenceG abber and drawing it into a QDG aphi cs (also known as
a Gwor | d). It compares this GWr | d to an Encodedl nage of the last grab, via the

Qrl mage. get Simi |l arity() method. This method returns a f | oat that expresses the similarity of the
two grabbed images, where 0 means the images are totally different and 1 means they're identical.
At the end of this method, QTl nage. conpress() is used to compress the grabbed GWr | d into a new
Encodedl nage for use on the next call to scanFor Di fference().

Note: It might be better to call scanFor-Difference() on another thread, so the image analysis doesn't block the repeated calls to
SequenceGrabber.idle().

updat ePi ct () updates a Graphi csl nporter that is used to provide the preview image in the
middle of the window. This uses a Pi ct -to-Gr aphi csl npor t er TRick that was introduced in Chapter
5s Section 5.4 lab. In this case, it's used not to get a Java AWT | mage, but to get new pixels into a
Gr aphi csl npor t er , which is wired up to a QTConponent for on-screen preview.

6.6.3. What about...

...the ideal value for triggering a difference? It probably depends on lighting, your camera, and other
factors. In a professional application, you'd want to give the user a slider or some similar means of
configuring the sensitivity of the detection.

Also, there seems to be a lot of inefficient code here, particularly with drawing into the new nageG\
Why is that necessary when the G abber was initially set up with a brand-new off-screen QDG aphi cs
/GWr | d? This, admittedly, is weird. When | was debugging, | found that the GMr | d used to set up
the G abber is drawn to once and never again. On the other hand, the Pi ct generated from
SequenceG abber. grabPi ct () is always fresh, so that's what's used for testing similarity. However,
to apply thegetSinmilarity() method, you need to have a GMr | d, so you Pi ct.draw() the pixels
from the Pi ct into the GW\r | d.

Come to think of it, with this application updating the component with a new grab every couple of
seconds, isn't that effectively an on-screen preview? Yes, it is, in an extraordinarily roundabout way.
You could take out the motion-detecting stuff and make a preview component by just grabbing a

Pi ct each time, making a new Pi ct with a 512-byte header, setting the Graphi csl nport er to read
that, and calling Gr aphi csl nporter.draw() to draw into its on-screen component. | didn't split that
out as its own lab because the performance is pathologically bad (one frame per secondat best), and
because it's an awkward workaround in lieu of a better way of getting a component from a
SequenceG abber . Presumably, someday there will be a proper call to get a QrConponent from a
SequenceG abber maybe another overload of QTFact ory. makeQIConponent () and kludgery like this
won't be necessary.

(ereviovs [er s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Chapter 7. Audio Media

This is the first of three chapters dealing with specific media types. Video will be covered in Chapter
8, and several other kinds of mediaincluding things you might not have thought of as media, such as
text and time codeswill be covered in Chapter 9.

It's possible that you've never thought of QuickTime as being the engine for audio-only
applicationsthe ubiquity of QuickTime's .mov file format probably makes it more readily recognized as
a video standard. But QuickTime's support for audio has been critical to many applications. For
example, the fact that QuickTime was already ported to Windows made bringing iTunes and its music
store over to Windows a lot easier.

In fact, iTunes is probably responsible for getting QuickTime onto a lot more Windows machines than

it would have reached otherwise. So, I'll begin with a few labs that are particularly applicable to the
MP3s and AACs collected by iTunes users.

(erevious fluexr

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

7.1. Reading Information from MP3 Files

If you've ever listened to an MP3 music fileand at this point, who hasn'tyou've surely appreciated the
fact that useful information like artist, song title, album title, etc., is stored inside the file. Not only
does this make it convenient to organize your music, but also, when you move a song from one
device to another, this metadata travels with it.

The most widely accepted standard for doing this is the ID3 standard, which puts this metadata into
parts of the file that are not interpreted as containing audio dataMP3s arrange data in frames, and
ID3 puts metadata between these frames. ID3 tags typically are found at the beginning of a file,
which makes them stream-friendly, although some files tagged with earlier versions of the standard
have the metadata at the end of the file.

Note: Visit http://www.id3.org/ to learn more about ID3.

When QuickTime imports an MP3 file, it reads ID3 tags and makes them available to your program
through the movie's user data, allowing you to display the tags to the user, or use them in any other
way you see fit.

7.1.1. How do | do that?

Once you open an MP3 as a movie, you need to get at the user data, which contains the imported
ID3 tags. Fortunately, it's wrapped as an object called User Dat a:

UserData userData = novie. getUserData();

The user data is something of a grab bag of data that you can read from and write to freely. Items
are keyed by FOUR_CHAR CODEs, and the contents aren't required to adhere to any particular

standard or format (after all, you're free to write whatever you like in user data). For example,
QuickTime Player writes a "WLOC" enTRy that stores the window location last used for the movie.

Apple has a standard set of keys that you can use to retrieve the data parsed from an MP3's ID3
tags. Because these are text values, you use User Dat a's get Text AsString() method to pull them
out. get Text AsStri ng() takes three arguments: the type you're requesting; an index to indicate
whether you want the first, second, etc., instance of that type; and a region tag that's irrelevant in
the ID3 case.

Example 7-1 shows a basic exercise of this technique, getting the User Dat a object and asking for
album, artist, creation date, and song title information.

Note: Run this example from the downloadable book code with ant run-ch07-id3tagreader.

downloaded from: lib.ommolkefab.ir

http://www.id3.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Example 7-1. Retrieving 1D3 metadata

package comoreilly.gtjnotebook.ch07;

i mport quicktine.*;

i mport quicktine.std.*;

i mport quicktine.std. novies. *;

i mport quicktine.std. novi es. nedi a. *;
i mport quicktine.io.*;

import java.util.*;

import comoreilly.qtjnotebook.chOl. QTSessi onCheck;
public class | D3TagReader extends Ohject {

/* these values are straight out of Myvies.h
*/

final static int kUserDataText Al bum

final static int kUserDataTextArti st

final static int kUserDataText Creati onDate
final static int kUserDataText Ful | Name

0xA9616C62; /*' Calb' */
0xA9415254;

0xA9646179; /*'cCday' */
OxA96E616D; /*' ©nam */

/[* This array maps all the tag constants to hunman-readabl e strings
*/
private static final Object][][] TAG NAMES = {
{new I nteger (kUserDataTextAl bun), "Al bun'},
{new I nteger (kUserDataTextArtist),"Artist" },
{new I nteger (kUserDataTextCreationDate), "Created"},
{new I nteger (kUserDataTextFull Nane), "Full Nane"}

}s

private static final HashMap TAG MAP =
new HashMap(TAG_NAMES. | engt h) ;
static {
for (int i=0; i<TAG NAMES.length; i++) {
TAG_MAP. put (TAG_NAMVES[i][0],
TAG NAMVES[i][1]);

}

public static void main (String[] args) {
new | D3TagReader ();
System exi t (0);

}

public | D3TagReader() {

try {
QrSessi onCheck. check();
QTFile f = QTFil e.standardGetFil ePreview (null);
OpenhMbvi eFil e onf = OpenMovi eFi | e. asRead(f);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Movie novie = Movie.fronFile (onf);
/'l get user data
User Dat a userData = novi e. getUserData();
dunpTagsFr onJser Dat a(user Dat a) ;

} catch (Exception e) {
e.printStackTrace();

}

}

protected static void dunpTagsFromJserData (UserData userData) {
/'l try for each key in TAG NMVAP
Iterator it = TAG MAP. keySet().iterator();
while (it.hasNext()) {
Integer key = (Integer) it.next();
int tag = key.intValue();
String tagName = (String) TAG MAP. get (key);
try {
String value =
user Dat a. get Text AsString (tag,
1,
| Const ant s. | angUnspeci fi ed);
Systemout.println (tagNane + ": " + val ue);
} catch (QTrException qte) { } // no such tag

When run, this dumps the found tags to standard out, as seen in the following console output:

cadanson% ant run-ch07-i d3tagreader
Bui l dfile: build.xm

run-ch07-i d3t agr eader :
[javal] Album Arthur O The Decline And Fall O The British Enpire
[java]l Full Name: Victoria
[java] Artist: The Kinks

7.1.2. What just happened?

The application sets up some static values for keys it is interested in and maps them to human-
readable names. For example, the FOUR_CHAR _CCDE "@l b" is mapped to "Album."

The program prompts the user to select an MP3 file and imports it as a movie, from which it gets a
User Dat a object. In dunpTagsFronlser Dat a(), it calls get Text AsStri ng() to attempt to get a
value for each known tag. If successful, it writes the key and value to the console. If a given tag is
absent from the user data, QuickTime throws an exception, which this program quietly ignores.

QuickTime has an important and disappointing limitation: it does not import tags written in non-
Western scripts. For example, here's the output when | run the application against an MP3 whose

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

"artist” tag is in Japanese kana (characters):

cadanson% ant run-ch07-i d3tagreader

Bui l dfile: build. xm

run-ch07-i d3t agr eader:

[java]l] Al bum COABOY BEBOP O.S. T.1

[java] Created: 1998

[java] Full Nane: SPACE LION

Because the artist (£~ |-, or "Yoko Kanno" in romaji) is written in non-Western characters,
QuickTime doesn't attempt to import it, and thus there's no artist item to retrieve from the user data.

7.1.3. What about...

...other tags? A big list of metadata tags are defined in the native API's Movies.h file. Unfortunately,
these aren't in the St dQTConst ant s classes, or anywhere else in QTJ, so you have to define your own

constants for them. Table 7-1 is the list of supported values.

Table 7-1. Audio metadata tag constants

Constant name

kUser Dat aText Al bum

kUser Dat aText Arti st

kUser Dat aText Aut hor

kUser Dat aText Chapt er

kUser Dat aText Comrent

kUser Dat aText Conposer

kUser Dat aText Copyri ght

kUser Dat aText Cr eat i onDat e

downloaded from: lib.ommolkefab.ir

Hex value

0xA9616C62

0xA9415254

0xA9617574

0xA9636870

0xA9636D74

0xA9636F6D

0xA9637079

0xA9646179

4CC
Cal b

Caut

Cchp

©day

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Constant name Hex value 4CC
kUser Dat aText Descri ption 0xA9646573 Cdes
kUser Dat aText Di r ect or 0xA9646972 cdir
kUser Dat aText Di scl ai ner 0xA9646973 Cdi s
kUser Dat aText EncodedBy OXA9656E63 ©enc
kUser Dat aText Ful | Name OxA96E616D ©nam
kUser Dat aText Genr e OxA967656E ©gen
kUser Dat aText Host Conput er 0xA9687374 Chst
kUser Dat aText | nf or mati on OxA9696E66 @ nf
kUser Dat aText Keywor ds 0xA96B6579 Ckey
kUser Dat aText Make 0xA96D616B ©nmak
kUser Dat aText Model 0xA96D6F64 ©nod
kUser Dat aText Ori gi nal Arti st OXA96F7065 ©ope
kUser Dat aText Ori gi nal For mat 0xA9666D74 ©f nt
kUser Dat aText Ori gi nal Sour ce 0xA9737263 ©src
kUser Dat aText Per f ormers 0xA9707266 Cprf
kUser Dat aText Producer 0xA9707264 ©prd
kUser Dat aText Product 0xA9505244 CPRT
kUser Dat aText Sof t war e OxA9737772 Cswr

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Constant name

kUser Dat aText Speci al Pl ayback
Requi renent s

kUser Dat aText Tr ack

kUser Dat aText War ni ng

kUser Dat aText Witer

kUser Dat aText URLLiI nk

kUser Dat aText Edi t Dat el

Hex value

O0xA9726571

0xA974726B

OxA977726E

OXA9777274

O0xA975726C

0xA9656431

Creq

Crk

o n

©wrt

Cedl

4CC

Also, instead of requesting specific keys from the user data, can | just tour what's in there? Yes, you
can use User Dat a. get Next Type() to discover the types of items in the user data. This method takes
ani nt of the last discovered type (use 0 on the first call), and returns the next type after that one.
When it returns 0, there are no more types to discover. Given a type, you can get its data with

get Text AsString() , but because you can't know that a discovered piece of user data necessarily
represents textual data, it might be safer to call get dat a(), which returns a QTHandl e, from which

you can get a byte array with get Bytes() .

Note: This technique is a lot like the "Discovering All Installed Components" lab in Chapter 4.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

7.2. Reading Information from iTunes AAC Files

If you read the last lab and thought about how ID3 metadata is imported into a QuickTime movie's
User Dat a, you might well expect that the same thing would be true of AAC files created by iTunes:
.m4a files for songs "ripped" by the user and .m4p files sold by the iTunes Music Store. In fact,
because these files use an MPEG-4 file format that is itself based on QuickTime, you might think that
using the same user data scheme would be a slam dunk.

But...you'd be wrong.

These AAC files do put the metadata in the user data, but they do so in a way that resists
straightforward retrieval via QuickTime. Fortunately, it's not too hard to get the values out with some
parsing.

Note: Buckle up, this one is rough.

7.2.1. How do | do that?

For once, theory needs to come before codeyou need to see the format to understand how to parse
it. Here's a/ usr/ bi n/ hexdunp of an iTunes Music Store AAC file from my collection, Toto Dies.m4p:

0000b010 00 3d 5f 3c 00 3d 7d 5e 00 3d 9a fb 00 03 18 da |.=_<.=}".=...... |
0000b020 75 64 74 61 00 03 18 d2 6d 65 74 61 00 00 00 00 |udta....neta....|
0000b030 00 00 00 22 68 64 6 72 00 00 00 OO 00 00 00 OO0 |..."hdlr........ |
0000b040 6d 64 69 72 61 70 70 6¢c 00 00 00 OO 00 00 00 00 |mdirappl........ |
0000b050 00 00 00 03 11 9b 69 6¢c 73 74 00 00 00 21 a9 6e |...... ilst...!l.n|

0000b060 61 6d 00 00 00 19 64 61 74 61 00 00O 00 01 00 00 |

0000b070 00 00 54 6f 74 6f 20 44 69 65 73 00 00 00 24 a9

0000b080 41 52 54 00 00 00 1c 64 61 74 61 00 00 00 01 00 |ART....data.....
0000b090 00 00 00 4e 65 6¢ 6C 69 65 20 4d 63 4b 61 79 00 |...Nellie MKay.
0000b0a0 00 00 24 a9 77 72 74 00 00 00 1c 64 61 74 61 00 |..$.wt....data.
0000bObO 00 00 01 00 00 OO 00 4e 65 6¢ 6C 69 65 20 4d 63 |....... Nel lie M|
0000b0OcO 4b 61 79 00 03 Oe 76 63 6f 76 72 00 03 Oe 6e 64 |Kay...vcovr...nd|
0000b0OdO 61 74 61 00 00 OO Od OO 00 OO 00 ff d8 ff e0 00 J|ata............. |
0000b0e0 10 4a 46 49 46 00 01 01 01 02 f9 02 f9 00 00 ff |.JFIF. |

Granted, this is not easy to read, but I'll bet you can pick out the artist (Nellie McKay) and the song
title ("Toto Dies™), so you know this is the relevant section of the file. In fact, you also might notice
the string "udt a"...sounds a little like "user data," doesn't it?

At work here is the QuickTime file format and its concept of atoms, which are tree-structured pieces

of data used to describe a movie, its contents, and its metadata. Without going too deeply into the
detailsthere's a whole book on the formateach atom consists of 4 bytes of size, a 4-byte type, and

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

then data. Atoms contain either data or other atoms, but not both. The 4 bytes before "udt a”,
0x000318da, indicate the size of all the user data. The first child is an atom called "net a". Because its
size is 0x000318d2, just 8 less than the size of "udt a”, the "net a" atom is clearly the only child of
"udt a".

Unfortunately, because this is user data, the contents don't have to adhere to any published
standard, and they don't. The first thing after "net a" should be the 4-byte size of its first child atom,
but the value is 0x00000000an illegal "no size" valueso, a normal QuickTime parser would ignore the
contents of "net a".

Funny thing is, although these contents aren't real QuickTime atoms, they're awfully close. Start with
the stuff that's obviously the metadata and work backward: "Toto Dies" is preceded by an 8-byte pad
(0x00000001 and 0x00000000), and before that is "dat a" and a 4-byte number. That number,
0x00000019, is the size of itself, plus "dat a", plus the 8-byte pad, plus the string "Toto Dies." And
just before that, you'll find the string "©nant', preceded by a 4-byte size. Better yet, "@nant' is one of
the constants defined in Movies.h for metadata tagging.

Note: See the previous lab for a list of QuickTime's metadata tags.

Dig further and you'll find that there's a run of these tag-name/data structures, each of which has
the structure discovered earlier:

Full size

4 bytes

Type

4 bytes

Contents size

4 bytes

ndat au

4 bytes

Unknown

8 bytes

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Value
Variable number of bytes (size is implicit from earlier size data)

The run of metadata blocks exists within a single pseudo-atom parent called "i | st . So, this analysis
provides a strategy for getting iTunes AAC metadata:

1. Get the user data.

2. Look for a user data item called "net a" and get it as a byte array.

3. Inside this array, find "i | st".

4. Start reading 8-byte blocks as possible size/type combinations. If the type is known as a
metadata type, skip past the 24 bytes of junk (the 8-byte pad, the "dat a", etc.) and read the
String.

The sample program in Example 7-2 implements this strategy.

Note: Run this example with ant run-chO7-aactagreader.

Example 7-2. Retrieving iTunes AAC metadata

package comoreilly.gtjnotebook.ch07;

i mport quicktine.*;

i mport quicktine.std.*;

i mport quicktine.std. novies. *;

i mport quicktine.std. novi es. nedi a. *;
i mport quicktine.io.*;

i mport quicktinme.util.*;

import java.util.*;

i mport java.math. Bi gl nteger;

import comoreilly.qtjnotebook.chOl. QTSessi onCheck;
public class AACTagReader extends Object {

/* these values are straight out of Moyvies.h
*/

final static int kUserDataText Al bum

final static int kUserDataTextArti st

final static int kUserDataText Creati onDate
final static int kUserDataText Ful | Nanme

0xA9616C62; /*' Calb' */
0xA9415254;

0xA9646179; /*'cCday' */
OxA96E616D; /*' ©nami */

/* This array maps all the tag constants to human-readabl e strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

*/

private static final OQoject[][] TAG_NAMES = {

b

{new I nteger (kUserDataTextA bunm), "Al bun'},
{new I nteger (kUserDataTextArtist),"Artist" },

{new I nteger (kUserDataTextCreationDate), "Created"},
{new I nteger (kUserDataTextFull Nanme), "Full Nane"}

private static final HashMap TAG MAP =

new HashMap(TAG_NAMES. | engt h) ;

static {

}

for (int i=0; i<TAG NAMES.|ength; i++) {
TAG _MAP. put (TAG NAMES[i][0],
TAG NAMVES[i][1]);

public static void main (String[] args) {

}

new AACTagReader();
System exit(0);

publ i c AACTagReader() {

}

try {
QTSessi onCheck. check();

QTFile f = QTFile.standardGetFil ePreview (null);
OpenMovi eFi | e onf = OpenMovi eFi |l e. asRead(f);
Movie novie = Movie.fronFile (onf);
/'l get user data
User Dat a userData = novi e. getUserData();
dunpTagsFr onJser Dat a(user Dat a) ;

} catch (Exception e) {
e.printStackTrace();

}

protected void dunpTagsFronlUserData (UserData user Dat a)

throws QTException {

int nmetaFCC = QTUtils.toOSType("neta");

QTrHandl e net aHandl e = userDat a. get Data (netaFCC, 1);
Systemout.println ("Found neta");

byte[] netaBytes = netaHandl e. getBytes();

/'l locate the "ilst" pseudo-atom ignoring first 4 bytes

int ilstFCC = QTUtils.toOSType("ilst");
PseudoAt omPoi nter ilst = findPseudoAtom (netaBytes, 4,

/1l iterate over the pseudo-atons inside the "ilst"

/1 building lists of tags and val ues from which we'l|
/'l create arrays for the DefaultTabl eModel constructor
int off = ilst.offset + 8§;

ArrayLi st foundTags = new ArraylLi st (TAG NAMES. | ength);

downloaded from: lib.ommolkefab.ir

il stFCO;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ArraylLi st foundVal ues = new ArraylLi st (TAG NAMES. | engt h);
while (off < netaBytes.length) {
PseudoAt onPoi nter atom = fi ndPseudoAt om (net aBytes, off, -1);
String tagNane = (String) TAG MAP.get (new Integer(atomtype));
if (tagName !'= null) {
/1 if we match a type, read everything after byte 24
/'l which skips size, type, size, '"data', 8 junk bytes
byte[] valueBytes = new byte [atom atonfSize - 24];
System arraycopy (netaBytes,
at om of f set +24,
val ueByt es,
0,
val ueBytes. | ength);
String value = new String (val ueBytes);
Systemout.println (tagNane + ": " + val ue);
} /1 if tagName != null
off = atomoffset + atom at onfSi ze;

}

/** find the given type in the byte array, starting at
the start position. Returns the offset within the
byte array that begins this pseudo-atom a hel per nethod
to popul at eFr omvet aAt on().
@ar am bytes byte array to search
@aram start offset to start at
@aram type type to search for. if -1, returns first
atomwith a plausible size

*/

private PseudoAt onPoi nter findPseudoAtom (byte[] bytes,
int start,
int type) {

/'l read size, then type
/1l if size is bogus, forget it, increment offset, and try again
int off = start;
bool ean found = fal se;
while ((! found) &&
(off < bytes.length-8)) {
/1 read 32 bits of atom size
/'l use Biglnteger to convert bytes to |ong
/1l (instead of signed int)
byte sizeBytes[] = new byte[4];
System arraycopy (bytes, off, sizeBytes, 0, 4);
Bi gl nt eger atontSi zeBl = new Bi gl nteger (sizeBytes);
| ong atonti ze = at onSi zeBl . | ongVal ue();

/1l don't bother if the size would take us beyond end of
/'l array, or is inpossibly small
if ((atonBize > 7) &&

(off + atonti ze <= bytes.length)) {

byte[] typeBytes = new byte[4];

System arraycopy (bytes, off+4, typeBytes, 0, 4);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

int aType = QTUtils.toOSType (new String (typeBytes));

if ((type = = aType) ||

(type = = -1))

return new PseudoAt omPoi nter (off, (int) atonfSize, aType);
el se

of f += atonSbi ze;

} else {
Systemout.println ("bogus atom size " + atonSize);
/1 well, how did this happen? increnment off and try again
of f ++;
}
} /11 while
return null;

/** Inner class to represent atom|like structures inside
the neta atom designed to work with the byte array
of the meta atom (i.e., just waps pointers to the
begi nning of the atomand its conputed size and type)

*/

cl ass PseudoAt onPoi nter {
int offset;
int atonSi ze;
int type;
publ i c PseudoAt omPoi nter (int o, int s, int t) {

of f set =o;
at onfSi ze=s;
type=t;

When run with Toto Dies.m4p, the output to the console looks like this:

cadanson% ant run-ch07-aact agr eader
Bui l dfile: build.xm

run-ch07- aact agr eader :
[java] Found neta
[java]l Full Nanme: Toto Dies
[java] Artist: Nellie MKay
[java]l] Al bum Get Away from Me
[java] Created: 2004-02-10T08: 00: 00Z

Note: The "album" and "created" data didn't appear in the earlier hexdump because in the file they occur after the cover art data, which

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

is several kilobytes long.

7.2.2. What just happened?

The program gets the User Dat a, gets its "net a" atom as a byte array, and looks for the "i | st "
pseudo-atom. If it finds one, it skips ahead 8 bytes (over "i | st " and its size) and goes into a loop of
discovering and parsing potential pseudo-atoms.

To parse, you look at the first 4 bytes and consider whether it's a plausible sizein other words,
whether it's big enough to contain data, but small enough to not run past the end of the byte array.
If so, interpret the next 4 bytes as a FOUR_CHAR _CODE type and check against the list of known

metadata types. If it matches one of the known types, you've got a valid piece of metadata, which
this program simply writes to standard out.

7.2.3. What about...

...combining this with the MP3 approach of the previous lab so that there's just one codebase? A
good strategy for that would be to get the User Dat a and look for a "net a" atom. If you get one,

assume you have iTunes AAC and do the previous parsing. If not, assume you have an MP3, and
start asking for the various metadata types with User Dat a. get Text AsStri ng(), as in the previous

lab.

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

7.3. Providing Basic Audio Controls

Most audio applications provide some basic audio controls to allow the user to customize the sound
output to suit his environment. The Movi eControl | er provides a volume control, but you can do

better than that: you can control balance, bass, and treble with simple method calls.

7.3.1. How do | do that?

The Audi oMedi aHandl er class provides the methods set Bal ance() and set SoundBassAndTr ebl g(
), so it's just a matter of getting the handler object. The key is to remember that:

e Movies have tracks.
e Tracks have exactly one Medi a each.
e Each Medi a has a Medi aHandl| er .

Iterate over the movie's tracks to get each track's media and handler. To figure out whether a given
track is audio, you can use a simple i nst anceof to see if the handler is an Audi oMedi aHandl er .

set Bal ance() takes a fl oat, which ranges from - 1. 0 (all the way to the left) to 1. 0 (all the way to
the right), with 0 representing equal balance.

set SoundBassAndTr ebl e() is interesting because it's officially undocumented. As it turns out, you
pass in i nts for bass and treble, where 0 is normal, - 256 is minimum bass or treble, and 256 is
maximum.

Note: Well, the native version is undocumented. For once, the Javadocs have the useful info.

Example 7-3 provides a simple GUI to exercise these methods.

Note: Run this example with ant run-ch07-basicaudiocontrolsplayer.

Example 7-3. Providing balance, bass, and treble controls

package comoreilly.gtjnotebook.ch07;
i mport quicktine.*;

i mport quicktine.std.*;
i mport quicktine.std. novies. *;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i nport quicktine.std. novies. nedi a. *;
i nport qui cktine.app. view *;
i nport quicktinme.io.*;

inport java.awt.*;
i nport javax.sw ng.*;
i nport javax.sw ng.event.*;

inport comoreilly.qgtjnotebook.chOl. QrSessi onCheck;

publ i ¢ class Basi cAudi oControl sPl ayer extends Frane
i mpl enents ChangelLi stener {

JSlider bal anceSlider, trebleSlider, bassSlider;
Audi oMedi aHandl er audi oMedi aHandl er;

public static void main (String[] args) {
try {
QrSessi onCheck. check();
Frame f= new Basi cAudi oControl sPl ayer();
f.pack();
f.setVisible(true);
} catch (QTrException qte) {
qte.printStackTrace();
}
}

publ i ¢ Basi cAudi oControl sPlayer () throws QTException {

super ("Basic Audio Controls");
/'l pronpt for audio file
QTFile file = QIFile.standardGet Fil ePreview(null);
OpenMovi eFil e onf = OpenMovi eFil e. asRead (file);
Movie novie = Movie.fronFile (onf);
Movi eControl l er controller = new MovieController (novie);
/'l get Audi oMedi aHandl er for first audio track
for (int i=1; i<=novie.getTrackCount(); i++) {

Track t = novie.getTrack(i);

Media m= t.getMedia();

Medi aHandl er mh = m getHandl er();

if (mh instanceof Audi oMedi aHandl er) {

audi oMedi aHandl er = (Audi oMedi aHandl er) nh;

br eak;
}

}

i f (audi oMedi aHandler = = null) {
Systemout.println ("No audio track");
Systemexit(-1);

}

/1 add controller to GU
set Layout (new BorderLayout());
Conponent conp =

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

QTFact ory. makeQrConmponent (control | er).asConmponent ();
add (conp, BorderLayout. NORTH);
/'l build balance, treble, bass controls in a pane
Panel controls = new Panel (new GridLayout (3,2));
controls.add (new JLabel ("Bal ance"));
bal anceSlider = new JSlider (-1000, 1000, 0);
bal anceSl i der. addChangeLi stener (this);
control s.add (bal anceSli der);
controls.add (new JLabel ("Treble"));
trebleSlider = new JSlider (-256, 256, 0);
trebl eSli der. addChangelLi stener (this);
controls.add (trebleSlider);
controls.add (new JLabel ("Bass"));
bassSlider = new JSlider (-256, 256, 0);
bassSl i der. addChangeli stener (this);
controls.add (bassSlider);
add (controls, BorderlLayout.SOUTH);

}

public void stateChanged (ChangeEvent ev) {
(bj ect source = ev.getSource();
try {
if (source = = balanceSlider) {
/'l bal ance
float newBal =
(float) (balanceSlider.getValue() / 1000f);
audi oMedi aHandl er . set Bal ance (newBal);
} else {
/1 bass & treble
audi oMedi aHandl er . set SoundBassAndTr ebl e (
bassSl i der. get Val ue(),
trebl eSlider. getValue());

} catch (QTrException qte) {
qgqte.printStackTrace();

}

When run, the program asks the user to select a file to play, and then shows a GUI, as seen in Figure
7-1.

Figure 7-1. Balance, treble, and bass controls

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

a8ans6 Basic Audio Contraols
dn 1 LI L
Balance i
Treble 5‘?}_
Bass &

7.3.2. What just happened?

The key to this example is the use of Swing JSI i der s, which can be configured with appropriate
bounds for the features they represent. For example, the bass and treble sliders run in a - 256 to 256
range, with 0 as a default:

trebleSlider = new JSlider (-256, 256, 0);

The balance slider needs to pass a f | oat between -1 and 1, but JSI i der s work with i nts, so it uses
a range of - 1000 to 1000, which is scaled to an appropriate f| oat before calling set Bal ance():

bal anceSlider = new JSlider (-1000, 1000, 0);

All the sliders share a ChangelLi st ener implementation that reads the new value from the affected
JSl i der and make a corresponding call to the Audi oMedi aHandl er .

[reevions Juers

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

7.4. Providing a Level Meter

Many audio applications also provide a graphical " level meter," which is an on-screen display of the
loudness or softness of certain frequencies within the audio. In QuickTime Player, this is shown as a
set of bars on the right side of the control bar, as seen in Figure 7-2.

Figure 7-2. Audio level meter in QuickTime Player

The intensity of lower frequencies, like bass, is shown in the leftmost columns, while higher
frequencies are to the right.

7.4.1. How do | do that?

Audi oMedi aHandl| er provides two key methods: set SoundEqual i zer Bands() to set up monitoring
and get SoundLevel Met er Level s() to actually get the data. set SoundEqual i zer Bands() indicates
which frequencies you want to monitor for your graphics display. These are passed in the form of a
Medi aEgSpect r unBands object, which is built up by constructing it with the number of bands you
intend to monitor, then repeatedly calling set Frequency() to indicate which frequency a given band
will monitor.

Note: Unfortunately, most of the level-metering methods are officially undocumented.

As the audio plays, you can repeatedly call get SoundLevel Met er Level s(), which returns an array
of i nt s representing the measured levels.

Example 7-4 creates a basic audio level meter in an AWT Canvas.

Note: Run this example with ant run-ch07-levelmeterplayer.

Example 7-4. Providing an audio level meter
package comoreilly.gtjnotebook.ch07;

i mport quicktine.*;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i nport
i nport
i nport
i nport
i nport

i nport
i nport
i nport
i nport

public

qui cktine.std.*;

qui ckti ne. std. novi es. *;

qui cktinme. std. novi es. nedi a. *;
qui cktinme. app. vi ew. *;

qui cktine.io.*;

java. awm . *;
java. awm . event . *;
j avax. swi ng. *;

comoreilly.qgtjnotebook.chOl. QrSessi onCheck;

cl ass Level Meter Pl ayer extends Frame {

/'l bands used by appl e sndequalizer exanple; equivalent to qt player's
/'l http://devel oper. appl e. conl sanpl ecode/ sndequal i zer/ sndequal i zer . ht m

int]

b

st at

] EQ LEVELS = {
200,
400,
800,
1600,
3200,
6400,
12800,
21000

ic final Dinension neterM nSize =
new Di mensi on (300, 150);

Level Meter neter;

Audi

publ

}

publ

oMedi aHandl er audi oMedi aHandl er;

ic static void main (String[] args) {
try {
QrSessi onCheck. check();
Frame f= new Level Meter Pl ayer();
f.pack();
f.setVisible(true);
} catch (QTException qgqte) {
qgqte.printStackTrace();

}

ic Level MeterPlayer () throws QIException {
super ("Basic Audio Controls");
/'l pronpt for audio file
QTFile file = QIFile.standardGet Fil ePreview(null);
OpenMovi eFil e onf = OpenMovi eFil e. asRead (file);
Movie novie = Movie.fronFile (onf);
Movi eControl l er controller = new MovieController (novie);
/| get Audi oMedi aHandl er for first audio track
for (int i=1; i<=novie.getTrackCount(); i++) {
Track t = novie.getTrack(i);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Media m= t.getMedia();
Medi aHandl er mh = m getHandl er();
if (mh instanceof Audi oMedi aHandl er) {
audi oMedi aHandl er = (Audi oMedi aHandl er) nh;

br eak;
}

}

i f (audi oMedi aHandler = = null) {
Systemout.println ("No audi o track");
Systemexit(-1);

}

/1 add controller to GU
set Layout (new BorderLayout());
Conponent conp =
QTFact ory. makeQrConponent (control | er).asConmponent ();
add (conp, BorderLayout. NORTH);
/1 add level neter to GU
meter = new Level Meter();
add (meter, BorderLayout.SOUTH);
/1l set up repainting tiner
Timer t = new Tiner (50, new ActionListener() {
public void actionPerformed (ActionEvent ae) {
nmeter.repaint();
}
1)
t.start();
}

cl ass Level Meter extends Canvas {
public Di nension getPreferredSize() { return neterM nSize; }
public Di nension getM ninuntSize() { return neterM nSize; }
public Level Meter() throws QIException {
Medi aEQSpect r unBands bands =
new Medi aEQSpect rumBands (EQ LEVELS. | ength);
for (int i=0; i<EQLEVELS. |length; i++) {
bands. set Frequency (i, EQ LEVELS[i]);
audi oMedi aHandl er . set SoundEqual i zer Bands (bands);
audi oMedi aHandl er . set SoundLevel Met eri ngEnabl ed (true);

}

public void paint (Gaphics g) {
int gHeight = this.getHeight();
int gWdth = this.getWdth();

/1 draw basel i ne
g.drawLi ne (0, gHeight, gWdth, gHeight);
try {
i f (audi oMedi aHandl er !'= null) {
int[] levels =
audi oMedi aHandl er . get SoundEqual i zer BandLevel s(
EQ LEVELS. | engt h);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i nt maxHei ght = gHeight - 1;
int barwdth = gWdth / levels.|ength;
int seglnterval = gHeight / 20;
for (int i=0; i<levels.length; i++) {
/'l cal cul ate height of each set of boxes,
/'l proportional to |evel
float levPct = ((float)levels[i]) / 255.0f;
/1 math is a little weird here; y axis has 0 at top,
/1 but we have 0 at bottom of this graph
int barHeight = (int) (levPct * nmaxHei ght);
/'l draw the bar as set of 0-20 rectangles
i nt barCount = 0;
for (int j=maxHeight;
j > (maxHei ght - barHei ght);
j-=seglnterval) {
switch (barCount) {

case 20:
case 19:
case 18:
g.setColor (Color.red);
br eak;
case 17:
case 16:
case 15:
g.set Col or (Col or.yellow);
br eak;
defaul t:
g. set Col or (Col or. green);
}
g.fillRect (i * barWdth,
j - seglnterval,
barwdth - 1,
seglnterval - 1);

bar Count ++;

}
} catch (QTException qgte) {

gte.printStackTrace();
}

When run, this example provides the graphics-level display as shown in Figure 7-3.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 7-3. Frequency bands displayed as a level meter

fin Lewel Mote (=il 3
i ™7 i

7.4.2. What just happened?

This example sets up levels that, according to a demo in the native API, correspond to the same
frequency bands metered by QuickTime Player:

int[] EQLEVELS = {
200,
400,
800,
1600,
3200,
6400,
12800,
21000

¥

When the user opens a movie, the program finds the Audi oMedi aHandl er of the first audio track and
calls set SoundEqual i zer Bands() with these bands. Then it creates an instance of the Level Met er
inner class, along with a Swing Ti ner to repaint the level meter every 50 milliseconds.

When the repaint calls the meter’s pai nt () method, it divides its width by the number of bands to
figure out how wide each bar should be. The height takes a little more work: the returned levels are
in the range 0 to 255, so the program calculates a "level percent” float by dividing by 255, then
multiplying this by the height of the component. With the height and width of each frequency band,
the component can draw a set of boxes, up to that height, to represent the band's level.

7.4.3. What about...

...the values passed in for frequencies and the number that can be passed in? Unfortunately, with no
documentation for this feature, there's only trial-and-error to fall back on. One thing I've found is
that you can have only 10 bandsyou can pass in as many frequencies as you want, and you'll get that
many back in the i nt array returned by get SoundLevel Met er Level s(), but only the first 10 will
have nonzero values.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

7.5. Building an Audio Track from Raw Samples

As I've said many times before: movies have tracks, tracks have media, media have samples. But
what are these samples? In the case of sound, they indicate how much voltage should be applied to a
speaker at an instant of time. By itself, a sample is meaningless, but as a speaker is repeatedly
excited and relaxed, it creates waves of sound that move through the air and can be picked up by the
ear.

So, why would you want to do this? One plausible scenario is that you have code that generates this
uncompressed pulse code modulation (PCM) data, like a decoder for some format that QuickTime
doesn't support. By writing the raw samples to an empty movie, you can expose it to QuickTime and
then play it, export it to QT-supported formats, and use other QuickTime-related functions.

7.5.1. How do | do that?

SoundMedi a inherits an addSanpl e() method from the Medi a class. This can be used to pack
samples into a Medi a, which in turn can be added to a TRack, which then can be added to a Movi e.

But what values do you provide to create an audible sound? The example shown in Example 7-5
creates a square wave at a constant frequency. A square wave is one in which the voltage is either
fully on or completely off. To create a 1000-hertz (Hz) tone, you write samples to alternate between
full voltage and zero voltage, 1,000 times per second. Figure 7-4 shows a graph of sample values for
the square wave.

Note: Run this example with ant run-chO7-audiosamplebuilder.

Figure 7-4. Square wave

i

000 Q.00 0003
-8 8 SB[SBC SEC

Example 7-5. Building audio media by adding samples
package comoreilly.gtjnotebook.ch07;

i mport quicktine.*;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i nport quicktine.std.*;

i nport quicktine.std. novies. *;

i nport quicktine.std. novies. nedi a. *;
i nport quicktinme.io.*;

inport quicktime.util.*;

inport comoreilly.qgtjnotebook.ch0l. QrSessi onCheck;
public class Audi oSanpl eBui | der extends Object {

static final int SAMPLI NG = 44100;
static final byte[] ONE_SECOND SAMPLE = new byte [SAVPLING * 2];
static final int FREQUENCY = 262;

public static void main (String[] args) {

try {
QrSessi onCheck. check();

QTFile novFile = new QTFile (new java.io.File("buildaudi o.mov"));
Movi e nmovie =
Movi e. creat eMovi eFi | e(novFi | e,
St dQTConst ant s. kMovi ePl ayer,
St dQrConst ant s. cr eat eMovi eFi | eDel eteCurFil e |
St dQTConst ant s. cr eat eMbvi eFi | eDont Cr eat eResFi |l e) ;

Systemout.println ("Created Mvie");

/'l create an enpty audio track

int timeScale = SAMPLING // 44100 units per second
Track soundTrack = novie.addTrack (0, 0, 1);
Systemout.println ("Added enpty Track");

/1 create nmedia for this track

Medi a soundMedi a = new SoundMedi a (soundTr ack,
ti nmeScal e) ;

Systemout.println ("Created Medi a");

/'l add sanpl es
soundMedi a. begi nEdits();

/] see native docs for other format consts
int format = QTUtils.toOSType ("NONE");

SoundDescri pti on soundDesc = new SoundDescri ption(fornmat);
Systemout.println ("Created SoundDescription");

soundDesc. set Nunber O Channel s(1);
soundDesc. set Sanpl eSi ze(16) ;
soundDesc. set Sanpl eRat e(SAMPLI NG ;

for (int i=0; i<5; i++) {

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/1l build the one-second sanple
QTHandl e nmedi aHandl e = bui |l dOneSecondSanmpl e (i);

soundMedi a. addSanpl e(medi aHandl e, // QTHandl eRef dat a,
0, // int dataOfset,
medi aHandl e. get Si ze(), // int dataSize,
1, // int durationPerSanpl e,
soundDesc, // Sanpl eDescription sanpl eDesc,
SAMPLI NG, // int nunmber Of Sanpl es,
0 // int sanpl eFl ags)
);

}

/1 finish editing and insert nmedia into track

soundMedi a. endEdits();

Systemout.println ("Ended edits");

soundTrack. insertMedia (0, // trackStart
0, // nediaTinme
soundMedi a. getDuration(), // nediaDuration
1); // nediaRate

Systemout.println ("inserted nedia");

/'l save up
Systemout.println ("Saving...");
OpenMovi eFil e onf = OpenMovi eFile.asWite (nmovFile);
nmovi e. addResour ce (onf,
St dQTConst ant s. novi el nDat aFor kResl D,
nmovFi | e. get Nane());
Systemout.println ("Done");

System exit(0);

} catch (QTException qte) {
gte.printStackTrace();
}

} /] main

/** Fill ONE_SECOND SAMPLE with two-byte sanples, according
to sonme schenme (like square wave, sine wave, etc.)
then wap with QrHandl e
*/
public static QrHandl e buil dOneSecondSanpl e (int inTine)
throws QIException {
/'l convert inTinme to sanple count (i.e., how many sanpl es
/'l past O we are)
i nt wavel engt hl nSanpl es = SAVPLI NG / FREQUENCY;
i nt hal f Wavel ength = wavel engt hl nSanples / 2;
int sanple = inTime * SAVPLI NG
for (int i=0; i<SAMPLING-2; i+=2) {
int offset = sanpl e % wavel engt hl nSanpl es;
/'l square wave - bytes are either 7fff or 0000
if (offset < hal fWavel ength) {

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ONE_SECOND_SAMPLE[i]
ONE_SECOND_SAMPLE[i +1]
} else {
ONE_SECOND_SAMPLE[i] = (byte) 0xO00;
ONE_SECOND_SAMPLE[i +1] = (byte) 0x00;

= (byte) Ox7f;
= (byte) Oxff;

}
sanmpl e ++;
}
return new QrHandl e (ONE_SECOND SAMPLE) ;
}
}

Note: Run this example with ant-chO7-audiosamplebuilder.

When run, this creates a five-second, audio-only movie file called buildaudio.mov. Open it in
QuickTime Player or an equivalent (like the level meter player from the previous lab) to listen to the
file.

Note: Square waves are not easy on the ears. Turn down your speakers or headphones before you play this file.

7.5.2. What just happened?

Two constants at the beginning define important values. SAMPLI NGis the number of samples to be
played every second. This example uses 44,100, which is the same as on a compact disc.

Tip: An important consideration for choosing a sampling frequency is the Nyquist-Shannon Sampling Theorem, which states that you
need to sample at a rate double the highest frequency you want to capture. So, a sampling rate of 44,100 will properly reproduce
frequencies less than 22,050 Hz. Given that human hearing typically ranges from 20 to 20,000 Hz, this effectively covers any humanly
audible sound.

The FREQUENCY constant is the frequency of the sound wave to be produced. This example uses 262,
which is approximately middle C on a piano.

Note: To be more precise, middle C is approximately 261.625565 Hz.

To start writing samples, you need a SoundMedi a object and a place to put your data. The example
does this by:

1. Creating a new Movi e with creat eMovi eFi | e() . Using this approachinstead of the no-arg
Movi e constructorhas the benefit of indicating where the samples are to be stored.

2. Adding a new track to the movie, with no size, and a volume of 1 (full volume).

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3. Creating a new SoundMedi a object. This constructor takes the track the media is associated
with and a time scale for the media. In this case, 44,100 is a good choice because then each
sample will correspond to one unit of the media's time scale. You could use higher values, but
not lower ones, because a sample can't be expressed as less than one unit of the time scale.

4. Calling begi nEdi t s() on the media to indicate that the program will be making changes to the
media.

Most of the rest of the code in the example has to do with setting up the call to addSanpl e() , which
is somewhat tricky. The method takes seven arguments:

A QTHandl eRef that points to the data to be added

e An offset into the handle

e The size of the data to be inserted

e The dur ati onPer Sanmpl ehow much time the sample represents, in the media's time scale
e A Sanpl eDescri pti on to describe the data in the handle

e The number of samples being added with this call

e Behavior flags

Note: See Chapter 2 for more on time scales.

The first thing to do is to create a Sanpl eDescri pti on that can be reused on every call to
addSanpl e(). To do this, create a SoundDescri pti on object. The constructor takes a "format"
FOUR_CHAR_CODE, which for uncompressed data is "NONE".

Tip: Other valid formats are defined in "QuickTime API Reference: SOund Formats" on Apple's developer site.

Next, you customize the Sanpl eDescri pti on object with some setter methods to indicate the
number of channels, the size of each sample in bits, and the sampling frequency. For this example, |
used one channel and 16 bits per sample. This means that when the byte array with the data is
parsed, QuickTime will take the data 2 bytes at a time and assume it to be a 16-bit value. If there
were two channels, there would be 4 bytes per sample: two 2-byte samples, one for each speaker.

You might expect that you'd then simply loop through, adding one sample at a time to the Medi a and
creating one second of audio every 44,100 times through the loop. Although this is legal, the
resulting file won't actually play. The problem is that QuickTime wants you to put audio data in larger
and more manageable chunks. To quote from the native AddMediaSample docs:

You should set the value of this parameter so that the resulting sample size represents a
reasonable compromise between total data retrieval time and the overhead associated with
input and output. [. . .] For a sound media, choose a number of samples that corresponds to
between 0.5 and 1.0 seconds of sound. In general, you should not create groups of sound
samples that are less than 2 KB in size or greater than 15 KB.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

So, in this example, I've created a byte array to represent one second of samples, which is filled in a
method called bui | dOneSecondSanpl e(). This method figures out where the waveform is at each
sample time and writes either Ox7f ff or 0x0000 to each 2-byte pair. Because the "NONE" format
assumes signed shorts, Ox7f ff is the maximum, not Oxffff .

With the byte array filled, you can wrap it with a QTHandl e, and you're ready to call addSanpl e() .
The call looks like this:

soundMedi a. addSanpl e(nredi aHandl e, // QrHandl eRef dat a,
0, // int dataOfset,
medi aHandl e. get Si ze(), // int dataSize,
1, // int durationPerSanpl e,
soundDesc, // Sanpl eDescription sanpl eDesc,
SAMPLI NG, // int nunmber OF Sanpl es,
0 // int sampl eFl ags)

)

Once you're done adding samples, it's cleanup time. You use endEdi t s() to tell the Medi a you're
done editing, then actually put the media into the track with TRack. i nsert Medi a() , which tells the

track what parts of the media object to use and where it goes relative to the track's time scale.
Finally, the movie is written to disk with the curiously named Movi e. addResource() .

7.5.3. What about...

...some other kind of wave because hearing that square wave is really unpleasant? A sine wave offers
a nicer alternative, because it is much more like a naturally occurring sound. Figure 7-5 shows what
its waveform looks like.

Figure 7-5. Sine wave

NAAAN

0.001 0.mz2 0.m3
4 22 2 25 23

The following alternate implementation of bui | dOneSecondSanpl e() produces a sine wavel didn't
want to put it in the preceding example, which is already complicated enough without having to use
trigonometry, like this does:

public static QTHandl e buil dOneSecondSanple (int inTine)
t hrows QIException {
/1 convert inTinme to sanple count (i.e., how nany sanples
/1l past 0 we are)
i nt wavel engt hl nSanpl es = SAMPLI NG / FREQUENCY;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

int sanple = inTime * SAVPLI NG

double twoPi = 2 * Math.Pl;

doubl e radi ansPer Sanpl e = twoPi / wavel engt hl nSanpl es;
/'l each sanmpl e should be one n/th of twoPi

for (int i=0; i<SAMPLING-2; i+=2) {
int offset = sanpl e % wavel engt hl nSanpl es;
/'l sine wave
doubl e angle = offset * radi ansPer Sanpl e;
doubl e sine = Math.sin (angle);
/]l sines are -1<x<l. we want fromO to Ox7fff
doubl e heightD = (sine + 1) * (Ox7fff / 2);
/1l cast to int and fix endianness if on little (x86, etc.)
short height = (short) heightD
/'l pack this into array as two bytes
ONE_SECOND _SAMPLE [i] = (byte) ((height & O0xff00) >> 8);
ONE_SECOND_SAMPLE [i +1] = (byte) (height & Oxff);
sanmpl e ++;
}
return new QrHandl e (ONE_SECOND_SAMPLE) ;

}

This implementation calculates the width of a wavelength in samples, then divides that into equal
segments of a 2 radius for its calls to Mat h. si n() . The returned values are then translated so that
instead of running from -1. 0 to 1. O, they run from 0 to Ox7fff.

It's also worth noting that the middle C sine wave is pretty hard to hear over basic computer
speakers. You might have better results with a frequency of 440, which is the A above middle C.

[rrevious e s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir
[eeeviovs e

Chapter 8. Video Media

It probably seems like half of this book has already been about videol've assumed you had video
media for the chapters on playback, editing, and components (Chapter 2 and Chapter 4), even
though the material there would be perfectly well suited for use on audio-only media like MP3 files.
Well, this chapter is only about video, showing a handful of useful tricks for working with video.

Because video is simply a progression of images, alternated quickly enough to suggest movement,
you probably won't be too surprised to know that the material covered in the QuickDraw graphics
chapter (Chapter 5) pays off in this chapter. QuickDraw and QD-like APIs are the means by which
you create and/or manipulate video media. If you skipped that chapter and have problems herein
with QDG aphi cs (a.k.a. GMr | ds), Matri xes, Graphi csl nporters, or compression, you might need

to check back there. But I'll try to keep things fairly self-explanatory.

[rreviovs fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

8.1. Combining Video Tracks

It's not hard to understand how two audio tracks can coexist in a moviethe sounds are mixed and
played together. But the idea of combining video tracks is less intuitive.

By default, if you have two video tracks of the same size in a movie, one will totally overlap the
other. But you can change the default behavior by specifying 2D transformations with Mat ri x

objects, and the Z-axis ordering by setting "layering™ behavior.

One way to play with Mat ri x-based spatial arrangement is to set up a picture-in-picture movie. In
such a movie, the foreground video is scaled and moved into a corner relative to the background
video.

8.1.1. How do | do that?

To do a picture-in-picture effect, you must have a movie with two video tracks and you must do
three things to the foreground video track:

e Scale it to a size smaller than the background track.

e Optionally move it to a location other than (0,0).

e Set layering to ensure it appears above the background track.

Fortunately, a few methods in the t r ack class provide all of this. The application in Example 8-1
brings up a window with a picture-in-picture effect achieved with matrix transformations and
layering.

Note: Run this example from the downloaded book code with ant run-ch08-matrixvideotracks.

Example 8-1. Matrix-based video picture-in-picture

package comoreilly.gtjnotebook. ch08;

i mport quicktime.*;

i mport quicktime.std.*;

i mport quicktinme.std. novi es. *;

i mport quicktine.std. novi es. nedi a. *;
i mport quicktine.std.inage. *;

i mport quicktinme.io.*;

i mport quicktine.qd.*;

i mport quicktinme.util.*;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i nport qui cktine.app. view *;

inport comoreilly.qgtjnotebook.chOl. QrSessi onCheck;
inport java.awt.*;

public class MatrixVi deoTracks extends Frane {
static Movie foreMvie, backMvie;

public static void main(String[] args) {

try {
QrSessi onCheck. check();
/'l get background novie
QTFile file =

QTFi |l e. standardGet Fi | ePrevi ew (QrIFi | e. kSt andar dQTFi | eTypes) ;

OpenMovi eFil e onf = QpenMovi eFi |l e. asRead(file);
backMovie = Movie.fronFile (onf);
/'l get foreground novie
file = QTFil e. standardGet Fi | ePrevi ew (QTFi |l e. kSt andar dQTFi | eTypes) ;
onf = OpenMyvi eFil e.asRead(file);
foreMovie = Mowvie.fronFile (onf);
/'l get frane
Frame frame = new Matri xVi deoTracks (backMovie, foreMvie);
frame. pack();
frame.setVisible (true);

} catch (QTException qte) {
gte.printStackTrace();

}

}

public MatrixVideoTracks (Movie backMyvie, Myvie foreMvie)
throws QIException {
super ("Matrix Video Tracks");
Movie matri xMovie = new Movie();
/1 build tracks
Track foreTrack = addVi deoTrack (foreMovie, matrixMvie);
Track backTrack = addVi deoTrack (backMovie, matrixMvie);
/1 set matrix transformation
Matrix foreMatrix = new Matrix();
/1l set matrix to nove fore to bottomright 1/4 or back
(DRect foreFrom =
new DRect (0, O,
foreTrack. get Size().getWdth(),
foreTrack. getSize().getHeight());
(DRect foreTo =
new (DRect (backTrack.getSize().getWdth() / 2,
backTrack. get Si ze().getHeight() / 2,
backTrack. get Size().getWdth() / 2,
backTrack. get Si ze().getHeight() / 2);
Systemout.println ("foreTo is =" + foreTo);
foreMatri x.rect (foreFrom foreTo);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

foreTrack.setMatrix (foreMatrix);
/'l set foreTrack's |ayer
foreTrack. set Layer (-1);
/'l now get conponent and add to frane
Movi eControl l er controller = new MvieController(mtrixMvie);
Component ¢ = QTFactory. nakeQIConponent (control | er). asConponent ();
add (c);
}

public Track addVi deoTrack (Movie sourceMvie, Mvie targetMvie)
throws QIException {
/1 find first video track
Track videoTrack =
sour ceMbvi e. get I ndTrackType (1,
St dQTConst ant s. vi deoMedi aType,
St dQTConst ant s. novi eTrackMedi aType) ;
if (videoTrack = = null)
t hrow new QIrException ("can't find a video track");
// add videoTrack to targetMyvie
Track newlrack =
target Movi e. newlrack (videoTrack.getSize().getWdthF(),
vi deoTrack. get Si ze().getHei ght F(),
1.0f);
Vi deoMedi a newiedi a =
new Vi deoMedi a (newTr ack,
vi deoTr ack. get Medi a(). get Ti neScal e(),
new Dat aRef (new QTrHandl e()));
vi deoTrack. i nsert Segnent (newlrack,

0,
vi deoTrack. get Duration(),
0);
return newlrack;
}
}

When this is run, the user is shown two consecutive movie-opening dialogs, for the background and
foreground movies, respectively. Assuming that both have video tracks, the result looks like Figure 8-
1.

Note: This example looks for a track with video media, so don't use audio-only files, or MPEG-1, which has a special "MPEG media"
track instead of video.

8.1.2. What just happened?

After the two movies are loaded, this demo creates a new empty target movie and, through a
convenience method called addVi deoTr ack(), finds the video tracks of the selected movies, creates
new video tracks in the target movie, and inserts the Vi deoMedi a from the source movies. This

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

produces a movie with two concurrent video tracks.

Figure 8-1. Matrix-based transformation of foreground video track

B OO Marrix video Tracks
I

To scale and move the foreground track, you use a Mat ri x transformation. In this case, the example
takes the background movie's video track size and finds its center point, then sets up a destination
rectangle with that point as its upper-left corner, with width and height equal to half the foreground's

width and height, respectively. Finally, it tells the foreground track to use this matrix by calling
track.setMatrix() :

Note: Chapter 5 introduced Matrix. It's a mathematical object used in QuickTime to describe 2D transformations like scaling, rotation,
etc.

QDRect foreFrom =
new QDRect (0, O,
foreTrack. getSize().getWdth(),
foreTrack. get Size().getHeight());
QDRect foreTo =
new QDRect (backTrack.getSize().getWdth() / 2,
backTrack. getSi ze().getHeight() / 2,
backTrack. getSi ze().getWdth() / 2,
).
)

~—

backTrack. get Si ze(getHeight() / 2);
foreMatrix.rect (foreFrom foreTo
foreTrack.setMatrix (foreMatrix);

Next, to ensure that the foreground track draws above the backgroundif it doesn't, all this matrix
work will be wastedthe demo calls TRack. set Layer (-1) . The layers are numbered from -32,767 to
32,767, with lower-numbered layers appearing above higher-numbered layers. The background track
keeps its default layer, 0, so setting the foreground to -1 forces it to be on top.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8.1.3. What about...

...the point of this? Am | really ever going to want to overlay video tracks? It's more common than
you might think. Consider Apple's iChat AV applicationit uses a very similar picture-in-picture effect,
so you can see yourself when you videoconference with a friend.

But there's one other interesting thing that iChat AV does: it shows the video of you as a mirror
image. This, presumably, is more natural for usersif you raise your right hand, it somehow makes
more sense to see your hand go up on the right side of the preview window, even if that's not what
the camera is really seeing. Fortunately, a mirror image is really simple to do with a Mat ri x

transformation.
In the preceding example, add the following two lines right after the Matri x is created:

foreMatrix.scale (-1, 1, 0, 0);
foreMatrix.translate ((float) foreTrack.getSize().getWdth(), Of);

The scal e() call makes the matrix multiply all pixels by -1, effectively "flipping" them around the x-
axis. The y-coordinates are unchanged, so the scaling factor there is 1. The last two arguments
define the "anchor point." By using 0O, this says "flip around the x-axis" (the y-coordinate is similar
but irrelevant here). Given an image width of w, this scaling operation makes the pixels run from -w
to 0. Thetransl ate() call moves the coordinates back into positive coordinate space. Figure 8-2

shows this transformation conceptually.

Figure 8-2. Matrix-based mirror image transformation steps: original,
scaled by x-factor of -1, translated by adding width

For this to work you also need to change the Matri x. rect () call to Matri x. map().rect() clears
out any previous transformations, essentially defining a new matrix that represents only the
translate-and-scale from one rectangle to another, while map() maintains the previous
transformations and then applies the translate-and-scale.

Figure 8-3 shows the demo running with this mirror image added to the foreground transformation.
For this figure, I've used the same video source for foreground and background, to make the mirror
transformation more obvious.

Figure 8-3. Matrix-based mirror image of foreground video track

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolketab.ir

‘806 Matrix Video Tracks

This mirror effect is pretty handy, and you might use it all by itself for doing something like a capture
preview. Because the Mat ri x can be used on movie tracks, Gr aphi csl nport er s, and various other
parts of the QuickTime API, mastering Mat ri x transformations will get you pretty far.

Note: Did you notice the capture settings dialog in Chapter 6 showed a mirror image? You could use a Matrix to make the motion
detector in that chapter render a mirror image, too.

[rrevious e s

downloaded from: lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

8.2. Overlaying Video Tracks

When one video track is drawn on top of another, the top doesn't necessarily have to obscure the
bottom. QuickTime gives you the option of specifying a Gr aphi csMode to combine pixels from

multiple video layers to create interesting effects.

8.2.1. How do | do that?

You can create a G aphi csMbde object to describe the means of combining overlapping colors. To try
it out, take the previous lab's code and replace all the matrix stuff (after the f or eTrack and
backTr ack are created, but before the Movi eControl | er is created) with the following:

Graphi csMode gm = new G aphi csMbde (Q@DConst ant s. addMax,
QDCol or. green);
Vi sual Medi aHandl er foreHandl er =
(Vi sual Medi aHandl er) foreTrack.getMedia().getHandler();
f oreHandl er. set G aphi cshMbde(gn);
foreTrack. set Layer(-1);

Note: Run this example with ant run-ch08-composit-evideotracks.

When run, this sample program asks you to open two movies, then creates a new movie with video
tracks from the source movies' media, and combines the pixels of the foreground movie with the
background, so the foreground appears atop the background. The result is shown in Figure 8-4.

Figure 8-4. Composited video tracks with addMax graphics mode

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8.2.2. What just happened?

Setting a Gr aphi csMbde instructs QuickTime to apply a specific behavior to combine overlapping
pixels. The G- aphi csMbde has a "mode" i nt, which indicates which kind of behavior to use, and a
QDCol or that is used by some behaviors to indicate a color to operate on. For example, you might
use mode QDConst ant s. t ranspar ent and QDCol or. gr een to make all green pixels transparent. The
default mode is sr cCopy, which simply copies one set of pixels on top of another.

Note: Chapter 5 showed how to set up GraphicsMode compositing of still images. Video works in pretty much the same way.

To apply this Graphi csMbde to overlapping video tracks, you call set G- aphi csMbde() , a method
not defined by t r ack but, rather, by the Vi deoMedi aHandl er . As a reminder, movies have tracks,
tracks have media, and media have handlers. Actually, the set G- aphi csMbde() is defined by the
Vi sual Medi aHandl! er interface, making it available for all visual media (MPEGVedi a, Text Medi a,

etc.).

The addMax behavior combines background and foreground pixels, using the maximum red, green,
and blue values of each. This has the effect of producing something of a washed-out combination of
the two video tracks, because bright colors in either source will be copied over to the screen.

The available QDConst ant modes offer several dozen behaviorscheck them out in the QuickTime
documentation by searching Apple's site for "Graphics Transfer Modes"though some of them aren’'t
suitable for color images, and many of them produce garish results with real-world video. For
example, Figure 8-5 shows the rather psychedelic effect of using the sr cBi ¢ mode.

Figure 8-5. Composited video tracks with srcBic graphics mode

& OO Composite Video Tracks

o
f i
2 __j_r'.
T
e
| .-i
™
. N

8.2.3. What about...

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

...practical uses for this? Granted, compositing two full-frame natural images is atypical, but
composited video is used all the time in TV production. Modern video often represents many layers of
overlapping sources. Watch a football game and you might see a shot of the game, overlaid by a
graphic of a player and his stats (and maybe a video "head shot" of him), overlaid with a scoreboard
for the corner, overlaid with a moving "bug" of the network's logo in another corner. Each source
contains some amount of "useful” video, and the rest is a solid color (often black for synthetic video,
green or blue for real-world video). The solid color becomes transparent, so only the useful data is
copied over to the target. In terms of G aphi csMbdes, this would be the transparent mode, with the
specified color as the operand.

Tip: If you're serious about shooting bluescreen video, there are sites on the Internet that list the supplies you'll need. For example,
http://www.studiodepot.com/ sells chroma-key-friendly fabric and tape for making bluescreen and greenscreen backdrops.

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://www.studiodepot.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

8.3. Building a Video Track from Raw Samples

You can create a video track "from scratch"” by adding video samples, one by one, to the video media.
This is perhaps the ultimate in low-level access to QuickTime video, because it makes you responsible
for every pixel in every frame. One way to demonstrate this is by making a movie from a still image and
using slightly different parts of it in each frame to suggest a camera moving across the image.

Tip: This concept is called the "Ken Burns Effect” in Apple's iMovie, after the documentary filmmaker who used the technique extensively in
documentaries like The Civil War , for which no film or video sources were available.

8.3.1. How do | do that?

To build a movie from samples taken from an image, use the following approach:

1. Import an image.
2. Pick source and destination rectangles.

3. Calculate a series of rectangles between the source and destination. These represent which part of
the source image will be used for each frame.

4. Create an empty movie, new video track, and new video media.
5. Use a Matri x to convert each source rectangle to the size of the movie.
6. Compress each frame and add it to the Vi deoMedi a .

You might already know how to do some of this; the new part is how to compress frames into a movie.
Chapter 5 made use of the QTl mage. conpress() method to compress QDG aphi cs (a.k.a. GMrl d s)
into Encodedl mage s, but video is a little different in that you use a CSequence , short for compression
sequence . The difference is that in many video compression formats, you may need information from
previous or subsequent frames to render a specific frame. In other words, some frames are encoded as
just the data that has changed from a previous frame. So, you can't compress a single image in
isolation; you must work with a sequence of images. This is called temporal compression because it is
time-based.

The Vi deoSanpl eBui | der demo, shown in Example 8-2 , creates a movie called videotrack.mov from a
source graphic.

Tip: This is the most involved example in the book and uses concepts from several chapters, such as enabling editing and adding a new

t rack (Chapter 3), using a G- aphi csl nport er (Chapter 4), setting up an off-screen GAbr | d (Chapter 5), using Mat ri x -
based image manipulation (Chapter 5 and this chapter), and adding raw samples to a Medi a (a sound equivalent was shown in Chapter 7
). So, don't be intimidated if it seems a little complicated the first time you read it.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Example 8-2. Building a video track from image

package comoreilly.qtjnotebook.ch08;

i nport
i nport
i nport
i nport
i nport
i nport
i nport
i nport
i nport

i nport

i nport
i nport
i nport

public

publ
publ
publ
publ

qui cktinme. *;
qui cktine.io.*;

qui cktime.util.QrPointer;

qui cktinme. qd. *;
qui cktinme.std.*;

qui ckti nme. std. novi es. *;
qui cktinme. std. novi es. nedi a. *;
qui cktine.std.inage. *;

qui cktime.util.*;

comoreilly.qgtjnotebook.chOl. QrSessi onCheck;

java.io.*;
java. util.Random

java. util.Properties;

cl ass Vi deoSanpl eBui | der extends Object {

static final int
static final int
static final int
static final int

O 000

Properties userProps =

(DRect endRect = null;

publ

VI DEO_TRACK_W DTH = 320;
VI DEO_TRACK_HEI GHT = 240;
VI DEO_TRACK_VOLUME = 0;
KEY_FRAVE_RATE = 30;

new Properties();
(DRect startRect = null;

i ¢ VideoSanpl eBuilder() throws QIExcepti on,

samples

| OException {

/* try to | oad "vi deoSanpl eBui | der. properties” from

current directory.

this contains file.location and

start.x/y/w dth/ hei ght and end. x/y/wi dt h/ hei ght par ans

*/
try {

user Props. |l oad (new Fil el nput Stream (
new File ("videosanpl ebuil der. properties”)));
Systemout.println ("Loaded properties");

} catch (Exception e) {

Systemout.println ("Couldn't

}

int CODEC_TYPE = QTUtils.toOSType ("SV@B");

/'l create a new enpty novie
QTFile novFile = new QTFile (new java.io.File("videotrack. mv"));

Movi e novie =

downloaded from: lib.ommolkefab.ir

| oad properties");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Movi e. creat eMovi eFi | e(novFi | e,
St dQTConst ant s. kMovi ePl ayer,
St dQrConst ant s. cr eat eMbvi eFi | eDel eteCurFil e |
St dQTConst ant s. cr eat eMovi eFi | eDont Cr eat eResFi | e) ;
Systemout.println ("Created Mvie");

/'l now create an enpty video track

int timeScale = 600; // 100 units per second

Track videoTrack = novie.addTrack (VI DEO TRACK W DTH,
VI DEO TRACK_HEI GHT,
VI DEO TRACK VOLUME) ;

Systemout.println ("Added enpty Track");

/1 now we need media for this track
Vi deoMedi a vi deoMedi a = new Vi deoMedi a(vi deoTr ack,
ti meScal e) ;

/'l get image file from props or dialog
QTFile ingFile = getlmageFile();
if (inmgFile = = null)

return;

/'l get a G aphicslnporter

G aphi csl nporter inporter = new G aphicslnporter (ingFile);

Systemout.println ("Got G aphicslnporter - Bounds are " +
i mporter.getNatural Bounds());

/'l Create an offscreen QDG aphics / GMrld that's the
/'l size of our frames. Inporter will drawinto this,
/1 and we'll then hand it to the CSequence
QDG aphics gw =
new QDG aphi cs (new DRect (0, O,
VI DEO_TRACK_W DTH,
VI DEO TRACK_HEI GHT)) ;
Systemout.println ("Created GMrld, - Bounds are " +
gw. get Bounds());

/'l get start, end rects
get Rects (inporter);
Systemout.println ("startRect = " + startRect);

Systemout.println ("endRect = + endRect) ;

/'l set inporter's gworld

inporter.setGMrid (gw, null);

Systemout.println ("Reset inporter's GWrld, now " +
i mporter.getGMrid());

/'l get to work
vi deoMedi a. begi nEdits();

/'l figure out per-franme offsets
(DRect gRect = new (DRect (0, O,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

VI DEO TRACK_W DTH,
VI DEO TRACK_HEI GHT) ;
int franes 300;
int startX = startRect.get X();
int startY = startRect.getY();
int endX = endRect. get X();
int endY = endRect.getY();
float xOfPerFrane = ((float)(endX - startX) / (float)franes);
float yOfPerFrane = ((float)(endY - startY) / (float)franes);
float widthOffPerFrane = ((float) (endRect.getWdth() -
startRect.getWdth()) /
(float) franmes);
float heightOfPerFrame = ((float) (endRect.getHeight() -
startRect.getHeight()) /
(float) franmes);

Systemout.println ("xOf f Per Frane=" + xOf f Per Frane +
", yOfPerFranme=" + yOfPerFrame +
", widthOfPerFrame=" + w dt hOf f Per Frame +
", hei ght O f Per Frame=" + hei ght O f Per Frane) ;

/'l reserve an imge with enough space to hold conpressed i nage
/'l this is needed by the last arg of CSequence. conpressFrane
int raw mageSi ze =
Qrl mage. get MaxConpr essi onSi ze (gw,
gRect,
gw. get Pi xMap(). get Pi xel Si ze(),
St dQTConst ant s. codecNor mal Qual i ty,
CODEC_TYPE,
CodecConponent . best Fi del i t yCodec) ;
QTHandl e i mageHandl e = new QTHandl e (raw nageSi ze, true);
i mgeHandl e. | ock();
RawEncodedl mage conpressedl nage =
RawEncodedl| mage. f r omQrHandl e(i nageHandl e) ;

/'l create a CSequence

CSequence seq = new CSequence (gw,
gRect,
gw. get Pi xMap(). get Pi xel Si ze(),
CODEC_TYPE,
CodecConponent . best Fi del i t yCodec,
St dQTConst ant s. codecNor mal Qual i ty,
St dQTConst ant s. codecNor mal Qual i ty,
KEY_FRAME_RATE,
nul |,
St dQTConst ant s. codecFl agUpdat ePr evi ous) ;

/'l remenber an | mageDescription fromthis sequence definition
| mageDescri ption ingDesc = seq. getDescription();

/'l 1oop through the specified nunber of franmes, draw ng
/'l scaled instances into our GMrld and conpressing those

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/'l to the CSequence
for (int i=1;, i<franes; i++) {
Systemout.println ("i= =" +1i);

/'l conmpute a rect for this frame

int x =startX + (int) (xOfPerFranme * i);

int y =startY + (int) (yOfPerFrame * i);

int width = startRect.getWdth() + (int) (widthOfPerFrame * i);
int height = startRect.getHeight() + (int) (heightOfPerFrame * i);
DRect fromRect = new QRect (x, y, w dth, height);

/'l create a Matrix to represent the nove/scale from
/'l the fronRect to the GWrld and make i nporter use it
Matrix drawivatrix = new Matrix();

drawvatri x.rect (fronmRect, gRect);

Systemout.println ("fromRect =" + fronRect);
inporter.setMatrix (drawMatri x);

/'l have inporter draw (scaled) into our GArld

inporter.draw);
Systemout.println ("I nporter drew');

/'l conmpress a frame
Conmpr essedFranelnfo cfinfo =
seq. conpr essFrane (gw,
gRect,
St dQTConst ant s. codecFl agUpdat ePr evi ous,
conpr essedl mage) ;
Systemout.println ("simlarity =" + cfinfo.getSimlarity());

/'l is this a key frame?
bool ean syncSanmple = (cflinfo.getSimlarity() = = 0);
int flags = syncSanple ? 0 : StdQrConstants. nedi aSanpl eNot Sync;

/1l add conpressed frane to the video nedia
vi deoMedi a. addSanpl e (i mageHandl e,
0,
cf 1 nfo. getDataSi ze(),
20, // time per frame, in tinescale
i ngDesc,
1, // one sanple
flags
)
Yy Il for

/'l done editing
vi deoMedi a. endEdi ts();

/1 now insert this nedia into track
vi deoTrack.insertMedia (0, // trackStart
0, // nediaTinme
vi deoMedi a. getDuration(), // nediaDuration

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1); // nediaRate
Systemout.println ("inserted nmedia into video track");

/'l save up
Systemout.println ("Saving...");
OpenMovi eFil e onf = OpenMovieFile.asWite (novFile);
nmovi e. addResour ce (onf,
St dQTConst ant s. novi el nDat aFor kResl D,

nmovFi | e. get Nanme());
Systemout.println ("Done");

}

/** Gets imageFile fromprops file, or file-previewif
that doesn't work.
*/
protected QTFile getlmageFile () throws QIException {
/'l is it in the props?
QTFile imgeFile = null;
if (userProps.containsKey ("file")) {
i mgeFile = new QIFil e (userProps.getProperty("file"));
if (! imageFile.exists())
i mgeFile = null;

}
/[l if not, or if that failed, then use a dialog
if (imgeFile = = null) {
int[] types ={ };
i mageFile = QTFil e. standardGet Fi | ePrevi ew (types);
}

return i mageFil e;

}

/** Gets startRect, endRect from userProps, or selects
randomy if that doesn't work
*/
protected void getRects (G aphicslnporter inporter) throws QTException {
Random rand = new Randonm();
int rightStop =
i nporter.getNatural Bounds().getWdth() - VIDEO TRACK W DTH,;
int bottonStop =
i nporter.getNatural Bounds().getHeight() - VIDEO TRACK HEI GHT;

/'l try to get startRect from userProps
try {
int startX = Integer.parselnt (userProps.getProperty("start.x"));
int startY = Integer.parselnt (userProps.getProperty("start.y"));
int startWdth =
I nt eger. parselnt (userProps.getProperty("start.w dth"));
int startHeight =
I nt eger. parselnt (userProps.getProperty("start.height"));
start Rect = new QDRect (startX, startyY, startWdth, startHeight);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

} catch (Exception e) {
/1 make random start rect
int startX = Math.abs (rand.nextIint() %rightStop);
int startY = Math.abs (rand.nextInt() % bottonttop);
start Rect = new QDRect (startX, starty,
VI DEO_TRACK_W DTH,
VI DEO TRACK_HEI GHT) ;

}
/'l try to get endRect from userProps
try {
int endX = Integer.parselnt (userProps.getProperty("end.x"));

int endY = Integer.parselnt (userProps.getProperty("end.y"));

int endWdth = Integer. parselnt (userProps.getProperty("end.wdth"));
int endHei ght = Integer.parselnt (userProps.getProperty("end. height"));
endRect = new QDRect (endX, endY, endWdth, endHeight);

} catch (Exception e) {
float zoom = (rand.nextFloat() - 0.5f); // -0.5 <= zoom<= 0.5
Systemout.println ("zoom=" + zoom;
int endX = Math.abs (rand.nextIint() %rightStop);
int endY = Math.abs (rand.nextint() % bottonttop);
endRect = new QDRect (endX, endY,
VI DEO TRACK_ W DTH * zoom
VI DEO TRACK _HEI GHT * zoom);

}

public static void main (String[] arrrimAPirate) {
try {
QrSessi onCheck. check();
new Vi deoSanpl eBui | der ();
} catch (Exception e) {
e.printStackTrace();

}
System exit(0);

Note: Run this demo with ant run-ch08-videosamplebuilder .

When run, the demo looks for a file called videosamplebuilder.properties , in which you can define the
source image and the start and end rectangles. The properties file should have entries like this:

file=/Users/cadanson/ Pi ctures/ keagy/ DSC01763. | pg

start.x=545
start.y=370
start.w dt h=1500
start. hei ght=1125

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

end. x=400
end. y=390
end. wi dt h=800
end. hei ght =600

If no properties file is found, the demo queries the user for an image and randomly selects the start and
end rectangles.

As each frame is compressed, the program prints an update to the console indicating the frame count,
the source frame, and how "similar" the CSequence decided the frame was to its predecessor. The

console log looks something like this:

cadanson% ant run-ch08-vi deosanpl ebui | der
Bui l dfile: build. xm

run- ch08- vi deosanpl ebui | der:
[java]l] Couldn't |oad properties
[java]l] Created Movie
[java]l] Added enpty Track
[java]l] Got Graphicslnporter - Bounds are quicktine.qd. @QRect[x=0.0, y=0.0, wi dt h=800. 0,
hei ght =600. 0]
[java]l] Created GWrld, - Bounds are quicktine.qgd. @Rect[x=0.0, y=0. 0, w dt h=320. 0,
hei ght =240. 0]
[javal] zoom = -0.45799363
[java] startRect = quicktine.qd. @Rect[x=158. 0, y=30. 0, wi dt h=320. 0, hei ght =240. 0]
[java]l] endRect = quicktine.qgd. QDRect[x=282.0, y=158. 0, wi dt h=146. 55795, hei ght =109. 91846]
[java]l] Reset inporter's GMrld, now quicktine.qd. QDG aphi cs@f 10820[si ze=108]
[Port Rect =qui ckti ne. qd. @ORect [x=0. 0, y=0. 0, wi dt h=320. 0, hei ght =240. 0], i sO f screen=t rue]
[java]l xOFf Per Frane=0. 41333333, yO f Per Frane=0. 42666668, w dt hOf f Per Fr ame=- 0. 58,
hei ght Of f Per Fr ane=- 0. 43666667
[java] i= =1
[java] fromRect = quicktinme.qd. QORect[x=158. 0, y=30. 0, wi dt h=320. 0, hei ght =240. 0]
[java]l Inporter drew
[java] simlarity =0
[java]l i= =2
[java] fromRect = quicktinme.qd. QORect[x=158. 0, y=30. 0, wi dt h=319. 0, hei ght =240. 0]
[java]l Inporter drew
[java]l simlarity = 128

When finished, you can play the videotrack.mov file in QuickTime Player, the player and editor examples
in Chapters Chapter 2 and Chapter 3, or equivalent. Figure 8-6 shows two screenshots from different
times in the movie to indicate the zoom effect that is created by using different parts of the picture.

Figure 8-6. Movie built via addSample() from portions of a static image

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

EasicQTEditr ang RasicOTEditor

8.3.2. What just happened?

One of the first things to notice is the constant CODEC_TYPE , which is used later on in setting up the
CSequence . This indicates which of the supported QuickTime video codecs is to be used for the video
track. The codec is indicated by a FOUR_CHAR _CODE i nt , in this case "SV@ ", which identifies the
Sorenson Video 3 codec. Most of the usable codecs exist as constants in the St dQTConst ant s classesfor
example, | could have put this as St dQTConst ant s6. kSor enson3CodecType . The advantage of using
the FOUR_CHAR_CODE directly is that you can use any supported codec, even those that don't have
constants defined in QTJ yet. In fact, Sorenson Video 3 and MPEG-4 video

(St dQTConst ant s6. KMPEGAVI sual CodecType) didn't have constants in QTJ until | filed a bug report for
them, and the Pixlet codec (whose 4CC is "px| t ") still doesn’'t, as of this writing.

Tip: "So, what's the best codec?" | hear someone asking. Don't go there. There's no such thing as a best codec. There are so many different
codecs, because they're engineered to serve different purposes. For example, some codecs are difficult to compress (in terms of CPU
power, encoder expertise, etc.) but easy to decompress, making them well suited for mass-distribution media like DVDs where the encoding
is done only once. On the other hand, a codec used for video conferencing must be light enough to do on the fly, with minimal configuration.
Others are tuned to specific bitrates and uses, losing their advantages outside their preferred realm. The new MPEG-4 codec, H.264 (AVC),
claims to be able to scale from cell phone to HDTV bandwidths...we'll see if it delivers on this.

To build the image movie, create an empty movie file, add a track, and create a Vi deoMedi a for the
track. You do this by creating a Movi e with the constructor that takes a file reference (so that QuickTime
knows where to put the samples you'll be adding), calling Movi e. addTrack() to create the track, and
constructing a Vi deoMedi a . Then call Medi a. begi nEdi ts() to signal that you're going to be altering
the Vi deoMedi a .

Note: These steps are similar to those in Chapter 7 s square-wave sample-building example .

The next step is to get the image with a Gr aphi csl nporter . This will be the source of every frame of
the movie. However, it's not the right size. So create an off-screen QDG aphi cs (a.k.a. GWr il d , the
term used in the native API and all its getters and setters in QTJ) with the desired movie dimensions. By
calling Graphi csl nporter.set GArl d() , you tell the importer that subsequent calls to draw() will
draw pixels from the imported graphic into the off-screen GW\r | d , which will be the source of the
compressed frames later on.

Next, after calculating how far the source rectangle will move each frame, you set up the compression

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

sequence. To do this, you need a buffer big enough to hold compressed images, which in turn requires a
call to figure out how big that buffer needs to be. QTl nage. get MaxConpr essi on() size provides this

size. You need to pass in the following data (in the order shown):

1. The QDG aphi cs /GWr | d to compress from.

2. A (DRect indicating what part of the QDG aphi cs will be used.

3. The color depth of the pixels (i.e., how many bits are in each pixel).

4. A constant to indicate the compressed image quality level.

5. The codec's FOUR_CHAR_CODE .

6. A constant to indicate which codec component to pick if several can handle the codec. You can
pass a specific component, or the behavior constants anyCodec , best SpeedCodec ,

best Fi del i t yCodec , and best Conpr essi onCodec .

Given this, you can allocate memory for the image by constructing a new QTHandl e , and then wrap it
with a RaweEncodedl| nage object. This is where the compressed frames will go.

Now you have enough information to create the CSequence . Its constructor takes a whopping 10
arguments:
e The QDG aphi cs /GWMWr | d to compress from
e A QDRect indicating what part of the QDGr aphi ¢cs will be used
e The color depth of the pixels (i.e., how many bits are in each pixel)
e The codec's FOUR_CHAR CCDE
e A specific codec component or a selection strategy constant (anyCodec , best SpeedCodec , etc.)
e Spatial quality (in other words, the quality of images after 2D compression, using one of the
constants codecM nQual ity , codecLowQual ity , codecNornmal Qual ity , codecH ghQuality,
codecMaxQual ity , or codecLossl essQuality)
e Temporal quality (this uses the same constants as for spatial quality, but refers to quality
maintained or lost when using data from adjacent frames; you also can set this to 0 to not use

temporal compression)

e Key frame rate (the maximum number of frames allowed between "key frames" [those that have
all image data for a frame and don't depend on other frames], or 0 to not use key frames)

e A custom color lookup table, or nul I to use the table from the source image

e Behavior flags (these can include the codecFl ag\WasConpr essed flag, which indicates the source

image was previously compressed and asks the codec to compensate, and
codecFl agUpdat ePr evi ous and codecFl agUpdat ePr evi ousConp , both of which hold on to

previously compressed frames for temporal-compression codecs, the latter of which may produce

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

better results but consumes more CPU power)

Now you've got everything you need to build the frames: a GMr | d for source images, a
RawEncodedl mage to compress into, a CSequence to compress frames, and a Vi deoMedi a to put them
into.

So, start looping. Each time through the loop, you draw a different part of the source image into the off-
screen GWr | d . This is done by resetting the Graphi cl nporter 's Matri x , usingrect () to scale-and-
translate from a source rectangle to a new rectangle at (0,0) and with the dimensions of the off-screen
GWrld . Use Graphi csl nporter.draw() to draw from the source image into the Ghorl d .

With the frame's pixels in the GAr | d , call CSequence. conpr essFrane() to compress the pixels into the
RawEncodedl mage . This returns a Conpr essedFr anel nf o object that wraps the size of the compressed
image and a "similarity"” value that represents the similarity or difference between the current frame and
the previous frame. The similarity is used to determine if this sample is a " key frame" (also called a "
sync sample” in Apple's terminology), which in this context means an image so different from its
predecessors that the compressor should encode all the data for this image in this frame instead of
depending on any previous frames.

Finally, you call addSanpl e() to add the frame to the Vi deoMedi a . This call, inherited from Medi a ,
takes a pointer to the sample data, an offset into the data, the data size, the time represented by the
sample (in the media's time scale), a description of the data (here an | nageDescri pti on retrieved from
the CSequence), the number of samples being added with the call, and a flag that indicates whether
this sample is a key frame (if it's not, pass St dQTConst ant s. medi aSanpl eNot Sync).

Note: Notice addSample() has the same signature for any kind of media. That's why it needs a parameter like the ImageDescription to
explain what's in the essentially untyped QTHandle .

When you're done adding frames, call Medi a. endEdi t s() , then insert the media into the track with
track.insertMedia() . Finally, save the movie with the Movi e. addResour ce() call.

Note: Run this demo with ant run-ch08-videosamplebuilder .

When run, the demo looks for a file called videosamplebuilder.properties , in which you can define the
source image and the start and end rectangles. The properties file should have entries like this:

file=/Users/cadanson/ Pi ctures/keagy/ DSC01763. j pg

start.x=545
start.y=370
start.w dt h=1500
start. hei ght=1125

end. x=400
end. y=390

end. wi dt h=800
end. hei ght =600

If no properties file is found, the demo queries the user for an image and randomly selects the start and

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

end rectangles.

As each frame is compressed, the program prints an update to the console indicating the frame count,
the source frame, and how "similar" the CSequence decided the frame was to its predecessor. The

console log looks something like this:

Note: Did you notice the capture settings dialog in Chapter 6 showed a mirror image? You could use a Matrix to make the motion detector in
that chapter render a mirror image, too .

[rreviovs fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

8.4. Overlaying Video Tracks

When one video track is drawn on top of another, the top doesn't necessarily have to obscure the
bottom. QuickTime gives you the option of specifying a Gr aphi csMbde to combine pixels from

multiple video layers to create interesting effects.

8.4.1. How do | do that?

You can create a G aphi csMbde object to describe the means of combining overlapping colors. To try
it out, take the previous lab's code and replace all the matrix stuff (after the f or eTrack and
backTr ack are created, but before the Movi eControl | er is created) with the following:

Graphi csMbde gm = new G aphi csMode (QDConst ant s. addMax,
QDCol or. green);
Vi sual Medi aHandl er foreHandl er =
(Vi sual Medi aHandl er) foreTrack.getMedia().getHandler();
f oreHandl er. set G aphi cshMbde(gn);
foreTrack. set Layer(-1);

Note: Run this example with ant run-ch08-composit-evideotracks.

When run, this sample program asks you to open two movies, then creates a new movie with video
tracks from the source movies' media, and combines the pixels of the foreground movie with the
background, so the foreground appears atop the background. The result is shown in Figure 8-4.

8.4.2. What just happened?

Setting a G aphi csMbde instructs QuickTime to apply a specific behavior to combine overlapping
pixels. The G- aphi csMbde has a "mode™ i nt, which indicates which kind of behavior to use, and a
QPCol or that is used by some behaviors to indicate a color to operate on. For example, you might
use mode @Const ants. transpar ent and QDCol or. gr een to make all green pixels transparent. The
default mode is sr cCopy, which simply copies one set of pixels on top of another.

Note: Chapter 5 showed how to set up GraphicsMode compositing of still images. Video works in pretty much the same way.

To apply this Graphi csMbde to overlapping video tracks, you call set G aphi csMbde(), a method not
defined by t rack but, rather, by the Vi deoMedi aHandl er . As a reminder, movies have tracks, tracks
have media, and media have handlers. Actually, the set G- aphi csMbde() is defined by the

Vi sual Medi aHandl er interface, making it available for all visual media (MPEGVedi a, Text Medi a,
etc.).

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Note: Again, this wrap-up is the same as Chapter 7 s audio sample-building technique.

8.4.3. What about...

...appropriate codecs to use? I've pointed out Sorenson Video 3 and MPEG-4 Visual, because they
have very nice compression ratios and still look pretty good with natural images. Other codecs of
interest in a standard QuickTime installation are shown in Table 8-1.

Table 8-1. Some standard QuickTime codecs

Name Constant 4CC Description

. | Good for long runs of solid colors, such as those found
in simple synthetic 2D graphics.

Animation | kKAni mat i onCodecType | "rl e

This was the most popular codec of the early to mid-
1990s, thanks to a good compression/quality tradeoff,

Cinepak | kG nepakCodecType "cvi d" | wide support (even Sun's JMF handles it), and the fact
that it could run on very modest CPUs. Today, there
are better options.

This standard originally was designed for
H.263 kH263CodecType "h263" | videoconferencing, yet is surprisingly good in a wide
range of bitrates.

This wavelet-based codec, introduced in 2003, achieves
high compression rates (20:1) without showing

Pixlet N/A "pxl t" | graphics artifacts like other codecs at similar
compression levels. It requires powerful CPUs (PowerPC
G4 or G5 at 1GHz and up) to decode.

As of this writing, Apple has demonstrated but not released an H.264 (aka AVC) codec for QuickTime.
This is the newest and most powerful MPEG-4 codec, offering broadcast-quality video at 1.5 megabits
per second (Mbps) and HDTV quality at 5-9Mbps, assuming your computer is powerful enough to
decode it.

Also, other than making these "Ken Burns Effects,"” what am | going to do with writing video
samples? This technique is the key to creating anything you want in a video track. Want to make a
movie of your screen? Use the screen-grab lab from Chapter 5 and compress its GAr | d into a video
track. Have some code to decode a format that QuickTime doesn't understand? Now you can
transcode to any QuickTime-supported format. You even can take 3D images from an OpenGL or
JOGL application and make them into movies.

Note: Considering Chapter 5 showed how to grab the screen (even with the DVD Player running) into a GWorld, and considering you

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

can make video tracks from any GWorld...uh-oh.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Chapter 9. Miscellaneous Media

Audio and video are the most obvious and prominent kinds of media that can be found in a
QuickTime movie, but the story doesn't end there. Take a look at qui ckti ne. std. novi es. nedi a,
and you'll find more than a dozen subclasses of Medi a, each representing media types that can be

referenced by tracks in QuickTime movies.

This chapter is going to show off four of these, as much to show the variety of QuickTime as to
illuminate their practical uses. These four are:

e Text media

e HREF media (actually a special case of text)

e Timecode media

e Effects media (actually a special case of video)

Elsewhere in the book, I've also mentioned MPEG media, which isn't so much a new media type as it
is a disappointing compromiseQuickTime can't present the audio and video of a multiplexed MPEG-1
or MPEG-2 file as separate tracks, so instead it uses a single track pointing to "MPEGMedia," which
has both visual and audio characteristics (i.e., its media handler implements both

Vi sual Medi aHandl er and Audi oMedi aHandl er).

I'm not covering several media types for reasons of space and concision. Sprites (represented by
Spri t eMedi a) and QuickTime VR (QTVRMedi a) are plenty cool; however, each required an entire
volume of the old Inside Macintosh series, making them too involved to handle in this format.

Thr eeDMedi a is effectively deprecated and isn't even present in Mac OS X. A few other media types
are present largely as implementations for higher-level featuresfor instance, Movi eMedi a came about
as part of the implementation of SMIL (an XML markup that lets authors, among other things, make
movies that contain movies).

Tip: If you really think | should cover one of these other media types, send an email to cadamson@oreilly.com, and I'll see about
covering it in an online article or a future revision.

[rrevioos fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

9.1. Creating Captions with Text Media

Have you ever turned on captions on a DVD, perhaps for a foreign-language film? Have you ever
wondered how that works, especially given that the DVD might have captions for several different
languages? QuickTime can do the same thing, easily and efficiently.

The idea is that a movie can have zero-to-many text tracks (literally, tracks with text media), each of
which has a collection of text samples. Each sample contains some text and a time to display it. In
that sense, they're like any other media samplesthey have some data to be presented and a time
and duration indicating when to present it. So, to do a caption, you'd just have a single text sample
that begins at a relevant time in the movie (like when someone on-screen starts speaking) and has
an appropriate duration (how long the person speaks).

9.1.1. How do | do that?

To keep things simple, I'll focus on creating a movie with a single text track. Once you know how to
do that, it's easy to add your own text track to existing movies.

If you read the sample-building examples in Chapters Chapter 7 or Chapter 8, you probably already
know what's coming. To build a text track, you:

1. Add a track to a movie.

2. Create new media for the track.
3. Call Medi a. begi nEdits().

4. Add samples.

5. Call Medi a. endEdits().

6. Insert the media into the track.

7. Save the movie.

Note: These are the steps for adding any kind of media.

The biggest difference between adding different kinds of media is the setup you have to do for the
Medi a. addSanpl e() call. In the case of text, use Text Medi a. get Text Handl er () to get a

Text Medi aHandl er object, which offers a convenient addText Sanpl e() call. This method lets you
specify font, size, color, and various other options. In fact, it takes 14 parameters (amazingly, in this
exact order):

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e A QTPoi nt er Ref to the string to be added (typically, you call get Byt es() on a Java string and
wrap them with a QTPoi nt er to provide this argument)

e A font number (you can look up the font number from a font family's name via the
QDFont . get FNun{) method, or just pass 0 for a sensible default font)

e Font size

e Text face, meaning style information like QDConst ant s. bol d, QDConstants.italic, or
QConst ant s. under | i ne, combined with the | operator

e Text color, as a QDCol or value (this defaults to black if you pass nul |')
e Background color, as a QDCol or value (this defaults to white if you pass nul |')

e Text justification, using one of the @QDConst ant s valuest eFl ushLeft, t eFl ushRi ght , teCenter,
or t eFl ushDef aul t (the "t eJust..." constants in this class seem to do the same thing, too)

e Text box, a QDRect defining the bounding rectangle of the text (don't worry about this matching

the size of a movie you want to add it toyou can make a small text box at (0,0) and move it
into position by adding a Mat ri x translation to the text track)

e Display flags (covered later)

e Scroll delay (covered later)

e Highlight start (this is the index of the first character to be highlighted)
e Highlight end (this is the index of the last character to be highlighted)
e Highlight color, as a QDCol or value

e Duration, in the media's time scale

The display flags parameter takes any number of the df constants from St dQTConst ant s, combined
with the | operator. The possible behaviors are shown in Table 9-1.

"1

Note: Who knew QuickTime was optimized for karaoke? T

Table 9-1. Text sample display flags

Display flag Behavior

df Dont Di spl a
el Don't show this sample.

df Dont Aut oScal e
Don't scale text if bounding rectangle is resized.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Display flag
df i pToText Box

df Shri nkText BoxToFi t

df ScrollIn

df Scrol | Hori z

df Rever seScr ol |

df Cont i nuousScr ol |

df Fl owHor i z

df Cont i nuousKar aoke

df Dr opShadow

df Anti Al'i as

df KeyedText

df InverseHilite

Behavior

Clips to the size of the bounding rectangle; useful if overlaying video.

Recalculates the size of the text box parameter to just fit the text.

Scrolls the text in. If set, the scroll delay argument determines how long
the text lingers before being scrolled out.

Makes the text scroll in horizontally, instead of vertically (the default).

Reverses the typical scroll direction, which is bottom-to-top for vertical
scrolling and left-to-right for horizontal.

Causes new samples to force previous samples to scroll out. You must set
df Scrol | I n and/or df Scrol | Qut for this to do anything.

Allows text to flow within the bounding rectangle instead of going off to
the right.

Ignores the highlight start argument and highlights from the beginning of
the text to "highlight end." This allows you to progressively "grow" a
highlight through a line of lyrics, presumably for a karaoke application.

Displays text with a drop shadow.

Displays text with anti-aliasing.

Displays text without drawing a background color. This is ideal for putting
captions on top of video.

Highlights with inverse video instead of the highlight color.

Example 9-1 shows a simple application that creates a movie with a single text track, containing four
samples, each lasting 2.5 seconds.

Example 9-1. Creating a text track

package comoreilly.gtjnotebook.ch09;

i mport quicktime.*;

i mport quicktime.std.*;
i mport quicktinme.std. novi es. *;
i mport quicktine.std. novi es. nedi a. *;

i mport quicktinme.io.*;

*
CR

i mport quicktinme.util

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i nport quicktinme.qd. *;
inport comoreilly.qgtjnotebook.ch0l. QrSessi onCheck;

public class Text TrackBuil der extends Object {

public static int TEXT_TRACK W DTH = 320;
public static int TEXT_TRACK HElI GHT = 24;

static String[] MESSACGES = {
"Qui ckTinme for Java",
"A Devel oper's Not ebook",
"fromOReilly Mdia",
"Coning Fall 2004"
b
static DRect textBox = new (DRect (0, O,
TEXT_TRACK_W DTH,
TEXT_TRACK_HEI GHT) ;

public static void main (String[] args) {

try {
QTSessi onCheck. check();

QTFile novFile = new QTFile (new java.io.File("buildtext.nmv"));
Movi e movie =
Movi e. creat eMovi eFi | e(novFi | e,
St dQTConst ant s. kMovi ePl ayer,
St dQTrConst ant s. cr eat eMbvi eFi | eDel eteCurFil e |
St dQTConst ant s. cr eat eMovi eFi | eDont Cr eat eResFi | e) ;

Systemout.println ("Created Mvie");

/'l create an enpty text track

int timeScale = 10; // time neasured in 1/10ths of a sec

Track textTrack = novie.addTrack (TEXT_TRACK W DTH,
TEXT_TRACK_HEI GHT, 0);

Systemout.println ("Added enpty Track");

/1 create nedia for this track
Medi a text Medi a = new Text Medi a (textTrack,
ti meScal e) ;
Text Medi aHandl er handl er =
(Text Medi aHandl er) text Medi a. get Handl er();
Systemout.println ("Created Media");

t ext Medi a. begi nEdi ts() ;
for (int i=0; i<MESSACES.|length; i++) {
byte[] nsgBytes = MESSAGES[i].getBytes();
QTPoi nter msgPoi nt = new QTPoi nter (nsgBytes);
/1 add sanpl e
handl er. addText Sanpl e (nsgPoint, // text
0, // font number
14, // font size,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

@DConst ants. bold, // style,
@Q@Col or.yellow, // fg color,
Q@Col or. bl ack, // bg col or,
DConstants.teCenter,// justification
text Box, // box
0, // displayFl ags
0, // scrollDel ay
0, // hiliteStart
0, // hiliteEnd
QCol or.white, // rgbHiliteCol or
25 // duration
)

}y /1 for

/'l done editing
t ext Medi a. endEdits();

/1 now insert this nedia into track

text Track.insertMedia (0, // trackStart
0, // nediaTinme
text Medi a. get Duration(), // nediaDuration
1); // nediaRate

/'l save up at this point
Systemout.println ("Saving...");
OpenMovi eFil e onf = OpenMvi eFile.asWite (novFile);
novi e. addResour ce (onf,
St dQTConst ant s. novi el nDat aFor kResl| D,
nmovFi | e. get Nane());

Systemout.println ("Done");

} catch (QTrException qte) {
qgqte.printStackTrace();
}
System exi t (0);
} // main

Note: If you downloaded the book code, run this example with ant run-ch09-texttrackbuilder.

Running this example creates a file called buildtext.mov in the current directory. It's a normal
QuickTime movie, so you can open it with QuickTime Player, or the various players and editors from
Chapter 2 and Chapter 3. Figure 9-1 shows what it looks like when played.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 9-1. Text track movie

¢ Bagic OT Contraller =]

QuickTime for Java

9.1.2. What just happened?

The application walks through the basic steps of creating a text track as described earlier. First, it
creates an empty movie on disk (giving the movie a place to store the samples), and then adds an
empty track and creates a Text Medi a object for this track.

From there, it's a pretty simple matter of getting a Text Medi aHandl er and using it to make calls to
addText Sanpl e(), looping through the array of Stri ngs that are used as samples. For each
String, get its bytes and wrap them with a QTPoi nt er , creating a QTPoi nt er Ref that can be used
for addText Sanpl e() . When this is done, add the media to the track, then save the movie to disk
with Movi e. addResource().

9.1.3. What about...

...adding this text track on top of an existing movie I've opened, to make actual captions? To do this,
you'd want to do a few extra things. First, you'd add your samples with the df KeyedText display flag,

to remove the background color and thus have only the text appear above the video. You might also
consider using df Anti Al i as to make the text easier to read, though this is a little more CPU-

intensive at playback time.

Next, you'd want to move the captions to the bottom of the movie's box because this example uses a
box anchored at (0,0). You do this by setting a Matri x on the text track, defining it as a translation
to a box along the bottom of the movie's box (e.g., where the y-coordinate is the movie's height
minus the height of the text track).

Note: Run this example with ant run-ch09-transitiontrackbuilder.

Once an effect is selected, the resulting movie is saved as transition.mov. Figure 9-9 shows an
example of a movie in mid-transition, using a vertical "barn door" wipe with 5-pixel-wide borders.

9.1.4. What just happened?

In general, this isn't very different from the one-source case: an effects description defines the effect,
and an input map indicates where the sources come from. Probably the biggest hassle is that
because an effect by itself isn't very interesting, this example rips out the pre-effect and post-effect
video as separate tracks so that you can actually see the one video clip transitioning into another.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.1.5. What about...

...all these tracks? Who sends out QuickTime movies with five tracks, one of which QuickTime Player
identifies by the name of the effect, like "Wipe"? Fair enoughthis is the form you would want your
movie in while editing it so that you can make changes easily, tossing the effect or reworking it on
the fly, with minimal CPU or 1/0 cost to do so (because, as always, you're mostly just copying
pointers). For end-user delivery, you probably would want to export the movie. Even if you export to
another QuickTime movie (as opposed to a foreign format like MPEG-4), the export process will
render and compress each frame of the transition, leaving you with just a single video track.

Also, is there a list of all the effects | can check out? Sure, but there are more than 100...too many to
list here. If you look in Inside Macintosh: QuickTime (on Apple's web site or installed by developer
tools for Mac OS X), the section "Built-in QuickTime Video Effects” lists all the effects provided by
QuickTime, with examples and information about the parameters each one takes. Several dozen of
them are defined and standardized by the industry trade group SMPTE (Society of Motion Picture and
Television Engineers) and will be familiar to anyone who's worked with a television switcher.
Remember, though, the user may have installed third-party effects, so it's important to be able to
use the Ef f ect sLi st to do runtime discovery of what's available to your program.

Note: If you downloaded the book code, run this example with ant run-ch09-texttrackbuilder.

Running this example creates a file called buildtext.mov in the current directory. It's a normal
QuickTime movie, so you can open it with QuickTime Player, or the various players and editors from
Chapter 2 and Chapter 3. Figure 9-2 shows what it looks like when played.

Note: See Chapter 8 for coverage of transforming tracks with Matrix objects. The timecode example later in this chapter does this, too.

[reevions Juers

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

9.2. Creating Links with HREF Tracks

One peculiar trick you can do with text tracks is to use them to turn your movie into a set of time-
based hyperlinks. The idea is that by adding a so-called "HREF track," you can make portions of your
movie act like an anchor tag in HTMLclicking the movie takes you to a specified web page.

9.2.1. How do | do that?

Creating an HREF track is virtually identical to creating a text trackit is a real text track, after allwith
URLs as the text samples. To actually activate its special features, though, you have to rename the
track to HREFTrack. Also, because the URLs are not meant to be seen, you typically want to hide
them by calling set Enabl ed(f al se) on the track.

Assuming there is an array of URL St ri ngs called URLS, you can make the previous lab's movie
linkable by adding the following code after the first text media has been inserted into its track:

/1 add HREF track
Track hrefTrack = novie.addTrack (TEXT_TRACK W DTH,
TEXT_TRACK_HEI GHT, 0);

/'l create nmedia for this track
Medi a href Media = new Text Medi a (hrefTrack,

ti meScal e);
handl er = (TextMedi aHandl er) href Medi a. get Handl er();
Systemout.println ("Created HREF Medi a");

hr ef Medi a. begi nEdi ts();
for (int i=0; i<URLS.length; i++) {
byte[] nsgBytes = URLS[i].getBytes();
QrPoi nter msgPoi nt = new QTPoi nter (nsgBytes);
/1 add sanple
handl er. addText Sanpl e (nmsgPoint, // text
0, // font nunber
14, // font size,
@DConst ants. bold, // style,
Q@Col or.yellow, // fg color,
Q@Col or. bl ack, // bg color,
@Const ants. tedust Center,// justification
text Box, // box
0, // displayFl ags
0, // scrollDel ay
0, // hiliteStart
0, // hiliteEnd
Q@Col or.white, // rgbHiliteColor
25 /] duration

)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Yy Il for

/'l done editing
href Medi a. endEdi ts();

/1 now insert this nedia into track

href Track.insertMedia (0, // trackStart
0, // nmediaTine
href Medi a. getDuration(), // mediabDuration
1); // nediaRate

/] disable href track because we don't want it visible

Note: Run this example with ant run-ch09-hreftrackbuilder.

hr ef Track. set Enabl ed(f al se);

/'l change track name to HREFTrack
UserData userData = hrefTrack. getUserData();
String trackNanme = "HREFTrack";
QrPoi nter nanePtr = new QIPoi nter(trackNanme. getBytes());
user Dat a. set Dataltem (nanePtr,
QTuUtils.toCSType("nanme"),
0);

When run, this demo creates a file called buildhref.mov. However, HREF tracks work only in the
QuickTime plug-ini.e., in a browser. In the book's downloadable code, the HTML file
src/other/html/embed-hrefmovie.html has a simple web page that embeds this movie.

Note: To embed a QuickTime movie with HTML <embed> and <object> tags, see Chapter 1.

Figure 9-4 shows the page with the embedded buildhref.mov. If you click when you're on the first
text sample (QuickTime for Java), a new window opens up and goes to Apple's QTJ home page. The
other text samples each have a different corresponding HREF. The last one launches its page
automatically.

Figure 9-2. Browser showing movie with an HREF track; the page opened
by clicking the movie is shown in the second window

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

amnn HREFTrack demo
| | & Al & “ file:ff fUsers feadams = Q- M

[0 javadoes v QuickTimer Other usefulness v O'Reilly* java.net«

Movie with embedded HREFTrack

Each text sample has an associated LIRL

Click on text to launch page in new window

Last text sarmphe will load O°Reilly catalog page autarmatically

MNode! HREFTracks omly work With Quick Time plug - — g, i Drowsers — mal
with Quick Time Player or your own applcations

QuickTime for Java Se

o — W A

-

|'=

Avanet =

2 Jave

1) 11 Duick Time for Jawa prowides a set of cross -platform AP
ada to build multimedia, including streaming audio and vide
applets.

Tip: Note that the arrangement of HREF samples to other tracks and samples in the movie is totally arbitraryit depends only on when
and for how long the HREF text sample appears. If you wanted to link a certain segment of video to a URL, you might add the sample at
the time the video begins and make it have the same duration as the segment. This example makes the URLs correspond exactly to the
text samples in the other track because that makes sense when you're playing with it, but it doesn't have to work like that.

9.2.2. What just happened?

As QuickTime parses each URL in the HREF track, it enables a link to that URL. However, the URLs
can be specially formatted to achieve different behaviors. Here's what the demo’'s URLS array looks
like:

static String[] URLS = {
"<http://devel oper. appl e. conf qui cktinme/ qtjaval/ > T<_bl ank>",
"<http://devnot ebooks.oreilly.conm > T<_bl ank>",
"<http://ww.oreilly.com > T<_bl ank>",
"A<http://ww. oreilly.com catal og/> T<_bl ank>"

b

As you can see, the URL itself is enclosed in angle brackets. In each case, there's a second entry,
T<_bl ank>, which is used to indicate a target frame. By using the special value _bl ank, clicking these

URLs will always open them in a new window. However, you could also use a consistent name to
open URLs in a single new window, or a frame. If the T<. .. > is absent, the URL will be opened in the
current window (which will, of course, exit the page that contains the movie).

The last sample shows another interesting syntax. By preceding the URL and its angle brackets with
an A, you can force the URL to be opened as soon as it is read, either by playing up to that point or
scrubbing to it. There are lots of interesting uses for this approach, like an introductory movie (titles
and credits) pulling up another movie, or automatically refreshing another frame on the page.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

9.3. Adding Timecodes

In the professional realm, videotapes often have a timecode track in addition to their audio and video
tracks. This track enumerates every video frame, and is used typically for various purposes: editing,
logging what's on a tape, etc. Professional tape decks usually have an LED or LCD display of the
timecode, and optionally can display timecodes on-screen.

You might think the text track provides a convenient way to embed timecodesthey're string
valuesyou can have one for every frame of video (or many, if you set your time scale really high),
you can read them from the Text Medi a object, you can turn their display on and off by enabling and
disabling the track, etc.

And this would be fine. But fortunately, QuickTime has a real timecode track that goes much further.
Adding timecodes to a movie, in a format and resolution suitable for professional work, is a snap.

9.3.1. How do | do that?

No surprise, once again the key is to create a new track with a specific kind of media and to add
samples to it. This time, the desired media class is Ti neCodeMedi a.

What's really interesting is that you don't actually write a sample for every video frame. You need to
write only a single sample to define the timecode format and a start time, at the beginning of the
period for which you want to provide timecodes. Because QuickTime already is measuring time in
your track, at an arbitrary precision (i.e., the time scale you set for it), it can figure out the timecode
for any time later in the movie.

To create the sample, first you need a Ti neCodeDef object, which defines the timecode standard in

terms of frames per second, duration per frame, and a time scale, each set with a method call. You
also need a Ti meCodeTi ne, which defines the starting point for your timecodes. Its constructor takes

four arguments: hours, minutes, seconds, and frames.

Next, you need a Ti neCoder, which is a Medi aHandl| er for Ti neCodeMedi a. This object allows you to
set flags to determine whether the time code is displayed and to set display options (font size, style,
color, etc.) by passing it a TCText Opt i ons object. It also can generate a frame number, given the

Ti mreCodeDef and Ti neCodeTi nme, which is the data you need to pass to addSanpl e().

Note: You would think this would be called a Time-CodeHandler, wouldn't you?

The application in Example 9-2 takes an existing QuickTime movie and adds a visible timecode track.

Note: Run this example with ant run-ch09-timecodetrackerbuilder.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Example 9-2. Creating a timecode track

package comoreilly.qgtjnotebook.ch09

i mport quicktine.*;

i mport quicktine.std.*;

i mport quicktine.std.inage.*;

i mport quicktine.std. novi es. *;

i mport quicktine.std. novi es. nedi a. *;
i mport quicktine.std. qtconponents. *;
i mport quicktine.io.*;

i mport quicktine.qd.*;

i mport quicktine.app.view *;

i mport quicktinme.util.*;
i mport java.awt.*;

import comoreilly.qtjnotebook.chOl. QTSessi onCheck;
public class Ti neCodeTrackBuil der {

public static final int TIMECODE TRACK HElI GHT=24;
public static final int TIMECODE TRACK W DTH=120;

public static void main (String[] args) {
try {
QrSessi onCheck. check();
/'l open a novie
QTFile file = QTFil e.standardGet Fi | ePrevi ew (
QTFi | e. kSt andar dQTFi | eTypes) ;
OpenMovi eFi l e onf = QpenMvi eFil e. asRead(file);
Movi e nmovie = Movie.fronFile(onf)
/1 add a timecode track
addTi nreCodeTrack (novie);

/'l create GU

Frame f = new Franme ("Mwvie with TinmeCode track");

Movi eControl l er controller = new MvieController(novie);

Conponent ¢ = QTFactory. makeQlConponent (control | er).asConponent ();
f.add(c);

f.pack();

f.setVisible(true);

} catch (QTException qte) {
gte.printStackTrace();

}
}

public static Track addTi neCodeTrack (Movie novie)
t hrows QTException {
int timescale = novie.getTineScale();

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ti meCodeDef tcDef = new Ti meCodeDef();

tcDef.setTimeScal e (2997); // ntsc drop-frane
tcDef. set FraneDuration (100); // 1 frame in 30 fps dropfrane
t cDef . set FranesPer Second (30);

tcDef . set Fl ags (St dQTConst ants.tcDropFrane);

[l first record at O hrs, O min, O sec, O franes
Ti meCodeTinme tcTinme = new Ti neCodeTinme (0, 0, 0, 0);

/'l create timecode track and nedia
Track tcTrack = novie.addTrack (TIMECODE_TRACK W DTH,
TI MECODE_TRACK_HEI GHT,
0);
Ti meCodeMedi a tcMedi a = new Ti neCodeMedi a (tcTrack, tinescale);
Ti meCoder tineCoder = tcMedia.getTi neCodeHandl er();

/1l turn on tinmecode display, set colors
ti meCoder. set Fl ags (tineCoder. getFl ags() |
St dQTConst ant s. t cdf ShowTi neCode,
St dQTConst ant s. t cdf ShowTi neCode) ;
TCText Opti ons tcText Qptions = tineCoder. getDi spl ayOptions();
tcText Opti ons. set TXSi ze (14);
tcText Opti ons. set TXFace (Q@Constants. bol d);
t cText Opti ons. set ForeCol or (QDCol or.yel | ow);
t cText Opti ons. set BackCol or (QDCol or. bl ack) ;
ti meCoder. set Di spl ayOpti ons (tcTextOptions);

/'l set up a sanple as a 4-byte array in a QrHandl e

int franeNunber = tineCoder.toFranmeNunber (tcTine, tcDef);
int franmeNuns[] = new int[1];

frameNuns[0] = frameNunber;

QTHandl e frameNunHandl e = new QTHandl e (4, false);
frameNunmHandl e. copyFromArray (0, frameNuns, 0, 1);

/'l create a tinecode description (the sanple to be added)
Ti meCodeDescri ption tcDesc = new Ti meCodeDescription();
t cDesc. set Ti neCodeDef (tcDef);

/'l add the sanple to the Ti neCodeMedi a
t cMedi a. begi nEdi ts();
t cMedi a. addSanpl e (frameNunmHandl e,
0,
frameNunHandl e. get Si ze(),
nmovi e. get Duration(),
t cDesc,
1,
0);
tcMedi a. endEdits();

/!l now insert this nedia into track

tcTrack.insertMedia (0, // trackStart
0, // nediaTinme

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

tcMedi a. getDuration(), // mediaDuration
1); // nediaRate

/1 nove the timecode to the bottom of the novie and
/'l set a transparent-background G aphi csMbde
int x = (novie.getBox().getWdth()/2) - (TIMECODE_TRACK WDTH / 2);
int y = novie.getBox().getHeight() - TIMECODE_TRACK_HEI GHT;
DRect noveFrom = new DRect (0, O,
TI MECODE_TRACK_W DTH,
TI MECODE_TRACK_HEI GHT) ;
DRect noveTo = new @DRect (X, vV,
TI MECODE_TRACK_W DTH,
TI MECODE_TRACK_HEI GHT) ;
Matrix matrix = new Matrix();
matri x.rect (noveFrom noveTo);
tcTrack.setMatrix (matrix);
ti neCoder . set Graphi csMbde (new G aphi csMbde (@DConstants.transparent,

Q@Col or. bl ack));

return tcTrack;

When this is run, the user is prompted to open a QuickTime movie. It adds the timecode track and
opens the movie in a new window, as shown in Figure 9-3. Notice that the timecode stays accurate
whether you play the movie, jump to a specific time by clicking the time bar, or scrub back and forth.

Figure 9-3. Time code track added to a movie

& O ™ Movie with TimeCode track

di » Y an

9.3.2. What just happened?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The addTi mreCode() method begins by creating a Ti neCodeDef object and setting its time scale,
frame duration, and frames per second. Then it creates a Ti neCodeTi e for O hours, O minutes, O
seconds, and O frames (typically represented in the form 00:00:00;00, though you need to
remember the digits after the semicolon are in frames per second, not hundredths of a second, so in
this case they'll run from O to 29). It also creates a new t r ack with Ti meCodeMedi a.

With these objects, you can create the sample you'll need for the track, so you need the

Medi aHandl er , namely the Ti meCoder , which you get from the Ti neCodeMedi a via

get Ti mreCodeHandl er () . But some things are worth setting up on the Ti meCoder first, before you
worry about the sample. If you want to make the timecodes visible, you need to set the

t cdf ShowTi neCode behavior flag. Ti neCoder has a really weird syntax for behavior flags, requiring
you to pass in two values, the new values of all the flags, plus a mask indicating which one you
changed. So, to sett cdf ShowTi neCode, you have to do this:

ti meCoder. set Fl ags (tinmeCoder.getFlags() |
St dQTConst ant s. t cdf ShowTi neCode,
St dQTConst ant s. t cdf ShowTi neCode) ;

Use the Ti neCoder to set any display options: font, size, style, and foreground and background
colors. To do this, get the Ti neCoder's TCText Di spl ay object and make method calls to set each
parameter.

Finally, you're ready to create the sample. The data needed for the addSanpl e() call is just a 4-byte
frame number, calculated by the Ti meCoder from the Ti mreCodeDef and Ti meCodeTi ne in the

t oFr ameNunber () method. To get it into a QTHandl eRef required by addSanpl e(), putitin a one-
element i nt array, create a 4-byte QTHandl e , and use the handle's copyFromArray() method to
copy the i nt's bytes into the handle. The addSanpl e() call also needs a Sanpl eDescri pti on to
indicate what's in the QTHandl eget this by creating a new Ti neCodeDescri pti on object and setting
its fields with set Ti mreCodeDef () .

After adding the sample, and inserting the media into the track as always, the timecode is ready to
display. However, it defaults to a position at the upper right of the movie, and it has a background
box that obscures the movie below it. You can fix these problems by setting a track Mat ri x to move
the timecode display to the bottom of the movie's box and by setting a transparent G aphi csMbde to
make the background color disappear.

Note: See Chapter 8 for information on how to reposition tracks with matrices and composite them with GraphicsModes.

9.3.3. What about...

...those weird values for Ti nreCodeDef ? What's with the "2997"? This shows off the power of

QuickTime's timecode support. Imagine you had perfectly normal, 30-frames-per-second video. In
that case, you'd expect the values for the Ti mreCodeDef would be:

Time scale 3000

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Time scale 3000
Frame duration 100

Frames per second 30

Notice how this is redundant: if the time scale is 3000 and there are 30 frames per second, of course
each frame is 100 "beats" long. So, why did they define it this way?

Because "normal 30-frames-per-second video" isn't necessarily how things work in the real world.

In North America, most broadcast video is actually in a format called "drop frame," a misnamed
concept indicating that two timecodes (but not actual frames) are dropped every minute, except for
the tenth, to sync the color video signal with the audio. This format is defined by:

Timescale 2997
Frame duration 100

Frames per second 30

You can use these values with the Ti neCodeDef methods set Ti neScal e() , set FrameDur ati on(),
and set FranmesPer Second() to represent NTSC broadcast video in QuickTime. You'll also need to
call set Fl ags() with the flag St dQTConst ant s. t cDr opFr ane to tell QuickTime you're doing drop-
frame video. While you're at it, two other real-world flags to consider setting are t cNegTi nesCK to
allow negative times and t c24Hour sMax, which limits timecodes to go up only to 24 hours (mimicking
the behavior of analog broadcast equipment).

And by the way, what is the timecode system buying me, other than accuracy? One important
consideration with QuickTime's timecoding is to support the way things are done in the professional
realm, with both digital and analog equipment. There are many different schemes for timecoding
media, and QuickTime is designed to support any such system. Also, one of the nice things you can
do with timecodes is to capture the timecode from an original tape and maintain it in QuickTime,
even through editing, so the user always has a frame-accurate representation of where his original
material came from. There are even advanced techniques to "name" timecode tracks, presumably
after their original tapes (or "sources,"” as we move to a tapeless media world), which would allow
you to use QuickTime as the basis of a content management system.

[rrevious e s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

9.4. Creating Zero-Source Effects

QuickTime comes with an extensive collection of video effects, which you use by making movies with
effects tracksi.e., a track whose media defines a video effect.

These effects are grouped based on how many sources they operate on.

Zero-source effects

These effects are meant to be seen just by themselves. Apple includes a few of these, like fire,
clouds, and water "ripples."

One-source effects (or filters)

These effects are applied to a single source. Examples of this kind of effect include color
correction or tinting, edge detection, lens flare, etc.

Two-source effects (or transitions)

These are effects that apply to two sources at once. Typically, they're used to visually change
the display from one video source to another. Examples of these include dissolves and wipes.

The simplest of these are the zero-source effects, because they don't require wiring up the effect to
sources. Instead, you just put an appropriate effects sample into a video track and you're done.

9.4.1. How do | do that?

An effects track is really just a video track (literally, a track with Vi deoMedi a), whose samples are
descriptions of effects: the ID of the effect and any parameters it might take. In QuickTime, these
are passed in the form of At onCont ai ner s: tree-structures in which each "atom" can contain children
or data, but not both. Each atom has a size and a FOUR_CHAR_CODE type, and can be accessed by
index and/or type (i.e., you can get the nth atom of type m from a parent). For effects, you basically
need to pack an At onCont ai ner with an At omto specify the desired effect and possibly other At ons
to specify behavior parameters. This At onCont ai ner is the QTHandl e you pass to the addSanpl e()
method. Fortunately, you can get a properly structured At onCont ai ner from a user dialog, instead of
having to build it yourself.

Note: Almost everything you do in QuickTime involves atom manipulation, but most of the time the API isolates you from it. Not this time,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

though.

To generate the user dialog, use an Ef f ect sLi st object to create a list of installed effectsremember,
the user could have installed third-party effect components, so you want to get the list of effects at
runtime. Pass to Par anet er Di al og. showPar anet er Di al og(), which will return an At onCont ai ner
of the selected and configured effect.

The sample program in Example 9-3 shows how to create a zero-source effect movie, which is saved
to disk as effectonly.mov.

Example 9-3. Creating a zero-source effect
package comoreilly.gtjnotebook.ch09;

i mport quicktine.*;

i mport quicktine.std.*;

i mport quicktine.std. novi es. *;

i mport quicktine.std. novi es. nedi a. *;
i mport quicktine.io.*;

i mport quicktine.std.inage.*;

i mport quicktinme.util.*;

import comoreilly.qtjnotebook.chOl. QTSessi onCheck;
public class EffectOnlyTrackBuil der {

public static final int EFFECT_TRACK W DTH = 320;
public static final int EFFECT_TRACK HElI GHT = 240;
public static final int TIMESCALE = 600;

public static void main (String[] args) {
try {
new EffectOnl yTrackBuil der();
} catch (QTException qte) {
gte.printStackTrace();
}
System exi t (0);
}

public EffectOnlyTrackBuilder() throws QIrException {
QrSessi onCheck. check();

QTFile novFile = new QTFile (new java.io.File("effectonly.nmov"));
Movi e nmovie =
Movi e. cr eat eMovi eFi | e(novFi | e,

St dQTConst ant s. kMovi ePl ayer,

St dQTConst ant s. creat eMovi eFi | eDel eteCurFil e |

St dQTConst ant s. cr eat eMovi eFi | eDont Cr eat eResFi |l e) ;
Track effectsTrack = novie.addTrack (EFFECT_TRACK W DTH,

EFFECT_TRACK_HEI GHT,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

0);
int TI MESCALE = 600;
Vi deoMedi a ef f ect sMedi a

new Vi deoMedi a(ef f ect sTrack,
TI MESCALE) ;

/'l get list of effects

/1 StdQrConst ants. el Opti onsl ncl udeNonel nLi st)

Ef fectsList effectsList = new EffectsList (0, 0, 0);

/1l show list of effects

/1 flags are in StdQrConstants. pdOptions...

At onCont ai ner effect =

Par anet er Di al og. showPar anet erDi al og (effectsList, // effectsList

0, // dial ogOptions
null, // paraneters
"Pick an effect”, // title
null //pictArray
);

/1 find out the effect type by getting the "what" atom

/'l whose data is a FOUR_CHAR CODE

At om what = effect.findChil dBylndex Atom (null,

St dQTConst ant s. kPar anet er What Nane,
1);

int effect Type = effect. get AtonDat a(what) . getlnt(0);

ef fect Type = Endi anOrder. fli pBi géndi anToNati ve32(effect Type);

Systemout.println ("User chose " +

Qrutils. fronOSType(effectType) +
" effect type");

/'l make a sanple description for the effect description

| mgeDescription inmgDesc = | mageDescription.forEffect (effectType);
i ngDesc. set Wdt h (EFFECT_TRACK W DTH) ;

i ngDesc. set Hei ght (EFFECT_TRACK_HEI GHT) ;

/] add effect to the video nedi a
ef fect sMedi a. begi nEdits();

ef fect sMedi a. addSanpl e (effect, // QrHandl eRef dat a,
0, // int dataOfset,
effect.getSize(), // int dataSize,
1200, //int durationPer Sanpl e,
i ngDesc, // Sanpl eDescription sanpl eDesc,
1, // int nunmber O Sanpl es,
0 // int sanpl eFl ags

)
ef fect sMedi a. endEdits();

/1 now insert this nedia into track

effectsTrack.insertMedia (0, // trackStart
0, // nediaTime
ef fect sMedi a. get Duration(), // nediabDuration
1); // nediaRate

Systemout.println ("inserted nedia into effects track");

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/'l save up
Systemout.println ("Saving...");
OpenMovi eFil e onf = OpenMovi eFile.asWite (novFile);
nmovi e. addResour ce (onf,
St dQrConst ant s. novi el nDat aFor kResl D,
nmovFi |l e. get Nane());
Systemout.println ("Done");

When run, it presents the user with an effects dialog, as seen in Figure 9-4.

Figure 9-4. ParameterDialog for a zero-source effect

Pick an effect
¥ Generators
Cloud Spread rate: =
Fi
ire 3 = i . .
F Render
SPUTter rate; ik
1 16 32 48 B4
Water rate: <5
1 64 128 192 256
Restart rate: [k
4 & 16 24 32
Load Save., Cancel) € 0K)

This allows the user to choose the effect and configure it. For example, the fire effect allows the user
to set the height of the flames, how quickly they burn out and restart, how much "water" is doused
on them to vary their burn, etc. The resulting movie is shown in Figure 9-5.

Figure 9-5. An effect-only movie

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

a8n6 Basic QT Controller

9.4.2. What just happened?

After setting up an empty movie, track, and video media (effects tracks are actually a special case of
video), ask QuickTime for a list of installed effects:

Ef fectsList effectsList = new EffectsList (0, 0, 0);

To specify which effects are returned, this call takes a minimum number of sources, a maximum
number of sources, and a flag. To signal that you want only zero-source effects, set the first two
parameters to 0. el Opti onsl ncl udeNonel nLi st is the only flag that can be passed to the third

parameter, because it causes a no-op "none" effect to be included.

Then pass this to Par anet er Di al og. showPar anet er Di al og() to present the user with the list of
discovered effects, as well as controls to configure each one. This call takes five parameters:

e The Ef fect sLi st .

e A dialog options i nt, which alters the dialog for effects that have "tweening" valuesin other
words., those that change the effect over time (like how much of a transition is actually
performed). pdOpti onsCol | ect OneVal ue causes tweenable options to not be tweenable, while
pdOpt i onsAl | owOpt i onal | nt er pol ati ons puts tweenable parameters into a more advanced
user-interface mode.

e A "parameters" At onCont ai ner, which contains canned values for an effect. You could create
such an At onCont ai ner by carefully studying the QuickTime native docs and constructing it
manually with At onCont ai ner calls, or by getting an At onCont ai ner from this dialog and
"canning" its bytes for future use. By passing nul | , you get the default values for all effects.

e A String title for the dialog.

e An array of Pi ct s to use for previewing the effect. If none is provided, default images of the
letters A and B are used for showing filter and transition effects.

When the user selects and configures an effect, it's returned as an At onCont ai ner . This is what you

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

need to use for the addSanpl e() call on the Vi deoMedi a object. What's tricky is getting the

Sanpl eDescri pti on to tell addSanpl e() what to do with the effect At onCont ai ner .

I mageDescription. forEffect() will create such a description, but you need to pass it the
FOUR_CHAR_CODE of the effecteasy to do if you built the At onCont ai ner by hand, less easy if you got
it from the dialog. The effect type is in an atom whose type is "what ", so you can retrieve the

At omCont ai ner by calling fi ndChi | dByl ndex_At om() and asking for the first instance of the type
kPar anet er What Nane. At om get Dat a() will return an At onDat a object, from which you can get an
int withgetint().

There's an interesting concern with this i nt, because you must account for "endianness." QuickTime
structures are defined as being "big-endian,” meaning that in a given 32-bit value, the most
significant 16 bits come first. That's convenient for 680x0 and PowerPC CPUs, which Macs run on, but
not Intel CPUs. On Windows, when you get this i nt from the At onCont ai ner, it's big-endian, making
it wrong for use with calls to any QuickTime method that takes an i nt. You fix this with the self-
describing convenience method Endi anOr der. f1i pBi gendi anToNati ve32(). On the Mac, this call
does nothing, because the native endianness is already big-endian.

Finally, you have everything you need to add the sample. It's interesting to note that zero-source
effects aren't necessarily "played" in the same sense that other movie data is. When you open the
resulting movie, the flame starts immediately, regardless of whether the movie is playing, and it
keeps burning even if you stop the movie.

9.4.3. What about...

...the simpler version of showPar anet er Di al og() ? Because this example just wants default values
for everything, why not use that? Unfortunately, as of this writing, it's buggy. The native API has
separate calls for creating the dialog, getting an event from it, and dismissing it. QTJ is supposed to
catch the event and dismiss the dialog for you if you click OK, whereas a "cancel” throws an
exception, like with other QTJ dialogs. Unfortunately, clicking OK also throws an exception, meaning
you don't get the returned At omCont ai ner, and because there's not a Par anet er Di al og instance
you can hold on tothe showPar anet er Di al og() call was static, after allthere's no way to go back
and find out what the user selected. Oops.

Note: Always file bugs at bugreport.apple.com when you find things that are obviously wrong. This one is #3792083.

Anyway, the fancy version of the dialog doesn't have the bug, so that's what I've used here.

Also, what can | do with these zero-source effects other than just look at them? Remember, they're
normal video tracks, so they can be composited with other tracks, as shown in Chapter 8. For
example, you could take the fire effect, put it in the foreground by setting its layer to a lower value,
use a transparent G aphi csMode to punch out the black background, and voila, the contents of your
movie are on fire! And that's always a nice way to spice up your boring home movies.

(erevious fluexr

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

9.5. Creating One-Source Effects (Filters)

Filtering a video track by applying an effect to it is a critically important tool for doing color
correction, adding special effects like lens flare, or offering novelties such as converting the video to
black and white or pseudo-antique sepia tone. The technique of creating the effect is effectively the
same as with zero-source effects, although in this case you need to create an object that tells the
effect where its video source comes from.

9.5.1. How do | do that?

You create a one-source effect just like you do the zero-source versioncreate a track, create video
media, get an Ef f ect sLi st (this time of one-source effects), and get an At onCont ai ner describing
an effect from a Par anet er Di al og.

But before adding the At onCont ai ner as the effects media sample, you need to map it to a video
source, which is another video track in the movie. You do this by creating an input map, which is an
At onCont ai ner indicating the sources that are inputs to an effect. Next, create a track modifier
reference to redirect the track's output to the effect. You use the reference in building up the At ons in
the input map. Once built, the input map is set on the effect's media with set | nput Map() .

Example 9-4 exercises this technique by opening a movie, getting its first video track, and applying a
user-selected filter to it.

Note: Run this example with ant run-ch09-filtertrackbuilder.ks.

Example 9-4. Creating a one-source effect (filter)
package comoreilly.gtjnotebook.ch09;

i mport quicktine.*;

i mport quicktine.std.*;

i mport qui cktine.std. novi es. *;

i mport quicktine.std. novi es. nedi a. *;
i mport quicktinme.io.*;

i mport qui cktine.std.inage.*;

i mport quicktinme.util.*;

i mport quicktine.qd.*;

import comoreilly.qtjnotebook.chOl. QTSessi onCheck;

public class FilterTrackBuilder {

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

public static final int EFFECT_TRACK W DTH = 320;
public static final int EFFECT_TRACK HEI GHT = 240;
public static final int TIMESCALE = 600;

public static void main (String[] args) {
try {
new FilterTrackBuilder();
} catch (QTrException qgqte) {
gqte.printStackTrace();

}
System exit(0);

public FilterTrackBuilder() throws QIrException {
QrSessi onCheck. check();

QTFile nmovFile = new QTFile (new java.io.File("filter.mov"));
Movi e nmovie =
Movi e. creat eMovi eFi | e(novFi | e,
St dQTConst ant s. kMovi ePl ayer,
St dQrConst ant s. cr eat eMbvi eFi | eDel eteCurFil e |
St dQTConst ant s. cr eat eMovi eFi | eDont Cr eat eResFi | e) ;

Movi e sourceMovi e = queryUser For Movie();
Track sourceTrack addVi deoTrack (sourceMvi e,
movi e,
0,
sour ceMovi e. get Duration(),
0);

Track effectsTrack = novi e.addTrack (EFFECT_TRACK W DTH,
EFFECT_TRACK_HEI GHT,
0);

ef fect sTrack. set Layer (-1);

int TI MESCALE = 600;
Vi deoMedi a effectsMedi a = new Vi deoMedi a(ef f ect sTr ack,
TI MESCALE) ;

/1l set up input map here
At omCont ai ner i nput Map = new AtonmContai ner();

int trackRef =
ef fect sTrack. addRef erence (sourceTrack,
St dQTConst ant s. kTrackModi fi er Ref er ence) ;
/1l add input reference atom
At om i nput At om =
i nput Map.insertChild (null,
St dQrConst ant s. kTrackModi fi er | nput,
trackRef,
0);

/'l add nanme and type

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i nput Map.insertChild (inputAtom
St dQTConst ant s. kTrackModi fi er Type,
1,
0,
Endi anOrder. flipNativeToBi gendi an32(St dQTConst ant s. vi deoMedi aType)) ;

i nput Map.insertChild (inputAtom
St dQTConst ant s. KEf f ect Dat aSour ceType,
1,
0,
Endi anOrder. flipNativeToBi gendi an32(QrUtils.toOSType ("srcA")));
Systemout.println ("set up input nmap aton');

/1 show list of effects
/'l flags are in StdQrConstants. pdOptions...
Pict[] previewPicts = new Pict[1];
previ ewPi cts[0] = sourcelMvie. get PosterPict();
/'l get list of effects
Ef fectsList effectsList = new EffectsList (1, 1, 0);
At onCont ai ner effect =
Par anet er Di al og. showPar anet er Di al og (effectsList,
0, // dial ogOptions
null, // paraneters
"Pick an effect™, // title
previ ewPi cts //pictArray
);
/1l find out the effect type by getting the "what" atom
/'l whose data is a FOUR_CHAR CODE
At om what = effect.findChil dByl ndex_Atom (nul |,
St dQTConst ant s. kPar anet er What Nane,
1);
int effect Type = effect.get AtonData(what).getlnt(0);
ef fect Type = Endi anOrder. fli pBi gEndi anToNati ve32(effectType);
Systemout.println ("User chose " +
Qrutils. fronOSType(effectType) +
" effect type");

/'l make a sanpl e description for the effect description

| mgeDescri ption ingDesc = I mageDescription.forEffect (effectType);
i ngDesc. set Wdth (EFFECT_TRACK W DTH) ;

i ngDesc. set Hei ght (EFFECT_TRACK_HEI GHT) ;

/'l give the effect description a ref to the source
effect.insertChild (null,
St dQrConst ant s. KEf f ect Sour ceNane,
1,
0,
Qrutils.toCSType ("srcA"));

/] add effect to the video nedi a
ef f ect sMedi a. begi nEdi ts();

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

publ

publ

ef f ect sMedi a. addSanpl e (effect, // QrHandl eRef data,
0, // int dataOfset,
effect.getSize(), // int dataSize,
sour ceTrack. get Duration(), //int durPerSanpl e,
i ngDesc, // Sanpl eDescri pti on sanpl eDesc,
1, // int number O Sanpl es,
0 // int sanpl eFl ags
);
ef fect sMedi a. set | nput Map (i nput Map) ;

ef fect sMedi a. endEdi ts();

/1 now insert this nedia into track

effectsTrack.insertMedia (0, // trackStart
0, // nmediaTinme
sour ceTrack. getDuration(), // medi aDuration
1); // nediaRate

Systemout.println ("inserted nedia into effects track");

/'l save up
Systemout.println ("Saving...");
OpenMovi eFil e onf = OpenMovi eFile.asWite (nmovFile);
nmovi e. addResour ce (onf,
St dQTConst ant s. novi el nDat aFor kResl D,
movFi | e. get Nane());
Systemout.println ("Done");

ic static Movie queryUser For Movi e()
throws QTException {
QlFile file =
QTFi |l e. standardGet Fi | ePrevi ew (QrIFi | e. kSt andar dQTFi | eTypes) ;
OpenMovi eFil e onf = OpenMovi eFil e. asRead (file);
return Movie.fronFile (onf);

ic static Track addVi deoTrack (Movie sourceMvi e,
Movi e target Movi e,
int srcln,
int srcDuration,
int targetTine)
throws QTException {
/1 find first video track
Track videoTrack =
sour ceMovi e. get I ndTr ackType (1,
St dQrConst ant s. vi deoMedi aType,
St dQrConst ant s. novi eTr ackMedi aType) ;
if (videoTrack = = null)
throw new QIrException ("can't find a video track");
/1l add videoTrack to targetMvie
Track newlrack =

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

target Movi e. newTr ack (vi deoTrack. getSize().getWdthF(),
vi deoTr ack. get Si ze(). getHei ghtF(),
1.0f);
Vi deoMedi a newMedi a =
new Vi deoMedi a (newTr ack,
vi deoTr ack. get Medi a(). get Ti neScal e(),
new Dat aRef (new QTHandl e()));
vi deoTr ack. i nsert Segnent (newTr ack,
srcln, /1 O
srchDuration, // videoTrack.getDuration()
target Ti me) ;
return newlrack;

When run, this application queries the user to open a QuickTime movie. Then it opens a dialog to
choose and configure the effect, as seen in Figure 9-6. Notice that a frame from the movie is used in
the preview section of the dialog.

Figure 9-6. ParameterDialog for a one-source effect

[Adusiments
= Bl Armourt of embsossing | 1 -least ﬂ
E Filiers
Edge Detection
Emboss
Gereral Corvo..
E Sharmpan
[Special Effects

0k | Cancel

After the effect is chosen, the new movieconsisting of just a video track and an effects trackis written
to filter.mov. Figure 9-7 shows a video that is modified by the emboss effect.

Figure 9-7. Video track filtered through emboss effect

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

£ Basic OT Contraller El@l!l

9.5.2. What just happened?

After grabbing the source movie's first video track and adding it as a video track in a new movie, the
example creates an effects track. The video track's output is redirected by adding a reference to it to
the effects track, via the addRef erence() call.

Next, you need to set up the input map. This is a normal At onCont ai ner, into which you'll insert
child atoms. First, create the "track modifier" atom, with the four-argument version of

i nsert Chi | d() this creates and returns a parent atom (the five-argument versions all create leaf
atoms). To work, this atom requires two children: an atom of type kt r ackModi fi er Type whose data
is the type of track being modified (vi deoMedi aType in this case), and an atom of type

kEf f ect Dat aSour ceType whose data is a name for the track as a FOUR_CHAR_CODE i nt . Apple's
recommended standard is that source tracks be named "srcA,"” "srcB," etc.; you can get this 4CC
name with QTUti | s. t oOSType ("srcA") .

Again, there is an endianness issueQuickTime expects what you're building to be big-endian, so you
have to be careful to account for the endianness of the data you insert. In this case, the

vi deoMedi aType constant and the srcA name are native i nts, so they need to be flipped to big-
endianness with Endi anOr der. f I i pNati veToBi gEndi an32() .

Now that it's initialized, set this atom aside while creating the effect and adding its sample to the
effects media. Two important to-dos for filters are to ask the Ef f ect sLi st constructor for only one-

source effects (by passing 1 for the minimum and maximum number of sources to get effects for)
and to provide the Par anet er Di al og with a Pi ct[] that contains an image from your source movie

for previewing the effect. Once the effect has been added, provide the input map with a call to
Medi a. set | nput Map() .

9.5.3. What about...

...applying the filter to just part of the source track? Ah, this will turn up a nasty surprise . . . go
ahead and make the effect cover just half the length of the source video, by changing the duration
parameters in ef f ect sMedi a. addSanpl e() and ef fect sTrack. i nsertMedi a() from

sourceTrack. get Duration() to sourceTrack.getDuration() / 2.You might reasonably expect
that halfway through your movie, the filter simply would go away, because the duration of the effect

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

would have expired and the video would be the only valid media at that point. Instead, the display
goes blank!

Here's the deal: using a track for an effect makes it usable only by the effect. Setting up the track
reference redirects the output of the source video track into the effect.

So, what can you do about it? One option is to use two different video tracks in addition to the effect.
The first is the source to the effect and the second is all the source media not to be used in the effect.
In adding this second track, you set its in-time (the "destination in" argument of

track. i nsert Segnent ()) to come after the end of the effect. A somewhat cheesier alternative is to
add another, "no-op" effect, like a color conversion configured to not actually do anything, allowing
the source video to get to the screen by way of the effect.

Note: The next lab shows this first technique.

[rreviovs fluexrs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

9.6. Creating Two-Source Effects (Transitions)

Effects that combine two sources are called transitions, such as dissolves and wipes. You've probably
seen wipes on TV and less frequently in film, although they're considered somewhat artificial in film
because they call attention to themselves (the Star Wars films are probably the most prominent films
to use wipes, perhaps as a nod to old black-and-white adventure films and weekly cliff-hangers).

Note: Technically, a cut from one scene to another is also a transition, but that doesn't involve any kind of effect.

To show off a transition, this lab will open two movies and create a user-selected transition between
them.

9.6.1. How do | do that?

In coding terms, the only significant difference from a one-source effect is, predictably, that you need
to set up an input map that references both source tracks for the effect.

But in terms of practicality, although you might apply a filter to a long sequence of video, a transition
will be very short typicallyonly a few seconds at most. Because a video track used as a source to an
effect is shown only as part of that effect, to show all of one video source transitioning into all of
another, you need five tracks:

e All of source A, up to the beginning of the transition (i.e., its last n seconds)

The portion of source A to be used for the transition

The portion of source B to be used for the transition

All of source B after the transition (i.e., everything but its first n seconds)
e The effects track

So, to change the previous filter example into a transition example, ask for two source movies and
create the new target movie:

Movi e sour ceAWbvi e quer yUser For Movi e();
Movi e sourceBMbvi e = queryUser For Movie();
QIFile novFile = new QIFile (new java.io.File("transition.mv"));
Movi e novie =
Movi e. cr eat eMovi eFi | e(novFi | e,
St dQTConst ant s. kMovi ePl ayer,
St dQTConst ant s. creat eMovi eFi | eDel eteCurFil e |
St dQTConst ant s. cr eat eMovi eFi | eDont Cr eat eResFi | e) ;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Next, add the four video tracks, with the addVi deoTrack() conveni ence method from the last lab,
which grabs the first video track from the source, creates a new track, and inserts the specified
segment of video media into the new track:

Track preEffect Track = addVi deoTrack (sourceAMvi e,

novi e,
05
sour ceAMbvi e. get Duration() - TRANSI TI ON_DURATI ON,
0);
Track sourceATrack = addVi deoTrack (sourceAMvi e,
novi e,

sour ceAMovi e. get Duration() - TRANSI TI ON_DURATI ON,
TRANSI Tl ON_DURATI ON,
sourceAMWbvi e. get Duration() - TRANSI TI ON_DURATI ON) ;

Track sourceBTrack = addVi deoTrack (sourceBMvi e,
novi e,
0,
TRANSI Tl ON_DURATI ON,
novi e. getDuration() - TRANSI TI ON_DURATI ON) ;
Track postEffectTrack = addVi deoTrack (sourceBMvi e,
novi e,
TRANSI Tl ON_DURATI ON,
sour ceBMovi e. get Duration() - TRANSI TI ON_DURATI ON,
novi e. getDuration());

After this, create the effect track as before, except that:

e You ask the Ef f ect sLi st constructor for two-source effects.
e You provide two Pi ct s to Par anet er Di al og, one from each source.

e You create the input map with two track modifier atoms, each of which refers to a different
track reference (as returned by calls to addRef er ence()). Their contents differ only by name:

one is srcA, and the other is srcB:

int trackARef =
ef fect sTrack. addRef erence (sourceATrack,
St dQrConst ant s. kTrackModi fi er Ref er ence) ;
int trackBRef =
ef fect sTrack. addRef erence (sourceBTrack,
St dQrConst ant s. kTrackModi fi er Ref er ence) ;

/1 add input reference atons
At om al nput Atom =
i nput Map.insertChild (null,
St dQTConst ant s. kTrackModi fi er | nput,
t rackARef ,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

0);

i nput Map.insertChild (alnputAtom

St dQTConst ant s. kTrackModi fi er Type,

1,

0,

Endi anOrder. flipNativeToBi gendi an32(St dQTConst ant s. vi deoMedi aType)) ;
i nput Map.insertChild (al nput Atom

St dQrConst ant s. KEf f ect Dat aSour ceType,

1,

0,

Endi anOrder. flipNativeToBi gendi an32(QrUtils.toOSType ("srcA")));

At om bl nput At om =
i nput Map.insertChild (null,
St dQrConst ant s. kTrackModi fi er | nput,
trackBRef ,
0);
i nput Map.insertChild (blnputAtom
St dQTConst ant s. kTrackModi fi er Type,
1,
0,
Endi anOrder. fli pNati veToBi gEndi an32(St dQTConst ant s. vi deoMedi aType)) ;

i nput Map.insertChild (bl nputAtom
St dQTConst ant s. KEf f ect Dat aSour ceType,
1,
0,
Endi anOrder. flipNativeToBi gendi an32(QrUtils.toOSType ("srcB")));

Because you have two input atoms, you need to make two calls to insert them into the effects
description:

effect.insertChild (null,
St dQTConst ant s. KEf f ect Sour ceNane,
15
05
Endi anOrder. fli pNativeToBi gendi an32(QTUti |l s.toOSType ("srcA")));
effect.insertChild (null,
St dQTConst ant s. KEf f ect Sour ceNane,
21
01
Endi anOrder. flipNativeToBi gendi an32(QTUtils.toOSType ("srcB")));

When run, this example queries the user twice for input movies, then shows a dialog of all installed
two-source effects, as seen in Figure 9-8.

Figure 9-8. ParameterDialog for a two source effect

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Pick an effect
" Percentage and Wipe Pattern | &

» Compaositors ge and Wip =
» Transitions Percentage: G o G %
¥ Wipes '

Gradient 'W... & S u 100

Iris f . a

= |

Matrix Wipe Wipe Type: | Barn vertical j

Push Horizontal repeat: 1

Radial N

Slide . Vertical repeat: 1

Wipe

(Load...) (Save..) (Cancel) 0K

o

Note: Run this example with ant run-ch09-transitiontrackbuilder.

Once an effect is selected, the resulting movie is saved as transition.mov. Figure 9-9 shows an
example of a movie in mid-transition, using a vertical "barn door" wipe with 5-pixel-wide borders.

Figure 9-9. Two video tracks as sources to a transition effect

ana BasicOTEditor

9.6.2. What just happened?

In general, this isn't very different from the one-source case: an effects description defines the effect,
and an input map indicates where the sources come from. Probably the biggest hassle is that

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

because an effect by itself isn't very interesting, this example rips out the pre-effect and post-effect
video as separate tracks so that you can actually see the one video clip transitioning into another.

9.6.3. What about...

...all these tracks? Who sends out QuickTime movies with five tracks, one of which QuickTime Player
identifies by the name of the effect, like "Wipe"? Fair enoughthis is the form you would want your
movie in while editing it so that you can make changes easily, tossing the effect or reworking it on
the fly, with minimal CPU or 1/0 cost to do so (because, as always, you're mostly just copying
pointers). For end-user delivery, you probably would want to export the movie. Even if you export to
another QuickTime movie (as opposed to a foreign format like MPEG-4), the export process will
render and compress each frame of the transition, leaving you with just a single video track.

Also, is there a list of all the effects | can check out? Sure, but there are more than 100...too many to
list here. If you look in Inside Macintosh: QuickTime (on Apple's web site or installed by developer
tools for Mac OS X), the section "Built-in QuickTime Video Effects” lists all the effects provided by
QuickTime, with examples and information about the parameters each one takes. Several dozen of
them are defined and standardized by the industry trade group SMPTE (Society of Motion Picture and
Television Engineers) and will be familiar to anyone who's worked with a television switcher.
Remember, though, the user may have installed third-party effects, so it's important to be able to
use the Ef f ect sLi st to do runtime discovery of what's available to your program.

(erevious fluexr

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[rrevioos fluexrs

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The Developer's Notebook series is modeled on the tradition of laboratory notebooks. Laboratory
notebooks are an invaluable tool for researchers and their successors.

Sarah Sherman was the production editor and the proofreader for QuickTime for Java: A Developer's
Notebook, and Audrey Doyle was the copyeditor. Marlowe Shaeffer and Claire Cloutier provided
quality control. Ellen Troutman-Zaig wrote the index.

Edie Freedman designed the cover of this book. Emma Colby produced the cover layout with
QuarkXPress 4.1 using the Officina Sans and JuniorHandwriting fonts.

David Futato designed the interior layout, with contributions from Edie Freedman. This book was
converted by Joe Wizda to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray,
Jason Mclintosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is
Adobe Boton; the heading font is ITC Officina Sans; the code font is LucasFont's TheSans Mono
Condensed, and the handwriting font is a modified version of JuniorHandwriting made by Tepid
Monkey Foundry and modified by O'Reilly. The illustrations that appear in the book were produced by
Robert Romano and Jessamyn Read using Macromedia FreeHand MX and Adobe Photoshop CS. This
colophon was written by Colleen Gorman.

The online edition of this book was created by the Safari production group (John Chodacki, Ellie
Cutler, and Ken Douglass) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

[rrevious e s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P] [Q] [R] [S] [T [U] [V] [W] [X] [¥] [£]

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [O] [E] [F] [G] [H] [[9] [K] [L] [M] [N] [O] [P] [Q] [R [S] [T] (U] M] (W] [X] [¥Y] [£]

2D transformations with Matrix objects
4CCs (four character codes) 2nd [See also FOUR_CHARACTER_CODEsS]
OnanufacturerQ code for exporters
| operator

combining behavior flags

combining
combining display flags for text sample
combining text face constants

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [O] [E] [F] [G] [H] [[9] [K] [L] [M] [N] [O] [P] [Q] [R [S] [T] (U]] (W] [X] [¥Y] [£]

AAC files (iTunes)

metadata, getting
absolute paths, QTJ and

Abstract Plane, SoftVDIG
addEmptyTrack() (Movie)
addReference()
addResource() (Movie) 2nd
addSample() 2nd

Media class 2nd

SoundMedia class 2nd

VideoMedia class 2nd
addTextSample() (TextMediaHandler) 2nd

addTimeCode()
addTrack() (Movie)

addVideoTrack()

affine transformations
anchor point
Ant
Apple
Biscotti project
H.264 (aka AVC) codec for QuickTime
iChat AV application
QuickTime, introduction of
applets, opening and closing QT sessions
asComponent()
asJComponent()

Atom class, getData()
AtomContainer class 2nd
describing one-source effect

fromQTHandle()

AtomData object
atoms

atom-like structures in AAC metadata
AtomContainers

audio
adding second track to a movie
basic controls, providing
building a track from raw samples
capturing [See capturing, audio]
level meter for applications, providing
metadata tag constants
playing from command line 2nd
reading information from iTunes AAC files

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

reading information from MP3 files
AudioMediaHandler class
getSoundLevelMeterLevels()
setBalance()
setSoundBassAndTreble()
setSoundEqualizerBands() 2nd
AVI file format (Microsoft)
AWT
file selector
Frame class
Graphics class
ImageProducer interface
Mac OS X menus and
mixing with Swing widgets

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[9] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] M] (W] [X] [¥] [£]

background color

barn door wipe
beginDraw() (Pict

beginEdits() (Media) 2nd 3rd
behavior flags
for callbacks
for capture
for create file operation
for finding interesting times
for flattening operation
for movie export
newMovieAsyncOK 2nd
previously compressed frames
for saving a movie to a file
for saving a movie with dependencies
big-endian
Biscotti
blend (graphics mode)
bluescreen video, information about
BorderLayout class
browsers
controlling a movie via JavaScript
showing movie with an HREF track
build.xml file

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] M] [N] [O] [P] [Q] [R] [S] (1] [U] V] (W] [X] [¥] [£]

C language, documentation for native functions
callbacks
disabling buttons via
releasing resources
types of in quicktime.std.clocks
callMeWhen()
canceling callback registered with
cancel() (QTCallBack)
cancelAndCleanup() (QTCallBack)
captions, creating with text media
capturing
_audio
_to disk
selecting audio inputs
audio and video to same file
video
making a motion detector
_to disk
channels, number of
character codes, component types/subtypes
chroma key concept
Classic Mac OS [See Macintosh]
CODEC TYPE constant
codecs 2nd
commonly-used video codecs
determining the best one to use
FOUR CHAR CODEs
H.264 (aka AVC) codec for QT
indicating which supported QT video codec to use
mixed, flattening process and
in StdQTConstants classes
color
background
blending colors
foreground and background, for timecodes
highlighted text
text
command line, playing audio from 2nd
compiling QTJ code
path to QTJava.zip file
Component class 2nd
ComponentDescription class 2nd
Componentldentifier class

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

find()
getinfo()

components 2nd
definition of

discovering all installed

exporting movies to any installed format
importing and exporting graphics

listing of important types

movie exporter

type and subtype

composited video, uses of

compositing graphics

compositing movie tracks, zero-source effects
compress() (QTImage) 2nd
CompressedFramelnfo object
compressFrame() (CSequence)

compression

audio capture and
buffer size for holding compressed images

constants [See StdConstants class]
containers

AtomContainers

definition of

mixing AWT and Swing widgets
controller, adding for movies
controlling a movie programmatically
controls, providing for audio
convertToFile() (Movie) 2nd 3rd
copyFromArray() (QRHandle)
copying and pasting

BasicQTEditor class (example)

pasting
createlmage() (Toolkit)
createMovieFile()

Movie class

QTFile class
createMovieFileDeleteCurFile flag
createMovieFileDontCreateResFile flag
CSequence class 2nd

compressFrame()
current time

adjustment after editing

showing for a movie

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P] [Q] [R] [S] [T [U] [V] [W] [X] [¥] [£]

DataRef objects
location for storing media samples

pointing to Pict byte array
decompression
deleteSegment()

Track class
dependencies, saving a movie with
detecting motion by comparing grabbed images
dialogs
export options
GraphicsExporter settings
missing media in reference movie
opening a movie
save progress dialog
saving a movie
selecting effects 2nd 3rd 4th
providing Picts to 2nd
settings for capture 2nd
threading problem with
DirectShow video, bringing into OT
display flags for text samples 2nd
dissolves
draw() 2nd
Graphicsimporter class 2nd
Pict class
drawlmage() (Graphics)
drawing with Graphics primitives
drop frame format
duration (segment), changing

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] M] [N] [O] [P] [Q] [R] [S] (1] [U] V] (W] [X] [¥] [£]

Edit Decision List (EDL)
editing movies
copying and pasting
BasicQTEditor class (example)
pasting
flattening a movie
low-level edits
saving a movie with dependencies
saving movie to a file
progress indication
tracks
undoing an edit
undoing/redoing multiple edits
effects media
creating zero-source effects
listing installed effects
listing of
one-source effects
two-source effects
effects tracks
EffectsList objects 2nd
<embed> tag (HTML)
enableEditing()
EncodedImage interface 2nd
encoding formats, video and audio
endEdits() (Media) 2nd
endianness 2nd
EndianOrder class
flipBigEndianToNative32()
flipNativeToBigEndian32()
execute()
MovieProgress class
exitMovies() (QTSession)
exporting graphics
setting export parameters programmatically
exporting movies 2nd
to any installed format
setting export parameters programmatically
using MovieExporter class

ExportType class
ExtremesCallBack class

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] M] [N] [O] [P] [Q] [R] [S] (1] [U] V] (W] [X] [¥] [£]

face, text
fast-motion effect
File class
filters [See one-source effects]
Final Cut Pro (editing application)
find()) (Componentldentifier)
flags [See behavior flags]
flatten() (Movie
flattening a movie
flipBigEndianToNative32() (EndianOrder)
flipNativeToBigEndian32() (EndianOrder)
font number
font size
forEffects() (ImageDescription)
foreground video track
four character codes
FOUR CHAR CODEs
atoms
codecs
converting to/from
graphics file format constants
movie user data
padding with space characters
video codec
Frame class
adding a Label
frames
forcing movie not to drop
key frame or sync sample
key frame rate
moving frame by frame
MP3 files
frequencies
frequency of the sound wave to be produced
level meter display of loudness/softness
sine wave
square wave at constant frequency
fromDataRef()) (Movie)
fromFile()
Movie class
Pict class
fromOSType() (QTUtils)
fromQTHandle() (AtomContainer)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

functions (native C), documentation

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] M] [N] [O] [P] [Q] [R] [S] (1] [U] V] (W] [X] [¥] [£]

GDevice class

getList()

_getMain()
getAsPicture() (Graphicsimporter)

etBytes() 2nd
getData()

Atom class
getDefaultFileNameExtension() (GraphicsExporter)
getDeviceList()
getDuration() (Movie)
getExportSettingsFromAtomContainer()
getFNum() (QDFont)
getindTrackType() (Movie) 2nd
getinfo() (Componentldentifier)
getList() (GDevice)
getMain() (GDevice)
getMaxCompression() (QTImage)
getMaxCompressionSize()
GetMediaNextInterestingTime function
getNextInterestingTime()
getNextType() (UserData)

getPict() (Movie)

getPreferredSize()
getScreenSize() (Toolkit)

getSimilarity() (QTImage) 2nd
getSoundLevelMeterLevels() (AudioMediaHandler)
getTextAsString() (UserData) 2nd 3rd
getTextHandler() (TextMedia)
getTime() (Movie)
getTimeCodeHandler() (TimeCodeMedia)
getTimeScale() (Movie)
grabMovielmage() 2nd
grabPict() (SequenceGrabber)
graphics [See also QuickDraw]
importing/exporting
Picts file format (Mac OS)
Graphics class, drawlmage()
graphics modes
_blend
listing of
transparent
Graphics primitives, drawing with
GraphicsExporter class 2nd

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Graphicslmporter class 2nd 3rd
draw() 2nd
getAsPicture()
saveAsPicture()
setDataHandle()

setDataReference()
setGraphicsMode()

setGWorld()

GraphicsimporterDrawer, QTImageProducer provided by

GraphicsMode objects
combining colors in overlaid video tracks
mode int

GWorld objects 2nd 3rd
drawing from source image into the GWorld
drawing pixels off-screen from imported graphic
as represented by QODGraphics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P] [Q] [R] [S] [T [U] [V] [W] [X] [¥] [£]

H.264 (aka AVC) codec for QuickTime
handlers, media
highlighted text
_color
start and end points
hinted movie
HREF media
arrangement of HREF samples to other tracks and samples

creating tracks
HTML, embedding QuickTime in

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P] [Q] [R] [S] [T [U] [V] [W] [X] [¥] [£]

iChat AV application
ID3 standard
retrieving metadata
tags in non-Western scripts
idle() (SequenceGrabber) 2nd 3rd
ImageDescription class
forEffect()
ImageProducer interface
images, building video track from image samples
importing/exporting graphics
index-based get, QT methods
indexed color formats
input map for effects sources 2nd
creating for two-source effects
two-source effects
insertChild()
insertEmptySegment() (Track)
insertMedia() (Track) 2nd 3rd
insertSegment()
Movie class
Track class 2nd
installed components, discovering
installing QTJ
on Classic Mac OS
preflighting an installation
on Windows
int, endianness of 2nd
interesting times
Internet Explorer, QuickTime embedded in HTML
itemStateChanged()
iTunes AAC files

metadata, getting

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P] [Q] [R] [S] [T [U] [V] [W] [X] [¥] [£]

Java
converting movie image to Java
better converter
converting movie image to Java image
developer kit, J2SE 1.4.2 SDK
MRJ (Macintosh Runtime for Java)
Java 2D API
affine transformations
Java Media Framework (JMF)
Java Runtime Environment (JRE), QuickTime installation and
Javadocs and demos, QTJ SDK on Mac OS X
JavaScript, browser support for
JComponent class
JMF (Java Media Framework)
JSlider class

justification, text

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] (U] M] (W] [X] [¥Y] [£]

key frame 2nd
key frame rate

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] [M] [N] [O] [P] [Q] [R [S] [T] (U] M] (W] [X] [¥Y] [£]

Label class
layers in multi-track movie
level meters
creating for audio capture
providing for audio applications
LevelMeter class
lightweight components
links, creating with HREF tracks
looping behavior, setting with MovieController

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] M] [N] [O] [P] [Q] [R] [S] (1] [U] V] (W] [X] [¥] [£]

Macintosh
installing QTJ on (Classic) Mac OS
menus on Mac OS X with usage of AWT
Picts graphics file format
preferred size of QTComponent on Mac OS X

QTJ SDK
main()
makeQTComponent() (QTFactory)
makeQTJComponent() (QTFactory)
map() (Matrix)
Math class, sin()

Matrix class

map()
rect() 2nd 3rd

rotate()
matrix-based drawing
Matrix-based transformations
foreground video track

mirror image video
moving timecode display

using on text track
maxLoadedTimelnMovie()
media
audio [See audio]
effects
listing of
one-source effects
two-source effects
zero-source effects
HREF tracks, creating links with

samples
text
timecodes
video [See video]
Media class
addSample()
setup for text media
beginEdits() 2nd
endEdits()
setinputMap()

media handlers 2nd
MediaEgSpectrumBands object
menus

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

on Mac OS X with usage of AWT
overlap problem with mixed AWT and Swing components
metadata
audio metadata tag constants
iTunes AAC files
getting
MP3 files
ID3 tags in non-Western scripts
retrieving
Quicktime tags
middle C sine wave
mirror image video
motion detector, creating
.mov file format
Movie class
addEmptyTrack()
addResource() 2nd
addTrack()
convertToFile() 2nd
createMovieFile()
flatten
fromDataRef()
behavior flags
fromFile()
getindTrackType() 2nd
getPict()
getTime()
getTimeScale()
insertSegment()
newEditState()
newTrack() 2nd
removeTrack()
scaleSegment()
setProgressProc()
setTime()
task()
taskAll()
useEditState()

movie exporter components
exporting to any installed format
movieChanged() 2nd
MovieController class
methods similar to on-screen control widget
movieChanged()

undo()
MovieEditState objects

MovieExporter class
toFile()
toHandle()
MoviePlayer class, QTImageProducer provided by
MovieProgress class
movies

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

converting movie image to Java image

better converter
creating with single text track
definition of
editing
copying and pasting
flattening a movie
low-level edits
saving to a file
saving with dependencies
tracks

undoing an edit
undoing/redoing multiple edits

embedded in web page
exporting
picture-in-picture movie
playing
adding a controller
building simple player
controlling programmatically
current time, showing
JComponent
listening for state changes
mvoing frame by frame
preventing tasking problems
from URLs
user data
MP3 files, reading information from
MPEG files
H.264 codec
MPEG media
MPEG-4 visual codec
testing for MPEG-4 support
MPEGMedia class
MPEGMediaHandler class
MRJ (Macintosh Runtime for Java)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P] [Q] [R] [S] [T [U] [V] [W] [X] [¥] [£]

native functions (C), documentation
newEditState() (Movie)
newMovieAsyncOK behavior flag 2nd
newTrack() (Movie) 2nd
NextTimeEdgeOK
NextTimeMediaEdit
NextTimeMediaSample
NextTimeSyncSample

NTSC broadcast video
Nyguist-Shannon Sampling Theorem

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P] [Q] [R] [S] [T [U] [V] [W] [X] [¥] [£]

<object> tag (HTML)
one-source effects 2nd

applying filter to just one part of source track
overlaying video tracks

uses of

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] M] [N] [O] [P] [Q] [R] [S] (1] [U] V] (W] [X] [¥] [£]

ack
calling after each paste()
paint() (LevelMeter)
<param> elements (HTML)
ParameterDialog class
showParameterDialog() 2nd
zero-source effect
paste()
PCM (pulse code modulation)
performance, mixing AWT and Swing widgets
Pict class
beginDraw()
draw()
fromFile()
writeToFile()
Picts
getting and saving
getting from a movie
importing from memory
picture-in-picture movies
Apple iChat AV application
Pixlet codec
PixMap objects
play() (MovieController)
playing movies
adding a controller
building a simple player
JComponent class
listing for state changes
moving frame by frame
preventing tasking problems
programmatic control
showing movie's current time
from URLsS
PNG files
file-type constant
use for screenshots
pointers 2nd

to sample data
preflighting a QTJ installation

Premiere (editing application)
prepare() (SequenceGrabber) 2nd 3rd 4th
previewing captured audio

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

progress of movie save operation
properties file (videosamplebuilder)

pulse code modulation (PCM)

putOnScrap()

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] M] [N] [O] [P] [Q] [R] [S] (1] [U] V] (W] [X] [¥] [£]

QDColor class

background color
text color

QDConstants class
graphics modes 2nd
text face
QDDrawer class
QDFont class, getFNum()
QDGraphics class 2nd 3rd 4th
as wrapper for GWorld
QDRect class
QTCallBack class

cancelAndCleanup()
QTComponent class

performance vs. QTJComponent

preferred size on Mac OS X
QTEdit class

redo()
QTEXxception

QTFactory class
makeQTComponent()

makeQTJComponent()
QTFile class

createMovieFile()

standardGetFilePreview()
QTHandle class

copyFromArray()
QTHandleRef class

timecode samples
QTlImage class

compress() 2nd

getMaxCompression()

etSimilarity() 2nd

QTlImageProducer class

provided by GraphicsimporterDrawer

provided by MoviePlayer
QTJava.zip file 2nd
QTJComponent class

performance vs. QTComponent
QTPointer class
QTPointerRef objects

for text string to be added to movie
QTSession class

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

exitMovies()

multiple open() or close() calls
QTUtils class

toOSType()

toOSType() and fromOSType()
Quartz 2D API
QuickDraw 2nd

compositing graphics

converting between objects

converting movie image to Java image

creation/manipulation of video media

drawing with Graphics primitives

getting a Pict from a movie

getting and saving Picts

matrix-based drawing

movie-to-Java image converter (better)

screen capture, getting
QuickTime
QuickTime for Java (QTJ)

documentation

downloading

setting up on Windows
QuickTime Player, audio level meter

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P] [Q] [R] [S] [T [U] [V] [W] [X] [¥] [£]

RateCallBack class 2nd

RawEncodedImage objects 2nd 3rd
compressing frame pixels in GWorld into

rect() (Matrix) 2nd 3rd

redoing multiple edits

reference movies
saving a movie with dependencies
usefulness in save operations

removeTrack() (Movie)

repaint() (Timer)

requestSettings()

rotate() (Matrix)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] M] [N] [O] [P] [Q] [R] [S] (1] [U] V] (W] [X] [¥] [£]

SampleDescription objects
customizing with setter methods
timecode samples

samples
building video track from raw samples

HREF, arrangement of
key frame or sync sample
raw, building audio track from
sample size, setting for audio track
text
display flags
saveAsPicture() (Graphicsimporter)
saving movies
with dependencies
to a file
flattening
scale()

scaleSegment()
Movie class
Track class
scanForDifference()
screen capture
screen size
movie editing and
self-contained movie
SequenceGrabber class
grabPict()
idle() 2nd
prepare()
startPreview()
startRecord()
stop() 2nd
update()

session handler for QTJ (example)
setBalance() (AudioMediaHandler)
setCompressionMethod()
setDataHandle() (Graphicsimporter)
setDataOutput()

setDataReference() (Graphicsimporter)
setDepth()

setDevice() (SGSoundChannel)
setEnabled() (Track)
setExportSettingsFromAtomContainer()

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

setFlags()

setFrameDuration() (TimeCodeDef)
setFramesPerSecond() (TimeCodeDef)
setFrequency()
setGraphicsMode()
Graphicsimporter class
VideoMediaHandler class
setGWorld() (GraphicsIimporter)
setlnputGraphicsimporter()
setinputMap()
Media class
setlnputPtr()
setLayer() (Track)
setLightweightPopupEnabled()
setMatrix() (Class)

setOutput()
setOutputFile() (GraphicsExporter)

setPlayEveryFrame() (MovieController)
setProgressProc() (Movie) 2nd
setSoundBassAndTreble() (AudioMediaHandler)
setSoundEqualizerBands() (AudioMediaHandler) 2nd
setTargetDataSize()
setTime() (Movie) 2nd
setTimeCodeDef()
setTimeScale() (TimeCodeDef)
settingsDialog()
SGSoundChannel class 2nd
setUsage() 2nd
SGSoundChannel class 2nd 3rd
SGVideoChannel class
setVolume() (SoundChannel)
SGDeviceName class
SGSoundChannel class
setDevice()
setUsage() 2nd
showParameterDialog() (ParameterDialog) 2nd 3rd
showUserSettingsDialog flag
shutdown hook for QT sessions

sin() (Math)

sine waves
sleep() (Thread)
sliders
slow-motion effect
SoftVDIG from Abstract Plane
Sorenson Video 3 codec
sound channel
SoundChannel class, setVolume()
SoundDescription objects
SoundMedia class
addSample() 2nd
source tracks for effects
Apple recommendation for naming

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

two-source effects
spatial quality of images after 2D compression
SPBDevice class

square wave 2nd
standardGetFilePreview() (QTFile) 2nd

start() (Movie)
startPreview() (SequenceGrabber)
startRecord() (SequenceGrabber) 2nd
StdQTConstants
constants for finding tracks
StdQTConstants class
codecs
compression quality, specifying
constants for callback behavior
constants for finding tracks
df (display flag) constants for text samples
for flattening a movie

image file formats
kMoviePlayer
kQTFileTypeAVI
kQTFileTypeMovie

metadata tag names
movieToFileOnlyExport
newMovieAsyncOK 2nd
resource file creation, preventing
for saving a movie
for setting capture usage
showUserSettingsDialog
timecode flags
"what" effect identifier
StdQTConstants4 class
constants for image formats
PNG file-type constant
stop() (SequenceGrabber) 2nd
String class, getting string bytes and wrapping in QTPointer
style information for text
subtypes, component 2nd
Swing
file selector
mixing with AWT widgets
simple movie player (example)
Timer class
undo API

sync sample
finding next

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] M] [N] [O] [P] [Q] [R] [S] (1] [U] V] (W] [X] [¥] [£]

tags
audio metadata tag constants
ID3 2nd [See also ID3 standard]
QuickTime metadata

task() (Movie)

taskAll() (Movie)

TaskAllMovies class
tasking, preventing problems
TCTextDisplay objects
TCTextOptions objects
temporal quality of images when using data from adjacent frames
text

display options for timecodes

timecode, display options for
text box
text face
text media

captions

display flags for text sample

HREF tracks, URLS in
TextMedia class, getTextHandler()
TextMediaHandler class 2nd
Thread class

sleep()

yield()
time

adjustment after editing movie

showing a movie's current time
time scales 2nd

for NTSC drop-frame
TimeCallBack class
TimeCodeDef objects 2nd

values
TimeCodeDescription objects
TimeCodeMedia class 2nd
TimeCoder class

behavior flags for timecode display
timecodes

behavior flags for display

timecode track
TimeCodeTime class 2nd

Timelnfo objects
TimeJumpCallBack class

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Timer class

repaint()
toFile() (MovieExporter)

toFrameNumber()
toHandle() (MovieExporter)
Toolkit class

createlmage()

getScreenSize()
toOSType() (QTULtils) 2nd

Track class
editing methods
foreground video track preparation methods
insertMedia() 2nd
setLayer()
setMatrix()

track modifier
tracks
1-based numbering
audio, building from raw samples
editing
effects tracks
HREF, creating links with
source, naming of
_text
timecode
video
building from raw samples
combining

overlaying
transformations, Matrix-based

of foreground video track

mirror image video

video transformations
transitions
translate()
transparent graphics mode 2nd
triggering callback on any rate change
two-source effects 2nd
types/subtypes, component 2nd

listing of important types

matching

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P] [Q] [R] [S] [T [U] [V] [W] [X] [¥] [£]

undo()
MovieController class
UndoManager class
undoing
a single edit

multiple edits
UndoManager class

update() (SequenceGrabber)
Updater (QuickTime)
updateResource()
URLs
in HREF tracks
linking and other behaviors
playing movies from
useEditState() (Movie)
UserData class
getNextType()
getTextAsString()

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] M] [N] [O] [P] [Q] [R] [S] (1] [U] V] (W] [X] [¥] [£]

video
building track from raw samples
capturing [See capturing, video]
combining tracks
effects tracks [See effects media]
overlaying tracks
video digitizer component
VideoMedia class, addSample() 2nd
VideoMediaHandler class, setGraphicsMode()
videosamplebuilder.properties file
VisualMediaHandler class

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] M] [N] [O] [P] [QT [R] [S] (1] [U] [V] (W] [X] [¥] [£]

web page with embedded movie
window size for movies
Windows
exporting to MPEG-4
Internet Explorer
QT embedded in HTML
QTJ bug workaround using absolute paths

setting up QTJ

video digitizer component

wipes 2nd
writeToFile() (Pict

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P] [Q] [R] [S] [T [U] [V] [W] [X] [¥] [£]

XML file for QTJ installation

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] (3] [KT [L] [M] [N [O] [P] [Q] [RT [S] [T] [U] [V] (W] [X] [Y] [Z]
yield() (Thread)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [[3] [K] [L] M] [N] [O] [P] [Q] [R] [S] (1] [U] V] (W] [X] [¥] [£]

zero-source effects
ParameterDialog

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	QuickTime for Java: A Developer's Notebook
	Table of Contents
	Copyright
	The Developer's Notebook Series
	Notebooks Are...
	Notebooks Aren't...
	Organization

	Preface
	Enter Biscotti
	Why a QuickTime for Java Book?
	Assumptions and Definitions
	Organization
	About the Examples
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari Enabled
	Acknowledgments

	Chapter 1. Getting Up and Running with QuickTime for Java
	Section 1.1. Setting Up QTJ on Windows
	Section 1.2. Embedding QuickTime in HTML
	Section 1.3. Preflighting a QTJ Installation
	Section 1.4. Compiling QTJ Code
	Section 1.5. Opening and Closing the QuickTime Session
	Section 1.6. Playing an Audio File from the Command Line

	Chapter 2. Playing Movies
	Section 2.1. Building a Simple Movie Player
	Section 2.2. Adding a Controller
	Section 2.3. Getting a Movie-Playing JComponent
	Section 2.4. Controlling a Movie Programmatically
	Section 2.5. Showing a Movie's Current Time
	Section 2.6. Listening for Movie State-Changes
	Section 2.7. Moving Frame by Frame
	Section 2.8. Playing Movies from URLs
	Section 2.9. Preventing

	Chapter 3. Editing Movies
	Section 3.1. Copying and Pasting
	Section 3.2. Performing
	Section 3.3. Undoing an Edit
	Section 3.4. Undoing and Redoing Multiple Edits
	Section 3.5. Saving a Movie to a File
	Section 3.6. Flattening a Movie
	Section 3.7. Saving a Movie with Dependencies
	Section 3.8. Editing Tracks

	Chapter 4. Working with Components
	Section 4.1. Specifying a Component's Type
	Section 4.2. Exporting Movies
	Section 4.3. Exporting Movies to Any Installed Format
	Section 4.4. Importing and Exporting Graphics
	Section 4.5. Discovering All Installed Components

	Chapter 5. Working with QuickDraw
	Section 5.1. Getting and Saving Picts
	Section 5.2. Getting a Pict from a Movie
	Section 5.3. Converting a Movie Image to a Java Image
	Section 5.4. A Better Movie-to-Java Image Converter
	Section 5.5. Drawing with Graphics Primitives
	Section 5.6. Getting a Screen Capture
	Section 5.7. Matrix-Based Drawing
	Section 5.8. Compositing Graphics

	Chapter 6. Capture
	Section 6.1. Capturing and Previewing Audio
	Section 6.2. Selecting Audio Inputs
	Section 6.3. Capturing Audio to Disk
	Section 6.4. Capturing Video to Disk
	Section 6.5. Capturing Audio and Video to the Same File
	Section 6.6. Making a Motion Detector

	Chapter 7. Audio Media
	Section 7.1. Reading Information from MP3 Files
	Section 7.2. Reading Information from iTunes AAC Files
	Section 7.3. Providing Basic Audio Controls
	Section 7.4. Providing a Level Meter
	Section 7.5. Building an Audio Track from Raw Samples

	Chapter 8. Video Media
	Section 8.1. Combining Video Tracks
	Section 8.2. Overlaying Video Tracks
	Section 8.3. Building a Video Track from Raw Samples
	Section 8.4. Overlaying Video Tracks

	Chapter 9. Miscellaneous Media
	Section 9.1. Creating Captions with Text Media
	Section 9.2. Creating Links with HREF Tracks
	Section 9.3. Adding Timecodes
	Section 9.4. Creating Zero-Source Effects
	Section 9.5. Creating One-Source Effects (Filters)
	Section 9.6. Creating Two-Source Effects (Transitions)

	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

