
Ajax Hacks
By Bruce Perry
...

Publisher: O'Reilly

Pub Date: March 01, 2006

ISBN: 0-596-10169-4

Slots: 0

EBVN
K h o i N g u ? n T r i T h ? c

Chú ý:

Ðây là b?n FULL c?a book Ajax Hacks. Phiên b?n ebook này do EBVN group
biên t?p. Ð? bi?t thêm v? chính sách share c?a t? ch?c xin m?i vào dây.

E B V N
Khoi Ngu?n Tri Th?c.

Th?ng C?o VÁ
EBVN

Ch?nh S?ch Share
Ch?nh S?ch Mua B?

n

l I s T E b O o K

Update 30-1-06

?

?

*** T ? C h ? c E B V N :

EBVN l? t? ch?c d?u ti?n v? duy nh?t c?a Vi?t Nam c? th? t? khai th?c c?c ngu?n ebook cho ri?ng m?nh.
Nh?ng ebook ch?ng t?i d? dang v? s? khai th?c lu?n lu?n newest, hotest v? !!!!!!.
Ð? ch?nh l? l?i kh?ng d?nh v? cung l? kim ch? nam d? EBVN t?n t?i ho?t d?ng.
?

V?o th?i di?m n?y, do l?c lu?ng c?n qu? m?ng n?n EBVN ch? t?p trung khai th?c hai m?ng c?ng ngh? h?ng
d?u v? c? tuong lai h?a h?n nh?t hi?n nay. Ð? l? Dot net d?i di?n cho b?n c?ng c? l?p tr?nh. V? Artificial
Intelligence d?i di?n cho b?n thu?t to?n.
** Dot Net : bao g?m Dot net Framework, C#.net, ASP.net, VB.net, VC++.net.
** Artificial Intelligence : bao g?m AI, Genetic Programming, Neural Networks, Fuzzy Logic . . .
V?i d?i ngu th?nh vi?n c?n r?t tr?, EBVN dang c? tham v?ng m? r?ng kh? nang khai th?c ebook v? chi?u s?
u (ch? ? l? kh?ng c? chi?u r?ng), m? r?ng t?m khai th?c v?i hai c?ng ngh? tr?n.

Tuy nhi?n, EBVN v?n c?n dang trong qu? tr?nh h?nh th?nh l?c lu?ng "Ebook-Finder". V? v?y, n?u b?n n?o
c? c?ng ch? hu?ng v?i ch?ng t?i xin h?y g?i ngay email t?i d?i tru?ng n2tuan (n2tuan@gmai.com) d? c?
th? "join" v?o EBVN. Trong email, b?n c?n dua ra list m?t s? ebook b?n d? bought du?c.
EBVN s? r?t vui m?ng d?n nh?n nh?ng member m?i nhi?t t?nh, nang d?ng. Nh?ng mem m?i s? du?c c?p
ngay m?t Account lo?i "Safari Max" b?n SAFARI.com trong th?i gian m?t nam, v? t?t nhi?n l? s? du?c truy
c?p v?o ngu?n c?a EBVN.

E B V N
Khoi Ngu?n Tri Th?c.

Th?ng c?o vÁ

EBVN
Ch?nh s?ch share

Ch?nh s?ch mua b?

n

l I s T E b O o K

Update 30-1-06

?

?

" Con ngu?i s?ng kh?ng th? thi?u du?c b?n b? ".
EBVN kh?ng th? t?n t?i n?u ebook c?a m?nh khai th?c du?c l?i ch? d?nh cho c?c mem c?a t? ch?c. Ð?ng
th?i EBVN cung mu?n g?p m?t ph?n n?o d? v?o s? ph?t tri?n c?a n?n c?ng ngh? th?ng tin nu?c nh?. V?
v?y, ch?ng t?i s? c? g?ng share cho c?c b?n nhi?u nh?t c? th?.
?

******************************* O K * Ð ? Y L ? Q U Y Ð ? N H ****************************
Ch?ng t?i s? c?p nh?t c?c ebook m?i nh?t ngay khi c? th? tr?n website
c?a t? ch?c. N?u c?c b?n c?n ebook n?o th? h?y g?i ngay email d?n
cho ch?ng t?i ? d?a ch? : ebvn.ebvn@gmail.com v? ch? d?i.
N?u s? lu?ng ngu?i y?u c?u vu?t qua con s? " 100 " th? CH?C M?NG B?N
V? NH?NG NGU?I REQUEST THIS EBOOK v? c?c b?n d? l? ch? nh?n c?a
ebook m?nh c?n. Link download s? du?c ch?ng t?i g?i qua du?ng email
ho?c ngay trong topic m? ch?ng t?i post ? ddth.com.
CH? ?: n?u c? new ebook, th?nh vi?n c?a EBVN s? post l?n forum ddth.com
v? c?p nh?t ngay tr?n website.

E B V N
Khoi Ngu?n Tri Th?c.

Th?ng c?o vÁ

EBVN
Ch?nh s?ch share

Ch?nh s?ch mua b?
n

l I s T E b O o K

Update 30-1-06

?

?

Ð? t?o ngu?n kinh ph? m?t ph?n b?i du?ng cho c?c member xu?t s?c c?a t? ch?c v? ph?c v? cho nh?ng
d? d?nh s?p t?i c?a EBVN, EBVN m? th?m d?ch v? b?n ebook. D?ch v? n?y nh?m d?p ?ng nhu c?u c?a
nh?ng chuy?n gia tin h?c dang th?c s? c?n ebook cho c?ng vi?c c?a m?nh. Gi? m?i cu?n ebook l? 10.000
VND.

C?c b?n h?y g?i email cho ch?ng t?i ? d?a ch? : ebvn.ebvn@gmail.com. Trong thu ghi r? cu?n s?ch b?n c?n.
Ch?ng t?i s? g?i email l?i cho b?n v?i th?ng tin :
* S? di?n tho?i d? b?n c? th? li?n h? v?i ch?ng t?i. B?n c? th? g?i di?n tru?c khi g?i ti?n
* Th?i h?n b?n s? n?p ti?n v?o t?i kho?n c?a EBVN.

Sau d? trong th?i h?n d? n?u, b?n h?y g?i ti?n v?o t?i kho?n cho ch?ng t?i theo th?ng tin du?i d?y.

S? t?i kho?n ATM c?a c?ng ty:

Ng?n h?ng N?ng Nghi?p v? Ph?t Tri?n N?ng Th?n Vi?t Nam AGRIBANK

Ch? t?i kho?n: Ng? Ng?c Tu?n.
S? t?i kho?n: 2727-2715-0004-6365.

Ngo?i ra, EBVN hi?n dang n?m m?t s? account lo?i Safari Max c?a h?ng Safari. Safari l? h?ng kinh doanh
s?ch online l?n tr?n th? gi?i. H?ng n?y c? m?i h?p t?c v?i r?t nhi?u publisher l?n nhu O'Reilly, Syngress,
Addison Wesley, Microsoft Press, Sams Publishing. Ch?ng t?i s½ b?n cho c?c b¡n vÛi gi? t?nh theo sÑ th?
ng c?n l?i c?a account. 1 th?ng tuong duong v?i 5.000 VND.
Ð? bi?t th?m th?ng tin v? t? s?ch online Safari n?y, b?n h?y v?o website c?a h?ng:
www.oreilly.safari.com
?

C?m On C?c B?n Ð? ?ng H? E B V N.

E B V N
Khoi Ngu?n Tri Th?c.

List s?ch du?c c?p nh?t b?i EBVN.?
N?u b?n dang c?n ebook n?o du?i d?y xin g?i email d?n:

EbVn.eBvN@gmail.com
b?n s? c? co h?i s? h?u cu?n ebook m?nh c?n.

Th?ng c?o vÁ

EBVN
Ch?nh s?ch share

Ch?nh s?ch mua b?

n
l I s T E b O o K
Update 30-1-06

?

Dot Net Artificial Intelligence Other

Ajax Hacks
By Bruce Perry
...

Publisher: O'Reilly

Pub Date: March 01, 2006

ISBN: 0-596-10169-4

Slots: 0

EBVN
K h o i N g u ? n T r i T h ? c

Overview

Ajax, the popular term for Asynchronous JavaScript and XML, is one of the most important
combinations of technologies for web developers to know these days. With its rich grouping of

technologies, Ajax developers can create interactive web applications with XML-based web services,

using JavaScript in the browser to process the web server response.

Taking complete advantage of Ajax, however, requires something more than your typical "how-to"

book. What it calls for is Ajax Hacks from O'Reilly. This valuable guide provides direct, hands-on

solutions that take the mystery out of Ajax's many capabilities. Each hack represents a clever way to
accomplish a specific task, saving you countless hours of searching for the right answer.

A smart collection of 100 insider tips and tricks, Ajax Hacks covers all of the technology's finer points.

Want to build next-generation web applications today? This book can show you how. Among the

multitude of topics addressed, it shows you techniques for:

Using Ajax with Google Maps and Yahoo Maps

Displaying Weather.com data

Scraping stock quotes

Fetching postal codes

Building web forms with auto-complete functionality

Ajax Hacks also features a number of advanced hacks for accelerated web developers. Discover how to

create huge, maintainable bookmarklets, how to use client-side storage for Ajax applications, and how
to call a built-in Java object from JavaScript using Ajax. The book even addresses best practices for

testing Ajax applications and improving maintenance, performance, and reliability for JavaScript code.

The latest in O"Reilly's celebrated Hacks series, Ajax Hacks smartly complements other O'Reilly titles

such as Head Rush Ajax and JavaScript: The Definitive Guide.

Ajax Hacks
By Bruce Perry
...

Publisher: O'Reilly

Pub Date: March 01, 2006

ISBN: 0-596-10169-4

Slots: 0

EBVN
K h o i N g u ? n T r i T h ? c

Table of Contents

 Chapter 1. Ajax Basics
 Introduction: Farewell to Page Refreshing

 hack Detect Browser Compatibility With The Request Object

 hack Use The Request Object To POST The Server Some Data

 hack Use A Separate Library For XML Http Request

 hack Receive Data As XML
 hack Get Plain Old Strings

 hack Receive Data As A Number

 hack Receive Data In JSON Format

 hack Handle Request Object Errors

 hack Dig Into The HTTP Response

 hack Generate A Styled Message With ACSS File
 hack Generate A Styled User Message On The Fly

 Chapter 2. Validation

 hack Validate A Texfield Or Textarea For Blank Fields

 hack Validate Email Syntax

 hack Validate Unique User Names
 hack Validate Credit-card Numbers With AJAX

 hack Validate Credit-card Security Codes

 hack Validate A Postal Code

 Chapter 3. Web Forms

 hack Submit Textfield Or Textarea Values To The Server Without A Browser Refresh
 hack Display Text Field Or Textarea Values Using Server Data

 hack Submit Selection- List Values To The Server Without A Browser Refresh

 hack Dynamically Generate A New Selection List With Server Data
 hack Populate An Existing Selection List

 hack Submit Checkbox Values To The Server Without A Browser Refresh

 hack Dynamically Generate A New Checkbox Group With Server Data

 hack Populate An Existing Checkbox Group From The Server

 hack Change Unordered List Labels Using An HTTP Response
 hack Dynamically Generate An Unordered List From The Server

 hack Submit Hidden Tag Values To A Server Component

 Chapter 4. Direct Web Remoting (DWR) for Java Jocks

 Introduction

 hack Integrate DWR Into Your Java Web Application
 hack Use DWR To Populate A Select List From A Java Array

 hack Use DWR To Populate A Selection List From A Java Map

 hack Use DWR To Populate An Un/ Ordered List From A Java Array

 hack Access A Custom Java Object With Java Script

 hack Call A Built-in Java Object From Java Script Using DWR
 Chapter 86. To Come

 Idtxt A

E B V N
We are Vietnames

Chapter 1. Ajax Basics

Ajax Basics

E B V N
We are Vietnames

E B V N
We are Vietnames

Introduction: Farewell to Page Refreshing

Remember when users called the Internet the "world wide wait"? Way back in the Neolithic era of the
web? With some applications, the web has not really changed that much. Fill out form, click button,
web page goes away, wait, page refreshes, correct mistake, click, wait, wait…You've been stuck in
this netherworld before.

A number of recent web sites, however, such as many of the cool mapping applications that have
evolved of late, require much greater responsiveness in the way they interact with users. These
applications require small pieces of the web page to change instantaneously, often based on server
information, rather than have the entire page "go away" with every click, with the new page only
reappearing in your browser view when the server's response is finally complete.

For example, if you have ever used Google Maps, the way you can drag outer-lying regions into your
view conveys the impression that you have all of the maps stored locally on your computer, for your
effortless manipulation. Imagine how unpopular this application would be if every time you tried to
"drag" the map the page would disappear for a few (long) moments while the browser waited for
another server response. The application would be so sluggish that no one would use it.

It's Not a Floor Wax

A blend of well-known technologies and a nifty JavaScript tool forms the basis of a snappier and more
powerful application model for the web. Before you run from a new acronym this one's easy, Ajax.
Yet, it is neither a floor wax nor a desert topping. It stands for Asynchronous JavaScript and XML.

Ajax is a blend of a number of standard technologies that people are familiar with:

JavaScript, a programming language that adds dynamic scripting to a web page. The code can
be embedded right in there with the page to allow the page to implement cool new behaviors
with a technique called "client-side scripting." This technique is almost as old as the web itself.

XMLHttpRequest, an object or sub-set of JavaScript code that can connect with a server using

the HTTP protocol. A lot of the Ajax magic is propelled by this piece of code, which all of the
major browsers such as Mozilla Firefox, Internet Explorer 5, Safari, and Opera 7.6 support. The
asynchronous part of Ajax derives from this object's characteristics.[1]

Extensible Markup Language (XML), a standard method of describing data with a meta
language, "information about information." The XMLHttpRequest object can handle the server

response in standard XML format as well as plain text.

HTML and Cascading Style Sheets, which control what the user sees on a web page. Web
developers can use JavaScript to make dynamic changes to the visual interface by programming
HTML elements and CSS styles.

The Document Object Model (DOM), a model that represents a web page as a set of related

objects that can be dynamically manipulated, even after the user has downloaded the page. The
web-page view is structured as a "tree" hierarchy made up of a root node and its various
"branches." Each HTML element is represented by a node or branch, which are accessible by
JavaScript. We show a lot of DOM programming in these hacks, a lot!

Extensible Style sheet Language and Transformation (XSLT), a templating technology for
controlling the display of information that originates in XML format.

Ajax is far from new, as these are relatively old technologies. Microsoft issued the first
implementation of a JavaScript object that could query servers, as in the XMLHttpRequest object

(although Microsoft's object had a different name), with version 5.0 of their Internet Explorer browser
(as of this writing, IE is on version 6).

What is new are the plethora of web applications that use Ajax and represent a new model of
interacting with Internet users. Examples of these applications are Google Maps, Google Mail, a
collaboration suite called Zimbra, an interesting personal search-engine tool called Rollyo
(http://www.rollyo.com/) as well as one of the first interactive web maps, this one of Switzerland
(see http://map.search.ch/index.en.html). This number of Ajax applications is growing very rapidly.
Wikipedia has published a short list: http://en.wikipedia.org/wiki/List_of_websites_using_Ajax.

Handle With Care

Of course, Ajax is not for everyone (particularly those desert topping fans!). Since Ajax technology
can dynamically alter a web page that has already been downloaded, certain tools near and dear to
may users, such as creating bookmarks for browser views and the "back" browser button, are
interfered with. For example, in the absence of fancy scripting solutions, the dynamic changes you
make with DOM in an existing web page cannot be linked to with a URL that you can send to your
friends or save for later. We have included Fix the Browser Back Button and Handle Bookmarks
and Back Buttons in AJAX Applications with RSH help shed light on these issues, if only to

provide some hackable solutions.

A number of the cool Ajax tips described in this book alter the way web widgets behave, like select
lists, textareas, text fields, and radio buttons that submit their own data and talk to servers behind
the scenes. Browser users know these widgets by heart. Ajax-powered widgets should be first and
foremost usable, and always avoid confusing and irritating your web users.

XMLHttpRequest

At the center of many of these hacks is the XMLHttpRequest object, which allows JavaScript to fetch

bits of server data while the user is happily playing with the rest of your application. This object has
its own API, which we will summarize in this introduction.

Hack 1 involves setting up the request object in JavaScript. Once the object is initialized, it has
several methods and properties that your own hacks can use. Mozilla Firefox's request object has
properties and methods not shared by the other major browsers[2]. Table 1-1 and 1-2 show the
properties and methods supported by the request objects defined by most of the major browsers,
however, such as Firefox, Internet Explorer 5.0 and later, Safari 1.3 and 2.0, Netscape 7, and
Opera's latest releases (such as Opera 7.6).

Table 1-1. XMLHttpRequest properties

http://www.rollyo.com/
http://map.search.ch/index.en.html
http://en.wikipedia.org/wiki/List_of_websites_using_Ajax

Property Name Type/Description

onreadystatechange
Callback function; set this to a function that will be called
whenever readyState changes.

readyState

Number; 0 means uninitialized, open() has not yet been
called; 1 means loading, send() has not been called; 2
means loaded, send() has been called and headers/status
are available; 3 interactive, responseText holds partial data;
4 means completed.

responseText string; the plain text of the response.

responseXML DOM Document object; an XML return value.

status
Response status code, such as 200 (Okay) or 404 (Not
Found).

statusText string; the text associated with the HTTP response status.

Table 1-2. XMLHttpRequest methods

Method name Return value/Description

abort() void; cancels the HTTP request.

getAllResponseHeaders()
string; returns all of the response headers in a
pre-formatted string. See Hack #?.

getresponseHeader(string
header)

string; returns the value of the specified
header.

open(string url,string asynch)
void; prepares the HTTP request and specifies
whether it is asynchronous or not.

send(string) void; sends the HTTP request.

setHeader(string header,string
value)

void; sets a request header, but you must call
open() first!

E B V N
We are Vietnames

E B V N
We are Vietnames

Detect Browser Compatibility With The Request Object

Use JavaScript to set up Microsoft's and the Mozilla-based browser's different request objects.

You have to make sure the "engine" behind Ajax's server handshake is properly constructed, but you
can never predict which browser your users show up with.

The programming tool that allows Ajax applications to make HTTP requests to a server is an object
that you can use from within JavaScript code. In the world of Firefox, Netscape, Safari, and Opera,
this object is named XMLHttpRequest. Recent vintages of Internet Explorer (IE), which incidentally
introduced this object with IE 5.0, implement the object as an ActiveX object named
Microsoft.XMLHTTP or Msxml2.XMLHTTP, depending upon which code library the user has
downloaded as part of the IE package.

NOTE

My version of IE 6 will initialize the ActiveX object using either of these constructors.

We are going to refer to the ActiveX or XMLHttpRequest objects simply as the "request object"
throughout this book, however, because they have very similar functionality.

As a first step to using Ajax, you must check if the browser supports either one of the Mozilla-based
or ActiveX related request objects, and then properly initialize the object.

Use a Function for Checking Compatibility
Wrap the compatibility check inside a JavaScript function, then call this function before you make any
HTTP requests using the object. For example, in Mozilla-based browsers such as Netscape 7.1,
Firefox 1.0.2, or Safari 2.0, the request object is available as a property of the top-level window
object. The reference to this object in JavaScript code is window.XMLHttpRequest. The compatibility
check for these browser types looks like:

if(window.XMLHttpRequest){
request = new XMLHttpRequest();
request.onreadystatechange=handleResponse;
request.open("GET",theURL,true);
request.send(null);
}

The JavaScript variable request is to a top-level variable that will refer to the request object. If the
browser supports XMLHttpRequest, then:

if(window.XMLHttpRequest) returns true because the XMLHttpRequest is not null or undefined;

The object will be instantiated with the new keyword;

Its onreadystatechange event listener (see the Introduction) will be defined as a function named
handleResponse(); and

The code calls the request object's open() and send() methods.

NOTE

A common practice among programming types is to call functions that are associated with particular
JavaScript objects as "methods." the XMLHttpRequest object's methods include open(), send(), and
abort().

What About Internet Explorer users?
In this case, the window.XMLHttpRequest object will not exist in the browser object model. Therefore,
another branch of the if test in your code is necessary.

else if (window.ActiveXObject){
request=new ActiveXObject("Microsoft.XMLHTTP");
if (! request){
request=new ActiveXObject("Msxml2.XMLHTTP");
}
if(request){
request.onreadystatechange=handleResponse;
request.open(reqType,url,true);
request.send(null);
}
}

This code fragment tests for the existence of the window top-level object ActiveXObject, thus
signaling the use of Internet Explorer. The code then initializes the request using two of a number of
possible parameters (e.g., Microsoft.XMLHTTP and Msxml2.XMLHTTP).

You can even get more finely grained when testing for different versions of the Microsoft request
object, as in Msxml2.XMLHTTP.3.0. In the vast majority of cases, however, you will not be designing
your application based on various versions of the IE request object, so the prior code will suffice.

Then the code makes one final check for whether the request object has been properly constructed
(as in if(request){...}).

Given three chances, if the request variable is still null or undefined, then your browser is really out
of luck when it comes to using the request object for Ajax!

Here's an example of an entire compatibility check.

/* Initialize a Request object that is already constructed */
function initReq(reqType,url,bool){
/* Specify the function that will handle the HTTP response */
request.onreadystatechange=handleResponse;
request.open(reqType,url,bool);
request.send(null);
}

/* Wrapper function for constructing a Request object.
Parameters:
reqType: The HTTP request type such as GET or POST.
url: The URL of the server program.
asynch: Whether to send the request asynchronously or not. */

function httpRequest(reqType,url,asynch){
//Mozilla-based browsers
if(window.XMLHttpRequest){
request = new XMLHttpRequest();
initReq(reqType,url,asynch);
} else if (window.ActiveXObject){
request=new ActiveXObject("Msxml2.XMLHTTP");
if (! request){
request=new ActiveXObject("Microsoft.XMLHTTP");
}
if(request){
initReq(reqType,url,asynch);
/* Unlikely to branch here, as IE users will be able to use either one of the
constructors*/
} else {
alert("Your browser does not permit the use "+
"of all of this application's features!");}
} else {
alert("Your browser does not permit the use "+
"of all of this application's features!");}
}

You can include a final else test (as in the example) if all three checks fail, alerting the user that they
will not be able to use the web application's features and perhaps recommending an upgrade.

} else {
alert("Your browser does not permit the use "+
"of all of this application's features!");
}

E B V N
We are Vietnames

E B V N
We are Vietnames

Use The Request Object To POST The Server Some Data

Step beyond the traditional mechanism of posting your user's form values.

This hack uses the POST HTTP request method to send data, communicating with the server without
disrupting the user's interaction with the application (no page refreshing here!). Then the hack
displays the server response to the user.

The web page is a simple one. It requests the user to enter their first name, last name, gender,
country of origin, then click a button. Figure 1-1 shows what the web page looks like in a browser
window.

Please Mister POST man

Here's the code for the HTML page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type=
 "text/javascript" src="/parkerriver/js/hack2.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">
 <title>Send a data tidbit</title>

</head>
<body>
<h3>A Few Facts About Yourself...</h3>
<form action="javascript:void%200" onsubmit=
"setQueryString();sendData();return false">
<p>First name: <input type="text" name="firstname" size="20"></p>
<p>Last name: <input type="text" name="lastname" size="20"> </p>
<p>Gender: <input type="text" name="gender" size="2"> </p>
<p>Country of origin: <input type="text" name="country" size="20"> </p>
<p><button type="submit">Send Data</button></p>
</form>
</body>
</html>

The first code element of interest is the script tag, which imports the JavaScript code (in a file
named hack2.js) . The form tag's onsubmit attribute specifies two functions (setQueryString() and
sendData()) which in turn format the data for a POST request and send it to the server. The hack2.js
file defines the two functions. Here is the setQueryString() function.

function setQueryString(){
 //initialize the top-level variable; also reset the variable to cover when
 //the user clicks multiple times
 queryString="";
 var frm = document.forms[0];
 var numberElements = frm.elements.length;
 for(var i = 0; i < numberElements; i++) {
 if(i < numberElements-1) {
 queryString += frm.elements[i].name+"="+frm.elements[i].value+"&";
 } else {
 queryString += frm.elements[i].name+"="+frm.elements[i].value;
 }
 }
}

This function formats a POST-style string out of all of the form's input elements. All of the
name/value pairs are separated by an "&" character except for the pair representing the last input

element in the form. The entire string might look like
firstname=Bruce&lastname=Perry&gender=M&country=USA.

Even if a Web-page designer adds another input element, this method will still be able to include the
new element's values in the posted string. This is because the code iterates through the entire form
elements Array, which is a property of the first form defined in the Web page.

NOTE

The variable frm holds a reference to this form, as in var frm = document.forms[0];

Now we have a string that we can use in a POST HTTP request. Let's look at the JavaScript code

that sends the request. Everything starts with the sendData() function. The code calls this function
after calling setQueryString() in the HTML form tag's onsubmit attribute.

var request;
var queryString; //will hold the POSTed data
function sendData(){
 var url="http://192.168.0.3:8080/parkerriver/s/sender";
 httpRequest("POST",url,true);
}

/* Initialize a Request object that is already constructed
 reqType: The HTTP request type such as "GET" or "POST."
 url: The URL of the server program.
 isAsynch: Whether to send the request asynchronously or not. */
 function initReq(reqType,url,isAsynch){
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,isAsynch);
 /* set the Content-Type header for a POST request */
 request.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded; charset=UTF-8");
 request.send(queryString);
}

/* Wrapper function for constructing a Request object.
 Parameters:
 reqType: The HTTP request type such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */

function httpRequest(reqType,url,asynch){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 initReq(reqType,url,asynch);
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 if(request){
 initReq(reqType,url,asynch);
 /* Unlikely to branch here, as IE uses will be able to use either
 one of the constructors*/
 } else {
 alert("Your browser does not permit the use of all "+
 "of this application's features!");}
 } else {
 alert("Your browser does not permit the use of all "+
 "of this application's features!");}
}

The purpose of the httpRequest() function is to check which request object the user's browser is
associated with (see Hack# 1). Then the code calls initReq(), whose parameters are described in

the comment just above the function definition.

The code request.onreadystatechange=handleResponse; specifies the event-handler function that

will deal with the response. We describe this function a little later on. Then the code calls the request
object's open() method, which prepares the object to send the request.

Setting Headers

The code can set any request headers after calling open(). In our case, we have to create a
Content-Type header for a POST request.

NOTE

Mozilla Firefox 1.02 required the additional Content-Type header; Safari 1.3 did not. It is a
good idea to add the proper header, as in most cases the server is expecting it from a
POST request.

The code for adding the header and sending the POST request is:

request.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded; charset=UTF-8");
request.send(queryString);

If we entered the raw queryString value as a parameter, the method call would look like:
send("firstname=Bruce&lastname=Perry&gender=M&country=USA");

Ogling the Result

Once your application POSTs data, then you want to display the result to the Web users. This is the
responsibility of the handleResponse() function (remember the code in the initReq() function:
request.onreadystatechange=handleResponse;?). When the request object's readyState@

property has a value of 4, signifying that the object's operations are complete, our code checks the
HTTP response status for the value 200.

This value indicates that the HTTP request has succeeded. Then the responseText is displayed in an
alert window. This is somewhat anticlimactic, but I thought I'd keep this hack's response handling

simple, because so many other hacks do something cooler and more complex with it!

//event handler for XMLHttpRequest
function handleResponse(){
 if(request.readyState == 4){
 if(request.status == 200){
 alert(request.responseText);
 } else {
 alert("A problem occurred with communicating between "+

 "the XMLHttpRequest object and the server program.");
 }
 }//end outer if
}

Figure 1-2 shows what the alert window looks like after the response is received

Alert! Server calling…

E B V N
We are Vietnames

E B V N
We are Vietnames

Use A Separate Library For XML Http Request

Break out the code that initializes the request object and sends requests into its own JavaScript file.

In order to cleanly separate the concerns of big Ajax applications, create a separate file that manages
the XMLHttpRequest object, then import that file into every web page that needs it. At the very least,
any changes that are necessary with how the code sets up the request object only have to be made
in this file, as opposed to in every JavaScript file that uses Ajax-style requests.

This hack stores all of the request-object related code in a file http_request.js. Any web page that
uses XMLHttpRequest can then import this file in the following way.

<script type="text/javascript" src="js/http_request.js"></script>

Here's the code for the file, a mere 71 lines including all the comments.

var request = null;
/* Wrapper function for constructing a Request object.
Parameters:
reqType: The HTTP request type such as GET or POST.
url: The URL of the server program.
asynch: Whether to send the request asynchronously or not.
respHandle: The name of the function that will handle the response.
Any fifth parameters represented as arguments[4] are the data a
POST request is designed to send. */
function httpRequest(reqType,url,asynch,respHandle){
//Mozilla-based browsers
if(window.XMLHttpRequest){
request = new XMLHttpRequest();
//if the reqType parameter is POST, then the
//5th argument to the function is the POSTed data
if(reqType.toLowerCase() != "post") {
initReq(reqType, url,asynch,respHandle);
} else {
//the POSTed data
var args = arguments[4];
if(args != null && args.length > 0){
initReq(reqType,url,asynch,respHandle,args);
}
}
} else if (window.ActiveXObject){
request=new ActiveXObject("Msxml2.XMLHTTP");
if (! request){
request=new ActiveXObject("Microsoft.XMLHTTP");

}
if(request){
//if the reqType parameter is POST, then the
//4th argument to the function is the POSTed data
if(reqType.toLowerCase() != "post") {
initReq(reqType,url,asynch,respHandle);
} else {
var args = arguments[4];
if(args != null && args.length > 0){
initReq(reqType,url,asynch,respHandle,args);
}
}
} else {
alert("Your browser does not permit the use of all "+
"of this application's features!");}
} else {
alert("Your browser does not permit the use of all "+
"of this application's features!");}
}
/* Initialize a Request object that is already constructed */
function initReq(reqType,url,bool,respHandle){
try{
/* Specify the function that will handle the HTTP response */
request.onreadystatechange=respHandle;
request.open(reqType,url,bool);
//if the reqType parameter is POST, then the
//5th argument to the function is the POSTed data
if(reqType.toLowerCase() == "post") {
request.setRequestHeader("Content-Type",
"application/x-www-form-urlencoded; charset=UTF-8");
request.send(arguments[4]);
} else {
request.send(null);
}

} catch (errv) {
alert(
"The application cannot contact "+
"the server at the moment. "+
"Please try again in a few seconds.\n"+
"Error detail: "+errv.message);
}
}

The applications that use this code call the httpRequest() function with four or five (with POST
requests) parameters. You will read lots of examples of calling this function in the other hacks; here
is another.

var _url = "http://www.parkerriver.com/s/sender";
var _data="first=Bruce&last=Perry&middle=W";
httpRequest("POST",_url,true,handleResponse,_data);

The code comments describe the meaning of each of these parameters. The last parameter
represents the data that accompanies a POST request.

NOTE

A POST HTTP request includes the posted data beneath the request header information, instead of
appending parameter name/values on to the URL, as in a GET.

If the code is not using POST, then the client code only uses the first four parameters. The fourth
parameter can be either the name of a function that is declared in the client code (i.e., this response-
handling function appears outside of the http_request.js file), or a function literal. The latter option
involves defining a function inside of a function call, which is often awkward and difficult to read.
However, it is sensible in situations where the HTTP response handling is short and simple, as in:

var _url = "http://www.parkerriver.com/s/sender";
//a debugging set-up
httpRequest("POST",_url,true,function(){alert(request.responseText);});

httpRequest() initiates the same browser detection and set up of XMLHttpRequest for Internet
Explorer and non-Microsoft browsers as Hack #1 described. initReq() handles the second step of
setting up the request object: specifying the onreadystatechange event handler (see Hack #1), and
calling the open() and send() methods to make an HTTP request. The code traps any errors or
exceptions thrown by these request method calls using a try/catch statement. For example, if the
code calls open() with a URL specifying a different host than the one used to download the enclosing
web page, the try/catch statement will catch the error and pop up an alert() window.

Finally, as long as the web page imports http_request.js, then the request variable is available to
code external to the imported file; request is in effect a global variable.

request is thus reserved as a variable name, because local variables that use the var keyword will
supercede with unintentional consequences the globally used request, as in:

function handleResponse(){

//supercedes the imported request variable

var request = null;

try{

if(request.readyState 4){ if(request.status 200){...

E B V N
We are Vietnames

E B V N
We are Vietnames

Receive Data As XML

Ajax and server programs provide a DOM Document object ready to go.

Many technologies are exchanging data as Extensible Markup Language (XML), mostly because XML
is a standardized and extensible format that the software world has generally agreed upon.

This allows different parties to use existing or well-known technologies to generate, send, and receive
XML, without having to adapt to the software tools that the party with whom they are exchanging
XML data is using. An example is a Global Positioning System (GPS) device that can share the data it
has recorded about a hike or bike ride with a location-aware web application. You just stick the USB
cable attached to the GPS device into the USB computer port, launch software that sends the device
data to the web, and that's it. This data format is usually an XML language that has been defined
already for GPS software. The web application and the GPS device "already speak the same
language."

Although this book is not the place for an extensive introduction to XML, you have probably seen
these text files in one form or the other. XML is used as a "meta" language that describes and
categorizes specific types of information. XML data starts with an optional XML declaration (e.g., <?
xml version="1.0" encoding="UTF-8"?>), followed by a root element and zero or more child
elements. An example is:

<?xml version="1.0" encoding="UTF-8"?>
<gps>
<gpsMaker>Garmin</gpsMaker>
<gpsDevice>
Forerunner 301
</gpsDevice>
</gps>

gps is the root element, and gpsMaker and gpsDevice are child elements. Ajax and the request

object can receive data as XML, which is very useful for handling web-services responses that use
XML Once the HTTP request is complete, the request object has a property named responseXML. This
object is a Document Object Model (DOM) Document object that your Ajax application can use.

function handleResponse(){
 if(request.readyState == 4){
 if(request.status == 200){
 var doc = request.responseXML;
...
}

In the code sample, the doc variable is a DOM Document object. This hack receives XML from a
server then initiates a little DOM programming with the Document object to pull out some information

from the XML.

NOTE

If you just want to see the raw XML text, use the request.responseText property instead.

The HTML file is basically the same one we have been using throughout this chapter. We write a div

element at the end of the HTML where the code will display information about the returned XML.
Here's the code for the HTML file.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="js/hack3.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">
 <title>Receive XML response</title>
</head>
<body>
<h3>A Few Facts About Yourself...</h3>
<form action="javascript:void%200" onsubmit=
"setQueryString();sendData();return false">
 <p>First name: <input type="text" name="firstname" size="20"> </p>
 <p>Last name: <input type="text" name="lastname" size="20"> </p>
 <p>Gender: <input type="text" name="gender" size="2"> </p>
 <p>Country of origin: <input type="text" name="country" size="20"> </p>
<p><button type="submit">Send Data</button></p>

<div id="docDisplay"></div>

</form>
</body>
</html>

NOTE

You may be wondering about the weird-looking form action="javascript:void%200" part.
Since we are calling JavaScript functions when the form is submitted, we do not want to
give the action attribute anything but a JavaScript URL that has no return value, as in

"javascript:void 0." We have to encode the space between void and 0, which is where the
"%20" comes from. If the user turns off JavaScript in their browser, then clicking the submit
button on the form will have no effect, because the action attribute does not point to a

valid URL. In addition, certain HTML validators will display warnings if you use action="".
Another way of writing this code is to include the function calls as part of the
window.onload event handler in the JavaScript .js file, which is the approach used by most

of the hacks.

Figure 1-3 shows what the page looks like before the user enters any information:

All set-up to receive XML

The JavaScript code in the hack3.js file POSTs its data to a server application, which sends back a
response in XML format. Like other examples in this chapter, the server program echoes the
parameter names and values back to the client, as in
<params><firstname>Bruce</firstname></params>. This technique suits our purpose for showing

a simple example of programming XML in an Ajax application.

var request;
var queryString; //will hold the POSTed data

function sendData(){
 var url="http://localhost:8080/parkerriver/s/sender";
 httpRequest("POST",url,true);
}

//event handler for XMLHttpRequest
function handleResponse(){
 if(request.readyState == 4){
 if(request.status == 200){
 var doc = request.responseXML;
 var info = getDocInfo(doc);

 stylizeDiv(info,document.getElementById("docDisplay"));
 } else {
 alert("A problem occurred with communicating between "+
 "the XMLHttpRequest object and the server program.");
 }
 }//end outer if
}

/* Initialize a Request object that is already constructed */
function initReq(reqType,url,bool){
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,bool);
 request.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded; charset=UTF-8");
 /* Only works in Mozilla-based browsers */
 //request.overrideMimeType("text/XML");
 request.send(queryString);
}

/* Wrapper function for constructing a Request object.
 Parameters:
 reqType: The HTTP request type such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */
function httpRequest(reqType,url,asynch){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 initReq(reqType,url,asynch);
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 if(request){
 initReq(reqType,url,asynch);
 } else {
 alert(
 "Your browser does not permit the use of all "+
 "of this application's features!");}
 } else {
 alert(
 "Your browser does not permit the use of all "+
 "of this application's features!");}
}

function setQueryString(){
 queryString="";
 var frm = document.forms[0];
 var numberElements = frm.elements.length;
 for(var i = 0; i < numberElements; i++) {

 if(i < numberElements-1) {
 queryString += frm.elements[i].name+"="+frm.elements[i].value+"&";
 } else {
 queryString += frm.elements[i].name+"="+frm.elements[i].value;
 }

 }
}
/* provide the div elements content dynamically. We can add
 style information to this function if we want to jazz up the div */
function stylizeDiv(bdyTxt,div){
 //reset DIV content
 div.innerHTML="";
 div.style.backgroundColor="yellow";
 div.innerHTML=bdyTxt;
}

/* Get information about an XML document via a DOM Document object */
function getDocInfo(doc){
 var root = doc.documentElement;
 var info = "<h3>Document root element name: <h3 />"+ root.nodeName;
 var nds;
 if(root.hasChildNodes()) {
 nds=root.childNodes;
 info+= "<h4>Root node's child node names/values:<h4/>";
 for (var i = 0; i < nds.length; i++){
 info+= nds[i].nodeName;
 if(nds[i].hasChildNodes()){
 info+= " : \""+nds[i].firstChild.nodeValue+"\"
";
 } else {
 info+= " : Empty
";
 }
 }
 }
 return info;
}

NOTE

Mozilla Firefox can use the request.overrideMimeType() function to force the

interpretation of the response stream as a certain mime type, as in
request.overrideMimeType("text/XML"). Internet Explorer's request object does not have
this function. This function call does not work with Safari 1.3 either.

After the code POSTs its data and receives a response, it calls a method named getdocInfo(), which
builds a string displaying some information about the XML document and its child or sub elements.

var doc = request.responseXML;
var info = getDocInfo(doc);

The geTDocInfo() function gets a reference to the root XML element (var root =
doc.documentElement;), then it builds a string specifying the name of the root element and

information about any of its child nodes or elements, such as the child node name and value. The
code then feeds this information to the stylizeDiv() method. The stylizeDiv() method uses the
div element at the end of the HTML page to dynamically display the gathered information.

function stylizeDiv(bdyTxt,div){
 //reset DIV content
 div.innerHTML="";
 div.style.backgroundColor="yellow";
 div.innerHTML=bdyTxt;
}

Figure 1-4 what the Web page looks like after the application receives the XML response.

Delving into XML return values

The core DOM API offered by the browser's JavaScript implementation allows developers a powerful
tool for programming complex XML return values

E B V N
We are Vietnames

E B V N
We are Vietnames

Get Plain Old Strings

Manage weather readings, stock quotes, web-page scrapings, or similar non-XML data as plain old
strings.

The request object has the perfect property for the web applications that do not have to handle
server return values as XML. request.responseText. This hack asks the user to choose a stock

symbol, and the server returns the stock price for display. The code handles the return value as a
string.

NOTE

A variation on this program in the next hack requires the stock prices to be handled as
numbers.

First, here is the HTML for the web page. It imports JavaScript code in a file named hack9.js.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="js/hack9.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">
 <title>Choose a stock</title>
</head>
<body>
<h3>Stock prices</h3>
<form action="javascript:void%200" onsubmit=
"getStockPrice(this.stSymbol.value);return false">
 <p>Enter stock symbol: <input type="text" name=
"stSymbol" size="4"></p>
<p><button type="submit">Get Stock Price</button></p>
</form>
</body>
</html>

Figure 1-5 shows the web page as displayed in Firefox. The user enters a symbol such as "GRMN"
(case insensitive), clicks the button, and the JavaScript fetches an associated stock price and displays
it within a span element to the right of the text field.

Instantaneously displaying a stock price

The function that sets the request process in motion is getStockPrice(). This function takes the
value of the text field named stSymbol and returns the stock price. The function uses the request

object to talk to a server component, which fetches the actual stock price. Here is the JavaScript
code:

var request;
var symbol; //will hold the stock symbol

function getStockPrice(sym){
 symbol=sym;
 if(sym) {
 var url=
 "http://localhost:8080/parkerriver/s/stocks?symbol="+sym;
 httpRequest("GET",url,true);
 }
}

//event handler for XMLHttpRequest
function handleResponse(){
 if(request.readyState == 4){
 if(request.status == 200){
 /*Grab the result as a string*/
 var stockPrice = request.responseText;
 var info = "«The price is: $"+stockPrice+"»";
 document.getElementById("stPrice").style.fontSize="0.9em";
 document.getElementById("stPrice").style.backgroundColor="yellow";
 document.getElementById("stPrice").innerHTML=info;

 } else {
 alert("A problem occurred with communicating between "+
 the XMLHttpRequest object and the server program.");
 }
 }//end outer if
}

/* Initialize a Request object that is already constructed */
function initReq(reqType,url,bool){
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,bool);
 request.send(null);
}

/* Wrapper function for constructing a Request object.
 Parameters:
 reqType: The HTTP request type such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */
function httpRequest(reqType,url,asynch){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 initReq(reqType,url,asynch);
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 if(request){
 initReq(reqType,url,asynch);
 } else {
 alert("Your browser does not permit the use of all "+
 "of this application's features!");}
 } else {
 alert("Your browser does not permit the use of all "+
 "of this application's features!");}
}

The function getStockPrice() wraps a call to the function httpRequest(), which is responsible for

setting up the request object. If you have already read through some of this chapter's other hacks,
you will recognize the handleResponse() function as enclosing much of the interesting action.

Hack#1 explains the <literal>httpRequest() </literal>function in more detail.

If the request is complete (if request.readyState has a value of 4) and the HTTP response status is

200 (meaning that the request has succeeded), then the code grabs the server response as the
request.responseText property value. The code then uses Document Object Model (DOM)

programming to display the stock price with some CSS style-related attributes.

document.getElementById("stPrice").style.fontSize="0.9em";
document.getElementById("stPrice").style.backgroundColor="yellow";
document.getElementById("stPrice").innerHTML =info;

The style attributes make the font size a little bit smaller than the user's preferable browser font
size, and specify yellow as the background color of the text display. The innerHtml property of the
span element is set to the stock price within double-angle quotation characters.

NOTE

This application would typically take more than a few seconds to return its server value.
Therefore, developers may consider including a progress indicator, as explained in Display a
Progress Indicator For Web Users.

E B V N
We are Vietnames

E B V N
We are Vietnames

Receive Data As A Number

Do numerical calculations that depend on the request object's return value as a number.

This hack receives a stock quote as a number, then dynamically displays the total value of a stock
holding based on the number of shares a user enters. If the server does not send a valid number
then the application displays an error message to the user.

The great advantage of Ajax technology is in receiving discrete values rather than entire web pages
from a server. The discrete information you receive might have to be used as a number, rather than
as a string or some other object. JavaScript is usually pretty smart about converting values to

number types without your intervention, but still you don't want the application to multiply an
innocent investor's share quantity by undefined or some other weird data the server returns!

This hack checks that the user has entered a proper number for a "number of shares" value. The
code also checks the server return value to make sure it is numerically valid. Then the hack
dynamically displays the stock price and total value of the shares in the user's browser.

First, figure 1-6 shows what the browser form looks like:

Discover a total share value

The following code shows the HTML for the Web page.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="/parkerriver/js/hack4.js">
 </script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">
 <title>Tally your stocks</title>
</head>
<body>
<h3>Your total Stock Holdings</h3>
<form action="javascript:void%200" onsubmit=
"getStockPrice(this.stSymbol.value,this.numShares.value);return false">
<p>Enter stock symbol: <input type="text" name=
"stSymbol" size="4"> </p>
 <p>Enter share amount: <input type="text" name="numShares" size="10"> </p>
<p><button type="submit">Get Total Value</button></p>
<div id="msgDisplay"></div>
</form>
</body>
</html>

When the user clicks the Get Total Value button, this action triggers the form element's onsubmit
event. The event handler for this event is the getStockPrice() function. This function takes the
stock symbol and the number of shares as its two parameters. The return false part of the event-

handling code cancels the browser's typical submission of the form values to the URL specified by the
form tag's action attribute.

Number Crunching

Now let's look at the JavaScript code, which the HTML file imports as part of the hack4.js file.

var request;
var symbol; //will hold the stock symbol
var numberOfShares;

function getStockPrice(sym,shs){
 if(sym && shs) {
 symbol=sym;
 numberOfShares=shs;
 var url="http://localhost:8080/parkerriver/s/stocks?symbol="+sym;
 httpRequest("GET",url,true);
 }
}
//event handler for XMLHttpRequest

function handleResponse(){
 if(request.readyState == 4){
 alert(request.status);
 if(request.status == 200){
 /*Check if the return value is actually a number.
 If so, multiple by the number
 of shares and display the result*/
 var stockPrice = request.responseText;
 try{
 if(isNaN(stockPrice)) { throw new Error(
 "The returned price is an invalid number.");}
 if(isNaN(numberOfShares)) { throw new Error(
 "The share amount is an invalid number.");}
 var info = "Total stock value: "+ calcTotal(stockPrice);
 displayMsg(document.getElementById("msgDisplay"),info,"black");
 document.getElementById("stPrice").style.fontSize="0.9em";
 document.getElementById("stPrice").innerHTML ="price: "+stockPrice;
 } catch (err) {
 displayMsg(document.getElementById("msgDisplay"),
 "An error occurred with symbol "+symbol+ ": "+
 err.message,"red");
 }
 } else {
 alert(
 "A problem occurred with communicating between the XMLHttpRequest "+
 "object and the server program.");
 }
 }//end outer if
}

/* Initialize a Request object that is already constructed */
function initReq(reqType,url,bool){
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,bool);
 request.send(null);
}

/* Wrapper function for constructing a Request object.
 Parameters:
 reqType: The HTTP request type such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */
function httpRequest(reqType,url,asynch){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 initReq(reqType,url,asynch);
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");

 }
 if(request){
 initReq(reqType,url,asynch);
 } else {
 alert(
 "Your browser does not permit the use of all "+
 "of this application's features!");}
 } else {
 alert(
 "Your browser does not permit the use of all "+
 "of this application's features!");}
}

function calcTotal(price){
 return stripExtraNumbers(numberOfShares * price);
}
/*Strip any characters beyond a scale of four characters
past the decimal point, as in 12.3454678 */
function stripExtraNumbers(num) {
 //check if the number's already okay
 //assume a whole number is valid
 var numStr = num.toString();//working with the number as a string
 var indx =numStr.indexOf(".");
 if(indx == -1) { return num; }
 var chArray = numStr.split(".");
 //the second array member includes all the chars after the decimal point
 if(chArray[1].length <= 4) { return num; }
 //use the Number.toPrecision method to restrict the
 //decimal-point numbers to the length of the characters
 //prior to the decimal point plus four
 return num.toPrecision(chArray[0].length + 4);
}

function displayMsg(div,bdyText,txtColor){
 //reset DIV content
 div.innerHTML="";
 div.style.backgroundColor="yellow";
 div.style.color=txtColor
 div.innerHTML=bdyText;
}

NOTE

The getStockprice() function wraps a call to httpRequest(), which sends the request for a
particular stock price to the server. See Hack #1 for a description of constructing the
request object with httpRequest(). Hack #3 describes using a pre-established library to
handle the request object.

All of the number-crunching starts in handleResponse(). First, the code receives the response as a

string in var stockPrice = request.responseText. Then the code tests the validity of the
stockPrice variable using a method that is part of JavaScript's core API: isNaN(). This is the best
way to test whether a string value in JavaScript can represent a valid number. For example,
isNaN("goodbye") returns true, because "goodbye" cannot be converted to a number. The code

also tests the number-of-shares value with this function.

If either of the methods return true indicating invalid number values, then the code throws an

exception, which is another way of declaring "we can't use these values; get them out of here!" In
these cases, the web page displays an error message to the user.

NOTE

Exception handling with Ajax is covered in the next hack.

However, we're not yet finished with our number crunching. The calcTotal() function then

multiplies the share total by the stock price in order to display the total value to the user.

To make sure that the numerical display of the value is friendly enough to the eye (in terms of the
U.S. stock exchange), the stripExtraNumbers() function only keeps no more than four characters

to the right of the decimal point.

NOTE

Even though $10.9876 may look a little weird, since stock prices are sometimes displayed
with four or more characters to the right of the decimal point, we decided to allow this
display with the total share value.

JavaScript stores the parameter passed into the stripExtraNumbers() function as a number.

Ironically (we've been so concerned with dealing with number values only!), this function must "cast"
the value back to the string type so that we can discover the number's format. This is the purpose
of the var numStr = num.toString() code. After calling the toString() method of the Number
object, the variable numStr now holds the number as a string (as in "12000" instead of 12000).
Therefore, indexOf() and other string-related functions may be called on it.

Finally, the code uses the Number.toPrecision() method to only return a number with the total

number of significant digits represented by the number of characters to the left of the decimal point
plus four.

DOM-inating

The code uses Document Object Model (DOM) programming to dynamically display new text and
values on the page, al without having to make new server calls and refresh the entire page!

displayMsg(document.getElementById("msgDisplay"),info,"black");
document.getElementById("stPrice").style.fontSize="0.9em";
document.getElementById("stPrice").innerHTML ="price: "+stockPrice;

This bit of code within the handleResponse() function calls the displayMsg() function to show the

user the total share value. The code also dynamically embeds the stock price just to the right of the
text field where the user entered the stock symbol. All the code does here is get a reference to the
div element with id stPrice, make its font-size style property a little smaller than the web user's
font setting, then set the div's innerHTML property. Easy!

The displayMsg() function is also simple. It has a parameter that represents the font color, which

allows the code to set the font color "red" for error messages.

function displayMsg(div,bdyText,txtColor){
 //reset DIV content
 div.innerHTML="";
 div.style.backgroundColor="yellow";
 div.style.color=txtColor
 div.innerHTML=bdyText;
}

Figure 1-7 shows what the page looks like when the user requests a stock value.

Tallying your investment

Figure 1-8 shows an example error message, in case the user enters values that cannot be used as

numbers, or if the server returns invalid values.

Having a bad number day

E B V N
We are Vietnames

E B V N
We are Vietnames

Receive Data In JSON Format

Ajax can receive data in efficient and powerful JavaScript Object Notation.

How would you like to use Ajax and receive data from the server as plain old JavaScript objects? Well, you can, using a format called JavaScript Object Notation (JSON). This
hack takes information entered by a Web user and initiates a server roundtrip, which returns the data in JSON syntax for the Web page's use.

JSON is simple and straightforward, which is probably why a lot of developers like it. JSON formatted data is appropriate for simple objects that are bundles of properties and
values. An example is a server program that pulls product information from a database or cache and returns it to a retail Web page in JSON format. Data in JSON format is
represented by:

An opening curly brace: "{";1.
One or more property names separated from its value by a colon character;2.
Property/value pairs separated by commas; and3.
A closing curly brace.4.

The values of each property in the object can be:

Simple strings like "hello."

Arrays, such as [1,2,3,4].

Numbers

The values true , false , or null .

Other objects, as in composition, an object containing one or more objects.

NOTE

See http://www.json.org .

This is exactly the format of an Object literal in JavaScript. Based on the information Hack #2 asked the user for, here is an example of the information in JSON format:

{
firstname:"Bruce",
lastname:"Perry",
gender:"M",
country:"USA"
}

We're going to use a similar HTML page and ask the user for the same information; however, this hack will use JavaScript code and Ajax to handle a JSON return value from
the server. Two div elements at the bottom of the HTML page will respectively show the JSON return value from the server, and then display the object's properties and values

in a more friendly fashion.

Here's the code for the HTML page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="js/hack5.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">
 <title>Receive JSON response</title>
</head>
<body>
<h3>A Few Facts About Yourself...</h3>
<form action="javascript:void%200" onsubmit=
"setQueryString();sendData();return false">
 <p>First name: <input type="text" name="firstname" size="20"> </p>
 <p>Last name: <input type="text" name="lastname" size="20"> </p>
 <p>Gender: <input type="text" name="gender" size="2"> </p>
 <p>Country of origin: <input type="text" name="country" size="20"> </p>
<p><button type="submit">Send Data</button></p>
<div id="json"></div>
<div id="props"></div>
</form>
</body>
</html>

Figure 1-9 shows what the Web page looks like:

JSON is calling.

The JavaScript code is imported by the script tag and specified by the file hack5.js. The JavaScript sends the user's entered values to the server, which Hack #2 showed, so

we won't go into great detail beyond showing you the code. Here's the entire code piece for this hack, then we'll go over the key parts involving handling the return value as a
JavaScript object.

var request;
var queryString; //will hold the POSTed data

function sendData(){
 url="http://localhost:8080/parkerriver/s/json";
 httpRequest("POST",url,true);
}

//event handler for XMLHttpRequest
function handleJson(){
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 var func = new Function("return "+resp);
 var objt = func();
 var div = document.getElementById("json");
 stylizeDiv(resp,div);
 div = document.getElementById("props");
 div.innerHTML="<h4>In object form...</h4>"+
 "<h5>Properties</h5>firstname= "+
 objt.firstname +"
lastname="+
 objt.lastname+ "
gender="+
 objt.gender+ "
country="+
 objt.country;

 } else {
 alert("A problem occurred with communicating between "+
 "the XMLHttpRequest object and the server program.");
 }
 }//end outer if
}

/* Initialize a Request object that is already constructed */
function initReq(reqType,url,bool){
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleJson;
 request.open(reqType,url,bool);
 request.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded; charset=UTF-8");
 request.send(queryString);
}

/* Wrapper function for constructing a Request object.
 Parameters:
 reqType: The HTTP request type such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */

function httpRequest(reqType,url,asynch){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 initReq(reqType,url,asynch);
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 if(request){
 initReq(reqType,url,asynch);
 } else {
 alert(
 "Your browser does not permit the use of all "+
 "of this application's features!");}
 } else {
 alert(
 "Your browser does not permit the use of all "+
 "of this application's features!");}
}

function setQueryString(){
 queryString="";
 var frm = document.forms[0];
 var numberElements = frm.elements.length;
 for(var i = 0; i < numberElements; i++) {
 if(i < numberElements-1) {
 queryString += frm.elements[i].name+"="+frm.elements[i].value+"&";

 } else {
 queryString += frm.elements[i].name+"="+frm.elements[i].value;
 }

 }
}

function stylizeDiv(bdyTxt,div){
 //reset DIV content
 div.innerHTML=" ";
 div.style.fontSize="1.2em";
 div.style.backgroundColor="yellow";
 div.appendChild(document.createTextNode(bdyTxt));
}

As in this chapter's previous hacks, the initReq() function initializes the request object and sends an HTTP request to the server,.

request.onreadystatechange=handleJson;

The event-handling function for when the response is ready is called handleJson() . The response is a JSON formatted text string, as opposed to XML or some other text type.
As is, JavaScript interprets this returned text as a string object. Therefore, the code initiates an opening step before the server's return value is interpreted as a JavaScript
object literal. By the way, in this hack, the server takes the request parameters and reformats the parameter names and property values into JSON syntax, prior to sending

the reformatted data as its response.

NOTE

We have not included special error-handling code here, as these elements require further explanation and are covered by Handle Request Object Errors.

Here's the handleJson() code:

//event handler for XMLHttpRequest
function handleJson(){
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 var func = new Function("return "+resp);
 var objt = func();
 var div = document.getElementById("json");
 stylizeDiv(resp,div);
 div = document.getElementById("props");
 div.innerHTML="<h4>In object form...</h4>"+
 "<h5>Properties</h5>firstname= "+
 objt.firstname +"
lastname="+
 objt.lastname+ "
gender="+
 objt.gender+ "
country="+
 objt.country;
 } else {
 alert(

 "A problem occurred with communicating between "+
 "the XMLHttpRequest object and the server program.");
 }
 }//end outer if
}

The variable resp refers to the HTTP response text, which JavaScript interprets as a string . The tricky stuff occurs in the Function constructor appearing on the next line:

var func = new Function("return "+resp);

This code creates a new Function object on the fly, and stores the Function in a variable named func . JavaScript coders might note that most functions are pre-defined and
declared in code, or created as function literals. However, in this case we needed to define a function body dynamically using a string , so the Function constructor provided

the perfect tool.

NOTE

Thanks to this site for the guidance on this code usage: http://jibbering.com/2002/4/httprequest.html . Another method for converting JSON strings making its way
around the web goes like this:

NOTE

var resp = request.responseText;
p(note). var obj = eval("(" + resp + ")");
p(note). You do not have to use the parentheses characters when using <literal>eval()</literal> and a JSON <literal>array</literal> as in:

p(note). var resp = request.responseText;
p(note). //resp contains something like "[1,2,3,4]"
p(note). var arrObject = eval(resp);

The latter code creates a function that returns an object literal, representing the server return value. We then call the function and use the returned object to dynamically
display server values on the web page with DOM programming. All without complex object serialization or a page refresh!

var objt = func();
var div = document.getElementById("json");
stylizeDiv(resp,div);
div = document.getElementById("props");
div.innerHTML="<h4>In object form...</h4><h5>Properties</h5>firstname= "+
objt.firstname +"
lastname="+
objt.lastname+ "
gender="+
objt.gender+ "
country="+
objt.country;

A variable named objt stores the object literal. The values are pulled from the object with syntax such as objt.firstname . Figure 1-10 what the web page looks like after it

has received a response:

Visualizing JavaScript properties is sweet!

E B V N
We are Vietnames

E B V N
We are Vietnames

Handle Request Object Errors

Design your Ajax application to detect any server errors and provide a friendly user message.

Much of the oomph behind Ajax technology is that it allows JavaScript to connect with a server
program without the user intervening. However, JavaScript developers often have no control over the
server component itself, which could be a web service or other software designed outside of their
organization. Even if your application involves your organization's server component, you cannot
always be sure that the server is behaving normally, or even that your users are online at the
moment they trigger your request object. You have to make sure that your application recovers in
the event that the backend program is unavailable,

This hack traps errors and displays a meaningful error message, in the event the Ajax application
loses server contact.

This hack address the following exceptional events, and recommends ways for the application to
recover from them.

The web application or server component you are connecting with is temporarily unavailable.

The server your application is connecting with is down, or its URL has changed unbeknownst to
you.

The server component you connect with has one or more bugs, and it crashes during your
connection (yeech!)

When you call the open() method with the Request object, your code uses a different host

address than the address from which the user downloaded the your web page. The request
object throws an exception in this case when you try to call its open() method.

You can use this hack's exception-handling code in any application. This hack uses the stock
calculation code from Receive Data As A Number. This hack shows the code that initializes the
request object then the exception-handling mechanism.

Here's the HTML file that imports the JavaScript code.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="js/hack6.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">
 <title>Tally your stocks</title>
</head>
<body>
<h3>Your total Stock Holdings</h3>

<form action="javascript:void%200" onsubmit=
"getStockPrice(this.stSymbol.value,this.numShares.value);return false">
 <p>Enter stock symbol: **<input type="text" name=**
"stSymbol" size="4"> </p>
 <p>Enter share amount: **<input type="text" name="numShares" size="10">** </p>
<p><button type="submit">Get Total Value</button></p>
<div id="msgDisplay"></div>
</form>
</body>
</html>

When the user loads this file into their browser they see Figure 1-11.

Request a stock's price

The code we are interested in will be able to trap exceptions involving unavailable applications,
backend servers that are down, backend server bugs, and erroneous URLs. The handleResponse()

function is the event handler for managing the server response, as in
request.onreadystatechange=handleResponse. The code uses a nested TRy/catch/finally

statement to deal with invalid numbers handled by the application (see hack#?).

function handleResponse(){
 var statusMsg="";

 try{
 if(request.readyState == 4){
 if(request.status == 200){
 /*Check if the return value is actually a number.
 If so, multiple by the number
 of shares and display the result*/
 var stockPrice = request.responseText;

 try{
 if(isNaN(stockPrice)) { throw new Error(
 "The returned price is an invalid number.");}
 if(isNaN(numberOfShares)) { throw new Error(
 "The share amount is an invalid number.");}
 var info = "Total stock value: $"+ calcTotal(stockPrice);
 displayMsg(document.getElementById("msgDisplay"),info,"black");
 document.getElementById("stPrice").style.fontSize="0.9em";
 document.getElementById("stPrice").innerHTML ="price: "+
 stockPrice;
 } catch (err) {
 displayMsg(document.getElementById(
 "msgDisplay"),"An error occurred with symbol "+symbol+ ": "
 +err.message,"red");
 }
 } else {
 //request.status is 503 if the application isn't available;
 // 500 if the application has a bug
 alert(
 "A problem occurred with communicating between the "
 "XMLHttpRequest object "+
 "and the server program. Please try again very soon");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+
 "is available for this application. Please"+
 " try again very soon. \nError: "+err.message);

 }
}

Floored server

A try block will trap any exceptions thrown within its curly braces ("{}"). If the code throws an
exception, this mechanism executes the code within the associated catch block. The inner try block,

which is designed to manage exceptions thrown in the event of invalid numeric values, is explained
by Receive Data As A Number. What happens if the server host is completely down, even though the
URL your application uses is otherwise correct?

In this case, the code's attempt to access the request.status property will throw an exception,

because the request object never received the expected response header from the server and the

status property is not associated with any data.

As a result, the code will display the alert window defined in the outer catch block. Figure 1-12
depicts what the alert window looks like after this type of error.

Oh oh, server down

The code displays a user message, as well as the more techie message associated with the exception.
You can leave that part of the message out if you desire; it is mainly useful for debugging purposes.

NOTE

The err variable in the code is a reference to the JavaScript Error object. The message
property of this object (as in err.message) is the actual error message, a string

generated by the JavaScript engine.

If you do not include this TRy/catch/finally mechanism, then the user sees just an alert window

containing the indecipherable error message generated by JavaScript. Once the user dismisses this
window (or leaves their desk in frustration), they have no way of knowing what state the application
is in.

Backend Application Out to Lunch

Sometimes the application server or host is running okay, but the server component you want to
connect with is out of service. In this case, the request.status property will be 503 ("Service
Unavailable"). Since the status property holds a value other than 200, this code will execute the
expression contained within the else statement block. In other words, the user sees another alert

window informing them of the application's status.

} else {
 //request.status is 503 if the application isn't available;
 // 500 if the application has a bug
 alert(

 "A problem occurred with communicating between the XMLHttpRequest object "+
 "and the server program. Please try again very soon");
}

This alert also appears if the server component has a bug and crashes. This event typically (such as
with the Tomcat servlet container) results in a 500 response status code ("Internal Server Error"). So
response.status evaluates to 500 instead of 200 ("Okay"). In addition, any 404 response codes

involving a static or dynamic component that the server cannot find at the URL you provided, will also
be captured with this TRy statement.

NOTE

The TRy/catch/finally statement is only available with JavaScript engines of JS version
1.4 or later. The optional finally statement block follows the catch block. The code
enclosed by finally{ } executes whether or not an exception is thrown.

Woops, Wrong URL

What if the URL that your Ajax application uses in the request.open() method is wrong or has
changed? In this case the request.open() call will throw the exception. This is where you
have to position your try/catch/finally statement. The code at the top of the next
example constructs a request object (see hack# 1). The following function
definition initReq()@catches the exception we just mentioned.

function httpRequest(reqType,url,asynch){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 initReq(reqType,url,asynch);
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 if(request){
 initReq(reqType,url,asynch);
 } else {
 alert("Your browser does not permit the use of all "+
 "of this application's features!");}
 } else {
 alert("Your browser does not permit the use of all "+
 "of this application's features!");}
}

/* Initialize a Request object that is already constructed */
function initReq(reqType,url,bool){
 try{

 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,bool);
 request.send(null);
 } catch (err) {

 alert(
 "The application cannot contact the server at the moment."+
 " Please try again in a few seconds.");
 }
}

Another variation of this error is when the URL you use with the request.open() method includes a

different host than the host from which the user downloaded the web page. For example, the user
downloads the web page from http://www.myorg.com/app, but the URL you use for open() is
http://www.yourorg.com/. This type of error will also be caught by the code's try/catch/finally

statement.

NOTE

You can also optionally abort or cancel the request in the catch block with request.abort().
See Set A Time Limit For The HTTP Request and its discussion of setting a timeout for the
request, and aborting it in the event the request is not complete within a certain period.

E B V N
We are Vietnames

http://www.myorg.com/app
http://www.yourorg.com/

E B V N
We are Vietnames

Dig Into The HTTP Response

Display the value of various HTTP response headers in addition to or in lieu of a typical server return
value.

An HTTP response header is descriptive information, according to the HTTP 1.1 protocol, that web
servers send requestors along with the actual web page or data. If you have already coded with the
XMLHttpRequest object (see the Introduction), then you know that the request.status property

equates to an HTTP response status code sent from the server. This is an important number value to
check before your page does anything cool with the HTTP response.

NOTE

These status values can include 200 (request went through okay), 404 (the request file or
URL path was not found), or 500 (internal server error).

However, you might want to see some of the other response headers associated with the request,
such as the type of web server software associated with the response (the Server response header),
or the content type of the response (the Content-Type). This hack requests the user to enter a URL,

then when they're finished and click TAB or outside of the text field, the browser displays the other
available HTTP response headers. As usual with Ajax, this happens without a page refresh.

NOTE

This request object method only returns a sub-set of response headers, not all of them,
including Content-Type, Date, Server, and Content-Length.

Here is the HTML page code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="js/hack7.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">
 <title>view response headers</title>
 <link rel="stylesheet" type="text/css" href="/parkerriver/css/hacks.css">
</head>
<body onload="document.forms[0].url.value=urlFragment">
<h3>Find out the HTTP response headers when you "GET" a Web page</h3>

<form action="javascript:void%200">

<p>Enter a URL:
 <input type="text" name="url" size="20" onblur="getAllHeaders(this.value)">
::press tab when finished editing the field::</p>
<div id="msgDisplay"></div>
</form>
</body>
</html>

Figure 1-13 shows the page in the Safari browser.

Scoping the response

When the user types a URL in the text field and presses the TAB character or clicks outside the text
field, this action triggers the text field's onblur event handler. The event handler is defined as a
function named getAllHeaders(), which passes the URL the user has entered to the request object.

The request object then sends a request to the URL and returns the available response headers to
the Web page.

NOTE

The application already includes the main URL part as the text field value (as in
"http://localhost:8080/") because the request object cannot send a request to a different
host than the host that uploaded the web page to the user. In other words, the partially
completed URL provides a hint to the user that the application can only send a request to
that specified host.

http://localhost:8080/

Here is all the code included in the hack7.js file that the page imports. After showing this code, we will
explain the parts that deal with displaying the server's response headers. Hack#1 explains how to
initialize and open an HTTP connection with the request object, otherwise known as XMLHttpRequest.
Hack#? explains trapping any errors with JavaScript's try/catch/finally statement.

var request;
var urlFragment="http://10.0.1.3:8080/";

function getAllHeaders(url){
 httpRequest("GET",url,true);
}

//function for XMLHttpRequest onreadystatechange event handler
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 /*All headers received as a single string*/
 var headers = request.getAllResponseHeaders();
 var div = document.getElementById("msgDisplay");
 div.className="header";
 div.innerHTML="<pre>"+headers+"</pre>";
 } else {
 //request.status is 503 if the application isn't available;
 //500 if the application has a bug
 alert(request.status);
 alert("A problem occurred with communicating between "+
 "the XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server is "+
 "available for this application. Please"+
 " try again very soon. \nError: "+err.message);

 }
}

/* Initialize a Request object that is already constructed */
function initReq(reqType,url,bool){
 try{
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,bool);
 request.send(null);
 } catch (errv) {
 alert(
 "The application cannot contact the server at the moment. "+
 "Please try again in a few seconds.");
 }
}

/* Wrapper function for constructing a Request object.
 Parameters:
 reqType: The HTTP request type such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */
function httpRequest(reqType,url,asynch){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 initReq(reqType,url,asynch);
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 if(request){
 initReq(reqType,url,asynch);
 } else {
 alert(
 "Your browser does not permit the use of all "+
 "of this application's features!");}
 } else {
 alert(
 "Your browser does not permit the use of all "+
 "of this application's features!");}
}

The interesting stuff takes place in the handleResponse() function. This function calls the request
object's getAllResponseHeaders()method, which returns (rather awkwardly) all the available

response headers preformatted into a string.

NOTE

To get one header, you can also use request.getResponseHeader(). An example would be
request.getResponseHeader("Content-Type");

A developer would probably prefer this value to be returned in JSON format as an associative array,
rather than a monolithic string where extra code is required to pull out individual header information.
The code then gets a hold of the div element where it will display the header values.

if(request.status == 200){
/*All headers received as a single string*/
var headers = request.getAllResponseHeaders();
var div = document.getElementById("msgDisplay");
div.className="header";
div.innerHTML="<pre>"+headers+"</pre>";
}

In order to provide a Cascading Style Sheets (CSS) style for the message display, the code then sets
the className property of the div to a class that is already defined in a style sheet. Here's the style

sheet, which is linked to the web page:

div.header{ border: thin solid black; padding: 10%;
 font-size: 0.9em; background-color: yellow}
span.message { font-size: 0.8em; }

In this manner, the code dynamically connects a div to a certain CSS class, which is defined by a

separate style sheet. This strategy helps separate DOM programming from presentation decisions.
Finally, the div's innerHTML property is set to the returned header values. We use the pre tag to

conserve the existing formatting.

NOTE

You could alternatively manipulate the returned string and format the headers in a

different way, using a custom function.

Figure 1-14 shows what the browser displays after the user submits a URL.

Separate the headers from the chaff

E B V N
We are Vietnames

E B V N
We are Vietnames

Generate A Styled Message With ACSS File

Let the users choose pre-designed styles for the messages they see.

This hack lets the request object grab a text message. The user's choices and CSS styles provide the
actual message appearance. Here's the HTML code for the page. All it includes are a select tag

listing the styles the user can choose, and a text field containing a partial URL they can complete and
submit to a server (this is an embellishment of the HTML page used for the previous hack). The
information relates to response headers returned by the server (see Dig Into the HTTP Response).
However, we are interested in this hack's dynamic message generation and style assignment.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="js/hack8.js"></script>
 <script type="text/javascript">
 function setSpan(){
 document.getElementById("instr").onmouseover=function(){
 this.style.backgroundColor='yellow';};
 document.getElementById("instr").onmouseout=function(){
 this.style.backgroundColor='white';};
 }
 </script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">
 <title>view response headers</title>
 <link rel="stylesheet" type="text/css" href="/parkerriver/css/hacks.css">
</head>
<body onload="document.forms[0].url.value=urlFragment;setSpan()">
<h3>Find out the HTTP response headers when you "GET" a Web page</h3>
<h4>Choose the style for your message</h4>
<form action="javascript:void%200">
<p>
<select name="_style">
<option label="Loud" value="loud" selected>Loud</option>
<option label="Fancy" value="fancy">Fancy</option>
<option label="Cosmopolitan" value="cosmo">Cosmopolitan</option>
<option label="Plain" value="plain">Plain</option>
</select>
</p>
<p>**Enter a URL: <input type="text" name="url" size="20" onblur=**
"getAllHeaders(this.value,this.form._style.value)"> <span id=
"instr" class="message">«press tab or click outside the field
when finished editing»
</p>
<div id="msgDisplay"></div>

</form>
</body>
</html>

NOTE

The purpose of the setSpan() function defined within the web page's script tags is to give

some instructions a yellow background when the user passes their cursor over the
instructions ("press tab or click outside the field when finished editing").

Before we describe some of these code elements, you may be interested in how the web page
appears in a browser. Figure 1-15 shows this window.

Choose your style

The CSS styles used by this web page derive from a style sheet file named hacks.css. When the user
chooses a style (say "Cosmopolitan") with the select button, then finishes entering values in the

text field, their chosen style is dynamically assigned to the container that will hold the message (a
div element with id msgDisplay). Here is the hacks.css style sheet.

div.header{ border: thin solid black; padding: 10%;
 font-size: 0.9em; background-color: yellow; max-width: 80%}

span.message { font-size: 0.8em; }
div { max-width: 80% }

.plain { border: thin solid black; padding: 10%;
 font: Arial, serif font-size: 0.9em; background-color: yellow; }

.fancy { border: thin solid black; padding: 5%;
 font-family: Herculanum, Verdana, serif;
 font-size: 1.2em; text-shadow: 0.2em 0.2em grey; font-style: oblique;
 color: rgb(21,49,110); background-color: rgb(234,197,49)}
.loud { border: thin solid black; padding: 5%; font-family: Impact, serif;
 font-size: 1.4em; text-shadow: 0 0 2.0em black; color: black;
background-color: rgb(181,77,79)}
.cosmo { border: thin solid black; padding: 1%;
 font-family: Papyrus, serif;
 font-size: 0.9em; text-shadow: 0 0 0.5em black; color: aqua;
 background-color: teal}

The style sheet defines several classes (plain, fancy, loud, cosmo). A class in a CSS style sheet
begins with a period character (as in .fancy) and defines various style properties, such as the font

family and background color. Using this technique, your CSS experts can define the actual styles in
one place. Clearly, an experienced designer would have some, ah, differences with my style-attribute
choices here, but please bear with me!

The Ajax-related JavaScript code can assign the pre-defined styles to page elements based on user
choices. Therefore, the presentation tier of your web application is separated from the application
logic or domain tier.

The onblur event handler for the text field submits the URL value and the style name to a function
named getAllHeaders().

onblur="getAllHeaders(this.value,this.form._style.value)"

The reference this.form._style.value is JavaScript that represents the value of the option chosen from
the select list (the style name like "fancy"). The reference this.value is the text entered by the user

in the text field. Here is the JavaScript code in hacks8.js for the page, with the code highlighted that
dynamically assigns the style to the displayed message.

var request;
var urlFragment="http://10.0.1.3:8080/";
var st;

function getAllHeaders(url,styl){
 if(url){
 st=styl;
 httpRequest("GET",url,true);
 }
}

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 /*All headers received as a single stringt*/
 var headers = request.getAllResponseHeaders();

 var div = document.getElementById("msgDisplay");
 div.className= st == "" ? "header" : st;
 div.innerHTML="<pre>"+headers+"</pre>";
 } else {
 //request.status is 503 if the application isn't available;
 //500 if the application has a bug
 alert(request.status);
 alert("A problem occurred with communicating between "+
 "the XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server is available for "+
 "this application. Please"+
 " try again very soon. \nError: "+err.message);

 }
}

/* Initialize a Request object that is already constructed */
function initReq(reqType,url,bool){
 try{
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,bool);
 request.send(null);
 } catch (errv) {

 alert(
 "The application cannot contact the server at the moment. "+
 "Please try again in a few seconds.");
 }
}

/* Wrapper function for constructing a Request object.
 Parameters:
 reqType: The HTTP request type such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */
function httpRequest(reqType,url,asynch){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 initReq(reqType,url,asynch);
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 if(request){
 initReq(reqType,url,asynch);
 } else {

 alert(
 "Your browser does not permit the use of all "+
 "of this application's features!");}
 } else {
 alert(
 "Your browser does not permit the use of all "+
 "of this application's features!");}
}

Easy as Pie

The getAllHeaders() function sets a top-level st variable to the name of a CSS style class (plain,
fancy, loud, or cosmo). The code then sets the className property of the div that holds the

message in a shockingly simple way, which changes the style assigned to the message.

if(request.status == 200){
 /*All headers received as a single stringt*/
 var headers = request.getAllResponseHeaders();
 var div = document.getElementById("msgDisplay");
 div.className= st == "" ? "header" : st;
 div.innerHTML="<pre>"+headers+"</pre>";
}

If for some reason the choice of class name derived from the web client is the empty string (it
cannot be here because the select tag only contains complete string values), then the div element
is assigned a default style class name of header.

NOTE

This JavaScript could potentially be imported into another client web page, so you have to
include some checks for invalid input values.

The hacks.css style sheet also defines the header class.

Here are two examples of the same message assigned different styles by the user. First, figure 1-16
reproduces the selection of a "cosmo" style.

A cosmo styled message

Figure 1-17 depicts an alternate style.

Alas, a plain style

E B V N
We are Vietnames

E B V N
We are Vietnames

Generate A Styled User Message On The Fly

Dynamically define and assign CSS styles to web page content.

JavaScript and Document Object Model (DOM) programming allow you to define Cascading Style
Sheet (CSS) style attributes and apply them to page elements from scratch. An example of where
you may want to implement these methods is a Wiki page that permits users to develop their own
page designs and styles.

NOTE

In most cases, separating the style definitions from the JavaScript code is the way to go.
Separating application concerns or tiers in this manner allows each of these elements to
evolve independently, and makes web development less complex and more efficient.

This hack, like the one before it, dynamically displays server information based on the user's choice
of style categories. Unlike the previous hack, this one formulates the styles in code, then applies the
chosen style to an HTML element. Here is the code, with the style information highlighted.

var request;
var urlFragment="http://localhost:8080/";
var st;

function getAllHeaders(url,styl){
 if(url){
 st=styl;
 httpRequest("GET",url,true);
 }
}

 /* Set one or more CSS style attributes on an DOM Element
 CSS2Properties Object.
 Parameters:
 stType stands for a style name, as in 'plain,''fancy,''loud,' or 'cosmo'.
 stylObj is the HTML Element's style property, as in div.style. */

function setStyle(stType,stylObj){
 switch(stType){
 case 'plain' :
 stylObj.maxWidth="80%";
 stylObj.border="thin solid black";
 stylObj.padding="5%"
 stylObj.textShadow="none";
 stylObj.fontFamily="Arial, serif";

 stylObj.fontSize="0.9em";
 stylObj.backgroundColor="yellow"; break;
 case 'loud' :
 stylObj.maxWidth="80%";
 stylObj.border="thin solid black";
 stylObj.padding="5%"
 stylObj.fontFamily="Impact, serif";
 stylObj.fontSize="1.4em";
 stylObj.textShadow="0 0 2.0em black";
 stylObj.backgroundColor="rgb(181,77,79)"; break;
 case 'fancy' :
 stylObj.maxWidth="80%";
 stylObj.border="thin solid black";
 stylObj.padding="5%"
 stylObj.fontFamily="Herculanum, Verdana, serif";
 stylObj.fontSize="1.2em";
 stylObj.fontStyle="oblique";
 stylObj.textShadow="0.2em 0.2em grey";
 stylObj.color="rgb(21,49,110)";
 stylObj.backgroundColor="rgb(234,197,49)"; break;
 case 'cosmo' :
 stylObj.maxWidth="80%";
 stylObj.border="thin solid black";
 stylObj.padding="1%"
 stylObj.fontFamily="Papyrus, serif";
 stylObj.fontSize="0.9em";
 stylObj.textShadow="0 0 0.5em black";
 stylObj.color="aqua";
 stylObj.backgroundColor="teal"; break;
 default :
 alert('default');

 }
}

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 /*All headers received as a single stringt*/
 var headers = request.getAllResponseHeaders();
 var div = document.getElementById("msgDisplay");
 if(st){
 setStyle(st,div.style);
 } else {
 setStyle("plain",div.style);
 }
 div.innerHTML="<pre>"+headers+"</pre>";
 } else {
 //request.status is 503 if the application isn't available;
 //500 if the application has a bug

 alert(request.status);
 alert("A problem occurred with communicating between "+
 "the XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server is available for "
 "this application. Please"+
 " try again very soon. \nError: "+err.message);

 }
}

/* Initialize a Request object that is already constructed */
function initReq(reqType,url,bool){
 try{
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,bool);
 request.send(null);
 } catch (errv) {

 alert(
 "The application cannot contact the server at the moment. "+
 "Please try again in a few seconds.");
 }
}

/* Wrapper function for constructing a Request object.
 Parameters:
 reqType: The HTTP request type such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */
function httpRequest(reqType,url,asynch){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 initReq(reqType,url,asynch);
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 if(request){
 initReq(reqType,url,asynch);
 } else {
 alert(
 "Your browser does not permit the use of all "+
 "of this application's features!");}
 } else {
 alert(
 "Your browser does not permit the use of all "+

 "of this application's features!");}
}

Nudging Aside the Style sheet

Each HTML element on a web page has a style property, if its host browser support CSS style
sheets. For example, a div element has a property div.style that allows a JavaScript writer to set
inline style attributes for that div (as in div.style.fontFamily="Arial"). This is how the
setStyle() function works in the prior code. The two function parameters are a style name like
"fancy" (which we made up) and the style property of a specific div element. The function then sets
the appearance of the HTML div element on the web page.

The information that appears on the page (a bunch of response headers) is derived from the server
using the request object. As in the previous hack, the user enters a URL, then clicks outside the text
field or presses the TAB key, thus firing an onblur event handler that sets the request object and

CSS styling in motion. Here is the HTML for the page. It is not much different than Generate a Styled
Message With a CSS File, but omits the link to a style sheet. All the styling for this hack is defined by
the imported JavaScript file.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="/parkerriver/js/hack10.js"></script>
 <script type="text/javascript">
 function setSpan(){
 document.getElementById("instr").onmouseover=function(){
 this.style.backgroundColor='yellow';};
 document.getElementById("instr").onmouseout=function(){
 this.style.backgroundColor='white';};
 }
 </script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">
 <title>view response headers</title>
</head>
<body onLoad="document.forms[0].url.value=urlFragment;setSpan()">
<h3>Find out the HTTP response headers when you "GET" a Web page</h3>
<h4>Choose the style for your message</h4>
<form action="javascript:void%200">
<p>
<select name="_style">
<option label="Loud" value="loud" selected>Loud</option>
<option label="Fancy" value="fancy">Fancy</option>
<option label="Cosmopolitan" value="cosmo">Cosmopolitan</option>
<option label="Plain" value="plain">Plain</option>
</select>
</p>
<p>Enter a URL: <input type=
"text" name="url" size="20" onblur=
"getAllHeaders(this.value,this.form._style.value)">

<span id=
"instr" class="message">
«press tab or click outside the field when finished editing»
</p>
<div id="msgDisplay"></div>
</form>
</body>
</html>

The getAllHeaders() function, an event handler for onblur, passes into the application the name of

the style the user has chosen from a select list (such as "cosmo") as well as the URL of the server
component. The only purpose of the server component is to provide a value for display. We're mainly
interested in dynamically generating styles for any type of server information your applications could
acquire via Ajax and the request object.

NOTE

The purpose of the setSpan() function defined within the web page's script tags is to give

some instructions a yellow background when the user passes their cursor over the
instructions ("press tab or click outside the field when finished editing").

Figure 1-18 what the page looks like in the web browser prior to the sending of the HTTP request.

Choose a style for dynamic generation

Then when the user optionally selects a style name, fills out the URL address in the text field, and
presses TAB, figure 1-19 depicts what the browser looks like.

View styled server data

None of these web-page changes involves waiting for the server to deliver a new page. The request
object fetches the data from the server in the background, and the client-side JavaScript styles the
displayed information. Voila, Ajax!

[1] The object can make an asynchronous request to a server, meaning that once the request has
been initiated, the rest of the JavaScript code does not have to wait for a response to execute.
XMLHttpRequest can also make synchronous requests.

[2] The Mozilla Firefox XMLHttpRequest object has onload, onprogress, and onerror properties that
are Event Listener types. Firefox has also defined addEventListener(), dispatchEvent(),
overrideMimeType(), and removeEventListener() methods. See

http://www.xulplanet.com/references/objref/XMLHttpRequest.html for more details on these Firefox
request object members.

E B V N
We are Vietnames

http://www.xulplanet.com/references/objref/XMLHttpRequest.html

E B V N
We are Vietnames

Chapter 2. Validation
Validation

E B V N
We are Vietnames

E B V N
We are Vietnames

Validate A Texfield Or Textarea For Blank Fields

A web developer does not want their Ajax application to hit the network with a request if the user
leaves a necessary text field blank. This includes input tags of the type text, and the large boxes
called textarea tags in HTML. This is one of the most common forms of validation. With a web

application, you can't get something for nothing!

This hack shows the code for checking if a text field or textarea is blank. The inline way of doing it is

by assigning a check for the field's value in the text field's event handler.

<input type="text" name="firstname" id="tfield" onblur=
"if (this.value) {doSomething();}" />

Or, in a textarea…

<textarea name="tarea" rows="20" id="question" cols="20" onblur=
"if (this.value) {doSomething();}">

The JavaScript phrase if (this.value) { } returns false if the user leaves a field blank, so the
function call doSomething() will never occur. JavaScript evaluates a blank web-form text field as the
empty string or &&, which evaluates to false when it's used in the context of a programming test.
The this keyword is a nice generic way of referring to the form field that contains the event handler
attribute such as onblur. this.value returns the text field's value, which in our case is the empty
string. Easy huh?

NOTE

onblur captures the event involving the transfer of the keyboard focus away from a form
field. For example, the user triggers an onblur event handler when they type in a text field
then click on another form field or type the TAB character. If you used the onchange event
handler, the browser will only call the onchange-related function if the field's value
changes. In other words, the change event would not capture the instances where the user

leaves the text field blank.

Separating Logic from View

Probably a better way of going about your event handling tasks is separating the logic of your code
from the HTML or template text that comprises the application's visual aspects. The JavaScript
belongs in an external file that the HTML page imports with a script tag. Inside the external file, the

code binds a field's various event handlers to a function, or the code that represents your

application's behavior.

Say we have a web page myapp.html, which includes the following HTML in its header:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/hacks_method.js" ></script>
 <title>Cool Ajax application</title>
</head>

The file hacks_method.js is located in a directory js, which is in the same directory as the HTML file.
The HTML file contains the same textarea and text field as mentioned in this hack, except these
fields no longer have an onblur attribute. The JavaScript file includes this code.

window.onload=function(){
 var txtA = document.getElementById("tarea");
 if(txtA != null){
 txtA.onblur=function(){
 if (this.value) { doSomething();}}; }
 var tfd = document.getElementById("tfield");
 /* An alternative:
 if(tfd != null && !txtA!
= null){tfd.onblur = txtA.onblur; }
 */
 if(tfd != null){
 tfd.onblur=function(){
 if (this.value) { doSomething();}}; }
}

window.onload involves the binding of the load event to your blank-field checks. load occurs when

the browser has completed loading the web page, so when that happens, all the stuff after
window.onload= happens.

The getElementById() method returns a reference to an HTML element, such as the textarea
reference stored in txtA. Then the code binds the textarea's onblur event handler to a function,
which checks for blank field values before it calls doSomething(). The code initiates the same
behavior for the text field referred by the variable tfd.

NOTE

If the web designers leave out the text fields with the id tarea or tfield then nothing
happens, because the getElementById() method would return null and the code includes

a check for that occurrence.

Another way of binding an event handler to a function is to declare the function somewhere and then
use the function name.

window.onload=function(){

 var txtA = document.getElementById("tarea");
 txtA.onblur=doSomething;//no parens...
}
function doSomething(){ //... }

When the code binds an event handler to a previously defined function, leave the parentheses off the
function name.

Programmers often consider the definition of the blank-field checks and other coding stuff in an
external file a better way of organizing any but the most trivial applications. In addition, the XHTML
document or web-page definition discourages the mixing up of JavaScript code logic with the
structure of the page, as evidenced by the use of event-handler tag attributes such as onblur.

E B V N
We are Vietnames

E B V N
We are Vietnames

Validate Email Syntax

Check email syntax on the client-side before the server component takes over.

Many Web sites ask their users to register a user name as an email address. This hack makes sure the syntax of the email address is
valid, before the server component finds out whether the email address has already been used as a user identifier. Validate Unique User
Names takes care of the second step of this task.

The Longest Wait

When registering with a Web site, users typically type in an email address, make up a password, click Submit , then often experience a

long wait staring at the browser as the page is slowly reconstructed (if they're lucky). To add insult to injury, even though email
addresses are supposed to be unique, people often register at a site more than once (guilty as charged!), then forgetting they've already
visited, they try to register with the same email address. Therefore, the application often has to both check the email syntax and
whether the name is already being used.

AJAX can validate the email on the client-side and initiate a trip to the server behind the scenes to find out whether the email is already
in use, without disrupting the current view of the page. Validate Unique User Names ensures the uniqueness of the user name. Both of
these hacks share the same code base, a mix of JavaScript and other Ajax techniques.

Checking Out the Email Syntax

Web sites use email addresses because they are guaranteed to be unique, as long as they are valid. In addition, the organization can use
the email to communicate with you later. You do not have to initiate a server-roundtrip just to validate an email address, however. This
task can be initiated in the client, which cancels the submission of the user name to the server if the email syntax is invalid.

What criteria can we use for validation? A fairly dry technical document, "RFC 2822" is a commonly accepted guideline from 2001 that
oganizations can use as a basis for validating emails. Let's look at an example email address to briefly summarize the typical syntax:
hackreader@oreilly.com. The hackreader is called the local part of the address, which typically identifies the user. This is followed by
the commercial at sign (@), which precedes the Internet domain , those often well-known addresses of computer locations that

handle in-transit emails. Google.com and yahoo.com come to mind.

All of this is common knowledge. You may not know that RFC 2822 specifies that the local part cannot contain spaces (unless it's
quoted, which is rare, as in "bruce perry"@gmail.com). The local part also cannot contain various special characters like this roundup:

() < > , " @ : ; \ []. Maybe if someone tries to create an email address that looks like <(([[))>@ yoursite.com you should reject it
outright rather than give them points for originality!

The local part can and often does contain period characters, as in bruce.perry@google.com. But the periods have to be preceded and

followed by alphanumeric characters (you cannot use an email such as bruce.@google.com). Your organization may also specify that the
user name and domain be more than two characters (you don't see too many domains like zz.org). The domain can contain more than
one period, as in bruce@lists.myorg.net. But the domain cannot begin or end with a period (bruce@.lists.myorg.net). Finally, the
guidelines permit but discourage a domain literal that you almost never encounter: as in bruce@[192.168.0.1]. These are the criteria

we can check for in our in our validation code, plus some more special characters that our organization decides to forbid from email
addresses provided by our users.

Looking at the Code

First, take a look at the page that imports the JavaScript code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<script type="text/javascript" src="js/http_request.js"></script>
<script type="text/javascript" src="js/email.js"></script>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<title>Enter email</title>
</head>
<body>
<form action="javascript:void%200">
<div id="message"></div>
Enter email: <literal><input type="text" name="email" size="25">**

<button type="submit" name="submit" value="Send">Send</button>
</form>
</body>
</html>

Idtxt A shows a simple web page with a textfield for entering an email and a Send button.

Write down your email, please

The user types their email into the text field then clicks the Send button. This action does not send the email to a server component, yet.

First, the code has to validate the email's syntax. The HTML code imports two JavaScript files with the script tag. email.js is responsible

for our thorough email-syntax check. http_request.js sends the email as a user name to a server component, but we will leave this bit of
Ajax to Hack #25.

If the user types in an invalid email address, figure 3-2 shows what the browser window looks like. The page dynamically prints out a red
message summarizing what appeared to be wrong with the entered email address. If the email address is okay, the application then
sends it to a server component to determine if the address has already been used as a user name. Here is the code from email.js.

var user,domain, regex, _match;

window.onload=function(){
 document.forms[0].onsubmit=function() {
 checkAddress(this.email.value);
 return false;
 };
};
/* Define an Email constructor*/
function Email(e){
 this.emailAddr=e;
 this.message="";
 this.valid=false;
}
/* containsSpecials is a class method of the Email object */
function containsSpecials(str){
 /* RFC 2822 generally does not allow these characters to appear in the
 username email segment (() < > , " @ : ; \ []), plus ASCII 0-31 and
 the space character (unless the username is quoted,
 which you rarely see in typical usage, as in "joe"@hotmail.com)
 We've optionally added some other special characters to forbid from user names,
 such as !?#$%&='^|{}* */
 aardvark*var re = /([()<>\,\"\@\:\;\\[\]\|\!\?\#\$\%XXXredpre#7XXX*

First, the code sets up the handling for the user's click on the Send button. window.onload specifies an event handler that is called when

the browser completes the loading of the web page.

NOTE

Event handlers are designed to assign functions or blocks of code that specify the application's behavior. "Take this action when
this happens in the browser." For example, when the user submits the form, call this function first (as in the onsubmit event

handler).

The reason the code uses window.onload is that before the code can control form -related behavior, the form tag has to be referencable

from JavaScript, that is, fully loaded into the browser.

window.onload=function(){
 document.forms[0].onsubmit=function() {
 checkAddress(this.email.value);
 return false;
 };

};

In turn, the code sets up the form element's onsubmit event handler, a function that calls checkAddress() . The onsubmit event

handler intercepts the form submission, because we want to validate what the user entered into the text field before the application does
anything else. checkAddress() takes as a parameter the address that the user typed, if they typed anything!

Check Email at the Door

Now we will look at the checkAddress() function.

function checkAddress(val){
 var eml = new Email(val);
 var url;
 eml.validate();
 if (! eml.valid) {eMsg(eml.message,"red")};
 if(eml.valid)
 {
 url="http://www.parkerriver.com/s/checker?email="+
 encodeURIComponent(val);
 httpRequest("GET",url,true,handleResponse);
 }
}

This function creates a new Email object , validates the user's email, and if the email is valid, submits it to a server component. The
first element of this description you might be curious about is Email object . What the heck is that? An Email object is a code

template that we can use over and over again every time we want to check the syntax of an email. In fact, if we wrote a lot of JavaScript
that handled emails, we would break this code off into it's own file (like emailObject.js) so that it would not be tangled up with hundreds
of lines of additional complex code in future applications. Here is the Email object definition.

/* Define an Email constructor*/
function Email(e){
 this.emailAddr=e;
 this.message="";
 this.valid=false;
}

Simple, huh? An Email object is constructed using a JavaScript function definition that takes the email address as the one function

parameter, stored here as e.

NOTE

This is a special kind of function that is called a constructor in object-oriented parlance, because it is used to construct an
object.

An Email object has three properties: an email address (emailAddr); a message, and a boolean or true/false property named valid.
When you use the new keyword in JavaScript to create a new Email object , the emailAddr property is set to the passed in email
address (remember? In e). The message is initialized to the empty string because new Email objects do not have any special

messages associated with them. The validity of the email, somewhat pessimistically, is innitialized as false .

var email = new Email("brucew@yahoo.com");

The this keyword refers to the instance of Email that the browser creates in memory when the code generates a new Email object .
For example, a bicycle company might create a mold for new bicycle helmets. Conceptually, the mold is like our Email constructor. When

the company makes new helmets, these helmets are instances of the mold or tempate that was developed for them.

On to Validation

An Email object validates its email, which in our application takes place when the user clicks the Send button. The checkAddress()
function had code like eml.validate() and if(eml.valid) indicating that our application validates individual emails and checks their
valid properties. This happens because the code defines a validate() function then signals that the Email object owns or is linked

with that function.

NOTE

Using code such as Email.prototype.validate=validate; is a special way in JavaScript to specify that we defined this
function validate() and every new Email object has its own validate() method. Using object-oriented techniques is not

mandated, but it makes the code a little cleaner, more concise, readable, and reusable.

Now we will describe the validation code, which contains a few regular expressions for checking email syntax. The code, included in the
prior code sample for email.js, is fairly complex, but the embedded comments are designed to help you along the way in figuring out what
the code accomplishes. In order, here are the rules for our validation logic, partly based on RFC 2822 and in part our own expanded
criteria for proper email syntax:

If the email is the empty string , or if the emailAddr property value is null , or the email address does not contain an @ character

or any periods at all, it is rejected. No surprises there.

1.

The code then uses a regular expression to grab the local part of the email. This is usually the user name, the chunk of
characters preceding the . This encompasses a character that isn't a period or space character, followed by one or more characters
that include zero or one periods, and ending at the @ point with a character that is not a period.

2.

The code then checks whether the local part contains any special characters by using the containsSpecials() method. If the
local part does contain any of these characters then the user receives an error message.

3.

The code then grabs all of the characters after the @ and checks whether the character string@ represents either a domain

literal (however rare that would be), or a typical domain syntax. The rule for the latter syntax is expressed as "the
<redpre#215></nodocbook> character followed by at least three characters that are not a period (.), followed by a period,
followed by zero or one instances of two or more characters ending with a period, followed by three characterss that are not
periods."

4.

This portion of the email address, the domain , is also checked for the forbidden special characters using the containsSpecials()

method.

5.

Now we will take a look at the code for the containsSpecials() method. This method is designed to check whether the string
parameter contains any various special characters (like the @ sign for the reason that it shouldn't appear anywhere else but
in its psition between the local part and the domain@) and punctuation marks.

function containsSpecials(str){
 /* RFC 2822 generally does not allow these characters to appear in the
 username email segment (() < > , " @ : ; \ []), plus ASCII 0-31 and
 the space character (unless the username is quoted,

 which you rarely see in typical usage, as in "joe"@hotmail.com)
 We've optionally added some other special characters to forbid from user names,
 such as !?#$%&='^|{}* */

 var re = /([()<>\,\"\@\:\;\\[\]\|\!\?\#\$\%XXXredpre#12XXX*

The function's comments describe most of the gist of this code. You simply pass a string to the function, which is searched for forbidden
characters using a regular expression. JavaScript's built-in RegExp object's exec method returns an array if it finds a match, or null
otherwise. The if(match){ return [true,RegExp.$1];} code returns an array whose elements are a boolean value true , and the
matching character in the string . We'll show how that character is used in the user message in a moment. If the regular expression
does not find any of the characters, then it returns an array containing the boolean false value.

The final piece of code here, Email.containsSpecials=containsSpecials , makes the containsSpecials() function a kind of class
method of the Email object. You can call the function in the manner of var sp = Email.containsSpecials(user); . The variable sp
will then refer to the returned array .

User Gets the Third Degree

If the user includes illegal characters in their email, or otherwise types in an invalid address or leaves the text field blank, then they are
greeted with a message like figure 3-2.

Shame on you

For example, the following code inside of validate() creates one of these messages if the email address contains any illegal characters
in the domain or part after the @ .

//check for special characters in the domain
sp = Email.containsSpecials(domain);
//The first array member in the return value will be true or false
//so if sp[0] evals to true then the regular expression matched a
//special character, which is stored inthe second array member,sp[1]
if(sp[0]){

 this.message="The domain version containing the top-level domain suffix "+
 "(e.g., .net) cannot contain special characters that RFC 2882"+
 " or our rules forbid such as \""+sp[1]+"\" .";
 this.valid=false;
 return;
}

Notice that the code also sets the Email object's valid property to false . Then checkAddress() checks the valid property before

the email address heads off to the server in the next hack.

//inside checkAddress()...
eml.validate();
if (! eml.valid) {eMsg(eml.message,"red")};
if(eml.valid)
{
 url="http://www.parkerriver.com/s/checker?email="+
 encodeURIComponent(val);
 httpRequest("GET",url,true,handleResponse);
}

The eMsg() function generates the message. True to Ajax, eMsg() uses a little DOM, a little dynamic Cascading Style Sheets (CSS)

programming, and JavaScript.

function eMsg(msg,sColor){
 var div = document.getElementById("message");
 div.style.color=sColor;
 div.style.fontSize="0.9em";
 //remove old messages
 if(div.hasChildNodes()){
 div.removeChild(div.firstChild);
 }
 div.appendChild(document.createTextNode(msg));

}

The parameters to this function are the text message and the color of the text. The application uses red for error messages and blue for
user notifications about their user name. This is discussed in Validate Unique User Names. The code dynamically generates the message
inside a div that the HTML reserves for that purpose.

var div = document.getElementById("message");

On Deck

While the user is typing and clicking around this page, trying out new email versions, the page itself doesn't change, only the message
shows different content. It seems as if a server component never participates (although a server role does come into play when the
email address is valid), as the application's responsiveness speeds along.

However, we have not gone into very much detail about what's happening on the server end. The server component keeps a database of
unique user names for its web application. Once this hack gives the green light on email syntax, then the application sends the email to
the server, which checks to see if the application already has a stored version. The next hack dives into this related functionality.

?

E B V N
We are Vietnames

E B V N
We are Vietnames

Validate Unique User Names

Ensure that an email address used as a user name is unique, but do not submit anything else on the
page.

The purpose of all this email-address validation is so you can safely send the email off to the server-
side program, where it will be checked against an existing database to see if it has already been
used. This hack does exactly that.

Figure 3-2 shows what the web page looks like when the user types an entry that breaks our validity
check. The user is greeted with a browser page such as figure 3-3 if the program deems the email
syntax okay.

Unique name passes muster

The message will convey to the user that their chosen name has already been taken, or that they
have typed a unique email address for this application. But all email addresses are unique, you might
declare. That's true, but web users often register more than once at web applications, because
whoever remembers the tedious details about registering at the countless web sites we typically use?
You might enter the same email address when you are registering a new user name, and the
application responds that the email is already taken.

A non-Ajax web application will submit all the form values at once when a user registers, and often
painstakingly reconstruct the page, if only to notify the user that they have to try again. This hack
only submits the email address and does not touch or refresh other page elements.

Here's How it Works

Here is the HTML code, which the pevious hack also uses.

XXXredpre#17XXX

The JavaScript in email.js sends the email address to the server, which checks an existing database
of user names and responds with a "1" if the address is already used. The simple XML response
output looks like XXXredpre#177XXX. The code uses XXXredpre#178XXX to send the validated email
address to the server component. See Hack #24 for the details on email validation. As the next step,
this hack focuses on the data exchange with the server component, to find out if someone else is
already using the user name. Here is the code from the XXXredpre#179XXX function that sends the
email.

XXXredpre#18XXX

The XXXredpre#180XXX function wraps the creation and initialization of the request object.
http_request.js contains this code. XXXredpre#181XXX takes as parameters:

The type of request as in GET or POST

The URL or server web address

A boolean indicating whether the request is asynchronous or not.

The name of a function or a function literal that handles the server response.

Server Handshake

The server then returns some XML indicating whether it has found the user name or not. Here is the
code for XXXredpre#182XXX, which appears in email.js.

XXXredpre#19XXX

XXXredpre#183XXX gets the XML by accessing the XXXredpre#184XXX property of
XXXredpre#185XXX. The code calls the DOM Document method XXXredpre#186XXX, which returns
a XXXredpre#187XXX, just like an XXXredpre#188XXX, of nodes that have the specified tag name.
XXXredpre#189XXX is the tag name, as in XXXredpre#190XXX. Since the return value is an
XXXredpre#191XXX structure, the code gets the first and only array member using
XXXredpre#192XXX:

XXXredpre#20XXX

The code then accesses the text contained by the XXXredpre#193XXX tag and generates a user
message. Hack #23 shows the XXXredpre#194XXX code.

For Those Server Hackers…

Here is the code for the server-side component, which is a Java XXXredpre#195XXX that mimics a
database. It uses a XXXredpre#196XXX type, a kind of XXXredpre#197XXX object, to contain the
stored user names; however, a full-fledged production application would use middleware to connect
with a database and check on user names.

XXXredpre#21XXX

In this case, the server component does not have to check the validity of the email, because the
client-side JavaScript has already taken care of that job. The server role is just to check the database
of user names, then add the new name if it doesn't already exist.

E B V N
We are Vietnames

E B V N
We are Vietnames

Validate Credit-card Numbers With AJAX

Validate credit card numbers without submitting and refreshing the entire web page.

Entering a credit card number on a web page has become common place. This hack verifies the
entered credit card number, then only submits it to the server component if the number is valid.
Nothing else changes on the page except for a user message, which notifies the user of any error
conditions or that their credit card has passed muster and has been sent to the server to be
processed. The server connection would likely be initiated over Secure Sockets Layer (SSL), such as
with the HTTPS protocol, and is involved with an e=commerce component that further verifies the
purchase information with a merchant bank. This hack, however, just verifies the number, generates
a message, and makes an HTTP request using Ajax techniques.

Figure 3-4 shows what the web page looks like.

Enter credit-card number for verification

This is the web page code. It imports two JavaScript files.

XXXredpre#22XXX

The user chooses a credit card type (e.g., "Mastercard"), enters the card number, expiration date,
and Card Security Code, and clicks the XXXredpre#198XXX button. However, instead of having the

page dissolve and the values depart immediately for the server, the application verifies a few
conditions first. The JavaScript makes sure that the fields are not blank or contain a minimum
number of characters (such as three for the Card Security Code), then it verifies the card number
using the Luhn formula or algorithm.

NOTE

This is a well-known algorithm used to verify ID numbers like credit card numbers. See
http://en.wikipedia.org/wiki/Luhn_formula.

If one of these checks fails, the hack displays a message in red. Figure 3-5 shows one of these
messages.

Time to re-enter the credit card

If the credit card number is verified and everything else has been correctly entered, then the hack
uses XXXredpre#199XXX to send this information to a server.

We are not strictly making a secure connection in this hack, but a real application would not send any
purchase information unencrypted over a network.

A message in blue notifies the user, as in figure 3-6.

Purchase information passes muster

http://en.wikipedia.org/wiki/Luhn_formula

Verifying the Card Number

cc.js contains the code for responding to the user's button click, as well as for verifying the
information and generating a user message. http_request.js creates and calls the methods of
XXXredpre#200XXX. See Hack #3. Here is the code for cc.js.

XXXredpre#23XXX

There is a lot of functionality to absorb here, so first we will discuss the button click. When the
browser completes loading the web page, this event is captured by the code XXXredpre#201XXX.
This event handler is a sensible place to set up other event handlers, because the code is assured
that the browser has finished loading other HTML tags that might be used by these handlers. Then
the code sets up an event handler for when the user submits the form.

XXXredpre#24XXX

The form's XXXredpre#202XXX event handler points to a function that calls XXXredpre#203XXX,
then retuns XXXredpre#204XXX, which effectively cancels the browser's form submission. We are
using the request object to send the form values, only after verifying that the submissions are valid.
Let's look at the XXXredpre#205XXX function.

XXXredpre#25XXX

This function includes a number of common-sense checks before it validates the credit-card number
using another function, XXXredpre#206XXX. If the latter function returns XXXredpre#207XXX, then
the code builds a URL for the server component, then uses XXXredpre#208XXX to send the card
information.

The XXXredpre#209XXX function is responsible for setting up XXXredpre#210XXX and connecting
with the server. The function takes four parameters: The type of request (as in XXXredpre#211XXX
or XXXredpre#212XXX), the URL, whether or not the request shuld be asynchronous or not, and the
name of the function that will handle the response.

NOTE

This function name should be passed in without the following parentheses. It can also be a
function literal, as in XXXredpre#213XXX.

This code appears in the file http_request.js. See Hack #3.

Shooting the Luhn

The XXXredpre#214XXX function verifies that the credit-card number is at least 13 characters and
does not contain any letters. If the credit card number passes these checks, then the code removes
any spaces or dashes from the string and calls a function that uses the Luhn formula.

XXXredpre#26XXX

Here is the code for the XXXredpre#215XXX function.

XXXredpre#27XXX

Information on the Luhn formula or algorithm is easily found on the web, so we will not take up a lot
of space describing it here.

NOTE

See Wikipedia's explanation of the Luhn algorithm:
http://en.wikipedia.org/wiki/Luhn_formula.

This function takes a XXXredpre#216XXX of numbers, applies the formula to the numbers, and
returns the sum to XXXredpre#217XXX. If the total can be evenly divided by 10, then the credit card
number is valid. Here is the piece of code from XXXredpre#218XXX that makes this determination.

XXXredpre#28XXX

The server component returns a bit of XML indicating success or failure, mimicking the processing of a
purchase order, as in XXXredpre#219XXX. The XXXredpre#220XXX function generates a user
message from this return value.

XXXredpre#29XXX

http://en.wikipedia.org/wiki/Luhn_formula

The XXXredpre#221XXX function is responsible for generating a styled user message, in red in the
event of an error in handling the purchase information, in blue otherwise. Figure 3-6 shows a user
message after the credit card has been verified and handled by the server. However, the entire
process takes place back stage, the web page never refreshes, and only small parts of the user
interface change as the user interacts with the application.

E B V N
We are Vietnames

E B V N
We are Vietnames

Validate Credit-card Security Codes

Make sure the security code is entered correctly in your Ajax credit card application.

A Card Security Code is the three- or four-digit number that is printed on the credit card along with
the card number. The CSC is designed to augment the authentication of the credit-card user. Many
online stores that take credit cards also request that the user enter a CSC associated with the card.
This act in itself, however, puts in jeopardy the secure identity of the CSC, so that this authetication
technique is far from airtight.

NOTE

See http://en.wikipedia.org/wiki/Card_Security_Code.

The only entity that can validate a CSC is the merchant bank that has the responsibility for
processing the credit card. There isn't a special formula like Luhn to validate it (it's only three or four
numbers anyways!). However, this hack verifies that the user has entered the CSC correctly, as in
using the following criteria:

The field contains only numbers.

If the credit card type is Mastercard, Visa, or Discover, the field has exactly three numbers.

If the credit card is American Express, the field has exactly four numbers.

Figure 3-7 shows a web page that requests a CSC and other information (You may recognize it from
the previous hack).

Validate Card Security Codes

http://en.wikipedia.org/wiki/Card_Security_Code

This hack sets up the CSC validation so that when the user types in the text field and then clicks
outside of the field or the XXXredpre#222XXX character, JavaScript code ensures that the previous
criteria is met before continuing with the rest of the application. First, here is the web page code,
which imports a JavaScript file cc.js.

XXXredpre#30XXX

Here is the code in cc.js that handles the Card Security Code text field.

XXXredpre#31XXX

The variable XXXredpre#223XXX refers to the text field where the user is supposed to enter the CSC.
The code sets the field's XXXredpre#224XXX event handler to a function that check's the security-
code value. The function then generates a user message and disables the XXXredpre#225XXX button
if the value is invalid. We want to disable XXXredpre#226XXX, because the application should prevent
the running of the form's XXXredpre#227XXX event handler until the security-code text field contains
a valid value.

XXXredpre#228XXX validates the CSC field using regular expressions.

XXXredpre#32XXX

If the card is American Express, then the regular expression looks for a XXXredpre#229XXX
containing four digits. The XXXredpre#230XXX object's XXXredpre#231XXX method returns
XXXredpre#232XXX if its XXXredpre#233XXX parameter returns a match.

XXXredpre#33XXX

Similarly, the code checks the value associated with the three other credit-card companies for a

XXXredpre#234XXX containing three digits. A XXXredpre#235XXX return value from this method
indicates an invalid value, and the user will see a red message and disabled XXXredpre#236XXX
button, as in figure 3-8.

The security code text field checks itself

NOTE

You should trim the value in the security-code text field, because if the user inadvertantly
types a space and three numbers (and is using say Mastercard) the regular expression will
not find a match because the searched string will be " 123" instead of "123." The user will be
irritated, because they seem to have typed the correct number. You can use the
XXXredpre#237XXX method XXXredpre#238XXX, which replaces any space characters in
the XXXredpre#239XXX with the empty XXXredpre#240XXX.

When the application has finished checking the card security code, then the user can click the submit
button. Then an XXXredpre#241XXX event handler verifies the credit-card number, as in the
previous hack, before sending a valid number to a server component to process a purchase order.

E B V N
We are Vietnames

E B V N
We are Vietnames

Validate A Postal Code

This hack checks what the user has entered in a text field, to make sure that the value represents
the proper format for a U.S. zip code. This hack discusses the basics of validating a zip code;
however, if you want to take it farther beyond validating the format of a zip, then you can use the
code in Fetch a Postal Code as a secondary step to determine if the zip code is actually the correct
one for the specified city and state.

Figure 3-9 shows what this hack's web page looks like. It is a sub-set of the typical form that asks for
the user's address information.

Enter the right zip code

The user types in a zip code (or fails to enter anything in the text field), then presses
XXXredpre#242XXX or clicks outside of the field. The application's code then automatically validates
what they typed.

NOTE

This hack only tests the first five digits of a zip code.

The code makes sure that the user entered five digits, and only five digits, into the field. The web

page imports the code in a JavaScript file named hacks3_7.js. Here is the content of the file.

XXXredpre#34XXX

The XXXredpre#243XXX event handler sets up the behavior for the application. XXXredpre#244XXX
occurs when the browser completes loading the web page. At this point, the code creates an
XXXredpre#245XXX event handler for the zip-code text field. This event handler is triggered when
the user clicks XXXredpre#246XXX or outside of the zip-code field. Only if the user has typed a value
into the city or zip-code text fields, as in XXXredpre#247XXX, then the code validates the format of
the value in XXXredpre#248XXX.

This function uses a regular expression that represents a character phrase made up of five numbers.
The code then tests the entered zip-code value against this regular expression to determine if the
zip's format is correct.

NOTE

A regular expression represents a template for testing strings of characters. This regular
expression, for example, looks for a line of text made up of just five numbers (the ^ means
"beginning of the line" and $ is a special symbol for "end of the line."

If the format is not correct, then the code generates a user message. The web page devotes a
XXXredpre#249XXX element with an id of "message" to contain these notifications.

XXXredpre#35XXX

Hacking the Hack

If you want to ensure that the five numbers represent a real zip code, then you can use the code in
Fetch a Postal Code to request a postal code for a certain city and state. Fetch a Postal Code requests
the zip from a web service; your code can then compare this value with the value entered by the
user.

Some cities have multiple zip codes, and Fetch a Postal Code only returns the first zip code found for
a city/state combination. Therefore, this method is not a foolproof way of validating every zip-code
value. You could alter the server component that connects with the web service, to return all zip
codes found for a specified city, but this method would still require more user interaction to narrow
down the choices to one zip code.

E B V N
We are Vietnames

E B V N
We are Vietnames

Chapter 3. Web Forms
Web Form

E B V N
We are Vietnames

E B V N
We are Vietnames

Submit Textfield Or Textarea Values To The Server Without A Browser
Refresh

Create a smooth transition between entering information into a textarea or text field and instantly transferring the data to the server.

Ajax applications can automatically send to a server program the information that the user has entered into a text field or textarea.
The application code waits for the text widget's onblur event to occur, then uses the request object to send just the data from that
field or textarea. In many applications, this technique is preferable to requiring the user to click a Submit button, then sending all of

the form's values in a big clump to the server. It is also much faster and snappier in terms of the application's responsiveness.

NOTE

The onblur event is triggered when a web form control like a text field loses the keyboard focus, which is caused for
instance by the user pressing the TAB key or clicking outside of the field. You can also use the onkeypress , onkeydown, or
onkeyup event handlers to initiate this type of behavior in a text widget.

This hack's sequence of events for sending text to the server is:

the user tabs into the field or clicks in a textarea,

types some text,

then presses TAB or clicks on another part of the page.

NOTE

A side effect of intervention-less form sending is that the user is not accustomed to this kind of behavior from a web form.
The user could be put off or confused by web-form controls like text fields that dynamically submit their own data. The user
interface should make it clear that "something is going to happen" when the user is finished with the text field, or display a
message or progress indicator when the request object is sending the data (see Display a Progress Indicator For Web Users).

This hack includes a text field and a textarea that send HTTP requests with their values when the user is finished with them. Figure 2-1
shows the web page loaded into a browser window.

No buttons need apply

The user types some information into the text field or textarea (the larger data-entry box), moves to the next control, and the
application automatically sends what they typed to a server component. Here is the HTML code for this page.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/hacks_2_1.js"></script>
 <link rel="stylesheet" type="text/css" href="/css/hacks.css" />
 <title>Submit your information</title>
</head>
<body>
<h3>Get stats from textareas and textfields using Ajax</h3>
<form action="javascript:void%200" >
<div id="textf">
Enter a few words for submitting to our server:
<input type="text" name="tfield" id="tfield" size="35" />
</div>
<div id="texta">
Enter a phrase for submitting to our server: **<textarea name="tarea" rows="20" id="tarea" cols="20">**
</textarea>
</div>
</form>
</body>
</html>

Instead of a user clicking a button to send the form information, each text control sets the action in motion itself.

When the user presses TAB or clicks outside of the text field, the code specified by the widget's onblur event handler is executed. The

upcoming code sample shows how this event handler is set-up after the browser has finished loading the page.

The script tag in the HTML imports a JavaScript file, hacks_2_1.js. This file contains all of the code necessary for running this hack.

Here is the code the file contains. This sample includes all of the code for sending a request and handling the return value (in the
handleResponse() function). The next hack explains the related technique of inserting the server's response into text controls, but
that shouldn't prevent you from peaking at handleResponse() if you want!

var formObj = null;
var formObjTyp = "";

//input field's event handlers
window.onload=function(){
 var txtA = document.getElementById("tarea");
 if(txtA != null){
 txtA.onblur=function(){if (this.value) { getInfo(this);}}; }

 var tfd = document.getElementById("tfield");
 if(tfd != null){
 tfd.onblur=function(){if (this.value) { getInfo(this);}}; }
}

function getInfo(obj){
 if (obj == null) { return; }
 formObj=obj;
 formObjTyp =obj.tagName;
 if(formObjTyp == "input" || formObjTyp == "INPUT"){
 formObjTyp = formObjTyp + " "+formObj.type;
 }
 formObjTyp = formObjTyp.toLowerCase();
 var url = "http://www.parkerriver.com/s/webforms?objtype="+
 encodeURIComponent(formObjTyp)+"&val="+ encodeURIComponent(obj.value);
 httpRequest("GET",url,true);
}

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 var func = new Function("return "+resp);
 var objt = func();
 if(formObjTyp == "textarea"){
 if(formObj != null){
 formObj.value = objt.Form_field_type +
 " character count: "+objt.Text_length+
 "\nWord count: "+
 objt.Word_count+"\nServer info: "+
 objt.Server_info;
 }
 } else if(formObjTyp == "input text"){
 if(formObj != null){

 formObj.value = objt.Form_field_type +
 " # characters: "+objt.Text_length+
 " Word count: "+objt.Word_count; }
 }
 } else {
 //request.status is 503
 //if the application isn't available;
 //500 if the application has a bug
 alert(
 "A problem occurred with communicating between the "+
 "XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server is available "+
 "for this application. Please"+
 " try again very soon. \nError: "+err.message);

 }
}

/* Initialize a Request object that is already constructed */
function initReq(reqType,url,bool){
 try{
 /* Specify the function that will handle the
 HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,bool);
 request.send(null);
 } catch (errv) {
 alert(
 "The application cannot contact the server "+
 "at the moment. "+
 "Please try again in a few seconds.");
 }
}
/* Wrapper function for constructing a Request object.
 Parameters:
 reqType: The HTTP request type such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */
function httpRequest(reqType,url,asynch){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 initReq(reqType,url,asynch);
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 if(request){

 initReq(reqType,url,asynch);
 } else {
 alert("Your browser does not permit the use "+
 "of all of this application's features!");}
 } else {
 alert("Your browser does not permit the use "+
 "of all of this application's features!");}
}

The code declares two top-level JavaScript variables: formObjTyp and formObj . The latter variable will hold the input or textarea
object (other functions in the code will need access to it later), and the former var holds a string representing a form object tag
name, such as "INPUT" or "TEXTAREA." This string is one of the parameters that the server component requires (see the formatted

URL described beneath "Get the First Serve In").

NOTE

These variables are simply part of this hack's behavior and are not required in general for sending form values with the
request object.

As we mentioned previously, the code sets up the text widget's onblur event handlers when the browser finishes loading the page.
You can accomplish this task in JavaScript by assigning a function to the window's onload event handler. Using the window.onload
code is an alternative to calling the JavaScript functions from within an HTML element's onblur attribute. The XHTML document type

that we are using for our page discourages the mixing of JavaScript function calls with the XHTML structure of the page, so our code
binds event handlers to functions within the imported JavaScript file instead.

window.onload=function(){
 var txtA = document.getElementById("tarea");
 if(txtA != null){
 txtA.onblur=function(){if (this.value) { getInfo(this);}}; }
 var tfd = document.getElementById("tfield");
 if(tfd != null){
 tfd.onblur=function(){if (this.value) { getInfo(this);}}; }
}

NOTE

Event handler event schmandler! These are simply attributes of an object to which your code can assign a function or block
of code that defines some behavior. So if you want to control how a radio button behaves when it's clicked, it has an event
handler named onclick . As in:

NOTE

//Get a reference to a radio button element on a web //page
p(note). var rad = document.getElementById("radio1");

p(note). //display a pop-up dialog window when it's clicked
p(note). rad.onclick=function(){ alert("I was clicked!");};

These text fields are now hot; once the user types something and exits the controls, the user doesn't have to click another button, the
information they typed in is already off and running to the server.

Get the First Serve In

The main job of the text-field event handlers is to call the getInfo() function. This function grabs whatever the user typed into the

text widget and sends this value to the server.

function getInfo(obj){
 if (obj == null) { return; }
 formObj=obj;
 formObjTyp =obj.tagName;
 if(formObjTyp == "input" || formObjTyp == "INPUT"){
 formObjTyp = formObjTyp + " "+formObj.type;
 }
 formObjTyp = formObjTyp.toLowerCase();
 var url = "http://www.parkerriver.com/s/webforms?objtype="+
 encodeURIComponent(formObjTyp)+"&val="+
 encodeURIComponent(obj.value);
 httpRequest("GET",url,true);
}

The getInfo() function takes as a parameter an object that represents the text field or textarea. We are passing in a reference to the
input or textarea objects so that the JavaScript code can use them to handle the server return value.

NOTE

Hint hint, the next hack shows how to display the server's return value inside these text widgets. Since a textarea generally
holds more information than a text field, the server sends back more data if the original object was a textarea as opposed to
a text field.

That last part, httpRequest(&GET&,url,true) , is the function call that actually sends the user's information to the server.

However, a few things have to occur before the code calls that function, such as putting together a proper URL (the server's address
on the Internet). The server component is expecting a string describing what kind of form object the data derives from. In this
application, the string will be formulated from the tagName property of the Element object (returning "INPUT" or "TEXTAREA").

NOTE

The code needs this value to tell the server whether its return value will be inserted into a text field or a textarea. Again, this
is described in the next hack!

The code further refines the input object's description by what input sub-type it represents (text input? radio button?). This is
accomplished by appending the value of the input object's type property ("text" in our case) to the string "input," which creates the

final string "input text."

In other words, this type property returns "text" only if the object represents an <input type="text" ...> HTML tag. Then the
string is forced to lower case and submitted to the server with the user's content.

formObjTyp =obj.tagName;
if(formObjTyp == "input" || formObjTyp == "INPUT"){
 formObjTyp = formObjTyp + " "+formObj.type;
}
formObjTyp = formObjTyp.toLowerCase();
var url = "http://www.parkerriver.com/s/webforms?objtype="+
 encodeURIComponent(formObjTyp)+"&val="+ encodeURIComponent(val);
httpRequest("GET",url,true);

The global JavaScript function encodeURIComponent() is a method for ensuring that certain characters such as spaces are encoded

when they are included in URLs. Otherwise, your program may send a partial or truncated URL to the server and generate an error.
The entire URL might look like this in a real case:

http://www.parkerriver.com/s/webforms?objtype=input%20text&
val=Hello%20There!

What's Next?

The httpRequest() function wraps the code that initializes and uses the request object, which works behind the scenes so that the

user doesn't have to manually send the data. Chapter 1 and Hack #3 describes this function in detail.

So what happens to the submitted data next? That depends on your application. The next hack explores a related but different topic:
using JavaScript and Ajax to take an HTTP response and insert data into existing text fields or textareas.

NOTE

The users can put tons of information in a large textarea, so in these cases use the POST method rather than GET with the
request object as Hack #2 describes. For example, you can write the httpRequest() function as
httpRequest("POST",url,true) and the request object's send() method has the POST querystring as a parameter:
request.send(val=Hello%20there%20and%20a%20lot%20of%20other%20stuff);

?

E B V N
We are Vietnames

http://www.parkerriver.com/s/webforms?objtype=input%20text&

E B V N
We are Vietnames

Display Text Field Or Textarea Values Using Server Data

Have server information magically appear in text boxes without the web page refreshing.

You can have a server component interact with information that the user enters in a text box, without
the jarring effect of the page reconstituting every time the user enters new information. A typical
example is a spell checker or auto-complete field (see Hack #68). Using the request object as an
intermediary, a server component responds in real time to what the user types.

This hack displays an automatic server response, so that the response appears as if by magic in the
text field or textarea, without anything else changing in the web page. The hack is an extension of
our previous hack, which used the request object to submit textarea or text field values to a server
component behind the scenes.

This hack takes the information the user has submitted and displays a character count and word
count in the same field. You could accomplish the same thing with client-side JavaScript, of course,
but just to prove that a server component is doing the work, the hack displays some information
about the server in the text area.

Figure 2-2 shows the web page after the user has entered some data into the text field.

Enter data and elicit a response

Figure 2-3 shows the browser window after the user has entered data in both fields then clicked TAB.

Real-time data updates

This code is the HTML page we are using. It imports a JavaScript file named hacks_2_1.js, which
contains the code that does most of the work.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/hacks_2_1.js"></script>
 <link rel="stylesheet" type="text/css" href="/css/hacks.css" />
 <title>Submit your information</title>
</head>
<body>
<h3>Get stats from textareas and textfields using Ajax</h3>
<form action="javascript:void%200" >
<table border="0"><tr>
<td>Enter a few words for submitting to our server:
<input type="text" name="tfield" size="35"/></td></tr>
<tr><td valign="top">Enter a phrase for submitting to our server:
<textarea name="tarea" rows="20" cols="20">
</textarea></td> </tr>
</table></form>
</body>
</html>

The last hack explained how the code submits the user's information without refreshing the web
page. In other words, after the user has typed in their information and presses TAB or otherwise

clicks outside of the field, just the piece of data they have added to the text field or textarea is sent
in an HTTP request to the server.

An onblur event handler calls a function getInfo(), passing in the text field or textarea object as a

parameter.

NOTE

An onblur event handler points to a function that the browser calls when the user's
keyboard focus leaves a form control, as in pressing the TAB character or clicking outside of

the text field.

The entire code for this behavior appears in the previous hack, so we will not reproduce it again here.
We will show the code in the getInfo() and handleResponse() functions, which do the work of

sending the server component the information it needs, then handling the server's response.

function getInfo(obj){
 if (obj == null) { return; }
 formObj=obj;
 formObjTyp =obj.tagName;
 if(formObjTyp == "input" || formObjTyp == "INPUT"){
 formObjTyp = formObjTyp + " "+formObj.type;
 }
 formObjTyp = formObjTyp.toLowerCase();
 var url = "http://www.parkerriver.com/s/webforms?objtype="+
 encodeURIComponent(formObjTyp)+"&val="+
 encodeURIComponent(obj.value);
 httpRequest("GET",url,true);
}

This function passes along to the server component the user's typed-in information as part of the val
parameter. In addition, the obj parameter holds a reference to the text control where the user

typed, such as a text field or textarea. The reference is specifically a Document Object Model (DOM)
object, such as an HTMLInputElement or HTMLTextAreaElement.

NOTE

You do not have to worry about the DOM object tree at this point (although it is
interesting!). The HTML code for this hack refers to the particular text control by using the
this keyword in the onblur attribute. Then the getInfo() function knows exactly what

kind of text control the user is interacting with, a text field or textarea, by accessing the
object's tagName property. JavaScript: The Definitive Guide by David Flanagan has

excellent coverage on programming the DOM objects.

Instant Server Messaging

The server program takes the user's typed in information and sends back the associated number of
characters and words. To make this response information palatable to our receiving code, the server
returns its information in a known format named JavaScript Object Notation (JSON) (See Hack #6
and www.json.org). JSON is similar to XML in that it structures data for the purpose of making the
data easier for software to digest and work with.

NOTE

Your own program could simply return data using an XML language or a simple string.

Using JSON as a return value is a programmer's personal preference. It is particularly
useful if the server client is composed of JavaScript code.

This code shows a typical JSON server return value, if the user typed 55 words into a textarea.

{
Form_field_type: "textarea",
Text_length: "385",
Word_count: "55",
Server_info: "Apache Tomcat/5.0.19"
}

This code represents a JavaScript object with four different properties: Form_field_type,
Text_length, Word_count, and Server_info. See the explanation about how these properties are

used after the next code sample.

Now the hack takes this information and plugs it back into the textarea. This is the job of the
handleResponse() function.

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 if(resp != null){
 var func = new Function("return "+resp);
 var objt = func();
 if(formObjTyp == "textarea"){
 if(formObj != null){
 formObj.value = objt.Form_field_type +
 " character count: "+objt.Text_length+
 "\nWord count: "+
 objt.Word_count+"\nServer info: "+
 objt.Server_info;
 }
 } else if(formObjTyp == "input text"){
 if(formObj != null){

 formObj.value = objt.Form_field_type +
 " # characters: "+objt.Text_length+
 " Word count: "+objt.Word_count; }
 }
 }
 } else {
 //request.status is 503
 //if the application isn't available;
 //500 if the application has a bug
 alert(
 "A problem occurred with communicating "+
 "between the XMLHttpRequest object and "+
 "the server program.");
 }
 }//end outer if
 } catch (err) {
 alert(err.name);
 alert("It does not appear that the server "+
 "is available for this application. Please"+
 " try again very soon. \nError: "+err.message);
 }
}

This code grabs the response as text. Since the text is already formatted in JSON syntax (as an
object literal in JavaScript), the code uses a special technique that Hack #6 describes. A Function
constructor returns the text as a JavaScript object. In this case, the variable objt now refers to the

server component's response in an object-centric way, so you can access the server information with
syntax such as objt.Server_info.

The latter code piece accesses the Server_info property of the object that the variable objt refers

to.

var resp = request.responseText;
var func = new Function("return "+resp);
//call the function and return the object which
//the objt variable now points to
var objt = func();

The rest of the code goes about inserting this information back into the textarea using this syntax.

if(formObjTyp == "textarea"){
 if(formObj!= null){
 formObj.value = objt.Form_field_type +
 " character count: "+objt.Text_length+
 "\nWord count: "+
 objt.Word_count+"\nServer info: "+
 objt.Server_info;
 }
}

Figure 2-3 shows what the textarea looks like after the information is placed inside it.

We are able to get access to the textarea because a top-level JavaScript variable refers to it:
formObj. One of the keys to this code is setting the value of a textarea or text field with a "dot
property-name" syntax common to JavaScript, as in formObj.value.

NOTE

The server program sends more information back to a textarea than a text field, including
line breaks (\n in JavaScript), because the textarea is a big box that can hold more

sentences. You cannot include line breaks in a text field, for instance, because it only holds
one line (even if that line can be numerous characters).

The code formats the value of the textarea by connecting strings to the properties of the object the
server returned, as in & character count: &+objt.Text_length. Although in a conventional web
interface, the user expects a textarea or field to be reserved for their own data entry, this hack

demonstrates how to provide direct feedback to what they are typing into a particular field.

E B V N
We are Vietnames

E B V N
We are Vietnames

Submit Selection- List Values To The Server Without A
Browser Refresh

Whisk the user's multiple list choices off to the server without delay.

A number of web developers will see the advantage of taking the multiple choices of a user in a list
button or select list, and sending them to a server program using the request object, rather than

requiring the user to click a button and send the entire form. This gives the application greater
responsiveness, and increases efficiency by sending discrete values rather than clumps of
information.

This hack sends the user's choices of U.S. states to a server program when they move the keyboard
focus away from the popup button. The select element looks like this in the HTML code that

underlies the web page.

<select name="_state" multiple="multiple" size="4">

This is a popup button that allows the user to choose more than one item. When the keyboard focus
moves from the select list via a TAB or click elsewhere on the page the code defined by the
element's onblur event handler executes. An upcoming section shows this code. The size=4 part
indicates that four state names can be displayed at a time in the select list. Figure 2-4 shows the

page loaded into the Safari browser.

Multiple choices for immediate delivery

A JavaScript file named hacks_2_4.js declares all the code this hack needs. Here is the entire HTML
for the web page.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/hacks_2_4.js"></script>
 <link rel="stylesheet" type="text/css" href="/css/hacks.css" />
 <title>Alter select lists</title>
</head>
<body>
<h3>Create or Alter a Select List</h3>
<form action="javascript:void%200" >
 <table border="0">
 <tr><td>Choose one or more states: </td><td>
<select name="_state" multiple="multiple" size="4">
 <option value="al">Alabama</option>
 <option value="ak">Alaska</option>
 <option value="az">Arizona</option>
 <option value="ar">Arkansas</option>
 <option value="ca">California</option>
 <option value="co">Colorado</option>
 <option value="ct">Connecticut</option>
 <option value="de">Delaware</option>
 <option value="dc">District of Columbia</option>
 <option value="fl">Florida</option>

 <option value="ga">Georgia</option>
 <option value="hi">Hawaii</option>
 <!—snipped...-->
 </select></td> </tr>
 <tr><td**><span id="select_info" class=**
** "message">The server reports that you have chosen the **
**following abbreviated states: **
 <tr><td>Choose your list content:</td>
<td>European countries:
<input type="radio" name="countryType" id="euro" value="euro" />
South American countries:
<input type="radio" name="countryType" id=
"southam" value="southam" />
</td></tr>
<tr><td><div id="newsel"></div></td></tr>
 </table></form>
</body>
</html>

A span element contains a message that the user will see after they make some choices in the
select list. This message is styled by a CSS rule in the file hacks.css. But first, we will look at the

code that submits the user's choices to a server. The code is a little complicated at first glance, but
bear with us as what it accomplishes is really quite simple.

The code takes all of the options associated with the select element, and determines which of them

the user has selected. These options represent the user's choice(s) of U.S. states. The code takes
each one of the selected options and stores them in a string, separated by commas (if there is more
than one choice) so that the string looks like ma,nh,vt. @@

This task would be made easier if the browser stored the selected values in one convenient place,
such as a value property of the select object, but this isn't the case! You have to grab the bunch of

options, determine which ones were selected, and store those somewhere, such as in a JavaScript
array.

NOTE

A select element contains option elements, as in <select name="_states"><option
value="vt">Vermont</option>...</select>. In the DOM, the select element is
represented by a select object that has an options property, an array of option objects.
You get the value of each option, which the user sees as words in a list like "Vermont," by
using the value property of an option object. Phew, fun to code, but endless objects and

properties!

function getSelectInfo(selectObj){
 if (selectObj == null) { return; }
 formObj=selectObj;
 formObjTyp =formObj.tagName.toLowerCase();
 var optsArray = formObj.options;
 var selectedArray = new Array();

 var val = "";
 //store selected options in an Array
 for(var i=0,j=0; i < optsArray.length; i++){
 if(optsArray[i].selected) {
 selectedArray[j]=optsArray[i].value;
 j++;
 }

 }
 //create a comma-separated list of each
 //selected option value
 for(var k = 0; k < selectedArray.length; k++){
 if(k !=selectedArray.length-1) { val +=selectedArray[k]+",";}
 else {val +=selectedArray[k]; }
 }
 var url = "http://www.parkerriver.com/s/webforms?objtype="+
 encodeURIComponent(formObjTyp)+"&val="+ encodeURIComponent(val);
 httpRequest("GET",url,true);
}

The server component is expecting an objtype parameter, which in this case equals "select." We are
also sending the string of comma-separated choices, which the val parameter points to. Since we
are using JavaScript's global function encodeURIComponent(), the commas will be encoded into %2C,

since certain punctuation marks are not allowed in the character strings that are sent to server
components.

NOTE

encodeURIComponent() is a global function that is designed to encode portions of a Uniform

Resource Indicator (URI), which is a fancy name for the addresses you enter into browser
location fields to download a web page. This function encodes punctuation characters that
have special purposes in URIs, such as /, :, @, and ;, as well as space characters, into their
hexadecimal equivalents. For example, a ";" character is encoded into %3B.
encodeURIComponent() does not encode ASCII numbers or letters. Use
encodeURIComponent() to encode query strings or path information that your JavaScript

code is handling.

We could have used spaces, colons or some other delimiter to separate each choice. Here is an
example of a URL sent by this JavaScript:

http://www.parkerriver.com/s/webforms?objtype=select& val=ma%2Cvt%2Cny

This URL contains ma, vt, and ny as choices; after the val parameter is decoded it will read
ma,vt,ny.

Okay, Now What Happens?

http://www.parkerriver.com/s/webforms?objtype=select& val=ma%2Cvt%2Cny

I thought you'd never ask. The server grabs the selected values and redirects them back to the
application with some extra information. This is where the displayed message comes to the fore. It
will display the user's current choices and the brand of server that the application is connected with.
Figure 2-5 shows the browser page after the user has made some choices and moved the keyboard
focus from the select list.

Instant feedback on list choices

The message changes dynamically without anything else rebuilt or refreshed on the web page. It
gives the user instant feedback while connected to a server, without any browser roundtrips. How
does this happen? Here is the JavaScript for the handleResponse() function, which deals with the

server return value. We have highlighted only the code that converts the return value into the user
message.

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 if(formObjTyp.length > 0 && formObjTyp == "input"){
 //working with existing radio button
 var resp = request.responseText;
 //return value is a JSON array
 var func = new Function("return "+resp);
 var objt = func();
 var sel = document.createElement("select");

 sel.setAttribute("name","countries");
 createOptions(sel,objt);
 var newsel = document.getElementById("newsel");
 reset(newsel);
 newsel.appendChild(sel);
 } else if(formObjTyp.length > 0 && formObjTyp == "select"){
 var resp = request.responseText;
 //return value is a JSON object literal
 var func = new Function("return "+resp);
 var objt = func();
 var fld = document.getElementById("select_info");
 if(fld != null){
 fld.innerHTML = "The server "+objt.Server_info+
 " reports that you have chosen"+
 "
 the following "+
 "abbreviated states: "+
 objt.Selected_options+"";
 }
 }
 } else {
 //request.status is 503
 //if the application isn't available;
 // 500 if the application has a bug
 alert(
 "A problem occurred with communicating "+
 "between the XMLHttpRequest object and the "+
 "server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+
 "is available for this application. Please"+
 " try again very soon. \nError: "+err.message);

 }

Hello JSON, Again

The server provides its answer in a special, useful syntax, JavaScript Object Notation (JSON). See
Hack #6. This is a string that can be easily converted by the client-side browser code into a

JavaScript object. An example of a server return value, which some readers may recognize as an
object literal, is:

{
Server_info: "Apache Tomcat/5.0.19",
Selected_options: "vt ny nh ma"
}

This code represents an object that has two properties, Server_info and Selected_options. To

derive the property values from the object, you use the "dot" syntax, as in obj.Selected_options.
If the obj variable was set to the prior code's object literal, then the latter code line would return "vt

ny nh ma." Hack #6 describes the JavaScript code to use for sending and handling JSON syntax.

A Dabble of Serverside

For those interested in one method of sending JSON formatted values back to Ajax, here is a method
written in Java that is used for this hack. This method takes as parameters the property names and
values in a String, and the character, such as a comma, that separates the property names from

the values.

public static String getJsonFormat(
 String propValues, String delim) {
 if(propValues == null || propValues.length()==0) { return "";}

 StringBuffer structure = new StringBuffer("");
 structure.append("{\n");
 if (delim == null || delim.length() == 0) { delim = ",";}
 /* We're expecting comma-separated values such as prop1,val1,
 prop2,val2 etc. */
 StringTokenizer toke = new StringTokenizer(propValues,delim);
 int j = 0;
 int c = toke.countTokens();
 for(int i = 1; i <=c; i++) {
 j = i%2;
 if(j != 0) { structure.append(toke.nextToken()).
 append(": "); }//it's a property name
 else { structure.append("\"").append(toke.nextToken()).
 append("\""); //it's a property value
 if(i != c){structure.append(",");}
 structure.append("\n");
 }
 }
 structure.append("}");
 return structure.toString();
}

If the Java servlet calls the method this way, getJsonFormat("Server_info,Apache
Tomcat,Selected_options,ca ma nh ny",","), then the method returns:

{
Server_info: "Apache Tomcat",
Selected_options: "ca ma nh ny"
}

DOM API

The hack's next step is to store this return value in a variable, so that the JavaScript can display its
value to the user.

var func = new Function("return "+resp);
var objt = func();
var fld = document.getElementById("select_info");

Hack #6 explains this use of the Function constructor to take advantage of the JSON format. Suffice
it to say, the variable objt now contains the properties/values we are interested in.

The variable fld represents the div element we reserved on the HTML page for containing this user
message from the server. getElementById() is a DOM API method for getting a reference to a tag in

HTML code, so the code can change its behavior or alter its appearance.

if(fld != null){
 fld.innerHTML = "The server "+objt.Server_info+
 " reports that you have chosen"+
 "
 the following "+
 "abbreviated states: "+
 objt.Selected_options+"";
}

Displaying the object's information is easy using syntax such as objt.Selected_options. Figure 2-4

shows the states that the user has chosen and the name of the server software. This message will
change automatically as you make different selections in the list. the information is derived from a
server rather than just being generated by client-side JavaScript!

E B V N
We are Vietnames

E B V N
We are Vietnames

Dynamically Generate A New Selection List With Server
Data

Create a list of choices on a web page that automatically branches into a new selection list without
refreshing the entire page.

Some choices in a user interface naturally lead to a subsequent set of choices. An example is a
support page for computer hardware, where one select list has a choice for hardware platform, such

as Apple or HP, which generates when the user makes a choice a second list of related operating
systems, and on and on. Ajax can shine in these situations where the user interface can
automatically be customized for the browser user, as well as where the content for the select list

must come from a server.

You could set this page up using only dynamic HTML, where JavaScript creates the new select list.

However, the choices for the new list would have to be hard-coded into the JavaScript. Ultimately,
this content for new lists will change, creating an awkward situation where developers have to
constantly add persistent lists to an existing JavaScript file. Without being able to store these values
in a sensible location such as in a database or other persistent store, this application model becomes
unwieldy.

This hack displays two radio buttons on a web page where users can select either European countries
or South American countries. Either choice results in a new selection list but with different content.
Figure 2-6 shows the web page for the hack.

Select a category of countries

Here is the HTML code underlying the web page. We removed most of the long select list above the

radio buttons, because that code is related to the previous hack.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/hacks_2_4.js"></script>
 <link rel="stylesheet" type="text/css" href="/css/hacks.css" />
 <title>Alter select lists</title>
</head>
<body>
<h3>Create or Alter a Select List</h3>
<form action="javascript:void%200" >
 <table border="0">
 <tr><td>Choose one or more states: </td>
<td> <select name="_state" multiple="multiple" size="4">
 <option value="al">Alabama</option>
 <!—more options... -->
 </select></td> </tr>
 <tr><td>
The server reports that you have chosen the following abbreviated states:

<tr><td>Choose your list content:</td><td>European countries:
<input type=
 "radio" name="countryType" id="euro" value=
 "euro" /> South American countries:

 <input type="radio" name=
 "countryType" id="southam" value="southam" /></td></tr>
 <tr><td><div id="newsel"></div></td></tr>
 </table></form>
</body>
</html>

The purpose of this code is to create a new select list whenever the browser user clicks on a radio

button. With radio buttons on a web page, only one can be selected at a time. If you select a certain
button, the other one(s) will automatically be de-selected.

Central to this hack is each radio button's onclick event handler. This is an attribute of an HTML

element that points to a JavaScript function. The function's code will execute each time the user
clicks on a radio button. In other words, if the button is de-selected and the user ticks it, then the
code will call the function named generateList().

The code appears in the file that the web page imports: hacks_2_4.js. Here is the code that controls
the response to the user's radio-button clicks.

//input field's event handlers
window.onload=function(){
 var eur = document.getElementById("euro");
 if(eur != null){
 eur.onclick=function(){generateList(this); };}
 var southa = document.getElementById("southam");
 if(southa != null){
 southa.onclick=function(){generateList(this); };}
}

Each onclick event handler points to a "function literal" which simply calls generateList(). You will
notice the this keyword as a parameter. That will hold a reference to each radio button that was

clicked, so that the function's code can grab the button's value and send the value to a server
component.

Presto, New Lists

The generateList() function is defined in a file named hacks_2_4.js. The HTML code for the web
page imports this file using a script element. Here are the highlights of this file, with the emphasis

on the functions used to generate a new list.

var formObj = null;
var formObjTyp = "";

function generateList(obj){
 if (obj == null) { return; }
 if(obj.checked) {
 formObj=obj;
 formObjTyp =formObj.tagName.toLowerCase();
 var url = "http://www.parkerriver.com/s/selectl?countryType="+

 encodeURIComponent(obj.value);
 httpRequest("GET",url,true);
 }
}

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 if(formObjTyp.length > 0 && formObjTyp == "input") {
 if (resp != null){
 //return value is a JSON array
 var objt = eval(resp);
 //create a new select element
 var sel = document.createElement("select");
 sel.setAttribute("name","countries");
 //give the select element some options based
 //based on a list of countries from the server
 createOptions(sel,objt);
 //the div element within which the
 //the select appears
 var newsel = document.getElementById("newsel");
 reset(newsel);
 newsel.appendChild(sel);
 }
 } else if(formObjTyp.length > 0 && formObjTyp == "select"){
 //code edited out here for the sake of brevity...
 }
 }
 } else {
 //request.status is 503 if the application isn't available;
 //500 if the application has a bug
 alert("A problem occurred with communicating between "+
 "the XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server is available"+
 " for this application. Please"+
 " try again very soon. \nError: "+err.message);

 }
}

function createOptions(sel,_options) {
 //_options is an array of strings that represent the values of
 //a select list, as in each option of the list.
 //sel is the select object
 if(_options == null || _options.length==0) { return;}
 var opt = null;
 for(var i = 0; i < _options.length; i++) {

 opt = document.createElement("option");
 opt.appendChild(document.createTextNode(_options[i]));
 sel.appendChild(opt);
 }
}
//remove any existing children from an Element object
function reset(elObject){
 if(elObject != null && elObject.hasChildNodes()){
 for(var i = 0; i < elObject.childNodes.length; i++){
 elObject.removeChild(elObject.firstChild);
 }
 }
}
/* Initialize a Request object; code omitted, see Hack #11*/

When the user clicks their mouse on a radio button, the control will either indicate a selected state, or
if it was already selected this action will de-select the button. The onclick event handler does not

differentiate between checked or unchecked radio buttons; it is designed simply to react when the
button has been clicked. Just to make sure the radio button is selected (even though the button is
designed to be selected based on a click event), our code first checks whether the object was in a
checked state before it begins creating a new select list.

function generateList(obj){
 if (obj == null) { return; }
 if(obj.checked) {
 formObj=obj;
 formObjTyp =formObj.tagName.toLowerCase();
 var url = "http://www.parkerriver.com/s/selectl?countryType="+
 encodeURIComponent(obj.value);
 httpRequest("GET",url,true);
 }
}

Querying the Server

The code queries a server with the value of the checked radio button. Recall that the new select list

will contain choices, the words the user sees such as "United Kingdom," which are stored on the
server side. To determine which of these sets of values to acquire from the server, the European or
South American countries, we include a parameter in the request URL named countryType. The

value for this parameter derives from the radio button's value attribute, as in:

<input type="radio" name="countryType" id="southam" **value="southam"** />

The code sends this information to the server using the request object and the httpRequest()

function. Hack #2 and #11 (among others) describes this function, which wraps the initialization of
the request object and the calling of its methods. The URL the request object uses to connect with
the server might look like <literal><a href="http://www.parkerriver.com/s/selectl?
countryType=euro">http://www.parkerriver.com/s/selectl?countryType=euro.

http://www.parkerriver.com/s/selectl?
http://www.parkerriver.com/s/selectl?countryType=euro

The code then receives the response and builds the new select list. It pulls the values out of the
response using our familiar handleResponse() function, which shows up in most of the other hacks.

Here are the key lines of JavaScript for this hack.

if(request.readyState == 4){
 if(request.status == 200){
 if (resp != null){
 //return value is a JSON array
 var objt = eval(resp);
 //create a new select element
 var sel = document.createElement("select");
 sel.setAttribute("name","countries");
 //give the select element some options based
 //based on a list of countries from the server
 createOptions(sel,objt);
 //the div element within which the
 //the select appears
 var newsel = document.getElementById("newsel");
 reset(newsel);
 newsel.appendChild(sel);

The server's return value can be used as a JavaScript array, which looks like ["Spain",
"Germany", "Austria"]. The code takes the string return value and convert it into an array with
eval(). See Hack #6. The JavaScript then uses the DOM API to create a new select element. It's a

good idea to give the newly generated HTML element a name and a value, in case your application
calls for later submitting these values to a server component.@

var sel = document.createElement("select");
sel.setAttribute("name","countries");

Using the array of values returned by the server, the createOptions() function
populates the select element with a new option element pointing at each array member.
The end result is a new select element built from scratch that looks like <select
name=&countries&><option>United Kingdom</option>...</select>. Here is the code for the
createOptions() function.@

function createOptions(sel,_options) {
 //_options is an array of strings that represent the values of
 //a select list, as in each option of the list. sel is the select object
 if(_options == null || _options.length==0) { return;}
 var opt = null;
 for(var i = 0; i < _options.length; i++) {
 opt = document.createElement("option");
 opt.appendChild(document.createTextNode(_options[i]));
 sel.appendChild(opt);
 }
}

The _options variable contains all the country names. The code uses the DOM API to create each

new option element, call the element's appendChild() method to add the country name to the
option, and finally call the select element's appendChild() method to add the option to the
select list.

Final Step

We have to figure which block-level element in the HTML will hold the new select element, rather
than willy-nilly just throwing the select somewhere within the body tag. For this purpose we created
a div element with the id newsel. The div element appears beneath the radio buttons on the page,

but since it initially does not contain any visible HTML elements the user will not be aware of it.

<div id="newsel"></div>

The code uses another popular DOM method named getElementById() to get a reference to this
div, then append to it the select element as a node.

var newsel = document.getElementById("newsel");
reset(newsel);
newsel.appendChild(sel);

To prevent users from continuously clicking the radio buttons and generating a million new lists,
another method named reset() first checks the div for any existing child nodes, which would
represent a previously created select element. The function deletes any existing nodes before the
code adds a new select list inside the div.

function reset(elObject){
 if(elObject != null && elObject.hasChildNodes()){
 for(var i = 0; i < elObject.childNodes.length; i++){
 elObject.removeChild(elObject.firstChild);
 }
 }
}

Figure 2-7 shows the web browser page after the user has clicked one of the radio buttons.

Choose your country

E B V N
We are Vietnames

E B V N
We are Vietnames

Populate An Existing Selection List

Give the browser user an option to modify an existing list before they make and submit their choices.

Imagine that you have a list of U.S. states as in the select element of Submit Selection-List Values

To The Server Without A Browser Refresh. As part of registering a customer, you ask them what
state they live in (for sales-tax purposes, say). Now you want register customers from other
continents, because your product can now be distributed overseas. You do not want to include in the
select element every country on earth, for geo-political reasons (countries frequently change, such
as the former Yugoslavia), and the select list will be too big to fit nicely on the page. Your

application will query the server for specific countries associated with the name of a continent, which
is passed to the server program.

The user thus has the option to make a selection that adds a sub-set of select options associated

with specific countries to the page.

For example, provide a select list of continents. When the user makes a selection, the countries

enclosed by that continent are derived from the server and automatically added to an existing
select list without the page being refreshed. Figure 2-8 shows the web page for this hack, which is
based on the previous hack containing the select list of U.S. states.

Add options to a list.

The user selects a continent in the top-level select list. This action triggers the onclick event for
the select element. Here is the HTML code for the page.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/hacks2_6.js"></script>
 <link rel="stylesheet" type="text/css" href="/css/hacks.css" />
 <title>Alter select lists</title>
</head>
<body>
<h3>Add Entries to a Select List</h3>
<form action="javascript:void%200">
 <table border="0">
 <tr><td>Add your country: <select id="cts" name="_continents">
<option value="southam">South America</option>
<option value="euro">Europe</option>
</select></td></tr><tr><td>Choose one or more states: </td>
<td> <select id="sts" name="_state" multiple="multiple" size="4">
 <option value="al">Alabama</option>
 <option value="ak">Alaska</option>
 <option value="az">Arizona</option>
 <option value="ar">Arkansas</option>
 <option value="ca">California</option>
 <option value="co">Colorado</option>
 <option value="ct">Connecticut</option>
 <option value="de">Delaware</option>
 <option value="dc">District of Columbia</option>
 <option value="fl">Florida</option>
 <option value="ga">Georgia</option>
 <option value="hi">Hawaii</option>
 <!—snipped here...-->
 </select></td></tr>

 </table></form>
</body>
</html>

All of the JavaScript appears in the file hacks2_6.js. Here is the contents of this file, omitting the
creation and initialization of the request object, which the first hack in this chapter and several other
hacks show.

var origOptions = null;
/*set up the onclick event handler for the "countries"
select list */
window.onload=function(){
 var sel = document.getElementById("cts");

 var sel2 = document.getElementById("sts");
 if(sel != null){
 sel.onclick=function(){
 addCountries(this)};
 }
 origOptions = new Array();
 //save the original select list of states so that
 //it can be reconstructed with just the original states
 //and the newly added countries
 for(var i = 0; i < sel2.options.length; i++){
 origOptions[i]=sel2.options[i];
 }
}

function addCountries(obj){
 if (obj == null) { return; }
 var url = "";
 var optsArray = obj.options;
 var val = "";
 for(var i=0; i < optsArray.length; i++){
 if(optsArray[i].selected) {
 val=optsArray[i].value; break;
 }

 }
 url = "http://www.parkerriver.com/s/selectl?countryType="+
 encodeURIComponent(val);
 httpRequest("GET",url,true);

}

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 if(resp != null){
 //return value is a JSON array
 var objt = eval(resp);
 addToSelect(objt);
 }
 } else {
 //request.status is 503 if the application isn't available;
 //500 if the application has a bug
 alert(
 "A problem occurred with communicating between"+
 " the XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+

 "is available for this application. Please"+
 " try again very soon. \nError: "+err.message);

 }
}
/* Take an array of string values (obj) and add an option
for each of the values to a select list*/
function addToSelect(obj){
 //contains the US states
 var _select = document.getElementById("sts");
 var el;
 //first remove all options; because the select could include
 //newly added countries from previous clicks
 while(_select.hasChildNodes()){
 for(var i = 0; i < _select.childNodes.length; i++){
 _select.removeChild(_select.firstChild);
 }
 }
 //now add just the original options; 52 states
 for(var h=0; h < origOptions.length;h++) {
 _select.appendChild(origOptions[h]);
 }
 //obj is an array of new options values
 for(var i=0; i < obj.length;i++) {
 el = document.createElement("option");
 el.appendChild(document.createTextNode(obj[i]));
 _select.insertBefore(el,_select.firstChild);
 }
}

/* Create and initialize a Request object; not shown...*/

When the browser first loads the web page, the code defines an onclick event handler for the
select list containing the US states. This event will be triggered whenever the user clicks on the
select widget, whether or not they change the value in the list. The event handler calls a function
named addCountries(), passing in as a parameter a reference to the select object that was

clicked.

window.onload=function(){
 var sel = document.getElementById("cts");
 var sel2 = document.getElementById("sts");
 if(sel != null){
 sel.onclick=function(){
 addCountries(this)};
 }
 origOptions = new Array();
 //save the original select list of states so that
 //it can be reconstructed with just the original states
 //and the newly added countries
 for(var i = 0; i < sel2.options.length; i++){
 origOptions[i]=sel2.options[i];

 }
}

The code also saves the original contents of the US-states list in an Array object. Otherwise, as the
user adds countries to the list by clicking the upper select list, the same countries would be added
to the second select list over and over again. Each time the user clicks the top-level select list,
then, the bottom select list will be rebuilt with the new countries added in front of the original list of
states. This origOptions Array variable caches the original list.

Next up is the addCountries() function. We do not need to show this function again because what it
accomplishes is fairly simple. The function cycles through the options in the continent's select list,
and if an option is checked (the selected option), it's value is submitted to a Java servlet. The
servlet program returns an array of countries associated with the continent, and the code adds those
countries to the other select list.

NOTE

Our apologies to all those other global citizens who are not represented by these continent
choices. For the sake of brevity, we stopped at Europe and South America. A "real-world"
(pun intended!) application would represent all of the world's continents except for perhaps
Antarctica.

Figure 2-9 shows the web page after the user has chosen South America.

Add countries to the select list without a roundtrip

New Select List, or Mirage?

The code receives the return value in JavaScript Object Notation (JSON) format, as in several other
hacks. See Hack #6. The return value takes the form of ["Brazil","Ecuador",etc...]. The return
value is a string that is evaluated as a JavaScript array using the eval() function. In the next step,
as if by magic, the new countries appear at the top of the second select list. Here is the responsible
addToSelect() function.

function addToSelect(obj){
 //contains the US states
 var _select = document.getElementById("sts");
 var el;
 //first remove all options; because the select could include
 //newly added countries from previous clicks
 while(_select.hasChildNodes()){
 for(var i = 0; i < _select.childNodes.length; i++){
 _select.removeChild(_select.firstChild);
 }
 }
 //now add just the original options; 52 states
 for(var h=0; h < origOptions.length;h++) {
 _select.appendChild(origOptions[h]);
 }
 //obj is an array of new options values
 for(var i=0; i < obj.length;i++) {
 el = document.createElement("option");
 el.appendChild(document.createTextNode(obj[i]));
 _select.insertBefore(el,_select.firstChild);
 }
}

This function involves basic DOM API programming, representing a select list as a parent node of
several option-related child nodes. First, the code clears the select list and repopulates it with the

original states. This is a rule for our application; the user can add new countries on top of the original
list, but not let the countries pile up in the list repetitively. The code then creates a new option
element for each member of the array derived from the server, which is a country name (like
"Brazil"). Finally, the code uses the Node.insertBefore() method to insert each new option before
the first option in the select list.

NOTE

The _select.firstChild node keeps changing in the for loop. For example, if Alabama is
at the top of the list, then _select.firstChild returns the option node containing the
"Alabama" value. Then the loop inserts "Brazil" before "Alabama," and the option
representing Brazil becomes the firstChild node.

Hacking the Hack

Naturally, the next step in this hack is to allow the user to dynamically submit the new country name
from the second select element. The third hack in this chapter shows you how to add this behavior
to a select list

E B V N
We are Vietnames

E B V N
We are Vietnames

Submit Checkbox Values To The Server Without A
Browser Refresh

Generate immediate interaction with a server program when the browser user clicks a checkbox.

Checkboxes are those little squares or buttons that allow the user to make a choice among multiple
options. The conventional set-up is for the user to check one or more checkboxes as part of a form
that they have to submit later. What if you want your application to only submit the checkbox values,
and have that submission take place when the user clicks the checkbox, not at some indeterminate
time later?

This hack represents a poll in which users vote for their favorite team and individual sports. When the
browser user selects any of the checkboxes, this action triggers an event that submits this value to a
server program then displays the poll results. Figure 2-10 shows what the page looks like in the
browser.

Choose your favorite sports

The server program has a database that captures the poll results; the program updates then returns
the poll results. This hack uses the XMLHttpRequest object to send the sport choices and handle the

server's response. The hack uses DOM programming and Cascading Style Sheets to display the poll
results. Here is the HTML code for the page.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/hacks2_5.js"></script>
 <link rel="stylesheet" type="text/css" href="/css/hacks2_5.css" />
 <title>submit checkbox values</title>
</head>
<body>
<h3>Choose your favorite sports</h3>
<h4>Team sport</h4>
<form id="team" action="javascript:void%200" method="get">
<div id="team_d" class="team">
<input type="checkbox" name="team_sports" id=
"baseball" value="baseball" /> Baseball

<input type="checkbox" name="team_sports" id=
"soccer" value="soccer" /> Soccer

<input type="checkbox" name="team_sports" id=
"football" value="football" /> Football

<input type="checkbox" name="team_sports" id=
"basketball" value="basketball" /> Basketball

<input type="checkbox" name="team_sports" id=
"lacrosse" value="lacrosse" />Lacrosse

<input type="checkbox" name="team_sports" id=
"hockey" value="hockey" /> Hockey

<input type="checkbox" name="team_sports" id=
"tennis" value="tennis" /> Tennis

</div>
</form>
<div id="team_poll" class="poll">

 </div>
<h4>Individual sport</h4>
<form id="ind" action="javascript:void%200" method="get">
<div id="ind_d" class="ind">
<input type="checkbox" name="individual_sports" id=
"cycling" value="cycling" /> Cycling

<input type="checkbox" name="individual_sports" id=
"running" value="running" /> Running

<input type="checkbox" name="individual_sports" id=
"swimming" value="swimming" /> Swimming

<input type="checkbox" name="individual_sports" id=
"nordic_skiing" value="nordic_skiing" />Nordic Skiing

<input type="checkbox" name="individual_sports" id=
"inline_skating" value="inline_skating" />Inline Skating

<input type="checkbox" name="individual_sports" id=
"triathlon" value="triathlon" />Triathlon

<input type="checkbox" name="individual_sports" id=
"track" value="track" />Track

</div>
</form>
<div id="individual_poll" class="poll">

 </div>
</body>
</html>

This page first imports the JavaScript code that performs all of the application's work, in a file named
hacks2_5.js. An upcoming code sample shows those functions. This HTML also imports a style sheet
(hacks2_5.css) for controlling the page's appearance, as well as making the poll results invisible until
the user is ready to see them.

The HTML page includes two div elements each containing a set of checkbox elements that specify

the various team and individual sports. Here is the JavaScript code underlying this hack.

NOTE

We have omitted the code for creating and initializing the request object, such as the
httpRequest() function, since so many of the other hacks have already included this code.

See Hack #1 or #3 if you need another look!

var sportTyp = "";

window.onload=function(){
 var allInputs = document.getElementsByTagName("input");
 if(allInputs != null){
 for(var i = 0; i < allInputs.length;i++) {
 if(allInputs[i].type == "checkbox"){
 allInputs[i].onchange=function(){
 sendSportsInfo(this)};
 }
 }
 }
}

function sendSportsInfo(obj){
 if (obj == null) { return; }
 var url = "";
 var nme = "";
 if(obj.checked) {
 nme = obj.name;
 var sub = nme.substring(0,nme.indexOf("_"));

 sportTyp=sub;
 url = "http://www.parkerriver.com/s/fav_sports?sportType="+nme+
 "&choices="+obj.value;
 httpRequest("GET",url,true);
 }
}

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 if(resp != null){
 //return value is a JSON object
 var func = new Function("return "+resp);
 displayPollResults(func());
 }
 } else {
 //request.status is 503
 /if the application isn't available;
 //500 if the application has a bug
 alert(
 "A problem occurred with communicating between"+
 " the XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+
 "is available for this application. Please"+
 " try again very soon. \nError: "+err.message);

 }
}

function displayPollResults(obj){
 var div = document.getElementById(sportTyp+"_poll");
 var spans = div.getElementsByTagName("span");
 for(var i = 0; i < spans.length; i++){
 if(spans[i].id.indexOf("title") != -1){
 spans[i].innerHTML = "Here are the latest poll "+
 "results for "+sportTyp+
 " sports"
 } else {
 //use the object and its properties
 var str ="
";
 for(var prop in obj) { str += prop + " : "+obj[prop]+"
";}
 spans[i].innerHTML = str;
 }
 }
 div.style.visibility="visible";
}

The first task of this code is to assign a function to execute when the checkbox's state changes (from
unchecked to checked). This is the responsibility of the window.onload event handler, which the

browser calls after the page has been completely loaded.

window.onload=function(){
 var allInputs = document.getElementsByTagName("input");
 if(allInputs != null){
 for(var i = 0; i < allInputs.length;i++) {
 if(allInputs[i].type == "checkbox"){
 allInputs[i].onchange=function(){
 sendSportsInfo(this)};
 }
 }
 }
}

The code first stores an Array of all the page's input elements in an allInputs variable. If the
inputs are of a checkbox type, as in <input type="checkbox" .../>, then their onchange
property refers to a function that calls sendSportsInfo(). The code sets all of the checkbox's
onchange event handlers at once; it will not affect any other input elements a page designer adds to

the page.

NOTE

You can call a function in an onchange attribute of the input element itself. However, web

developers using the XHTML DTD discourage the calling of JavaScript functions from
element attributes.

Using this as a parameter to sendSportsInfo() is a handy mechanism for passing a reference to the
exact input element whose state has changed.

Let's look at the sendSportsInfo() function more closely.

Vote Early and Often

This function constructs a URL or web address in order to send the user's sports choices to a server
program.

function sendSportsInfo(obj){
 if (obj == null) { return; }
 var url = "";
 var nme = "";
 if(obj.checked) {
 formObj=obj;
 nme = obj.name;

 var sub = nme.substring(0,nme.indexOf("_"));
 sportTyp=sub;
 url = "http://www.parkerriver.com/s/fav_sports?sportType="+nme+
 "&choices="+obj.value;
 httpRequest("GET",url,true);
 }
}

Since we used the this keyword as a parameter to sendSportsInfo(), the obj variable refers to an
HTML input element. We are only going to hit the server if the input checkbox is selected, so the
code checks for that state. The name of each input element in the form is set in the HTML to

"team_sports" or "individual_sports," so the code captures the name and the name substring
preceding the "_" character (we need that for the HTTP response code).

NOTE

The code obj.name accesses the name property of an HTMLInputElement, which is part of
the DOM API. This property refers to the name in the HTML element code, as in <input
name="myname".../>.

The URL requires the sport type and the value of the checkbox. A typical URL example looks like
http://www.parkerriver.com/s/fav_sports?sportType= individual_sports&choices=soccer. The
httpRequest() method uses the request object to query the server with these values.

Poll Vault

The server will return an HTTP response representing the latest poll results, after it stores the user's
vote. The code has designated the handleResponse() function for dealing with the response, and

calling another function for displaying the results.

if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 if(resp != null){
 //return value is a JSON object
 var func = new Function("return "+resp);
 displayPollResults(func());

 }
}

The server returns the result not as XML but in JavaScript Object Notation (JSON) format, a form of
plain text that can easily be converted by JavaScript into an object. This is a useful way of enclosing
the results. A typical server return value looks like:

{
nordic_skiing: "0",

http://www.parkerriver.com/s/fav_sports?sportType

inline_skating: "0",
cycling: "2",
track: "2",
swimming: "0",
triathlon: "0",
running: "3"
}

The code uses a technique described by Hack #6 to evaluate this text as a JavaScript object. Then
the code calls displayPollResults(), which as you probably figured out, shows the results in the

browser. Figure 2-11 shows what the results look like in Safari:

Figure 2-11: Which sports are favored?

The displayPollResults() function uses the DOM to generate a colorful display of the results in the

browser.

function displayPollResults(obj){
 var div = document.getElementById(sportTyp+"_poll");
 var spans = div.getElementsByTagName("span");
 for(var i = 0; i < spans.length; i++){

 if(spans[i].id.indexOf("title") != -1){
 spans[i].innerHTML = "Here are the latest poll results for "+
 sportTyp+" sports"
 } else {
 //use the object and its properties
 var str ="
";
 for(var prop in obj) { str += prop + " : "+
 obj[prop]+"
";}
 spans[i].innerHTML = str;
 }
 }
 div.style.visibility="visible";
}

The poll results are displayed inside of div elements, which have ids of "team_poll" or
"individual_poll." Each one of these divs contains two span elements; the span elements are

responsible for the result titles and the actual data. At this point it is helpful to look at the CSS file
that specifies various rules for the appearance of our poll results. The divs and their contents are
initially hidden, with the visibility CSS property, until the user clicks a checkbox.

.p_title {font-size: 1.2em; color: teal }
h3 { margin-left: 5%; font-size: 1.4em; }
h4 { margin-left: 5%; font-size: 1.2em; }
div.poll { margin-left: 5%; visibility: hidden; border: thin solid black;
 padding: 2%; font-family: Arial, serif;
 color: gray; background-color: yellow}

div.team { margin-left: 5%; border: thin solid green; padding: 5%;
 font-family: Arial, serif}

div.ind { margin-left: 5%; border: thin solid green; padding: 5%;
 font-family: Arial, serif }

div { max-width: 50% }

One of the cool aspects of DOM and Ajax mechanisms is that CSS properties are programmable too.
When the page view is ready to show the poll results, the visibility property of the divs that hold
these results is set to "visible." This is accomplished with the code div.style.visibility =
"visible."

In the displayPollResults() function, the code sets the innerHTML property for the span elements

responsible for displaying a title about the poll results. In addition, the poll results derived from the
server are stored in a string and displayed in this manner.

var str ="
";
for(var prop in obj) { str += prop + " : "+
 obj[prop]+"
";}
 spans[i].innerHTML = str;

The obj variable is a JavaScript object. The for(property in object) expression then generates a
string that looks like
baseball : 2
soccer : 3...

If you keep clicking on checkboxes, you can watch the votes increment without anything else
changing in the browser. This is a useful design for the applications that collect discrete feedback
from users and instantaneously display the results.

E B V N
We are Vietnames

E B V N
We are Vietnames

Dynamically Generate A New Checkbox Group With
Server Data

Let a web page's checkbox content evolve from a user's interaction with an application.

Most web forms are static, meaning the text labels and entry widgets like textareas, checkboxes, and
radio buttons are hard-coded into the HTML. Lots of applications however can benefit from the ability
to whip together form elements on the fly, based on a user's preferences. The content for the forms,
if necessary, can even be derived from a server, such as questions for various types of quizzes and
polls.

Hey, hack #14 showed how to do this with a select list widget, so why don't we auto-generate a

bunch of checkboxes?

This hack gives the user a choice of "team sports" or "individual sports" in two radio buttons, then,
when they click either button, grabs the sports categories from a server component and creates a
new group of checkboxes.

Choose Your Activity

Figure 2-12 shows our barebones web page to begin with, before the DOM magic starts!

Let the form evolution begin

Here is the HTML for the form. The dynamic behavior for this page is all contained in the JavaScript
file hacks2_7.js. The two radio buttons that the users may click to get things going are represented
by the two input elements, and the newly generated checkboxes will appear within the div element
with the id "checks."

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/hacks2_7.js"></script>
 <title>Dynamic checkboxes</title>
</head>
<body>
<h3>Voting on Favorite Sports</h3>
<h4>Pick a sports category</h4>
<form action="javascript:void%200">
 <table border="0">
 <tr><td>
 Team Sports:
<input type="radio" name="_sports" value="team" />
</td></tr>
 <tr><td> Individual Sports:
<input type="radio" name="_sports" value="individual" />
</td></tr>
</table>
 <hr />
<div id="checks"></div>
</form>
</body>
</html>

When the user clicks a checkbox, the page instantly displays either of two different sets of new
checkboxes representing either individual sports or team sports. The actual lists of sports that make
up the checkboxes are arrays of strings that the server returns. They obviously could be hard-coded
into the JavaScript in order to prevent a network hit, but imagine that the checkbox widgets
represent values that are frequently changing and/or must be derived from persistent storage on the
server, such as complex multiple-choice questions in a questionnaire or product information?

Figure 2-13 shows the web page after the user has clicked a radio button. This action only submits
the value associated with the checkbox that the user clicked, not the entire form.

Widgets spawning other widgets

Okay, where's the code?

Here is the JavaScript contained in the file hacks2_7.js. We have omitted the code that creates and
initializes the request object, which you can review in Hack #1 and several other earlier hacks. The
first thing you may notice in the code is that it assigns a function to handle the radio button's
onclick event handler. These events are triggered by the user clicking either radio button.

NOTE

An "event handler" such as onclick or onchange is an attribute of an HTML element that

can be assigned the code that will be executed whenever the user clicks that element, for
example.

This assignment begins in the window's onload event handler. This event takes place when all of the

elements in the HTML page have been loaded by the browser.

var sportType="";
window.onload=function(){
 var rads = document.getElementsByTagName("input");
 if(rads != null) {
 for(var i = 0; i < rads.length; i++) {
 if(rads[i].type=="radio"){ rads[i].onclick=function(){
 getSports(this)};}

 }
 }
}

function getSports(obj){
 if (obj == null) { return; }
 var url = "";
 var val = "";
 if(obj.checked) {
 val=obj.value;
 sportType=val;
 url = "http://www.parkerriver.com/s/fav_sports"+
 "?sportType="+encodeURIComponent(val)+"&col=y";
 httpRequest("GET",url,true);
 }
}

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 if(resp != null){
 //return value is a JSON array
 var objt = eval(resp);
 createChecks(objt);
 }
 } else {
 //request.status is 503
 //if the application isn't available;
 //500 if the application has a bug
 alert(
 "A problem occurred with communicating between"+
 " the XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+
 "is available for this application. Please"+
 " try again very soon. \nError: "+err.message);

 }
}

function createChecks(obj){
 var _div = document.getElementById("checks");
 var el;
 //first remove all existing checkboxes
 while(_div.hasChildNodes()){
 for(var i = 0; i < _div.childNodes.length; i++){
 _div.removeChild(_div.firstChild);
 }
 }
 //obj is an array of new sports names
 for(var i=0; i < obj.length;i++) {

 el = document.createElement("input");
 el.setAttribute("type","checkbox");
 el.setAttribute("name",sportType);
 el.setAttribute("value",obj[i]);
 _div.appendChild(el);
 _div.appendChild(document.createTextNode(obj[i]));
 _div.appendChild(document.createElement("br"));
 }
}
/* httpRequest() and related code omitted for the sake of brevity... */

The first stage in generating the checkboxes is to send the request that fetches the values for each of
these widgets. When the user clicks a radio button, the code calls getSports(). This function formats

a URL based on the value it receives from the checkbox, then sends a request to a server component
for a list of related sports.

Greetings JSON

The response comes back from the server in a string formatted as JavaScript Object Notation

(JSON). A response might look like "["football","soccer","tennis", etc.]". We get the response from
the request object's responseText property, then convert the response to a JavaScript array using
the eval() global function. Phew, that was a mouthful! If that wasn't clear, then see the discussion of

handling JSON server values in Hack #6.

NOTE

Ajax developers often advocate JSON as the format of the server return value, in the many
cases where XML might be overkill on both the server and client side of things.

Once the code has this array of values from the server, then the code passes the array along to
createChecks(). This function uses the DOM API to create the checkboxes, one checkbox for each
value in the array (a checkbox for tennis, another for soccer, and so on). Here is the code for this

function.

function createChecks(obj){
 var _div = document.getElementById("checks");
 var el;
 //first remove all existing checkboxes
 while(_div.hasChildNodes()){
 for(var i = 0; i < _div.childNodes.length; i++){
 _div.removeChild(_div.firstChild);
 }
 }
 //obj is an array of new sports names
 for(var i=0; i < obj.length;i++) {
 el = document.createElement("input");
 el.setAttribute("type","checkbox");
 el.setAttribute("name",sportType);

 el.setAttribute("value",obj[i]);
 _div.appendChild(el);
 _div.appendChild(document.createTextNode(obj[i]));
 _div.appendChild(document.createElement("br"));
 }

The function gets a reference to the div element on the HTML page that will enclose the checkboxes.

Then the code removes any existing checkboxes, because of it didn't, then the user could keep
checking the radio buttons and generate several duplicate checkboxes appended on the end of the
web page; this is an outcome we want to avoid. Finally, the code creates a new input element for

each sport, so that each of these widgets looks like:

<input type="checkbox" name=
"teams_sports" value="baseball" /> baseball

As soon as this function completes executing, the checkboxes appear on the web page without any
visible refresh. Like magic!

Hacking the Hack

Naturally, you want the user to check these generated checkboxes for some purpose. Maybe to
generate another sub-set of widgets or checkboxes? Or to send the values from the new checkboxes,
when the user clicks them, to a server component? You can adapt the code from Submit Checkbox
Values To The Server Without A Browser Refresh to accomplish the latter task, as well as create
onclick event handlers for the new checkboxes (as in this hack) to give them some behavior.

E B V N
We are Vietnames

E B V N
We are Vietnames

Populate An Existing Checkbox Group From The Server

Dynamically add widgets to an existing group of checkboxes.

This is another type of adaptive web form, where a group of widgets can change based on the
preferences of the user that accesses the web page. In Hack #16 the code submitted a clicked
checkbox value right away to a server program. This hack allows users to add new choices to the
same bunch of checkboxes before they choose among those widgets. The web page has a select list

including the choices "team" or "individual." It shows two groups of checkboxes representing team
sports and individual sports. Choosing either "team" or "individual" in the popup button or select list

expands the existing checkboxes by getting new content from a server. Clicking the "restore" popup
button restores the original checkboxes for either the team or individual list.

Figure 2-14 shows the web page before the user makes a choice.

Expand the offerings

Figure 2-15 depicts the same page after the user chooses "team" from the popup button at the top of
the page, thus expanding the choices of team sports.

Team offerings expanded

How does it work?

We are assuming that the content for the new checkboxes must come from the server, because it
changes often and/or derives from the organization's database. Otherwise, an application like this
can just include a JavaScript Array of new content and never touch the server program. When the
user makes a choice from the first popup menu or select list, this action sends the choice of team or

individual to a server program. The code uses the request object to connect with the server the Ajax
way.

The server replies with an array of titles for new checkboxes. Flipping the choices in the select list
launches an onclick event handler in the JavaScript code, which the upcoming code sample shows.

We will not take up space with the HTML code, because the page is almost exactly the same as Hack
#17. The page uses a script tag to import all of its Ajax-related JavaScript in a file named

hacks2_8.js. You can read through the code comments right now to get a feel for what the code
does.

NOTE

A single-line JavaScript comment begins with "//." A multi-line comment is bracketed by "/*
*/."

var sportTyp = "";
var checksArray = null;

window.onload=function(){
 //the 'expanding checkboxes' select popup
 var sel = document.getElementById("expand");
 //bind onclick event handler to a function
 if(sel != null){
 sel.onclick=function(){
 getMoreChoices(this)};
 }
 //the 'restoring checkboxes' select popup
 var selr = document.getElementById("restore");
 //bind onclick event handler to the function
 if(selr != null){
 selr.onclick=function(){
 restore(this)};
 }
 //Place all existing checkbox elements in two arrays
 //for restoring the original checkbox lists
 checksArray = new Object();
 checksArray.team = new Array();
 checksArray.individual = new Array();
 var ckArr = document.getElementsByTagName("input");
 populateArray(ckArr,"team");
 populateArray(ckArr,"individual");
}

function populateArray(arr,typ) {
 var inc = 0;
 for(var i = 0; i < arr.length; i++){
 if(arr[i].type == "checkbox") {
 if(arr[i].name.indexOf(typ) != -1) {
 checksArray[typ][inc] = arr[i];
 inc++;
 }
 }
 }
}

//Return the number of input checkbox elements contained
//by a div element
function getCheckboxesLength(_sportTyp){
 var div = document.getElementById(_sportTyp+"_d");
 var len=0;
 for(var i =0; i < div.childNodes.length; i++){
 if(div.childNodes[i].nodeName == "INPUT" ||
 div.childNodes[i].nodeName == "input"){

 len++;
 }
 }
 return len;
}
/* Use the request object to fetch an array of
titles for new checkboxes.
The obj parameter represents a select element; get the
value of this element, then hit the server with this value
to request the new titles, but only if the
checkbox hasn't already been expanded */
function getMoreChoices(obj){
 if (obj == null) { return; }
 var url = "";
 var optsArray = obj.options;
 var val = "";
 for(var i=0; i < optsArray.length; i++){
 if(optsArray[i].selected) {
 val=optsArray[i].value; break;
 }
 }
 sportTyp=val;
 //determine whether the checkboxes have already been expanded
 if(checksArray[sportTyp].length < getCheckboxesLength(sportTyp)) {
 return;
 }
 url = "http://www.parkerriver.com/s/expand?expType="+val;
 httpRequest("GET",url,true);
}
/* Add new checkboxes to either of the original checkbox lists.
 Only add the new checkboxes if the list hasn't been expanded yet.
 Just return from this function and don't hit the network
 if the list has already been expanded.
Parameter obj An array of new titles like
 ["Field Hockey", "Rugby"]
*/
function addToChecks(obj){
 //div element that contains the checkboxes
 var div = document.getElementById(sportTyp+"_d");
 var el = null;
 //Now add the new checkboxes derived from the server
 for(var h = 0; h < obj.length; h++){
 el = document.createElement("input");
 el.type="checkbox";
 el.name=sportTyp+"_sports";
 el.value=obj[h];
 div.appendChild(el);
 div.appendChild(document.createTextNode(obj[h]));
 div.appendChild(document.createElement("br"));
 }
}
//Restore the original list of checkboxes, using

//the checksArray object containing the
//original checkboxes.
function restore(_sel) {
 var val;
 var opts = _sel.options;
 for (var i = 0; i < opts.length; i++){
 if(opts[i].selected) { val=opts[i].value; break;}
 }
 //Only restore if the checkboxes have
 //already been expanded
 if(checksArray[sportTyp].length < getCheckboxesLength(sportTyp)) {
 var _div = document.getElementById(val+"_d");
 if(_div != null) {
 //rebuild the list of original checkboxes
 _div.innerHTML="";
 var tmpArr = checksArray[val];
 for(var j = 0; j < tmpArr.length; j++){
 _div.appendChild(tmpArr[j]);
 _div.appendChild(document.createTextNode(tmpArr[j].value));
 _div.appendChild(document.createElement("br"));
 }
 }
 }
}
//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 if(resp != null){
 //return value is a JSON object
 addToChecks(eval(resp));
 }
 } else {

/* Create and initialize a Request object; not included.
See this chapter's first hack*/

Most of the code is involved with capturing and restoring the checkbox's original state, and the
comments contained in the latter code sample should make it clear what this code is accomplishing.
The reason why we have to include this code is to prevent the behavior of clicking the popup button
continuously to append the same new checkboxes at the end of the list.

The code checks whether the list has already been expanded, by comparing the number of
checkboxes in the cached array with the existing checkbox group. If the existing group has more
checkboxes than the original group, then the list has already been expanded. If the user tries to
expand the list twice, the second click will be ignored, thus sparing the network from a needless hit.

Ajax Stuff

getMoreChoices()makes a server request using the request object to acquire titles for new

checkboxes. See Hack #1 or #3 if you have not been introduced to the request object. The first
select list's onclick event handler, which is set up when the browser window first loads the web
page (window.onload), launches this function, passing in a reference to the select element.

The select element in our page can only have the values "team" or "individual." Then the code

appends the value ("team" or "individual") on to the end of the URL reflecting the server program.
The httpRequest() function sets up and launches the request (see Hack #1 or the first hack in this

chapter).

function getMoreChoices(obj){
 if (obj == null) { return; }
 var url = "";
 var optsArray = obj.options;
 var val = "";
 for(var i=0; i < optsArray.length; i++){
 if(optsArray[i].selected) {
 val=optsArray[i].value; break;
 }
 }
 sportTyp=val;
 //determine whether the checkboxes have already been expanded
 if(checksArray[sportTyp].length < getCheckboxesLength(sportTyp)) {
 return;
 }
 url = "http://www.parkerriver.com/s/expand?expType="+val;
 httpRequest("GET",url,true);
}

Here Comes JSON

The server sends back the HTTP response in JavaScript Object Notation (JSON) format. See Hack #6
for more details on this technique.

if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 if(resp != null){
 //return value is a JSON array
 addToChecks(eval(resp));
 }
 } else {...}

The return value represented by the variable resp is a string such as ["Field Hocket","rugby"].
The code passes this string to the eval() global function, which returns a JavaScript array. The
addToChecks() function then creates new checkboxes from this array.

function addToChecks(obj){
 //div element that contains the checkboxes
 var div = document.getElementById(sportTyp+"_d");
 var el = null;
 //Now add the new checkboxes derived from the server
 for(var h = 0; h < obj.length; h++){
 el = document.createElement("input");
 el.type="checkbox";
 el.name=sportTyp+"_sports";
 el.value=obj[h];
 div.appendChild(el);
 div.appendChild(document.createTextNode(obj[h]));
 div.appendChild(document.createElement("br"));
 }
}

This function uses the DOM API to create new input elements and add them to the end of the div

element containing the checkboxes. the effect on the user is that they see the checkbox list grow, but
nothing else changes on the page. Nifty!

You may want to take a look at the restore() function, which takes an expanded checkbox list and

restores it to its original content, without any network hits.

E B V N
We are Vietnames

E B V N
We are Vietnames

Change Unordered List Labels Using An HTTP Response

Change static unordered lists based on content derived from a server.

One of the most common tags found on web pages is the unordered list, which browsers usually
render as a list of bullets accompanied by labels. This hack allows the web-page user to change an
unordered list by adding additional items to it. The content for the items derives from a server
program. This hack is very similar to the previous one, in which the user could add items to two lists
of checkboxes. The main difference is that this hack deals with unordered lists, which are designed to
display information rather than provide a selection widget (like a checkbox).

The code is also different for creating list items as opposed to checkboxes.

NOTE

Go ahead and skip this hack if you are not interested in playing with unordered lists,
because the code is a revised version of the previous hack.

Figure 2-16 shows this hack's web page before the user chooses to expand either of two lists. The
lists involve team sports and individual sports. When the user clicks the pop-up button at the top of
the page, the list grows by a few items without anything else on the page changing. Just like the last
hack, the lists can be restored to their original content by clicking the second popup button. The
speed with which the lists grow and shrink is quite impressive, particularly considering that the
"growth" content comes from a server.

Watch the list grow and shrink

Figure 2-17 shows the web page after the user has expanded the team sports.

Expanding the menu of team sports

Here's the code for the Web page.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/request_init.js"></script>
 <script type="text/javascript" src="js/hacks2_9.js"></script>
 <title>View our sports offerings</title>
</head>
<body>
<h3>Expand Your Sports Categories</h3>
<h4>Expand Sport Choices</h4>
<form action="javascript:void%200">
 <div id="exp">
 Expand the choices for:
 <select name="_expand" id="expand">
 <option value="individual">Individual</option>
 <option value="team">Team</option>
 </select>
 </div>
</form>
<h4>Restore Original Sport Choices</h4>

<form action="javascript:void%200">
 <div id="rest">
 Restore the choices for: <select name=
 "_restore" id="restore">
 <option value="individual">Individual</option>
 <option value="team">Team</option>
 </select>
 </div>
</form>
<h4>Team sport</h4>
 <ul id="team_u">
 Baseball
 Soccer
 Football
 Basketball
 Lacrosse
 Hockey
 Tennis

<h4>Individual sport</h4>
 <ul id="individual_u">
 Cycling
 Running
 Swimming
 Nordic Skiing
 Inline Skating
 Triathlon
 Track

</body>
</html>

The key to this code is giving the ul tags their own id values. The JavaScript code can then access

the tag as in the following example.

var ul = document.getElementById(sportTyp+"_u");

The ul elements contain the list items; therefore, the code increases or restores the list items by
appending child nodes or elements to the ul elements. Of course, in this hack, the content for the
new list items derives from a server. As a result, the code has to use the request object to first

fetch the new values.

The web page imports two JavaScript files, request_init.js and hacks2_9.js. The first file creates and
sets up the XMLHttpRequest object. See Hack #6 for a description of a JavaScript file that manages

the request object. hacks2_9.js contains the code that grows and restores the unordered lists.

var sportTyp = "";
var itemsArray = null;
//define Object for caching li items
//this is a workaround for IE 6, which

//doesn't save the li element's text node
//or label when you cache it
function CachedLiItem(liElement,liLabel){
 //an li element object
 this.liElement=liElement;
 //a string representing the li text node or label
 this.liLabel=liLabel;
}
window.onload=function(){
 var sel = document.getElementById("expand");
 //bind onclick event handler to a function
 if(sel != null){
 sel.onclick=function(){
 getMoreChoices(this)};
 }
 var selr = document.getElementById("restore");
 //bind onclick event handler to a function
 if(selr != null){
 selr.onclick=function(){
 restore(this)};
 }
 //Place all existing bullet items in two arrays
 //for restoring later
 itemsArray = new Object();
 itemsArray.team = new Array();
 itemsArray.individual = new Array();
 var bulletArr = document.getElementsByTagName("li");
 populateArray(bulletArr,"team");
 populateArray(bulletArr,"individual");
}

//Create Arrays of CachedLiItem objects for
//restoring the unordered lists later
function populateArray(arr,typ) {
 var inc = 0;
 var el = null;
 var liObj=null;
 for(var i = 0; i < arr.length; i++){
 el = arr[i].parentNode;
 if(el.id.indexOf(typ) != -1) {
 liObj=new CachedLiItem(arr[i],arr[i].childNodes[0].nodeValue);
 itemsArray[typ][inc] = liObj;
 inc++;
 }
 }
}
//Return the number of li elements contained
//by a ul element
function getULoptionsLength(_sportTyp){
 var ul = document.getElementById(_sportTyp+"_u");
 var len=0;
 for(var i =0; i < ul.childNodes.length; i++){

 if(ul.childNodes[i].nodeName == "LI" ||
 ul.childNodes[i].nodeName == "li"){
 len++;
 }
 }
 return len;
}
function getMoreChoices(obj){
 if (obj == null) { return; }
 var url = "";
 var optsArray = obj.options;
 var val = "";
 for(var i=0; i < optsArray.length; i++){
 if(optsArray[i].selected) {
 val=optsArray[i].value; break;
 }
 }
 sportTyp=val;
 //determine whether the bullets have already been expanded
 if(itemsArray[sportTyp].length < getULoptionsLength(sportTyp)) {
 return;
 }
 url = "http://www.parkerriver.com/s/expand?expType="+val;
 httpRequest("GET",url,true);
}
function addToBullets(obj){
 //ul element that contains the bullet items
 var ul = document.getElementById(sportTyp+"_u");
 var el = null;
 //Now add the new items derived from the server
 for(var h = 0; h < obj.length; h++){
 el = document.createElement("li");
 el.appendChild(document.createTextNode(obj[h]));
 ul.appendChild(el);
 }
}

function restore(_sel) {
 var val;
 var opts = _sel.options;

 for (var i = 0; i < opts.length; i++){
 if(opts[i].selected) { val=opts[i].value; break;}
 }
 sportTyp=val;
 //Only restore the lists if the bullets have
 //already been expanded
 if(itemsArray[sportTyp].length < getULoptionsLength(sportTyp)) {
 var ul = document.getElementById(val+"_u");
 if(ul != null) {
 //rebuild the list of original bullets
 ul.innerHTML="";

 var tmpArr = itemsArray[val];
 var tmpLiElement = null;
 for(var j = 0; j < tmpArr.length; j++){
 tmpLiElement=tmpArr[j].liElement;
 //workaround for IE6
 if(tmpLiElement.hasChildNodes()){tmpLiElement.
 removeChild(tmpLiElement.firstChild);}
 tmpLiElement.appendChild(document.
 createTextNode(tmpArr[j].liLabel))
 ul.appendChild(tmpLiElement);
 }
 }
 }
}
//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 if(resp != null){
 //return value is a JSON array
 addToBullets(eval(resp));
 }
 } else {
 //snipped for the sake of brevity
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+
 "is available for this application. Please"+
 " try again very soon. \nError: "+err.message);

 }
}

The populateArray() and getMoreChoices() functions are almost exactly the same as in the

previous hack's code, so we will not take up space here explaining them in detail. The former function
caches the original unordered list in an array, so that it can be restored later. getMoreChoices() hits

the server for more sport types using the request object, but only if the unordered list has not yet
been expanded.

Next, the code gets the server's return value so that the code can grow either the team sport or
individual-sport list.

var resp = request.responseText;
if(resp != null){
//return value is a JSON array
addToBullets(eval(resp));
}

The return value is a string in array syntax, as in "["Field Hockey","Rugby"]." The code uses
the eval() global function to convert the string to a JavaScript array. See Hack #6. Then it passes
this array to addToBullets().

function addToBullets(obj){
 //ul element that contains the bullet items
 var ul = document.getElementById(sportTyp+"_u");
 var el = null;
 //Now add the new items derived from the server
 for(var h = 0; h < obj.length; h++){
 el = document.createElement("li");
 el.appendChild(document.createTextNode(obj[h]));
 ul.appendChild(el);
 }
}

This function initiates some DOM programming to create new list items and append them as
children of a ul tag. The existing ul tag has an id like "team_u." The code uses
document.getElementById(sportTyp+&_u&) to get a reference to the ul tag, then appends a new
li element to the ul for each value in the array.

restore() comes into play if the user wants to restore the original lists.

//Only restore the lists if the bullets have
//already been expanded
 if(itemsArray[sportTyp].length < getULoptionsLength(sportTyp)) {
 var ul = document.getElementById(val+"_u");
 if(ul != null) {
 //rebuild the list of original bullets
 ul.innerHTML="";
 var tmpArr = itemsArray[val];
 var tmpLiElement = null;
 for(var j = 0; j < tmpArr.length; j++){
 tmpLiElement=tmpArr[j].liElement;
 //workaround for IE6
 if(tmpLiElement.hasChildNodes()){tmpLiElement.
 removeChild(tmpLiElement.firstChild);}
 tmpLiElement.appendChild(document.
 createTextNode(tmpArr[j].liLabel))
 ul.appendChild(tmpLiElement);
 }

This code uses a cache of original list items to rebuild the restored unordered list. When the web page
loads, the code uses a simple JavaScript object to represent each li element.

function CachedLiItem(liElement,liLabel){
 //an li element object
 this.liElement=liElement;
 //a string representing the li text node or label
 this.liLabel=liLabel;

}

The object has two properties: the li element itself, and the string that specifies its label (the text
that you see next to the bullet). When you cache an li element in an array, for instance, Internet
Explorer 6 will not save the li element's internal text node, so we are using this workaround object.
The code empties the ul element first by setting its innerHTML property to the empty string. Then
the code uses appendChild() from the DOM API to embed the original list items within this ul parent

element.

Parting Shots

Your application never has to hit the network if it has a well-defined list of items that can just be
hard-coded into the client-side JavaScript as arrays. But if the task calls for expanding web lists

from server databases, and this persistent information changes often, then this hack's approach can
come through for the developers.

E B V N
We are Vietnames

E B V N
We are Vietnames

Dynamically Generate An Unordered List From The Server

Show bulleted lists on the web page dynamically without any other part of the page changing.

This hack shows two radio buttons to the browser user. Each button represents a sports category.
When they click on either button, the code fetches a list of titles from a server and displays a new
unordered list. An unordered list looks like:

Here is one item.

Here is another item.

Most web pages, if they include a list of bullets, embed them statically inside the page. If the page
developers want to change the content of the list, then they have to manually alter the page. This
hack changes each list depending on the preferences of the user, which derive from which radio
button they choose to click. In fact, to begin with, the page does not have any visible lists. Figure 2-18
shows what the web page looks like.

Generate your own list

When the user clicks either one of the radio buttons, Figure 2-19 shows an example of what they see.

Get involved in a team sport

This hack uses the request object to query a server for a list of sports, so that only the bulleted list
changes. Everything else on this barebones page stays the same. Here is the code for the web page.
It imports two JavaScript files named http_request.js and hacks2_10.js.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/http_request.js"></script>
 <script type="text/javascript" src="js/hacks2_10.js"></script>
 <title>View our sports offerings</title>
</head>
<body>
<h3>View Our Offerings For Each Sports Category</h3>
<form action="javascript:void%200">
 <table border="0">
 <tr><td>
 Team Sports:
<input type="radio" name="_sports" value="team" /></td></tr>
 <tr><td> Individual Sports:
<input type="radio" name="_sports" value="individual" />
 </td></tr>
 </table>
 <div id="bullets"></div>
</form>
</body>
</html>

The http_request.js file includes the code for creating and setting up the request object for
connecting with a server. The other JavaScript file is responsible for responding to clicks on the radio
buttons, then generating the unordered list based on the content received from the server.

NOTE

Hack #3 shows the http_request.js code, so we will not duplicate that code here.

Here's the code in the hacks2_10.js file.

window.onload=function(){
 var rads = document.getElementsByTagName("input");
 if(rads != null) {
 for(var i = 0; i < rads.length; i++) {
 if(rads[i].type=="radio"){ rads[i].onclick=function(){
 getSports(this)};}
 }
 }
}

function getSports(obj){
 if (obj == null) { return; }
 var url = "";
 var val = "";
 if(obj.checked) {
 val=obj.value;
 url = "http://www.parkerriver.com/s/fav_sports"+
 "?sportType="+encodeURIComponent(val)+"&col=y";
 httpRequest("GET",url,true,handleResponse);
 }
}

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 if(resp != null){
 //return value is a JSON array
 var objt = eval(resp);
 createBullets(objt);
 }
 } else {
 //request.status is 503 if the application isn't available;
 //500 if the application has a bug
 alert(
 "A problem occurred with communicating between"+
 " the XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+
 "is available for this application. Please"+

 " try again very soon. \nError: "+err.message);

 }
}

function createBullets(obj){
 var _div = document.getElementById("bullets");
 var innerHTMLstr = "";
 //obj is an array of new sports names
 for(var i=0; i < obj.length;i++) {
 innerHTMLstr += "";
 innerHTMLstr += obj[i];
 innerHTMLstr += "";
 }
 innerHTMLstr += "";
 _div.innerHTML= innerHTMLstr;
}

When the browser first loads the web page, the window.onload event handler is triggered.

NOTE

An event handler is code that responds to an "event" like a browser completing web-page
loading or a user clicking on a radio button. You use event handlers to point to functions or
blocks of code that execute whenever these events occur, in order to give your application
the desired behavior. Event handling code allows the code to generate bulleted lists in
response to the user choosing a radio button.

This event handler points to a function that in turns calls getSports(). The latter function is

ultimately responsible for requesting from the server the content for all of the new bullet items. Here
are both functions so that we can take a closer look.

window.onload=function(){
 var rads = document.getElementsByTagName("input");
 if(rads != null) {
 for(var i = 0; i < rads.length; i++) {
 if(rads[i].type=="radio"){ rads[i].onclick=function(){
 getSports(this)};}
 }
 }
}

function getSports(obj){
 if (obj == null) { return; }
 var url = "";
 var val = "";
 if(obj.checked) {
 val=obj.value;
 sportType=val;

 url = "http://www.parkerriver.com/s/fav_sports"+
 "?sportType="+encodeURIComponent(val)+"&col=y";
 httpRequest("GET",url,true,handleResponse);
 }
}

The code iterates through each radio button and sets up their onclick event handlers to call the
function getSports(). The parameter to this function is an object that represents the clicked radio

button.

NOTE

The code uses the this JavaScript keyword to pass a reference to the radio button object

that was clicked.

getSports() first checks that the radio button is selected (i.e., its checked property is true), then
stores the radio button's value inside the variable val. A radio button has a value attribute, which is

accessible by JavaScript.

<input type="radio" name="_sports" value="team" />

The code needs the value to request a specific sports category from the server, in the case of the
example "team" sports. The code includes this value in a URL parameter, which represents the
location of a server component. The httpRequest() function then uses the request object to grab

the list of sports that the code will use to generate the new bulleted list.

Dodging Bullets

The user clicks a radio button and Presto! a new bulleted list shows up. How does the code create this
list? The second stage of dynamically generating bullets involves using the server response as
ingredients for the new list.

var resp = request.responseText;
if(resp != null){
 //return value is a JSON array
 var objt = eval(resp);
 createBullets(objt);
}

The response comes in from the server and is accessible from the request object's responseText
property. The code uses the eval() function so that the program can use the response as a

JavaScript array. (See Hack #6). A typical value for the response is
["cycling","track","swimming"]. This value is then passed into the createBullets() function,

the final step for generating the new list.

function createBullets(obj){

 var _div = document.getElementById("bullets");
 var innerHTMLstr = "";
 //obj is an array of new sports names
 for(var i=0; i < obj.length;i++) {
 innerHTMLstr += "";
 innerHTMLstr += obj[i];
 innerHTMLstr += "";
 }
 innerHTMLstr += "";
 _div.innerHTML= innerHTMLstr;
}

A fairly simple method for generating web content is to use a div element to enclose the new tags,
then rewrite the innerHTML property of the div tag. innerHTML takes a string that represents the
HTML content of the tag. createBullets() gets a reference to the div by using the method
document.getElementById(), and using the value of the div tag's id attribute. Then the code
creates a new unordered list tag, with each new list item representing a team or individual

sport.

An unordered list in HTML looks like:

item one
item two

To make sure the page continues to be valid XML (we are using an XHTML DTD), the code makes
sure each list item has a closing list-item tag, as in . Each click of the radio button generates

a different bulleted list, because the server is sending back different data based on whether the code
requests team or individual sports.

Plumbing the Hack

After generating the new bulleted list, the web developer will not be able to see the list's code by
using View Source in the browser. Typically, you can peak at the source code for a web page by

choosing a menu command such as View Page Source from the Firefox menu. This isn't true of
new tags that are added by this hack's techniques. If you want to see these new tags, you can use
Firefox's DOM Inspector, as described by Debug Ajax-Generated Tags in Firefox.

E B V N
We are Vietnames

E B V N
We are Vietnames

Submit Hidden Tag Values To A Server Component

Send the values of hidden form fields to the server whenever you want.

The use of hidden form fields may be less compelling these days as newer approaches have evolved
such as cookies and sessions to connect one request from the same user to another. However, your
application might have other reasons for using an <input type="hidden"> element.

NOTE

A hidden field contains a value that the user does not see, unless they peak at the page's
source code. It can be used to send the server some extra identifying information along
with the rest of the form input.

This hack sends only the value of this field to a server component, when the browser is finished
loading the web page.

Let's say you're testing the number of times users open up a page even if the page derives from their
client-side cache. Unless the server specifies with various HTTP response headers that the web page
shouldn't be cached, the browser will cache a requested page or keep a local copy of it. The purpose
of this caching strategy is to improve performance and prevent unnecessary network requests for the
same page if it hasn't changed. This hack however will send a server component the value of a
hidden input field whenever the page is loaded into a browser.

NOTE

You could use such a strategy for web user testing within an application. However, you
would probably bombard a network with many wasteful requests if you included this with a
production application.

Dynamo

The value of the hidden field is dynamically generated when the browser loads the page. Here is the
HTML for the page. The code is minimal, but it includes a hefty hidden value tucked inside of it!

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <script type="text/javascript" src="js/ http_request.js.js"></script>
 <script type="text/javascript" src="js/hacks2_11.js"></script>

 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>hidden hacks</title>
</head>
<body>
<h3>Delving into some navigator properties</h3>
<div id="content">
These include: navigator.appName, navigator.platform,
navigator.language, and navigator.userAgent.
</div>
<form action="javascript:void%200">
 <script type="text/javascript" src="js/innerInput.js"></script>
</form>
</body>
</html>

When the page is loaded into the browser, the JavaScript file innerInput.js dynamically creates a
hidden input tag, mainly to give it a value that's interesting, such as the name of the page, when it

was accessed, the computing platform of the user, the default language for the browser, as well as
the User Agent string associated with the browser they are using. Code can access most of these
properties via the navigator client-side object in JavaScript. For example, accessing
navigator.platform returns MacPPC for my computer; navigator.userAgent provides the content
of the User Agent request header from this browser.

Now the hidden tag has a lot of meaningful information for its value attribute. inner_input.js

contains:

var delim = ":::";
 document.write(
 "<input type=\"hidden\" id=\"hid\" name=\"data\" value=\""+
 location.pathname+delim+new Date()+
 delim+navigator.appName+delim+navigator.platform+
 delim+navigator.language+delim+navigator.userAgent+"\" />");

The document.write() method can dynamically write part of the page as the browser loads the
HTML. The latter code creates a hidden tag with the id hid. The user does not see the value of this

tag, but the value is available to JavaScript code. All the different properties such as
navigator.userAgent are separated by the characters ":::." An example is:

/ajaxhacks/ajax_hack2_11.html:::
Thu Oct 27 2005 10:37:15 GMT-0400:::
Netscape:::MacPPC:::en:::Mozilla/5.0 (Macintosh; U;
PPC Mac OS X; en) AppleWebKit/412.6
(KHTML, like Gecko) Safari/412.2

Notifying Home

We want to take this information and send it to a server, so that it can be logged. For this task the
application requires more JavaScript. The page imports with script tags two more JavaScript files.

http_request.js sets up the request object to talk with the server. Hack #3 describes the latter code.
The file hacks2_11.js contains the code that accesses the input tag's value and sets up a request to

POST it to the server as soon as the browser loads the page.

window.onload=function(){
 var hid = document.getElementById("hid");
 var val = "navprops="+encodeURIComponent(hid.value);
 url = "http://www.parkerriver.com/s/hid";
 httpRequest("POST",url,true, handleResponse,val);
}
//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 //Commented out now: alert(
 "Request went through okay...");
 } else {
 //request.status is 503
 //if the application isn't available;
 //500 if the application has a bug
 alert(
 "A problem occurred with communicating between"+
 " the XMLHttpRequest object and "+
 "the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+
 "is available for this application. Please"+
 " try again very soon. \nError: "+err.message);

 }
}

The code gets the value of the input element and encodes the value's characters so that they can be

properly transferred over the network. Then the code sends a POST request, because of the volume
of this server message.

NOTE

A GET request appends the parameters to the end of the URL, whereas a POST request
sends the parameter data as a block of characters following the request headers.

The httpRequest() function is a wrapper around the code that sets up an XMLHttpRequest object

and sends the message.

The httpRequest() function does a browser compatibility check as in Hack #1. This function also

checks for any data that is designed to be posted. This data would appear as the fifth parameter to

the function.

NOTE

JavaScript allows code to define a function and then client code may pass variable
arguments to the function. These parameters can be accessed within the defined function
as part of an arguments array, which every JavaScript function has built-in. Therefore,
arguments[4] represents the fifth parameter passed into a function.

http_request.js uses the request object's setRequestHeader() function to convey to the server

component the content type of the sent data. The HTTP POST request will not succeed with Firefox for
instance unless you include this request header. See Hack #2.

request.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded; charset=UTF-8");

Logging

The server component can take the posted data and log it, or whatever the application calls for. Here
is an example log entry after a couple of requests with Firefox and Apple Safari (with some of the
logged text removed and/or edited for readability).

/ajaxhacks/ajax_hack2_11.html:::
Thu Oct 27 2005 10:37:15 GMT-0400:::
Netscape:::MacPPC:::en:::
Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/412.6
(KHTML, like Gecko) Safari/412.2

/ajaxhacks/ajax_hack2_11.html:::
Thu Oct 27 2005 10:49:24 GMT-0400 (EDT):::
Netscape:::MacPPC:::en-US:::Mozilla/5.0 (Macintosh; U;
PPC Mac OS X Mach-O; en-US; rv:1.7.12)
Gecko/20050915 Firefox/1.0.7

You can see that the file name is included, followed by the date and time when it was requested, then
some browser-specific data such as the default locale (US English) and the value of the User Agent

request header.

NOTE

In JavaScript, the User Agent header data is accessed from the navigator.userAgent

property.

p(synopsis).

E B V N
We are Vietnames

E B V N
We are Vietnames

Chapter 4. Direct Web Remoting (DWR) for
Java Jocks
Direct Web Remoting (DWR) for Java Jocks

E B V N
We are Vietnames

E B V N
We are Vietnames

Introduction

Perhaps you want to work with Ajax but not even deal with programming the XMLHttpRequest

object. An open-source kit called Direct Web Remoting (DWR) is a software layer built on top of this
object, completely insulating Web page developers from directly programming the request object.

One advantage of DWR is that you can forget about the boilerplate code we have been using in other
hacks to get the HTTP request object working in Microsoft and Mozilla-based browsers. This
framework also includes easy techniques for populating web-page widgets with server data, but
largely removing the required knowledge of Document Object Model (DOM) programming. The one
caveat with DWR is that you must use a Java-based server-side solution, because DWR works with
Java servlets and objects behind the scenes.

DWR provides a neat mapping between Java objects and JavaScript code. In other words, you can
setup the logic for your application using Java objects on the server, then call those object's methods
with JavaScript code when need be. This is called remoting your objects, or making remote Java
method calls with JavaScript objects that are bound to the Java objects on the server. The next hack
explains the process for setting up DWR and integrating it into a web application.

E B V N
We are Vietnames

E B V N
We are Vietnames

Integrate DWR Into Your Java Web Application

Design your Ajax application around a JavaScript framework bound to Java objects on the server.

The Direct Web Remoting code comes in the form of an archived or zipped Java Archive (JAR) file.
The download address is: http://www.getahead.ltd.uk/dwr/download.html.

NOTE

The top-level Web page for this free, open source software is:
http://www.getahead.ltd.uk/dwr/. Check out the license details for more information while
you are visiting this page.

Place the dwr.jar JAR file in the /WEB-INF/lib directory of your Java web application, then restart or

reload the application.

NOTE

For those not familiar with Java Web applications, they all have a top-level directory named
WEB-INF. Inside of WEB-INF are XML configuration files, the main one being web.xml. WEB-
INF also contains a directory named lib, which encloses code libraries or JAR files that the

application depends on, such as database drivers and helper classes. The dwr.jar file goes
in this lib directory.

Configure the application

To get DWR going with your JavaScript, you have to declare in web.xml a Java servlet that DWR uses
and add your own DWR-related XML file to /WEB-INF/lib.

Here is the chunk of code that you have to add to web.xml. If web.xml already includes registered
servlets, then nest this newly declared servlet in with the existing ones. The same goes for the
servlet-mapping element.

<servlet-name>dwr-invoker</servlet-name>
 <servlet-class>uk.ltd.getahead.dwr.DWRServlet</servlet-class>
 <init-param>
 <param-name>debug</param-name>
 <param-value>true</param-value>
 </init-param>
</servlet>

http://www.getahead.ltd.uk/dwr/download.html
http://www.getahead.ltd.uk/dwr/

<servlet-mapping>
 <servlet-name>dwr-invoker</servlet-name>
 <url-pattern>/dwr/*</url-pattern>
</servlet-mapping>

NOTE

You may have to restart the Java web application for the servlet container to create a new
instance of this DWR-related servlet.

You also have to create a simple XML file declaring the Java classes that you want to use from your
client-side JavaScript code. Don't worry, we'll show you how to use the JavaScript objects that are
bound to Java classes shortly! Place this XML file in /WEB-INF/lib.

<dwr>
 <allow>
 <create creator="new" javascript="JsDate">
 <param name="class" value="java.util.Date"/>
 </create>
 <create creator="new" javascript="JsBean">
 <param name="class" value="com.parkerriver.BikeBean"/>
 </create>
 </allow>
</dwr>

This XML states that the client-side JavaScript can use two Java classes remotely. The JavaScript
objects that bind the client-side code remotely to the Java classes are named JsDate and JsBean. As

part of the server-side preparations, you had to have already developed the Java class
com.parkerriver.BikeBean and installed it in your application. java.util.Date is part of the Java
Software Development kit; it's not your own custom class. Date is already available as part of the

Java virtual machine your server component is using.

NOTE

The BikeBean class file would typically be stored in /WEB-INF/classes, as in /WEB-
INF/classes/com/parkerriver/BikeBean.class.

This XML file binds the two JavaScript names to the Date and BikeBean objects, so that these objects

will be available to use in your client-side JavaScript. This means that JavaScript code can call all of
the public methods of these Java objects. But how is the JavaScript in the local web page connected
to the remote Java instances running on the server?

The web page that will use Direct Web Remoting contains these script tags, which connect the

JavaScript code via the DWR servlet to the server code.

<script type="text/javascript" src=
"/[name of web app]/dwr/interface/**JsBean.js**">

</script>
<script type="text/javascript" src=
"/[name of web app]/dwr/interface/**JsDate.js**">
</script>
<script type="text/javascript" src=
"/[name of web app]/dwr/**engine.js**"></script>
<script type="text/javascript" src=
"/[name of web app]/dwr/**util.js**"></script>

Do you recall the simple XML file that we just added to the web application? The first two script tags
reference the JavaScript names we bound to the Java classes that we want to remote: JsBean and
JsDate. The XML file configured certain Java classes to be used with these names in JavaScript code.

Remember the dwr.jar file that we installed in the web application? It contains two JavaScript
libraries, engine.js and util.js. The first of these files is required to use DWR; the second is optional
and contains a bunch of DWR functions that our client-side code can use.

The URL that the script tag uses, such as /parkerriver/dwr/interface/JsBean.js, connects to

the special DWR servlet that we enabled. The servlet in turn makes available to our code the public
methods of the Java classes that we configured in XML. The next few hacks will use these classes and
functions.

E B V N
We are Vietnames

E B V N
We are Vietnames

Use DWR To Populate A Select List From A Java Array

Remotely get an array return value from a Java object and use the data to populate a select list.

Sounds awesome, huh? You can take existing Java objects that have methods returning Java arrays,
and use those return values to populate a select list on a web page. First, figure 5-1 shows the web

page that we will use in the next few hacks. The page lists some bike manufacturers in a pop-up
widget, a few product codes associated with those companies, then some date/time values. This hack
fills the first popup or select tag with its values when the page is first loaded.

Dynamically fill a select list with server values

The page imports several JavaScript files using script tags. The first four files allow the application

to use DWR; the last one contains the code for our application. Here is the underlying web-page
code.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src=
"/parkerriver/ajaxhacks/js/hacks5_1.js"></script>
 <script type="text/javascript" src=
"/parkerriver/dwr/interface/JsBean.js"></script>
 <script type="text/javascript" src=
"/parkerriver/dwr/interface/JsDate.js"></script>
 <script type="text/javascript" src=
"/parkerriver/dwr/engine.js"></script>
 <script type="text/javascript" src=
"/parkerriver/dwr/util.js"></script>
 <title>Bike Information</title>
</head>
<body>
<h3>Our list of Bike Designers</h3>
<form action="javascript:void%200">
 <p>
 Bikes: **<select id="bikes"></select>**
 </p>
 <p>
 <button type="button" name="selection" value=
 "Select">Select</button>
 </p>
</form>
<h3>Product codes</h3>
<div id="prodCodes"></div>
<h4>The time now</h4>
<div id="showDates"></div>
</body>
</html>

To use one of these bound JavaScript objects in your code, you have to set up the server component
in the way the previous hack described, then use a script tag with the following syntax.

<script type="text/javascript" src=
"/[name-of-your-web-app]/dwr/interface/JsBean.js"></script>

Substitute [name-of-your-web-app] with the name of your web application or "context root" in Java

web parlance. In addition, every Ajax application using DWR has to import the engine.js using similar
syntax.

<script type="text/javascript" src=
"/[name-of-your-web-app]/dwr/engine.js"></script>

util.js is optional but contains a lot of useful JavaScript functions, a few of which the upcoming hacks

use.

NOTE

You can use the utility functions included in util.js standalone, without using the other
aspects of DWR such as JavaScript/Java object binding.

Getting an Array From the Server

The hack's code will populate the select list using a Java array value it receives from a server
component. The component is a Java servlet that this chapter's first hack installed, and the array
source is a JavaBean instance we have running on the server. Here is the code for the BikeBean
class. The array derives from this class' getdesignerInfo() method. This method returns all of the
keys (as in "Trek" or "Cannondale") contained in a HashMap, which is a Java object that represents a
hash table or associative array, named bikeInfo.

package com.parkerriver;

import java.util.Map;
import java.util.HashMap;
import java.util.Collections;

public class BikeBean {
 private static Map bikeInfo;
 static{
 bikeInfo = Collections.synchronizedMap(new HashMap());
 bikeInfo.put("Trek","0001");
 bikeInfo.put("Orbea","0002");
 bikeInfo.put("Guru","0003");
 bikeInfo.put("Giant","0004");
 bikeInfo.put("Look","0005");
 bikeInfo.put("Specialized","0006");
 bikeInfo.put("Cannondale","0007");
 }

 public String[] getDesignerInfo(){
 return (String[])bikeInfo.keySet().toArray(new String[]{});
 }

 public static Map getBikeInfo() {
 return bikeInfo;
 }
}

This BikeBean object is loaded and stored into the server's memory (specifically, inside the Java

Virtual machine that the server is using). How does the JavaScript code running inside a distant
user's browser get access to the Java object's methods? The XML configuration that the chapter's

first hack explained bound a JavaScript name (JsBean) to the BikeBean object. The DWR servlet and

the engine.js file that the web page imports handles the intermediate magic that connects the
browser code to the server code. Here is the JavaScript code in hacks5_1.js that gives the select

list its value.

window.onload=function(){
 setupSelect();
 setupMap();
 setupDates();};

function setupSelect(){
 JsBean.getDesignerInfo(populate);
}
function populate(list){
 DWRUtil.removeAllOptions("bikes");
 DWRUtil.addOptions("bikes", list);
}
/* CODE SNIPPED FOR:
setupMap();
setupDates();
*/

When the browser finishes loading the web page, the window.onload code calls three different
functions. This hack deals with setupSelect() (this chapter's upcoming hacks feature the other two
functions). setupSelect() remotely calls via JsBean the getdesignerInfo() method. This method
returns an array of strings that represent some names of bike manufacturers. These names will
end up as the labels for a select list (see figure 5-1).

NOTE

The DWR servlet returns Java values in JSON format. See Hack #6. So a HashMap in Java is

returned as:

NOTE

{ Trek:0001,Specialized:0005,...}

DWR uses a callback design pattern as one of the options for working its magic. When the code calls
Java methods from JavaScript, an additional parameter representing a callback function is added at
the end of the method's parameter list (or is the only parameter in terms of methods that are not
defined in Java as having any parameters).

The only parameter to geTDesignerInfo() is the name of a function that will handle the Java
method's return value (an array). The callback function's name is populate(), and its parameter is
the returned array, here represented by the list variable. This code could also have passed in as a

function literal instead of a function name to getdesignerInfo(), as in:

JsBean.getDesignerInfo(
 function(list){
 DWRUtil.removeAllOptions("bikes");
 DWRUtil.addOptions("bikes", list);
 }
);

The code is in essence saying "I'm calling this Java method remotely, and here is the JavaScript
function that will handle the return value."

Eccentric Utility

The rest of the code takes this array of bike-maker names and dynamically fills a select list with

them using a couple of DWR's utility functions. The web page made these functions available by
importing util.js using a script tag, as earlier explained in this hack.

DWRUtil.removeAllOptions() takes the id of a select list as a parameter, then removes all of the
options (a logical first step before you change the options in the list). The web page's select list

looks like:

<select id="bikes"></select>

DWRUtil.addOptions(), on the other hand, takes the id of a select list as the first parameter, and
an array as its second parameter. The array members then become the options or labels of the
select list. You might recall that the list variable contains the array returned by the Java method

to which our JavaScript code is bound. Again, our code looks like:

DWRUtil.addOptions("bikes", list);

If you are a Java web developer, this is cool stuff. The next hack populates a select list from a Java
Map type such as java.util.HashMap.

E B V N
We are Vietnames

E B V N
We are Vietnames

Use DWR To Populate A Selection List From A Java Map

Create a selection list with the Map keys as option values and the Map values as the option content.

A selection list is a popup button on a web page. This element involves a select tag with one or more nested option tags. The option value can have a value attribute, which the web application ends up sending to the server instead of the content of the option . For example, the server will send uk or fr in the

following cases, not United Kingdom or France.

<select><opton value="uk">United Kingdom</option>
<option value="fr">France</option></select>

This hack uses DWR to generate a pop-up from a Java Map , using Map keys as the values of the option value attribute. The hack uses the same web page as figure 5-1 depicts, except that it will generate the select element in a slightly different manner. Here are the important parts of the web page's underlying
HTML code, including the script tags that import various JavaScript libraries and the select tag itself.

<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="/parkerriver/ajaxhacks/js/hacks5_3.js">
 </script>
 <script type="text/javascript" src="/parkerriver/dwr/interface/JsBikeBean.js">
 </script>
 <script type="text/javascript" src="/parkerriver/dwr/engine.js"></script>
 <script type="text/javascript" src="/parkerriver/dwr/util.js"></script>
 <title>Bike Information</title>
</head>
<!--snipped... -->
<p>
Bikes: **<select id="bikes"></select>**
</p>

engine.js is a required JavaScript code library for web pages that are using the DWR framework. JsBikeBean.js enables our code to make remote calls to the BikeJavaBean class. Importing util.js is optional, but we're using one of its functions, so our web page imports this library as well.

Code Ahead

Here is the code in hacks5_3.js for making a remote Java call and loading up the select list.

window.onload=function(){
 //return a JSON value of a HashMap;
 //populate is the function that will handle
 //the return value
 JsBikeBean.toJSON(populate);};

//map represents the HashMap in JSON format
function populate(map){
 //DWR utility function in util.js

 DWRUtil.removeAllOptions("bikes");
 //add the Map values to the select tag
 //with id "bikes"
 addOptionValues("bikes", map);
}
function addOptionValues(_id,_map){
 //handle the return value as a JS object
 var jMap = new Function("return "+_map)();
 var sel = document.getElementById(_id);
 var opt = null;
 if(sel != null){
 for(var prop in jMap) {
 opt=document.createElement("option");
 opt.setAttribute("value",jMap[prop]);
 opt.appendChild(document.createTextNode(prop));
 sel.appendChild(opt);
 }
 }
}

Ponder window.onload , which points to the function that the browser's JavaScript runtime calls when the web page is finished loading. This code makes the remote Java method call, passing the return value to a function named populate() .

JsBikeBean.toJSON(populate);

This function in turn removes any existing options from the select element, and then creates new option elements by calling addOptionValues() . The latter function uses Document Object Model (DOM) programming to create new option elements and add them to the existing select element. The jMap

variable refers to a JavaScript object to which the server component's return value was converted.

NOTE

See Receive Data as a JavaScript Object .

In the for/in loop, prop represents the name of each of the original Map keys, as in "Cannondale" or "Trek," and jMap[prop] returns the value of these elements, a product code like 0006.

NOTE

In the code, jMap is a JavaScript object as in

NOTE

{"Trek":"0006"}
p(note). Using the syntax jMap["Trek"] returns that property value, as in "0006."

The options that this code creates look like <literal><option value="0006">Trek</option></literal>. If the user then submits a pop-up value, the browser will send the attribute value, such as 0006. This hack represents a handy technique for converting hash table values running as Java objects to <literal>select options</literal>. The next hack shows the keys and values from a Java <literal>Map</literal> type as text on a web page.

h1. Display The Keys/ Values From A Java Hash Map On A Web Page id. 31634 role. hack

div(synopsis).
Connect to a Java object running on the server and use JavaScript to display a <literal>HashMap's</literal> contents on a web page.
div(synopsis).

This hack takes a <literal>java.util.HashMap</literal> containing the names of bike manufacturers keyed to their product codes and displays this information on a web page. The earlier hacks in this chapter introduced the reader to this web page, which figure 5-1 shows.

p(note). A <literal>java.util.HashMap</literal> in Java is a hash table structure that contains keys pointing to values. Its JavaScript representation could look like {firstname:"Bruce", lastname:"Perry"}.

The place on the web page where we want to display these values looks like this in the HTML code:

<h3>Product codes</h3>
<div id="prodCodes"></div>

This code represents a subheading and a div element with the id prodCodes . When the web page loads, the code asks the server component for the contents of a Java HashMap . The code will display the Map keys followed by "::" then the Map values, as in "Specialized :: 0006," with a little styling added to boot.
The server component and web page are set-up and configured just as in Integrate DWR into your Java Web Application . Just to refresh your memory, here are the script tags that the web page uses, so that the application can use DWR, and hacks5_1.js, which contains our own JavaScript.

<script type="text/javascript" src="/parkerriver/ajaxhacks/js/**hacks5_1.js**"></script>
<script type="text/javascript" src="/parkerriver/dwr/interface/**JsBean.js**"></script>
<script type="text/javascript" src="/parkerriver/dwr/interface/**JsDate.js**"></script>
<script type="text/javascript" src="/parkerriver/dwr/**engine.js**"></script>
<script type="text/javascript" src="/parkerriver/dwr/**util.js**"></script>

The code from hacks5_1.js calls a JsBean method to display the converted HashMap's values inside the div element. Here is the Java code that the bound JavaScript object JsBean has access to.

private static Map bikeInfo;
 static{
 bikeInfo = Collections.synchronizedMap(new HashMap());
 bikeInfo.put("Trek","0001");
 bikeInfo.put("Orbea","0002");
 bikeInfo.put("Guru","0003");
 bikeInfo.put("Giant","0004");
 bikeInfo.put("Look","0005");
 bikeInfo.put("Specialized","0006");
 bikeInfo.put("Cannondale","0007");
 }

 public static Map getBikeInfo() {
 return bikeInfo;
 }

The getBikeInfo() method simply returns the Map with all of these values.

NOTE

A comprehensive real-world application rather than our hack might be returning a Map derived from an underlying database. Also, Map is the interface implemented by HashMap , so a HashMap is also a Map type in Java.

Traveling by the speed of light from the server to the browser code, here is the web page's underlying JavaScript.

//This method is called by the window.onload event handler
function setupMap(){
 JsBean.getBikeInfo(setProdCodes);
}
//"data" is the JS object representation of a HashMap
function setProdCodes(data){
 var div = document.getElementById("prodCodes");
 //remove old messages
 div.innerHTML="";
 div.style.color="purple";
 div.style.fontSize="0.9em";
 var tmpText;
 for(var prop in data) {
 tmpText = prop + " :: "+ data[prop];
 div.appendChild(document.createTextNode(tmpText));
 div.appendChild(document.createElement("br"));
 }
}

getBikeInfo() returns the HashMap value and passes it as the parameter to the setProdCodes() function.

JsBean.getBikeInfo(setProdCodes);
...
function setProdCodes(data){...}

setProdCodes() represents the callback mechanism that DWR uses to exchange data between the server's return values and the web page's code.

NOTE

The JavaScript code passes a callback function name as a parameter to the Java method. Make sure to leave out the parentheses when calling DWR-related methods in this manner. In other words, don't use:

NOTE

JsBean.getBikeInfo(setProdCodes());

The HashMap that originated on the server manifests as the callback function's parameter. The data parameter in setProdCodes(data) contains the bike-maker names as keys and the product codes as values. The code gets a reference to the div within which this information will be displayed, then specifies the

font size and color of the text.

div.style.color="purple";
div.style.fontSize="0.9em";

The DWR framework does a lot of useful work for a script and Ajax developer. The framework returns the hash table value in JSON format, as a JavaScript object. As a result, the code can easily display the keys and values of the object using a for/in loop.

NOTE

See Hack #6 for more information on JavaScript Object Notation (JSON). The DWR framework returns a Java HashMap , for example as:

NOTE

{ Trek:0001,Specialized:0005,...}

for(var prop in data) {
 tmpText = prop + " :: "+ data[prop];
 div.appendChild(document.createTextNode(tmpText));
 div.appendChild(document.createElement("br"));
}

The code writes the bike maker names and product codes by displaying the key and value followed by a line-break tag br .

/* i.e., data["Trek"]returns "0001" */
tmpText = prop + " :: "+ data[prop];
div.appendChild(document.createTextNode(tmpText));
div.appendChild(document.createElement("br"));

tmpText contains the line of text that the web page displays, as in "Trek :: 0001." During each iteration of the for/in loop, the code writes out a separate line representing a different bike company and product code. The next hack dynamically generates an ordered or unordered list from Java values on the server.

E B V N
We are Vietnames

E B V N
We are Vietnames

Use DWR To Populate An Un/ Ordered List From A Java
Array

Use a framework to dynamically populate a web-page widget from values derived from a Java object.

This hack automatically (you might say auto magically) generates an ordered or unordered list using
server content, such as a list of high-end bike makers. A typical list on a web page is hard-coded into
the HTML, or a web page's code. It looks like a series of bullets or numbers, each accompanied by a
label. These list types involve content that never or hardly ever changes. On the other hand, some
lists must be dynamically generated from a server object, based on persistent information such as
that contained in a database.

NOTE

A dynamically generated list is only necessary for persistent information that is updated
frequently, such as a store that is constantly adding new products and/or changing product
attributes.

Think of a bike shop constantly adding new products and their attributes to their online store.

The web page code in this hack derives the content by calling a Java method via Direct Web
Remoting. DWR is designed to bind JavaScript objects to Java objects running on the server. The first
hack in this chapter sets up and configures the Java application on the server end, which is the first
step to running this hack.

This hack generates an ordered list on the same web page that other hacks in this chapter have
used. This is an ol tag that contains a numbered list of bike makers. We include the option to
generate an unordered list, a ul tag containing bullets to the left of the labels. When the web page
loads, its underlying code automatically fetches an array of bike-maker names from a server and

generates the list. Figure 5-2 shows what the web page looks like.

5-2. A list of bike makers

The web page imports all of the necessary JavaScript files with script tags, and includes the list
within a div tag with id "orlist."

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src=
"/parkerriver/ajaxhacks/js/hacks5_1.js"></script>
 <script type="text/javascript" src=
"/parkerriver/dwr/interface/JsBean.js"></script>
 <script type="text/javascript" src=
"/parkerriver/dwr/interface/JsDate.js"></script>
 <script type="text/javascript" src=
"/parkerriver/dwr/engine.js"></script>
 <script type="text/javascript" src=
"/parkerriver/dwr/util.js"></script>
 <title>Bike Information</title>
</head>
<body>
<!--SNIPPED -->
<p**><input id="hid" type="hidden" value="ordered" />**
</p>
<!--SNIPPED -->
<div id="orlist"></div>
<!-- ... -->
</body>
</html>

hacks5_1.js includes our custom code, which we'll show in a moment. All of the other imported
JavaScript files are DWR-related. engine.js is required if your code is using the DWR framework;
util.js is an optional library of utility functions, one of which we use in this hack. JsBean is a

JavaScript class that is bound to a Java object. Here is the hacks5_1.js code this hack uses.

window.onload=function(){ callSetups()};

function callSetups(){
 setupSelect();
 setupMap();
 setupList(document.
 getElementById("hid").value);
 setupDates();
}
function setupList(typ){
 JsBean.getDesignerInfo(function(list) {
 var div = document.getElementById("orlist");
 var el = null;
 if(div != null){
 //remove any existing lists
 div.innerHTML="";
 if(typ.indexOf("un") == -1) {
 //create an ordered list
 el=document.createElement("ol");
 } else {
 //create an unordered list
 el=document.createElement("ul");
 }
 el.setAttribute("id","servlist");
 div.appendChild(el);
 //create li elements from server information
 DWRUtil.addOptions("servlist", list);
 }
 });
}
//Rest of code snipped...

One salient code aspect is that it does not require XMLHttpRequest or our custom library for using

the request object, http_request.js (see hack #3). The DWR framework takes care of its remote
binding between JavaScript and Java.

An event handler linked to window.onload calls a setupList() function. setupList() has a string
specifying "ordered" or "unordered" as a parameter. The code gets this value from a hidden element

on the web page, so that a web page designer or writer can specify the type of list. Inside of
setupList() the code calls the Java method geTDesignerInfo(), via its client-side proxy JsBean.
This method returns an array of bike maker names.

NOTE

DWR returns JSON values from Java objects (see Hack #6), unless you configure a

different "converter" DWR can use when setting up the framework. See
http://getahead.ltd.uk/dwr/documentation,

The way DWR works when remotely calling Java methods is that a parameter representing a function
for handling the Java return value is added to the method call, as in
JsBean.callFoo(function(returnValue){//handle callFoo return value}). The latter

example, as in the web-page code, handles the return value with a function literal. You could
alternatively use JsBean.callFoo(myFunc(returnValue)), then define myFunc() somewhere. The

framework passes the Java-method return value to this handler function as its parameter.

In our code, the function literal that handles the geTDesignerInfo() return value looks like this.

function(list) {
 var div = document.getElementById("orlist");
 var el = null;
 if(div != null){
 //remove any existing lists
 div.innerHTML="";
 /* The function literal has access to the
 type parameter of the outer function; typ
 can be "ordered" or "unordered" */
 if(typ.indexOf("un") == -1) {
 //create an ordered list
 el=document.createElement("ol");
 } else {
 //create an unordered list
 el=document.createElement("ul");
 }
 el.setAttribute("id","servlist");
 div.appendChild(el);
 //create li elements from server information
 DWRUtil.addOptions("servlist", list);
 }
})

list is the array returned from the server, which looks like ["value1","value2"]. First the code

determines whether to create an ordered or unordered list. Then the code appends the new element
with id "servlist" as a child within an existing div element. Finally, the function uses a DWR utility

function to generate the new list.

DWRUtil.addOptions("servlist", list);

Figure 5-3 shows what the browser looks like after generating an unordered list.

<head>
 <meta http-equiv="content-type" content=
 "text/html; charset=utf-8" />
 <script type="text/javascript" src=
"/parkerriver/ajaxhacks/js/hacks5_1.js"></script>
 <script type="text/javascript" src=

http://getahead.ltd.uk/dwr/documentation

"/parkerriver/dwr/interface/JsBean.js"></script>
 <script type="text/javascript" src=
"/parkerriver/dwr/interface/JsDate.js"></script>
 <script type="text/javascript" src=
"/parkerriver/dwr/engine.js"></script>
 <script type="text/javascript" src=
"/parkerriver/dwr/util.js"></script>
 <title>Bike Information</title>
</head>

Creating an unordered list from remote Java

NOTE

The content on the bottom of figure 5-3 relates to calling a built-in Java object using DWR.
Our last hack covers this mechanism.

This function takes the id of the list as the first argument, and the array of values as the second. If

the code has to remove existing options from a list first, one option would be

DWRUtil.removeOptions(&servlist&). addOptions() is the same function as Hack #50 used to
populate a select list.

E B V N
We are Vietnames

E B V N
We are Vietnames

Access A Custom Java Object With Java Script

Receive a serialized Java object via Ajax then use that object with JavaScript.

The programming model for a number of Java applications involves generating JavaBeans that
represent data. A JavaBean is an object representation of a concrete thing like a bicycle, with its
wheels, pedals, seat, chain rings, and other components as object properties. The purpose of a
JavaBean is to represent these concrete entities for a software program that accomplishes a set of
practical tasks involving the entity data type, such as an e-commerce site that sells bikes. Therefore,
it is natural that some Ajax applications will receive data from a server component in the form of
JavaBeans.

This hack uses the Direct Web Remoting (DWR) framework to access a JavaScript representation of a
Java object from the server. Then the hack displays the object on a web page.

The Big Set-up@@

To use DWR with Ajax, you have to set it up on the server first. Integrate DWR into your Java Web
Application described this process in detail, so we will not repeat it here, except to show this hack's
XML configuration file. On the server end, this file must be stored in /WEB-INF/lib. The file gives

DWR its instructions for creating an instance of the Java class that your application calls remotely
from JavaScript.

<dwr>
 <allow>
 <create creator="new" javascript="JsBikeBean">
 <param name="class" value="com.parkerriver.BikeJavaBean"/>
 </create>
 </allow>
</dwr>

As specified in this configuration file, the JavaScript name your code uses for the remote method call
is JsBikeBean. Figure 5-4 shows the web page when it's first requested. The underlying code
requests a serialized version of the BikeJavaBean object when the web page is first loaded. Then it
displays this object as a string in an alert window.

Voila, serialized Java object

Here is the code for the BikeJavaBean class, for which JsBikeBean is remoted.

package com.parkerriver;

import java.util.Map;
import java.util.HashMap;
import org.json.JSONObject;

public class BikeJavaBean {
 private Map bikeInfo;

 public BikeJavaBean(Map bikeInfo) {
 this.bikeInfo = bikeInfo;
 }

 public BikeJavaBean() {
 bikeInfo = new HashMap();
 bikeInfo.put("Trek","0001");
 bikeInfo.put("Orbea","0002");
 bikeInfo.put("Guru","0003");
 bikeInfo.put("Giant","0004");
 bikeInfo.put("Look","0005");
 bikeInfo.put("Specialized","0006");
 bikeInfo.put("Cannondale","0007");
 }

 public String[] getbikeMakers(){
 return (String[])bikeInfo.keySet().
 toArray(new String[]{});
 }

 public Map getBikeInfo() {
 return bikeInfo;
 }

 public String toJSON(){
 /* There are different ways to serialize a Java object
 using a JSONObject constructor; here we are constructing
 a JSONObject using the Java object's HashMap */
 JSONObject jo = new JSONObject(getBikeInfo());
 return jo.toString(4);
 }
}

This is an object that contains a hash table structure involving the names of bike makers keyed to
some imaginary product codes. Our JavaScript object named JsBikeBean (check out the earlier
configuration) is bound to this java object. Pay special attention to the toJSON() method. This is the

method that our Ajax code will call to access a serialized version of the JavaBean.

The code uses a JSONObject type, which derives from the Java API for JavaScript Object Notation

(JSON). This rather dense acronym list relates to the convenient JSON return values that several of
our hacks have dealt with (See Receive Data as a JavaScript Object). We have bundled this API

and related classes in with the rest of our server-side Java classes. The Java API for JSON simply
offers Java classes that make it easier to return JSON formatted values to Ajax applications.

The purpose of returning JSON formats to Ajax is that they can easily be converted to JavaScript
objects, which often makes it easier for Ajax to work with the data.

NOTE

See Receive Data as a JavaScript Object and http:///www.json.org.

The bean's code creates a JSONObject by passing into the JSONObject's constructor the bean's
HashMap of bike-maker data. This code essentially wraps the bean's data inside this special object.

JSONObject jo = new JSONObject(getBikeInfo());
return jo.toString(4);

Then the code calls the JSONObject's toString() method, which returns the string version of the
bike-maker names and product codes that show up in the browser alert window.

NOTE

In the programmer world, representing an instance of an object in a different format, and
preserving its internal state or property values, is sometimes called marshalling. So in this
case we're marshalling a Java object into JSON format. Going the other way, from say XML
back into a Java object, is called unmarshalling.

Here is the HTML code for the web page. As usual, the key parts of this page are the script tags

that import the necessary JavaScript libraries.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns=
"http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src=
"/parkerriver/ajaxhacks/js/hacks5_5.js"></script>
 <script type="text/javascript" src=
"/parkerriver/dwr/interface/JsBikeBean.js"></script>
 <script type="text/javascript" src=
"/parkerriver/dwr/engine.js"></script>
 <script type="text/javascript" src=
"/parkerriver/dwr/util.js"></script>
 <title>Bike Information</title>
</head>
<body>
<h3>Our list of Bike Designers</h3>
<div id="bean"></div>
</body>
</html>

The two highlighted script tags import the JavaScript libraries that are required to use DWR:

JsBikeBean.js, which in our case binds a JavaScript object of that name to the JavaBean running on
the server, and engine.js, which is the framework code. hacks5_5.js represents the code for this

hack, and util.js is an optional library that contains several useful functions.

NOTE

See Integrate DWR into your Java Web Application for more details on setting up the

DWR framework on the server.

When the user dismisses the alert window, the web page's code uses the returned JavaBean object
(in JSON format) to display the object's data on the page. Figure 5-5 shows this page.

Displaying a serialized JavaBean

You are probably curious by now what the code does in hacks5_5.js. How does the web page code
display the JavaBean information that the server component returns? How does the web page make
the request in the first place?

window.onload=function(){
 JsBikeBean.toJSON(function(javaStr){
 alert(javaStr);
 var div = document.getElementById("bean");
 //remove old content
 div.innerHTML="";
 //convert the return value to a Java object
 var javaObj = new Function("return "+javaStr)();
 var innerHt="<p>Property names and product codes:</p>";

 for(var propName in javaObj) {
 innerHt += "<p>";
 innerHt += "";
 innerHt += propName;
 innerHt += " : ";
 innerHt += javaObj[propName];
 innerHt += "</p>";
 }
 div.innerHTML=innerHt;
 });
};

The framework takes care of making the HTTP request, so the code does not contain any references
to XMLHttpRequest or the httpRequest() function that we have seen in other hacks. The
JsBikeBean.toJSON() function is a remote method call that returns the serialized (or JSONized)

JavaBean. DWR uses the callback mechanism, where the argument to the remote method is a

function that will handle the server's return value. That function, in turn, has the return value as its
lone argument. Our code uses a function literal, in which the entire function definition is passed into
the remote method call.

First, an alert window shows the returned string. Then the code converts the JSON-formatted
string into a JavaScript object using a special technique.

NOTE

Receive Data as a JavaScript Object describes this technique, a line of code that

makes JavaScript interpret the JSON-formatted string as an object.

In the code, the variable javaObj now represents a plain old JavaScript object that the code easily
explores with a for/in loop. This loop builds a string, which displays the object's values inside a
div element.

for(var propName in javaObj) {
 innerHt += "<p>";
 innerHt += "";
 innerHt += propName;
 innerHt += " : ";
 innerHt += javaObj[propName];
 innerHt += "</p>";
}
div.innerHTML=innerHt;

Hacks like this can easily integrate existing JavaBeans that various server components might use.
Using the Java API for JSON is just a matter of downloading and the compiling the source code for
objects such as JSONObject and JSONArray.

NOTE

See http://www.crockford.com/JSON/java/index.html/.

E B V N
We are Vietnames

http://www.crockford.com/JSON/java/index.html/

E B V N
We are Vietnames

Call A Built-in Java Object From Java Script Using DWR

Extend your code's reach by calling built-in Java objects remotely.

What if you had to read a file like a log on the server from a JavaScript object on the client browser?
You might want to use the java.io.FileReader class on the server. This class is part of the Java 2
Standard Edition, a fancy way of saying that FileReader is built-in to Java but not JavaScript. The

DWR framework allows you to easily call standard Java methods from your JavaScript. This hack
displays some date information on a web page. The data derives from remote method calls using the
java.util.Date object.

NOTE

JavaScript has a robust Date object and several associated methods, which you would use

in most real-world production applications that display dates on a web page. It's still nice to
know, from at least a hack writer's perspective, that a great variety of standard Java
objects and their methods are available from JavaScript. At the very least, you can adapt
these techniques to several other similar situations.

The code displays the current date, and compares this data to the Greenwich Mean Time date. Figure
5-3 in Use DWR to populate an Un/Ordered List From a Java Array shows what the Date information

looks like on the web page.

Setting up this code involves a little server configuration, as this chapter's first hack explained. Here
is the configuration file on the server.

<dwr>
 <allow>
 <create creator="new" javascript="JsDate">
 <param name="class" value="java.util.Date"/>
 </create>
 </allow>
</dwr>

This XML file binds the JavaScript name JsDate to a corresponding Java Date object. In a Java web
application, this XML file belongs in /WEB-INF/lib. Make sure dwr.jar is also in /WEB-INF/lib. If

you're still setting up DWR on the server, check back to Hack #48 for a summary of the required
steps.

The next step on the client-side is to import all of the necessary JavaScript libraries into the web
page that is calling the Java object remotely.

<head>
<script type="text/javascript" src=

"/parkerriver/ajaxhacks/js/hacks5_1.js"></script>
 <script type="text/javascript" src=
"/parkerriver/dwr/interface/JsDate.js"></script>
 <script type="text/javascript" src=
"/parkerriver/dwr/engine.js"></script>
 <script type="text/javascript" src=
"/parkerriver/dwr/util.js"></script>
 <title>Bike Information</title>
</head>

The first imported script, hacks5_1.js, includes the code for our application. The second highlighted
script tag involves the JsDate object, which DWR binds to the java.util.Date object. We can use
this JavaScript object to call methods on the Java Date object. The next two imported libraries,

engine.js and util.js, represent a required library for using DWR and an optional utilities library,
respectively.

The hack's web page includes an h3 subheading tag and a div for containing the Date information.

<h4>The time now</h4>
<div id="showDates"></div>

Here is the code for remotely calling the Date object.

window.onload=function(){setupDates();};

function setupDates(){
 var div = document.getElementById("showDates");
 //remove old messages
 div.innerHTML="";
 //define callback function for displaying a local date
 JsDate.toLocaleString(function(dateString){
 div.appendChild(document.createTextNode(
 "Your local date: "+dateString));
 div.appendChild(document.createElement("br"));
 });
 //define callback function for displaying
 //Greenwich Mean Time
 JsDate.toGMTString(
 function(dateString){
 div.appendChild(document.createTextNode(
 "Greenwich Mean Time date: "+
 dateString));
 div.appendChild(document.createElement("br"));});

 JsDate.getTimezoneOffset(
 function(dateString){
 div.appendChild(document.createTextNode(
 "The difference between your time and GMT (in minutes): "+
 dateString));
 }

);
}

This code displays the date information as part of the window.onload event handler, which the

browser's JavaScript implementation calls when the browser finishes loading the web page.
setupDates() then displays different elements of the current time by calling three Java Date

methods remotely.

toLocaleString() generates a current time and date string, as in Nov 21, 2005 7:58:16 AM.

toGMTString() displays the same kind of string but in Greenwich Mean Time.

getTimezoneOffset() displays the number in minutes representing the difference between the

user's current time and GMT. For example, my time in Massachusetts is 300 minutes or six
hours behind GMT time.

The code uses the JsDate object to remotely call these Java methods. As part of the DWR

mechanism, the lone parameter for these method calls is a function that handles the Java return
value, in these cases, various date/time strings. For example, here is the function that handles the
toLocaleString() return value.

function(dateString){
 div.appendChild(document.createTextNode(
 "Your local date: "+dateString));
 div.appendChild(document.createElement("br"));
}

The dateString parameter represents the actual string returned by remotely calling
java.util.Date.toLocaleString(). The div tag our page uses for displaying this information
creates a new text node representing this string followed by a line-break br tag.

NOTE

For information on all of the different options for making Java remote method calls from
JavaScript see this DWR page: http://getahead.ltd.uk/dwr/browser/intro.

After initially loading the web page, the user can refresh the page and the date/time strings will
change reflecting the most current time of day locally and in terms of GMT.

NOTE

You could Hack the Hack by including a Refresh button with an onclick event handler that

updates the date information, without refreshing the entire page.

http://getahead.ltd.uk/dwr/browser/intro

E B V N
We are Vietnames

E B V N
We are Vietnames

Chapter 86. To Come
Idtxt A

E B V N
We are Vietnames

E B V N
We are Vietnames

Idtxt A

TK

E B V N
We are Vietnames

	EBVN
	Thong cao cua EBVN
	Chinh sach chia se
	Chinh sach mua ban
	Danh sach Newebook
	Overview
	Table of Contents
	Chapter 1. Ajax Basics
	Introduction: Farewell to Page Refreshing
	Detect Browser Compatibility With The Request Object
	Use The Request Object To POST The Server Some Data
	Use A Separate Library For XML Http Request
	Receive Data As XML
	Get Plain Old Strings
	Receive Data As A Number
	Receive Data In JSON Format
	Handle Request Object Errors
	Dig Into The HTTP Response
	Generate A Styled Message With ACSS File
	Generate A Styled User Message On The Fly

	Chapter 2. Validation
	Validate A Texfield Or Textarea For Blank Fields
	Validate Email Syntax
	Validate Unique User Names
	Validate Credit-card Numbers With AJAX
	Validate Credit-card Security Codes
	Validate A Postal Code

	Chapter 3. Web Forms
	Submit Textfield Or Textarea Values To The Server Without A Browser Refresh
	Display Text Field Or Textarea Values Using Server Data
	Submit Selection- List Values To The Server Without A Browser Refresh
	Dynamically Generate A New Selection List With Server Data
	Populate An Existing Selection List
	Submit Checkbox Values To The Server Without A Browser Refresh
	Dynamically Generate A New Checkbox Group With Server Data
	Populate An Existing Checkbox Group From The Server
	Change Unordered List Labels Using An HTTP Response
	Dynamically Generate An Unordered List From The Server
	Submit Hidden Tag Values To A Server Component

	Chapter 4. Direct Web Remoting (DWR) for Java Jocks
	Introduction
	Integrate DWR Into Your Java Web Application
	Use DWR To Populate A Select List From A Java Array
	Use DWR To Populate A Selection List From A Java Map
	Use DWR To Populate An Un/ Ordered List From A Java Array
	Access A Custom Java Object With Java Script
	Call A Built-in Java Object From Java Script Using DWR

	Chapter 86. To Come
	Idtxt A

