
[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

Flash Remoting: The Definitive Guide

By Tom Muck

Publisher: O'Reilly

Pub Date: September 2003

ISBN: 0-596-00401-X

Pages: 624

Flash Remoting MX lets developers easily integrate rich Macromedia Flash content with applications
that are built using ColdFusion, ASP.NET, Java, PHP, or SOAP-based web services. The result is
complex client/server applications that more closely resemble desktop applications than traditional
web pages. Build applications that connect to a database, file system, or other server-side
technologies. Developers who are looking to create Rich Internet Applications with the Flash will find
Flash Remoting: The Definitive Guide indispensable.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

Flash Remoting: The Definitive Guide

By Tom Muck

Publisher: O'Reilly

Pub Date: September 2003

ISBN: 0-596-00401-X

Pages: 624

 Copyright

 Dedication

 Preface

 Remoting: More Than Just a Name

 What Is Remoting Used For?

 What This Book Contains

 What This Book Is Not

 The Book at a Glance

 We'd Like to Hear from You

 Future Versions of Flash

 Acknowledgments

 Part I: Remoting Fundamentals

 Chapter 1. Introduction to Flash Remoting

 Section 1.1. What Is Flash Remoting?

 Section 1.2. How Does Flash Remoting Work?

 Section 1.3. Benefits

 Section 1.4. Flash Remoting Requirements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 1.5. Supported Platforms

 Section 1.6. Hello World

 Section 1.7. Workflow Example

 Section 1.8. Architecture for Flash Remoting Applications

 Section 1.9. Wrapping Up

 Chapter 2. Installing, Configuring, and Using Flash Remoting

 Section 2.1. Installing Flash Remoting

 Section 2.2. Naming Your Services

 Section 2.3. The Authoring Environment

 Section 2.4. Sequence of Events in Flash

 Section 2.5. Making a Remote Call

 Section 2.6. Wrapping Up

 Chapter 3. Client/Server Interaction, UI Components, and RecordSets

 Section 3.1. User Interface Components

 Section 3.2. Flash UI Components Set 2 and Flash Charting Controls

 Section 3.3. Macromedia's DRK

 Section 3.4. Text Objects

 Section 3.5. Building Forms in Flash MX

 Section 3.6. The RecordSet Class

 Section 3.7. DataGlue

 Section 3.8. Wrapping Up

 Chapter 4. Flash Remoting Internals

 Section 4.1. The NetConnection Class

 Section 4.2. Using NetServices

 Section 4.3. Creating Responder Functions

 Section 4.4. RecordSet Object

 Section 4.5. The Timeline

 Section 4.6. Catching Errors

 Section 4.7. Registering Objects

 Section 4.8. Wrapping Up

 Part II: The Server-Side Languages

 Chapter 5. Flash Remoting and ColdFusion MX

 Section 5.1. Introduction to ColdFusion MX

 Section 5.2. How ColdFusion Fits into Flash Applications

 Section 5.3. Service Name Mappings

 Section 5.4. ColdFusion Pages Versus ColdFusion Components

 Section 5.5. Loading Query Data Incrementally

 Section 5.6. ColdFusion Security: Authenticating Users

 Section 5.7. Updating Data on the Server

 Section 5.8. Wrapping Up

 Chapter 6. Server-Side ActionScript

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 6.1. What Is Server-Side ActionScript?

 Section 6.2. The CF Object

 Section 6.3. When to Use Server-Side ActionScript

 Section 6.4. Datatype Conversions

 Section 6.5. Handling Errors with try/catch

 Section 6.6. Extending Server-Side ActionScript with Java

 Section 6.7. Wrapping Up

 Chapter 7. Flash Remoting and Java

 Section 7.1. The Flash Remoting Gateway

 Section 7.2. Supported Platforms

 Section 7.3. Setting Up Flash Remoting for J2EE

 Section 7.4. Service Types

 Section 7.5. Datatype Conversions

 Section 7.6. Service Lookup

 Section 7.7. Invoking Service Methods

 Section 7.8. Architecture and Design

 Section 7.9. Referencing the Request and Session

 Section 7.10. Saving and Sharing State

 Section 7.11. Databinding

 Section 7.12. Security

 Section 7.13. OpenAMF

 Section 7.14. Wrapping Up

 Chapter 8. Flash Remoting and .NET

 Section 8.1. Overview of .NET

 Section 8.2. Connecting to .NET

 Section 8.3. Datatype Conversions

 Section 8.4. Database Access with ADO.NET

 Section 8.5. State Management

 Section 8.6. Error Handling in Flash Remoting with .NET

 Section 8.7. Wrapping Up

 Chapter 9. Flash Remoting and PHP

 Section 9.1. Introduction to PHP

 Section 9.2. Installing AMFPHP

 Section 9.3. Datatype Conversions

 Section 9.4. Using AMFPHP with Web Services

 Section 9.5. Using AMFPHP with PHP Classes

 Section 9.6. Working with a Database

 Section 9.7. Wrapping Up

 Part III: Advanced Flash Remoting

 Chapter 10. Calling Web Services from Flash Remoting

 Section 10.1. What Is a Web Service?

 Section 10.2. Why Use Flash Remoting?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 10.3. Web Services from a ColdFusion Server

 Section 10.4. Web Services from an ASP.NET Server

 Section 10.5. Wrapping J2EE and JRun Web Services

 Section 10.6. Web Services from PHP

 Section 10.7. BabelFish Web Service

 Section 10.8. Datatype Conversions

 Section 10.9. Creating a Flash MX Web Service Extension

 Section 10.10. Wrapping Up

 Chapter 11. Extending Objects and UI Controls

 Section 11.1. Principles Behind UI Components

 Section 11.2. DataProviderClass and DataGlue

 Section 11.3. Enhancing a Standard Control

 Section 11.4. Enhancing the RecordSet Class for Interactivity

 Section 11.5. Adding Validation to a TextField

 Section 11.6. Wrapping Up

 Chapter 12. Flash Remoting Best Practices

 Section 12.1. Separation of Tasks

 Section 12.2. Separation of Functionality

 Section 12.3. Server-Proofing the Application

 Section 12.4. Component Use

 Section 12.5. Clean API

 Section 12.6. Loops and Repeated Operations

 Section 12.7. OOP or Not OOP

 Section 12.8. ColdFusion RecordSets

 Section 12.9. Implementing Caching

 Section 12.10. What to Walk Away With

 Section 12.11. Wrapping Up

 Chapter 13. Testing and Debugging

 Section 13.1. Debugging Flash Remoting Applications

 Section 13.2. Trapping Errors

 Section 13.3. The Flash ActionScript Debugger

 Section 13.4. NetConnection Debugger

 Section 13.5. NetDebug.as

 Section 13.6. Trace Debugging

 Section 13.7. Testing Server-Side Code

 Section 13.8. Using a TCP Trace Utility

 Section 13.9. Debugging SQL Code

 Section 13.10. Wrapping Up

 Chapter 14. Real-World Application

 Section 14.1. General Considerations

 Section 14.2. Requirements

 Section 14.3. Specifications

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 14.4. The Modules

 Section 14.5. Flash Remoting Code

 Section 14.6. Testing and Debugging

 Section 14.7. Completed Application

 Section 14.8. Future Expansion

 Section 14.9. Wrapping Up

 Chapter 15. Flash Remoting API

 Section 15.1. Entry Headings

 DataGlue Object

 DataGlue.bindFormatFunction() Method

 DataGlue.bindFormatStrings() Method

 NetConnection Class

 NetConnection.addHeader() Method

 NetConnection.call() Method

 NetConnection.clone() Method

 NetConnection.close() Method

 NetConnection.connect() Method

 NetConnection.getDebugConfig() Method

 NetConnection.getDebugId() Method

 NetConnection.getService() Method

 NetConnection.ReplaceGatewayUrl() Method

 NetConnection.RequestPersistentHeader() Method

 NetConnection.setCredentials() Method

 NetConnection.setDebugId() Method

 NetConnection.trace() Method

 NetDebug Object

 NetDebug.trace() Method

 NetDebugConfig Class

 NetDebugConfig.getDebug() Method

 NetDebugConfig.setDebug() Method

 NetServices Object

 NetServices.createGatewayConnection() Method

 NetServices.getVersion() Method

 NetServices.setDefaultGateway() Method

 RecordSet Class

 RecordSet.addItem() Method

 RecordSet.addItemAt() Method

 RecordSet.addView() Method

 RecordSet.filter() Method

 RecordSet.getColumnNames() Method

 RecordSet.getItemAt() Method

 RecordSet.getItemID() Method

 RecordSet.getLength() Method

 RecordSet.getNumberAvailable() Method

 RecordSet.isFullyPopulated() Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 RecordSet.isLocal() Method

 RecordSet.removeAll() Method

 RecordSet.removeItemAt() Method

 RecordSet.replaceItemAt() Method

 RecordSet.setDeliveryMode() Method

 RecordSet.setField() Method

 RecordSet.sort() Method

 RecordSet.sortItemsBy() Method

 Part IV: Appendixes

 Appendix A. ActionScript Datatype Conversion

 Section A.1. ColdFusion Datatype Conversion

 Section A.2. Java Datatype Conversion

 Section A.3. C# Datatype Conversion

 Section A.4. Visual Basic Datatype Conversion

 Section A.5. PHP Datatype Conversion

 Section A.6. SOAP Datatype Conversion

 Appendix B. Books and Online Resources

 Section B.1. Flash Remoting Resources

 Section B.2. Flash and ActionScript Resources

 Section B.3. Other Books of Interest

 Section B.4. Other Links of Interest

 Appendix C. Specification and Implementation for a Real-World Application

 Section C.1. Notes from the Designer

 Colophon

 Index

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Copyright

Copyright © 2003 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly
& Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps. The association between the image of a cuttlefish and the topic of Flash Remoting is a
trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

[Team LiB]

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Dedication

Dedicated to the memory of my father-in-law, Stanley S. Lee...a truly original man who
succeeded in living life on his own terms. Dad, your character is an inspiration. It was a
privilege to have known you and I will miss you.

-Tom Muck

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Preface
The Web has always been an expanding, changing medium. What was in vogue just a few years ago
might be completely abandoned today, and what is in vogue today may be completely abandoned
tomorrow. Java™ applets were considered a breakthrough technology that was going to revolutionize
the Web when they first came out. Java applets failed to take hold for several reasons, chief among
them the complexity of the Java language for nonprogrammers, the download size for anything more
than a simple applet, and the security restrictions that effectively tied the hands of the applet. ASP
was Microsoft's attempt to replace Java applets with server-side applications. JSP learned from the
mistakes of ASP and provided a much more robust solution by offering compiled pages rather than
interpreted pages. ASP.NET, in turn, learned from the mistakes of JSP by providing a framework that
can be accessible to a variety of different languages using a common runtime environment.

And Flash has learned from the mistakes of those early Java applets. The Flash browser plugin is
small, self-contained, and ubiquitous. Flash is attractive to designers as well as programmers, and it
provides rich functionality that enhances the end user's experience. Also, a Flash movie looks
essentially the same on a Windows machine as it does on a Macintosh.

Some things have not changed, however. The Web is still primarily based in HTML. Even though
XHTML is coming into prominence, it is just a syntactically standardized version of HTML that
conforms to XML specifications. Flash solves many of the deficiencies of HTML by improving on
animation limitations of DHTML, allowing for true interactivity, offering greater cross-platform and
cross-browser consistency, and allowing upgrades of the Flash Player without requiring the user to
upgrade his browser. By making Flash consistent across platforms, Macromedia has ensured that the
Flash designer can virtually eliminate the laborious trial-and-error work that HTML web page
designers go through to keep their pages consistent across platforms and browser types.

Macromedia Flash Remoting MX, or simply Flash Remoting, first offered with Flash MX, allows
sophisticated datatypes to be passed from the server to the client and back without the speed
limitations, bulk, and manual serialization/deserialization required by the XML techniques in previous
versions of Flash.

In a traditional HTML application, a typical user experience is like this:

The user comes to your site. He enters something into a search field and clicks the Submit
button.

1.

The user waits for a response from the server. His browser loads the page, allowing the user to
view the search results.

2.

If the results span more than one page and the user clicks the link for the next set of results,
the search request is sent to the server again. The server conducts the search again and sends
back the second page of results.

3.

Again, a new page is loaded into the browser.4.

You can liken this experience to a very inefficient phone conversation with a friend. You ask a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

question and hang up the phone. Your friend calls back and answers the question, then hangs up.
You call him back, add something to the conversation, and hang up again. Two tin cans with a taught
string between them gives you a more advanced communication method. Yet this is similar to how
the client/server communication with a browser operates, and it is the prevailing standard on the
Web.

HTML can build primitive web applications, but its main advantage is its ubiquity. However, Flash
Player 6, which plays back content authored in Flash MX (including Flash Remoting applications) has
over 85% penetration and allows developers to deploy much more sophisticated web applications.
Flash Player 7 is in public beta, and by the time you read this, the release version will be available.
Flash Remoting offers seamless communication between the client browser and the remote server.
Each revision of the Flash Player, whose uptake is much faster than browser updates, essentially
upgrades the Web. Only minor changes have been made to Flash Remoting in Flash MX 2004 and
Flash MX Professional 2004 (Flash Pro), although the latter offers enhanced support for SOAP-based
web services. Regardless of whether you are using Flash MX, Flash MX 2004, or Flash Pro, the
principles and examples shown throughout this book apply equally.

Singing the praises of Flash Remoting is not to say that HTML does not have its place-it clearly
does-but Flash offers user interactivity closer to a desktop application than a traditional HTML web
site. Also, because ActionScript's syntax is nearly identical to JavaScript, web scripters can easily
transition to Flash. Flash MX also introduced Flash UI components, which are configurable and
skinnable interface elements, such as checkboxes and list boxes. In previous versions of Flash, UI
functionality had to be created for each new application. Components allow developers to concentrate
on the application's functionality rather than worry about mundane aspects of buttons and form
elements. Components share a common API that leverages easy-to-use methods. This brings rapid
application development (RAD), familiar to Delphi and Visual Basic users, to Flash-based web
applications. Components are also extremely flexible, allowing designers to skin the components to fit
seamlessly with the site design.

Drumbeat 2000, a web development program from Elemental Software (later purchased by
Macromedia), tried to abstract HTML into a visual interface by turning HTML elements into JavaScript
objects. Strongly resembling Visual Basic, the interface of Drumbeat 2000 used drag-and-drop
components that were thinly disguised HTML tags and server-side script objects. Unfortunately, HTML
was not intended for a point-and-click environment or an event-based model. Drumbeat 2000 died a
quick death because the HTML/JavaScript objects slowed down an already slow technology, although
parts of it were rolled into UltraDev and Dreamweaver MX.

Flash, on the other hand, is designed around an event-based GUI that thrives on point-and-click
interaction with efficient self-contained ActionScript objects. Flash allows designers to customize the
user interface, limited only by their imagination. A Flash designer can utilize standard prebuilt
interface objects or build his own to create the interaction between his application and the end user.
The ActionScript programmer can use these components to call server-side methods through Flash
Remoting. This allows the Flash movie to do what it does best-interact with the user-and allows the
server-side application to do what it does best-process information.

Flash Remoting technology adds true client/server communication to browser-based applications
because it is not page-based; it is based on a single interface that loads once for the entire
application. The Flash movie creates a one-time connection to the server. The application state is
maintained within the Flash Player. Gone is the click/wait/reload approach of HTML. As of Flash MX,
you can build your web application as a unit with Flash as the front end and your application server
on the back end. The communication with the server is handled by Flash behind the scenes. When
you build an application with Flash Remoting, the user experience is similar to what you would expect

http://lib.ommolketab.ir
http://lib.ommolketab.ir

from a desktop application.

Take, for example, an interaction with an online store. A typical HTML page can consist of dozens of
files and be 20-100 KB or more. But what about subsequent pages? Even if a page is remarkably
similar to the one that came before, each page is often loaded in its entirety from the server (unless
that page is already cached locally, in which case it still has to be rerendered by the browser). Menus,
headings, copyright notices, and so on might be identical on every page, yet they are reloaded each
time. There has to be a more efficient means of downloading and rendering page content.

Enter the Flash Player and Flash Remoting. With Flash Remoting, the browser needs to download only
the subset of information that has changed from page to page, which is typically fed from the
application server. When you click a Search button in a Flash application that uses Flash Remoting,
the request is sent to the server in a small ActionScript Message Format (AMF) packet, and another
AMF packet is sent back to the browser. The Flash movie loads the information contained in the
packet, such as a recordset, array, or other datatype, and utilizes it as needed.

If successive screens are highly similar, instead of loading each 25 KB page separately, Flash needs
to download only the portion that differs-the information to be displayed instead of existing interface
elements. If data is required, the AMF format ensures it can be downloaded efficiently in a mere few
hundred bytes. There is no need to completely redraw the entire page as a new page loads in,
because Flash Remoting is supplying only data from the server and the Flash movie uses the data as
needed. Also, Flash can often download data in the background so it is ready when needed. In most
cases, the user isn't even aware that the server was contacted.

You can picture poor old HTML just sitting there thinking, "now why didn't I think of that?"
Developers are often slow to adapt, however. Many HTML developers are unwilling to admit that
HTML, while apt for simple pages, was never designed for complex interactivity, animation, and
sound. As such, it is not surprising that Flash is much more convenient for creating interactive sites.
Nevertheless, Flash and Flash Remoting are bringing the same interactivity and usability to the Web
that GUIs brought to the desktop a generation ago.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Remoting: More Than Just a Name

Flash Remoting is a technology that resides on the remote application server-hence the name. It
acts as a gateway to the server and translates client calls from a Flash movie into calls that the
server can understand. It is included with ColdFusion MX Server and JRun 4 and offered as an add-on
for ASP.NET and J2EE-compatible servers, such as IBM WebSphere. Third-party developers have built
versions for PHP and Perl as well.

Prior versions of Flash were able to communicate with a server in a limited fashion using name/value
variable pairs or XML. Flash Remoting offers the following advantages over these methods:

A Flash movie, through the server-side Flash Remoting gateway, can call server-side methods
directly, not merely pass values or files back and forth.

The client- and server-side XML or name/value parsing required for Flash 5 interaction is
virtually eliminated with Flash Remoting, although it can still be used effectively in some
situations.

Because the server-side Flash Remoting gateway can communicate directly with the Flash
movie, complex objects, such as arrays, structures, and recordsets, can be transferred without
serialization/deserialization.

Also, because the server contains functionality that can be accessed directly (such as calling a server-
side method by name from within the Flash movie), the Flash code can be more concise. Recordsets
can be loaded into Flash movies using a RecordSet object, making it easy to sort and page through
results directly from the client browser. In addition, the DataGlue class (part of the client components
of Flash Remoting) offers a set of functions that allows you to bind Flash user interface elements to
the data. Flash Remoting also offers debugging of client-side code and server communication using
the NetConnection debugger and a service browser that allows you to introspect remote services
from the Flash authoring environment. With all of these features, web programming has finally come
of age.

Throughout this book we refer to recordsets (data retrieved from a database on
a server) and client-side RecordSets (the ActionScript class that is used in Flash
Remoting). A third term-resultset-is used when talking about the
java.sql.resultset class in Java.

Flash Remoting makes it a snap to connect to ColdFusion, J2EE, ASP.NET, and PHP applications and
the back-end databases that these server technologies support, such as SQL Server, Oracle, DB2,
Access, PostgreSQL, and MySQL. Using Flash Remoting, you can create sophisticated applications
with a clear line drawn between the client-side interface (Flash) and the server-side logic (business
logic). The Flash application can be deployed in the browser or on the desktop. Also, the server-side
logic need not be tied to a Flash interface: your server-side code does not require any Flash-specific
syntax. In addition to servicing the Flash client, the server-side methods of the application can be
utilized by other server-side pages supplying HTML content, or even a .NET desktop application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flash Remoting, in conjunction with ColdFusion MX, JRun, and other technologies, also replaces much
of the functionality of Macromedia's extinct Generator server-side Flash technology. Generator
templates are no longer supported, but Macromedia offers a transition path to Flash Remoting. For
more information on the transition, go to:

http://www.macromedia.com/software/generator/productinfo/faq/

[Team LiB]

http://www.macromedia.com/software/generator/productinfo/faq/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

What Is Remoting Used For?

I've talked about the benefits of Flash Remoting, but what can you build with it? Here are some of
the possible uses of Flash Remoting:

Any application that requires a connection to a database, filesystem, or other server-side
technology.

Online stores that feature catalogs and shopping cart systems. The entire user experience can
be consolidated into one central interface with no page reloads.

Sound and video clip libraries. Using the streaming audio and video capabilities of Flash in
conjunction with Flash Communication Server (FlashCom), along with the server-side
capabilities of an application server, you can offer searchable, browsable clip libraries.

Banner ads with built-in shopping carts, click-through tracking, and full-site search capabilities.

New controls that can be used in place of HTML elements that leverage the server-side
capabilities of ColdFusion, ASP.NET, or J2EE.

Extensions to Flash, Dreamweaver, Fireworks, or other applications that provide instant access
to a remote support site or reference material.

An online auction interface that stores your own watched items locally and polls the remote web
service for changes in bids.

Front-ends to databases for administrators. You can give your client an administrative interface
so that she can access tables and raw data without giving her the keys to the store, so to
speak.

The architecture of Flash Remoting makes it easy for Flash programmers to develop Flash movies,
knowing only the remote method names and functionality. They can access server-side functionality
using familiar ActionScript syntax. Likewise, server-side coders can build functionality on the server
without knowing how the Flash movie is going to interact with it. They merely have to provide an
interface to the method and return a result. That result can be virtually anything, such as a
recordset, string, number, array, or structure. Complex applications can be broken down into
component parts, with designers building the Flash interfaces, ActionScript programmers coding the
client-side Flash Remoting code, and server-side programmers (ColdFusion, PHP, Perl, Java, or
ASP.NET) supplying the server-side functionality.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

What This Book Contains

Flash development encompasses drawing, programming, animating, and working with sound, images,
and video. You can be proficient at one or many of these technologies. There are numerous books
that cover Flash, each with its own merits and approach. Knowledge of ActionScript is essential to
understanding Flash Remoting. (However, the ActionScript gymnastics that Flash 5 developers had to
employ to communicate with a server are virtually eliminated with Flash Remoting.)

This book teaches Flash Remoting for programmers, because it is a technology for programmers. I
assume you are one of the following:

A Flash (ActionScript) programmer who wants to use Flash Remoting to communicate with a
server

A server-side application developer who wants to expand his knowledge to Flash development

I discuss Flash Remoting using terminology that an experienced programmer will appreciate, but I try
to keep the discussion within the reach of aspiring programmers as well. I also explain the best
practices for working with Flash Remoting. Although best practices are often subjective, I try to be as
objective as possible or offer consensus conclusions about best practices.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

What This Book Is Not

Flash is traditionally an environment for designers, but the design aspects of Flash are not covered in
this book. This book assumes you are familiar with the Flash authoring environment. When I mention
the Actions panel, for example, I assume you know to find it under Window Actions (F9). If not,
go through the Flash tutorials under Help Flash Tutorials, or read an overall tutorial book on the
Flash MX environment and workflow, such as Macromedia Flash MX Hands-On Training (Peachpit
Press).

Flash Remoting is not complex, but it helps to know the Flash authoring tool. If you are familiar with
other programming environments, such as the Visual Basic or Delphi environments, learning the
Flash interface is easy. Coming from a Visual Basic background, I felt right at home in Flash MX.
Flash Pro extends the forms-based visual metaphor, making it even more accessible to Visual Basic
developers.

This book assumes you know basic programming concepts-such as loops, variables, and
arrays-and ActionScript programming techniques in particular. If you don't know ActionScript but
are proficient in another language, such as JavaScript, C++, Java, or CFML, see ActionScript for
Flash MX: The Definitive Guide by Colin Moock (O'Reilly). That book is recommended for ActionScript
programmers of all levels, including those wanting to learn ActionScript (it too assumes familiarity
with the Flash authoring environment's GUI).

Object-oriented programming (OOP) will play an important role in this book, but again, this isn't a
book on OOP. I assume you have at least a passing knowledge of OOP; the book uses OOP
techniques when they make sense, but it is not bound by them. There are some OOP purists who
may scoff at some of the techniques, but it is my goal to show you the techniques you need to utilize
Flash Remoting. OOP is, after all, only a methodology. It is most often the best tool for the job, but I
don't want to burden the code with OOP for its own sake.

This book does not teach ColdFusion, C#, or Java; however, basic programming knowledge is
sufficient to understand the examples even if you don't know much about server-side programming.
Because Flash Remoting can be used in a variety of environments, examples are presented in
different technologies. Wherever applicable, the server-side examples show ColdFusion (CFML), J2EE
(Java), PHP, and ASP.NET (C# or VB) code. The Flash ActionScript, in most cases, remains
essentially the same. Independence of the server-side server model is another cool benefit of Flash
Remoting. O'Reilly has a slew of excellent books on C#, Java, PHP, and ASP.NET. See Appendix B for
some recommendations, or see the O'Reilly catalog page at http://www.oreilly.com/catalog for a
more complete list. For guidance on ColdFusion, see Programming ColdFusion MX by Rob Brooks-
Bilson (O'Reilly).

[Team LiB]

http://www.oreilly.com/catalog
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

The Book at a Glance

This is the first edition of Flash Remoting: The Definitive Guide. It covers new ground because Flash
Remoting is a relatively new technology. Most of the examples in the book centralize the code on the
first frame of the timeline or in an external include file.

Flash Remoting works with several different server-side technologies. You should skim the sections
that cover alternative server models, as they contain useful nuggets applicable to other platforms.
Each chapter may be read individually or as parts of a whole. The first three chapters will be crucial
to understanding Flash Remoting and should be read sequentially.

The chapter breakdown is as follows.

Part I: Remoting Fundamentals

Part I covers the setup and installation of Flash Remoting and offers a basic introduction to its use. It
also offers details on core concepts and Remoting internals.

Chapter 1

A general introduction to Flash Remoting and related technologies. It implements a sample
"Hello World" application for all supported platforms, which demonstrates the simplicity of the
technology.

Chapter 2

Gives a complete rundown of what is needed to implement Flash Remoting and describes the
basic installation processes for each component. The Flash authoring interface is described as it
relates to Flash Remoting.

Chapter 3

The Flash MX UI components are covered as they relate to Flash Remoting, along with several
components released as commercial add-ons by Macromedia. In addition, techniques to build
forms in Flash MX are described. Examples highlight each key point.

Chapter 4

Explains the Flash Remoting API by dissecting the various classes that are installed when you
install the Flash Remoting components and methods of those classes. Again, each important
point is shown using examples that you can run on your own system.

Part II: The Server-Side Languages

Part II covers the server-side environments that Flash can communicate with via Flash Remoting.

Chapter 5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColdFusion is perhaps the easiest and most popular of the different server-side models
available to Flash Remoting, and this chapter shows various techniques for using Flash
Remoting with ColdFusion.

Chapter 6

Server-Side ActionScript (SSAS) allows Flash MX developers to develop server-side code using
the familiar ActionScript syntax instead of ColdFusion or Java. ColdFusion and JRun servers can
both execute Server-Side ActionScript using a built-in parser based on the open source Rhino
implementation of JavaScript.

Chapter 7

Flash Remoting lets developers enhance any J2EE (i.e., Java) application. This chapter covers
applications that run on supported J2EE servers, including Macromedia's JRun 4 server and
IBM's WebSphere.

Chapter 8

Microsoft's Active Server Pages (ASP) technology is being phased out in favor of ASP.NET.
Flash Remoting works well with ASP.NET but does not support ASP. This chapter covers the
idiosyncrasies of the ASP.NET implementation by building several real-world examples.

Chapter 9

The PHP technology is an open source server platform that attracts many users. Macromedia
did not release a version of Flash Remoting for PHP, but a group of developers have created an
open source solution. This chapter covers the PHP implementation, AMFPHP.

Part III: Advanced Flash Remoting

Part III covers advanced Flash Remoting techniques.

Chapter 10

Flash Remoting allows Flash to interface with SOAP-based web services, regardless of the
server-side language with which the web service is implemented. This chapter covers both
basic and advanced techniques for publishing and communicating with remote web services.

Chapter 11

Flash's built-in UI components and ActionScript objects can be extended to offer more
functionality. This chapter examines several objects and components and explains how to
extend functionality to enhance Flash Remoting.

Chapter 12

Expands on earlier chapters by showing some common best practices that an ActionScript
programmer can use with Flash Remoting, such as handling server-side results and errors,
organizing code, and clearly separating the UI from the server-side functionality.

Chapter 13

Flash supports important debugging tools for serious application development. This chapter
explains the ActionScript and NetServices debuggers, as well as general techniques for both
client-side and server-side debugging.

Chapter 14

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Demonstrates building a simple script repository, including the inserting, updating, deleting,
and displaying of data from a database and the uploading, downloading, and storing of scripts.

Chapter 15

A Flash Remoting API reference that you will refer to as you build your Flash Remoting
applications.

Part IV: Appendixes

Appendix A

Covers datatype conversion from Flash Remoting to the different server-side languages.
Appendix B

Lists other resources covering Flash Remoting or related technologies.
Appendix C

Includes details of the user interface specification and implementation of the real-world script
repository application demonstrated in Chapter 14.

Terminology Conventions

The word Flash has different meaning in different contexts, such as a browser plugin or the authoring
environment. This book follows these naming conventions:

Flash

Refers generically to Flash movies and the Flash technology.
Flash MX

Refers to the Flash MX authoring environment.
Flash MX 2004 (Flash 2004)

Refers to the Flash 2004 authoring environment. Flash 2004, released in September 2003, is
the sequel to Flash MX. Flash Remoting in Flash 2004 is the same as Flash Remoting in Flash
MX.

Flash MX Professional 2004 (Flash Pro)

Refers to the Flash Pro authoring environment. Flash Pro offers all the features of Flash 2004,
plus a forms-based UI and some additional components. Flash Remoting in Flash Pro is the
same as Flash Remoting in Flash 2004 and Flash MX, although there is additional support for
access to SOAP-based web services.

Flash Player 7, Flash Player 6, or Flash Player

Refers to the browser plugin that allows users play .swf files (movies). I use the term plugin,
even though the Flash Player is an ActiveX control in Internet Explorer. If we use the generic
term Flash Player in relation to Flash Remoting, you can assume we mean Flash Player 6 or
later. Flash Player 7 has built-in support for SOAP-based web services without requiring a
server-side installation.

Flash 5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Refers to the Flash 5 authoring environment. Flash 5 does not support Flash Remoting.
Flash Player 5

Refers to the earlier browser plugin. Flash Player 5 does not support Flash Remoting.
Standalone Player

Refers to the Flash Player that runs on the local system without needing the browser. The
Standalone Player for Flash MX or later supports Flash Remoting, but earlier Standalone Players
(i.e., Flash 5 and earlier) do not.

Flash Remoting

Refers generically to the technology that includes the ability to communicate between Flash
and some server-side component, including the server-side software that supports Flash
Remoting and the AMF message format.

Flash Remoting MX and Flash Remoting gateway

Both terms refer to the server-side modules needed for each server model. For ColdFusion, it is
a native service (a Java servlet); in ASP.NET it's an assembly; in Java servers, it runs as a
servlet; in PHP, it is a class.

Flash Remoting Components

Refers to the downloadable components from Macromedia that you have to install into the
Flash authoring environment in order to work with Flash Remoting.

ColdFusion MX

Refers to the Macromedia ColdFusion MX application server.
ColdFusion Markup Language (CFML) and ColdFusion

Both terms refer to the ColdFusion programming language in which .cfm pages are
implemented.

J2EE server

Refers to Java 2 Enterprise Edition servers, such as JRun 4 or IBM's WebSphere.
Java server

Refers to other implementations of Java servlet technologies, such as Tomcat, that don't
necessarily support the J2EE specification.

Java

Refers to the programming language used to build J2EE and Java server applications.

Typographical Conventions

This book follows these typographical conventions:

Menu options

These are shown separated by the character, such as File New or Modify Align
 To Stage.

Constant width

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Used for directives, variable names, property names, parameter names, ColdFusion markup
tags, and code samples. It also denotes code within the text.

Italic

Italics indicate function names, object names, class names, directory names, commands,
filenames, and file suffixes such as .swf or URLs such as
http://www.macromedia.com/index.html. Italics are also used for emphasis, such as when
introducing a new term to the reader. Functions or methods will usually be followed by
parenthesis, like myFunction().

Constant width bold

Indicates that the reader should enter something verbatim. It is sometimes used within code
samples for emphasis.

Constant width italic

Indicates a placeholder that should be substituted with your own value, such as
myServiceName. It can also be used for emphasis within code comments. Optional items are

also sometimes shown in square brackets.

Some sections of text that require special attention will be set apart from the text with the following
icons:

This is a tip. A tip either reiterates an important point, offers a tidbit of
information that relates to the current discussion, or brings to your attention an
item that is crucial to understanding the topic at hand.

This is a warning. A warning describes some aspect of the current topic that
needs careful attention so that you can avoid possible problems down the road.

[Team LiB]

http://www.macromedia.com/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

We'd Like to Hear from You

The book-writing process is long and arduous, and the examples have been tested and retested.
However, mistakes do creep in from time to time. If you find any errors in the text or code examples,
please write to:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
1-800-998-9938 (in the United States or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (fax)

We have a web page for the book, where we list any additional information. You can access this page
at:

http://www.oreilly.com/catalog/flashremoting/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and the O'Reilly
Network, see our web site at:

http://www.oreilly.com

In addition to the O'Reilly web site, the author maintains a web site that ties in with the book. There
you will find articles, examples, and links to other resources. You can download working versions of
most of the examples in the book from the online Code Depot on the author's web site, which is
located at:

http://www.flash-remoting.com

You can reach the author at:

tom@flash-remoting.com

[Team LiB]

http://www.oreilly.com/catalog/flashremoting/
http://www.oreilly.com
http://www.flash-remoting.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Future Versions of Flash

The examples in this book were tested most heavily in Flash Player 6 and Flash MX; however, Flash
Player 7, Flash 2004, and Flash Pro were still in final beta at the time of this writing. Any
discrepancies between Flash MX (and Flash Player 6) and later versions will be noted on the book's
accompanying web site: http://www.flash-remoting.com.

[Team LiB]

http://www.flash-remoting.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Acknowledgments

Although I've written several books dealing with Macromedia tools, this has been the most difficult,
due to the cutting-edge technologies being used. When we first began, Flash Remoting was available
only for ColdFusion, with ASP.NET and Java versions in beta. Now, open source projects are springing
up that utilize the AMF format and the Flash Remoting interface for PHP, Java, and Perl.

There are several people who have to be thanked for their generous contributions to the text and
code contained in the book. First and foremost, my editor, Bruce Epstein, has gone above and
beyond what is the norm for editing a book in this field. He seems to live and breathe for the sake of
the books he edits, and has substantially improved the text through constant suggestions,
comments, and revisions. Thanks Bruce!

Thanks are due to everyone at O'Reilly who contributed to the publication of this book, including the
production editor, Genevieve d'Entremont; Brian Sawyer, who proofread the book; and Julie Hawks,
who produced the final index. Likewise, my thanks to Rob Romano for creating the figures from my
napkin sketches and for enhancing the screenshots.

The book was started by two of Macromedia's employees: Mike Chambers (Flash Community
Manager) and Christian Cantrell (Server Community Manager). Parts of Mike's Chapter 1 still remain,
as do parts of Christian's Chapter 5. They provided the seed that started the book.

Several other authors have greatly enhanced the book. Alon J. Salant, a Java expert at Carbon Five
(http://www.carbonfive.com) who is known for the ASTranslator project, wrote Chapter 7. Joel
Martinez wrote Chapter 8 covering ASP.NET based in part on a draft from Jason Michael Perry.
Branden Hall, a well-known Flash guru and co-author of Object-Oriented ActionScript (New Riders),
contributed Chapter 9. Devon H. O'Dell contributed PHP examples in Chapter 1 and Chapter 2.
Thanks to all five of these gentlemen for making this a well-rounded book.

The book went through several rounds of technical editing to ensure the accuracy of the content. I'd
like to thank all of the tech editors who added their comments and improved the book: Marc Garrett,
Ray West, Massimo Foti, Sham Bhangal, Joel Martinez, Alon J. Salant, Devon H. O'Dell, Joey Lott,
Chafic Kazoun, Jesse Warden, and Robin Debreuil. A special thanks to my usual writing partner Ray
West, who was putting together Community MX and organizing several TODCON conferences while I
wrote this book. Ray is a good guy and a great partner.

On a personal level, my family has always provided the inspiration for me to keep writing. My wife
Janet is the best partner I could have. If this were a novel and I had written a character as a
representation of my dream girl, she would be it. Her constant encouragement throughout the
process kept me going even when the workload was overwhelming. My daughter Amber has taken a
strong liking to Flash and helped with a lot of the visual aspects of Flash that would have completely
escaped me had she not been there to help. Thanks Janet and Amber.

Tom Muck

Fairfax, VAJuly 2003

[Team LiB]

http://www.carbonfive.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Part I: Remoting Fundamentals
Part I covers the setup and installation of Flash Remoting, as well as offering a basic
introduction to its use. It also offers details on core concepts and Remoting internals. By the end
of Part I, you will have a working knowledge of Flash Remoting, plus a deeper understanding
that will act as a springboard for future development.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 1. Introduction to Flash Remoting
When I was an 11-year-old kid, I thought I was pretty good on a bike. I could do wheelies around the
neighborhood, drive on dirt hills, jump ramps. It wasn't enough, though. I wanted to make the
transition to a minibike, which is basically a little bike with a lawn mower engine on it. If all I needed
was my riding skills, I probably would have been set. Unfortunately, keeping my feet in one place,
turning the throttle, and pressing the hand brakes on the minibike were unknown territories. My first
time out I turned the throttle too far, lost my footing, and forgot how to hit the brake. I landed in a
heap in the street.

If I had put a little forethought into it, I would have realized that riding a bike and riding a minibike
were completely different things. Only some aspects were the same; by learning the new aspects and
applying my prior knowledge of riding a bike, I eventually figured out how to stay put without falling
on my butt.

Working with a new computer technology in a familiar environment is like that. In the case of Flash
Remoting, everyone holding this book is probably familiar with Flash movies and ActionScript
programming. Flash Remoting puts some new and exciting things into Flash that will require learning
new ways to look at ActionScript and what it can accomplish. With Flash Remoting, Macromedia has
put an engine on Flash.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.1 What Is Flash Remoting?

These are exciting times. Macromedia is attempting to change the way application developers create
web-based applications.

Flash Remoting constitutes a complete rethinking of how web applications are constructed. Using
Flash Remoting, you can create complex client/server applications that more closely resemble
desktop applications than traditional web pages. For those of you familiar with traditional Windows-
style programming IDEs, Flash Remoting is roughly the web equivalent of a Visual Basic client/server
application. This chapter presents a broad overview of Flash Remoting.

Flash Remoting technology is at the center of Macromedia's Studio MX product suite, linking the
server platforms with the client-side tools. Flash Remoting is built into Macromedia's two application
servers-ColdFusion MX and JRun 4. In addition, programmers using other technologies, such as
ASP.NET or J2EE application servers, can purchase the Flash Remoting MX package so that Flash
Remoting can be utilized on those servers. Although Macromedia doesn't officially support other
languages, open source implementations are available for PHP (the AMFPHP project at
http://www.amfphp.org) and Perl (the FLAP project at http://www.simonf.com/flap). There is also an
open source Flash Remoting for Java implementation (OpenAMF at http://www.openamf.org).

The Flash authoring environment includes UI components, which form the basis of Macromedia's
strategy of using a Flash movie as the client in a client/server atmosphere. This approach allows the
application server to provide the programming power for the application. Using Flash Remoting, a
Flash movie can act as the interface for diverse applications, including connections to databases,
SMTP mailers, server components, web services, and much more. Flash Remoting ties together the
Macromedia authoring tools and application server technologies to form a new approach to web
application development and deployment.

Flash Remoting is a server-side technology that integrates with existing application servers to provide
a gateway between the Flash Player and remote services deployed on the server. A service can be a
simple ColdFusion page or ColdFusion Component (CFC), a PHP or Perl script, a Java class, or an
ASP.NET page or DLL. Flash Remoting allows developers to access remote services and web services
from within Flash through a simple ActionScript API that is similar to JavaScript. Flash Remoting also
allows developers to integrate Flash with existing client/server applications with little modification, to
provide a rich, robust user interface that can be deployed across browsers, platforms, and devices.

The Flash Remoting gateway on the server sits between the Flash Player on the client and the server-
side tier of an application. It handles data serialization and procedure calls between the Flash Player
and the server. Serialization is the translation of data to a format that can be easily transmitted over
the Web. This translation is transparent to both client-side Flash developers and server-side
developers. We'll discuss a client/server architecture using the Flash Player and the Flash Remoting
gateway later in this chapter.

Using Flash Remoting, a Flash movie can connect to virtually any remote service deployed on the
server. The remote services can be deployed using various languages and technologies, including:

Java classes

http://www.amfphp.org
http://www.simonf.com/flap
http://www.openamf.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

JavaBeans™

Enterprise JavaBeans (EJB)

Java Management Extensions (JMX MBeans)

ColdFusion templates

ColdFusion Components

Server-Side ActionScript (SSAS)

ASP.NET pages

ASP.NET DLLs

SOAP-based web services

PHP pages

In other words, a remote service might be a ColdFusion page, a PHP page, or an ASP.NET DLL,
among other things. Flash Remoting allows Flash to make remote procedure calls on existing server-
side services; server-side developers do not have to implement any Flash-specific APIs or adjust their
design patterns. Calling a service from a Flash movie is as easy as calling it by name. For example, if
you have a server-side method named getRecords() that you would typically call from another
server-side page to feed an HTML page, Flash Remoting lets you call the getRecords() method
directly from the Flash movie. Gone are the page reloads associated with HTML pages. The
communication with the server is seamless and invisible to the user. This means that the typical web
experience is much more user friendly and performs more like a traditional desktop application.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.2 How Does Flash Remoting Work?

The Flash Remoting gateway is installed on the application server and acts as an interface between
the Flash Player and the server. The Flash Remoting software that implements the gateway is also
called an adapter. It has three main tasks:

Handle requests from the Flash Player to remote services. These services can be on the same
server as the Flash Remoting gateway or can be external to the server in the form of web
services.

Translate requests and data from the Flash Player into server-side requests and datatypes.

Translate responses and data from the server into native ActionScript datatypes.

Figure 1-1 depicts the Flash Player/Flash Remoting architecture.

Figure 1-1. The Flash Player/Flash Remoting architecture

Communication between the Flash Player and the Flash Remoting gateway is done via HTTP, which
has a few implications:

Communication between the Flash Player and the Flash Remoting gateway is
request-driven. The Flash Player must initiate all communication with the Flash Remoting
gateway. The server cannot push data to Flash unless it is requested by the Flash Player. Use
the ActionScript XMLSocket object, as discussed in ActionScript for Flash MX: The Definitive
Guide (O'Reilly), if you need to push data from the server to Flash, such as in a chat application.
Another option is to use Macromedia's Flash Communication Server MX (FlashCom) for these
types of applications.

HTTP is a stateless protocol, so each request from the Flash Player opens a new
connection to the server. The Flash Remoting gateway automatically maintains state
between requests through the use of cookies. If cookies are not available on the client, the
session state is maintained through a header in the communication packets between the Flash
Player and server.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Protocols that work with HTTP, such as SSL, also work with Flash Remoting. As shown
in Figure 1-2, the client/server architecture is the same when the Flash Player communicates
with Flash Remoting via HTTPS or SSL as it is using HTTP. Support for HTTPS allows
communication between the Flash Player and the server to be encrypted using SSL, provided
that the Flash movie is delivered to the client over an SSL connection and displayed within an
SSL-enabled browser. This gives a Flash application the same level of security that is available
to the HTML application.

Figure 1-2. Flash Player/Flash Remoting architecture using SSL

1.2.1 Action Message Format

Flash 5 movies could send XML or name/value pairs across HTTP. Although these packets could be
parsed automatically by Flash or manually by the developer using custom ActionScript, parsing could
be slow because all XML data is sent as text strings encased by cumbersome tags. Flash Remoting is
able to handle complex datatypes, such as objects, structures, arrays, and recordsets. A proprietary
format was needed to transfer information back and forth between the Flash movie and the
application server.

The protocol used for communication between the Flash Remoting gateway and the Flash Player is
Action Message Format (AMF). AMF is a binary protocol designed by Macromedia to provide a
lightweight, efficient means to serialize, deserialize, and transport data between the Flash Player and
the Flash Remoting gateway, as shown in Figure 1-3.

Figure 1-3. Flash Player/AMF/Flash Remoting

It is not necessary to understand AMF in detail to develop robust Flash applications that utilize Flash
Remoting; however, it is useful to have a basic understanding of the protocol. Macromedia has not

http://lib.ommolketab.ir
http://lib.ommolketab.ir

documented the protocol publicly, but the HTTP packets can be examined to gain insight into the
format, which seems to be closely based on the format used in remote shared objects (RSOs). The
developers of the AMFPHP project have partially documented the format at:

http://amfphp.org/?g=amf_format

The Flash Player communicates with the Flash Remoting gateway via the AMF protocol sent via
standard HTTP requests. An AMF packet is sent as a binary POST with the body of the request

containing the binary data serialization and remote procedure call information.

Flash Remoting requires browser support for binary POST. Because Netscape
6.x does not support binary POST, Flash Remoting does not work when the

Flash Player is running within Netscape 6.x. The Flash Remoting call has no
effect and no error is returned. This bug is fixed in Netscape 7. There are also
issues with early versions of Safari and Chimera on the Macintosh. You can use
a browser-detecting script to redirect users to an appropriate page that uses
HTML or older Flash formats if the user's browser does not support your Flash
Remoting application.

An AMF packet consists of the following:

A packet header, which describes the AMF version information and includes HTTP headers

A count of context headers in the array that follows

The context headers array, which describes to the server the context in which the information
should be processed (on calls from the client) or describes to the client what is coming from the
server (a result or status) and its format (such as a recordset or a string)

A count of the messages in the array that follows

The messages array, which is typically a method call coming from the client or a status/result
coming from the server

Following is the HTTP request and response generated by the Hello World examples shown later in
this chapter. Because AMF is a binary format, the binary data is shown as periods (...). The ASCII
text in the following excerpt, such as amf_server_debug, is part of the literal message:

POST /flashservices/gateway HTTP/1.1
Referer: http://192.168.0.5:8500/flashservices/gateway
Content-Type: application/x-amf
User-Agent: Shockwave Flash
Host: 127.0.0.1
Content-Length: 198
Cache-Control: no-cache

.......amf_server_debug....pNetDebugConfig
coldfusion...
amfheaders....amf....
httpheaders....recordset....error....trace...m_debug.........
....*com.oreilly.helloworld.HelloWorld.sayHello.../1....

http://amfphp.org/?g=amf_format
http://lib.ommolketab.ir
http://lib.ommolketab.ir

And the response from the server back to the Flash Player is as follows:

HTTP/1.0 200 OK
Date: Thu, 23 May 2002 02:53:09 GMT
Content-Type: application/x-amf
Content-Length: 69
Server: JRun Web Server

.....
/1/onResult...null.....
Hello World from ColdFusion Component

We can gain some insight into AMF by examining the request and response:

The content type of AMF is application/x-amf.

The AMF data is contained within the body of the request and response; it is primarily binary
and is therefore difficult to show in print.

There are human-readable strings within the AMF data.

The last point tells us that AMF is not entirely compressed. However, even uncompressed, the
protocol is very efficient at serializing ActionScript data.

AMF has a number of advantages over traditional Flash data serialization techniques, such as XML
and URL-encoded query strings, including:

AMF is a binary format and thus creates serialized data that is smaller than using string-based
encoding. This translates into lower bandwidth requirements and faster loading and response
times.

AMF was built specifically with Flash ActionScript datatypes in mind. Therefore, it can be
serialized quickly and efficiently from ActionScript objects and deserialized into ActionScript
objects within the Flash Player. In almost all cases, this leads to significant performance
increases over string-based serialization.

Why does Flash Remoting use AMF instead of SOAP to communicate with the Flash Player? After all,
SOAP was designed as a lightweight protocol for the exchange of information in a distributed
environment, which sounds similar to the goals for AMF. Both SOAP and AMF can transfer data and
make calls on remote services, and both work over standard HTTP and HTTPS. There are several
reasons why Macromedia developed AMF instead of using SOAP:

SOAP is implemented as XML and is therefore rather verbose compared to the binary AMF.

AMF is designed and optimized to work with Flash ActionScript datatypes. Deserializing AMF in
the Flash Player is much more efficient than parsing and deserializing SOAP, because AMF has
direct support for ActionScript datatypes whereas SOAP is a general-purpose protocol. Even if
SOAP messages were compressed, serialization in AMF would still be more efficient.

Adding AMF support to Flash Player 6 required only a small increase in the Player size (about 4
KB compressed), maintaining its slim footprint.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Integrating full SOAP support on the client side, with acceptable performance, requires an
increase in Player size. Although Flash Player 6 includes XML support, it does not support some
headers required by SOAP. Using Flash Remoting, Flash can access SOAP-based web services
even though Flash Player 6 doesn't support SOAP directly. That is, the Flash Remoting gateway
translates SOAP requests to and from AMF format on the server-side and then uses AMF to
communicate with the Flash Player. Flash Player 7 supports SOAP directly, but it will be late
2004 until Flash Player 7 is widely distributed.

The body of the AMF packet contains either an onResult event (i.e., response event) or an onStatus
event (i.e., error event), which are both ActionScript objects. The Flash movie can then use the
object directly, without any further parsing. Chapter 3 contains an in-depth discussion of the
onStatus and onResult events.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.3 Benefits

One of the key benefits of using Flash Remoting over XML or traditional HTML applications is that the
application server no longer needs to handle any of the parsing or presentation of information. This
frees resources on the server so that it can be better equipped to deal with more complex application
logic and/or more users. In addition, session management can be handled on the client inside of the
Flash movie rather than on the server. The server still keeps track of the session, but the developer
doesn't have to jump through hoops to keep track of users who don't have cookies or track a user
session across multiple pages. This equates to huge savings in development time and server
resources.

1.3.1 Why Not XML?

I've talked about the benefits of Flash Remoting, but why not use XML? After all, using XML you could
encapsulate all of the client/server communication within an ActionScript object and provide a simple
API to transfer complex datatypes serialized with XML between Flash and the server. This would have
the advantage of not requiring a server-side gateway and would work with Flash Player 5.

The main advantage of Flash Remoting over XML is that it relieves the developer from writing an
entire layer of code on both the client and server. XML parsing is built into many of the popular
server technologies, but it is cumbersome at best. However, Flash Remoting also has a number of
additional advantages:

It automatically handles all datatype conversions between ActionScript and the server.

It can convert multiple complex datatypes.

It seamlessly supports multiple server-side technologies and application servers.

It allows remote services and web services to be called directly from Flash without requiring any
additional server-side code to be written.

It provides a simple and consistent API for calling remote services and web services from the
Flash Player.

It uses AMF to serialize data, which offers better performance than string-based serialization
techniques (such as XML), even though AMF is not as widely supported as XML.

In a typical scenario involving an XML object being sent from a Flash 5 movie to a ColdFusion page,
the Flash movie first has to create the XML string manually. Then it has to send the XML string to the
ColdFusion page, which has to parse the XML before being able to utilize it. In addition, the server
has to transform the result of any operation on the server back into XML to send the result to the
Flash movie. The Flash movie then has to parse this XML once again to use the returned information.
All of this parsing of data eats up valuable resources and bandwidth even before the application logic
can be utilized.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In other words, a Flash 5 movie can't use the data directly from the application server, and the
application server can't use the data directly from Flash 5.

Take a typical example of a username and password login. The ActionScript for the Flash movie could
create a simple XML string and pass it to the ColdFusion page:

// Set up a new XML object.
var returnXML = new XML();
returnXML.ignoreWhite = true;

// Set the callback function for the response from the server.
returnXML.onLoad = handleReply;

// Create an XML string.
// Form field variables are replaced in the string.
var my_xml = '<?xml version="1.0" encoding="iso-8859-1"?>';
my_xml += '<myValidation>';
my_xml += '<username>' + username + '</username>';
my_xml += '<password>' + password + '</password>';
my_xml += '</myValidation>';
var flash_xml_object = new XML(my_xml)

// Send it to the server and then load it into the my_xml object.
flash_xml_object.sendAndLoad("http://192.168.0.4/myLogin.cfm", returnXML);

function handleReply (result) {
 if (result) {
 if (this.firstChild.attributes.logged == "1") {
 greeting = "Hello " + this.firstChild.attributes.username;
 greeting += ". Login was successful";
 } else {
 greeting = "Login failed";
 }
 } else {
 greeting = "There was a communication failure.";
 }
}

A ColdFusion page to handle the logic would look like this:

<!---Deserialize the username and password from the XML--->
<cfset logged="1">
<cfset my_xml = XMLParse(URLDecode(GetHttpRequestData().content))>
<cfset username = my_xml.myValidation.username.xmltext>
<cfset password = my_xml.myValidation.password.xmltext>

<!---Query the database for matching entries--->
<cfquery name="myLogin" datasource="myDatasource">
 SELECT username FROM Users
 WHERE username = '#username#' and password = '#password#'
</cfquery>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!---Check whether a match was found--->
<cfif myLogin.RecordCount LT 1>
 <cfset logged = "0">
</cfif>

<!---Create an XML string to return to the Flash movie--->
<cfset returnXML = "<return username=""" & username>
<cfset returnXML = returnXML & """ logged=""" & logged & """ />">
<cfoutput>#returnXML#</cfoutput>

As you can see, the code is not intuitive-the XML is manually serialized into a string on both client
and server, and the string has to be deserialized and turned into an XML object again on the Flash
side. All of this code was created to send one simple XML object from the Flash movie to the server
and back again. Imagine if this were something more complex, such as a recordset with 10 or 15
fields and 1,000 rows.

The Flash Remoting version of the previous code might look like this:

var myURL = "http://127.0.0.1/flashservices/gateway";
var myServer = NetServices.createGatewayConnection(myURL);
var myService = myServer.getService("com.oreilly.frdg.authentication", this);

myService.getLogin(username, password);

// The result handler for the getLogin() method invocation
function getLogin_Result (result_rs) {
 if (result_rs.getLength() < 1) {
 greeting = "Login failed";
 } else {
 greeting = "Hello " + result_rs.getItemAt(0).username;
 greeting += ". Login was successful";
 }
}

And the server-side code might look like this:

<cfcomponent displayName="login">
 <cffunction name="getLogin" returnType="query" access="remote">
 <cfargument name="username" type="string">
 <cfargument name="password" type="string">
 <cfquery name="myLogin" datasource="myDatasource">
 SELECT username FROM Users
 WHERE username = '#username#' and password = '#password#'
 </cfquery>
 <cfreturn myLogin>
 </cffunction>
</cfcomponent>

The Flash Remoting code in this version is more intuitive; it defines a component containing a
function that accepts two arguments directly from Flash. There is no manual parsing; the arguments
to the function are passed as strings and a recordset is returned. If the recordset contained 15 fields
and 1,000 rows, the server-side code would not look much different.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Flash Remoting is much simpler because the Flash movie does not have to package the request
in any special format such as XML. Likewise, the ColdFusion Server does not have to package the
result for the Flash movie. The data is simply passed back and forth as is and put to use. It is the
difference between having a pizza delivered and making the dough and baking the pizza yourself. If
the pizza is delivered, the only action you have to take on the pizza is to eat it.

Manually serializing and deserializing data has the advantage of working with Flash Player 5.
However, when you consider the amount of client- and server-side code that you have to write,
debug, and maintain just to provide basic support for serializing one datatype, the advantages of
Flash Remoting become clearer. Considering all the datatypes that Flash Remoting supports and the
fact that you can call remote services by name without writing any extra server-side code, Flash
Remoting becomes quite attractive.

1.3.2 HTML and Server-Side Code

A typical HTML/server-side template application has problems similar to those in our XML example.
The server-side code does not simply perform logic and return information; in many cases, it formats
the data as well. Take this simple ColdFusion snippet as an example:

<!---Query the database for matching entries--->
<cfquery name="rsGetSearchResults" datasource="bookstore">
SELECT Title, Category, Pub_No FROM Books
WHERE Title LIKE '%#form.searchfield#%'
</cfquery>
<!---Create an HTML table to display the matches--->
<table border="1">
 <tr>
 <td>Title</td>
 <td>Category</td>
 <td>Pub_No</td>
 </tr>
 <cfoutput query="rsGetSearchResults"
 startRow="#StartRow_rsGetSearchResults#"
 maxRows="#MaxRows_rsGetSearchResults#">
 <tr>
 <td>#rsGetSearchResults.Title#</td>
 <td>#rsGetSearchResults.Category#</td>
 <td>#rsGetSearchResults.Pub_No#</td>
 </tr>
 </cfoutput>
</table>

This example queries a database and outputs the results as a table in the browser. This type of
mixture of HTML and server-side code is commonplace in web application development. Notice,
however, that the presentation of the content is created entirely by the application server. The HTML
table doesn't exist until the query is executed and the results are sent to the browser.

Using Flash Remoting, the application server code is utilized for the logic only-querying the
database. The results of the query are returned to the Flash movie without any further parsing or
manipulating. Using Flash Remoting, a ColdFusion component could be written as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfcomponent displayName="searchBooks">
 <cffunction name="getTitles" returnType="query" access="remote">
 <cfargument name="search" type="string" default="%" />
 <cfquery name="rsGetSearchResults" datasource="bookstore">
 SELECT Title, Category, Pub_No FROM Books
 WHERE Title LIKE '%#form.searchfield#%'
 </cfquery>
 <cfreturn rsGetSearchResults />
 </cffunction>
</cfcomponent>

Notice the line in bold, <cfreturn rsGetSearchResults />, which returns the entire recordset to

the Flash movie as an ActionScript RecordSet object. The Flash movie, in turn, can use the recordset
without any further parsing. For example, to attach the recordset to a DataGrid component in Flash,
you can simply use this result handler in ActionScript:

function rsGetSearchResults_Result (result_rs) {
 myGridComponent.setDataProvider(result_rs);
}

Again, the Flash movie is working with the recordset as it comes from the server. No further parsing
is necessary. Also, the ActionScript programmer has at his disposal a series of highly complex and
interactive interface elements, unlike HTML forms, which are limited in functionality.

Another advantage is that the Flash movie looks the same in all browsers. The HTML language is
ubiquitous, but the implementation is not uniform. Typically, you have to rely on CSS
implementation, JavaScript being enabled, and/or cookies being enabled, or you have to create even
more client-side code to handle the many possible user configurations.

1.3.3 Session Management in Flash

HTTP is a stateless protocol. The web server treats each page request coming from a browser as
coming from an entirely new user. To create the illusion of maintaining state, many application
servers have state management (or session management) in place to create a seamless experience
for the end user. Session management is a bit of an art form for the application developer, as there
are no sure-fire, out-of-the-box methods to maintain state in most application servers.

Typically, in a web application, you use cookies in conjunction with session variables to maintain
state. This method won't work if cookies are turned off on the client's browser; therefore, you must
store the information in a database or text file for 100% reliability. Furthermore, session
management and variables eat up server memory. In an ASP application, for example, each typical
user session consumes at least 4.5 KB, unless sessions are explicitly turned off. Also, unless a server
application is cluster-aware, managing session state across a cluster can become complicated
(because different servers in the cluster might handle successive requests).

Flash Remoting handles session state through means that are invisible to both the user and the
server. Session information is sent with each and every AMF packet between the client and the
server. No manual session management is required. In a rich client implementation, the Flash movie
is loaded into the user's browser only once, so session state is maintained automatically with every
call to the server. In addition, because the session state is maintained within the Flash movie in the
user's browser, it makes little difference if the application server is clustered.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.4 Flash Remoting Requirements

To develop Flash applications that use Flash Remoting, you must have:

Macromedia Flash MX or later

The Macromedia Flash Remoting components

A server that has the Flash Remoting gateway or the equivalent (such as AMFPHP, FLAP, or
OpenAMF)

1.4.1 Macromedia Flash Authoring Tool

The Flash authoring environment is used to create Flash files (.fla and .swf files) and applications.
Flash MX was a substantial upgrade to previous versions of Flash. In addition to cosmetic interface
changes, the way in which Flash applications are developed has changed. Flash MX or later is
required to develop Flash Remoting applications. A fully functional trial version is available from
Macromedia at:

http://www.macromedia.com/software/flash/download/

You can find more information on Flash at:

http://www.macromedia.com/software/flash/

As of Flash MX, Macromedia abandoned a consistent version-numbering
scheme for the authoring tool, but the Flash Player is still assigned a numeric
version. Flash Remoting requires that you publish your .swf files in Flash 6
format or later.

Director MX, a separate multimedia authoring tool sold by Macromedia, can access Flash Remoting
using the Flash MX Asset Xtra (which is basically an embedded version of Flash Player 6). For
simplicity, this book assumes you are running Flash in a browser or a standalone Projector.

1.4.2 Macromedia Flash Remoting Components

Flash MX does not come with the Flash Remoting components preinstalled. The Flash Remoting
components add support for Flash Remoting to the Flash authoring environment and are required to
create Flash files that take advantage of Flash Remoting. If you're using Director MX as the front end,
you'll need the Flash MX Asset Xtra, which is compatible with Director MX or Shockwave 8.5.1 or
later. The Flash MX Asset Xtra includes Flash Remoting support.

The Flash Remoting components are included with the Flash Remoting gateway and can be found on

http://www.macromedia.com/software/flash/download/
http://www.macromedia.com/software/flash/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the Studio MX CD-ROM or downloaded for free from the Macromedia web site. If you're using
versions from the Studio MX CD-ROM, make sure you get the latest updates from the Macromedia
site as well. The components and other information about Flash Remoting can be found at:

http://www.macromedia.com/go/flashremoting

The components make the following items available from within the Flash MX authoring environment:

ActionScript code and classes necessary for Flash Remoting, including NetServices.as,
RecordSet.as, DataGlue.as, and NetDebugger.as

The Remote Service Browser, for examining remote services

The NetConnection Debugger panel, for debugging Flash Remoting applications

Flash MX ActionScript editor enhancements for Flash Remoting, and Reference panel
documentation

All of these items are discussed in detail in this book, beginning in Chapter 2.

1.4.3 Macromedia Flash Remoting Gateway

The Flash Remoting gateway must be installed on the remote server to allow it to communicate with
the Flash movie via Flash Remoting. If you are using an application server that comes with Flash
Remoting preinstalled, such as ColdFusion MX or JRun 4, then this step is already taken care of.

Earlier versions of ColdFusion and JRun do not support Flash Remoting.

The Flash Remoting gateway is also sold separately for other application servers, including J2EE
servers and Microsoft .NET, and must be installed and configured before it can be used. The trial
version of the Flash Remoting gateway for J2EE and ASP.NET can also be downloaded from the
Macromedia web site cited earlier.

There are several open source implementations of the Flash Remoting gateway, apart from the
versions supported by Macromedia.

The AMFPHP project, discussed in Chapter 9, implements Flash Remoting for PHP application servers:

http://www.amfphp.org

The FLAP project implements Flash Remoting for Perl:

http://www.simonf.com/flap

The OpenAMF project is an open source alternative to Macromedia's Flash Remoting gateway for
Java:

http://www.openamf.org

http://www.macromedia.com/go/flashremoting
http://www.amfphp.org
http://www.simonf.com/flap
http://www.openamf.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.5 Supported Platforms

This section is a quick summary of Flash Remoting capabilities and server-side services that can be
exposed to Flash from supported application servers. For the latest list of supported application
servers, platforms, and configurations, see:

http://www.macromedia.com/go/flashremoting

1.5.1 Macromedia ColdFusion MX

The Flash Remoting gateway comes preinstalled with Macromedia ColdFusion MX and allows
developers to deploy remote services as:

ColdFusion pages

ColdFusion Components

Server-Side ActionScript (SSAS)

SOAP-based web services

Flash Remoting is also included in the Macromedia ColdFusion MX for J2EE version for deployment on
Java application servers, such as WebSphere and BEA WebLogic. It includes support for the remote
services supported in ColdFusion MX in addition to those supported on a Java server that ColdFusion
is installed on, as discussed below. For more information on ColdFusion MX, or to download a fully
functional trial version, go to:

http://www.macromedia.com/software/coldfusion/

See also Programming ColdFusion MX, by Rob Brooks-Bilson (O'Reilly), for information on
ColdFusion. The trial/developer version of ColdFusion MX can be obtained together with Flash MX in
the Macromedia Studio MX bundle.

1.5.2 J2EE Application Servers and Java Servlet Engines

The Flash Remoting gateway is available as a standalone product for any J2EE-compatible application
server. It also works with a Java servlet engine that has been certified compatible with Sun's servlet
2.2 or 2.3 specifications, such as Tomcat. Flash Remoting for J2EE allows remote services to be
deployed as:

JavaBeans

Java classes

http://www.macromedia.com/go/flashremoting
http://www.macromedia.com/software/coldfusion/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Enterprise JavaBeans

Macromedia has tested the functionality with J2EE servers such as JRun 4, IBM WebSphere AS 4, and
Sun ONE Web Server, although they also mention reports of success with Tomcat and other servers.
For the latest information on supported application servers, consult the Flash Remoting
documentation at the Macromedia site.

Chapter 7 discusses Flash Remoting for J2EE servers in detail. The OpenAMF project, an alternative
to Macromedia Flash Remoting gateway for J2EE, is also discussed briefly at the end of Chapter 7.

1.5.3 Macromedia JRun 4

JRun is Macromedia's J2EE-compliant Java application server. Flash Remoting comes preinstalled with
Macromedia JRun 4 and allows developers to deploy remote services as:

JavaBeans (stateful)

Java classes (no state and no pool, new instance on every request)

Enterprise JavaBeans (EJBHome and EJBObject)

JMX MBeans

Server-Side ActionScript (SSAS)

SOAP-based web services

Because JRun 4 is a J2EE-based server, it supports access to the same services as other J2EE-
compatible application servers mentioned earlier, as well as Server-Side ActionScript, JMX MBeans,
and SOAP-based web services. For more information on JRun, or to download a fully functional trial
version that will revert to a developer's version after 30 days, go to:

http://www.macromedia.com/software/jrun/

1.5.4 Microsoft ASP.NET Servers

Flash Remoting is available as a standalone product for Microsoft ASP.NET servers. It allows remote
services to be deployed as:

ASP.NET pages (.aspx pages)

DLL libraries (in the local assembly cache)

.NET executables

SOAP-based web services

http://www.macromedia.com/software/jrun/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flash Remoting does not work with "classic" ASP pages. You must have the
ASP.NET framework running on your server. To run the ASP.NET framework
you need IIS 5.0 or later, running on Windows 2000 Professional, Windows
2000 Server, Windows XP Professional, or Windows Server 2003 (a.k.a.
Windows .NET Server).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.6 Hello World

An introduction to any technology would not be complete without a "Hello World" example. This will
give you some hands-on experience with the client-side and server-side code before diving into
details. It also provides a sound basis for exploring Flash Remoting on your own.

First, we will look at the Flash code necessary to call the remote service, which is virtually the same
regardless of which server-side technology implements the service. We will then look at the server-
side code implemented in ColdFusion, Server-Side ActionScript, Java, ASP.NET, PHP, and as a SOAP-
based web service.

The examples throughout the book assume that you have Flash Remoting
installed and configured on your server, and that you have installed the Flash
Remoting components for Flash MX. Chapter 2 covers Flash Remoting
installation and configuration in more detail.

1.6.1 Flash ActionScript Code

The client-side ActionScript is virtually the same for each server-side service example. The only
things that change are the path to the remote service when it is implemented as a web service and
the path to the Flash Remoting gateway, which varies depending on the server implementation.

The client-side ActionScript code shown in Example 1-1 should be inserted on the first frame of the
main timeline of a Flash movie, as shown in Figure 1-4.

Figure 1-4. Flash timeline with attached client-side ActionScript

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 1-1. Client-side ActionScript code (HelloWorld.fla)

/*** Section 1 ***/
#include "NetServices.as"

/*** Section 2 ***/

// Assign myURL so it points to your Flash Remoting installation.
var myURL = "http://localhost/flashservices/gateway";
var myServicePath = "com.oreilly.frdg.HelloWorld";

/*** Section 3 ***/
myResult = new Object();

myResult.onResult = function (data) {
 trace("Data received from Server : " + data);
};

myResult.onStatus = function (info) {
 trace("An error occurred : " + info.description);
};

System.onStatus = myResult.onStatus;

/*** Section 4 ***/
var myServer = NetServices.createGatewayConnection(myURL);
var myService = myServer.getService(myServicePath, myResult);

myService.sayHello();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Section 1 of Example 1-1 includes the NetServices.as library, which contains the code necessary to
connect to a Flash Remoting-enabled server from Flash. If you do not include NetServices.as, the
example will not work, but you will not receive any errors within the authoring environment.

Section 2 initializes two variables: myURL and myServicePath. The myURL variable will be used to
create a NetConnection object that points to the server. The myServicePath variable will be used to

create a service object that points to the service that will be called.

The myURL variable specifies the URL to the Flash Remoting gateway installed on the server. If the

Flash Remoting gateway is installed on a Microsoft .NET server, the URL will point to the .aspx file for
the gateway. Similarly, if you are using AMFPHP, the URL will point to a gateway.php file on your
server.

The myServicePath variable specifies the path on the server to the remote service that will be called.

The naming convention is similar to a Java package, with each section representing a directory on the
server and the last section pointing to the actual service. If the remote service is a Microsoft .NET
DLL, myServicePath should refer to the DLL's namespace and class name. Similarly, if the remote
service is a Java class, the myServicePath variable will refer to the package name and class name of
the Java class. If the remote service is a web service, myServicePath should contain the path to the

web service's WSDL file.

Calls from the Flash Player to the application server via the Flash Remoting gateway are
asynchronous. Code execution within the Flash Player continues while data is being loaded, which is
similar to loading XML into the Flash Player. You must define callback functions, which will be called
automatically when the data loads from the server.

A callback function is a function that is called when a specific event occurs. For
example, attaching a callback function to an object's onClick property causes

the callback function to execute whenever the object is clicked. Similarly, a
remote service call causes a specific event to occur, which can have a callback
function associated with it.

In ActionScript, callback functions can be attached as properties to a generic object (instantiated
from the Object class). The functions are used to catch data and messages sent back from the
server.

Section 3 of Example 1-1 creates an object and attaches two callback functions to it. The onResult()
callback function is called when data is returned from the remote service, and the onStatus()
callback function is called if an error occurs. An object used to receive results from a remote service
is called a responder object (or sometimes called a response object).

Another way to trap events is to specify callback functions named the same as
the service name with _Result and _Status appended to it. This technique,
along with more information about callback functions and responder objects, is
covered in Chapter 3 and Chapter 4.

The System.onStatus property specifies the function to be called if the Flash Player cannot connect

to the server, as these types of errors are not handled by the onStatus() callback function for the
remote service call. Example 1-1 sets System.onStatus to execute our object's onStatus() function.

Once we have created an object and the callback functions to receive and process the data returned
from the server, we are ready to call the remote service.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Section 4 of Example 1-1 makes a connection to the server by passing in myURL (initialized earlier) to

the NetServices.createGatewayConnection() function. The server connection information is stored in
the myServer variable. The example then gets a reference to the remote service, which we store in
the variable myService, by calling the getService() method on the myServer variable initialized in
the previous step. In the call to getService(), we pass myServicePath to access the desired service
and pass our myResult object to catch the data or status when the operation completes. We can
then use myService (the reference to the remote service) to call methods on the service, such as the

sayHello() method.

The path passed to getService(), as specified by myServicePath, does not

include a file extension for the remote service. Therefore, Flash can access a
remote service without knowing its implementation details. One of the powerful
aspects of Flash Remoting is that it makes almost all server-side services
accessible in a uniform manner. However, you cannot automatically detect
which remote services are available. That is, you need to know the remote
service methods you intend to call. Flash Remoting has no mechanism in place
to find unknown remote services on the fly.

Save the Flash movie as HelloWorld.fla. Before the movie can be tested, we need to create the
server-side code that implements the sayHello() function, as described in subsequent sections.

Example 1-1 utilizes the trace() command to display the data in the Output window in the Flash
authoring environment. Therefore, the output is visible only when the movie is tested in the
authoring environment and not when tested in a browser.

1.6.2 Server-Side Code

In the next section, you'll create the remote service required by this simple Flash movie. Once you
have created the remote service, you can test the Flash movie using Control Test Movie. You
should get the following output displayed in the Output window:

Data received from Server : Hello World from servertype

If you do not get this result:

Set the Output window to verbose mode (Window Output Options Debug Level
 Verbose).

Make sure that the server where the Flash Remoting gateway is installed is running and
accessible.

Make sure that there are no syntax errors in your client-side ActionScript code or server-side
code.

1.6.2.1 ColdFusion MX

For the ColdFusion MX example, we will implement the remote service as a ColdFusion Component
(CFC). CFCs are new to ColdFusion MX and provide an object-based approach to ColdFusion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

development. They are ideally suited to Flash Remoting. CFCs are discussed in depth in Chapter 5.

Create a file named HelloWorld.cfc and place it into the following directory, where webroot is the root

of your web server and com\oreilly\frdg\ matches the service path specified by the initial portion of
the myServicePath variable in Example 1-1:

webroot\com\oreilly\frdg

Example 1-2 shows the code that must be added to your HelloWorld.cfc component:

Example 1-2. ColdFusion code for HelloWorld.cfc

<cfcomponent>
 <cffunction name="sayHello" access="remote" returntype="string">
 <cfreturn "Hello World from ColdFusion Component" />
 </cffunction>
</cfcomponent>

This is a simple component that contains one function, sayHello(), which returns a string. Notice that
we set the access to "remote", which is necessary to allow the component to be called remotely,

either by Flash or as a web service.

Save the component. If you have access to the ColdFusion administrative interface (which you should
if you have a local installation) browse to it through your browser with the following URL:

http://yourservername/com/oreilly/frdg/HelloWorld.cfc/

After entering your ColdFusion administrative password, you should see a description of the
component, similar to Figure 1-5.

Figure 1-5. ColdFusion MX component description autogenerated by
ColdFusion MX

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you do not see the description, or if you get an error, check and fix any syntax errors and try
again.

Once you have verified that the ColdFusion component works via the browser, switch back to Flash
and test the HelloWorld.fla movie created in Example 1-1. You should see "Hello World from
ColdFusion Component" in Flash's Output window.

1.6.2.2 Server-Side ActionScript

ColdFusion MX and JRun 4 application servers allow developers to create remote services in Server-
Side ActionScript (SSAS). Server-Side ActionScript is a scripting language that a Flash MX developer
can use to create remote services without needing to know a server-side language such as
ColdFusion Markup Language (CFML) or Java. Client-side JavaScript and ActionScript programmers
may find SSAS easier than learning a new language. Using SSAS, simple services can be written that
access databases or utilize the HTTP functionality of ColdFusion or JRun 4. Code written in SSAS can
be consumed by Flash via Flash Remoting only and cannot be used to create other types of output
such as HTML.

The SSAS mechanism of ColdFusion MX and JRun 4 is actually a server-side implementation of the
Rhino JavaScript parser, with some server-specific objects and methods added that allow the
developer access to the functionality of <cfquery> and <cfhttp> tags of ColdFusion (found in the

ActionScript CF object). Methods of the CF object can be accessed as CF.methodName(). You can

find a complete discussion of SSAS in Chapter 6. See http://www.mozilla.org/rhino/ for details on the
Rhino project.

http://www.mozilla.org/rhino/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

To implement the Hello World example in SSAS, create a plain text file named HelloWorld.asr using
any text editor, and place it into the following directory, where webroot is the root of your web

server:

webroot/com/oreilly/frdg/

The code in an SSAS (.asr) file is not compiled or encrypted. If a user browses
to an .asr file, the browser displays the code as plain text unless you take steps
to prevent it at the web server level. You should turn off read permissions for
.asr files in your web server or keep the files in a secured directory.

Since ColdFusion can process CFCs, ColdFusion pages, and SSAS files, you need to make sure there
are no name conflicts. If you created the ColdFusion component example file earlier, rename
HelloWorld.cfc to SomethingElse.cfc to ensure that the SSAS (.asr) file, and not the ColdFusion file, is
processed. You may also need to restart the ColdFusion MX server, as the .cfc file may have been
cached. The exact order in which services are located varies with the application server on which the
Flash Remoting gateway is installed. See the appropriate server chapters later in the book for details.

Example 1-3 shows the code that should be added to HelloWorld.asr; it creates a simple function
called sayHello() that returns a string to the client.

Example 1-3. Server-Side ActionScript code for HelloWorld.asr

function sayHello () {
 return "Hello World from Server-Side ActionScript";
}

Save the file in plain text format and switch back to Flash. Test the Flash movie and you should see
the output from the SSAS function.

If you get an error saying that the service cannot be found, check the service path, and make sure
that there are no syntax errors in the .asr file.

1.6.2.3 Java using JRun 4 or other J2EE servers

For the Java example, we will implement our remote service as a simple Java class. Using Java as a
remote service requires that the Flash Remoting gateway be installed on a Java application server
such as Macromedia's JRun 4 or IBM's WebSphere. The Java version will not work with ColdFusion MX
or Microsoft .NET servers.

Create a new plain text file in any text editor, name it HelloWorld.java, and enter the code shown in
Example 1-4.

Example 1-4. Java code for HelloWorld.java

package com.oreilly.frdg;

public class HelloWorld {
 public String sayHello () {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return "Hello World from Java";
 }
}

Compile the class into your web server's classpath. This may vary from server to server, but the
server's WEB-INF (or SERVER-INF in the case of JRun) directory is usually included within the
server's classpath. For example, to compile it using JRun 4, you would use (from a command
prompt):

c:\jrun4\servers\myservername\server-inf\classes\com\oreilly\frdg\>javac
HelloWorld.java

If you are using JRun 4 and created the SSAS example earlier, rename HelloWorld.asr to
SomethingElse.asr to ensure that the Java class is used instead.

Once the class has been successfully compiled, place it in the classpath\com\oreilly\frdg\ directory

and switch to Flash and test your movie. You should see the output from the sayHello() method of
the HelloWorld Java class. If you get an error that the service cannot be found, make sure that you
have compiled the class into the server's classpath.

1.6.2.4 Microsoft .NET server

ASP.NET services can be written in several languages, including VB.NET and C#. This Microsoft .NET
service example is implemented as a .NET DLL written in C#.

Open Microsoft's Visual Studio .NET (VS.NET) and create a new project. From the Project Types
window, select Visual C# Projects; then, from the Templates window, select Class Library. Set the
name of the project to HelloWorld, as shown in Figure 1-6. Rename the class file that appears from
Class1.cs to HelloWorld.cs. The code will work even if you do not rename the class file, but renaming
it makes it easier to organize the files.

Figure 1-6. Visual Studio .NET project setup screen with settings for
HelloWorld DLL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 1-5 shows the server-side C# code to implement the example as a Windows .NET service.

Example 1-5. C# code for HelloWorld.cs

using System;

namespace com.oreilly.frdg {
 public class HelloWorld {
 public String sayHello () {
 return "Hello World from ASP.NET DLL";
 }
 }
}

Enter the code shown in Example 1-5 and compile the DLL using VS.NET's Build Build Solution
option, which creates HelloWorld.dll in the following directory:

projectpath/bin/Debug

Copy HelloWorld.dll into the flashservices/bin directory on your .NET web server at:

webroot/flashservices/bin/

The DLL contains a class with one function, sayHello(), which returns a string. The service path
within Flash is determined by the DLL's namespace plus the class containing the method being called.
By setting the namespace to the same as the directory structure for our other examples, we will not
have to change the myServicePath variable within our client-side ActionScript. Using a unique

namespace also protects your DLL from namespace collisions with other DLLs.

Switch back to the Flash movie and change the myURL variable in Example 1-1 to point to the .NET

version of the Flash Remoting gateway, such as:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

var myURL = "http://yourservername/flashremoting/gateway.aspx";

This is the only change that has to be made to the Flash movie. It is necessary because the .NET
version of the Flash Remoting gateway is implemented differently than the Java and ColdFusion MX
versions.

Save the Flash movie and test it. You should see the output from the DLL ("Hello World from
ASP.NET DLL") in Flash's Output window.

1.6.2.5 PHP

The Hello World application (and other applications) must be set up a bit differently in PHP than in
other environments. Flash Remoting with PHP is class-based, due to requirements of the AMFPHP
library. That is to say, all Flash Remoting services must be written as classes in PHP. To install the
AMFPHP library, simply download the source release package and copy its flashservices directory to
your web server's document root (see Chapter 9 for additional details). Because the class is named
com.oreilly.frdg.HelloWorld, AMFPHP searches in the services path for a HelloWorld.php file. The main
flashservices directory resides under the web root, with the AMFPHP classes in that directory. The
services directory resides in this flashservices directory as well.

When building PHP remote services, you should include a gateway.php file in your server-side
application in the directory for your current project. This creates the Flash Remoting gateway and
includes the necessary files. The gateway.php file (shown in Example 1-6) for the Hello World
example should be saved in the webroot\com\oreilly\frdg directory.

Example 1-6. PHP Remoting gateway.php file contents

<?php
 /* File: gateway.php
 Instantiates the Gateway for the HelloWorld Application */
 require_once '/app/Gateway.php'; /* Require files */
 $gateway = new Gateway(); /* Create the gateway */
 $gateway->setBaseClassPath('/services/com/oreilly/frdg');
 /* Set the path to where the service lives */
 $gateway->service(); /* Start the service */
?>

Create a file named HelloWorld.php and place it into the following directory, where webroot is the

root of your web server and com\oreilly\frdg\ matches the service path specified by the initial portion
of the myServicePath variable in Example 1-1:

webroot\flashservices\services\com\oreilly\frdg

Add the code shown in Example 1-7 to your HelloWorld.php page.

Example 1-7. PHP code for HelloWorld.php

<?php
 /* File: {SERVICES_CLASS_PATH}/com/oreilly/frdg/HelloWorld.php
 provides the HelloWorld class used in Chapter 1. */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 class HelloWorld {
 function HelloWorld () {
 $this->methodTable = array(
 'sayHello' => array(
 'description' => 'Says Hello from PHP',
 'access' => 'remote',
 'arguments' => array ('arg1')
)
);
 }
 function sayHello () {
 return 'Hello World from PHP';
 }
 }
?>

Example 1-7 implements a simple class named HelloWorld that contains one method, sayHello(),
which returns a string. The class is named the same as the file. The methodTable array is used by

AMFPHP to look up functions to invoke and to provide a pseudoimplementation of ColdFusion's
CFCExplorer utility, which documents the class, methods, properties, arguments, return types, and
so forth.

Switch back to the Flash movie and change the myURL variable in Example 1-1 to point to the AMFPHP

gateway:

var myURL = "http://yourservername/com/oreilly/frdg/gateway.php";

This is the only change that has to be made to the Flash movie, and it is necessary because the PHP
implementation utilizes PHP pages to handle the functionality of the gateway.

If you run the movie in the test environment, you should see the phrase "Hello World from PHP" in
the Output window. If you don't see it, verify that you have correctly installed the AMFPHP classes
and verify your code.

1.6.2.6 Web service

For the web service example, we will create a web service using ColdFusion MX. However, any web
service containing a sayHello() method that returns a string works just as well.

Creating a web service in ColdFusion MX is extremely simple; we simply pass the URL to our CFC,
adding ?wsdl to the query string, which tells ColdFusion to generate a web service from the
component. We'll use the CFC that we created in Example 1-2, HelloWorld.cfc, saved in the directory
specified earlier.

Browse to the component with a web browser, and add the ?wsdl query string to the URL that points
to the component:

http://localhost/com/oreilly/frdg/HelloWorld.cfc?wsdl

The browser should display the WSDL XML for the web service, as follows:

<?xml version="1.0" encoding="UTF-8"?>

http://localhost/com/oreilly/frdg/HelloWorld.cfc?wsdl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<wsdl:definitions targetNamespace="http://frdg.oreilly.com"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:intf="http://frdg.oreilly.com" xmlns:impl="http://frdg.oreilly.com-impl"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:message name="CFCInvocationException">
 </wsdl:message>
 <wsdl:message name="sayHelloResponse">
 <wsdl:part name="return" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:message name="sayHelloRequest">
 <wsdl:part name="username" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:portType name="hellouser">
 <wsdl:operation name="sayHello" parameterOrder="username">
 <wsdl:input message="intf:sayHelloRequest"/>
 <wsdl:output message="intf:sayHelloResponse"/>
 <wsdl:fault name="CFCInvocationException"
message="intf:CFCInvocationException"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="hellouser.cfcSoapBinding" type="intf:hellouser">
 <wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="sayHello">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://frdg.oreilly.com"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/"
namespace="http://frdg.oreilly.com"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="hellouserService">
 <wsdl:port name="hellouser.cfc" binding="intf:hellouser.cfcSoapBinding">
 <wsdlsoap:address
location="http://127.0.0.1/com/oreilly/frdg/hellouser.cfc"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

If you see only a blank screen, view the page's source in your browser (using View Source in
Internet Explorer, for example). If you receive an error, correct any errors identified by the error
message and try again. Like any URL, the web service URL may be cached depending on the browser
settings, so you should reload/refresh the page to make sure the browser isn't using the cached

http://lib.ommolketab.ir
http://lib.ommolketab.ir

version. This web service can also be seen at the author's site at:

http://www.flash-remoting.com/oreilly/com/helloworld.cfc?wsdl

Switch to Flash and change the myServicePath variable to point to the web service's WSDL file. If

you are using the CFC to create the web service, the path will be:

var myServicePath = "http://yourservername/com/oreilly/frdg/HelloWorld.cfc?wsdl";

Test your movie, and you should see the output from the sayHello() method of the web service.
Although our web service is on the same server as the Flash Remoting gateway, Flash Remoting is
simply acting as a gateway when accessing an XML-based (SOAP-compliant) web service. The web
service can be on any computer accessible via the network or the Internet.

When working with Flash Remoting and web services, you are not limited to ASP.NET, ColdFusion,
PHP, and J2EE. Web services can be implemented in:

Python or Perl

C or C++

Any other language that has a SOAP library implementation

More information on web services can be found at:

http://www.xml.com/webservices

1.6.3 Overview

The Hello World example, while simple, illustrates the power of using Flash Remoting. The core client-
side ActionScript code is the same, regardless of the language or server model that the remote
service is written in. At most, only the path to the Flash Remoting gateway or remote service is
different.

Furthermore, none of the server-side code is Flash-specific. This means that you can create libraries
of functions that work from the server-side languages, for use without Flash, which can also be called
directly from Flash. In many cases, you will be able to integrate a Flash front end with existing
server-side code and libraries with little or no changes on the server. (Details and exceptions are
covered throughout the rest of the book.)

Isolation between server-side and client-side code allows for a clean division of labor. Server-side
developers need not worry about what is calling their code; if there is a well-defined API on the
server, Flash developers can seamlessly hook into the server-side code. Similarly, the Flash
developer need not worry about the details of the server-side implementation. He need only know the
API for the remote services he intends to call. If he is using web services, he can query the .wsdl file
on the server to discover the methods. This allows both the server-side code and the Flash
application to be developed simultaneously, reducing production time and making testing and
debugging easier.

Even if one developer writes both the Flash and server-side code, the multitiered architecture is still
advantageous. It allows you to define an API, implement it on the server, and then hook the Flash
movie into it. This makes it possible to test each component on its own before connecting Flash to the

http://www.flash-remoting.com/oreilly/com/helloworld.cfc?wsdl
http://www.xml.com/webservices
http://lib.ommolketab.ir
http://lib.ommolketab.ir

server, ensuring that bugs are less frequent and easier to isolate.

Our example may seem simple, because we are only passing a string from the server to Flash.
However, if you think of a string as just another type of object or datatype, you can begin to see the
power of Flash Remoting. Try passing more complex datatypes, such as an array, from the server-
side service to Flash, and see what is returned to the Flash movie. Modify the onResult() callback
function from Example 1-1 to do something more interesting with the data than display it in the
Output window.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.7 Workflow Example

Having discussed how the Flash Player and the Flash Remoting gateway communicate, now let's look
at what occurs behind the scenes. We will examine each step of the earlier Hello World example. In
Example 1-1, a remote service was called from Flash and received a "Hello World" string in response.

Here are the steps that occur:

Using the NetServices API within Flash, developer-written code makes a call for a remote
service.

1.

The NetServices library passes the remote service call, along with any arguments, to the
NetConnection object within the Flash Player.

2.

The NetConnection object serializes the request into AMF and sends it to server as an HTTP
binary POST.

3.

The Flash Remoting gateway on the server receives the request, deserializes it and determines
the server-side service to which to pass the request.

4.

The Flash Remoting gateway on the server invokes the server-side service, passing any
arguments sent along with the request from the Flash Player.

5.

The Flash Remoting gateway on the server receives any data returned from the service (in this
case, the string "Hello World"), serializes it into AMF, and returns it to the client-side Flash
Player as an HTTP response.

6.

The Flash Player receives the AMF data from the server and deserializes it into a native
ActionScript datatype (in this case a String object). Depending on the data sent back, the
deserialization is done within the Flash Player or the NetServices code.

7.

Finally, the string is returned to an ActionScript callback function specified by the developer to
receive data loaded from the server.

8.

Although a lot happens when a remote service is called from the Flash Player, most steps are
abstracted away from the developer. The developer has only to write the client-side ActionScript that
calls the remote service (Step 1) and receive the response from the remote service (Step 8). Of
course, someone has to write the code for the remote service itself (Step 5), but that is often done
by a different developer or independently of Flash, such as in the case where a Flash front end is
being added to an existing web service.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.8 Architecture for Flash Remoting Applications

We conclude this chapter with a general overview of a client/server architecture using the Flash
Player and the Flash Remoting gateway. Generally, Flash/server applications follow an n-tiered
architecture. Figure 1-7 depicts such an architecture, comprising a client/presentation tier (the Flash
Player), a middle tier (Flash Remoting gateway running within an application server), and a data tier
(a database, XML file, or other data source).

Figure 1-7. The Flash/server n-tiered application architecture

1.8.1 Presentation Tier

The presentation tier is responsible for the application's user interface (UI) and any client-side logic
that is needed, such as client-side data validation. It communicates with the middle tier by sending
and loading data on a request-driven basis. In most cases, the presentation layer consists of a Flash
file embedded within an HTML page, but it can also be a Flash Standalone Projector running on the
desktop, or even a Flash sprite within a Director Projector.

1.8.2 Middle Tier

The middle tier sits between the presentation layer and the data source. Its primary role is to
separate the presentation tier from the data tier and provide access to the data tier from the Flash
Player. The core application logic is also normally implemented in the middle tier. This frees the client
to do what it does best-presentation-and frees the server to do what it does best-communicate
with databases and manipulate data.

The middle tier resides on the server and can be implemented with various technologies, such as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColdFusion, ASP.NET, and Java. In addition, the middle tier can consist of multiple levels, each adding
a layer of abstraction from those immediately above and below it.

In Flash 5, it was common to have a multitiered middle layer, with the uppermost layer serializing
and deserializing data to and from the Flash Player, as shown in Figure 1-8.

Figure 1-8. Flash 5 n-tiered application architecture with multilayered
middle tier

However, using Flash Remoting and Flash Player 6 or later, this logic is handled by the Flash
Remoting gateway, sitting on the server atop the middle tier, as shown in Figure 1-9. Flash Remoting
eliminates the need to write Flash-specific code in the middle tier.

Figure 1-9. N-tiered application architecture with Flash Remoting
gateway

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.8.3 Data Tier

The data tier is the lowest level of the architecture and is responsible for managing the application's
data, as well as the data's persistence. The data source resides on the server side and can be
implemented as a database (such as SQL Server, DB2, MySQL, or Oracle), XML file, comma-
separated file, and so forth. Client-specific data, such as user interface preferences, can be stored on
the client side using cookies or ActionScript local shared objects (LSOs). Whether this data is stored
on the client side or in the data tier on the server side depends primarily on the importance of the
data to the functionality of the application, with application-critical data generally being stored on the
server, which is considered more reliable.

This n-tiered architecture is similar to an n-tiered architecture that uses HTML within a web browser
as the presentation tier. However, there are some important differences. When using Macromedia
Flash, the presentation layer can be generated entirely on the client side, as the UI can be created
dynamically at runtime on the client's machine. Furthermore, once the UI has been created or
downloaded, only the updated data has to be sent back and forth to the server. This differs from
dynamically generated HTML, which requires that the entire page be recreated on the server and
served to the client each time the data or state of the application changes.

There are other advantages of using an n-tiered architecture with the Flash Player as the
presentation layer. By abstracting the presentation layer away from the data source, you can
completely change the data source or its format without affecting the interface or rewriting your
Flash movie.

Changes to the data tier affect only the middle tier. Assuming that the API exposed by the middle tier
to the presentation level does not change, the Flash movie will not be affected at all.

For example, the application's data source can be changed without affecting the Flash movie, as
shown in Figure 1-10. Furthermore, because the middle tier might comprise multiple levels, only the
middle tier's interface to the data tier needs to be adjusted.

Figure 1-10. N-tiered architecture with data abstraction layer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By having multiple tiers, each tier can be optimized for its particular task and environment. This is
particularly important when using Flash as the presentation layer, since Flash runs on the client side,
which can be a much more variable and unknown environment than the server.

For example, you can filter large sets of data in the middle tier where you have a known environment
and resources, versus doing it on the client side within Flash where, depending on the client's
machine, it might not perform well. In this case, you may want to initially sort the data set on the
server and then have any user-initiated sorts occur within the Flash Player. This is a good tradeoff
between client-side processing concerns and the extra bandwidth required to transfer data sets to
and from the server. Components such as the DataGrid from Macromedia further abstract the
implementation of this logic and allow complex sorting and filtering directly within the Flash movie. I
address these topics in subsequent chapters, using examples where appropriate.

It is much easier to update the application's core business logic when it is centralized in the middle
tier, verses spreading it out across multiple tiers and technologies. Furthermore, keeping business
logic out of the presentation tier allows you to test the business logic separate from the presentation
tier, isolate any problems, deploy changes, and integrate it with the other tiers of the architecture.

Finally, this multitiered architectural structure mirrors the common divisions of labor during Flash
application development. Often, a Flash developer creates the Flash movie and client-side
ActionScript, while another developer creates the server-side code. They can program and test their
code independently, making development much easier, faster and less error-prone. Provided that the
interfaces between the levels are defined, the Flash developer can use temporary data hardcoded
into the application to test the application. The server-side developer simply needs to ensure that his
code implements the defined API to the presentation tier.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Avoid the temptation to use ActionScript to implement the application's
business logic within the Flash movie's presentation layer. Such an approach
ties the Flash movie too closely to the lower levels of the architecture and
exposes the business logic on the client side, making the application more
difficult to maintain and update, as well as possibly affecting client-side
performance adversely. When working with Flash Remoting, you are building a
client/server application, not a standalone Flash movie. The application server
is much better suited for the business logic. Chapter 12 goes into much greater
detail about the best practices in building a Flash Remoting application.

Again, this is a very broad and general overview of client/server application architecture when using
Macromedia Flash for the presentation layer. Later chapters discuss differences specific to additional
technologies.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.9 Wrapping Up

This chapter was only a brief introduction to the technology. You learned about the basic concepts of
Flash Remoting, the benefits of Flash Remoting, and the advantages over traditional methods used in
Flash 5. In addition, you saw a typical implementation of a Flash Remoting application and how it
works in each server-side language.

Chapter 2 digs deeper into Flash Remoting. It covers installation of the server-side gateway (where
necessary) and the authoring components. In addition, the Flash authoring environment is covered
as it relates to Flash Remoting. Also, Flash UI components are covered, including additional
components from Macromedia.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 2. Installing, Configuring, and
Using Flash Remoting
Being comfortable in a development environment is an important aspect of programming. Flash
Remoting requires the utilization of several different technologies. Just getting all the pieces set up
properly can be a challenge. This chapter gets you up and running with Flash Remoting. You'll install
the components, set up the development environment, and build a simple Flash Remoting example.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.1 Installing Flash Remoting

Flash Remoting is built into ColdFusion MX (and later) and JRun 4, making these two application
servers attractive to begin working with Flash Remoting. ColdFusion Markup Language (CFML) has
the added bonus of being relatively easy to learn. Flash Remoting is also available from Macromedia
as an add-on for .NET and J2EE servers. Table 2-1 shows the languages that you can use to create
server-side Flash Remoting services in each type of installation.

Table 2-1. Flash Remoting official language support

Flash Remoting installation Languages

ColdFusion MX or later CFMLServer-Side ActionScriptJavaCFScript

JRun 4 JavaServer-Side ActionScript

J2EE Java

ASP.NET VBC#JScript .NetC++Any other ASP.NET language

Table 2-2 lists the open source projects underway that support Flash Remoting using various
languages.

Table 2-2. Open source Flash Remoting language support

Project name Language URL

AMFPHP PHP http://www.amfphp.org

FLAP Perl http://www.simonf.com/flap

OpenAMF Java http://www.openamf.org

The following sections detail the installation and configuration of Flash Remoting in the server
environments that are supported.

2.1.1 ColdFusion MX

ColdFusion MX and later run on a J2EE (Java 2 Enterprise Edition) platform. Therefore, you can write
simple programs using CFML and the resulting application is compiled into a Java servlet.

Admittedly, the variants of ColdFusion can get confusing. There are three basic versions. Free 30-day

http://www.amfphp.org
http://www.simonf.com/flap
http://www.openamf.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

trial versions of the two commercial versions are available. After 30 days, they revert to the
Developer Edition, which restricts IP address access but is otherwise full-featured:

ColdFusion MX Server Developer Edition

Included as part of Macromedia Studio MX or available as a free download from Macromedia's
site. The Developer Edition is equivalent to the Enterprise Edition but can be accessed from
only one remote IP address. It is intended for a single developer to use in testing.

ColdFusion MX Server Standard Edition

A standalone version for Windows and Linux. This is the most basic and economical option for
ColdFusion deployment on one server.

ColdFusion MX Server Enterprise Edition

A standalone version for Windows, Linux, Solaris, and HP-UX for large-scale enterprise
deployment, allowing server clustering and sandbox security. It also enhances J2EE integration
by providing support for JavaServer Pages (JSP) servlets and JSP Tag Library imports. This
version also runs atop an existing J2EE installation, including IBM WebSphere Application
Server 4 or later, Macromedia JRun 4, Sun ONE Web Server 6 or later, and BEA WebLogic
Server 6.1 or later.

Table 2-3 summarizes the platforms that ColdFusion MX Server will run on.

Table 2-3. ColdFusion MX Server supported platforms

Platform Operating system Web servers

Windows

98[1]

ME[1]

NT 4.0 Workstation SP6A
NT 4.0 Server SP6A
NT 4 Server, Enterprise Edition
2000 Professional SP2
2000 Server SP2
2000 Advanced Server
2000 Datacenter Server
2003 Server (a.k.a. .NET
Server)
XP Home
XP Professional

Apache 1.3.12-1.3.27
Apache 2.x
JRun HTTP Server
iPlanet 6.x
iPlanet 4.x
Netscape 3.6x
IIS 4.0 and higher (on OSes that support
IIS)

Linux

Red Hat Linux 6.2 - 7.2
SuSE Linux 7.2, 7.3
TurboLinux 8 Server
Red Hat Linux AS 2.1

Apache 1.3.12-1.3.27
Apache 2.x
JRun HTTP Server
iPlanet 6.x
iPlanet 4.x
Netscape 3.6x

Macintosh Mac OS X[1] JRun 4Apache Tomcat

Apache 1.3.12-1.3.27

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Platform Operating system Web servers

Solaris[2]
Solaris 7
Solaris 8S
olaris 9

Apache 1.3.12-1.3.27
Apache 2.x
JRun HTTP Server
iPlanet 6.x
iPlanet 4.x
Netscape 3.6x

HP-UX[2] System 11.00

Apache 1.3.12-1.3.27
Apache 2.x
JRun HTTP Server
iPlanet 6.x
iPlanet 4.x
Netscape 3.6x

[1] Not recommended in a production environment

[2] Enterprise edition only

ColdFusion MX's J2EE underpinnings allow ColdFusion applications to be extended in Java. ColdFusion
MX can also be deployed on top of an existing J2EE installation if you purchase the Enterprise edition.
Using the Enterprise edition, you can run ColdFusion MX on a Macintosh as well, on top of a JRun 4 or
Tomcat installation. Macromedia supports Macintosh installations for development only and not in a
production environment. Installation on a Macintosh is covered at:

http://www.macromedia.com/support/coldfusion/j2ee/cfmx-mac-onjrunandtomcat.html

The system requirements for running ColdFusion MX on J2EE Servers are listed in Table 2-4. For web
server requirements, consult your J2EE server documentation.

Table 2-4. J2EE Application Server supported platforms for ColdFusion
MX

J2EE Application Server Operating systems

IBM WebSphere Application Server Advanced
Edition 4.0.3 and Application Server 5

Windows 2000, 2003Windows NT4Solaris 7, 8Red
Hat Linux 7.1, 7.2SuSE Linux 7.2

Macromedia JRun 4
Windows 2000, 2003Windows NT4Solaris 7, 8Red
Hat Linux 6.2-7.2SuSE Linux 7.2, 7.3

Sun ONE Web Server Version 6.02 and Version
7

Windows 2000, 2003Windows NT4Solaris 7, 8Red
Hat Linux 6.2-7.2

BEA WebLogic Version 6.1 and Version 7
Windows 2000, 2003Windows NT4Solaris 7, 8Red
Hat Linux 6.2-7.2

As per the Macromedia technote at http://www.macromedia.com/support/coldfusion/j2ee/#servers,
although you can deploy the Enterprise edition on any J2EE-compliant application server, not all are
fully tested and supported for production use. For development and evaluation purposes, Macromedia
has also tested Flash Remoting on Sun J2EE SDK 1.3 (the reference implementation) and Tomcat
4.1.12 (and later).

Solaris[2]
Solaris 7
Solaris 8S
olaris 9

Apache 1.3.12-1.3.27
Apache 2.x
JRun HTTP Server
iPlanet 6.x
iPlanet 4.x
Netscape 3.6x

HP-UX[2] System 11.00

Apache 1.3.12-1.3.27
Apache 2.x
JRun HTTP Server
iPlanet 6.x
iPlanet 4.x
Netscape 3.6x

[1] Not recommended in a production environment

[2] Enterprise edition only

ColdFusion MX's J2EE underpinnings allow ColdFusion applications to be extended in Java. ColdFusion
MX can also be deployed on top of an existing J2EE installation if you purchase the Enterprise edition.
Using the Enterprise edition, you can run ColdFusion MX on a Macintosh as well, on top of a JRun 4 or
Tomcat installation. Macromedia supports Macintosh installations for development only and not in a
production environment. Installation on a Macintosh is covered at:

http://www.macromedia.com/support/coldfusion/j2ee/cfmx-mac-onjrunandtomcat.html

The system requirements for running ColdFusion MX on J2EE Servers are listed in Table 2-4. For web
server requirements, consult your J2EE server documentation.

Table 2-4. J2EE Application Server supported platforms for ColdFusion
MX

J2EE Application Server Operating systems

IBM WebSphere Application Server Advanced
Edition 4.0.3 and Application Server 5

Windows 2000, 2003Windows NT4Solaris 7, 8Red
Hat Linux 7.1, 7.2SuSE Linux 7.2

Macromedia JRun 4
Windows 2000, 2003Windows NT4Solaris 7, 8Red
Hat Linux 6.2-7.2SuSE Linux 7.2, 7.3

Sun ONE Web Server Version 6.02 and Version
7

Windows 2000, 2003Windows NT4Solaris 7, 8Red
Hat Linux 6.2-7.2

BEA WebLogic Version 6.1 and Version 7
Windows 2000, 2003Windows NT4Solaris 7, 8Red
Hat Linux 6.2-7.2

As per the Macromedia technote at http://www.macromedia.com/support/coldfusion/j2ee/#servers,
although you can deploy the Enterprise edition on any J2EE-compliant application server, not all are
fully tested and supported for production use. For development and evaluation purposes, Macromedia
has also tested Flash Remoting on Sun J2EE SDK 1.3 (the reference implementation) and Tomcat
4.1.12 (and later).

http://www.macromedia.com/support/coldfusion/j2ee/cfmx-mac-onjrunandtomcat.html
http://www.macromedia.com/support/coldfusion/j2ee/#servers
http://www.macromedia.com/support/coldfusion/j2ee/cfmx-mac-onjrunandtomcat.html
http://www.macromedia.com/support/coldfusion/j2ee/#servers
http://lib.ommolketab.ir
http://lib.ommolketab.ir

It is best to consult the Macromedia site for the current requirements. Macromedia's site explains the
details of the different ColdFusion variants and pricing:

http://www.macromedia.com/software/coldfusion/productinfo

Flash Remoting is also automatically installed as part of the ColdFusion MX Server package
installation (Flash Remoting does not work with ColdFusion 5 or earlier versions). You can download
and install the ColdFusion MX trial version, which will revert to a free developer's version after 30
days. The trial version is also included in the Studio MX package.

As per Table 2-1, ColdFusion MX or JRun 4 is required for building the back end
of the Flash Remoting application using Server-Side ActionScript.

ColdFusion MX can be installed in several different ways and on a multitude of platforms. ColdFusion
MX Server can be installed atop your existing web server (IIS, Apache, or others) or using the built-in
web server. The built-in web server is a limited functionality web server, recommended for testing
only and not recommended for production environments. More information on the built-in web server
can be found at:

http://www.macromedia.com/support/coldfusion/adv_development/config_builtin_webserver

ColdFusion MX can also be installed side-by-side with an existing ColdFusion 5 installation, in which
case it is installed with its own built-in web server on port 8500 rather than the standard web port
80. This port is crucial to making connections using Flash Remoting if you are running the standalone
ColdFusion web server. You must specify the path to the server when you make your connection to a
gateway URL, so if the server is running on port 8500 instead of port 80, the gateway connection
code looks like this:

var myURL = "http://localhost:8500/flashservices/gateway";
var myServer = NetServices.createGatewayConnection(myURL);

Running side-by-side installations of ColdFusion 5 and ColdFusion MX lets you test existing ColdFusion
5 applications in the ColdFusion MX environment. Because ColdFusion MX was rebuilt from the
ground up as a J2EE application, there may be compatibility problems with ColdFusion 5 applications,
particularly with regard to the database connections, which have changed dramatically. There is a
Compatibility Analyzer built into the ColdFusion MX Server that can help you determine the
compatibility issues your older applications might have.

Installation of ColdFusion MX is straightforward and covered at length in the documentation that
comes with the software and at http://livedocs.macromedia.com. Once installed, Flash Remoting is
immediately available. You can test Flash Remoting on a standalone ColdFusion MX Server by
browsing to the following URL:

http://yourservername:8500/flashservices/gateway

If you have a standard installation of ColdFusion MX Server that ties into your existing Apache, IIS,
or other web server on port 80, you can test Flash Remoting by browsing to this URL:

http://yourservername/flashservices/gateway

If you see a blank page, you know that the gateway is working. If you see an error message or

http://www.macromedia.com/software/coldfusion/productinfo
http://www.macromedia.com/support/coldfusion/adv_development/config_builtin_webserver
http://livedocs.macromedia.com
http://yourservername:8500/flashservices/gateway
http://yourservername/flashservices/gateway
http://lib.ommolketab.ir
http://lib.ommolketab.ir

anything else on the page, something is wrong. Double-check your URL and port settings. There is no
easy way to pinpoint and correct an installation error if you come across one. Usually, the only option
is to recheck the steps you followed and reinstall the server. For more troubleshooting tips go to:

http://www.macromedia.com/support/coldfusion/installation.html

In a successful installation, you will not see a physical /flashservices/gateway directory in your server
root. This path is a virtual directory that is known to the ColdFusion MX Server. It does not
correspond to any physical directory on your machine.

After a successful installation of ColdFusion MX, you will have the flashgateway.ear file in the
path_to_CFusionMX\runtime\servers\default\ folder.

If you have to reinstall the ColdFusion MX Server, you should delete the
CFusionMX folder from your hard drive and restart the machine before
attempting the reinstallation. Remnants of a past installation might cause
errors, so when you run the installation program, select the option to uninstall
a previous installation.

If you are upgrading a prior installation of ColdFusion Server, you can migrate your old ODBC and
OLEDB data sources to ColdFusion MX Server, which uses JDBC. This can save you time when
creating connections to existing databases. Existing ODBC data sources are migrated to JDBC format,
which can exist side-by-side with the old ODBC data sources. Later modifying an ODBC data source
will not affect the ColdFusion MX JDBC connections that bear the same data source name. JDBC data
source configuration settings for ColdFusion MX Server are located in the
path_to_CFusionMX\runtime\servers\default\SERVER-INF\jrun-resources.xml file.

Knowing how to create and connect to data sources is necessary for developing the server-side
services of a Flash Remoting application. Data sources in ColdFusion MX are defined in the ColdFusion
MX Administrator, the visual interface for administering ColdFusion applications. The ColdFusion MX
documentation covers this topic thoroughly. Additionally, if you plan to develop your Flash Remoting
services in Server-Side ActionScript rather than CFML, you will have full access to data sources
defined in the ColdFusion MX Administrator.

As of this writing, there have been three major updaters to ColdFusion MX and a version upgrade to
6.1. Make sure you have the latest version of ColdFusion MX from the Macromedia site. Using Flash
Remoting with ColdFusion MX is discussed at length in Chapter 5.

2.1.2 JRun 4

JRun 4 is Macromedia's enterprise-level J2EE application server, which supports JavaServer Pages
(JSP). Although Flash Remoting is available as an add-on for other J2EE servers, the JRun 4
installation includes Flash Remoting out of the box, making it the easiest way to Flash-enable a J2EE
site. When using JRun 4 for building Flash Remoting services, you will most likely be programming
the server-side services in Java. In addition, JRun 4 allows Server-Side ActionScript to be used, which
is unavailable in the Flash Remoting package for other J2EE servers.

JRun 4 also contains considerable enhancements that make it a worthy upgrade from previous
versions of JRun, even without the Flash Remoting functionality. It is fully J2EE-compliant, having
passed Sun's rigorous certification process for J2EE servers. In addition, it has full support for

http://www.macromedia.com/support/coldfusion/installation.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Enterprise JavaBeans (EJB) 2.0, hot-deployment technology (which avoids restarting the server when
making changes), and enhanced support for web services.

Of the J2EE servers on the market, JRun is one of the easiest to get up and running, thanks to its
visual installation wizard, and one of the easiest to administer because of the extensive
administration interface. If you are just starting out and want to get your feet wet with the Java
language in the J2EE arena, JRun 4 is a good choice.

ColdFusion MX can also be purchased separately and installed on top of an
existing JRun 4 installation, yielding an effective combination of the power of
J2EE with the ease-of-use of ColdFusion.

JRun installs with its own built-in web server to port 8100 by default, rather than the standard web
port 80, to avoid conflicts with any existing web servers. The administrative server interface is
available at port 8000, using the URL http://localhost:8000. You can manually connect a JRun server
to an existing web server as well, so that your pages can be accessed through the typical port 80.
This can be done through the administrative interface of JRun. The built-in web server of JRun is
recommended for developmental purposes only, not heavy use.

If you choose to develop your Flash Remoting applications using the default installation of the server
on port 8100, you must specify the port in your connection to the Flash Remoting adapter:

var myURL = "http://localhost:8100/flashservices/gateway";
var myServer = NetServices.createGatewayConnection(myURL);

You can test the Flash Remoting functionality in a standard JRun 4 installation by pointing your
browser to:

http://yourservername:8100/flashservices/gateway

where yourservername is the domain name or IP address of your web server. If you have set up a

JRun server on the standard web port 80, you can point your browser to:

http://yourservername/flashservices/gateway

Again, just as in the ColdFusion installation, if you see a blank page, the Flash Remoting technology is
working properly. If you don't see a blank page, check your JRun installation by testing the
administrative interface or the samples included with JRun. If the server is working, you may have a
problem with your gateway URL or port setting. If the server is not working, you may need to
reinstall JRun. See the following URL for tips on JRun installation issues:

http://www.macromedia.com/support/jrun/installation.html

Chapter 7 shows how to install Flash Remoting in your web application rather than creating a server-
wide testing installation.

2.1.3 Other J2EE Servers

Flash Remoting is available for purchase from Macromedia as a separate product, named Flash
Remoting MX for J2EE, that will work in almost any J2EE-compatible server. There is a 30-day trial

http://localhost:8000
http://yourservername:8100/flashservices/gateway
http://yourservername/flashservices/gateway
http://www.macromedia.com/support/jrun/installation.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

version available from http://www.macromedia.com/software/trial_download. The trial version
reverts to a server-side development-only version after 30 days, with which you can continue to use
the Flash Remoting servlet on your local machine for testing purposes.

Some of the servers that you can use with Flash Remoting include:

IBM WebSphere

Tomcat

BEA WebLogic server

HP Application Server

Caucho Resin

Oracle 9i AS

JBoss

ATG Dynamo

The following operating systems support the Flash Remoting gateway adapter:

Windows

Windows NT Server 4.0 SP6a

Windows 2000 Server SP2

Windows 2003 (a.k.a. .NET server)
Linux

Red Hat 7.3

SuSE 7.3
Unix

SPARC Solaris 2.7

SPARC Solaris 8

These configurations are tested and supported by Macromedia, but other operating systems can be
used at your discretion. I've successfully run Flash Remoting on Windows 2000 Professional with both
JRun 4 and Tomcat in a testing environment. See
http://www.macromedia.com/software/flashremoting/productinfo/system_reqs for the most recent
system requirements for Flash Remoting.

To install Flash Remoting for J2EE in a server-wide test environment, follow these steps:

Windows

http://www.macromedia.com/software/trial_download
http://www.macromedia.com/software/flashremoting/productinfo/system_reqs
http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are loading from the CD-ROM, you can install from the CD-ROM's browser interface. If
you are installing the trial version from the Macromedia web site, double-click the Flash
Remoting for J2EE installer (named flashremoting-java-win-en.exe or something similar).

Linux

From a command line, type:
<prompt>./flashremoting-java-linux.bin -i console

This should begin the installation process.

Solaris

From a command line, type:
<prompt>./flashremoting-java-solaris.bin -i console

This should begin the installation process.

The installer gives you the choice of installing the .war or .ear archives with or without sample files
and documentation. The installer creates a directory in which the archives are placed. After running
the installer, follow these steps to deploy Flash Remoting on your server:

Find either the flashgateway.war or the flashgateway.ear file. These files are found in
C:\Program Files\Macromedia\Flash Remoting MX\ in a default installation on Windows.

1.

Deploy the flashgateway.ear or flashgateway.war file to the web application. The process varies
from server to server. On Tomcat, for example, copy the .war file to the webapps directory and
restart the Tomcat server. This deploys the flashgateway.jar file to the
site_root\flashgateway\WEB-INF\lib directory. It also automatically deploys the web.xml file,

which contains the servlet mappings for the flashgateway servlet, to the WEB-INF directory. The
flashgateway directory is the default Flash Remoting location, but the .jar file can be deployed
to other directories as well.

2.

Find the frconfig.txt file and make sure it is in the classpath of your server. This is necessary for
the license information to be available to Flash Remoting. In a trial or developer's edition, the
serial number will be blank. In the commercial version of Flash Remoting, your serial number
needs to be in this file.

3.

Restart your server.4.

Test the functionality of the servlet by browsing to:

http://localhost/flashgateway/gateway

In a default Tomcat installation using port number 8080 instead of port 80, test the installation by
browsing to:

http://localhost:8080/flashgateway/gateway

You should see a blank page. If the page is not blank, you must retrace your steps and make sure
your web application mappings are correct. The Flash Remoting servlet is already mapped to
/gateway in the web.xml file:

http://localhost/flashgateway/gateway
http://localhost:8080/flashgateway/gateway
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<servlet-mapping>
 <servlet-name>FlashGatewayServlet</servlet-name>
 <url-pattern>/gateway</url-pattern>
</servlet-mapping>

The flashgateway.jar file can be deployed in any of your web applications by specifying the servlet
mapping in the web.xml file for each application. Each application on your server can use its own
path to the gateway. Chapter 7 explains how to install Flash Remoting in your own application using
Flash Remoting for J2EE Updater 1, which includes a .jar archive.

In your ActionScript code, the gateway URL is used to create the connection as follows (for the
default installation):

var myURL = "http://localhost/flashgateway/gateway";
var myServer = NetServices.createGatewayConnection(myURL);

If you are having trouble making the connection, make sure your URL follows this general format:

http://domain_or_ip_address:port/context_or_folder/servlet_mapping_for_gateway_servlet

A flashgateway/samples directory is also installed in the default gateway directory. These samples
should work out of the box, assuming you are using a default web server at port 80. If not, you can
open the .fla files in the subdirectories under the samples directory and change the paths in the
ActionScript source.

2.1.4 ASP.NET

Flash Remoting is available for purchase from Macromedia as an add-on server component (DLL) for
ASP.NET. There is also a 30-day trial version available from
http://www.macromedia.com/software/trial_download. The trial version reverts to a server-side
development-only version after 30 days, with which you can continue to use the DLL on your local
machine for testing purposes.

Installation of Flash Remoting for ASP.NET is straightforward but requires that you have the Windows
.NET SDK installed. The .NET SDK is available as a free download from the MSDN Download Center
at:

http://www.microsoft.com/downloads/details.aspx?familyid=9B3A2CA6-3647-4070-9F41-
A333C6B9181D&displaylang=en

You can also install the Flash Remoting samples to your web directory as part of the installation,
which gives you a few sample C# and VB applications that utilize Flash Remoting. The samples can
be run from the webroot\flashremoting\samples\default.htm file.

The default installation of Flash Remoting places the files necessary for the Flash Remoting service to
work in the flashremoting directory under your web root. This is also the directory where the samples
are installed. They should work out of the box if the installation was successful. To test the
installation of Flash Remoting for ASP.NET, point your browser to the following URL:

http://yourservername/flashremoting/gateway.aspx

Notice the differences between this connection and the ColdFusion and JRun connections:

http://domain_or_ip_address:port/context_or_folder/servlet_mapping_for_gateway_servlet
http://www.macromedia.com/software/trial_download
http://www.microsoft.com/downloads/details.aspx?familyid=9B3A2CA6-3647-4070-9F41-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The directory under yourservername is called flashremoting instead of flashservices.

The directory is a physical directory on your computer instead of a virtual directory.

You are making a call to the gateway.aspx file, which actually exists in the directory as a
dummy placeholder file with two lines in the file:
<%@Page %>
<!-- This file is intentionally blank. -->

Each .NET application on your server uses its own path to the gateway. The HelloWorld sample
application from Chapter 1 used the flashremoting directory, but if your application uses a different
directory name, or none at all, you need to change the connection. A typical installation using the
gateway.aspx file in a subfolder at the root of your web application might look like this:

http://www.yourservername.com/subfoldername/gateway.aspx

Or if you are developing locally, you can use the localhost URL:

http://localhost/subfoldername/gateway.aspx

The installation of the commercial Flash Remoting for ASP.NET product also places the frconfig.txt file
in the bin directory of your web root. This file contains the serial number of Flash Remoting.
Additional IP addresses can be placed in this file as well. Chapter 8 covers ASP.NET in detail, including
other installation and configuration idiosyncrasies.

2.1.5 PHP with AMFPHP

AMFPHP adds the possibility of using Flash Remoting on PHP application servers, which are not
supported by the commercial Macromedia tools. Because AMFPHP is open source, it may be used free
of charge but it is subject to change and is being actively developed. The latest AMFPHP package can
be obtained from its official web site:

http://www.amfphp.org

Installation of AMFPHP is quite simple. Once you've downloaded and extracted the AMFPHP package,
copy its flashservices directory to your web server's document root. Using Apache, the default
Windows directory may be C:\Program Files\Apache Group\Apache\htdocs. In Unix and Unix-flavored
systems, it may be /usr/local/apache/htdocs. On Mac OS X systems, it may be
/Library/WebServer/Documents. Alternatively, you can put the flashservices directory in the
include_path of your PHP environment. See the AMFPHP readme file for details.

The default gateway.php file should be sufficient to begin development of services, which should be
placed under your webroot/flashservices/services directory and should follow the structure of your

base classpath. After installing the gateway, browse to the gateway path:

http://localhost/flashservices/gateway.php

If you see a blank page, the gateway is working. For more information on using Flash Remoting with
PHP, see Chapter 9.

http://www.yourservername.com/subfoldername/gateway.aspx
http://localhost/subfoldername/gateway.aspx
http://www.amfphp.org
http://localhost/flashservices/gateway.php
http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1.6 Typical Installations

The alphabet soup of technologies necessary to work with Flash Remoting can be confusing. Tables
Table 2-5, Table 2-6, and Table 2-7 show several installations and typical components of each. These
are not the only choices available by any means, but they represent the most typical configurations.
Table 2-5 shows typical low-cost options for basic development.

Table 2-5. Typical low-cost Flash Remoting installation options for
development

Operating system Application server Language Web server Database

Windows 98 or 2000
Professional

ColdFusion MX Developer's
Edition

CFML or
SSAS

Built-in HTTP
server (port 8500)

MS Access

Red Hat Linux Tomcat Java
Apache (port
8080)

MySQL

Windows 2000
Professional

ASP.NET[3] C# IIS (port 80) MS Access

Red Hat Linux PHP[4] PHP Apache (port 80) MySQL

Macintosh OS X
Tomcat/ColdFusion MX
Developer's Edition

CFML or
SSAS

Apache (port 80) MySQL

[3] Requires add-on Flash Remoting server-side components

[4] Requires AMFPHP open source solution

Table 2-6 lists typical medium-cost installation options for medium- to high-traffic sites.

Table 2-6. Typical medium-cost Flash Remoting installation options

Operating system Application server Language
Web server (port

80)
Database

Windows 2000
Server

ColdFusion MX
Professional

CFML or
SSAS

IIS or Apache SQL Server

Red Hat Linux JRun 4 Java or SSAS Apache PostgreSQL

Windows 2000
Server

ASP.NET[5] C# IIS SQL Server

FreeBSD Linux PHP[6] PHP Apache PostgreSQL

[5] Requires add-on Flash Remoting server-side components

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[6] Requires AMFPHP open source solution

Table 2-7 lists typical high-end options for enterprise-level sites with high traffic.

Table 2-7. Typical high-end Flash Remoting installation options

Operating system Application server Language
Web server
(port 80)

Database

Solaris 7 or 8 IBM WebSphere[1] Java
IBM HTTP
Server

DB2

Windows 2000
Advanced Server

ColdFusion MX for J2EE on
top of JRun 4

CFML and
Java

IIS
SQL
Server

HP-UX or Solaris
Oracle 9i Application
Server[7] Java

Oracle HTTP
Server

Oracle 9i

Red Hat Enterprise
Linux AS

PHP[8] PHP Apache IBM DB2

[7] Requires add-on Flash Remoting server-side components

[8] Requires AMFPHP open source solution

As you can see from Tables Table 2-5, Table 2-6, and Table 2-7, Flash Remoting can be deployed
using a variety of different configurations. With the main ingredients of an application server (CFMX,
J2EE, ASP.NET, or PHP), web server, database, and the Flash Remoting adapter in place, you can
deploy the server-side services of Flash Remoting applications. Next, we'll talk about where these
services go and how they are named.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.2 Naming Your Services

I used to work with a guy named Jeff. One day, a new employee-also named Jeff- joined the
company. Rather than try to deal with the potential name conflicts, we simply called the new guy
"Jim." This worked so well that the boss began using the name Jim on his pay envelope. If someone
named Jim were to join the company, however, the naming convention would have to have been
reevaluated.

Just like real-life names, service names can have conflicts. It is important that you organize server-
side services in such a way that your namespaces don't collide (i.e., conflict) with other namespaces.
For example, if you name your service HelloWorld, users attempting to access it might unintentionally
access another HelloWorld service of the same name. This is called a namespace collision.

To avoid collisions, service names should always include the directory structure, as used in the
package-naming structure of Java, where the package name relates to the domain name and project
information of the package. For example, a service from Macromedia for a "Remoting" project might
be named com.macromedia.Remoting. The next section describes in more detail how to create a
namespace (and the directory structure it implies) that will work for examples in this book. Use this
directory for all of your server-side services.

2.2.1 Creating the Sample Directories and Package Structure

After you've installed ColdFusion, JRun, or another application server and the Flash Remoting
gateway adapter, follow these steps to create your directory structure for the samples and the
package structure for your remote service files:

Set up a folder on your hard drive, such as c:\frdg_samples\, in which to build the samples
used in this book. You can download the finished code from the online Code Depot (cited in the
Preface) and unzip them to this directory. This is the directory in which to place the .fla files for
the Flash movies.

1.

Determine the location of your root web directory (or site root directory) and make a subfolder
named frdg_web within it. The example pages will run from this directory. On a typical Windows
IIS server, this directory might be c:\inetpub\wwwroot\frdg_web. You can access this URL from
http://localhost/frdg_web.

2.

The server-side service files (.cfc, .dll, .class, etc.) must be placed into an appropriate location,
which varies depending on the type of server you are running:

For CFCs, create the package structure as folders inside of your web root as shown in Step
4.

a.

For ASP.NET DLLs, create the package structure in the bin folder by creating a namespace
to mimic the package structure detailed in Step 4.

b.

c.

3.

http://localhost/frdg_web
http://lib.ommolketab.ir
http://lib.ommolketab.ir

b.

For Java classes, create the package structure at the root of your classpath folder as
detailed in Step 4.

c.

Set up the package structure in which to build the server-side services. For a ColdFusion Server
or ASP.NET .aspx files, this package structure is simply folders under your web site root with the
following subfolder structure: webroot\com\oreilly\frdg\. For the Java class files, simply create

the identical structure under your classpath, which is usually in the WEB-INF (or SERVER-INF)
directory in the web application.

4.

In order for the package structure to work properly, it needs to begin at the
site root for ColdFusion, at the bin folder for ASP.NET, and at the root of the
classpath for Java classes. If your web host has given you a folder under a site
root but has not set up a virtual directory for you, the package will not work.
Make sure a virtual directory has been created, or use an appropriate package
path based on the physical location of the folders on the hard drive.

The examples in this book include further instructions about these package structures and the
structure of the service within the package. The service structure is explained next under Section
2.2.2.

Using this structure, you can create server-side services that are named similarly to Java packages.
The com\oreilly\ portion of the path is the domain name, oreilly.com, backwards. The third
subdirectory, frdg, is the project or package name. When you create your own server-side packages,
you can follow this structure using your own domain name.

Using a package name that includes your domain name ensures the path to the service is unique, so
you can distribute a service without worrying about namespace collisions with other services.
Conversely, it ensures that third-party services you install on your server won't cause namespace
collisions with your own services.

2.2.2 The Services

References to server-side services have different meanings depending on the environment. Table 2-8
shows the services available for different Flash Remoting environments.

Table 2-8. Service types available to the Flash Remoting programmer

Environment Service type Service path Methods

ColdFusion MX
ColdFusion
pages

Directory path from site root
ColdFusion page
(.cfm)

ColdFusion MX CFC
Directory path from site root including
ColdFusion Component (.cfc) name

Methods of the CFC

J2EE EJB JNDI name of the EJBHome binding Method of the EJB

J2EE Java class Fully qualified Java class name Methods of the class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Environment Service type Service path Methods

J2EE JavaBean Fully qualified Java class name
Methods of the
JavaBean

J2EE Servlet Directory path from site root Servlet

JRun 4 JMX MBean object name Methods of MBean

ASP.NET
ASP.NET
page

Directory path from site root
ASP.NET page
(.aspx)

ASP.NET DLL Fully qualified class name Methods of the DLL

Web Services Web service URL of the .wsdl file for the service
Methods of the
remote service

Server-Side
ActionScript

SSAS
Directory path from the site root
including the SSAS

Methods of the
SSAS (.asr) file

PHP
PHP page
(class)

Directory path from the services folder in
the site root

Methods of the PHP
class

To put the concept of the server-side service and package structure into context, take a ColdFusion
site using the HelloWorld service from Chapter 1 as an example. I'll show how the ActionScript
service object might be created using two possible types of remote services: ColdFusion (.cfm) pages
and ColdFusion Components (.cfc files).

To supply remote services to your Flash movie using a ColdFusion page:

As shown in Figure 2-1, a ColdFusion .cfm file becomes the method name and the subfolder that
the file is in becomes the service object path. A folder named HelloWorld will be placed in the
webroot\com\oreilly\frdg directory. When creating the service object, the slashes (or

backslashes) in the directory path become dots in the service's pathname, so
com\oreilly\frdg\helloworld becomes com.oreilly.frdg.helloworld. This is the name via which
you'll access the service object in ActionScript.

The methods of this service object, which your Flash movie calls, are ColdFusion pages in that
directory (without the .cfm file extension). A ColdFusion page named sayHello.cfm would supply
a remote method named sayHello() to your Flash movie.

Figure 2-1. A subfolder becomes the remote service, and the ColdFusion
page becomes the remote method

J2EE JavaBean Fully qualified Java class name
Methods of the
JavaBean

J2EE Servlet Directory path from site root Servlet

JRun 4 JMX MBean object name Methods of MBean

ASP.NET
ASP.NET
page

Directory path from site root
ASP.NET page
(.aspx)

ASP.NET DLL Fully qualified class name Methods of the DLL

Web Services Web service URL of the .wsdl file for the service
Methods of the
remote service

Server-Side
ActionScript

SSAS
Directory path from the site root
including the SSAS

Methods of the
SSAS (.asr) file

PHP
PHP page
(class)

Directory path from the services folder in
the site root

Methods of the PHP
class

To put the concept of the server-side service and package structure into context, take a ColdFusion
site using the HelloWorld service from Chapter 1 as an example. I'll show how the ActionScript
service object might be created using two possible types of remote services: ColdFusion (.cfm) pages
and ColdFusion Components (.cfc files).

To supply remote services to your Flash movie using a ColdFusion page:

As shown in Figure 2-1, a ColdFusion .cfm file becomes the method name and the subfolder that
the file is in becomes the service object path. A folder named HelloWorld will be placed in the
webroot\com\oreilly\frdg directory. When creating the service object, the slashes (or

backslashes) in the directory path become dots in the service's pathname, so
com\oreilly\frdg\helloworld becomes com.oreilly.frdg.helloworld. This is the name via which
you'll access the service object in ActionScript.

The methods of this service object, which your Flash movie calls, are ColdFusion pages in that
directory (without the .cfm file extension). A ColdFusion page named sayHello.cfm would supply
a remote method named sayHello() to your Flash movie.

Figure 2-1. A subfolder becomes the remote service, and the ColdFusion
page becomes the remote method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In contrast to using a .cfm page, to supply a remote service using a CFC:

As shown in Figure 2-2, the CFC file path and filename (without the .cfc file extension) becomes
the service object in Flash. The same example directory used earlier, webroot\com\oreilly\frdg,

contains a CFC file named HelloWorld.cfc. The service object name is the same as in the .cfm
example-com.oreilly.frdg.helloworld-but the service object here references a file and not a
folder.

The functions defined within the CFC become the methods that you can call from the Flash
movie. The method named sayHello() is a function inside the CFC file.

Figure 2-2. A ColdFusion Component becomes the remote service and the
function inside becomes a method

As you can see, certain types of remote services are more easily utilized with Flash Remoting.
Whereas each ColdFusion page can contain only one method, requiring multiple .cfm pages in the
directory, a CFC can implement many methods for a service by simply defining multiple functions
within the CFC. The same holds true of an ASP.NET (.aspx) page versus the ASP.NET DLL, and a Java
servlet versus a Java class or JavaBean.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.3 The Authoring Environment

The Flash authoring environment resembles standard software development interfaces familiar to
Visual Basic and Delphi programmers. The features specifically advantageous for the Flash Remoting
programmer are:

UI components

The built-in Flash UI components allow for drag-and-drop construction of interfaces and easy
connection to a data source through Flash Remoting using the DataGlue class. UI components
are also extensible, allowing third-party developers to easily add to the core functionality of
Flash.

ActionScript code hints and syntax highlighting

The Actions panel (F9) provides lists of methods and properties as you type, as long as you use
identifiers consistent with the code-hinting guidelines shown in Table 2-9 later in this chapter.
For example, to enable code hinting, include the _mc suffix in the names of movie clip

instances.
Object-oriented programming (OOP)

OOP standards and conventions drastically reduce the complexity of a Flash Remoting
application when used properly. Flash is ideally suited for object-oriented methodologies, which
reduce application development time and allow more complex applications to be built.

Property inspector

The Property inspector is common to the Macromedia MX family of tools and is helpful for
naming your objects.

2.3.1 Flash Remoting Components

The Flash Remoting components, which must be installed separately from Flash, are not visual
components like the UI components; they include ActionScript classes for communicating with a
server, two new UI panels, and code editor enhancements that make it easier to develop Flash
Remoting applications in Flash. You can download the Flash Remoting components from
http://www.macromedia.com/go/flashremoting or obtain them from the \Flash MX\Extending Flash
MX folder on the Studio MX CD-ROM.

The Flash Remoting components are required for working with Flash Remoting
and must be installed in order to create Flash Remoting applications. Be sure
you have the latest versions from the Macromedia web site. As of this writing,
there has been one updater for Flash MX.

Installing the Flash Remoting components adds useful new classes to ActionScript. As shown in Figure
2-3, the new classes are located in the Flash MX program folder in the Configuration\Include
directory. You can include one or more of these classes in your Flash movie using the #include

http://www.macromedia.com/go/flashremoting
http://lib.ommolketab.ir
http://lib.ommolketab.ir

directive at the top of your main move script (usually in the first frame following any preloader).
When using #include, you can omit the folder name, because Configuration\Include is the default

folder in which Flash MX looks for included files.

Figure 2-3. The ActionScript classes added by installation of the Flash
Remoting components

These classes are discussed in depth in Chapter 4, but you should familiarize yourself with them
briefly now.

2.3.1.1 NetServices class

The NetServices class provides a standard way to connect to remote services with a NetConnection
object and provides standard methods that make it easy to call remote methods (services). The
NetServices.as file should be included in every Flash Remoting application you build. You can include
it in your Flash movie like this:

#include "NetServices.as"

2.3.1.2 RecordSet class

The RecordSet class adds support for a multirecord datatype, which can be delivered from the server
or created on the client. The RecordSet class's methods make it easy to manipulate data within the
Flash movie. A recordset delivered from a server-side service is serialized and sent to the Flash movie
using the AMF protocol. The RecordSet.as class file is included automatically when you include the
NetServices class, but you can include it by itself in applications that don't use Flash Remoting:

#include "RecordSet.as"

2.3.1.3 DataGlue class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The DataGlue class allows you to bind UI components to a RecordSet object or other data provider.
You can use the bindFormatStrings() method to attach data providers to interface controls that
support DataGlue. Include DataGlue.as in your Flash movie as follows:

#include "DataGlue.as"

DataGlue.as, unlike RecordSet.as, is not included when you include the NetServices.as file. You must
explicitly include DataGlue.as if you wish to utilize the DataGlue class.

2.3.1.4 NetDebug class

The NetDebug class ties your Flash movie to the server-side debugging capability of Flash Remoting
and provides an interface from your movie to the NetConnection Debugger panel. The NetDebug
class should never be included with your final movie, because it adds considerable code weight. Use it
during development only by including it in your Flash movie:

#include "NetDebug.as"

If you include the NetDebug.as file in your Flash Remoting application, anyone
running the Flash authoring tool with the NetConnection debugger open will be
able to see the debugging information in the panel.

2.3.2 Flash Remoting Windows and Menu Options

In addition to behind-the-scenes features, installing the Flash Remoting components adds two new
panels to the Flash MX interface. It also adds some menu options.

2.3.2.1 NetConnection Debugger

The NetConnection Debugger panel (Window NetConnection Debugger) helps to analyze and
debug communication with the server. It lets you examine objects and variables to pinpoint
problems. The NetConnection debugger is covered in Section 13.4.

2.3.2.2 Service Browser

The Service Browser panel (Window Service Browser), shown in Figure 2-4, can list all your Flash
Remoting connections and services. Services (and gateways) must be added manually to the Service
Browser. Thereafter, the Service Browser can retrieve information about the service's methods and
display them in a convenient tree view.

Figure 2-4. The Service Browser installs as part of the Flash Remoting
components

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To add a new service to the Service Browser, click the blue arrow in the upper-left corner of the panel
and choose Add Service from the drop-down menu, which lists these largely self-explanatory options:

Add Gateway

Remove Gateway

Add Service

Remove Service

Refresh Service Description

Refresh All Service Descriptions

Add Service to Actions Panel

Remove Service from Actions Panel

Expand All

Collapse All

Adding a service to the panel is a two-step process. First, you must add the gateway. Choose Add
Gateway to add the URL of a Flash Remoting gateway to the Service Browser. If you have already set
up a local or remote server with a Flash Remoting gateway, you can add it to the Service Browser by
typing in the actual gateway URL, such as:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://localhost:8500/flashservice/gateway

With the gateway defined, you can now add a service-such as the HelloWorld service created in
Chapter 1, or any other service-by choosing Add Service and typing in the service name, such as:

com.oreilly.frdg.helloworld

When you add a service using Add Service, the Service Browser displays the arguments and return
datatypes of the remote methods comprising the service.

If you've defined a gateway and the URL is accessible over a live connection, the Service Browser
should display the current HelloWorld service and its methods (only one, in this case). As your
services become more numerous and complex, use the Service Browser to organize them and list
their methods in one central location.

2.3.2.3 Help menu

When you install the Flash Remoting components, a new menu item-Welcome To Flash Remoting-is
installed in Flash MX's Help menu. Its submenu contains three items:

Using Flash Remoting

An overview of Flash Remoting technology
Flash Remoting Tutorial

A tutorial intended as a brief introduction to Flash Remoting
ActionScript Dictionary

A reference for Flash Remoting classes and methods

2.3.3 The Actions Panel

The Actions panel is your most important friend as you develop Flash Remoting applications. It is
where the action is, so to speak. All of the coding occurs here, unless you are using an external text
editor. The Flash authoring environment can be a little claustrophobic at first, but keyboard shortcuts
keep your tools close at hand. It is important to be comfortable in the coding environment if you are
going to be programming in it for hours on end. If you find yourself writing ActionScript in the Actions
panel's cramped default mode, follow the simple steps in the next section.

2.3.3.1 Setting up the Actions panel

When you first open Flash MX, the Actions panel appears as a little rectangle, as shown in Figure 2-5.

Figure 2-5. The default Flash MX interface

http://localhost:8500/flashservice/gateway
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first thing you'll need to do is to make the Actions panel's editable area bigger:

Close the Property inspector, which is for designing your interface, not programming it. The
Property inspector is context-sensitive, so if you put all your code in frame 1, the Property
inspector simply displays the main movie properties.

1.

Open the Actions panel and drag the top of it up to the very top of the Flash interface with your
mouse.

2.

Select Expert Mode from the Actions panel pop-up Options menu.3.

Press F9-your magic key to toggle between the design and programming environments. Hitting
it once will bring back the Stage and timeline. Hitting it again brings back the Actions panel.

4.

With the Stage and timeline visible, open the Property inspector again. Now when F9 is pressed,
the Property inspector also opens and closes when the Actions panel is toggled.

5.

Eliminate the Answers panel, and open the Align panel and the Service Browser. The latter are
both in the Window menu and can be dragged to the right side of the Stage with the rest of the
panels. The Service Browser comes in handy as you develop your Flash Remoting applications.
The Align panel is helpful when adding UI components to the interface visually.

6.

Save the configuration of your panels by going to Window Save Panel Sets and name it FR.
You can retrieve this panel layout using Window Panel Sets FR, should the panels ever
become disorganized.

7.

Your environment should now look like Figure 2-6, ready for developing ActionScript.

Figure 2-6. The Flash MX environment set up for Flash Remoting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ActionScript coding

2.3.3.2 Code hints and code completion

Installing the Flash Remoting components adds syntax highlighting and code completion to the
ActionScript code editor (the Actions panel) for Flash Remoting objects.

You may have heard of Microsoft's Intellisense technology: you create an object in your code and you
can access the properties, methods, and events of that object with code hints and code completion.
Macromedia's implementation is "semi-intelligent"-it supplies the code hints and code completion,
but it needs a little help in the form of naming conventions or comments. For example, if your
variable name ends with _rs, such as myresult_rs, typing a period after the variable name displays

the methods of the RecordSet class in a drop-down list.

Code hinting and code completion improve your coding speed and help avoid having to look up
common properties, methods, and events as you type. Code completion also keeps spelling and
capitalization consistent, which is not required in ActionScript but is required in many other languages
and may be enforced in ActionScript someday. It is good coding practice to maintain capitalization
consistency.

Flash's naming conventions for ActionScript objects are shown in Table 2-9. (See Table 3-1 for more
code-hinting suffixes for user interface components.) Use these suffixes for variable names pertaining
to the corresponding object type. For example, you might use a variable named deadline_date to
hold a Date object. Note the suffixes for the NetConnection (_conn) and RecordSet (_rs) objects,

which require installation of the Flash Remoting components.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 2-9. Suffixes used in ActionScript for code hinting

Object Suffix

Array _array

Button _btn

Camera _cam

Color _color

Date _date

Local Connection _connection

Microphone _mic

MovieClip _mc

NetConnection _conn

NetStream _stream

RecordSet _rs

SharedObject _so

Sound _sound

String _str

TextField _txt

TextFormat _fmt

Video _video

XML _xml

XMLSocket _xmlsocket

The naming conventions used in Flash are somewhat controversial. They go against some OOP
principles and naming strategies, which argue that the name of the object should not indicate an
object's datatype because the datatype may change. For example, if you name an object
employees_array and later change your code to implement the array as a RecordSet instance, the
name would no longer relate to the object. You should rename the variable to employees_rs in such

a case. That said, naming your objects with the standard naming conventions is an easy, intuitive
way to speed up your coding. If a variable's datatype changes, correcting the variable's suffix is
trivial compared to other changes that might need to be made.

Figure 2-7 shows code hints in use. If you are using the recommended naming conventions, as soon
as you type a period, the list of possible methods pops up, along with their suggested arguments.
You can choose one from the list or simply keep typing until your method is selected. Then you can
hit Tab or Enter to insert the method name automatically. In addition, if there are arguments that
need to be passed, the code completion feature inserts the opening parenthesis and gives you
another code hint.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-7. Code hints allow for quick coding

You can also enable code hints and code completion in the ActionScript editor by creating a comment
for each object of interest. For example, to enable code hints for a RecordSet object named
rsGetEmployees, add this comment to your script:

// RecordSet rsGetEmployees;

The ActionScript editor reads these comments and uses them to determine when to supply code hints
and code completion.

The semicolon at the end of the comment is necessary in this particular case.
Even though the statement is a comment and not functioning code, it is treated
as an ActionScript editor directive when used in this fashion.

Using explicit comments to enable code completion avoids being forced into using the Flash naming
conventions. It also assists in documenting the program, as all your variables and objects can be set
up in the beginning of your code.

Code hints and code completion are both fed by XML files whose location depends on your operating
system. In a single-user environment, such as Windows 98 or Mac OS 9, they are stored in the main
Flash program folder under the following directory:

Flash_program_directory\Configuration\ActionsPanel

The Flash Remoting additions to these XML files are located in a subfolder named CustomActions. In a
multiuser system, such as Windows 2000, Windows XP, or Mac OS X, the files are located in your
multiuser applications directory.

Under Windows 2000, the files are located in:

C:\Documents and Settings\username\Application Data\Macromedia\Flash MX\

Configuration\ActionsPanel

These directories and files are typically hidden in Windows, so you may need to show hidden items
using the File Explorer's Tools Folder Options View Show Hidden Files and Folders

http://lib.ommolketab.ir
http://lib.ommolketab.ir

option.

On a Mac OS X machine, that directory is at:

mac_system_disk:Users:username:Library:Application Support:Macromedia:Flash

MX:Configuration:

As you create your own ActionScript classes, you can add code hints and code completion to them as
well by building an XML file in the same format as the files in this directory. This technique is covered
in conjunction with building custom UI controls in Chapter 11.

2.3.4 Additional Flash Remoting Developer's Tools

Man does not live by bread alone, and the Flash Remoting developer cannot develop an application
solely with Flash MX. The following sections describe some of the applications you should keep in your
arsenal as you develop Flash Remoting applications.

2.3.4.1 Database server and development environment

If you are developing a dynamic application, you should have a local copy of your database files and
a database environment for testing purposes. In many cases, this might be an Access, MySQL, or
Microsoft SQL Server database. These programs will give you easy access to your data as well as the
query-building tools of these environments. In many cases, developmental versions of these
programs are available free or for a small fee. In addition, using a local copy of a database before
deploying your application lets you debug coding issues before adding server connectivity to the
equation.

2.3.4.2 Local copy of application server

While not strictly necessary, it is easier to create applications on your local machine if you can test
code locally rather than deploy to a production server. Under Windows, you can run a local copy of
ASP.NET, ColdFusion, JRun 4, or a J2EE server to gain access to Flash Remoting on your local
machine. To run ColdFusion with JRun or Tomcat locally on a Mac, see:

http://www.macromedia.com/support/coldfusion/j2ee/cfmx-mac-onjrunandtomcat.html

If you're not able to develop on your local machine, it is wise to develop on a staging server before
deploying to a production server. One serious mistake in your code, such as an endless loop, can
bring down a server.

2.3.4.3 Code editor

Flash's Actions panel is well-suited to ActionScript coding, but many developers prefer to use an
external text editor. Furthermore, you must use an external editor if you're creating external
ActionScript (.as) files to be included at compile time (that is, the Actions panel in Flash MX and Flash
2004 can't edit external files, although Flash Pro supports editing external files). HomeSite+ and

http://www.macromedia.com/support/coldfusion/j2ee/cfmx-mac-onjrunandtomcat.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dreamweaver MX, both included on the Macromedia Studio MX CD-ROM, make ideal ActionScript
editors. Dreamweaver MX has code-coloring built into the program, and third-party code-coloring
enhancements can be downloaded for HomeSite+. Figure 2-8 shows the Dreamweaver MX interface
editing an ActionScript file.

Figure 2-8. The Dreamweaver MX environment also has code hints and
code completion

Both HomeSite+ and Dreamweaver MX support Snippets (reusable code excerpts) to speed
development. Dreamweaver MX-which also works well with ColdFusion (.cfm), JSP (.jsp), and
ASP.NET (.aspx) files-is both customizable and extensible.

For more information on Dreamweaver MX, see Dreamweaver MX: The
Complete Reference (Osborne), which was co-authored by Ray West and
myself, or see Dreamweaver MX: The Missing Manual by David Sawyer-
McFarland (O'Reilly).

Other popular code editors include Ultraedit-32, Editplus, BBEdit, and Textpad. Many of these editors
have built-in or third-party support for ActionScript code-coloring.

2.3.4.4 SWF decompiler

An SWF decompiler is a valuable debugging tool as you test your movie. It lets you explore your .swf
files in greater depth than you can in the Flash authoring environment, examine reports, and print
complete ActionScript files that include otherwise hidden code. ActionScript Viewer
(http://www.buraks.com/asv), shown in Figure 2-9, is my favorite decompiler because it can save
.swf files as plain text and create printouts.

http://www.buraks.com/asv
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-9. ActionScript Viewer .swf decompiler

Also, flasm (http://flasm.sourceforge.net) is an application that gives you the ability to modify a
disassembly and optimize the bytecode.

2.3.4.5 Extensions

Flash is an extensible program, which means that you can create your own additions that will
enhance your workflow or add features and components to the program. The Flash Remoting
ActionScript classes, for example, can be expanded or enhanced. Components can be created from
scratch or copied and enhanced from existing components. You can find extensions for Flash at the
Macromedia Flash Exchange (http://www.macromedia.com/exchange/flash) and elsewhere. The
Macromedia Flash Exchange is a Flash Remoting application itself, showcasing some of the
advantages of Flash Remoting.

The Flash Exchange features many Flash extensions. Of particular use to the Flash Remoting
developer are the Macromedia-authored and third-party UI components. In addition, the
Dreamweaver Exchange (http://www.macromedia.com/exchange/dreamweaver) has many
Dreamweaver extensions, helpful if you are using Dreamweaver for ActionScript, HTML, or server-
side page development.

Several Macromedia-authored extensions, such as the UI component additions and the DataGrid, are
covered in this book, because they are important for the development of applications that utilize
Flash Remoting.

[Team LiB]

http://flasm.sourceforge.net
http://www.macromedia.com/exchange/flash
http://www.macromedia.com/exchange/dreamweaver
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.4 Sequence of Events in Flash

To access a remote service from Flash, your movie must initiate a connection using the
NetServices.createGatewayConnection() method, which returns a NetConnection object through
whose properties, methods, and events you'll manage the connection. You need to know the gateway
URL for your Flash Remoting server in order to make a connection. The connection is defined one
time for ColdFusion and J2EE servers, even if your movie accesses multiple services via the gateway.
However, each ASP.NET service requires its own call to createGatewayConnection(). In either case,
each NetConnection object persists for the entire session. Note that when you create this connection
object no call has been made to the server yet.

You'll call methods of the NetConnection object to manage the connection and access the remote
service. The two NetConnection methods used most frequently in Flash Remoting applications are
setCredentials() and getService(). The setCredentials() method is used to authenticate a user.

As of this writing, setCredentials() is available for ColdFusion MX and JRun 4
only. It is covered in Chapter 5.

The getService() method sets up the call to a remote service by creating a service object, which
contains the required information for Flash Remoting to make subsequent calls to methods of that
remote service. The getService() method's parameters are the same when using any of the service
types shown previously in Table 2-8; the service is called by name and Flash makes no assumption
about the type of service being called. The syntax for calling the getService() method of the
NetConnection object looks like this:

myService = myConnection_conn.getService(serviceName[, responderObject]);

where myConnection_conn is a NetConnection object returned by an earlier call to

createGatewayConnection(). The first parameter, serviceName, is a service name such as

com.oreilly.frdg.HelloWorld. The optional second parameter, responderObject, is an object that will

handle responses from future calls to methods of the remote service. We'll defer a detailed discussion
of the many different ways to set up responder objects and service callbacks until Chapter 4. For
now, simply note that our responder object defines onResult() and onStatus() methods that handle
the results or errors returned when we invoke methods of the remote service.

When you call a method of your service, an AMF packet is sent to the remote service. The response
of that remote service is automatically sent to responderObject.

The responderObject argument does not receive the result of the getService(

) call itself, which we stored in myService. Instead, responderObject is used

to obtain the results from subsequent calls to methods of the service.
Therefore, responderObject isn't used until a remote method call is executed.
The myService object is simply a proxy through which you can make calls to

methods of the remote service.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After initializing the connection with createGatewayConnection() and specifying a service with
getService(), you can call methods of the service using the object returned by getService(). We
stored that object in myService, so we can access methods of the remote service this way:

myService.myMethodName(optionalArguments);

Each call to a method of the remote service returns an AMF packet, as described in Chapter 1. That
packet is automatically sent to the responder object specified in the earlier call to getService(). Your
ActionScript code should handle the response events using onStatus() and onResult() functions as
methods of the responder object. Alternative ways to handle these events are covered in Chapter 4.

An onStatus event is returned from the remote service if there were any errors.
The onStatus() function must handle the errors and act accordingly. An
onResult event is returned from the remote service if there were no errors. The
onResult() function must handle the results of the service call and act
accordingly.

Don't confuse the onStatus and onResult events with the onStatus() and onResult() methods that
handle them. The events are returned in a serialized form from the server and deserialized by the
NetServices class on the client. When that happens, the associated event handler is triggered. That
is, the onStatus() and onResult() methods act as callback functions for the onStatus and onResult
events.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.5 Making a Remote Call

Now that we have some preliminaries out of the way, it's time to do some Remoting! The steps for a
successful Flash Remoting call to a remote service are as follows:

Include the NetServices.as library.1.

Optionally, initialize variables to hold the URL of the gateway path and the name of the remote
service.

2.

Create a connection object that initializes a path to the Flash Remoting gateway.3.

Create a service object, which will be used to invoke remote services and dispatch results and
error events.

4.

Create onResult() and/or onStatus() callback methods to handle the onResult and onStatus
events. These can be contained in a responder object or on the current timeline.

5.

Call the remote service as a method of the service object. The Flash movie continues to execute
while waiting for the response, so your code must not assume that the results are returned
immediately.

6.

When an onResult or onStatus event is returned, the appropriate callback function is triggered,
and the movie reacts as programmed.

7.

The following sections describe the preceding steps in greater detail by going through a slightly more
advanced version of the HelloWorld service, called HelloUser . The HelloUser service collects a user-
supplied parameter, checks the time on the server, concatenates a string, and passes the whole thing
back as a result to the Flash movie. The responder object processes the results of the remote call and
displays the string onscreen. This example demonstrates the following concepts not shown in the
HelloWorld example:

The setDefaultGateway() method of the NetConnection object is utilized.

A custom class is created to serve as a responder object.

The remote call is triggered by the user.

An argument is passed to the remote service method.

The server does some processing before returning a string.

This example and others in the book can be downloaded from the online Code
Depot at http://www.flash-remoting.com .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 2-1 shows the complete code for the client-side movie. The movie has three text fields-an
unnamed label, userName_txt (the input element), and results_txt (to contain the result). In
addition, a PushButton component named submit_pb triggers the call to the remote service. The

interface is shown in Figure 2-10 .

Figure 2-10. Simple interface for the HelloUser movie

The user fills in his name, clicks the Submit button, and is greeted with "Hello Tom. It is 11:02:32 PM"
or something similar. Review the code briefly, and we'll discuss portions of it in subsequent sections.

Example 2-1. HelloUser.fla ActionScript code

#include "NetServices.as"

// Set up variables for the URL and service paths
var myURL = "http://localhost/flashservices/gateway";
var servicePath = "com.oreilly.frdg.HelloUser";

// Define the custom SimpleResult class
function SimpleResult () {

 // Set up onResult() and onStatus() handlers as methods of the SimpleResult class
 this.onResult = function (myResults) {
 results_txt.text = myResults;
 };

 this.onStatus = function (myError) {
 results_txt.text = myError.description;
 };

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Set the system status to be handled by the

 // responder object's onStatus() handler as well
 System.onStatus = this.onStatus;
}

// If connection hasn't been initialized, create connection and service objects
if (initialized == null) {
 initialized = true;
 NetServices.setDefaultGatewayURL(myURL);
 var myConnection_conn = NetServices.createGatewayConnection();
 var service = myConnection_conn.getService(servicePath, new SimpleResult());
}

// Set up the callback function to handle mouseclicks
submit_pb.setClickHandler("callSayHello");

// Call the service when the user clicks the Submit button.
function callSayHello () {
 service.sayHello(userName_txt.text);
}

2.5.1 Initialize Objects as Needed

Before making a connection, you should initialize necessary variables. Don't forget to include the
NetServices.as file:

#include "NetServices.as"

// Set up variables for the URL and service paths
var myURL = "http://localhost/flashservices/gateway";
var servicePath = "com.oreilly.frdg.HelloUser";

As should be familiar by now, the myURL variable holds the Flash Remoting gateway URL (you should
specify the URL of your own Flash Remoting gateway). The servicePath variable, following the

preferred namespace conventions, specifies the name of the remote service.

Next, Example 2-1 defines a new class, SimpleResult , an instance of which is used as a responder
object to handle the results of the remote service call. This differs from the HelloWorld example, which
used a generic object of the Object class. When movies are complex, it is easier to manage the code if
your responder objects are instances of self-contained classes.

Each remote service call triggers either an onResult or onStatus event. The SimpleResult class handles
these events with two class methods: onResult() and onStatus() . These methods simply set the text
in the results_txt field:

function SimpleResult () {

 // Set up result and status handlers as methods of the SimpleResult class
 this.onResult = function (myResults) {
 results_txt.text = myResults;
 };

 this.onStatus = function (myError) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 results_txt.text = myError.description;
 };

 // Set the system status to be handled by the result status handler as well
 System.onStatus = this.onStatus;
}

Subsequent chapters cover other ways to set up callback functions using methodname _ Result() and

methodname _ Status() functions, as shown in some of the Macromedia documentation.

2.5.2 Create a Connection and Service Object

The path to the Flash Remoting gateway (the remote server) is set once on the main timeline.
Generally, it is a good idea to keep all of your initialization scripting in the first frame (following any
preloader) of your main actions layer. Our initialization script creates the connection and service
objects.

Create a connection to the Flash Remoting services. Since this has to be done only once, we check for
a variable flag that we create, named initialized . If it doesn't exist, we know that this is the first

time our script has executed. The first time through, we set this variable so that we won't execute this
section of code again on subsequent passes:

if (initialized == null) {
 initialized = true;

Next, set a default gateway URL using the NetServices.setDefaultGatewayURL() method:

 NetServices.setDefaultGatewayURL(myURL);
 var myConnection_conn = NetServices.createGatewayConnection();

This approach is slightly different from the one used in the previous example, HelloWorld.fla . Since
we use the setDefaultGateway() method here, we don't have to specify the gateway in the call to
createGatewayConnection() , as we did in HelloWorld.fla . Chapter 4 shows how to pass the URL to
the movie dynamically to avoid hardcoding the URL within the movie. The createGatewayConnection(
) method returns a NetConnection object, which is stored in myConnection_conn .

At this point, the connection object to the server is simply created; no connection to the server has
been attempted yet. The initialized flag is set to true to say "we have set up the connection URL."

Don't confuse this with checking whether a connection attempt was successful, which we'll do later.

2.5.3 Create a Service Object

Next, Example 2-1 creates the ActionScript service object, which is a reference to the server-side
service that you are going to create. Creating a service object lets us call methods of the service later.

 var service = myConnection_conn.getService(servicePath, new SimpleResult());
}

The second parameter, the responder object, is created as a new instance of the SimpleResult class.
When a remote method is called and the service returns a result, the onResult() method of the
responder object is triggered. Again, at this point we still have not contacted the remote service.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.5.4 Create Callback Methods or Functions

The initialization code defines callback methods- onResult() and onStatus()- for the SimpleResult
class that we created.

The PushButton instance named submit_pb also needs a callback function, which we've named

callSayHello() , attached to it. The callSayHello() function uses the service object that was set up
previously (i.e., service) to call the remote sayHello() method. It passes the text of the
username_txt field as an argument:

submit_pb.setClickHandler("callSayHello");
// Call the service when the user clicks the Submit button.
function callSayHello () {
 service.sayHello(userName_txt.text);
}

2.5.5 Call the Remote Service

Clicking the Submit button triggers the call to the remote service, as is typical of most Flash Remoting
movies. You can extrapolate this concept to more complex interfaces, where each user interface
element triggers a different remote method. For example, in a database results page, you could have
Update, Insert, and Delete buttons that allow changes to your remote database. Each button could call
a different remote method.

2.5.6 Wait for the Response

Because Flash Remoting is asynchronous, the Flash movie continues to execute while it awaits a
response. In a simple movie such as this, the playhead is presumably paused in a frame and the
movie simply displays the results when they are received. In a more complex movie, your ActionScript
code must deal gracefully with extended delays that may be associated with calling a complex remote
method.

When the response occurs, the onResult() handler of the responder object is called. This is one of the
key concepts of event-driven programming. The Flash movie is continuously executing, but when the
remote method returns the result, an event occurs (onStatus or onResult) and the appropriate
method within the responder object is called.

2.5.7 Act on the Response or Error

In this example, the response from the remote method is a string, and our responder object is an
instance of the SimpleResult class. Regardless, the response is passed as a parameter to the
responder object's onResult() method, which sets the text of the field named results_txt to the
incoming myResult variable:

this.onResult = function (myResult) {
 results_txt.text = myResult;
};

If an error occurs, the onStatus() method is triggered instead of onResult() . Our onStatus() method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sets the text of the results_txt field to the description property of the incoming status object (i.e.,
an object indicating the type of error), myError :

this.onStatus = function (myError) {
 results_txt.text = myError.description;
};

The datatype of the parameter passed to the onResult() handler is dictated by
the return value of the remote service. The return value is specified using the
<CFRETURN /> tag in CFML; the return statement in Server-Side ActionScript,
C#, VB, CFScript, or Java; or the Flash.Result object in ASP.NET or

ColdFusion pages. The parameter passed to the onStatus() function is always
an error object, with predefined properties including description , as described

in Chapter 4 .

2.5.8 The Server-Side Code

The following sections describe the server-side counterparts to the client-side ActionScript from
Example 2-1 . The different server-side examples are written in CFML, Server-Side ActionScript, Java,
ASP.NET, and PHP.

2.5.8.1 ColdFusion MX

Example 2-2 shows a ColdFusion Component named HelloUser.cfc , containing the CFML that
implements the remote service. It is stored in the webroot \com\oreilly\frdg\ directory. This CFC is

based on the HelloWorld code from Example 1-2 . The changes are noted in bold.

Example 2-2. ColdFusion MX Component HelloUser.cfc

<cfcomponent>
 <cffunction name="sayHello" returntype="string" access="remote">
 <cfargument name="username" type="string" default="">
 <cfreturn "Hello #username#. It is #TimeFormat(now(),"H:MM:SS TT")#" />
 </cffunction>
</cfcomponent>

The only differences from the HelloWorld CFC in Chapter 1 are the addition of an argument and the
processing of the time on the server. Passing an argument to a CFC is simply a matter of including a
<cfargument> tag inside of the <cffunction> tag.

2.5.8.2 Server-Side ActionScript

Example 2-3 , which is an enhanced version of Example 1-3 , shows the Server-Side ActionScript to
implement the remote service. It is stored in a file named HelloUser.asr and saved in the webroot

\com\oreilly\frdg\ directory. If you created the ColdFusion CFC named HelloUser.cfc earlier, you
should rename it to SomethingElse.cfc to prevent it from being called instead of the SSAS file.

Example 2-3. Server-Side ActionScript file name HelloUser.asr

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function getTime () {
 var d = new Date();
 // Format the time with leading zeroes for the seconds and minutes
 var seconds = d.getSeconds() < 10 ? "0" + d.getSeconds() : d.getSeconds();
 var minutes = d.getMinutes() < 10 ? "0" + d.getMinutes() : d.getMinutes();
 // Format the hours with a 12-hour clock and AM/PM
 var hours = d.getHours();
 var am_pm = hours > 12 ? " PM" : " AM";
 hours = hours > 12 ? hours-12 : hours;
 // Return the time in hh:mm:ss AM/PM format
 return hours + ":" + minutes + ":" + seconds + am_pm;
}

function sayHello (username) {
 return "Hello " + username + ". It is " + getTime();
}

The custom getTime() function creates the current time string using a Date object in SSAS. The
username argument from the Flash movie is concatenated with some literal text and the current

server time to form the return string. As you can see, working with dates in SSAS is similar to working
with dates in client-side ActionScript.

2.5.8.3 J2EE

The J2EE HelloWorld in Example 1-4 used a Java class. A Java class is stateless-each call to the class
creates a new instance of the class. Example 2-4 shows how a JavaBean can be used instead, with the
added advantage that a JavaBean can be stateful. The user's JSESSIONID is appended to the AMF

packet by both the Flash Remoting server and the Flash movie. Flash Remoting automatically
maintains the JavaBean state in the user session, provided the JavaBean implements the
java.io.Serializable interface, as shown in Example 2-4 . If not, the Flash Remoting adapter on the
server will not store an instance of the class in the session and the service acts as a regular stateless
Java class.

The steps to compile the JavaBean service vary from server to server. Typically you can run the javac

compiler on the source file from a command prompt and place the resulting .class file in the classpath
of your web application, using the folder structure outlined earlier (com\oreilly\frdg):

c:\>javac HelloUser.java

The source code for the JavaBean service is shown in Example 2-4 .

Example 2-4. JavaBean HelloUser.java

package com.oreilly.frdg;

import java.util.*;
import java.text.SimpleDateFormat;
import java.io.Serializable;

public class HelloUser implements Serializable {
 public HelloUser () { // constructor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 message="";
 }
 private String message;

 public String getMessage () {
 this.setMessage();
 return this.message;
 }

 public void setUsername (String username) {
 this.username = username;
 }

 public void setMessage () {
 this.message = "Hello " + this.username + ". It is " + getTime();
 }

 public String getTime () {
 SimpleDateFormat formatter = new SimpleDateFormat("hh:mm:ss a");
 Date d = new Date();
 return formatter.format(d);
 }

 public String sayHello(String username) {
 this.setUsername(username);
 return this.getMessage();
 }
}

Example 2-4 has five methods: getMessage() , setUsername() , setMessage() , getTime() , and
sayHello() . The sayHello() method is called by Flash Remoting, which returns the message. Again,
the username argument is concatenated to the greeting, which consists of some literal text and the

current time on the server, to form the return string.

2.5.8.4 ASP.NET

As mentioned earlier, ASP.NET remote methods can take different forms, including .aspx pages.
Example 2-5 shows server-side ASP.NET implemented as an .aspx page named sayHello.aspx . The
code, written in C#, that implements the remote service is stored in the webroot

/com/oreilly/frdg/HelloUser directory.

Example 2-5. ASP.NET code implemented in C# as an .aspx page

<%@ Page Language="C#"%>
<%@ Register TagPrefix="MyTag" Namespace="FlashGateway" Assembly="flashgateway" %>
<MyTag:Flash ID="Flash" Runat="Server" />
<%
if (Flash.Params.Count > 0) {
 String username = Flash.Params[0].ToString();
 String currentTime = DateTime.Now.ToLongTimeString();
 Flash.Result = "Hello " + username + ". It is " + currentTime;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}
%>

In this ASP.NET example, the page name of the .aspx page becomes the method name in the Flash
movie. When using .aspx pages in this way, you have to register the tag prefix "MyTag ", as shown,

and create the namespace FlashGateway , along with the assembly (flashgateway.dll) that creates
the functionality of the flashgateway control. Using ASP.NET pages has a few other caveats as well:

Arguments passed to the movie must be accessed as properties of the Flash.Params object.

Results must be returned to the Flash movie with the Flash.Result object.

Given these Flash-specific requirements, it is easy to see why the preferred method is to create a .NET
DLL, as shown in Example 1-5 , rather than use an .aspx page. Using a DLL allows you a cleaner
separation between client- and server-side code.

2.5.8.5 PHP

An AMFPHP implementation of this service utilizes a HelloUser class. The following PHP code
implements the HelloUser service and should be placed in the file webroot

/flashservices/services/com/oreilly/frdg/HelloUser.php , assuming a standard installation of AMFPHP:

<?php
class HelloUser {
 function HelloUser () { /* constructor */
 $this->methodTable = array(
 'sayHello' => array(
 'description' => 'Says a friendly hello to the user.',
 'access' => 'remote',
 'arguments' => array('username')
)
);
 }

 function sayHello ($username) {
 return "Hello $username. It is " . date('H:M:s', time());
 }
}
?>

In this example, we use PHP's built-in date() and time() functions to get the date and time, which we
concatenate with the text greeting. Again, we must define the method table for AMFPHP to function
properly and to allow our code to have web documentation.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.6 Wrapping Up

In this chapter, we set up the Flash authoring environment for Flash Remoting. We enhanced our
HelloWorld example from Chapter 1 to create a HelloUser application that demonstrates how to pass
a parameter to the server and process some data on the server as well. The example also utilized a
custom responder class, which is a preferred way to handle the response from the server. Chapter 3
introduces user interface components and shows how to connect them to remote recordsets.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 3. Client/Server Interaction, UI
Components, and RecordSets
The most important aspect of building any application-and especially a web application-is to create
a comfortable user experience. If the user is bored, frustrated, or uninterested, she will go elsewhere
and probably never return. A good Flash movie can hold a user's attention, but the way in which the
user interacts with the web application makes the difference between an application that is usable
and one that just looks nice.

One of Flash Remoting's prime uses is to create a user interface that does one of several things:

Allow the user to search a remote site or database

Display information to a user

Collect information from a user

Allow interaction with remote databases or programs

Flash components make it easy to create user interfaces, and Flash Remoting adds features that
allow easy connection to databases and other programs.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.1 User Interface Components

Flash Remoting complements the client-side UI components of the Flash authoring environment. This
rigorously pretested set of components, all based on the FUIComponentClass class, brings the
familiar user interface elements of HTML to the Flash developer's arsenal. The UI components expose
an API that is easy to use and consistent across components.

Prior to Flash MX, you could create movie clips that acted as reusable user-interface controls (a.k.a.
Smart Clips), but they were harder to use than Flash's UI components. You can simply drag UI
components from the Components panel onto your interface or create new instances
programmatically in ActionScript by using the MovieClip.attachMovie() method (assuming the Library
contains the desired component symbol).

UI components add size to the final Flash movie, but the benefits of using the components far
outweigh the downside. In addition, after adding an element of one type to the movie, each
additional element of that type does not increase the movie size; your movie is roughly the same size
whether you use one ListBox or ten ListBoxes.

Flash 2004 and Flash Pro components share a larger common framework
(which provides enhanced accessibility, focus management, and so on) than did
Flash MX components. The Flash 2004/Pro framework is optimized for movies
that include multiple components. If you're including only one or two
components and download size is critical, you may prefer to manually
implement custom components that are more streamlined.

Table 3-1 lists the UI components that come preinstalled with Flash MX, along with their object type
and optional code-hinting suffix. The suffixes are not required, but they enable code hints and code
completion when utilized. Data-aware components (components that can be populated by a data
provider such as a RecordSet object) are noted. As of this writing, the components included with
Flash 2004 and Flash Pro have not been finalized. It is anticipated that Flash 2004 will include a set of
components similar to those included with Flash MX. Flash Pro is expected to include all the
components available for Flash 2004, plus additional components that support features available in
Flash Pro only. This chapter focuses on the components available in Flash MX.

Table 3-1. Basic UI components, object types, and code hint suffixes

Component Object type Code hints suffix

CheckBox FCheckBox _ch

ComboBox[1] FComboBox _cb

ListBox[1] FListBox _lb

PushButton FPushButton _pb

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Component Object type Code hints suffix

RadioButton FRadioButton _rb

ScrollBar FScrollBar _sb

ScrollPane FScrollPane _sp

[1] Data-aware component

The methods of these standard components are fully documented in the online Flash Help system
(under Help Using Flash) and the Reference panel (Window Reference). Each component
also has its own Property inspector (Window Properties). The Property inspector (PI) for the
ComboBox is shown in Figure 3-1.

Figure 3-1. The Property inspector exposes properties of UI components
and other objects

You can use the Property inspector to set the Instance Name and other properties of the component.

Use the Property inspector to specify an instance name for your component or
you won't be able to address the component by name via ActionScript.

Other component properties can be set from the PI as well, but you should set them via ActionScript
instead so that your code is isolated from the UI and more understandable. For example, the
ComboBox component has a Change Handler property. You could enter a function name, such as
getMyUrl, in the PI to act as the callback function-the function to be called when the ComboBox

changes. Then you could define the callback function, in this case getMyUrl(), in your Flash movie.
However, there is no easy way, by looking at the ActionScript, to identify or change what triggers the
callback function; you have to select the component on stage and open the PI to see or change the
callback function specified.

Callback functions are popular in other visual development environments such as Delphi, C++
Builder, and Visual Basic. In these environments, however, when you attach a function to a
component event, the association is visible in the code. This is not the case in Flash. Therefore, if
you're using the PI to set the callback function, you should always comment your code clearly to
remind you of the function's purpose and what triggers it:

///////////////////////////////
// FUNCTION NAME: getMyUrl()
// PURPOSE: callback function myComboBox_cb
// EVENT: onChange
///////////////////////////////

RadioButton FRadioButton _rb

ScrollBar FScrollBar _sb

ScrollPane FScrollPane _sp

[1] Data-aware component

The methods of these standard components are fully documented in the online Flash Help system
(under Help Using Flash) and the Reference panel (Window Reference). Each component
also has its own Property inspector (Window Properties). The Property inspector (PI) for the
ComboBox is shown in Figure 3-1.

Figure 3-1. The Property inspector exposes properties of UI components
and other objects

You can use the Property inspector to set the Instance Name and other properties of the component.

Use the Property inspector to specify an instance name for your component or
you won't be able to address the component by name via ActionScript.

Other component properties can be set from the PI as well, but you should set them via ActionScript
instead so that your code is isolated from the UI and more understandable. For example, the
ComboBox component has a Change Handler property. You could enter a function name, such as
getMyUrl, in the PI to act as the callback function-the function to be called when the ComboBox

changes. Then you could define the callback function, in this case getMyUrl(), in your Flash movie.
However, there is no easy way, by looking at the ActionScript, to identify or change what triggers the
callback function; you have to select the component on stage and open the PI to see or change the
callback function specified.

Callback functions are popular in other visual development environments such as Delphi, C++
Builder, and Visual Basic. In these environments, however, when you attach a function to a
component event, the association is visible in the code. This is not the case in Flash. Therefore, if
you're using the PI to set the callback function, you should always comment your code clearly to
remind you of the function's purpose and what triggers it:

///////////////////////////////
// FUNCTION NAME: getMyUrl()
// PURPOSE: callback function myComboBox_cb
// EVENT: onChange
///////////////////////////////

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function getMyUrl () {
 // function body code
}

The preferred method, however, is to define your callback function inside the ActionScript code, like
this:

employees_cb.setChangeHandler(getMyUrl);
function getMyUrl () {
 // function body code
}

or by using the method of an object, like this:

myObject = new Object();
myObject.getMyUrl = function (component) {
 // function body code
};
employees_cb.setChangeHandler("getMyUrl", myObject);

By defining the callback function via ActionScript, the code is centralized rather than being attached
to components in your timeline. The same can be said for defining the labels and data values of the
ComboBox or any other component. As your interfaces get more complex, you'll appreciate all the
code being in one place rather than attached to timeline elements directly.

myComboBox_cb.addItem("Choose Search Type", "0");
myComboBox_cb.addItem("Any word", "1");
myComboBox_cb.addItem("All words", "2");
myComboBox_cb.addItem("Exact Phrase", "3");

Components are "live" in the Flash environment. As you make changes to the component's properties
in the PI, such as changing a label, the change is reflected in the design environment. This can,
however, affect the overall performance of the authoring tool.

If you find the program slowing down as you add more user interface
components to the Stage, you can disable the Control Enable Live Preview
option. Changing properties via ActionScript has no effect on the Live Preview.

Some of the UI components work with the DataGlue class, a special ActionScript class that is installed
with the Flash Remoting authoring components. The DataGlue class dynamically populates UI
components with items from a DataProvider, such as a RecordSet object. The DataGlue class is
described later in this chapter.

Here is a brief description of each of the standard UI components:

CheckBox

The CheckBox component adds a typical checkbox with a label. The hit area of the CheckBox is
the combined area of the label and the box. The FCheckBox.getValue() method returns true
(if checked) or false (if unchecked). You can specify a CheckBox's change handler using

FCheckBox.setChangeHandler().
ComboBox

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ComboBox component combines a plain text field and a select list-a combination that is
unavailable in HTML but often used in desktop applications. A user can enter text into the
ComboBox or choose an item from the list. Use FComboBox.setEditable(false) to disable user
input. You can obtain the value of the selected element from the data and label properties of

the object returned by FComboBox.getSelectedItem(). You can specify a ComboBox's change
handler using FComboBox.setChangeHandler().

ListBox

The ListBox component allows for single and multiple selections within a scrollable list. The
ListBox also responds to mouse and keyboard input. You can retrieve the values of the selected
elements from the data and label properties of the array of objects returned by

FComboBox.getSelectedItems(). You can specify a ListBox's change handler using
FListBox.setChangeHandler().

PushButton

The PushButton component is a simple button with a label. You can specify a PushButton's click
handler using FPushButton.setClickHandler().

RadioButton

The RadioButton component creates a standard radio button and allows grouping of multiple
radio buttons by setting the group name using FRadioButton.setGroupName(nameOfGroup).

You can specify a RadioButton's change handler using FRadioButton.setChangeHandler().
ScrollBar

A ScrollBar component can be added to a dynamic or input TextField by dropping it from the
Components panel onto the TextField in your movie. A ScrollBar added in this manner is
automatically added as a listener of the TextField so that it can respond to text scroll events.

ScrollPane

The ScrollPane component adds the ability to display movie clips within a smaller area that
become scrollable.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.2 Flash UI Components Set 2 and Flash Charting
Controls

Flash developers can create custom components and other Flash authoring elements, called
extensions. The Extension Manager allows developers to package and share their own extensions or
install packages developed by others. Many developers have already done this, and you can find
extensions all over the Internet, particularly on the Macromedia Exchange, as noted earlier.
Components are one type of extension. Flash 2004 and Flash Pro offer a new JavaScript extensibility
layer that allows you to customize the Flash authoring tool interface, but here we are referring to
ActionScript extensions, which offer enhanced runtime features.

Macromedia has released its own free extensions, including the UI Components Set 2 and the Flash
Charting Controls, both outlined in Table 3-2. Each of these useful sets of components is available as
a separate download from the Macromedia Exchange at http://www.macromedia.com/exchange, and
also on the Studio MX CD-ROM in the \Flash MX\Extending Flash MX folder. Once installed, the UI
Components Set 2 and Flash Charting Controls are fully documented under Window Component
Help - UI Set 2 and Window Component Help - Charts, and within the Reference panel (Window

 Reference) in Flash MX and under the Help panel in Flash 2004 and Flash Pro.

Table 3-2. Standard UI Components Set 2 and Charting Controls, showing
code hint suffixes and object types

Component Object type Code hints suffix

BarChart[2] FBarChart _bc

Calendar FCalendar None

DraggablePane FDraggablePane _dp

IconButton FIconButton _ib

LineChart[2] FLineChart _lc

MessageBox FMessageBox _mb

PieChart[2] FPieChart _pc

ProgressBar FProgressBar _pr

SplitView FSplitView None

Ticker FTicker _tick

Tree[2] FTree _tr

TreeNode (individual nodes of a Tree) FTreeNode _tn

http://www.macromedia.com/exchange
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[2] Data-aware component

Here is a brief description of each of these additional UI components. Of particular interest to the
Flash Remoting developer are the Calendar, MessageBox, Tree, and ProgressBar components:

Calendar

The Calendar component is extremely useful because it offers a visual way to input a date or
range of dates. You can specify a Calendar's change handler using
FCalendar.setChangeHandler().

DraggablePane

The DraggablePane component gives you an interface within an interface; you can attach other
interface elements to the DraggablePane so that you can have a draggable interface that floats
on top of your Flash movie.

IconButton

The IconButton component is similar to a standard PushButton, but you can attach a custom
image to the face of the button. IconButton instances, unlike PushButtons, react to onChange
events rather than onClick events. You can specify an IconButton's change handler with
FIconButton.setChangeHandler().

MessageBox

A MessageBox component creates a convenience pop-up dialog box, much like a JavaScript
alert box, with one of four configurations: Info, Question, Warning, or Error. The MessageBox
has a close handler that can be specified with FMessageBox.setCloseHandler(). The close
handler callback function receives two arguments: the name of the MessageBox and the index
of the button that was clicked.

ProgressBar

The ProgressBar component is typically used in preloaders, but it will graphically show the
progress of anything that takes a long time to execute. It can be used within a Flash Remoting
application to indicate the load time for a recordset from a remote method.

SplitView

The SplitView component allows you to split the user interface into distinct areas that can be
scrolled or resized.

Ticker

The Ticker component gives you a way to scroll content perpetually in the Flash movie, such as
in a stock ticker. In a Flash Remoting application, this content can be easily loaded dynamically
from a remote source.

Tree

The Tree component, which displays a typical tree of content, is one of the more useful data-
aware components. The content can be created manually or it can come from an XML feed or
other data source, such as a recordset.

Charting Controls

The Charting Controls are a separate package from the UI Components Set 2, and they must
be installed separately. The package includes BarChart, LineChart, and PieChart components.
Charts are a huge part of dynamic application development. Using the Charting Controls, you
can create a dynamic bar, line, or pie chart using the data returned by a remote service. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Charting Controls work in a fashion similar to the other UI components and are data-aware.
Later in this chapter, under Section 3.6.2, I present an example that uses the Flash Charting
Controls in conjunction with a RecordSet object. Third-party charting components are also
available. For example, B-Line Express (http://www.blinex.com) sells a package of charting
components that provide a flexible and extensible library of charting and graphics functions for
displaying data as pie charts, bar charts, and much more.

[Team LiB]

http://www.blinex.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.3 Macromedia's DRK

In October 2002, Macromedia released the first Developer Resource Kits (DRK), containing the UI
Components Set 3 and one of the most important Flash extensions to date-the DataGrid
component. The DataGrid component is especially important if you are going to be using Flash
Remoting. Whereas the standard Flash UI components are included with Flash MX and the UI
Components Set 2 are a free download, the DRK is a commercial product available from Macromedia
for $99 at:

http://www.macromedia.com/go/drk

3.3.1 UI Components Set 3

The UI components that come with Flash MX provide some useful functionality and interaction with
some standard user interface elements. The free UI Components Set 2 adds some more esoteric
functionality to the Flash developer's toolbox, such as a calendar control and a ticker. The UI
Components Set 3 is available only as part of the DRK and offers more advanced message boxes,
tooltips, and loading boxes. None of the UI components in this third set, listed in Table 3-3, are data-
aware.

Table 3-3. UI Components Set 3, code hint suffixes, and object types

Component Object type Code hints suffix

AdvancedMessageBox FAdvancedMessageBox None available

LoadingBox FLoadingBox None available

PromptBox FPromptBox None available

Tooltip FTooltip None available

TooltipLite FTooltipLite None available

Here is a brief description of the components in the UI Components Set 3:

PromptBox

The PromptBox component is handy for getting an item of data from a user, such as prompting
the user for a password. You could then use the NetConnection.setCredentials() method to
submit the password to a remote service. The PromptBox component allows you to specify a
close handler programmatically with FPromptBox.setCloseHandler(). The close handler
callback function receives three arguments: the PromptBox name, the index of the button that
was clicked, and any user input to the PromptBox.

AdvancedMessageBox

http://www.macromedia.com/go/drk
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The AdvancedMessageBox component creates message boxes with multiple buttons. The
AdvancedMessageBox component has functionality similar to the MessageBox component of UI
Components Set 2 but adds features such as scrollable message content.

LoadingBox

The LoadingBox component can be used to display progress of any code that takes a long time
to execute, such as when a remote method is executed or a recordset loads in.

Tooltip

The Tooltip components (Tooltip and TooltipLite) can be attached to other UI components to
give your visual interface an added professional look.

3.3.2 DataGrid Control

The DataGrid component is the high point of the DRK, and the DRK is the only place you can get it.
The DataGrid component implements a complex, navigable grid that you can tie to a RecordSet
object with one line:

myGrid_dg.setDataProvider(myRecordset_rs);

This gives you a default grid that displays the entire recordset that is returned to your Flash movie,
including clickable column headers that sort the data. Later in this chapter, under Section 3.7.2, I
present a simple example using the DataGrid and its additional features. First, see Section 3.6 to
familiarize yourself with the RecordSet class.

3.3.3 Other Content, DRKs, and Components

In addition to the DataGrid component and the UI Components Set 3, the DRK 1 contains much
valuable information, including an email services ActionScript library and stock services ActionScript
library that both utilize Flash Remoting and ColdFusion. Also included are several top Flash extensions
from the Macromedia Exchange (including UI Components Set 2 and the Flash Charting
Components), and many articles from Macromedia DevNet, several of which are focused on Flash
Remoting.

Macromedia has committed to a quarterly DRK. Each DRK contains content for Flash and other
Macromedia products. As of this writing, DRK Volumes 1, 2, and 3 have been issued. The Flash UI
Components Sets 4 and 5 include additional advanced components and are available only as part of
the DRK.

Macromedia has also released a set of components called the Data Connection Kit (DCK), or Firefly,
as it is also known. The DCK contains sophisticated controls that can be utilized with Flash Remoting,
or directly with XML or SQL Server. More information on the DCK can be found at:

http://www.macromedia.com/go/dck

[Team LiB]

http://www.macromedia.com/go/dck
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.4 Text Objects

Text fields are available in the Flash authoring tool from the Tools panel by clicking the Text Tool
icon. This allows you to draw a text field on your movie interface. The text that you place in your
movie using the Text Tool is an ActionScript object as well-the TextField object.

There are three distinct types of text fields: Static, Dynamic, and Input. A text field's type can be set
using the drop-down list in the Property inspector, as shown in Figure 3-2.

Figure 3-2. The Property inspector for a TextField object

3.4.1 Static Text Fields

To create a static text field, click the Text Tool in the Tools panel and draw an outline on the Stage. A
static text field can be used as a label or to display text to the user. However, you can't set an
instance name for a static text field, and the field's contents or other properties can't be manipulated
via ActionScript. You can enter text in the field during authoring or change its properties through the
Property inspector. If you put it in a movie clip, you can alter its appearance indirectly by changing
the clip's properties.

3.4.2 Dynamic Text Fields

Unlike a static text field, you can modify a dynamic text field programmatically. You should use
dynamic text fields in your Flash Remoting applications to give you the flexibility to change a field
programmatically or alter the labels with localized text.

To control a dynamic text field programmatically, you must give it an instance name using the
Property inspector and refer to it by this name from ActionScript. You can activate code hinting for a
TextField object by giving it a name ending in _txt.

For example, this sets the text property of a field named myTextField_txt:

myTextField_txt.text = "Some dynamic text";

You can also set other properties of the text field programmatically:

myTextField_txt.multiline = true;
myTextField_txt.border = true;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

myTextField_txt.text = "News for today, " + getMyDate();

You can use a with construct to set multiple properties for a given object:

with (myTextField_txt) {
 multiline = true;
 border = true;
 text = "News for today, " + getMyDate();
};

Dynamic text fields have three different formatting options available:

Single line

Used for a single line of text.
Multiline

Used when the text might span multiple lines. If the text is too long, it automatically wraps to
the next line.

Multiline no-wrap

Used for multiple lines in a text field, but it requires that you manually create line breaks with a
\n or newline line break character.

3.4.3 Input Text Fields

An input text field is roughly equivalent to the HTML <input type="text"> tag. An input text field

can be used to gather user input. As with dynamic text fields, you must set the input text field's
instance name in the Property inspector. An input text field has the same three formatting options
that dynamic text fields have (single line, multiline, and multiline no-wrap) plus password formatting,
in which input text is shown as asterisks.

To retrieve text that a user has typed into an input text field, access the field's text property:

var myUsername = username_txt.text;
var myPassword = password_txt.text;
myService.myLoginMethod(myUsername, myPassword);

3.4.4 Adding Text Fields from ActionScript

A new TextField object can be added directly from ActionScript using the MovieClip.createTextField()
method and passing in the new field's name, position, and properties:

movieclip.createTextField(name, depth, x, y, width, height);

For example, to programmatically create a user interface identical to the one built visually for the
HelloUser example in Chapter 2, you might use the code in Example 3-1. The example also
demonstrates creating a PushButton UI component dynamically. To dynamically create a UI
component, the component's symbol must exist in the document's Library. You can drag a
component instance from the Components panel to the Stage and then delete it to add the
component to the Library.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 3-1. Creating TextFields and UI components in ActionScript

// Create the TextFields
this.createTextField("label_txt", 1, 25, 35, 125, 20);
this.createTextField("username_txt", 2, 150, 35, 125, 20);
this.createTextField("results_txt", 3, 25, 60, 300, 20);
// Create the PushButton
this.attachMovie("FPushButtonSymbol","submit_pb",4);
// Position and label the PushButton
with (submit_pb) {
 _x = 300;
 _y = 35;
 setLabel("Submit");
}
// Set the properties for the TextFields
label_txt.text = "Enter your name";
username_txt.border = true;
username_txt.type = "input";

Example 3-1 is combined with the HelloUser code from Chapter 2 in the online example
HelloUser_dynamic.fla to form a completely ActionScript-generated Flash Remoting example. You can
find it at the online Code Depot.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.5 Building Forms in Flash MX

HTML forms are structured elements, consisting of a <FORM> tag surrounding form elements. In

Flash, there is no encompassing form tag. The form elements can be text fields, UI components, or
other Flash objects and can reside anywhere in the movie. Because Flash is an object-oriented
interface, you need only reference the objects by name to access their properties and methods. You
can utilize the text property of a TextField object in your Flash Remoting service calls like this:

myService.myMethod(somefield_txt.text);

When you do that, you are essentially posting the contents of somefield_txt to the remote service.

This is equivalent to sending a form and the contents of a form field to a server-side page. Because
your remote services are expecting the argument, they don't need to process and parse a form
field-they need only access the value.

For that reason, building forms in Flash is somewhat of a misnomer. You are not actually building a
web form, per se; you are simply creating interface elements that act as collectors of user data and
passing this data to your remote services. No form is ever created; no post is ever made to the
server. This highlights a key difference between Flash Remoting and working with the LoadVars class
(or working with loadVariables() in Flash 5).

When working with the LoadVars class, your server-side page has to parse the incoming form data
and determine what to do with it. Working with Flash Remoting is almost like working in one
environment: you simply pass arguments to remote methods and process the return value. The fact
that the methods can be halfway around the world makes Flash Remoting powerful. Flash 2004
handles forms the same way as Flash MX. Flash Pro introduces an alternative to the timeline
metaphor-variously called slides, screens, or forms-which should not be confused with submitting
data from forms, as discussed here.

The UI components and other ActionScript objects each have their own properties, and some of them
have methods to address these properties. Table 3-4 shows several objects that might be used in a
Flash Remoting application and how their values can be grabbed through dot notation by accessing a
method of the object (or accessing the text property directly in the case of a text field).

Table 3-4. Accessing properties of various ActionScript objects

Object Get the data

AdvancedMessageBox FAdvancedMessageBox.getButtons()[buttonIndex]

Calendar FCalendar.getSelectedItem() or FCalendar.getSelectedItems()

Checkbox FCheckBox.getValue()

ComboBox FComboxBox.getSelectedItem()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Object Get the data

DataGrid FDataGrid.getSelectedItem() or FDataGrid.getItemAt(index)

IconButton FIconButton.getLabel() or FIconButton.getValue()

ListBox
FListbox.getSelectedItem(), FListbox.getSelectedItem(),
FListbox.getSelectedIndex(), or FListbox.getSelectedIndices()

MessageBox FMessageBox.getButton()[buttonIndex]

PromptBox FPromptBox.getUserInput()

PushButton FPushButton.getLabel()

RadioButton FRadioButton.getData() or FRadioButton.getValue()

TextField TextField.text

Tree FTree.getSelectedNode()

The AdvancedMessageBox and MessageBox components have a roundabout way of retrieving the
user input. You must retrieve the index number of the button that was clicked and use it to read the
label of the button from the Buttons array.

To do so, define a close callback handler, using setCloseHandler(), that accepts two arguments: the
component instance and the index of the clicked button. A typical callback function for a MessageBox
or AdvancedMessageBox is shown in Example 3-2.

Example 3-2. Message Box demo

// Set up the MessageBox component named delete_mb
delete_mb.setButtons(["OK","Cancel"]);
delete_mb.setMessage("Are you sure?");
delete_mb.setTitle("Delete Record");
delete_mb.setCloseHandler("myCloseHandler");

myCloseHandler = function (myMessageBox_mb, buttonIndex) {
 // Get the label of the button that was pressed
 var buttonLabel = myMessageBox_mb.getButtons()[buttonIndex];
 // Do something based on which button was pressed
 switch (buttonLabel.toLowerCase()) {
 case "cancel":
 trace("cancel");
 // In practice, do nothing when cancelled
 return;
 case "ok":
 trace("ok");
 // In practice, call the remote service when user clicks OK, such as:

 // myRemoteService.deleteRecord(myRecordNumber);
 return;
 }
};

DataGrid FDataGrid.getSelectedItem() or FDataGrid.getItemAt(index)

IconButton FIconButton.getLabel() or FIconButton.getValue()

ListBox
FListbox.getSelectedItem(), FListbox.getSelectedItem(),
FListbox.getSelectedIndex(), or FListbox.getSelectedIndices()

MessageBox FMessageBox.getButton()[buttonIndex]

PromptBox FPromptBox.getUserInput()

PushButton FPushButton.getLabel()

RadioButton FRadioButton.getData() or FRadioButton.getValue()

TextField TextField.text

Tree FTree.getSelectedNode()

The AdvancedMessageBox and MessageBox components have a roundabout way of retrieving the
user input. You must retrieve the index number of the button that was clicked and use it to read the
label of the button from the Buttons array.

To do so, define a close callback handler, using setCloseHandler(), that accepts two arguments: the
component instance and the index of the clicked button. A typical callback function for a MessageBox
or AdvancedMessageBox is shown in Example 3-2.

Example 3-2. Message Box demo

// Set up the MessageBox component named delete_mb
delete_mb.setButtons(["OK","Cancel"]);
delete_mb.setMessage("Are you sure?");
delete_mb.setTitle("Delete Record");
delete_mb.setCloseHandler("myCloseHandler");

myCloseHandler = function (myMessageBox_mb, buttonIndex) {
 // Get the label of the button that was pressed
 var buttonLabel = myMessageBox_mb.getButtons()[buttonIndex];
 // Do something based on which button was pressed
 switch (buttonLabel.toLowerCase()) {
 case "cancel":
 trace("cancel");
 // In practice, do nothing when cancelled
 return;
 case "ok":
 trace("ok");
 // In practice, call the remote service when user clicks OK, such as:

 // myRemoteService.deleteRecord(myRecordNumber);
 return;
 }
};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.6 The RecordSet Class

Now that we've seen the ease and power of UI components, let's see how interactivity is enhanced
using one of the most impressive aspects of Flash Remoting technology: the RecordSet class. Remote
method calls commonly return recordsets, which are converted to ActionScript RecordSet objects, to
the Flash movie. The RecordSet class has methods that make it easy to work with data returned from
a remote method and placed in a RecordSet object. For example, to find the number of records in a
RecordSet object, use the getLength() method:

my_rs.getLength();

To sort the items in a RecordSet object from within the Flash movie-without making another round
trip to the server-you can use the sortItemsBy() method:

my_rs.sortItemsBy(columnName, order);

where order is asc (ascending) or desc (descending). In truth, specifying anything other than desc

as the order parameter performs an ascending sort, but using asc explicitly is considered a best

practice.

Other methods of the RecordSet class are just as easy to use. Here are several possibilities:

List or otherwise display a set of results to the user.

Populate a UI component, such as a ListBox or ComboBox, with the recordset data.

Create dynamic charts.

Create dynamic sortable grids.

Create multidimensional arrays.

A RecordSet object works seamlessly with a ColdFusion MX query object: the query object in
ColdFusion is also used when addressing directories, POP email servers, and FTP servers, in addition
to standard database calls. For example, to return a directory listing from the remote server to the
Flash movie, you could create a ColdFusion Component with one method and one tag:

<cfcomponent displayName="searchDirectory">
 <cffunction name="getDirectory" access="remote" returnType="query">
 <cfdirectory directory="c:\documents"
 name="myDirectory"
 sort="name ASC, size DESC">
 <cfreturn myDirectory>
 </cffunction>
</cfcomponent>

Inside the Flash movie, you can call this method using Flash Remoting and attach the query results to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a Tree component to display a list of documents in this directory:

myTree_tree.setDataProvider(myResult_rs);

Because ColdFusion allows you to work with certain structures as if they were recordsets, Flash allows
you to work with them as RecordSet objects as well. ColdFusion is covered at length in Chapter 5 .

The RecordSet class performs client-side operations only-local modifications
affect only the client and cannot be returned to the server. To perform batch
updates or other client/server manipulation of data, you must use arrays,
strings, or other data structures and process each record in the batch as you
normally would within a server-side solution. See Section 5.7 and the sample
application in Chapter 14 for examples.

3.6.1 Structure of a RecordSet Object

A recordset is essentially a multidimensional array, and managing such arrays can be somewhat
tricky. A RecordSet object works just like a recordset at the application level: it contains rows and
columns. Each row represents a record of data returned from the query. The columns represent the
field names and values of data returned from the server. Consider a recordset that contains the field
names ProductID, ProductName, Supplier, and Category, which could be represented by the following
SQL statement:

SELECT ProductID, ProductName, Supplier, Category
FROM Products

A typical output from the database might look like that shown in Table 3-5 (available as
RecordSetDemo.fla at the online Code Depot).

Table 3-5. The results of an imaginary database query

ID
number

Index
number

ProductID ProductName Supplier Category

0 0 1001 Flash MX Macromedia Software

1 1 1002 Dreamweaver MX Macromedia Software

2 2 1003
Flash Remoting: The Definitive
Guide

O'Reilly Book

3 3 1004 Windows 2000 Professional Microsoft Software

4 4 1005 Programming ColdFusion O'Reilly Book

5 5 1006 Grandma's Extensions Grandma Extensions

The RecordSet .getItemAt() method allows you to access the data by row number to get an entire
row as an object:

var myRow = my_rs.getItemAt(0); // Returns entire first row

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can access the data by row number and field name to get a specific item:

var temp = my_rs.getItemAt(3).ProductName; // Returns "Windows 2000 Professional"

The index number that is used in record retrieval, which is maintained internally by the Flash movie,
is a zero-based index. It reflects the physical positioning of the items in the RecordSet object. The
records also have an internal ID number that remains attached to each record, accessible using the _
ID _ property (note the two underscores on either side of the name, ID):

var myID = my_rs.getItemAt(0)._ _ID_ _; // Returns 0

The _ _ID_ _ property reflects the index of the record within the RecordSet object as it was first

created. If you perform a sort on the recordset, the index numbers change, but the internal ID
numbers continue to be attached to the records to which they were originally bound. For example, if
you sort the RecordSet object in Table 3-5 by ProductName, like this:

my_rs.sortItemsBy("ProductName");

you receive the results shown in Table 3-6 . Note that the index numbers are sequential, but the ID
numbers are not. The earlier statement would return a different result:

var myID = my_rs.getItemAt(0)._ _ID_ _; // Returns 1

Table 3-6. RecordSet results

ID
number

Index
number

ProductID ProductName Supplier Category

1 0 1002 Dreamweaver MX Macromedia Software

0 1 1001 Flash MX Macromedia Software

2 2 1003
Flash Remoting: The Definitive
Guide

O'Reilly Book

5 3 1006 Grandma's Extensions Grandma Extensions

4 4 1005 Programming ColdFusion O'Reilly Book

3 5 1004 Windows 2000 Professional Microsoft Software

Let's say you want to get the fourth item of the newly sorted recordset. If you attempt to get it using
the getItemAt() method, as follows:

trace(my_rs.getItemAt(3).ProductName); // Returns "Grandma's Extensions"

you get "Grandma's Extensions" as the result, because index 3 is now associated with the original
sixth record in the recordset. You can also access the fields and the items in the recordset as
properties directly (although it isn't recommended) by accessing the items property using the

following syntax:

my_rs.items[3].ProductName; // Returns "Grandma's Extensions"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using the items array will also access the record that is physically in that position at that time (by

index number, not by ID number).

Using the getItemID() method instead of getItemAt() , you can retrieve an item's ID number (i.e.,
its original position in the recordset):

trace(my_rs.getItemID(3)); // Returns 5

The preceding code returns the number 5, because "Grandma's Extensions" was originally the sixth
item in the recordset (with a zero-based item number of 5). Using getItemID() is preferable to
accessing the _ _ID_ _ property directly.

There is no built-in method to retrieve an item by its original ID number (i.e., to retrieve its current
record number based on its original position in the recordset). If you need to do so, you can write a
custom function to resort the records by their _ _ID_ _ property, or you can write a loop to check
the _ _ID_ _ property of each record and extract the desired match as shown under

RecordSet.getItemID() in Chapter 15 .

3.6.2 Using the RecordSet Class

The RecordSet.as file is included automatically when you include the NetServices.as file in your Flash
movie. However, you can use the RecordSet class by itself, even in Flash movies that don't utilize
Flash Remoting, by including the RecordSet.as class directly:

#include "RecordSet.as"

This approach can be used when you need to create a custom structure that can benefit from the
many built-in methods of the RecordSet class. For example, the RecordSet.sort() method, which
allows you to sort on any column, is better suited to sorting multidimensional data than the basic
Array.sort() method.

There are many methods available for working with client-side RecordSet objects, which are examined
in Chapter 4 and documented fully in Chapter 15 .

3.6.3 Flash Remoting Using a RecordSet

Although client-side recordsets are handy, the real power lies in returning server-side recordsets to
your Flash movie and putting them into an ActionScript RecordSet object. The following example
demonstrates how to pull a recordset resulting from a remote method call into Flash.

The example is built using the sample Northwind database that is included with MS Access and MS
SQL Server. The database is shipped with the ASP.NET version of Flash Remoting as well. If you don't
have either of these database programs, you can download the database file from the following
location:

http://office.microsoft.com/downloads/9798/nwind.aspx

The only thing you'll need to work with the sample database is a connection from your application
server.

http://office.microsoft.com/downloads/9798/nwind.aspx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

A MySQL script to generate the Northwind database for a MySQL server is
available for download from http://www.flash-remoting.com as well.

The Flash interface is very simple and can be downloaded from the online Code Depot
(SearchProducts.fla). It consists of a search field, several text fields, and a Submit button. The
interface allows a search of the Northwind Products table using the following SQL statement:

SELECT ProductName, UnitPrice, QuantityPerUnit
FROM Products

WHERE ProductName LIKE '%searchfield%'

This time, I'll show you the server-side code first, beginning with ColdFusion MX.

3.6.3.1 ColdFusion

Here, we use a CFC to build the remote service. The CFC in Example 3-3 should be named
SearchProducts.cfc and placed in the webroot \com\oreilly\frdg directory. You'll need a data source
named "Northwind " set up in the ColdFusion administrator.

Example 3-3. ColdFusion implementation of SearchProducts.cfc

<cfcomponent displayName="SearchProducts">
 <cffunction name="getSearchResult" access="remote" returnType="query">
 <cfargument name="search" type="string" default="%">
 <cfquery name="rsGetProducts" datasource="Northwind">
 SELECT ProductName, UnitPrice, QuantityPerUnit
 FROM Products
 WHERE ProductName LIKE '%#search#%'
 </cfquery>
 <cfreturn rsGetProducts>
 </cffunction>
</cfcomponent>

Again, this component isn't much different from the HelloWorld example, except for the addition of a
<cfquery> within the function. Note the returnType of "query " in the <cffunction> tag. The
<cfreturn> tag returns the entire query to the caller. This query object becomes an instance of the

RecordSet class in Flash.

3.6.3.2 Server-Side ActionScript

This example of Server-Side ActionScript (SSAS) demonstrates a way to utilize the CF object of SSAS
and its query() method. The code is shown in Example 3-4 .

Example 3-4. Server-Side ActionScript implementation of
SearchProducts.asr

function getSearchResult (search) {
 var theSql = "SELECT ProductName, UnitPrice, QuantityPerUnit";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 theSql += " FROM Products";
 if (search) {
 theSql += " WHERE ProductName LIKE ";
 theSql += "'%" + search + "%'";
 }
 return CF.query({datasource:"Northwind", sql:theSql});
}

The remote method name, getSearchResult() , must match the function name in the .asr file. This
file should be named SearchProducts.asr and saved in the webroot \com\oreilly\frdg directory. Once

again, if you've already created the SearchProducts.cfc file, you'll have to rename it to
SomethingElse.cfc so that it doesn't respond to the service call before this SSAS service is able to.

The search parameter is empty if there is no argument passed in, so I use a conditional WHERE clause
in the SQL statement. The query returns all results if no search parameter is given.

The variable theSql is used to hold the SQL statement, because spanning multiple lines with SQL

statements causes errors in SSAS. For that reason, you should create your SQL statement as a
string, as shown in Example 3-4 , before calling the CF.query() method.

The CF.query() method takes several parameters. This example uses only the datasource and sql

parameters.

More information on the CF.query() method and SSAS can be found in Chapter 6 .

3.6.3.3 JRun and J2EE

The JRun version is implemented as a JavaBean named SearchProducts.java , also available at the
online Code Depot. The JavaBean should be set up with a JDBC driver available for the sample
Northwind database. The listing in Example 3-5 uses the Sun JDBC:ODBC bridge driver. The
JavaBean should be compiled as before. You will also need sun.jdbc.rowset.CachedRowSet class for
the resulting data, available from:

http://developer.java.sun.com/developer/earlyAccess/crs

Chapter 7 explains the techniques for returning data from a server. The java.sql.ResultSet class is not
recommended, as it is not a disconnected resultset like the CachedRowSet .

Example 3-5. Java implementation of SearchProducts.java

package com.oreilly.frdg;

import java.sql.*;
import java.io.Serializable;
import sun.jdbc.rowset.*;

public class SearchProducts implements Serializable{
 public SearchProducts () {}

 private String myDriverString = "sun.jdbc.odbc.JdbcOdbcDriver";
 private String myConnectionString = "jdbc:odbc:northwind";
 private String myUsername = "myUsername";

http://developer.java.sun.com/developer/earlyAccess/crs
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private String myPassword = "myPassword";
 private Connection conn = null;

 public ResultSet getSearchResult(String search) throws Exception {
 String errors = "";
 CachedRowSet rowset = new CachedRowSet();

 try {
 Class.forName(myDriverString);
 conn = DriverManager.getConnection(myConnectionString, myUsername, myPassword);
 } catch (ClassNotFoundException e) {
 errors = "Incorrect JDBC Driver\n";
 }
 if (errors == "") {
 try {
 Statement s = conn.createStatement();
 String sql = "SELECT ProductName,UnitPrice,QuantityPerUnit FROM Products";
 if (search != "") {
 sql += " WHERE ProductName LIKE '%" + search + "%'";
 }
 ResultSet rs = s.executeQuery(sql);
 rowset.populate(rs);
 rs.close();
 s.close();
 } catch (SQLException e) { //catch any SQL errors
 errors += e.toString() ;
 } finally {
 if (conn != null) {
 conn.close();
 }
 }
 }
 if (errors!="") {
 throw new Exception (errors) ;
 };
 return rowset;
 }
}

The Java implementation has some minor error handling, but it is intended mostly for demonstration
purposes. Your own Java classes will be more robust. The Java errors are in fact passed to the Flash
client even if they aren't handled in the class; the errors are returned in the onStatus event. You will
have to handle them in ActionScript, as we've done here by throwing a new Exception with a custom

error message.

All JavaBeans should implement the java.io.Serializable interface. This interface allows the object
instance (an instance of the SearchProducts class, in this case) to be serialized and deserialized. Flash
Remoting automatically maintains the state of the object if the JavaBean uses the Serializable
interface. If not, Flash Remoting does not store an instance of the class in the session.

3.6.3.4 ASP.NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ASP.NET version is implemented as an .aspx page using C# as the language. The code in
Example 3-6 calls a SQL Server database and delivers a DataSet to the Flash movie. Using a DataSet
is just one way to deliver a dynamic SQL resultset to Flash Remoting.

Example 3-6. The ASP.NET implementation of getSearchResult.aspx

<%@ Page Language="C#"%>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient"%>
<%@ Register TagPrefix="FRDG" Namespace="FlashGateway" Assembly="flashgateway" %>
<script runat="server" >
void Page_Load () {
 SqlConnection myConnection;
 SqlCommand myCommand;
 SqlDataAdapter myDataAdapter;
 DataSet myDataSet;
 String sql = "SELECT ProductName,UnitPrice,QuantityPerUnit FROM dbo.Products";
 String conn = " Server=192.168.0.4;uid=myUsername;pwd=mypwd;database=Northwind";
 if (Flash.Params.Count > 0) {
 sql += " WHERE ProductName Like '%" + Flash.Params[0].ToString() + "%'";
 }
 myConnection = new SqlConnection(conn);
 myConnection.Open();
 myCommand = new SqlCommand(sql, myConnection);
 myDataAdapter = new SqlDataAdapter(myCommand);
 myDataSet = new DataSet();
 myDataAdapter.Fill(myDataSet,"Products");
 Flash.DataSource = myDataSet.Tables["Products"];
 Flash.DataBind();
 myConnection.Close();
}
</script>
<FRDG:Flash ID="Flash" Runat="Server" />

The page is saved as getSearchResult.aspx in the com\oreilly\frdg\SearchProducts directory. Just as
with the HelloUser example page, the FlashGateway assembly is registered as a tag (FRDG) and
utilized in the page.

3.6.3.5 PHP

PHP has a rich set of database extensions that allow you to use it with all sorts of databases (MySQL,
Oracle, PostgreSQL, MS SQL, and mSQL, just to name a few). Example 3-7 uses MySQL, as it is fast,
reliable, and the database most commonly used with PHP. With PHP, the functions to access the
database change for each database, but for MySQL we use the mysql_pconnect() function to connect
to the database.

Example 3-7. PHP example for SearchProducts.php

<?php
class SearchProducts {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 function SearchProducts () { /* constructor */
 $this->methodTable = array(
 'getSearchResult' => array(
 'description' => 'Searches the database and returns a result.',
 'access' => 'remote',
 'arguments' => array('search')
)
);
 }

 function getSearchResult ($search) {
 if (!$link = mysql_pconnect('localhost', 'myUsername', 'myPassword'))
 return mysql_error();
 if (!mysql_select_db('Northwind', $link)) return mysql_error();

 $query = 'SELECT ProductName, UnitPrice, QuantityPerUnit FROM Products';
 $query .= (!empty($search)) ? " WHERE ProductName LIKE '%$search%'" : '';

 if (!($result = mysql_query($query, $link))) return mysql_error();
 return $result;
 }
}
?>

The page is saved as SearchProducts.php in the services\com\oreilly\frdg\ directory. One handy thing
about PHP services is that you can paste the URL of the service into a browser to test the service for
errors. If you see a blank page, the service does not have syntax errors.

3.6.3.6 The client-side ActionScript code

With the server-side code in place, it's time to build the Flash movie. Add a layer named actions to
the movie timeline, and add the script shown in Example 3-8 to the first frame of the timeline.

Example 3-8. Client-side ActionScript file SearchProducts.fla

#include "NetServices.as"

// Connect to the gateway and create a service object
if (connected == null) {
 connected = true;
 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 var myService = my_conn.getService("com.oreilly.frdg.SearchProducts", this);
 var Products_rs = null;
}

// Set up event handlers for buttons
submit_pb.setClickHandler("onSubmit");

// Event handlers for buttons
function onSubmit () {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 myService.getSearchResult(search_txt.text);
}

// Responder function for onResult event
function getSearchResult_Result (result_rs) {
 Products_rs = result_rs;
 var temp = "";
 temp += "There were " + Products_rs.getLength();
 temp += " records returned.";
 results_txt.text = temp;
}

// Responder function for onStatus event
function getSearchResult_Status (error) {
 results_txt.text = "There was an error: " + error.description;
}

The code includes NetServices.as , which includes the reference to RecordSet.as , so you don't have
to include the latter explicitly.

Next, it creates a connection to the Flash Remoting gateway and defines the service object. The
remote service uses the same naming convention as the previous examples (com.oreilly.frdg
.serviceName):

// Connect to the gateway and create a service object
if (connected == null) {
 connected = true;
 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 var myService = my_conn.getService("com.oreilly.frdg.SearchProducts", this);
 var Products_rs = null;
}

Next, it assigns and defines the Submit button click handler function. The Submit button calls the
getSearchResult() method. The contents of the text field named search_txt are sent to the method:

// Set up event handlers for buttons
submit_pb.setClickHandler("onSubmit");

// Event handlers for buttons
function onSubmit () {
 myService.getSearchResult(search_txt.text);
}

Next, the code handles the results from the database search. A remote method invocation always
returns one of two events: onResult or onStatus . The NetServices class can handle these events in
several different ways. To capture responses from the HelloWorld and HelloUser services (Examples
Example 1-1 and Example 2-1), we used a responder object that had two methods: onResult() and
onStatus() .

Alternatively, the events can be handled with functions that follow a specific naming convention.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Results are returned to a function named using the name of the remote method
with a suffix of _Result . Similarly, status (error) events are returned to a
function named with a _Status suffix.

In this case, the remote method is getSearchResult() , so the result and status functions are named
getSearchResult_Result() and getSearchResult_Status() .

The remote service returns an entire recordset, which I've called result_rs , to
getSearchResult_Result() . Because the result is a recordset, using a variable name ending in _rs

lets you take advantage of ActionScript's code hints and code completion features:

// Responder function for onResult event
function getSearchResult_Result (result_rs) {
 Products_rs = result_rs;

The RecordSet .getLength() method returns the number of records in the recordset. The code
displays the count in the results_txt text field along with some descriptive text. The text is first
concatenated in a temporary variable, which is much quicker than setting the text property

incrementally:

 var temp = "";
 temp += "There were " + Products_rs.getLength();
 temp += " records returned.";
 results_txt.text = temp;
}

If the remote call is unsuccessful, the _Status function is called instead of the _Result function. The
_Status function receives an error object with properties, including description , which identifies the

error. The getSearchResult_Status() function simply displays the descriptive text of any error
message that is returned:

// Responder function for onStatus event
function getSearchResult_Status (error) {
 results_txt.text = "There was an error: " + error.description;
}

If you run the movie-either by publishing it and browsing to it, or by testing it in the authoring
environment-you should be able to enter something into the search field and get a count of the
results as a message in the interface.

If you get an error message, you'll probably wonder where the error occurred. This seemingly simple
example uses several different technologies and demonstrates just how complex a Flash Remoting
application can be. This example uses the following technologies:

Flash and ActionScript

A database (Access, SQL Server, MySQL, or other)

Structured Query Language (SQL)

The connection to the database (ODBC, JDBC, OLE DB)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The application server (CF, ASP.NET, JSP)

The Flash Remoting gateway

The HTTP protocol

Obviously, when using this many different technologies, errors can happen at any step along the way.
Chapter 13 covers debugging and troubleshooting in depth.

Once you have the code that counts the records returned to Flash working, you can add code to
display the data and page through the recordset. The RecordSet class does not have client-side
paging built in; it doesn't support the notion of a "current" record. Let's enhance the RecordSet class
to include two custom methods: move() and getCurrentRecord() .

ActionScript allows you to augment a class by assigning custom methods and properties directly to its
prototype property. This is not the only way to add functionality to a class, but in this case it fits the
bill nicely. First, add a currentRecord property to the RecordSet prototype along with a "getter"

method, getCurrentRecordNum() :

RecordSet.prototype.currentRecord = 0;
RecordSet.prototype.getCurrentRecordNum = function () {
 return this.currentRecord;
};

Next, add the custom move() method, which accepts a parameter specifying the direction ("first ",
"previous ", "next ", or "last "):

RecordSet.prototype.move = function (direction) {
 direction = direction.toLowerCase();
 switch (direction) {
 case "first":
 this.currentRecord = 1;
 break;
 case "previous":
 if (--this.currentRecord < 1) {
 this.currentRecord = 1;
 }
 break;
 case "next":
 if (++this.currentRecord > this.getLength()) {
 this.currentRecord = this.getLength();
 }
 break;
 case "last":
 this.currentRecord = this.getLength();
 break;
 }
};

The custom move() method sets the currentRecord property of the RecordSet object, depending on

which of the four buttons-First, Previous, Next, or Last- the user clicked. You have seen this typical
recordset navigation scheme a thousand times before.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, create the getCurrentRecord() method, which retrieves the current record. Keep in mind that
by the time these methods are called, the entire recordset is in memory. There are no more round
trips to the server.

Recordset.prototype.getCurrentRecord = function () {
 return this.getItemAt(this.currentRecord-1);
};

When you call RecordSet.getCurrentRecord() , an entire record is returned, but you can retrieve
individual fields from the record using the field name, like this:

myRecordsetName.getCurrentRecord().myFieldName;

Now that the RecordSet class has been enhanced to support a current record and a navigation
method, you can attach onClick event handlers to the First, Previous, Next, and Last buttons. The
function is written as a callback function named moveToRec() and assigned to the buttons (named
moveFirst , movePrevious , moveNext , and moveLast):

function moveToRec (button) {
 Products_rs.move(button.label);
 getRecord();
}
moveFirst.setClickHandler("moveToRec");
movePrevious.setClickHandler("moveToRec");
moveNext.setClickHandler("moveToRec");
moveLast.setClickHandler("moveToRec");

Since the button label supplies the necessary argument to the RecordSet.move() method, one
generic function is sufficient for all four buttons.

Now we need to display fields extracted from the recordset data in some text fields. This task can be
accomplished in several ways, but I'll use a function named getRecord() that is called from the
moveToRec() click handler:

function getRecord () {
 if (Products_rs.getLength() == 0) {
 ProductName_txt.text = UnitPrice_txt.text = QuantityPerUnit_txt.text = "";
 navStatus_txt.text = "No Records";
 } else {
 var currentRecord = Products_rs.getCurrentRecord();
 ProductName_txt.text = currentRecord.ProductName;
 UnitPrice_txt.text = currentRecord.UnitPrice;
 QuantityPerUnit_txt.text = currentRecord.QuantityPerUnit;
 var temp = "Rec. No. " + (Products_rs.getCurrentRecordNum());
 temp += " of " + Products_rs.getLength();
 navStatus_txt.text = temp;
 }
}

The preceding code simply sets the text elements in the Flash movie to the current record's field
values, or sets them to blank if there are no records. It retrieves the current record with the
getCurrentRecord() method created earlier and then extracts each field individually.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can test this movie from the Flash environment, or you can publish it to your site and browse to
the resulting HTML page. When you browse to the page, the browser doesn't need to reload the page,
even if you search the database repeatedly. The communication with the server is done by Flash
behind the scenes. Figure 3-3 shows the interface in use. The completed example, SearchProducts.fla
, is available at the online Code Depot. Chapter 4 through Chapter 9 show more examples that utilize
the RecordSet class.

Figure 3-3. The Flash interface for SearchProducts.fla

This section described a simple search interface in Flash that relied on ActionScript to manually set
the text elements in the movie to the incoming recordset field values. The next section describes a
much simpler approach that can be utilized with some types of UI components using another Flash
Remoting class: DataGlue .

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.7 DataGlue

Typically, when working with recordsets in server-side applications and HTML pages, the most tedious
part is formatting the recordset on a page or in a user-interface element, such as a list box.
Fortunately, the RecordSet class, in combination with the DataGlue class, simplifies this immensely.
The DataGrid and the Dynamic Chart components are perhaps the most impressive, but any data-
aware component can be dynamically populated with a RecordSet object with one line of code:

myComponent.setDataProvider(myRecordset_rs);

This code effectively binds the recordset to the component and creates the visual output in the Flash
movie.

3.7.1 Using the DataGlue Class

So-called data-aware components can interact with DataProviderClass objects to easily attach a data
source to the component. Components that support DataProviderClass objects include:

ComboBox

ListBox

Tree

BarChart

LineChart

PieChart

DataGrid

These items support DataProviderClass methods, such as addItem(), addItemAt(), getLength(),
removeAll(), removeItemAt(), replaceItemAt(), setDataProvider(), and sortItemsBy(). These
methods are handy when you're working with static data, but when you're working with a RecordSet
object there is one added bonus: changes to the RecordSet object are reflected automatically in the
UI component's display. The DataGlue.bindFormatStrings() class-level method effectively glues the
recordset to the UI component; so, when you use one of the RecordSet methods, the component that
is tied to the RecordSet object is also affected. For example, deleting an item from the client-side
RecordSet object with the following code:

myRecordset_rs.removeItemAt(myRecordNumber);

automatically removes the item from any components that are tied to the RecordSet, such as a
ListBox or ComboBox.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Take a ComboBox as an example. A ComboBox can be thought of as two arrays: one containing the
label property for each item in the list, and one containing the data property. The label is displayed

in a drop-down list, but the data can be almost anything, including a recordset row. Let's look at a
simple example, which allows a server-side service to populate a ComboBox. The examples use the
same server-side services as the last example: com.oreilly.frdg.SearchProducts.

The UI has a ComboBox to hold the resulting recordset, a ListBox to hold items chosen by the user,
and two buttons to add and remove items from the ListBox. The code is listed in Example 3-9 and is
also available at the online Code Depot as DataGlueDemo.fla.

Example 3-9. DataGlueDemo.fla

#include "NetServices.as"
#include "DataGlue.as"

if (connected == null) {
 connected = true;
 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 var myService = my_conn.getService("com.oreilly.frdg.SearchProducts", this);
}
// Call method inline when movie loads
myService.getSearchResult('');

// Set up event handlers for buttons
add_pb.setClickHandler("onAdd");
remove_pb.setClickHandler("onRemove");

// Event handlers for buttons
function onAdd () {
 products_lb.addItem(allproducts_cb.getSelectedItem().label);
}

function onRemove () {
 products_lb.removeItemAt(products_lb.getSelectedIndex());
}

function getSearchResult_Result (result_rs) {
 DataGlue.bindFormatStrings(allProducts_cb,result_rs,
 "#productname#", "#unitprice#");
}

The first thing you should notice is the new include file, DataGlue.as:

#include "DataGlue.as"

The connection and service creation are the same as seen earlier. The getSearchResult() remote
method is called inline rather than triggered by an event; the recordset is loaded from the remote
server when the movie loads. Two buttons add items to the ListBox from the ComboBox and remove
items from the ListBox. They are set up with click handler functions:

// Set up event handlers for buttons

http://lib.ommolketab.ir
http://lib.ommolketab.ir

add_pb.setClickHandler("onAdd");
remove_pb.setClickHandler("onRemove");

// Event handlers for buttons
function onAdd () {
 products_lb.addItem(allproducts_cb.getSelectedItem().label);
}

function onRemove () {
 products_lb.removeItemAt(products_lb.getSelectedIndex());
}

The only other code in this example is the _Result function, which handles the result from the remote
method. This is where DataGlue.bindFormatStrings() is used to tie the recordset to the UI
component:

function getSearchResult_Result (result_rs) {
 DataGlue.bindFormatStrings (allProducts_cb,result_rs,"#productname#");
}

The bindFormatStrings() method takes four parameters:

Data consumer

The ComboBox in this case
Data provider

The RecordSet object in this case
Label data

Using the current ProductName field from the recordset
Value data

Not used here

The DataGlue.bindFormatStrings() method essentially glues your recordset to the ComboBox. When
the recordset is loaded from the remote server, it is automatically placed in the ComboBox.

The next section describes the DataGlue class (or simply DataGlue) as it applies to the DataGrid
component.

3.7.2 Gluing the DataGrid

The previous example showed a simple recordset feeding a ComboBox using the DataGlue class.
However, DataGlue works just as easily with more sophisticated components. The DataGrid
component comes with its own method for handling the DataProviderClass, called setDataProvider():

myGrid.setDataProvider(myRecordset_rs);

Calling DataGrid.setDataProvider() causes a DataGrid component to display an entire recordset in a
sortable grid, as shown in Figure 3-4. Because the DataGrid contains its own DataGlue functionality,
you don't have to specifically include DataGlue.as in your Flash file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-4. The DataGrid component in use

You'll notice that the row colors are alternating in Figure 3-4. This was done by adding one line of
code:

myGrid_dg.alternateRowColors(0xCCCCCC,0xFFFFFF);

The entire code listing for the DataGrid demo (DataGridDemo.fla), which you'll find at the online Code
Depot, is shown in Example 3-10.

Squashing a DataGrid Bug

There is a bug in the DataGrid implementation that is documented in the DataGrid help
files. It has to do with the way that conflicting classes are dealt with in Flash MX. If you
add a DataGrid to your page and you find that it displays nothing but blank results, you
are seeing the bug.

To work around the DataGrid bug, follow these steps:

Open the Library of your .fla.1.

Navigate to Flash UI Components Component Skins Global Skins in the
Library.

2.

Select the skin called FLabel and delete it from the Library.3.

A dialog box appears, asking if you're sure.4.

There will be a checkbox prompting you to delete symbol instances. Make sure this
checkbox is not checked, then click OK.

5.

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

5.

Drag another DataGrid instance from the Components panel to the Stage.6.

A dialog box appears, asking you to replace existing components. Say yes, and then
delete the grid from the Stage.

7.

At this point, the bug should be squashed and you should be able to see the results in
your DataGrid.

Example 3-10. DataGridDemo.fla

#include "NetServices.as"

if (initialized == null) {
 initialized = true;
 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 var myService = my_conn.getService("com.oreilly.frdg.SearchProducts", this);
}

myService.getSearchResult('');

function getSearchResult_Result(result_rs) {
 myGrid_dg.alternateRowColors(0xCCCCCC,0xFFFFFF);
 myGrid_dg.setDataProvider(result_rs);
}

The online example files utilizing the DataGrid do not contain the grid
component, due to licensing issues, as it is a commercial component. You need
to add a DataGrid component to the .fla and give it an instance name of
myGrid_dg in order to make the examples work.

3.7.3 Gluing the Dynamic Chart Components

Flash's Dynamic Chart Components are perhaps the most sophisticated components available from
Macromedia. Attaching a RecordSet object to one of these charts is just as simple as it was using a
ComboBox or DataGrid component. Just like DataGrid components, the Chart Components have their
own DataProviderClass built in and don't need DataGlue.as.

To demonstrate, I'll go back to the Northwind database and create a service that queries the
Category Sales for 1997 view. The SQL statement used for this service is simply:

SELECT * FROM [Category Sales for 1997]

The MySQL version of the database does not have built-in views or queries like MS SQL Server or MS
Access. If you are using the MySQL database, you can substitute the following SQL statement for the
previous query:

SELECT Categories.CategoryName,
Sum((order_details.UnitPrice * Quantity * (1-Discount)/100)*100)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AS CategorySales
FROM Categories
INNER JOIN Products ON Categories.CategoryID = Products.CategoryID
INNER JOIN Orders ON Orders.OrderID = order_details.OrderID
INNER JOIN order_details
ON Products.ProductID = order_details.ProductID
WHERE Orders.ShippedDate Between '19970101' And '19971231'
GROUP BY Categories.CategoryName

The server-side code is identical to the SearchProducts service that was created earlier, with the
exception of the previous SQL statement and the method name: getCategorySales(). The code for
the server-side service is not shown here but is available as a CFC for ColdFusion, a Java class for
J2EE, an .aspx page for ASP.NET, and a .php page for PHP at the online Code Depot.

The Flash source file, ChartDemo.fla, can also be downloaded from the online Code Depot. It contains
one item: a PieChart object named myChart. Example 3-11 shows the commented ActionScript code.

Example 3-11. ChartDemo.fla

#include "NetServices.as"

if (connected == null) {
 connected = true;
 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 var myService = my_conn.getService("com.oreilly.frdg.getStats", this);
}
// Set up the chart title, the label field, and the value field
myChart.setChartTitle("Category Sales for 1997");
myChart.setLabelSource("CategoryName");
myChart.setValueSource("CategorySales");

// Get the remote service
myService.getCategorySales();

// Handle the result by setting the DataProvider of the chart
function getCategorySales_Result(result_rs) {
 myChart.setDataProvider(result_rs);
}

This code provides a simple pie chart based on the data returned from the server. If you roll your
mouse over the pie elements, you can see the data from the recordset (shown in Figure 3-5).

Figure 3-5. The dynamic PieChart component in use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To change this PieChart to a BarChart, simply remove the PieChart object from the Flash movie and
replace it with a BarChart object. Name the BarChart myChart, using the PI. If you test the movie at

this point, you should see the data displayed in bar chart format.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.8 Wrapping Up

This chapter has covered many of the user interface basics that you need to create your own Flash
Remoting interfaces and allow them to interact with remote services. You learned about many of the
UI components that are available and how they interact with Flash Remoting through DataGlue and
other techniques. Chapter 4 covers details about the Flash Remoting components and what makes
them tick.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 4. Flash Remoting Internals
I learned how to program by pulling apart existing programs and trying to figure out how they
worked. This was back in 1982, when the hottest computer around was the Commodore 64. My
approach was to load an existing program, run it, and then look at the code line by line. I would
comment each line of the code with my observations of what the program was doing. After some
practice, I got pretty good at discovering what other people's code did. I also got pretty good at
writing my own code.

The code was assembly language. Although the properties, methods, and events of modern-day
languages make it easy to accomplish complex tasks with one or two lines of code, a simple
statement like myService.getSearchResults(string) might require hundreds of lines of assembly

language. Little wonder that I went through 7,000 sheets of tractor-feed printer paper. Despite its
drawbacks, the flip side of assembly language is that it gives you access to the core underpinnings of
the software and hardware. If you understand the assembly language, you really understand
everything the program does.

The goal of Flash Remoting is to take complex tasks and abstract them so that you, the programmer,
can accomplish more with each line of code than was previously possible. But saying "it just works"
isn't very satisfying to programmers who want to understand Flash Remoting at a deeper level.
Especially because sometimes it doesn't "just work," a deeper technical understanding can help you
solve otherwise vexing problems.

The preceding chapters have shown you a few examples of the technology and how to use it. Now
that Flash Remoting's concepts are familiar to you, it is a good time to dive more deeply into the
different classes, objects, and components of Flash Remoting. What exactly are NetServices and
createGatewayConnection() and why do they work as they do?

Following the discussion of some of Flash Remoting's internals, this chapter explores other topics in
depth. This chapter includes many practical details on responder objects and callback functions,
recordset objects, error trapping, and registering objects for transmission between the client and
server. This chapter gives a new understanding of Flash Remoting, so you can decide when to sit
back and enjoy the cruise control and when to tinker under the hood. It should be read carefully by
all developers, so buckle up.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.1 The NetConnection Class

The NetConnection class is available to the Flash Player when you install the Flash Remoting
authoring components. A NetConnection object provides you with a proxy through which you connect
to the Flash Remoting gateway on the remote server. It also gives you a way to call remote methods.
All you need to know is the URL of the Flash Remoting gateway and the methods that you want to
access. The NetConnection class takes care of the minutiae involved in making the connection, calling
the services, and handling the results.

The NetConnection class contains several methods that can be accessed directly, but they are most
often called indirectly through the NetServices class, as shown in the previous chapters. The methods
of NetConnection are:

connect(url)

call(remoteMethod, responderObject[, arg1, arg2,...])

close()

These three core methods are used internally by the NetServices class to connect to and use the
Flash Remoting gateway on the server. But what exactly is the relation between the NetConnection
and NetServices classes?

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.2 Using NetServices

In the examples in the preceding chapters, the NetServices.as file was included to allow you to use
two methods of the NetServices class: createGatewayConnection() and setDefaultGateway().

There is also a NetServices.getVersion() method, which returns the current version of the
NetServices class. You can check the version number to maintain backward compatibility if future
versions of the NetServices class contain new functionality. Several other methods are used internally
as well.

The NetServices class also gives you an interface to the NetConnection class and enhances the
NetConnection class to include several new methods:

getService(remoteMethod, responderObject[, arg1, arg2,...])

setCredentials(username, password)

RequestPersistentHeader()

ReplaceGatewayUrl(url)

The first two methods should be accessed through the connection that you set up with the
createGatewayConnection() method. The last two methods are reserved for future use by the Flash
Remoting gateway.

4.2.1 Establishing the Gateway Connection

Calling the NetServices.createGatewayConnection() method initializes a NetConnection object and
returns that object to the Flash movie. The new NetConnection object can be used to connect to the
Flash Remoting gateway on the server.

Here, a hardcoded URL for the gateway is passed as an argument to createGatewayConnection():

var myURL = "http://localhost/flashservices/gateway";
var myConnection_conn = NetServices.createGatewayConnection(myURL);

Alternatively, the URL can be defined with another method, NetServices.setDefaultGateway(). The
NetServices.setDefaultGateway() method provides a way to hardcode a default gateway URL within
your Flash movie while retaining the flexibility to pass a gateway URL to the movie from the HTML
page. When you use setDefaultGateway() to specify the URL, the URL is stored as a property of the
NetConnection object. When the createGatewayConnection() method is called, the NetConnection
object determines the gateway URL as follows:

If the Flash developer included a URL in the call to createGatewayConnection(), as in Example
1-1, that URL is used.

1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

Otherwise, the NetConnection object checks whether the HTML page request is an HTTP or
HTTPS request. If so, it uses the URL specified by the gatewayURL variable within the
FlashVars attribute of the <OBJECT> or <EMBED> tag.

2.

If the URL is still not found, the NetConnection object uses the gateway URL specified in the
earlier call to setDefaultGateway() method, if any.

3.

If no URL is found, an error message is sent back to the Flash movie and displayed in the
Output window (in authoring mode only). In a production environment, the attempt to create
the gateway connection fails silently.

4.

For the purposes of demonstration, I have hardcoded the Flash Remoting gateway's URL path in
previous examples. Passing the URL into the movie as a variable from HTML makes it easier to move
your Flash Remoting application to a different server without having to recompile the .swf file.

To change the URL at runtime, add a FlashVars attribute to the <OBJECT> and <EMBED> tags of the
HTML page containing the Flash movie. FlashVars, first supported in Flash Player 6, allows you to

pass name/value pairs from the HTML page to the Flash movie. The HTML for a typical Flash movie
might look like this, with the FlashVars attributes in bold:

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/
 swflash.cab#version=6,0,0,0" WIDTH="550" HEIGHT="400"
 id="mymovie" ALIGN="">
 <PARAM NAME=movie VALUE="mymovie.swf">
 <PARAM NAME=FlashVars
 VALUE="gatewayURL=http://www.flash-remoting.com/flashservices/gateway">
 <PARAM NAME=quality VALUE=high>
 <PARAM NAME=bgcolor VALUE=#FFFFFF>
 <EMBED src="mymovie.swf" quality=high bgcolor=#FFFFFF WIDTH="550"
 HEIGHT="400" NAME="Untitled-2" ALIGN=""
 TYPE="application/x-shockwave-flash"
 FlashVars="gatewayURL=http://www.flash-remoting.com/flashservices/gateway "
 PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer">
 </EMBED>
</OBJECT>

The FlashVars attribute should specify the variable name gatewayURL and give it a value that is the
path to the Flash Remoting gateway on your server, because gatewayURL is the variable that the

NetConnection object is expecting:

gatewayURL=http://www.flash-remoting.com/flashservices/gateway

The best scenario is to use a setDefaultGateway() method to create a default URL in the ActionScript
code, but then override that within your final web page using a gatewayURL variable within the
FlashVars attribute. This gives you the flexibility to test your movie in authoring mode and change

the URL when publishing the movie to the Web:

// Create the connection and service objects
NetServices.setDefaultGatewayURL("http://localhost/flashservices/gateway");
var myConnection_conn = NetServices.createGatewayConnection();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After executing the preceding code, the variable myConnection_conn contains an instance of the
NetConnection class. Notice that there is no need to parse the gatewayURL variable from the HTML

page; this is done automatically behind the scenes by the NetConnection object.

If you examine the NetServices.as file, you can see the last few lines of code in the definition for the
createGatewayConnection() method:

NetServices.createGatewayConnection = function (url) {
 //... snipped code ...
 var nc = new NetConnection();
 nc.connect(url);
 return nc;
};

You can see that it creates a new NetConnection object and uses the connect() method to create a
connection before returning the object to the caller. The method is named connect(), but the actual
connection to the remote server isn't made until making a call to the remote service.

4.2.2 Creating the Service Object

When you set up a connection using createGatewayConnection(), the resulting NetConnection object
can be used to gain access to a service by calling its getService() method as shown here:

var myService = myConnection_conn.getService("com.oreilly.frdg.HelloUser", this);

The last parameter passed to getService()-in this case, the current object this-is sometimes

called a default responder object. This object will handler future results returned in response to
remote calls on the service. See Section 4.3 later in this chapter for many more details on responder
objects.

The service object returned by getService() is used to invoke methods or functions of the remote
service. Although the way in which you access methods of a service is similar for most server models,
details for each server-side platform are covered in Chapter 5 through Chapter 9.

Calling getService() also automatically sets up a NetServiceProxy object and the
NetServiceProxyResponder object. You shouldn't have to deal with these directly, as they are used
behind the scenes, but they are explained next.

4.2.2.1 NetServiceProxy

For each service established via getService(), Flash automatically generates an object of the
NetServiceProxy class to pass the remote call to the server and handle the results from the remote
call as well. It makes sure that the AMF packets to and from the remote service are deserialized and
registered properly as ActionScript objects. See Section 4.7 later in this chapter for more information.

When you connect to a remote service with a getService() call like this:

var myService = myConnection_conn.getService("com.oreilly.frdg.HelloUser", this);

getService() returns an instance of the NetServiceProxy class. The NetServiceProxy object acts as a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

proxy or middleman to the remote service and initiates the call to methods of the remote service.

4.2.2.2 NetServiceProxyResponder

For each service established via getService(), Flash also automatically generates an object of the
NetServiceProxyResponder class. The NetServiceProxyResponder object dispatches onResult events
containing the response from a remote method call, as described under Section 4.3. Similarly, the
NetServiceProxyResponder object also dispatches onStatus events if an error occurs when invoking a
method of a remote service. Again, see Section 4.3 for many important details on the order in which
NetServiceProxyResponder searches for the callback functions to handle onResult and onStatus
events.

4.2.3 User Authentication

Authenticating a user is a tedious but necessary task eventually faced by every application
programmer. Although different application servers have different methods of authenticating users,
the NetConnection.setCredentials() method provides a standard way to send authentication
information to your server-side application. At the time of this writing, setCredentials() is supported
by ColdFusion MX and JRun 4 only.

The setCredentials() method sends a credentials header with userid and password name/value

pairs to the remote server. The server, in turn, must be equipped to handle the header. The
setCredentials() method is covered at length in Chapter 5 and Chapter 7.

4.2.4 Using the NetConnection Object Directly

Flash Remoting includes a NetConnection class as part of its core classes. The NetServices class
simply provides a higher-level interface to the NetConnection class. The NetServices.as file contains
the classes used by Flash Remoting to communicate with the server. You don't have to include the
NetServices.as file if you use the NetConnection class directly. That is, the classes contained in the
NetServices.as file are not required, but they are easier to use than native NetConnection methods.
However, let's look at the NetConnection methods for comparison.

To utilize the NetConnection class directly you can first create a connection object:

var myConn = new NetConnection();

Then connect to the Flash Remoting gateway using the NetConnection.connect() method:

myConn.connect("http://127.0.0.1/flashservices/gateway");

To call a method of a remote service, you can use the NetConnection.call() method, specifying the
service and method names together in one argument, the responder object as the next argument,
followed by any arguments to send to the remote method. In this case, there are no arguments
supplied to the remote method:

myResult = new Object();
myConn.call("com.oreilly.frdg.HelloWorld.sayHello", myResult);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that you must specify the complete namespace of the service
(com.oreilly.frdg.HelloWorld), along with the method name without parenthesis (sayHello) in

the call to the server. The Flash Remoting gateway treats this call the same as invoking a method on
the service object returned by getService(), as shown in Example 1-1, portions of which are
reproduced here:

#include "NetServices.as"
// Set the URL for the gateway connection
var myURL = "http://localhost/flashservices/gateway";
// Specify the path to the service
var myServicePath = "com.oreilly.frdg.HelloWorld";
// Create a responder object (event handlers are not shown)
myResult = new Object();
// Establish the gateway connection
var myServer = NetServices.createGatewayConnection(myURL);
// Access the remote service
var myService = myServer.getService(myServicePath, myResult);
// Invoke a remote method on the service
myService.sayHello();

One or more arguments can be specified following the service and method names and the responder
object. For example, you can call the HelloUser service from Chapter 2 and pass it a username as
follows:

myConn.call("com.oreilly.frdg.HelloUser.sayHello", myResult, username_txt.text);

Again, the Flash Remoting gateway treats this call the same as using the NetServices class, as shown
in Example 2-1.

Although our brief examples of using NetConnection directly don't include callback handlers to handle
the results or status errors, you can set up event handlers in the manner shown in Examples
Example 1-1 and Example 2-1. You can't, however, use named callback functions, such as
methodName_Result (as shown in Example 3-8) without the NetServices class.

Although the NetConnection object can be used directly, the NetServices class provides several
advantages:

The service object can be created once (using getService()) and methods can be invoked on
that service by name, which is more intuitive.

You can specify result-handling functions using the methodname_Result naming convention.

The NetServiceProxy object created automatically by getService() acts as a proxy to handle
any necessary deserialization of the results into ActionScript objects.

Connection URLs can be set up using a setDefaultGatewayUrl() method and then overridden by
the parameters coming from HTML sent to the movie.

If you choose to call the NetConnection methods directly, the NetConnection.close() method can be
used to close a connection to the Flash Remoting gateway:

myConnection_conn.close();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Furthermore, the NetConnection.addHeader() method allows you to attach a header to the AMF
packet sent to the server, as follows:

myConnection_conn.addHeader(name, mustUnderstand, object)

The name argument is a header name that you specify (such as credentials). The second argument,

mustUnderstand, is a Boolean value; if it is true, the server must process the header before any

further processing can take place. It is up to your server-side code to process the header. The third
argument can be any ActionScript object. A typical call to addHeader() is included in the
NetServices.as file, which you can examine by looking at the source file in the Flash Include folder.
The NetConnection.setCredentials() method, covered in Chapter 5, uses addHeader() to process the
login information in a Flash movie.

4.2.4.1 NetConnection debugging methods

The NetConnection class also has several methods that you can use to debug your Flash Remoting
application:

NetConnection.getDebugConfig()

NetConnection.getDebugID()

NetConnection.setDebugID()

NetConnection.trace()

These methods are covered in Chapter 13, where we talk about debugging. They are also
documented in Chapter 15.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.3 Creating Responder Functions

You've seen different ways of creating a responder function for a remote service call. There are two
broad categories of responder functions:

The responder functions can be methods named onResult() and onStatus() (or, more
accurately, they are functions assigned to the onResult and onStatus properties of a

responder object).

Responder functions can also be named functions, in which case the function name must match
the name of the remote method followed by _Result or _Status, such as methodname_Result()

and methodname_Status(). This approach is used in some of the Macromedia documentation

and in Example 3-8.

Now that you understand the basics, here is the twist. A responder object can be passed to
getService(), in which case the same responder object is used for all future method invocations on
that service. Alternatively, a responder object can be passed separately each time a method is
invoked on the service, in which case a responder object should not be passed in the initial call to
getService().

4.3.1 Using onResult() and onStatus() Responder Functions

Let's first look at passing a responder object to getService(). Recall the syntax for calling the
getService() method, where myConnection_conn is a NetConnection object returned by an earlier

call to createGatewayConnection():

myService = myConnection_conn.getService(serviceName[, responderObject]);

The first parameter, serviceName, is a service name such as com.oreilly.frdg.HelloWorld. The

optional second parameter, responderObject, is any object that defines onResult() and onStatus()

methods, which will handle responses from future calls to methods of the remote service. The
Macromedia documentation sometimes refers to responderObject as a result-handler callback

object, we use the term responder object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The responderObject argument does not receive the result of the getService(

) call itself, which we stored in myService. Instead, responderObject is used

to obtain the results from subsequent calls to methods of the service. The
myService object is simply a proxy through which you can make calls to

methods of the remote service.

Many examples from Macromedia and elsewhere use the keyword this as the

responder object, which causes Flash to look for callback functions defined on
the object from which the getService() method is invoked. The only
requirements for a responder object is that it defines an onResult() and
onStatus() method, or uses named callback functions as described later in this
section.

The responder object can take different forms. In this excerpt from Example 1-1, a generic instance
of the Object class was created to handle the response from remote method calls:

myResult = new Object();

myResult.onResult = function (data) {
 trace("Data received from Server : " + data);
};

myResult.onStatus = function (info) {
 trace("An error occurred : " + info.description);
};

// ...other code omitted
var myService = myServer.getService(myServicePath, myResult);

Note how the myResult object is passed as the responderObject parameter of the getService()

method. After a remote method call on the service completes, the onResult() method of the
myResult object will receive the results (unless an error occurs, in which case the onStatus()

method will be invoked instead).

The following example defines the onResult() and onStatus() handlers on the current Flash object,
as specified by the keyword this, and passes this as the responder object. This technique is also

commonly seen throughout this book and in Macromedia's documentation:

this.onResult = function (myResult) {
 results_txt.text = myResult;
};

this.onStatus = function (myError) {
 results_txt.text = myError.description;
};

// Setting up of myConnection_conn and servicePath variables are not shown
var myService = myConnection_conn.getService(servicePath, this);

Recall that you can invoke any service function as a method of the service object returned by
getService():

// Call a service function named functionA() on myService with no parameters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

myService.functionA();

If the service function expects parameters, you can pass the parameters to it just as with any other
method invocation:

// Call a service function named functionB() on myService with two parameters.
myService.functionB("sample1", "sample2");

If you passed a responderObject parameter when calling getService() earlier, the response from

each remote method call is passed to the responder object's onResult() handler.

However, if you didn't specify a responder object when calling the getService() method, you can
specify named callback functions for each remote method called (as discussed later).

First, let's discuss another option: passing a responder object as the first argument when invoking a
remote function on the service. If the first argument is an object defining an onResult() method, the
NetServiceProxyResponder object strips it from the argument list passed to the remote service
function and uses it as a responder object instead (the responder object parameter is not sent to the
service function).

For example:

// Create the service object without specifying a responder object.
myService = myConnection.getService("serviceName");

// Call functionA(), specifying that myResponseObjectA should handle the
// results, but without passing any additional parameters.

// The definition of myResponseObjectA is not shown.

// myResponseObjectA is not sent to the service function.
myService.functionA(myResponseObjectA);

// Call functionB(), specifying that myResponseObjectB should handle

// the results, and pass two additional parameters. myResponseObjectB is not
// sent to the service function, but the two string parameters are sent.

// The definition of myResponseObjectB is not shown.
myService.functionB(myResponseObjectB, "sample1", "sample2");

Specifying the responder object when invoking a remote method on the service lets you specify
different responder objects for each remote method call, as shown in the preceding example. You
don't have this flexibility if the responder object is set when calling getService(). If you set a
responder object via getService() and attempt to specify another responder object when invoking a
remote function, it won't work. The responder object will be passed as a parameter to the remote
function instead of being stripped out of the argument list.

4.3.2 Using Named Responder Functions

An alternative to using onResult() and onStatus() responder functions is to use named responder
functions that match the name of the method. For example, here we define two named responder
functions for the sayHello() method:

function sayHello_Result (myResult) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 results_txt.text = myResult;
}

function sayHello_Status (myError) {
 results_txt.text = myError.description;
}

When a remote service call returns a result, the NetServiceProxyResponder object, which handles the
result from the remote call, looks for a function that follows the methodName_Result() naming

convention. Thus, onResult events generated by the sayHello() function cause Flash Remoting to
invoke the sayHello_Result() function. Similarly, error events generated by the sayHello() function
cause Flash Remoting to invoke the sayHello_Status() function

Using named functions in this way keeps the result and status callback functions separate for each
remote method call. Contrast this with the approach in which the onResult() and onStatus()
handlers of a responder object passed to getService() handle the results of all remote method calls
on that service.

4.3.3 Response Dispatch Hierarchy

Now that we know about the various ways that responder objects and functions can be specified, how
does Flash Remoting decide which responder function to invoke when results are returned from a
remote method call?

We saw earlier that when a service is established via getService(), Flash generates a
NetServiceProxyResponder object. When a remote method call returns a result, a corresponding
onResult (or onStatus) event is serialized by the Flash Remoting gateway as part of the AMF packet
that is sent back to your Flash movie.

The NetServiceProxyResponder object dispatches the onResult event from a remote call in this order:

First, it looks for a function that is named using the methodname_Result() convention. If it finds

one, results are sent to that function. This function can be defined on the responder object or
the current timeline.

1.

If the methodname_Result() function isn't found and a responder object with an onResult()

method was specified in the call to getService(), results are sent to that responder object's
onResult() method.

2.

If a responder object wasn't specified in the call to getService() and the first argument passed
to the remote method invocation is an object that defines an onResult() method, the first
argument is assumed to be a responder object and results are sent to its onResult() method.

3.

If no responder object is specified (or if the specified responder object lacks an onResult()
method), the NetServiceProxyResponder object sends the results to the Output window if the
movie is playing in the authoring environment. Otherwise, the results are lost.

4.

The NetServiceProxyResponder object also handles the onStatus event of the remote service in this
order:

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

First, it looks for a function that is named using the methodname_Status() convention. If it finds

one, status errors are sent to that function.

1.

If the methodname_Status() function isn't found and a responder object with an onStatus()

method was specified, results are sent to the responder object's onStatus() method.

2.

If no responder object is specified (or if the specified responder object lacks an onStatus()
method), the _root level is checked for an onStatus() method. If it is found, it is used.

3.

If that is not found, the _global.System.onStatus() method, if any, is used.4.

Finally, if none of the preceding handlers are found, the NetServiceProxyResponder object sends
the status to the Output window in the authoring environment. Otherwise, the status is lost.

5.

In the authoring environment, if you don't specify responders, the results are displayed in the Output
window. This can be handy when testing applications.

4.3.4 Choosing the Appropriate Type of Responder Function

Now that you understand your options, which type of responder function should you use? The answer
depends on your application's structure and requirements.

Named result functions are typically used when you have specified a default responder object for a
service object (that is, when you've passed a responder object to the getService() method). This
technique allows a single responder object to define separate responder functions for each remote
service function (because of the naming convention used).

You should use onResult() and onStatus() responder functions when you are passing a responder
object as the first parameter to each service function invocation. This technique is quite flexible: you
can define different responder objects for each service function invocation, or you can share a single
responder object among multiple service function invocations.

Provided you understand the mechanisms, you can mix and match the techniques to suit your
situation. Now we will we explore various possible situations and solutions.

By passing a responder object to getService(), you can use one event handler to handle all the
results or errors for multiple remote method calls, if appropriate. For example, if you have a service
that accessed a company employees database, you might have various methods like this:

myService.addEmployee(name);

myService.deleteEmployee(ID);

myService.updateEmployee(ID, record);

Each method can return true if it is a successful database transaction. If you use named functions to

handle the results, each of these remote method calls needs its own set of responder functions, as in
this code snippet:

updateEmployee_Result (result) {
 if (result != true) results_txt.text = "There was an error.";
}
deleteEmployee_Result (result) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (result != true) results_txt.text = "There was an error.";
}
addEmployee_Result (result) {
 if (result != true) results_txt.text = "There was an error.";
}
updateEmployee_Status (status) {
 results_txt.text = status.description;
}
deleteEmployee_Status (status) {
 results_txt.text = status.description;
}
addEmployee_Status (status) {
 results_txt.text = status.description;
}

Using the responder object approach, this example could be written using one onResult() handler
and one onStatus() handler attached to a generic object:

Responder = new Object();
Responder.onResult = function (result) {
 if (result != true) results_txt.text = "There was an error.";
};

Responder.onStatus = function (status) (
 results_txt.text = status.description;
};

Or, if you pass this (i.e., the current object) as the responder object, you can simply write:

onResult = function (result) {
 if (result != true) results_txt.text = "There was an error.";
};
onStatus = function (status) (
 results_txt.text = status.description;
};

Using a responder object is more concise in this particular case. In addition, it is in keeping with
object-oriented design. The named handler functions are easy to comprehend and use, but they are
more typical of procedural programming.

However, you may need to process the results of each remote method call differently. For example,
suppose the addEmployee(), deleteEmployee(), and updateEmployee() methods each require
special handling. In such cases, you can pass a responder object as the first argument in the remote
method call, as described earlier under Section 4.3.1.

Applying this technique to the hypothetical addEmployee(), deleteEmployee(), updateEmployee()
methods, the resulting ActionScript might look like Example 4-1.

Example 4-1. SampleDatabaseMethods.fla

#include "NetServices.as"
// Set up variables for the URL and service paths.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

var myURL = "http://localhost/flashservices/gateway";
var servicePath = "com.oreilly.frdg.SampleDatabaseMethods";

// Define the custom responder class for the remote updateEmployee() method.
function UpdateResult () { }

// Define a custom onResult() handler for the UpdateResult class.
UpdateResult.prototype.onResult = function (myResults) {
 results_txt.text = "Update employee successful";
 // Do some housekeeping after updating an employee
};

UpdateResult.prototype.onStatus = errorHandler;

// Define the custom responder class for the remote addEmployee() method.
function AddResult () { }

// Define a custom onResult() handler for the AddResult class.
AddResult.prototype.onResult = function (myResults) {
 results_txt.text = "Add employee successful";
 // Do some housekeeping after adding an employee
};

// AddResult and subsequent classes all share a single error handler.
AddResult.prototype.onStatus = errorHandler;

// Define the custom responder class for the remote deleteEmployee() method.
function DeleteResult () { }

// Define a custom onResult() handler for the DeleteResult class.
DeleteResult.prototype.onResult = function (myResults) {
 results_txt.text = "Delete employee successful";
 // Do some housekeeping after deleting an employee
};

DeleteResult.prototype.onStatus = errorHandler;

System.onStatus = errorHandler;

function errorHandler (myError) {
 results_txt.text = myError.description;
}

// Connection hasn't been initialized; create connection and service objects.
if (initialized == null) {
 initialized = true;
 NetServices.setDefaultGatewayURL(myURL);
 var myConnection_conn = NetServices.createGatewayConnection();
 var myService = myConnection_conn.getService(servicePath);
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Set up the callback functions to handle mouseclicks.
add_pb.setClickHandler("callAdd");
update_pb.setClickHandler("callUpdate");
delete_pb.setClickHandler("callDelete");

// Call the remote service when the user clicks the buttons.
function callAdd () {
 myService.addEmployee(new AddResult(), "Jack O'Lantern");
}
function callUpdate () {
 myService.updateEmployee(new UpdateResult(), myRecordNum, myRecord);
}
function callDelete () {
 myService.deleteEmployee(new DeleteResult(), myRecordNum);
}

Each remote method call has a corresponding responder object that defines a custom onResult()
handler. Notice, however, that all responder objects share a common error handler function. This
allows you to process the results of each remote method differently while economizing with a single
error handler.

We've seen how to invoke different responder functions for different remote methods, but you may
want to distinguish between multiple calls to the same remote method. Remember that remote
method invocations are asynchronous, and you cannot rely on results being returned to Flash in the
same order in which the functions are invoked. Therefore, if you are using the same responder
function for multiple calls to the same remote service function, you can't tell which service function
invocation returned a particular result. To distinguish between the results from multiple calls to the
same remote method, you can use a separate instance of a custom class for each responder object.
Attach a custom property to each responder object instance and check its value when the result is
returned to the responder function.

This solution adds an id parameter to the AddResult class constructor. You can create multiple
instances of the AddResult class-one for each function invocation-and assign each one a unique id.
Then, you can distinguish between results using the id property of the responder object. Replace the

following functions in Example 4-1 with these new versions:

// Define the custom responder class for the remote addEmployee() method.

// Assign an id property to each instance.
function AddResult (id) {
 this.id = id;
}

// Define a custom onResult() handler for the AddResult class.
AddResult.prototype.onResult = function (myResults) {

 // Process the result differently, depending on the value of the id property.
 results_txt.text = "Employee " + this.id + " added successfully";
};

Now you can invoke the same service function multiple times. In each case, use an instance of the
AddResult class as the responder object, but assign each instance an id corresponding to the

employee name so that you can distinguish between them when the results are returned.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

myService.addEmployee(new AddResult("Jack Sprat"), "Jack Sprat");
myService.addEmployee(new AddResult("Jack Beanstalk"), "Jack Beanstalk");
myService.addEmployee(new AddResult("Jack O'Lantern"), "Jack O'Lantern");

Let's look at one more scenario for creating and managing responder objects. You can create a
common responder class (named BaseResult in the following code snippet) and then create new
responder objects that inherit from the base class for each remote method:

// Define a BaseResult class. This class is never called directly,
// but it acts as a base class for responder objects.
function BaseResult () { }

BaseResult.prototype.onResult = function (myResults) {
 trace("success");
};

BaseResult.prototype.onStatus = function (myError) {
 results_txt.text = myError.description;
};

system.onStatus = BaseResult.prototype.onStatus;

UpdateResult.prototype = new BaseResult();

function UpdateResult() { // Empty constructor
}

UpdateResult.prototype.onResult = function (myResults) {
 results_txt.text = "Update employee successful";
 // Do some housekeeping after updating an employee.
};
// etc.

In this scenario, the onStatus() handler is defined in the parent class (BaseResult) and is available to
all of the classes that inherit from it. Each class that is created implements its own onResult()
method. The full code listing for this example is available at the online Code Depot as
SampleDatabaseMethods2.fla.

You can also establish a hierarchy of result handlers in your Flash movie. You can do this if you have
several methods that can share a result handler but some methods that need special handling. For
example, the following script defines two dedicated result handlers and one generic handler that will
handle all other remote method calls:

function myMethod1_Result (result) {

 // Do some stuff for myMethod1()
}
function myMethod2_Result result) {

 // Do some stuff for myMethod2()
}
function onResult (result) {
 // Do some generic stuff for all other methods
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first two functions correspond to method names, and the third function simply acts as a generic
method that all other remote method calls will use as a result handler.

Of course, the bottom line is that these techniques are all available and you should use what you feel
comfortable with or what the situation demands. Section 12.7.2.4 shows other techniques for
responder objects that rely on callback functions or broadcasters to handle results more elegantly.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.4 RecordSet Object

The one class that truly separates Flash Remoting from other techniques for dealing with remote data
in Flash is the RecordSet class. The RecordSet.as file is installed as part of the Flash Remoting
authoring components, which makes available the RecordSet class. We introduced the RecordSet
class in the Chapter 3, but let's examine it further and describe some of its available methods. For
more information, refer to Chapter 15, which documents the RecordSet class, among others. For
brevity in the following sections, I use the term "recordset" interchangeably with "client-side
RecordSet object" where the equivalence is clear from context.

Anyone who works with databases every day, like I do, will tell you that the recordset is king.
Everything you can do with data-from displaying lists of products to summarizing account
information, analyzing web traffic, totaling a shopping cart, or viewing threads in a forum-ultimately
depends on recordsets. A recordset is simply a way of organizing data, usually into rows and
columns. The Flash RecordSet class offers a way to pass this organized data from the server to the
client and manipulate it on the client with simple, intuitive methods. The following sections explain
the methods of the RecordSet class. The lines of code can be typed in consecutively to follow along
with the results that are obtained.

When working with RecordSet objects, it is handy to be able to examine the contents of the object.
For that reason, I've created a custom RecordSet.showData() method that displays the contents of a
RecordSet object in the Output window. Put the code from Example 4-2 into a file named
RecordSetDebug.as and save it in your Flash Configuration\Include folder.

Example 4-2. The RecordSet.showData() method

///
// RecordSet.showData
// Purpose: trace the contents of a RecordSet object in the Output window
///

RecordSet.prototype.showData = function () {
 var fields = this.getColumnNames();
 var i, j, tempfield="", temprow="", temprec="";
 trace("--Recordset Properties--");
 trace("Recordset length: " + this.getLength());
 trace("Fields: " + fields);
 trace("Begin records...");
 var tempLength = this.getLength();
 for (var i = 0; i < tempLength; i++) {
 temprec = this.getItemAt(i);
 for (var j=0; j < fields.length; j++) {
 tempfield = fields[j];
 temprow += tempfield + ': "' + temprec[tempfield] + '"; ';
 }
 trace(temprow);
 temprow="";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 trace("End records...");
 trace("--End Recordset Properties--");
};

Now you can include this extension to the RecordSet class by adding this line to a Flash movie during
debugging:

#include "RecordSetDebug.as"

You can invoke the showData() method on a RecordSet object that you want to display:

myRecordset_rs.showData();

This dumps the contents of the RecordSet object to your Output window. Use this method when
typing in the examples in subsequent sections. Later in the chapter, we'll add to the
RecordSetDebug.as file to make it more versatile.

4.4.1 The RecordSet Constructor

RecordSet objects must be instantiated from the RecordSet class, as is common for ActionScript
objects. You need to include the RecordSet.as file or the NetServices.as file, which includes
RecordSet.as, in your Flash movie in order to use the RecordSet class. To create a new, empty
RecordSet object, use the new keyword and pass an array of field names to the constructor:

var myRecordset_rs = new RecordSet(["First", "Last", "Email"]);

This creates a client-side recordset with three fields. Recordsets created in this way don't interact
with the server, but they can be useful for client-side storage and manipulation of data. The
recordsetname_rs naming convention activates code hinting in the Flash and Dreamweaver

authoring environments.

When a remote method call returns a recordset, a RecordSet object is automatically created on the
client side (there is no need to create one manually). The fields from the database query become the
field names of the client-side RecordSet object. Of course, once a recordset is returned, you can use
any of the client-side RecordSet class methods on it.

The client-side recordset is not tied to the remote database. If you return a
recordset from the remote server, any changes you make to the RecordSet
object on the client from Flash have no effect on the remote database. See
Section 5.7.

4.4.2 The addItem() Method

A recordset is essentially a two-dimensional array. Each record in the recordset can be represented
as an associative array of field names and values:

var tempRecord = {First:"Tom", Last:"Muck", Email:"tom@tom-muck.com"};

A record can be added to a recordset with the RecordSet.addItem() method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

myRecordset_rs.addItem(tempRecord);

This adds the new record to the end of the recordset and increases the length of the recordset by 1.

4.4.3 The addItemAt() Method

The addItemAt() method is similar to the addItem() method, except you specify the position at
which to insert the item by passing an index number as the first argument:

recordsetname.addItemAt(index, record)

For example:

tempRecord = {First:"John", Last:"Jehosephat", Email:"john@jehosephatlodge.com"};
myRecordset_rs.addItemAt(0,tempRecord);

This adds the record into the first position (index 0) of the recordset and pushes all other records
down. If you use an index number less than 0, the record is not inserted. If you use an index number
greater than the total number of records in the recordset, the record is added to the end of the
recordset at the position specified, and blank records are added before the newly inserted record, as
in this example:

tempRecord = {First:"Adam", Last:"Susquhanna", Email:"adam@susquehannahats.com"};
myRecordset_rs.addItemAt(10,tempRecord);

The newly added record appears at index 10. Given that only indexes 0 and 1 contain records from
the previous examples, records 2 through 9 are empty (undefined). You can verify this with the
custom showData() method from Example 4-2:

myRecordset_rs.showData();

When using addItemAt(), be careful about possible error conditions. For example, an error occurs if
you try to call addItemAt() when a server-side recordset is not fully loaded into the client-side
RecordSet object. Therefore, you should wait until the recordset is loaded before reading or writing to
the RecordSet object. For example, if you invoke a remote function that returns a recordset, you
should wait until the responder function, such as onResult(), is called, at which point you know that
the recordset is fully loaded. However, refer to the RecordSet.isFullyPopulated() method in Chapter
15 for more information about loading pageable recordsets in ColdFusion (see also Chapter 5).

4.4.4 The getLength() Method

You can count the number of records in a recordset with the RecordSet.getLength() method:

var myRecordsetLength = myRecordset_rs.getLength();
trace(myRecordsetLength);

The length is always 1 greater than the index of the last record, because the index is zero-based. The
length of this particular recordset is 11 because there is a record at index 10.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4.5 The getItemAt() Method

It is often convenient to retrieve a record by its index number using the RecordSet.getItemAt()
method:

var myRecord = myRecordset_rs.getItemAt(0);

Records within a recordset are copied by reference, not by value. Therefore,
any changes to the fields of myRecord are reflected in record 0 of
myRecordset_rs and vice versa.

Once your variable contains a copy of a record (a row of the recordset), you can access individual
fields by name:

var tempFirst = myRecord.First;
var tempLast = myRecord.Last;
trace(tempFirst + ' ' + tempLast);

The preceding example should output "John Jehosephat" if you've been typing in the code examples
as we go along.

Fields can also be addressed using associative array notation:

var tempFirst = myRecord["First"];
var tempLast = myRecord["Last"];

The index of the last element of a recordset is 1 less than the recordset's length:

var tempLength = myRecordset_rs.getLength();
var myRecord = myRecordset_rs.getItemAt(tempLength - 1);

4.4.6 The removeItemAt() Method

The removeItemAt() method removes the record at the specified index number:

recordsetname.removeItemAt(index)

Removing a record moves up the subsequent elements of the recordset to fill in the vacated index.
The fact that removing a record decreases a recordset's length by 1 can cause confusion within a
loop. To demonstrate, we'll loop through the RecordSet object created earlier and attempt to remove
empty elements:

var tempLength = myRecordset_rs.getLength();
for (var i=0; i < tempLength; i++) {
 trace("i=" + i + ": current record=" + myRecordset_rs.getItemAt(i));
 if (myRecordset_rs.getItemAt(i) == undefined) {
 myRecordset_rs.removeItemAt(i);
 }
}
trace(myRecordset_rs.getLength());

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 4-1 shows the results in the Output window.

Figure 4-1. The Output window after running the script

You might expect the recordset's length to be 3 after removing the eight empty elements, but the
recordset is getting shorter after each iteration of the loop. The code doesn't properly account for the
fact that when a record is removed, the index number of each subsequent record is decremented by
1. As the example is written, when a record is removed (and replaced by the next record) the next
record is never tested. Therefore, by the time the loop reaches record 6 (the seventh element) there
are no more records to test. To remove empty elements properly, you can iterate through the
records in reverse:

trace(myRecordset_rs.getLength())
var tempLength = myRecordset_rs.getLength()-1;
for (var i=tempLength; i >= 0; i--) {
 trace("i=" + i + ": current record=" + myRecordset_rs.getItemAt(i));
 if (myRecordset_rs.getItemAt(i) == undefined) {
 myRecordset_rs.removeItemAt(i);
 }
}
trace(myRecordset_rs.getLength());

This gives you the expected length of 3 when finished, because the individual empty records are
removed from the end of the recordset.

4.4.7 The replaceItemAt() Method

Use the replaceItemAt() method to replace the contents of a given record:

recordsetname.replaceItemAt(index, record)

For example:

var newRecord = {First:"Jim", Last:"Zatoichi", Email:"jim@theblindswordsman.com"};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

myRecordset_rs.replaceItemAt(1, newRecord);

After running this code, the record with name "Tom Muck" in element 1 of the recordset is replaced
with "Jim Zatoichi." You can verify this change with the custom showData() method.

4.4.8 The getItemID() Method

The getItemID() method returns the internal ID that Flash uses to keep track of the recordset
records. This is different from the index number, as explained in Section 3.6.1. The ID number is
assigned by Flash when the record is created, and it doesn't change.

4.4.9 The setField() Method

The setField() method is useful for changing the value of a given field in a record. Invoke it with the
index number of the record, the field to set, and the new value of the field:

recordsetname.setField(index, field, newValue)

For example, if Jim Zatoichi from the previous example changed his email address, you could update
the recordset as follows:

myRecordset_rs.setField(1, "Email", "jz@somenewemailaddress.com");

Again, I must reiterate that changing a client-side RecordSet object has no effect on the database
that resides on your remote server. You have to specifically create code to update the remote
database, as shown in Section 5.7.

4.4.10 The getColumnNames() Method

The extremely useful RecordSet.getColumnNames() method returns a comma-separated list of the
field names in a RecordSet object. This can be handy for creating generic classes, methods, or
functions that work with different remote recordsets. After the recordset is loaded into the Flash
movie, the getColumnNames() method can be used to determine exactly what is in the recordset so
that you can work with individual fields. You can call it like this:

var myFieldNames = myRecordset_rs.getColumnNames();
trace(myFieldNames);

The Output window displays "First, Last, Email", the three fields in the recordset.

4.4.11 The filter() Method

The filter() method filters the recordset by predefined criteria and returns a new RecordSet object.
This method works a little differently than you might expect if you're coming from a server-side
programming background.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The filter method requires that you define a function to determine how the recordset is filtered. You
pass a function name to the method and a value to filter by:

recordsetname.filter(function, value)

For example, to filter a recordset by its last name field, create a function called filterByLastName()
that accepts two arguments: the record and the last name to filter by:

function filterByLastName (theRecord, theLastName) {
 return (theRecord.Last != theLastName);
}

The filter() method cycles through each record of the recordset and calls the filtering function. If the
callback function returns true, the record is included in the filtered output. If it returns false, the

record is removed.

If you don't store the return value of the filter() method as follows, the return value is discarded:

myRecordset_rs.filter(filterByLastName,"Zatoichi");

Regardless, the filter() method does not affect the original recordset; instead, it returns an entirely
new RecordSet object. Therefore, you can maintain the original recordset while creating a filtered
version as well by simply specifying a new variable to contain the filtered recordset:

var theNewRecordset_rs = myRecordset_rs.filter(filterByLastName,"Zatoichi");

After executing this code, theNewRecordset_rs contains the filtered recordset and myRecordset_rs

contains the original recordset.

Records within a recordset are copied by reference, not by value. Therefore,
although filter() creates a new RecordSet object, the records within the filtered
recordset are still linked to the records in the original recordset. To create a
separate copy of a record, you must manually construct a new record object
and manually copy the fields from the original record to it.

To change the original recordset permanently, you can store the return value of the filter() method
in the variable holding the original RecordSet object:

myRecordset_rs = myRecordset_rs.filter(filterByLastName,"Zatoichi");

Refer to Section 4.4.14 later in this chapter for sorting recordsets without filtering them.

4.4.12 The getNumberAvailable() Method

The getNumberAvailable() method is used only with RecordSet objects that are retrieved from a
remote server via Flash Remoting. It indicates how many records have been downloaded up until that
point. You can use this method to determine whether it is safe to call other methods of the RecordSet
class that depend on the entire RecordSet object being loaded into memory. If the number returned
by getLength() matches the number returned by getNumberAvailable(), the entire recordset has
been downloaded:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

if (myRecordset_rs.getLength() == myRecordset_rs.getNumberAvailable()) {
 // Do something
}

This method pertains to pageable recordsets in ColdFusion (see Chapter 5).

4.4.13 The setDeliveryMode() Method

The setDeliveryMode() method allows you to create pageable server-side recordsets that relate to a
RecordSet object in a Flash movie. You pass the method a mode, page size, and number of records:

recordsetname.setDeliveryMode(mode, pagesize, number)

The first argument specifies one of three possible modes of operation-"ondemand" (the default),
"fetchall", or "page".

If the delivery mode is not specified via setDeliveryMode(), the default mode is "ondemand", which
returns all records from the remote server. The "fetchall" and "page" modes tell the server to hold

records in memory and deliver only the needed pages of records. For example, if your remote
recordset includes 1,000 records, you can group them into pages of 20 records each:

myRecordset_rs.setDeliveryMode("page", 20, 5);

That allows your Flash movie to download 5 pages at a time, with 20 records on each page. Using
"fetchall" mode, records are delivered when available (like "ondemand" mode), but they are

delivered as pages so that you can use the results as they come in. Pageable recordsets are available
only in ColdFusion MX. See Section 5.5.1 for more details.

4.4.14 The sortItemsBy() and sort() Methods

There are two ways to sort a RecordSet object in Flash: by field or by defining a custom sort function.
When you sort by field using the sortItemsBy() method, you are in effect sorting a multidimensional
array. The individual records (rows) of the RecordSet object are reordered by the values within the
field name passed to the sortItemsBy() method. You can pass a second argument to specify
ascending or descending order:

recordsetname.sortItemsBy(field, direction)

If the second argument is "desc", the sort will be in descending order; otherwise, the sort is

ascending.

For example, to sort the recordset created earlier in this chapter by last name, you can use:

myRecordset_rs.sortItemsBy("Last");
myRecordset_rs.showData();

The first element in the sorted recordset will be John Jehosephat.

The sort() method allows you to specify a user-defined sort function:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

recordsetname.sort(function)

This method is much slower than the sortItemsby() method, so it should be used sparingly, such as
when you need to sort the recordset by two fields. In the following example, sortByFirstAndLast() is
a custom sorting function:

function sortByFirstAndLast (rec1, rec2) {
 if (rec1.Last < rec2.Last) return -1;
 if (rec1.Last > rec2.Last) return 1;
 if (rec1.First < rec2.First) return -1;
 if (rec1.First > rec2.First) return 1;
 return 0;
}

// Perform the sort
myRecordset_rs.sort(sortByFirstAndLast);

// Display the results
for (var i=0; i<myRecordset_rs.getLength(); i++) {
 trace(myRecordset_rs.getItemAt(i).Last + ", " +
 myRecordset_rs.getItemAt(i).First);
}

The sort() method uses a custom function, sortByFirstAndLast() in this example, to compare rows
of your RecordSet object. The function is called repeatedly to compare two records and must return a
value indicating how the two records should be ordered. The function returns 1 if the first record is
greater than the second record, -1 if the second record is greater, and 0 otherwise. Likewise, your

sort function should return a positive number if the first record should precede the second, a negative
number if the second record should precede the first (i.e., swap the records), and 0 if the order

doesn't matter.

Refer to Section 4.4.11 earlier in this chapter for filtering recordsets based on a particular criterion.

4.4.15 The addView() Method

The addView() method allows you to specify the callback function to be executed when something
changes in the RecordSet object, such as when a user edits an item in a DataGrid, sorts the results,
or deletes a record. Changes made via the following methods can be tracked:

sort()
updateAll()
addRows()
updateRows()
allRows()
fetchrows()
deleteRows()

The object passed to the addView() method must define a modelChanged() method:

var myObject = new Object();
myObject.prototype.modelChanged = function (myInformationObject) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 trace(myInformationObject.event);
};

When modelChanged() is called, it receives as an argument an information object whose event

property indicates the triggering event. For example, this code detects when the recordset is sorted:

// Create a generic object
var myObject = new Object();

// Define a modelChanged() handler for the object
myObject.prototype.modelChanged = function (myInformationObject) {
 if (myInformationObject.event == "sort") {
 trace("The recordset was sorted");
 }
};

// Call addView() to set myObject.modelChanged() as the callback function,
myRecordset_rs.addView(myObject);

To demonstrate the functionality, add the code in Example 4-3 to the RecordSetDebug.as file that
was created earlier. The showData() method from Example 4-2 remains unchanged and should be
included in the same RecordSetDebug.as file. Example 4-3 traces any change made to the recordset
in the Output window (works in the authoring tool only).

Example 4-3. RecordSetDebug.as

///
// RecordSet.debug
// Purpose: Trace all changes to the recordset or its properties
///

// Main public method to debug the recordset. Activate it like this:
// myRecordset_rs.debug(true);
// Turn it off like this:
// myRecordset_rs.debug(false);

RecordSet.prototype.debug = function (enabled) {
 if (enabled) {
 if (!this.debugObject)
 this.debugObject = new RecordSetDebugObject(this);
 } else {
 this.debugObject.modelChanged = null;
 this.debugObject = null;
 }
};

// Create a new object that debugs a recordset passed to it
function RecordSetDebugObject (rs) {
 this.init(rs);
}

// Class initialization, including the addView() method
RecordSetDebugObject.prototype.init = function (rs) {
 this.rs = rs;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 this.rs.addView(this);
};

// This method is called whenever a change is made in a recordset.
// It displays the event and start/end rows affected, as

// well as the RecordSet.showData() information
RecordSetDebugObject.prototype.modelChanged = function (info) {
 trace("");
 trace("--Recordset event occurred--");
 trace("Event: " + info.event);
 switch info.event) {
 case("sort"):
 trace("The RecordSet has been sorted.");
 break;
 case("updateAll"):
 trace("The RecordSet has changed in some way")
 break;
 case("addRows"):
 trace("firstRow:" + info.firstRow);
 trace("lastRow:" + info.lastRow);
 trace("Row numbers " + info.firstRow +
 " through " + info.lastRow + " have been added.");
 break;
 case("updateRows"):
 trace("firstRow:" + info.firstRow);
 trace("lastRow:" + info.lastRow);
 trace("Row numbers " + info.firstRow + " through " +
 info.lastRow + " have been changed.");
 break;
 case("deleteRows"):
 trace("firstRow:" + info.firstRow);
 trace("lastRow:" + info.lastRow);
 trace("Row numbers " + info.firstRow + " through " +
 info.lastRow + " have been deleted.");
 break;
 case("allRows"):
 trace("All records have arrived from the server.");
 break;
 case("fetchrows"):
 trace("firstRow:" + info.firstRow);
 trace("lastRow:" + info.lastRow);
 trace("Row numbers " + info.firstRow + " through " +
 info.lastRow + " have been requested from the server.");
 break;
 }

 this.rs.showData(); // Call showData() to display the contents
 trace("--End recordset event--");
};

You can see that each RecordSet event is traced in the modelChanged() method after it occurs. The
argument passed to modelChanged() is an object that contains three possible properties:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

event

Name of the event that triggered the handler
firstRow

First row of the recordset that has changed
lastRow

Last row of the recordset that has changed

To use the custom debug() and showData() methods, include RecordSetDebug.as in your Flash
movie:

#include "RecordSetDebug.as"

Then you can activate debug mode for a RecordSet object like this:

myRecordset_rs.debug(true);

Try it out on some of the earlier examples and you'll see that it traces the changes made to the
recordset as well as its contents. For example, upon adding a row to a new empty recordset, like
this:

var tempRecord = {First:"Tom", Last:"Muck", Email:"tom@tom-muck.com"};
myRecordset_rs.addItem(tempRecord);

the Output window displays:

--Recordset event occurred--
Event: addRows
firstRow:0
lastRow:0
Row numbers 0 through 0 have been added.
 --Recordset Properties--
Recordset length: 1
Fields: First,Last,Email
Begin records...
First: "Tom"; Last: "Muck"; Email: "tom@tom-muck.com";
End records...
 --End Recordset Properties--
--End recordset event--

4.4.16 The removeAll() Method

The removeAll() method clears out a RecordSet object, leaving a length of 0. The RecordSet object
still exists with the field name structure in place but with no items in the array. If you use the custom
debug() method on the recordset, you can see the length is zero but the field names still exist. To
destroy a RecordSet object completely, set it equal to null:

myRecordset_rs = null;

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.5 The Timeline

Flash's timeline controls both animation and the order in which events occur in the movie. Flash MX
and Flash 2004 use the timeline metaphor, although the latter offers timeline effects to simplify
common interactions with the timeline for repetitive tasks. Furthermore, Flash Pro offers a screen-
based metaphor that helps disguise the underlying timeline for programmers coming from Visual
Basic and similar environments. If you are a programmer unfamiliar with the timeline, you can
imagine it as a piece of audio tape. When a musician records a song, the various instruments are
recorded on different tracks. The guitar might be on one track, the drums on another, the lead vocals
on another, and backing vocals on yet another. There might be many separate tracks of music, but
as the tape head glides across the final tape, all tracks are played together, making one cohesive
collage of sound.

This is similar to how the Flash timeline works, only the tracks are called layers, and each layer can
contain audio, video, animation, or ActionScript code. Also, playback is not continuous like an audio
tape, but more like a motion picture, with individual frames that the playback head displays at a
typical rate of 10 to 30 frames per second.

That said, a Flash application that acts as an interface to a dynamic web application might not follow
these general principles. The movie might have a static interface with several screens that can be
displayed. In these cases, the timeline can be used to break up individual screens of the user
interface. Each screen can occupy a frame or several frames in the movie and can be displayed in
response to a triggering event.

To give you an example, let's say you have an interface with six main screens: user login, display
data, drill down to a detail of the data, update the data, insert new data, and delete the data. Each of
these six screens of user interface can each occupy several frames on the timeline with specific
starting and ending points. As a particular screen is needed, the playback head can be sent to the
starting point on the timeline that begins that particular element, and it will stop at the end of that
section. In effect, you have six individual scenes that are meant to be played individually rather than
sequentially.

How does the timeline fit into Flash Remoting? Well, the short answer is that it doesn't. All of your
Flash Remoting code can be placed into frame 1 of the main timeline (or the first frame following any
preloader) so that it executes and initializes when the movie loads. Your remote methods will be
available to all other parts of your movie if you do this.

You can place a stop() function in the code to make sure that the movie doesn't begin playing until
all of the Flash Remoting initialization code has executed. Your methods and event handlers can all be
contained in one central location on one layer in one frame of the timeline. This isn't always
necessary or even possible, but it is a goal to shoot for when developing your Flash Remoting
application.

If all of your code is self-contained, you can put it into an external .as file and
use an #include directive to incorporate it in your Flash movie.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.6 Catching Errors

Error handling is one of the most often overlooked parts of application development. How often have
you been to a web page and seen a database error, JavaScript error, connection error, or page not
found error? These are examples of errors that are not handled properly. It is up to you to decide
how you want to recover from a particular error, but I will show you where the errors can occur in a
Flash Remoting application and give you some basic strategies for developing your own error
handling.

4.6.1 Error Types

Errors can occur in any aspect of your Flash movie or in the server-side code of a Flash Remoting
application. Errors can be broken down into these basic types:

Syntax errors

Syntax errors are caused by malformed code (you typed something incorrectly, such as a
misplaced comma or quote). If the syntax error is in the client-side code, Flash's Output
window generally displays the error when you attempt to compile your .swf file. Consult the
online help, Chapter 15, or ActionScript for Flash MX: The Definitive Guide for the correct
syntax for a given command. Although author-time syntax errors are usually easy to find and
fix, those that occur because of user input are more difficult to detect. For example, a user
entering a single quote into a form field might cause a syntax error in a SQL statement.
Server-side syntax errors should be identified by the server-side development environment,
although the exact process varies depending on the server technology in use.

Application errors

Application errors are general errors in logic. Although the syntax is correct, the code doesn't
perform the desired actions accurately. These errors are generally more difficult to detect
because they might occur under only specific conditions. These include errors like trying to
access an element past the end of an array (such as when using an incorrect index variable).
Another common error is using data of the wrong datatype (or trying to perform an invalid
operation on a given datatype). For example, if you are trying to add values obtained from
user input or XML, which are always strings, you must first convert them to numbers. Flash
Remoting can handle native ActionScript datatypes, which reduces this type of error.

Database errors

Errors at the database level can be caused by bad data, bad datatypes, bad user input, or any
combination of things that affect your database. For example, a record may be locked because
another user is sorting the database. Or a database field may contain invalid data that
confuses your application. You can and should validate the data in your ActionScript code
whenever possible. For example, you should check whether the entry in a field is empty or out
of range before submitting it to the server (although the server-side database may also
validate the data). You can minimize potential problems by writing test routines that examine
every record in a database for potential errors before deploying your application.

Filesystem errors

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Errors can occur when reading to or writing from the hard disk if the permission of a file or
folder is not set correctly, or if a file is in use. Another common error is running out of disk
space (or, for example, exceeding the allotted space for a local shared object).

Connection errors

Errors in connecting to the Flash movie can occur for many reasons, such as name lookup
problems with a DNS server, too many connections on the server, or a misspelled page name
inside a web page, database, or Flash movie.

Although the errors themselves can't be eliminated, by adding validation code inside your Flash
movie you can recover from the inevitable errors gracefully. Many errors are caused by users using
your application in ways that you hadn't anticipated. Perform extensive beta testing and add code to
prevent or gracefully handle the errors you discover. An ounce of prevention is worth a pound of cure
when it comes to user input. For example, restricting the length and allowed characters in a user
input field can eliminate most errors and make it simpler to handle those that occur.

External data, whether coming from user input or a remote server, is a common source of error. That
said, server errors are handled quite nicely by Flash Remoting and most of them can be trapped
easily inside of your Flash movie.

4.6.2 Trapping Server-Side Errors

An error that is detected is said to be trapped. Once an error is trapped, you usually need to handle it
in some useful way. For example, if the server is inaccessible, you might automatically try again in
several seconds, or you might display a message explaining the problem to the user. Server errors
are passed to the Flash movie in the serialized onStatus event of a remote call, which triggers an
onStatus event in the Flash movie, which in turn is handled by the onStatus() method of the
responder object or the methodName_Status() function, as described earlier. A status object, which

you can use to understand and handle the error, is passed to the error handler (either onStatus() or
methodName_Status()). In previous examples, I displayed the description property of the status

object, which contains a human-readable error message, in the Output window or a text field. The
complete properties of the status object are shown in Table 4-1.

Table 4-1. Properties of the status object

Property Contents

code
Text indicating where the error occurred (usually the literal string
"SERVER.PROCESSING")

level The literal string "error"

description Human-readable description of the error message

details A stack trace of the error from the server

type The class name of the error

Most errors in services should be captured at the server level. That is, you can write your CFML, C#,
Java, or other server-side code to detect certain types of errors. After capturing the error on the
server, you must decide how to handle the particular error:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Contents

rootcause
Another error object that has additional information about the cause of the error
(available only if a Java servletException is thrown)

Most errors in services should be captured at the server level. That is, you can write your CFML, C#,
Java, or other server-side code to detect certain types of errors. After capturing the error on the
server, you must decide how to handle the particular error:

Return an object to the Flash movie to be dealt with in the onResult() method. While this might
seem appealing, the Flash movie might not have sufficient knowledge of or control over the
server to handle the error effectively.

Throw a controlled error on the server to pass a code back to the onStatus() method. For
example, errors can be indicated by numeric codes, human-readable text, or both. In general,
numeric error codes are easiest to deal with programmatically, but human-readable text is most
useful for providing information to the user. A controlled error is one in which the server returns
a more limited or informative error message than is generated by the original error. We explore
this option in more detail later in this chapter and in Section 6.5.

Handle the error completely on the server. While this might seem tempting, a one-size-fits-all
approach unnecessarily restricts the flexibility of clients that connect to the server. For example,
if the server code waits indefinitely for a locked database record to become available, the client-
side code won't know what's happening and has no choice but to wait indefinitely for a
response. It is often preferable for the server to trap the error, notify the client, and let the
client decide how best to proceed. See Section 6.5.1 for an example.

Of course, you can leave the error unhandled or even untrapped on the server, which would leave
the error trapping and handling up to the Flash movie entirely. Abdicating control over errors that can
and should be trapped or handled at the server level is a poor approach because it leads to errors
that can't be prevented or detected on the client side.

Of the various options, the most appealing is to trap the error on the server and send a controlled
response to the client where specific and appropriate action can be taken. This approach keeps your
error-trapping code on the server separate from your responder code on the client. Typically, you
would have a try/catch block on the server to capture the error and then use a throw statement to
create your own error message to pass back to Flash. This way, you can control how the error
appears to the Flash movie. The ColdFusion code in Example 4-4 demonstrates.

Example 4-4. Capturing errors on the server with testError.cfc

<cfcomponent>
 <cffunction name="myFunction" access="remote" returntype="string">
 <cfargument name="myArgument" type="string" required="true">
 <cftry>
 <cfquery name="myQuery" datasource="northwind">
 SELECT * FROM Customers WHERE CustomerID = '#myArgument#'
 </cfquery>
 <cfcatch type="database">
 <cfthrow message="Database error">
 </cfcatch>

rootcause
Another error object that has additional information about the cause of the error
(available only if a Java servletException is thrown)

Most errors in services should be captured at the server level. That is, you can write your CFML, C#,
Java, or other server-side code to detect certain types of errors. After capturing the error on the
server, you must decide how to handle the particular error:

Return an object to the Flash movie to be dealt with in the onResult() method. While this might
seem appealing, the Flash movie might not have sufficient knowledge of or control over the
server to handle the error effectively.

Throw a controlled error on the server to pass a code back to the onStatus() method. For
example, errors can be indicated by numeric codes, human-readable text, or both. In general,
numeric error codes are easiest to deal with programmatically, but human-readable text is most
useful for providing information to the user. A controlled error is one in which the server returns
a more limited or informative error message than is generated by the original error. We explore
this option in more detail later in this chapter and in Section 6.5.

Handle the error completely on the server. While this might seem tempting, a one-size-fits-all
approach unnecessarily restricts the flexibility of clients that connect to the server. For example,
if the server code waits indefinitely for a locked database record to become available, the client-
side code won't know what's happening and has no choice but to wait indefinitely for a
response. It is often preferable for the server to trap the error, notify the client, and let the
client decide how best to proceed. See Section 6.5.1 for an example.

Of course, you can leave the error unhandled or even untrapped on the server, which would leave
the error trapping and handling up to the Flash movie entirely. Abdicating control over errors that can
and should be trapped or handled at the server level is a poor approach because it leads to errors
that can't be prevented or detected on the client side.

Of the various options, the most appealing is to trap the error on the server and send a controlled
response to the client where specific and appropriate action can be taken. This approach keeps your
error-trapping code on the server separate from your responder code on the client. Typically, you
would have a try/catch block on the server to capture the error and then use a throw statement to
create your own error message to pass back to Flash. This way, you can control how the error
appears to the Flash movie. The ColdFusion code in Example 4-4 demonstrates.

Example 4-4. Capturing errors on the server with testError.cfc

<cfcomponent>
 <cffunction name="myFunction" access="remote" returntype="string">
 <cfargument name="myArgument" type="string" required="true">
 <cftry>
 <cfquery name="myQuery" datasource="northwind">
 SELECT * FROM Customers WHERE CustomerID = '#myArgument#'
 </cfquery>
 <cfcatch type="database">
 <cfthrow message="Database error">
 </cfcatch>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfcatch type="any">
 <cfthrow message="Other error">
 </cfcatch>
 </cftry>
 <cfif myQuery.recordcount EQ 0>
 <cfthrow message="User not defined">
 </cfif>
 <cfreturn myQuery>
 </cffunction>
</cfcomponent>

The corresponding ActionScript code is shown in Example 4-5.

Example 4-5. Responding to server errors in Flash with testError.fla

#include "NetServices.as"

var my_conn; // Connection object
var my_service; // Service object
// Responder for general service methods
var Responder = new Object();
var myURL = "http://localhost/flashservices/gateway"

// Capture connection errors and attempt connection up to 5 times
Responder.onResult = function (myResults) {
 trace("No errors");
 // put responder code here
};

// General error-handling routing
Responder.onStatus = function (theError) {
 switch (theError.description) {
 case("HTTP: Failed"):
 trace("Connection error.");
 // In actual practice, send the user to a general error page
 break;
 case("Service threw an exception during method invocation: Database error"):
 trace("There was a database error");
 break;
 case("Service threw an exception during method invocation: Other error"):
 trace("There was an undefined error");
 break;
 case("Service threw an exception during method invocation: User not defined"):
 trace("The user was not found in the database");
 break;
 default:
 trace("There was a general error");
 }
 trace(theError.description);
};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// General connection errors or other errors use the Responder object as well
System.onStatus = Responder.onStatus;

function init() {
 NetServices.setDefaultGatewayUrl(myURL);
 my_conn = NetServices.createGatewayConnection();
 myService = my_conn.getService("com.oreilly.frdg.testError");
}

// Start
init();

myService.myFunction(Responder,"test");

As you can see from the onStatus() function, the error messages returned by the .cfc method are
trapped in the switch statement. You should handle the errors as you see fit, such as by redirecting

the user to a general error page where you display information about the error.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.7 Registering Objects

Flash makes it easy to create code that follows OOP principles. OOP is not the only methodology for
writing code, but it fits well with the framework of Flash Remoting. We've been using OOP techniques
for many of the ActionScript examples in the book, but up to now we've used ActionScript objects
only. What if we could instantiate an object on the client, pass it to the server, manipulate it in some
way on the server, and pass it back to the client? This is possible with Flash Remoting.

4.7.1 Using Object.registerClass()

If you've written Flash applications that use shared objects or extend the MovieClip class, you've
probably used the Object.registerClass() method. The method allows you to register a specific class
by name with ActionScript so that you can utilize the class in your movie simply by using its name:

Object.registerClass("MyObjectClass", MyObject);

The first argument is the name that you want to associate with the class, and the second argument is
the actual class constructor. For the previous example to work, you must first define a class
constructor:

function MyObject () {
 // Some class initialization code
}

This technique is typically used when creating UI components or other objects that inherit from the
MovieClip class. However, when used with Flash Remoting, Object.registerClass() associates a Flash
object in a movie with an object that is returned from the server. This ensures that the return object
is deserialized into your Flash movie as an instance of the custom class that we set up.

When you instantiate a class, the various properties and methods of the class are known to the Flash
movie and can be used in your ActionScript code. When you pass this object to a remote service, the
properties remain intact but the methods of the original class are stripped off. Likewise, a return
object is not associated with a custom class by default. Even if the return object contains the same
properties as the original object, Flash treats it as a generic object of the Object class. The custom
methods of the original class are no longer available to the object.

Using Object.registerClass() allows Flash to assign a class identifier (the arbitrary name that we pass
to the Object.registerClass() method) to the instance of the class. This identifier is passed along with
the object to Flash Remoting and is returned along with any results to the responder's onResult()
method. The return object is associated with the class once again when it is deserialized in the Flash
movie, thus reinstating the object's methods before being passed to the onResult() method.

This is extremely simple to do using Server-Side ActionScript for your remote methods. You can
merely pass the ActionScript object to the remote method, and the return object is automatically
recreated as the ActionScript object that originated from your movie. For example, suppose you have
a remote method named computeTimeDifference() and a client-side ActionScript class named

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TimeDifference. The remote method can compute the difference between the client time and the
server time. The TimeDifference object on the client holds the properties date, days, hours,
minutes, seconds, and milliseconds and a method named getTimeDifference(). You might have a

client-side ActionScript class constructor like the code in Example 4-6.

Example 4-6. Class constructor for the TimeDifference class

// Class constructor
function TimeDifference() {
 // Initialize the class only if it isn't already initialized
 if (!this.inited)
 this.init();
}

TimeDifference.prototype.init = function () {
 this.date = new Date();
 this.days = 0;
 this.hours = 0;
 this.minutes = 0;
 this.seconds = 0;
 this.milliseconds = 0;
 this.inited = true; // Instance is initialized
};

TimeDifference.prototype.getTimeDifference = function () {
 var d = this.days;
 var h = this.hours < 10 ? "0" + this.hours: this.hours;
 var m = this.minutes < 10 ? "0" + this.minutes : this.minutes;
 var s = this.seconds < 10 ? "0" + this.seconds: this.seconds;
 var ms = this.milliseconds < 100 ? "0" + this.milliseconds : this.milliseconds;
 return d + " D " + h + ":" + m + ":" + s + "." + ms;
};

Object.registerClass("TimeDifferenceClass", TimeDifference);

The last line of Example 4-6 registers the class. This line is key to the serialization and deserialization
of objects in Flash Remoting. If the class is registered, the return object will be deserialized into an
object of the same type. Take a look at the rest of the client-side ActionScript code for the Flash
Remoting application:

var Responder = new Object(); // Create the responder object

Responder.onResult = function (myResults) {
 trace(myResults.getTimeDifference());
};

Responder.onStatus = function (theError) {
 trace(theError.description);
};

if (initialized == null) {
 initialized = true;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
 my_conn = NetServices.createGatewayConnection();
 myService = my_conn.getService("com.oreilly.frdg.DebugFunctions", Responder);
}

myService.computeTimeDifference(new TimeDifference());

The onResult() method here is doing something a little peculiar: it invokes a method on the result
from the remote service, as received in the myResults parameter! This is made possible through the

registering of the TimeDifference class-the remote service attaches properties to the returned
object, and the registered class's methods are reattached by reinstantiating the object on the client
side. We can reinstantiate the object without losing any of its properties by using an init() method,
which is called only if the inited property does not exist, in the constructor:

function TimeDifference() {
 // Initialize the class only if it isn't already initialized
 if (!this.inited)
 this.init();
}

Now look at the Server-Side ActionScript in Example 4-7.

Example 4-7. Server-Side ActionScript for the computeTimeDifference()
method

function computeTimeDifference(t) {
 var d = new Date();
 var e = new Date(t.get("date"));
 var difference = e.getTime() - d.getTime();
 var days = Math.floor(difference/1000/60/60/24);
 difference -= days*1000*60*60*24
 var hours = Math.floor(difference/1000/60/60);
 difference -= hours*1000*60*60
 var minutes = Math.floor(difference/1000/60);
 difference -= minutes*1000*60
 var seconds = Math.floor(difference/1000);
 difference -= seconds*1000
 var milliseconds = difference;
 t.put("days", days);
 t.put("hours", hours);
 t.put("minutes", minutes);
 t.put("seconds", seconds);
 t.put("milliseconds", milliseconds);
 return t;
}

The Server-Side ActionScript method takes one argument: a custom object of type TimeDifference,
named t, that we pass to the method from the Flash movie. The date property of the object (which

holds the current time of the client) is extracted with a get() method:

 var e = new Date(t.get("date"));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Then the date is reconstructed as an ActionScript Date object and compared to the server date. The
days, hours, minutes, seconds, and milliseconds are computed and packed into the TimeDifference
object using the put() method. The object is then sent back to the Flash movie.

When you run the movie, you should see a result that shows the difference between your server time
and the client time in the Output window. If you are using your local machine as the testing server,
this difference may be only milliseconds. The results are traced to the Output window using the
TimeDifference.getTimeDifference() method:

trace(myResults.getTimeDifference());

This tells us that the Flash movie is taking the results from the remote call and placing them back
into an instance of our custom TimeDifference class.

To verify that this is happening, try commenting out the last line of the client-side ActionScript by
prepending two slashes:

// Object.registerClass("TimeDifferenceClass", TimeDifference);

If you comment out the line, you can still access all of the properties of the myResults parameter, as

you can verify by tracing the object's properties in the Output window, but the getTimeDifference()
method does not work. That is because without the registerClass() call, the object is treated as a
generic object with simple properties but no methods.

4.7.2 Registering Objects for ColdFusion MX, Java, ASP.NET, and PHP

When you're using Server-Side ActionScript, the passing of an object back and forth from client to
server is straightforward. In CFML, Java, and ASP.NET, on the other hand, the object needs to be
massaged on the server by creating the object and setting the type manually. This is done using the
techniques described in the following sections.

4.7.2.1 ColdFusion MX

Create a serializable object of type flashgateway.io.ASObject (i.e., an ActionScript object) in
ColdFusion using a <cfobject> tag in CFML or a CreateObject() function within CFScript. The object
type should be set to "java" and the class set to "flashgateway.io.ASObject":

<cffunction access="remote" name="myMethod" returntype="any">
 <cfobject type="java"
 class="flashgateway.io.ASObject"
 name="myObject"
 action="create" />
 <cfset myInstance = myObject.init()>
 <cfset myInstance.setType("MyFlashObject") />
 <cfset myInstance.put("inited", 1) />
 <cfreturn myInstance />
</cffunction>

A few things about the ColdFusion MX code need explanation. First, the flashgateway.io.ASObject
datatype needs to be created inside of the function with the <cfobject> tag. This allows the creation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of a serializable representation of an ActionScript object. Next, an instance of the object is
instantiated with:

 <cfset myInstance = myObject.init()>

The init() method is not an internal method of the ASObject class; it is a built-in ColdFusion
construct that initiates a call to the constructor of the class. This is a requirement to create an
instance of the object. Next is a call to the setType() method.

 <cfset myInstance.setType("MyFlashObject") />

This procedure associates the custom client-side ActionScript class specified in the call to
Object.registerClass() with the server-side ASObject datatype. Next, the inited property is set to 1,
ColdFusion's equivalent of the Boolean true. The inited property was the custom property that we

set in the client-side ActionScript to trick the class constructor into creating the object without
clearing out the properties. We could have also used the inited property of the arguments

structure, which will be shown in the next example.

Finally, we return the object to Flash. Let's put the concept to use using the Flash movie that was
created in Example 4-6. The ColdFusion MX code is shown in Example 4-8 and is commented inline.

Example 4-8. ColdFusion MX remote service DebugFunctions.cfc

<cfcomponent>
 <cffunction name="computeTimeDifference" access="remote">
<!--- Create the ActionScript object --->
 <cfobject type="java"
 class="flashgateway.io.ASObject"
 name="myObject"
 action="create">
<!--- Create an instance of the object --->
 <cfset t = myObject.init()>
<!--- Set the type to our custom TimeDifferenceClass for deserialization --->
 <cfset t.setType("TimeDifferenceClass")>
<!--- Do the math for the time difference --->
 <cfset d = now()>
 <cfset e = createodbcdatetime(arguments.date)>
 <cfset difference = DateDiff("s", d, e)>
 <cfif difference LT 0>
 <cfset difference = difference = difference * -1>
 </cfif>
 <cfset days = int(difference/60/60/24)>
 <cfset difference = difference - days*60*60*24>
 <cfset hours = int(difference/60/60)>
 <cfset difference = difference - hours*60*60>
 <cfset minutes = int(difference/60)>
 <cfset seconds = difference - minutes*60>
<!--- Put the properties into the custom object --->
 <cfset t.put("days", #days#)>
 <cfset t.put("hours", #hours#)>
 <cfset t.put("minutes", #minutes#)>
 <cfset t.put("seconds", #seconds#)>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- Set the inited property to the inited property of the object
 passed to this method --->
 <cfset t.put("inited", arguments.inited)>
<!--- Finally, return the object --->
 <cfreturn t />
 </cffunction>
</cfcomponent>

You can name this file DebugFunctions.cfc and put it into the webroot\com\oreilly\frdg directory. The

Flash movie created earlier in Example 4-6 will work with this service with no change. Notice this line:

<cfset t.setType("TimeDifferenceClass")>

This line sets up the class type so that when it is returned to the Flash movie it will be deserialized
into our custom TimeDifference class.

The same service can be written using CFScript, as shown in Example 4-9. The CFScript version uses
a CreateObject() function rather than a <cfobject> tag.

Example 4-9. The DebugFunctions.cfc file using CFScript instead of CFML

<cfcomponent>
 <cffunction name="computeTimeDifference" access="remote">
 <cfscript>
 myObject = CreateObject("java", "flashgateway.io.ASObject");
 t = myObject.init();
 t.setType("TimeDifferenceClass");
 d = now();
 e = createodbcdatetime(arguments.date);
 difference = DateDiff("s", d, e);
 if (difference LT 0) {difference = difference * -1;}
 days = int(difference/60/60/24);
 difference = difference - days*60*60*24;
 hours = int(difference/60/60);
 difference = difference - hours*60*60;
 minutes = int(difference/60);
 seconds = difference - minutes*60;
 t.put("days", #days#);
 t.put("hours", #hours#);
 t.put("minutes", #minutes#);
 t.put("seconds", #seconds#);
 t.put("inited", arguments.inited);
 return t;
 </cfscript>
 </cffunction>
</cfcomponent>

4.7.2.2 Java

You saw in the ColdFusion version of the remote service that we were creating an instance of a Java
class that allowed the serialization of the data into a copy of our ActionScript object. The Java class is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

also used in the Java version of the code, shown in Example 4-10.

Example 4-10. Java version of the service named DebugFunctions.java

// Java Document
package com.oreilly.frdg;
import flashgateway.io.*;
import flashgateway.util.*;
import java.util.*;
import java.lang.*;
import java.io.Serializable;

public class DebugFunctions {
 public DebugFunctions() {
 }
 public ASObject computeTimeDifference (ASObject t) {
 Date d = new Date();
 Date e = (Date)t.get("date");
 double difference = (double)e.getTime() - (double)d.getTime();
 difference = Math.abs(difference);
 int days = (int)(Math.floor(difference/1000/60/60/24));
 difference -= days*1000*60*60*24;
 int hours = (int)(Math.floor(difference/1000/60/60));
 difference -= hours*1000*60*60;
 int minutes = (int)Math.floor(difference/1000/60);
 difference -= minutes*1000*60;
 int seconds = (int)Math.floor(difference/1000);
 difference -= seconds*1000;
 int milliseconds = (int)difference;
 String daysStr = String.valueOf(days);
 String hoursStr = String.valueOf(hours);
 String minutesStr = String.valueOf(minutes);
 String secondsStr = String.valueOf(seconds);
 String millisecondsStr = String.valueOf(milliseconds);
 t.put("days", daysStr);
 t.put("hours", hoursStr);
 t.put("minutes", minutesStr);
 t.put("seconds", secondsStr);
 t.put("milliseconds", millisecondsStr);
 return t;
 }
}

The Java code uses the ASObject class, just as the ColdFusion version did. In the
computeTimeDifference() method, an ASObject (ActionScript object) was passed to the method, and
the method returns the same ASObject:

public ASObject computeTimeDifference (ASObject t) {

Again, the methods of the client-side ActionScript object passed to the remote method are not
accessible through Java, but the properties can be read with the get() method of the ASObject and
they can be written using the put() method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Java class should be compiled and placed in the classpath of your application server. It will be
used by the Flash movie created in Example 4-6.

When using the flashgateway.io.ASObject class, you need to put the flashgateway.jar file in your
application's classpath; otherwise, you might get an error such as "Service threw an exception during
method invocation: flashgateway/io/ASObject".

Even if Flash Remoting is working on your server, your application may not
have access to the flashgateway classes unless you explicitly add the path of
the flashgateway.jar file to your application. If you are going to be using the
ASObject, you need access to these classes.

4.7.2.3 ASP.NET

The ASP.NET version of Flash Remoting also allows the use of the ASObject class from the
FlashGateway.IO assembly. Just as in the ColdFusion and Java versions, the TimeDifference object is
passed into the method, the time difference is computed, and the properties are packed back into an
ActionScript object, which is passed back to the Flash movie. The C# code is listed in Example 4-11.

Example 4-11. C# class for computeTimeDifference()

// C# Document
using System;
using FlashGateway.IO;

namespace com.oreilly.frdg {
 public class DebugFunctions {
 //protected FlashGateway.Flash Flash;
 public DebugFunctions() {
 }
 public ASObject computeTimeDifference (ASObject t) {
 // Set the type of the ActionScript object
 t.ASType = "TimeDifferenceClass";
 DateTime d = DateTime.UtcNow;
 DateTime e = (DateTime)t["date"];
 TimeSpan tsDuration;
 // Use an absolute value for the time difference
 tsDuration = DateTime.Compare(d, e) < 0 ? e - d : d - e;
 t["days"] = tsDuration.Days;
 t["hours"] = tsDuration.Hours;
 t["minutes"] = tsDuration.Minutes;
 t["seconds"] = tsDuration.Seconds;
 t["milliseconds"] = tsDuration.Milliseconds;
 t["serverDate"] = d;
 return t;
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.7.2.4 PHP

The PHP implementation of Flash Remoting (AMFPHP) also contains the functionality required to pass
an ActionScript object from the client to the server and back again. Using PHP, you simply set up the
name of the custom class in the returns element in the methodTable for the method used, as shown

in Example 4-12. The AMFPHP gateway handles the serialization and deserialization of the custom
object.

Example 4-12. Utilizing the custom computeTimeDifference() method in
PHP

<?php
class DebugFunctions {
 function DebugFunctions () {
 $this->methodTable = array(
 "computeTimeDifference" => array(
 "description" => "Returns an instance of TimeDifferenceClass (Custom Class)",
 "access" => "remote", // available values are private, public, remote
 "roles" => "role, list", // currently inactive
 "arguments" => array ("t"),
 "returns" => "TimeDifferenceClass" // name of Custom Class
)
);
 }
 function computeTimeDifference ($t) {
 $d = time();
 $e = $t["date"] / 1000 // PHP date is in seconds;
 $difference = ($d <= $e) ? ($e - $d) : ($d - $e);
 $days = floor($difference/60/60/24);
 $difference -= $days*60*60*24;
 $hours = floor($difference/60/60);
 $difference -= $hours*60*60;
 $minutes = floor($difference/60);
 $difference -= $minutes*60;
 $seconds = floor($difference);
 $t["days"] = $days;
 $t["hours"] = $hours;
 $t["minutes"] = $minutes;
 $t["seconds"] = $seconds;
 return $t;
 }
}
?>

4.7.3 The Real Power of Object.registerClass()

You've seen ActionScript objects on the client be passed to the server and back again. This should
give you a feel for what is possible with Flash Remoting. When you consider that an ActionScript
object can be as simple or as complex as you make it, you will start to appreciate the power of this
technique. Imagine an initialization script that loads recordset data into 10 drop-down lists in your

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flash movie. This can be done with 10 calls to remote methods, or it can be accomplished with one
complex ActionScript object where each recordset is a property of the object. That way, you can
make just one remote call, as shown in the following imaginary object:

function MyInitObject () {
 if (!this.inited) this.init();
}
MyInitObject.prototype.init = function () {
 this.clients = new RecordSet(["ClientName", "ClientID"]);
 this.states = new RecordSet(["State", "StateAbrev"]);
 this.products = new RecordSet(["ProductID", "ProductName", "ProductDesc"]);
 this.categories = new RecordSet(["CatID", "CatDesc"]);
 this.colors = new RecordSet(["ColorID", "Color"]);
 this.shoppingCart = new RecordSet(["ProductID", "Quantity", "UnitPrice"]);
};
var currentCart = new MyInitObject();

Application performance can be improved dramatically by caching server-side recordsets and
reducing the remote calls using Object.registerClass().

The technique is now in your hands. How you use it is up to you.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.8 Wrapping Up

In this chapter, we've covered a lot of ground. You learned about the NetServices class in depth and
how the NetConnection object and NetServices are related. You also learned how to create responder
functions in several different ways. The RecordSet object was explored in greater depth, and client-
side recordsets were introduced as well. Basic error-handling techniques were covered as they relate
to responder objects.

One of the best features of Flash Remoting is the ability to transfer ActionScript objects between the
client and server, keeping the properties and methods of that object. This functionality was explored
using each of the server technologies that Flash Remoting supports.

The next five chapters cover the server-side languages individually. This will allow us to go into
greater detail about the implementation of services in each of the languages and also allow us to
explore the strengths of each of the technologies as they relate to Flash Remoting. We'll begin with
the server-side technology that is best supported by Flash Remoting-ColdFusion-in Chapter 5.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Part II: The Server-Side Languages
Part II covers the server-side languages that Flash can communicate with via Flash Remoting.
Individual chapters cover Remoting in conjunction with ColdFusion, Server-Side ActionScript,
Java, ASP.NET, and PHP. You should at least skim all the chapters, even for languages you don't
intend to use, because they contain useful information that pertains to multiple environments.

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 5. Flash Remoting and ColdFusion
MX
Flash Remoting is supported on a number of different platforms, but perhaps the best supported,
simplest, and most popular platform for Flash Remoting is ColdFusion MX. The ColdFusion MX server
provides you with three primary means for implementing the server-side portion of your Flash
applications:

ColdFusion Markup Language (CFML) pages1.

ColdFusion Components (CFCs)2.

Server-Side ActionScript3.

This chapter covers CFML and CFCs in detail, while Chapter 6 covers Server-Side ActionScript.
Additionally, this chapter examines the fundamental differences between using ColdFusion pages and
ColdFusion Components, and how their advantages and disadvantages should influence your
application architecture.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.1 Introduction to ColdFusion MX

ColdFusion is a tag-based language, built as an extension to HTML. It is designed for simplicity of use
and rapid application development. The ColdFusion programmer can create complex business logic
using a few simple tags.

ColdFusion tags and their attributes implement commonly needed functionality. These attributes can
be likened to the properties of an object. For example, a <cfmail> tag has to, from, and subject
attributes. When the ColdFusion application server sees a <cfmail> tag, it sends an email according

to the specified attributes. It's that simple.

ColdFusion MX is written in Java and runs as a Java servlet. The ColdFusion application server is a
page preprocessor. User requests are passed from the web server to the ColdFusion Server. Tags in
the page are executed sequentially. The first time the page is accessed on the Web, the page is
compiled into a Java servlet. Each access after that benefits from the speed of compiled code.

ColdFusion Components are the closest thing in ColdFusion to the concept of object-oriented
programming. With a CFC, you have a self-contained object containing methods that can be called by
other ColdFusion pages, CFCs, or Flash applications. They can also act as web services to allow
virtually any consumer of web services to access their methods. CFCs as they relate to Flash don't
follow the concept of instantiation; when you call a CFC, you are calling a static object. CFCs support
the notion of an instance of a CFC, but this involves the use of the session or application scope, which
is not accessible from Flash.

While CFC instances are not accessible to Flash, you can create other CFCs that
act as wrapper objects, allowing the use of session or application instances of
other CFCs.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.2 How ColdFusion Fits into Flash Applications

I like to think of remote services (services provided by a computer other than the computer the client
is running on) as extensions of the client. In fact, once you get used to incorporating a server-side
aspect to your Flash applications-and especially once you have a library of reusable services in
place-it is difficult to think of application development without integrating server-side functionality.

Writing services in ColdFusion provides some nice options to Flash application developers. ColdFusion
is simple enough to allow the Flash developer to also write the remote services that his application
needs. Alternatively, projects can be organized to create more of a division between remote services
and the client code that uses them. One team of developers can provide various remote services,
such as database interaction or email capability, while another team builds the front end of the
application that makes use of those services.

Regardless of who on the team does the work, you should divide your application or set of services
into presentation logic and business logic. Business logic is the rules and workflow that model your
enterprise. Code that handles account creation or credit card transactions is an example of business
logic. Presentation logic is the portion of your application that presents data to the user and allows for
interactivity. Code that allows users to drag items into a shopping cart or display error messages is
an example of presentation logic. Flash is an excellent choice for developing and deploying
sophisticated presentation logic that allows for a high degree of interaction and contains rich,
compelling content. ColdFusion MX is a fitting choice for business logic implementation because of its
ease-of-use, versatility, and seamless integration with Flash.

To successfully implement an application or service using two different technologies, we need an
efficient way for the two technologies to communicate, which in the programming world usually
means passing objects and other forms of data back and forth. The basis for communication between
Flash and ColdFusion is, of course, Flash Remoting. Figure 5-1 demonstrates the relationship between
Flash and ColdFusion in the context of an integrated application.

Figure 5-1. The relationship between Flash, ColdFusion, and Flash
Remoting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2.1 Datatype Conversions

Before we get into examples of how data can be passed back and forth between Flash and
ColdFusion, let's take some time to examine how datatypes are handled between client-side
ActionScript code and server-side ColdFusion. In other words, as objects and primitive datatypes are
passed from client to server and vice versa, how do those datatypes change?

5.2.1.1 Datatypes in Flash

Flash supports both primitive datatypes and reference datatypes (also called composite or complex
datatypes). Primitive datatypes, such as string, number, and boolean have distinctive characteristics:

They contain a single data value.

Primitive datatypes are passed by value, meaning that when they are passed as parameters to
a function, a copy of the value of the data is passed, not a reference to the data. The value of a
primitive datatype in a calling routine cannot be changed from within the called routine.

Making a copy of a primitive datatype and then changing its value does not change the value of
the original variable.

Reference datatypes, such as Object, Array, RecordSet, and MovieClip, have the following
characteristics:

They do not contain data themselves; rather, they contain references to objects that usually
contain data and functions. They point to a place in memory where the data of interest resides.

Attributes or elements of a reference datatype can change without changing the fact that a
variable can refer to the object's or array's container. For example, you might have a reference
to an object with a certain set of properties, and those properties are free to change while you
maintain a reference to that object. Likewise, adding or deleting elements from an array doesn't
change the fact that a variable might refer to the array.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Making a copy of a reference datatype generally creates another reference to the datatype in
memory (similar to the way that creating a Windows shortcut or Macintosh alias doesn't create
a new filename but rather points to an existing file).

Reference datatypes are generally passed by reference, meaning that when they are passed as
parameters to a function, changes made to the data within the called routine may affect the
data in the calling routine as well.

The null and undefined datatypes are used to indicate the absence of a value or reference.

5.2.1.2 Datatypes in ColdFusion

Although ColdFusion uses different terminology, ColdFusion datatypes are very similar to ActionScript
datatypes. ColdFusion uses the term simple (as opposed to primitive) to describe datatypes that can
contain a single value, such as numbers, strings, and booleans.

Since ColdFusion does not support objects to the extent that ActionScript does, it does not support an
exact equivalent of Flash's reference datatypes. However, ColdFusion does have a collection of
complex datatypes (a.k.a. data containers or data structures), such as arrays, queries, and
structures, that contain data that can change.

ColdFusion also supports a binary datatype, which handles the contents of things like image files or
MP3s, and an external object datatype that is used for things like Java objects. These two datatypes
cannot be returned to a Flash application.

5.2.1.3 Passing data between Flash and ColdFusion

Even though datatypes are similar between Flash and ColdFusion, some differences must be
accounted for when passing data back and forth. Table 5-1 shows datatype conversions between
Flash and ColdFusion.

Table 5-1. Datatype conversions between ActionScript and ColdFusion

Flash (ActionScript) ColdFusion

ActionScript object Struct (or ASObject)

Array Array

Associative array Struct

Boolean Boolean

Date Date

Number Number

RecordSet Query object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flash (ActionScript) ColdFusion

String String

Undefined Null

XML XML document

Null Null

As you can see, there is a close correlation between ActionScript and ColdFusion datatypes. This
helps to make integration of the two technologies virtually seamless. The Flash Remoting gateway
does the work of converting the objects from ColdFusion into ActionScript and back again.

5.2.2 Flash Variable Scope

ColdFusion supports the Flash variable scope, which is used primarily when ColdFusion pages are
accessed as remote services. The Flash scope is used like other variable scopes in ColdFusion, such
as URL, Session, and Request. For example, Flash.Result is the Result variable of the Flash

scope.

For ColdFusion pages, the Flash scope is the only way to pass data to and from
the service. Although the Flash scope can also be used with services built as

CFCs, the recommended approach is to receive arguments using the
<cfargument> tag and return data using the <cfreturn> tag.

There are three built-in variables in the Flash scope to pass data to and from the Flash movie:

Flash.Params

An array of parameters passed from the Flash movie
Flash.Result

A return object that is passed back to the Flash movie from the ColdFusion page
Flash.Pagesize

The number of records to return from a <cfquery> to the Flash movie

The Params variable is an array of arguments passed to your remote service call. They have to be
accessed in your ColdFusion page by number, starting with 1 as ColdFusion arrays do. For example, if

you call a method from your client-side ActionScript:

var first="Tom";
var last="Muck";
var email="tom@tom-muck.com";
myService.saveEmployeeRecord(first, last, email);

you can access the arguments on the ColdFusion page like this:

<cfset first = Flash.Params[1]>
<cfset last = Flash.Params[2]>

String String

Undefined Null

XML XML document

Null Null

As you can see, there is a close correlation between ActionScript and ColdFusion datatypes. This
helps to make integration of the two technologies virtually seamless. The Flash Remoting gateway
does the work of converting the objects from ColdFusion into ActionScript and back again.

5.2.2 Flash Variable Scope

ColdFusion supports the Flash variable scope, which is used primarily when ColdFusion pages are
accessed as remote services. The Flash scope is used like other variable scopes in ColdFusion, such
as URL, Session, and Request. For example, Flash.Result is the Result variable of the Flash

scope.

For ColdFusion pages, the Flash scope is the only way to pass data to and from
the service. Although the Flash scope can also be used with services built as

CFCs, the recommended approach is to receive arguments using the
<cfargument> tag and return data using the <cfreturn> tag.

There are three built-in variables in the Flash scope to pass data to and from the Flash movie:

Flash.Params

An array of parameters passed from the Flash movie
Flash.Result

A return object that is passed back to the Flash movie from the ColdFusion page
Flash.Pagesize

The number of records to return from a <cfquery> to the Flash movie

The Params variable is an array of arguments passed to your remote service call. They have to be
accessed in your ColdFusion page by number, starting with 1 as ColdFusion arrays do. For example, if

you call a method from your client-side ActionScript:

var first="Tom";
var last="Muck";
var email="tom@tom-muck.com";
myService.saveEmployeeRecord(first, last, email);

you can access the arguments on the ColdFusion page like this:

<cfset first = Flash.Params[1]>
<cfset last = Flash.Params[2]>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset email = Flash.Params[3]>

You can also use the Flash variable scope to access named elements of an ActionScript object. The

shorthand way of creating an object in Flash is to use an object literal, where each name/value pair
has the syntax label:value:

var first="Tom";
var last="Muck";
var email="tom@tom-muck.com";
myService.saveEmployeeRecord({first:first, last:last, email:email});

Again, you could access the variables in ColdFusion using the Flash scope:

<cfset first = Flash.first>
<cfset last = Flash.last>
<cfset email = Flash.email>

The Flash.Result variable is used to return results from the service to the Flash movie. In a
ColdFusion page, unlike the CFC services that we built in earlier examples, Flash.Result is the only

way to return a parameter to the Flash movie. This variable can contain any type of result, such as a
struct, recordset, string, or Boolean. Simply setting the Flash.Result variable triggers the return of

the parameter to the Flash movie.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.3 Service Name Mappings

The different types of services that ColdFusion supports are referenced in different ways from the
client when calling NetConnection.getService(). For example, you must reference a service
implemented as a ColdFusion page differently than a ColdFusion Component. Table 5-2 shows how
different types of services should be referenced using getService().

Table 5-2. How to reference remote services in ColdFusion

Service type Name of service Name of remote function

ColdFusion
page

The directory that the ColdFusion page (.cfm
file) resides in, expressed in dot notation

The name of the ColdFusion page
that you want to invoke in the
specified directory

ColdFusion
Component

The entire path to the ColdFusion Component
(.cfc component file) from the web root,
expressed in dot notation

The name of the function in the
specified .cfc file

Server-Side
ActionScript

The full path to the SSAS file (.asr file) from
the web root, expressed in dot notation

The name of the function in the
specified .asr file

5.3.1 Order of Service Lookup

In order to adapt to a variety of software architectures and personal preferences, ColdFusion
supports Flash Remoting services implemented in a few different ways. You can write your remote
services as ColdFusion pages, ColdFusion Components, or Server-Side ActionScript. When the Flash
client references a remote service on the ColdFusion Server, ColdFusion looks up the service on the
server and invokes it, returning the result to the Flash client. Flash Remoting looks for services in this
order:

ColdFusion page (.cfm or .cfml)1.

ColdFusion Component (.cfc)2.

Server-Side ActionScript (.asr)3.

ColdFusion Components can also be used to create web services that can be
accessed with Flash Remoting, as covered in Chapter 10.

Now that we have covered some of the fundamentals of Flash Remoting with ColdFusion, let's look at
some more specific elements of Flash and ColdFusion integration.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3.2 Invoking a ColdFusion Page Service from Flash

To invoke a ColdFusion page from a Flash application, follow these steps:

Set the gateway URL.1.

Create a connection object using NetServices.createGatewayConnection().2.

Create a service object by invoking getService() on the connection object obtained in Step 2.
The service path includes the directory name, but not the .cfm page name.

3.

Invoke the page as a method of the service object obtained in Step 3. (That is, use the page
name, without the .cfm extension, as the method name.)

4.

The first two steps should be very familiar by now:

NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
var myConnection_conn = NetServices.createGatewayConnection();

To create the service object in Step 3, specify the service name in the call to getService(). The
service name is the name of the directory containing the .cfm file (relative to the web root),
substituting dots for slashes, but it does not include the .cfm file's name. For example, to invoke a
.cfm page called sendEmail.cfm located in the directory wwwroot/com/oreilly/frdg/Email, create a
reference to the service, as follows:

var emailService = myConnection_conn.getService("com.oreilly.frdg.Email", this);

Use the .cfm page name (without the extension) as the remote function name. The following code
invokes the sendEmail.cfm ColdFusion page:

emailService.sendEmail();

The name of the ColdFusion page is not case-sensitive on a Windows server, so
emailService.sendEmail() works as well as emailService.SendEmail().
However, it is good practice to use the correct case in your code for
compatibility with Unix servers.

You can send as many arguments to the sendEmail.cfm page as you want:

emailService.sendEmail(toAddress, fromAddress, subject, body);

5.3.2.1 Using the Flash variable scope to pass data between Flash and a ColdFusion

page

To access the arguments passed from Flash, use the Flash.Params variable within your ColdFusion
page. Flash.Params is an array containing sequentially numbered elements, one for each argument

passed in from the Flash application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unlike ActionScript arrays, which start from 0, ColdFusion arrays start from 1.

For example, the following ColdFusion code accesses the four variables passed into the
sendEmail.cfm page from Flash:

<cfmail to="#Flash.Params[1]#" from="#Flash.Params[2]#"
 subject="#Flash.Params[3]#">
 #Flash.Params[4]#
</cfmail>

In ColdFusion, you can use variables as tag attributes without using pound signs (#). If
the variables are not being used as attributes, or if you use quotes around the
variables, you have to use pound signs.

Therefore, the preceding example could be written as:

<cfmail to=Flash.Params[1] from=Flash.Params[2] subject=Flash.Params[3]>
 #Flash.Params[4]#
</cfmail>

5.3.2.2 Using named parameters to pass data from a Flash application to a ColdFusion

page

Instead of passing ordered arguments to a ColdFusion page, you can also attach properties to an
object and pass that object to your remote function. Any properties attached to the object become
named arguments to the function. This example passes the to, from, subject, and body arguments

as named arguments:

var args = new Object();
args.to = toAddress;
args.from = fromAddress;
args.subject = subject;
args.body = body;
emailService.sendEmail(args);

You can express the same thing in a more succinct manner using an object literal:

emailService.sendEmail(
 {to:toAddress, from:fromAddress, subject:subject, body:body});

To access named arguments on the server, treat the Flash variable as though it were a structure:

<cfmail to=Flash.to
 from=Flash.from
 subject=Flash.subject>
#Flash.body#
</cfmail>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also use the attribute name inside of single quotes within brackets. Don't forget to use pound
signs and double quotes to surround each element, as follows:

<cfmail to="#Flash['to']#"
 from="#Flash['from']#"
 subject="#Flash['subject']#">
#Flash['body']#
</cfmail>

Because named arguments are accessed by property name and not by order, the preceding
ColdFusion examples work even if the arguments are attached to the object in a different order, such
as:

emailService.sendEmail(
 {subject:subject, from:fromAddress, to:toAddress, body:body});

5.3.2.3 Returning data to Flash from a ColdFusion page

Returning data from a ColdFusion page to Flash is as simple as assigning the return value to the
Flash.Result variable. For example, to return the string "Email sent!" to the Flash client making the

remote call, use the following code:

<cfset Flash.Result="Email sent!" />

As soon as the variable is defined, the data is returned to the client.

Remember, you can also return complex objects like Arrays, Structs, Dates,
Queries and XML objects to the Flash client.

Example 5-1 shows the complete CF code, including some basic error handling and sending a return
value. You can save the file in the remote services directory webroot\com\oreilly\frdg\cfpages under

the name sendEmail.cfm.

Example 5-1. ColdFusion code for the remote service sendEmail.cfm

<cftry>
 <cfmail to = Flash.to
 from = Flash.from
 subject = Flash.subject>
#flash.body#
 </cfmail>
 <cfcatch type="Any">
 <cfthrow message = "There was an error">
 </cfcatch>
</cftry>
<cfset Flash.Result = "Email sent">

The corresponding client-side ActionScript code is shown in Example 5-2. It assumes that a
MessageBox component (from the Macromedia UI Components Set 2) named status_mb is available

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to display messages upon a successful send or an error. It assumes that the movie has text fields
named to_txt, from_txt, subject_txt, and body_txt and containing appropriate text. The final

sendEmail.fla file can be downloaded from the online Code Depot.

Example 5-2. ActionScript code for sendEmail.fla

#include "NetServices.as"

var my_conn; // Connection object
var emailService; // Service object
var myURL = "http://localhost/flashservices/gateway";
// Responder for general service methods
function Responder () {
 this.onResult = function (myResults) {
 if (myResults == null)
 myResults = "Email sent!";
 status_mb._visible = true;
 status_mb.setMessage(myResults);
 };

 this.onStatus = function (theError) {
 status_mb._visible = true;
 status_mb.setMessage(theError.description);
 System.onStatus = this.onStatus;
 };
}

// Close the message box when OK is clicked
status_mb.setCloseHandler("closeBox");
function closeBox () {
 status_mb.visible = false;
}

// Initialize Flash Remoting
function init () {
 initialized = true;
 NetServices.setDefaultGatewayUrl(myURL);
 my_conn = NetServices.createGatewayConnection();
 emailService = my_conn.getService("com.oreilly.frdg.cfpages");
}

init();

// Send the email when the send_pb button is clicked
send_pb.setClickHandler("send");

function send () {
 var args = new Object();
 args.to = to_txt.text;
 args.from = from_txt.text;
 args.subject = subject_txt.text;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 args.body = body_txt.text;
 // Call the service, passing the responder and then the arguments
 emailService.sendEmail(new Responder(), args);
}

5.3.3 Flash Remoting Services as ColdFusion Components

Writing Flash Remoting services as ColdFusion pages is relatively quick and easy. However,
ColdFusion pages primarily are designed to return dynamic HTML to web browsers, as opposed to
providing generic services to a variety of clients. ColdFusion Components (CFCs), on the other hand,
are specifically designed to provide services to various clients.

5.3.3.1 The theory behind ColdFusion Components

CFCs are loosely modeled after Java objects and should be designed and written with many of the
same principles in mind. The objective of a CFC should be to provide well-encapsulated functionality
to a variety of clients. Encapsulation refers to a service's ability to provide functionality to a client
without exposing anything about the implementation behind the functionality.

For example, consider a CFC called UserServices.cfc, containing a function called createUser(), which
takes several arguments pertaining to typical user data and returns a numeric key that is associated
with the new user. To clients invoking createUser(), it is not apparent whether the user information
is written to a database or saved in a text file. In theory, the client shouldn't care even if the
implementation behind createUser() changes completely, as long is it continues to take the same
arguments and return a numeric key.

Now, consider an implementation of createUser() that requires database connection parameters to
be passed to the method in addition to user information. If the implementation of createUser()
changes to use text files, clients must change their code to pass in a file path rather than database
connection parameters. It's easy to see how small changes can require changes elsewhere in an
application, requiring rewriting and retesting the code.

CFCs can be invoked from Flash, ColdFusion pages, and even other CFCs. Since CFCs are typically
client-agnostic (they don't care what type of client invokes them), it is important that their
implementations be kept free of client-specific code. For example, if you were to access arguments
passed into the CFC through the Flash variable scope, your CFC couldn't be called successfully from
a ColdFusion page or another CFC. Conversely, if your CFC used the <cfoutput> tag to return HTML,

it would no longer be usable from Flash. For that reason, it is also advisable not to use constructs
such as session or application variables in your CFCs, as that breaks the encapsulation of the
component functionality.

The other primary goal of a CFC should be code re-use. Whenever you find yourself implementing the
same logic in more than one place in your code, you should consider abstracting the logic into a CFC.
Once your CFC properly encapsulates your logic, you can reuse it from anywhere, including different
applications and different types of clients.

Additionally, CFCs support inheritance, which means you can "layer" your CFC to get the most
functionality out of the fewest lines of code. Multiple layers of abstraction allow you to maintain code
in a single location, and they also allow you to change the implementation behind certain services
without having to rewrite every client that depends on that CFC.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, let's say you create a component method called getUsStates() that returns a Query
object with the names and abbreviations of all the U.S. states. The logic is generic enough that it
could be used by multiple clients or applications without concern for whether the list of states is
hardcoded or stored in a text file or database. As long as the CFC's interface never changes, none of
the applications or clients calling getUsStates() need to change. Let's explore how ColdFusion
provides everything you need to keep your CFC generic and well-encapsulated.

5.3.3.2 The structure of ColdFusion Components

As you can see from the following general structure of a CFC, the component is wrapped in a single
<cfcomponent> tag containing any number of nested <cffunction> tags or inline ColdFusion code:

<cfcomponent extends="superComponent" displayName="displayName">
 <cffunction name="functionName"
 returnType="dataTypeToReturn"
 roles="securityRole"
 access="clientAccess"
 output="trueOrFalse"
 hint="functionHint "
 description="functionDescription">
 <cfargument name="variableName"
 type="argumentDataType"
 required="trueOrFalse"
 default="defaultValue"
 description="argumentDescription"/>
 <!--- Component implementation here --->
 <cfreturn dataToReturn />
 </cffunction>
 <cffunction name="anotherFunction">
 <!---body of function --->
 </cffunction>
</cfcomponent>

Any code that is not contained in a function is executed whenever the component is called. Your CFC
needs to be stored in a file with a .cfc extension, which must reside in or below your web root.

5.3.3.3 The <cfcomponent> tag

Table 5-3 describes the possible attributes of a <cfcomponent> tag.

Table 5-3. Attributes of the ColdFusion <cfcomponent> tag

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute
name

Type Required Description
Possible
values

extends string No
Indicates another CFC that the current
component inherits functionality from

Any local CFC
name

displayName string No Descriptive name used for self-documentation
An arbitrary
description

hint string No
Display hint for Dreamweaver MX, CFC
Explorer, or other introspection mechanism

Any descriptive
hint

output string No
Specifies whether to suppress output from the
component

"yes" or "no"

When a component extends another component, it inherits the properties and functions from the
component it is extending. When structuring your CFC, remember that any functions or properties a
component inherits from its parent must be just as valid for the inheriting component as it is for the
parent. Any component that extends another component should be a subclass, or a more specific
version, of the component it is extending.

For example, let's say you've written an ecosystem simulation using a component called
PrayingMantis.cfc with the functions getLegCount() and getPrimaryDiet(). You decide that your
simulation needs a grasshopper, so you create Grasshopper.cfc and add getLegCount() and
getPrimaryDiet() functions to it. Although praying mantises and grasshoppers have different diets,
they both have six legs. Rather than duplicating getLegCount() in two places, you create a third
component called Insect.cfc that contains the function getLegCount(). Any function or property that
is common to all insects goes in Insect.cfc, while functionality specific to one type of insects should go
in a subclass of Insect.cfc. Even if you have 20 different types of insects inheriting from Insect.cfc,
you need to write the code only once. And if entomologists discover they have been miscounting all
these years and insects actually have seven legs, you only have to change the getLegCount()
function in a single location to automatically change your entire insect collection.

5.3.3.4 The <cffunction> tag

Table 5-4 describes the possible attributes of a <cffunction> tag.

Table 5-4. Attributes of the <cffunction> tag

Attribute
name

Type Required Description Possible values

name string Yes
The name of function, which is
the name by which it will be
invoked

Any valid string

returnType[1] string No
The datatype of the value

"any", "array", "binary",
"boolean", "component name",
"date", "guid", "numeric",

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute
name

Type Required Description Possible values

returnType[1] string No
The datatype of the value
returned by the component

"date", "guid", "numeric",
"query", "string", "struct",
"uuid", "variable name", "void",
"xml"

access string No
Indicates what type of clients
have access to the function

"public", "private", "package", or
"remote"

roles string No
Indicates security roles for this
function

Any valid user role

output string No
Indicates whether output from
the component is written back
to the client

"yes" or "no"

hint string No
Usage hint for self-
documentation

Any string hint

description string No

Displayed when introspecting
components, such as while
browsing remote services from
the Flash authoring
environment

Any string description

[1] Use "void" when there is no return value and use "any" when returning an object of type ASObject.

The access attribute of the <cffunction> tag determines what type of clients can access your

component functions. It has four possible values:

"public"

Function is available to all local pages or other CFCs
"private"

Function is available only to other functions in the same CFC
"package"

Function is available only to CFCs in the same directory, including the CFC in which the function
is declared

"remote"

Function can be invoked remotely (access must be "remote" to work with Flash Remoting)

Roles are discussed in detail later in this chapter in the section Section 5.6.3.

5.3.3.5 The <cfargument> tag

Table 5-5 describes the possible attributes of a <cfargument> tag.

returnType[1] string No
The datatype of the value
returned by the component

"date", "guid", "numeric",
"query", "string", "struct",
"uuid", "variable name", "void",
"xml"

access string No
Indicates what type of clients
have access to the function

"public", "private", "package", or
"remote"

roles string No
Indicates security roles for this
function

Any valid user role

output string No
Indicates whether output from
the component is written back
to the client

"yes" or "no"

hint string No
Usage hint for self-
documentation

Any string hint

description string No

Displayed when introspecting
components, such as while
browsing remote services from
the Flash authoring
environment

Any string description

[1] Use "void" when there is no return value and use "any" when returning an object of type ASObject.

The access attribute of the <cffunction> tag determines what type of clients can access your

component functions. It has four possible values:

"public"

Function is available to all local pages or other CFCs
"private"

Function is available only to other functions in the same CFC
"package"

Function is available only to CFCs in the same directory, including the CFC in which the function
is declared

"remote"

Function can be invoked remotely (access must be "remote" to work with Flash Remoting)

Roles are discussed in detail later in this chapter in the section Section 5.6.3.

5.3.3.5 The <cfargument> tag

Table 5-5 describes the possible attributes of a <cfargument> tag.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 5-5. Attributes of the <cfargument> tag

Attribute
name

Type Required Description Possible values

name string Yes
The argument's variable
name

Any valid variable name

type[2] string No The argument's datatype

"any", "array", "binary", "boolean",
"component name", "date", "guid",
"numeric", "query", "string", "struct",
"uuid", "variable name", "xml"

required Boolean No
Whether the argument is
required

"yes" or "no" (defaults to "no")

default string No
A default value if
argument it is not defined

Any value valid for the argument's
datatype

description string No

Displayed when browsing
remote services from the
Flash authoring
environment

Any string description

[2] Use "any" when passing an object of type ASObject to the function.

An argument whose required attribute is "yes" must be passed in at the time the function is invoked
(unless the default attribute is also specified); otherwise, the function invocation fails. In the case of

Flash Remoting, the responder object's onStatus() method is called with an error object indicating
which arguments were missing.

5.3.3.6 Organizing ColdFusion Components using packages

The directory structure you use to organize your CFCs is called a package structure. Packages are
useful for grouping files in logical ways. For example, I might put the PrayingMantis.cfc and
Grasshopper.cfc files discussed earlier in the directory webroot\com\oreilly\frdg\bugs. All ColdFusion

Components in the bugs directory in the frdg project should relate to little critters with several legs,
whether they are insects or arachnids. The actual package name is relative to the document root and
uses dots rather than slashes; so, in the previous example, the package name would be
"com.oreilly.frdg.bugs". As discussed in Chapter 2, using domain names as directory structures

prevents namespace collisions and keeps your code better organized.

5.3.3.7 Invoking ColdFusion Components From Flash

Invoking a CFC from Flash is very similar to invoking a ColdFusion page. To create an instance of a
service in your Flash movie, you call getService() on your NetConnection instance, passing in the
fully qualified component name (the entire name of the CFC, including the package name).
Remember that package names are relative to the document root and use dots in place of slashes.

To invoke a CFC from a Flash application, follow these steps:

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Set the gateway URL.1.

Create a connection object using NetServices.createGatewayConnection().2.

Create a service object by invoking getService() on the connection object obtained in Step 2.
The service path includes the directory name and the name of the .cfc file, excluding the .cfc
extension.

3.

Invoke a function within the component as a method of the service object obtained in Step 3.
Any functions defined within the component can be accessed as methods of the service object.

4.

The following code creates an instance of the service, which points to our Grasshopper component
and invokes the getLegCount() method:

var myURL = "http://localhost/flashservices/gateway";
var myService = "com.oreilly.frdg.bugs.Grasshopper";
NetServices.setDefaultGatewayUrl(myURL);
var my_conn = NetServices.createGatewayConnection();
var grasshopperSevice = my_conn.getService(myService, responderObject);
grasshopperService.getLegCount();

As with the earlier ColdFusion page example, we pass the service name to getService(). However,
note that when using a CFC the service path includes the name of the .cfc file (in this case
Grasshopper.cfc) without the .cfc extension. Contrast this with the case of a ColdFusion page, in
which the .cfm file is not part of the service path passed to getService() but is instead invoked as the
method on the service object returned by getService().

Remember that a component can define multiple functions (one for each <cffunction> tag), and

each one can be accessed as a method of the service object returned by getService(). That is, as
long as the responder object passed to getService() is capable of handling different types of results,
you can reuse the same service instance to call other functions on the same component:

grasshopperService.getPrimaryDiet();

You can pass arguments into a remote CFC function the same way you pass arguments to the
ColdFusion page. For example, if the component defines a setSpecies() function, you can pass
arguments to it as follows:

grasshopperService.setSpecies("Melanoplus Differentialis");

5.3.4 Examples of Flash Remoting Using ColdFusion Components

ColdFusion Components are extremely versatile, because the code inside of the <cffunction> tags

can be written in CFML or CFScript and can be included from external files. Including code in your
functions using the <cfinclude> tag is a good way to reuse code, and it allows you to add layers of
abstraction to your application. CFC functions can also invoke each other (as long as the access

attributes allow for it). They can even create instances of Java objects and use them.

The next three subsections demonstrate various techniques. The first section is a working example of
a CFC that performs a service (sends an email) and doesn't return anything to the client. The next
section demonstrates performing a database query and returning data to the client. It also shows the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

benefit of component functions calling other component functions. The last subsection shows how to
wrap a Java class in a CFC so it is more easily accessible to Flash through Flash Remoting.

5.3.4.1 Using a ColdFusion Component to send email

Sending email is a common task that nearly all web-based applications support. There is no way to
send email directly from a Flash movie unless you use a mailto URL in conjunction with the getURL()
function, which is far from ideal since it assumes the user is on his own computer and has a mail
client and server properly configured. These are not necessarily things you can count on, since Flash
runs on many different types of devices and in many different places. The solution is to use Flash
Remoting to delegate the task to a server. Using ColdFusion, the entire procedure can be done in just
a few lines of code.

Example 5-3 shows code for a CFC capable of sending email on behalf of a client. It is analogous to
the ColdFusion page of Example 5-1 but is written as a component. Name the component Email.cfc
and put it in the package com.oreilly.frdg.

Example 5-3. Sending an email with a CFC using Email.cfc

<cfcomponent>
 <cffunction name="sendEmail" access="remote">
 <cfargument name="to" required="true" />
 <cfargument name="from" required="true" />
 <cfargument name="subject" required="true" />
 <cfargument name="body" required="true" />
 <cftry>
 <cfmail to = to
 from = from
 subject = subject>
#body#
 </cfmail>
 <cfcatch type="Any">
 <cfthrow message = "There was an error">
 </cfcatch>
 </cftry>
 </cffunction>
</cfcomponent>

In order for Email.cfc to work, you must have an email server configured through the ColdFusion
administrator.

The component in Example 5-3 is a simple, generic service that can be invoked remotely from a Flash
application (since the access attribute is "remote") or locally from a ColdFusion page or even another

CFC. The ActionScript code from Example 5-2, used with the ColdFusion page, must be modified
slightly to invoke the sendEmail() method from the component. On the last line of the init() function
in Example 5-2, change the getService() invocation to use the path to the new component (omit the
.cfc extension):

emailService = my_conn.getService("com.oreilly.frdg.Email");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that we've named our function sendEmail() in imitation of the ColdFusion page named
sendEmail.cfm from Example 5-1. This allows us to invoke sendEmail() using the same client-side
code from the original Example 5-2; however, in the earlier case sendMail was the name a .cfm page,
and here it is the name of a function within a CFC:

emailService.sendEmail(new Responder(), args);

Even though the sendEmail() method doesn't return anything to the client, the responder object's
onResult() method is called when the function completes. No argument is passed back to the
onResult() function. Notice that the ActionScript code in Example 5-2 created a default message to
be displayed if there was no result from the server.

5.3.4.2 Returning a Query object

Let's see how to return a value from a CFC. The CFC listed in Example 5-4 defines two functions,
which become methods of the component. The getAllStates() method performs a database query to
retrieve information on all the U.S. states and returns the result. Notice how the getStatesByRegion(
) method first calls getAllStates() to avoid unnecessarily repeating code. The code in Example 5-4
can go in a file called StatesEnum.cfc in the package com.oreilly.frdg.

Example 5-4. Returning a query with StatesEnum.cfc

<cfcomponent>
 <cffunction name="getAllStates" access="remote" returnType="query">
 <cfquery datasource="Northwind" name="allStates">
 SELECT StateID, StateName, StateAbbr, StateRegion
 FROM USStates
 </cfquery>
 <cfreturn #allStates# />
 </cffunction>
 <cffunction name="getStatesByRegion" access="remote" returnType="query">
 <cfargument name="region" type="string" required="true" />
 <cfset allStates=this.getAllStates() />
 <cfquery dbtype="query" name="regionalStates">
 SELECT *
 FROM allStates
 WHERE StateRegion = '#region#'
 </cfquery>
 <cfreturn #regionalStates# />
 </cffunction>
</cfcomponent>

In order for Example 5-4 to work, you must have an appropriate data source
configured through the ColdFusion administrator. A .csv file named
USStates.csv filled with a listing of U.S. states and regions is available from the
online Code Depot and can be imported to your database of choice for use in
this example. Import the file to a new table called USStates.

The StatesEnum.cfc component takes advantage of a nice feature of ColdFusion called queries of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

queries. The getAllStates() method returns a Query object that was returned from the <cfquery>

tag used to query the database. Rather than have the getStatesByRegion() method use its own
<cfquery> tag to run the same query, we can extract the subset of interest by performing a more
specific query on the allStates Query object returned by getAllStates(). Using ColdFusion's query

of query capability is efficient in terms of both performance and coding practice.

Example 5-5 shows the client-side ActionScript code for invoking the getAllStates() and
getStatesByRegion() functions remotely.

Example 5-5. ActionScript code for StatesEnum.fla

NetServices.setDefaultGatewayUrl("http://localhost:8500/flashservices/gateway");
var con = NetServices.createGatewayConnection();
var statesSevice = con.getService("com.oreilly.frdg.StatesEnum", this);
statesService.getAllStates();
statesService.getStatesByRegion("south");

function onResult (states) {

 // states_cb is the instance name of a ComboBox UI component.
 states_cb.setDataProvider(states);
}

The states parameter passed to the onResult() function is cast (or transformed) into an ActionScript

RecordSet object by the Flash Remoting gateway. Notice how the function is not concerned with
whether it is being passed a recordset of all the U.S. states or a subset based on region. Its only job
is to populate a ComboBox with the data it receives. Because we can use the same responder object
for calls to both getAllStates() and getStatesByRegion(), we again are able to reuse code.

ColdFusion supports cached queries, which allow data to be held in memory on
the server. The allStates query in Example 5-4 is an ideal candidate for caching.
To cache a query, define a cachedwithin attribute such as
cachedwithin="#CreateTimeSpan(7,0,0,0)#", which caches the query in

memory for 7 days. Therefore, the query executes no more than once per
week, unless the server restarts (depending on your CF administrative settings,
which can limit the number of cached queries).

Although you can access arguments to a component function using the Flash.Params array or as
named parameters, you should use <cfargument> tags instead.

There is also an additional variable scope you can use with components, called the arguments scope.

The arguments scope can be used with dot notation (arguments.argumentName) or the Structure

model (arguments["argumentName"]). If you are going to use a variable scope, you should use the
arguments scope instead of the Flash scope for two reasons:

It keeps your components generic so that they can be invoked by clients other than remote
Flash applications.

It is easier to keep track of the variables that are prepended with their scopes. For example, if
the getStatesByRegion() function is very long, referring to the region argument as
arguments.region makes your code clearer. Even if your function contains <cfargument> tags,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

it's a good idea to use the arguments scope for the sake of readability.

5.3.4.3 Wrapping a Java class in a ColdFusion Component

Although ColdFusion does not support creating or calling methods on Java objects directly, you can
easily create CFCs or ColdFusion pages that can delegate to Java objects. That is, you can use a CFC
as a thin layer between your Flash Remoting application and the Java object layer. Chapter 7 covers
Java and Flash Remoting integration in detail, but here is a short, simple example in the context of a
CFC. This example demonstrates the following process:

The Flash client invokes a remote CFC function.1.

The CFC function instantiates a Java object, passing it the argument that was sent from the
Flash client.

2.

The CFC calls a method on an instance of the Java class, which returns a string.3.

The string returned from the Java method is returned by the CFC to the Flash client.4.

Figure 5-2 illustrates the process of calling a Java object wrapped in a ColdFusion Component.

Figure 5-2. Wrapping a Java object in a ColdFusion Component

There are three parts to this example:

The client-side ActionScript code

The ColdFusion Component

The Java object

Let's work backward and start with the Java object.

The Java object, called StringReverser and shown in Example 5-6, has a constructor that accepts a
String object. There is only one method on StringReverser, called getReversedString(), which
reverses the order of the characters in the string and returns it as a new string.

Example 5-6. Java class StringReverser.java

package com.oreilly.frdg;

public class StringReverser {
 private String target;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public StringReverser (String target) {
 this.target = target;
 }

 public String getReversedString () {
 StringBuffer reversedString = new StringBuffer();
 char[] chars = target.toCharArray();
 for (int i = chars.length; i > 0; --i) {
 reversedString.append(chars[i-1]);
 }
 return reversedString.toString();
 }
}

You can compile the StringReverser.java file with any Java IDE or with the command-line compiler
javac.exe. Once the Java file is compiled, place the resulting .class file in any directory included in
ColdFusion's classpath. In a typical installation of ColdFusion MX on a Windows machine, this would
be at C:\CFusionMX\runtime\servers\lib.

If you choose to put your classes in a package, remember to add the package declaration to the top
of the .java file, as we have done here, and to create the appropriate directory structure. The
StringReverser.class should go into a directory structure of classpath\com\oreilly\frdg. You can also

put your class files into a Java archive (.jar) file, as long as the .jar files are included in ColdFusion's
classpath.

Let's look at the CFC that serves as a proxy between the Flash client and the StringReverser Java
object. The code in Example 5-7 is contained in a file called JavaExamples.cfc, located in the package
com.oreilly.frdg.

Example 5-7. JavaExamples.cfc

<cfcomponent>
 <cffunction name="reverseString" access="remote" returnType="string">
 <cfargument name="target" type="string" required="true">
 <cfobject type="Java" action="create" class="StringReverser"
 name="reverserClass" />
 <cfset reverser = reverserClass.init(#target#) />
 <cfset reversedString = reverser.getReversedString() />
 <cfreturn #reversedString# />
 </cffunction>
</cfcomponent>

We use the <cfobject> tag to get a reference to the StringReverser class, not an instance of

StringReverser. At this point, you have access to only static members of the class. The instance of
StringReverser is actually created and returned from the init() method call on the line following the
<cfobject> tag.

The StringReverser class does not have an explicit init() method. init() is a ColdFusion function that
is required to be called whenever instantiating a Java object. Calling init() from ColdFusion invokes
the corresponding class constructor. If you attempt to reference a nonstatic member of a Java object
before calling an init() method, the object's default no-argument constructor is called if one exists. If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the object does not have any constructors at all, allowing the default no-argument constructor to be
called in this manner is fine. However, if your object has one or more constructors and does not
explicitly define a no-argument constructor, attempting to access nonstatic members before
initializing the Java object results in an exception being thrown and propagated up to the Flash client.

By passing the target variable into the init() method, StringReverser's constructor is called,
returning an instance of StringReverser, which has the value of target set as a member variable.
The instance is assigned to the ColdFusion variable reverser, which is the instance that you call
methods on. Calling getReversedString() on reverser returns the value of target, except with its
characters in reverse order, which is assigned to the ColdFusion variable reversedString. We then
return reversedString, which, in this case, is returned to the Flash client. The instance of

StringReverser goes out of scope and is ready for garbage collection at the moment the CFC function
returns. In the case of ColdFusion pages and CFCs, instances of Java objects go out of scope when
the entire page has finished executing.

Now let's take a look at the client-side ActionScript for this exercise, shown in Example 5-8.

Example 5-8. ActionScript code for JavaExample1.fla

NetServices.setDefaultGatewayURL("http://localhost:8500/flashservices/gateway");
var my_conn = NetServices.createGatewayConnection();
var javaExService = my_conn.getService("com.oreilly.frdg.JavaExamples", this);
javaExService.reverseString("this is a top secret code");

function onResult (response) {
 trace(response);
}

function onStatus (error) {
 trace("error: " + error.description);
}

The ActionScript code for this example is straightforward. Calling the remote reverseString() function
on JavaExamples.cfc returns the reversed string to the onResult() callback function. The result
should be the string "edoc terces pot a si siht" printed in your Output window.

5.3.5 ColdFusion Component Introspection

Like Java class definitions, CFCs are self-documenting, which means that the components
themselves-or, more precisely, the cfexplorer.cfc located in wwwroot/CFIDE/componentutils-can
describe how each component is used. A component's ability to reflect upon itself is referred to as
introspection or component metadata. There are two primary advantages to component metadata:

It exposes components' application programming interface (API) without exposing the
implementation of the component.

It is always up-to-date.

Clients using your components should not care or rely upon how a function is implemented; they
should be concerned only with how a function is used and what data it returns. Hiding the internal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

implementation of a component is a key requirement of abstraction and encapsulation. Component
metadata is a great way for developers to access the information they need without looking through
the component's code, which not only defeats the goal of encapsulation but also takes a great deal of
time.

Component metadata also allows CFC developers to concentrate on their code, rather than manually
keeping the documentation current. Component metadata is generated as HTML, so it can be viewed
by simply referencing the .cfc file's URL directly from a web browser, like this:

http://localhost/com/oreilly/frdg/MyCFC.cfc

When the ColdFusion Server receives a request for a CFC file rather than a request to invoke a
particular function within it, the request is redirected to
webroot\CFIDE\componentutils\cfexplorer.cfc. For security reasons, you are prompted to enter the

ColdFusion Remote Development Security (RDS) password, after which you should see a document
similar to Figure 5-3, which shows the documentation for StatesEnum.cfc from Example 5-4.

Figure 5-3. Introspecting StatesEnum.cfc

ColdFusion metadata includes the following information:

The inheritance tree of the component

The directory the component is in

The package the component is in

http://localhost/com/oreilly/frdg/MyCFC.cfc
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The display name of the component, if the displayName attribute is present

Each property that the component contains

All the functions the component contains

What arguments each function accepts, the arguments' datatypes, and whether they are
required

The ColdFusion variable name used to reference each argument

Arguments' default values, if present

What type of access each function allows

The value of the function's hint attribute, if present

Whether output is enabled for each function

The datatype of the return value of each function

If you are not sure which component you are looking for, you can use the Component Browser to
browse all the components on the ColdFusion Server. To access the Component Browser, enter a URL
of the following form in your web browser:

wwwroot/CFIDE/componentutils/componentdoc.cfm

For example:

http://localhost:8500/CFIDE/componentutils/componentdoc.cfm

Dreamweaver MX also allows you to introspect CFCs from its Components panel. In Dreamweaver
MX, after you've defined a site and set your server model to ColdFusion, the Components panel
displays all components that are available on the server, in a tree, as shown in Figure 5-4. Right-
clicking (in Windows) or Ctrl-clicking (on the Macintosh) on a component, method, or argument
within the panel gives details about that particular item.

Figure 5-4. Introspecting the Email.cfc component from within
Dreamweaver MX

http://localhost:8500/CFIDE/componentutils/componentdoc.cfm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also create your own interface for introspecting CFCs.

5.3.5.1 Discovering ColdFusion Components from Flash

In addition to being able to browse CFC services from your browser and from Dreamweaver MX, you
can also browse them directly from the Flash authoring environment through the Service Browser
(Window Service Browser). You cannot discover unknown services, because you must enter the
address of the service in order to find it; however, it is a convenient way to keep important
component APIs available while you write ActionScript code against them. Chapter 2 describes the
Service Browser, which is shown in Figures Figure 2-4 and Figure 5-5.

The Description field in the Service Browser contains, at a minimum, a list of arguments the function
accepts and their datatypes. If you have added the description attribute to your <cffunction> tag,
its value is displayed in the Description field. Additionally, you can define a description attribute for

each argument a function accepts to provide the Service Browser with additional information. Be sure
to refresh the service descriptions often if other developers could be working on the component files,
to make sure you are always viewing the most recent versions.

Figure 5-5 shows the Service Browser exposing the Email.cfc ColdFusion Component.

Figure 5-5. The Flash Service Browser exposing the Email CFC

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.4 ColdFusion Pages Versus ColdFusion Components

Typically, my preference for a particular type of technology or architecture is driven by the nature of
the task I need to accomplish. I favor that which gets the job done most efficiently and allows the
project to be maintained most easily. I can't think of any situation in which I would recommend using
ColdFusion pages rather than ColdFusion Components to provide Flash Remoting services. Using
ColdFusion pages and the Flash variable scope might be faster initially for developers not familiar

with CFCs. However, I strongly recommend learning to write CFCs and appreciate the theory behind
them.

There are three things CFCs offer that ColdFusion pages do not:

Documentation

CFCs provide an excellent and completely automatic form of documentation, and you can
browse them from the Flash and Dreamweaver authoring environments.

Automatic validation

Since CFCs allow you to define the arguments that a function accepts, the ColdFusion Server
can automatically validate the parameters passed to a function. You must hand-code such
validation for ColdFusion pages.

Re-use

Writing Flash Remoting services as ColdFusion pages requires the Flash variable scope for

retrieving arguments and returning data, making the pages incompatible with clients other
than Flash. ColdFusion Component code can and should be kept generic enough that you can
invoke the same functions from various clients, such as Flash Remoting, ColdFusion pages,
other CFCs, and through URLs.

Some advantages of CFCs can be simulated with ColdFusion pages, although it often requires
additional work. For example, the clever use of includes can achieve the same result as inheritance
and allow a high degree of code re-use and modularity. A set of well-planned ColdFusion pages can
be maintained easily and can provide the same level of encapsulation as CFCs. Although each
developer must make his own choice, CFCs were designed with advanced, object-oriented
development in mind, whereas the same concepts are afterthoughts in the context of ColdFusion
pages.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.5 Loading Query Data Incrementally

You should never make your user wait longer than necessary. And if the wait is unavoidable, at least
make it seem shorter. For example, since browsers are usually accessing remote resources over
which they have very little control, they are designed to display partial content as it becomes
available. Modern browsers improve performance where it is under their control and give the illusion
of performance when issues are beyond their control (such as connection speed, site design, server
traffic, and so on).

Browsers use sophisticated caching and rendering algorithms to decrease the amount of work that
has to be done between a request and a fully rendered response. Where performance is out of their
hands, they employ user feedback to ease the pain of waiting as much as possible. For example,
browsers use loader bars to indicate the page's load progress and render available content before the
remainder is fully loaded. Most browsers use an animated icon in the upper-right corner to imply that
the browser is making steady progress even though the animation has nothing to do with what the
browser is loading.

One of the most appealing aspects of using Flash to develop web-based applications is that a well-
designed UI can perform very well. Not only does Flash content stream, but once the page is fully
loaded a well-designed Flash application requires fewer round trips to the server than traditional
HTML-based applications. And when it is necessary to retrieve data from the server through Flash
Remoting, incremental or pageable recordsets can be used to get data in front of users as quickly as
possible.

5.5.1 Implementing Pageable Recordsets on the Server

A pageable recordset is returned to the client over the course of more than one request, allowing the
application to start rendering results sooner than if all the results were returned at once. By default,
when a recordset is returned to Flash, the entire recordset is returned in a single response. If you are
not returning very many records, or if everyone using the application has a high-speed connection,
the default behavior is probably fine; however, when returning large numbers of records over slower
connections, it is more practical to return them incrementally.

A page is a subset of a recordset, and page size refers to the number of records in a given page. The
default page size is the size of the entire recordset, which means that if the page size isn't explicitly
set on the server, all records are returned in a single page. To change the page size, simply assign a
value to the Flash.Pagesize variable before returning your Query object, as shown in Example 5-9.
Although setting the Flash.Pagesize variable might appear to make our CFC function Flash-specific,

it is ignored by non-Flash clients. See the full discussion under Section 5.5.4 later in this chapter.

Example 5-9. Customers.cfc

<cfcomponent>
 <cffunction name="getCustomers"
 access="remote"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 returnType="query">
 <cfquery name="rsCustomers" datasource="Northwind">
 SELECT ContactName FROM Customers
 </cfquery>
 <cfset Flash.Pagesize = 10 />
 <cfreturn #rsCustomers# />
 </cffunction>
</cfcomponent>

Example 5-9 can be saved as Customers.cfc in the webroot\com\oreilly\frdg directory. Notice how we
set the Flash.Pagesize to 10 before returning the Query object. The server returns 10 records for

each client request, but the server cannot push data to the client without the client asking for it.
Setting the Flash.Pagesize variable to 10 means that the first 10 records are returned initially and

the rest of the records are pageable. The server returns the remaining records when requested;
however, the server does not limit responses to 10 records at a time. After the initial 10 records are
returned, it is up to the client to decide how and when the rest of the data is loaded.

The Flash paging implementation is different than the type of recordset paging that uses the maxrows
attribute of the <cfquery> tag, which might be more familiar to ColdFusion programmers. Once the
CFML code sets the Flash.Pagesize variable, the server takes care of the details of paging when the

client requests another page.

5.5.2 Implementing Pageable Recordsets on the Client

Since the server doesn't limit the number of records returned to the client after the initial records
have been returned, it is up to the client to establish a delivery mode for incrementally loading the
remaining data. A delivery mode is essentially a policy for how and when pageable data is retrieved
from the server. To set a delivery mode, you use the setDeliveryMode() method on the RecordSet
instance returned from the server, passing in the appropriate arguments. Table 5-6 describes each of
the three delivery modes and how to use them.

Table 5-6. Delivery modes for pageable recordsets

Delivery
mode

Description Usage

"ondemand"

Loads each record individually
each time a record is requested
through the
RecordSet.getItemAt() function
on the object. This is the default
behavior for pageable recordsets.

rs.setDeliveryMode("ondemand");

"fetchall"

Loads all the records in the
recordset unconditionally, but
tells the server to return them in
pages, or sets, as opposed to one

rs.setDeliveryMode("fetchall", 10);

The second argument (10) indicates the number
of records per page, meaning the number of
records to be returned from the server with each

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Delivery
mode

Description Usage

pages, or sets, as opposed to one
at a time.

records to be returned from the server with each
response. It makes sense for this number to be
the same as the Flash.Pagesize variable you set
on the server, but it does not have to be.

"page"

When an individual record is
retrieved from a particular page,
not only are all the other records
from that page returned, but also
some specified number of
subsequent pages are returned to
the client if they have not already
been retrieved.

rs.setDeliveryMode("page", 10, 2);

The second argument (10) indicates the page size
while the third argument (2) indicates the number
of subsequent pages to be retrieved and cached.
If the third argument is 0, only the current page is
returned.

Here is a description of when to use each delivery mode:

"ondemand"

Use "ondemand" mode when each record is needed individually and at different times. Do not

use this mode if you are iterating through the entire RecordSet at once, because it forces the
client to make a separate request for each record, which is very inefficient. This mode is
efficient only if you won't eventually load all the records and you want to limit network traffic to
only those records that must be loaded.

"fetchall"

Use "fetchall" mode when you know that you are going to load all the data but would like to

start displaying the data incrementally rather than having to wait for it all to load. For example,
if you know you have 300 records to load, it makes sense to load them over the course of 10
requests, 30 records at a time, so that you can start displaying data as soon as possible.

"page"

The "page" mode lies somewhere between "ondemand" and "fetchall". Use "page" mode when

you don't expect to need all the data in the recordset, but you don't want the overhead of
loading each record individually. For example, you don't want to make the user wait for 10
pages of search results to load, because she will most likely find what she needs in the first two
or three pages. Therefore, load the first two or three pages initially, and then load the other
pages as they are needed.

If you are handing off your recordset to a Flash UI component through the component's
setDataProvider() method, set the delivery mode on the recordset before passing it into the
component. The component will automatically load the data as specified in the call to
setDeliveryMode(). Since the best reason to load data incrementally is to display it to users, you
may never need to load data incrementally outside of the context of a Flash UI component. If you
need to handle or process incrementally loaded data yourself, however, the next section explains how
ActionScript implements recordset paging.

5.5.3 Managing Incrementally Loaded Data by Hand

Remember that if the Flash.Pagesize variable is set on the server, the server returns only the

pages, or sets, as opposed to one
at a time.

records to be returned from the server with each
response. It makes sense for this number to be
the same as the Flash.Pagesize variable you set
on the server, but it does not have to be.

"page"

When an individual record is
retrieved from a particular page,
not only are all the other records
from that page returned, but also
some specified number of
subsequent pages are returned to
the client if they have not already
been retrieved.

rs.setDeliveryMode("page", 10, 2);

The second argument (10) indicates the page size
while the third argument (2) indicates the number
of subsequent pages to be retrieved and cached.
If the third argument is 0, only the current page is
returned.

Here is a description of when to use each delivery mode:

"ondemand"

Use "ondemand" mode when each record is needed individually and at different times. Do not

use this mode if you are iterating through the entire RecordSet at once, because it forces the
client to make a separate request for each record, which is very inefficient. This mode is
efficient only if you won't eventually load all the records and you want to limit network traffic to
only those records that must be loaded.

"fetchall"

Use "fetchall" mode when you know that you are going to load all the data but would like to

start displaying the data incrementally rather than having to wait for it all to load. For example,
if you know you have 300 records to load, it makes sense to load them over the course of 10
requests, 30 records at a time, so that you can start displaying data as soon as possible.

"page"

The "page" mode lies somewhere between "ondemand" and "fetchall". Use "page" mode when

you don't expect to need all the data in the recordset, but you don't want the overhead of
loading each record individually. For example, you don't want to make the user wait for 10
pages of search results to load, because she will most likely find what she needs in the first two
or three pages. Therefore, load the first two or three pages initially, and then load the other
pages as they are needed.

If you are handing off your recordset to a Flash UI component through the component's
setDataProvider() method, set the delivery mode on the recordset before passing it into the
component. The component will automatically load the data as specified in the call to
setDeliveryMode(). Since the best reason to load data incrementally is to display it to users, you
may never need to load data incrementally outside of the context of a Flash UI component. If you
need to handle or process incrementally loaded data yourself, however, the next section explains how
ActionScript implements recordset paging.

5.5.3 Managing Incrementally Loaded Data by Hand

Remember that if the Flash.Pagesize variable is set on the server, the server returns only the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

specified number of records in the initial query. Unless the client requests the remainder of the data,
it is never sent.

The RecordSet.addView() method is the key to handling pageable records. Any object that is passed
into the addView() function should contain a function called modelChanged(). The RecordSet object
calls the modelChanged() function whenever its state changes in any way, passing into the function
an object with the following properties:

event

Describes the type of event that occurred. Possible values for the event property are as

follows:

"addRows"

Indicates that rows have been added to the recordset. Use the firstRow and lastRow

properties to determine which rows were affected.
"allRows"

The recordset is completely populated, meaning all rows have been returned from the
server. The firstRow and lastRow properties will not have values.

"fetchRows"

Rows have been requested from the server, but a response containing the data has not
been received. Use the firstRow and lastRow properties to determine which rows were

affected.
"sort"

Indicates that the records in the recordset have been sorted. The firstRow and lastRow

properties will not have values.
"updateAll"

Indicates that the recordset has changed. This event occurs when a new view is added to
the recordset.

"updateRows"

Indicates that rows have been changed. Use the firstRow and lastRow properties to

determine which rows were affected.
firstRow

The index of the first row that was affected by the event.
lastRow

The index of the last row that was affected by the event.

Example 5-10 shows code for a simple ActionScript example that handles a pageable recordset
manually (as opposed to allowing a Flash UI component to handle retrieving and displaying the data).
The example simply retrieves the pageable data associated with a remote CFC function call and
displays it in the Flash Output window. Assume that the remote
service-com.oreilly.frdg.Customers-sets the Flash.Pagesize variable to 10 just before returning a
RecordSet object of unknown length, containing a column called ContactName.

Example 5-10. Customers1.fla

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#include "NetServices.as"

// Establish the connection to the service.
NetServices.setDefaultGatewayURL("http://localhost/flashservices/gateway");
var my_conn = NetServices.createGatewayConnection();
var customerService = my_conn.getService("com.oreilly.frdg.Customers", this);

// Invoke the getCustomers() function within the .cfc file.
customerService.getCustomers();

// Declare the IncomingDataHandler class's constructor.
function IncomingDataHandler (rs) {
 this.rs = rs;
}

// Get the rows that the server sent back immediately. This should be

// equal to the Flash.Pagesize variable set on the server (10 in this case).
IncomingDataHandler.prototype.getData = function () {
 for (var i = 0; i < this.rs.getNumberAvailable(); ++i) {
 trace(this.rs.getItemAt(i)["ContactName"]);
 }
};

// This function is called automatically as data is returned from the server.
IncomingDataHandler.prototype.modelChanged = function (info) {
 if (info.event == "updateRows") {
 for (var i = info.firstRow; i <= info.lastRow; ++i) {
 trace(this.rs.getItemAt(i)["ContactName"]);
 }
 }
};

function onResult (result_rs) {
 // Fetch all records, but only 10 at a time.
 result_rs.setDeliveryMode("fetchall", 10);
 var dataHandler = new IncomingDataHandler(result_rs);
 result_rs.addView(dataHandler);
 dataHandler.getData();
}

function onStatus (error) {
 trace("error: " + error.description);
}

Let's start analyzing Example 5-10 at the beginning of the onResult() function, which is automatically
called when the remote getCustomers() function returns a result. The first thing we do is set the
delivery mode to "fetchall" for the RecordSet object that has been passed into onResult(). This

mode indicates we want all the results to be returned as soon as they are available. However, we
also specify a page size of 10, so that the data is returned 10 records at a time over the course of as

many requests and responses between the client and the server as are necessary to deliver all the
data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Although we are not responsible for writing the code that requests the data, we must implement an
object that knows what to do with the data once it is returned from the server, so let us digress
momentarily to discuss the IncomingDataHandler class. As you can see in Example 5-10, the
IncomingDataHandler class defines a modelChanged() function, which is used to listen for records
arriving on the client from the server, as follows.

The onResult() handler instantiates an IncomingDataHandler object, passing in the result_rs

RecordSet object as an argument. It then passes the IncomingDataHandler instance named
dataHandler to the addView() function of the result_rs recordset. Therefore, dataHandler's
modelChanged() function is called whenever the state of the result_rs recordset changes. The final
line of code in the onResult() function calls the getData() method on dataHandler, which manages

the flow of data between the client and the server.

The getData() method merely iterates through the records that were already returned, which is
determined by the value of the Flash.Pagesize variable set on the server and accessible through

the recordset's getNumberAvailable() method. The rest of the paging is up to the modelChanged()
function, which the recordset calls automatically as the data arrives from the server (10 records at a
time). When the modelChanged() function receives an "updateRows" event, it extracts the data from

the rows that were most recently loaded.

If, in the onResult() function, we had set the delivery mode to "ondemand" rather than "fetchall",
we would have seen very different results. Recall that setting the delivery mode to "fetchall"

causes all the data from the server to be returned to the client as quickly as possible, but the data is
divided into pages over several requests and responses. When the delivery mode is set to
"ondemand", however, no additional records beyond the initial page are returned until they are
requested by the client through the RecordSet.getItemAt() method. Therefore, in "ondemand" mode,

we would have seen the initial data sent from the server written to the Flash Output window in the
IncomingDataHandler.getData() function, but until we tried to access records that hadn't been
loaded yet, the IncomingDataHandler.modelChanged() method would never be called. It is important
to note that once a record has been loaded, whether it was loaded on demand or fetched
automatically, it gets cached on the client, so there is no need to make additional trips to the server
when accessing data that has been loaded previously.

5.5.4 Passing the Page Size from Flash Dynamically

You may recall that one advantage of CFCs is that they tend to be more generic and reusable, since
there is generally no need for a CFC function to contain Flash-specific code. They generally do not use
the Flash variable scope to access arguments, and they use the <cfreturn> tag instead of the
Flash.Result variable to return data. This concept seems to break down the moment you define the
Flash.Pagesize variable in your ColdFusion Component; however, setting the Flash.Pagesize

variable does not prevent other types of clients from invoking your ColdFusion Component functions.
If the Flash variable scope is irrelevant in the context of the current request, setting the
Flash.Pagesize variable has no effect whatsoever.

However, for the purists who simply cannot stand the sight of client-specific code in their
components, there is actually a way to be rid of the tag entirely and set the page size from the client.
Consider the following client-side ActionScript excerpt:

NetServices.setDefaultGatewayURL("http://localhost/flashservices/gateway");
var my_conn = NetServices.createGatewayConnection();
var customerService = my_conn.getService("com.oreilly.frdg.Customers", this);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

customerService.getCustomers2({pagesize:10});

When the preceding ActionScript code invokes the remote getCustomers2() ColdFusion function, it
passes in an object containing a pagesize property. The ColdFusion Server understands the

argument to mean that the query returned by the function should be pageable, sparing your
ColdFusion Component function from unsightly client-specific code. The getCustomers2() function is
listed in Example 5-11.

Example 5-11. The getCustomers2() function in the Customers.cfc file

<cffunction name="getCustomers2"
 access="remote"
 returnType="query">
 <cfquery name="rsCustomers" datasource="Northwind">
 SELECT ContactName FROM Customers
 </cfquery>
 <cfreturn #rsCustomers# />
</cffunction>

The only difference from the previous getCustomers() function in Example 5-9 is that the Flash-
specific line, <cfset Flash.Pagesize = 10 />, has been removed from getCustomers2(). The full

code can be found at the online Code Depot as Customers2.fla and Customers.cfc.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.6 ColdFusion Security: Authenticating Users

It is possible to associate a particular NetConnection instance with a username and password
combination that allows you to secure both ColdFusion page services and ColdFusion Components.
You can secure services by user, role, or application.

5.6.1 Client-Side Security Implementation

The required client-side ActionScript code is straightforward. Simply call the setCredentials() method
on the NetConnection instance from which you will get your secured services:

NetServices.setDefaultGatewayURL("http://localhost/flashservices/gateway");
var my_conn = NetServices.createGatewayConnection();
my_conn.setCredentials("someUsername", "somePassword");
var someService = my_conn.getService("com.oreilly.util.someService", this);
someService.execute();

To properly implement an authentication scheme, the services being called have to be properly
protected (a process we will review shortly). The username and password are sent to the server in
the same request that actually invokes the remote function. If authentication is successful, the
service will process normally; upon failure to authenticate, execution halts and an error is returned to
the client through the onStatus() function of your responder object. It is perfectly acceptable to call
setCredentials() on a NetConnection instance more than once if different credentials are being used
for different functions.

The username and password arguments passed into setCredentials() can be the username and
password of a particular user (for example, the user who is currently using your application), or it can
be more general, such as a username and password combination pertaining to your application rather
than who is using it. For example, if only one or two people have access to certain services on your
ColdFusion Server, you should authenticate at the level of the particular user.

If all or most users of a particular application are allowed to access essentially the same set of
services, you may want to authenticate at the level of the application itself. You could even come up
with a single username and password combination that all your users and applications could use,
which would simply protect against any party not associated with any of your applications from
invoking services. The differences between the levels of authentication granularity are not at all
reflected in the code itself. In other words, there is actually no difference between the way in which
you authenticate a particular user and how you would authenticate an entire application or even a set
of applications. The difference is purely in the significance that you decide to attach to the usernames
and passwords that are chosen and how you architect your application.

As mentioned previously, you may also choose to protect services by user role. A role is just a group
of users who have the same security restrictions. The Flash client does not explicitly specify a user's
role when setting credentials on the NetConnection instance, since roles are typically not exposed to
the client. For example, when you log into an account on either a Unix or a Windows computer, your
role (or the sets of permissions that are granted to you) is unconditionally associated with your

http://lib.ommolketab.ir
http://lib.ommolketab.ir

authentication information, meaning you don't say your name is "frank", your password is
"frank123", and you would like your role to be "root" or "administrator". The computer you are
logging into determines your role based on who you say you are. In this case, the computer you are
logging into or authenticating against is the ColdFusion Server.

5.6.2 Security on the Server

ColdFusion MX supports three tags and two functions associated with authentication:

<cflogin>

This tag is typically to implement your authentication code. It is usually placed in your
Application.cfm page and can be customized to authenticate in any manner you choose, such
as checking a username and password against a database, text file, or LDAP server. The tag is
executed only if the request is coming from a user who ColdFusion determines is not already
logged in.

<cfloginuser>

This tag tells the ColdFusion Server that the user has successfully authenticated. The
<cfloginuser> tag has three attributes: name, password, and roles. Executing this tag

associates those three attributes with the current request and all future requests from the
user's client for the remainder of the user's session.

<cflogout>

Tells the ColdFusion Server that the current user is no longer logged in. Any future requests
from the client automatically invoke the <cflogin> tag and require authentication again.

IsUserInRole("role")

Determines whether the user making the present request is assigned to the specified role. If
so, this function returns true; otherwise, false is returned.

GetAuthUser()

Returns the name of the user making the present request, if he is logged in.

In addition to the preceding tags, the <cffunction> tag used in this chapter also takes a roles

attribute that allows you to manage security and define user roles for individual functions.

Example 5-12 uses basic web authentication to prompt or challenge users who have not yet
successfully logged in. Basic web authentication is a simple protocol supported by most web servers
and browsers. When a web server that has been configured to use basic authentication receives a
request that does not have an Authorization header containing a base 64-encoded username and
password, or if the username and password are incorrect, it returns a 401 code to the client, which
indicates that the client is responsible for gathering a username and password and returning it in all
subsequent requests.

Most browsers ask users for their authentication information by opening up a small dialog box in
which the user can enter a username and password. The username and password are then base 64-
encoded (so they are not visible as plain text to anyone spying on HTTP traffic) and returned to the
server as the value of the Authorization header. If the username and password are correct, the
resource that was originally requested is returned. If the username and password are not correct, an
authorization failure policy is executed, which usually means that an error page is returned to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

browser. The code in Example 5-12, when placed in an Application.cfm file (preferably at the top so
that it is executed first), uses a combination of basic authentication and ColdFusion security to
authenticate users.

Example 5-12. Application.cfm file for authenticating a user

<cfapplication name="myApplication">
<cflogin>
 <cfif IsDefined("cflogin")
 AND cflogin.name EQ "someUsername"
 AND cflogin.password EQ "somePassword">
 <cfset roles = "administrator" />
 <cfloginuser
 name = "#cflogin.name#"
 password = "#cflogin.password#"
 roles = "#roles#" />
 <cfelse>
 <cfheader statuscode = "401">
 <cfheader name = "WWW-Authenticate"
 value="Basic realm=""SomeRealm""">
 <cfoutput><html><body>Not authorized</body></html></cfoutput>
 <cfabort />
 </cfif>
</cflogin>

The cflogin variable scope is available within the <cflogin> tag, if the Authorization header was

defined in the request. If the user has not yet been prompted to enter a username and password, the
cflogin variable scope is not available, which is why you must ensure it is defined before trying to

access its properties.

If the cflogin variable scope is not available or the username and password contained in the
Authorization header are not "someUsername" and "somePassword" respectively, Example 5-12 uses
the <cfheader> tag to return a 401 status code. In addition, the <cfheader> tag passes the "WWW-
Authenticate" header, which indicates to the client that it is responsible for prompting the user for

authentication information and returning it in the next request. It is then necessary to use the
<cfabort> tag to ensure that the rest of the page is not processed and no more content is returned.

There is a problem with the default IIS settings when you try to use the
<cflogin> tag with ColdFusion MX and an IIS web server. To get the
<cflogin> tag to work properly with the setCredentials() method, you need to

open the IIS admin interface, right-click on your web application, and choose
Properties Directory Security Anonymous Access and Authentication
Control Edit. Uncheck the Integrated Windows Authentication, which only
allows users that are set up under Windows to access pages in a directory
protected by a system. The <cflogin> system works perfectly with the built-in

CFMX web server using its default settings.

If the cflogin variable scope exists and it contains username and password properties that equal
"someUsername" and "somePassword", the user is logged into the ColdFusion Server using the
<cfloginuser> tag. At this point, you can associate roles with a specific user using the roles

attribute. To associate more than one role with a user, specify a comma-delimited list of roles. When

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using the IsUserInRole() function, ColdFusion checks the roles against the value specified by the
roles attribute of the <cfloginuser> tag.

Roles are case-sensitive and must follow the rules of ColdFusion lists. Spaces
should not be used, because they become part of the items in the list. For
example, if you specify "user, admin", the second role would be " admin" with

a leading space.

Although the preceding code has the username and password hardcoded as "someUsername" and
"somePassword", you should implement your own form of authentication, such as comparing the

information against a database table or an LDAP server.

If you make a request from your browser for any page inside the same directory as the
Application.cfm file containing the preceding authentication code, you are prompted to enter a
username and password, as shown in Figure 5-6.

Figure 5-6. The standard browser login window

When accessing a secure resource through Flash Remoting, the process of authentication works
slightly differently. As previously mentioned, the username and password are sent along in the same
request that either calls the ColdFusion page or invokes the CFC function. If authentication is
successful, processing of the service continues; if it fails, the onStatus() method of your responder
object is called.

5.6.3 Using Role-Based Security with ColdFusion Components

You can control access to your CFC functions by specifying the roles attribute in the <cffunction>

tag. Notice that you are associating either a role or a comma-delimited list of roles with the protected
function rather than an actual username and password. It is obviously much more practical to
associate a group of users with a function than it is to associate a single username and password
combination per function. If you need that type of fine-grained access control, however, you can
simply assign one user per role, which essentially accomplishes the same thing.

Here is an example of a CFC that allows access only for users who have the role of either "manager"
or "admin":

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfcomponent>
 <cffunction name="getEmployees"
 access="remote"
 roles="manager,admin"
 returnType="query">
 <cfquery name="rsEmployees" datasource="someDatasource">
 SELECT lastName FROM Employees
 </cfquery>
 <cfreturn #rsEmployees# />
 </cffunction>
</cfcomponent>

A user who is not logged in or who does not have the role of either "manager" or "admin" is not

permitted to invoke the getEmployees() method. When the ColdFusion Server encounters such a
request, it looks for authentication code to run, such as the login code we reviewed earlier in the
Application.cfm file. The username and password that your authentication code uses should be set
using NetConnection.setCredentials():

NetServices.setDefaultGatewayURL("http://localhost/flashservices/gateway");
var my_conn = NetServices.createGatewayConnection();

my_conn.setCredentials("someUsername", "somePassword");
var myService = my_conn.getService("com.oreilly.frdg.admin.adminServices", this);
myService.getEmployees();

If the user successfully authenticates according to your authentication implementation inside of the
<cflogin> tag and the <cfloginuser> tag is used to log the user into the ColdFusion Server, the
ColdFusion Server compares the role of the user who made the request with the value of the roles
attribute in the <cffunction> tag. If a match is found, the function is allowed to execute normally;

otherwise, the responder object's onStatus() method is invoked with an error object indicating an
authorization failure.

Implementing security at such a low level (the component level as opposed to putting all the logic on
the client) has the following advantages:

Since one of the goals of Flash Remoting services is code re-use, it is nice to be able to reuse
your security logic across clients in addition to reusing the code it is securing. When you
associate roles with services in the services themselves, you can assume they are secure
regardless of what types of clients are accessing them.

The closer your security is to your data, the more sure you can be that your data is safe. In
other words, there is less room or opportunity for the wrong user to either get a hold of or
update data he is not authorized to access. If a function is a security risk when executed by the
wrong party, take the extra time to make sure the code is secure. A function that assumes its
invoker has been properly authenticated is potentially vulnerable; therefore, use verification at
the function level to ensure security.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.7 Updating Data on the Server

One frequent question about Flash Remoting is, "How do I get the recordset back to the server?" The
short answer is that you have to program your Flash movie to manually parse the data and send it to
the server. For example, when using the DataGrid component, changes made to the data are not
uploaded to the server automatically. In the next few sections, however, I'll show you a few
techniques that can be used to ease the passing of data back to the server.

5.7.1 Passing a Record to the Service Manually

In Chapter 3, you saw a Products display using text fields in Examples Example 3-3 through Example
3-8. The examples added several new properties and methods to the RecordSet class. We'll expand
on that example to show the updating, inserting, and deleting of data. I'll go through the server-side
code first. The component is called ProductsAdmin.cfc and should be saved in the
webroot\com\oreilly\frdg\admin folder. As you recall from the previous ColdFusion security

discussion, this directory is protected by an Application.cfm file. Therefore, to access the remote
methods in this directory, your Flash code must log into the application. For the purposes of the
example, the authentication code is hardcoded into the Flash file.

5.7.1.1 The server-side code

We need these main services:

getSearchResult(search)

Gets a subset of the products, or all products
addProduct(record)

Adds a new product to the Products table

updateProduct(record)

Updates an existing product
deleteProducts(ids)

Deletes one or more records from the Products table

In addition to the main services, we need some utility services to feed two ComboBoxes in the Flash
user interface:

getSuppliers()

Gets a list of suppliers so that the SupplierID can be used as a foreign key in the Products

table
getCategories()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Gets a list of categories so that the CategoryID can be used as a foreign key in the Products

table

The complete CFC for the required services is shown in Example 5-13. The SQL statements in the
example are built up using the preceding-comma method, such as:

 INSERT INTO Products
 (ProductName
 ,UnitPrice
 ,QuantityPerUnit
 ,CategoryID
 ,SupplierID)

The preceding commas might look funny, but when you are debugging complex SQL statements, this
style of coding makes it easy to comment out individual lines of SQL code without having to reformat
the rest of the SQL statement.

Example 5-13. The ProductsAdmin.cfc file

<cfcomponent displayname="Administer Products"
 hint="Add, update, delete, and search Northwind product list">

<!--- Search the Products table in the Northwind database --->
 <cffunction name="getSearchResult" access="remote"
 returnType="query" hint="Pass a search string to get a list of products,
 or nothing to get all products">
 <cfargument name="search" type="string" default="">
 <cftry>
 <cfquery name="rsGetProducts" datasource="Northwind">
 SELECT ProductID, ProductName, UnitPrice,
 QuantityPerUnit, CategoryID, SupplierID FROM Products
<!--- If no argument is passed, return all records --->
 <cfif search NEQ "">
 WHERE ProductName LIKE '%#search#%'
 </cfif>
 </cfquery>
 <cfcatch type="Any">
 <cfthrow message="There was a database error">
 </cfcatch>
 </cftry>
 <cfreturn rsGetProducts />
 </cffunction>

<!--- Add a product to the Northwind Products table --->
 <cffunction name="addProduct" returntype="string"
 access="remote" hint="Pass a record to add a product">
 <cfargument name="ProductName" type="string" required="true" />
 <cfargument name="UnitPrice" type="numeric" default=0 />
 <cfargument name="QuantityPerUnit" type="string" default="0" />
 <cfargument name="CategoryID" type="numeric" default=0 />
 <cfargument name="SupplierID" type="numeric" default=0 />
 <cftry>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfquery name="rsSuppliers" datasource="Northwind">
 INSERT INTO Products
 (ProductName
 ,UnitPrice
 ,QuantityPerUnit
 ,CategoryID
 ,SupplierID)
 VALUES
 ('#ProductName#'
 ,#UnitPrice#
 ,'#QuantityPerUnit#'
 ,#CategoryID#
 ,#SupplierID#)
 </cfquery>
 <cfcatch type="Any">
 <cfthrow message="There was a database error">
 </cfcatch>
 </cftry>
 <cfreturn "Record inserted" />
 </cffunction>

<!--- Update a product using a product record --->
 <cffunction name="updateProduct"
 returntype="string"
 access="remote"
 hint="Pass a record including the ProductID to update a product">
 <cfargument name="ProductName" type="string" required="true" />
 <cfargument name="UnitPrice" type="numeric" default=0 />
 <cfargument name="QuantityPerUnit" type="string" default="0" />
 <cfargument name="CategoryID" type="numeric" default=0 />
 <cfargument name="SupplierID" type="numeric" default=0 />
 <cfargument name="ProductID" type="numeric" required="true" />
 <cftry>
 <cfquery name="rsSuppliers" datasource="Northwind">
 UPDATE Products
 SET ProductName='#ProductName#'
 ,UnitPrice=#UnitPrice#
 ,QuantityPerUnit='#QuantityPerUnit#'
 ,CategoryID=#CategoryID#
 ,SupplierID=#SupplierID#
 WHERE ProductID = #ProductID#
 </cfquery>
 <cfcatch type="Any">
 <cfthrow message="There was a database error">
 </cfcatch>
 </cftry>
 <cfreturn "Record updated" />
 </cffunction>

<!--- Delete products from a list of ProductIDs --->
 <cffunction name="deleteProducts" returntype="string" access="remote"
 hint="Pass a ProductID or comma-separated list

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 of ProductIDs to delete records">
 <cfargument name="productids" type="string" default="0" />
 <cftry>
 <cfquery name="rsSuppliers" datasource="Northwind">
<!--- The following query will delete products.
 The alternate query will merely set the Discontinued field to 1
 DELETE FROM Products WHERE ProductID IN (#productids#)--->
 UPDATE Products SET Discontinued = 1 WHERE ProductID in (#productids#)
 </cfquery>
 <cfcatch type="Any">
 <cfthrow message="There was a database error">
 </cfcatch>
 </cftry>
 <cfreturn "Record deleted" />
 </cffunction>

<!--- Get a list of suppliers to feed a dropdown list --->
 <cffunction name="getSuppliers" returntype="query"
 access="remote" hint="Get a list of all suppliers">
 <cftry>
 <cfquery name="rsSuppliers" datasource="Northwind"
 cachedwithin=#CreateTimespan(7,0,0,0)#>
 SELECT SupplierID, CompanyName FROM Suppliers
 </cfquery>
 <cfcatch type="Any">
 <cfthrow message="There was a database error">
 </cfcatch>
 </cftry>
 <cfreturn rsSuppliers />
 </cffunction>

<!--- Get a list of categories to feed a dropdown list --->
 <cffunction name="getCategories" returntype="query"
 access="remote" hint="Get a list of product categories">
 <cftry>
 <cfquery name="rsCategories" datasource="Northwind"
 cachedwithin=#CreateTimespan(7,0,0,0)#>
 SELECT CategoryID, CategoryName FROM Categories
 </cfquery>
 <cfcatch type="Any">
 <cfthrow message="There was a database error">
 </cfcatch>
 </cftry>
 <cfreturn rsCategories />
 </cffunction>

</cfcomponent>

The methods of the ProductsAdmin service are self-documenting using the hints of the <cffunction>
tag and the inline comments. The methods each contain a basic error handler of a <cftry> and
<cfcatch> block that simply throws an error message to the Flash movie upon any type of error. The
getCategories() and getSuppliers() methods demonstrate the cachedwithin attribute of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfquery> tag- each query is executed only once every seven days, or upon a restart of the server.

This improves the speed of the queries dramatically because they exist in the server's memory.

5.7.1.2 The client-side code

The ActionScript code for the ProductsAdmin.fla file is shown in Example 5-14.

Example 5-14. ProductsAdmin.fla

#include "NetServices.as"
#include "DataGlue.as"

// Set up the combo boxes to be able to pick a value
FComboBoxClass.prototype.pickValue = function (value) {
 for (var i=0; i<this.getLength(); i++) {
 if (this.getItemAt(i).data == value) {
 this.setSelectedIndex(i);
 break;
 }
 }
};

// General error handler for authoring environment
function errorHandler (error) {
 trace(error.description);
}

// Responder objects
var SearchResult = new Object();

SearchResult.onResult = function (result_rs) {
 Products_rs = result_rs;
 results_txt.text = "There were " + Products_rs.getLength() +
 " records returned.";
 Products_rs.move("First");
 getRecord();
};

SearchResult.onStatus = errorHandler;

// Set up a responder object to handle recordsets for ComboBoxes
function ComboBoxResponder (cbName) {
 this.cbName = cbName;
}
// The responder assumes that data is coming in with
// ID column in [0] position and description column
// in the [1] position
ComboBoxResponder.prototype.onResult = function (result_rs) {
 var fields = result_rs.getColumnNames();
 var idField = '#' + fields[0] + '#';

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 var descField = '#' + fields[1] + '#';
 DataGlue.bindFormatStrings(this.cbName, result_rs, descField,idField);
};
ComboBoxResponder.prototype.onStatus = errorHandler;

// Main responder for the Update, Insert, and Delete functions.
// Display is to the Output window only.
function MainServiceResponder () {
}
MainServiceResponder.prototype.onResult = function (result) {
 trace(result);
};
MainServiceResponder.prototype.onStatus = errorHandler;

// Init code
if (connected == null) {
 connected = true;
 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 my_conn.onStatus = errorHandler;
 my_conn.setCredentials("admin", "1234"); // hardcoded username and password
 var myService = my_conn.getService("com.oreilly.frdg.admin.ProductsAdmin");

 var Products_rs = null; // Main RecordSet object for product list
}

// Set up the two ComboBoxes
myService.getCategories(new ComboBoxResponder(categories_cb));
myService.getSuppliers(new ComboBoxResponder(suppliers_cb));

// Create new functionality for the RecordSet class
RecordSet.prototype.currentRecord = 0;
RecordSet.prototype.getCurrentRecordNum = function () {
 return this.currentRecord
};

RecordSet.prototype.move = function (direction) {
 direction = direction.toLowerCase();
 switch (direction) {
 case "first":
 this.currentRecord = 1;
 break;
 case "previous":
 if (--this.currentRecord < 1) this.currentRecord = 1;
 break;
 case "next":
 if (++this.currentRecord > this.getLength())
 this.currentRecord = this.getLength();
 break;
 case "last":
 this.currentRecord = this.getLength();
 break;
 default:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Not a direction: must be a number
 this.currentRecord = direction;
 }
};

Recordset.prototype.getCurrentRecord = function () {
 return this.getItemAt(this.currentRecord-1);
};

// Set up event handlers for buttons
submit_pb.setClickHandler("getRecordset");

moveFirst.setClickHandler("moveTo");
movePrevious.setClickHandler("moveTo");
moveNext.setClickHandler("moveTo");
moveLast.setClickHandler("moveTo");

insert_pb.setClickHandler("insertRecord");
update_pb.setClickHandler("updateRecord");
delete_pb.setClickHandler("deleteRecord");
// Event handlers for buttons
function getRecordset () {
 myService.getSearchResult(SearchResult, search);
}

function moveTo (button) {
 Products_rs.move(button.label);
 getRecord();
}

function updateRecord () {
 myService.updateProduct(new MainServiceResponder(), getUpdatedRecord());
 getRecordset();
}

function insertRecord () {
 if (insert_pb.getLabel() == "Add New Product") {
 Products_rs.addItem(getNewRecord());
 Products_rs.move("last");
 getRecord();
 insert_pb.setLabel("Insert To Database");
 insert_txt.text = "Click again to insert to database";
 } else {
 insert_pb.setLabel("Add New Product");
 myService.addProduct(new MainServiceResponder(), getUpdatedRecord());
 getRecordset();
 insert_txt.text = "";
 }
}

function deleteRecord () {
 var productID = Products_rs.getCurrentRecord().ProductID;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 myService.deleteProducts(new MainServiceResponder(), ProductID);
 getRecordset();
}

// Display the current record
function getRecord () {
 if (Products_rs.getLength() == 0) {
 ProductName_txt.text = "";
 UnitPrice_txt.text = "";
 QuantityPerUnit_txt.text = "";
 navStatus_txt.text = "No Records";
 } else {
 ProductName_txt.text = Products_rs.getCurrentRecord().ProductName;
 UnitPrice_txt.text = Products_rs.getCurrentRecord().UnitPrice;
 QuantityPerUnit_txt.text = Products_rs.getCurrentRecord().QuantityPerUnit;
 categories_cb.pickValue(Products_rs.getCurrentRecord().CategoryID);
 suppliers_cb.pickValue(Products_rs.getCurrentRecord().SupplierID);
 navStatus_txt.text =
 "Rec. No. " + (Products_rs.getCurrentRecordNum()) + " of " +
 Products_rs.getLength();
 }
}

// Pack the updated record from the display into the RecordSet object
// and return the record to the caller
function getUpdatedRecord () {
 var ProductName = ProductName_txt.text;
 var UnitPrice = UnitPrice_txt.text;
 var QuantityPerUnit = QuantityPerUnit_txt.text;
 var CategoryID = categories_cb.getSelectedItem().data;
 var SupplierID = suppliers_cb.getSelectedItem().data;
 var ProductID = Products_rs.getCurrentRecord().ProductID;
 var theRecord = { ProductName:ProductName
 ,UnitPrice:UnitPrice
 ,QuantityPerUnit:QuantityPerUnit
 ,CategoryID:CategoryID
 ,SupplierID:SupplierID
 ,ProductID:ProductID
 };
 Products_rs.replaceItemAt(Products_rs.getCurrentRecord, theRecord);
 return theRecord;
}

// Get a blank record
function getNewRecord () {
 var theRecord = { ProductName:''
 ,UnitPrice:''
 ,QuantityPerUnit:''
 ,CategoryID:''
 ,SupplierID:''
 ,ProductID:''
 };

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return theRecord;
}

I'm not going to explain this code line by line, because much of it was explained in Chapter 3;
however, several parts of the code warrant further explanation.

5.7.1.3 Enhancing the ComboBox component

When using ComboBoxes, there is no built-in method to pick a particular field in the box. Again, the
flexibility of the UI components comes to our rescue-we can simply add new functionality to the
ComboBox class. After including the required files, I add a custom method, pickValue(), to the
FComboBoxClass class:

// Set up the combo boxes to be able to pick a value
FComboBoxClass.prototype.pickValue = function (value) {
 for (var i=0; i<this.getLength(); i++) {
 if (this.getItemAt(i).data == value) {
 this.setSelectedIndex(i);
 break;
 }
 }
};

This method allows you to pass a value to a ComboBox to display that particular record. Since there
are two ComboBoxes in the file, I decided to build onto the FComboBoxClass class rather than call a
generic function. This is useful in the display of the current record:

ProductName_txt.text = Products_rs.getCurrentRecord().ProductName;
UnitPrice_txt.text = Products_rs.getCurrentRecord().UnitPrice;
QuantityPerUnit_txt.text = Products_rs.getCurrentRecord().QuantityPerUnit;
categories_cb.pickValue(Products_rs.getCurrentRecord().CategoryID);
suppliers_cb.pickValue(Products_rs.getCurrentRecord().SupplierID);

5.7.1.4 Response handlers

Example 5-14 defines a generic error handler that is used for all of the responder objects for the
remote methods being called:

// General error handler for authoring environment
function errorHandler (error) {
 trace(error.description);
}

We simply set the onStatus() methods of the responders equal to this function to be able to use one
generic error handler for all of the remote calls. The NetConnection object my_conn uses this error

handler as well.

Another aspect of the file that deserves a bit of explanation is the use of the responder objects. I've
used three different responder objects for the six different services called in the example.

The getSearchResult() method uses a generic instance of the Object class with onResult() and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

onStatus() methods as a responder:

var SearchResult = new Object();
SearchResult.onResult = function (result_rs) {
 Products_rs = result_rs;
 results_txt.text = "There were " + Products_rs.getLength()+
 " records returned.";
 Products_rs.move("First");
 getRecord();
};

SearchResult.onStatus = errorHandler;

The two utility methods, getCategories() and getSuppliers(), both feed ComboBoxes, so I set up a
responder class, ComboBoxResponder, that works with ComboBoxes:

function ComboBoxResponder (cbName) {
 this.cbName = cbName;
}
// The responder assumes that data is coming in with
// ID column in [0] position and description column
// in the [1] position
ComboBoxResponder.prototype.onResult = function (result_rs) {
 var fields = result_rs.getColumnNames();
 var idField = '#' + fields[0] + '#';
 var descField = '#' + fields[1] + '#';
 DataGlue.bindFormatStrings(this.cbName, result_rs, descField,idField);
};
ComboBoxResponder.prototype.onStatus = errorHandler;

The ComboBoxResponder class accepts the ComboBox name in its constructor, which is packed with
the recordset from the remote method. The services are called later in the code with inline
statements:

// Set up the two ComboBoxes
myService.getCategories(new ComboBoxResponder(categories_cb));
myService.getSuppliers(new ComboBoxResponder(suppliers_cb));

The main service responder (for the update, insert, and delete functionality) simply displays the
message from the server in the Output window:

// Main responder for the Update, Insert, and Delete functions.
// Display is to the Output window only.
function MainServiceResponder () {
}
MainServiceResponder.prototype.onResult = function (result) {
 trace(result);
};
MainServiceResponder.prototype.onStatus = errorHandler;

5.7.1.5 Calling the services

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The three main service functions are called when the user clicks the corresponding button. The
updateProduct() remote method in Example 5-13 takes the current record as an argument. It is
called from the client-side updateRecord() function of Example 5-14, which is triggered by a click of
the update_pb button:

function updateRecord () {
 myService.updateProduct(new MainServiceResponder(), getUpdatedRecord());
 getRecordset();
}

The two arguments passed to the remote service are the responder object (stripped off by Flash
before making the remote call) and the result of the getUpdatedRecord() function. The
getUpdatedRecord() function updates the current client-side RecordSet object to match the currently
displayed record, and it returns the current record to the caller:

// Pack the updated record from the display into the RecordSet object
// and return the record to the caller
function getUpdatedRecord () {
 var ProductName = ProductName_txt.text;
 var UnitPrice = UnitPrice_txt.text;
 var QuantityPerUnit = QuantityPerUnit_txt.text;
 var CategoryID = categories_cb.getSelectedItem().data;
 var SupplierID = suppliers_cb.getSelectedItem().data;
 var ProductID = Products_rs.getCurrentRecord().ProductID;
 var theRecord = { ProductName:ProductName
 ,UnitPrice:UnitPrice
 ,QuantityPerUnit:QuantityPerUnit
 ,CategoryID:CategoryID
 ,SupplierID:SupplierID
 ,ProductID:ProductID
 };
 Products_rs.replaceItemAt(Products_rs.getCurrentRecord, theRecord);
 return theRecord;
}

For the sake of the example, we assume that the currently displayed record has been modified if
(and only if) the user clicks the Update Product button. In a production situation, you can set "dirty"
flags to indicate that a record needs to be updated (as shown in Example 5-16). One option is to
check the current display against the client-side RecordSet object; if the displayed recordset differs in
any way from the RecordSet object in memory, then you know it has been changed. You can also
disable the Update button until the record has been changed by the user. Similarly, you should
generally allow the user to confirm that she wants to submit changes by explicitly clicking an Update
button; updating the server data automatically whenever the data changes on the client side may
lead to unintentional database updates.

The record is sent to the server, which treats the fields of the record as named arguments. If you
recall from our .cfc file in Example 5-13, all the fields for the database update were named as
arguments in the function:

<cfargument name="ProductName" type="string" required="true" />
<cfargument name="UnitPrice" type="numeric" default=0 />
<cfargument name="QuantityPerUnit" type="string" default="0" />
<cfargument name="CategoryID" type="numeric" default=0 />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfargument name="SupplierID" type="numeric" default=0 />
<cfargument name="ProductID" type="numeric" required="true" />

We can simply pass an ActionScript object (the current record) to the remote service.

The insert functionality is similar, although the ProductID is generated by the database. It deserves a
bit of explanation, though, because it has to be done in two parts:

function insertRecord () {
 if (insert_pb.getLabel() == "Add New Product") {
 Products_rs.addItem(getNewRecord());
 Products_rs.move("last");
 getRecord();
 insert_pb.setLabel("Insert To Database");
 insert_txt.text = "Click again to insert to database";
 } else {
 insert_pb.setLabel("Add New Product");
 myService.addProduct(new MainServiceResponder(), getUpdatedRecord());
 getRecordset();
 insert_txt.text = "";
 }
}

When the user clicks the Add New Product button, the display has to be cleared out and a new record
needs to be inserted into the client-side RecordSet object. At this point, nothing has happened on the
server. The display on the button changes to "Click again to insert into database." The user can type
into the blank display to fill in the fields of the new record. When the user clicks the button again, the
code adds the newly created record to the remote database.

The delete functionality is straightforward as well. The currently displayed record's ProductID field is
sent to the server. The remote method deletes the record:

function deleteRecord () {
 var productID = Products_rs.getCurrentRecord().ProductID;
 myService.deleteProducts(new MainServiceResponder(), ProductID);
 getRecordset();
}

The completed code can be found at the online Code Depot. Keep in mind that any updates, inserts,
and deletes will permanently change your database. Always make backups and keep clean copies of
the Northwind database on hand for other examples.

5.7.2 Passing a Record to the Service Automatically

The DataGrid component is one of the commercial add-ons available from Macromedia in the first
Developer Resource Kit (DRK), available from http://www.macromedia.com/go/drk. This section
describes one way to update remote data from within a client-side DataGrid. The example uses the
same remote services as the previous example- ProductsAdmin.cfc-with one additional method.

http://www.macromedia.com/go/drk
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because the DataGrid is a commercial product, licensing restrictions prevent
distributing it from the online Code Depot. You must add your own DataGrid
component to the movie for the example to work.

5.7.2.1 The updateProducts() method

The ProductsAdmin.cfc file from Example 5-13 contains an updateProduct() method for updating a
single database record. Example 5-15 adds a new method, updateProducts(), that allows batch
updates of data.

Example 5-15. The updateProduct() method added to ProductsAdmin.cfc

<cffunction name="updateProducts" returntype="string"
 access="remote" hint="Batch update a group of products">
 <cfargument name="Products" type="array" required="true" />
 <cfloop index=i from="1" to=#ArrayLen(Products)#>
 <cfset temp =
 updateProduct(Products[i].ProductName,
 Products[i].UnitPrice,
 Products[i].QuantityPerUnit,
 Products[i].CategoryID,
 Products[i].SupplierID,
 Products[i].ProductID)>
 </cfloop>
 <cfreturn "Products updated" />
 </cffunction>

The updateProducts() method updates multiple records by calling the updateProduct() method
within the same .cfc file (see Example 5-13) for each record passed in. This is typically how a batch
update process is done. The client-side code is shown in Example 5-16.

5.7.2.2 The client-side ActionScript

Most of the client-side code remains the same as Example 5-14. The new code in Example 5-16 that
is related to the DataGrid component is commented inline.

Example 5-16. ActionScript for ProductsAdminGrid.fla

#include "NetServices.as"
#include "DataGlue.as"

// Set up the combo boxes to be able to pick a value
FComboBoxClass.prototype.pickValue = function (value) {
 for (var i=0; i<this.getLength(); i++) {
 if (this.getItemAt(i).data == value) {
 this.setSelectedIndex(i);
 break;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
};

// General error handler for authoring environment
function errorHandler (error) {
 trace(error.description);
}

// Responder objects
var SearchResult = new Object();
SearchResult.onResult = function (result_rs) {
 // Put the contents of the recordset into the DataGrid
 allProducts_dg.setDataProvider(result_rs);
 // Don't allow editing of the ProductID primary key
 allProducts_dg.getColumnAt(0).setEditable(false);
};

SearchResult.onStatus = errorHandler;

// Set up a responder object to handle recordsets for ComboBoxes
function ComboBoxResponder (cbName) {
 this.cbName = cbName;
}
// The responder assumes that data is coming in with
// ID column in [0] position and description column
// in the [1] position
ComboBoxResponder.prototype.onResult = function (result_rs) {
 var fields = result_rs.getColumnNames();
 var idField = '#' + fields[0] + '#';
 var descField = '#' + fields[1] + '#';
 DataGlue.bindFormatStrings(this.cbName, result_rs, descField,idField);
}
ComboBoxResponder.prototype.onStatus = errorHandler;

// Main responder for the Update, Insert, and Delete functions.
// Display is to the Output window only.
function MainServiceResponder () {
}
MainServiceResponder.prototype.onResult = function (result) {
 trace(result);
};
MainServiceResponder.prototype.onStatus = errorHandler;

// Initialization code
if (connected == null) {
 connected = true;
 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 my_conn.onStatus = errorHandler;
 my_conn.setCredentials("admin", "1234"); // hardcoded username and password
 var myService = my_conn.getService("com.oreilly.frdg.admin.ProductsAdmin");
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Set up the two combo boxes
myService.getCategories(new ComboBoxResponder(categories_cb));
myService.getSuppliers(new ComboBoxResponder(suppliers_cb));
// Set up change handlers for combo boxes
categories_cb.setChangeHandler("setCategory");
suppliers_cb.setChangeHandler("setSupplier");

// Set up the DataGrid
allProducts_dg.setEditable(true);
allProducts_dg.setSelectMultiple(true);

// Each time a row is edited, flag it for update
allProducts_dg.setEditHandler("flagForUpdate");
// Create an array to hold flagged product records
allProducts_toUpdate = new Array(); // Records marked for update

// When the user selects a row, set the combo boxes to match the data
allProducts_dg.setChangeHandler("setCombos");

// Get the Product list
function getRecordset () {
 myService.getSearchResult(SearchResult, '');
}
getRecordset();

// Set up event handlers for buttons
insert_pb.setClickHandler("insertRecord");
update_pb.setClickHandler("updateRecords");
delete_pb.setClickHandler("deleteRecords");

// Event handlers for buttons

// Update a batch of records stored in the allProducts_toUpdate array
function updateRecords () {
 myService.updateProducts(new MainServiceResponder(), allProducts_toUpdate);
 getProductList();
}

function insertRecord () {
 if (insert_pb.getLabel() == "Add New Product") {
 allProducts_dg.addItem(getNewRecord());
 allProducts_dg.setSelectedCell(allProducts_dg.getLength()-1,"ProductName");
 insert_pb.setLabel("Insert To Database");
 insert_txt.text = "Click again to insert to database";
 } else {
 insert_pb.setLabel("Add New Product");
 myService.addProduct(new MainServiceResponder(),
 allProducts_dg.getSelectedItem());
 getRecordset();
 insert_txt.text = "";
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

// Delete all selected records -- pass the ProductID numbers as a list
function deleteRecords () {
 var deletedIndices = allProducts_dg.getSelectedIndices();
 var deletedItems = new Array();
 for (var i=0; i < deletedIndices.length; i++) {
 deletedItems.push(allProducts_dg.getItemAt(deletedIndices[i]).ProductID);
 allProducts_dg.removeItemAt(deletedIndices[i]);
 }
 myService.deleteProducts(new MainServiceResponder(), deletedItems.join());
}

// Get a blank record
function getNewRecord () {
 var theRecord = { ProductID:''
 ,ProductName:''
 ,UnitPrice:''
 ,QuantityPerUnit:''
 ,CategoryID:''
 ,SupplierID:''
 };
 return theRecord;
}

function flagForUpdate (grid_dg) {
 // This row has been modified; save it for update
 allProducts_toUpdate.push(grid_dg.getSelectedItem());
}

function setCombos () {
 categories_cb.pickValue(allProducts_dg.getSelectedItem().ProductID);
 suppliers_cb.pickValue(allProducts_dg.getSelectedItem().SupplierID);
}

// Utility function to set the current CategoryID to the value in the combo
function setCategory (combo) {
 allProducts_dg.setCellData(allProducts_dg.getSelectedIndex(),
 "CategoryID", combo.getValue());
}

// Utility function to set the current SupplierID to the value in combo
function setSupplier (combo) {
 allProducts_dg.setCellData(allProducts_dg.getSelectedIndex(),
 "SupplierID", combo.getValue());
}

The main functional differences between Example 5-16 and Example 5-14 are:

Results can be seen for many records at once in a grid display.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rows can be deleted in bulk by multiselecting the rows and pressing the Delete Selected
Products button.

Updates are made in bulk as well; "dirty" (edited) records are stored in an array and passed to
the server at once when the user clicks Update Products.

The DataGrid's changeHandler function, setCombos(), is called whenever the user selects another
row. This updates the combo boxes in the display. The DataGrid's editHandler function,

flagForUpdate(), adds the edited row to an array, which can then be passed to the server upon
clicking the Update Products button.

The DataGrid is a highly versatile component that can be used by itself or in conjunction with other
components, as shown here. You can also enhance the DataGrid so that the cells contain other
components such as CheckBoxes, ComboBoxes, and other items, as described in Chapter 11.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.8 Wrapping Up

This chapter covered Flash Remoting specifically for ColdFusion applications. ColdFusion is perhaps
the most popular platform for building Flash Remoting applications because of its tag-based syntax
and ease of use. Several features of ColdFusion MX-ColdFusion Components, the authentication
system, tag-based functions, and the <cfobject> tags-are ideally suited for Flash Remoting.

In this chapter, you learned about ColdFusion Components (CFCs) in depth and explored the
authentication system using ActionScript's setCredentials() method. You also saw two extended
examples that demonstrated inserting, updating, and deleting data.

The ColdFusion MX Server can also be host to Flash Remoting applications written in Server-Side
ActionScript, which is covered in Chapter 6. Much of the discussion in Chapter 7, which focuses on
Flash Remoting and Java, also pertains to the ColdFusion implementation.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 6. Server-Side ActionScript
ActionScript has evolved over the years into a highly sophisticated object-based language.
ActionScript 1.0 is based on the ECMA-262 standard, which was designed to standardize the features
of JavaScript across platforms and implementations. JavaScript Versions 1.3 and higher conform to
this standard, and Flash MX ActionScript conforms closely-but not entirely-to the standard. Server-
Side ActionScript (SSAS) is Macromedia's way of allowing ActionScript developers to leverage their
experience in coding ActionScript to be able to develop server-side services without having to learn a
new language like ColdFusion or Java. Now you can query databases directly with ActionScript, albeit
executed on the server-side and not on the client-side in the Flash Player.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.1 What Is Server-Side ActionScript?

Server-Side ActionScript is more accurately JavaScript-it is built entirely using the Rhino JavaScript
parser (http://www.mozilla.org/rhino). The Rhino implementation of JavaScript was a project begun
by Netscape for a never-used all-Java browser. The Rhino project took on a life of its own, however,
and is now an open source project housed at the Mozilla web site. Rhino is essentially a JavaScript
parser built in Java. For that reason, it is a perfect fit for ColdFusion MX and JRun 4. Macromedia
used the Rhino engine for the Server-Side ActionScript implementation in both ColdFusion MX and
JRun 4. Currently, these are the only two platforms that support SSAS (the .NET, Java, PHP, and Perl
versions of Flash Remoting don't support SSAS).

Flash Communication Server has its own implementation of JavaScript as
Server-Side ActionScript, but it is based on the Mozilla Spidermonkey
JavaScript engine (written in C). It offers no interoperability with Flash
Remoting SSAS. You can find more information about Spidermonkey at
http://www.mozilla.org/js/spidermonkey.

SSAS files have an .asr file extension and reside within a ColdFusion or JRun 4 web directory. The
.asr files can be viewed in any web browser as plain text files unless you take precautions, such as
adding the .asr file extension to the list of excluded file types in your web server.

An SSAS file consists entirely of functions, which become the methods of the remote service that you
call with Flash Remoting. You cannot call or execute an SSAS file on its own or through any
mechanism other than Flash Remoting. For that reason, SSAS files have these limitations:

SSAS files cannot execute inline code, such as variable declarations or other inline statements,
except when calling methods. When you call a remote method, all inline code on the page is
executed as well.

SSAS files cannot include other files, which precludes you from using SSAS to develop server-
side classes that reside in separate files.

SSAS consists of the core ECMAScript language, without any of the client-side features you have
come to know from writing ActionScript in Flash MX. SSAS uses the same basic expressions,
operators, and objects as ActionScript (or JavaScript), but does not include support for movie clips,
components, the LoadVars class, XML, or other Flash-specific features. SSAS is intended only for
access by Flash through Flash Remoting. It can't be accessed from outside of the Flash environment.

SSAS is stripped to the bare essentials of the ActionScript 1.0 language (the version supported in
Flash MX), but it has some added features that may surprise a few ActionScript developers:

Full use of regular expressions (the RegExp object)

The try/catch/finally construct for error trapping, as in JavaScript

http://www.mozilla.org/rhino
http://www.mozilla.org/js/spidermonkey
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The full use of eval(), which is only partially supported in client-side ActionScript

Ability to access Java classes from within SSAS

Using SSAS, you can build server-side objects and methods much like you would build client-side
objects and methods. For ActionScript developers that have access to a ColdFusion MX Server,
however, the real strength of SSAS is in the new CF object that is specifically designed for Flash
Remoting. The CF object has two methods:

CF.query()

Adds the ability to access ColdFusion data sources with SSAS
CF.http()

Adds the functionality of the ColdFusion <cfhttp> tag to the SSAS developer's arsenal

These two methods will be the focus of much of this chapter.

The CF object is not available in the SSAS implementation of JRun 4; however,
you can use Java classes within SSAS to simulate the CF object, as shown later

in this chapter.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.2 The CF Object

The CF object allows SSAS to perform queries and HTTP calls through the ColdFusion server.

6.2.1 Using CF.http()

ColdFusion supports the <cfhttp> tag, which allows ColdFusion applications to post to and retrieve

content from remote web servers-or from your own web server. The CF.http() method mimics the
functionality of this tag, as well as its child tag <cfhttpparam>.

CF.http() doesn't include all of the functionality of the <cfhttp> tag. The

ability to dynamically create queries using a .csv file is conspicuously absent
from the CF.http() arsenal.

CF.http() has many possible uses:

Post searches and retrieve search results from different search engines

Access web services, such as stock services

Load XML files from remote locations

Create downloadable links that don't reveal the file location to the end user

Dynamically create and save to the server HTML documents that can later be browsed as static
pages

There are many more uses as well. CF.http() can be called like this:

var myVar = CF.http(method, url, username, password,

 resolveurl, params, path, file);

The CF.http() method accepts up to eight arguments, as listed in Table 6-1.

Table 6-1. Arguments of the CF.http() method

Property Description

method[1] "get" or "post". The "get" option retrieves a file, and the "post" option posts data to a
server.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Description

url[1] The URL of the server where you are getting the file or posting the data. This needs to
be a fully qualified URL (including the http:// or other protocol).

username Username (if required) for authentication.

password Password (if required) for authentication.

resolveurl
"yes" or "no" (defaults to "no"). If the file content you are retrieving has links or URLs
inside of certain tags, they will be resolved. See Table 6-2.

params
Array of parameter objects that can be passed to the http operation. Each object can
contain name, type, and value properties.

path If storing a file, use both the path and file properties.

file Filename of file. In "get" operations this defaults to the filename in the url argument.

[1] Required

The params array deserves a little further explanation. This array should contain one or more objects

with the following properties:

name

The name of the field that you are posting
type

One of the following five types:

"url"

URL-encoded data
"formfield"

Indicates a value to be passed as a field in a form
"cookie"

Cookie data
"cgi"

CGI script to execute
"file"

File to be uploaded
value

Any value that conforms to the limitations of the type of field you are passing (you shouldn't
pass a 10 KB cookie field, for example)

You should build the array of parameter objects before sending it to the CF.http() method, as shown
in the following examples.

Table 6-2 shows HTML tags resolved by passing "yes" in the resolveurl argument to CF.http()

url[1] The URL of the server where you are getting the file or posting the data. This needs to
be a fully qualified URL (including the http:// or other protocol).

username Username (if required) for authentication.

password Password (if required) for authentication.

resolveurl
"yes" or "no" (defaults to "no"). If the file content you are retrieving has links or URLs
inside of certain tags, they will be resolved. See Table 6-2.

params
Array of parameter objects that can be passed to the http operation. Each object can
contain name, type, and value properties.

path If storing a file, use both the path and file properties.

file Filename of file. In "get" operations this defaults to the filename in the url argument.

[1] Required

The params array deserves a little further explanation. This array should contain one or more objects

with the following properties:

name

The name of the field that you are posting
type

One of the following five types:

"url"

URL-encoded data
"formfield"

Indicates a value to be passed as a field in a form
"cookie"

Cookie data
"cgi"

CGI script to execute
"file"

File to be uploaded
value

Any value that conforms to the limitations of the type of field you are passing (you shouldn't
pass a 10 KB cookie field, for example)

You should build the array of parameter objects before sending it to the CF.http() method, as shown
in the following examples.

Table 6-2 shows HTML tags resolved by passing "yes" in the resolveurl argument to CF.http()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 6-2. HTML tags resolved by using "yes" in the resolveurl argument
of CF.http()

Tag Attribute Tag Attribute

img src frame src

a href bgsound src

form action object data

applet code object classid

script src object codebase

embed src object usemap

body background

You can call CF.http() using the standard technique in which the arguments must be specified in the
expected order. Here, only the required arguments are passed:

var myObj = CF.http("get","http://www.flash-remoting.com/feeds/rss.cfm");

Named arguments can be passed to CF.http(), shown here using an object literal, in which case the
position of the arguments is irrelevant:

var myObj = CF.http(
 {
 method:"get",
 url:"http://www.someremoteservice.com/news.xml",
 resolveurl:"yes"
 }
);

Here is an example using the "post" method and passing an array of parameters:

// Define the parameters to pass
var myParams = new Array();
myParams.push({name:"username",type:"formfield",value:"tom"});
myParams.push({name:"password",type:"formfield",value:"mypassword"});
// Pass the myParams array along with the other parameters
var myObj = CF.http(
 {
 method:"post",
 url:"http://www.someremoteservice.com",
 params:myParams,
 path:"c:\downloads",
 file:"myfile.xml"
 }
);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The CF.http() method returns an object that contains seven built-in properties. You can access the
properties of this object on the client side as you would any other ActionScript object:

charset

The character set used in the document that is returned
filecontent

The contents of the requested file
header

The response header
mimetype

The MIME type of the file that is returned, such as "text/xml"
responseheader

Response header from the server, in the form of a single header or array of headers
statuscode

HTTP error code and error string from the remote call
text

The value "true" if the file content is textual; otherwise, "false"

The filecontent property is the most useful, allowing you to access the contents of the file you

requested with the CF.http() method.

The next section shows an example of a possible use of the CF.http() functionality.

6.2.1.1 Creating a proxy for a remote service

One of the limitations of Flash is that it can't access content outside of the Flash movie's domain. For
example, a Flash movie hosted on www.communitymx.com can't load content from www.flash-
remoting.com. One way around this is to use a proxy, a middleman that allows communication
between two different servers. The proxy can be written with a few simple lines of Server-Side
ActionScript code in a remote function. The code in Example 6-1 can be saved as Proxy.asr in the
webroot\com\oreilly\frdg directory.

Example 6-1. Remote service proxy code in Proxy.asr

function proxy (location) {
 // Request the data
 var theFile = CF.http (location);

 // Return the filecontent property of the object returned by CF.http()
 return theFile.get("filecontent");
}

In this code, the CF.http() method grabs the file content from the specified URL (location). The

proxy() method simply passes back the contents of the requested file to the Flash movie, which can
do whatever it wants with the data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 6-2 shows the client-side ActionScript necessary to display a remote XML file through the
Proxy service set up in Example 6-1. In this case, the XML document is an RSS feed for my weblog
located at http://www.flash-remoting.com. It will load through the proxy to a movie served from any
domain. The text field is created dynamically, so no interface is needed. To get the dynamic scrollbar
to work with the movie, you'll have to drag an instance of the ScrollBar component from the
Components panel to the Stage and then delete it. This populates the Library with the symbols
needed for the component.

Example 6-2. Retrieving a URL via a SSAS proxy

#include "NetServices.as"

// You must set the myURL and servicePath variables to
// your own Flash Remoting path and service path
var myURL = "http://localhost/flashservices/gateway";
var servicePath = "com.oreilly.frdg.Proxy";

// Create a text field to show the results
createTextField("myTextfield",1,10,10,400,200);
myTextfield.multiline = true;
myTextfield.wordWrap = true;
myTextfield.html = true;
myTextfield.border = 1;

// Add the ScrollBar component to the dynamic text field.
// This assumes you've added the FScrollBarSymbol symbol
// to the library by dragging a ScrollBar instance to the
// Stage and deleting it.
init = {_targetInstanceName:"myTextfield", horizontal:false};
_root.attachMovie("FScrollBarSymbol", "myScrollbar", 2, init);
myScrollbar._x = myTextfield._width + 10; // put it next to textfield
myScrollbar._y = myTextfield._y ; // put it next to textfield

myScrollbar.setSize(myTextfield._height);
myScrollBar.setEnabled(true);

myTextfield.htmlText = "Reading blog...";

// Perform initialization only once
if (!initialized) {
 initialized = true;
 NetServices.setDefaultGatewayUrl(myURL);
 var my_conn = NetServices.createGatewayConnection();
 var myService = my_conn.getService(servicePath);
}

function textfieldNews (xml) {
 // Extract news items in item nodes of channel node
 var channelTag = xml.childNodes[1].nextSibling.childNodes[1];
 var temp = "";
 var newsitem, currentTag, link, newsdate;

http://www.flash-remoting.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 myTextfield.htmlText = "";
 for (var i=0; i < channelTag.childNodes.length; i++) {
 newsitem = channelTag.childNodes[i];
 newsitem.ignoreWhite = true;
 for (var j=0; j<newsitem.childNodes.length; j++) {
 currentTag = newsitem.childNodes[j];
 currentText = currentTag.firstChild.nodeValue;
 switch (currentTag.nodeName) {
 case "title":
 title = currentText;
 break;
 case "link":
 link = "";
 link += "" + title + "";
 break;
 case "pubDate":
 newsdate = currentText;
 temp += newsdate + "
";
 temp += link + "

";
 break;
 }

 } // end for j

 } // end for i
 myTextfield.htmlText = temp;
}

// Responder object to displays the result or an error
function MyResponder () {}
MyResponder.prototype.onResult = function (myResult) {
 var fr_news = new XML(myResult);
 textfieldNews(fr_news);
};

MyResponder.prototype.onStatus = function (myStatus) {
 trace("Error: "+ myStatus.description);
};
myService.proxy(new MyResponder(), "http://www.flash-remoting.com/rss.xml");

6.2.2 Using CF.query()

ColdFusion developers have always had access to a simple tag that creates database connections,
executes SQL statements, and returns resultsets to the caller. The <cfquery> tag is simple to use

and simple to understand. The ColdFusion implementation of SSAS contains a method, CF.query(),
that works in a fashion similar to the <cfquery> tag.

6.2.2.1 CF.query() properties

The CF.query() method accepts up to six arguments, as listed in Table 6-3. Only the datasource
and sql arguments are required. A ColdFusion Server's database connections are defined in the CF

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Administrator. These connections are known as datasource names and are the basis of all data
operations in ColdFusion. Once you have a datasource name set up, you can access the database to
select, update, insert, or delete the data; invoke stored procedures calls; create tables; or perform
any other database operation. All of this is accessible through SSAS.

Table 6-3. Arguments of the CF.query() method

Argument Description

datasource[2] ColdFusion datasource set up in the CF Administrator

sql[2] SQL statement that you are sending to the database

username
Login name for the database connection, which overrides the datasource username
from the CF Administrator

password Password for the database connection

maxrows Number of rows to deliver to the Flash movie

timeout Number of seconds to wait for the query to finish before returning an error

[2] Required

The sql argument is the SQL statement that you want to send to the database. If this is a simple
SELECT statement, the CF.query() method returns a resultset, or Query object as it is known to

ColdFusion programmers.

Just like the CF.http() method, you can pass your arguments to the CF.query() method in several
different ways. This is how the method is called using the basic function call:

var myVar = CF.query(datasource, sql, username, password, maxrows);

You cannot use the timeout argument when calling CF.query() with sequential arguments. To use
timeout, you must use the named argument style:

var myVar = CF.query(
 {

 datasource:datasource,

 sql:sql,

 username:username,

 password:password,

 maxrows:maxrows,

 timeout:timeout
 }
);

6.2.2.2 The SQL argument

Common questions about Flash Remoting and SSAS involve the sql argument in the CF.query()
method. The important thing to remember is that the sql argument is just a SQL statement in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

form of a string; there is nothing magical about it. You can build a SQL statement manually, create a
loop to add fields, or concatenate several parts together. The resulting string must be a valid SQL
statement that can be sent to the database for processing. For example, you might pass an object to
your Server-Side ActionScript containing the parameters for the query:

myService.searchProducts({productname:"s%",unitprice:15});

Then, your SSAS code can build the SQL statement string using the object properties:

function searchProducts (searchobj) {
 var sql = "SELECT * FROM Products WHERE ";
 sql += "ProductName LIKE '" + searchobj.get("productname") + '";
 sql += " AND UnitPrice > " + searchobj.get("unitprice");
 return CF.query("northwind", sql);
}

The variable sql in the previous example would contain the following SQL statement:

SELECT * FROM Products WHERE ProductName LIKE 's%' AND UnitPrice > 15

When you are creating your SQL statements, make sure to use single quotes for string or character
delimiters and no quotes for numeric data. If you're using a Microsoft Access database, you should
use # for date and time data.

6.2.2.3 Retrieving results

The most basic form of database interaction involves the SELECT statement to retrieve results from

the server. This is easily implemented in SSAS using CF.query(), as in the following code:

function getProducts () {
 var sql = "SELECT ProductID, ProductName FROM Products";
 var myResults = CF.query("northwind", sql);
 return myResults;
}

This code returns an entire resultset back to the Flash movie in the form of an ActionScript RecordSet
object. This is the same as calling a <cfquery> tag in a ColdFusion Component or ColdFusion page,

as shown in Chapter 3.

6.2.2.4 Inserting, updating, and deleting results

When you perform a database SELECT, you retrieve a resultset. When you do other database

operations such as inserting, updating, or deleting from a database, nothing is returned. These types
of statements can also be executed from SSAS, as can other types of SQL statements that create
and drop database objects, set permissions, or perform any other valid form of database transaction.

To demonstrate, I'll use the client-side code that was set up in Example 5-14. The functions in the
SSAS file all work in a fashion similar to the ColdFusion example. If you set up the ProductsAdmin.cfc
file in Example 5-13, you'll have to rename it to SomethingElse.cfc in order to allow the SSAS .asr file
to take precedence.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The code in Example 6-3 is the full source listing for ProductsAdmin.asr. It should be saved in the
webroot\com\oreilly\frdg\admin directory in order to allow it to work with the ProductsAdmin.fla file.

Example 6-3. Updating, inserting, and deleting data using SSAS in
ProductsAdmin.asr

function getSearchResult (search) {
 // Retrieves records that match the search criteria
 var sql = "SELECT ProductID, ProductName, UnitPrice,";
 sql += " QuantityPerUnit, CategoryID, SupplierID";
 sql += " FROM Products"
 // If no argument is passed, all records are returned
 if (search)
 sql += " WHERE ProductName LIKE '%" + search + "%'";
 try { // Execute the query and capture errors
 var rsGetProducts = CF.query("northwind", sql);
 } catch (e) {
 throw "There was a database error";
 }
 return rsGetProducts;
}
function addProduct (Product) {
 var sql = "INSERT INTO Products (";
 sql += " ProductName";
 sql += " , UnitPrice";
 sql += " , QuantityPerUnit";
 sql += " , CategoryID";
 sql += " , SupplierID ";
 sql += ") VALUES (";
 sql += " '" + Product.get("ProductName") + "'";
 sql += " , " + Product.get("UnitPrice");
 sql += " , '" + Product.get("QuantityPerUnit") + "'";
 sql += " , " + Product.get("CategoryID");
 sql += " , " + Product.get("SupplierID");
 sql += ")";
 try { // Execute the query and capture errors
 CF.query("northwind", sql);
 } catch (e) {
 throw "There was a database error";
 }
}

function updateProduct (Product) {
 var sql = "UPDATE Products";
 sql += " SET ProductName='" + Product.get("ProductName") + "'";
 sql += " , UnitPrice=" + Product.get("UnitPrice");
 sql += " , QuantityPerUnit='" + Product.get("QuantityPerUnit") + "'";
 sql += " , CategoryID=" + Product.get("CategoryID");
 sql += " , SupplierID=" + Product.get("SupplierID");
 sql += " WHERE ProductID = " + Product.get("ProductID");
 try { // Execute the query and capture errors

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CF.query("northwind", sql);
 } catch (e) {
 throw "There was a database error";
 }
}

function deleteProducts (ProductIDs) {
 // Delete one or more products. ProductIDs can be one ProductID or
 // a comma-separated list of ProductIDs.
 // The next statement is the delete statement. It is commented out
 // so that you can use the Discontinued column to delete products.
 // var sql = "DELETE FROM Products WHERE ProductID IN (" + ProductIDs + ")";
 var sql= "UPDATE Products SET Discontinued = 1
 sql += "WHERE ProductID IN (" + ProductIDs + ")";
 try { // Execute the query and capture errors
 CF.query("northwind", sql);
 } catch (e) {
 throw "There was a database error";
 }
}

function getSuppliers () {
 // Retrieve a list of suppliers for a ComboBox.
 var sql = "SELECT SupplierID, CompanyName FROM Suppliers";
 try { // Execute the query and capture errors
 var rsSuppliers = CF.query("northwind", sql);
 } catch (e) {
 throw "There was a database error";
 }
 return rsSuppliers;
}

function getCategories () {
 // Retrieve a list of categories for a ComboBox.
 var sql = "SELECT CategoryID, CategoryName FROM Categories";
 try { // Execute the query and capture errors
 var rsCategories = CF.query("northwind", sql);
 } catch(e) {
 throw "There was a database error";
 }
 return rsCategories;
}

The remote methods operate exactly as the methods from the CFML in Example 5-13. Following are
a few comments about the code.

To access properties of objects passed to remote methods, you have to use
objectName.get("propertyName"), as in this line from Example 6-3:

sql += " SET ProductName='" + Product.get("ProductName") + "'";

This is because the ActionScript objects coming from the client are actually Java objects of type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ASObject when they are parsed by your SSAS file.

The SQL statements in Example 6-3 are built up using the preceding-comma approach of building
SQL strings, as in this code:

 var sql = "UPDATE Products";
 sql += " SET ProductName='" + Product.get("ProductName") + "'";
 sql += " , UnitPrice=" + Product.get("UnitPrice");
 sql += " , QuantityPerUnit='" + Product.get("QuantityPerUnit") + "'";
 sql += " , CategoryID=" + Product.get("CategoryID");
 sql += " , SupplierID=" + Product.get("SupplierID");
 sql += " WHERE ProductID = " + Product.get("ProductID");

The code might look funny, but when you are debugging complex SQL statements, this style of
coding makes it easy to comment out individual lines of SQL code without having to reformat the rest
of the SQL statement.

SQL statements in Server-Side ActionScript must be contained on one line with no line breaks. For
that reason, it is wise to build your SQL statement as a string before sending it to the database.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.3 When to Use Server-Side ActionScript

Server-Side ActionScript is a powerful addition to the developer's arsenal, but it is not always the
best way to create Flash Remoting services. It is merely a convenience for Flash ActionScript
developers to create server-side services without having to learn another language.

That said, however, there are also some pluses to creating SSAS services. For example, if you are
running JRun 4 and need a simple service and don't want to get your Java programmers to create a
Java source file, compile it, and deploy it, you can write your service in SSAS and simply upload it to
the proper folder.

In addition, you might find that a particular service requires an ActionScript object to be sent to the
server, manipulated on the server, and sent back to the client. This can be done using a language
such as CFML, but using SSAS makes this much simpler. Chapter 4 showed the process of
transferring ActionScript objects back and forth from client to server.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.4 Datatype Conversions

Most datatypes in SSAS are interchangeable with client-side ActionScript datatypes. The notable
exception is the client-side Object type, which is actually an object of type ASObject on the server
(an extension of the Java class java.util.HashMap). For that reason, when you access properties of an
ActionScript object that you have passed to the server, you have to use the get() and put()
methods of the object, as you saw earlier in Example 6-3.

A resultset created with a CF.query() method on the server is automatically transformed into a
RecordSet object in Flash. This is taken care of behind the scenes by the Flash Remoting adapter on
the server and the RecordSet class on the client.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.5 Handling Errors with try/catch

Server-Side ActionScript contains the try/catch/finally construct of ECMAScript. If you have used
JavaScript, Java, or ColdFusion before, you may be familiar with this construct, which is missing from
client-side ActionScript. You use it like this:

try {
 // Code here
} catch(exception) {
 // Error handling code here
} finally {
 // Do this in either case
}

A try/catch/finally construct says, "Try to execute the code inside the try block.
If there is an error (exception), execute the code in the catch block. In either
case, execute the code in the finally block."

To demonstrate, look at this SSAS code:

function getProducts () {
 var sql = "SELECT ProductID, ProductName FROM Products";
 try {
 var myResults = CF.query("northwind", sql);
 } catch (e) {
 sendEmailAdmin(e);
 throw("There was an error connecting to the database");
 }
 return myResults;
}

In this case, the query to the database is wrapped in a try/catch block. This allows us to capture any
error when connecting to the database and perform some additional steps. In this case, we've called
an imaginary function called sendEmailAdmin() that resides in the same file, allowing us to send a
notification email to the administrator that an error occurred. After sending the email, we create our
own error using the throw keyword. When we throw an error, we are in control of what is sent to the

Flash movie. We can use this to send a code or an error message of our own rather than a system
error message. When you use throw, the onStatus event is sent to the Flash movie, so the
myResults resultset would not be returned in this case.

6.5.1 Retrying the Query

Many times, there are things that you can do on the server to circumvent an error or gracefully
handle an error. We could have tried to execute another query to a backup data source on another
server within the catch block:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function getProducts () {
 var sql = "SELECT ProductID, ProductName FROM Products";
 var myResults;
 try {
 myResults = CF.query("northwind", sql);
 } catch (e) {
 try {
 myResults = CF.query("backupServer", sql);
 } catch (e) {
 sendEmailAdmin(e);
 throw("There was an error connecting to the database");
 }
 }
 return myResults;
}

We could have also read the information from a static text file on the server, retrieved it from an XML
document, or inserted some static code to return to the Flash movie in order to allow the person
viewing the Flash movie to keep on working. The point is that we are in control of what happens to
the error on the server side. Errors that can be handled gracefully on the server are errors that don't
have to be handled by Flash.

6.5.2 Debugging

Using try/catch can also benefit you while you are debugging an application. Look at the following
code:

function updateProducts (Product) {
 var sql = "UPDATE Products SET ProductDesc=" + Product.get("ProductDesc");
 sql += ", ProductName=" + Product.get("ProductName");
 sql += " WHERE ProductID = " + Product.get("ProductID");
 try {
 CF.query("northwind", sql);
 } catch (e) {
 throw "Error in updateProducts: sql=" + sql; // debugging info
 }
 return true;
}

If you run this example, it causes an error because there are no quotes around the ProductDesc and
ProductName fields. Suppose you send a Product record to this function that looks like this:

myService.updateProduct({
 ProductID:33,
 ProductDesc:"Test product description",
 ProductName:MyProduct"});

The error thrown back to the Flash movie would look like this: "Error in updateProducts: sql=UPDATE
Products SET ProductDesc=Test product description, ProductName=MyProduct WHERE
ProductID=33".

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can now pinpoint the problem. You can fix your code by adding single quotes around the values
for the ProductDesc and ProductName fields:

function updateProducts (Product) {
 var sql = "UPDATE Products SET ProductDesc='"+Product.get("ProductDesc") + "'";
 sql += ", ProductName='" + Product.get("ProductName") + "'";
 ...
}

6.5.3 Finally

The finally construct allows you to execute a code block regardless of whether there was an error.
This can be useful for freeing resources that are used in the script, as in this example:

function writeLinesToFile (myArray) {
 var success = true;
 try {
 writeMyFile(myArray);
 } catch (e) {
 success = false;
 } finally {
 closeMyFile();
 }
 return success;
}

The finally construct is optional and therefore not always used in try/catch constructs.

6.5.4 Custom Exception Objects

You can also create your own exception objects, which can act as error types for your remote
services. For example, a validation service might contain exception objects that you set up for each
type of validation. An object that accepts a valid email address is shown in Example 6-4.

Example 6-4. The EmailAddress.asr service with custom exceptions

// The exception object
function EmailAddressException (address) {
 this.value = address;
 this.message = " is not a valid email address";
 this.toString = function () {
 return this.value + this.message;
 };
}

// The email address object
function EmailAddress (email, name) {
 var theExpression = /^[A-Za-z0-9_\-]+\@[A-Za-z0-9_\-]+.*\.\w{2,6}$/;
 if (theExpression.test(email)) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 this.address = email;
 this.name = name;
 } else {
 throw new EmailAddressException(email);
 }
}

function validateEmail (email, name) {
 var myEmailObject;
 try {
 myEmailObject = new EmailAddress(email, name);
 } catch (e) {
 if (e instanceof EmailAddressException) {
 return e.toString();
 } else {
 return "Undefined error";
 }
 }
 return myEmailObject;
}

This example checks for an exception of type EmailAddressException (our own error type). If the
error is of that type, we return the error message that is part of the EmailAddressException object. If
another type of error occurs, we send back an "Undefined error" message. Note that in this example
all errors are trapped. If it were a complex service with many different validation types, you might
have different exception types.

The Flash Remoting adapter effectively implements a try/catch construct: successful calls to a remote
method return the onResult event, and errors return the onStatus event. Using try/catch explicitly
within SSAS just gives you a little finer control over how your errors are handled.

The try/catch construct is important when executing Java code within Server-Side ActionScript, as
discussed in the next section.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.6 Extending Server-Side ActionScript with Java

Server-Side ActionScript is written entirely in Java, and one of the tremendous advantages of SSAS is
that you can extend it in Java as well. If your workplace consists of ActionScript programmers who
will be assembling server-side methods using SSAS, a few custom Java functions can provide any
functionality that SSAS is missing. For example, the JRun 4 implementation of SSAS is missing the CF
object, which is required for database queries. The functionality of the CF object can be mimicked in

Java and used from within SSAS. Similarly, the file and directory manipulation techniques of
ColdFusion, Java, and ASP.NET are missing from SSAS; these too can be added using Java. I'll show
a few simple examples of possible extensions to SSAS and then show a simple CF object with a

query() method that can be used from within JRun 4.

6.6.1 The Principles of Extending SSAS

Server-Side ActionScript uses the Rhino JavaScript parser, which allows you to call Java methods as
follows. To invoke a method of a Java class contained within the java package, first use the new
operator to create an instance of the Java class:

var myVar = new java.packagename.classname;

Then call methods on the instance of the class as usual:

myVar.methodname(params);

You can also reference classes that are not in the java package by using the Packages prefix:

var myVar = new Packages.myPackagename.myClassname;

As an example of using a class that is not in the java package, consider the StringReverser class from
Example 5-6. Simply create a new .asr file named StringReverser.asr with the method reverseString(
) in it, as shown in Example 6-5.

Example 6-5. The StringReverser in SSAS

function reverseString (target) {
 var temp = new Packages.com.oreilly.frdg.StringReverser(target);
 return temp.getReversedString();
}

If you use the Flash movie created in Example 5-8, JavaExample1.fla, it should give you the same
results as the CFC using the same Java class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When referencing Java classes that aren't in the java package, you have to
make sure the classes are in the classpath of the ColdFusion MX or JRun 4
server-not the web directory path where the SSAS file resides.

More information on the Rhino parser and the techniques for accessing Java from SSAS can be found
at http://www.mozilla.org/rhino/scriptjava.html.

One of the key benefits to invoking Java inside of SSAS is to take advantage of the numerous classes
that are already part of the java and javax packages. The following examples show some of the
simple Java classes that can be used.

6.6.1.1 Adding a Sleep() function

When creating client/server communication, you often want to add a delay to the processing. This
can be done in SSAS using some fancy scripting and the Date object, but you can do it more easily
with a simple Java class, shown in Example 6-6.

Example 6-6. The Sleep() method of Sleep.asr pauses a script

function Sleep (howManySeconds) {
 var mySleeper = new java.lang.Thread;
 mySleeper.sleep(howManySeconds * 1000);
}

This function allows you to pass a count, in seconds, of how long you want the script to delay. The
following code will cause a three-second sleep:

Sleep(3);

6.6.1.2 Getting a directory list from the server

Unlike ColdFusion, SSAS does not support any built-in directory access methods. Again, this can be
accomplished rather easily with Java. The remote method getDirectory(), shown in Example 6-7,
returns a directory in an array, with recursive entries for subdirectories. The function can be saved in
a file named Directory.asr in the webroot\com\oreilly\frdg directory.

Example 6-7. Retrieving a directory with SSAS

function getDirectory (theDirectory) {
 // Create a file object for the root directory
 var myFile = new java.io.File (theDirectory) ;
 // Get all the files and directories under the directory
 var myFileList = myFile.listFiles();
 var theList = new Array();
 for (var i = 0 ; i < myFileList.length ; i ++) {
 if (myFileList[i].isDirectory()) {
 // If it is a directory, create an object containing
 // the directory name and file list.

http://www.mozilla.org/rhino/scriptjava.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 theList.push({directory:myFileList[i].toString(),
 files:getDirectory(myFileList[i])});
 } else if (myFileList[i].isFile()) {
 theList.push(myFileList[i].toString())
 }
 }
 return theList;
}

The getDirectory() function accepts a directory path as an argument. The path should be in a string
format, such as "e:/cfusionmx/wwwroot/com/oreilly". The path can use slashes (/) to maintain

compatibility with Unix servers or backslashes (\) for Windows servers. If you use backslashes, you'll
also have to escape them with another backslash, such as
"e:\\cfusionmx\\wwwroot\\com\\oreilly". The function uses the File class in the java.io package.

The listFiles() method grabs an array of files in the directory. The list elements can be files or
directories. If the current item is a directory, as indicated by isDirectory(), we create an ActionScript
object with a directory property (the directory path) and a files property. The files property is

an array created by calling the getDirectory() function recursively. This will play an important part in
the process on the client once we return the result. If the current item is not a directory, we add it to
the current directory's file list. Finally, we return the list to the caller.

Example 6-8 shows the client-side ActionScript for the Directory service. The method uses a Tree
object from the Flash UI Components Set 2. We assume the Tree object is named directory_tree

and we populate it with the contents of the remote directory.

Example 6-8. Retrieving the contents of a directory on the server with
DirectoryList.fla

#include "NetServices.as"

// The directory to list the contents of
var theDirectory = "e:\\cfusionmx\\wwwroot\\com\\oreilly";

var myURL = "http://localhost/flashservices/gateway";
if (initialized == null) {
 initialized = true;
 NetServices.setDefaultGatewayUrl(myURL);
 var my_conn = NetServices.createGatewayConnection();
 var myService = my_conn.getService("com.oreilly.frdg.Directory");
}

// Call the remote service to retrieve a directory, given the path
myService.getDirectory(new MyResponder(), theDirectory);

// Set up the Tree control named directory_tree, assumed to exist already
var myRootNode = new FTreeNode(theDirectory).setIsOpen(true);
directory_tree.setRootNode(myRootNode);

// Responder object for the directory list, with private methods
function MyResponder () {
 this.onResult = function (myResult) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 listDirectory(myResult, myRootNode);
 directory_tree.refresh();
 };
 this.onStatus = function (myStatus) {
 trace("Error: "+ myStatus.description);
 };
 function listDirectory (myArray, node) {
 // Populate the Tree object using the directory list from the server
 for (var i=0; i< myArray.length; i++) {
 if (myArray[i] instanceof Object) {
 var new_tree_node = new FTreeNode(myArray[i].directory);
 node.addNode(new_tree_node);
 listDirectory(myArray[i].files, new_tree_node);
 } else {
 node.addNode(new FTreeNode(getFile(myArray[i]), getFile(myArray[i])));
 }
 }
 };
 function getFile (filePath) {
 var lastSlash = filePath.lastIndexOf("\\");
 if (lastSlash != -1) filePath = filePath.substring(lastSlash+1);
 return filePath;
 }
}

Example 6-8 uses recursion again-this time on the client. The array of directories and files is
returned from the server, so we cycle through the array and test each item. If it is an object, it is a
directory, so we create a root node for the tree using the directory property (the path of the

directory) and call the listDirectory() method recursively. If it is not an object, then it must be a file
path, so we get the filename from the path (using another private method- getFile()) and add a
child node to the current root node of the tree. Figure 6-1 shows the Directory service in use.

Figure 6-1. Recursively listing the contents of a directory on the server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This example demonstrates one of the striking things about using SSAS for remote services-the
separation between client and server is almost seamless. You could, for example, add a filtering
mechanism to the Directory service to filter filenames based on their file extensions. The functionality
could be placed on the client or on the server. In fact, the same code would work in either place,
because it is simply ActionScript code.

6.6.1.3 File methods on the server

The preceding section showed how to use Java from within SSAS to access the filesystem. Following
are some general utility functions that can be used in SSAS inside of your remote methods.

Object-oriented techniques don't work as well in SSAS as in client-side
ActionScript because of the nature of the language. There are no includes, and
the remote methods are accessed when needed, so instantiating objects
doesn't make as much sense from a programming perspective. For that reason,
the file methods shown in this section are shown as individual functions rather
than methods of a class.

The moveFile() method shown in Example 6-9 moves a file on the server given a source file path and
destination file path.

Example 6-9. Moving a file on the server

function moveFile (source, destination) {
 var myFile = new java.io.File(source);
 if (!myFile.exists())
 return false;
 return myFile.renameTo(new java.io.File(destination));
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The renameFile() method shown in Example 6-10 renames a file on the server.

Example 6-10. Renaming a file on the server

function renameFile (sourcepath, newFilename) {
 var myFile = new java.io.File(sourcepath);
 if (!myFile.exists() || myFile.isDirectory())
 return false;
 newFilename = myFile.getParent() + java.io.File.separator + newFilename;
 return myFile.renameTo(new java.io.File(newFilename));
}

The deleteFile() method shown in Example 6-11 deletes a file on the server. It deletes an entire
directory if passed a directory path instead of a file path.

Example 6-11. Deleting a file or a directory on the server

function deleteFile (filepath) {
 var success = false;
 var theFile = new java.io.File(filepath);
 var f;
 if (!theFile.exists())
 return success;
 if (theFile.isDirectory()) {
 var allFiles = theFile.list();
 for (var i=0; i < allFiles.length; i++) {
 f = theFile.getAbsolutePath() + java.io.File.separator + allFiles[i];
 deleteFile(f);
 }
 } else {
 try {
 success = theFile.delete();
 } catch(e) { // noop }
 }
 return success;
}

The createDirectory() method shown in Example 6-12 creates a directory on the server.

Example 6-12. Creating a directory on the server

function createDirectory (directoryPath) {
 var theDirectory = new java.io.File(directoryPath);
 if (theDirectory.exists())
 return true;
 return theDirectory.mkdir();
}

6.6.1.4 Sending an email with Server-Side ActionScript

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SSAS does not contain any methods for working with SMTP servers, so there is no way to send an
email from SSAS . . . or is there? Using the javax.mail.* package, you can script a method that sends
emails through a SMTP server. The method shown in Example 6-13 can be saved in
webroot\com\oreilly\frdg as Email.asr. It will send an email, given the recipient, sender, subject line,

and message body.

Example 6-13. Sending an email from Server-Side ActionScript

function send (to, from, subject, message) {
 try {
 var mailobj = Packages.javax.mail;
 var props = new java.util.Properties();
 // Substitute your SMTP server address here

 props.put("mail.smtp.host","mail.YourServerNameHere.com");
 var mySession = new mailobj.Session.getInstance(props);
 var myMessage = new mailobj.internet.MimeMessage(mySession);
 var myToField = new mailobj.internet.InternetAddress(to);
 var myFromField = new mailobj.internet.InternetAddress(from);
 var recipientType = mailobj.Message.RecipientType.TO;
 myMessage.setFrom(myFromField);
 myMessage.addRecipients(recipientType, myToField);
 myMessage.setSubject(subject);
 myMessage.setText(message);
 mailobj.Transport.send(myMessage);
 } catch (e) {
 throw ("Error in sending email:" + e);
 }
 return true;
}

The first line of the function inside the try block sets an ActionScript variable to the javax.mail
package. This technique is not immediately intuitive to the Java programmer, but it is allowed in
SSAS. The Java package can be referenced with the mailobj variable thereafter.

The only change you need to make to this script is to supply a SMTP server address in place of
"mail.YourServerNameHere.com". This remote method can be used with the simple email interface

created in Chapter 5. Example 6-14 shows the client-side ActionScript code for generating the email
application's interface. The interface elements required by Example 6-14 are shown in Table 6-4.

Table 6-4. Interface elements used in Example 6-14

Interface Element Name

Input text field to_txt

Input text field from_txt

Input text field subject_txt

Input text field body_txt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Interface Element Name

PushButton send_pb

MessageBox status_mb

Example 6-14. The client-side ActionScript code for sendEmailASR.fla

#include "NetServices.as"

var my_conn; // Connection object
var emailService; // Service object
var myURL = "http://localhost/flashservices/gateway";
// Message box that displays status messages
status_mb.visible = false;

// Responder for general service methods
function Responder () {}
Responder.prototype.onResult = function (myResults) {
 if (myResults == true) myResults = "Email sent!";
 status_mb._visible = true;
 status_mb.setMessage(myResults);
};

Responder.prototype.onStatus = function (theError) {
 status_mb._visible = true;
 status_mb.setMessage(theError.description);
 System.onStatus = this.onStatus;
};

// Close the message box when OK is clicked
status_mb.setCloseHandler("closeBox");
function closeBox () {
 status_mb.visible = false;
}

// Initialize Flash Remoting
function init () {
 initialized = true;
 NetServices.setDefaultGatewayUrl(myURL);
 my_conn = NetServices.createGatewayConnection();
 emailService = my_conn.getService("com.oreilly.frdg.Email");
}

init();

// Send the email when the send_pb button is clicked
send_pb.setClickHandler("send");
function send () {
 var toAddress = to_txt.text;
 var fromAddress = from_txt.text;

PushButton send_pb

MessageBox status_mb

Example 6-14. The client-side ActionScript code for sendEmailASR.fla

#include "NetServices.as"

var my_conn; // Connection object
var emailService; // Service object
var myURL = "http://localhost/flashservices/gateway";
// Message box that displays status messages
status_mb.visible = false;

// Responder for general service methods
function Responder () {}
Responder.prototype.onResult = function (myResults) {
 if (myResults == true) myResults = "Email sent!";
 status_mb._visible = true;
 status_mb.setMessage(myResults);
};

Responder.prototype.onStatus = function (theError) {
 status_mb._visible = true;
 status_mb.setMessage(theError.description);
 System.onStatus = this.onStatus;
};

// Close the message box when OK is clicked
status_mb.setCloseHandler("closeBox");
function closeBox () {
 status_mb.visible = false;
}

// Initialize Flash Remoting
function init () {
 initialized = true;
 NetServices.setDefaultGatewayUrl(myURL);
 my_conn = NetServices.createGatewayConnection();
 emailService = my_conn.getService("com.oreilly.frdg.Email");
}

init();

// Send the email when the send_pb button is clicked
send_pb.setClickHandler("send");
function send () {
 var toAddress = to_txt.text;
 var fromAddress = from_txt.text;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 var subject = subject_txt.text;
 var body = body_txt.text;
 // Call the service, using the responder in the first argument
 emailService.send(new Responder(), toAddress, fromAddress, subject, body);
}

6.6.1.5 Retrieving emails using Server-Side ActionScript

You can enable SSAS to retrieve email from a POP3 server using the methods of the javax.mail

package. The code shown in Example 6-15 demonstrates the steps required to access a POP3 server:

Pass your authentication information to a POP3 server.1.

Retrieve a folder.2.

Parse the messages in the folder, retrieving message ID numbers, subjects, from lines, and any
other information you might need.

3.

Get the content of each email as part of the multipart email.4.

To do this, I've created an Inbox class that acts as a simple wrapper on the server for the POP3
access. For the sake of simplicity, the Flash interface is done in three parts:

Get the user's login information.1.

Grab the contents of the inbox and display the headers.2.

If the user clicks on an individual email, show the body.3.

First, the Server-Side ActionScript is shown in Example 6-15. The code is explained with inline
comments.

Example 6-15. Retrieving email from a POP3 account in SSAS

function Inbox (myHost, myUsername, myPassword) {

 // The Inbox object opens the connection to the POP3 server
 // and provides methods to receive messages and close connections
 var mailobj = Packages.javax.mail;
 var props = new java.util.Properties();
 var mySession = new mailobj.Session.getInstance(props);
 this.popAccount = mySession.getStore("pop3");
 this.popAccount.connect(myHost, myUsername, myPassword);
 this.folder = this.popAccount.getFolder("INBOX");
 this.folder.open(mailobj.Folder.READ_ONLY);

 // The getMessages() method retrieves all messages
 this.getMessages = function () {
 return this.folder.getMessages()
 };

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // The getMessage() method retrieves one message given a message number
 this.getMessage = function(messageNumber) {
 return this.folder.getMessage(messageNumber);
 };

 // The close() method simply closes connections to the POP3 server
 this.close = function () {
 this.folder.close(false);
 this.popAccount.close();
 };
}

// retrieveMessages() retrieves a list of headers given three arguments:

// myHost (POP3 account), myUsername (login name), myPassword (password)
function retrieveMessages (myHost, myUsername, myPassword) {
 var myInbox = new Inbox(myHost, myUsername, myPassword);
 var myMessages = myInbox.getMessages();
 // The raw headers can't be sent via Flash Remoting,
 // so we serialize them manually
 var serializedHeaders = serializeHeaders(myMessages);
 // Close the connection to the inbox
 myInbox.close();
 return serializedHeaders;
}

// retrieveMessage() retrieves one message given four arguments:

// myHost (POP3 account), myUsername (login name), myPassword (password),
// and the message number.
function retrieveMessage (myHost, myUsername, myPassword, messageNumber) {
 var myInbox = new Inbox(myHost, myUsername, myPassword);
 var myMessage = myInbox.getMessage(messageNumber);
 // The raw message can't be sent via Flash Remoting,
 // so we serialize it manually
 var serializedMessage = serializeMessage(myMessage);
 // Close the connection to the inbox
 myInbox.close();
 return serializedMessage;
}

// serializeHeaders() takes a messages array and extracts/serializes
// the header information (from, subject, messagenumber)
function serializeHeaders (messages) {
 var serializedHeaders = new Array();
 var header;
 for (var i=0; i < messages.length; i++) {
 // Call our own general-purpose header serialization routine
 header = serializeHeader(messages[i]);
 serializedHeaders.push(header);
 }
 return serializedHeaders;
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// serializeHeader() takes one message argument and extracts header information
function serializeHeader (message) {
 var header = new Object();
 header.messageNumber = message.getMessageNumber();
 header.from = message.getFrom();
 header.subject = message.getSubject();
 return header;
}

// serializeMessage() takes a message as an argument and extracts only
// the text portion of the message. The rest of the parts are simply
// counted as attachments. You can enhance this function to return other
// parts of messages as well.
function serializeMessage (message) {
 var serializedMessage = serializeHeader(message);
 serializedMessage.attachments = 0;
 var tempPart;
 if (message.isMimeType("multipart/*")) {
 var content = message.getContent();
 for (var i=0; i<content.getCount(); i++) {
 tempPart = content.getBodyPart(i);
 if (tempPart.isMimeType("text/plain")) {
 serializedMessage.text = tempPart.getContent();
 } else {
 serializedMessage.attachments++;
 }
 }
 } else if (message.isMimeType("text/plain")) {
 serializedMessage.text = message.getContent();
 } else {
 serializedMessage.attachments++;
 }
 return serializedMessage;
}

Next, we must write the client-side ActionScript. This interface will have three "pages"-login,
headers, and message. Because this is a simple demonstration, the message is retrieved from the
server when the user wants to read it. In practice, you would probably set up a class to handle the
messages on the client side and save the messages into a local SharedObject. The commented client-
side code is shown in Example 6-16.

Example 6-16. Client-side ActionScript code for email retrieval

#include "NetServices.as"

// Set up the components
status_mb._visible = false;
grid_lb._visible = false;
message_pb.setClickHandler("messageClicked");
login_pb.setClickHandler("loginClicked");
message_pb._visible = false;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Set up global vars
var login;
var password;
var popServer;

// Set up the gateway URL and initialization function
var myURL = "http://localhost/flashservices/gateway";
function init () {
 NetServices.setDefaultGatewayUrl(myURL);
 var my_conn = NetServices.createGatewayConnection();
 // Set up the Email service
 var myService = my_conn.getService("flashremoting.com.oreilly.frdg.Email");
}
init();

// Click handler for Login button:
// Get the message headers
function loginClicked () {
 status_mb._visible = true;
 status_mb.setButtons();
 login = login_txt.text;
 password = password_txt.text;
 popserver = popserver_txt.text;
 myService.retrieveMessages(new HeaderResponder(), popserver, login, password);
 gotoAndPlay("login");
}

// Display the headers
function headersClicked () {
 grid_lb._visible = true;
 gotoAndPlay("headers");
}

// Get the current message
function messageClicked() {
 var message = grid_lb.getSelectedItem().data;
 if (message)
 myService.retrieveMessage(new MessageResponder(),
 popserver, login, password, message);
}

// Responder to grab all headers and display in list box
function HeaderResponder () {}

HeaderResponder.prototype.onResult = function(myResults) {
 status_mb._visible = false;
 grid_lb._visible = true;
 for (var i in myResults)
 grid_lb.addItem(myResults[i].subject,myResults[i].messageNumber);
 message_pb._visible = true;
 gotoAndPlay("headers");
};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HeaderResponder.prototype.onStatus = function (theError) {
 trace(theError.description);
};

// Responder to grab messages and display in message page
function MessageResponder () {}

MessageResponder.prototype.onResult = function (myResults) {
 status_mb._visible = false;
 grid_dg._visible = false;
 gotoAndPlay("message");
 subject_txt.text = myResults.subject;
 from_txt.text = myResults.from + " <" + myResults.address + ">";
 date_txt.text = myResults.date;
 body_txt.text = myResults.body;
};

MessageResponder.prototype.onStatus = function (theError) {
 trace(theError.description);
};

stop();

The client-side code uses a ListBox component rather than a DataGrid, since the ListBox component
is preinstalled with Flash and freely available. You could just as easily use a DataGrid for your own
implementation.

The two service calls-retrieveMessages() and retrieveMessage()-each use their own responder
object. When retrieving multiple messages, only the headers are retrieved, which are placed in the
ListBox. When retrieving one message, the body of the message is also retrieved.

6.6.2 Creating a CF.query() Method for JRun 4

ColdFusion MX users have access to databases from SSAS using the CF.query() method. JRun 4
users have no way to access databases from within SSAS unless they know Java and know how to
extend SSAS in Java. At the time of this writing, there is no way to return a resultset from a Java
application to a Flash movie, as you would do with ColdFusion or ASP.NET. Resultsets have to be
manually parsed on the server and placed into arrays or CachedResultSets. (See Chapter 7 for more
details on the Java implementation of Flash Remoting.)

The code shown in Example 6-17 partially emulates the CF.query() method from within your JRun 4
SSAS files, but it returns the result as an array of objects that you can parse manually in the Flash
movie. The CF.query() method for JRun uses data sources that are defined in the JRun
administrative interface and takes two arguments: datasource and sql.

Example 6-17. The CF object created for a JRun SSAS implementation

CF = new Object();
CF.query = function (datasource, sql) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // InitialContext for JRun data source names
 var ctx = new Packages.javax.naming.InitialContext();
 // Find the data source
 var ds = ctx.lookup(datasource);
 var dbConnection = ds.getConnection();
 var stmt = dbConnection.prepareStatement(sql);
 if (sql.match(/^select\s*/i)) {
 var rs = stmt.executeQuery();
 var rsmd = rs.getMetaData();
 var myRecordSet = new Object();
 myRecordSet.columnNames = getColumnNames(rsmd);
 rs_hasData = rs.next();
 if (rs_hasData) {
 myRecordSet.items = serializeData(rs, myRecordSet.columnNames);
 }
 myRecordSet.totalCount = (rs_hasData) ? myRecordSet.items.length : 0;
 rs.close();
 } else {
 return stmt.executeUpdate();
 }
 stmt.close();
 dbConnection.close();
 return myRecordSet;
};

// Get the column names of the resultset
function getColumnNames (metadata) {
 var columns = new Array();
 for (var i=1; i<= metadata.getColumnCount(); i++)
 columns.push(metadata.getColumnLabel(i));
 return columns;
}

// Serialize the data for returning to Flash
function serializeData (rs, columns) {
 var rs_hasData = true;

 // rows holds the rows
 var rows = new Array();

 // currentRow will hold individual row
 var currentRow = new Object();
 // z is a mapping -- integer indexes that match column names
 var z = new Array();
 var columnCount = columns.length;
 // Get index mapping of column names
 for (var i = 0; i < columnCount; i++)
 z.push(rs.findColumn(columns[i]));
 while (rs_hasData) {
 for (i = 0; i < columnCount; i++) {
 currentRow[columns[i]] = (rs.getObject(z[i]));
 }
 // Add to our permanent recordset
 rows.push(currentRow);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Clear the row out again
 currentRow = new Object();
 rs_hasData = rs.next();
 }
 return rows;
}

Simply add the code shown in Example 6-17 to an SSAS file, and you will be able to access CF.query(
) functionality from a JRun 4 SSAS file. The data is returned as an array of row objects, but a little bit
of client-side ActionScript code added to your Flash movie converts it into a RecordSet object:

JRunRecordset.prototype = new Recordset();
function JRunRecordset (rs) {

 super (rs.columnNames); // Call the RecordSet constructor
 for (i in rs.items)

 this.addItem(rs.items[i]); // Add records to RecordSet
}

Now you can convert the returned array of objects into an ActionScript RecordSet object by
instantiating a new JRunRecordset object. Here is the updated responder object for the
ProductsAdmin.fla file from Example 5-14 (changes are shown in bold):

SearchResult.onResult = function (result_rs) {
 Products_rs = new JRunRecordset(result_rs);
 results_txt.text = "There were " + Products_rs.getLength()+
 " records returned.";
 Products_rs.move("First");
 getRecord();
};

Example 5-14 also contains two RecordSet objects that feed data to the drop-down ComboBoxes.
These ComboBoxes are created in the ComboBoxResponder object. Change the
ComboBoxResponder.onResult() method from Example 5-14 to add the JRunRecordset (changes are
shown in bold):

function ComboBoxResponder (cbName) {
 this.cbName = cbname;
}
ComboBoxResponder.prototype.onResult = function (result_rs) {
 result_rs = new JRunRecordset(result_rs);
 var fields = result_rs.getColumnNames();
 var idField = '#' + fields[0] + '#';
 var descField = '#' + fields[1] + '#';
 DataGlue.bindFormatStrings(this.cbName, result_rs, descField,idField);
};

The custom CF.query() method for JRun 4 will work with most of the online examples that you'll find
for Server-Side ActionScript at the Macromedia web site and other places.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.7 Wrapping Up

In this chapter, you learned about ActionScript's cousin-Server-Side ActionScript. You learned that
SSAS is in reality an implementation of JavaScript that is also scriptable with Java, making it a highly
customizable language. Also in this chapter, several missing features were added using Java,
including the ability to read directories and files on the server and the ability to send and retrieve
emails. In addition, the limitations of the SSAS implementation for JRun were shown.

Chapter 7 focuses on the Java language and the J2EE implementation of Flash Remoting.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 7. Flash Remoting and Java
Flash Remoting for J2EE (Java 2 Enterprise Edition) allows Flash clients to communicate efficiently
with Enterprise Java applications running on the server. J2EE is a collection of core Java features plus
standard application programming interfaces (APIs) for enterprise-level services such as messaging,
naming, and remote components. This chapter discusses the details of using Flash Remoting with
Java applications. It assumes that you are familiar with writing Flash Remoting clients as covered in
earlier chapters and with web application development in Java application servers that support the
Servlet 2.2 or 2.3 specifications. If you are not schooled in Java and have trouble following the
examples in this chapter, consult the resources cited in Appendix B.

Flash Remoting for J2EE must be purchased separately from Macromedia, although a trial version is
available. For an open source implementation, refer to Section 7.13 at the end of this chapter.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.1 The Flash Remoting Gateway

Flash Remoting for J2EE is essentially a servlet that uses Java introspection, also called reflection, to
invoke methods on objects running in a Java application server. This servlet and its supporting
classes are collectively named the Flash Remoting gateway. Combined with the client-side Flash
Remoting components, Flash Remoting for J2EE gives Flash clients a simple object-oriented interface
to locate Java objects as services, call methods on them, and handle the results.

It is worth noting that the implementation of Flash Remoting for J2EE is the same implementation
that supports Flash Remoting for ColdFusion. Flash Remoting for ColdFusion includes the additional
service types of ColdFusion pages, ColdFusion Components, and web services, but the core gateway
implementation is the same. Much of the discussion in this chapter concerning the internal behavior
of the gateway also applies to Flash Remoting for ColdFusion.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.2 Supported Platforms

Any application running on a Java application server that supports the Servlet 2.2 or 2.3
specifications can use Flash Remoting to provide services to Flash clients.

Macromedia explicitly supports JRun 4.0, IBM WebSphere Application Server 4, BEA WebLogic, and
Sun ONE Web Server. The Remoting gateway determines the application server platform by looking
for known classes in its classpath, a list of locations in which to look for Java classes and other
resources. For Sun ONE Web Server, Flash Remoting does not support Enterprise JavaBean (EJB)
services. For IBM WebSphere and BEA WebLogic, Remoting supports the standard service types
described later in this chapter.

Flash Remoting supports several additional features on JRun. The user credentials specified using
NetConnection.setCredentials() are used to define the user and user role in Container-Managed
Security, the J2EE standard way of authenticating and authorizing users, and for access to EJBs.
Flash Remoting can be used to give Flash clients access to JRun's JMX MBeans. Finally, Flash
Remoting writes its log messages using JRun's logging infrastructure.

Flash Remoting also runs correctly on numerous other J2EE application servers, including Caucho
Resin, Tomcat, JBoss, ATG Dynamo, Oracle 9i AS, and HP Application Server. However, do not take
this list as complete. The next section describes how to set up Flash Remoting for these and other
application servers so you can try additional platforms yourself.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.3 Setting Up Flash Remoting for J2EE

Chapter 2 describes using the Flash Remoting for J2EE installer to install Flash Remoting. Be sure to
use the latest update from Macromedia, which at the time of this writing is the Flash Remoting MX for
J2EE Updater 1. The updater is available in ZIP archive format from
http://www.macromedia.com/support/flash_remoting/updaters.html.

The updater provides several different distributions of Flash Remoting:

WAR archive with no examples

WAR archive with examples

EAR archive with no examples

EAR archive with examples

JAR archive

If you want to run the examples in a servlet container, install the WAR archive with examples. If you
want to run the examples in a servlet and EJB container, install the EAR archive with examples. The
installation procedure is described under Section 2.1.3.

To install Flash Remoting for use in your own application, place the JAR archive, flashgateway.jar, in
your web application's WEB-INF/lib directory and add the following servlet definition and mapping to
your web application's WEB-INF/web.xml file:

<servlet>
 <servlet-name>FlashGatewayServlet</servlet-name>
 <servlet-class>flashgateway.controller.GatewayServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>FlashGatewayServlet</servlet-name>
 <url-pattern>/gateway</url-pattern>
</servlet-mapping>

The servlet definition maps the Flash Remoting gateway servlet to the /gateway URL within your web
application. If your web application context root is /mywebapp and viewable at
http://localhost/mywebapp/, the Flash Remoting gateway URL that Flash clients will connect to is
http://localhost/mywebapp/gateway.

It is important to install Flash Remoting as a servlet in your web application so that it can find your
classes. If you install Flash Remoting using the WAR or EAR archives provided by Macromedia, the
classes in your web application will not be visible to the gateway servlet configured in those archives.

Once you have installed the Remoting gateway, you need to put the Flash Remoting license file,

http://www.macromedia.com/support/flash_remoting/updaters.html
http://localhost/mywebapp/
http://localhost/mywebapp/gateway
http://lib.ommolketab.ir
http://lib.ommolketab.ir

frconfig.txt, in your web application's classpath, such as in WEB-INF/classes, so that the Remoting
gateway can find it. If you are using Flash Remoting for multiple web applications, you can put a
single copy of frconfig.txt in your application server's classpath so that it will found by the Remoting
gateway in each of your web applications.

For application servers with an enabled Java security manager, you may need to edit the Java
security policy to allow Flash Remoting to access your services. Refer to Section 7.12.2 later in this
chapter for a discussion of Java security and Flash Remoting.

7.3.1 Logging

When you configure the Remoting gateway in your web.xml file, you can configure the log level of the
gateway:

<servlet>
 <servlet-name>FlashGatewayServlet</servlet-name>
 <servlet-class>flashgateway.controller.GatewayServlet</servlet-class>
 <init-param>
 <param-name>LOG_LEVEL</param-name>
 <param-value>ERROR</param-value>
 </init-param>
</servlet>

The options for the LOG_LEVEL parameter are ERROR, WARNING, INFO, DEBUG, and NONE.

The gateway logs messages to System.err and System.out, which will appear in your application
server's logs. In development, set the log level to DEBUG to see the services being invoked by the

Remoting gateway and the results of each invocation.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.4 Service Types

Flash clients can communicate with several different service types running on a Java server. This
section provides an overview of the different service types and how they are used with Flash
Remoting.

7.4.1 JavaBean Services

Macromedia uses the term JavaBean service to refer to a Java class accessed through Flash
Remoting that implements the java.io.Serializable interface (a.k.a. "implements Serializable"). While
JavaBean means many things to many people, we will use Macromedia's term to identify this service
type. In the case of JavaBean services, the fact that a class implements Serializable tells Flash
Remoting that the service class can be stored in the user's session.

JavaBean services must have a no-argument constructor (a constructor that does not take any
arguments) to be used with Remoting. If you have no other constructors, the default no-argument
constructor implicit in the class is sufficient. If you have other constructors, you must explicitly
implement a no-argument constructor. Otherwise, the Remoting gateway returns an error of type
java.lang.InstantiationException because the gateway cannot create an instance of the service even
though it can find the service class.

Error conditions are indicated by passing back an error object whose properties
can be examined for additional details about the error. For the remainder of the
chapter, we say "throws a SuchAndSuchException" as a shorthand way of
saying that the gateway returns an error object whose type property is set to
"SuchAndSuchException".

JavaBean service methods are implemented as instance methods of a JavaBean object. When the
Remoting gateway invokes a JavaBean service method, it creates a new instance of the JavaBean
object and invokes the service method with the arguments provided by the Flash client.

After the Remoting gateway invokes a JavaBean service, it stores the JavaBean instance in the user
session and reuses it for subsequent service method calls by that same user. If the state of the
JavaBean changes with one method call, the Remoting gateway uses it in its changed state for
subsequent method calls. Use JavaBean services only if you want to maintain state in the Remoting
service between service method calls, such as is necessary to create pageable resultsets, as
discussed under Section 7.8.2 later in this chapter.

The following example shows a JavaBean service implementation with an echo() method that simply
takes an argument and returns it back to the client. Note that this example implements
java.io.Serializable and does not need to explicitly define a no-argument constructor, since it has no
other constructors. When a Flash client calls echo(), the Remoting gateway stores an instance of
JavaBeanService in the session and reuses it for subsequent calls to the same service by the same
client.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class JavaBeanService
 implements java.io.Serializable {
 public Object echo (Object obj) {
 return obj;
 }
}

7.4.2 Java Class Services

Java class services are simply Java classes with no restrictions other than that they do not implement
java.io.Serializable. Java class services must have a no-argument constructor as described for
JavaBean services.

Like JavaBean services, Java class service methods are implemented as instance methods of the Java
object. For each service method invocation, the Remoting gateway creates a new instance of the
Java class service. The following example of a Java class service provides the same functionality as
the previous JavaBean service example. The difference is that it does not implement
java.io.Serializable, so the Remoting gateway creates a new instance of the Java class service each
time echo() is called by a Flash client (recall that, in contrast, JavaBean instances are stored in the
user session for subsequent service method calls by that same user):

public class JavaClassService {
 public Object echo (Object obj) {
 return obj;
 }
}

7.4.3 Enterprise JavaBean (EJB) Services

Enterprise JavaBeans (EJBs) are the J2EE model for distributed component development. For more
information on EJB design and development, refer to Enterprise JavaBeans by Richard Monson-Haefel
(O'Reilly). Any EJB available to the web application within which Flash Remoting is running can be
used as an EJB service. That is, you may use both remote and local entity and session EJBs as Flash
Remoting services.

To use an EJB service, a Flash client identifies the service using the EJB's JNDI name (see Section
7.6.2 later in this chapter for more on JNDI names). The Flash client can then invoke any home
interface method using this service. The most common use is to call create(), but the Flash client
can also call finders on entity bean home interfaces. If the result of the call on the home interface is
an EJB, Flash Remoting stores that instance in the user session and sends the Flash client back a
NetServices object, which can be used to call methods on that EJB.

If you are not familiar with remote and local entity sessions, home interfaces,
and finders, refer to the EJB resources cited in Appendix B.

Example 7-1 shows the client-side ActionScript code for using an EJB with the JNDI name
java:comp/env/ejb/EjbService. The service variable is essentially a reference to the EJB home

interface, and the Flash client invokes the create() method on it. Invoking the create() method
creates a new instance of the EJB and passes it as the result to the create_Result() method on the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flash client. The create_Result() method then calls the echo() method on the EJB. Thus, we have
demonstrated how to create an EJB, pass a reference to it back to Flash, and allow Flash to invoke
methods on the EJB as a Remoting service itself.

Example 7-1. Invoking a method on an EJB from Flash

// Identify the EJB with JNDI name "java:comp/env/ejb/EjbService"
var service = gatewayConnection.getService("java:comp/env/ejb/EjbService", this);

// Create an instance of the EJB
service.create();

// The result handler for create() receives a reference to the EJB
function create_Result(ejb) {
 // Call echo on the created EJB
 ejb.echo("Flash says 'say hi.'");
}

// Handle the result of calling echo().
function echo_Result(result) {
 trace("The EJB said " + result);
}

7.4.4 Servlet Services

Servlet services are simply servlets running in the web application container. A Flash client uses a
servlet service by using the web application context name as the service name and the servlet name,
as it is identified in the web.xml file, as the service method name. For example, consider a web
application named remotingbook and a servlet named ServiceServlet mapped in its web.xml file:

<servlet>
 <servlet-name>ServiceServlet</servlet-name>
 <servlet-class>
 com.oreilly.frdg.java.service.ServiceServlet
 </servlet-class>
</servlet>

Example 7-2 shows the client-side ActionScript code, which creates a service object by specifying the
web application name in quotes ("remotingbook") as the service name. It then invokes the servlet

service as a method of the service object returned by getService().

Example 7-2. Invoking a servlet service from Flash

// The web application name is used as the service name
var service = gatewayConnection.getService("remotingbook", this);

// Call the servlet service as a method of the service object
service.ServiceServlet("Hello.");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Handle the service servlet result
function ServiceServlet_Result(result) {
 trace("ServiceServlet_Result:" + result);
}

Example 7-3 shows a servlet service that accepts an argument list from a Flash client and, for
demonstration purposes, simply returns the same arguments back to Flash. The servlet service
receives the Flash arguments via the FLASH.PARAMS attribute of the request object. It returns a
result by setting the FLASH.RESULT attribute of the request object:

Example 7-3. Servlet service implementation

public class ServiceServlet
 extends HttpServlet
{
 public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException
 {

 // Retrieve the parameter list from the Flash invocation of ServiceServlet()
 List params = (List) request.getAttribute("FLASH.PARAMS");

 // Just echo the parameters back to Flash
 request.setAttribute("FLASH.RESULT", params);
 }
}

There is always a java.util.List in request.getAttribute("FLASH.PARAMS"). If the Flash client provides
no arguments in the service method call, the List is empty.

Macromedia provides a servlet implementation, flashgateway.adapter.java.FlashServlet, that handles
fetching the parameters from and setting the results in the request object's attributes. The following

example shows a ServiceFlashServlet class, which extends FlashServlet to replicate the functionality
of Example 7-3. The FlashServlet.service() method accepts a list of parameters from Flash and
returns an object as the result. The ServiceFlashServlet.service() method does not throw any
exceptions, so if you need to throw a checked exception (an exception that must be caught
somewhere in the call chain) from your servlet service, you must implement your servlet service
manually, as shown in the Example 7-3. Adding a checked exception when extending a method will
cause a compiler error.

import flashgateway.adapter.java.FlashServlet;

public class ServiceFlashServlet
 extends FlashServlet
{
 public Object service (ServletRequest request,
 ServletResponse response,
 List params) {
 // Just echo the parameters back to Flash
 return params;
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In application servers that support the Servlet 2.3 specification, you can configure JSPs as servlets in
your web.xml file as follows:

 <servlet>
 <servlet-name>JspService</servlet-name>
 <jsp-file>/WEB-INF/jsp/service/jspService.jsp</jsp-file>
 </servlet>

With this configuration, you can use the JSP file as a Remoting service in the same way you used a
servlet as a service. Here is what the client-side ActionScript code looks like:

// The web application name is used as the service name
var service = gatewayConnection.getService("remotingbook", this);

// Call the JSP service
service.JspService ("Hello.");

// Handle the JSP servlet result
function JspService_Result(result) {
 trace("JspService_Result:" + result);
}

Here is the server-side code in jspService.jsp:

<%@ page language="java"%>

<%
// Retrieve the parameters sent from Flash
java.util.List params = (java.util.List) request.getAttribute("FLASH.PARAMS");

// Just echo the parameters back to Flash
request.setAttribute("FLASH.RESULT", params);
%>

Servlet services are awkward to use because the service method arguments and result must be
accessed through attributes of the request object. Additionally, developers must implement a new

servlet for each service method they provide to the Flash client. However, servlet services are the
only service type that has direct access to the user request and, therefore, the user session. This
access can be very helpful for developers who need to access, from Remoting services, information
that has been stored in the user session by other objects running in the application.

7.4.5 JMX MBean Services

The Java Management Extensions (JMX) is an optional extension to the core Java technologies that
standardizes management interfaces to remote services. Typically, it is used to manage services
running in a J2EE application server. A managed bean (MBean) is a Java object that represents a JMX
manageable resource. For more information on JMX and MBeans, see
http://java.sun.com/products/JavaManagement.

When used with JRun, Flash Remoting gives Flash clients direct access to MBeans running in JRun as

http://java.sun.com/products/JavaManagement
http://lib.ommolketab.ir
http://lib.ommolketab.ir

MBean services. With access to these MBeans, a Flash client can inspect the state of services
deployed in JRun.

7.4.6 Server-Side ActionScript (SSAS) Services

SSAS is not a standard J2EE technology. It is a feature of JRun and ColdFusion. When used with JRun
and ColdFusion, Flash Remoting gives Flash clients the ability to invoke methods on SSAS objects.

Server-Side ActionScript is covered in detail in Chapter 6 and is not addressed in this chapter.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.5 Datatype Conversions

The Flash Remoting gateway translates ActionScript objects to Java objects when passing
ActionScript objects as method parameters for Remoting service method calls. When it gets the
results of the service call, the gateway translates the Java object results to ActionScript objects for
Flash. It does these translations regardless of the service type and according to the mappings listed
in Tables Table A-3 and Table A-4 in Appendix A.

There are specialized behaviors in these translations that are worth describing here.

7.5.1 ActionScript-to-Java Data Conversion

The Remoting gateway converts objects from ActionScript to Java arbitrarily deep. This means that a
graph of nested objects in ActionScript will become a graph of nested objects in Java, converted
according to the mappings listed in Table A-3. Because the gateway traverses nested ActionScript
objects to do the conversion, it is possible to cause a java.lang.StackOverflowException in the
gateway by passing objects with recursive references. This example shows one way to get into
trouble:

var service = gatewayConnection.getService(
 "com.oreilly.frdg.java.service.JavaClassService", this);

// Create two objects that reference each other.
var top = new Object();
var bottom = new Object();
top.bottom = bottom;
bottom.top = top;

// Creates a stack overflow because of infinite recursion
// when the gateway tries to convert the objects to Java
service.echo(top);

While the preceding example is oversimplified, it is not hard to create recursive references in your
own applications (intentionally or otherwise). Be sure not to use objects with recursive references as
arguments to Remoting service methods.

The gateway preserves references even when converting nested data structures. So, an ActionScript
array of two references to the same ActionScript object will become a Java List of two references to
the same object. For example:

var service = gatewayConnection.getService(
 "com.oreilly.frdg.java.service.JavaClassService", this);

// Create an array of two references to the same object
var obj = new Object();
var refs = new Array(obj, obj);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Ask the service if the objects on the server are equivalent
service.checkReferences(refs);

// The server returns true
function checkReferences_Result (result) {
 trace("checkReferences_Result:");
 trace(" Should be true: " + result);
}

The following service implementation compares the two objects in the List for referential equality and
returns the result:

public class JavaClassService {
 public boolean checkReferences (List objs) {
 return objs.get(0) == objs.get(1);
 }
}

In Table A-3, note that ActionScript objects that are not one of the known types are converted to a
Java object of type flashgateway.io.ASObject. An ASObject is derived from java.util.Map with case-
insensitive keys and with an additional field named type. Its interface is shown here:

package flashgateway.io;

public class ASObject
 extends flashgateway.util.CaseInsensitiveMap
{
 public ASObject();
 public ASObject(String type);
 public String getType();
 public void setType(String type);
}

The Remoting gateway sets the type property of an ASObject to the key used when registering an

ActionScript object in Flash using Object.registerClass(key, class), as discussed in Section 4.7.2.

Since the Remoting gateway converts ActionScript objects to only the Java objects listed in Table A-
3, it cannot call service methods that take parameters that are not in the list. A Flash client calling a
service method updateUser(User user) written as:

public class UserService {
 public void updateUser (User user) {
 Directory.updateUser(user);
 }
}

with client-side ActionScript code written as:

var service = gatewayConnection.getService(
 "com.oreilly.frdg.java.service.UserService", this);

// Create an object with a username property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

var user = new Object();
user.username = "Flash User";

// Send the object to the service's updateUser() method
service.updateUser(user);

will cause a Flash Remoting error similar to: "Service com.oreilly.frdg.java.service.JavaClassService
does not have a method `updateUser' that matches the name and parameters provided."

This problem is that UserService.updateUser() expects a User object, but Flash passes an ASObject.
The type mismatch results in an error.

In order for it be invoked by the Remoting gateway, we must write the service as follows (changes
are shown in bold):

import flashgateway.io.ASObject;

public class UserService {
 public void updateUser (ASObject asUser) {
 // Create a User object from the ASObject
 String username = (String) asUser.get("username");
 User user = new User(username);

 Directory.updateUser(user);
 }
}

This example changes the UserService.updateUser() method to accept an ASObject instead of a User
object. It creates a User object from the properties of the ASObject so that it can use the
application's Directory.updateUser() implementation.

7.5.2 Java-to-ActionScript Data Conversion

After the Remoting gateway receives the results of calling a service method, it converts the result
object for sending back to Flash, according to the conversions listed in Table A-4.

As with ActionScript-to-Java conversion, the conversion is deep in that it accesses nested elements;
however, references are not preserved. The following example shows a method, getTwoOfTheSame(
), that returns a List of two references to the object passed in. We'll invoke this service from Flash to
see if the references point to the same object when they are passed back to the responder function,
getTwoOfTheSame_Result().

public class JavaClassService {
 public List getTwoOfTheSame (Object obj) {
 // Create a List with two references to the same object
 List list = new ArrayList();
 list.add(obj);
 list.add(obj);
 return list;
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following ActionScript shows a Flash client calling getTwoOfTheSame() and checking whether the
two objects returned are references to the same object:

var service = gatewayConnection.getService(
 "com.oreilly.frdg.java.service.JavaClassService", this);

service.getTwoOfTheSame(new Date());

function getTwoOfTheSame_Result (result) {
 trace("Are they equal? " + (result[0] == result[1]));
}

This ActionScript code traces:

Are they equal? false

7.5.2.1 ResultSet

Table A-4 indicates that the Remoting gateway converts a java.sql.ResultSet returned from a service
method call to an ActionScript RecordSet object. However, you should not return a ResultSet that
you have received as the result of a direct JDBC call. Such ResultSets are connected, meaning that
they are backed by an open database connection. If you close the Connection object and close the
live ResultSet before returning it, the gateway cannot convert it. If you do not close the ResultSet so
that the gateway can do the conversion, you will quickly run into issues in the server-side application,
caused by a lack of available database connections or unpredictable behavior in the ResultSet object
itself.

The Flash Remoting Updater release notes mention this issue at
http://www.macromedia.com/support/flash_remoting/releasenotes/mx/releasenotes.html:

Do not serialize a Java ResultSet from JDBC code directly back to Flash. ResultSets are live,
connected objects associated with pooled resources and I/O socket resources such as
Statements and Connections. When a Statement or Connection is closed in JDBC code, all
ResultSets associated with them are also automatically closed. Even if a user decides not to
close a Statement or Connection, they could be closed and reclaimed by the application server
at any time because they are pooled resources. If the ResultSet was closed for any reason, it
will not be available to Flash Remoting for serialization. (#N-36858)

To return the data in a live ResultSet from a service method call, you must first create a
disconnected ResultSet. The JDBC 2.0 API includes an interface, javax.sql.RowSet, that implements
java.sql.ResultSet and is designed to be used in disconnected environments. Sun provides an
implementation of RowSet called sun.jdbc.rowset.CachedRowSet that is suitable for this purpose and
available from http://developer.java.sun.com/developer/earlyAccess/crs.

To convert a connected ResultSet to a disconnected ResultSet, create a RowSet from the connected
ResultSet, as shown Example 7-4.

Example 7-4. Returning a disconnected ResultSet

import java.sql.*;
import javax.sql.*;

http://www.macromedia.com/support/flash_remoting/releasenotes/mx/releasenotes.html
http://developer.java.sun.com/developer/earlyAccess/crs
http://lib.ommolketab.ir
http://lib.ommolketab.ir

import sun.jdbc.rowset.*;

public class JavaClassService {
 public ResultSet getResultSet () {
 Connection conn = null;
 try {
 DataSource ds = (DataSource) new InitialContext().lookup(
 "java:comp/env/jdbc/remotingbook");
 conn = ds.getConnection();

 // Create and execute a SQL statement
 Statement stmt = conn.createStatement();
 ResultSet resultset = stmt.executeQuery("SELECT * FROM test");

 // Create and populate a disconnected ResultSet (CachedRowSet)

 // from the connected ResultSet
 CachedRowSet rowset = new CachedRowSet();
 rowset.populate(resultset);

 // Close resources
 resultset.close();
 stmt.close();
 conn.close();

 // Return the disconnected ResultSet
 return rowset;
 // Exception handling omitted
 } catch (Exception e) {
 // handle exception
 } finally {
 // Close the connection if it exists and is not yet closed
 try {
 if (conn != null && !conn.isClosed()) conn.close();
 } catch (SQLException e) {}
 }
 return null;
}

Using this technique, the Remoting gateway converts the disconnected ResultSet to an ActionScript
RecordSet. For details on using RecordSets in your Flash client, see Section 4.4.

7.5.2.2 PageableResultSet

To enable paging of the results of a service method call using the paging features of ActionScript's
RecordSet object, the result of your service method must implement
flashgateway.sql.PageableResultSet.

For paging of ResultSets, Macromedia provides flashgateway.sql.PagedResultSet, which implements
flashgateway.sql.PageableResultSet and wraps a ResultSet. The constructor of PagedResultSet
accepts the ResultSet to be wrapped and the page size. Using the getResultSet() method from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 7-4 to obtain a disconnected ResultSet, we create and return a PageableResultSet as
follows:

import java.sql.*;
import javax.sql.*;
import sun.jdbc.rowset.*;
import flashgateway.sql.*;

public class JavaClassService {
 public PageableResultSet getPagedResultSet()
 throws SQLException
 {

 // Create and return a PagedResultSet with 20 records per page
 return new PagedResultSet(getResultSet(), 20);
 }

 public ResultSet getResultSet () {
 // See Example 7-4 for implementation
 }
}

7.5.2.3 Java object

When the Remoting gateway converts a Java object that is not one of the known types listed in Table
A-4, it converts it to an ActionScript object using a strategy similar to standard Java serialization. For
each Java object, it creates a new ActionScript object with properties that have the same name as
the internal member variables, regardless of visibility, of the source Java object.

For example, given the following class:

public class User
 implements java.io.Serializable
{
 private String _username;

 public User() {}

 public User(String username) {
 setUsername(username);
 }

 public String getUsername() {
 return _username;
 }

 public void setUsername(String username) {
 _username = username;
 }
}

and the following service method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class UserService {
 public User getUser(String username) {
 return Directory.getUser(username);
 }
}

a Flash client calling getUser() through Flash Remoting receives an ActionScript object with a single
property: _username (not username, as a Java programmer might expect). The Remoting gateway

uses a pass by value strategy for converting Java objects. It converts Java objects to ActionScript
objects by creating a new ActionScript object for each Java object and converting the instance
variables of the object to the type defined in the standard conversions. If the member instance is
another regular Java object, it is converted according to the same rules.

There are a couple of issues with this approach. In Java development, a convention has emerged
from the JavaBean specifications in which Java developers create public property accessors for
private object state. They define an object's interface using methods called property accessors,
named getPropertyName(), setPropertyName(), and isPropertyName(). The java.beans Java APIs
provide developers with an easy-to-use implementation for inspecting objects that describe
themselves in this manner. Many APIs and frameworks including the Java Standard Tag Libraries
(JSTL), and Jakarta Struts make extensive use of JavaBean property introspection.

Flash Remoting does not use an object's property accessors when converting a Java object to
ActionScript. It uses the object's internal state, which ends up giving the Flash client a view of the
object's internal state but not the interface defined by the developer of the Java object. Not only does
this conversion technique expose information to Flash clients that is not available even to Java code
running on the server, but it does not send the information to Flash that the developer of the Java
object intended all clients of the object to see.

While Macromedia's pass by value approach for converting Java objects is one valid way to convert
an object's state for use in Flash, it is not very useful for Java or Flash developers who end up with
Java and ActionScript versions of the same objects that may look nothing alike. A more intuitive and
useful approach is to convert Java objects to ActionScript using the Java object interfaces rather than
their internal state. The following section discusses techniques for applying this approach.

7.5.3 Converting Using JavaBean Introspection

Automatic conversion between Java objects and ActionScript objects using JavaBean introspection is
provided by an open source project called ASTranslator (ActionScript Translator). ASTranslator is
available and documented at http://carbonfive.sourceforge.net/astranslator and is sponsored by
Carbon Five, Inc.

7.5.3.1 Converting datatypes from ActionScript to Java

We have seen that service methods called through Flash Remoting can only take the Java objects
listed in Table A-3 as their parameter types. This leaves the job of converting ASObjects to
application-specific Java objects up to the Java developer. For simple objects, this is not a difficult
task. However, for complex objects that are composed of other objects, this task quickly becomes
tedious and the implementation becomes brittle.

http://carbonfive.sourceforge.net/astranslator
http://lib.ommolketab.ir
http://lib.ommolketab.ir

ASTranslator gives Java developers a mechanism to convert ASObjects to native Java objects using
JavaBean introspection. The following example uses ASTranslator to convert the asUser ASObject

object to a User object:

import flashgateway.io.ASObject;
import com.carbonfive.flash.ASTranslator;

public class UserService {
 public void updateUser (ASObject asUser) {
 ASTranslator translator = new ASTranslator();
 User user = (User) translator.fromActionScript(asUser);

 Directory.updateUser(user);
 }
}

ASTranslator requires that the type field of the ASObject parameter equal the class name of the Java

object it should be converted to. With this information, ASTranslator converts a complex ASObject to
a complex Java object arbitrarily deep. To set the type field, the ActionScript object must be

registered in Flash with an identifier that equals the destination Java object class name.

The following example shows how to define an ActionScript User class and register it with a key equal
to the class name of the User Java object on the server. This key becomes the value of the type field

of the destination ASObject when the User object is sent by Flash to the Remoting gateway. This
example creates a new ActionScript User object, sets its username property, and calls the

updateUser() service method shown in the preceding code excerpt:

var service = gatewayConnection.getService(
 "com.oreilly.frdg.java.service.UserService", this);

User = function () {};
Object.registerClass("com.oreilly.frdg.java.user.User", User);

var user = new User();
user.username = "Flash User";

service.updateUser(user);

ASTranslator creates a new instance of the destination Java object type and sets its properties using
JavaBean introspection according to the keys and their values in the source ASObject. The
destination Java object must have a no-argument constructor and implement java.io.Serializable in
order to be created by ASTranslator. ASTranslator preserves references as it does this conversion.

7.5.3.2 Converting datatypes from Java to ActionScript

Table A-4 lists the datatype conversions that the Remoting gateway performs when going from Java
to ActionScript. ASTranslator converts Java objects to ASObjects using JavaBean introspection so
that the ASObject can be returned as the result of a service method call. ASTranslator respects the
conversions explicitly handled by the Remoting gateway and preserves object references when
converting Java objects to ActionScript objects. Any object that is not converted by ASTranslator is
left as-is, to be converted by the Remoting gateway. The Remoting gateway converts Java ASObjects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to ActionScript objects by creating a new ActionScript object for each ASObject and setting an
ActionScript object property for each key in the ASObject. The Flash client receives ActionScript
objects that have property names and values that match the original Java object properties on the
server.

The following example converts a Java User object to an ASObject using ASTranslator and returns the
ASObject. The Remoting gateway converts the ASObject return value to an ActionScript object that
has the same properties as the properties of the original User Java object:

import flashgateway.io.ASObject;
import com.carbonfive.flash.ASTranslator;

public class UserService {
 public ASObject getUser (String username) {
 User user = Directory.getUser(name);

 return (ASObject) new ASTranslator().toActionScript(user);
 }
}

Since they are being converted for sending over the network, Java objects must implement
java.io.Serializable to be converted by ASTranslator.

ASTranslator also sets the type property of each ASObject it creates to the class name of the source

Java object. Combined with the behavior of Object.registerClass(), discussed in Chapter 4, and the
ASTranslator convention of registering classes in ActionScript using the Java class name they should
be converted to, ASTranslator facilitates a seamless mapping between ActionScript objects in Flash
and Java objects in the server-side application.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.6 Service Lookup

This section describes the process for identifying, locating, and invoking services through the
Remoting gateway.

When multiple services methods are invoked in a single frame of a Flash movie, Remoting on the
Flash client aggregates multiple service method calls in a single HTTP request. On the server, The
Remoting gateway handles each service method call individually. The following discussion applies to
both individual and aggregated service method calls.

7.6.1 Identifying Services

When a Flash client connects to a service using NetConnection.getService(), the gateway tries to
locate the named service that is passed as the first argument. For JavaBean and Java class services,
the service name (or, more formally, the service identifier) is the full class name, including the
package, of the service implementation class. This ActionScript example creates a service reference
to a Java class service with class name "com.oreilly.frdg.java.JavaClassService":

var service = gatewayConnection.getService(
 "com.oreilly.frdg.java.JavaClassService", this);

For EJBs, the service name is the JNDI name of the EJB as it is accessed from within the servlet
container. The following ActionScript example creates a service reference to an EJB service with JNDI
name "java:comp/env/ejb/EjbService".

var service = gatewayConnection.getService(
 "java:comp/env/ejb/EjbService", this);

For servlets, the service name is the web application context name (i.e., the URL prefix that identifies
your web application). The following ActionScript example creates a service reference to the web
application named mywebapp. The service name does not include any servlet services that may
invoked on the service object reference at a later time.

var service = gatewayConnection.getService("mywebapp", this);

For MBeans, the service name is the name of the JMX object under which the MBean is registered.
This ActionScript example creates a service reference to an MBean named DeployerService in the
DefaultDomain MBean server. The format of this identifier is defined by the JMX standards.

var service = gatewayConnection.getService(
 "DefaultDomain:service = DeployerService", this);

7.6.2 Locating Services

Calling gatewayConnection.getService() does not result in the Flash client communicating with the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

server. The Flash client doesn't contact the server until the client-side ActionScript makes the first
method call on the service. When the Remoting gateway receives the first service method call, it tries
to locate the service. If it is found, the gateway tries to invoke the specified service method on it on
behalf of the Flash client. Because they are two separate steps, the gateway may succeed in finding
the service but fail to invoke the service method.

The gateway uses the service identifier to locate services in the following order:

JavaBean1.

Java class2.

EJB3.

Servlet4.

JMX MBean5.

Server-Side ActionScript6.

For platforms in which a particular service type is not supported, the gateway does not try to locate a
service of that type. For example, Flash Remoting does not support EJBs when running on Sun ONE
Web Server, so the gateway would not look for EJB services in that case.

The gateway identifies JavaBean services by looking for the identified class in the classpath of the
gateway's classloader. If it finds the class and the class implements java.io.Serializable, the gateway
uses the JavaBean as the service.

Classloaders in J2EE web applications can get interesting. A classloader is responsible for locating
Java classes in its classpath. In an application server, classloaders have a hierarchy. Each web
application has a classloader with a classpath specific to that web application. If the web application
classloader can not find a class, the next classloader above it tries to locate the class within its
classpath, and so on until either the class is found or all classloaders in the hierarchy have failed to
find the class.

Our installation instructions for Flash Remoting recommend installing the flashgateway.jar file in the
WEB-INF/lib directory of your web application. In this location, the Remoting gateway uses the
classloader for your web application when trying to locate Java classes. It will be able to locate all
classes in your web application and in the classpath of all classloaders above your web application. If
you install flashgateway.jar in another location-say, the classpath of your application server-it will
not be able to see classes in classloaders lower in the hierarchy and will therefore fail to find services
implemented by those classes.

If the gateway does not find a JavaBean service, it simply looks for the identified class in the
classpath of the gateway's classloader. It uses the class as a Java class service if it finds it.

The gateway next looks for an EJB in JNDI using the service identifier. JNDI (Java Naming and
Directory Interface) is the standard J2EE interface for organizing and locating objects regardless of
their actual location. The entry point to JNDI is an InitialContext object. The Remoting gateway uses
the default InitialContext returned by new InitialContext() to look up the EJB. Configuration of your
default InitialContext depends on your application server platform. Basically, the JNDI name you use
to look up the EJB from within a servlet in your web application is the JNDI name to use as the
service identifier in Flash. If the gateway finds the named EJB in JNDI, it uses the named EJB as the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

service.

The gateway next looks for servlet services by first locating a web application ServletContext object
with same name as the service identifier. If it finds the ServletContext, the gateway then looks for a
servlet with the same name as the service method in that ServletContext. If it finds both the named
ServletContext and the servlet, the gateway uses the servlet as the service. As described in "Servlet
Services" earlier in this chapter, the name of the service method in ActionScript must match the
name of a servlet defined in your application's web.xml file.

This example shows a servlet named ServiceServlet:

<servlet>
 <servlet-name>ServiceServlet</servlet-name>
 <servlet-class>
 com.oreilly.frdg.java.service.ServiceServlet
 </servlet-class>
</servlet>

If the gateway is running in JRun and the service has not been found yet, the Remoting gateway
continues trying to locate the service by next looking for a JMX MBean. It looks for an MBean with the
name provided as the service identifier in Flash. If it finds the MBean, the gateway uses it as the
service.

Finally, if it has found none of the other service types and it is running in JRun, the gateway looks for
a Server-Side ActionScript service. The gateway locates the SSAS service by mapping the dot-
separated service identifier to a file path that the gateway looks for, relative to the web application
root. Using Example 6-7, the SSAS service com.oreilly.frdg.Directory maps to the file
com/oreilly/frdg/Directory.asr in the web application root. If it finds the file, the gateway uses it as
the service. Note that the gateway ignores SSAS services in the protected WEB-INF and META-INF
directories.

If the gateway is unable to find a service with the name identified by the Flash client, it throws a
flashgateway.adapter.NoSuchServiceException, which is returned to Flash's onStatus() handler as an
error object. The description property of the error object includes the name of the service it was

trying to find.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.7 Invoking Service Methods

Once the gateway has successfully located the service identified by the Flash client, it tries to invoke
the service method called by the client. The gateway must first get a reference to an instance of the
service. It uses introspection to locate the service method and then call it.

For each service type, the gateway uses a different technique to get a reference to an instance of the
service. Regardless of the service type, once the gateway has a reference to the service it invokes
the service method in the same manner. It looks for a method that has the same case-insensitive
name and parameters that match the converted parameters from ActionScript. If it can not find a
matching service method, the gateway throws a java.lang.Exception with the message "Service
[service name] does not have a method [method name] that matches the name and parameters
provided." Refer to Section 7.5.1 earlier in this chapter for an example of how to remedy this error.

If the gateway finds the service method, it invokes the method using introspection and returns the
result to the Flash client after converting the Java objects in the result to ActionScript objects. If the
result implements flashgateway.sql.PageableResultSet, the gateway saves a reference to the result in
the user session so that the Flash client can use the paging features of the RecordSet component.

7.7.1 Invoking Service Methods on JavaBeans

For JavaBean services, the gateway first looks to see if an instance of the service is already in the
user session. It looks for the JavaBean instance using the service class name as the attribute name in
the user session. If the service is not already there, the gateway creates a new instance using
Class.forName("JavaBeanService").newInstance() and the service identifier, "JavaBeanService" in
this example, as the name of the class to instantiate and puts the new instance in the user session.

7.7.2 Invoking Service Methods on Java Classes

To get a reference to a Java class service method, the Remoting gateway simply creates a new
instance of the Java class using Class.forName("JavaClassService").newInstance() and the service
identifier, "JavaClassService" in this example, as the name of the class to instantiate.

7.7.3 Invoking Service Methods on EJBs

The Remoting gateway gets a reference to an EJB service by looking it up in JNDI using the service
identifier as the EJB name to look up.

In addition to the standard handling of method invocation, if the result of a method call on an EJB
service implements javax.ejb.EJBObject or javax.ejb.EJBLocalObject, the gateway stores a reference
to it in the user session and returns the EJB to the Flash client, wrapped as a NetServices object that
may then be used to call methods directly on the EJB. This process is shown in Example 7-1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.7.4 Invoking Service Methods on Servlets

As described earlier under Section 7.6.2, the gateway obtains a reference to a servlet service by first
locating a ServletContext with the same name as the service identifier provided by Flash and then
looking for a servlet in that context with a name that matches the method name called by Flash. As
with other service types, the gateway throws a flashgateway.adapter.NoSuchServiceException if it
cannot find the servlet; however, the error message identifies the web application name and the
service identifier it cannot find, not the servlet name.

The gateway puts the method parameters in the FLASH.PARAMS attribute of the request property
and forwards the request and response to the servlet. The servlet's service() method is invoked as

a result of this forwarding action, not as a result of using introspection.

When the servlet's service() method completes, the gateway returns to Flash the object that the
servlet has set in the FLASH.RESULT attribute of the request property. Refer to the discussion

following Example 7-3 under Section 7.4.4.

7.7.5 Invoking Service Methods on MBeans

When running in JRun, the Remoting gateway invokes a service method on a JMX MBean using the
standard JMX APIs. It creates a standard JMX server invocation from the service identifier and
method parameters provided by the Flash client.

7.7.6 Exceptions

Regardless of the service type, if a service method call throws an exception, the Remoting gateway
returns the exception of type java.lang.reflect.InvocationTargetException to the Flash client. This
example shows a service method, throwException(), that always throws an exception of type
java.lang.Exception:

public class JavaClassService {
 public void throwException()
 throws Exception
 {
 throw new Exception("This is a service exception.");
 }
}

The exception is returned to the onStatus() method of the ActionScript responder object as an error
object. See Chapter 4 for information on handling errors returned from Flash Remoting. Tracing the
contents of the error returned to the Flash client when it calls the throwException() service method,
we get:

 code: SERVER.PROCESSING
 level: error
 type: java.lang.reflect.InvocationTargetException
 rootcause:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 description: Service threw an exception during method invocation: null
 details: java.lang.reflect.InvocationTargetException
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 ...
 at flashgateway.Gateway.invoke(Gateway.java:194)
 at flashgateway.controller.GatewayServlet.service(GatewayServlet.java:56)
 ...
 at java.lang.Thread.run(Thread.java:536)
Caused by: java.lang.Exception: This is a service exception.
 at com.oreilly.frdg.java.service.JavaClassService.throwException
 (JavaClassService.java:124)

Note that the preceding listing shows the exception type property as the string
"java.lang.reflect.InvocationTargetException" and not "java.lang.Exception". This

discrepancy is an oversight in the design of the Remoting gateway. The InvocationTargetException is
created when a method called using introspection throws an exception. The
InvocationTargetException wraps the source exception (in this case, java.lang.Exception) and makes
it available in Java via InvocationTargetException.getTargetException(). We can see the nested
target exception under Caused by: in the details of the error. However the type, description, and
details fields of the error object are populated by the properties of the InvocationTargetException,

not the exception thrown by the service method. The Remoting gateway should return an error
object to Flash populated by the target exception, not by the InvocationTargetException.

This behavior is unfortunate. Throwing exceptions is a well-established way of handling exceptional
cases in Java applications. Code that is using an object that can throw exceptions can inspect the
exception to determine what went wrong and what to do about it.

A Flash client could make a decision based on the type of exception if it were passed the real
exception thrown by the service method as an error object. If the type field were the class name of

the exception thrown by the service (in this case, java.lang.Exception), not an
InvocationTargetException, the Flash client could perform its own error handling based on the type of
exception.

The Remoting gateway's behavior of throwing an InvocationTargetException when a service method
throws an exception doesn't pertain when using servlet services. Since servlet services are invoked
using standard servlet dispatching and not introspection, exceptions thrown by servlet services are
returned directly to the Flash client.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.8 Architecture and Design

Flash Remoting provides the means for Flash clients to communicate efficiently with server-side
applications. When using Flash Remoting for J2EE, you are either building a new application with a
Flash interface or adding Flash Remoting to an existing application to support a new Flash interface.
In either case, you may be supporting both Flash and traditional HTML interfaces.

This section presents strategies for including Flash Remoting in your Java application architecture.

7.8.1 Use a Service-Oriented Architecture

Although you can directly access and invoke methods on servlets, JSPs, MBeans, and entity and
session EJBs with Flash Remoting for J2EE, you shouldn't necessarily do so. If possible, you should
avoid exposing Flash developers to the details of how you have implemented the application
functionality. Instead, you should create JavaBean and Java class services that provide a simple,
clean interface for Flash clients. Have the JavaBean and Java class services invoke methods of your
application to provide those services to Flash clients.

A service-oriented architecture (SOA) describes an application designed to expose a set of loosely
coupled business services that can be accessed by a range of clients to assemble application
functionality. Clients may be J2EE or .NET applications or Flash clients. A service-oriented
architecture makes for applications that are flexible, scalable, and able to collaborate with other
applications running on the network.

Enterprise application developers are rapidly adopting service-oriented architectures. In the J2EE
world, session EJBs are enterprise service implementations. Across technology platforms, SOAP-
based web services are rapidly becoming a popular technology for supporting service-oriented
architectures. The EJB 2.1 specification requires that all J2EE application servers provide the ability to
expose Stateless Session Beans as web services. Microsoft's .NET architecture already relies heavily
on web services. In addition, the major packaged application vendors, such as SAP, PeopleSoft, and
Siebel, have announced support to varying degrees for web services and are providing SOAP
interfaces to their core products.

Flash Remoting is designed to facilitate creating applications that use a service-oriented architecture
to expose services to Flash clients. While Flash Remoting uses Macromedia's own AMF message
format, the philosophy is very similar to SOAP-based web services. Expect Macromedia to leverage
standards such as SOAP-based web services moving forward. For example, Flash Pro and Flash
Player 7 have native support for SOAP-based web services in addition to AMF-based Flash Remoting.

Developers should use Flash Remoting to support a service-oriented architecture in their own
applications. These applications will be flexible enough to be used by rich Flash clients to support
traditional HTML-based presentation layers and to expose their functionality through web services.

7.8.2 Create a Business Delegate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To use a service-oriented architecture with Flash Remoting, simply create an object within your web
application that is designed to explicitly expose services to Flash. Using another object to get the real
work done is called delegation. In the terminology of the Sun J2EE Blueprints, such objects are
Business Delegates. They can be used to present an encapsulated, Flash-friendly interface, exposed
through the Flash Remoting gateway, that invokes methods on EJBs or any other object in the
application server on behalf of the client. For more information on the Business Delegate pattern, see
http://java.sun.com/blueprints/patterns/BusinessDelegate.html.

Using a Business Delegate addresses the need to create Remoting service methods that accept
ASObjects as method parameters instead of business objects appropriate to your application. The
Business Delegate has service methods that accept and return the known Flash Remoting object
types. All that a service method needs to do is convert the Remoting objects, usually ASObjects, to
application-specific objects, invoke methods on other application objects to get the work done, and
convert the results back to Remoting objects for returning back to Flash.

In most cases, the Business Delegate can be a simple Java class service. Consider an application that
has a Directory class that manages user information stored in User objects. Clients to a Directory
object can retrieve users by name, update a user's data, and retrieve a list of all users. Here is a
simplistic implementation:

public class Directory {
 static Map users = new HashMap();

 public static void updateUser (User user) {
 users.put(user.getUsername(), user);
 }

 public static User getUser (String username) {
 if (!users.containsKey(username)) {
 users.put(username, new User(username));
 }
 return (User) users.get(username);
 }

 public static Collection getAllUsers () {
 return users.values();
 }
}

The Directory class provides simple methods for creating, updating, and retrieving User objects. In
this example, the Directory class stores User objects in a HashMap object in memory. In the real
world, the Directory class would probably use a database for storage.

The Directory class cannot be used directly through Flash Remoting, because its methods accept and
return native Java User objects, not ASObjects. The Remoting gateway will not convert method
parameters sent from Flash into User objects, so the Directory class will not be able to find a service
method with a matching name and parameters. The solution is to create a Business Delegate for
Flash clients to access through Remoting.

The following example shows a Business Delegate for the Directory class, implemented as a Java
class service called UserService. The UserService class has a method for each method in the
Directory class but it accepts and returns ASObjects instead of User objects. The UserService class

http://java.sun.com/blueprints/patterns/BusinessDelegate.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

uses ASTranslator to convert ASObjects to User objects and then invokes a method of the Directory
class with the same name. When a method of the UserService class obtains the results from a
corresponding method of the Directory class, UserService converts the User objects back to
ASObjects using ASTranslator again:

public class UserService {
 public void updateUser (ASObject asUser) {
 User user = (User) new ASTranslator().fromActionScript(asUser);
 Directory.updateUser(user);
 }

 public ASObject getUser (String name) {
 User user = Directory.getUser(name);
 return (ASObject) new ASTranslator().toActionScript(user);
 }

 public List getAllUsers () {
 Collection users = Directory.getAllUsers();
 return (List) new ASTranslator().toActionScript(users);
 }
}

Usually, a Business Delegate strategy is sufficient to expose your application's features to Flash
clients through Remoting while keeping your original application architecture intact.

However, in some cases, it is useful to have the Remoting service be stateful, meaning that an
instance of a service persists between service method calls. JavaBean services are stateful. Consider
the getAllUsers() implementation in the preceding example. In a real-world application, it is likely
that the list of users is too large to efficiently return in one chunk to the Flash client. Using a
JavaBean service implementation of the Business Delegate, we can provide simple paging features to
the Flash client.

The following example shows a Business Delegate for the Directory class, implemented as a JavaBean
service called UserService. The getUsers() method gives a Flash client an interface to page through
the entire list of users, count users at a time:

public class UserService
 implements Serializable
{
 List users = null;
 int index = 0;

 public List getUsers (int count) {
 // Get the list of users if we don't have it yet
 if (users == null) users = new ArrayList(Directory.getAllUsers());

 // Based on count, determine the range of indexes for the list of users
 int from = index;
 int to = index + count;
 index += count;

 // Get the sublist of users limited to the range

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 List result = users.subList(from, to);

 // Convert the User objects to ASObjects and return the result
 return (List) new ASTranslator().toActionScript(result);
 }
}

The preceding example omits the obvious need for boundary checking and additional information for
the Flash client, such as the number of users available, but it illustrates the utility of stateful
JavaBean services. The Remoting gateway will persist a single instance of the UserService bean in
the user session for a series of calls to getUsers(), so that the Flash client can request a small chunk
of users at a time.

With Java class and JavaBean services, Java developers should be able to handle all service
implementations for Flash clients. If you wish to expose a service available from a session EJB, create
a Java class service that delegates to the session EJB. In the preceding example, the Directory class
could be implemented as a session EJB that the UserService bean looks up in JNDI to handle the
work of each service method call.

When integrating Flash Remoting with an existing application, the trick is to identify the services
needed by the Flash client. It is possible that business logic that would support these services is
combined with code that renders HTML views. In this case, refactoring is required to extract the
business logic code to classes independent of presentation code.

Refactoring is the process of changing a software system in such a way that it
does not alter the external behavior of the code yet improves its internal
structure. See Refactoring by Martin Fowler (Addison-Wesley). Refactor code to
improve reusability and readability and to make it easier to make changes and
add functionality.

The newly refactored classes will become the application services used by both the Remoting
Business Delegate services and the presentation code to carry out their respective tasks.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.9 Referencing the Request and Session

Flash Remoting services do not have access to the HttpServletRequest request object created by the
Flash client Remoting service call. Nor do they have access to the HttpSession user session object
associated with that request. Many developers using Flash Remoting find that they need access to
both. The request object has useful information about the user making the request. Developers
frequently use the user session object to store information specific to that user while the user is using
the application.

The most common reason for accessing the request and user session objects is to integrate with a
user-authentication system, either standard Container-Managed Security supported by Servlet 2.3
J2EE application servers or a homegrown system that stores information in the user session object.

If we can gain access to the HttpServletRequest object, we can also access the user session via
HttpServletRequest.getSession(), so let's focus on the first goal. One solution is to write a servlet
filter, available in Servlet 2.3 application servers, that associates the request with the current thread
before the request is handled by the Remoting gateway. Servlet filters can act on the request and
response objects before and after they are handled by a servlet.

By associating the request with the current thread before the request is handled by the Remoting
gateway, any code running in the same thread can retrieve a reference to the request. Two classes
provide this implementation: RequestContextFilter and RequestContext. Let's look at
RequestContextFilter first:

public class RequestContextFilter
 implements javax.servlet.Filter
{
 public void init(FilterConfig config) throws ServletException { }
 public void destroy() { }

 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws IOException, ServletException
 {
 RequestContext.setRequest(request);
 chain.doFilter(request, response);
 }
}

RequestContextFilter sets the request in the RequestContext and calls the next filter in the filter
chain. A filter is defined and mapped to a URL in the application's web.xml file similarly to a servlet.
You should map RequestContextFilter to the Flash Remoting gateway URL, as shown here, to set the
request in RequestContext for every Remoting service call:

<filter>
 <filter-name>RequestContextFilter</filter-name>
 <filter-class>com.oreilly.frdg.java.RequestContextFilter</filter-class>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</filter>

<filter-mapping>
 <filter-name>RequestContextFilter</filter-name>
 <url-pattern>/gateway</url-pattern>
</filter-mapping>

RequestContext, shown here, provides methods for setting and retrieving the current request and for
getting the HttpSession directly from the current request:

public class RequestContext {

 // ThreadLocal() is associated with the current thread.
 private static ThreadLocal localRequest = new ThreadLocal();

 // Get the request from the current thread.
 public static ServletRequest getRequest () {
 return (ServletRequest) localRequest.get();
 }

 // Set the request in the current thread.
 public static void setRequest (ServletRequest request) {
 localRequest.set(request);
 }

 // If it is an HttpServletRequest, get the request from the current thread.
 public static HttpServletRequest getHttpRequest () {
 if (getRequest() instanceof HttpServletRequest) {
 return (HttpServletRequest) getRequest();
 }
 return null;
 }

 // Get the session from the HttpRequest in the current thread.
 public static HttpSession getSession () {
 if (getHttpRequest() == null) return null;
 return getHttpRequest().getSession(true);
 }
}

RequestContext relies on the magical behavior of the java.lang.ThreadLocal class, which gives
developers the ability to associate different instances of an object with each thread in an application.
For more details on using ThreadLocal, see one of the Java books cited in Appendix B.

Use RequestContext.getHttpRequest() to get a reference to the current request from a Remoting
service method when using the RequestContextFilter and RequestContext implementation we just
discussed. The following example is a Remoting service, ContainerLoginService, with a method,
isUserLoggedIn(), that returns true if the current user has logged in using Container-Managed

Security. HttpServletRequest.getUserPrincipal() returns a java.security.Principal object if the user
has logged in through Container-Managed Security:

public class ContainerLoginService {
 public boolean isUserLoggedIn () {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HttpServletRequest request = RequestContext.getHttpRequest();
 return request.getUserPrincipal() != null;
 }
}

We add another method, getLoggedInUser(), to ContainerLoginService in the following example. The
getLoggedInUser() service method uses the Directory service to return the logged-in user to a Flash
client. Principal.getName() returns the username of the logged-in user, which we use to look up the
user in the Directory:

public class ContainerLoginService {
 public ASObject getLoggedInUser () {
 if (!isUserLoggedIn()) return null;

 Principal p = RequestContext.getHttpRequest().getUserPrincipal();
 User user = Directory.getUser(p.getName());

 return (ASObject) new ASTranslator().toActionScript(user); }
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.10 Saving and Sharing State

Applications that use Flash for the entire application interface can rely on the Flash client maintaining
state while making multiple calls to the server. State in this context refers to data being held in
memory in either the Flash client or on the server. Unlike traditional HTML interfaces, where the
browser redraws the page for each server request, Flash clients that use Remoting remain as a single
stateful instance while handling multiple server requests. As soon as the Flash client is unloaded or
reloaded, however, the state that the Flash client held is lost. Flash and Java developers have to work
together to preserve the state of the Flash client and restore it when the Flash interface is loaded
again.

Additionally, applications that have both HTML and Flash interfaces will often find that they want to
share state between the two. One example that we have already discussed is a homegrown security
system that uses a User object saved in the user session both to determine if a user is logged in and
to retrieve information about that user. A Flash client, the Remoting services it uses, and the code
that handles the HTML interface all need to access this user information.

For applications that have Flash-only interfaces, one option for saving state is to use an ActionScript
local shared object (an instance of the SharedObject class) to save data to and retrieve data from the
user's computer. Local shared objects are effective as long as the size of the data does not exceed
the maximum configured by the user in his Flash Player settings. That said, you can make additional
requests for local storage by passing the optional minimumDiskSpace parameter to the

SharedObject.flush() method. Furthermore, you can open the user's Flash Player Settings dialog
box, where he can increase the allowed space for local storage, using System.showSettings(1).

However, for situations when the amount of data is too large to save locally, when having the user
approve using additional disk space is undesirable, or when the data needs to be accessed by more
than the Flash client, applications must store and share the state of the data on the server.

7.10.1 Using JavaBean Services to Store Session State

Section 7.9 offers a generic solution for accessing the user session, which can be used as a place on
the server side to store object state. Another solution for storing and sharing state takes advantage
of the fact that JavaBean services are already stored in the user session by the Remoting gateway.
Objects that have access to the user session can access a stored JavaBean service to change its
stored state.

Consider a homegrown authentication system that uses the following custom Authenticator class to
log users in. The Authenticator.login() method looks for a user in the Directory object with the
supplied username. If it finds the user, it stores the User object in the user session under the session
attribute key USER_KEY. Once the User object is stored in the user session, other code can retrieve

the logged-in user by calling Authenticator.getLoggedInUser() and passing in the current request:

public class Authenticator {
 private static final String USER_KEY = "user";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static User login(String username,
 HttpServletRequest request)
 throws Exception
 {
 // Look for a user in the Directory with this username
 User user = Directory.getUser(username);

 // If we don't find it, return null
 if (user == null) return null;

 // Store the logged-in user in the session
 request.getSession().setAttribute(USER_KEY, user);

 // Return the logged-in user
 return user;
 }

 public static User getLoggedInUser(HttpServletRequest request)
 throws Exception
 {
 // Return the user stored in the session
 return (User) request.getSession().getAttribute(USER_KEY);
 }
}

As is, Remoting services cannot use the Authenticator class, because they do not have access to the
current request. We have looked at a solution for getting access to the current request from a
Remoting service by associating the request with the running thread using a servlet filter.

Another solution to this problem is to give the Remoting service a reference to the logged-in user
when the user logs in. So, instead of the Remoting service needing access to the request or user
session, we now need a way to get access to the Remoting service from our application code in the
Authenticator.

The following example is a JavaBean Remoting service called LoginService that gives Flash clients
access to user login information through the service methods isUserLoggedIn() and
getLoggedInUser(). It uses an instance variable, currentUser, to support these service methods.

public class LoginService
 implements java.io.Serializable
{
 private User currentUser = null;

 public User getCurrentUser () {
 return currentUser;
 }

 public void setCurrentUser (User user) {
 this.currentUser = user;
 }

 public boolean isUserLoggedIn () {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 log.info("Checking if user is logged in");
 return currentUser != null;
 }

 public ASObject getLoggedInUser () {
 log.info("Getting logged in user");
 return (ASObject) new ASTranslator().toActionScript(currentUser);
 }
}

Since it is a JavaBean service, the Remoting gateway stores LoginService in the user session under a
session attribute key equal to LoginService's full class name. The following implementation of the
custom ServiceProvider class has a single, static method, getJavaBeanService(), that looks for a
JavaBean service in the user session (given the class of the JavaBean service) and returns a
reference to the JavaBean service. If it does not find an existing JavaBean service, it creates the
service and stores it in the user session so that it will be there when a Flash client accesses it through
Remoting.

public class ServiceProvider {
 public static Object getJavaBeanService(HttpServletRequest request,
 Class serviceClass)
 throws InstantiationException, IllegalAccessException
 {
 // Look for an existing instance of the service.
 String sessionKey = serviceClass.getName();
 Object service = request.getSession(true).getAttribute(sessionKey);

 // If it's not there, create it.
 if (service == null) {
 service = serviceClass.newInstance();
 if (service instanceof Serializable) {
 request.getSession(true).setAttribute(sessionKey, service);
 }
 }

 return service;
 }
}

The following example shows a modified Authenticator.login() method that uses
ServiceProvider.getJavaBeanService() to get a reference to the LoginService Remoting service when
the user logs in. The Authenticator.login() method then gives the LoginService a reference to the
logged-in user using LoginService.setCurrentUser() so that the LoginService can support its service
methods for Flash clients.

public class Authenticator {
 private static final String USER_KEY = "user";

 public static User login(String username,
 HttpServletRequest request)
 throws Exception
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Look for a user in the Directory with this username.
 User user = Directory.getUser(username);

 // If we don't find it, return null.
 if (user == null) return null;

 // Store logged-in user in the session.
 request.getSession().setAttribute(USER_KEY, user);

 // Get the login service.
 LoginService service = (LoginService)
 ServiceProvider.getJavaBeanService(request, LoginService.class);

 // Set logged-in user in the login service.
 service.setCurrentUser(user);

 // Return the logged-in user.
 return user;
 }
}

This technique of accessing JavaBean services stored in the user session is an easy way to share
information between Remoting services and other application classes.

7.10.2 Using Servlet Services to Store Session State

Servlet services are the only service type that has direct access to the request and user session.
Servlet services do not need additional support to access application functionality that requires a
request or user session to store shared user information.

The following example shows a servlet service called LoginServletService that uses the Authenticator
class from the preceding example to provide a login service to a Flash client. The
LoginServletService.service() method retrieves the username from the first item in the
FLASH.PARAMS attribute of the request object, logs the user in using Authenticator.login(), and
returns the logged-in User object to the Flash client by setting it in the FLASH.RESULT attribute of the
request object.

public class LoginServiceServlet
 extends HttpServlet
{
 public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException
 {
 // Get the method parameters.
 List params = (List) request.getAttribute("FLASH.PARAMS");

 // If no parameters just return;
 if (params.isEmpty()) return;

 // The username should be the first parameter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String username = (String) params.get(0);

 try {

 // Log in using the Authenticator class.
 User user = Authenticator.login(username, request);

 // Set the logged-in user as the result of this service call.
 request.setAttribute("FLASH.RESULT",
 new ASTranslator().toActionScript(user));
 } catch (Exception e) {
 throw new ServletException("Error logging in.", e);
 }
 }
}

A Flash client would log into the application using the LoginServiceServlet (presented in the preceding
code listing) as follows:

// Get service references.
var servletServices = gatewayConnection.getService("remotingbook", this);

// Log in as "flashuser".
servletServices.LoginServiceServlet("flashuser");

// Handle the result of calling LoginServiceServlet.
function LoginServiceServlet_Result (user) {
 trace("LoginServiceServlet_Result:");
 trace(" Logged in: " + user);
}

// Define and register the User class
User = function (name) {
 if (this.username == null) this.username = username;
 this.toString = function () { return "User[" + this.username + "]"; };
};
Object.registerClass("com.oreilly.frdg.java.user.User", User);

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.11 Databinding

Chapter 3 discusses databinding Remoting RecordSet results to UI components using ActionScript
DataGlue and DataProviderClass objects. Databinding is a powerful technique for streamlining Flash
and server application integration.

Most enterprise Java applications encapsulate data access in a layer that hides JDBC code from
business application classes. The data access layer accepts and returns business objects instead of
JDBC ResultSets, which means that Remoting services in Java usually send collections of objects back
to Flash instead of sending ResultSets. Collections of objects in Java become arrays of objects in
Flash.

It would be great to be able to databind arrays of objects using DataGlue, just as we do RecordSets.
Fortunately, this is quite easy with a class that extends the DataProviderClass implementation,
RsDataProviderClass, that comes with the Flash Remoting components. The custom
ArrayDataProvider, shown here, extends RsDataProviderClass by defining a constructor that takes an
array as an argument and by defining a method, addAll(), that calls the RsDataProviderClass
implementation of addItem() to add each object in the array to the data provider:

#include "RsDataProviderClass.as"

_global.ArrayDataProvider = function (list) {
 this.init();
 this.addAll(list);
};

// ArrayDataProvider subclasses (i.e., extends) RsDataProviderClass.
ArrayDataProvider.prototype = new RsDataProviderClass();

ArrayDataProvider.prototype.addAll = function (list) {
 if (list != null && list.length != 0) {
 for (var i = 0; i < list.length; i++) {
 this.addItem(list[i]);
 }
 }
};

ArrayDataProvider.prototype.checkLocal = function () {
 return true;
};

In your client-side ActionScript, you can use ArrayDataProvider with DataGlue to bind an array of
objects to a UI component with DataGlue.BindFormatStrings(). Use the object property names as
the values in the format strings. The following example uses ArrayDataProvider to bind an array of
users to a ListBox component named lb_users:

#include "DataGlue.as"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#include "ArrayDataProvider.as"

// Define User class.
User = function (username, realname) {
 this.username = username;
 this.realname = realname
};

// Create an array of Users.
var users = new Array();
users.push(new User("mike", "Mike Wynholds"));
users.push(new User("sam", "Sam Borgeson"));
users.push(new User("don", "Don Thompson"));
users.push(new User("alon", "Alon Salant"));

// Create a data provider with the array.
var dataprovider = new ArrayDataProvider(users);

// Associate (glue) the array of Users to the ListBox component (lb_users).
DataGlue.BindFormatStrings(lb_users, dataprovider,
 "#realname# (#username#"), "#username#");

To use the ArrayDataProvider class to glue Remoting service results to UI components, create the
data provider and bind the array in the service call result handler. The following example
demonstrates calling a Remoting service method, service.getAllUsers(), and databinding the results
of the service call to the lb_users ListBox component using ArrayDataProvider:

service.getAllUsers();

function getAllUsers_Result (users) {
 trace("getAllUsers_Result:" + users);

 var dataprovider = new ArrayDataProvider(users);

 DataGlue.BindFormatStrings(lb_users, dataprovider,
 "#realname# (#username#"), "#username#");
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.12 Security

In this section, we address the various security aspects of using Flash Remoting with Java.
Application security is a broad topic in Java and encompasses many aspects of Java application
development. There are user authentication and authorization systems for managing individual user
access to protected application features. There are the Container-Managed Security features of a
J2EE application server that manage method-level access to EJBs and user authentication security
constraints in the servlet container. There are also the core Java security features that manage
system resource, class, and method access within the JVM (Java Virtual Machine). There are the
security features provided by specific technologies, such as web services. Finally, there is the fuzzy
task of trying to guess how malicious users might try to attack the system and plugging the holes
before they are exploited.

7.12.1 User Authentication and Authorization

Authentication is the process of identifying a user or entity accessing a system. This is usually
implemented with a login process that requires a user to provide a username and password.
Authorization is the process of determining the privileges of an authenticated user. Authorization may
be implemented with custom application logic or using configuration in a J2EE application server to
restrict access to resources based on the user's role.

7.12.1.1 Container-Managed Security

When used with JRun, Flash Remoting clients can provide user credentials using
NetConnection.setCredentials(), as shown here (note that the call to
NetServices.createGatewayConnection() returns a NetConnection object):

var gatewayConnection = NetServices.createGatewayConnection();
gatewayConnection.setCredentials("username", "password");

The user is authenticated by JRun when the Remoting gateway handles service method calls. JRun
uses the user role to authorize access to EJBs and other container-managed resources.

When not running in JRun, applications using Container-Managed Security may have users log in
through an HTML interface or have Flash communicate directly with the security service of the
application server exposed through the standard j_security_check form action.

The following example shows a function, cmLogin(), that submits an HTTP POST request to the
application server's authentication service. The j_security_check portion of the URL,
"http://localhost:8400/remotingbook/j_security_check", and the request parameters,
j_username and j_password, are dictated by the Container-Managed Security portions of the Servlet

2.3 specification. We are essentially using Flash to mimic submitting an HTML form tied into the form-
based login of the container as specified and standardized by the Servlet 2.3 specification:

http://localhost:8400/remotingbook/j_security_check
http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Function to handle container-managed login
function cmLogin (username, password) {
 // Create the object to load the url
 var loader = new LoadVars();
 loader.j_username = username;
 loader.j_password = password;

 // Create the target to handle the result
 var target = new LoadVars();
 target.onLoad = function (result) {
 trace("cmLogin.onLoad: " + result);
 };

 // Log in against the container's j_security_check.
 loader.sendAndLoad("http://localhost:8400/remotingbook/j_security_check",
 target);
}

For more information on using standard form-based login with Container-Managed Security, see
http://www.onjava.com/pub/a/onjava/2001/08/06/webform.html or the books Java Servlet
Programming and JavaServer Pages (both from O'Reilly).

Once a user is logged in, the container makes a java.security.Principal object and role available for
performing authorization checks. This information is available through the two methods
HttpServletRequest.getUserPrincipal() and HttpServletRequest.isUserInRole(). Section 7.9 explains
techniques for gaining access to the user request so that Remoting services can access the container-
managed authentication and authorization information.

With an authenticated user, the servlet container will use the user's information when authorizing use
of other container-managed resources, such as EJBs and security constraints configured in the
application's web.xml file. To restrict access to the Remoting gateway to only logged-in users, add a
security constraint to your application's web.xml file as shown in the following example. Replace
rolename with the name of a role that you have defined in your application and wish to have access

to Remoting services.

<security-constraint>
 <web-resource-collection>
 <url-pattern>/gateway</url-pattern>
 <auth-constraint>

 <role-name>rolename</role-name>
 </auth-constraint>
 </web-resource-collection>
</security-constraint>

7.12.1.2 Home-grown systems

Home-grown authentication and authorization systems range widely in implementation and
complexity. Most rely on storing information in the user session. Section 7.9 and Section 7.10 earlier
in this chapter explain techniques for accessing the user session from Remoting services that can be
used to support custom authentication and authorization.

For tasks such as limiting access to the Remoting gateway based on user information, a servlet filter

http://www.onjava.com/pub/a/onjava/2001/08/06/webform.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

that can deny access based on your own custom criteria and is mapped to the gateway URL is an
appropriate solution.

7.12.1.3 Service authentication

Authentication in service-oriented architectures is a topic of much discussion, especially as it relates
to SOAP-based web services. Many developers believe that services should handle authentication and
authorization for every service method call. Applied to Flash Remoting, this approach requires that
the Flash client provide the user credentials for every service method call. The service method
authenticates the user according to the provided credentials every time a Flash client invokes it.

While authenticating the user every time may seem like overkill, it makes it easier to write
standalone services that are not dependent on the application server or other application code to
authenticate users. If a service needs to know about the user in order to run, it looks up the user
using her credentials and continues.

7.12.2 Restricting Service Access

Flash Remoting is essentially a servlet that uses introspection to invoke methods on a class in the
application server. The class and method are both named by the Flash client. A Flash client can
invoke any method through the Flash Remoting gateway on any class in the application server that
has a no-argument constructor.

This arrangement gives the client a great deal of power over what classes are instantiated on the
server side. A malicious user could write a Flash client to manipulate the server state, access internal
information about the server and application, or use up all the server memory by using classes in the
application server or application. While all classes with no-argument constructors are vulnerable to
this exploit, the ones of greatest concern are classes with easily accessible documentation. The
application server classes and standard Java classes fit this profile. A malicious user can easily find
out what classes are available in any application server or Java distribution by reading the
documentation available online.

A simple exploit of this vulnerability is shown in the following example. In this example, the Flash
client connects to java.util.ArrayList as a Remoting service from a Flash client through Flash
Remoting and invokes ArrayList.addAll() in an infinite loop. This is basically a denial of service
attack, which will fill up the available memory of the application server. Before long, it will crash the
JVM running the application server:

// Use java.util.ArrayList as a JavaBean service.
var service = gatewayConnection.getService("java.util.ArrayList", this);

// Build a nice big list of strings.
var list = new Array();
for (var i = 0; i < 100; i++) {
 list.push("Let's eat memory");
}

// Add the list forever.
this.onEnterFrame = function () {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 for (var i = 0; i < 100; i++) {
 service.addAll(list);
 }
};

Other, more sophisticated exploits may use application server classes as services to change the state
of the running server or access protected information. The following sections outline defensive
measures you can take against certain types of attacks.

7.12.2.1 Use Java security

Flash Remoting does not provide a mechanism to restrict Flash client access to specific services.
Macromedia recommends restricting access to services by enabling the Java security manager for
your application server and editing the Java security policy to allow only the Remoting gateway to
access your service classes.

The Java security manager is responsible for enforcing the security policy for an
application. A security policy is a collection of permissions that are defined in a
security policy file or in code. See Sun's security documentation at
http://java.sun.com/j2se/1.4/docs/guide/security/index.html or Java Security
by Scott Oaks (O'Reilly) for complete coverage of configuring security in Java.

Refer to your application server's documentation for information on enabling the Java security
manager for your application and for the location of the security policy file it uses. Some application
servers install with the Java security manager already enabled, in which case you probably need to
give the Flash gateway access to your service classes to use Flash Remoting at all. For example, in
an installation of IBM WebSphere with the security manager enabled, grant clients permission to
access the package that contains the service class by adding a line to the default permissions granted
to all domains in the websphere_root/AppServer/java/jre/lib/security/java.policy file. For example,
the following line lets users access the Flash Remoting sample classes in the my.services package:

permission java.lang.RuntimePermission "accessClassInPackage.my.services"

A properly configured security policy will prevent the Remoting gateway from accessing the classes
that it does not need to access in the application server, core Java libraries, and your application.

Unfortunately, using the Java security manager to limit service access has its limitations. Most
application servers do not install with the security manager enabled, because it degrades
performance and introduces configuration hassles for developers. The security manager degrades
performance because it has to check permissions for almost everything that happens in the JVM. The
extent of the performance degradation depends on the application server. It is usually from 1 to
10%.

Configuring a security policy can be a tricky task. Simply enabling the security manager and finding
the right location for the security policy file may require digging into the depths of your application
server documentation. Editing a policy file requires a good understanding of the behavior of the Java
security manager and the range of security threats to your application and application server. Testing
the security policy configuration and ensuring that it does not prevent other aspects of your
application from running correctly also add complexity to your development process.

http://java.sun.com/j2se/1.4/docs/guide/security/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The final limitation to using the Java security manager to limit service access is that you cannot write
a security policy that prevents the gateway from using the core Java libraries as services, because
the gateway needs them to operate correctly. A security policy file cannot distinguish between classes
used in the gateway Java code and classes invoked by the gateway as services. So, the ArrayList
exploit discussed earlier is still available.

7.12.2.2 FlashGatekeeper

In the process of writing the security section of this chapter, I became increasing frustrated with the
available options for restricting service access through the Remoting gateway. The security manager
solution recommended by Macromedia is inadequate. It is hard to implement and does not address all
of the issues.

Java developers using Flash Remoting need a simple solution for limiting service
access to the services they have created. The solution should forbid all service
access except those explicitly indicated by the developer. Flash Remoting for
J2EE should provide such a solution but it does not. So, I created one and I
describe it here.

The solution is a Servlet 2.3 filter implementation called FlashGatekeeper. FlashGatekeeper is
documented and available as an open source project at
http://carbonfive.sourceforge.net/flashgatekeeper. FlashGatekeeper uses classes that come with the
Flash Remoting flashgateway.jar file to inspect the AMF message sent by the Flash client. It extracts
information about the services that the Flash client is trying to invoke and determines if the services
are allowed based on the FlashGatekeeper configuration.

If a Flash client tries to invoke a service that is not allowed by FlashGatekeeper, FlashGatekeeper
writes details about the Flash Remoting request to the application server's log files and returns a
standard 403 Forbidden HTTP header. If the service is allowed, FlashGatekeeper allows the request to
continue on to the Flash Remoting gateway.

FlashGatekeeper installs as a JAR file in your application's WEB-INF/lib directory. Configure
FlashGatekeeper in your application's WEB-INF/web.xml file as a servlet filter mapped to the URL of
the Flash Remoting gateway servlet. If the Remoting gateway is mapped to /gateway, configure the
FlashGatekeeper filter as follows:

<filter>
 <filter-name>GatekeeperFilter</filter-name>
 <filter-class>com.carbonfive.flashgateway.security.GatekeeperFilter
 </filter-class>
 <init-param>
 <param-name>config-file</param-name>
 <param-value>flashgatekeeper.xml</param-value>
 </init-param>
</filter>

<filter-mapping>
 <filter-name>GatekeeperFilter</filter-name>
 <url-pattern>/gateway</url-pattern>
</filter-mapping>

http://carbonfive.sourceforge.net/flashgatekeeper
http://lib.ommolketab.ir
http://lib.ommolketab.ir

FlashGatekeeper looks for its configuration file in the classpath of your web application. In this
example, you should put flashgatekeeper.xml in WEB-INF/classes or in another directory in your web
application's classpath. The FlashGatekeeper configuration file is an XML description of permitted
services and service methods. The configuration allows for identifying several services by using a
package name instead of a class or using a JNDI context instead of an object in JNDI.

A sample flashgatekeeper.xml configuration file follows:

<config>
 <service>
 <name>com.oreilly.frdg.java.service</name>
 <method>
 <name>*</name>
 </method>
 </service>
 <service>
 <name>com.oreilly.frdg.java.FlashService</name>
 <method>
 <name>serviceMethod</name>
 </method>
 </service>
 <service>
 <name>remotingbook</name>
 <method>
 <name>*</name>
 </method>
 </service>
 <service>
 <name>java:comp/env/ejb</name>
 <method>
 <name>*</name>
 </method>
 </service>
</config>

This configuration file allows access to only services in or below the package
com.oreilly.frdg.java.service, the service method implementation
com.oreilly.frdg.java.service.FlashService.serviceMethod(), servlet services in the remotingbook web
application, and any EJB services in JNDI under java:comp/env/ejb.

In addition to restricting access to services by service name and service method, FlashGatekeeper
supports restricting service access by user role, as determined by Container-Managed Security. For
detailed information on FlashGatekeeper configuration and features, refer to the FlashGatekeeper
web site.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.13 OpenAMF

OpenAMF is an emerging open source alternative to Macromedia's Flash Remoting for J2EE. OpenAMF
is based on the AMFPHP implementation of Flash Remoting for PHP covered in Chapter 9 and is
available from http://www.openamf.org. The goals of the project are to provide an open source
alternative to Flash Remoting for J2EE and to extend its features to include web services support,
flexible configuration, and more. OpenAMF is maturing quickly, supports the features of Remoting for
J2EE functionality, and provides several additional features.

Much of the discussion in this chapter also applies to the behavior of the OpenAMF gateway. The
architecture and design strategies are certainly applicable. OpenAMF also includes the ASTranslator
project to provide developers with the option of using JavaBean introspection to convert between
Java and ActionScript objects without explicitly referencing ASTranslator in their service
implementations.

[Team LiB]

http://www.openamf.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.14 Wrapping Up

In this chapter, we've looked under the hood of the Flash Remoting for J2EE gateway to understand
how it locates and invokes service methods on the different types of Remoting services available in
Java. We've also looked at techniques for managing application security, sharing information between
Remoting services and other application classes, and binding the results of Remoting service method
calls to Flash UI components.

Today, Flash Remoting for J2EE is the smoothest technology for creating rich Flash interfaces to
enterprise Java applications. Flash clients communicating with service-oriented enterprise Java
applications through Flash Remoting present a model architecture for the next generation of
enterprise applications in which smart, stateful clients assemble remote services to create dynamic
feature-rich user experiences.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 8. Flash Remoting and .NET
The goal of this chapter is to provide an overview of connecting Flash to a Microsoft .NET application.
We assume basic familiarity with .NET concepts in order to focus on Flash Remoting as it related to
ASP.NET development. If you need more background information on .NET, consult the resources
cited in Appendix B. This chapter covers:

The best way to implement a Flash Remoting connection to a .NET application

Converting .NET datatypes into ActionScript datatypes and vice versa

Using the ADO.NET database connectivity library to connect with SQL, Access, and XML data
sources

Dealing with state management between .NET and Flash Remoting

Error handling and throwing exceptions from a .NET application to a Flash application

Flash Remoting for .NET must be purchased separately from Macromedia, although a trial version is
available. Refer to Chapter 1 and Chapter 2 for more on .NET support and configuration.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.1 Overview of .NET

ASP.NET is the web development element of Microsoft's .NET platform. N-tier programming
methodology is at the core of ASP.NET and the .NET platform. This methodology uses an object-
oriented approach for dividing business logic, data access, and presentation logic. This separation,
almost nonexistent in ASP 3.0, allows designers to easily retool business logic for use on platforms
other than web browsers. It also allows developers to easily provide hooks into an application's logic
by sharing business logic as XML web services.

The .NET Framework, sometimes referred to as the Base Class Library (BCL), is an extensive library
of classes that provide basic functionality. By using these classes, developers can decrease
development time with comprehensive implementations for data access, sending email, XML
document manipulation, and much more.

The .NET Framework also allows developers a choice of programming languages, including
JScript.NET, C# (pronounced "C sharp"), and Visual Basic.NET (VB.NET). Accessing the Framework
varies only slightly across these three languages. A single ASP.NET application can mix modules
written in different languages. Following are three analogous code snippets in the three languages.
Each example displays "Hello World!" on the screen when the web page loads.

Visual Basic.NET example:

Sub Page_Load (Sender As Object, E As EventArgs)
 HelloWorld.Text = "Hello World!"
End Sub

C# example:

public void Page_Load (Object Sender, EventArgs E) {
 HelloWorld.Text = "Hello World!";
}

JScript.NET example:

Public void Page_Load (Object Sender, EventArgs E) {
 HelloWorld.Text = "Hello World!";
}

The .NET platform also uses the common type system (CTS) to map common datatypes among all
supported .NET languages. This means a .NET object built in C# can pass parameters to a VB.NET
object without a problem.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.2 Connecting to .NET

Flash Remoting supports integration with ASP.NET pages (.aspx files), .NET class libraries (.dll files),
and XML web services. This support allows developers to construct hooks for Flash interfaces using
whatever back-end implementation they prefer; however, each implementation provides certain
advantages and disadvantages when it comes to Flash Remoting, as shown in Table 8-1.

Table 8-1. Comparison of ASP.NET implementations for Flash Remoting

Connection
method

Advantages Disadvantages

ASP.NET page
Fast development timeBuilt-in session
and application state
managementGood performance

Limited to one result per pageBreaks with
object-oriented design practices if used
without code behindNot remotely accessible
to other applications

.NET class
library

Object-oriented designExposes
multiple methods and propertiesGood
performance

Longer development time and more
planningNot remotely accessible to other
applicationsSession and application state
management is not built-in

.NET XML web
service

Accessible to remote
applications..NET allows quick
development timeBuilt-in session and
application state management

Slow runtime performance

ASP.NET pages (pages with an .aspx extension) must be service-oriented (SO) in Flash Remoting
because they can return only one value to the calling Flash movie. Developing ASP.NET pages is
extremely quick and allows developers to separate presentation and business logic within a page.
However, ASP.NET pages lack the structure of properly programmed and developed assemblies if
done without the benefit of code behind (which we cover later in this chapter under Section 8.2.1.1).
This lack of an object-oriented structure can make it hard to reuse code across multiple ASP.NET
pages without duplicating that code.

ASP.NET pages also have built-in support for session and application state management. State
management allows developers to store values unique to each user session and share variables
across all pages within an ASP.NET application. ASP.NET pages and XML web services are the only
.NET implementations with state management built in. Developers creating assemblies (.dll files)
must build a custom system for handling state management. State management with .aspx pages
and web services is covered later in this chapter.

Typically, developers build ASP.NET applications as collections of object-oriented assemblies, each
encompassing a different focus and containing exposed properties and methods. When an assembly
is called by Flash Remoting, all of the assembly's public methods and properties are exposed to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flash application. Unlike ASP.NET pages, which are compiled at runtime, assemblies must be
compiled using a tool like Visual Studio .NET (VS.NET) or #Develop (See the .NET Editors sidebar).
You can also create .NET applications in a text editor like Notepad and use the command-line
compiler that comes with the free .NET SDK.

.NET Editors

Though you can develop all of your .NET applications using Dreamweaver MX, you may
want to use a third-party editor for other tasks such as compiling assemblies:

Visual Studio .NET (http://msdn.microsoft.com/vstudio)

The de facto .NET development environment. Features such as IntelliSense make it
a very attractive solution.

#Develop (http://www.icsharpcode.net)

Totally free and totally open source. Coded completely in C#, and including many
Visual Studio .NET features such as IntelliSense, #Develop can hold its own against
any other .NET editor.

PrimalCode (http://www.sapien.com)

Comes with all the standard features you might expect, such as PrimalSense
(Sapien's version of IntelliSense) and syntax coloring. Sapien claims that their editor
is very fast due to its small file size footprint.

Of course, you could always just use Notepad. ;-)

A class library can, and should, require more planning at the beginning of your application's
development. Because you need to decide on the methods and properties to expose via its public
interface, it's up to the developers to create the framework for the application. ASP.NET pages inherit
from existing classes in the System.Web namespace with the intent of making implementation as
quick as possible. It is also important to remember that most class libraries don't do anything by
themselves. They usually require an ASP.NET page (or other client, such as a Windows form) to
display output. Properly structured, object-oriented applications connect to and reuse business logic
through these exposed methods and properties. Class libraries, therefore, prevent replication of
commonly used code and allow developers to easily build an application upon a pre-existing
foundation.

Developers use classes as a key component to object-oriented programming (OOP) by grouping
methods and properties based on a specific business method or object. However, when connecting
Flash applications to a .NET back end, issues with datatype conversion can make connecting directly
to business logic a bad idea. The best way to avoid this problem is by developing your classes using
service-oriented (SO) programming. SO programming means creating a wrapper that provides a
specific service by manipulating several business logic components or handling the implementation
itself. This way, a service can be built that is optimized for Flash Remoting and manipulates an
existing .NET back end while exposing multiple methods to your Flash movie.

.NET XML web services are the best development choice when you wish to share data or functionality
over the Internet or other distributed networks. .NET provides a strong API for quickly developing
XML web services based on WSDL 1.0 and other W3C standards. Chapter 10 covers connecting with
XML web services.

http://msdn.microsoft.com/vstudio
http://www.icsharpcode.net
http://www.sapien.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2.1 Connecting to an ASP.NET Page

ASP.NET pages use a custom server control to send and receive data through Flash Remoting. Server
controls are compiled blocks of code that can be reused. (The server control is sometimes known as
the Flash Remoting gateway or Flash Remoting adapter.) A server control also allows developers to
add functionality or create visual elements with very little code. The Flash Remoting custom server
control can grab parameters passed from the Flash Player, return results to the Flash Player, and
bind database data directly to our Flash application.

Let's create a Hello World ASP.NET page that returns a simple string to our Flash application. To get
started, create a new plain text file in any text editor and name it helloWorldpage.aspx.

In our new ASP.NET page, we need to register the Flash Remoting server control, which allows us to
place the server control tag onto the page. To register the Flash Remoting server control, add this
tag to your ASP.NET page:

<%@ Page Language="C#" debug="true" %>
<%@ Register TagPrefix="MM" Namespace="FlashGateway" Assembly="flashgateway" %>

The TagPrefix parameter should always be set to the same thing, for consistency's sake. We'll use
"MM" for Macromedia. The Namespace and Assembly parameters provide the location of our Flash

Remoting server control.

Once our Flash Remoting server control has been registered with the ASP.NET page, we can begin to
communicate with our Flash application. The following code example implements our Flash Remoting
server control using ASP.NET's custom tag structure:

<MM:Flash id="Flash" runat="server" />

Notice the tag's name, MM:Flash, which corresponds to the TagPrefix we set when registering the

server control and the name embedded in the server control. Our Flash assembly will always use the
name "Flash". The id parameter creates a unique identifier for us to reference this server control
programmatically; we'll call our control "Flash". The runat parameter tells our web server to process

this line of code on the server; the server control will not work without this parameter set to
"server".

With the instance of our server control created, we can send and receive data to and from our Flash
application. To do this, we access our Flash Remoting server control instance and use its methods
and properties to communicate with Flash. The main properties for communicating with Flash are:

Params

The Params property is an array of parameters passed by the Flash Player to the ASP.NET page

(used to determine the number of parameters passed and access the parameter values).
Result

Setting the Result property passes the results of our ASP.NET page to the Flash application, as
would a typical return command in most languages.

DataSource

The DataSource property allows us to bind Flash with an ADO.NET-compatible data source

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(SQL, XML, Access, etc.). See Section 8.2.2 later in this chapter for details on binding data
sources.

We'll access our server control's properties from the ASP.NET Page_Load() event, which is called
automatically after our ASP.NET page loads but before any data is shown to the user. The following
example shows how to set the Result property to "Hello World!", the text string that will be
returned to Flash. In this example, we use Flash.Result, where the portion before the period,
Flash, matches the id attribute that labeled the control with the identifier Flash. Here is the C#

code:

<%@ Page Language="C#" debug="true" %>
<%@ Register TagPrefix="MM" Namespace="FlashGateway" Assembly="flashgateway" %>
<MM:Flash id="Flash" runat="server" />
<script runat="server">
public void Page_Load (Object Sender, EventArgs E) {
 Flash.Result="Hello World!";
}
</script>

As written, our ASP.NET Hello World page is already available as a Flash Remoting service (assuming
you've uploaded it to your web server).

To build our Flash application that accesses this ASP.NET page, we'll create a standard Flash
Remoting connection. However, instead of specifying a gateway in the same fashion as we do for
ColdFusion, we create a blank ASP.NET file and name it gateway.aspx. A physical gateway.aspx file is
always required when using Flash Remoting through .NET to establish a connection to the service.
Flash can also use the filename without the .aspx extension to establish a connection to the ASP.NET
page. Here is an example:

NetServices.setDefaultGatewayUrl("http://localhost/myASPApp/gateway.aspx");
gatewayConnection = NetServices.createGatewayConnection();
ASPXservice = gatewayConnnection.getService("helloWorldPage", this);

Make sure that your web.config file has the following entry within its main <configuration> tag:

<system.web>
 <httpModules>
 <add name="GatewayController"
 type="FlashGateway.Controller.GatewayController,flashgateway" />
 </httpModules>
</system.web>

Once Flash has established a connection to the service, we can call our method. Naturally, we should
create the _Result and _Status callback methods to handle the results returned before invoking the
remote method. Since our ASP.NET page does not have a method for Flash to call, Flash treats the
entire ASP.NET page as a method. To call this implicit method, use the identifier helloWorldPage, the
same name as our ASP.NET page (without the .aspx extension):

ASPXservice.helloWorldPage();

function helloWorldPage_Result (Results) {
 trace(Results);
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function helloWorldPage_Status (Status) {
 trace(Status);
}

When our Flash application runs, it accesses our ASP.NET page, establishes a Flash Remoting service,
and displays "Hello World!" in the Output window.

8.2.1.1 Using code behind with ASP.NET pages

Microsoft learned from the shortcomings of ASP 3.0 and has allowed .NET developers to provide
better separation of presentation and business logic within an ASP.NET page. This implementation,
called code behind, allows us to create and register server controls within the presentation layer of
the code and implement that code programmatically in .NET assemblies.

With code behind, a separate page is created to hold the business logic. To keep things consistent,
the name for the code-behind page should be the complete name of the ASP.NET page (including the
.aspx extension), followed by the proper extension for the given programming language. For
example, if the ASP.NET filename is helloWorldPage.aspx, the code-behind file should be named
helloWorldPage.aspx.cs if programmed in C#, or helloWorldPage.aspx.vb if programmed in VB.NET.
If you're using Visual Studio .NET as your programming environment, this is done for you
automatically.

In our helloWorldPage.aspx file, we need to change the Page tag to properly reference the code-
behind page. The Page tag references the namespace and class name for our code-behind page,
using the Inherits tag. If you're using Visual Studio .NET, you'll notice that an extra property is set;
the CodeBehind property is purely a Visual Studio .NET construct and not necessary for those using

other editors or IDEs:

<%@ Page language="c#" debug="true" CodeBehind="helloWorldPage.aspx.cs"
Inherits="FRDG.helloWorldPage" %>

We can also remove the script tag from our ASP.NET page, since we will reimplement the script in

our code-behind page.

In a new file named helloWorldPage.aspx.cs, we create a class named helloWorldPage within the
FRDG namespace. This class is used by our ASP.NET page to implement our Flash server control.

In our code-behind page, we need to reference the necessary .NET namespaces so that we can
access their classes from within our application. You'll notice we also reference the Flash Remoting
assembly as FlashGateway so that we can have access to its classes in the code-behind page:

Using System;
Using System.Web.UI;
Using System.Web.UI.WebControls;
Using FlashGateway;

Finally, let's build a class to implement our ASP.NET page. This class inherits from the ASP.NET Page

object, which every ASP.NET page automatically inherits. (Technically, the ASP.NET page inherits
from the code-behind page, and the code-behind page manually specifies that it inherits from Page.)
Among other things, the Page object invokes the Page_Load() callback function when the page

loads.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Within our class, we must create an instance of the Flash server control to access its properties and
methods. This object must have the same identifier as we used in our server control's id parameter.
Notice that the type, FlashGateway.Flash, is referenced using the namespace, despite the

namespace being imported at the top of the file. The reason for this is that since our server control
instance is called "Flash", it would cause a name clash if we didn't use the full namespace path. We

also define the Page_Load() event handler to provide result data to Flash:

namespace FRDG {
 public class helloWorldPage : System.Web.UI.Page {
 protected FlashGateway.Flash Flash;

 public void Page_Load () {
 Flash.Result="Hello World!";
 }
 }
}

We can reference the code-behind ASP.NET pages from Flash using the same ActionScript code as
the previous section. When the Flash movie is run, the ActionScript trace() method prints "Hello
World!" to the Output window.

8.2.2 Connecting to a .NET Assembly

Class libraries allow Flash to connect directly to business logic. This allows Flash to access multiple
methods and properties from one service.

To explain how an assembly is called from Flash, we'll develop a Hello World assembly and access it
as a Flash Remoting service. To get started, create a new text file named HelloWorldAssembly.cs,
because we're writing it in C#; name it HelloWorldAssembly.vb if you're programming in VB.NET.

Before writing the skeleton for our assembly, we must reference the required namespaces. For our
example file, we'll need the base namespace- System-as well as Flash's namespace
FlashGateway.IO:

using System;
using FlashGateway.IO;

Assemblies and code-behind pages require a different namespace than ASP.NET
pages to implement the Flash component. Assemblies use FlashGateway.IO,
while ASP.NET pages use FlashGateway.

Within our file, let's create the skeleton of an assembly by defining its namespace and class name.
Every assembly requires a class name, but the namespace is an optional item used to help
developers categorize assemblies based on their responsibilities. You'll notice our Flash Remoting
namespace differs from our ASP.NET pages. This is because the ASP.NET page includes a server
control object with additional functionality for use in ASP.NET pages.

using System;
using FlashGateway.IO;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

namespace FRDG {
 public class HelloWorldAssembly {
 // statements go here...
 }
}

Next, we'll add a constructor to initialize any variables for the object and our SayHelloWorld()
method, which returns a string to our Flash application:

public HelloWorldAssembly () {
}

public string SayHelloWorld () {
 return "Hello World!";
}

Compile the assembly into a DLL and place it in your web server's /bin directory.

Unlike their COM predecessors, .NET assemblies need not be registered with
the server. To make an assembly active and available, just place it in the /bin
directory.

Once the DLL file is placed in your web application's /bin folder, Flash Remoting can access the
assembly's methods and properties. Establishing the service in Flash is similar to accessing our
ASP.NET page. The difference is that we use the class's full name (including namespace) as the
service name. Also, unlike our ASP.NET page, we can call the assembly's service methods directly
and create wrappers to catch their results. (Although an .aspx page is compiled into an assembly by
the .NET application server, it is not available in assembly form to Flash Remoting, hence the
difference in the way Flash Remoting deals with assemblies and ASP.NET pages.)

NetServices.setDefaultGatewayUrl("http://localhost/myASPApp/gateway.aspx");
gatewayConnection = NetServices.createGatewayConnection();
AssemblyService = gatewayConnnection.getService("FRDG.HelloWorldAssembly", this);

With a reference to our assembly available as a service, we can access any of its methods directly.
Invoke our assembly's SayHelloWorld() method and trace the Results returned from our

SayHelloWorld_Result() callback function as follows:

AssemblyService.SayHelloWorld();

function SayHelloWorld_Result (Results) {
 trace(Results);
}

function SayHelloWorld_Status (Error) {
 trace(Error);
}

When run, our Flash application displays "Hello World!" in the Output window.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.3 Datatype Conversions

As with Java, ColdFusion, and PHP, Flash Remoting allows several ASP.NET native types to be passed
and converted to ActionScript datatypes. Table 8-2 shows a list of ASP.NET datatypes and how they
are converted to ActionScript datatypes and vice versa. Datatype conversion is bidirectional, unless
more than one ActionScript type is converted to a given ASP.NET type (see the Null and Hashtable
ASP.NET types).

Table 8-2. ASP.NET-to-ActionScript datatype conversions

ASP.NET datatype ActionScript datatype

Double Number

Bool Boolean

String String

Hashtable ActionScript object

Null Null

Null Undefined

Array Ordered (integer-indexed) array

Hashtable Associative (named) array

DateTime Date object

Hashtable XML object

DataView/DataTable RecordSet

Flash Remoting transforms most native ASP.NET datatypes into a comparable ActionScript datatype.
However, complex ASP.NET types, such as classes and structures, are converted into Flash objects
with only the properties intact by means of the ASObject, which I cover later in this chapter. This
means that ASP.NET objects that depend on methods to access properties will not work once
converted to ActionScript datatypes in your Flash application.

Flash also provides supports for arrays, but native arrays only. Complex ASP.NET array objects such
as the ListArray, Enumerable, and StringDictionary cannot be converted into Flash objects.
Considering the size and scope of the .NET Base Class Library, it would be impossible to list all
unsupported datatypes. As a rule of thumb, if it's not in the list provided in Table 8-2, it's not
supported. However, see Tables Table A-5, Table A-6, Table A-7, and Table A-8 in Appendix A, which
show datatype conversions between ActionScript and C# or Visual Basic.NET in more detail.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3.1 Receiving Complex Datatypes from .NET

The Flash Remoting gateway allows .NET to build an ActionScript object and return it to Flash.
Provided the necessary steps are taken, Flash Remoting can return ActionScript objects with custom
types (rather than creating generic ASObjects only). For example, if we've defined and registered a
custom ActionScript class, Book, we can create an ASObject of the Book type and access the
returned data intact from our Flash application. Let's see how this is done.

Example 8-1 shows the client-side ActionScript to define our Book class with three properties (title,
author, and price) and a single method, bookCost(), in Flash.

Example 8-1. Declaring a custom class and registering it for remote
usage

function Book () {
 this.title = "";
 this.author = "";
 this.price = 0;
}

Book.prototype.bookCost = function (qty) {
 return (this.price * qty);
};

Object.registerClass("BookClass", Book);

Notice that the ActionScript code registers the object with Flash as a Book type. This is used to
recreate objects of the Book class when they are returned from the .NET service. Now that we've
seen the client-side implementation, let's look at the server side.

In the Flash Remoting for .NET implementation, the ASObject object inherits from a .NET Hashtable
object and consists of the following important property and method:

ASType

The ASType property takes a string that identifies the name of the ASObject's Flash

counterpart. This is explained in the following example.
Add()

The Add() method adds name/value pairs to an ASObject. The method accepts two
parameters: a name and its corresponding value, such as Add("Name", "Value"). Note that
both the name and value must be strings. To retrieve a value, use syntax similar to an array.
In C#, specify the name of the value to retrieve surrounded by brackets, such as
myASObject["Name"]. In VB.NET, use parentheses, such as myASObject("Name").

To return an object through Flash Remoting, we need to define an instance of ASObject in the
FlashGateway.IO namespace. With the object created, we can define the ASType our object will use.

Here we define a remote method called GetBook() that creates and returns a Book object to Flash:

using System;
using FlashGateway.IO;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

namespace FRDG {
 public class BookAssembly {
 public ASObject GetBook () {
 ASObject aso = new ASObject();
 aso.ASType = "Book";
 aso.Add("title", "FRDG");
 aso.Add("author", "Tom Muck");
 aso.Add("price", "39.99");
 return aso;
 }
 }
}

The Flash Remoting adapter converts our ASObject into the corresponding ActionScript object-in this
case, an object of type Book-on the Flash client.

Flash Remoting does not return an object to Flash if the ASType property is not
set. If nothing else, set ASType to "Object", which generates a generic instance

of the Object class for return to the Flash client.

The final piece of the puzzle is to create the client-side ActionScript that acts as a callback function to
receive the Book object from the .NET service:

function GetBook_Result (Results) {
 // Display the book's title and the cost of one dozen copies
 trace(Results.title);
 trace(Results.bookCost(12));
}

Now invoke the .NET remote method as follows:

#include "NetServices.as"

var myURL = "http://localhost/frdg/flashservices/gateway.aspx";
var servicename = "FRDG.BookAssembly";

NetServices.setDefaultGatewayURL(myURL);
var connection = NetServices.createGatewayConnection()
var bookService = connection.getService(servicename, this);

bookService.GetBook();

Once our GetBook_Result() callback handler receives the object, it calls the bookCost() method and
traces the book's cost in the Output window (in this case, it displays the cost of a dozen books).

8.3.2 Sending Complex Datatypes to .NET

Flash Remoting also has strong support for sending complex datatypes from Flash to .NET
applications. This feature is typically used to pass classes or structures as parameters to a .NET
method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

First, we declare the object on the client side. The ActionScript code is the same as shown in Example
8-1 in the previous section.

When you pass a complex ActionScript object to a .NET remote method, it arrives as an object of
type ASObject. The following C# class defines an InsertBook() method that accepts an ASObject but
accesses the object's properties as if it were a Book object. We access the object's properties by
specifying the name of the property to retrieve in quotes. In C#, surround the property name in
brackets; in VB.NET, use parentheses.

using System;
using FlashGateway.IO;

namespace FRDG
{
 public class BookService
 {
 public bool InsertBook (ASObject asbook)
 {
 string title = asbook["title"].ToString();
 string author = asbook["author"].ToString();
 decimal price = (decimal)asbook["price"];

 // Code to insert book into database, or similar, is omitted

 // Return a successful status.
 return true;
 }
 }
}

Notice that the properties' names are always specified as strings and the values are stored as objects
of the generic Object type. We must convert the title and author properties to strings using the
ToString() method supported by all .NET objects. To convert the price property to a number, we
explicitly cast it by using (decimal) before the object.

Invoke the service as you would any other Flash Remoting service. Simply create a Book object and
pass it into the InsertBook() method, as shown in the following client-side ActionScript code:

#include "NetServices.as"

var myURL = "http://localhost/frdg/flashservices/gateway.aspx";
var servicename = "FRDG.BookService";

NetServices.setDefaultGatewayURL(myURL);
var connection = NetServices.createGatewayConnection()
var bookService = connection.getService(servicename, this);

book = new Book();
book.title = "ASP.NET Development with Dreamweaver MX";
book.author = "Joel Martinez";
book.price = 30.00;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bookService.InsertBook(book);

The ability to send and retrieve objects of custom datatypes is valuable when you're creating an
object-oriented architecture for your application.

8.3.3 Convert Custom Classes to an ASObject

The .NET framework has a robust Reflection API. Reflection allows you to peer into the inner workings
of any .NET class. Because of this, we can create a generic function that can accept any .NET class
and convert its public properties into an ASObject. Here is a small utility function, written in C#, for
converting a .NET class or struct into an ASObject for easy transmission to Flash:

using System;
using System.Reflection;
using FlashGateway.IO;

public class Util
{
 public static ASObject ConvertToASO (Object obj, string astype)
 {
 Type type = obj.GetType();

 // Initialize the ASObject
 ASObject aso = new ASObject();
 aso.ASType = astype;

 // Iterate through the member fields
 foreach(FieldInfo field in type.GetFields())
 {
 aso.Add(field.Name, field.GetValue(obj));
 }

 return aso;
 }
}

Note that the preceding code extracts only public fields, those intended to be exposed by the
developer.

The ConvertToASO() function accepts two parameters. The first is of type Object, so you can pass
any type of object into it. The second is a string used to represent the ActionScript type.

To demonstrate its usage, we create a struct of type Book in C# (notice it has the same properties as
the ActionScript object we constructed in earlier examples):

public struct Book
{
 public string title;
 public string author;
 public decimal price;
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Call the ConvertToASO() function whenever you need to return an object to Flash. The following
method, written in C#, instantiates a new Book object and sets its properties. It then uses
ConvertToASO() to convert the struct to an ASObject:

public ASObject GetABook()
{
 Book book = new Book();
 book.title = "FRDG";
 book.author = "Tom Muck";
 book.price = 39.99

 ASObject aso = Util.ConvertToASO(book,"Book");

 return aso;
}

8.3.4 Receiving Arrays from .NET

Flash Remoting also supports native .NET arrays but does not support complex array types such as
Lists and Collections.

.NET can create a native array from any set of variables with the same type. The disadvantage of an
array is that it requires a developer to provide a list of the objects within the array. This prevents the
array from dynamically expanding past a preset size.

To create an array in .NET, use the [] operator. Initialize (a.k.a. dimension) the array with the
desired number of elements. For example, here is some C# code to initialize an array:

String[] nameArray = new String[5];

You can initialize the array with literals by immediately providing a list of the items you'd like store in
it:

String[] nameArray = new String[]{"Joel Martinez", "Tom Muck"};

By default, specifying an array literal sets the maximum number of elements to the number of items
specified, but we can set a maximum while initializing only a few array elements:

String[] nameArray = new String[5]{"Joel Martinez", "Tom Muck"};

Access the .NET objects from the array using a zero-relative numeric index. Here we change the
value of the first two elements of the array:

nameArray[0] = "Angelina Jolie";
nameArray[1] = "Lara Croft";

Like in ActionScript, all .NET array indexes start from 0, not 1. This means the first element in our
array will always be 0, so the previous array has 2 full slots.

.NET arrays provide support for all native .NET datatypes, including structures and classes. We can
create an array of ASObject objects and return the array to Flash, which is a convenient way to
return more than one object, such as an array of search results, to Flash. The following C# code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

creates an ASObject array with two indexes and stores two Books as elements of the array
(technically, it converts the Book objects to ASObjects and stores the ASObjects in the array):

using System;
using FlashGateway.IO;

namespace FRDG {
 public class BookService {
 public ASObject[] GetBookList () {
 ASObject[] asoArray = new ASObject[2];

 Book bookItem0 = new Book();
 bookItem0.title = "Flash Remoting: The Definitive Guide";
 bookItem0.author = "Tom Muck";
 asoArray[0] = Util.ConvertToASO(bookItem0);

 Book bookItem1 = new Book();
 bookItem1.title = "ActionScript Cookbook";
 bookItem1.author = "Joey Lott";
 asoArray[1] = Util.ConvertToASO(bookItem1);

 return asoArray;
 }
 }
}

As with our complex objects, Flash automatically converts our .NET array to ActionScript's array
datatype. The developer can immediately access the array's values from the Results object returned

by our Flash Remoting service. In the following client-side ActionScript code snippet, our Flash
application displays the title of the first book in the array returned by our Flash Remoting services'
GetBookList() method:

#include "NetServices.as"

var myURL = "http://localhost/frdg/flashservices/gateway.aspx";
var servicename = "FRDG.BookService";

NetServices.setDefaultGatewayURL(myURL);
var connection = NetServices.createGatewayConnection()
var bookService = connection.getService(servicename, this);

bookService.GetBookList();

function GetBookList_Result (Results) {
 trace(Results[0].title);
}

You can view the array and Book objects by opening Flash's interactive debugger. For more
information on debugging, see Chapter 13.

8.3.5 Sending Arrays to .NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sending arrays as a parameter from Flash to a .NET application is straightforward. We can build an
array of any of our supported datatypes and pass those values to .NET. For example, to pass an
array of strings containing book titles to our .NET application, we could use the following client-side
ActionScript code:

#include "NetServices.as"

var myURL = "http://localhost/frdg/flashservices/gateway.aspx";
var servicename = "FRDG.BookService";

NetServices.setDefaultGatewayURL(myURL);
var connection = NetServices.createGatewayConnection()
var bookASPnetService = connection.getService(servicename, this);

bookTitleArray = new Array();
bookTitleArray[0] = "FRDG";
bookTitleArray[1] = "ASDG2";

bookASPnetService.AddTitles(bookTitleArray);

Our .NET application can receive this array and access it as a native array object:

public void AddTitles (string[] books) {
 foreach (string book in books) {
 // statements...
 }
}

Flash Remoting also allows Flash to create arrays of complex objects to pass to a .NET application.
For example, we can use the ActionScript Book class, which we defined earlier, to create several
instances of a Flash object and pass them all as parameters to our .NET service. Here is the client-
side ActionScript code the invokes the remote AddBooks() method, shown next:

bookArray = new Array();

bookItem = new Book();
bookItem.title = "FRDG";
bookItem.author = "Tom Muck";
bookArray[0] = bookItem;

bookItem = new Book();
bookItem.title = "ASDG2";
bookItem.author = "Colin Moock";
bookArray[1] = bookItem;

// The code to initialize bookASPnetService is shown in the preceding example
bookASPnetService.AddBooks(bookArray);

Once our designated .NET method receives the parameter, it can access the array of objects natively.
The following .NET code snippet shows the remote AddBooks() method iterating through the array of
objects:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public void AddBooks (ASObject[] books)
{
 foreach (ASObject book in books)
 {
 // Do something with each individual "book"
 }
}

Naturally, you can use the methods and properties of the .NET Array class to perform operations on
the array or its elements. For example, the Array.GetLength() method returns the length of the
array (the number of elements in the array). Refer to the .NET resources cited in Appendix B for
more information on .NET's Array class.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.4 Database Access with ADO.NET

ADO.NET is the .NET Framework's class library for reading and manipulating data sources. This
section identifies the major classes used when selecting and inserting data into an Access database,
as well as reading XML with ASP.NET.

These examples connect with an Access database using the OLEDB ADO.NET
library. Implementation for SQL databases and other data sources differs
slightly.

In many ways, ADO.NET has surpassed its predecessor ADO. The new version of the database
connectivity library provides tighter integration with Microsoft databases, increasing the speed of calls
to a Microsoft SQL database. The library also allows binding to Microsoft's server controls, making it
easy to build HTML tables and grids of database information. One of the most notable features is a
new DataSet object that provides disconnected access to data sources. This allows developers to
reduce the load on the SQL back end while maintaining access to data.

ADO.NET with Flash Remoting also allows binding to Flash objects. This feature works similar to
binding data to a DataGrid or other ASP.NET server control and provides Flash with a RecordSet
object containing ADO.NET's results. We'll describe this feature in more detail later in this section.

The following sample uses the Northwind.mdb file, a sample database bundled
with Microsoft Access. The database can usually be found in the directory
C:\Program Files\Microsoft Office\Office\Samples\.

Once you've found the file, make a copy of it and place the copy in a directory
named database in the root of your web site.

8.4.1 Selecting from a Database

Establishing a connection to an Access data source and selecting data with ADO.NET is similar to
using the older ADO methods. However, ADO.NET has made a few notable name changes to key ADO
objects.

The following code snippet shows an example of an OleDb database connection to our Northwind
Access database with ADO.NET. When run, this ASP.NET page passes a recordset of all products in
the Northwind database to our Flash application:

<%@ Page Language="C#" debug="true" %>
<%@ Register TagPrefix="MM" Namespace="FlashGateway" Assembly="flashgateway" %>
<%@ import namespace="System.Data" %>
<%@ import namespace="System.Data.OleDb" %>

<html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<head>
<title>ADO.NET to Flash Remoting connection</title>
</head>

<body bgcolor="#ffffff" text="#000000">
<MM:Flash id="Flash" runat="server" />
</body>

<script langauge="C#" runat="server">
void Page_Load (Object sender, EventArgs e) {
 // Create an OLE database connection and adapter
 OleDbConnection connection = new OleDbConnection
 ("Provider=Microsoft.Jet.OLEDB.4.0; Data Source=Northwind.mdb");
 OleDbDataAdapter adapter = new OleDbDataAdapter
 ("SELECT * FROM Products", connection);

 // Fill your DataSet and close your connection
 DataSet dataset = new DataSet();
 adapter.Fill(dataset,"table");
 connection.Close();

 // Bind your data to Flash
 Flash.DataSource = dataset;
 Flash.DataBind();
}
</script>
</html>

The first four lines of our code alert ASP.NET to the language used on our page, register our Flash
server control, and set the namespaces required for our application. You'll notice two new
namespaces-System.Data and System.Data.OleDb-which give us access to the required ADO.NET
classes for database access. If our application used a Microsoft SQL server, we could use the
System.Data.SqlClient namespace.

With the page initialized, we can create an instance of the Flash server control. As before, it uses the
tag prefix we defined earlier:

<MM:Flash id="Flash" runat="server" />

Next, the code creates an ADO.NET database connection, executes our SQL command on the
database, and allows us to capture the results of the operation.

The call to new OleDbConnection() establishes a connection to the Northwind database. The
constructor accepts a semicolon-delimited string containing the database driver, location of the
database, and optional security information (username and password). Our example creates a DSN-
less connection using the Northwind database's filename and the valid Access driver:

 OleDbConnection connection = new OleDbConnection
 ("Provider=Microsoft.Jet.OLEDB.4.0; Data Source=Northwind.mdb");

After the connection to the database is established, we pass our SQL statement to the database and
begin our operation. The OleDbDataAdapter object allows us to execute this SQL statement and pass
our returned results to a DataSet object:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OleDbDataAdapter adapter = new OleDbDataAdapter
 ("SELECT * FROM Products", connection);

// Fill your DataSet and close your connection
DataSet dataset = new DataSet();
adapter.Fill(dataset,"table");
connection.Close();

From the DataSet, we can bind the results to our Flash server control:

Flash.DataSource = dataset;
Flash.DataBind();

Flash Remoting also allows us to implement our database connection as a .NET assembly. The
following is an example assembly implementation written in C#:

Using System.Data;
Using System.Data.OleDb;
Using FlashGateway.IO;

Public namespace FRDG {
 public class SelectFromDatabase {

 public DataTable Select () {
 OleDbConnection connection = new OleDbConnection
 ("Provider=Microsoft.Jet.OLEDB.4.0; Data Source=Northwind.mdb");
 OleDbDataAdapter adapter = new OleDbDataAdapter
 ("SELECT * FROM Products", connection);

 // Fill your DataSet and close your connection
 DataSet dataset = new DataSet();
 adapter.Fill(dataset, "table");
 connection.Close();

 return dataset.Tables[0];
 }
 }
}

When we bind our database operation's results (a .NET ResultSet) to our Flash application, Flash
Remoting passes this data to the Flash client as an ActionScript RecordSet object. From this object,
we can bind our database data to Macromedia's UI components, such as the DataGrid or
DropDownList component. More information on using the RecordSet object is available in Chapter 3
and Chapter 4.

For our Flash application to use the passed data, we can bind it to one of our components using the
DataGlue class or access the results directly with a RecordSet object. The following example
demonstrates each component.

The DataGlue class allows us to bind our database results to a Flash UI component. This comes in
handy when a developer needs to create a drop-down list or other UI component based on the
contents of your Flash Remoting data results. Our application glues the results of our database query

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to a DropDownList UI component.

First, create a call to our ASP.NET page as a Flash Remoting web service. This allows us to populate
our RecordSet object and bind the data to our drop-down list:

#include "NetServices.as"
#include "DataGlue.as"

var myURL = "http://localhost/frdg/flashservices/gateway.aspx";
var servicename = "FRDG.SelectFromDatabase";

NetServices.setDefaultGatewayURL(myURL);
var connection = NetServices.createGatewayConnection()
var dataservice = connection.getService(servicename, this);

dataservice.Select();

Next, drag an instance of the DropDownList component from the Components panel onto the Stage,
where it becomes a movie clip instance. Name your movie clip instance cmptDropDpwnList using the

Property inspector. This allows us to manipulate the drop-down list dynamically from ActionScript.

Finally, we can bind our RecordSet object to the DropDownList using the
DataGlue.bindFormatStrings() method in the responder function that receives the results:

function Select_Result (result_rs) {
 DataGlue.bindFormatStrings(comboBox,result_rs,"#productName#","#productName#");
}

This Flash application displays a list of products pulled from the Northwind database as a drop-down
list. We could add functionality to the drop-down list to show more information when a specific
product is selected.

Our application can also access the RecordSet object directly. This allows us to loop through database
results or validate content for specific criteria. The following example loops through the entire
contents of our database results and displays them in the Output window:

function Select_Result (result_rs) {
 for (i=0; i < result_rs.getLength(); i++) {
 var row = result_rs.getItemAt(i);
 trace(row["productName"]);
 }
}

8.4.2 Manipulating a Database

ADO.NET also allows applications to manipulate databases by inserting, updating, or deleting data.
These operations are similar to our SQL SELECT statement, but these commands don't return blocks
of data like a SELECT statement.

The following assembly shows the implementation of an ADO.NET application, written in C#, that
inserts a new product into our Northwind database:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using System.Data;
Using System.Data.OleDb;

Public namespace FRDG {
 public class InsertIntoDatabase {

 public bool Insert () {
 OleDbConnection connection = new OleDbConnection
 ("Provider=Microsoft.Jet.OLEDB.4.0; Data Source=Northwind.mdb");
 OleDbCommand command = new OleDbCommand
 ("INSERT INTO product(productName, UnitPrice, UnitsInStock)
 VALUES('FRDG',39.99,5000)", connection);
 command.ExecuteNonQuery();
 connection.Close();

 return true;
 }
 }
}

This database connection is similar to our ASP.NET database select code, with a few differences:

Our OleDb code does not create a DataSet when it executes the SQL.

Our function returns a boolean type to our Flash caller.

Because the assembly does not return a RecordSet object to our Flash application, we don't need to
include the FlashGateway.IO library used in our earlier example.

Once the method is called by our Flash application, the specified product is inserted into the
Northwind database. The code also returns a Boolean value that informs our Flash application that
the product was inserted successfully. Of course, our example is a degenerate one insofar as it
always inserts the same record. If the number of fields in the record is relatively low, you can pass
them as parameters to the method, as in the following C# snippet:

Using System.Data;
Using System.Data.OleDb;

Public namespace FRDG {
 public class InsertIntoDatabase {

 public bool Insert (string name, decimal price, int stock) {
 string sql = "INSERT INTO product(productName, UnitPrice, UnitsInStock)
 VALUES('"+ name +"',"+ price.ToString() +","+ stock.ToString() +")";

 OleDbConnection connection = new OleDbConnection
 ("Provider=Microsoft.Jet.OLEDB.4.0; Data Source=Northwind.mdb");
 OleDbCommand command = new OleDbCommand
 (sql, connection);
 command.ExecuteNonQuery();
 connection.Close();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return true;
 }
 }
}

Now, we have a generalized remote service that is useful. You can use it to insert new records
straight from Flash.

You shouldn't store sensitive data, such as passwords or connection strings, in
your Flash movie. It is possible for others to decompile your .swf file. Consider
anything in your ActionScript code public information. Refer to the Windows
.NET Server (a.k.a. Windows Server 2003) documentation for details on
authenticating users and securing the server.

8.4.3 Using an XML Data Source

In addition to typical databases, ADO.NET provides access to other data sources, such as Excel
documents, comma-delimited text files, and XML documents. This allows developers to apply the
same SQL operations typically used with SQL data sources to XML applications.

In our example, we'll develop an XML file named products.xml that stores a list of hair products:

<products>
 <product>
 <id>12345</id>
 <name>FRDG Hair Remover</name>
 <description>New spray-on hair remover gives you that balding look
you've always wanted!!</description>
 <price>$19.95</price>
 </product>
</products>

Next, we need to use ADO.NET to connect to our XML file. This allows us to manipulate this XML data
as a RecordSet object in Flash.

<%@ Page Language="C#" debug="true" %>
<%@ Register TagPrefix="MM" Namespace="FlashGateway" Assembly="flashgateway" %>
<%@ import namespace="System.Data" %>
<%@ import namespace="System.Data.OleDb" %>

<script langauge="C#" runat="server">
void Page_Load (Object sender, EventArgs e) {
 DataSet oDataset = new DataSet();
 oDataset.ReadXml(Server.MapPath("products.xml"));

 Flash.DataSource = oDataset.Tables[0];
 Flash.DataBind();
}
</script>

<MM:Flash id="Flash" runat="server" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You may notice that our ASP.NET page uses a structure very similar to our ADO.NET select code. In
this code block, the XML file is loaded and stored into a DataSet object. You can use that DataSet
object just as if it had been loaded straight from a database. That is one of the things that the
DataSet class was developed for. With it, you can have any number of data backends, and still
interface with the same ADO.NET component.

8.4.4 Writing to an XML File

Not only does the DataSet class have the ability to natively read from an XML data source, it also
gives you the ability to write to an XML data source. This can be a very useful technique for caching
queries from a database.

The following code example checks to see whether there is a products.xml file in the same directory
as the .aspx page that is executing. If the .xml file is not present, the code queries the database and
writes the file:

<%@ Page Language="C#" ContentType="text/html" ResponseEncoding="iso-8859-1" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.OleDb" %>
<%@ Register TagPrefix="MM" Namespace="FlashGateway" Assembly="flashgateway" %>
<script runat="server">
protected void Page_Load (Object Src, EventArgs E) {
 // Declare main variables
 string xmlpath = Server.MapPath("products.xml");
 DataSet datasetToBind;

 // Check to see if the file exists
 if (!System.IO.File.Exists(xmlpath)) {
 // The file is missing, let's create it
 datasetToBind = GenerateXmlFile(xmlpath);
 } else {
 // The file exists, so let's retrieve it
 datasetToBind = new DataSet();
 datasetToBind.ReadXml(xmlpath);
 }

 flash.DataSource = datasetToBind.Tables["product"];
 flash.DataBind();
}

Let's examine the code in more detail. First, the code declares a few variables for use later in the
script. Next, it uses the System.IO.File class to check whether the XML file exists. If the XML file
exists, the code reads the data from the file into the dataset. Otherwise, the code creates a new XML
file using the GenerateXmlFile() function, which looks like this:

DataSet GenerateXmlFile (string path)
{
 // Declare database variables
 string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" +
 Server.MapPath("/frdg/Northwind.mdb") + ";";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 string sql = "SELECT * FROM Products";
 OleDbConnection connection;
 OleDbDataAdapter adapter;

 // Connect to the database
 connection = new OleDbConnection(connectionString);
 connection.Open();

 // Fill the dataset and close connection
 adapter = new OleDbDataAdapter(sql, connectionString);
 DataSet oDataset = new DataSet("products");
 adapter.Fill(oDataset,"product");
 connection.Close();

 // Write the file for later use
 dataset.WriteXml(path);

 return dataset;
}
</script>
<asp:DataGrid id="flash" runat="server" />

The GenerateXmlFile() function retrieves all the products in the Products database. Once it fills the
dataset, the function calls the DataSet.WriteXml() method to store the data in an XML file. And there
you have it, a very simple caching mechanism. Although ASP.NET has its own caching mechanism,
caching isn't supported within an assembly. With just a little work, this example could be enhanced to
be more robust for use in an assembly. For example, you could generalize it to store the results of
any query in an XML file. And you could use .NET's file I/O capabilities to check the file creation date
to decide whether to requery the database and update the XML file.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.5 State Management

Flash Remoting provides support for ASP.NET state management by maintaining the session ID on all
requests to the server. This allows ASP.NET to identify an existing session and application state.

In essence, a session is the server-side corollary of a client-side cookie. It is an object in the server's
memory that retains key information on a user throughout his visit to a web site. An example of state
management across multiple pages is a login and validation system. A web form can pass login
criteria, such as username and password, to an application. If the username and password are
acceptable, a session variable containing the username is created. All subsequent requests to
ASP.NET pages within the application can check if the user is logged in and, if so, display the user's
name.

ASP.NET also allows developers to customize their state management settings to loosen or tighten
security. Typically, if a web user is inactive for 20 minutes, the session object for the user is
destroyed. This time limit can be changed by tweaking the web.config file for your ASP.NET
application.

Session and application state management is supported by ASP.NET pages and
.NET XML web services, but not assemblies. Class libraries requiring state
management must implement a custom solution or establish state through an
ASP.NET page.

In addition to the benefits for ASP.NET applications, state management can be used by Flash
Remoting. This can allow Flash applications to provide personalized data or allow multiple Flash
applications using Remoting to share data specific to a user.

In our example of state management with Flash Remoting, we develop a web form (shown in Figure
8-1) that collects a user's name and age and stores it in the session. We then create a Flash
application that uses this session information to display the user's name and age.

Figure 8-1. An ASP.NET web form used to collect session data

The web form uses two ASP.NET text objects and a Submit button to collect the age and name
information:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<%@ Page Language="C#" ContentType="text/html" ResponseEncoding="iso-8859-1" %>
<script runat="server">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

protected void submit_click (Object Src, EventArgs E) {
 Session["name"] = name.Text;
 Session["age"] = age.Text;
}
</script>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>FRDG</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>
<body>
<h1>Flash Remoting MX: The Definitive Guide </h1>
<p>Please supply your name and age</p>
<form runat="server">
Name: <asp:textbox id="name" runat="server" />

Age: <asp:textbox ID="age" runat="server" />

<asp:button ID="submit" Text="Submit" OnClick="submit_click" runat="server" />
</form>
<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" codebase="http://
download.macromedia.com/pub/shockwave/cabs/flash/
swflash.cab#version=6,0,29,0" width="300" height="150">
 <param name="movie" value="../../../../userInfo.swf" />
 <param name=quality value=high />
 <embed src="../../../../userInfo.swf" quality=high pluginspage="http://www.
macromedia.com/shockwave/download/
index.cgi?P1_Prod_Version=ShockwaveFlash" type="application/
x-shockwave-flash" width="300" height="150"></embed>
</object>
</body>
</html>

As you see in the preceding code snippet, the name and age variables are stored in the Session
object as Session["name"] and Session["age"] . This allows us to access the variables in our Flash

file through Flash Remoting.

State management works only when viewing your Flash application through a
browser. The Test Player in the Flash development environment does not work
with cookies, thus handicapping ASP.NET's state management features. This is
why the .swf file is tested from an .aspx page, rather than in the Flash Test
Player.

The ASP.NET page that acts as our Flash Remoting service merely creates an ASObject with two
properties for the name and age. If the Session variable is undefined, the page returns a null value

to Flash:

<%@ Page Language="C#" ContentType="text/html" ResponseEncoding="iso-8859-1" %>
<%@ Import Namespace="FlashGateway.IO" %>
<%@ Register TagPrefix="MM" Namespace="FlashGateway" Assembly="flashgateway" %>
<script runat="server">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

protected void Page_Load (Object Src, EventArgs E)
{
 ASObject userinfo = new ASObject();
 userinfo.ASType = "UserInfo";

 userinfo.Add("name", Session["name"]);
 userinfo.Add("age", Session["age"]);

 flash.Result = userinfo;
}
</script>
<MM:Flash id="flash" runat="server" />

To set up our Flash application, define two dynamic text fields, lblName_txt and lblAge_txt , to
display our two session properties, name and age . Remember that our remote service is returning an

ActionScript object with two properties, so we must define and register the UserInfo class:

#include "NetServices.as"

var myURL = "http://localhost/frdg/flashservices/gateway.aspx";
var servicename = "frdg.com.oreilly.frdg.stateservice";

NetServices.setDefaultGatewayURL(myURL);
var connection = NetServices.createGatewayConnection()
var stateservice = connection.getService(servicename, this);

function UserInfo () {
 this.name="";
 this.age=0;
}

Object.registerClass("UserInfoClass", UserInfo);
stateservice.getUserInfo();

function getUserInfo_Result (result) {
 lblName.text = result.name;
 lblAge.text = result.age;
}
function getUserInfo_Status(err) {
 trace("Error: " + err.description);
}

Using this approach, you can create a Flash application that checks for a session variable indicating
whether the user is logged in, and display information accordingly.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.6 Error Handling in Flash Remoting with .NET

One of the true marks of a good programmer is how she handles errors in the code. Programmers
coming from a Classic ASP background likely have very brief experience with good error handling.
Flash taps directly into .NET's robust error-handling mechanisms. This section discusses how to trap
errors and expose them to your Flash application. We also discuss different error-handling techniques
and how to use them with Flash. For related information, see Section 6.5.

8.6.1 Catch Me If You Can

The .NET languages support the try/catch construct for error handling. When an error occurs, code
execution stops and the .NET Framework raises an exception. The following C# snippet includes code
that may raise an exception, depending on the value of divisor:

int divideIt (int numerator, int divisor) {
 return = numerator / divisor;
}

This code will raise a DivideByZeroException if divisor is 0, because dividing by zero is a

mathematical impossibility. Though you can avoid the exception by checking the divisor for a zero
value before performing the division, there are situations where anticipating an exception is difficult if
not impossible. For example, if you write code that connects to a remote SQL Server and the remote
server reboots while your code is running, you're going to find yourself with a big fat exception.

Luckily, handling exceptions is easy. You can handle the DivideByZeroException by adding a try/catch
block, as follows. If the exception is raised (which occurs when divisor is 0), the function simply
returns 0:

int divideIt (int numerator, int divisor) {
 try {
 return = numerator / divisor;
 } catch (Exception ex) {
 return = 0;
 }
}

Any code the invokes the preceding function will never see an exception, because the function's error
handling is self-contained. However, there are times when server-side code should transfer the
responsibility for exception handling to the client side. As discussed in Section 4.6 in Chapter 4, you
have several choices about how to handle errors, including throwing a custom exception.

Simply throw the exception when you detect the error condition of interest:

int divideIt (int numerator, int divisor) {
 if (divisor == 0) {
 throw new Exception("Divisor cannot be zero");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } else {
 return numerator / divisor;
 }
}

Therefore, when the divisor parameter is 0, the divideIt() function throws an exception with a

custom message detailing the problem. Utility functions are prime candidates for this type of error
handling. It allows developers using that code to see any problems early in the development phase,
and the remaining code in the utility function can assume that it won't have to deal with any invalid
values.

8.6.2 Exceptional Flash

What does all this mean to Flash applications? Flash Remoting for .NET allows you to call a remote
method, and if an unhandled exception is encountered, you can react accordingly.

In the earlier ActionScript examples in this chapter, we used a methodName_Result() callback handler

to handle the response of a remote method invocation. No doubt, you noticed the
methodName_Status() function defined in most of the examples, which is called instead of

methodName_Result() when an error occurs. In that case, the methodName_Status() function

receives an error object containing information about the exception that was thrown by the server.

The error object has several properties, as shown in this output from the NetConnection debugger:

Status (object #2)
.....code: "SERVER.PROCESSING"
.....description: "this is a custom exception"
.....details: " at FlashGateway.Delegates.ASPAdapter.InvokeService(ActionContext
action)
 at FlashGateway.Delegates.ServiceCommander.InvokeAdapter(ActionContext
 flashContext)
 at FlashGateway.Delegates.ServiceFilter.preInvoke(ActionContext flashContext)"
.....level: "error"
.....type: "System.Exception"

The properties of interest include the description and the type. You can use the description

property to display an error for debugging purposes or send yourself an email with that error
(through Flash Remoting, of course). The type property is useful when the possibility exists of

several different types of exceptions being thrown. See Chapter 4 for more information on the error
object and exception handling.

Here is an example of how to handle a simple exception in your ActionScript code:

serviceObject.divideIt (365, 0);

divideIt_Result (result) {
 lblMessage.text = "The result is " + result;
}

divideIt_Status (error) {
 lblMessage.text = "Error: " + error.description;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

You can also easily check for several different types of exceptions:

divideIt_Status (error) {
 var tmpMsg = "";
 switch (error.type) {
 case "System.DivideByZeroException":
 tmpMsg = "Error: your input must not be a zero";
 break;
 case "System.Exception":
 tmpMsg = "Error: " + error.description;
 break;
 }

 lblMessage.text = tmpMsg;
}

As you can see, you can easily build a robust error-handling system into your Flash application. This
is especially true if you spend a bit of extra time at the beginning of your project planning out where
you can apply error handling. With a bit of practice, you'll be a pro.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.7 Wrapping Up

We've explored several different ways to use Flash Remoting with .NET pages and assemblies in this
chapter. We also addressed database conversion, database access, and other issues. Refer to
Chapter 10 for more information about using .NET to create XML web services.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 9. Flash Remoting and PHP
When Flash Remoting was first introduced, you had no choice but to use either ColdFusion MX (which
comes with Flash Remoting) or purchase Flash Remoting MX for J2EE (Java) or .NET from
Macromedia. The reason for this was that the protocol used by Flash Remoting, Action Message
Format (AMF), is proprietary to Macromedia and they chose not to release any specifications about it.

Since then, a resourceful programmer named Wolfgang Hamann managed to reverse engineer AMF.
Soon after AMF was decoded, an open source project with the goal of creating a fully compatible PHP-
based Flash Remoting gateway was born. This project, AMFPHP (http://www.amfphp.org), is well on
its way to meeting its goal. At the time of this writing, AMFPHP supports connecting Flash to specially
defined PHP classes or SOAP-based web services.

There are a few other open source projects that have applied Wolfgang's work to other languages.
These include OpenAMF (http://www.openamf.org), a Java implementation, and FLAP
(http://www.simonf.com/flap), a Perl implementation.

This chapter covers how to install AMFPHP on a server and write PHP classes that AMFPHP can utilize.
In addition, this chapter examines a few of the more common uses of PHP with Flash.

It's important to note that AMFPHP is a fluid project, so for the final word on its current features be
sure to check the documentation on its web site.

[Team LiB]

http://www.amfphp.org
http://www.openamf.org
http://www.simonf.com/flap
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.1 Introduction to PHP

PHP, which stands for PHP: Hypertext Preprocessor (yes, it is a recursive acronym), is an open
source scripting language that borrows its syntax from C, Java, and Perl, just to name a few. The
result is a language that feels familiar to many programmers. This makes a lot of sense, since the
stated goal of PHP is to help web developers create dynamic content quickly, and nothing speeds up
coding like knowing the language!

PHP's capabilities are similar to other server-side languages, such as ColdFusion, ASP, and JSP. In
addition, because it's an open source language, PHP is constantly gaining new capabilities via
extensions. There are even a few extensions that allow PHP to create Flash content dynamically.
Furthermore, the PHP Extension and Application Repository (PEAR) offers a huge online repository of
PHP components, available at http://pear.php.net or via the special pear command-line tool, which is
installed with PHP.

PHP installs onto nearly every server platform available, and it integrates with all of the major web
servers, including both Apache and IIS. As its name suggests, PHP is a preprocessor that executes
code in PHP pages when they are requested. The result is then sent to the web server and finally
delivered to the client. You never have to compile PHP pages explicitly; PHP handles all of the
processing of PHP pages for you.

PHP code can be written in either a procedural or object-oriented manner. That said, AMFPHP
requires that you write your code as PHP classes. Be aware, though, that if you've used other object-
oriented languages in the past, you'll find the OOP capabilities of PHP to be relatively limited. These
limitations will be addressed with the upcoming PHP 5.0, so be sure to check out the excellent
documentation at http://www.php.net to get the most up-to-date information.

There are two fundamental pieces to PHP's syntax that tend to trip up newcomers. The first is that all
variables must begin with a $ symbol. The second is that a period (.), rather than the usual + or &, is

used to concatenate strings.

9.1.1 How PHP Fits into Flash Applications

The fact that PHP is available on so many platforms for free means that many hosting providers
include it in their service packages. AMFPHP offers a number of installation options; you can even set
it up without requiring administrative access to your server. So, while ColdFusion may be the easiest
language to use Flash Remoting with from a technical standpoint, PHP is the easiest from an
economic standpoint.

The fact that AMFPHP also allows you to connect to SOAP-based web services allows you to use it as
a simple connector to pre-existing web services you've written in other languages. Thus, you can add
a Flash front end to an existing application without any cost on the server side.

Besides these monetary advantages, using Flash Remoting with PHP provides the same advantages
that all of the other Flash Remoting-enabled languages provide. These include the ability to separate
architecture and development tasks in a clean manner. Plus, if you design your code well, it's much

http://pear.php.net
http://www.php.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

easier to reuse PHP code you've written for use with Flash Remoting than it is if you were using
Flash's LoadVars or XML classes.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.2 Installing AMFPHP

First, you need to download AMFPHP from http://www.amfphp.org. As with many open source
projects, you can download either the most recent stable build or the absolutely latest version of the
code from the project's source code repository. Unless you plan on helping out with the development
of AMFPHP, it's generally best to use the stable build. The following directions assume that you are
using Version 0.5.1 of AMFPHP, so be sure to check the documentation that comes with AMFPHP if
you are using a more recent version.

There are a number of ways to install AMFPHP, depending on your exact requirements, but the
following two approaches are the most common.

The first approach assumes you can modify the include_path variable for your PHP environment or
that you know the current include_path and can copy files to that location. For more information on
how to modify include_path, be sure to check out the PHP documentation and your web server's
docs. (For example, for Apache, you can modify include_path with either your httpd.conf file or an
.htaccess file). Once you have include_path set up to your liking, simply copy the flashservices
directory included in AMFPHP to a directory specified in include_path.

The second approach doesn't require any kind of special access to your server, but you may want to
have access to your domain's web root if you would like to do a single installation for your whole
domain (which is recommended). To install AMFPHP this way, just upload the flashservices directory
to some location under your web root and note the path to that directory.

So far, the steps have involved getting the core AMFPHP code up on your server. The next step is to
set up the gateway.php file, which acts as the gateway for your projects. With AMFPHP, you can have
multiple gateways set up on your server, which is handy if you want to keep the services (the actual
PHP classes you write) of each project separate.

The code inside the gateway.php file is quite short; it merely includes the rest of the code for the
project and specifies where your services are located. You can find a sample gateway.php file in the
examples/basic/ directory. You simply modify this file to fit your setup. It can be uploaded to any
directory under your server's web root.

The lines you'll need to modify in gateway.php are:

include "flashservices/app/Gateway.php";

and:

$gateway->setBaseClassPath("services/");

If you've installed the flashservices directory using the include_path approach, you won't need to

modify the first line at all. Otherwise, you'll have to modify the path so that it properly reaches your
flashservices directory. For example, on my server, that line looks like this:

include "/usr/local/apache/htdocs/flashservices/app/Gateway.php";

http://www.amfphp.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Simply change the second line to point to the path where you keep your services. The default path,
services/, points to the services directory underneath where you installed the flashservices directory.
Again, as an example, here's what I have on my server:

$gateway->setBaseClassPath("/usr/local/apache/htdocs/amfServices");

To summarize how to install AMFPHP:

Download the AMFPHP source files from http://www.amfphp.org.1.

Copy the flashservices directory from AMFPHP somewhere on your server. You can place it in
one of the path's specified in your include_path PHP variable or somewhere under your web

root.

2.

Dig down into the examples/basic directory of AMFPHP and modify the gateway.php file to
reflect your setup.

3.

Upload the gateway.php file somewhere under the web root of your server.4.

Note that AMFPHP is completely server-based. There is no client-side installation, and there are no
client-side .as library files to include when using AMFPHP, except for the NetServices.as file, which
you should include whenever using Flash Remoting, regardless of the server-side technology.

Because AMFPHP returns binary data to the Flash client, rather than returning HTML, debugging your
setup can be a bit difficult. If you're having trouble, you may want to temporarily add the following
lines to the beginning of your gateway.php file:

ini_set('display_errors', false);
ini_set('log_errors', true);

These two lines suppress sending errors back to Flash and instead log errors to your web server's
error log.

9.2.1 Configuring AMFPHP for Web Services

To use AMFPHP with web services, you need to complete a few more steps. AMFPHP works with two
different PHP SOAP implementations: PEAR::SOAP (http://pear.php.net) and nuSOAP
(http://dietrich.ganx4.com/nusoap). At the time of this writing, PEAR::SOAP is compatible with a
larger number of web services than nuSOAP.

The PEAR::SOAP package is part of the PHP Extension and Application Repository, which provides a
library of PHP code. There are a number of ways to install PEAR packages, but the easiest by far is to
use the pear command line tool that ships with PHP 4.3.0 and later.

To install the PEAR::SOAP package using the pear tool, go to a command line on your server and
type:

pear install SOAP

If the command displays an error and lists dependent modules, simply install the missing modules
one by one. For example, if the error message says that the HTTP_Request module is missing, install

http://www.amfphp.org
http://pear.php.net
http://dietrich.ganx4.com/nusoap
http://lib.ommolketab.ir
http://lib.ommolketab.ir

it using:

pear install HTTP_Request

Once all of the dependent modules are installed, try to install SOAP again. Once SOAP installs
successfully, you're done.

If you prefer to use nuSOAP instead:

Download it from http://dietrich.ganx4.com/nusoap.1.

Create a new directory underneath the flashservices directory on your server, and name it lib.2.

Copy all of the decompressed nuSOAP files into lib.3.

[Team LiB]

http://dietrich.ganx4.com/nusoap
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.3 Datatype Conversions

The conversion of datatypes between PHP and ActionScript is straightforward, as shown in Table 9-1.
These conversions work in both directions, from PHP to ActionScript and vice versa, with the
exception of PHP arrays.

Table 9-1. PHP-to-ActionScript datatype conversion

PHP Flash (ActionScript)

Null Null

Integer Integer

Double Float

String String

Array (normal) Array

Array (associative) Object

Object Object

Resource[1] Recordset

[1] The only supported databases are MySQL, ODBC, and PostgreSQL.

The conversion of PHP arrays to Flash ActionScript can be a bit confusing. In PHP, all arrays are
associative arrays. Associative arrays can use any type of symbol, rather than just integers, for the
index. This means that the following PHP code is perfectly legal:

$myList = new Array();
$myList[0] = "apple";
$myList["foo"] = 12;

This fact means that, when coming from Flash, ActionScript objects of type Array and Object (a.k.a.
structures) are converted to the PHP Array datatype. When converting an ActionScript Array to PHP,
a PHP Array using entirely integer indexes is created.

The problem comes when translating PHP arrays to ActionScript. AMFPHP has to guess what is the
best kind of ActionScript datatype to create from the PHP array. It does this by a simple process of
elimination; if the PHP array contains any noninteger indexes, it is converted to the ActionScript
Object datatype; otherwise, it is converted to the ActionScript Array datatype.

As of this writing, AMFPHP doesn't support the sending of PHP objects to Flash. Nor does it fully
support the sending of objects created from custom ActionScript classes to PHP (they are seen as
simple objects with no associated methods). The AMFPHP team is actively working on implementing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

these features, and they will probably be in place by the time you read this. Check the AMFPHP site
for more information.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.4 Using AMFPHP with Web Services

If you'd like to use AMFPHP to connect to pre-existing SOAP-based web services, you don't have to
write a single line of PHP. As long as your installation of AMFPHP is set up properly, connecting to web
services with it is a breeze and is nearly identical to the process you would with ColdFusion
(ColdFusion is the only other Remoting gateway that automatically supports connecting to external
web services). See Chapter 10 for more information about web services with ColdFusion and .NET.

Not all web services work with AMFPHP. This is a limitation of the SOAP libraries that AMFPHP uses
rather than a limitation of the AMFPHP library itself. If you want to test to make sure a particular web
service is accessible before you start doing heavy development against it, download the CMX
Remoting Testing Tool from http://www.communitymx.com/abstract.cfm?cid=E79F1303C1E096ED.
The tool is a free extension that adds a new CMX Remoting Testing Tool panel to the Flash MX
authoring environment and allows you to quickly execute remote methods and see the results.

To use a web service with AMFPHP, you first need to know the URL of that web service's WSDL file. A
WSDL file is an XML file that describes a web service, including its URL, the methods it supports, and
the arguments and return types of those methods. You can, in fact, open a WSDL file in a text editor
and read this information from it. Of course, you also need to know the URL of the gateway.php file
up on your server.

The only slightly odd process in using a web service with AMFPHP is that you must pass all of the
arguments to the web service via properties of an object. For example, XMethods
(http://www.xmethods.com) provides a free web service that returns the current temperature for
any U.S. Zip Code. The WSDL file for this web service dictates that there's a single method named
getTemp(), which expects a single argument specifying the Zip Code. Example 9-1 shows the client-
side ActionScript code that connects to this web service and prints the result to the Output window.

Example 9-1. Accessing the getTemp() web service via Flash Remoting

#include "NetServices.as"

onResult = function (temp) {
 trace("Got temp: " + temp);
};

gatewayURL = "http://localhost/frdg/gateway.php";
serviceURL = "http://www.xmethods.net/sd/2001/TemperatureService.wsdl";
gateway = NetServices.createGatewayConnection(gatewayURL);
service = gateway.getService(serviceURL);
service.getTemp(this, {zipcode:20781});

Example 9-1 creates an anonymous object to transmit the arguments to the getTemp() remote
service. You could also pass the arguments by attaching properties to a generic instance of the
Object class:

data = new Object();

http://www.communitymx.com/abstract.cfm?cid=E79F1303C1E096ED
http://www.xmethods.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

data.zipcode = 20781l
service.getTemp(this, data);

When the web service is written in ColdFusion, you can often get away without creating such an
object and just calling the service like this:

service.getTemp(this, 207811);

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.5 Using AMFPHP with PHP Classes

If you want to connect Flash to PHP code via AMFPHP, you need to write your PHP code as a PHP
class. The remote methods that your ActionScript code calls are the methods of your custom classes.
A PHP class uses the following syntax:

class MyClass {
 var local1 = 1;
 var local2 = 2;

 function MyClass () {
 // do something
 }

 function someMethod ($val) {
 // do something else
 }

 function someOtherMethod ($val0, $val1) {
 // and something else
 }
}

In this case, local1 and local2 are instance variables (unique variables associated with each

instance of this class). The function MyClass() is this class's constructor, which runs when an
instance of this class is first created. This method performs necessary setup for an instance of this
class. Finally, someMethod() and someOtherMethod() are two sample methods to which all
instances of this class have access.

For AMFPHP to work properly, each class must be defined in its own file and the file must have the
same name (including capitalization) as the class. In addition, the class's constructor must include a
method table, specific code to define the signatures and permissions of all methods of the class. This
information is used primarily by the Service Browser in Flash MX to help you write the correct
ActionScript, but the permission information is used by AMFPHP to limit which methods of your class
are accessible via Flash Remoting. This approach lets you define private methods that can be called
internally only.

An example method table is shown in Example 9-2, along with methods for the class. This code
should be placed in MyClass.php.

Example 9-2. Defining a method table for a PHP class

class MyClass {
 function MyClass () {
 // Create the method table for AMFPHP
 $this->methodTable = array(
 "someMethod" => array(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "description" => "Retrieve the list of countries",
 "roles" => "list",
 "access" => "remote",
 "arguments" => array("state")
),
 "someOtherMethod" => array(
 "description" => "Retrieve a list of companies in a given country",
 "roles" => "list",
 "access" => "remote",
 "arguments" => array("country", "postalCode")
)
);
 }

 function someMethod ($val) {
 // Just echo back the value
 return $val
 }
 function someOtherMethod ($val0, $val1) {
 // and something else
 }
}

As you can see, this code defines a variable named methodTable that is an array of all the methods
this services supports, along with information about each method. The access property can be set to
"remote", "public", or "private". AMFPHP closely mirrors ColdFusion in the way that method
permissions are set. If you want your method accessible only to this class, define its access property
as "private". If you want the method accessible to other classes, declare access as "public".
Finally, if you want the method to be callable via Flash Remoting, set access to "remote". Refer to
Section 5.3.3.4 for more information about the access property.

Although Version 0.5.1 of AMFPHP doesn't use the roles property, by the time you read this AMFPHP
will most likely use the roles property to implement a security system similar to how ColdFusion

works (see "Using Role-Based Security with ColdFusion Components" in Chapter 5 for related
information). In general, if you don't plan on using the roles information, simply leave the roles

property out of your code.

The two remaining properties, description and arguments, provide a description of the method and
the arguments that the method accepts. At this time, the arguments property is used only for

documentation purposes and won't cause an error if it doesn't match the actual arguments specified
in the method declaration.

Make sure that you keep the method table current. If a method in your class
doesn't have a corresponding entry in the method table, Flash Remoting
displays an error saying that no such method exists in your class.

If there are any syntax errors in your class constructor, Flash Remoting displays an error, usually one
that doesn't provide a lot of information about the problem. However, you can check for syntax
errors easily by opening a web browser to the URL of your service (i.e., the URL of the .php file). Any
syntax errors are displayed along with their line numbers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If no syntax errors exist but you are still receiving an error in Flash (often the Bad Version error),
make sure that AMFPHP is properly installed and that your class isn't accidentally outputting any
extra characters, such a spaces, tabs, or other whitespace directly around your <?php> tag.

Once you have created a PHP class, you need to write the client-side ActionScript to connect to it.
The URL you give for the gateway is just the normal URL to your gateway.php file. However, the URL
you specify for your service is a bit different. Instead of being a URL delimited by slashes, it is a
dotted path to your PHP class's file, starting from the directory that you specified to be the base path
of your classes in your gateway.php file. For example, if you specified your classpath as:

/usr/local/apache/htdocos/frdg/services/

and your actual PHP class is located at:

/usr/local/apache/htdocos/frdg/services/stuff/MyClass

then the URL of the class would be:

stuff.MyClass

Example 9-3 shows the client-side ActionScript code to access MyClass.

Example 9-3. Accessing a PHP class via Flash Remoting

#include "NetServices.as"

onResult = function (result) {
 trace("Received result: " + result);
};

gatewayURL = "http://localhost/frdg/gateway.php";
serviceURL = "stuff.MyClass";
gateway = NetServices.createGatewayConnection(gatewayURL);
service = gateway.getService(serviceURL);
service.someMethod(this, {testString:"Testing..."});

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.6 Working with a Database

PHP works with many different databases, but the one most often associated with it is MySQL. The
following example assumes you have both PHP and MySQL set up and running and that you have the
Northwind database set up with a user named "northwind" and a password of "northwind". The
Northwind database is provided by Microsoft as a sample for SQL Server
(http://office.microsoft.com/downloads/2000/Nwind2K.aspx) and can be translated into a MySQL
database via the mssql2mysql VBScript (http://www.kofler.cc/mysql/mssql2mysql.html). A MySQL
version of the Northwind database is also available at the online Code Depot cited in the Preface.

This example defines a custom PHP class, CustomersAdmin , which is assumed to live inside of a file
named CustomersAdmin.php in your services directory. The information about the database
(database name, hostname, username, and password) are all stored as properties of the class. In
addition, the connection to the database is set up as a persistent connection in the class's
constructor; consequently, the class methods don't have to worry about setting up that connection.
Example 9-4 shows the server-side PHP code to access a database. Example 9-5 implements the
client-side ActionScript code that goes along with it.

Example 9-4. Server-side code for accessing a database

<?PHP
 class CustomersAdmin {

 // Login information for the database
 var $dbhost = "localhost";
 var $dbname = "northwind";
 var $dbuser = "northwind";
 var $dbpass = "northwind";

 // Constructor
 function CustomersAdmin () {

 // Create the method table for AMFPHP
 $this->methodTable = array(
 "getCountries" => array(
 "description" => "Retrieve the list of countries",
 "access" => "remote",
 "arguments" => array()
),
 "getCustomersByCountry" => array(
 "description" => "Retrieve a list of companies in a given country",
 "access" => "remote",
 "arguments" => array("country")
),
 "getContact" => array(
 "description" => "Retrieve all of the information about a customer",

http://office.microsoft.com/downloads/2000/Nwind2K.aspx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "access" => "remote",
 "arguments" => array("customerID")
),
 "updateContact" => array(
 "description" => "Update the contact information for a customer",
 "access" => "remote",
 "arguments" => array("customerID", "contactName", "contactTitle",
 "phone", "fax")
)
);

 // Create the connection to the database server and select the database
 $this->conn = mysql_pconnect($this->dbhost, $this->dbuser, $this->dbpass);
 mysql_select_db($this->dbname);
 }

 // Get a list of the countries
 function getCountries () {
 $result = mysql_query("SELECT Distinct(Country) FROM Customers
 ORDER BY Country");
 return $result;
 }

 // Get the customers in a given country
 function getCustomersByCountry ($country) {
 $query = "SELECT CustomerID, CompanyName FROM Customers ";
 if ($country != "All") {
 $query .= "WHERE Country = '".$country."' ";
 }
 $query .= "ORDER BY CompanyName";

 $result = mysql_query($query);
 return $result;
 }

 // Get all of the information for a contact at a given customer
 function getContact ($customerID) {
 $customer = array();
 $result = mysql_query("SELECT * FROM Customers
 WHERE CustomerID = '".$customerID."'");
 $customer = mysql_fetch_array($result);
 return $customer;
 }

 // Update the contact at a given customer
 function updateContact ($customerID, $contactName, $contactTitle, $phone, $fax) {
 $query = "UPDATE Customers SET ";
 $query .= "ContactName = '".$contactName ."', ";
 $query .= "ContactTitle = '".$contactTitle ."', ";
 $query .= "Phone = '".$phone."', ";
 $query .= "Fax = '".$fax."' ";
 $query .= "WHERE CustomerID = '".$customerID."'";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 $result = mysql_query($query);
 return $result;
 }
 }
?>

Notice that the getCountries() method returns the exact resource that is returned from the database,
but the getContact() method pulls out a single row of a resource and sends it back as an array. It's
up to you to determine the most appropriate kind of data to send back to Flash. Just keep in mind
that you probably don't want to return more data than the client will actually use.

Now that the server-side code is set up, you must set up the client-side interface for the example (or
download the .fla file from the online Code Depot), as shown in Figure 9-1 . The instance names of
each interface element, as indicated in Figure 9-1 , should be set using the Property inspector.

Figure 9-1. Client-side interface for a database access application

The interface operates as follows. The countries are listed in the countries_lb listbox; once a
country is selected, the customers in that country are displayed in the customers_lb listbox. Once a

user selects a customer, the customer's contact name, contact title, phone number, and fax number
are displayed. If the user wants to update the information about the customer, he simply changes the
listbox selections or text field text and clicks the Update button. The status_txt text field tells the

user what is going on at any given time.

Example 9-4 showed the server-side PHP code to access the database on the server. The client-side
ActionScript code to implement the user interface, as listed in Example 9-5 , lives entirely on the main
timeline.

Example 9-5. Client-side code for user interface

#include "NetServices.as"

//---
// Define the URLs
//---
gatewayURL = "http://localhost/frdg/gateway.php";
serviceURL = "CustomersAdmin";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

//---
// General purpose functions
//---

// Turn the entire interface on or off
enableInterface = function (state) {
 var textType = state ? "input" : "dynamic";
 var textColor = state ? 0xFFFFFF : 0xBEBEBE;

 countries_cb.setEnabled(state);
 customers_cb.setEnabled(state);
 update_pb.setEnabled(state);

 contactName_txt.type = textType;
 contactTitle_txt.type = textType;
 phone_txt.type = textType;
 fax_txt.type = textType;

 contactName_txt.backgroundColor = textColor;
 contactTitle_txt.backgroundColor = textColor;
 phone_txt.backgroundColor = textColor;
 fax_txt.backgroundColor = textColor;
};

//---
// Event handlers for the components
//---

onSelectCountry = function () {
 var country = countries_cb.getSelectedItem().label;
 service.getCustomersByCountry(customerResponder, country);

 customers_cb.removeAll();
 customers_cb.addItem("Loading...");
 enableInterface(false);
 status_txt.text = "Getting customers...";
};

onSelectCustomer = function () {
 customerID = customers_cb.getSelectedItem().data;
 service.getContact(contactResponder, customerID);

 contactName_txt.text = "";
 contactTitle_txt.text = "";
 phone_txt.text = "";
 fax_txt.text = "";

 enableInterface(false);
 status_txt.text = "Loading contact...";
};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

onUpdate = function () {
 var customerID = customers_cb.getSelectedItem().data;
 var contactName = contactName_txt.text;
 var contactTitle = contactTitle_txt.text;
 var phone = phone_txt.text;
 var fax = fax_txt.text;
 service.updateContact(updateResponder, customerID, contactName,
 contactTitle, phone, fax);

 enableInterface(false);
 status_txt.text = "Updating contact...";
};

//---
// Create the responder objects
//---

// Responder for loading countries
countryResponder = new Object();
countryResponder.onResult = function (countries_rs) {
 var max = countries_rs.getLength();

 countries_cb.setEnabled(true);
 countries_cb.addItem("All", 0);

 for (var i=0; i<max; ++i) {
 countries_cb.addItem(countries_rs.getItemAt(i).Country, i+1);
 }
 countries_cb.setSelectedIndex(0);
};

// Responder for loading customers
customerResponder = new Object();

customerResponder.onResult = function (customers_rs) {
 var customer;
 var max = customers_rs.getLength();
 customers_cb.setEnabled(true);
 customers_cb.removeAll();

 for (var i=0; i<max; ++i) {
 customer = customers_rs.getItemAt(i);
 customers_cb.addItem(customer.CompanyName, customer.CustomerID);
 }

 customers_cb.setSelectedIndex(0);
};

// Responder for loading a contact
contactResponder = new Object();

contactResponder.onResult = function (contact) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 enableInterface(true);
 contactName_txt.text = contact.ContactName;
 contactTitle_txt.text = contact.ContactTitle;
 phone_txt.text = contact.Phone;
 fax_txt.text = contact.fax;

 status_txt.text = "Ready.";
};

// Responder for updating a contact
updateResponder = new Object();

updateResponder.onResult = function () {
 enableInterface(true);
 status_txt.text = "Ready.";
};

//---
// Create the gateway and service objects
//---
gateway = NetServices.createGatewayConnection(gatewayURL);
service = gateway.getService(serviceURL);

//---
// Set up the components' event handlers
//---
countries_cb.setChangeHandler("onSelectCountry", this);
customers_cb.setChangeHandler("onSelectCustomer", this);
update_pb.setClickHandler("onUpdate", this);

//---
// Set up the interface and load the countries
//---
contactName_txt.borderColor = 0x666666;
contactTitle_txt.borderColor = 0x666666;
phone_txt.borderColor = 0x666666;
fax_txt.borderColor = 0x666666;
enableInterface(false);
status_txt.text = "Loading countries..."
service.getCountries(countryResponder);

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.7 Wrapping Up

The open source AMFPHP project allows you, for free, to implement Flash Remoting with both PHP
classes and SOAP-based web services. While not yet complete, AMFPHP is already very useful. This is
an exciting new option for Flash developers who don't have access to a gateway server and for
developers who program exclusively in PHP. The way that you utilize AMFPHP from Flash is no
different than the other gateway implementations, with the exception of arguments when dealing
with web services.

Please remember that AMFPHP is a rapidly evolving project and the information presented here is
highly subject to change. For the most recent information about AMFPHP be sure to visit the project's
site at http://www.amfphp.org.

[Team LiB]

http://www.amfphp.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Part III: Advanced Flash Remoting
Part III covers advanced Flash Remoting techniques and applied topics. It includes details on
accessing SOAP-based web services, enhancing objects and UI controls, implementing best
practices, and debugging strategies. Also included are a detailed real-world application (an
online script repository) and Flash Remoting API documentation.

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 10. Calling Web Services from
Flash Remoting
Cooking is a topic that everyone is familiar with. When you cook dinner, you are creating a meal from
scratch. You take the ingredients, mix them together, cook them, and serve them. In many cases,
this can be the preferred method of getting food on the table. Sometimes, however, it's simpler to
pick up the phone and call for food, such as when you are staying in a hotel. Utilizing a prebuilt web
service is like ordering room service: someone else has done the work for you, and all you have to do
is consume the results.

Creating remote services for your Flash Remoting applications and connecting to them has been the
focus of the previous chapters. We were, in effect, cooking our meals from scratch. Flash Remoting
also works with prebuilt web services that you might find on the Internet. Web services are based on
the Standard Object Access Protocol (SOAP). This protocol is spoken fluently by Flash Remoting and
your application server.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.1 What Is a Web Service?

Strictly speaking, web services have been around for many years. By definition, a web service is any form
of service that can be accessed by an application over the Internet. In the past few years, however, the
term web services has come to mean any service that utilizes one of the standardized XML web service
technologies, such as SOAP or XML-RPC.

The advantages of XML are widely known. Any technology can communicate with any other technology if
they share a common language. XML is a standardized way of transferring information that almost every
technology can understand. XML does, however, have some disadvantages. It is cumbersome, because
the data has to be described using plain text tags. So, while it is human-readable, it doesn't provide the
best format for transmitting binary data across wires. Flash Remoting circumvents this problem by
passing data between the Flash Remoting adapter (the proxy for the web service) and the Flash client
(the movie in the user's browser) using the AMF format discussed in Chapter 1 .

A thorough discussion of web services is beyond the scope of this book. For more
information on SOAP and web services, see Programming Web Services with SOAP
by Pavel Kulchenko, James Snell, and Doug Tidwell (O'Reilly), which is a great
introduction to SOAP-based web services. You can also find information at the W3C
at http://www.w3.org/TR/SOAP .

A web service consists of three parts:

The service description

This is usually stored in a Universal Description, Discovery, and Integration (UDDI) service
repository, such as XMethods at http://www.xmethods.com .

The service provider

The application server where the web service exists. The service provider generally provides a
public description of the service, in the form of a Web Services Description Language (WSDL)
document (an XML file with a .wsdl extension).

The service consumer

The application that consumes the web service, usually by sending an XML request to the service
provider. In our case, the Flash Remoting adapter on our server is the service consumer and our
Flash movie on the user's browser will access the content provided by the service.

A typical web service might look like this ASP.NET web service, written in Visual Basic.NET:

<%@ WebService language="VB" class="HelloUser" %>

Imports System
Imports System.Web.Services
Imports System.Xml.Serialization
<WebService(Namespace:="http://oreilly.com/frdg/")>Public Class HelloUser

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <WebMethod> Public Function sayHello(username as String) As String
 Dim currentTime as String
 currentTime = DateTime.Now.ToLongTimeString()
 return "Hello " & username & ". It is " + currentTime
 End Function

End Class

The process of consuming a web service begins with a request to the server for a .wsdl document.

10.1.1 WSDL

The .wsdl file is where the publicly accessible service description lives. The language is XML, but it is
strictly formatted to specifications so that a consumer of a web service can know exactly what is in the
web service and how to utilize it. The .wsdl file is akin to a contract between the service provider and the
consumer of the service. It contains information about what is needed by the service and what will be
returned.

The .wsdl file consists of the following:

Information on all publicly available methods and how to interface to them

Datatype information for all method responses and requests

Address where the service can be found

Information about the protocol to be used

In many cases, the .wsdl file is an automatically generated document (as you saw earlier in the
ColdFusion example in Chapter 1). The .wsdl file for a HelloUser web service, shown as a .cfc in Chapter
2 , might look like this:

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema" xmlns:s0="http://oreilly.com/frdg/
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
targetNamespace="http://oreilly.com/frdg/xmlns=
"http://schemas.xmlsoap.org/wsdl/">
 <types>
 <s:schema elementFormDefault="qualified" targetNamespace="http://oreilly.com/frdg/">
 <s:element name="sayHello">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="username"
 type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <s:element name="sayHelloResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="sayHelloResult"
 type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="string" nillable="true" type="s:string" />
 </s:schema>
 </types>
 <message name="sayHelloSoapIn">
 <part name="parameters" element="s0:sayHello" />
 </message>
 <message name="sayHelloSoapOut">
 <part name="parameters" element="s0:sayHelloResponse" />
 </message>
 <portType name="HelloUserSoap">
 <operation name="sayHello">
 <input message="s0:sayHelloSoapIn" />
 <output message="s0:sayHelloSoapOut" />
 </operation>
 </portType>
 <binding name="HelloUserSoap" type="s0:HelloUserSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="document" />
 <operation name="sayHello">
 <soap:operation soapAction="http://oreilly.com/frdg/sayHello"
style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 </binding>
 <service name="HelloUser">
 <port name="HelloUserSoap" binding="s0:HelloUserSoap">
 <soap:address location="http://localhost/HelloUser.asmx" />
 </port>
 </service>
</definitions>

The .wsdl file tells consumers how to use the service. Specifically, it tells us the name of the service:

<service name="HelloUser">

the methods available:

<s:element name="sayHello">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the arguments of the method:

<s:element minOccurs="0" maxOccurs="1" name="username" type="s:string" />

and the response:

<s:element minOccurs="0" maxOccurs="1" name="sayHelloResult" type="s:string" />

More information on the WSDL specification can be found at http://www.w3.org/TR/wsdl .

The next point to consider is where to find the .wsdl files. In many cases, this is handled by UDDI.

10.1.2 UDDI

UDDI is the specification that allows web services to be listed in central service registries. Typically, the
WSDL description of a web service is embedded into a UDDI registry. You can think of a UDDI registry as
a table of contents to publicly available web services. A UDDI registry contains listings of WSDL
documents and other web services. Three large UDDI registries can be found at
http://www.xmethods.com , http://uddi.microsoft.com , and http://www-3.ibm.com/services/uddi .

Currently, the most popular technology for web services is SOAP.

10.1.3 SOAP

SOAP is nothing more than a standardized XML format that acts as an envelope for the service request
and result. You pass your request to the web service using a SOAP envelope, and the service responds
with a SOAP envelope. Because SOAP is based in XML, it is free of environmental dependencies, so you
can use SOAP freely among different environments. SOAP envelopes are typically sent over HTTP, as the
HTTP port 80 is readily available and accessible by most systems, and open to most firewalls.

Flash Remoting allows you to call your web service using familiar ActionScript syntax. The details of SOAP
translation are hidden in the Flash Remoting adapter on the server. You call the service from Flash using
a simple method name, and the Flash movie sends an AMF packet with the request to the Flash Remoting
adapter on the server. The Flash Remoting adapter issues the request for the .wsdl file on the application
server (a GET request). The server (ColdFusion MX, ASP.NET, PHP, or Java) proxies the request and

creates a SOAP request to the web service. The SOAP response is sent back to Flash Remoting, which
translates the response back to an AMF packet that the Flash Player can understand. (If using Flash
Player 7, SOAP support is built into the Player and does not require a server-side Remoting adapter.)

The SOAP packet consists of two parts: the header and the body. The header is an optional element that
contains information about the content. The body is contained in a <soap:Envelope> tag and contains

the information about the request or the response.

A typical request envelope might look like this:

POST /com/oreilly/frdg/HelloUser.asmx HTTP/1.0
Content-Length: 355
Host: 192.168.0.15
Content-Type: text/xml; charset=utf-8
SOAPAction: "http://oreilly.com/frdg/sayHello"

http://www.xmethods.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Body>
<sayHello xmlns="http://oreilly.com/frdg/">
<username>Tom</username>
</sayHello>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This request was created by an ASP.NET application server upon receiving the GET request from the Flash

Remoting adapter on the server. The sayHello() method of the web service can be plainly seen within the
envelope body, along with the username parameter that was supplied in the Flash movie, "Tom ". A

response to that request might look like this:

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Wed, 01 Jan 2003 01:20:19 GMT
Cache-Control: private, max-age=0
Content-Type: text/xml; charset=utf-8
Content-Length: 371

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<sayHelloResponse xmlns="http://oreilly.com/frdg/">
<sayHelloResult>Hello Tom. It is 8:20:19 PM</sayHelloResult>
</sayHelloResponse>
</soap:Body>
</soap:Envelope>

Again, the sayHello() method response can be identified as a <sayHelloResponse> tag in this envelope.
The response from the server is contained within the <sayHelloResult> tag. In the case of Flash

Remoting, the SOAP packets are processed entirely on the server. An AMF packet is returned to the Flash
movie.

Handy utilities exist to examine SOAP packets. Check
http://msdn.microsoft.com/webservices/downloads/microsoft/default.aspx for Microsoft's SOAP Toolkit,
which contains the Trace Utility for ASP.NET web services. For Java, the TCPTunnelGUI tool, which is part
of the Apache SOAP package at http://xml.apache.org/soap , works well. More information on SOAP can
be found at http://www.w3.org/TR/SOAP .

As you saw in Chapter 1 , you can create your own web services easily using ColdFusion. This chapter,
however, focuses on consuming web services from Flash, not creating your own. One of the nice things
about Flash Remoting is that you don't have to know about UDDI, WSDL, SOAP, or XML. All you need is
the location of the .wsdl file, and the requirements of the service. You can usually find human-readable
descriptions of web services from the service provider, or you can examine the .wsdl file to determine the
services requirements.

http://msdn.microsoft.com/webservices/downloads/microsoft/default.aspx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.2 Why Use Flash Remoting?

One of the common questions about Flash is whether you can access web services using the Flash
client only. Although Flash Player 6 requires Flash Remoting to access web services, Flash Player 7
has built-in SOAP support. However, the basic Flash 2004 authoring tool does not include the SOAP-
based components that are standard in Flash Pro. Therefore, you must use Flash Pro (instead of
Flash 2004) if you intend to use the built-in SOAP features of the Flash Player 7. As of this writing, it
isn't clear how Macromedia will prevent developers from extending Flash 2004 to support the SOAP
enhancements available in Flash Pro. Licensing restrictions and encrypted libraries have been raised
as possibilities.

Table 10-1 summarizes the compatibility issues.

Table 10-1. Flash Remoting and SOAP-based web services support

Server platform Flash Player
Flash Remoting via AMF

support
SOAP-based web service

support

ColdFusion MX
6.0 or later

Version
6.0.65 or
later

Built into ColdFusion Server Built into ColdFusion Server

JRun 4 or later
Version
6.0.65 or
later

Built into JRun Built into JRun

J2EE
Version
6.0.65 or
later

Requires Flash Remoting
for J2EE, or OpenAMF

Requires Flash Remoting for J2EE,
or OpenAMF

J2EE Version 7
Requires Flash Remoting
for J2EE, or OpenAMF

Built into Flash Player 7 but
requires Flash Pro for authoring

.NET
Version
6.0.65 or
later

Requires Flash Remoting
for .NET

Requires Flash Remoting for .NET

.NET Version 7
Requires Flash Remoting
for .NET

Built into Flash Player 7 but
requires Flash Pro for authoring

PHP
Version
6.0.65 or
later

Requires AMFPHP
Requires AMFPHP and nuSOAP or
PEAR::SOAP

PHP Version 7 Requires AMFPHP
Built into Flash Player 7 but
requires nuSOAP or PEAR::SOAP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Server platform Flash Player
Flash Remoting via AMF

support
SOAP-based web service

support

Perl
Version
6.0.65 or
later

Requires FLAP Not supported

So, should you switch to SOAP-based web services or stick with AMF? The answer is "it depends." If
you need to support Flash Player 6 or access any web service outside your domain, you'll need Flash
Remoting (or an open source equivalent) installed on the server side. If you want to use a SOAP-
based solution without Flash Remoting, you must wait for Flash Player 7 to infiltrate the installed
base. Within 18 months of its release (September 2003), Flash Player 7 should have sufficient
penetration (greater than 80%) to justify shipping a SOAP-based solution, even if you're using a J2EE
or .NET server without Flash Remoting. If you want to develop Flash applications that access SOAP-
based web services from Flash Player 7, you must upgrade to Flash Pro because the basic Flash 2004
authoring environment doesn't include the libraries or prewritten behaviors for SOAP-based web
services.

The major advantage of using SOAP is that J2EE and .NET servers understand SOAP messages
without requiring Flash Remoting to be installed on the server side. This is very attractive if you don't
have the privileges to install Flash Remoting on the server. So, when using J2EE and .NET, should
you always use SOAP-based web services? Not necessarily. For one thing, you'll want to wait until
Flash Player 7 is widely installed in the user base. Furthermore, the AMF format is more compact and
efficient for transferring binary data, so Flash Remoting may yield better performance than SOAP-
based web services. If you decide that Flash Player 7 is sufficiently ubiquitous to drop support for
Flash Player 6, should you use SOAP-based web services when communicating with ColdFusion, JRun,
or PHP? Not necessarily. ColdFusion and JRun come with Flash Remoting preinstalled, and it is a free
installation for PHP. There is no reason not to use AMF format if you can guarantee that the Flash
Remoting gateway is available on the server, as it is in these cases. (Likewise, the free OpenAMF
Java implementation makes sense for developer's who have shied away from Flash Remoting for
J2EE due to cost.)

Until you switch to Flash Player 7 and SOAP-based web services, you must use the Flash Remoting
adapter on the server in order to translate your web service into an AMF packet that Flash Player 6
can understand. So, let's return to using SOAP-based web services in Flash MX. In many cases, this
is as simple as adding the Flash Remoting adapter URL into your Flash movie. No hand-written
server-side code is necessary. The Flash Remoting adapter on the server takes care of the necessary
translation, so your Flash movie can simply use the service. Figure 10-1 shows a diagram of how
Flash Remoting fits into the picture.

Figure 10-1. Flash Remoting and web services

Perl
Version
6.0.65 or
later

Requires FLAP Not supported

So, should you switch to SOAP-based web services or stick with AMF? The answer is "it depends." If
you need to support Flash Player 6 or access any web service outside your domain, you'll need Flash
Remoting (or an open source equivalent) installed on the server side. If you want to use a SOAP-
based solution without Flash Remoting, you must wait for Flash Player 7 to infiltrate the installed
base. Within 18 months of its release (September 2003), Flash Player 7 should have sufficient
penetration (greater than 80%) to justify shipping a SOAP-based solution, even if you're using a J2EE
or .NET server without Flash Remoting. If you want to develop Flash applications that access SOAP-
based web services from Flash Player 7, you must upgrade to Flash Pro because the basic Flash 2004
authoring environment doesn't include the libraries or prewritten behaviors for SOAP-based web
services.

The major advantage of using SOAP is that J2EE and .NET servers understand SOAP messages
without requiring Flash Remoting to be installed on the server side. This is very attractive if you don't
have the privileges to install Flash Remoting on the server. So, when using J2EE and .NET, should
you always use SOAP-based web services? Not necessarily. For one thing, you'll want to wait until
Flash Player 7 is widely installed in the user base. Furthermore, the AMF format is more compact and
efficient for transferring binary data, so Flash Remoting may yield better performance than SOAP-
based web services. If you decide that Flash Player 7 is sufficiently ubiquitous to drop support for
Flash Player 6, should you use SOAP-based web services when communicating with ColdFusion, JRun,
or PHP? Not necessarily. ColdFusion and JRun come with Flash Remoting preinstalled, and it is a free
installation for PHP. There is no reason not to use AMF format if you can guarantee that the Flash
Remoting gateway is available on the server, as it is in these cases. (Likewise, the free OpenAMF
Java implementation makes sense for developer's who have shied away from Flash Remoting for
J2EE due to cost.)

Until you switch to Flash Player 7 and SOAP-based web services, you must use the Flash Remoting
adapter on the server in order to translate your web service into an AMF packet that Flash Player 6
can understand. So, let's return to using SOAP-based web services in Flash MX. In many cases, this
is as simple as adding the Flash Remoting adapter URL into your Flash movie. No hand-written
server-side code is necessary. The Flash Remoting adapter on the server takes care of the necessary
translation, so your Flash movie can simply use the service. Figure 10-1 shows a diagram of how
Flash Remoting fits into the picture.

Figure 10-1. Flash Remoting and web services

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the order of operations:

The Flash client (browser) makes the request via client-side ActionScript. The ActionScript code
refers to the Flash Remoting gateway and the web service .wsdl file by name (except in the case
of J2EE, which will be discussed shortly).

1.

The Flash Remoting gateway uses a proxy on the application server to translate the request into
SOAP. In ColdFusion MX and ASP.NET, the application server creates the proxy automatically.

2.

The proxy then sends the request to the remote web service.3.

The remote web service responds to the application server with a SOAP envelope.4.

The Flash Remoting gateway gets the results back from the application server and translates
the results into ActionScript objects.

5.

The gateway passes the result back to the Flash client.6.

Why wasn't Flash Player 6 built to utilize SOAP directly? There are several reasons for this:

SOAP is a large protocol. It is based in XML and requires major parsing inside of the Flash
plugin. Flash Player 6 excluded SOAP support in order to keep the plugin footprint small and
accelerate deployment. Adding SOAP deserialization to Flash Player 7 increases the footprint
over Flash Player 6 somewhat.

The Flash Player has security restrictions that prevent it from loading content from other
domains. This is a good thing, as it keeps the level of acceptance of the Flash player very high;
having Flash on your computer is regarded as safe.

The AMF format of Flash Remoting is a terse binary format, which results in fast transfer speeds
between the Flash Remoting gateway and the Flash movie. Furthermore, there is faster
processing because of less serialization and deserialization.

As a contrast in size, look at the AMF response passed to the Flash movie for the simple HelloUser
SOAP example shown earlier:

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Wed, 01 Jan 2003 01:40:30 GMT
Cache-Control: private
Content-Type: application/x-amf
Content-Length: 59

......./1/onResult..null.......Hello Tom. It is 8:40:30 PM..

The Content-Length header tells the story: the SOAP version was 371 characters, whereas the AMF

version was 59 characters. You can imagine that, with more complex web services, the savings in
bandwidth can be enormous. Macromedia's reluctance to release the AMF specification hasn't
dampened developer enthusiasm for the format in the guise of projects such as AMFPHP
(http://www.amfphp.org) and OpenAMF (http://www.openamf.org).

http://www.amfphp.org
http://www.openamf.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are other techniques to access a web service from Flash, such as parsing the SOAP on the
server using server-side code, but Flash Remoting is by far the easiest method to use. This chapter
discusses the different implementations of Flash Remoting and how to use web services in each.

10.2.1 Limitations

Using Flash Remoting for consuming web services is a viable option in many cases; however, there
are a few limitations:

Flash Remoting is able to connect only to SOAP web services that have a WSDL descriptor file.
At this time, XML web services are not supported.

You have to supply all of the parameters to a web service, even if they are optional parameters.

Datatypes that aren't supported in your platform (ColdFusion MX, Java, ASP.NET, or PHP) aren't
supported by Flash Remoting. For example, ColdFusion supports a Query datatype, but it is not
accessible from ASP.NET because ASP.NET does not support a multidimensional array type.

Some of these limitations may be addressed in future versions of Flash Remoting.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.3 Web Services from a ColdFusion Server

When the server environment for web services is ColdFusion MX, you don't have to do anything on the server side
to consume a web service. The Flash movie merely has to reference the Flash Remoting adapter on the server.
The ColdFusion MX Server contains the necessary SOAP translation requirements and creates a proxy for the web
service. The Flash Remoting gateway translates the SOAP reply from the proxy into the ActionScript objects that
Flash will understand.

As of ColdFusion Updater 3, web services are not enabled by default in ColdFusion MX. This is for
security reason; a malicious user can hijack a Flash Remoting gateway to call web services. To enable
the web services, the web.xml file in the ColdFusion MX installation needs to be changed. Read the
Updater 3 release notes at
http://www.macromedia.com/support/coldfusion/releasenotes/mx/releasenotes_mx_updater01.html
for more information.

ColdFusion MX creates Java stub classes as a proxy for the web service behind the scenes. These proxy classes
are located in ColdFusion_MX_root \stubs . Upon first calling the web service, the proxy is created. It remains in

place for subsequent calls. For that reason, the first call to the service will take more time. The same is true for a
web service called through Flash Remoting using ASP.NET.

To demonstrate a simple example, we'll call the Whois web service at
http://www.soapclient.com/xml/SQLDataSoap.wsdl . Services such as these can be found at
http://www.xmethods.com and other UDDI registries.

The availability of a particular web service comes and goes, but the code shown in Example
10-1 should work for any similar Whois service, including the one at http://www.flash-
remoting.com/whois.wsdl , which takes one simple argument: domain .

Example 10-1 shows the client-side ActionScript code necessary to call a remote web service. The Flash movie
also contains a text field named domain_txt to get the user input, a text field named results_txt to hold the
results, and a button named submit_pb to call the service. Notice that the service name is a fully qualified URL of
the .wsdl file for the web service. The ColdFusion MX Server creates a proxy for the service. Again, the myURL

variable in the sample code contains the reference to a local ColdFusion Server at port 8500, but you should
change this URL to your own Flash Remoting location.

Example 10-1. Client-side ActionScript code for accessing a Whois service

#include "NetServices.as"

// Set up variables for the URL and service paths
var myURL = "http://localhost:8500/flashservices/gateway";
var servicePath = "http://www.soapclient.com/xml/SQLDataSoap.wsdl";

// Define the custom class SimpleResult
function SimpleResult() {

http://www.macromedia.com/support/coldfusion/releasenotes/mx/releasenotes_mx_updater01.html
http://www.soapclient.com/xml/SQLDataSoap.wsdl
http://www.xmethods.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

// Set up onResult and onStatus handlers as methods of the SimpleResult class
SimpleResult.prototype.onResult = function (myResults) {
 results_txt.text = myResults;
};
SimpleResult.prototype.onStatus = function (myError) {
 results_txt.text = myError.description;
};
// Set the system status to be handled by the result status handler as well
System.onStatus = SimpleResult.prototype.onStatus;

// Connection hasn't been initialized; create connection and service objects
if (initialized == null) {
 initialized = true;
 NetServices.setDefaultGatewayURL(myURL);
 var myConnection_conn = NetServices.createGatewayConnection();
 var myService = myConnection_conn.getService(servicePath, new SimpleResult());
}

submit_pb.setClickHandler("getWhois");
// Call the service when the user clicks the Submit button
function getWhois () {
 myService.ProcessSRL("WHOIS.SRI","whois",domain_txt.text);
}

Upon running the movie, you are prompted for a domain name. You can enter a domain name and click Submit.
The web service responds with the Whois data for that particular domain.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.4 Web Services from an ASP.NET Server

Accessing a web service from Flash using Flash Remoting on an ASP.NET server is almost as easy as
it is from a ColdFusion MX Server. Like ColdFusion MX, you do not have to supply any extra code on
the server to use a remote web service. The only difference is that you need to set up the proper
permissions on the ASP.NET server. ASP.NET contains a utility called wsdl.exe, which Flash Remoting
uses to automatically generate proxies for web services. The ASP.NET server creates a .dll file in your
local assembly cache that acts as a proxy for the web service when you first call the service. This
proxy remains in place for future calls to the service. For that reason, the first call to the service
takes a little longer than subsequent calls. It's a good idea to delete these files manually during
development, to prevent the use of a cached web service.

The Windows user ASPNET (found in Administrative Tools Computer Management Users and
Groups) needs to be set up with permissions to write to the bin directory in your Flash Remoting
application. This allows the ASP.NET server to create the .dll files necessary to consume the web
service. ASP.NET also creates a C# source file for the DLL that can be modified and recompiled. The
ASPNET user also needs Script execute permission from the IIS management console.

If you can't access a web service, even after applying the proper permissions,
check the permission level on the wsdl.exe file, which resides in C:\Program
Files\Microsoft.NET\FrameworkSDK\Bin in a default installation of the .NET
Framework SDK. This file also needs to allow the ASPNET user to access it.

You can use Example 10-1 to call the web service using an ASP.NET server, by changing only one
line, the reference to the gateway:

var myURL = "http://localhost/flashremoting/gateway.aspx";

You should substitute your own Flash Remoting URL here.

Upon running the example, the webroot\flashremoting\bin directory contains two new files:

SQLDataSoap.cs and SQLDataSoap.dll. If you recall, the web service .wsdl file was named
SQLDataSoap.wsdl, and the .dll proxy is always named after the web service. If you create .dll files
manually, you should follow this naming convention as well. The .cs file is the C# source code for the
proxy to the web service. The code is listed in Example 10-2. Nothing else has to be done to the
code, but it is listed here for your perusal or if you need to modify the file in any way.

Example 10-2. C# code for the web service proxy

//--
// <autogenerated>
// This code was generated by a tool.
// Runtime Version: 1.0.3705.0
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// </autogenerated>
//--

//
// This source code was auto-generated by wsdl, Version=1.0.3705.0.
//
using System.Diagnostics;
using System.Xml.Serialization;
using System;
using System.Web.Services.Protocols;
using System.ComponentModel;
using System.Web.Services;

/// <remarks/>
[System.Diagnostics.DebuggerStepThroughAttribute()]
[System.ComponentModel.DesignerCategoryAttribute("code")]
[System.Web.Services.WebServiceBindingAttribute(Name="SQLDataSoapBinding",
 Namespace="http://www.SoapClient.com/xml/SQLDataSoap.wsdl")]
public class SQLDataSoap : System.Web.Services.Protocols.SoapHttpClientProtocol {

 /// <remarks/>
 public SQLDataSoap() {
 this.Url = "http://soapclient.com/xml/SQLDataSoap.wsdl";
 }

 /// <remarks/>
 [System.Web.Services.Protocols.SoapRpcMethodAttribute(
"http://soapclient.com/SQLDataSRL",
RequestNamespace="http://www.SoapClient.com/xml/SQLDataSoap.xsd",
ResponseNamespace="http://www.SoapClient.com/xml/SQLDataSoap.xsd")]
 [return: System.Xml.Serialization.SoapElementAttribute("return")]
 public string ProcessSRL(string SRLFile, string RequestName, string key) {
 object[] results = this.Invoke("ProcessSRL", new object[] {
 SRLFile,
 RequestName,
 key});
 return ((string)(results[0]));
 }

 /// <remarks/>
 public System.IAsyncResult BeginProcessSRL(string SRLFile, string
RequestName, string key, System.AsyncCallback callback, object asyncState) {
 return this.BeginInvoke("ProcessSRL", new object[] {
 SRLFile,
 RequestName,
 key}, callback, asyncState);
 }

 /// <remarks/>
 public string EndProcessSRL(System.IAsyncResult asyncResult) {
 object[] results = this.EndInvoke(asyncResult);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return ((string)(results[0]));
 }

 /// <remarks/>
 [System.Web.Services.Protocols.SoapRpcMethodAttribute(
"http://soapclient.com/SQLDataSRL",
RequestNamespace="http://www.SoapClient.com/xml/SQLDataSoap.xsd",
ResponseNamespace="http://www.SoapClient.com/xml/SQLDataSoap.xsd")]
 [return: System.Xml.Serialization.SoapElementAttribute("return")]
 public string ProcessSRL2(string SRLFile, string RequestName, string key1,
string key2) {
 object[] results = this.Invoke("ProcessSRL2", new object[] {
 SRLFile,
 RequestName,
 key1,
 key2});
 return ((string)(results[0]));
 }

 /// <remarks/>
 public System.IAsyncResult BeginProcessSRL2(string SRLFile, string
RequestName, string key1, string key2, System.AsyncCallback callback, object
asyncState) {
 return this.BeginInvoke("ProcessSRL2", new object[] {
 SRLFile,
 RequestName,
 key1,
 key2}, callback, asyncState);
 }

 /// <remarks/>
 public string EndProcessSRL2(System.IAsyncResult asyncResult) {
 object[] results = this.EndInvoke(asyncResult);
 return ((string)(results[0]));
 }

 /// <remarks/>
 [System.Web.Services.Protocols.SoapRpcMethodAttribute(
"http://www.SoapClient.com/SQLDataSQL",
RequestNamespace="http://www.SoapClient.com/xml/SQLDataSoap.xsd",
ResponseNamespace="http://www.SoapClient.com/xml/SQLDataSoap.xsd")]
 [return: System.Xml.Serialization.SoapElementAttribute("return")]
 public string ProcessSQL(string DataSource, string SQLStatement, string
UserName, string Password) {
 object[] results = this.Invoke("ProcessSQL", new object[] {
 DataSource,
 SQLStatement,
 UserName,
 Password});
 return ((string)(results[0]));
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /// <remarks/>
 public System.IAsyncResult BeginProcessSQL(string DataSource, string
SQLStatement, string UserName, string Password, System.AsyncCallback callback,
object asyncState) {
 return this.BeginInvoke("ProcessSQL", new object[] {
 DataSource,
 SQLStatement,
 UserName,
 Password}, callback, asyncState);
 }

 /// <remarks/>
 public string EndProcessSQL(System.IAsyncResult asyncResult) {
 object[] results = this.EndInvoke(asyncResult);
 return ((string)(results[0]));
 }
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.5 Wrapping J2EE and JRun Web Services

Accessing a remote web service from a Java application server or JRun 4 is a little more complicated
than utilizing a web service from ColdFusion MX or ASP.NET. You need to manually create the proxy
for the web service, using some tools that are readily available and preinstalled as part of the JRun 4
installation.

JRun 4 comes with a command-line tool called wsdl2java.exe (located in the Jrun4\bin directory),
which is part of the Apache Axis implementation of SOAP. If you are using an alternate J2EE server,
you can download the necessary components from http://xml.apache.org/axis. The wsdl2java tool
from the Apache web site is a Java .jar file rather than a command-line program. More information
on the classes can be found at http://xml.apache.org/axis.

The wsdl2java tool automatically creates most of the Java code necessary to consume the web
service from Flash. It transforms a .wsdl file into a Java interface. You can use wsdl2java manually
from a command line. To convert the Whois service shown earlier, navigate to the directory
containing the wsdl2java.exe file and run it as follows:

wsdl2java -o yourSourceDir http://www.soapclient.com/xml/SQLDataSoap.wsdl

Using the .jar version of wsdl2java, you call it like this:

java org.apache.axis.wsdl.WSDL2Java

http://www.soapclient.com/xml/SQLDataSoap.wsdl -o yourSourceDir

If you are using the wsdl2java.jar file from the Apache site, make sure you include the following
classes in your classpath when running the tool:

axis_directory/lib/axis.jar

axis_directory/lib/jaxrpc.jar

axis_directory/lib/saaj.jar

axis_directory/lib/commons-logging.jar

axis_directory/lib/commons-dicovery.jar

axis_directory/lib/wsdl4j.jar

An XML parser, such as Xerces

The wsdl2java conversion tool creates at least four .java stub and skeleton files in the
classes\com\SoapClient\www directory, using the o switch to specify the output directory. Each web
service has its own directory structure, based on the domain name of the service. These four files for
this particular web service are:

http://xml.apache.org/axis
http://xml.apache.org/axis
http://www.soapclient.com/xml/SQLDataSoap.wsdl
http://www.soapclient.com/xml/SQLDataSoap.wsdl -o
http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQLDataSoap.java
SQLDataSoapBindingStub.java
SQLDataSoapLocator.java
SQLDataSoapPortType.java

These Java source files need to be compiled. The packages needed by these stub and skeleton files
are all included in jrun_directory/lib/webservices.jar for JRun 4. To utilize the classes from Flash

Remoting, you have to create a wrapper JavaBean. The Java code shown in Example 10-3 acts as a
wrapper bean for this particular web service. It can be easily modified to work with any web service.

Example 10-3. JavaBean wrapper code for the Whois web service

// Use the same package as the wsdl2java-generated classes
package com.SoapClient.www;

// Handle to the generated stub
public class SQLDataSoapBean {
 private com.SoapClient.www.SQLDataSoapBindingStub soap;

 // Empty constuctor
 public SQLDataSoapBean() throws java.net.MalformedURLException,
 org.apache.axis.AxisFault {
 final java.net.URL endPoint =
 new java.net.URL("http://www.SoapClient.com/xml/SQLDataSoap.wsdl");
 soap = new com.SoapClient.www.SQLDataSoapBindingStub(endPoint,
 new org.apache.axis.client.Service());
 }

 // Public method to call the web services method processSRL
 public String processSRL(String SRLFile, String requestName,
 String key) throws java.rmi.RemoteException {
 return soap.processSRL(SRLFile, requestName, key);
 }
}

After compiling the stub, skeleton, and JavaBean files, you should be able to use the Flash code
shown in Example 10-1, changing the service path to the path of your JavaBean. When accessing a
web service through a J2EE server, you don't access the service directly, as you would with a
ColdFusion or ASP.NET server, but instead access the wrapper that you just created:

var servicePath = "com.SoapClient.www.SQLDataSoapBean";

As you can see, using web services from J2EE servers is slightly more complex than it is from
ColdFusion or ASP.NET, but once you've consumed one service, you can easily adapt the code to
consume other services.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.6 Web Services from PHP

Setting up AMFPHP for web services is covered in Chapter 9. There are two web service options for
AMFPHP: nuSOAP and PEAR::SOAP. The examples should work with either. The AMFPHP gateway
requires that web services be called with the arguments attached to an ActionScript object. The
Whois web service described earlier requires these three named arguments:

SRLFile

The name of the Service Request Language File ("WHOIS.SRI" for domain checking).
RequestName

This should always be "whois".
Key

The domain name.

Other than that, the code can be used as-is from the ColdFusion MX example, substituting your own
Flash Remoting gateway URL. The getWhois() function looks like this in the PHP example:

function getWhois () {
 myService.ProcessSRL({
 SRLFile:"WHOIS.SRI",
 RequestName:"whois",
 Key:domain_txt.text});
}

In the function, we are simply creating a generic object in the function call.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.7 BabelFish Web Service

The BabelFish translation service at XMethods (http://www.xmethods.net) is a sample that can be
implemented easily with a couple of text fields, a combo box, and a button. With a few lines of
ActionScript code, you can put language translation functionality into a Flash movie and into your
site. The BabelFish method at http://www.xmethods.net/sd/2001/BabelFishService.wsdl takes two
arguments: translationmode and sourcedata.

The translationmode argument is a special code for the two languages used in the translation, as
shown in Table 10-2. This data is displayed in a combo box named language_cb.

Table 10-2. Translation modes for the BabelFish remote method

From To translationmode

English French en_fr

English German en_de

English Italian en_it

English Portuguese en_pt

English Spanish en_es

French English fr_en

German English de_en

Italian English it_en

Portuguese English pt_en

Russian English ru_en

Spanish English es_en

The sourcedata argument is the text that you want translated (limited to a string of 150 characters
or less). The Flash UI, shown in Figure 10-2, allows the user to type into the from_txt text field,

choose a language translation from the combo box, click a button, and get the result in a text field
named to_txt.

Figure 10-2. Translation interface

http://www.xmethods.net
http://www.xmethods.net/sd/2001/BabelFishService.wsdl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The client-side ActionScript code is shown in Example 10-4, using the ColdFusion gateway.

Example 10-4. ActionScript code for consuming the BabelFish web
service

#include "NetServices.as"

// Set up variables for the URL and service paths
// Use your own Flash Remoting gateway URL
var myURL = "http://localhost:8500/flashservices/gateway";
var servicePath = "http://www.xmethods.net/sd/2001/BabelFishService.wsdl";

// Define the custom class SimpleResult
function SimpleResult () {
}

// Set up onResult() and onStatus() handlers as methods of SimpleResult class
SimpleResult.prototype.onResult = function (myResults) {
 to_txt.text = myResults;
};
SimpleResult.prototype.onStatus = function (myError) {
 to_txt.text = myError.description;
};
// Set the system status to be handled by the result status handler as well
System.onStatus = SimpleResult.protype.onStatus;

// Connection hasn't been initialized; create connection and service objects
if (initialized == null) {
 initialized = true;
 NetServices.setDefaultGatewayURL(myURL);
 var myConnection_conn = NetServices.createGatewayConnection();
 var myService = myConnection_conn.getService(servicePath, new SimpleResult());
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Call the service on click of the push button
translate_pb.setClickHandler("translate");
function translate () {
 myService.BabelFish(language_cb.getSelectedItem().data, from_txt.text);
}

The ActionScript code when using an ASP.NET server would differ only in the Flash Remoting gateway
URL, as set in the myURL variable. Everything else remains the same.

The ActionScript code when using a PHP example is also similar. Once the gateway URL is set
correctly, the only other difference is that the translate() function must pass the parameters to the
BabelFish service using an object with named properties:

function translate () {
 myService.BabelFish(
 {translationmode:language_cb.getSelectedItem().data,
 sourcedata:from_txt.text});
}

The Java version requires the wrapper JavaBean, similar to Example 10-3. The wrapper JavaBean
needed for Example 10-4 is shown in Example 10-5. You will also have to use the wsdl2java tool as
described earlier under Section 10.5.

Example 10-5. JavaBean wrapper for the BabelFish method

// Use the same package as the wsdl2java-generated classes
package net.xmethods.www;

public class BabelFishServiceBean implements java.io.Serializable {

// Handle to the generated stub
private net.xmethods.www.BabelFishBindingStub soap;

 // Empty constuctor
 public BabelFishServiceBean() throws java.net.MalformedURLException,
 org.apache.axis.AxisFault {
 final java.net.URL endPoint = new java.net.URL
 ("http://www.xmethods.net/sd/2001/BabelFishService.wsdl");
 soap = new net.xmethods.www.BabelFishBindingStub(endPoint,
 new org.apache.axis.client.Service());
 }

 // Public method to call the web services method babelFish
 public java.lang.String babelFish(java.lang.String translationmode,
 java.lang.String sourcedata) throws java.rmi.RemoteException {
 return soap.babelFish(translationmode, sourcedata);
 }
}

The ActionScript code for the Java example needs to have the URL to the service changed from the
.wsdl file to the JavaBean on your server:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

var servicePath = "net.xmethods.www.BabelFishServiceBean";

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.8 Datatype Conversions

Web services have specific simple types that are native to SOAP and other complex types that you can
define. The SOAP datatypes and their ActionScript equivalencies are listed in Table 10-3 .

Table 10-3. Datatype conversion between ActionScript and SOAP

ActionScript SOAP

Null Null

Undefined Null

Boolean Boolean

Number Decimal, Float, Double, Integer, Int

String String

Date DateTime

Array (numeric index) Array

Associative array Complex type

RecordSet N/A

Object Complex type

ColdFusion also supports a QueryBean datatype, which allows you to transfer query objects as results
from a web service. It is advisable, however, to create web services that will be more universally
readable, such as an array. Not all consumers of web services will be able to access a QueryBean .

10.8.1 Passing Complex Datatypes to and from Web Services

Sending a complex datatype to a web service is sometimes as simple as defining it in the client-side
ActionScript and passing it as an argument. An example of a web service that accepts a complex object
as an argument and returns a complex object as a result is the Amazon.com web service. Unfortunately,
this is not a service that is usable in different server environments. Example 10-6 works in ASP.NET and
PHP environments only. The Flash Remoting gateway for Java and ColdFusion (essentially the same
gateway) seems to have problems with this web service.

To make use of the Amazon.com web service, you must go to http://www.amazon.com/webservices
and sign up for a free developer's kit. You are issued a developer's token that can be used as a key to
use the service. Once you've done that, you are free to use their service in accordance with the licensing
agreement.

One obvious use is to search Amazon.com's catalog of books. The Flash UI for Amazon.com web service

http://lib.ommolketab.ir
http://lib.ommolketab.ir

example is shown in Figure 10-3 . The source file, amazon.fla , can be downloaded from the online Code
Depot.

Figure 10-3. The Amazon.com service using Flash Remoting

We'll use the KeywordSearchRequest() method of the Amazon.com web service for this example. The
method accepts an object with the following properties as an argument (see the comments in Example
10-6 or the Amazon.com documentation for more information about each argument):

keyword
page
mode
tag
type
sort (optional)
devtag

The response from the service is also in the form of an object. The returned object has the following
properties:

ListName

Not used for the KeywordSearchRequest() method.
TotalResults

Contains the total number of search results (only 10 results are returned from the service,
however).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Details

An array of objects containing the details of the books returned by the search. Each element of
the array is an object that contains the following properties:

URL Manufacturer

ASIN ImageUrlSmall

ProductName ImageUrlMedium

Catalog ImageUrlLarge

Artists ListPrice

Authors OurPrice

ReleaseDate UsedPrice

The Artists and Authors properties are arrays as well. The code shown in Example 10-6 creates the

Flash MX interface to the Amazon.com web service, which takes a complex datatype as a parameter and
returns a complex datatype to the caller. Because Amazon.com implements its own pageable results, we
have to implement paging in our Flash movie to be able to display all of the results. The code is
commented inline.

Example 10-6. Amazon.com web service implementing a keyword search
(amazon.fla)

#include "NetServices.as"

if (!connected) {
 var connected = true;
 var gatewayURL = "http://localhost/flashremoting/gateway.aspx");
 NetServices.setDefaultGatewayURL(gatewayURL);
 var gatewayConnection = NetServices.createGatewayConnection();
 var myService = gatewayConnection.getService(
 "http://soap.amazon.com/schemas2/AmazonWebServices.wsdl", this);
}

var keywordSearchPages = 0;
var KeywordRequestArgument = new Object();

// Initialize the object with properties and methods
KeywordRequestArgument.init = function () {
 this.keyword = ""; // Search word or words
 this.page = "1"; // Page number of results
 this.mode = "books"; // Type of product we are searching
 this.tag = "myassociateID"; // Amazon.com associate ID if you have one
 this.type = "lite"; // Type is either "lite" or "heavy"
 this.devtag = "yourtaghere"; // The Amazon developer tag that is issued to you
 this.version = "2.0"; // Version number of the Amazon web service
// This ends the properties for the object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Methods will be stripped off before being sent to the service
 this.setPageNumber = function (page) {this.page = page.toString();};
 this.getPageNumber = function (page) {return this.page;};
 this.setKeyword = function (keyword) {this.keyword = keyword;};

 // Call the remote service
 this.callService = function (page) {
 this.setPageNumber(page);
 pagedisplay_txt.text = "...working";
 myService.KeywordSearchRequest(this);
 };
};

KeywordRequestArgument.init(); // Initialize the object

previous_pb.setClickHandler("previousPage");
function previousPage () {
 var page = KeywordRequestArgument.getPageNumber();
 // Decrement the page counter, but no less than 1
 page = (page-- < 1) ? 1 : page--;
 KeywordRequestArgument.callService(page);
}

next_pb.setClickHandler("nextPage");
function nextPage () {
 var page = KeywordRequestArgument.getPageNumber();
 // Increment the page counter, but no greater than total pages
 page = (page++ >= keywordSearchPages) ? keywordSearchPages : page++;
 KeywordRequestArgument.callService(page);
}

submit_pb.setClickHandler("getResults");
function getResults () {
 keywordSearchPages = 0;
 KeywordRequestArgument.setKeyword(search_txt.text);
 KeywordRequestArgument.callService("1");
}

// Turn a URL into a clickable link
function makeLink(theText,theLink) {
 return '' +
theText + '';
}

function KeywordSearchRequest_Status (error) {
 trace(error.description);
}

// Display the results
function KeywordSearchRequest_Result (result) {
 results_txt.text = "";
 if (result.TotalResults == 0) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 pagedisplay_txt.text = "No results";
 } else {
 keywordSearchPages = Math.ceil(result.TotalResults/10);
 var temp = "";
 var totalResults = (result.TotalResults < 10) ? result.TotalResults : 10;
 for (var i=0; i < totalResults; i++) {
 temp += makeLink(result.Details[i].ProductName, result.Details[i].Url)+
 "
";
 temp += "by " + result.Details[i].Authors.join(", ") + "
";
 temp += "List price: " + result.Details[i].ListPrice + "
";
 temp += "Amazon price: " + result.Details[i].OurPrice + "
";
 temp += result.Details[i].Manufacturer + ": " +
 result.Details[i].ReleaseDate + "
";
 temp += "
";
 }
 results_txt.htmlText = temp;
 pagedisplay_txt.text = "Page " + KeywordRequestArgument.getPageNumber() +
 " of " + keywordSearchPages;
 }
}

In this case, we attach the parameters required for the web service as properties of a generic Object ,
KeywordRequestArgument . The parameters are handled by the Flash Remoting adapter on the server

and translated into the proper SOAP datatypes by the application server. An object is returned to the
Flash movie and is parsed and displayed in the KeywordSearchRequest_Result() function.

Example 10-6 uses the ASP.NET gateway. No server-side code is necessary. For PHP, the code should
work as written (because it passes the parameters to the service as properties of an object), provided
you update the gateway URL to point to the PHP gateway.

I hope that Macromedia makes the future versions of Flash Remoting more consistent across server
implementations so that services such as Amazon.com can be used by ColdFusion MX and J2EE servers
as well.

10.8.2 Passing Simple Arrays to Web Services

Web services can supply many different types of results to consumers of those services. Many web
services pass simple strings or simple values. In Example 10-6 , we saw the Amazon.com web service,
which passes a complex object, making it incompatible with ColdFusion MX and J2EE servers when using
Flash Remoting.

An array is a basic datatype in most languages, and SOAP is no exception. The web service at
http://www.communitymx.com/services/cmxfeed.wsdl passes an array of simple objects to the
consumer. The web service lists articles and other content available at Community MX, a support site for
Studio MX and other web technologies. The array contains objects with the following properties:

Title
Author
Category
Description
Keywords
Type_description

http://www.communitymx.com/services/cmxfeed.wsdl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Url

The ActionScript code for the simple interface is shown in Example 10-7 . Notice that the service method
getContent() takes one argument: type . If you pass the argument "all ", the service simply passes
the latest content feed from Community MX. The interface consists of two text fields: results_txt and
content_txt , with a scrollbar attached to content_txt . The source file, communitymx.fla , can be

downloaded from the online Code Depot.

Example 10-7. Flash code for web service from Community MX
(communitymx.fla)

#include "NetServices.as"

// Set up variables for the URL and service paths
var myURL = "http://localhost:8500/flashservices/gateway";
var servicePath = "http://www.communitymx.com/services/cmxfeed.wsdl";

// Define the custom SimpleResult class to display the results
function SimpleResult() { }

// Set up onResult() and onStatus() handlers as methods of SimpleResult class
SimpleResult.prototype.onResult = function (myResults) {
 results_txt.text = myResults.length + " records returned";
 var temp = "";
 for (var i=0; i < myResults.length; i++) {
 temp += makeLink(myResults[i].title,myResults[i].url) + "
";
 temp += "Author: " + myResults[i].author + "
";
 temp += "Category: " + myResults[i].category + "
";
 temp += "Description: " + myResults[i].description + "
";
 temp += "

";
 }
 content_txt.htmlText = temp;
};
SimpleResult.prototype.onStatus = function (myError) {
 results_txt.text = myError.description;
};
// Set the system status to be handled by the result status handler as well
System.onStatus = SimpleResult.prototype.onStatus;

// Make a clickable link out of the Title
function makeLink(theText,theLink) {
 var temp = '<a href="';
 temp += unescape(theLink);
 temp += '" target="_blank">' + theText + '';
 return temp;
}

// Connection hasn't been initialized; create connection and service objects
if (initialized == null) {
 initialized = true;
 NetServices.setDefaultGatewayURL(myURL);
 var myConnection_conn = NetServices.createGatewayConnection();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 var myService = myConnection_conn.getService(servicePath, new SimpleResult());
}

// Call the service on load
results_txt.text = "...working";
myService.getContent("all");

The content is displayed when the movie loads.

Example 10-7 uses the ColdFusion gateway. The ASP.NET version is identical, except for the path to the
Flash Remoting adapter on the server. The PHP version needs to have the arguments to the service
packed into an object, so replace the last line of Example 10-7 with these two lines:

var tempObj = {type:"all"};
myService.getContent(tempObj);

The J2EE and JRun versions need a JavaBean wrapper, as described earlier under Section 10.5 . The
JavaBean shown in Example 10-8 will work for this service after following the instructions outlined for
Example 10-3 under Section 10.5 .

Example 10-8. JavaBean wrapper code for the Community MX web service

// Use the same package as the wsdl2java-generated classes
package services;

public class CmxfeedBean implements java.io.Serializable {

 // Handle to the generated stub
 private services.CmxfeedCfcSoapBindingStub soap;

 // Empty constuctor
 public CmxfeedBean() throws java.net.MalformedURLException,
 org.apache.axis.AxisFault {
 final java.net.URL endPoint = new java.net.URL
 ("http://www.communitymx.com/services/cmxfeed.wsdl");
 soap = new services.CmxfeedCfcSoapBindingStub(endPoint,
 new org.apache.axis.client.Service());
 }

 // Public method to call the web services method getContent()
 public Object[] getContent(String myArg) throws java.rmi.RemoteException {
 return soap.getContent(myArg);
 }
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.9 Creating a Flash MX Web Service Extension

Flash MX and the other MX programs allow you to install Flash panels that become part of the
authoring environment. The Community MX and Amazon.com examples from this chapter can be
placed in the WindowSWF folder in the multiuser Configuration folder of Flash MX, located in the
following location in a typical Windows 2000 installation:

C:\Documents and Settings\username\Application Data\Macromedia\Flash

MX\Configuration\WindowSWF

Note that the folder is a hidden folder by default in Windows. Hidden folders can be shown with Tools
 Folder Options View Hidden files and folders Show Hidden files and folders. For

Macintosh OS X, the folder is located at:

Hard Drive/Users/Library/Application Support/Macromedia/FlashMX/Configuration/WindowSWF

If you have a single-user operating system, such as Windows 98 or Macintosh OS 9, the folder can be
found in your main Flash MX installation folder.

Simply dropping a .swf file in this folder allows you to use the Flash interface as a dockable panel in
Flash MX. You can easily add other types of panels that utilize other public web services or ones of
your own design, and even package these as extensions for consumption by other users of Studio MX
products. To package a Flash .swf file as an extension, you have to create an extension package. This
is done by first creating a special XML file with a .mxi file extension.

More information on the Macromedia Extension Installation file format (MXI)
can be found at the Macromedia site at
http://download.macromedia.com/pub/exchange/mxi_file_format.pdf.

The .mxi file for the Community MX Content extension might look like this:

<macromedia-extension
 name="Community MX Content"
 version="1.0.0"
 type="Flash Panel">

 <author name="Thomas Muck" />

 <products>
 <product name="Flash" version="6" primary="true" />
 </products>

 <description>
 <![CDATA[
 The Community MX Content panel shows the latest content from Community MX]]>
 </description>

http://download.macromedia.com/pub/exchange/mxi_file_format.pdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <ui-access>
 <![CDATA[
 After installing the extension, you can find the Community MX Content panel in
 the Window menu of Flash MX.
]]>
 </ui-access>

 <files>
 <file source="Community MX.swf" destination="$flash/WindowSWF" />
 </files>

</macromedia-extension>

Using the $flash variable in the .mxi file, you don't have to know the path to Flash on the user's

machine; the Extension Manager takes care of the details of installing the panel to the user's
Flash\WindowSWF folder.

If you place this .mxi file in the same folder as your .swf file and double-click it, the Macromedia
Extension Manager launches in its packaging mode. It prompts you to create a new package and
save it on your hard drive. The package is created with an .mxp file extension (the .mxi file is
bundled inside). The Flash extension package (the .mxp file) can be installed by anyone with Flash
MX or later. The Extension Manager is shown in Figure 10-4.

Figure 10-4. The Macromedia Extension Manager

This technique for packaging extensions can be used with many types of Flash movies, allowing you
to create your own interface elements of the Flash MX environment. The NetConnection debugger
and the Service Panel are examples of Flash MX extensions built as .swf files in this way. The
Community MX panel is shown in Figure 10-5.

Figure 10-5. The Community MX web service example as a Flash panel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MXI creator programs are available to help create MXI files for Macromedia
extensions, such as one created by Muzak at
http://www.muzakdeezign.com/mxi_creator/about.asp. Flash 2004 and Flash
Pro feature a JavaScript extensibility layer, such as that available in
Dreamweaver MX, so expect to see more Flash extensions in the future.
Consult the resources cited in Appendix A.

[Team LiB]

http://www.muzakdeezign.com/mxi_creator/about.asp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.10 Wrapping Up

In this chapter, we've looked at how you might use Flash Remoting to consume web services from
service providers, rather than create your own remote services. You've seen examples that work in
each implementation of Flash Remoting, and you've seen some limitations of dealing with web service
datatypes that might prevent you from using a given server solution for a particular web service.
You've also seen how a Flash Remoting example of a web service can be used inside of the Flash
environment as a Flash panel.

At the time of this writing, support for SOAP-based web services in Flash MX Professional 2004 is still
in flux. That said, the existing Flash Remoting feature set remains supported in Flash Player 7 and
Flash MX 2004. Even if enhanced support for SOAP-based web services in Flash MX Professional 2004
obviates the need for Flash Remoting to be installed on the server, these examples should work in
Flash Player 7. If necessary, see the online Code Depot for updated .fla files for Flash Player 7, which
may differ slightly from the Flash 6 versions presented here if you're not using Flash Remoting on the
server.

Chapter 11 delves into one of the coolest areas of Flash MX and ActionScript programming-building
user interface components and enabling them to be data-driven by a remote service.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 11. Extending Objects and UI
Controls
ActionScript facilitates easy extension of objects. By extending an existing component or object, you
are in effect extending the functionality of ActionScript and Flash. The Flash UI components and other
custom objects are, in fact, merely custom ActionScript code. Components can be customized,
copied, or linked together through ActionScript. In fact, Flash MX components are simply ActionScript
objects and, as such, are flexible with regard to the properties, methods, and events that you can
attach to them.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.1 Principles Behind UI Components

UI components are essentially movie clips that have three added features:

A Property inspector, in which you can set properties at authoring time.

A live preview that shows a display of what the component might look like.

The ability to be loaded in once, at the time the movie loads. If you have one instance of a
component or a hundred instances, the overhead is the same.

A properly built component is created as a class, with all methods declared on the prototype. This
insures that the component code exists in only one place-in the prototype-and not in each
individual instance of a component. This is unlike Flash 5 SmartClips, in which each instance had its
own copies of methods.

UI components also offer the ability to create rich interfaces and give Flash developers the ability to
put together these interfaces with the same ease that Visual Basic (VB) developers can create
interfaces.

Flash Pro includes a new screens-based metaphor intended to appeal to VB
developers, but here were cover using UI components with Flash's traditional
timeline-based metaphor supported in Flash MX and Flash 2004.

UI components, however, are easily modified using simple ActionScript. The next section shows
several enhancements you can make to components to make your Flash Remoting application
development easier.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.2 DataProviderClass and DataGlue

The DataProviderClass class binds data to a user interface control or other object. Flash Remoting
would not be as easy to use if it were not for the hidden functionality of DataProviderClass.

Jesse Warden has made documentation on DataProviderClass available in
standard Flash MX Reference format at
http://www.jessewarden.com/downloads/DataProvider.mxp.

DataProviderClass operates behind the scenes on the components listed in Table 11-1.

Table 11-1. UI components that use the DataProviderClass class

Component Found here

FComboBox Flash UI Components

FListBox Flash UI Components

FTicker Flash UI Components Set 2

FTree Flash UI Components Set 2

FTreeNode Flash UI Components Set 2

FAdvancedCalendar Flash UI Components Set 4

FSimpleMenu Flash UI Components Set 4

FSmartComboBox Flash UI Components Set 4

FDataGrid Flash UI DataGrid

FBarChart Flash Charting Components

FLineChart Flash Charting Components

FPieChart Flash Charting Components

FAccordianPane Flash UI Components Set 5

FTabView Flash UI Components Set 5

FWeekView Flash UI Components Set 5

The RecordSet class inherits from RSDataProviderClass, a class with the same methods as
DataProviderClass. RecordSet objects use a format of rows and columns, as do many of the Flash UI
components tied to DataProviderClass, so this parallel makes sense.

http://www.jessewarden.com/downloads/DataProvider.mxp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can picture a data consumer (the element that consumes the data from the data provider) as
shown in Figure 11-1.

Figure 11-1. A conceptual view of the DataProvider class

Some components support data and label properties, such as the ComboBox and the ListBox.
Typically, you store an ID number of some sort in the data property and store the textual
representation of the data in the label property. This is roughly the equivalent of a <select> tag in

HTML, where your option values are hidden and usually contain numbers. When using the Northwind
database as a data provider, it is convenient to use the CategoryID column to populate the data
properties and the CategoryDescription column to populate the label properties of the elements

within a ListBox or ComboBox, as shown in Table 11-2.

Table 11-2. Categories table in Northwind, as it relates to a ComboBox or
ListBox

CategoryID (data) CategoryDescription (label)

1 "Beverages"

2 "Condiments"

3 "Confections"

4 "Dairy Products"

5 "Grains/Cereals"

6 "Meat/Poultry"

7 "Produce"

8 "Seafood"

Most components that use the DataProviderClass support these methods:

addItem()

Adds an item to the end of the data set
addItemAt()

Adds an item at the specified position in the data set

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getLength()

Returns the length of the data (number of rows)
removeAll()

Removes all rows of data
replaceItemAt()

Replaces an item (row) in the data
removeItemAt()

Removes a specific item (row)
setDataProvider()

Sets the data provider for this data consumer
sortItemsBy()

Sorts the items by a specific column in the data

Using setDataProvider() on a ComboBox or ListBox, however, displays the entire contents of a
recordset row in each line of the ComboBox or ListBox. Therefore, use the
DataGlue.bindFormatStrings() method to bind a descriptive label and a data item to the rows of
ComboBox and ListBox components:

DataGlue.bindFormatStrings(dataConsumer, dataProvider, label, data);

However, you can pass the DataGlue.bindFormatFunction() method a custom function to handle the
binding of the data. This allows you to load data that does not conform to the label/data structure
into a ComboBox or ListBox component. You can create complex structures within the data property

of the component rows. DataGlue passes each row of data in the recordset to your format function,
which should return an object that looks like this:

{label:yourLabel, data:yourData}

DataGlue hides the details of the binding of the data to the component. Your format function should
simply create an object with a label property and a data property. What you put into those

properties is up to you.

For example, suppose you want to pass six fields to a Flash movie and display them within a ListBox.
You could display one item in the label property and pass the other fields into the data property as

an ActionScript object. Figure 11-2 shows the user interface for this demo, which simply displays all
of the database fields in text fields as the row is selected in the ListBox.

The code is shown in Example 11-1.

Figure 11-2. DataGlue can populate a ListBox or ComboBox with a
complete record

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 11-1. The ListBox demo

#include "NetServices.as"
#include "DataGlue.as"

// Set up a responder object to handle recordsets for ListBoxes
function ListBoxResponder (lbName) {
 this.lbName = lbName;
}
ListBoxResponder.prototype.onResult = function (result_rs) {
 // Use a format function to bind the data to the individual rows
 DataGlue.bindFormatFunction(this.lbName, result_rs, formatTheData);
};
ListBoxResponder.prototype.onStatus = function (error) {
 trace(error.description);
};

// Create an object to pass to the data property of the ListBox
function formatTheData (record) {
 label = record.ProductName;
 temp = {};
 temp.ProductID = record.ProductID;
 temp.ProductName = record.ProductName;
 temp.QuantityPerUnit = record.QuantityPerUnit;
 temp.UnitPrice = record.UnitPrice;
 temp.UnitsInStock = record.UnitsInStock;
 temp.UnitsOnOrder = record.UnitsOnOrder;
 return {label:label, data:temp}
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Initialization code
if (connected == null) {
 connected = true;
 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 my_conn.onStatus = errorHandler;
 var myService = my_conn.getService("com.oreilly.frdg.SearchProducts");

 var Products_rs = null; // Main RecordSet object for product list
}

// Call the service and populate the ListBox
myService.getSearchResult(new ListBoxResponder(products_lb));

products_lb.setChangeHandler("updateDisplay");

// Display properties of object contained in data property of the ListBox
function updateDisplay (lb) {
 var record = lb.getSelectedItem().data;
 ProductID_txt.text = record.ProductID;
 ProductName_txt.text = record.ProductName;
 QuantityPerUnit_txt.text = record.QuantityPerUnit;
 UnitPrice_txt.text = record.UnitPrice;
 UnitsInStock_txt.text = record.UnitsInStock;
 UnitsOnOrder_txt.text = record.UnitsOnOrder;
}

The key to this functionality is the formatTheData() function, in which an object named temp is

created to hold the data from the record. As you recall, each record is passed to this function by
DataGlue. The temp object is populated with data from each individual record of the recordset and
packed into the data property of the return value:

 return {label:label, data:temp}

The label property simply contains a product name from the recordset.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.3 Enhancing a Standard Control

In the formal, object-oriented sense of the word, to extend an object means create a subclass that
adds to the features of a given superclass. Here we use to term interchangeably with the more
informal word enhance, by which we mean customizing an object's feature set either by adding
methods to an existing class or by modifying a class to create a new one with the desired features.

It is often handy to enhance existing components that may lack the basic features for interacting with
remote services. You can simply add the functionality to the prototype of the component, or
overwrite the existing functionality. The basic syntax is:

FComponentNameClass.prototype.myMethod = function (args) {
 // Method code goes here
};

The advantage of defining the method on the prototype is that it will be available for all instances of
the component.

The class names of most components follow the convention of using a capital F (Flash), the
component name, and then the word Class. If you are in doubt about the name of the component
class, you can check the component definition in the Library. For example, a CheckBox class
definition is named FCheckBoxClass. Other components have similar names, as shown in Table 11-3.

Table 11-3. The class names for common Flash UI components

Component Class definition name Linkage symbol name

CheckBox FCheckBoxClass FCheckBoxSymbol

ComboBox FComboBoxClass FComboBoxSymbol

ListBox FListBoxClass FListBoxSymbol

PushButton FPushButtonClass FPushButtonSymbol

RadioButton FRadioButtonClass FRadioButtonSymbol

ScrollBar FScrollBarClass FScrollBarSymbol

ScrollPane FScrollPaneClass FScrollPaneSymbol

Tree FTreeClass FTreeSymbol

Ticker FTickerClass FTickerSymbol

Most Flash MX UI components are subclassed from the FUIComponentClass class. The
FUIComponentClass class contains most of the everyday functionality that a component needs, such
as initialization, setting colors and styles, setting callback methods, and setting focus. For more

http://lib.ommolketab.ir
http://lib.ommolketab.ir

information on FUIComponentClass, see the third-party extension by Jesse Warden at
http://www.jessewarden.com/downloads/FUIComponent.mxp.

Subsequent sections show examples of extending basic components.

11.3.1 Creating a ListBox with a Data-Driven Icon

An ActionScript programmer can visually and functionally extend the Flash MX components. There
are numerous examples on the Web that demonstrate this, but I will show a way to add a custom
icon to a ListBox, based on data from a remote service call, and, in doing so, create an enhanced
version of the ListBox component.

You'll need two icons-a blank checkbox and a filled checkbox-to simulate a checkbox component for
the data display. The files used in the procedure, blankbox.gif and check.gif, are also available at the
online Code Depot, as are the completed .fla files.

As an exercise, you might want to experiment by adding a true CheckBox component rather than an
icon to the ListBox. The icon is used for performance reasons, since we are simply displaying data
and no user interaction is needed.

Flash 2004 and Flash Pro components are larger than their Flash MX
predecessors. The updated component architecture uses a larger common base
class to support accessibility, tabbing, and other popular features. The shared
code affords some economies of scale in applications that use five or six
components; however, using only one or two components in Flash 2004 and
Flash Pro results in larger file sizes than might be justified. If using only one or
two components, a custom component will likely be more efficient.

The ListBox, and other components like it, have three main parts: the data provider, the item (row),
and the component itself. Components and their assets can be found in the Library after you drag an
instance of the component from the Components panel to the Stage. The assets are organized in
folders under the Flash UI Components folder in the Library, as shown in Figure 11-3.

Figure 11-3. The hierarchy of components in the Library panel

http://www.jessewarden.com/downloads/FUIComponent.mxp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

We'll add a checkbox icon to the FListBoxItem to create a new element named FListCheckItem. Use
the .fla created in Example 11-1 as a starting point. The final version is available as
FListCheckItem.fla from the online Code Depot.

Drag an instance of the ListBox component from the Components panel to the Stage. It appears
as FListBoxItem in the Library panel under Core Assets - Developer Only FUIComponent
Class Tree FUIComponent SubClasses FSelectableItem SubClasses, as shown in Figure
11-3.

1.

In the Library, right-click (Ctrl-click on Macintosh) FListBoxItem and choose Duplicate from the
pop-up menu. If you've successfully duplicated the Library symbol and not an instance of it on
the Stage, the Duplicate Symbol dialog box appears.

2.

In the Duplicate Symbol dialog box, name the new symbol FListCheckItem. Select the Export for
ActionScript checkbox, and set the Linkage Identifier to FListCheckItemSymbol (click the
Advanced button to expand the dialog box if you don't see the Linkage properties).

3.

Next, import the blankbox.gif and check.gif files to the Library using File Import to Library.4.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

Create a new symbol in the Library, name it Checkbox_icons, and open it for editing.5.

Add blankbox.gif to the first frame of the Checkbox_ icons symbol, and add check.gif to a new
second frame. You can position the images with their upper-left corners at the registration point
of the movie clip.

6.

Open the FListCheckItem symbol for editing, and add a new layer. On that layer, drag an
instance of the Checkbox_icons symbol from the Library to the symbol's canvas, and give it the
instance name check_mc in the Property inspector.

7.

Next, select the first frame of the Actions layer of the FListCheckItem symbol, and open the
Actions panel to show the existing code (which was duplicated from the original FListBoxItem
symbol). Modify the code, as shown in Example 11-2 (changes are shown in bold):

To define the FListCheckItemClass class, change FListItemClass to
FListCheckItemClass throughout the code, as shown in bold. Also change
FListItemSymbol to FListCheckItemSymbol.

a.

Our custom FListCheckItemClass class extends the FSelectableItemClass class, but we
must add the layoutContent() and displayContent() methods to handle the attaching of
the icons. The layoutContent() method overrides the FSelectableItemClass method of the
same name. Copy the code for the layoutContent() method from the first frame of the
Methods layer of the FSelectableItem symbol in the Library, and make the changes shown
in bold.

b.

The displayContent() method overrides the superclass method of the same name, which it
calls via super. Again, enter the text shown in bold.

c.

8.

Finally, we'll add a few lines to the main .fla, as shown in Example 11-3, with the changes from
Example 11-1 shown in bold.

9.

Example 11-2. The FListCheckItem code

#initclip 3
/*
 FListCheckItemClass
 EXTENDS FSelectableItemClass
 This is mostly a code stub for extension purposes.
*/

function FListCheckItemClass()
{
 this.init();
}

FListCheckItemClass.prototype = new FSelectableItemClass();

// EXTEND this method to change the content of an item and its layout
FListCheckItemClass.prototype.layoutContent = function (width) {
 this.attachMovie("FLabelSymbol", "fLabel_mc", 2,
 {hostComponent:this.controller});

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 this.fLabel_mc._x = 2;
 this.fLabel_mc._y = 0;
 this.icon_mc._x = width - this.icon_mc._width - 10;
 this.fLabel_mc.setSize(width - 10 - this.icon_mc._width);
 this.fLabel_mc.labelField.selectable = false;
};

FListCheckItemClass.prototype.displayContent = function(itmObj, selected) {
 // Execute the superclass method first
 super.displayContent(itmObj, selected);
 // Show an icon dependent on the data.checked property
 this.check_mc.gotoAndStop(itmObj.data.checked ? 1 : 2);
}

Object.registerClass("FListCheckItemSymbol", FListCheckItemClass);

#endinitclip

Example 11-3. The main movie .fla code

#include "NetServices.as"
#include "DataGlue.as"

// Set up a responder object to handle recordsets for ListBoxes
function ListBoxResponder (lbName) {
 this.lbName = lbName;
}
ListBoxResponder.prototype.onResult = function (result_rs) {
 // Use a format function to bind the data to the individual rows
 DataGlue.bindFormatFunction(this.lbName, result_rs, formatTheData);
};
ListBoxResponder.prototype.onStatus = function (error) {
 trace(error.description);
};

// Create an object to pass to the data property of the ListBox
function formatTheData(record) {
 label = record.ProductName;
 temp = {};
 temp.ProductID = record.ProductID;
 temp.ProductName = record.ProductName;
 temp.QuantityPerUnit = record.QuantityPerUnit;
 temp.UnitPrice = record.UnitPrice;
 temp.UnitsInStock = record.UnitsInStock;
 temp.UnitsOnOrder = record.UnitsOnOrder;
 temp.checked = record.Discontinued;
 return {label:label, data:temp}
}

// Initialization code
if (connected == null) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 connected = true;
 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 my_conn.onStatus = errorHandler;
 var myService = my_conn.getService("com.oreilly.frdg.SearchProducts");

 var Products_rs = null; // Main RecordSet object for product list
}

// Set up the FListCheckItemSymbol to be the item for the ListBox
products_lb.setItemSymbol("FListCheckItemSymbol");

// Call the service and populate the ListBox
myService.getSearchResult(new ListBoxResponder(products_lb));

products_lb.setChangeHandler("updateDisplay");

// Display properties of object contained in data property of the ListBox
function updateDisplay (lb) {
 var record = lb.getSelectedItem().data;
 ProductID_txt.text = record.ProductID;
 ProductName_txt.text = record.ProductName;
 QuantityPerUnit_txt.text = record.QuantityPerUnit;
 UnitPrice_txt.text = record.UnitPrice;
 UnitsInStock_txt.text = record.UnitsInStock;
 UnitsOnOrder_txt.text = record.UnitsOnOrder;
}

Save and test the movie. It should show the checkbox icons in our custom ListBox, depending on the
Discontinued field in the Products table. (The Products table does not have a Discontinued field

by default, but you can add it to your test database easily, as we did in Chapter 5.)

The following line sets up FListCheckItemSymbol as the list item for the ListBox instance on the
Stage:

products_lb.setItemSymbol("FListCheckItemSymbol");

That's all there is to it. In this case, the original ListBox component was not touched, but a copy of it
was enhanced to include an icon. That is, our custom FListCheckItemClass class extends the
FSelectableItemClass class directly instead of extending FListItemClass, as could have been done.
Regardless, a component like this can also be packaged and installed into the Components panel with
very little effort.

11.3.2 Enhancing a ComboBox with Methods

In Chapter 4, we enhanced the ComboBox component to include a pickValue() method. This method
allows you to pass a result from a Flash Remoting call to the ComboBox and choose that value in the
UI. I'll take that a step further now by adding pickLabel(), setDefault(), and setDescriptor()
methods. These new methods, and others like it, can make working with the ComboBox much easier,
especially when working with Flash Remoting.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following examples add methods to the prototype of the ComboBox
component. This adds functionality to an existing component without creating a
new one. You could instead create a new component that inherits from (i.e.,
subclasses or extends) the ComboBox, and add your new methods to the
custom component. Full details on the intricacies of component building are
beyond the scope of the book.

When enhancing ActionScript objects in this way, make sure that your method names do not conflict
with method names from other programmers. For example, if another programmer on your team
creates a pickValue() method for a ComboBox, the two namespaces will collide.

11.3.2.1 Using pickValue() and pickLabel()

The custom pickValue() and pickLabel() methods can be used to set a value in a ComboBox. The
methods are shown in Example 11-4.

Example 11-4. The pickValue() and pickLabel() methods for the
ComboBox

// Set up the combo boxes to be able to pick a value
FComboBoxClass.prototype.pickValue = function (value) {
 var tempLength = this.getLength();
 for (var i=0; i < tempLength; i++) {
 if (this.getItemAt(i).data == value) {
 this.setSelectedIndex(i);
 break;
 }
 }
};

// Set up the combo boxes to be able to pick a label
FComboBoxClass.prototype.pickLabel = function (text) {
 var tempLength = this.getLength();
 for (var i=0; i < tempLength; i++) {
 if (this.getItemAt(i).label == value) {
 this.setSelectedIndex(i);
 break;
 }
 }
};

Typically, a ComboBox is populated from a remote database containing labels and values of a
Categories table or some other related table. In a typical update of a database, you populate the

user interface with a record from the database. In this situation, pickValue() or pickLabel() can be
used to choose the correct value for the current record. You might use it like this, with a RecordSet
object named myResults_rs:

myCombobox.pickValue(myResults_rs.getItemAt(0)["categoryid"]);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.3.2.2 Using setDefault()

Frequently, you may need to set a default value for a ComboBox or other UI component. The
setDefault() method, shown in Example 11-5, handles these situations.

Example 11-5. Default value functionality for the ComboBox

// Set up a "default" property, which will be the value picked if

// the setDefault() method is called.
FComboBoxClass.prototype._default = null;

// setDefaultValue() sets up the default value when setDefault() is called
FComboBoxClass.prototype.setDefaultValue = function (value) {
 this._default = value;
};

// Getter method for the default value
FComboBoxClass.prototype.getDefaultValue = function () {
 return this._default;
};

// Set up the combo boxes to keep a default value
FComboBoxClass.prototype.setDefault = function () {
 this.pickValue(this.getDefaultValue());
};

The setDefault() method comes in handy for situations where you are inserting data into a database.
The ComboBox can display the default item. If the user doesn't pick an item for the ComboBox, the
default value to enter in the database can be pulled from the ComboBox. For example, when
requesting the user's shipping address, you might specify an appropriate default country and shipping
method, like this:

myCombobox.setDefaultValue(1); // Initialize the default value

Now, whenever you want to display the default item in the ComboBox, simply call:

myCombobox.setDefault(); // Displays the default item in the ComboBox

This technique is more flexible than simply choosing the value when you need to, because you can
set the default value in one place in your movie and have the ability to set the ComboBox back to the
default item at any time. If the default value changes at some point, your ComboBox code
throughout your movie will still work. For example, if the user specifies his country as the United
States, you might set the default shipping method to "UPS Ground." For other countries, you could
set it to "Federal Express International".

11.3.2.3 Using setDescriptor()

The last custom method in this section is setDescriptor(). ComboBoxes frequently have a default
label that states "-All options-" or "-Choose Shipping Method-". These types of items can be
added easily to all of your ComboBoxes using the setDescriptor() method, shown in Example 11-6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 11-6. Adding the setDescriptor() method to the ComboBox

// Add a descriptive row to the ComboBox
FComboBoxClass.prototype.setDescriptor = function (text, value) {
 // Create a blank record
 var temp = {};

 // Get the RecordSet object
 var rs = this.dataProvider.dataProvider;
 // Create a blank record
 rs.addItemAt(0, temp);

 // Get the recordset's field names in mTitles, and set the text and value
 rs.setField(0, rs.mTitles[1], text);
 rs.setField(0, rs.mTitles[0], value);
 this.pickValue(0);
};

The setDescriptor() method works with ComboBoxes that have been set up with DataGlue. In those
cases, if you try to set the label directly, you'll find that it can't be done easily. You can create a new
record in the data provider, however, which will propagate down to the ComboBox:

shipping_cb.setDescriptor("--Choose Shipping method-- ", 0);
country_cb.setDescriptor("--Country--", 0)

The ComboBox enhancements can be saved to the Flash MX\Configuration\Include\com\oreilly\frdg
folder as DataFriendlyCombo.as. If you want to include the functionality in your Flash Remoting
application, add the following #include directive to your code in the first frame:

#include "com/oreilly/frdg/DataFriendlyCombo.as"

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.4 Enhancing the RecordSet Class for Interactivity

Chapter 3 showed an enhancement to the RecordSet class that facilitated a user interface showing
only one record at a time-a common way of displaying resultset data to the end user. The
enhancement added the concept of a current record and provided methods to move to specific
records (first, previous, next, last, and record number). To augment this functionality, let's
implement a feature to associate a field in a recordset with user interface controls and other elements
(DataGlue style).

11.4.1 The Current Record Functionality

The current record functionality was described in Chapter 3, but we'll add a few new methods to
implement the gluing of components to individual RecordSet fields. The basic functionality that we will
begin with is shown in Example 11-7.

Example 11-7. Adding current record functionality to a RecordSet

// Initialize the current record number
RecordSet.prototype.currentRecord = 0;

// Return the current record
RecordSet.prototype.getCurrentRecord = function () {
 return this.getItemAt(this.currentRecord-1);
};

// Return the current record number
RecordSet.prototype.getCurrentRecordNum = function () {
 return this.currentRecord
};

RecordSet.prototype.move = function (direction) {
 switch (direction.toLowerCase()) {
 case "first":
 this.currentRecord = 1;
 break;
 case "previous":
 if (--this.currentRecord < 1) this.currentRecord = 1;
 break;
 case "next":
 if (++this.currentRecord > this.getLength())
 this.currentRecord = this.getLength();
 break;
 case "last":
 this.currentRecord = this.getLength();
 break;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 default:
 // Not a direction: must be a number
 this.currentRecord = direction;
 }
 this.recordChanged();
};

The code is identical to what was shown in Chapter 3 under Section 3.6.3, with one exception: we
added a call to this.recordChanged() in the move() method. The recordChanged() method will be
described in the next few sections.

Remember, the currentRecord property contains numbers from 1 to the length of the recordset.

However, recordsets use a zero-relative index, so we'll add or replace records based on the
currentRecord - 1.

11.4.2 Adding the glue() and recordChanged() Functionality

DataGlue effectively binds a RecordSet object to a ComboBox or a ListBox. In those cases, you are
populating the component with the entire recordset (or specific fields of a recordset). This is possible
because ComboBoxes and ListBoxes display items in rows. But what about components or objects
that don't support multiple individual items, such as a CheckBox or a text field? These types of
objects come in handy when you're displaying only one record from a resultset. The recordChanged(
) method that we will create will change the components that are bound to the RecordSet object, but
first we have to bind the fields. We'll add another custom method to the RecordSet class, called glue(
). This is the method that effectively binds a recordset field to a component or text field. The glue()
method is shown in Example 11-8, along with the uiFields property that holds the fields to be glued

from the RecordSet.

Example 11-8. The glue() method binds the component to the field

// Set up an array of UI components to bind to fields
RecordSet.prototype.uiFields = new Array();

// The glue() method binds a control of controlType to a field

// controlTypes supported:
 // "text"
 // "combobox"
 // "checkbox"
 // "radiobutton"

RecordSet.prototype.glue = function (control, field, controlType) {

 // Create the uiField member as an object
 var controlObj = {};
 controlObj.control = control;
 controlObj.field = field;
 controlObj.controlType = controlType;
 // Replace the field if it is already defined.
 for (var i=0; i<this.uiFields.length; i++) {
 if (this.uiFields[i].control == controlObj.control) {
 uiFields[i] = controlObj;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return;
 }
 }
 // If the field is not bound yet, add it to the array
 this.uiFields.push(controlObj);
};

You call the glue() method like this, passing the component (or text field), the name of the database
field you want to glue to the component, and the component type ("text", "combobox", or
"checkbox"):

RecordSetname.glue(component, databaseField, componentType);

Typical calls to glue() look like this:

// Glue the CategoryID field to the categories_cb ComboBox.
Products_rs.glue(categories_cb, "CategoryID", "combobox");

// Glue the ProductName field to the ProductName_txt TextField.
Products_rs.glue(ProductName_txt, "ProductName", "text");

The glue() method is one piece of the puzzle. After the field is glued to the component, you have to
be able to update the component in the UI. This is handled by a recordChanged() method, shown in
Example 11-9.

Example 11-9. The recordChanged() method

RecordSet.prototype.recordChanged = function () {
 // Define variables to hold current field, component, and type of component
 var theField, theControl, theControlType;
 // The current record to be changed
 var record = this.getCurrentRecord();

 // The uiFields property is an array of controlObj objects set up in glue()
 var tempLength = this.uiFields.length;
 for (var i=0;i < tempLength; i++) {
 theField = this.uiFields[i].field;
 theControl = this.uiFields[i].control;
 theControlType = this.uiFields[i].controlType;
 switch (theControlType) { // What kind of control is it?

 case "text": // Text fields have the text property set
 theControl.text = record[theField];
 break;

 case "combobox": // ComboBoxes use the custom pickValue() method
 theControl.pickValue(record[theField]);
 break;

 case "checkbox": // CheckBoxes have the value set true or false
 theControl.setValue(record[theField]);
 break;
 default: // Other components not supported at this time
 trace(theControlType + " not supported")
 }
 }
};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The recordChanged() method cycles through the uiFields array, updating each UI component to

display the data that is in the glued field of the current record. The methods have been implemented
for TextFields, ComboBoxes, and CheckBoxes, but you can add functionality for any type of UI
component.

Now, components and text fields can be glued to a field in a recordset, and the field will change when
the current record changes. Next, the setCurrentRecord() method will update the current record in
the recordset, based on what is in the fields that are glued to it.

11.4.3 The setCurrentRecord() Method

The UI is now capable of being updated as the user pages through the recordset. But TextFields,
ComboBoxes, and other UI components might be changed by the user as well. We need a method to
update the current displayed record directly from the fields that are glued in the recordset. The
setCurrentRecord() method, shown in Example 11-10, accomplishes this.

Example 11-10. The setCurrentRecord() method updates the recordset

// Update the current record based on values in the glued components
RecordSet.prototype.setCurrentRecord = function () {
 // Define variables to hold the current field, component, and type of component
 var theField, theControl, theControlType;
 // The current record to be changed
 var record = this.getCurrentRecord();

 // The uiFields property is an array of controlObj objects set up in glue()
 var tempLength = this.uiFields.length;
 for (var i=0;i < tempLength; i++) {
 theField = this.uiFields[i].field;
 theControl = this.uiFields[i].control;
 theControlType = this.uiFields[i].controlType;
 switch (theControlType) { // What kind of control is it?
 case "text": // The TextField uses the text property
 record[theField] = theControl.text;
 break;
 case "combobox": / // ComboBoxes use the data value of the selected item
 record[theField] = theControl.getSelectedItem().data;
 break;

 case "checkbox": // CheckBoxes use the value true or false
 record[theField] = theControl.getValue();
 break;
 default: // Other components not supported at this time
 trace(theControlType + " not supported")
 }
 }
};

The setCurrentRecord() method operates in place on each component or TextField that is glued to
the recordset. Whatever is currently displayed in the UI is written to the client-side recordset that the
UI component or text field is glued to.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.4.4 Putting It Together

With the glue() functionality in place, you can now simplify the process of building a rich interface.
The ProductsAdmin.fla code from Example 5-14 can be simplified, including using a checkbox to
display the Discontinued status of the product. The interface fields that are glued include TextFields,
ComboBoxes, and a CheckBox.

The administrative interface that is bound to a recordset is shown in Figure 11-4.

Figure 11-4. The administrative interface for the Products table of
Northwind

The code is shown in Example 11-11. The completed .fla file showing the interface can be
downloaded from the online Code Depot.

Example 11-11. Using the glue() functionality simplifies the ActionScript
code

#include "NetServices.as"
#include "DataGlue.as"
#include "NetDebug.as"
#include "com/oreilly/frdg/DataFriendlyCombo.as"
#include "com/oreilly/frdg/RecordSetPlus.as"

// General error handler for authoring environment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function errorHandler(error) {
 trace(error.description);
}

// Responder objects

// SearchResult() takes one optional argument: recNum

// When inserting or updating a record, the recNum can be specified

// to move the user interface to that record; otherwise, use "first"
function SearchResult(recNum) {
 if (recNum) {
 this.recNum = recNum;
 } else {
 this.recNum = "first";
 }
}

// The SearchResult responder object handles the gluing of the UI
SearchResult.prototype.onResult = function (result_rs) {
 Products_rs = result_rs;

 // Use the glue() method to bind the UI to the recordset
 Products_rs.glue(ProductName_txt, "ProductName", "text");
 Products_rs.glue(categories_cb, "CategoryID", "combobox");
 Products_rs.glue(UnitPrice_txt, "UnitPrice", "text");
 Products_rs.glue(QuantityPerUnit_txt, "QuantityPerUnit", "text");
 Products_rs.glue(suppliers_cb, "SupplierID", "combobox");
 Products_rs.glue(test_ch, "Discontinued", "checkbox");

 results_txt.text = "There were " + Products_rs.getLength()+ " records returned.";
 Products_rs.move(this.recNum);
};

SearchResult.prototype.onStatus = errorHandler;

// Set up a responder object to handle recordsets for ComboBoxes
// This responder assumes that data is coming in with
// ID column in [0] position and description column
// in the [1] position
function ComboBoxResponder (cbName) {
 this.onResult = function (result_rs) {
 var fields = result_rs.getColumnNames();
 var idField = '#' + fields[0] + '#';
 var descField = '#' + fields[1] + '#';
 DataGlue.bindFormatStrings(cbName, result_rs, descField,idField);
 cbName.setDescriptor("--Choose One--", 0);
 cbName.setDefaultValue(0);
 };
 this.onStatus = errorHandler;
}

// Main responder for the Update, Insert, and Delete functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Display is to the Output window only
function MainServiceResponder() {}
MainServiceResponder.prototype.onResult = function (result) {
 trace(result);
};
MainServiceResponder.prototype.onStatus = errorHandler;

// Initialization code
if (connected == null) {
 connected = true;
 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 my_conn.onStatus = errorHandler;
 var myService = my_conn.getService("com.oreilly.frdg.admin.ProductsAdmin");

 var Products_rs = null; // Main RecordSet object for product list
 // Set up the two ComboBoxes
 myService.getCategories(new ComboBoxResponder(categories_cb));
 myService.getSuppliers(new ComboBoxResponder(suppliers_cb));
}

// Set up event handlers for buttons
submit_pb.setClickHandler("searchProducts");

// Move buttons
moveFirst.setClickHandler("moveTo");
movePrevious.setClickHandler("moveTo");
moveNext.setClickHandler("moveTo");
moveLast.setClickHandler("moveTo");

// Insert, Update, and Delete buttons
insert_pb.setClickHandler("insertRecord");
update_pb.setClickHandler("updateRecord");
delete_pb.setClickHandler("deleteRecord");

// Event handlers for buttons

// submit_pb click handler
function searchProducts () {
 getRecordset();
}

// moveFirst(), movePrevious(), moveNext(), and moveLast() click handler
function moveTo (button) {
 // The label of the button indicates the direction to move the recordset:
 // "first", "previous", "next", "last"
 Products_rs.move(button.label);
 navStatus_txt.text =
 "Rec. No. " + (Products_rs.getCurrentRecordNum()) + " of " +
 Products_rs.getLength();
}

// update_pb click handler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function updateRecord () {
 myService.updateProduct(new MainServiceResponder(), getUpdatedRecord());
 var tempRec = Products_rs.getCurrentRecordNum();
 getRecordset(tempRec);
}

// insert_pb click handler
function insertRecord () {
 if (insert_pb.getLabel() == "Add New Product") {
 Products_rs.addItem(getNewRecord());
 Products_rs.move("last");
 insert_pb.setLabel("Insert To Database");
 insert_txt.text = "Click again to insert to database";
 } else {
 insert_pb.setLabel("Add New Product");
 myService.addProduct(new MainServiceResponder(), getUpdatedRecord());
 getRecordset("last");
 insert_txt.text = "";
 }
}

// delete_pb click handler
function deleteRecord () {
 var productID = Products_rs.getCurrentRecord().ProductID;
 myService.deleteProducts(new MainServiceResponder(), ProductID);
 getRecordset();
}

// Utility functions
function getRecordset (recNum) {
 // Call the remote method using a responder object with optional record number
 // to move the recordset to
 myService.getSearchResult(new SearchResult(recNum), search);
}

// Pack the updated record from the display into the RecordSet object
// and return the record to the caller
function getUpdatedRecord () {
 Products_rs.setCurrentRecord();
 return Products_rs.getCurrentRecord();
}

// Get a blank record
function getNewRecord () {
 var theRecord = { ProductName:''
 ,UnitPrice:''
 ,QuantityPerUnit:''
 ,CategoryID:0
 ,SupplierID:0
 ,ProductID:''
 };
 return theRecord;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

In Example 11-11, the onResult() method updates the UI as the record changes and updates the
client-side recordset if the user changes the UI:

 // Use the glue() method to bind the UI to the recordset
 Products_rs.glue(ProductName_txt, "ProductName", "text");
 Products_rs.glue(categories_cb, "CategoryID", "combobox");
 Products_rs.glue(UnitPrice_txt, "UnitPrice", "text");
 Products_rs.glue(QuantityPerUnit_txt, "QuantityPerUnit", "text");
 Products_rs.glue(suppliers_cb, "SupplierID", "combobox");
 Products_rs.glue(test_ch, "Discontinued", "checkbox");

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.5 Adding Validation to a TextField

Text fields are used often in Flash Remoting applications, because you frequently need to accept user
input for your remote calls. Any time a user can interact with an application, the possibility exists for
major problems. One way to minimize the types of problems you might encounter is to validate the
user-input data before it is sent to the remote server.

Client-side validation is important for a smooth user experience, but you should
also validate user-input data on the server, to avoid malicious attacks on your
server-side services. Remember, when you set up a remote service, it is open
to the world, whether a user uses your Flash interface or not.

The next example shows how you might implement a validation routine directly on the TextField
class. (The TextField component on the DRK 3 CD-ROM also features validation functionality.) Simply
calling TextField.validate() causes all text fields that have a defined validator to be validated. The
method returns an error message if there is a problem, or nothing if everything validates properly.
First, enhance the TextField class to keep track of the validators for each TextField instance. The
validators are stored in an array:

TextField.validators = new Array();

Next, insert a routine to allow the programmer to set a specific validator type on a given text field:

TextField.prototype.setValidationType = function (theType, errMsg) {
 var validator = new Object();
 validator.textfield = this;
 validator.theType = theType;
 validator.errMsg = errMsg;
 // If validator needs more arguments, set them up here
 if (arguments.length > 2) {
 for (var i=2; i< arguments.length; i++) {
 validator[i] = arguments[i];
 }
 }

 TextField.validators.push(validator);
};

The setValidationType() method allows two or more arguments. The first argument, theType,
specifies the type of validation. The errMsg argument allows you to set the error message. If you

supply more than two arguments, the remaining arguments will be passed to the validate() method
for use by the given validation routine.

Finally, create the validation routines in the validate() method. Because this is a simple example,
I've implemented only a required field, an email field, a password field between n and n2 characters
(arguments 3 and 4 are passed to the setValidationType() method), and a password confirmation
validator (using argument 3 passed to setValidationType()). More case statements could be added

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for more validation types:

TextField.validate = function () {
 var errMsg = "";
 var temp;
 for (var i=0; i < this.validators.length; i++) {
 temp = this.validators[i];
 switch(temp.theType) {
 case 0:
 break;
 case 1: // required field
 if (temp.textfield.text == "")
 errMsg += temp.errMsg + "\n";
 break;
 case 2: // email address
 if (!isValidEmail(temp.textfield.text))
 errMsg += temp.errMsg + "\n";
 break;
 case 3: // password between n and n2 characters
 if (temp.textfield.text.length < temp["2"] ||
 temp.textfield.text.length > temp["3"])
 errMsg += temp.errMsg + "\n";
 break;
 case 4: // password must equal confirm fields
 if (temp.textfield.text != temp["2"].text)
 errMsg += temp.errMsg + "\n";
 break;
 }
 }
 function isValidEmail (theString) {
 var isValid = (
 (theString.lastIndexOf('.') < theString.length - 2) && // must have dot
 (theString.indexOf('@') != -1) && // must have one @
 (theString.indexOf('@') == theString.lastIndexOf('@')) // must not have two @@
)
 return isValid;
 }
 return errMsg;
};

To demonstrate the new method of the TextField class, set up a new movie with four input text fields
named name_txt, email_txt, password_txt, and confirm_txt, along with a Submit button and a
MessageBox component named validation_mb (from UI Components Set 2). Here is the code to set

up the validators on the boxes:

name_txt.setValidationType(1, "Name must not be blank");
email_txt.setValidationType(2, "Email must be valid");
password_txt.setValidationType(3, "Password must be between 8 and 12 characters",
 8, 12);
password_txt.setValidationType(4, "Passwords don't match", confirm_txt);

Each TextField that is to be validated is initialized with the setValidationType() method, with two

http://lib.ommolketab.ir
http://lib.ommolketab.ir

arguments. Simply pass the number of the validation type (1: required field; 2: email validation; 3:
password of a given length, 4: password match). The password_txt field actually has two validations

on it: a length validation and a confirmation validation. The code to submit the form and check the
validity of the data is shown here:

submit_pb.setClickHandler("submitForm");
submitForm = function () {
 // Validate all TextFields
 var errorMessage = TextField.validate();
 // If there is an error message, there was a problem
 if (errorMessage != "") {
 validation_mb._visible = true;
 validation_mb.setMessage("Error in the data you provided\n" + errorMessage)
 } else { // No problem, pass the form to the remote method, when implemented
 trace("valid data!!!")
 }
};

There are other ways to perform validations, but this technique shows how you might implement a
validator that performs all required validations at one time, by simply enhancing the TextField class.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.6 Wrapping Up

In this chapter you saw how UI components and other ActionScript objects, such as the RecordSets
class, can be enhanced to allow for better interaction with Flash Remoting. ActionScript is a flexible
language that allows for extensibility of custom components or even its core objects.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 12. Flash Remoting Best Practices
The issue of best practices is a subjective topic. One person's idea of a best practice may be someone
else's idea of a worst nightmare. As in all forms of programming, there is no single right way to
perform a given task. For that reason, this chapter presents some of the common tactics employed
by Flash Remoting developers. It is up to the developer to measure the options carefully and decide
on the best course of action for a particular application.

We've touched on numerous best practices throughout the earlier chapters (see "best practices" in
the index). Here we look at the big picture and cover additional best practices you should seriously
consider. Refer also to the Macromedia white papers and articles on best practices cited in Appendix
B.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.1 Separation of Tasks

A Flash Remoting application can be constructed by one person or a team of designers and
programmers. If working in a team environment, Flash Remoting utilizes several different
technologies that can be easily broken down into tasks for different types of developers. In your
team, individuals might wear different hats at different times, so there will be some overlap, but the
division of tasks is fairly clear.

12.1.1 Designer

The designer concentrates on the visual and audio design of the application and deals with the look
and feel of the application. He creates all the interfaces; he chooses the fonts, colors, graphics, and
other elements of the application. He may know ActionScript and be able to program some
functionality, or he may not. He should be able to create an application interface from specifications
and be flexible enough to change visual elements easily.

12.1.2 Client-Side ActionScript Programmer

The client-side ActionScript programmer is responsible for all of the interaction in the application, and
she works with the designer to implement this functionality. She might create the code that calls the
various interface elements to display in the movie, and she would also create any code that is related
to user input. The ActionScript programmer should know the Flash programming environment inside
and out and be able to bring the project specifications to life.

If the designer has not completed a particular section, the interface should work as it stands, using
dummy methods where user interactions or remote service calls might be (for example, if a user
clicks "Login," an alert message might say "User logging in").

12.1.3 Flash Remoting ActionScript Programmer

The Flash Remoting programmer is also an ActionScript programmer, but he is responsible for
connecting to the remote services and providing hooks for the client-side ActionScript programmer in
the form of an API. He should work closely with the server-side developers to build the client-side
code that calls remote services accurately. He should be able to test his service calls at all points,
using dummy methods on the server that the server-side programmer has set up.

12.1.4 Database Programmer

The database programmer is responsible for setting up the database, including table definitions,
relationships, and all stored procedure code necessary. She should also work closely with the server-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

side programmer. Typically, in an application that uses a database, the database needs to be in place
before the server-side services are developed. The database is frequently the first part of the
application to be built. All parts of the application revolve around the database.

The database programmer is also responsible for exposing items to the server-side programmer.
From an ActionScript perspective, this is the equivalent of exposing methods or functions to the
team. The database programmer exposes views, stored procedures, and possibly tables (in a MySQL
environment) to the server-side programmer.

12.1.5 Server-Side Programmer

The server-side programmer might be versed in CFML, SSAS, Java, C#, VB.NET, or PHP. He should
be able to create the remote services that can be accessed from the Flash movie. He should also be
able to create HTML interfaces (test harnesses) for testing the remote services so that the server-
side services can be completed before bringing Flash into the equation.

The server-side programmer exposes methods for the Flash Remoting ActionScript programmer to
utilize.

12.1.6 HTML Developers

The HTML developer ties the whole application together on the HTML page and provides necessary
code for alternate pages (if needed) and Flash detection. She also must create the HTML pages in
such a way that they blend seamlessly with the Flash application. The HTML developer should work
closely with the designer.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.2 Separation of Functionality

A Flash Remoting application is a client/server application. You should have a clean separation of
client and server duties, however. The server-side services should be operable in any situation,
whether being accessed by a Flash interface, HTML interface, desktop application, or other web
service. For that reason, it is not advisable to use the Flash object on the server. In Example 2-5,

you saw the HelloUser service written using C# in an ASP.NET environment:

<%@ Page Language="C#"%>
<%@ Register TagPrefix="MyTag" Namespace="FlashGateway" Assembly="flashgateway" %>
<MyTag:Flash ID="Flash" Runat="Server" />
<%
 if (Flash.Params.Count > 0) {
 String username = Flash.Params[0].ToString();
 String currentTime = DateTime.Now.ToLongTimeString();
 Flash.Result = "Hello " + username + ". It is " + currentTime;
}
%>

I presented it because it is a part of Flash Remoting that you should know about-and it is frequently
an easy way to accomplish a task-but it is not always a good way to code your remote service. The
Flash object is available and easy to use, but you should carefully consider the consequences of
using the Flash object, as it ties the remote service to the Flash application (preventing you from

building a non-Flash interface to the service).

There are several other considerations to separating the client and server. Flash Remoting raises a
dilemma-where does the functionality belong? Some functionality is plainly client-side functionality,
and some is plainly server-side. Some of it might be in-between and could go either way. For
example, you can filter large sets of data in the middle tier, where you have a known environment
and resources, versus doing it on the client side within Flash, which, depending on the client's
machine, might not perform well. In this case, you may want to initially sort the data set on the
server, and then have any user-initiated sorts occur within the Flash Player. This is a good trade-off
between client-side processing concerns and the extra bandwidth required to transfer data sets to
and from the server.

The database should handle as much data processing as possible, because that is its function and it is
good at it. Such things as sorting and filtering recordsets, especially large recordsets, should be left
to the database whenever possible.

An example of how you might enhance a server-side method to be more versatile and separate from
the client is to manually manipulate your resultset before sending it to Flash. To demonstrate what I
mean, think of a resultset that feeds a ComboBox. Frequently, you want to add a display item or an
option for "All" in a ComboBox. One of the ways to do this is to add the text manually on the client
after the resultset is returned. Sometimes, it makes sense to add the logic to the server so that the
client merely has to display what is returned, without doing any manipulation. Performing the
processing on the server side makes for a faster client experience and, as an added benefit, if you
have to create an HTML interface for the same type of ComboBox, you don't have to do any client-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

side manipulation of code in your HTML page either. Example 12-1 shows the ColdFusion code to
manipulate a Query object on the server, which populates a client-side ComboBox.

Example 12-1. Enhancing a recordset to include static items directly in
the remote service

<cffunction name="getTypes" access="remote" returntype="query">
<!--- First, get the data from the database

 The cachedwithin attribute keeps the query in memory for
 quicker access--->
 <cfquery name="rsGetContentTypes"
 datasource="myDSN"
 cachedwithin="#CreateTimeSpan(7, 0, 0, 0)#">
 SELECT type_ID, type_Desc from mytypes
 </cfquery>
<!--- Next, add a row to the query result and
 set new fields for the static option --->
 <cfset temp = QueryAddRow(rsGetContentTypes)>
 <cfset Temp = QuerySetCell(rsGetContentTypes, "type_id", 0)>
 <cfset Temp = QuerySetCell(rsGetContentTypes, "type_desc", "ALL")>
<!--- Lastly, do a query of a query and return the query to the

 caller ordering on the type_id field --->
 <cfquery name="rsTypesDropdown" dbtype="query">
 SELECT * FROM rsGetContentTypes ORDER BY type_id
 </cfquery>
 <cfreturn rsTypesDropdown />
</cffunction>

In this case, we could have added the row on the Flash client using ActionScript code, but
manipulating UI components can slow down an application-especially if you have more than a few in
an interface. Example 12-1 shows another aspect of ColdFusion-the ability to cache a resultset. The
attribute cachedwithin="#CreateTimeSpan(7, 0, 0, 0)#" creates a seven-day cache; the database is

hit only once per week for this query.

This type of functionality can even be included in your database in a stored procedure:

CREATE PROCEDURE spGetCategoriesDropdown
AS
SELECT CategoryID, CategoryName
FROM categories
UNION
SELECT 0 as CategoryID, 'All' as CategoryName
ORDER BY CategoryID

The stored procedure returns the resultset with the values already in place for populating the drop-
down list.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.3 Server-Proofing the Application

The Flash Remoting application has many possible failure points. One of the more frequent failure
points is the communication between client and server. Server-proofing involves testing the
application in serverless environments to guarantee that the application will fail gracefully if the
server is unavailable.

There are many possible reasons for communication failure:

The Internet is too busy

This can happen during peak hours and may be a limitation of the end user's Internet Service
Provider (ISP), or it may be tied to a global Internet virus, which seems to occur more and
more each year.

The end user has saved the page for offline browsing

If the end user has disconnected from the Internet, how will your application respond?
The server might be down temporarily

This can happen when your ISP is rebooting a server, the server is down for maintenance, etc.

Whatever the reason, your application needs a reliable way to recover from the lack of a connection.
In an HTML page, this is not a problem; the browser will force a timeout after a specified number of
seconds waiting for a response. In a Flash movie, it is your responsibility to provide a fallback
mechanism to handle the lack of a connection. You can do this in two ways:

Provide an offline option in your application

In some applications this is not possible, but you may have an application that works well
offline, such as an email program that allows a user to read the contents of previously
downloaded email or compose an email offline.

Display a user-friendly error message

The user should not see system error messages and other cryptic messages. Instead, handle
the error gracefully in the ActionScript code and display a comprehensible message to the end
user.

The System.onStatus event should be assigned to a function in your application so that any failed

remote calls will be handled gracefully:

System.onStatus = function () {
 getURL("http://www.flash-remoting.com/try_again.html","_blank");
};

This code displays an HTML error page to the user when a connection to Flash Remoting cannot be
made.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.4 Component Use

Components are one of the cornerstones of Rich Internet Application (RIA) development using Flash
and Flash Remoting. Components make it easy to create rich interfaces, but they can also be
responsible for an application getting bogged down with poor performance. Many of the Macromedia
user interface components are very code-intensive when it comes to doing things like populating the
component, sorting, and adding data. You should be conservative in your use of client-side code
when dealing with components. The DataGrid component, for example, can utilize 90-100% of the
end user's system resources while being populated-from a remote service or local data.

The Flash 2004 component architecture is optimized for applications that use
five or six components; the shared library that Flash 2004 components require
adds more file size than is justified by using only one or two components.

12.4.1 Component Speed

The speed of a component is often dependent on the type of code you are utilizing. What looks more
efficient to the ActionScript programmer is often slower in execution. If you're in doubt about the
speed of a particular section of code, you can time it using the Date() object. The code in Example
12-2 is a CodeTimer object, which can be used to time the execution of sections of code.

Example 12-2. The CodeTimer class facilitates easy timing of code

// Constructor accepts an optional message argument and starts the timer
function CodeTimer (message) {
 this.message = message; //optional message
 this.startTime = new Date().getTime();
}

// CodeTimer.trace() calculates the elapsed time and traces it to the Output window
CodeTimer.prototype.trace = function () {
 this.endTime = new Date().getTime();
 this.elapsedTime = this.endTime - this.startTime;
 if (this.message != undefined) trace(this.message);
 trace("Elapsed Time: " + this.elapsedTime + " milliseconds");
 return this.elapsedTime;
};

To use the timer, simply start it by creating a new CodeTimer object at the start of the code you
want to time, and call the CodeTimer.trace() method at the end of the code:

// Initialize the timer
var t = new CodeTimer("Testing DataGlue");

// Some code to time

http://lib.ommolketab.ir
http://lib.ommolketab.ir

var fields = result_rs.getColumnNames();
var idField = '#' + fields[0] + '#';
var descField = '#' + fields[1] + '#';
DataGlue.bindFormatStrings(cbName, result_rs, descField, idField);

// Display the elapsed time in milliseconds in the Output window
t.trace();

The preceding example tests the speed of the DataGlue.bindFormatStrings() method. The example
recordset that I tested yielded an average result of 10 milliseconds. The following code shows the
time taken to manually populate the same ComboBox with the same recordset using an index loop:

var t = new CodeTimer("Testing index loop");

var fields = result_rs.getColumnNames();
for (var i; i < result_rs.getLength(); i++) {
 cbName.addItemAt(i,
 result_rs.getItemAt(i)[fields[1]],
 result_rs.getItemAt(i)[fields[0]]);
}
t.trace();

The second example yielded an average result of 30 milliseconds. The last example uses a for...in
loop and a much more concise coding style:

var t = new CodeTimer("Testing for/in loop");

for (var i in result_rs) cbName.addItem(i[0],i[1],root);

t.trace();

The third example is less verbose and looks like it is more efficient, but it results in an elapsed time of
90 milliseconds-9 times slower than the first example-showing the efficiency of the DataGlue class.
Looks are deceiving sometimes when coding, as this example demonstrates. It's best to not simply
take the code at face value; measure your code's execution time and try different things to get the
best possible results.

Shaving 80 milliseconds off the data-loading operation for one ComboBox can have a dramatic
impact in the end user's experience if you have many user interface elements and can optimize some
of them in similar ways. 80 milliseconds might not seem like a lot, but when you're dealing with a
Flash interface it is wise to conserve where you can, to balance the initial load time of the movie,
which might run into several seconds. 10 or 20 interface elements can increase this delay by 1 or 2
seconds for the user. Every little bit of optimization helps to improve the user experience.

Here is a simple technique for testing performance. When you're testing a brief operation, it may be
so fast that you can't get an accurate measure of the time it takes. Furthermore, if an operation is
performed hundreds or thousands of times during your program execution, the execution time may
vary, and it isn't practical to add up the times of each execution manually. You can add a for...in loop
to execute an operation, say, 100 times to give you a more accurate picture of the time required for
execution. Here is the new code (additions shown in bold):

var t = new CodeTimer("Testing index loop 100 times");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for (var j; j < 100; j++) {
 var fields = result_rs.getColumnNames();
 for (var i; i < result_rs.getLength(); i++) {
 cbName.addItemAt(i,
 result_rs.getItemAt(i)[fields[1]],
 result_rs.getItemAt(i)[fields[0]]);
 }
}
// Displays total and average execution time
elapsedTime = t.trace();
trace("Average Elapsed Time: " + elapsedTime/100 + " milliseconds");

Don't forget to take the average time, and don't forget to remove the for...in loop when you're done
testing (you can comment out the testing code so that it is easy to reinstate if you want to test it
again later). Be sure to test the operations that you are trying to optimize. How would the timing
differ if the call to getColumnNames() were moved outside the second loop? Refer to "Looping" later
in this chapter for hints on optimizing loop performance.

You can get much more elaborate with timing, but this simple example gives you the basic technique.
Timing your code is very important when dealing with Flash Remoting or Flash interfaces in general.
Sometimes, a call to the remote database will be quicker than trying to manipulate results on the
client. Also, sometimes there are sections of code that execute too slowly in ActionScript and can be
moved to the server.

12.4.2 Data Loading

Frequently, when building data-driven Flash interfaces, you test with a small amount of data with the
knowledge that your application will grow in the future with more back-end data. The Flash UI
components can generally handle a small amount of data, but when you start feeding thousands of
records into them they start slowing down dramatically. How do you test with large amounts of
sample data if the data doesn't exist yet?

One way is to use a temporary SQL statement in your server-side service that returns a lot more
rows than your test data actually contains, by forcing a cross join on another table. A cross join gives
you a result that contains every combination of rows of data from the joined tables. In other words,
each row in the first table is joined to every row in the second table, giving you a huge resultset. A
cross join has limited use in everyday data retrieval but is especially handy when you're testing
application interfaces. Consider the following query on the Northwind database:

SELECT c.CategoryID, c.CategoryName
FROM Categories c

The query returns about eight rows of data. If you were to time this data being rendered into a
ComboBox or DataGrid, you would not be able to discern any noticeable speed problem. Change the
query to cross join the Products table:

SELECT c.CategoryID, c.CategoryName
FROM Categories c, products

Now the query returns over 600 rows by joining the Products table and returning a complete set of
data from the Categories table for each row of data in the Products table. The fields that you are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

retrieving are the same as the fields in the first example, but they are duplicated many times. This
gives you a better idea of what your final application will be able to handle and gives you a more
accurate picture of where your bottlenecks are. (It also gives you a chance to test your screen
layouts to see if they accommodate large recordsets and test your logic for pageable recordsets, if
applicable.)

UI components can greatly speed up the development process, but they can also be a performance
bottleneck if the code that uses the component is not optimized.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.5 Clean API

Application programming interface (API) is a general term for how one block of code communicates
with another. For example, each ActionScript class defines an API by making methods and properties
available (or keeping them hidden). Keeping the API for your application clean, with well-defined
properties, methods, and events, makes for fast programming by the rest of your team. A formal API
helps to insulate one code module from changes in another module. Furthermore, updates to an
application can be made more quickly if your properties, methods, and events are predesigned,
documented, and consistent with the API that you set up.

12.5.1 Reusable Code

Making your code reusable is one of the ways that you can improve the speed of coding in future
applications. You should maintain stock objects and snippets of code that have been programmed,
tested, and optimized in the past. For example, most applications have users, so if you maintain a
standard User object that interacts with a User remote service, the two parts can be utilized over and
over. There is no sense in reinventing the wheel each time. Even if an object or piece of code can't be
used in its entirety, it can be used as a starting point. Developing a useful library of ActionScript or
server-side code (or benefiting from libraries made available by others) can increase your
productivity by orders of magnitude.

12.5.2 Modularity

Keeping the program modular is not something that is confined to one style of programming; it is a
concept that works in all cases. If you code is self-contained in modules, you have several
advantages over code that is nonmodular:

Code in a module can be tested without relying on other parts of the application, by simply
knowing what the code requires and what it returns.

Modules can be improved and replaced without affecting other elements of the application,
assuming your new module does the same thing with the same properties, methods, and events
associated with the old module (i.e., as long as the API to the module doesn't change).

A test module can be plugged into the application in place of the real module, to facilitate easy
testing.

Other programmers who might need to work on the application can understand the code more
easily.

Having modularized code does not simply mean separating the code into sections. I worked on an
application once, built by a fellow programmer, that was broken down into several include files. At
first glance, it seemed logical that the program was broken down as it was. However, after diving into

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the code, I could see that each file had elements that relied on other files (variables, functions, etc.),
which made it very hard to update the application. In the end, I wasted more time trying to figure
out what went where than the time it would have taken to rewrite the code using a more logical
approach. Therefore, trying to maintain modularity can help alert you to poor application design. If
you can't modularize your code, you probably need to redesign it, even if it means starting over.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.6 Loops and Repeated Operations

Most of your performance problems are going to be the result of a repeated operation that is not
optimized. A nonoptimized piece of code that executes one time is not likely to have an impact on an
application; however a nonoptimized piece of code that executes 1,000 times in a loop is going to kill
the performance. For that reason, any code that is executed repeatedly, such as an onEnterFrame()
handler or a for loop is a potential bottleneck.

Macromedia improved the performance of the Flash Remoting classes in the first updater, available at
http://www.macromedia.com. One technique that was originally used throughout the Flash Remoting
classes involves initializing a for loop in a nonoptimized way. In standard ECMA scripting, the middle
section of the for loop (the condition in the for(variable; condition; update) construct) is evaluated
each time the loop executes. For that reason, a static value should be used whenever possible.

Bad:

for (var i = 0; i < this.getLength(); i++) {
 // Do something
}

Good:

var tempLength = this.getLength();
for (var i = 0; i < tempLength; i++) {
 // Do something
}

However, counting down is even faster:

var tempLength = this.getLength()-1;
for (var i = tempLength; i >= 0; i--) {
 // Do something
}

Optimizing a loop's condition expression is only the first step. Code within the loop should be
optimized whenever possible, for this is where your application performance is going to suffer the
worst. This is especially true if you are populating a UI component, such as a Tree. If a piece of code
that takes 1 millisecond to execute can be removed from a loop that is repeated 1,000 times, you'll
save 1 second (which can make an application feel much more responsive). The most basic technique
is moving outside the loop any operation that doesn't need to be performed repeatedly. Consider the
following two cases. In this case, the string is initialized to "Hello Tom!" within the loop:

for (var i = 0; i <= 10; i++) {
 myString = "Hello Tom!";
 trace(myString.substring(0, i));
}

In this case, the string is initialized outside the loop:

http://www.macromedia.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

myString = "Hello Tom!";
for (var i = 0; i <= 10; i++) {
 trace(myString.substring(0, i));
}

In the first case, the string is initialized repeatedly, even though its value never changes. The second
loop will execute faster (about 1.8 milliseconds versus 2 milliseconds). You might look for other ways
to optimize the code. For example, the trace() statement, because it displays text in the Output
window, might slow things down. Here, we accumulate all the text in a variable, outputString, and

display it once, rather than executing the trace() statement repeatedly:

myString = "Hello Tom!";
outputString = "";
for (var i = 0; i < 10; i++) {
 outputString += myString.substring(0, i) + newline;
}
trace(outputString);

Surprise! This version takes an average of 2.4 milliseconds and is therefore slower than the trace()
version. It turns out that string concatenation is a more expensive operation than tracing the text in
the Output window.

Loops should also be terminated (broken out of) as soon as possible. Take the following piece of code
as an example:

var temp = myArray.length;
for (var i=0; i < temp; i++) {
 if (findItem(myArray, myItem))
 found = true;
}
trace("found it!");

The preceding example sets a flag when a specific item has been found in the array. The problem is
that the loop continues even after the item has been found. This is wasteful, especially in a recursive
loop that might be populating a UI component. A better solution is to break out of the loop as soon as
the item is found:

var temp = a.length;
for (var i=0; i < temp; i++) {
 if (findItem(a[i], "50")) {
 found = true;
 break;
 }
}
trace("found it!");

A loop like this will run an average of 50% faster, because an item might be found at the beginning of
the loop or the end of the loop but the average will be somewhere in the middle. The loop is ended as
soon as the item is found.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The preceding techniques apply equally well to any code that is executed
repeatedly. For example, don't initialize data within an event handler that is
called repeatedly. Initialize it once outside the event handler and refer to it as
needed. Likewise, once an event handler is no longer needed, you should cease
executing it. For example, if you've added a listener with addListener(), you
can remove it with removeListener() when it is no longer needed.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.7 OOP or Not OOP

There are at least two different approaches to programming in ActionScript 1.0: object-oriented
programming and procedural programming. Both have their strengths and weaknesses. You could add
a third group of programmers as well: those who program procedurally and use OOP concepts in their
applications. This section will show some ways of doing things with Flash Remoting using these
approaches.

12.7.1 Procedural Programming

Procedural programming, also known as top-down programming , uses techniques that have been
around since the beginning of computer programming. With procedural programming, you write code
from beginning to end and call functions when they're needed. Assembly language is an example of
procedural programming. There is nothing inherently wrong with procedural programming, yet it has
fallen out of favor with the advent of OOP.

12.7.1.1 Task-oriented

Procedural programming focuses on the tasks. Using an example of the Products database from the
earlier chapters, a procedural program asks the question "what has to be done?" and then proceeds to
do it. For example, the code might follow like this (in pseudocode):

1. Initialize movie
2. Call remote methods to populate UI
3. Display results
4. Wait for user input

5. If "add" is clicked, show the addProduct screen

6. If "search" is clicked, call the remote method searchProducts()

Each section of the program (addProduct , searchProducts() , etc.) would contain more code that
executes sequentially, with conditional logic to branch off into other areas of the program.

ActionScript 1.0 promotes the use of procedural programming by the very nature of the ECMA-262
specification. ECMA-262 is not a true object-oriented specification, but it does allow for OOP. It's a very
loose language in that it does not require entry points, strict datatyping, class definitions, or even
variable declaration. That does not make procedural programming bad; it just means you have to
structure your code to make it modular and maintain organization as you do so. One programming flaw
in a program can have consequences further down the line. Because the code is executed sequentially,
each line of code depends on what comes before it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ActionScript 2.0, based on ECMAScript 4 and supported in Flash 2004 and Flash
Pro, is geared more toward object-oriented programming, requiring strict typing,
formal class declarations, and other constructs familiar to Java programmers.
However, ActionScript 1.0 (the version supported by Flash MX) is still supported
in Flash 2004 and Flash Pro. ActionScript 1.0 is not strictly case-sensitive in Flash
Player 6. However, when exporting for Flash Player 7, ActionScript 1.0 is strictly
case-sensitive, as is ActionScript 2.0.

12.7.1.2 Event-driven

Flash also operates as an event-driven application, and event-driven applications are procedurally
oriented. When the movie loads, all of the code in the movie is executed (depending on the timeline, of
course). Flash then waits for user input. The user input triggers events that can be trapped with event
handlers. These event handlers become named functions when you're using procedural programming:

myButton_pb.setClickHandler("getProducts");
function getProducts() {
 myService.getProducts();
}

When you're using procedural programming in a Flash Remoting application, it becomes even more
important to keep the code structured and clean. A procedural program can quickly turn into spaghetti
code if the program lacks structure and organization. That said, a procedural program can also be well-
constructed and function perfectly.

12.7.1.3 Result handlers in procedural programming

When dealing with remote services, you have several choices in how you handle the results. The
simplest and most documented way of retrieving results is to name a function using the remote method
name with an appended _Result or _Status . Generally, a procedural approach would utilize this
method:

myService.loginUser(user_txt.text, pwd_txt.text);
loginUser_Result = function (result) {
 if (result == true) {
 trace("User logged");
 } else {
 trace("User not logged");
 }
};

This method is simple, direct, and effective. It is self-documenting, because the remote method name
is used in the naming of the callback function. However, it does become cumbersome when dealing
with many remote calls. I would not discourage someone from using it, but I would not consider it a
best practice. That said, there is nothing wrong with using this technique if you feel comfortable using
it.

12.7.1.4 Procedural example

Example 12-3 is an example of a procedural program with structure.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 12-3. A procedural approach to the HelloUser program

#include "NetServices.as"
// Set up variables for the URL and service paths
var myURL = "http://localhost/flashservices/gateway";
var servicePath = "com.oreilly.frdg.HelloUser";

// Connection hasn't been initialized; create connection and service objects
if (initialized == null) {
 initialized = true;
 NetServices.setDefaultGatewayURL(myURL);
 var myConnection_conn = NetServices.createGatewayConnection();
 var service = myConnection_conn.getService(servicePath, this);
}
// Set up the callback function to handle mouseclicks
submit_pb.setClickHandler("callSayHello");

// Call the service when the user clicks the Submit button
function callSayHello () {
 var user_name = userName_txt.text;
 if (user_name == "") {
 user_name = "User";
 }
 service.sayHello(user_name);
}

// Set up onResult and onStatus event handlers
function sayHello_Result (myResults) {
 results_txt.text = myResults;
}

function sayHello_Status (myError) {
 results_txt.text = myError.description;
}
// Set the system status to be handled by the method status handler as well
System.onStatus = sayHello_Status;

The procedural style mixes the user interface logic (inside the sayHello_Result() function) and is
executed from the top down. Events that are triggered (such as when the submit_pb button is clicked)

are handled by named functions. Events returned by a remote service are handled by functions,
sayHello_Result() and sayHello_Status() , that are named after the calling method.

A procedural program such as this can easily grow into spaghetti code if you are not careful. Even in
this simple example, the results_txt field is referenced in several places. If something were to

change in the interface, you would have to find all of your user interface references and change them
manually.

A better option is to use a custom responder object, as discussed in Chapter 4 . Some of the more
flexible options are shown in Section 12.7.2 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.7.2 Object-Oriented Programming

Object-oriented programming (OOP) is at the opposite end of the programming spectrum from
procedural programming. In true OOP, everything is an object. Code in the program does not exist if it
is not part of an object. For that reason, Flash MX is not a true OOP environment; you don't have to
create objects in order for the program to operate, although inline code is technically part of the
current object where the code resides. Also, some of the key principles of OOP, such as data hiding
(private, protected, and public members), are not implemented in ActionScript. Even though strict OOP
is not entirely possible with Flash MX, you can get pretty darn close by simply using OOP principles in
your coding style.

Flash 2004 and Flash Pro support ActionScript 2.0, which is much closer to a true
OOP language than ActionScript 1.0. The following discussion applies whether
you're using ActionScript 2.0 or trying to stretch ActionScript 1.0 to act as if it
were truly object-oriented, although ActionScript 2.0 enforces stricter coding
requirements.

12.7.2.1 Everything is an object

With OOP, you will want to create objects for everything. The application itself is an object; the user of
the application is an object; every button on the screen is an object; the connection to the remote
server is an object; the user's email address can be an object. An object is an instance of a class. A
class is the coded blueprint for an object. Imagine the classes as rubber stamps, and the objects as the
imprints you make when you use each rubber stamp. How you organize your classes and tie them
together is one of the keys to understanding how OOP works.

OOP works in the exact opposite way that procedural programming works. In procedural programming,
you ask yourself "What has to be done?" and then you do it. In OOP, you create abstract
representations of each item in your application and ask yourself "How do they communicate?" Each
class is created as a black box; you know what it does, you know what it needs, and you know what it
returns. You don't have to know how it works, and you can remove it and substitute another black box
with the same properties, methods, and events and the program will still work. Your class encapsulates
the functionality and allows other classes to interact with it.

12.7.2.2 OOP in Flash Remoting

In Flash Remoting, there are several different ways you can encapsulate the functionality in objects:

Enclose your remote server calls in an object

Every remote method is mirrored in a method of an object in your Flash movie. For example, you
might have a Products database, as was shown in Chapter 3 . You would have a Product class
and a ProductList class, which would be a collection of Product objects. The ProductList class
might have a method called getList() that would retrieve the entire product list from the remote
server. The Product class might have a method called addProduct() that would call an insert
routine on the remote server to insert the product into the database.

Use broadcasters

A broadcaster is another object that you can use to simplify how remote method calls are
handled on the client. When you use a broadcaster, you also have a listener . When the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

broadcaster broadcasts an event, the listener is automatically informed and performs some
function. This is ideal for Flash Remoting, where a remote method does not provide an immediate
response, but rather sends an onResult event back to the movie.

Use a Model/View/Controller (or Model/View/Presenter) architecture

The Model/View/Controller (MVC) design pattern allows you to separate functionality into distinct
units. These patterns have been utilized by many Flash Remoting applications. The Model is the
business object, handling the logic of the application; the View is the unit that handles the UI,
such as the text fields, buttons, and UI components; and the Controller is the catalyst between
the Model and the View, handling communication between them. In a Flash Remoting application,
the Model is usually split between ActionScript on the client and the server-side services.

12.7.2.3 How to create your objects

There are several ways to implement OOP in Flash. Generally, the more abstract you make your
classes, the easier the classes will be to understand for other programmers. I mean abstract in the
sense of "evoking something's distilled essence," not "esoteric and obtuse." You should create classes
that represent something meaningful. For example, your class should not be called RemoteService with
methods that merely mirror your remote methods. This is obtuse and redundant, not abstract; it
merely serves as a convenient way of accessing your services. An abstract class would be called
Product , User , EmailAddress , or Search . These are human-readable objects that represent
something meaningful to the application.

Objects are typically modeled before a line of code is written. Modeling involves identifying the objects
in your application and documenting how they communicate via the properties, methods, and events of
each object. Modeling can be done in many ways: using a Universal Modeling Language (UML) diagram,
3 x 5 cards (one for each object), or plotted on paper. In an OOP application, the more modeling you
do in advance of coding, the easier it will be to create the objects and complete the coding successfully.
In Flash Remoting, you must identify how an object will receive the remote result and how it will handle
the result using an OOP mentality.

12.7.2.4 Responder objects in OOP

Throughout the book, I've shown a technique that makes sense in many situations-utilizing a custom
responder object, like this:

function LoginResponder() {
 this.onResult = function (result) {
 if (result == true) {
 message_mc.message_txt.text = "User logged";
 } else {
 message_mc.message_txt.text = "User not logged";
 }
 };
 this.onStatus = function (error) {
 trace(error.description);
 };
}
myService.loginUser(new LoginResponder(), user_txt.text, pwd_txt.text);

or this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function LoginResponder () {
}
LoginResponder.prototype.onResult = function (result) {
 if (result == true) {
 message_mc.message_txt.text = "User logged";
 } else {
 message_mc.message_txt.text = "User not logged";
 }
};
LoginResponder.prototype.onStatus = function (error) {
 trace(error.description);
};
myService.loginUser(new LoginResponder(), user_txt.text, pwd_txt.text);

A better technique, however, is to use a callback function or a broadcaster within the responder object.
The previous code is tied to the user interface, which is not an object-oriented approach; the user
interface elements are not separate from the LoginResponder object. If you pass a callback function to
the object, the LoginResponder is separate from the UI. You might start with a Responder class:

function Responder () {}
Responder.prototype.onResult = function (results) {trace(results);};
Responder.prototype.onStatus = function (error) {trace(error.description);};

Then, create a LoginResponder class for specific functionality:

// LoginResponder extends Responder
#include "Responder.as"
function LoginResponder (myCallback) {
 this.prototype = new Responder();
 this.callback = myCallback;
}

LoginResponder.prototype.onResult = function (result) {
 if (result == true) {
 this.callback("User logged", result);
 } else {
 this.callback("User not logged", result);
 }
};
doMessage = function (message) {
 message_mc.message_txt.text = message
};

The preceding LoginResponder class defines a responder object that uses the callback function passed
to it. You can use it from another class designed to gather information from the UI:

myUserObject = new UserObject();
myUserObject.loginUser("doMessage", user_txt.text, pwd_txt.text);

Inside the UserObject class you would have a loginUser() method, which would call the remote
service:

#include "LoginResponder.as"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UserObject.prototype.loginUser = function (callback, username, password) {
 this.service.loginUser(new LoginResponder(callback), username, password);
};

12.7.2.5 Problems with OOP

There are a few inconsistencies with Flash Remoting when working with objects. The asynchronous
nature of Flash Remoting makes it difficult to create objects that separate UI and content from your
remote results. Because the results are accessed within an onResult() method, you might be tempted
to access interface elements from within the same method. This would break the principle of
encapsulation , which basically says that objects should behave as black boxes. In a properly
encapsulated object, the internal workings of the object don't rely on external items such as UI
elements. You can overcome the obstacle by using a broadcaster inside the onResult() and onStatus()
methods, or by passing a callback method to the object, which would be called inside of onResult() or
onStatus() , as we'll see shortly.

Another problem involves having a service object as part of a custom object that is sent to the server
in a remote method. It is a natural tendency to want to encapsulate the object to be self-sufficient and
exist as a unit. One way to do that is to have your remote service as a property of the object.
Unfortunately, this causes the remote call to fail due to an internal fault with Flash Remoting. The
Macromedia Pet Market blueprint application (http://www.macromedia.com/devnet/mx/blueprint)
suffers from this problem, but the programmers worked around the issue by copying the object
properties to another object before calling the remote service. Workarounds such as these are
commonplace, as Flash Remoting is still in its infancy and has a few kinks to work out.

12.7.2.6 Callback example

This section demonstrates an example that uses callback functions and shows how the procedural code
from Example 12-3 might be implemented as an OOP application. There are a few extra steps involved
in turning a simple example into a full-fledged OOP application. You'll have to start with a new movie
named HelloUserOOP.fla and follow these steps (the completed file is available at the online Code
Depot):

Add 2 layers to the timeline: actions and ui .1.

In the ui layer, create the user interface that was shown in Chapter 2 , with an input TextField
named userName_txt , a dynamic TextField named results_txt , and a PushButton component
named submit_pb . There is also one static TextField that contains the text "Enter your name".

2.

Create a new MovieClip using Insert New Symbol.3.

The dialog box that appears prompts you for a name. Name the symbol HelloUserClass , select
the Export for ActionScript checkbox, as shown in Figure 12-1 , and click OK.

4.

Figure 12-1. Creating a new MovieClip for HelloUser

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Inside the symbol, rename layer Layer1 to actions .5.

Define a HelloUserClass class in the first frame of the actions layer, as follows. This class initializes
the gateway and is the basis of our application:

6.

#initclip
#include "NetServices.as"

function HelloUserClass (url) {
 this.init(url);
}

Object.registerClass("HelloUserSymbol", HelloUserClass);

HelloUserClass.prototype.init = function (url) {
 this.testingUrl = url;
 NetServices.setDefaultGatewayURL(this.testingUrl);
 this._conn= NetServices.createGatewayConnection();
};

#endinitclip

Navigate back to the main movie and enter the following ActionScript into the actions layer
of the main timeline. Notice the include file, User.as , which is a custom class that we'll set
up for this application. The initialization code shown creates a NetConnection object upon
loading (through the HelloUserClass), and creates a User object. From this code, you can
see that the User object instance is calling three different methods: setService() , setName(
) , and sayHello() . The submit_pb button has a private method, displayMessage() , within

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the anonymous function built for the onRelease event. A reference to displayMessage() is
passed to the User object as a callback function:

#include "com/oreilly/frdg/User.as"

// Call the service when the user clicks the Submit button.
if (initialized == undefined) {
 initialized = true;
 _global.app = new HelloUserClass("http://localhost/flashservices/gateway");
 var servicePath = "com.oreilly.frdg.HelloUser";
 app.myUser = new User("User");
 app.myUser.setService(app._conn, servicePath);
}

submit_pb.onRelease = function () {
 displayMessage = function (message) {
 results_txt.text = message;
 }
 app.myUser.setName(userName_txt.text);
 app.myUser.sayHello(displayMessage, displayMessage);
};

Create the User class. The User.as file should be saved in your Flash configuration directory under
Configuration\Include\com\oreilly\frdg . Our class files are using the same naming convention as
the server-side services that have been used throughout the book. Alternatively, you can save the
class files in the same directory as your .fla file- using the same subdirectories, com\oreilly\frdg .
The User.as file contains the code shown here:

7.

/*
User class

public User
 constructor:
 new User(); // Default user with no arguments

 new User(name); // Set a default name property
 arguments:
 name: string
 properties:
 service: the remote service with which the user interacts
 name: the name of the user
 methods:

 getName: retrieve name property

 setName: set name property
 arguments:
 name: string
 getService: retrieve service object
 setService: set the remote service for the object
 arguments:

 connection: a NetConnection object
 servicePath: a path to a remote service

 sayHello: interface to remote method sayHello()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 arguments:
 callback: function to handle results of the remote call
 Dependencies:
 com.oreilly.frdg.Result
*/
#include "com/oreilly/frdg/Result.as"

// Constructor takes one optional argument (name)
function User (name) {
 if (arguments)
 this.name = name;
}

User.prototype.getName = function () {
 return this.name;
};

// Set the name property only if the argument exists and is not blank
User.prototype.setName = function (name) {
 if (name != "" && name != undefined)
 this.name = name;
};

User.prototype.getService = function () {
 return this.service;
};

// Create remote service object as a property of User
User.prototype.setService = function (connection, servicePath) {
 this.service = connection.getService(servicePath);
};

// Interface to remote method, sayHello()
User.prototype.sayHello = function (callback, errorHandler) {
 this.getService().sayHello(new Result(callback, errorHandler), this.name);
};

The User class is extremely simple, with one argument in the constructor; two properties,
each with getter/setter methods; and one public method that is used as an interface to the
remote method, sayHello() . The User class exists apart from the user interface code set up
previously. The Flash UI that was set up will work with any User class that we implement in
the future, as long as the API to the class remains the same (i.e., the same public
properties, methods, and events).

You can see that the User class also requires one other class: the Result class. Create the
Result.as file as follows, and save it to the same directory as the User.as file:

8.

/*
public Result
 constructor:
 new Result(resultHandler, errorHandler); // Set result handler and error

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 handler properties
 arguments:
 resultHandler: function
 errorHandler: function (optional)
 properties:
 none
 methods:
 onResult: method to handle remote results
 arguments:
 myResult: argument returned from remote call
 onStatus: method to handle remote errors
 arguments:
 myError: argument returned from remote call in event of error
Dependencies:
 none
*/

function Result (resultHandler, errorHandler) {
 this.resultHandler = resultHandler;
 this.errorHandler = errorHandler;
}

// Set up onResult() and onStatus() handlers as methods of the Result class
Result.prototype.onResult = function (myResults) {
 this.resultHandler(myResults);
};

Result.prototype.onStatus = function (myError) {
 if (this.errorHandler == "undefined") {
 trace(myError.description);
 } else {
 this.errorHandler(myError.description);
 }
};
System.onStatus = Result.prototype.onStatus;

The Result class is a special responder object. The responder does not act on any of the
results, and, as such, it can be used for any remote service call. You pass a callback function
to the instance of the Result class when you instantiate it. In this case, we instantiated the
object in the User object instance defined in Step 7:

User.prototype.sayHello = function (callback, errorHandler) {
 this.getService().sayHello(new Result(callback, errorHandler), this.name);
};

Save and test the movie. It should work exactly as the procedural example.9.

Objects communicating: that's what OOP is all about. The user interface knows nothing of the Result
class. It knows only about the User object and how to communicate with it. It depends on the User
object; however, any User object that provides the same properties, methods, and events could be
substituted without a problem. You'll notice that the OOP code is much wordier than the simple
procedural example that does the same thing. Even so, the initial time spent modeling your application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and setting up your classes is regained when you implement the application and make modifications
further down the road. Modifications come easy to an OOP application.

12.7.2.7 Broadcasters

A broadcaster is based on the Observer pattern, another standard design pattern in programming. A
broadcaster is implemented in ActionScript using the undocumented ASBroadcaster class. With this
class, you can create objects that broadcast custom events inside your movie. After an event is
broadcast, a listener that is listening for that particular event will respond.

ASBroadcaster is an undocumented class, and, as such, it may not remain in the
language forever. You can implement the example here using ASBroadcaster or
one of the numerous substitute broadcasters freely available on the Web.

Broadcasters fit right into the Flash Remoting framework because of the asynchronous nature of the
technology. When you call a remote service, you don't wait for the response. The remote service
method eventually returns a result to the responder function in the Flash client. The remote service is
essentially a broadcaster, and your responder object is essentially a listener. This does not provide
enough flexibility in handling results, however, so it makes sense to set up a custom broadcaster to
convey the remote response to the part of your Flash movie that will benefit from it.

You can set up a broadcaster inside of your responder to broadcast a custom event to the movie. The
advantage of this approach is that, once the event is broadcast, you can have one or more listeners
acting on the remote response. To create a broadcaster, pass an instance of the generic Object class to
the static ASBroadcaster.initialize() method:

var myBroadcaster = new Object();
ASBroadcaster.initialize(myBroadcaster);

This converts myBroadcaster into an ASBroadcaster object capable of broadcasting. Specify the

custom event to broadcast using the broadcastMessage() method:

myBroadcaster.broadcastMessage("onMyCustomEvent", "Hello there");

Finally, set up a listener object to listen for the custom event. Here, we create an object, myListener ,
with an anonymous function assigned to the onMyCustomEvent property:

myListener = {
 onMyCustomEvent:function(message) {
 trace(message);
 }
}

Finally, add the listener to the object to myBroadcaster using the addListener() method:

myBroadcaster.addListener(myListener);

Example 12-4 utilizes a broadcaster to broadcast the onResult event from the server, rather than using
a callback function. It uses the same HelloUserClass class as shown earlier in HelloUserOOP.fla , with
no changes. The only changes are in the ActionScript code in the movie, as well as the two classes that
were set up.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Create a copy of the User.as file and rename it UserBroadcaster.as . Change the constructor and the
sayHello() method as show in Example 12-4 (changes shown in bold).

Example 12-4. UserBroadcaster class

/*
User class

* public UserBroadcaster
 constructor:
 new UserBroadcaster(); // Default user with no arguments

 new UserBroadcaster(name); // Set a default name property
 arguments:
 name: string
 properties:
 service: the remote service with which the user interacts
 name: the name of the user
 methods:

 getName: retrieve name property

 setName: set name property
 arguments:
 name: string
 getService: retrieve service object
 setService: set the remote service for the object
 arguments:

 connection: a NetConnection object
 servicePath: a path to a remote service

 sayHello:interface to remote method, sayHello()
 arguments:
 none
 Dependencies:
 com.oreilly.frdg.BroadcasterResponder
*/

#include "com/oreilly/frdg/BroadcasterResponder.as"

function UserBroadcaster (name) {
 if (arguments)
 this.name = name;
 // Set this class up as a broadcaster
 ASBroadcaster.initialize(this);
}

UserBroadcaster.prototype.getName = function () {
 return this.name;
};

// Set the name property only if the argument exists and is not blank
UserBroadcaster.prototype.setName = function (name) {
 if (name != "" && name != undefined)
 this.name = name;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

};

UserBroadcaster.prototype.getService = function () {
 return this.service;
};

// Create remote service object as a property of User
UserBroadcaster.prototype.setService = function (connection, servicePath) {
 this.service = connection.getService(servicePath);
};

UserBroadcaster.prototype.sayHello = function () {
 this.getService().sayHello(new BroadcasterResponder("onSayHello", this),
 this.name);
};

Let's compare the UserBroadcaster class in Example 12-4 with the User class from the earlier callback
implementation. The main differences are the initialization of the class as an ASBroadcaster in the
constructor and the fact that the sayHello() method now uses a different responder object:
BroadcasterResponder . You pass a custom event ("onSayHello ") and the broadcaster object (this)

to the responder function. The responder object notifies any listeners. The BroadcasterResponder
responder function's definition is shown here:

/*
public BroadcasterResponder
 constructor:
 new BroadcasterResponder(event);
 arguments:
 event: the event that will be broadcast
 properties:
 none
 methods:
 onResult: method to handle remote results
 arguments:
 event: the event that will be broadcast
 onStatus: method to handle remote errors
 arguments:
 event: the event that the error occurred in
Dependencies:
 none
*/

function BroadcasterResponder (event, broadcaster) {
 this.event = event;
 this.broadcaster = broadcaster;
}

// Set up onResult() and onStatus() handlers as

// methods of the BroadcasterResponder class
BroadcasterResponder.prototype.onResult = function (myResults) {
 this.broadcaster.broadcastMessage(this.event, myResults);
};
BroadcasterResponder.prototype.onStatus = function (myError) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 this.broadcaster.broadcastMessage(this.event + 'Error', myError);
};
System.onStatus = BroadcasterResponder.prototype.onStatus;

The BroadcasterResponder function accepts two arguments: the custom event that will fire when this
responder is called, and the broadcaster that will broadcast the message (the UserBroadcaster object

instance, in this case). The implementation is simple: when a successful result is returned from the
server, the onResult() method is called and the broadcaster broadcasts the event ("onSayHello " in

this case) and the actual results from the remote call to the movie. If an error is received by the
onStatus() event handler, the name of the event becomes event + "Error ", or "onSayHelloError " in

this case. Next, listeners need to be set up in the main movie:

#include "com/oreilly/frdg/UserBroadcaster.as"

if (initialized == undefined) {
 initialized = true;
 _global.app = new HelloUserClass("http://localhost/flashservices/gateway");
 var servicePath = "com.oreilly.frdg.HelloUser";
 app.myUser = new UserBroadcaster("User");
 app.myUser.setService(app._conn, servicePath);
}

submit_pb.onRelease = function () {
 app.myUser.setName(userName_txt.text);
 app.myUser.sayHello();
};

// Listener object for the onSayHello event
results_txt.onSayHello = function (message) {
 this.text = message;
};

// Listener object for errors in onSayHello
results_txt.onSayHelloError = function (message) {
 this.text = message.description;
};

app.myUser.addListener(results_txt);

The listener object is the results_txt TextField. Any object can serve as a listener, but the object

must have a function set up to respond to your custom event. We simply create the necessary event
handlers on the object (by setting the onSayHello and onSayHelloError properties to anonymous

functions) and then add it as a listener to receive events fired off by the UserBroadcaster instance
(app.myUser).

Again, this technique is well suited to Flash Remoting. The Macromedia Pet Market blueprint application
also uses custom broadcasters. One advantage, as mentioned earlier, is that you can add multiple
listeners to the event. For example, you can add this code to create a built-in debugging listener:

var debug = true;
// var debug = false; // Uncomment this line to turn off debugging
var debugListener = {onSayHello:function(message) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 trace("User name: " + app.myUser.getName());
 trace("Results from server: " + message);
}}
if (debug) app.myUser.addListener(debugListener);

The listener is "turned on" when the debug flag is set to true. Doing this, you can add listeners to all of

your remote calls without having to dig into your code to make changes and put trace() statements all
over the place. It can all be done from one place, because your listener is listening for the event.

12.7.3 Mixing Procedural and Object-Oriented Code

Another common way to build an application is to mix procedural style with some OOP concepts.
ActionScript 1.0 makes it easy to program in this way by not forcing the rules of OOP on you, as some
other languages, such as ActionScript 2.0, require. The procedural example shown earlier could easily
benefit from some of the techniques shown in the sections about OOP. For example, the code could
implement callback functions in a custom responder object or a broadcaster. Chapter 14 shows a
complete Flash MX application that is built procedurally using OOP concepts.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.8 ColdFusion RecordSets

ColdFusion programmers have a construct built into the RecordSet class on the client and server that
can reduce the time it takes for the data to display. Chapter 5 went into detail about the technique of
RecordSet paging. In many cases, this technique improves the apparent performance of your
application; your users will see results on the screen even before the download of the entire
recordset is complete. Improving the apparent performance of your application can often have as
much of an impact on the end user as improving the actual performance of the application. Your user
can judge the application only by what he sees.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.9 Implementing Caching

Caching involves maintaining a piece of information in a store or cache to improve performance of an
application. In Flash Remoting, you can create objects to hold the contents of a remote service call.
This can be handy in many situations:

An email program that retrieves email messages from a remote server, allowing you to read the
messages by choosing a message header in a list. Upon moving to another message, the
current message could be cached, so that if you were to return to that message, it would not
have to be retrieved from the server again.

A product listing that has master/detail pages of a product list. As you choose a product, the
details page retrieves the product details from the remote server. Upon choosing another
product, the current product is placed into a cache for easy access when the user returns to
that product.

A book review application, where a book review is retrieved from a remote service. As the user
chooses another book, the current review is stored in a cache, in case the user returns to it.
Each subsequent viewing of the book review comes from the cache rather than the remote
service.

A cache is typically implemented as an object or an array of objects. Each object represents one item
from the remote service. All items are not retrieved, but the cache is indexed in a way that each item
that is placed in the cache can be easily retrieved, as in the following code snippet:

// Set up the custom object that holds the product information
MyCustomObject = function (productid, productname, productdesc) {
 this.ProductID = productid;
 this.ProductName = productname;
 this.ProductDesc = productdesc;
};

// Create the cache
var myCache = new Object();

// Set the first element of the cache as a new object with descriptive fields
// This can be displayed in the UI if there is no current product
myCache["0"] = new MyCustomObject(
 0, // ProductID
 "Product Name...", // ProductName
 "Description..."); // ProductDesc

// findItem: method for the cache array to find an

// item with a ProductID that matches the specified item
function findItem (theArray, theItem) {
 for (i in theArray) {
 if (theArray[i].ProductID == theItem) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return true;
 }
 }
 return false;
}

// Change handler on a Tree component: user clicks an item, and the
// corresponding detail page is populated
my_tree.setChangeHandler("displayProduct", _root);
displayProduct = function (tree) {
 var theNode = tree.getSelectedNode();
 var theProductId = theNode.data;
 if (findItem(myCache, theProductId)) {
 displayCacheItem(theProductId);
 } else {
 putProductInCacheAndDisplayIt(theProductId);
 }
};

The complete functionality of the preceding example is not implemented here, but similar
functionality can be found in the application built in Chapter 14. When a user clicks an item in the
Tree component, the displayProduct() function fires off. We use a helper function, findItem(), to
pick the item out of the cache if the item exists. If so, the displayCacheItem() function displays the
item directly from the cache, rather than going to the remote service. If the item is not found,
another function is called (putProductInCacheAndDisplayIt()), which puts the current item into the
cache before displaying it.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.10 What to Walk Away With

I've isolated the sections in this chapter into 10 items that you should remember when building your
Flash Remoting applications:

Clearly separate the tasks for the application.

Clearly separate and optimize the functionality between client, server, and database.

Handle server downtime (lack of a connection) gracefully.

Use components wisely.

Maintain a clean API.

Optimize your loops and other code blocks that are executed repeatedly.

Use OOP or OOP concepts when possible.

Use broadcasters or callback functions in your responder objects.

Take advantage of incremental recordsets in ColdFusion.

Cache objects from the server whenever possible-on the client using a cache object or on the
server using cachedwithin in ColdFusion or whatever caching functionality is at your disposal.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.11 Wrapping Up

In this chapter, you learned some new techniques that will improve your Flash Remoting application
development. Following best practices in your applications can make both the time you spend coding
and the time your user spends browsing much more productive. For more information on best coding
practices, see the resources cited in Appendix B.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 13. Testing and Debugging
How often have you written an application or a Flash movie that worked as expected? Chances are,
you have had to go through a thorough debugging process before finally reaching a point at which
you could safely release the program into the world as a working application. Is the program bug-
free? Probably not, but it is at a point where the usefulness of the functionality outweighs the number
and severity of the bugs. This is the balance that most of us strive for in our software.

Testing and debugging are two completely separate processes, yet they are somehow intertwined
throughout the application-building process. Generally, debugging occurs after the application is
functional, but it is an integral part of the testing procedures throughout the development process. If
everything worked right the first time, we wouldn't need to debug our programs. No program is bug-
free, but the debugging process allows us to eliminate the bugs that are debilitating, the bugs that
hamper the usefulness of the application, and the bugs that are just annoying.

Throughout this chapter, we will be using the searchProducts.fla example file from Chapter 3 as a
reference point for the debugging discussion, as well as the communitymx.fla web service example
from Chapter 10.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.1 Debugging Flash Remoting Applications

Flash is a complex environment, and adding Flash Remoting to the equation only increases the
complexity. You must contend not only with the visual aspects of your Flash movie and the underlying
ActionScript, but also the server-side code, the database code, and the HTTP connections. There are
quite a few pieces that make up the client/server environment of a Flash Remoting application, and
quite a few places where your application can go wrong. Debugging a Flash Remoting application
involves complex interaction between all of these environments, as well as the ability to separate the
parts of the application so that they can be examined without the added burden of the sum of all the
parts. Refer to the best practices offered in Chapter 12 for ways to isolate the various portions of your
program to ease development and testing.

13.1.1 Types of Errors

Errors in any programming environment can be divided into several logical categories (although see
"Error Types" in Chapter 3 for additional discussion of potential sources of errors):

Syntax errors

Errors caused by incorrect use of code. This could be a simple use of a programming construct
in the wrong way, or using some programming construct that doesn't exist in ActionScript.
These are usually caught at compile time . Previewing in Flash is considered compile time.

Typographical errors

Errors caused by simply mistyping a piece of code. Color coding is a big help in finding these
types of errors; many times a misspelled keyword does not have the correct color coding on it,
which is a dead giveaway that something is rotten. These errors are occasionally caught at
compile time, but the more insidious ones can slip through if they are otherwise valid code.

Logical errors

Errors caused by improper logic in your code. These are often the insidious errors that don't
cause a total failure of the application, but instead introduce errors in program results or
introduce only occasional errors. Intermittent bugs are often the hardest to detect and solve.
They are hard to detect because they happen only under certain conditions, which may be hard
to reproduce. They are hard to solve because if you can't reliably reproduce a bug in the first
place, you can't confirm that your fixes have solved the problem.

All of these errors can be tracked down through the debugging process. Many times, having someone
else look at your code can help you more than hours spent debugging alone. The fresh set of eyes can
spot a problem that you have missed or don't realize is a problem. You can use a coworker or post a
problem piece of code to a support newsgroup or forum. Getting this far, however, means that you
know where the problem lies. Many times, this is not the case.

13.1.2 Dissecting the Application

A Flash Remoting application flows through the following processes:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flash client

 ActionScript code

 HTTP server

 Application server

 Flash Remoting gateway

 Server-side code
 Database server
 Filesystem
 Email system
 Other server-side components

 Server-side code

 Application server

 HTTP server

 Flash Remoting gateway

 ActionScript code
Flash client

A bug can occur in any of these areas, but to find the bug you have to know where to look and how to
look for it. The Flash authoring environment provides many of the tools that will help you pinpoint a
problem, but it is only the messenger; the error messages can help you determine where to look for
the real problem.

Beginners often flounder with guesses and suppositions, while experienced developers rely on their
debugging tools. For Flash Remoting applications, you can start you investigation with the
NetConnection Debugger panel, as discussed in this chapter. Of course, to use any debugger
effectively, you must have the foundational knowledge of the technology (which you should have after
getting this far in the book) and you must have some knowledge of what component of the
application performs a particular task. This might sound a bit simplistic, but people coming from
Flash-only backgrounds often have trouble determining where a particular error is occurring, such as
on the server. (This is doubly true if you are not the original developer of part or all of the
application.) For example, a typical error message might look like this:

"Error connecting to Northwind"

What does it mean? The reason for the error could be, but is not limited to, one of the following:

Bad username or password

No database driver

Wrong database driver

Wrong format for connection string

Bad server-side code calling the database

No permission to access a database object, such as a table or stored procedure

Therefore, one of the keys to being able to pinpoint problems is knowing what does what. You must
be able to track the logical progression of your code to determine where the error originates. As with
most error messages, there are several different reasons why the error may be occurring. A little

http://lib.ommolketab.ir
http://lib.ommolketab.ir

detective work may be involved:

If your ActionScript code is passing anything to the database, you can start there.

If not, look at your server-side code. The error could be a mistyped piece of code or connection
string.

You can also try logging on to your database directly and executing the code from there; many
users log themselves on as an administrator when developing an application, only to find out
that the permission levels they are using in an application are not working for all objects.
Database servers like SQL Server allow you to set individual permission levels for each object.
Make sure the permission levels are correct for the query you are running.

If you are running a file-based database like Microsoft Access, make sure your web server has
the appropriate permissions to access the database file.

All of these different error situations can be tracked down with a little bit of know-how and some
digging. The Flash environment contains two debuggers to aid in this detective work-the Flash
ActionScript interactive debugger and the NetConnection debugger. The ActionScript debugger is
always available during authoring by choosing Ctrl Debug Movie (or if you're already testing the
movie, it's Window Debugger). The NetConnection debugger is used for Flash Remoting. To
activate the NetConnection debugger during authoring, include the NetDebug.as file in your Flash
movie. This allows the NetConnection Debugger panel to become active and report problems as they
arrive from the server.

13.1.3 Consistency

One of the best ways to avoid extensive debugging periods is to write your code with consistency.
This includes such things as coding styles and conventions, variable naming conventions, comments
and documentation, and readability. The important thing is not which convention you decide on, but
that you stick to a convention. For example, some people prefer to format their loops like this:

for (i=0; i < 10; i++)
{
 print("something");
}

This is a perfectly acceptable convention, as is this (which we use in this book to save vertical space):

for (i=0; i < 10; i++) {
 print("something");
}

I find that the second approach makes it easier to spot bugs like this, in which the semicolon ends the
for loop unintentionally:

for (i=0; i < 10; i++); {
 print("something");
}

I find such bugs harder to spot when code is formatted like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for (i=0; i < 10; i++);
{
 print("something");
}

Consistency in variable naming is also important to debugging. If you have a convention of
capitalizing the first letter in each word (except the first word), don't deviate from that in your code:

myFirstName = "Tom";
myLastName = "Muck";
myZIP = "22193";

The last variable does not follow my capitalization convention, so I might be prone to write it like this
elsewhere in the code:

myZip = "22193";

In ActionScript 1.0 (when played in Flash Player 6), the case difference does not matter (at least with
regard to variable names), and myZIP and myZip refer to the same variable. In other languages, like
ActionScript 2.0, Server-Side ActionScript, ECMAScript, Java, or C#, myZIP and myZip refer to

different variables, which could be difficult to debug. ActionScript 1.0 is also strictly case-sensitive
when developed in Flash 2004 or Flash Pro and exported in Flash Player 7 format. See Reference
Guide ActionScript Basics Syntax Case Sensitivity in the Flash 2004 and Flash Pro Help
window for details.

Spacing is another key issue in writing code. Whitespace is in many ways just as important as the
actual code; without whitespace, your code is unreadable. Consider this query:

SELECT c.CustomerID, c.CompanyName, c.ContactName FROM Customers c INNER JOIN Orders
o ON c.CustomerID = o.CustomerID INNER JOIN [Order Details] od ON o.OrderID = od.
OrderID WHERE c.Country = 'USA' GROUP BY c.CustomerID, c.CompanyName, c.ContactName
HAVING count(o.orderid) > 5

It's not very pretty, and it's not easy to spot where the bug is, or even if there is a bug. The query is
supposed to retrieve all customers from the USA having at least five items in their order. When you
run the query on the Northwind database, you get about 12 results. After reformatting the query with
whitespace for readability, you spot the error more easily:

SELECT
 c.CustomerID
, c.CompanyName
, c.ContactName
FROM Customers c
 INNER JOIN Orders o
 ON
 c.CustomerID = o.CustomerID
 INNER JOIN [Order Details] od
 ON
 o.OrderID = od.OrderID
WHERE c.Country = 'USA'
GROUP BY
 c.CustomerID
, c.CompanyName

http://lib.ommolketab.ir
http://lib.ommolketab.ir

, c.ContactName

HAVING count(o.OrderID) > 5

The query should have been written with the OrderID column listed in the GROUP BY clause, as shown

in bold (the initial portion of the query remains the same):

WHERE c.Country = 'USA'
GROUP BY
 o.OrderID
, c.CustomerID
, c.CompanyName
, c.ContactName

HAVING count(o.OrderID) > 5

Now the query returns three results, which is correct. Queries are much easier to debug when you
write them clearly with whitespace. The first query might have taken a long time to debug, yet I have
seen plenty of cases where people write their queries like this.

Commenting your code is extremely important as well. Sometimes, a well-placed comment can alert
you to a bug in the code that you would normally not spot immediately. If the preceding query had
included the following comment, containing the word "order," a trained developer would realize the
order ID was missing from the GROUP BY clause:

-- Get all US orders that have more than 5 items

13.1.4 Feature Creep

Why is feature creep being discussed in a chapter about debugging and testing? Most projects have a
plan in place that specifies exactly what the application will do and how it will do it. Feature creep
happens when you don't stick to the plan. During the debugging and testing phase, adding a new
feature increases the likelihood of new bugs being introduced into the application, causing delays in
the entire process. For this reason it is usually best to note the new features and implement them in
the next version of your software, rather than try to get them into the current version.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.2 Trapping Errors

Error handling and error trapping are big parts of debugging. After all, a bug is a programming error
that hasn't been fixed or can't be fixed. But not all errors are bugs. An error may simply reflect an
operational condition, such as an attempt to divide by zero. The error is not in the programming
logic, but in the data. An error message is a developer's way of saying "This is a condition that we
couldn't prevent, but this is what happened and this is what you should do." It is the responsibility of
the developer to fix errors caused by bugs and to handle errors caused by bad data or adverse
runtime conditions (such as a loss of the connection).

13.2.1 try/catch Blocks

The try/catch construct gives server-side service developers an easy way to trap errors where they
occur. (See Section 6.5, which covers Server-Side ActionScript; Section 8.6; or the related
ColdFusion tags, <cftry> and <cfcatch>, in Chapter 5.)

Remember, client-side ActionScript does not support try/catch constructs, so
you should be diligent in handling possible error conditions in your Flash
application.

To reiterate, the server-side try/catch construct works like this: the try block contains the code for
which you want to trap any errors as it executes. You are saying "try to execute this code." If an
error occurs, the catch block is executed. It can take whatever action is necessary to handle the error
condition. For example, if the application is inserting data into a database, this might be as simple as
not doing the insert. If the application is accessing a file, the catch block may have to close the open
file and perform cleanup. Often, the catch block just passes an error message back to the user.

The main point of the catch block is that the application code handles the error, rather than allowing
the language interpreter to throw an exception. Your code should handle errors in a way that allows
the user to continue to work; otherwise, it should present an error message that makes sense to the
user.

Some forms of try/catch blocks also have an optional finally block, which contains code to be
executed whether or not an error occurs.

This is how it might look in practice:

function myFunction () {
 try {
 // Do something here.

 // If there is an error, proceed to the catch block.
 } catch (e) {
 // Close files, do some cleanup, send an error message to the user, etc.
 } finally {
 // In either case, do this.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return;
 }
}

The Flash Remoting adapter on the server also traps errors that can be handled in your client-side
ActionScript.

The Flash Remoting adapter is, in effect, a large try/catch block around all of your server-side
services. It handles any errors not handled by the server-side code. An error that occurs in a service
on the server causes an onStatus event, rather than the onResult event, to be returned to your Flash
movie.

You can implement an error-handling strategy that uses the best of both techniques: handling server
errors from your ActionScript within the onStatus() methods of the calls to the service. You can
accomplish this with the throw construct, which allows you to generate custom errors. The benefit is
that you can trap the actual error, perform your cleanup, and then throw a custom error message
back to the Flash movie. The technique of throwing custom errors is shown throughout the examples
in Chapter 5, Chapter 6, Chapter 7, and Chapter 8.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.3 The Flash ActionScript Debugger

Debuggers have been around in other programming environments for years, but it is a necessary tool
and a welcome addition to the Flash environment. We cover the Flash debugger only briefly, as it has
been covered in depth elsewhere. The Flash debugger allows you to set up interactive debugging
within the Flash movie. This allows you to interact with the code as it is executing-examining
variables and stepping through the lines of code one by one to help you determine where a problem
might exist. The debugger can also be used with a remote movie located on a web server. The movie
will be retrieved and debugged locally in the Flash Player. More information on remote debugging can
be found in the Flash online Help system under Help Using Flash Testing a Movie Using
the Debugger.

13.3.1 Using the Debugger

The Debugger panel becomes active when you choose Control Debug Movie (Ctrl-Shift-Enter on
Windows or Cmd-Shift-Enter on Macintosh). This effectively starts the movie in debug mode, allowing
you to view the execution of code. The movie starts with the Debugger panel open at the first line of
your script to await instructions, as shown in Figure 13-1.

Figure 13-1. The interactive debugger of Flash MX

Having chosen the Debug Movie option, the first thing you'll need to do is to set up a breakpoint.
Breakpoints make the code execution "stop here."

The ActionScript interpreter executes the code up to the breakpoint and stops
on the line that the breakpoint is on, before executing the line. Variables set on
the current line won't update until you step past the line of code. Performing
only one command per line (such as breaking if statements onto at least two
lines) makes it easier to see which lines are executed and which are being
skipped.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At that point in the code, you can examine any variables that are in use. It gives you a snapshot of
your code, with live values for variables in that code. You are also able to step through your code line
by line, examining the code execution and variable contents as you go.

You can set a breakpoint anywhere in your ActionScript code. You can navigate through the different
sections of code in the debugger by using the code navigator drop-down box above the code window.
You'll find that even simple movies have many areas of code that are superfluous to the debugging
operation-built-in areas of Flash MX that you have no control over. You'll want to put your
breakpoints into scripts that you have coded or areas that you want to track with the debugger. A
good place to start for a Flash Remoting application is the main initialization script on the main
timeline. In the examples for this book, the code can usually be found in the code navigator of the
debugger as "Actions for Scene 1 Frame 1 for Layer named actions."

To set a breakpoint, click the Toggle Breakpoint button on the debugger control bar, or use the
contextual menu in Code View on the debugger and choose Set Breakpoint. After setting the
breakpoint, you can click the Continue button on the debugger to allow the movie to execute up to
the breakpoint. That's where the fun begins. Once at the breakpoint, the movie stops again and
allows you to interact with your code.

The Properties and Variables windows (accessed via tabs in the center pane on the left side as shown
in Figure 13-2) give you editable lists of all properties and variables in a selected movie clip. The
Watch and Locals windows (accessed via tabs in same pane) are more useful from a Flash Remoting
perspective.

13.3.1.1 The Watch window

The Watch window allows you to examine certain variables of your own choosing. For example, if I
want to determine the contents of my results_rs variable inside the getSearchResult_Result()
function, I add the result_rs variable to the Watch window. The variable shows as undefined until it

comes into scope, at which point the variable's value is displayed in the Watch window.

13.3.1.2 The Locals window

The Locals window displays all local variables as they come into scope. It provides immediate
feedback about relevant local variables, without requiring manual setup, as the Watch window does.
For example, Figure 13-2 shows the Locals window when the debugger is paused at the
getSearchResult_Result() function. The nice thing about the debugger is that you have access to all
properties of your ActionScript objects. The result_rs variable is a complex RecordSet object, and

you can easily see the different properties of the object in the display, allowing you to determine if
your script is retrieving the correct results or if your RecordSet object has the correct structure.

Figure 13-2. The Flash interactive debugger

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Variables can also be modified from the debugger in any of these windows. Using this feature allows
you to set different values to test different situations that might not be possible if you were relying
only on values coming from a database, for example. What exactly would happen to your movie if a
certain field contained a negative number? Using the debugger, you can test different situations such
as these easily.

13.3.1.3 The Call Stack

The Call Stack gives you information about all functions that were called up to the current function. If
you are debugging at the main timeline, the Call Stack will be empty. As you call functions, the Call
Stack displays the function names in the stack. Functions called from within functions will appear in
the Call Stack. Note that only user-defined functions show up in the Call Stack.

13.3.2 A Debugging Session

To fully appreciate the Flash interactive debugger, you need to use it. If you haven't tried it before,
you can get your feet wet with it now. This section goes through a typical interactive debugging
session using the searchProducts.fla file from Example 3-8. This section assumes that you have the
sample file working and results successfully coming from the server. This exercise also allows you to
see the order of execution of a typical Flash Remoting application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For this exercise, it is important that the NetDebug.as file is not included in the
sample movie. The NetDebug.as file is required to use the NetConnection
debugger to debug server-side service interaction, but it only adds unnecessary
complexity to your client-side debugging with the Flash interactive debugger.
Comment out the line #include "NetDebug.as" if you've previously included it.

Open the searchProducts.fla file and choose Ctrl Debug Movie to begin a debugging session.
Refer to Figure 13-2 for the location of the various controls within the Debugger panel. We'll set one
breakpoint and then step through the code line by line:

Expand the Debugger panel so that it is large enough to examine the code easily. Move the
vertical splitter in the center of the Debugger panel to the right to enlarge the left pane
somewhat, but leave room for the Code pane on the right side.

1.

Select the Locals tab in the center pane on the left. Expand the center pane by dragging the
horizontal splitter downward.

2.

Use the Code Navigator drop-down list to access "Actions for Scene 1:Frame 1 of Layer named
actions."

3.

Insert a breakpoint by clicking the Toggle Breakpoint button while the first executable line of
code is highlighted:

4.

if (connected == null) {

Hit the Continue/Play button (green arrow) to begin debugging. The code should stop at your
breakpoint.

5.

Notice that the Locals window has a single entry, this, which represents the current timeline

object. Expand the tree under it to show all associated properties.

6.

Click the Step Over button once (it is the leftmost of the three stepping buttons), which takes
you to the next line of code. The Locals window hasn't changed yet, because the code in the
current line has not executed yet.

7.

Click the Step Over button again, and the Locals window should change at this point. Now, the
variable connected should have a value of true, as shown in Figure 13-3.

8.

Figure 13-3. Stepping through code and examining variables

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Click the Step In button (instead of the Step Over button), and the Code pane should show the
NetServices.as file; this is where the setDefaultGatewayUrl() method is being called. The Step
In button "dives down" into any subroutine called on the current line (keep your eye on the Call
Stack pane to see where you are in the code). The Locals window once again changes, but now
the local variable this points to the NetServices object.

9.

Keep clicking the Step In button slowly and keep track of where you are in the Code pane using
the Call Stack pane for guidance. You should be stepping through the
createGatewayConnection() method, eventually ending up at this line:

10.

var nc = new NetConnection();

This is where the NetConnection object is created. You can see that at this point the URL is
set up for the connection, but no connection has been made to the server yet. In fact, as
you complete the createGatewayConnection() method, the debugger will automatically
step back (out) into the main timeline. There you will see that the my_conn variable is now
populated with an isConnected property with the value false.

Step through the getService() method next. You'll see from this section that you are creating a
proxy to the service but still not connecting. As you step back to the main timeline, you now
have the myService object created. The my_conn object still has the isConnected property set
to false.

11.

The rest of the inline code can now be stepped through quickly until the step buttons become
grayed out.

12.

Flash is event-driven; the movie is waiting for user interaction and your script is awaiting an
event. Click the Submit button in the movie to continue the debugging.

13.

14.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.

If you've been single-stepping through the code, when you click the Submit button the
debugger takes you inside the onSubmit() function. If you look at the Call Stack window, you'll
see that the onSubmit() function was executed after MovieClip::onRelease() and
MovieClip::executeCallBack(). This gives you some insight into the inner workings of Flash; the
click handler function is actually executed in the onRelease event of the button.

14.

If you are stepping through the code line by line, it might take a while to get through all the
lines of code. Navigate to the getSearchResult_Result() function using the Code pane and set a
breakpoint there.

15.

While debugging, many of your interface elements won't work until the code
that sets them up is executed. The Step Over button hastens stepping by
executing the current line immediately, rather than stepping into any functions
it calls line by line (as the Step In button does). The Step Out button
immediately finishes the current function and continues step-debugging in the
function that invoked it. Click the Continue/Play (a.k.a. Go) button to execute
the code at full speed to the next breakpoint. Using the Go button requires that
you set breakpoints in places where the code will be reached. Your
understanding of Flash Remoting's event handling will help you anticipate which
code will be executed next. You can always set multiple breakpoints and wait
for any of them to be reached. If you've set them in the wrong place, the movie
will simply run without activating the debugger.

Click the Go button, and the debugger should stop at the breakpoint set in getSearchResult_Result(
). (If not, there may have been an error, and you should set a breakpoint in getSearchResult_Status(
) to examine that code.) Once inside getSearchResult_Result(), the Locals window should contain
the RecordSet object named result_rs, and you can examine its properties. You may recall that in
Chapter 3 we enhanced the RecordSet object to include a currentRecord property, which should

appear in the debugger, along with the fields and built-in properties of the recordset.

To demonstrate the usefulness of the Locals window, modify the currentRecord property by
changing its value to 20 (simply edit the number in the Value column of the Locals window). As you

step through your code, the movie should display the 20th record instead of the first record.

Unfortunately, the Flash MX Interactive Debugger doesn't remember your breakpoints between
sessions. The next time you start the debugger, you will have to set any breakpoints again.

The Flash interactive debugger is useful for checking the client-side ActionScript code, including Flash
Remoting code, as well as examining return objects and values from a remote service. The
NetConnection debugger, on the other hand, gives you solid feedback on the Remoting process itself.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.4 NetConnection Debugger

The NetConnection Debugger panel is a Flash movie itself. It is implemented as a Flash panel
extension to Flash MX and is installed when you install the Flash Remoting components. The
NetConnection debugger reports all connections, input, and output from the Flash movie to the
server. Any arguments sent to the movie are exposed in the panel, and any response from the server
is shown as well. This includes all error messages from the server.

The NetConnection debugger is available only during authoring time. Errors that occur in the
application after the movie has been compiled and deployed will not be reported. It is up to you as
the author of the Flash application to address the errors during authoring time so that the end user
experience is without error.

The NetConnection Debugger panel must be opened from the Window menu in Flash before testing
the movie for it to become active. To invoke it, open the NetConnection Debugger panel and choose
Control Test Movie. The Control Debug Movie option invokes the Flash interactive debugger,
not the NetConnection debugger, although the latter will also be active if it was previously open. Be
sure to include the line #include "NetDebug.as" in your code if you've previously omitted it.

13.4.1 Parts of the Debugger

The NetConnection debugger, shown in Figure 13-4, consists of three panels in the main section of
the debugger and two smaller panels below. The three main panels are:

Events

Shows the client/server event that occurs, along with an icon representing the type of event
(such as a Flash icon for an event from Flash), the event name, and brief summary of
information about the event.

Summary

Allows you to drill down from the Events panel to display a summary of a particular event,
which usually includes the request and response information.

Details

Allows you to drill down even farther to get more specific details about an event, including
some header information.

Figure 13-4. The NetConnection debugger for Flash Remoting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All events that occur between the client and the server are shown in this panel. A typical session
consists of the following:

A connection to the Flash Remoting gateway

A call to a remote method

The HTTP request headers

The AMF request headers

The AMF method call

The AMF response upon a successful method call, or the AMF status upon failure

The onResult or onStatus event

The AMF response headers

All of this information is displayed in a formatted fashion in the NetConnection debugger. In addition,
you can create your own events to display by using the methods of the NetDebug API, which will be
discussed shortly.

If you are passing complex ActionScript objects to the server, the NetConnection debugger displays
the object and its properties. Likewise, complex objects or recordsets returned from the server are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

also displayed in their entirety. If remote methods aren't returning the expected results, you can see
exactly what is coming back from the server to help track down any errors in your code.

The bottom section of the NetConnection debugger contains the Filters and Preferences panes. The
Filters pane allows you to set filters, which are used to limit the information that is displayed. By
default, all events are subscribed to, but you can uncheck the events that you don't want to display.
In most situations, the filter is not needed, but if you are calling many methods you may want to
suppress some of the output.

The Preferences pane allows you to specify the number of events to display before old events are
discarded. In addition, you can limit the length of arrays that will be displayed. Remember, the
NetConnection Debugger panel is a Flash panel, so it is subject to the limitations of Flash. Large
amounts of data will tend to drag down performance, so the panel defaults to displaying a maximum
of 10 array elements, 25 events, and 500 total lines. The font size can also be adjusted.

To debug Flash Communication Server (FlashCom) applications, a username and password can be
supplied. For more information on FlashCom, see http://www.macromedia.com/desdev/mx/flashcom.

13.4.2 Using the NetConnection Debugger

The following line adds the classes required to use the NetConnection debugger:

#include "NetDebug.as"

Simply add the preceding line to your Flash movie, and open the NetConnection Debugger panel
using Window NetConnection Debugger. If you commented out the #include statement during

the earlier example using the Flash interactive debugger, uncomment it now to reactivate
NetConnection debugging. For a ColdFusion Server, more debugging information is available if you
turn on debugging in the ColdFusion Administrator. To do so, you need to know the IP address of the
client machine where your Flash authoring environment is running from. If you are using a local
ColdFusion Server, this is usually at the localhost IP address of 127.0.0.1. Figure 13-5 shows the
debugging IP address settings of the ColdFusion Administrator.

Figure 13-5. Setting up debugging IP addresses in the ColdFusion
Administrator

http://www.macromedia.com/desdev/mx/flashcom
http://lib.ommolketab.ir
http://lib.ommolketab.ir

We will go through a typical debugging session by testing a Flash Remoting application that was
developed in an earlier chapter. A few key errors can be introduced so that you can see what effect
they have on the debugging information presented in the NetConnection debugger.

13.4.2.1 Debugging a connection

The connection to the Flash Remoting adapter is one of the first things you might have to debug. If
the connection to the adapter fails, you are dead in the water. This is also one of the areas that is not
covered by the debugger. If the connection fails and you don't have error-handling code in your Flash
movie, the movie will just appear to freeze and the NetConnection debugger will not show anything
wrong.

The physical connection to Flash Remoting is not actually made until you call a remote method of
your service. Only then can you track an error in the connection. Connection errors do not occur
when the NetConnection object is instantiated, as you saw in the "A Debugging Session" exercise
using the Flash interactive debugger earlier in the chapter. Errors also don't occur when the service is
set up in your Flash movie.

Connection errors can be trapped in one of three locations:

_global.System.onStatus event handler

NetConnection.onStatus event handler

Your_connection.onStatus event handler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A bad connection usually means that the URL is bad. It can also mean that a server is down
temporarily. You can handle errors like these in one of the events shown previously, usually with a
message box to the user or by redirecting the user to an error page. A typical onStatus() method
might look like this:

my_conn.onStatus = function (error) {
 _root.getURL("http://localhost/myConnectionErrorPage.html");
}

Try debugging the connection in searchProducts.fla by using this code. First, try the code with a
working connection; then, stop the movie and change the URL to a nonexistent URL. Try the movie
again. You'll find that the onStatus event is triggered when you make the call to the service.

You can also check the URL of the Flash Remoting adapter from a browser. If you type the URL in a
browser, you should see a blank page if the adapter is working at that URL. Connection errors can be
more difficult to track down if they are sporadic. In such cases, there is little you can do other than
trap the error and give the user a message or an alternative.

13.4.2.2 Debugging method calls

Each remote method call in your Flash Remoting application should have its own error-handling code.
The onStatus() handler for the method call can give you some information about an error, but in the
debugging phase of application development you should use the NetConnection debugger to get more
information about the errors. The debugger shows a full stack trace (a list of the functions or
methods that are called) from the server, which can be extremely useful in tracking an error.

Debugging helps track logical or intermittent errors, as well as the more obvious connection errors.
An application can seem to work fine but deliver erroneous results in certain situations. In these
cases, the NetConnection debugger can help you to pinpoint the problems by showing all raw results
as they come from the server. As you build your application, you should document exactly what each
method does, what it requires, and what it returns. If something deviates from your plan, you can
address it when debugging.

Debugging is the systematic challenging of your assumptions. Instead of
assuming something is working correctly, verify its operation by manually
inspecting the information provided in the debugger. If something isn't working
as expected, the problem often started earlier in your code. Examine the
arguments submitted to each remote method call and the results passed back.
Keep working backward in your application until you find where the errors
originated. Depending on the point in your application at which failure occurs, it
might be easier to start at the beginning and verify each step as you move
forward than to follow the logic backward from the end.

13.4.2.3 Validating user data

Applications that depend on user-supplied data are frequently the hardest types of applications to
debug, because you never know what a user might attempt to do with the application or when
malicious users might prey on your application. Making the application bullet-proof to user input is
one aspect of debugging. Sometimes, the best way to debug an application that requires user-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

supplied data is to test the application with various users, including users who don't know what they
are doing. Ideally, you'll have a mix of skilled beta testers, clueless newbies, and some average users
in between. If they can all use your application without errors, you are usually in good shape.
Needless to say, validating all user-supplied data is essential.

Validation on the Flash client using ActionScript should be used only as a first line of defense against
bad data. Your server methods should each contain validation routines to guard against bad user
data or malicious attack as well.

13.4.2.4 System errors

Using the onStatus event of the connection object will trap connection errors, and onStatus events of
your methods will trap errors in the methods, but there can be other types of general system errors
that don't fall into these two categories. For example, this general error message occurred on an
ASP.NET example and was not trapped by a connection error handler or a method error handler:

"Object reference not set to an instance of an object."

For this type of error, you can fall back on the generic system error trapping:

_global.System.onStatus = function(error) {
 _root.getURL("http://localhost/mySystemErrorPage.html");
}

Attempting to invoke a method that doesn't exist will throw a general system error.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.5 NetDebug.as

The NetDebug.as file is not a required part of Flash Remoting, but it is required if you want to use the
NetConnection debugger. The file can be included in your movie during debugging but should be
removed from the code before deployment, as it adds considerable weight to the final movie.

If your application is complex, you can include a dummy MyDebugFile.as file in each of your .fla files
as follows:

#include "MyDebugFile.as"

This dummy MyDebugFile.as file should contain one line:

// #include "NetDebug.as"

If the line is commented out (as indicated by the prepended slashes), the NetDebug.as file is not
included. If you uncomment the line, the NetDebug.as file is included. This technique circumvents the
lack of a conditional #include in ActionScript. It makes it easier to activate and deactivate

NetConnection debugging in a single place, without the need to edit multiple .fla files.

By including the NetDebug.as file, you are also including the following files:

NetDebugHelpers.as
NetDebugConfig.as
NetDebugEvents.as
NetDebugNetConnection.as
NetDebugLocalConnection.as
NetDebugImpl.as

These files form the code base for the NetConnection debugger and the NetDebug class that you can
utilize for debugging.

The NetDebug class exposes these methods, which can be called from an instance of the
NetConnection object:

trace()

Displays an object to the NetConnection Debugger panel. This can be any ActionScript object.
getDebugConfig()

Gets the configuration object of NetDebug (NetDebugConfig).
getDebugID()

Gets the debugging identifier of the NetConnection object. This is an arbitrary number that can
be changed by the developer.

setDebugID()

Set the internal debug ID of the NetConnection object, which can be useful for debugging
multiple connections

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The methods are called from the local connection object you've defined:

NetServices.setDefaultGatewayURL(myURL);
var my_conn = NetServices.createGatewayConnection();
var myService = myConnection_conn.getService(servicePath);
my_conn.trace(my_conn.getDebugConfig());

In the last line, the NetConnection.trace() method is being used to trace (i.e., display the contents
of) the NetDebugConfig object to the NetConnection debugger. The output looks something like
Figure 13-6.

Figure 13-6. The NetConnection debugger showing the object returned
by getDebugConfig()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.6 Trace Debugging

Trace debugging is sometimes the most useful way of debugging your applications, because it is
quick to implement and offers immediate feedback. The Output window (a.k.a. trace window) in
Flash's authoring environment provides instant feedback when you test a movie. By simply adding a
trace() statement to your movie, you are effectively adding debugging code.

In its simplest form, trace debugging involves tracing a value to the Output window:

trace(myVariable);

As you become more organized in your debugging and testing procedures, you will add more
information so that the output is more readable and useful:

trace("myVariable: " + myVariable + " in function myFunction()");

If your movie is complex and there are areas that demand constant debugging, you can put a debug
flag in your script as a local variable and uncomment it when you want to debug:

// var myDebugFlag=true;
var myDebugFlag=false;

You can then sprinkle your code with trace() statements. This one simply tells you that a particular
function, getSearchResult_Result(), was reached without requiring you to set a breakpoint in the
debugger to verify it:

if (myDebugFlag) trace("debugging getSearchResult_Result()");

This technique works well for routines called so frequently that it would be impractical to use a
breakpoint, which would repeatedly stop the movie in the debugger. On the other hand, if frequently
called routines display too much trace information, it becomes difficult to find other information in the
Output window.

You can create some pretty complex and useful debugging tools using trace(). For example, you can
set up a more sophisticated trace-debugging system using a wrapper routine that accepts a priority
number as a parameter:

function traceDebug (message, priority) {
 if (priority <= 3) {
 trace(message);
 }
}

and call it like this:

traceDebug("This is a priority 1 debugging message", 1);
traceDebug("This is a low-priority message", 5);

By adjusting the if statement in the traceDebug() function or the priority of messages sent to it, you

http://lib.ommolketab.ir
http://lib.ommolketab.ir

can display certain debugging messages while omitting others (or even suppress all messages).

Chapter 4 showed a client-side RecordSetDebug.as file that added custom methods to help debug
your RecordSet objects on the client. The principles behind this class were based on trace
debugging-building custom strings that contained descriptions and property values:

Recordset.prototype.showData = function () {
 var fields = this.getColumnNames();
 var i,j,tempfield="",temprow="",temprec="";
 trace("--Recordset Properties--");
 trace("Recordset length: " + this.getLength());
 trace("Fields: " + fields);
 trace("Begin records...");
 for (var i = 0; i<this.getLength(); i++) {
 temprec = this.getItemAt(i);
 for (var j=0; j < fields.length; j++) {
 tempfield = fields[j];
 temprow += tempfield + ': "' + temprec[tempfield] + '"; ';
 }
 trace(temprow);
 temprow="";
 }
 trace("End records...");
 trace("--End Recordset Properties--");
}

This code displays object properties in a way that is readable by you. By concatenating the
descriptions of the properties with their values, you insure that the values in the properties are
clearly labeled.

The Output window shows warnings and errors by default, but you can set the debug level to
Verbose, which gives more detail in some situations. To do so, click on the Options menu in the
upper-right corner of the Output window and choose the Debug Level option. Here, you will find the
choices of None, Errors, Warnings, and Verbose.

There are built-in trace-debugging features that you should be aware of as well. While debugging
your movie (Control Debug Movie), the Debug menu contains two entries: List Variables and List
Objects. These commands dump the current values of variables and objects in a hierarchical fashion
to the Output window.

The trace() statements have no effect in the final movie; they are displayed only in the authoring
environment's Output window. However, it is best to disable them when publishing your movie, by
using the Omit Trace Actions option under File Publish Settings.

Trace debugging gives you a viable alternative to using a full-blown debugger, and it is often much
quicker to get immediate feedback to a problem. Still, using the debugger will become more
comfortable with time, and before long you'll wonder how you got along using only trace()
statements. The interactive debugger and trace() statements are complementary tools, and you'd be
well served to make use of them both as the situation demands.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.7 Testing Server-Side Code

Your server-side code should be tested and debugged in isolation, by using your own server-side
pages that you've set up for debugging purposes only-taking Flash and Flash Remoting completely
out of the equation. You should be able to call your server-side methods from a basic page that
contains calls to your remote methods using test data. By doing this, the server-side logic can be
verified (and debugged, if necessary) in a much more logical and structured manner. One of the
advantages of using Flash Remoting is that you can separate your business logic from your
presentation logic. The server-side methods can be viewed as if they were modules in your overall
application. Debugging modules individually can often be more productive than trying to look at the
whole picture. Let's look at some of the debugging tools available in the major server environments
supported by Flash Remoting. This is not an exhaustive list, as you can use many different server-
side development environments and each will have its own debugging tools.

13.7.1 Debugging in ColdFusion

ColdFusion MX allows debugging information to be displayed, including the following information:

Execution times

Database activity

Exception information

Variables (Application, CGI, Client, Cookie, Form, Request, Server, Session, and URL)

Debugging must be turned on from the ColdFusion Administrator, as shown in Figure 13-5. There are
two modes of debugging: Classic and Dockable. The Classic mode of debugging simply lists the
information at the bottom of the page when you execute a ColdFusion page. The Dockable style
opens a separate window with the debugging information contained in a handy tree. The panel can
also be docked with your page, as shown in Figure 13-7.

Figure 13-7. Dockable ColdFusion MX debugging

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flash Remoting allows you to work with ColdFusion Components (CFCs) from within Flash. As an
example, look at the searchProducts.fla file that we've been examining in this chapter. The service
that it calls is a CFC named searchProducts.cfc. ColdFusion Components can also be called from
regular ColdFusion pages that use HTML for user interaction. This can be very helpful when
debugging your Flash Remoting applications, because it allows you to verify your server-side code
separate from your client-side code.

The best environment for building ColdFusion pages that utilize CFCs is Dreamweaver MX, which is
part of Studio MX. Building a sample page that uses the searchProducts.cfc can be done in five simple
steps:

Set up a sample site in Dreamweaver (using the Site New Site option). Consult the
Dreamweaver documentation for details on how to set up sites. Be sure to specify the server
model as ColdFusion. If the site is set up correctly, Dreamweaver's Components panel will be
populated with all the CFCs on your server.

1.

Create a test page with a .cfm extension.2.

Drag the getSearchResult() method from the Components panel to the Code view of your .cfm
page. This will create a complete <cfinvoke> tag for calling the remote method.

3.

Add a <cfdump> tag to the page below your component invocation. The tag should look like

this:

4.

<cfdump var=#getSearchResultRet# />

Press the F12 key to test the page in a browser.5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.

The <cfinvoke> tag calls the method of the component, and the <cfdump> tag displays the result in

the browser.

Returning momentarily to Flash, if debugging is turned on in the ColdFusion Administrator, you will be
able to see all variables and error messages clearly in Flash's NetConnection debugger. For example,
if the data source has not been set up yet, the NetConnection debugger would respond with an error
message like this:

"Service threw an exception during method invocation: java.sql.SQLException: No such
binding: Northwind"

With some experience, you will realize that this error most likely means that there is no data source
set up in ColdFusion.

However, viewing the .cfm page that utilizes the same component in a browser gives you a much
more descriptive error message than Flash's NetConnection debugger. As shown in Figure 13-8, the
error message is much easier to decipher, gives line numbers for the error, and shows the actual
code that caused the error. The actual error message on this page is:

"Data source Northwind could not be found."

It couldn't be any easier.

Figure 13-8. Error message in ColdFusion MX

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unfortunately, there is no debugging environment for ColdFusion MX coding, per se. In ColdFusion 5,
you could do step-debugging with ColdFusion Studio, but the functionality was removed in the move
to MX. Future generations of ColdFusion MX might contain step-debugging. For that reason, the
<cfdump> tag is still the ColdFusion programmer's best friend. You can think of it as the ColdFusion

cousin of Flash's trace() command. It dumps the contents of a variable or structure easily with one
simple tag and attribute.

Along with the <cfdump> tag, you also have a <cftrace> tag at your disposal. You can use this tag in
a fashion similar to <cfdump>, but it gives information that a simple dump of a variable won't, such
as execution times. Also, <cftrace> tags are logged in the ColdFusion application logs, located in

your ColdFusion_root\logs folder. If you use the <cftrace> tag in a page, the result will be written

to the cftrace.log file.

The <cftrace> tag supports the following attributes:

abort

Yes or no
category

Any valid string
inline

Yes or no

http://lib.ommolketab.ir
http://lib.ommolketab.ir

text

Any valid string
type

Information, warning, error, or fatal information
var

Name of a variable to display

The category and text attributes allow you to set messages that can be useful in complex
applications. You could, for example, set a category called "FlashRemoting" that you use in your

ColdFusion Components. You can sort the log file on this category in the ColdFusion Administrator
when examining your log files.

The <cftrace> tag also gives you the elapsed time between <cftrace> tag executions, so you can

use it as a rudimentary timer as you debug and optimize your code.

The ColdFusion IsDebugMode() function can be used hand-in-hand with debugging. Using this
function, you can sprinkle your code with <cfdump> and <cftrace> tags that are selectively called

only when debugging is on. To do this, you can wrap the code in conditional logic, like this:

<cfif IsDebugMode()>
 <cftrace category="TestingPhase2" var="rsGetProducts" />
</cfif>

This allows you to turn off debugging until you need it while you are in your testing phase. Having
ColdFusion debugging turned on at all times increases the execution time of your pages and
components substantially. For this reason, it is best not to use debugging until you need it.

Flash Remoting keeps its own log as well. In ColdFusion_root\logs, there is a flash.log file, which

keeps all error messages that occurred through Flash Remoting-in other words, any onStatus event
messages that were returned to the Flash movie. These can be useful in debugging, and they can
also be useful after an application is deployed.

Dreamweaver MX also has a Server Debug mode, but it simply lists the same information in the
Results panel in the Dreamweaver environment.

13.7.2 Debugging in Java

Java environments are varied and diverse, and they number in the dozens. If you are writing and
compiling Java code to form your Flash Remoting services, you likely have all the tools necessary to
debug the server-side code at your disposal. It is important to choose a Java IDE that has a capable
debugger. Some of the best are Borland's JBuilder, the open source NetBeans, and IntelliJ Idea. Each
of these environments contains the step-debugging functionality that you will need for debugging
Java code.

One of the nice things about the Flash NetConnection debugger when using Java services is that the
Java stack trace is sent to the debugger's Call Stack pane. You can examine exactly where the error
might have occurred. In many cases, line numbers pinpoint the errors for you.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.7.2.1 Server logs

Logs for Flash Remoting can be found in the flashremoting-event.log file in JRun 4, and in the
individual server log folders for other J2EE servers. In the log file, you will find stack traces for the
errors in a Flash Remoting call.

13.7.3 Debugging in ASP.NET

Building applications and services in ASP.NET can be done from a variety of different places, including
Notepad and a command-line compiler. There are several more sophisticated tools available that can
be used to create and deploy ASP.NET applications.

13.7.3.1 Visual Studio.NET

Visual Studio.NET (VS.NET) contains some of the most sophisticated debugging tools around, making
it almost a pleasure to look for bugs in your code. The Visual Studio tools are similar to those in the
Flash interactive debugger but much more responsive and versatile. For example, breakpoints are set
and remembered by the program. There is an Immediate window that allows you to type in any
variable or expression and have the current value printed to the screen. Also, hovering your cursor
over a variable in the code while debugging will pop up a tooltip with the current value of that
variable, as shown in Figure 13-9.

Figure 13-9. The Visual Studio debugging environment gives immediate
feedback via tooltips

Some of the features available in Visual Studio include:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Immediate window

Allows you to type in an expression and display the resulting value.
Watches

Multiple watch windows allow you to watch several variables.
Locals

All local variables within a function are displayed here.
Call stack

See the tree of functions that got you to where you currently are in the code.
Threads

Breakdown of the threads that are currently active.
Breakpoints

Listing of all current breakpoints, with the ability to temporarily turn them on and off without
removing them from your code.

Step Into, Step Over, and Step Out

Buttons act just like the Flash interactive debugger variants.
Show Next Statement

Allows you to preview the next statement before stepping into it.

Building SOAP-based web services for Flash Remoting is also easy to do in Visual Studio. While you
are building your web service, you can test from a browser; Visual Studio creates HTML-based
interfaces to your web service that also allow you to trigger the debugger while you build the web
service. For example, the HelloUser web service shown earlier in this chapter takes one argument.
Figure 13-10 shows the temporary test page that is generated by Visual Studio as you debug the web
service. You can supply the argument and hit the Invoke button to transfer the focus back to Visual
Studio to continue to step-debug your code.

Figure 13-10. Web services can be debugged in Visual Studio

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Of course, one of the best features is the ability to edit and change your code as you debug. If you
come to an error while you are debugging, you can fix it on the spot and continue the debugging
process from that point.

The temporary HTML files that are built by Visual Studio also contain all the SOAP packets that are
used by the web service; both the request and response packets are shown in the browser.

If you are building DLLs, you can debug those as well, but Visual Studio generally requires that you
set up test projects to be able to test and debug your DLLs.

13.7.3.2 ASP.NET Web Matrix

Visual Studio is a great programming environment, but it's not the only game in town for ASP.NET
developers. Microsoft has also released a free IDE, called ASP.NET Web Matrix, that can be used to
create ASP.NET pages, DLLs, and web services used in Flash Remoting, among other things. ASP.NET
Web Matrix can be downloaded from:

http://www.asp.net

Although the IDE is similar to Visual Studio in look and feel, it is a lightweight application that doesn't
contain all the bells and whistles of Visual Studio. One of the major missing features is the integrated
debugger. Still, for building simple services, the Web Matrix can be the perfect environment.

The one area where it truly shines is in the building of SOAP-based web services. When you create a
service, you have the same previewing features that can be found in Visual Studio. Still, without the

http://www.asp.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

step-debugging features of Visual Studio, you have to do some detective work to find bugs in your
applications.

13.7.3.3 Server logs

Flash Remoting keeps a log in the bin folder of your ASP.NET application. If you are having troubles
tracking down an error, look in the server log called flash.log. One error that I had trouble tracking
down, because I received no error message in the NetConnection debugger, was found in the
flash.log; the trial version had expired and I had neglected to install the full version! Needless to say,
when you don't have an error message to point you to an error, you often go around in circles
looking for an answer. I could have saved a couple hours by going to the flash.log file right away.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.8 Using a TCP Trace Utility

Have you wondered how you can view the HTTP headers going back and forth between Flash
Remoting and your client movie? Or how you can view the AMF data that Flash Remoting uses to
communicate? Or how to see the SOAP packets that are going back and forth from Flash Remoting to
a web service? A TCP trace utility can be a good debugging tool when you are building applications
that access web services or when you are having problems with client/server communication.

Basically, a TCP trace tool listens to a port and outputs any activity to a window so that you can
examine it or save it to a file. For example, if you are sending a request to a web service and
receiving a response that is inaccurate, you can examine the SOAP packet directly using a TCP trace
utility.

TCP trace utilities can be used on the client and on the server. If your local machine is acting as client
and server during debugging, you can open up two different sessions in the TCP trace utility and
examine the requests and responses to HTTP requests.

We examine some of the popular TCP trace utilities in the following sections.

13.8.1 SOAP Trace Utility

Microsoft offers a SOAP toolkit that contains a trace utility called MSSOAPT.exe. You can find it at:

http://msdn.microsoft.com/downloads

Its usefulness as a tool does not stop with SOAP, however. It can also be used to examine your AMF
headers to and from the Flash Remoting gateway, or any other HTTP packets.

There are other utilities that work in a similar fashion, like the TCPTunnel utility
that comes with the Apache SOAP Java package (http://xml.apache.org/soap),
but the Microsoft tool is easy to set up and use. If you are on a Macintosh, you
might consider using the TCPTunnel utility in place of the MSSoapT tool.

The TCP trace tool must be able to intercept the HTTP call and then pass the call on to its final
destination. To use it, set up a dummy port number, such as 81, and then pass the request to 81
rather than the actual destination. The trace utility then intercepts the call and outputs the text
and/or binary code to the screen.

13.8.2 Testing Client Calls

To use MSSoapT to test the client-side code of a Flash Remoting application, set it up on the client
machine (from which the movie is played) and run it. You will have to create a new Trace session
using MSSoapT's File New command. The Unformatted Trace is a better option to see the exact

http://msdn.microsoft.com/downloads
http://xml.apache.org/soap
http://lib.ommolketab.ir
http://lib.ommolketab.ir

content that is being passed from the client to the server and back again. After choosing Formatted
Trace or Unformatted Trace from the File menu, you'll have to set up the ports and the host address
where the trace will be referred, as shown in Figure 13-11.

Figure 13-11. The MSSoapT TCP trace utility requires the port and host to
be set up

The "Local port #" should be set to a free port on the local machine. This allows the TCP trace utility
to listen to the port. If the port is in use by another service, the trace utility will not be able to open a
session.

The "Destination host" should be set to the IP address of the service that you are tracing. For
example, if you want to trace the AMF headers going to the Flash Remoting gateway, put the IP
address of the Flash Remoting gateway here.

The "Destination port" should be set to the port number of the service you are tracing. To test a
Flash Remoting call to a server, this is the port number of the Flash Remoting gateway.

The last step is to set the IP address in your Flash movie for the Flash Remoting gateway to the IP
address of the client machine.

For a typical example, let's say that the Flash Remoting gateway is at
http://192.168.0.15:8500/flashservices/gateway. The local machine has a different IP address; in
other words, you are building a Flash application on a machine other than the server you are calling.
The local port number for the trace session could be set to 8080, assuming that port is not in use by
something else. Any arbitrary port number will do (81, 82, etc). The destination host would be set to
192.168.0.15. The destination port would be set to 8500.

The Flash movie should be modified so that the Flash Remoting gateway URL is now
http://127.0.0.1/flashservices/gateway. (This URL does not exist on the local machine but will force
the Flash Remoting call to go through the TCP trace utility.) If you run the movie, the trace utility
should display the call to the service and the result as well. You'll see the AMF headers and any other
information that was passed in the HTTP call, as shown in Figure 13-12.

Figure 13-12. The MSSoapT utility displaying information from a Flash
Remoting call

http://192.168.0.15:8500/flashservices/gateway
http://127.0.0.1/flashservices/gateway
http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.8.3 Tracing a Web Service

Web services can also be traced, and the MSSoapT trace utility will show you the SOAP headers going
back and forth from client to server. In the case of web services, the client is the Flash Remoting
adapter on the server. In other words, the client for the web service resides on the application server
machine. For this reason, the tracing needs to take place entirely on the server.

Tracing a web service generally requires you to modify the .wsdl file so that the URL points to your
trace utility rather than the service. The technique is the same: you point your URL in the trace utility
(the destination host) to the actual web service URL and set your port numbers accordingly. If the
.wsdl file resides at a remote location, download the file to the server machine and save it in the web
directory. Change the <wsdlsoap:address> tag so that the IP address and port number match your

local machine and the port of the trace utility.

To demonstrate, we'll do a simple trace on the web service at:

http://www.communitymx.com/services/cmxfeed.wsdl

Assuming that you have the MSSoapT utility running on the same machine as your Flash Remoting
adapter, the first step is to download the .wsdl file and save it to your local web root. Save the file as
cmxfeed.wsdl.

Next, find the <wsdlsoap:address> tag in the file. Copy the address, because you'll need it in the

trace utility. Change the IP address to your local .wsdl file (probably at
http://localhost:86/cmxfeed.wsdl). The tag should now read like this:

<wsdlsoap:address location="http://localhost:86/services/cmxfeed.cfc" />

Notice that the path stays the same; only the IP address and port number change. Save the file.

http://www.communitymx.com/services/cmxfeed.wsdl
http://localhost:86/cmxfeed.wsdl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Open the communitymx.fla file from Chapter 10. You will need to change the service path so that it
matches the location of your new .wsdl file. Change the service path from:

var servicePath = "http://www.communitymx.com/services/cmxfeed.wsdl";

to:

var servicePath = "http://localhost:86/cmxfeed.wsdl";

Open up a new trace session and set the ports and host as follows:

Local port #: 86
Destination host: www.communitymx.com
Destination port: 80

Run the Flash movie, and you should see the SOAP packets on the server in the MSSoapT window,
which will look very similar to the display shown in Figure 13-12.

This can be handy when building Flash interfaces to web services, because the Flash debuggers may
not give you any indication of what might be going wrong with the call to the SOAP web service. The
MSSoapT trace utility will show you the SOAP packets so that you can compare the results to the
.wsdl file code and decide on a course of action.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.9 Debugging SQL Code

Your Flash Remoting application may depend on calls made to a database, as the searchProducts.fla
example does. If you have a database server such as Microsoft SQL Server, you will have all the tools
at your disposal to properly test and debug SQL code. This means that you should have a workable
copy of the database and database-programming environment available to you. It is unwise to debug
database queries using a live server, so all debugging and optimization should be done locally or on a
staging server before deploying your application.

13.9.1 Database Errors

Database errors can be difficult to track down from within Flash, so it is a good idea to try to track
them down at the source: from within the database environment. Frequently, the error can be found
in the syntax at the source, eliminating the guesswork when you execute the database code from
Flash.

If the query runs successfully in the database environment, the next logical place to look for errors is
in your server-side service. A successfully worded query can fail if you use a datatype that is not
consistent. Frequent errors include forgetting the single quotes around character data or putting
single quotes around numeric data improperly.

Another frequent error to watch out for is the improper use of NULL versus using an empty field.

Often, a query result can be returned incorrectly if you are doing a search like this:

SELECT * FROM Customers WHERE Region = ''

You might be looking for Customers that don't have a Region column provided, but running this
query on the Northwind database returns 0 records. If you look for NULL values instead, the query

returns a handful of records:

SELECT * FROM Customers WHERE Region IS NULL

NULL values and empty values are two entirely different things to your database, and they must be

treated differently when you build your queries. This can have some insidious consequences in your
data results, especially when you are creating reports and doing aggregate queries.

13.9.2 Query Optimization

Debugging involves not only making the program run without errors but also optimizing the code to
run as fast as possible. One of the bottlenecks in Flash Remoting can be your SQL code, if it is not
properly optimized.

The SQL Server environment contains tools such as the Query Analyzer to help you optimize queries.
It can help determine where to place indexes in your tables, by measuring the demands of a given

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL query and analyzing where the bottlenecks occur. Typically, when a SQL query takes a long time
to run, that means the indexes are not set up properly.

There are a few key areas to look for in your queries. Columns that are joined in queries should be
indexed, as in this query:

SELECT p.ProductID, p.ProductName, s.SupplierName
FROM Products p
INNER JOIN Suppliers s
ON p.SupplierID = s.SupplierID

In this case, an index on SupplierID in the Suppliers table will dramatically increase the speed of

the query.

Columns referenced in ORDER BY clauses should be indexed. This is because data that is ordered

frequently can be ordered more quickly if that column is indexed, as an index is an ordered list.

Columns that are searched frequently should be indexed, as in this query:

SELECT * FROM Products WHERE CategoryID = 7

On a small table, the savings might not be substantial, but as tables become increasingly large, query
execution times become an important consideration. Imagine if you had to look up a phone number
in a phone book, starting from page 1 and reading every name until you found the one you were
looking for. This is the same principle as searching a database column that has no index on it. With
the index, the database is able to narrow the search down to a few disk accesses, rather than scan
the entire table.

There are a few things to watch out for in your queries. Queries that use LIKE with wildcards are

slower than queries that use exact matches. In other words, this query is slower than a query that
matches the field exactly:

SELECT * FROM Products WHERE ProductName LIKE '%sauce%'

Furthermore, queries that have a wildcard in the first character in the filter will not make use of an
index on the column. The preceding query does not use an index. The following query can use an
index on the ProductName field to speed up the search:

SELECT * FROM Products WHERE ProductName LIKE 'sauce%'

Database environments that don't contain tools like the Query Analyzer can be difficult to work with.
MySQL contains an optimizer, but it is used from a command line. Regardless, you should make use
of the tool and learn about query optimization. Flash Remoting calls can eat up precious seconds of
Internet time, and a query that takes too long to execute is going to make restless users go
elsewhere.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.10 Wrapping Up

Testing and debugging are among the least glamorous aspects of programming, but they are
necessary skills. All programs have bugs, and finding them can often be a challenge. Armed with the
proper tools, debugging can be more of a game or a puzzle than a necessary evil to be endured.
Flash Remoting makes debugging even harder because of all the different pieces of the puzzle, but by
breaking the application into its component parts you can easily isolate and debug any issues you
may be having.

In this book so far, you've learned all about what makes Flash Remoting tick. Chapter 14 brings it all
together in a real-world application.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 14. Real-World Application
This book has presented many examples of Flash Remoting, but to tie it all together we'll build a
complete application that draws on many of the concepts presented up to this point. We'll create a
simple script repository application that allows a user to post a script to the server using a simple
copy/paste, and then stores the script in a database and returns a script ID number and the URL
from where the script can be downloaded. The application features several key elements of Flash
Remoting, including application security with a user login framework, the passing of objects to and
from the server, several screens utilizing different server-side services, and the seamless integration
of client/server processes.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.1 General Considerations

Above all else, building any substantial project requires organization. You can be the best coder in the
world, but if the project is not well-organized, it will take longer to put together than it should. The
longer you spend planning, the greater chance you will have of bringing a project in on time and
under budget. With that in mind, we'll prepare for the coding first by laying out all the requirements,
setting up a specification, creating a code skeleton framework, and finally getting down to some
coding.

The example application uses ColdFusion MX as the server model. Many of the
concepts translate directly to other server models, and we've tried to leave the
implementation as generic as possible to facilitate porting. Porting the example
to other server models such as ASP.NET, Java, or PHP is left as an exercise for
the reader.

The code shown in the examples uses <cfquery> tags for all databases queries. We've kept the

query in the page purely to keep the implementation generic; these queries will work in SQL Server,
as well as MS Access or MySQL, which do not support stored procedures. If your database supports
stored procedures, you will want to move the queries into stored procedures.

When inserting records into a database, you'll often need to retrieve the primary key of the newly
inserted record. There are various methods to do this in different Relational Database Management
Systems (RDBMS), but the example application uses a generic method that will work in different
databases. When a new user is inserted, you can use the username to retrieve the UserID;

usernames are unique in the database. When inserting a script, we'll also insert a unique identifier
that will aid in retrieving the ScriptID for a particular script.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.2 Requirements

First, we need to create a list of the project requirements. We'll then flesh it out into a specification
that we can use to generate the stub code. The stub code acts as an outline; just as a report outline
can be laid out in advance to help create a report, the code outline helps guide the eventual coding.
First, a mission statement:

The Script Repository will provide a simple interface on the Web for authenticated users to post
short ActionScript (or other) code snippets to a central database. The full list of categorized
scripts will be made available to the general public for free download.

With that in place, we'll come up with a list of the main things that the application needs:

Listing of scripts, ordered by category and clickable for download

User registration and login section for uploading scripts

Script upload form

Repository for scripts

Ability to upload new versions of scripts

"Email this page to a friend" feature

Here are some of the minor features that are not essential but are desired:

Email a forgotten username and password

Contact form

Search interface for scripts

The application is built using a client/server model in which the server-side services can be consumed
by an HTML client or a Flash client, which offers greater usability. We'll create an interactive interface
for the application, using simple sliding screens for registration, login, contact, and
uploading/modifying files, and a button for downloading files.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.3 Specifications

Now that we have the requirements, we can lay out the specifications. The specifications give a
better understanding of what is necessary for the application. With a set of detailed specs, two
programmers should be able to create almost identically functioning applications (although,
admittedly, their internal implementations may differ markedly).

14.3.1 Users

The application should support two types of users: registered users and the general public. Since we
are building a simple application, distinctions between the different user types will be clear-cut:

registered users

Registered users have script upload privileges. They can add new scripts or modify their own
scripts that are already in the system.

general public

The general public has full access to scripts in the system, with the ability to download any of
them. They cannot add, edit, or delete any scripts. They can send an email to any email
address with a link to a specific script.

14.3.2 Scripts

Scripts are stored in a database. The application limits the size of each script; this script repository is
intended for small scripts that implement one specific piece of functionality, not entire applications.
Storing scripts in a database allows for easy access, change tracking, and download tracking.

Each stored script should have the following information:

author

The author of the script, in the form of last name, first name. The author's name is available to
the application because the user uploading the script is already logged in.

email

The email address of the author of the script (an optional field that is verified as a valid-format
email address). Again, the application has access to this information because the user must be
logged in prior to uploading a new script.

date uploaded

The date of the first upload of the script. This is automatically generated in the Flash movie
based on the current date.

last modification

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The date of the last known modification to the script. This is automatically generated by the
Flash movie upon updating the script.

version

Version number of the script. This is automatically generated by the application in the format of
major.minor.micro (e.g., 1.0.0, 1.0.1, etc.). The author can override the default version

number with a higher number.
description

A short description of how to use the script.
category

Chosen by the author from a predefined list of categories.
script

The body of the script. The author of the script must paste the text of the script into a text
field. We are implementing it in this fashion because of some of the limitations of the Flash
client in dealing with the file-upload process. There are workarounds, but we've decided to
keep the first version of this application simple. Comments at the top of the script can include a
URL pointing to a binary version of the file on the author's site, for example.

14.3.3 General

There are some other specifications that don't fall into the earlier categories. We can lump the rest of
the specifications into a general category of site specifications:

about

The copyright notice, privacy notice, contact information, and other general information should
be available to the end user. This could be hardcoded into the application, but as a rule these
types of things are better suited to a database. An administrator can easily change the text of
the general information from an administrative interface, rather than having to edit a .fla file
and recompile a .swf file.

contact

All users should have a way to contact the site administrator. Rather than publish an email
address in the application, the application has a button that triggers a contact form so that the
email can be sent through the application itself.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.4 The Modules

With the specifications in place, we can focus on the implementation. We'll document first and code later,
and we'll use OOP techniques for much of the application. One advantage of this approach is that the
specifications dictate how the coding takes place. For example, we have specified that we will have users
and scripts; these elements can be implemented as objects. This makes the coding process more
applicable to real-world situations. We know the different properties of a user and the different properties
of a script (outlined in the specifications), so these will be the properties of our objects. Even though we
are using some OOP techniques and some objects, the application is not strictly an object-oriented
application.

14.4.1 Structure

We will build the overall structure before we set out to code the functionality of the application. I've found
that this is often the best way to approach a problem. You can think of it like drawing a picture: if you
draw the outline first, it is a lot easier to color in, rather than color the picture and then try to draw the
outline around it after the fact. In this way, comments and function skeletons make up your outline, and
the actual code is used to "color in" the program. This has the added benefit that the comments are
finished when your code is finished, rather than requiring you to add comments at the end of the project.

The skeleton code should be fully working code. Even placeholder functions should include return
statements so that the program works as you code.

14.4.2 Database

The database is the first physical structure to create. The database needs to be in place and functional
before the application can be built. The database structure is shown in Tables Table 14-1 through Table
14-5 . Table 14-1 shows the Users table, which is used to manage user login.

Table 14-1. Users table

Column name Datatype Length Notes

UserID integer 4 Auto-numbering, primary key

Username text 16

Password text 12

FirstName text 60

LastName text 60

EmailAddress text 255

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Column name Datatype Length Notes

HintQuestion text 255 Prompt the user if password is forgotten

HintAnswer text 20 Verify user response if password is forgotten

Table 14-2 shows the Categories table, which is used to group scripts into categories for easier searching

and sorting once the repository grows larger.

Table 14-2. Categories table

Column name Datatype Length Notes

CategoryID integer 4 Autonumbering, primary key

CategoryDesc text 60

Table 14-3 shows the Scripts table, which is used to manage the contributed scripts.

Table 14-3. Scripts table

Column name Datatype Length Notes

ScriptID integer 4 Autonumbering, primary key

ScriptName text 60

ScriptDescription text 255

ScriptCode text 4095

LanguageID integer 4 Foreign key to Languages table

CategoryID integer 4 Foreign key to Categories table

UserID integer 4 Foreign key to Users table

DateUploaded date/time 8 Defaults to current date

DateModified date/time 8 Defaults to current date

VersionMajor integer 4 Defaults to 1

VersionMinor integer 4 Defaults to 0

VersionMicro integer 4 Defaults to 0

ScriptUniqueID Unique identifier (UUID) 36

Table 14-4 shows the Languages table, which is used to track the programming languages in which scripts

are written.

HintQuestion text 255 Prompt the user if password is forgotten

HintAnswer text 20 Verify user response if password is forgotten

Table 14-2 shows the Categories table, which is used to group scripts into categories for easier searching

and sorting once the repository grows larger.

Table 14-2. Categories table

Column name Datatype Length Notes

CategoryID integer 4 Autonumbering, primary key

CategoryDesc text 60

Table 14-3 shows the Scripts table, which is used to manage the contributed scripts.

Table 14-3. Scripts table

Column name Datatype Length Notes

ScriptID integer 4 Autonumbering, primary key

ScriptName text 60

ScriptDescription text 255

ScriptCode text 4095

LanguageID integer 4 Foreign key to Languages table

CategoryID integer 4 Foreign key to Categories table

UserID integer 4 Foreign key to Users table

DateUploaded date/time 8 Defaults to current date

DateModified date/time 8 Defaults to current date

VersionMajor integer 4 Defaults to 1

VersionMinor integer 4 Defaults to 0

VersionMicro integer 4 Defaults to 0

ScriptUniqueID Unique identifier (UUID) 36

Table 14-4 shows the Languages table, which is used to track the programming languages in which scripts

are written.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 14-4. Languages table

Column name Datatype Length Notes

LanguageID integer 4 Autonumbering, primary key

LanguageName text 50

Table 14-5 shows the CompanyInfo table, which is used to provide contact information for contributors.

Table 14-5. CompanyInfo table

Column name Datatype Length

CompanyName text 60

Address text 127

City text 60

State text 2

Zip text 9

Phone text 50

Fax text 50

ContactFirstName text 50

ContactLastName text 50

ContactEmail text 127

PrivacyPolicy text 1000

Description text 1000

The database table specs have been shown in a generic fashion, to allow you to implement them in your
own particular database. For example, the text datatypes are implemented as varchar or nvarchar fields in
SQL Server or MySQL. Similarly, the DateUploaded field in the Scripts table is implemented as a

datetime field, with a default value of getdate() in SQL Server or current_date() in MySQL. Other
database implementations will vary.

The completed database diagram of table relationships is shown in Figure 14-1 .

Figure 14-1. The completed database diagram shows table relationships

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.4.3 Defining Server-Side Services

The server-side services are implemented with ColdFusion Components. The required services are shown
in Tables Table 14-6 through Table 14-8 .

Table 14-6 lists the service methods of the UserService service.

Table 14-6. The UserService service

Service method Description Arguments Returns

loginUser()

Validates username and password
against the database. Sets the
session if the login is successful, and
sets the user's access level.

Username (string), Password
(string)

Userid
(numeric)

addUser()
Adds a new user to the database. If
the registration is successful, the user
is also automatically logged in.

UserObject UserObject

emailPassword()
Emails a password to a user if he
forgets his password.

EmailAddress True

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Service method Description Arguments Returns

createUserObj()
Package method that creates an
object of type UserObject for passing
back to ActionScript.

FirstName, LastName,
EmailAddress, Username,
Userpassword, HintQuestion,
HintAnswer

UserObject

getEmail()
Gets the user's hint question for
retrieving a password.

EmailAddress
Hint question
(string)

getScriptsForUser(
)

Gets all scripts submitted by logged-
in user.

UserID (numeric) Recordset

Table 14-7 lists the service methods of the ScriptService service.

Table 14-7. The ScriptService service

Service
method

Description Arguments Returns

addScript()
Adds a script to the
database.

ScriptObject
Script id
(numeric)

updateScript()
Updates an existing script
in the database.

ScriptObject ScriptObject

displayScript()
Displays the script on the
screen.

ScriptID (numeric) ScriptObject

displayList()
Displays a list of available
scripts, with clickable links.

Search word (optional) Recordset

getScript()
Gets all information about
a script to display.

ScriptID (numeric) ScriptObject

createScriptObj(
)

Package method that
creates an object of type
ScriptObject for passing
back to ActionScript.

ScriptID, ScriptName, ScriptDescription,
ScriptCode, LanguageID, CategoryID,
UserID, DateUploaded, DateModified,
VersionMajor, VersionMinor, VersionMicro,
ScriptUniqueId

ScriptObject

DateTimeString(
)

Package method that
converts a Date object
from ActionScript into a
human-readable date/time
string

Date object or string
Formatted
date string

Table 14-8 lists the service methods of the SiteService service.

Table 14-8. The SiteService service

createUserObj()
Package method that creates an
object of type UserObject for passing
back to ActionScript.

FirstName, LastName,
EmailAddress, Username,
Userpassword, HintQuestion,
HintAnswer

UserObject

getEmail()
Gets the user's hint question for
retrieving a password.

EmailAddress
Hint question
(string)

getScriptsForUser(
)

Gets all scripts submitted by logged-
in user.

UserID (numeric) Recordset

Table 14-7 lists the service methods of the ScriptService service.

Table 14-7. The ScriptService service

Service
method

Description Arguments Returns

addScript()
Adds a script to the
database.

ScriptObject
Script id
(numeric)

updateScript()
Updates an existing script
in the database.

ScriptObject ScriptObject

displayScript()
Displays the script on the
screen.

ScriptID (numeric) ScriptObject

displayList()
Displays a list of available
scripts, with clickable links.

Search word (optional) Recordset

getScript()
Gets all information about
a script to display.

ScriptID (numeric) ScriptObject

createScriptObj(
)

Package method that
creates an object of type
ScriptObject for passing
back to ActionScript.

ScriptID, ScriptName, ScriptDescription,
ScriptCode, LanguageID, CategoryID,
UserID, DateUploaded, DateModified,
VersionMajor, VersionMinor, VersionMicro,
ScriptUniqueId

ScriptObject

DateTimeString(
)

Package method that
converts a Date object
from ActionScript into a
human-readable date/time
string

Date object or string
Formatted
date string

Table 14-8 lists the service methods of the SiteService service.

Table 14-8. The SiteService service

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Service
method

Description Arguments Returns

about()
Returns a short paragraph about the
company from the database.

None RecordSet

contactForm()
Contacts the site administrator by
email through a standard form.

UserID (numeric), Comment
(string)

true

sendPage()
Sends the page information to a
friend.

UserID (numeric), Email address
(string), Script ID (numeric)

true

getCategories(
)

Retrieves a list of all categories for
drop-down list.

None RecordSet

getLanguages(
)

Retrieves a list of all languages for
drop-down list.

None RecordSet

getUsers()
Retrieves a list of all users for drop-
down list.

None RecordSet

Using Dreamweaver MX, you can create skeletons for all of the services. Dreamweaver MX allows you to
create CFCs using an interface (shown in Figure 14-2), with function skeletons in place.

Figure 14-2. The Dreamweaver MX component interface

Example 14-1 lists the skeleton code for the UserService service.

Example 14-1. Autogenerated skeleton code for the UserService service

<!--- Generated by Dreamweaver MX 6.0.1722 [en] (Win32) - Wed Jan 29 19:07:39 GMT-0800
(Pacific Standard Time) 2003 --->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfcomponent displayName="UserService">
 <cffunction name="loginUser" displayName="loginUser"
 hint="Logs a user into the script repository"
 access="remote" returnType="string" output="false">
 <cfargument name="username" type="string" required="true">
 <cfargument name="password" type="string" required="true">
 <!--- loginUser body --->
 <cfreturn >
 </cffunction>
 <cffunction name="addUser" displayName="addUser"
 hint="Add a user to the database" access="remote"
 returnType="string" output="false">
 <cfargument name="Username" type="string" required="true">
 <cfargument name="FirstName" type="string" required="true">
 <cfargument name="LastName" type="string" required="true">
 <cfargument name="EmailAddress" type="string" required="true">
 <cfargument name="Password" type="string" required="true">
 <cfargument name="HintQuestion" type="string" required="false">
 <cfargument name="HintAnswer" type="string" required="false">
 <!--- addUser body --->
 <cfreturn >
 </cffunction>
 <cffunction name="emailPassword" displayName="emailPassword"
 hint="Email a password to a user, given the email address"
 access="remote" returnType="string" output="false">
 <cfargument name="EmailAddress" type="string" required="true">
 <cfargument name="HintQuestion" type="string" required="true">
 <!--- emailPassword body --->
 <cfreturn >
 </cffunction>
 <cffunction name="createUserObj" displayName="createUserObj"
 hint="Create ActionScript object to hold user information"
 access="package" returnType="struct" output="false">
 <cfargument name="Username" type="string" required="true">
 <cfargument name="FirstName" type="string" required="true">
 <cfargument name="LastName" type="string" required="true">
 <cfargument name="EmailAddress" type="string" required="true">
 <cfargument name="Password" type="string" required="true">
 <cfargument name="HintQuestion" type="string" required="false">
 <cfargument name="HintAnswer" type="string" required="false">
 <!--- createUserObj body --->
 <cfreturn >
 </cffunction>
 <cffunction name="getEmail" displayName="getEmail"
 hint="Retrieve the user's hint question given an email address"
 access="remote" returnType="string" output="false">
 <cfargument name="EmailAddress" type="string" required="true">
 <!--- getEmail body --->
 <cfreturn >
 </cffunction>
 <cffunction name="getScriptsForUser" displayName="getScriptsForUser"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 hint="Retrieve the user's scripts to feed a combo box"
 access="remote" returnType="recordset" output="false">
 <cfargument name="UserID" type="string" required="true">
 <!--- getEmail body --->
 <cfreturn >
 </cffunction>
</cfcomponent>

The methods of the CFC are each defined with all arguments and an empty return value. As you can see,
the method bodies are empty, except for a comment. The code body will go there, but not yet. We'll fill in
comments for each method, explaining what the method does, what is required, and what is returned. This
will make it that much easier to write the methods afterwards, and the code will be fully commented. An
example of a fully commented function skeleton is shown in Example 14-2 . The component skeletons can
be downloaded from the online Code Depot.

Example 14-2. The fully commented displayList() method skeleton

<cffunction name="displayList"
 access="remote"
 returnType="query"
 output="false">
<!---
 Method: displayList
 Version: 1.0.0
 Author: Tom Muck
 Arguments:
 search Optional search criteria
 Return: query object of all script information. Properties are
 ScriptID ID number of the script (primary key)
 Category The category name
 CategoryID The categoryID
 ScriptName The name of the script
 Description:
 This service returns a complete list of scripts available or a list
 that meets the search criteria
--->
 <!--- displayList body --->
 <!--- End displayList body --->
 <cfreturn />
</cffunction>

Test mechanisms (also known as test harnesses) can be set up as plain ColdFusion pages to test that
each service and each method is working. Inside of the Dreamweaver MX environment, simply drag the
CFC from the Components panel onto a .cfm page and insert a form and conditional logic to test the form,
as in the test page shown in Example 14-3 .

Example 14-3. A test page for the UserService service

<cfparam name="form.test" default="" />
<html>
<head>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<title>User Service Test Page</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

<body>
<form name="form1" method="post" action="">
 <select name="test" id="test">
 <option value="addUser">addUser</option>
 <option value="emailPassword">emailPassword</option>
 <option value="loginUser">loginUser</option>
 </select>
 <input type="submit" name="Submit" value="Submit">
</form>
<cfif form.test EQ "addUser">
<cfinvoke
 component="com.oreilly.frdg.ScriptRepository.UserService"
 method="addUser"
 returnvariable="addUserRet">
 <cfinvokeargument name="Username" value="enter_value_here"/>
 <cfinvokeargument name="FirstName" value="enter_value_here"/>
 <cfinvokeargument name="LastName" value="enter_value_here"/>
 <cfinvokeargument name="EmailAddress" value="enter_value_here"/>
 <cfinvokeargument name="Password" value="enter_value_here"/>
 <cfinvokeargument name="HintQuestion" value="enter_value_here"/>
 <cfinvokeargument name="HintAnswer" value="enter_value_here"/>
</cfinvoke>
<cfoutput>#addUserRet#</cfoutput>
</cfif>

<cfif form.test eq "emailPassword">
<cfinvoke
 component="com.oreilly.frdg.ScriptRepository.UserService"
 method="emailPassword"
 returnvariable="emailPasswordRet">
 <cfinvokeargument name="EmailAddress" value="enter_value_here"/>
 <cfinvokeargument name="HintAnswer" value="enter_value_here"/>
</cfinvoke>
<cfoutput>#emailPasswordRet#</cfoutput>
</cfif>

<cfif form.test eq "loginUser"><cfinvoke
 component="com.oreilly.frdg.ScriptRepository.UserService"
 method="loginUser"
 returnvariable="loginUserRet">
 <cfinvokeargument name="username" value="enter_value_here"/>
 <cfinvokeargument name="password" value="enter_value_here"/>
</cfinvoke>
<cfoutput>#loginUserRet#</cfoutput>
</cfif>

</body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you build pages like these to test each server-side service, they will be invaluable in determining where
problems might occur before you begin to bring Flash into the equation. Using a page like this in
ColdFusion gives you full access to ColdFusion debugging and also allows you to easily manipulate the
parameters and return values to test different situations.

14.4.4 Implementing Server-Side Services

With the server-side service skeletons in place, you can begin to flesh out the services. If you have built
ColdFusion test pages as recommended, you can test the services one by one as you build them.

The services use a data source name called ScriptRepository , using the sample
database available for download from http://www.flash-remoting.com . You must
set this data source name up in your ColdFusion Administrator in order to create the
server-side services.

14.4.4.1 The UserService service

The UserService service implements all methods that relate to users, such as logging in and retrieving
passwords. You can easily add more methods to the service as the application becomes more advanced. In
addition to the remote methods available to the Flash movie, there is a package method called
createUserObj() that is used internally by some of the methods to create an object of type UserObject to
pass back to ActionScript.

The completed code for the UserService remote service is shown in Example 14-4 . Refer to Table 14-6 for
a summary of the service methods for this service.

Example 14-4. The UserService service, implemented as UserService.cfc

<!--- Generated by Dreamweaver MX 6.0.1722 [en] (Win32) - Wed Jan 29 19:07:39 GMT-0800
(Pacific Standard Time) 2003 --->

<cfcomponent displayName="UserService">
<!---
 Service: UserService
 Package: com/oreilly/frdg/ScriptRepository
 Description: Services to interact with Users from the
 ScriptRepository application
--->
 <cffunction name="createUserObj" displayName="createUserObj"
 hint="Create ActionScript object to hold user information"
 returnType="struct" access="package" output="false">
 <!--- Create the ActionScript object --->
 <cfobject type="java"
 class="flashgateway.io.ASObject"
 name="UserObject"
 action="create" />
 <!--- Create an instance of the object --->
 <cfset o = UserObject.init()>
 <!--- Set the type to our custom UserObjectClass for deserialization --->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfset o.setType("UserObject")>

 <cfset o.put("UserID", arguments[1]) />
 <cfset o.put("Username", arguments[2]) />
 <cfset o.put("Userpassword", arguments[3]) />
 <cfset o.put("FirstName", arguments[4]) />
 <cfset o.put("LastName", arguments[5]) />
 <cfset o.put("Emailaddress", arguments[6]) />
 <cfset o.put("HintQuestion", arguments[7]) />
 <cfset o.put("isUserLogged", 1) />
 <cfset o.put("inited", 1) />
 <cfreturn o />
 </cffunction>

 <cffunction name="loginUser" displayName="loginUser"
 hint="Logs a user into the script repository"
 access="remote" returnType="any" output="false">
 <!---
 Method: loginUser
 Version: 1.0.0
 Author: Tom Muck
 Arguments:
 username string of up to 16 characters
 password string of up to 12 characters

 Return: user object
 Description:
 This service allows the user to log in to the application by
 verifying the username/password in the database and returning
 all of the properties of the user to the Flash movie.
 --->
 <cfargument name="username" type="string" required="true">
 <cfargument name="userpassword" type="string" required="true">
 <!--- loginUser body --->
 <cftry>
 <cfquery datasource="ScriptRepository"
 name="rsUserLogin">
 SELECT * FROM Users
 WHERE Username =
 <cfqueryparam cfsqltype="cf_sql_varchar" value="#username#">
 AND Password =
 <cfqueryparam cfsqltype="cf_sql_varchar" value="#userpassword#">
 </cfquery>
 <cfcatch type="Any">
 <cfthrow message="There was a database error" />
 </cfcatch>
 </cftry>

 <cfif rsUserLogin.RecordCount GT 0 >
 <cfset UserObj = createUserObj(rsUserLogin.UserID,
 rsUserLogin.Username,
 rsUserLogin.Password,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 rsUserLogin.FirstName,
 rsUserLogin.LastName,
 rsUserLogin.Emailaddress,
 rsUserLogin.HintQuestion
) />
 <cfelse>
 <cfthrow message="Not a valid user" />
 </cfif>
 <!--- end loginUser body --->

 <cfreturn UserObj />
 </cffunction>

 <cffunction name="addUser" displayName="addUser"
 hint="Add a user to the database" access="remote"
 returnType="any" output="false">
 <!---
 Method: addUser
 Version: 1.0.0
 Author: Tom Muck
 Arguments:
 FirstName string of up to 60 characters
 LastName string of up to 60 characters
 EmailAddress string of up to 127 characters
 Username string of up to 16 characters
 Userpassword string of up to 12 characters
 HintQuestion string of up to 255 characters
 HintAnswer string of up to 20 characters
 Return: user object
 Description:
 This service allows a new user to be added to the database,
 and automatically to log in to the application by
 verifying the username/password in the database and returning
 all of the properties of the user to the Flash movie.
 --->
 <cfargument name="Username" type="string" required="true">
 <cfargument name="FirstName" type="string" required="true">
 <cfargument name="LastName" type="string" required="true">
 <cfargument name="EmailAddress" type="string" required="true">
 <cfargument name="Userpassword" type="string" required="true">
 <cfargument name="HintQuestion" type="string" required="false">
 <cfargument name="HintAnswer" type="string" required="false">
 <!--- addUser body --->
 <cftry>
 <cfquery datasource="ScriptRepository"
 name="rsDoesUserExist">
 SELECT * FROM Users
 WHERE Username =
 <cfqueryparam cfsqltype="cf_sql_varchar" value="#username#">
 </cfquery>
 <cfcatch type="Any">
 <cfthrow message="There was a database error" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </cfcatch>
 </cftry>
 <cfif rsDoesUserExist.RecordCount EQ 0>
 <cftry>
 <cfquery datasource="ScriptRepository"
 name="rsAddUser">
 INSERT INTO Users
 (Username, Password, FirstName, LastName,
 EmailAddress, HintQuestion, HintAnswer)
 VALUES (
 <cfqueryparam cfsqltype="cf_sql_varchar" value="#Username#">,
 <cfqueryparam cfsqltype="cf_sql_varchar" value="#Userpassword#">,
 <cfqueryparam cfsqltype="cf_sql_varchar" value="#FirstName#">,
 <cfqueryparam cfsqltype="cf_sql_varchar" value="#LastName#">,
 <cfqueryparam cfsqltype="cf_sql_varchar" value="#EmailAddress#">,
 <cfqueryparam cfsqltype="cf_sql_varchar"
 null="#HintQuestion EQ ''#" value="#HintQuestion#">,
 <cfqueryparam cfsqltype="cf_sql_varchar"
 null="#HintAnswer EQ ''#" value="#HintAnswer#">
)
 </cfquery>
 <cfcatch type="Any">
 <cfthrow message="There was a database error" />
 </cfcatch>
 </cftry>
 <cfelse>
 <cfthrow message="Already a user with that username" />
 </cfif>

 <!--- End addUser body --->
 <cfreturn this.loginUser('#username#','#userpassword#') />
 </cffunction>

 <cffunction name="getEmail" displayName="getEmail"
 hint="Retrieve the user's hint question given an email address"
 access="remote" returnType="string" output="false">
 <!---
 Method: getEmail
 Version: 1.0.0
 Author: Tom Muck
 Arguments:
 EmailAddress string of up to 127 characters
 Return: Hint question (string)
 Description:
 This service retrieves the user's hint question given an email
 address
 --->
 <cfargument name="EmailAddress" type="string" required="true">
 <!--- getEmail body --->
 <cftry>
 <cfquery datasource="ScriptRepository"
 name="rsGetQuestion">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SELECT HintQuestion FROM Users
 WHERE Emailaddress =
 <cfqueryparam cfsqltype="cf_sql_varchar" value="#EmailAddress#">
 </cfquery>
 <cfcatch type="Any">
 <cfthrow message="There was a database error" />
 </cfcatch>
 </cftry>

 <cfif rsGetQuestion.RecordCount NEQ 1>
 <cfthrow message="No match found in database" />
 </cfif>
 <!--- End getEmail body --->
 <cfreturn rsGetQuestion.HintQuestion />
 </cffunction>

 <cffunction name="emailPassword" displayName="emailPassword"
 hint="Email a password to a user, given the email address"
 access="remote" returnType="boolean" output="false">
 <!---
 Method: emailPassword
 Version: 1.0.0
 Author: Tom Muck
 Arguments:
 EmailAddress string of up to 127 characters
 HintAnswer string of up to 20 characters
 Return: boolean of successful email of the password
 Description:
 This service allows a user to have his password emailed to him,
 if the hint answer matches the user's hint in the database.
 --->
 <cfargument name="EmailAddress" type="string" required="true">
 <cfargument name="HintAnswer" type="string" required="true">
 <!--- emailPassword body --->
 <cftry>
 <cfquery datasource="ScriptRepository"
 name="rsGetUser">
 SELECT Username, Password FROM Users
 WHERE Emailaddress =
 <cfqueryparam cfsqltype="cf_sql_varchar" value="#EmailAddress#">
 AND HintAnswer =
 <cfqueryparam cfsqltype="cf_sql_varchar" value="#HintAnswer#">
 </cfquery>
 <cfcatch type="Any">
 <cfthrow message="There was a database error" />
 </cfcatch>
 </cftry>

 <cfif rsGetUser.RecordCount EQ 1>
 <!---Only send the email if there is a matching record in the database --->
 <cfmail from="admin@flash-remoting.com" to="#Emailaddress#"
 subject="Requested information">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Your username is: #rsGetUser.username#
Your password is: #rsGetUser.password#
Please respond to admin@flash-remoting.com if you have received
this message in error.

Administrator
 </cfmail>
 <cfelse>
 <cfreturn 0 />
 </cfif>
 <!--- End emailPassword body --->
 <cfreturn 1 />
 </cffunction>

 <cffunction name="getScriptsForUser" access="remote"
 returnType="query" output="false">
 <!---
 Method: getScriptsForUser
 Version: 1.0.0
 Author: Tom Muck
 Arguments:
 Username username for currently logged-in user
 Userpassword password for currently logged-in user
 Return:
 query object of scriptid and scriptname information.
 Description:
 This service returns a complete list of scripts available
 for the currently logged in user.
 --->
 <cfargument name="username" hint="Username of current user"
 type="string" default="" />
 <cfargument name="userpassword" hint="Password of current user"
 type="string" default="" />
 <!--- getScriptsForUser body --->
 <cftry>
 <cfquery name="rsScripts" datasource="ScriptRepository">
 SELECT s.ScriptID, s.ScriptName
 FROM Users u, Scripts s
 WHERE u.Username =
 <cfqueryparam cfsqltype="cf_sql_varchar" value="#username#">
 AND u.Password =
 <cfqueryparam cfsqltype="cf_sql_varchar" value="#userpassword#">
 AND s.UserID = u.UserID
 ORDER BY s.ScriptName
 </cfquery>
 <cfcatch type="any">
 <cfthrow message="There was a database error" />
 </cfcatch>
 </cftry>
 <!--- End getScriptsForUser body --->
 <cfreturn rsScripts />
 </cffunction>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfcomponent>

The UserService service interacts with the Flash movie using a UserObject , a custom object that we set up
in ActionScript using Object.registerClass . As discussed in Chapter 4 , this method of transferring objects
allows for seamless passing of data between client and server. ColdFusion supports a <cfobject> tag,

which allows you to set up the object as a Java object of type flashgateway.io.ASObject .

There are a few things of note in the code. All queries that contain user-supplied parameters are set up
with a <cfqueryparam> tag. This tag guards the application against SQL injection attacks, in which a

malicious user sends SQL statements in a URL to attempt to damage your data or even gain control of
your database.

Because we control the input from the Flash movie, you might think that the remote
methods are safe, but that is not the case. A remote service that is set up for Flash
Remoting is completely open to the outside world. A person can interact with your
remote service if he knows the URL and the service name, which can easily be
obtained from the Flash movie by decompiling it. A remote service can then be
invoked through a URL, making all remote services that accept parameters open to
attack.

The following query, from the getEmail() method, demonstrates the use of the <cfqueryparam> tag:

<cfquery datasource="ScriptRepository"
 name="rsGetQuestion">
 SELECT HintQuestion FROM Users
 WHERE Emailaddress =
 <cfqueryparam cfsqltype="cf_sql_varchar" value="#EmailAddress#">
</cfquery>

The <cfqueryparam> tag takes the place of the parameter within the query and throws an error if the

datatype is not right. Therefore, the parameter is usable only as a proper parameter; crackers cannot
inject SQL statements into the query.

The <cfqueryparam> tag has a counterpart if you are using stored procedures as
well: <cfprocparam> . All queries and stored procedures that accept user-supplied

parameters should use these tags.

Also, the queries in the page are all wrapped in try /catch blocks, in order to trap errors and simply throw
them back to the Flash movie. We could put some other form of error handling within the block, such as
writing to a log file or sending an email to a site administrator, but this method is the simplest.

The <cfmail> tag contains the body of the email message to be sent to the end user. For that reason, the
text is aligned flush left, even though the code is nicely indented otherwise. The <cfmail> tag translates

any spaces or line breaks within the body of the message literally, so the text format should be preserved
inside the tag.

One last item deserves a mention: when a user is added to the database, the user is also automatically
logged in, as shown in the following line from the addUser() method:

<cfreturn this.loginUser('#username#','#userpassword#') />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rather than simply return a Boolean value indicating whether the user was successfully added to the
database, we log the user in using the UserService.loginUser() method and return the UserObject to the
Flash movie. This improves the end user's experience because she doesn't need to log in as a separate
step after registering.

14.4.4.2 The ScriptService service

The ScriptService service includes methods that relate to the storing of the scripts. The service contains
many of the same types of features that the UserService.cfc file had, such as the package method that
creates a ScriptObject object type, and the use of the <cfqueryparam> tags to guard against malicious

user input.

The completed ScriptService service is shown in Example 14-5 . Refer to Table 14-7 for a summary of the
service methods for this service.

Example 14-5. The ScriptService service, implemented as ScriptService.cfc

<!--- Generated by Dreamweaver MX 6.0.1722 [en] (Win32) - Wed Jan 29 19:32:00 GMT-0800
(Pacific Standard Time) 2003 --->
<cfcomponent displayName="ScriptService">
 <!---
 Service: ScriptService
 Package: com/oreilly/frdg/ScriptRepository
 Description: Utilizes a Script object to pass information back and forth
 from the Flash movie.
 --->
 <cffunction name="createScriptObj" hint="Create ActionScript object to
 hold script information" returnType="struct" access="package" output="false">
 <!--- Create the ActionScript object --->
 <cfobject type="java"
 class="flashgateway.io.ASObject"
 name="ScriptObject"
 action="create" />
 <!--- Create an instance of the object --->
 <cfset o = ScriptObject.init()>
 <!--- Set the type to our custom UserObjectClass for deserialization --->
 <cfset o.setType("ScriptObject")>
 <cfset o.put("ScriptID", arguments[1]) />
 <cfset o.put("ScriptName", arguments[2]) />
 <cfset o.put("ScriptDescription", arguments[3]) />
 <cfset o.put("ScriptCode", arguments[4]) />
 <cfset o.put("LanguageID", arguments[5]) />
 <cfset o.put("CategoryID", arguments[6]) />
 <cfset o.put("UserID", arguments[7]) />
 <cfset o.put("DateUploaded", this.DateTimeString(arguments[8])) />
 <cfset o.put("DateModified", this.DateTimeString(arguments[9])) />
 <cfset o.put("VersionMajor", arguments[10]) />
 <cfset o.put("VersionMinor", arguments[11]) />
 <cfset o.put("VersionMicro", arguments[12]) />
 <cfset o.put("ScriptUniqueID", arguments[13]) />
 <cfset o.put("inited",1) />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfreturn o />
 </cffunction>

 <cffunction name="addScript" access="remote" returnType="any" output="false">
 <!---
 Method: addScript
 Version: 1.0.0
 Author: Tom Muck
 Arguments:
 ScriptObj a script object with all properties needed to add
 the script to the database. Properties are:
 ScriptName
 ScriptDescription
 ScriptCode
 LanguageID
 CategoryID
 UserID
 DateUploaded
 DateModified
 VersionMajor
 VersionMinor
 VersionMicro
 Return: scriptid
 Description:
 This service allows a registered user to upload a script
 to the database.
 --->
 <!--- <cfargument name="ScriptObj" type="struct" required="true"> --->
 <!--- AddScript body --->

 <!--- Create a unique ID to aid in retrieving the primary key --->
 <cfset scriptuniqueid = CreateUUID() />
 <cfset ScriptObj = this.createScriptObj(
 0,
 arguments.ScriptName,
 arguments.ScriptDescription,
 arguments.ScriptCode,
 arguments.LanguageID,
 arguments.CategoryID,
 arguments.UserID,
 arguments.DateUploaded,
 arguments.DateModified,
 arguments.VersionMajor,
 arguments.VersionMinor,
 arguments.VersionMicro,
 scriptuniqueid
) />
 <!--- Insert the script into the database --->
 <cftry>
 <cfquery name="insertScript" datasource="ScriptRepository">
 INSERT INTO Scripts (
 ScriptName,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ScriptDescription,
 ScriptCode,
 LanguageID,
 CategoryID,
 UserID,
 DateUploaded,
 DateModified,
 VersionMajor,
 VersionMinor,
 VersionMicro,
 scriptuniqueid
)
 VALUES (
 <cfqueryparam cfsqltype="cf_sql_varchar"
 null="#ScriptObj.ScriptName EQ ''#"
 value="#ScriptObj.ScriptName#">,
 <cfqueryparam cfsqltype="cf_sql_varchar"
 null="#ScriptObj.ScriptDescription EQ ''#"
 value="#ScriptObj.ScriptDescription#">,
 <cfqueryparam cfsqltype="cf_sql_varchar"
 null="#ScriptObj.ScriptCode EQ ''#"
 value="#ScriptObj.ScriptCode#">,
 <cfqueryparam cfsqltype="cf_sql_numeric"
 null="#ScriptObj.LanguageID EQ ''#"
 value="#ScriptObj.LanguageID#">,
 <cfqueryparam cfsqltype="cf_sql_numeric"
 null="#ScriptObj.CategoryID EQ ''#"
 value="#ScriptObj.CategoryID#">,
 <cfqueryparam cfsqltype="cf_sql_numeric"
 null="#ScriptObj.UserID EQ ''#"
 value="#ScriptObj.UserID#">,
 <cfqueryparam cfsqltype="cf_sql_timestamp"
 null="#ScriptObj.DateUploaded EQ ''#"
 value="#ScriptObj.DateUploaded#">,
 <cfqueryparam cfsqltype="cf_sql_timestamp"
 null="#ScriptObj.DateModified EQ ''#"
 value="#ScriptObj.DateModified#">,
 <cfqueryparam cfsqltype="cf_sql_numeric"
 null="#ScriptObj.VersionMajor EQ ''#"
 value="#ScriptObj.VersionMajor#">,
 <cfqueryparam cfsqltype="cf_sql_numeric"
 null="#ScriptObj.VersionMinor EQ ''#"
 value="#ScriptObj.VersionMinor#">,
 <cfqueryparam cfsqltype="cf_sql_numeric"
 null="#(ScriptObj.VersionMicro EQ '')#"
 value="#ScriptObj.VersionMicro#">,
 <cfqueryparam cfsqltype="cf_sql_varchar"
 null="no"
 value="#scriptuniqueid#">
)
 </cfquery>
 <cfquery name="rsScript" datasource="ScriptRepository">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SELECT ScriptID FROM Scripts
 WHERE ScriptUniqueID = '#scriptuniqueid#'
 </cfquery>
 <cfcatch type="any">
 <cfthrow message="There was a database error" />
 </cfcatch>
 </cftry>
 <!--- End AddScript body --->
 <cffile action="append" file="c:\log.txt" output=#this.objToString(ScriptObj)#>

 <cfreturn ScriptObj />
 </cffunction>
 <cffunction name="updateScript" access="remote" returnType="any" output="false">
 <!---
 Method: updateScript
 Version: 1.0.0
 Author: Tom Muck
 Arguments:
 ScriptObj a script object with all properties needed to add
 the script to the database. Properties are:
 ScriptID
 ScriptDescription
 ScriptCode
 LanguageID
 CategoryID
 UserID
 DateUploaded
 DateModified
 VersionMajor
 VersionMinor
 VersionMicro
 Return: Updated ScriptObject
 Description:
 This service allows a registered user to change a script that
 exists in the database.
 --->

 <!--- UpdateScript body --->
 <cfset ScriptObj = this.createScriptObj(
 arguments.ScriptID,
 arguments.ScriptName,
 arguments.ScriptDescription,
 arguments.ScriptCode,
 arguments.LanguageID,
 arguments.CategoryID,
 arguments.UserID,
 arguments.DateUploaded,
 arguments.DateModified,
 arguments.VersionMajor,
 arguments.VersionMinor,
 arguments.VersionMicro,
 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

) />
 <cftry>
 <cfquery name="updateScript" datasource="ScriptRepository">
 UPDATE Scripts SET ScriptName =
 <cfqueryparam cfsqltype="cf_sql_varchar"
 null="#ScriptObj.ScriptName EQ ''#"
 value="#ScriptObj.ScriptName#">,
 ScriptDescription =
 <cfqueryparam cfsqltype="cf_sql_varchar"
 null="#ScriptObj.ScriptDescription EQ ''#"
 value="#ScriptObj.ScriptDescription#">,
 ScriptCode =
 <cfqueryparam cfsqltype="cf_sql_varchar"
 null="#ScriptObj.ScriptCode EQ ''#"
 value="#ScriptObj.ScriptCode#">,
 LanguageID =
 <cfqueryparam cfsqltype="cf_sql_numeric"
 null="#ScriptObj.LanguageID EQ ''#"
 value="#ScriptObj.LanguageID#">,
 CategoryID =
 <cfqueryparam cfsqltype="cf_sql_numeric"
 null="#ScriptObj.CategoryID EQ ''#"
 value="#ScriptObj.CategoryID#">,
 UserID =
 <cfqueryparam cfsqltype="cf_sql_numeric"
 null="#ScriptObj.UserID EQ ''#"
 value="#ScriptObj.UserID#">,
 DateModified =
 <cfqueryparam cfsqltype="cf_sql_timestamp"
 null="#ScriptObj.DateModified EQ ''#"
 value="#ScriptObj.DateModified#">,
 VersionMajor =
 <cfqueryparam cfsqltype="cf_sql_numeric"
 null="#ScriptObj.VersionMajor EQ ''#"
 value="#ScriptObj.VersionMajor#">,
 VersionMinor =
 <cfqueryparam cfsqltype="cf_sql_numeric"
 null="#ScriptObj.VersionMinor EQ ''#"
 value="#ScriptObj.VersionMinor#">,
 VersionMicro =
 <cfqueryparam cfsqltype="cf_sql_numeric"
 null="#ScriptObj.VersionMicro EQ ''#"
 value="#ScriptObj.VersionMicro#">
 WHERE ScriptID =
 <cfqueryparam cfsqltype="cf_sql_numeric"
 null="#ScriptObj.ScriptID EQ ''#"
 value="#ScriptObj.ScriptID#">
 </cfquery>
 <cfcatch type="any">
 <cfthrow message="There was a database error" />
 </cfcatch>
 </cftry>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!--- End UpdateScript body --->
 <cfreturn ScriptObj />
 </cffunction>
 <cffunction name="displayList" access="remote" returnType="query" output="false">
 <!---
 Method: displayList
 Version: 1.0.0
 Author: Tom Muck
 Arguments:
 search Optional search criteria
 Return: query object of all script information. Properties are
 ScriptID ID number of the script (primary key)
 Category The category name
 CategoryID The categoryID
 ScriptName The name of the script
 Description:
 This service returns a complete list of scripts available or a list
 that meets the search criteria
 --->
 <cfargument name="search" hint="Search criteria for script listing"
 type="string" default="" />
 <!--- DisplayList body --->
 <cftry>
 <cfquery name="rsScripts" datasource="ScriptRepository">
 SELECT c.CategoryDesc
 , c.CategoryID
 , s.ScriptID
 , s.ScriptName
 FROM Categories c
 INNER JOIN
 Scripts s ON
 c.CategoryID = s.CategoryID
 <cfif search neq "">
 WHERE s.ScriptDescription + s.ScriptName + c.CategoryDesc
 LIKE
 <cfqueryparam cfsqltype="cf_sql_varchar" value="%#search#%">
 </cfif>
 ORDER BY c.CategoryDesc, s.ScriptID
 </cfquery>
 <cfcatch type="any">
 <cfthrow message="There was a database error" />
 </cfcatch>
 </cftry>
 <!--- End DisplayList body --->
 <cfreturn rsScripts />
 </cffunction>

 <cffunction name="getScript" access="remote" returnType="struct" output="false">
 <!---
 Method: getScript
 Version: 1.0.0
 Author: Tom Muck

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Arguments:
 ScriptID ID number of the script to display
 Return: ScriptObj
 Description:
 This service returns a script object to be displayed in the
 Flash movie
 --->
 <cfargument name="ScriptID" type="any" required="true">
 <!--- DisplayScript body --->
 <cftry>
 <cfquery name="rsScripts" datasource="ScriptRepository">
 SELECT * FROM Scripts
 WHERE ScriptID =
 <cfqueryparam cfsqltype="cf_sql_numeric" value="#ScriptID#">
 </cfquery>
 <cfcatch type="any">
 <cfthrow message="There was a database error" />
 </cfcatch>
 </cftry>
 <cfif rsScripts.RecordCount EQ 1>
 <cfset ScriptObj = createScriptObj(rsScripts.ScriptID,
 rsScripts.ScriptName ,
 rsScripts.ScriptDescription ,
 rsScripts.ScriptCode,
 rsScripts.LanguageID,
 rsScripts.CategoryID,
 rsScripts.UserID,
 rsScripts.DateUploaded,
 rsScripts.DateModified,
 rsScripts.VersionMajor,
 rsScripts.VersionMinor,
 rsScripts.VersionMicro,
 rsScripts.ScriptUniqueID
) />
 <cfelse>
 <cfthrow message="No script with that ID" />
 </cfif>
 <!--- End getScript body --->
 <cfreturn ScriptObj />
 </cffunction>

 <cffunction name="DateTimeString" access="package" hint="Convert a date/time data to a
string for display" returntype="string" >
 <cfargument name="dateObj" type="any" required="false" />
 <cfif isdate(dateObj)>
 <cfset returnstring =
 "#DateFormat(dateObj,'mm/dd/yyyy')# #TimeFormat(dateObj, 'hh:mm:ss tt')#" />
 <cfelse>
 <cfset returnstring = dateObj />
 </cfif>
 <cfreturn returnstring />
 </cffunction>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfcomponent>

14.4.4.3 The SiteService service

The SiteService service contains methods to populate UI components, contact the site administrator, send
messages to other users, and populate the About screen, as summarized in Table 14-8 .

The complete server-side code for the service is shown in Example 14-6 .

Example 14-6. The SiteService service, implemented as SiteService.cfc

<!--- Generated by Dreamweaver MX 6.0.1722 [en] (Win32) - Thu Jan 30 21:49:32 GMT-0800
(Pacific Standard Time) 2003 --->

<cfcomponent displayName="SiteService" hint="General service for site methods">
<!---
 Service: SiteService
 Package: com/oreilly/frdg/ScriptRepository
 Description: General utility methods for the site
--->
 <cffunction name="about" displayName="About"
 hint="Short paragraph and info about the company" access="remote"
 returnType="query" output="false">
 <!---
 Method: about
 Version: 1.0.0
 Author: Tom Muck
 Arguments:
 none
 Return: a query object with the information about the site
 Description:
 This service sends the information about the site back to the caller
 --->

 <!--- about body --->
 <cftry>
 <cfquery datasource="ScriptRepository"
 name="rsAbout">
 SELECT TOP 1 * FROM CompanyInfo
 </cfquery>
 <cfcatch type="Any">
 <cfthrow message="There was a database error" />
 </cfcatch>
 </cftry>

 <!--- End about body --->
 <cfreturn rsAbout />
 </cffunction>

 <cffunction name="contactForm" displayName="contactForm"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 hint="Contact the site administrator by email through a standard form"
 access="remote" returnType="string" output="false">
 <cfargument name="emailaddress" type="string" default="" />
 <cfargument name="userid" type="numeric" default=0 />
 <cfargument name="comment" type="string" default="" />
 <!---
 Method: contactForm
 Version: 1.0.0
 Author: Tom Muck
 Arguments:
 none
 Return: true
 Description:
 This service sends an email to the site administrator
 --->
 <!--- contactForm body --->
 <cfmail to="admin@flash-remoting.com" from=#emailaddress#
 subject="Comment: #left(comment,40)#..."
 >
UserID: #userid#
Emailaddress: #emailaddress#
Date/time: #DateFormat(now())# #TimeFormat(now())#

Comment:
#comment#
 </cfmail>
 <!--- End contactForm body --->
 <cfreturn 1 />
 </cffunction>

 <cffunction name="sendPage" displayName="sendPage" hint="Send the page
information to a friend" access="remote" returnType="string" output="false">
 <cfargument name="scriptid" required="true" type="numeric" />
 <cfargument name="emailto" required="true" type="string" />
 <cfargument name="emailfrom" required="true" type="string" />
 <!---
 Method: sendPage
 Version: 1.0.0
 Author: Tom Muck
 Arguments:
 none
 Return: true
 Description: This service sends an email to any email address with
 a link to a specific script
 --->
 <!--- sendPage body --->
 <cfset link = this.about().DownloadLink />
 <cfmail to=#emailto# from=#emailfrom#
 subject="#emailfrom# thought you might be interested in this page"
 bcc="emailrecord@flash-remoting.com">
This page was sent to you by #emailfrom#:
#link#?id=#scriptid#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Administrator, Flash-Remoting.com
 </cfmail>
 <!--- End sendPage body --->
 <cfreturn 1 />
 </cffunction>

 <cffunction name="getCategories" access="remote" returntype="query" >
 <!---
 Method: getCategories
 Version: 1.0.0
 Author: Tom Muck
 Arguments:
 none
 Return: recordset
 Description:
 This service returns a recordset for Categories to populate combo boxes
 --->
 <!--- getCategories body --->
 <cfquery name="rsCategories" datasource="ScriptRepository" >
 SELECT CategoryID, CategoryDesc FROM Categories
 </cfquery>
 <!--- END getCategories body --->
 <cfreturn rsCategories />
 </cffunction>

 <cffunction name="getLanguages" access="remote" returntype="query" >
 <!---
 Method: getCategories
 Version: 1.0.0
 Author: Tom Muck
 Arguments:
 none
 Return: recordset
 Description:
 This service returns a recordset for Categories to populate combo boxes
 --->
 <!--- getLanguages body --->
 <cfquery name="rsLanguages" datasource="ScriptRepository" >
 SELECT LanguageID, LanguageName FROM Languages
 </cfquery>
 <!--- End getLanguages body --->
 <cfreturn rsLanguages />
 </cffunction>

 <cffunction name="getUsers" access="remote" returntype="query" >
 <!---
 Method: getUsers
 Version: 1.0.0
 Author: Tom Muck
 Arguments:
 none

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Return: recordset
 Description:
 This service returns a recordset for Users to populate combo boxes
 --->
 <!--- getUsers body --->
 <cfquery name="rsUsers" datasource="ScriptRepository" >
 SELECT UserID, FirstName + ' ' + LastName as theName
 FROM Users
 </cfquery>
 <!--- END getUsers body --->
 <cfreturn rsUsers />
 </cffunction>
</cfcomponent>

After all server-side services are in full working order and have been tested, we can begin work on the
Flash Remoting client-side code.

14.4.5 Client-Side ActionScript

The Flash user interface for the application was designed and implemented by a designer who worked from
a short specification that described the interfaces needed and the fields needed in each interface. The
design specification sheet can be seen in Appendix C . We won't concern ourselves with the actual design
or implementation of the ActionScript code to make the interface work. The preliminary .fla (bare-bones
interface) and completed Flash movies can be downloaded from the online Code Depot.

My thanks to Edoardo "Edo" Zubler who created and implemented the interface
design. Edo maintains a site at http://www.aftershape.com .

The ActionScript Flash Remoting code for the application features some of the techniques shown in Chapter
12 and is described here.

14.4.5.1 Objects

An object-based approach to building the interface makes it easier to expand the application in the future.
It also makes it easier to reuse modules from the application in other applications. The objects we'll use
are:

ScriptObject

A ScriptObject object is a simple representation of a user's script, for both uploading and
downloading. The ScriptObject class contains the methods for interacting with the ScriptService
service. Methods correspond to the server-side methods of the ScriptServices service.

UserObject

The UserObject object contains the properties of the currently logged-in user. The UserObject class
contains all methods for interacting with the UserService service. Methods correspond to the server-
side methods of the UserServices service.

Each object is self-contained and includes all code necessary to deal with the service, including the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

methods. If the object has to be sent to the server, Flash automatically takes care of stripping off the
methods before sending the object.

14.4.5.2 Interface

The Flash movie contains several interfaces to implement all the functionality required of the application.
The main interface is shown in Figure 14-3 .

Figure 14-3. The Flash interface for the Script Repository

The following screen definitions resulted from the designer's feedback on the initial user interface
specification (see Appendix C):

Main

The main application screen, which lists the different options available and displays all scripts. Listing
scripts in a Tree component allows all users to view available scripts and drill down to a description
page for a particular script. The Search box allows a user to specify criteria to narrow the list of
displayed scripts. A detail page appears to the right of the Tree on the same screen. Also present are
a Download Script button to allow a script to be downloaded, and a send-to-a-friend feature to send
the current detail page's link to an email address. The menu items always remain within reach via a
sliding menu.

Login

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The login screen allows registered users to log in. It contains username and password fields and a
button.

Register

Allows a new user to register, with personal information and a username/password combination. If
the registration is successful, the user is also automatically logged in.

Upload Script

A blank form to allow a registered user to upload a script to the database.
Modify Script

A form that mimics the Upload Script form and is pre-filled in with information about a script that
needs to be updated. A drop-down list of available scripts allows a user to view all scripts that he has
uploaded, so he can choose which one to modify.

Contact Form

Allows a user to contact the site administrator.
About

A screen showing a short description of the site.
Alert Box

This page delivers messages to the user, with a simple OK button. The box allows an optional
callback function to be executed upon clicking OK.

Retrieve Box

A general box that presents a label and a text field so that the user can enter a value and pass it to
the application. The box allows an optional callback function to be executed upon clicking OK.

Working

A progress box that tells the user that the application is working.

The user interface has been designed independently of the server-side and Flash Remoting code. The user
interface, as implemented by the designer, is entirely functional, with dummy methods to act as
placeholders for eventual Flash Remoting methods. Fitting the Flash Remoting code into the existing
interface will be a simple operation.

14.4.5.3 ActionScript code

The Flash Remoting code and ActionScript code not related to the user interface is placed into these
include files:

ScriptRepository.as

Main ActionScript code file, which initializes the Flash Remoting connections and other objects
needed for the application and includes all of the other necessary files.

RemotingInit.as

Initializes the Flash Remoting URL and the service objects.
UserObject.as

Class file that contains the UserObject class and all methods that interact with the UserService
service.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ScriptObject.as

Class file that contains the ScriptObject class and all methods that interact with the ScriptService
service.

SiteUtilityFunctions.as

ActionScript functions that implement some of the services for the site, such as emailing the site
administrator.

NetServices.as

Flash Remoting file (included with Flash Remoting components from Macromedia).
UI.as

User interface utility functions and extensions to some basic Flash MX components.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.5 Flash Remoting Code

The ActionScript code used to contact the remote services is contained in several files described in
the following sections. One caveat when working with Flash Remoting is that the remote calls are
asynchronous. This creates problems when you're trying to separate the logic in your applications, as
discussed in Chapter 12. In our application, we decided to keep the logic simple by implementing the
UI logic from within our responder objects. In other words, when a remote call returns a result, the
responder object takes care of the details of updating the display.

14.5.1 RemotingInit.as

The RemotingInit.as file contains all of the Flash Remoting initialization code needed for the movie.
The code is identical to the code you've seen throughout the book, but in this case we are creating
three distinct service objects: one for the UserService, one for the ScriptService, and one for the
SiteService. The code is shown in Example 14-7.

Example 14-7. Remoting initialization in the RemotingInit.as file

// Remoting initialization
if (initialized == null) {
 initialized = true;
 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
 my_conn = NetServices.createGatewayConnection();
 // Create the service objects
 UserService = my_conn.getService(
 "com.oreilly.frdg.ScriptRepository.UserService");
 ScriptService = my_conn.getService(
 "com.oreilly.frdg.ScriptRepository.ScriptService");
 SiteService = my_conn.getService(
 "com.oreilly.frdg.ScriptRepository.SiteService");
}

// Major error handler, usually a connection is bad, so the movie will fail
System.onStatus = function (error) {
 errorHandler("There was a connection failure");
};

// General error handler for entire movie
function errorHandler (message, callbackFunction) {
 alertBox("errorHandlerAlert", message, callbackFunction);
};

The code also includes the general System.onStatus() method to handle any catastrophic errors,
such as a connection failure. Also, a general error handler is defined that will be used in all onStatus(
) methods for responder objects in the movie. By centralizing the error handling we can easily

http://lib.ommolketab.ir
http://lib.ommolketab.ir

customize the message presented to the user. During development, we are simply displaying the
return message. During debugging, we might want to trace some debugging information. At some
later point, we can change this function to present a more meaningful error to the user.

14.5.2 ScriptObject.as

The ScriptObject.as file contains the definition for the ScriptObject class. The complete
ScriptObject.as file is shown in Example 14-8. As you can see, the client-side ScriptObject contains
the same properties as the ScriptObject that was created in the server-side code in Example 14-5.
The object is passed back and forth when necessary to simplify operations on both ends. When
passed to the server, the properties become arguments of the ColdFusion function. When passed
back to the client, the properties are copied to the current instance of the ScriptObject using the
private _copyProperties() method.

Example 14-8. The ScriptObject class

/*
ScriptObject an object with all properties needed to add
the script to the database.
Properties:
 ScriptID
 ScriptName
 ScriptDescription
 ScriptCode
 LanguageID
 CategoryID
 UserID
 DateUploaded
 DateModified
 VersionMajor
 VersionMinor
 VersionMicro
 ScriptUniqueID
Methods:
 init initialize the object.
 addScript call the remote method to add a script to the DB
 updateScript call the remote method to update a script in the DB
 test debugging method that is used to make sure object is returning

 from the remote method as an object of type ScriptObject
 onResult Responder method for the object's remote calls
 onStatus Responder error method for object's remote calls
 _copyProperties "Private" method to copy the properties from remote call

 to the current instance of a ScriptObject
 toString debugging method to display the current script's properties
*/

function ScriptObject (id) {
 if (!this.inited)
 this.init(arguments);
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ScriptObject.prototype.init = function (args) {
 this.inited = true; // Instance is initialized
 this.ScriptID = (args[0] != undefined) ? Number(args[0]) : 0;
 this.ScriptName = (args[1] != undefined) ? args[1] : "";
 this.ScriptDescription = (args[2] != undefined) ? args[2] : "";
 this.ScriptCode = (args[3] != undefined) ? args[3] : "";
 this.LanguageID = (args[4] != undefined) ? Number(args[4]) : 0;
 this.CategoryID = (args[5] != undefined) ? Number(args[5]) : 0;
 this.UserID = (args[6] != undefined) ? Number(args[6]) : 0;
 this.DateUploaded = (args[7] != undefined) ? args[7] : "";
 this.DateModified = (args[8] != undefined) ? args[8] : "";
 this.VersionMajor =
 (args[9] != undefined && args[9] != "") ? Number(args[9]) : 0;
 this.VersionMinor =
 (args[10] != undefined && args[10] != "") ? Number(args[10]) : 0;
 this.VersionMicro =
 (args[11] != undefined && args[11] != "") ? Number(args[11]) : 0;
 this.ScriptUniqueID = (args[12] != undefined) ? args[12] : "";
};

Object.registerClass("ScriptObject", ScriptObject);

// Define a toString() function for reading the object
ScriptObject.prototype.toString = function () {
 var temp = "inited: " + this.inited + '\n';
 temp += "ScriptID: " + this.ScriptID + '\n';
 temp += "ScriptName: " + this.ScriptName + '\n';
 temp += "ScriptDescription: " + this.ScriptDescription + '\n';
 temp += "ScriptCode: " + this.ScriptCode + '\n';
 temp += "LanguageID: " + this.LanguageID + '\n';
 temp += "CategoryID: " + this.CategoryID + '\n';
 temp += "UserID: " + this.UserID + '\n';
 temp += "DateUploaded: " + this.DateUploaded + '\n';
 temp += "DateModified: " + this.DateModified + '\n';
 temp += "VersionMajor: " + this.VersionMajor + '\n';
 temp += "VersionMinor: " + this.VersionMinor + '\n';
 temp += "VersionMicro: " + this.VersionMicro + '\n';
 temp += "ScriptUniqueID: " + this.ScriptUniqueID;
 return temp;
};

// Methods are simple interfaces to the remote methods
ScriptObject.prototype.addScript = function (service) {
 service.addScript(this, this);
};

ScriptObject.prototype.updateScript = function (service) {
 service.updateScript(this, this);
};

// Debugging function to let us know that the object returned from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// the server was registered properly. In responder function, do:

// result.test()
ScriptObject.prototype.test = function () {
 trace("ScriptObject successful")
};

// Copy properties from an object to this (current instance of obj)
ScriptObject.prototype._copyProperties = function (from) {
 for (var prop in from) {
 if (this[prop] != from[prop]) this[prop] = from[prop];
 }
};

// Responder function
ScriptObject.prototype.onResult = function (result) {
 var exists = false;

 if (this.ScriptID) exists = true; // If this is an update, ScriptID exists

 // Put all properties from the result into the instance of the ScriptObject
 this._copyProperties(result);
 alertBox("alertModify", "Successful.", scriptRepositoryRefresh(this, exists));
};

// Responder error handler
ScriptObject.prototype.onStatus = function (error) {
 errorHandler(error.description);
};

ScriptObject.prototype.validate = function () {
 var errorMsg = "";
 if (this.ScriptName == "") errorMsg += "Script name must not be empty\n";
 if (this.ScriptDescription == "")
 errorMsg += "Script description must not be empty\n";
 if (this.ScriptCode == "") errorMsg += "Script code must not be empty\n";
 if (this.LanguageID == 0) errorMsg += "Must choose a script language\n";
 if (this.CategoryID == 0) errorMsg += "Must choose a script category\n";
 if (this.DateUploaded == "") errorMsg += "Must choose date uploaded\n";
 if (this.DateModified == "") errorMsg += "Must include date modified\n";
 if (this.VersionMajor == "")
 errorMsg += "Script version must be in format x.x.x\n";
 if (this.VersionMinor == "")
 errorMsg += "Script version must be in format x.x.x\n";
 if (this.VersionMicro == "")
 errorMsg += "Script version must be in format x.x.x\n";
 return errorMsg;
}

The script is commented inline, but a few areas warrant further explanation. The calls to the remote
service use a rather cryptic syntax, passing this as both the first and second parameters:

ScriptObject.prototype.addScript = function (service) {
 service.addScript(this, this);
};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This code passes the first argument of the current ScriptObject instance (this) as a responder

object, because the object has onResult() and onStatus() methods declared on it. Flash will strip off
the first argument to use as the responder, and the second argument (this) becomes the argument

sent to the remote service. It is the current instance of the ScriptObject as well; all properties of the
object are passed to the service.

The responder method, onResult(), copies the properties of the result to the same instance of the
ScriptObject that made the remote call. It then calls the scriptRepositoryRefresh() function as a
callback function that will add the script to the Tree component (and to the scriptCache property
shown in Example 14-9). The exists variable tells the callback function that the current script is
either a new script (exists is false) or an updated script (exists is true).

The validate() method of the object is a general-purpose validation routine for the properties of the
ScriptObject. Rather than validate the individual text fields, we wait until the call to the remote
service to validate the text. By doing this, the complexities of validating various text fields and combo
boxes throughout the application are eliminated; validation can be done all at once easily by invoking
the validate() method of the object.

The init() method, as previously shown in Chapter 4, allows the object passed from the remote
method to retain all of its properties upon instantiation, which occurs behind the scenes immediately
upon return and before your ActionScript code can act on the object.

14.5.3 ScriptRepository.as

The ScriptRepository.as file is the only one included directly in our Flash movie. All other ActionScript
documents are included from this file. The movie is initialized from here, and the user interface is
populated from the remote methods.

The complete ScriptRepository.as file is shown in Example 14-9.

Example 14-9. The ScriptRepository.as file

// Flash Remoting include
#include "NetServices.as"
// NetDebug for debugging purposes
#include "NetDebug.as"
// Data provider for UI components
#include "DataGlue.as"
// Initialize Flash Remoting
#include "RemotingInit.as"
// Site utility functions
#include "SiteUtilityFunctions.as"

// UserObject class
#include "UserObject.as"

// ScriptObject class
#include "ScriptObject.as"
// User interface stuff
#include "UI.as"

// Set up a cache for scripts to avoid hitting the remote service again

http://lib.ommolketab.ir
http://lib.ommolketab.ir

var scriptCache = new Object();

// Initialize the user and some other globals
_global.currentUser = new UserObject();
_global.currentScript = 0; // If there is a current script shown, it will be here
_global.downloadLink = "http://www.flash-remoting.com";

// General responder object for methods that return nothing

// onResult() method displays a message in an alert box

// onStatus() method simply calls the error handler
function GeneralResponder (theName, theMessage, callbackFunction) {
 this.onResult = function (result) {
 alertBox(theName, theMessage, callbackFunction);
 };
 this.onStatus = function (error) {
 errorHandler(error.description);
 };
}

// Set up a default "script" that contains generic labels for the interface
scriptCache["0"] = new ScriptObject(
 0, // scriptid
 "Script name...", // ScriptName
 "Description...", // ScriptDescription
 "Code...", // ScriptCode
 0, // LanguageID
 0, // CategoryID
 0, // UserID
 "Date uploaded...", // DateUploaded
 "Date modified...", // DateModified
 "", // Version major
 "", // Version minor
 "", // Version micro
 ""); // ScriptUniqueID
// Display the dummy script
displayIt(0, cnt_main_mc.cnt_view_mc);

// Search the scripts database
function searchScripts (searchWord) {
 ScriptService.displayList(new ScriptListingResponder(
 cnt_main_mc.cnt_view_mc.scripttree_tree,
 'containing ' + searchWord),searchWord);
 workingAlert(); // Display a "...working" box
}

// Get all of the scripts
function getAllScripts () {
 ScriptService.displayList(new ScriptListingResponder(
 cnt_main_mc.cnt_view_mc.scripttree_tree));
 workingAlert(); // Display a "...working" box
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Upon initialization, get all scripts for tree
// Tree control named scripttree_tree

// Call the remote service to display scripts
getAllScripts();

// Responder object to populate tree with script names and IDs
function ScriptListingResponder (theTree, rootNode) {
 // Serves double duty for searches and all scripts.
 // Pass in the tree reference and a string containing the rootNode text.
 if (rootNode == undefined || rootNode == "") rootNode = "All Scripts";
 // Set a root node and open it
 var myRootNode = new FTreeNode(rootNode).setIsOpen(true);
 theTree.setRootNode(myRootNode);

 // Responder onResult() method lists the scripts and removes the "working" box.

 // The listScripts() function is defined within this object.
 this.onResult = function (result_rs) {
 listScripts(result_rs, theTree);
 theTree.refresh();
 workingBox_mc.removeMovieClip();
 };
 this.onStatus = function (error) {
 errorHandler(error.description)
 };

 function listScripts (my_rs, theTree) { // Populate the tree

 // Set up a nested repeat using CategoryID.
 // CategoryIDs are in order, so when it changes, start a new node.
 var CatID = "";
 var catNode;
 var rootNode = theTree.getRootNode();
 for (var i=0; i < my_rs.getLength(); i++) {
 if (my_rs.getItemAt(i).CategoryID != CatID) {
 catNode = new FTreeNode(my_rs.getItemAt(i).CategoryDesc,
 my_rs.getItemAt(i).CategoryID);
 rootNode.addNode(catNode);
 }
 catNode.addNode(new FTreeNode(my_rs.getItemAt(i).ScriptName,
 my_rs.getItemAt(i).ScriptID));
 CatID = my_rs.getItemAt(i).CategoryID;
 }
 }
}

// Set up change handler for the Tree component
cnt_main_mc.cnt_view_mc.scripttree_tree.setChangeHandler("displayScript", _root);

// Display the script in the interface
function displayScript (tree) {
 var theNode = tree.getSelectedNode();
 var theScriptId = theNode.data;
 _global.currentScript = theScriptId;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (!theNode.isBranch()) {
 if (findItem(scriptCache, theScriptId)) {
 displayIt(theScriptId, cnt_main_mc.cnt_view_mc);
 } else {
 putScriptInCacheAndDisplayIt(theScriptId, cnt_main_mc.cnt_view_mc);
 }
 } else {
 _global.currentScript = 0; // no current script
 // Display the dummy script
 displayIt(0, cnt_main_mc.cnt_view_mc);
 }
}

// Set up change handler for the scriptname_cb in

// cnt_main_mc.cnt_modify_mc (Modify screen)
cnt_main_mc.cnt_modify_mc.scriptname_cb.setChangeHandler(
 "displayScriptUpdate", _root);

// Display the script in the interface
function displayScriptUpdate (cb) {
 var theScript = cb.getSelectedItem();
 var theScriptId = theScript.data;
 _global.currentScript = theScriptId;
 if (findItem(scriptCache, theScriptId)) {
 displayIt(theScriptId, cnt_main_mc.cnt_modify_mc);
 } else {
 putScriptInCacheAndDisplayIt(theScriptId, cnt_main_mc.cnt_modify_mc);
 }
}

// Display routines for scripts
// Scripts are cached the first time they are accessed from the remote DB

// Cache the script first, then display it
function putScriptInCacheAndDisplayIt (theScriptId, theMovieClip, refreshTree) {
 var temp = new ScriptObject(theScriptId);
 // Script is not cached, so get it from the remote service
 ScriptService.getScript(
 new ScriptDisplayResponder(theMovieClip,refreshTree), temp);
}

// Default responder for the remote method getScript().
// The movie clip is passed to the object so that
// the display will work in View and Modify screens
function ScriptDisplayResponder (theMovieClip, refreshTree) {
 this.onResult = function (result) {
 // Get the script from the remote method
 scriptCache[result.ScriptID] = result;
 // Have to display from the responder function
 displayIt(result.ScriptId, theMovieClip);
 if (refreshTree)
 setTheScriptNode(cnt_main_mc.cnt_view_mc.scripttree_tree, result, true);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 };
}

function displayIt (theScriptId, theMovieClip) {
 // Set text fields
 theMovieClip.scriptname_txt.text = scriptCache[theScriptId].ScriptName;
 theMovieClip.scriptdesc_txt.text = scriptCache[theScriptId].ScriptDescription;
 theMovieClip.scriptcode_txt.text = scriptCache[theScriptId].ScriptCode;
 theMovieClip.scriptdateuploaded_txt.text =
 scriptCache[theScriptId].DateUploaded;
 theMovieClip.scriptdatemodified_txt.text =
 scriptCache[theScriptId].DateModified;
 theMovieClip.scriptversion_txt.text =
 scriptCache[theScriptId].VersionMajor + '.' +
 scriptCache[theScriptId].VersionMinor + '.' +
 scriptCache[theScriptId].VersionMicro;
 // Pick values in combo boxes
 theMovieClip.scriptlanguage_cb.pickValue(scriptCache[theScriptId].LanguageID);
 theMovieClip.scriptcategory_cb.pickValue(scriptCache[theScriptId].CategoryID);
 theMovieClip.scriptuser_cb.pickValue(scriptCache[theScriptId].UserID);
 return;
}

// Refresh the script tree
function scriptRepositoryRefresh (ScriptObj, exists) {
 scriptCache[ScriptObj.ScriptID] = ScriptObj;
 setTheScriptNode(cnt_main_mc.cnt_view_mc.scripttree_tree, ScriptObj, exists);
 displayScript(cnt_main_mc.cnt_view_mc.scripttree_tree);
}

// Open a specific node of the tree.
// If the node does not exist in the tree, add it.
function setTheScriptNode (theTree, theScript, exists) {
 var theParent = theTree.getRootNode();
 var theCategories = theParent.getChildNodes();
 var theParentNodeId = theScript.CategoryID;
 var theChildNodeId = theScript.ScriptID;
 for (var i=0; i < theCategories.length; i++) {
 if (theCategories[i].getData() == theParentNodeId) break;
 }
 if (!exists) { // New script -- add the node to the main display tree
 theCategories[i].addNode(new FTreeNode(theScript.ScriptName,
 theScript.ScriptID));
 }
 theCategories[i].setIsOpen(true);
 theTree.refresh();
 var theNodes = theCategories[i].getChildNodes();
 for (var j=0; j < theNodes.length; j++) {
 if (theNodes[j].getData() == theChildNodeId) break;
 }
 theTree.setSelectedNode(theNodes[j]);
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// findItem: method for the cache array to find an

// item with a ScriptID that matches
function findItem (theArray, theItem) {
 for (var i in theArray) {
 if (theArray[i].ScriptID == theItem) {
 return true;
 }
 }
 return false;
}

The script is commented inline, but a few points are worth mentioning. A scriptCache property,

which contains a generic Object instance, is set up as a cache for all displayed scripts. When a user
clicks an item in the tree, the remote method is called and returns a ScriptObject. If the user clicks
off the tree item and then back on again, further calls to the remote method are unnecessary,
because the ScriptObject is stored in the cache. The zeroth element of the object become the
descriptive label whenever a user has clicked on a folder in the tree; no script is shown. The code is
written to be self-documenting (if it finds the items in the cache, it displays it; otherwise, it both adds
it to the cache and displays it):

if (findItem(scriptCache, theScriptId)) {
 displayIt(theScriptId, cnt_main_mc.cnt_modify_mc);
} else {
 putScriptInCacheAndDisplayIt(theScriptId, cnt_main_mc.cnt_modify_mc);
}

The findItem() method is also declared in the ScriptRepository.as file. This function finds a script in
the scriptCache object by iterating through the objects that are part of the scriptCache and
comparing the theItem parameter (the second argument to the function) to the ScriptID property
of each scriptCache element.

The searchScripts() and getAllScripts() methods utilize the same responder object. If searching for
a phrase, the phrase is shown in the root of the tree ("scripts containing..."). If the user clicks the
Show All Scripts button, "All Scripts" will be shown as the root node of the tree.

The displayIt() function also serves double duty: the displayScript() and displayScriptUpdate()
methods use it to refresh the main script and update script movie clips, respectively. User interface
elements share the same names on the different movie clips, so we are able to reference them by
passing the movie clip name to the function and using it as a prefix.

14.5.4 UserObject.as

The UserObject, like the ScriptObject, is a class definition that defines a class of an object that we will
pass back and forth between client and server.

The complete UserObject class is shown in Example 14-10.

Example 14-10. The UserObject class definition

/*

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UserObject
 Properties:
 UserID numeric
 Username string
 userpassword string
 FirstName string
 LastName string
 Emailaddress string
 HintQuestion string
 HintAnswer string
 Methods:
 init initialize the object
 toString
 loginUser
 addUser
 emailPassword
 _copyProperties
 onResult
 onStatus
*/
function UserObject () {
 if (!this.inited)
 this.init(arguments);
}

UserObject.prototype.init = function (args) {
 this.inited = true; // Instance is initialized
 this.UserID = (args[0] != undefined) ? args[0] : "";
 this.Username = (args[1] != undefined) ? args[1] : "";
 this.Userpassword = (args[2] != undefined) ? args[2] : "";
 this.FirstName = (args[3] != undefined) ? args[3] : "";
 this.LastName = (args[4] != undefined) ? args[4] : "";
 this.Emailaddress = (args[5] != undefined) ? args[5] : "";
 this.HintQuestion = (args[6] != undefined) ? args[6] : "";
 this.HintAnswer = (args[7] != undefined) ? args[7] : "";
 this.PasswordConfirm = (args[8] != undefined) ? args[8] : "";
 this.isUserLogged = (args[9] != undefined) ? args[9] : false;
};

// Register the object for use by Flash Remoting remote methods
Object.registerClass("UserObject", UserObject);

// Define a toString() function for reading the object
UserObject.prototype.toString = function () {
 var temp = "inited: " + this.inited + '\n';
 temp += "UserID: " + this.UserID + '\n';
 temp += "Username: " + this.Username + '\n';
 temp += "Userpassword: " + this.Userpassword + '\n';
 temp += "FirstName: " + this.FirstName + '\n';
 temp += "LastName: " + this.LastName + '\n';
 temp += "Emailaddress: " + this.Emailaddress + '\n';
 temp += "HintQuestion: " + this.HintQuestion + '\n';

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 temp += "HintAnswer: " + this.HintAnswer + '\n';
 temp += "PasswordConfirm: " + this.PasswordConfirm;
 temp += "isUserLogged: " + this.isUserLogged;
 return temp;
};

// Call the remote loginUser() service
UserObject.prototype.loginUser = function (service) {
 service.loginUser(this, this);
};

// Call the remote addUser() service
UserObject.prototype.addUser = function (service) {
 if (this.Userpassword != this.PasswordConfirm) {
 errorHandler("Passwords don't match");
 this.isUserLogged = false;
 }
 service.addUser(this, this);
};

// Get scripts for user
UserObject.prototype.getScriptsForUser = function (service, box) {
 service.getScriptsForUser(new ComboBoxResponder(box), this);
};

// Debugging function to let us know that the object returned from
// the server was registered properly. In responder function, do:

// result.test()
UserObject.prototype.test = function () {
 trace("UserObject successful")
};

// Copy properties from an object to this
UserObject.prototype._copyProperties = function (from) {
 for (var prop in from) {
 if (this[prop] != from[prop]) this[prop] = from[prop];
 }
};

// Responder method
UserObject.prototype.onResult = function (result) {
 if (result.isUserLogged == true) {

 // Put all properties from the result into the instance of the UserObject
 this._copyProperties(result);
 alertBox("userAlert", "Welcome " + result.FirstName);
 } else {
 trace("fail");
 }
};

// Call a global error handler for the movie
UserObject.prototype.onStatus = function (error) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 errorHandler(error.description);
};

// Validation function for properties of the UserObject
UserObject.prototype.validate = function () {
 var errorMsg = "";
 if (this.Username == "") errorMsg += "Username must not be empty\n";
 if (this.Userpassword == "") errorMsg += "Password must not be empty\n";
 if (this.FirstName == "") errorMsg += "First name must not be empty\n";
 if (this.LastName == "") errorMsg += "Last name must not be empty\n";
 if (!isValidEmail(this.Emailaddress))
 errorMsg += "Email address must be valid\n";
 if (this.HintQuestion == "") errorMsg += "Hint question must not be empty\n";
 if (this.HintAnswer == "") errorMsg += "Hint answer must not be empty\n";
 if (this.PasswordConfirm == "")
 errorMsg += "Password confirmation must not be empty\n";
 return errorMsg;
};

You can see that the UserObject is constructed in a fashion similar to the ScriptObject. The object
contains an init() method to allow objects returned from the server to retain their properties, a
_copyProperties() method to copy the properties from the object returned from the server to the
current instance that called the remote service, toString() and test() methods for debugging, and
onResult() and onStatus() methods that give it the ability to act as a responder object. The
validate() method of the UserObject works like its counterpart in the ScriptObject, with the
exception that it calls a named function, isValidEmail(), to validate an email address.

14.5.5 SiteUtilityFunctions.as

The calls to the site services are implemented as a set of named functions in the
SiteUtilityFunctions.as file. The complete ActionScript code is shown in Example 14-11.

Example 14-11. The site utility functions

// General responder object for methods that return nothing:

// onResult() method displays a message in an alert box

// onStatus() method simply calls the error handler
function GeneralResponder (theName, theMessage, callbackFunction) {
 this.onResult = function (result) {
 alertBox(theName, theMessage, callbackFunction);
 };
 this.onStatus = function (error) {
 errorHandler(error.description);
 };
}

// Contact form event -- contactForm() calls remote method contactForm()

function contactForm (from, userid, message) {
 if (message.length == 0) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 errorHandler("Must enter a message");
 return;
 }
 // Call the remote service
 SiteService.contactForm(
 new GeneralResponder("contactAlert",
 "Email was sent: Thank you for contacting us"),
 from, // Email from field
 userid, // User ID
 message // Message to send
);
 workingAlert(); // Display a "...working" box
 return;
}

// Send Page event -- sendPage() calls remote method sendPage()
function sendPage (scriptid, to, from) {
 // Call the remote service
 SiteService.sendPage(
 new GeneralResponder("sendpageAlert", "Email was sent", setSendPageText),
 // Responder function fires alert
 scriptid, // Script ID
 to, // Email to field
 from // Email from field
);
 workingAlert(); // Display a "...working" box
 return;
}

// Callback function to reset the text for the "send page to a friend" text field
function setSendPageText () {
 cnt_main_mc.cnt_view_mc.sendto_txt.doDefault();
}

// Set up About box on load
SiteService.about(new AboutResponder());

function AboutResponder () {
 this.onResult = function (result_rs) {
 cnt_main_mc.cnt_about_mc.aboutname_txt.text =
 result_rs.getItemAt(0).CompanyName;
 cnt_main_mc.cnt_about_mc.aboutdesc_txt.text =
 result_rs.getItemAt(0).Description;
 // Set up the default download link for scripts stored in the remote database
 _global.downloadLink = result_rs.getItemAt(0).DownloadLink;
 };
 this.onStatus = function (error) {
 errorHandler(error.description);
 };
}

// Specialized responder object for retrieving the hint question

http://lib.ommolketab.ir
http://lib.ommolketab.ir

var GetEmailResponder = new Object();
GetEmailResponder.onResult = function (result) {
 if (_global.currentUser.HintQuestion == "")
 _global.currentUser.HintQuestion = result;
 retrieveBox("getHintAnswerBox", "Your hint Question", result,
 "Your answer", getAnswer);
};
GetEmailResponder.onStatus = function (error) {
 errorHandler(error.description);
};

// Callback function for getEmail()
function getQuestion (theField) {
 _global.currentUser.Emailaddress = theField;
 UserService.getEmail(GetEmailResponder, theField);
 workingAlert(); // Display a "...working" box
}

// Callback function for emailPassword()
function getAnswer (theField) {
 var temp = SharedObject.getLocal("tries");
 if (temp.data.tries < temp.data.triesLimit &&
 temp.date.datetime < new Date().getMilliseconds() + temp.data.timeLimit) {
 UserService.emailPassword(EmailPasswordResponder,
 _global.currentUser.Emailaddress,
 theField);
 workingBox(); // show the "...working" message
 } else {
 alertBox("badRetrieve",
 "You've tried more than " + temp.data.triesLimit + " times within " +
 temp.data.hours + " hours.\n" +
 "Try again later or contact the site administrator.");
 }
}

// Specialized responder object for emailPassword()
var EmailPasswordResponder = new Object();
EmailPasswordResponder.onResult = function (result) {
 if (result == true) {
 alertBox("goodRetrieveBox", "Your password has been sent");
 } else {
 retrieveBox("tryAgainBox", "Wrong answer. Try Again: ",
 _global.currentUser.HintQuestion, "", getAnswer);
 var temp = SharedObject.getLocal("tries");
 temp.data.tries ++;
 }
};

EmailPasswordResponder.onStatus = function (error) {
 errorHandler(error.description);
};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Call the remote service emailPassword().
// This function interacts with alert boxes and message boxes in the main movie.
function emailPassword () {

 // Set up limits for how many tries we will allow and store in SharedObject
 var hours = 24;
 var timeLimit = hours * 60 * 60 * 1000; // 1 day in milliseconds

 var triesLimit = 5; // triesLimit within the timeLimit specified

 var temp = SharedObject.getLocal("tries");

 // Set up the SharedObject if it hasn't been set up yet
 if (!temp.data.tries) {
 temp.data.tries = 0;
 temp.data.triesLimit = triesLimit;
 temp.data.datetime = new Date();
 temp.data.timeLimit = timeLimit;
 temp.data.hours = hours;
 }
 // Step 1: Get email address
 retrieveBox("getEmail", "Enter your email address", "", "",getQuestion);
}

// Validate an email address (simple client-side validation): returns true or false
function isValidEmail (theString) {
 var isValid = (
 (theString.lastIndexOf('.') < theString.length - 2) && // must have dot
 (theString.indexOf('@') != -1) && // must have @
 (theString.indexOf('@') == theString.lastIndexOf('@')) // must not have two @@
)
 return isValid;
}

// Put a Date object into human-readable date format (US format)
function doDateFormat (dateObj_date) {
 var d = dateObj_date.getDay();
 var m = dateObj_date.getMonth();
 var y = dateObj_date.getFullYear();
 var h = dateObj_date.getHours();
 var mn = dateObj_date.getMinutes();
 mn = (mn < 10) ? '0' + mn : mn;
 var s = dateObj_date.getSeconds();
 s = (s < 10) ? '0' + s : s;
 return m + '/' + d + '/' + y + ' ' + h + ':' + mn + ':' + s;
}

The SiteUtilityFunctions.as file takes care of calls to contactForm(), sendPage(), and about() in the
SiteService remote service. It also takes care of the email password functionality, which is one of the
more complicated aspects of the application. In a typical HTML-based application, the steps can be
followed like this:

User clicks the "email me my password" link and a page loads in with an email address box.1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

User fills in email address and clicks Submit.
1.

The remote service finds the user's email address in the database and returns a question. A new
page loads in with a hint question and an answer box. User fills in answer and clicks Submit
again.

2.

The hint answer is checked in the database and, if correct, the username and password are
mailed to the user. A new page loads, telling the user that the password has been mailed.

3.

In the Flash Remoting application, we can't implement functionality that follows steps like this, but
that is not a bad thing-it gives the application more of an immediate feel. Each call to the remote
service is going to be handled by a responder object, but how do you call three remote services in a
row that depend on the response from the previous call? You can't call them like this:

getQuestion(emailAddress);
getAnswer(hintAnswer);
emailPassword();

If you were to execute this code, you would have an error because the three functions would fire
immediately, even before the response was returned from the first function call.

Instead, we've created specialized responder objects that take care of calling the next remote
method. It works like this:

The user clicks the email password link and the emailPassword() function fires, displaying the
dialog box that prompts the user for an email address.

1.

The prompt box uses a callback function, getQuestion(), which calls the remote method
getEmail() using the GetEmailResponder object.

2.

The "...working" dialog box pops up while the question is being retrieved. Within the
GetEmailResponder.onResult() method, the hint question is shown in a second prompt box.

3.

The prompt box (retrieveBox()) function takes a callback function (getAnswer()) as an
argument. This way, when the user clicks OK, we can call another remote method:
emailPassword().

4.

If the hint answer matches the answer in the database, the username and password are mailed
to the user. If not, getAnswer() is called again, but a counter limits the number of attempts
(for security reasons). After five unsuccessful attempts, the user is locked out for 24 hours. The
number of tries and the length of lockout are variables that you can change.

5.

Finally, the SiteUtilityFunctions.as file contains a few utility functions for email validation and date
formatting.

14.5.6 UI.as

The UI.as file contains several additions to the built-in objects and components of Flash MX, and a
responder object to simplify populating a combo box with a recordset result. The complete code for
UI.as is shown in Example 14-12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 14-12. The UI.as file contains code for GUI elements

// Set up a responder object to handle recordsets for ComboBoxes.
// This responder assumes that data is coming in with ID column
// in [0] position and description column in the [1] position.

// cbName is the fully-qualified name of the ComboBox.

// zeroElement is an optional argument that contains a zeroeth element
// of a descriptive label, like "--Categories--"

function ComboBoxResponder (cbName, zeroElement) {
 this.onResult = function (result_rs) {
 var fields = result_rs.getColumnNames();
 // If there is a descriptive text to put in the Combo box
 // put it in the 0 position of the recordset.
 if (zeroElement != null) {
 var temp = {};
 result_rs.addItemAt(0, temp);
 result_rs.setField(0,fields[0], 0);
 result_rs.setField(0,fields[1],zeroElement);
 }
 var idField = '#' + fields[0] + '#';
 var descField = '#' + fields[1] + '#';
 DataGlue.bindFormatStrings(cbName, result_rs, descField, idField);
 };
 this.onStatus = errorHandler;
}

// Call the remote service to get all script IDs and names for scripts
// created by the current user.
function getUserScripts () {
 ScriptService.getScriptsForUser(
 new ComboBoxResponder(
 cnt_main_mc.cnt_modify_mc.scriptname_cb, "-Scripts-"),
 _global.currentUser.username,
 _global.currentUser.password
)
}

// pickValue(): New method for ComboBoxes to be able to pick a value.
FComboBoxClass.prototype.pickValue = function (value) {
 for (var i=0; i<this.getLength(); i++) {
 if (this.getItemAt(i).data == value) {
 this.setSelectedIndex(i);
 break;
 }
 }
};

// setAutoBlank(): New method for the TextField object.
// Set the field to blank when cursor is placed in field.

// NOTE: if passing false to the function to turn feature off,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// need to redefine any onSetFocus() functionality.
TextField.prototype.setAutoBlank = function (value) {
 if (value) {
 this.onSetFocus = function () {this.text = "";}
 } else {
 this.onSetFocus = null;
 }
};

// defaultText: Allow for default text to be placed in a text field.
TextField.prototype.defaultText = null;

TextField.prototype.setDefaultText = function (value) {
 this.defaultText = value;
};

TextField.prototype.getDefaultText = function () {
 return this.defaultText;
};

TextField.prototype.addProperty("defaultText",
 this.getDefaultText,
 this.setDefaultText);

// doDefault(): Set the field text to defaultText.
TextField.prototype.doDefault = function () {
 this.text = this.defaultText;
};

The ComboBoxResponder object is used by all combo boxes in the movie that are fed by remote
recordsets. The recordsets are assumed to contain a number field and a description field. There are

four combo boxes that use this responder object.

The pickValue() method is added to the FComboBox class to add the functionality to all combo boxes
in the movie. With this method, you can now pass a number to the combo box to have that particular
record shown. For example, if you have a list of six categories in the Categories_cb combo box and

you want the fourth item, you bring it into focus like this:

Categories_cb.pickValue(3);

There are two additions to the TextField class as well. We've added an autoblank feature, which
allows you to create a TextField that automatically becomes blank when you place your cursor in it.
Turn on this functionality like this:

myTextfield.setAutoBlank(true);

We've also added a defaultText property to the TextField class. This property stores the default text

for that particular field. Restore the default text for the text field using the custom doDefault()
method:

myTextField.doDefault();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.5.7 Flash User Interface Code

Many of the remote methods are called from the Flash interface. The ActionScript code for the
interface is fairly elaborate and too long to reprint here in full, but a few of the key ActionScript
snippets should be explained. (The full version can be downloaded from the online Code Depot.)

There are two custom message boxes that are built from movie clips rather than components,
because one of the Macromedia components that would have been necessary is a commercial
component (the Advanced Message Box). The message boxes are both set up to accept a callback
function, which would be fired upon the user clicking the OK button. The alertBox() function is shown
in Example 14-13.

Example 14-13. Custom alert box movie clip is used extensively in the
movie

// Display Alert Box
// Arguments:
// theName: name for the box
// theMessage: text message to display
// callback: callback function when OK is clicked

function alertBox (theName, theMessage, callbackFunction, hideOK) {
 if (workingBox_mc) // If there is a "...working" box, remove it
 workingBox_mc.removeMovieClip();
 _root.attachMovie("alertbox_mc", theName, 1);
 var thisBox = _root[theName];
 thisBox._x = (Stage.width - thisBox._width)/2;
 thisBox._y = (Stage.height - thisBox._height)/2;
 thisBox.message_txt.text = theMessage;
 if (!hideOK) {
 // ok button
 thisBox.ok_btn.onRollOver = overState;
 thisBox.ok_btn.onRollOut = outState;
 thisBox.ok_btn.onPress = function () {
 thisBox.onUnload = callbackFunction;
 thisBox.removeMovieClip();
 };
 } else {
 thisBox.ok_btn._visible = false;
 }
};

The workingAlert() function also shares this alertBox() function and displays a "...working" message
to the user. This is used by many remote methods in the application. The retrieveBox() function
displays a similar box, but it allows for user input, as shown in Figure 14-4.

Figure 14-4. The retrieveBox() function calls a custom movie clip to
retrieve information

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Remote methods are called from the onRelease events of the buttons in the interface. Example 14-14
shows the code for the Upload Script button (scriptupload_btn).

Example 14-14. The Upload Script button calls

// scriptupload_btn
cnt_main_mc.cnt_upload_mc.scriptupload_btn.onRollOver = overState;
cnt_main_mc.cnt_upload_mc.scriptupload_btn.onRollOut = outState;
cnt_main_mc.cnt_upload_mc.scriptupload_btn.onRelease = function (mc) {
 var tempScript = new ScriptObject(null,
 cnt_main_mc.cnt_upload_mc.scriptname_txt.text,
 cnt_main_mc.cnt_upload_mc.scriptdesc_txt.text,
 cnt_main_mc.cnt_upload_mc.scriptcode_txt.text,
 cnt_main_mc.cnt_upload_mc.scriptlanguage_cb.getSelectedItem().data,
 cnt_main_mc.cnt_upload_mc.scriptcategory_cb.getSelectedItem().data,
 _global.currentUser.UserID,
 cnt_main_mc.cnt_upload_mc.scriptdateuploaded_txt.text,
 cnt_main_mc.cnt_upload_mc.scriptdatemodified_txt.text,
 1,
 0,
 0);
 // Make sure the script is filled in
 var errorMessage = tempScript.validate();
 if (errorMessage == "") {
 tempScript.addScript(ScriptService);
 workingAlert();
 mainScreen();
 } else {
 alertBox("validationError",errorMessage);
 }
};

In the scriptupload_btn button's onRelease() event handler, a temporary ScriptObject is created
using the text from the interface elements as the arguments to create the object. The tempScript

variable contains the new ScriptObject, and the remote addScript() method is called through this
object. The "working" alert box is shown until it is removed by the appropriate responder function.

The "send this page to a friend" functionality is made possible by the use of the FlashVars attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in the <object> and <embed> tags on the ColdFusion page that houses the movie. If an id variable is

passed to the page, Flash will pick up the variable and execute the following code:

if (scriptid != null && scriptid != "" && scriptid != "undefined") {
 putScriptInCacheAndDisplayIt(scriptid, cnt_main_mc.cnt_view_mc, true);
}

We simply pass to the putScriptInCacheAndDisplayIt() function the scriptid variable, the main
display movie clip, and the value true to signal a refresh of the Tree component.

The HTML and ColdFusion code required for this functionality is shown in Example 14-15. The
ColdFusion logic is highlighted in bold. Similar functionality can be created in PHP, ASP.NET, or Java
pages as well.

Example 14-15. HTML and ColdFusion code to pass URL variables

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/
swflash.cab#version=6,0,65,0"
 WIDTH="100%" HEIGHT="100%" ALIGN="">
 <cfif isdefined("url.scriptid")><param name="flashvars"
 value="scriptid=<cfoutput>#url.scriptid#</cfoutput>"></cfif>
<PARAM NAME=movie VALUE="ScriptRepository.swf">
<PARAM NAME=quality VALUE=high>
<PARAM NAME=bgcolor VALUE=#D9EFB4>
<EMBED src="ScriptRepository.swf" WIDTH="100%" HEIGHT="100%" ALIGN=""
quality=high bgcolor=#D9EFB4 TYPE="application/x-shockwave-flash"
PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer"
<cfif isdefined("url.scriptid")>
flashvars="scriptid=<cfoutput>#url.scriptid#</cfoutput>"</cfif> ></EMBED>
</OBJECT>

You can also simply append variables to the end of the URL, but this technique is known to be buggy
in several versions of the Player. Using FlashVars is a better approach when you can control the

output of the HTML tags with server-side logic.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.6 Testing and Debugging

With the first stages of the project completed and all parts in working order, the application should be
tested. In the case of our ScriptRepository.as file, some built-in methods of the application and the
objects used in the application make our life easier. We have defined toString() methods of the two
main objects, and also a test() method to make sure that the object coming back from remote
services has been cast to the correct datatype.

To use the toString() method, simply sprinkle the code with the following, substituting the object
name:

trace(myObject.toString());

This can even be used in the init() method of your constructor to make sure your objects are being
instantiated properly and at the right times:

trace(this.toString());

The test() method is used in the responder onResult() method. Simply call the test() method on
the result coming from the remote service. If the result has been cast to the correct object type, the
test() method will fire. If it hasn't been cast properly, the method will not fire:

ScriptObject.prototype.onResult = function (result) {
 result.test();
 // more code...
}

During testing we also set up a special server-side logging method to log each object that was being
created on the server. The server-side code is shown in Example 14-16 and shows how easy it is to
create a custom log file for a custom object.

Example 14-16. Server-side logging code

<cffunction access="remote" name="objToString"
 output="false" returntype="string" >
 <cfargument type="any" name="obj" />
 <cfloop collection = #obj# item = "i">
 <cfset temp = '#temp##i#: #obj.get(i)##chr(13)##chr(10)#'>
 </cfloop>

 <cfreturn temp />
</cffunction>
<cffunction name="logScript" access="remote" returntype="any">
 <cfargument name="scriptobj" type="any" />
 <cffile action="append" file="c:\log.txt"
 output=#this.objToString (ScriptObj)#>
</cffunction>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This method is called directly from another server-side service with a simple line, passing an object to
the logScript() method:

<cfset temp = logScript(scriptObj)>

Additionally, this logging routine will work with any flashgateway.IO.ASObject object.

The server-side services all contain try/catch blocks around the portions of the method that may
throw an error. During debugging, you may want to comment out the try/catch blocks (using <!---
and ---> comment delimiters, as shown in bold) so that your errors are not captured; that way you

can see the original error message as the server generated it:

<!---
<cftry>
--->
 <cfquery name="rsScripts" datasource="ScriptRepository">
 SELECT * FROM Scripts
 WHERE ScriptID =
 <cfqueryparam cfsqltype="cf_sql_numeric" value="#ScriptID#">
 </cfquery>
<!---
 <cfcatch type="any">
 <cfthrow message="There was a database error" />
 </cfcatch>
</cftry>
--->

Another good source of information while debugging can be found in the flash.log file created in the
ColdFusion_root\logs directory.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.7 Completed Application

The completed application can be viewed at http://www.flash-remoting.com/scriptrepository/. Files
are also downloadable from the online Code Depot. The application can be used to compare against
your own implementation if you are creating the examples on your own system.

[Team LiB]

http://www.flash-remoting.com/scriptrepository/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.8 Future Expansion

The application as it stands is workable, but it lacks a few key features that might be desirable.
Following is a list of enhancements that you can add to the application if you feel the urge:

Expand the CompanyInfo table to include more than one company by simply creating an

autonumber field.

Email notification to members if a new version of a script is uploaded.

Add the ability to download multiple scripts in a .zip file.

Add the ability to upload files from a filesystem rather than pasting into the application.

Add an administrative interface and a new AccessGroup of "administrator".

Add a "favorites" page that a user can go back to whenever he visits.

A common problem when building an application of this size is to allow feature creep to overtake you
and prolong the application development time. By clearly setting out your specifications in advance,
you can guard against feature creep by locking down the features that you will be implementing.
Leave the other features for version 2.0.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.9 Wrapping Up

In this chapter, you've seen the creation of a complete application that uses several key aspects of
Flash Remoting, including database searches, inserting and updating a database, sending emails,
passing variables from a URL to the Flash Remoting application, and passing objects from client to
server and back again.

The next and final chapter, Chapter 15, is a Flash Remoting API reference.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 15. Flash Remoting API
This chapter provides an alphabetical listing of ActionScript objects, methods, and events in the Flash
Remoting API. It focuses on the Flash Remoting API as it is installed from the Flash Remoting
components. This chapter complements the core ActionScript objects and classes found in
ActionScript for Flash MX: The Definitive Guide, by Colin Moock (O'Reilly). Many more usage
examples can be found in previous chapters, but this language reference consolidates the API calls in
one place for easy reference.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.1 Entry Headings

Each entry in this chapter is presented in the following basic format:

Entry Availability

Purpose
Synopsis

The headings used to document each item in this chapter are described in Table 15-1.

Table 15-1. Flash Remoting API headings

Heading Description

Availability

Indicates when the item was added to the Flash Remoting API. For this edition, the
examples are all supported in Flash Player 6; however, if there are any API calls that
became supported in a minor version of a Flash Player, the release version will be
noted.

Synopsis
Shows the syntax used by the item. Anything that must be replaced by the user is
shown in constant-width italic text. Optional arguments are noted in the

Arguments section.

Methods
Applies to object and class entries. Simple listing of methods available to the object or
class, further explained in their own API reference entries.

Arguments
Applies to method entries only. Simple descriptions of all method arguments listed in
the Synopsis.

Returns
Applies to method entries only. Describes the return value of the method (omitted if
there is no return value).

Description Explains how the item works, usually in a practical situation.

Bugs Describes known problems associated with the item.

Example Shows sample code associated with the item being described.

See Also Lists cross-references to related entries within this API reference and other chapters.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

DataGlue Object Flash 6

allows data providers to be linked to data
consumers

DataGlue.methodName()

Methods

bindFormatFunction()

Binds a RecordSet object or other data provider to a UI component or other data consumer
using a custom function that you create to format the data.

bindFormatStrings()

Binds a RecordSet object or other data provider to a UI component or other data consumer
using special string replacements.

Description

The DataGlue object allows developers to easily bind RecordSet objects and other data providers to
UI components. In most cases, the binding can be done with one line of code, which reduces the
complexity of populating UI components with data.

To use the DataGlue object, you have to include the DataGlue.as file in the first frame of the Flash
movie:

#include "DataGlue.as"

One advantage of using DataGlue over other techniques of populating UI components is that the data
provider and the data consumer are bound together; changing one will change the other. If you
delete a row in a recordset that is supplying a combo box, for example, the combo box will also have
one of its items deleted.

For a component to work with DataGlue, it has to be data-aware. A data-aware component interacts
with the RSDataProviderClass and includes the following methods:

addItem()
addItemAt()
getLength()
removeAll()
removeItemAt()
replaceItemAt()
setDataProvider()
sortItemsBy()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

The RecordSet class; Chapter 3 and Chapter 4

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

DataGlue.bindFormatFunction()
Method

Flash
6

binds a data provider to a data consumer
using a custom function

DataGlue.bindFormatFunction(dataConsumer, dataProvider, formatFunction)

Arguments

dataConsumer

The UI component or other consumer of data to be bound to a data provider.
dataProvider

A RecordSet object or other data provider to be bound to a data consumer.
formatFunction

A custom function that you define that returns an object with the properties label and data. It

must accept a single RecordSet object as a parameter.

Description

The DataGlue object is used to bind a data provider to a data consumer. The most common and
useful application of this is to bind a RecordSet object to a ListBox, ComboBox, or other UI
component that will display the data from the RecordSet. The bindFormatFunction() method allows
the developer to specify a function to format the appearance of the data in the UI component. If you
don't need to format the data, using DataGlue.bindFormatStrings() is more straightforward.

Example

The following example code assumes a combo box named allProducts_cb is present on the main

timeline:

#include "NetServices.as"
#include "DataGlue.as"

// Initialize the connection and service objects.
if (connected == null) {
 connected = true;
 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 var myService = my_conn.getService("com.oreilly.frdg.searchProducts", this);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

// The remote getSearchResult() method (not shown) returns a recordset.
myService.getSearchResult();

// Display the product names in the combo box. Use the product IDs as the data.
// The product names are formatted in uppercase for display.
function formatDataForBox (theRecord) {
 var formatObj = new Object();
 formatObj.label = theRecord.ProductName.toUpperCase();
 formatObj.data = theRecord.ProductID;
 return formatObj;
}

// The responder function binds the returned recordset to the combo box.
function getSearchResult_Result(result_rs) {
 DataGlue.bindFormatFunction(allProducts_cb, result_rs, formatDataForBox);
}

The formatDataForBox() function creates an object with two properties: label and data. This

function is called by the bindFormatFunction() method for each row in the recordset. The recordset
is bound to the combo box, which displays the recordset's capitalized product names in a list and
uses the product IDs as the underlying data.

See Also

DataGlue.bindFormatStrings(), the RecordSet class; Chapter 3

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

DataGlue.bindFormatStrings()
Method

Flash
6

binds a data provider to a data consumer
using string replacements

DataGlue.bindFormatStrings(dataConsumer, dataProvider, labelString, dataString)

Arguments

dataConsumer

The field that you want to sort the RecordSet object by.
dataProvider

The direction to sort the recordset. "DESC" specifies a descending sort; anything else is

ascending.
labelString

The label that will show in the UI component.
dataString

The data that will correspond to the label in the UI component.

Description

The DataGlue object contains two methods for binding data to a UI component. The
bindFormatFunction() method is best used when the data coming from the recordset or other data
provider has to be formatted in a particular way. If the data can be used directly, the
bindFormatStrings() method is easier to use because you don't have to define a custom function that
formats the data. Simply specify the fields to use for the label and data properties of the data

consumer in the method call.

Example

The following example code assumes a combo box named allProducts_cb is present on the main

timeline:

#include "NetServices.as"
#include "DataGlue.as"

// Initialize the connection and service objects.
if (connected == null) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 connected = true;
 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 var myService = my_conn.getService("com.oreilly.frdg.searchProducts", this);
}

// The remote getSearchResult() method (not shown) returns a recordset.
myService.getSearchResult();

// Display the product names in the combo box. Use the product IDs as the data.
function getSearchResult_Result(result_rs) {
 DataGlue.bindFormatStrings(allProducts_cb, result_rs,
 '#ProductName#', '#ProductID#');
}

The fields that are utilized in the bindFormatStrings() method (ProductName and ProductID) are
surrounded by quotes and pound signs (#). The pound signs around the RecordSet fields denote that

the field is to be replaced by a field from the data provider (the RecordSet, in this case).

See Also

DataGlue.bindFormatFunction(), the RecordSet class; Chapter 3 and Chapter 4

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetConnection Class Flash 6

enables a connection to a remote server

myNetConnectionObject.methodName(params)

Methods

addHeader()

Adds a header to every AMF packet in this connection.
call()

Invokes a service method on the remote server.
clone()

Creates a clone of a NetConnection object, without headers.
close()

Closes the NetConnection object.
connect()

Defines the URL used in a Flash Remoting connection.
getDebugConfig()

Retrieves a NetDebugConfig object with all subscribed events.
getDebugId()

Retrieves the NetConnection object's debug identifier.
getService()

Creates a service object that acts as a proxy to a remote service method.
ReplaceGatewayUrl()

Changes the gateway URL for the current connection.
RequestPersistentHeader()

A method that can be initiated by a server-side service to add a header to the request packets.
setCredentials()

Creates a credentials header that is attached to each AMF packet.
setDebugId()

Creates a user-defined debug identifier.
trace()

Sends output to the NetConnection Debugger panel.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Only the public methods of the NetConnection class are shown. Many of the methods require the
inclusion of the NetDebug.as or NetServices.as file, as indicated in the footnotes.

Description

The NetConnection class is at the heart of Flash Remoting. The class is a core part of Flash MX after
the installation of the Flash Remoting components; however, the NetServices.as and NetDebug.as
files add several methods to the NetConnection class, as noted under the Methods heading.

A NetConnection object allows communication between the Flash movie and Flash Remoting on the
server-side service. Methods of the NetConnection class allow the developer to call remote services
and process the results within the Flash movie. A NetConnection object is typically created in the
initialization phase of the Flash movie in the first frame on the main timeline (following any
preloader) by calling NetServices.createGatewayConnection().

An important method of the NetConnection class is the getService() method. The call to
NetConnection.getService() returns a service object (of the NetServiceProxy class), which acts as
proxy to the remote service. Developers can invoke remote service functions as methods of the
service object.

Examples

There are two ways of creating NetConnection objects in your Flash Remoting application. The first
was demonstrated in most of the examples in this book. It involves the use of the NetServices.as file
and the NetServices.createGatewayConnection() method:

#include "NetServices.as"
if (connected == null) {
 // Initialize the variable, so this section is only called once
 connected = true;

 // Set the default URL, so the NetConnection object knows how to connect
 NetServices.setDefaultGatewayUrl("http://127.0.0.1/flashservices/gateway");

 // Create the NetConnection object
 var my_conn = NetServices.createGatewayConnection();
}

A variation of this approach is to omit the call to setDefaultGatewayUrl() and pass the gateway URL
as a parameter to createGatewayConnection() instead. See those methods under the NetServices
class in this chapter for more information.

Including the NetServices.as file also adds other methods to the NetConnection class, such as
getService() and setCredentials().

The second way of creating a NetConnection object is to simply use the new keyword:

if (connected == null) {
 // Initialize the variable so this section is only called once
 connected = true;

 // Create the NetConnection object
 var my_conn = new NetConnection();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Set the URL to the NetConnection object
 my_conn.connect("http://127.0.0.1/flashservices/gateway");
}

Using this technique, it is not necessary to include NetServices.as, but if you don't include it you will
not have access to the methods of the NetConnection class contained in NetServices.as.

There are several private methods of the NetConnection class that are included when you include the
NetDebug.as file in your Flash movie, in addition to those noted under the Methods heading. The
NetConnection Debugger panel uses these methods internally: attachDebug(), sendDebugEvent(),
sendServerEvent(), sendClientEvent(), addNetDebugHeader(), updateConfig(), isRealTime(),
setupRecordset(), as well as several methods that take the place of actual NetConnection methods.

See Also

NetConnection.call(), NetConnection.connect(), the NetDebug class, the NetDebugConfig class,
NetServices.createGatewayConnection(), NetServices.setDefaultGate-wayUrl(); Chapter 4; the
NetServices.as, NetDebug.as, NetConnection.as, and RecordSet.as files in your Flash Includes
directory

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetConnection.addHeader() Method Flash 6

adds a header to every AMF packet for a
connection

myNetConnectionObject.addHeader(name, mustUnderstand, object)

Arguments

name

An arbitrary header name that can be recognized by the server.
mustUnderstand

A Boolean value that denotes whether the server must process the header before sending a
result back to the Flash application.

object

Any ActionScript object that becomes the header named in the addHeader() call.

Description

The addHeader() method is useful when you have a specific header that requires server processing,
or an arbitrary piece of information that you want attached to every AMF packet, such as a user
identification number or session ID.

After using addHeader(), each subsequent AMF packet from the client will contain the header
information. AMF calls returned from the server do not include this header, unless your server-side
code processes the header and manually adds it to the return packet.

Example

The following code shows the basic syntax of the addHeader() method:

if (connected == null) {
 connected = true;
 NetServices.setDefaultGatewayUrl("http://127.0.0.1/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 var my_header = {user:'tom', password:'muck'};
 my_conn.addHeader('myLogin', false, my_header);
}

In this case, a header named myLogin is added to all AMF packets originating from the client on this
connection. The my_header variable contains an ActionScript object that acts as the body of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

myLogin header. The server must have the necessary code in place to process this information for it

to be useful.

In most cases, you won't use addHeader() directly, because the AMF packets are typically not
manipulated by your server-side services. A notable exception is a ColdFusion or JRun 4 user-login
framework, which uses the setCredentials() method on the client. The setCredentials() method,
however, takes care of calling the addHeader() method for you.

See Also

NetConnection.RequestPersistentHeader(), NetConnection.setCredentials(); Chapter 4

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetConnection.call() Method Flash 6

invokes a server-side method from client-
side ActionScript

myNetConnectionObject.call(remoteMethod, resultObject, arg1,...argn)

Arguments

remoteMethod

The name of the server-side method to invoke, in the format serviceName.methodName. The

syntax for calling the method varies with the server technology, as described in earlier
chapters.

resultObject

An ActionScript object with an onResult() method to handle results from the call to the server-
side method. You can also pass null, in which case no results are handled.

arg1, ...argn

Zero or more arguments to be passed to the remote method. The third argument passed to the
call() method (i.e., arg1) is passed as the first argument to the remote method. The next
argument, arg2, is passed as the second argument to the remote method, and so on.

Returns

Return value of the remote method is passed to the onResult() handler of resultObject.

Description

The call() method is used to invoke a remote method through the NetConnection object. The call()
method is not typically used directly by a developer. Instead, the developer typically uses the
getService() method, which is a wrapper around the call() method that also adds more
functionality. Using call(), you have to create responder objects that contain onResult() and
onStatus() methods; you can't use the named function methodname_onResult() or

methodname_onStatus() techniques shown elsewhere in this book.

Because the call() method is a core method of the NetConnection object, you don't have to include
the NetServices.as file in your Flash application to use it.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following code shows the basic syntax of the call() method:

// Create a responder object
var myResult = new Object();

// Create an onResult() method to handle results from the call to the remote method
myResult.onResult = function (result) {
 display_txt.text = result;
};

// Create the connection
var my_conn = new NetConnection();
// Attach a URL for the gateway
my_conn.connect("http://127.0.0.1/flashservices/gateway");
// Call the remote method
my_conn.call("com.oreilly.frdg.HelloUser.sayHello", myResult, firstname_txt.text);
// Nullify the connection
my_conn.close();

In this case, a remote method named sayHello() in the com.oreilly.frdg.HelloUser service is invoked
with one argument: firstname_txt.text. A responder object is created before calling the remote

method and is passed as the second argument to call(). The onResult() method of the responder
object receives the response from the remote method call.

See Also

NetConnection.getService(); Chapter 4

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetConnection.clone() Method Flash 6

duplicates a connection object, without
current headers

myNetConnectionObject.clone()

Returns

A new NetConnection object with the same URL as the original NetConnection object, but without the
headers of that object.

Description

The clone() method is used when you need a new connection to the remote server that does not
contain the headers of your existing connection, such as to call a method using a new authentication
scheme.

Example

The following code shows the basic syntax of the clone() method:

// NetServices.as is necessary to use clone()
#include "NetServices.as"
// Set the URL for both connections
NetServices.setDefaultGatewayUrl("http://127.0.0.1/flashservices/gateway");
// Create the original connection
var my_conn = NetServices.createGatewayConnection();
// Set the credentials header for the first connection
my_conn.setCredentials('admin', '1234');
// Create the cloned connection without the headers (no credentials)
var my_cloneConnection = my_conn.clone();

See Also

NetServices.createGatewayConnection(), NetServices.setCredentials(); Chapter 4

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetConnection.close() Method Flash 6

closes a connection to the Flash Remoting
server

myNetConnectionObject.close()

Description

The close() method is used to close a connection to the Flash Remoting server. A connection is not a
physical connection to the server, so this method does not physically close anything. It merely sets
the URL of the NetConnection object to null, thereby causing any further attempts to connect to the

server to fail.

Example

The following code shows the basic syntax of the close() method:

if (connected == null) {
 connected = true;
 NetServices.setDefaultGatewayUrl("http://127.0.0.1/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 var verified = myLoginService();
 if (!verified) my_conn.close();
}

In this case, another method named myLoginService() is called. If the result of that service call is
false, the connection to my_conn is closed at the ActionScript level, thereby nullifying any further
attempts to connect to services using the my_conn connection. In practice, the close() method is not

used very often, as connections need not be closed in most situations.

See Also

NetConnection.connect(); Chapter 4

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetConnection.connect() Method Flash 6

defines the URL used in a Flash Remoting
connection

myNetConnectionObject.connect(targetURL)

Arguments

targetURL

A URL of the Flash Remoting gateway that you wish to connect to. The URL can be prepended
with an http:// or https:// protocol, but can also be used without any protocol, which defaults
to http://.

Returns

true if the protocol is valid (http:// or https://), and false otherwise.

Description

The connect() method is used to connect to a Flash Remoting gateway. Using the connect() method
does not require the inclusion of the NetServices.as file. The word connect is something of a
misnomer; at no time during this call does the NetConnection object connect to the remote server.
The actual connection takes place when a service function call is made.

Example

The following code shows the basic syntax of the connect() method:

// Create the connection
var my_conn = new NetConnection();
// Attach a URL for the gateway
my_conn.connect("http://127.0.0.1/flashservices/gateway");

In most cases, you will not use this method directly but instead use the createGatewayConnection()
method, which instantiates a NetConnection object and connects to it as well.

See Also

NetConnection.ReplaceGatewayUrl(), NetServices.createGatewayConnection(),

https://
https://
http://lib.ommolketab.ir
http://lib.ommolketab.ir

NetServices.setDefaultGateway(); Chapter 4

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetConnection.getDebugConfig()
Method

Flash
6

retrieves an object containing the subscribed
debug events

myNetConnectionObject.getDebugConfig()

Returns

A NetDebugConfig object containing the currently subscribed events.

Description

The getDebugConfig() method is used to programmatically retrieve the currently subscribed events
for the NetConnection Debugger panel.

Example

The following code shows the basic syntax of the getDebugConfig() method and how it might be
used:

#include "NetDebug.as"
#include "NetServices.as"
NetServices.setDefaultGatewayURL("http://localhost/flashservices/gateway");
var my_conn = NetServices.createGatewayConnection();
var my_service = my_conn.getService("myService", this);
my_conn.trace("Service Object created.");

function onStatus (error) {
 // Show error message
 trace(error.description);

 // Get the NetDebugConfig object
 var debugConfig = my_conn.getDebugConfig();

 // Iterate through the properties of the NetDebugObject
 for (i in debugConfig) {
 trace (i + ":" + debugConfig[i]);
 // If the property is an object itself, iterate through its properties
 for (j in debugConfig[i]) trace (" " + j + ":" + debugConfig[i][j]);
 }
}

In the code, a NetDebugConfig object is created when a service call fails, and the properties of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

object are written to the Output window. Note that some of the properties of the NetDebugConfig
object are objects themselves, so they will be written to the Output window as [object Object].

The properties give you information about your current debug settings.

See Also

NetConnection.getDebugId(), NetConnection.setDebugId(), the NetDebug class, the
NetDebugConfig class; Chapter 13

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetConnection.getDebugId() Method Flash 6

retrieves a NetDebugConfig object's
identifier

myNetConnectionObject.getDebugId()

Returns

The identifier for the NetDebugConfig object.

Description

Each NetDebugConfig object has an associated ID, which is typically a sequential integer. However,
you can set the identifier with NetConnection.setDebugId().

Example

The following code shows the basic syntax of the getDebugId() method:

#include "NetDebug.as"
#include "NetServices.as"
NetServices.setDefaultGatewayURL("http://localhost/flashservices/gateway");
var my_conn = NetServices.createGatewayConnection();
var my_service = my_conn.getService("myService", this);
trace(my_conn.getDebugId());

In this case, the NetDebugConfig object identifier is simply traced to the Output window.

See Also

NetConnection.setDebugId(), NetDebugConfig; Chapter 13

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetConnection.getService() Method Flash 6

creates a proxy to a remote service and
optionally handles responses

myNetConnectionObject.getService(serviceName, defaultResponder)

Arguments

serviceName

The name of the remote service whose methods you want to access. This varies according to
the server model and the type of service you are accessing, as documented in earlier chapters.

defaultResponder

An optional responder object that handles the responses and errors with defined onResult()
and onStatus() methods. If you don't specify the defaultResponder, you must specify

responders in your method calls.

Returns

A NetServiceProxy object.

Description

The getService() method is used to create a proxy to a remote service and is one of the most
frequently used NetConnection methods. The call to getService() returns a NetServiceProxy object,
which dispatches responses from the service to the client, as discussed in Chapter 4.

Example

The following code shows the basic syntax of the getService() method:

#include "NetServices.as"
onResult = function (myResult) {
 results_txt.text = myResult;
};

onStatus = function (myError) {
 results_txt.text = myError.description;
};
var servicePath = "com.oreilly.frdg.HelloUser";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NetServices.setDefaultGatewayURL("http://localhost/flashservices/gateway");
var my_conn = NetServices.createGatewayConnection();
var my_service = my_conn.getService(servicePath, this);
my_service.sayHello(firstname_txt.text);

The first parameter passed to getService() must be the properly formed service name, as discussed
at length in Chapter 1, Chapter 2, Chapter 5, Chapter 6, Chapter 7, Chapter 8, Chapter 9, and
Chapter 10. In this case, the method is called with a second parameter, the keyword this, which
acts as a responder object. The keyword this represents the current timeline object, and you can

see from the code snippet that there are both onResult() and onStatus() methods defined in the
timeline. You can also pass a custom responder object (one created for this express purpose), as
shown throughout the book.

The getService() method can also be called with no responder object. In that case, the responder
object has to be passed in each remote method call, as in this code:

#include "NetServices.as"
function MyResult () {
 this.onResult = function (myResult) {
 results_txt.text = myResult;
 };
 this.onStatus = function (myError) {
 results_txt.text = myError.description;
 };
}
var servicePath = "com.oreilly.frdg.HelloUser";
NetServices.setDefaultGatewayURL("http://localhost/flashservices/gateway");
var my_conn = NetServices.createGatewayConnection();
var my_service = my_conn.getService(servicePath);
my_service.sayHello(new MyResult(), firstname_txt.text);

In the code, which is almost identical in functionality to the previous example, the getService()
method call does not include a responder object (the second argument is omitted). For this to work
without errors, each method call on the my_service object must include a responder object as the

first argument. In this case, the first argument is stripped off by the NetServiceProxy object and used
as the responder object.

See Also

NetConnection.call(), the NetServiceProxy object; "Creating the Service Object" and "Creating
Responder Functions" in Chapter 4

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetConnection.ReplaceGatewayUrl()
Method

Flash
6

changes the gateway URL

myNetConnectionObject.ReplaceGatewayUrl(targetURL)

Arguments

targetURL

A URL of the Flash Remoting gateway that you wish to connect to. The URL must be prepended
with an http:// or https:// protocol.

Description

The ReplaceGatewayUrl() method is used to change the Flash Remoting gateway URL previously
specified via NetConnection.connect(), NetServices.createGatewayConnection(), or
NetServices.setDefaultGatewayUrl(). Using the ReplaceGate-wayUrl() method requires the inclusion
of the NetServices.as file.

Example

The following code shows the basic syntax of the ReplaceGatewayUrl() method:

#include "NetServices.as"
if (connected == null) {
 // Initialize the variable so this section is only called once
 connected = true;

 // Create the NetConnection object
 gatewayURL = "http://www.flash-remoting.com/flashservices/gateway";
 var my_conn = NetServices.createGatewayConnection(gatewayURL);
}

Then, at some later time:

newGatewayURL = "http://127.0.0.1/flashservices/gateway";
my_conn.ReplaceGatewayUrl(newGatewayURL);

Usage

You should not use this method directly, because it is reserved for use by the server, which can pass
a ReplaceGatewayUrl header to the Flash movie.

https://
http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

NetConnection.close(), NetConnection.connect(), NetServices.createGatewayConnection(),
NetServices.setDefaultGatewayUrl(); Chapter 4

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetConnection.RequestPersistentHeader(
) Method

Flash
6

requests a header in AMF packets sent to
server

myNetConnectionObject.RequestPersistentHeader(name, object)

Arguments

name

An arbitrary header name that can be recognized by the server.
object

Any ActionScript object that becomes the header named in the addHeader() call.

Description

RequestPersistentHeader() is a method that can be initiated by the server-side gateway to tell the
Flash client to add a header to the request packets. It is equivalent to calling the addHeader()
method, but it can be triggered by the server-side gateway. It is useful when the server application
desires that a specific header, such as a session ID, be attached to every AMF packet sent from the
client to the server.

After the server invokes RequestPersistentHeader(), each subsequent AMF packet from the client on
the relevant connection will contain the specified header information. AMF packets returned from the
server do not include this header, unless your server-side code manually adds it to the return packet.

Usage

You should not use this method directly, because it is reserved for future use by the gateway.

See Also

NetConnection.addHeader(), NetConnection.setCredentials(); Chapter 4

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetConnection.setCredentials()
Method

Flash
6

authenticates a user with a credentials
header

myNetConnectionObject.setCredentials(userid, password)

Arguments

userid

A username to be used by the server for authentication.
password

A password to be used by the server for authentication.

Description

The setCredentials() method is used when you have an authentication routine on your server that
works in tandem with a credentials header. After calling setCredentials(), the credentials header is
attached to every AMF packet generated by the client and going to the server.

As of this writing, only JRun 4 and ColdFusion MX support the credentials header. Calling
setCredentials() is the same thing as calling the addHeader() method, like this:

my_conn.addHeader("Credentials", false, {userid: userid, password: password});

Example

The following code shows the basic syntax of the setCredentials() method:

if (connected == null) {
 connected = true;
 NetServices.setDefaultGatewayUrl("http://127.0.0.1/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 my_conn.setCredentials(username_txt.text, password_text.text);
}

In this case, the credentials header is added to the AMF packet and every subsequent AMF packet
going to the server.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NetConnection.addHeader(); Chapter 4, Chapter 5, Chapter 7

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetConnection.setDebugId() Method Flash 6

assigns an arbitrary identifier to a
NetDebugConfig object

myNetConnectionObject.setDebugId(id)

Arguments

id

An arbitrary header name that can be recognized by the server.

Description

The setDebugId() method is used to specify an identifier for a NetConnection object. Each
NetConnection object has an associated identifier that is typically a sequential integer. For example, if
you call getDebugId() on a NetConnection object that is the only object in your movie, you will
receive an ID of 0. To change this to a meaningful value, you can use the setDebugId() method.

The code syntax completion of Flash Remoting, as well as the Flash Remoting documentation, lists
the syntax as setDebugID (capital I and D), but the correct spelling is setDebugId() (lowercase d).

Example

The following code shows the basic syntax of the setDebugId() method:

if (connected == null) {
 connected = true;
 NetServices.setDefaultGatewayUrl("http://127.0.0.1/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 my_conn.setDebugId("Connection");
}

See Also

NetConnection.getDebugId(), NetConnection.setCredentials(); Chapter 13

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetConnection.trace() Method Flash 6

displays a string or object in the
NetConnection debugger

myNetConnectionObject.trace(objectName)

Arguments

objectName

Any string or ActionScript object that is serializable as a string.

Description

The trace() method is used during debugging to display a string, object, or other value in the
NetConnection Debugger panel. This is useful during debugging for determining where a particular
problem might be occurring.

The NetDebug.as file must be included in order to use the trace() method, and the NetConnection
Debugger panel must be open as well.

Example

The following code shows the basic syntax of the trace() method:

#include "NetServices.as"
#include "NetDebug.as"

if (connected == null) {
 connected = true;
 NetServices.setDefaultGatewayUrl("http://127.0.0.1/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 my_conn.trace("URL established");
 var my_service = my_conn.getService("com.oreilly.frdg.searchProducts");
 my_conn.trace("Service object created");
}

The trace() statements in this block of code merely alert the developer that a specific line in the code
was reached. This is helpful for narrowing down problems in blocks of code. The output of the
NetConnection.trace() method is sent to the NetConnection debugger (don't confuse it with the
global trace() function, which displays text in the Flash authoring tool's Output window).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

NetDebug.trace(); Chapter 13

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetDebug Object Flash 6

aids in debugging a Flash Remoting
application

NetDebug.methodName(params)

Methods

trace()

Sends output to the NetConnection Debugger panel.

Description

The NetDebug object is the ActionScript object that powers the NetConnection Debugger panel,
allowing a developer to view and trace output to and from the application server. The object is
defined in the NetDebugImpl.as file, which is included automatically when NetDebug.as is included.
Its one public method, trace(), is also duplicated in the NetConnection object, but the NetDebug
object contains many private methods that can be put to use by the enterprising Flash Remoting
developer. Because ActionScript 1.0 is not a strict OOP language, the public and private methods are
all defined in the same way and accessible to programmers.

Private methods include addNetConnection(), removeNetConnection(), sendDebug-Event(),
sendCommand(), requestNewConfig(), updateConfig(), sendStatus(), onEvent(), onEventError(),
onReceiveCommand(), onReceiveError(), and traceNetServices().

See Also

NetConnection.trace(), the NetDebugConfig class; Chapter 13

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetDebug.trace() Method Flash 6

displays a value in the NetConnection
debugger

NetDebug.trace(string_or_object)

Arguments

string_or_object

Any string or ActionScript object that is serializable as a string.

Description

The trace() method is used during debugging to display a string, object, or other value in the
NetConnection Debugger panel. This is useful during debugging for determining where a particular
problem might be occurring.

The NetDebug.as file must be included in order to use the trace() method, and the NetConnection
Debugger panel must be open as well.

Example

The following code shows the basic syntax of the trace() method:

#include "NetServices.as"
#include "NetDebug.as"

if (connected == null) {
 connected = true;
 NetServices.setDefaultGatewayUrl("http://127.0.0.1/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 NetDebug.trace("URL established");
 var my_service = my_conn.getService("com.oreilly.frdg.searchProducts");
 NetDebug.trace("Service object created");
}

The trace() statements in this block of code merely alert the developer that a specific line in the code
was reached. This is helpful for narrowing down problems in blocks of code. The output of the
NetDebug.trace() method is sent to the NetConnection debugger (don't confuse it with the global
trace() function, which displays text in the Flash authoring tool's Output window).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

NetConnection.trace(), the NetDebugConfig class; Chapter 13

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetDebugConfig Class Flash 6

contains properties of the current debug
settings

myNetDebugConfigObject.methodName(params)

myNetDebugConfigObject.propertyName

Methods

getDebug()

Returns the current state of debugging.
setDebug()

Allows you to set the state of debugging.

Properties

app_server

Flash Remoting events that occur on the application server or in the Flash Gateway on the
server.

client

Flash Remoting activity from the client.
flashcomm_server/realtime_server

Flash Communication Server MX events.

Description

The NetDebugConfig object is included when you include the NetDebug.as file in your Flash Remoting
application. It holds the properties of your current NetConnection debugger configuration and also
allows you to turn NetConnection debugging on and off for ActionScript objects. To use the
NetDebugConfig object for your specific connection, retrieve it with the
NetConnection.getDebugConfig() method:

var myConfigObject = myConnection.getDebugConfig();

You can then call methods on the NetDebugConfig object to turn debugging on and off
programmatically and set the status of reporting for individual events. The events are associated with
one of the properties of the object (app_server, client, or flashcomm_server/realtime_server),

each of which are objects in their own right. Events for which debugging is active are logged in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NetConnection Debugger panel. The full listing of events is shown in Table 15-2.

Table 15-2. NetDebugConfig events of the NetConnection class

Event Default Description

app_server.amf false Server AMF events

app_server.amfheaders false
AMF headers from the Flash Remoting
gateway

app_server.coldfusion true
ColdFusion debug events if ColdFusion
Server debug mode is on

app_server.error true Any error that occurs on the server

app_server.httpheaders false HTTP headers from the server

app_server.recordset true Events from pageable recordsets

app_server.trace true Trace events on the server

client.http true
Client-initiated HTTP events such as
connections and service calls

client.recordset true Pageable recordset events

client.rtmp true
Flash Communication Server client events
which use Real Time Messaging Protocol
(RTMP); not used by Flash Remoting

client.trace true Client NetConnection.trace() events

flashcomm_server.tracerealtime_server.trace true Flash Communication Server trace events

To retrieve individual settings of the NetDebugConfig object, use dot notation to address the event
type and the event. Remember to retrieve the object using NetConnection.getDebugConfig() first:

debugConfigObj = my_conn.getDebugConfig()
trace(debugConfigObj.client.http);

The preceding code displays true in the Output window if the client.http debug setting is turned
on. To turn it off, simply set the property to false:

debugConfigObj.client.http = false;

You can disable all debugging to the NetConnection debugger for the specified object using:

debugConfigObj.setDebug(false);

For more information on the NetConnection debugger and the NetDebugConfig object see:

http://livedocs.macromedia.com/frdocs/Using_Flash_Remoting_MX/DebugActionScript.jsp

http://livedocs.macromedia.com/frdocs/Using_Flash_Remoting_MX/DebugActionScript.jsp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

NetConnection.getDebugConfig(), the NetDebug object; Chapter 13

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetDebugConfig.getDebug() Method Flash 6

returns the current state of NetConnection
debugging

myConnection.getDebugConfig(id).getDebug()

Returns

A Boolean indicating the current state of debugging in the Flash Remoting application.

Description

The getDebug() method returns the current state of debugging in Flash Remoting. Debugging can be
on or off and can be set programmatically with the setDebug() method. When debugging is on, the
NetConnection debugger receives events and logs messages. When debugging is off, the
NetConnection debugger is inactive.

The NetDebug.as file must be included in order to use the getDebug() method.

Example

The following code shows the basic syntax of the getDebug() method:

#include "NetServices.as"
#include "NetDebug.as"

if (connected == null) {
 connected = true;
 NetServices.setDefaultGatewayUrl("http://127.0.0.1/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 var my_service = my_conn.getService("com.oreilly.frdg.searchProducts");
 trace(my_conn.getDebugConfig().getDebug());
}

The trace() statement displays the current state of debugging in this particular application, which
should be on because it has not been turned off in the code.

Bugs

At the time of this writing, this method returns `undefined' in all cases. It has been removed from
Macromedia's online documentation at

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://livedocs.macromedia.com/flashremoting/mx/Using_Flash_Remoting_MX/asDict4.htm#91933
and should be considered unsupported until Macromedia updates their documentation.

See Also

The NetDebug object, Table 15-2 under the NetDebugConfig object, NetDebugConfig.setDebug();
Chapter 13

[Team LiB]

http://livedocs.macromedia.com/flashremoting/mx/Using_Flash_Remoting_MX/asDict4.htm#91933
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetDebugConfig.setDebug() Method Flash 6

sets the state of NetConnection debugging

myConnection.getDebugConfig().setDebug(setting)

Arguments

setting

true or false value to turn debugging on or off.

Description

The setDebug() method is used to turn debugging on or off programmatically. This can be useful if
you are testing an application and need a way to turn debugging on only at certain times, such as
when a problem occurs. This is a good way to limit logging so that errors aren't lost in a flood of
status messages, although you can turn debugging on and off for individual events using the
properties in Table 15-2.

The NetDebug.as file must be included in order to use the setDebug() method.

Example

The following code shows the basic syntax of the setDebug() method:

#include "NetServices.as"
#include "NetDebug.as"

if (connected == null) {
 connected = true;
 NetServices.setDefaultGatewayUrl("http://127.0.0.1/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
 var my_service = my_conn.getService("com.oreilly.frdg.searchProducts");
 my_conn.getDebugConfig().setDebug(true);
}

Bugs

At the time of this writing, this method has no effect on the debugging mode. It has been removed
from Macromedia's online documentation at
http://livedocs.macromedia.com/flashremoting/mx/Using_Flash_Remoting_MX/asDict4.htm#91933
and should be considered unsupported until Macromedia updates their documentation.

http://livedocs.macromedia.com/flashremoting/mx/Using_Flash_Remoting_MX/asDict4.htm#91933
http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

The NetDebug object, Table 15-2 under the NetDebugConfig object, NetDebugConfig.getDebug();
Chapter 13

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetServices Object Flash 6

simplifies connection management

NetServices.methodName(params)

Methods

createGatewayConnection()

Creates a NetConnection object to allow connection to remote services through the Flash
Remoting adapter on the server.

getVersion()

Returns the current version number of the NetServices object (currently 1.0).
setDefaultGateway()

Sets a default URL for a NetConnection object.

Description

The NetServices object abstracts some of the NetConnection class's functionality for easy access to
the developer. Using the simple methods of the NetServices object, you can set up a gateway URL
and create the NetConnection object. The NetServices object also aids in the creation of callback
functions for remote services and creates proxies for the remote connections.

The NetServices object is included when you include the NetServices.as file in your Flash movie:

#include "NetServices.as"

You use the NetServices object directly; you don't construct an instance of the object. Typically, you
use it to specify a default URL and create a NetConnection object:

NetServices.setDefaultGatewayUrl("http://127.0.0.1/flashservices/gateway");
var my_conn = NetServices.createGatewayConnection();

Once you use the NetServices object to set up an instance of a NetConnection object, you should not
have to use the NetServices object anymore. The benefit of using the NetServices object is that you
have more control over your connection and responder objects. This is discussed in the individual
method sections for NetServices in this chapter.

See Also

The NetConnection class; Chapter 4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetServices.createGatewayConnection(
) Method

Flash
6

connects to the Flash Remoting gateway

NetServices.createGatewayConnection(url)

Arguments

url

An optional string containing the URL of a Flash Remoting connection.

Returns

A NetConnection object.

Description

The createGatewayConnection() method is the best way to create a new NetConnection object. You
can set up a default URL in the ActionScript code and then override it with a URL passed from the
HTML page that houses the Flash movie. The newly created NetConnection object is used connect to
the Flash Remoting adapter on the server. You also call remote methods through the NetConnection
object. The NetConnection object also handles the service results.

Example

The following code shows the basic syntax of the createGatewayConnection() method:

#include "NetServices.as"

if (connected == null) {
 connected = true;
 theURL = "http://127.0.0.1/flashservices/gateway";
 var my_conn = NetServices.createGatewayConnection(theURL);
}

In this code, the gateway URL is passed to the createGatewayConnection() method. If the URL is
passed in this way, it overrides any other URLs that have been set up.

Here is a more flexible way to create a connection:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#include "NetServices.as"

if (connected == null) {
 connected = true;
 NetServices.setDefaultGateway("http://127.0.0.1/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
}

In this case, the URL is passed to the setDefaultGateway() method, which gives you more flexibility
because the default gateway URL can be overridden by passing a URL from the HTML page. See the
entry for NetServices.setDefaultGateway() for more information.

See Also

The NetConnection class, NetServices.setDefaultGateway(); Chapter 4

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetServices.getVersion() Method Flash 6

returns the version of the NetServices object
NetServices.getVersion()

Returns

A version number, currently 1.0.

Description

The getVersion() method returns the current version number of the NetServices object (currently
1.0). It can be used to ensure backward compatibility and compatibility with future versions if the
methods or properties of the object change in future implementations.

Example

The following code shows the basic syntax of the getVersion() method:

#include "NetServices.as"
var netServ_version = NetServices.getVersion();
trace("NetServices object version: " + netServ_version);

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetServices.setDefaultGateway()
Method

Flash
6

sets a default URL for a gateway connection

NetServices.setDefaultGateway(url)

Arguments

url

A string containing the URL of a Flash Remoting gateway adapter.

Description

The setDefaultGateway() method is a way that you can define a URL for your NetConnection object
but allow it to be overridden by a URL passed from the HTML page that houses your Flash movie. In
this way, a URL can be set up in the movie for testing or deployment, but if the URL has to change at
any time in the future, the URL can be passed to the Flash movie using the gatewayURL variable.

After setting up the default URL using this method, the createGatewayConnection() method can be
called with no arguments to create a NetConnection object.

Example

The following code shows the basic syntax of the setDefaultGateway() method:

#include "NetServices.as"

if (connected == null) {
 connected = true;
 NetServices.setDefaultGateway("http://127.0.0.1/flashservices/gateway");
 var my_conn = NetServices.createGatewayConnection();
}

To override the default gateway URL, the gatewayURL variable can be passed to the movie using the
FlashVars attribute in the HTML page that embeds the .swf file:

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/
 swflash.cab#version=6,0,0,0" WIDTH="550" HEIGHT="400"
 id="mymovie" ALIGN="">
 <PARAM NAME=movie VALUE="mymovie.swf">
 <PARAM NAME=FlashVars

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 VALUE="gatewayURL=http://www.flash-remoting.com/flashservices/gateway">
 <PARAM NAME=quality VALUE=high>
 <PARAM NAME=bgcolor VALUE=#FFFFFF>
 <EMBED src="mymovie.swf" quality=high bgcolor=#FFFFFF WIDTH="550"
 HEIGHT="400" NAME="Untitled-2" ALIGN=""
 TYPE="application/x-shockwave-flash"
 FlashVars="gatewayURL=http://www.flash-remoting.com/flashservices/gateway "
 PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer">
 </EMBED>
</OBJECT>

In this example, the FlashVars attribute contains the name/value pair of gatewayURL and the path

to the Flash Remoting gateway on my server. You should update it for your server:

gatewayURL=http://www.flash-remoting.com/flashservices/gateway

The gatewayURL is a variable that the NetConnection object is expecting. It overrides any gateway

URL set via setDefaultGateway() but does not override a URL set via createGatewayConnection().
Therefore, you should not pass a URL to createGatewayConnection() when using the FlashVars

approach.

See Also

The NetConnection class, NetServices.createGatewayConnection(); Chapter 4

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet Class Flash 6

client-side resultset management

myRecordSet.methodName(params)

Methods

addItem()

Appends a row to the end of the recordset.
addItemAt()

Adds a row to the recordset at the specified index.
addView()

Used to notify an ActionScript object whenever a recordset changes.
filter()

Create a new recordset based on filtering an existing recordset.
getColumnNames()

Returns a list of column names in the recordset.
getItemAt()

Returns a specific row in the recordset.
getItemID()

Returns the internal item number of the recordset row.
getLength()

Returns the number of records in the recordset.
getNumberAvailable()

Returns the number of records that have been retrieved from the server.
isFullyPopulated()

Returns a Boolean value that tells if the recordset is populated entirely by the server yet.
isLocal()

Returns a flag that tells if a RecordSet object is associated with a server.
removeAll()

Removes all records from the recordset.
removeItemAt()

Removes a specified record from the recordset.
replaceItemAt()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Replaces the row at the specified index in the recordset.
setDeliveryMode()

Sets the delivery mode for pageable recordsets ("ondemand", "fetchall", or "page").

setField()

Replaces a single field in a row with a specified value.
sort()

Sorts the recordset according to custom criteria.
sortItemsBy()

Sorts the recordset by a specified field.

Description

The RecordSet class defines ActionScript objects that can be created on the client to create a
multidimensional array that is indexed sequentially, starting with 0. A RecordSet object mimics the

functionality of a server-side resultset. If you return a resultset from a Flash Remoting method on the
server, it will automatically be cast into a RecordSet object in the Flash movie. Refer to Chapter 5
through Chapter 9 and Appendix A for datatype conversions on the various platforms.

The index of each row of the recordset is a sequential number from 0 to the length of the recordset
minus one. In other words, a recordset containing 10 rows has index numbers from 0 to 9. There is

also an internal identifier number, which should not be confused with the index number. The index
number can change if you add or delete rows or sort the recordset. The internal identifier number is a
sequential number that is assigned to each row and remains attached to that row. If a row is deleted,
the internal identifying number is not used again and the internal ID numbers of remaining rows does
not change (although their index numbers might). Similarly, if a recordset is sorted, the internal
identifiers remain attached to each individual row. The internal identifier can be read with the
getItemId() method, or as a property of the recordset row:

myID = myRecordset_rs.getItemAt(0)._ _ID_ _

The RecordSet class is a subclass of the RsDataProviderClass class. Much of the RecordSet class's
functionality comes from its superclass. The RsDataProviderClass.as file is included automatically
when you include the RecordSet.as or NetServices.as files.

To utilize RecordSet objects, the RecordSet.as file must be included in the Flash movie. This file can
be included on its own if you are not using Flash Remoting, but it is included automatically when you
include the NetServices.as file. To create a client-side RecordSet object from scratch, instantiate it
like so:

var myRecordset_rs = new RecordSet(["First", "Last", "Phone", "Fax", "Email"]);

The ActionScript naming convention for RecordSet objects is to use _rs at the end of your RecordSet

object's variable name. This ensures that code hints work in the Flash and Dreamweaver authoring
environments.

A typical RecordSet object is created by calling a method on the server that issues a SELECT

statement against a database and returns a resultset. The resultset is returned to the Flash movie,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and the resultset is automatically turned into a client-side RecordSet object. The field names in your
database query become the field names in the RecordSet object. The object has many built-in
methods that allow the developer to interact with the recordset as one would on an application
server.

The RecordSet class is one of the cornerstones of Flash Remoting, because it allows the seamless
integration of databases into a client-side Flash movie by allowing the developer to call remote
services that return resultsets.

Methods of the RecordSet class are discussed at length under "The RecordSet
Object" in Chapter 4. This chapter provides a more formal discussion of each
method's syntax, in alphabetical order. Consult Chapter 4 for a different
perspective on each method covered here. For readability's sake, I use the
informal term "recordset" interchangeably with the more formal "RecordSet
object" where the distinction is obvious or irrelevant.

Bugs

The initial release of Flash Remoting had a problem with J2EE resultsets. The client-side RecordSet
object did not automatically get created by Flash Remoting. Updater 1 fixes the problem.

See Also

Chapter 3 and Chapter 4 for general information and Chapter 5 through Chapter 9 for server-specific
details

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet.addItem() Method Flash 6

appends a record to a recordset

myRecordSet.addItem(record)

Arguments

record

An object with properties that match the fields of the existing RecordSet object.

Description

The addItem() method is the easiest way to add a new record to a RecordSet object. The record is
simply appended to the end of the recordset.

Example

The following code creates a recordset and adds one row to it using the addItem() method. The
argument for addItem() is a generic object with properties that match the fields of the recordset:

#include "RecordSet.as"
var myRecordset_rs = new RecordSet(["First", "Last", "Email"]);
myRecordset_rs.addItem({First:"Tom", Last:"Muck", Email:"tom@tom-muck.com"});

In this case, the record is created on the fly and added to the RecordSet object named
myRecordset_rs. The new record is added at the end of the recordset and the length of the

recordset is increased by one.

The property names of the new record should match the field names of the existing recordset. Only
the properties that have matching field names will be added. If you add this record to the
myRecordset_rs object:

myRecordset_rs.addItem({First:"Biff", Last:"Bop", Phone:"555-555-5555"});

only the First and Last fields will be added to the new record in the recordset. The Phone field will

be lost.

See Also

RecordSet.addItemAt(); Chapter 4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet.addItemAt() Method Flash 6

adds a record at the specified index of a
recordset

myRecordSet.addItemAt(index, record)

Arguments

index

An integer from 0 to the length of the recordset minus one.

record

An object with properties that match the fields of the existing RecordSet object.

Description

The addItemAt() method inserts a record at a specified location by passing an index number to the
recordset along with the record being inserted. It differs from addItem() in that the record need not
be appended to the end of the recordset but rather can be inserted at any valid index.

Example

The following code creates a RecordSet object, adds two rows using the addItem() method, then
adds another row using addItemAt():

#include "RecordSet.as"
var myRecordset_rs = new RecordSet(["First", "Last", "Email"]);
myRecordset_rs.addItem({First:"Tom", Last:"Muck", Email:"tom@tom-muck.com"});
myRecordset_rs.addItem({First:"Jack", Last:"Splat", Email:"jack@tom-muck.com"});
myRecordset_rs.addItemAt(0,{First:"Biff", Last:"Bop", Email:"biff@tom-muck.com"});

At this point, the first record (at index 0) is the last one that was added, because the addItemAt()
method was used to insert the record at the 0 position within the recordset. However, the internal
identifier of this record is 2 because it was added third:

trace(myRecordset_rs.getItemId(0)); // Returns 2

See Also

RecordSet.addItem(); Chapter 4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet.addView() Method Flash 6

monitors RecordSet activity by watching
certain events

myRecordSet.addView(object)

Arguments

object

An object with a method named modelChanged() that is notified of changes to the recordset.

Description

The addView() method allows you to specify an object to be notified whenever changes occur to a
RecordSet object. This allows you to perform certain actions in response to those changes. For
example, if you want to implement a recordset logging feature, you can use an object that displays
information about the recordset in the Output window whenever the recordset changes.

Typically addView() is used during debugging to verify that certain events happened. Chapter 4
discusses the method in detail, and Example 4-3 creates a RecordSetDebug.as file containing
methods to view recordsets for debugging purposes.

Table 15-3 shows the event information sent to the object specified in the addView() method. It also
indicates which operations generate each event.

Table 15-3. Events tracked in the addView() method

Event Information object returned Occurs when

addItem() and
addItemAt() methods

{event:"addRows", firstRow:n,
lastRow:nn}

Row numbers between n and nn are
added

onResult() method of
responder object

{event:"allRows"}
The recordset is fully populated from
the server

removeAll(),
removeItemAt()

{event:"deleteRows",
firstRow:n, lastRow:nn}

Row numbers between n and nn are
deleted

onResult() method of
responder object

{event:"fetchrows", firstRow:n,
lastRow:nn}

Row numbers between n and nn are
requested from the server, but have not
yet arrived

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Event Information object returned Occurs when

sort() and sortItemsBy(
) methods

{event: "sort"} A recordset is sorted

Any change in the
RecordSet

{event:"updateAll"} A recordset changes in any way

replaceItemAt(),
setField()

{event:"updateRows",
firstRow:n, lastRow:nn}

Row numbers between n and nn change
in any way

Example

First, create an ActionScript object that defines a modelChanged() method, like this:

var myObject = new Object();
myObject.prototype.modelChanged = function (myInformationObject) {
 trace(myInformationObject.event);
};

Then call addView(), passing myObject as a parameter:

myRecordset_rs.addView(myObject);

This causes myObject's modelChanged() method to be invoked whenever the contents of
myRecordset_rs change. When an event triggers the modelChanged() method, it receives an
information object (myInformationObject) as a parameter. This information object contains an
event property, indicating the type of change that occurred to the recordset, as shown in Table 15-3.
Some objects passed to modelChanged() also contain firstRow and lastRow properties indicating

the range or record numbers affected.

Here is a fleshed-out example that displays a message in the Output window whenever the recordset
is sorted:

#include "RecordSet.as"
var myRecordset_rs = new RecordSet(["First","Last","Email"]);
// Create the generic object
var myObject = new Object();

// Add a modelChanged() event handler the object
myObject.modelChanged = function (myInformationObject) {
 if (myInformationObject.event == "sort") {
 trace("RecordSet was sorted");
 }
};

// Call addView() to set up the callback function (myObject.modelChanged)
myRecordset_rs.addView(myObject);
myRecordset_rs.addItem({First:"Tom",Last:"Muck",Email:"tom@tom-muck.com"});
myRecordset_rs.addItem({First:"Jack",Last:"Splat",Email:"jack@tom-muck.com"});

// Sort the recordset, triggering the modelChanged() method
myRecordset_rs.sortItemsBy("First");

sort() and sortItemsBy(
) methods

{event: "sort"} A recordset is sorted

Any change in the
RecordSet

{event:"updateAll"} A recordset changes in any way

replaceItemAt(),
setField()

{event:"updateRows",
firstRow:n, lastRow:nn}

Row numbers between n and nn change
in any way

Example

First, create an ActionScript object that defines a modelChanged() method, like this:

var myObject = new Object();
myObject.prototype.modelChanged = function (myInformationObject) {
 trace(myInformationObject.event);
};

Then call addView(), passing myObject as a parameter:

myRecordset_rs.addView(myObject);

This causes myObject's modelChanged() method to be invoked whenever the contents of
myRecordset_rs change. When an event triggers the modelChanged() method, it receives an
information object (myInformationObject) as a parameter. This information object contains an
event property, indicating the type of change that occurred to the recordset, as shown in Table 15-3.
Some objects passed to modelChanged() also contain firstRow and lastRow properties indicating

the range or record numbers affected.

Here is a fleshed-out example that displays a message in the Output window whenever the recordset
is sorted:

#include "RecordSet.as"
var myRecordset_rs = new RecordSet(["First","Last","Email"]);
// Create the generic object
var myObject = new Object();

// Add a modelChanged() event handler the object
myObject.modelChanged = function (myInformationObject) {
 if (myInformationObject.event == "sort") {
 trace("RecordSet was sorted");
 }
};

// Call addView() to set up the callback function (myObject.modelChanged)
myRecordset_rs.addView(myObject);
myRecordset_rs.addItem({First:"Tom",Last:"Muck",Email:"tom@tom-muck.com"});
myRecordset_rs.addItem({First:"Jack",Last:"Splat",Email:"jack@tom-muck.com"});

// Sort the recordset, triggering the modelChanged() method
myRecordset_rs.sortItemsBy("First");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At this point, the Output window should display "RecordSet was sorted."

See Also

Chapter 4 (especially Example 4-3)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet.filter() Method Flash 6

filters records in a recordset

myRecordSet.filter(filterFunction, context)

Arguments

filterFunction

A custom function that acts as a filter for the recordset.
context

A parameter that can be passed to the filter function as an argument.

Returns

A filtered RecordSet object.

Description

The filter() method creates a second recordset by filtering an existing recordset using a custom filter
function. This function can filter the recordset on any kind of criteria you prefer. You could, for
example, filter a recordset by date, returning only those records that contain a field that is within a
certain date range. You can filter any other criteria, such as length of a field, first letter of a field, or a
certain word within a field.

The filtered recordset does not contain any reference or association to the original server-side
recordset, such as paging. However, the new RecordSet object created by the filter() method
contains references to rows in the original client-side Recordset object, not copies of that data. The
filter() method also consumes memory and processing time, so it should be used sparingly.

The filter function that you define can accept one or two arguments. The first argument is a record to
examine, and the second, optional argument can be used in your filter criteria. Each record of the
original RecordSet object is passed to the filter function; if the filter function returns true, the record

is added to the new, filtered RecordSet object.

Example

The following code demonstrates the filter() method:

#include "RecordSet.as"
var myRecordset_rs = new RecordSet(["First", "Last", "Email"]);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

myRecordset_rs.addItem({First:"Tom", Last:"Muck", Email:"tom@tom-muck.com"});
myRecordset_rs.addItem({First:"Jack", Last:"Splat", Email:"jack@tom-muck.com"});
myRecordset_rs.addItem({First:"Biff", Last:"Bop", Email:""});

function filterOnEmail(aRecord) {
 return (aRecord.Email != "");
}
var filteredRecordset_rs = myRecordset_rs.filter(filterOnEmail);
trace(filteredRecordset_rs.getLength());

In this case, three records are added to the initial RecordSet object. The filter function removes
records that don't have email addresses. The new RecordSet object contains the two records that
have email addresses, as shown in the Output window.

See Also

RecordSet.sort(), RecordSet.sortItemsBy(); Chapter 3 and Chapter 4

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet.getColumnNames()
Method

Flash
6

retrieves column names of a recordset

myRecordSet.getColumnNames()

Returns

A comma-separated list of column names in the RecordSet.

Description

The getColumnNames() function provides an easy way to retrieve the column names in the
recordset. If you think of the recordset as a two-dimensional array of rows and columns. The rows
are records referenced by an index number. The columns are the recordset fields referenced by the
column names that are contained in each record. The names returned in the getColumnNames()
method are listed in the order that they appear in the recordset.

Example

The following code gets the list of columns and converts it into an array before tracing each name in
the Output window:

var myColumns = myRecordset.getColumnNames();
var myColumnArray = myColumns.split(",");
for (var i=0; i < myColumnArray.length; i++) {
 trace(myColumnArray[i]);
}

See Also

RecordSet.getLength(); Chapter 4

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet.getItemAt() Method Flash 6

returns the record at a given index number

myRecordSet.getItemAt(index)

Arguments

index

An integer between 0 and the length of the RecordSet object minus one.

Returns

A row (i.e., a single record) of the RecordSet object.

Description

The getItemAt() method returns a full row of a recordset. The return value is a single record from
the recordset, represented as an associative array whose keys correspond to the recordset's column
names. You can retrieve individual fields by name from the row returned by this method.

Example

The following code returns a row of the recordset and then sets variables to the value of each field in
the record:

var myRow = myRecordset.getItemAt(0);
var myFirstName = myRow.FirstName;
var myLastName = myRow.LastName;
myTextField.text = "Hello " + myFirstName + " " + myLastName;

Individual fields can also be accessed through associative array notation, as in this example:

var myRow = myRecordSet.getItemAt(0);
var myFirstName = myRow["FirstName"];

See Also

RecordSet.addItemAt(), RecordSet.getColumnNames(), RecordSet.replaceItemAt(); Chapter 4

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet.getItemID() Method Flash 6

retrieves the internal ID number of a row

myRecordSet.getItemID(index)

Arguments

index

An integer between 0 and the length of the RecordSet object minus one.

Returns

The internal ID number that Flash assigns when the record is added to the recordset.

Description

The getItemID() method returns an internal ID and is useful for determining the initial state of the
RecordSet object (or the order in which records were added). If the order of the records in the
recordset changes in some way, it can be restored or compared by using the original identifier that
was given to each row when the recordset was created. Unlike the index of a record, which can
change, the internal ID never changes and is destroyed if the row is deleted. The identifier of a
deleted row is not reused again.

Example

The following code retrieves the original first row from the recordset, even after the sort changes the
order of the rows:

#include "RecordSet.as"
var myRecordset_rs = new RecordSet(["First","Last","Email"]);
myRecordset_rs.addItem({First:"Tom", Last:"Muck", Email:"tom@tom-muck.com"});
myRecordset_rs.addItem({First:"Jack", Last:"Splat", Email:"jack@tom-muck.com"});
myRecordset_rs.addItem({First:"Biff", Last:"Bop", Email:"biff@tom-muck.com"});

// "Tom Muck" is the first item before the sort. After the sort, it is second.
myRecordset_rs.sortItemsBy("Last");

// Loop through the records looking for the one whose original ID is 0
for (var i; i < myRecordset_rs.getLength(); i++) {
 if (myRecordset_rs.getItemID(i) == 0) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 trace(myRecordset_rs.getItemID(i));
 break;
 }
}

After the recordset is sorted, the first record is "Biff Bop", but its item ID is still 2. The second
record in the sorted recordset is "Tom Muck", but its item ID is 0, telling us that it was the original

first record. The trace() statement displays Tom's record in the Output window.

See Also

RecordSet.addItemAt(), RecordSet.sortItemsBy(); Chapter 3 and Chapter 4

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet.getLength() Method Flash 6

returns the length of a recordset

myRecordSet.getLength()

Returns

An integer specifying the number of rows in the RecordSet object.

Description

The getLength() method returns an integer that contains the number of rows in the RecordSet
object. This length is always be one more than the highest index number in the recordset. For
example, a recordset that has 10 rows with index numbers from 0 to 9 has a length of 10.

Example

The following code gets the length of the RecordSet object and puts it into a variable:

var myRecordsetLength = myRecordset_rs.getLength();

The length is typically used to loop through all records in a recordset, such as:

var myRecordsetLength = myRecordset_rs.getLength();
for (var i; i < myRecordsetLength; i++) {
 trace(myRecordset_rs.getItemAt(i));
}

See Also

Chapter 4, "Loops and Repeated Operations" in Chapter 12

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet.getNumberAvailable()
Method

Flash
6

returns the number of records downloaded
from the server

myRecordSet.getNumberAvailable()

Returns

An integer specifying the number of records that have currently downloaded from the server.

Description

The getNumberAvailable() method allows the developer to retrieve a count of how many records
have been downloaded from the server when utilizing pageable resultsets from a ColdFusion MX
Server. For example, if you are retrieving a resultset of 53 records in pages of 10, the
getNumberAvailable() method tells you how many records are available on the client upon calling the
method. In this case, the method will return 10, 20, 30, 40, 50, or 53, depending on when it is called.

If the getNumberAvailable() method returns the same number as the getLength() method, the
entire recordset is populated. You can also use the isFullyPopulated() method to determine if the
recordset is completely populated.

Example

The following code demonstrates the getNumberAvailable() method:

trace(myRecordset_rs.getNumberAvailable());

As of this writing, the getNumberAvailable() method works only in the ColdFusion implementation of
Flash Remoting when employing pageable recordsets. It might typically be called within a handler
that executes repeatedly, such as an onEnterFrame() handler. But you can use addView() to be
notified when all rows have downloaded (see the "allRows" event in Table 15-3).

Chapter 5 contains a more complete example in the context of a ColdFusion application.

See Also

RecordSet.addView(), RecordSet.getLength(), RecordSet.isFullyPopulated(),
RecordSet.setDeliveryMode(); Chapter 4 and Chapter 5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet.isFullyPopulated() Method Flash 6

determines whether a recordset is fully
downloaded

myRecordSet.isFullyPopulated()

Returns

The Boolean true if the RecordSet object is local or if a RecordSet object coming from a remote

method has been fully received from the server.

Description

The isFullyPopulated() method is used when you have a remote method that returns a resultset as a
RecordSet object and you need to determine if it has been fully downloaded. This is often necessary,
because the following methods work only with fully populated RecordSet objects:

addItem()
addItemAt()
filter()
removeAll()
removeItem()
replaceItemAt()
setField()
sort()

For a local RecordSet object, the isFullyPopulated() method always returns true.

Example

The following code shows how the isFullyPopulated() is called. In the example, if the RecordSet
object is not fully populated, the button last_pb is disabled:

if (!myProducts_rs.isFullyPopulated()) last_pb.enabled = false;

As of this writing, the isFullyPopulated() method works only in the ColdFusion implementation of
Flash Remoting when employing pageable recordsets.

See Also

RecordSet.addView(), RecordSet.getLength(), RecordSet.getNumberAvailable(),

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RecordSet.setDeliveryMode(); Chapter 4 and Chapter 5

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet.isLocal() Method Flash 6

determines whether a recordset was created
locally

myRecordSet.isLocal()

Returns

The Boolean value true if the RecordSet did not come from a remote method; false if it did.

Description

The isLocal() method allows you to test a given recordset to determine if it came from an application
server as the result of a Flash Remoting call or if it was created locally.

Example

The following code displays true because it is a locally created recordset:

#include "RecordSet.as"
var myRecordset_rs = new RecordSet(["First", "Last", "Email"]);
myRecordset_rs.addItem({First:"Tom",Last:"Muck",Email:"tom@tom-muck.com"});
trace(myRecordset_rs.isLocal());

See Also

RecordSet.getNumberAvailable(), RecordSet.isFullyPopulated()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet.removeAll() Method Flash 6

deletes all records in a recordset

myRecordSet.removeAll()

Description

The removeAll() method removes the entire contents of the RecordSet object. The structure (column
names) of the RecordSet object remains intact, however, and the internal identifiers in use before
calling the removeAll() method are not reused.

Example

The following code removes the contents of the RecordSet object:

#include "RecordSet.as"
var myRecordset_rs = new RecordSet(["First", "Last", "Email"]);
myRecordset_rs.addItem({First:"Tom", Last:"Muck", Email:"tom@tom-muck.com"});
myRecordset_rs.addItem({First:"Jack", Last:"Splat", Email:"jack@tom-muck.com"});
myRecordset_rs.removeAll();
trace(myRecordset_rs.getLength());
trace(myRecordset_rs.getColumnNames());

In this case, the Output window shows that the recordset has a length of 0, but it also shows that the

field names are still in place. If we add a record to the RecordSet object now, the internal identifier of
the row will be incremented from where it left off before; the internal identifier numbers of the two
rows that existed previously are not reused:

myRecordset_rs.addItem({First:"Jack", Last:"Splat", Email:"jack@tom-muck.com"});
trace(myRecordset_rs.getItemId(0));

The Output window should show "2".

To completely delete the RecordSet object rather than simply empty the contents, you can set it to
null:

myRecordset_rs = null;

See Also

RecordSet.getItemId(), RecordSet.removeItemAt()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet.removeItemAt() Method Flash 6

removes a record from a recordset

myRecordSet.removeItemAt(index)

Arguments

index

The index number of the record to be deleted.

Description

The removeItemAt() method deletes a row in a RecordSet object. The internal identifier of the row is
removed and not used again, and the length of the RecordSet object is reduced by one.

Example

The following code adds two records to the recordset, then deletes the first record (the record in the
0 position):

#include "RecordSet.as"
var myRecordset_rs = new RecordSet(["First", "Last", "Email"]);
myRecordset_rs.addItem({First:"Tom", Last:"Muck", Email:"tom@tom-muck.com"});
myRecordset_rs.addItem({First:"Jack", Last:"Splat", Email:"jack@tom-muck.com"});
myRecordset_rs.removeItemAt(0);
trace(myRecordset_rs.getLength());

In this case, the Output window displays "1" because one row has been deleted.

See Also

RecordSet.addItemAt(), RecordSet.getItem`At(), RecordSet.getLength(), RecordSet.getRemoveAll(
), RecordSet.replaceItemAt()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet.replaceItemAt() Method Flash 6

replaces a row in a recordset

myRecordSet.replaceItemAt(index, record)

Arguments

index

An integer that is between 0 and the length of the RecordSet object minus one.

record

An object with properties that match the fields of the existing RecordSet object.

Description

The replaceItemAt() method replaces the contents of an entire row in a RecordSet object. This
allows for functionality similar to the SQL update statement. Typically, you use this method to update
the contents of row of data in your RecordSet object that will be reflected in a display in the Flash
movie, such as in a DataGrid.

Example

The following code shows the replaceItemAt() method in use, replacing the contents of one row and
tracing the RecordSet object's length to the Output window:

#include "RecordSet.as"
var myRecordset_rs = new RecordSet(["First","Last","Email"]);
myRecordset_rs.addItem({First:"",Last:"",Email:""});
var firstname = firstname_txt.text;
var lastname = lastname_txt.text;
var email = email_txt.text;
myRecordset_rs.replaceItemAt(0,{First:firstname,Last:lastname,Email:email});
trace(myRecordSet.getLength());

This code creates a recordset and adds one row. Then the first row (in the 0 position) is replaced. The

Output window reports that the recordset still contains only one row.

See Also

RecordSet.addItemAt(), RecordSet.removeItemAt(), RecordSet.setField()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet.setDeliveryMode() Method Flash 6

returns paged resultsets from ColdFusion

myRecordSet.setDeliveryMode(mode, pagesize, numPrefetchPages)

Arguments

mode

The mode to use in fetching pages from the server ("ondemand", "fetchall", or "page").

pagesize

The number of records to return in each page (required in "fetchall" and "page" modes).

numPrefetchPages

The number of pages to retrieve from the server (required in "page" mode).

Description

The setDeliveryMode() method allows you to set the mode of pageable resultsets from a ColdFusion
Server. The different modes are:

"ondemand"

The delivery mode is "ondemand" by default. It simply means that the records are returned
when they are requested. Use "ondemand" mode when each record is needed individually and

at different times. Do not use this mode if you are iterating through the entire recordset at
once, because it forces the client to make a separate request for each record, which is very
inefficient. The mode is efficient only if you won't eventually load all the records and you want
to limit network traffic to only those records that must be loaded. Also, it is fine for small
recordsets where all records will download at once.

"fetchall"

Using the "fetchall" parameter allows you to grab a page at a time, but in batches. The size

of each batch is specified in the pagesize argument. Use "fetchall" mode when you know

that you are going to load all the data but would like to start displaying the data incrementally
rather than having to wait for it all to load. For example, if you know you have 300 records to
load, it makes sense to load them over the course of 10 requests, 30 records at a time, so that
you can start displaying data as soon as possible.

"page"

Using "page" mode allows you to retrieve one page at a time. You must also specify the

pagesize and numPrefetchPages arguments. The "page" mode lies somewhere between
"ondemand" and "fetchall". Use "page" mode when you don't expect to need all the data in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the recordset, but you don't want the overhead of loading each record individually. For
example, you don't want to make the user wait for 10 pages of search results to load, because
he will most likely find what he needs in the first two or three pages. Therefore, load the first
two or three pages initially, then load the other pages as they are needed.

Example

The following code creates a pageable recordset and sets the delivery mode to "page":

#include "NetServices.as"

NetServices.setDefaultGatewayURL("http://localhost/flashservices/gateway");
var my_conn = NetServices.createGatewayConnection();
var customerService = my_conn.getService("com.oreilly.frdg.Customers", this);

// Set a global RecordSet variable
var myRS;
// Create the PushButton. Assumes FPushButtonSymbol is already in Library.
this.attachMovie("FPushButtonSymbol","submit_pb",4);
//Position and label the PushButton
with (submit_pb) {
 _x = 300;
 _y = 35;
 setLabel("Submit");
}
// Call the remote method once, retrieving 10 records
customerService.getCustomers({pagesize:10});

submit_pb.setClickHandler("getNext");
function getNext() {
 var recordNum = myRs.getNumberAvailable();
 // Attempt to get a record past the last record available.
 // This will cause the paging to kick in and retrieve another set of records.
 myRS.getItemAt(recordNum);
 trace(recordNum);
 // If the recordset is fully downloaded, display it in the Output window
 if (recordNum == myRS.getLength())
 for (var i=0; i<recordNum; i++)
 trace(myRS.getItemAt(i).ContactName);
}

function getCustomers_Result(result_rs) {
 myRS = result_rs;
 result_rs.setDeliveryMode("page", 10);
 // Trace the number of records available. This statement executes only once.
 trace("onresult: " + myRs.getNumberAvailable());
}

This self-contained code operates against the Customers service from Chapter 5. It demonstrates
recordset paging using the "page" mode. Each time the user clicks a button, the getNext() function

attempts to retrieve a record that is beyond the end of the number of records available. When this
happens, the next set of records is returned from the server. Note that when you click the button,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the Output window displays the number of records from the getNext() function, but the
getCustomers_Result() function is never called again; Flash Remoting takes care of the recordset
paging, and the responder method onResult event is never triggered again.

Chapter 5 contains a complete example of recordset paging and demonstrates the setDeliveryMode(
) method in greater detail.

See Also

RecordSet.getNumberAvailable(), RecordSet.isFullyPopulated(); Chapter 4 and Chapter 5

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet.setField() Method Flash 6

sets a field within a record

myRecordSet.setField(index, fieldName, value)

Arguments

index

The index number of the recordset row that contains the field to be replaced.
fieldName

The field name of the field that you want to replace the contents of.
value

The value that you are setting the field to.

Description

The setField() method replaces the contents of a single field within a row, with no effect on the other
fields, allowing for finer control over updating than replaceItemAt().

Example

The following code creates a recordset and then replaces the email address in the first record:

#include "RecordSet.as"
var myRecordset_rs = new RecordSet(["First", "Last", "Email"]);
myRecordset_rs.addItem({First:"Tom", Last:"Muck", Email:"tom@tom-muck.com"});
var email = 'jacksplat@tom-muck.com';
myRecordset_rs.setField(0,"Email", email);
trace (myRecordset_rs.getItemAt(0).Email;

See Also

RecordSet.replaceItemAt()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet.sort() Method Flash 6

sorts a recordset

myRecordSet.sort(compareFunction)

Arguments

compareFunction

A custom function that facilitates the sort of the recordset by comparing records.

Description

The sort() method sorts a RecordSet object in place using a user-specified sort function. The
compare function should compare two records (which are passed as two arguments to the function)
and return a positive number if the first record is greater than the second record, a negative number
if the second record is greater, and 0 otherwise.

Example

The following code demonstrates the sort() method on a RecordSet object, sorting by last name and
then first name using a custom sortByFirstAndLast() function:

#include "RecordSet.as"
var myRecordset_rs = new RecordSet(["First", "Last", "Email"]);
myRecordset_rs.addItem({First:"Tom", Last:"Muck"});
myRecordset_rs.addItem({First:"Jack", Last:"Splat"});
myRecordset_rs.addItem({First:"Bob", Last:"Splat"});
myRecordset_rs.addItem({First:"Biff", Last:"Splat"});

function sortByFirstAndLast(rec1, rec2) {
 if (rec1.Last < rec2.Last) return -1;
 if (rec1.Last > rec2.Last) return 1;
 if (rec1.First < rec2.First) return -1;
 if (rec1.First > rec2.First) return 1;
 return 0;
}

myRecordset_rs.sort(sortByFirstAndLast);
for (var i=0; i < myRecordset_rs.getLength(); i++)
 trace(myRecordset_rs.getItemAt(i).Last + ", " +
 myRecordset_rs.getItemAt(i).First);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this case, the records are sorted by last name and first name. If we want to sort by only one field,
we can use the sortItemsBy() method, which is about 10 times faster. After running the sort, the
items are now in this order:

Muck, Tom
Splat, Biff
Splat, Bob
Splat, Jack

See Also

RecordSet.filter(), RecordSet.sortItemsBy()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RecordSet.sortItemsBy() Method Flash 6

sorts a recordset by a field value

myRecordSet.sortItemsBy(fieldName, direction)

Arguments

fieldName

The field that you want to sort the RecordSet object by.
direction

The direction of the sort. "DESC" specifies a descending sort; anything else is ascending.

Description

The sortItemsBy() method sorts a recordset by a specified field. This creates great flexibility for how
you display your recordset. For example, a display might contain column headings that are clickable;
clicking the column heading could trigger the sortItemsBy() method.

The sortItemsBy() method is defined in the RsDataProviderClass class.

Example

The following code adds two rows to a recordset and then sorts the recordset by last name:

#include "RecordSet.as"
var myRecordset_rs = new RecordSet(["First", "Last", "Email"]);
myRecordset_rs.addItem({First:"Jack", Last:"Splat", Email:"jack@tom-muck.com"});
myRecordset_rs.addItem({First:"Tom", Last:"Muck", Email:"tom@tom-muck.com"});
myRecordset_rs.sortItemsBy("Last");

See Also

RecordSet.filter(), RecordSet.sort()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Part IV: Appendixes
The appendixes include details on datatype conversion between ActionScript and various server-
side languages, plus resources for further study on related topics. Appendix C details the
specification for the real-world application implemented in Chapter 14.

Appendix A

Appendix B

Appendix C

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Appendix A. ActionScript Datatype
Conversion
This appendix documents the conversion of native ActionScript datatypes to and from their nearest
server-side equivalent in ColdFusion, Java, C#, Visual Basic, and SOAP.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

A.1 ColdFusion Datatype Conversion

ActionScript 1.0 and CFML are both loosely typed languages. There is a close correlation between
ActionScript datatypes and ColdFusion datatypes, but there are a few notable differences. Table A-1
shows the conversion from Flash ActionScript to ColdFusion.

Table A-1. Flash-to-ColdFusion datatype conversion

Flash (ActionScript) ColdFusion (CFML)

ActionScript object Struct (or ASObject)

ActionScript object (as only argument) Named arguments

Array (indexed) Array

Associative Array Struct

Boolean Boolean

Date Object Date

Number Number

RecordSet -

String String

Undefined Null

XML Object XML document

Null Null

Table A-2 shows the conversion from ColdFusion to Flash ActionScript.

Table A-2. ColdFusion-to-Flash datatype conversion

ColdFusion (CFML) Flash (ActionScript)

Struct Associative array

Java object (flashgateway.IO.ASObject) ActionScript object

Java object (flashgateway.IO.ASObject with type property set) ActionScript object of that type

Array Array (indexed)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColdFusion (CFML) Flash (ActionScript)

Struct Array (associative)

Boolean String [1]

Date Date object

Number Number

Query object RecordSet

String String

XML document XML object

Null Null

[1] Booleans should be passed as numbers (1 or 0) from ColdFusion to Flash. A 1 will be passed as "true" to
Flash, and anything else will pass as "false". For that reason, ColdFusion Booleans are not accurately returned to
Flash.

[Team LiB]

Struct Array (associative)

Boolean String [1]

Date Date object

Number Number

Query object RecordSet

String String

XML document XML object

Null Null

[1] Booleans should be passed as numbers (1 or 0) from ColdFusion to Flash. A 1 will be passed as "true" to
Flash, and anything else will pass as "false". For that reason, ColdFusion Booleans are not accurately returned to
Flash.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

A.2 Java Datatype Conversion

Java, unlike ActionScript 1.0, is a typed language. The Flash gateway on the server takes care of the
datatype conversions back and forth between the Flash client and the Java server. Table A-3 shows
the conversion from Flash ActionScript to Java. Refer also to the ASTranslator library, as discussed in
Chapter 7. Chapter 7 also discusses intimate details of datatype conversion from ActionScript to Java
and vice versa.

Table A-3. Flash-to-Java datatype conversion

Flash (ActionScript) Java

ActionScript object flashgateway.IO.ASObject (implements java.util.map)

Array (indexed) ArrayList

Array (associative) java.util.map

Boolean Boolean

Date Object Date

Number Number

RecordSet -

String String

Undefined Null

XML Object org.w3c.dom document

Null Null

Table A-4 shows the conversion from Java to Flash ActionScript.

Table A-4. Java-to-Flash datatype conversion

Java Flash (ActionScript)

Struct Associative array

Java object (flashgateway.IO.ASObject) ActionScript object

Java object (flashgateway.IO.ASObject with type property set) ActionScript object of that type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java Flash (ActionScript)

Collection, Object[], array of primitive types Array (indexed)

java.util.map Array (associative)

Boolean Boolean

Date Date object

Number Number

disconnected RowSet[2] RecordSet

flashgateway.sql.PageableResultSet[2] pageable RecordSet

String String

org.w3c.dom document XML object

flashgateway.io.ASXMLString XML object

Null Null

[2] Only with Flash Remoting MX Updater 1 and later.

[Team LiB]

Collection, Object[], array of primitive types Array (indexed)

java.util.map Array (associative)

Boolean Boolean

Date Date object

Number Number

disconnected RowSet[2] RecordSet

flashgateway.sql.PageableResultSet[2] pageable RecordSet

String String

org.w3c.dom document XML object

flashgateway.io.ASXMLString XML object

Null Null

[2] Only with Flash Remoting MX Updater 1 and later.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

A.3 C# Datatype Conversion

Unlike ActionScript 1.0, C# is a typed language. The Flash gateway on the server takes care of the
datatype conversions back and forth between the Flash client and the ASP.NET server.

Table A-5 shows the conversion from Flash ActionScript to C#.

Table A-5. Flash-to-C# datatype conversion

Flash (ActionScript) C#

ActionScript object flashgateway.IO.ASObject (implements java.util.map)

Array (indexed) System.Collections.ArrayList

Array (associative) System.Collections.HashMap

Boolean System.Boolean

Date object System.DateTime

Number any numeric type

RecordSet -

String System.String

Undefined Null

XML object System.Xml.XmlDocument

Null Null

Table A-6 shows the conversion from C# to Flash ActionScript.

Table A-6. C#-to-Flash datatype conversion

C# Flash (ActionScript)

FlashGateway.IO.ASObject ActionScript Object

FlashGateway.IO.ASObject with type property set ActionScript Object of that type

System.Collections.ICollection, object[] Array (indexed)

System.Collections.HashTable, System.Collections.IDictionary Array (associative)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C# Flash (ActionScript)

System.Boolean, bool Boolean

System.DateTime Date object

Number Number

System.Data.DataSet Array of RecordSets

System.Data.DataTable RecordSet

System.String, System.Char String

System.Xml.XmlDocument XML Object

Null Null

[Team LiB]

System.Boolean, bool Boolean

System.DateTime Date object

Number Number

System.Data.DataSet Array of RecordSets

System.Data.DataTable RecordSet

System.String, System.Char String

System.Xml.XmlDocument XML Object

Null Null

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

A.4 Visual Basic Datatype Conversion

Like C#, Visual Basic is a typed language. C# and Visual Basic have a lot in common, but there are
many differences as well. The Flash gateway on the server takes care of the datatype conversions
back and forth between the Flash client and the ASP.NET server.

Table A-7 shows the conversion from Flash ActionScript to Visual Basic.

Table A-7. Flash-to-Visual Basic datatype conversion

Flash (ActionScript) Visual Basic

ActionScript object flashgateway.IO.ASObject (implements java.util.map)

Array (indexed) System.Collections.ArrayList

Array (associative) System.Collections.HashMap

Boolean Boolean

Date object Date

Number any numeric type

RecordSet -

String System.String

Undefined Nothing

XML Object System.Xml.XmlDocument

Null Nothing

Table A-8 shows the conversion from Visual Basic to Flash ActionScript.

Table A-8. Visual Basic-to-Flash datatype conversions

Visual Basic Flash (ActionScript)

FlashGateway.IO.ASObject ActionScript object

FlashGateway.IO.ASObject with type property set ActionScript object of that type

System.Collections.ICollection, object[] Array (indexed)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Basic Flash (ActionScript)

System.Collections.HashTable, System.Collections.IDictionary Array (associative)

Boolean Boolean

Date Date object

Number Number

System.Data.DataSet Array of RecordSets

System.Data.DataTable RecordSet

System.String, System.Char String

System.Xml.XmlDocument XML object

Nothing Null

[Team LiB]

System.Collections.HashTable, System.Collections.IDictionary Array (associative)

Boolean Boolean

Date Date object

Number Number

System.Data.DataSet Array of RecordSets

System.Data.DataTable RecordSet

System.String, System.Char String

System.Xml.XmlDocument XML object

Nothing Null

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

A.5 PHP Datatype Conversion

The conversion of datatypes between ActionScript and PHP is straightforward, as shown in Table A-9.

Table A-9. Flash-to-PHP datatype conversion

Flash (ActionScript) PHP

Null Null

Integer Integer

Float Double

String String

Array Array (associative)

Object Object

Recordset Resource[3]

[3] The only supported databases are MySQL, ODBC, and PostgreSQL.

The conversion of datatypes between PHP and ActionScript is shown in Table A-10. The one kind of
conversion that can be a bit confusing has to do with PHP arrays. Refer to "Datatype Conversions" in
Chapter 9 for details.

Table A-10. PHP-to-Flash datatype conversion

PHP Flash (ActionScript)

Null Null

Integer Integer

Double Float

String String

Array (indexed) Array

Array (associative) Object

Object Object

Resource[4] Recordset

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[4] The only supported databases are MySQL, ODBC, and PostgreSQL.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

A.6 SOAP Datatype Conversion

Web services are varied but have a core set of datatypes that are readily converted by the Flash
gateway. Table A-11 shows the datatype conversions from Flash ActionScript to SOAP.

Table A-11. Flash-to-SOAP datatype conversion

Flash
(ActionScript)

SOAP

ActionScript object complex type

Array (indexed) array

Array (associative) complex type

Boolean boolean

Date object dateTime

Number
decimal, float, double, integer, int (depending on what the number is most
readily converted to)

RecordSet query object[5]

String String

Undefined null

XML Object System.Xml.XmlDocument

Null null

[5] ColdFusion only.

Table A-12 shows the datatype conversions from SOAP to Flash ActionScript.

Table A-12. SOAP-to-Flash datatype conversion

SOAP Flash (ActionScript)

complex type ActionScript object

complex type ActionScript object of that type

array Array (indexed)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAP Flash (ActionScript)

complex type Array (associative)

Boolean Boolean

dateTime Date object

decimal, float, double, integer, int Number

complex type Array of RecordSets

query object[6] RecordSet

string String

System.Xml.XmlDocument XML object

nothing Null

[6] ColdFusion only.

[Team LiB]

complex type Array (associative)

Boolean Boolean

dateTime Date object

decimal, float, double, integer, int Number

complex type Array of RecordSets

query object[6] RecordSet

string String

System.Xml.XmlDocument XML object

nothing Null

[6] ColdFusion only.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Appendix B. Books and Online Resources
This book has covered a lot of ground, but there are a number of other resources out there that will
help you as you work with the various technologies that are part of Flash Remoting. Several books
and web sites are listed in this appendix.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

B.1 Flash Remoting Resources

Companion site for this book, with online examples and downloads (the Code Depot)

http://www.flash-remoting.com

B.1.1 Macromedia Resources

Link to the Macromedia site where the Flash Remoting components are available

http://www.macromedia.com/software/flashremoting/downloads/
Macromedia online forum for Flash Remoting using JRun

http://webforums.macromedia.com/jrun/categories.cfm?catid=252
Macromedia's developer center for Flash Remoting

http://www.macromedia.com/desdev/mx/flashremoting
Flash Remoting home page

http://www.macromedia.com/software/flashremoting
Newsgroup that corresponds to the Flash Remoting forum at Macromedia

news://forums.macromedia.com/macromedia.flash.flash_remoting
Online support forums at the Macromedia site for Flash Remoting

http://webforums.macromedia.com/flash/categories.cfm?catid=250
Updater for Flash Remoting components, and Remoting gateway for ASP.NET and Java

http://www.macromedia.com/support/flash_remoting/releasenotes/mx/releasenotes_updater.html
Documentation about integrating Java in ColdFusion applications (when registering ActionScript classes on the server)

http://livedocs.macromedia.com/cfmxdocs/Developing_ColdFusion_MX_Applications_with_CFML/Java.jsp
Documentation for Flash Remoting

http://livedocs.macromedia.com/frdocs/Using_Flash_Remoting_MX/contents.htm
Article on using Server-Side ActionScript in JRun 4

http://www.macromedia.com/support/flash/flashremoting/using_serverside_actions
Macromedia Flash Exchange

http://www.macromedia.com/cfusion/exchange/index.cfm?view=sn110
Best practice white papers and articles

http://www.macromedia.com/devnet/mx/blueprint/articles/flashbp.html

http://www.macromedia.com/devnet/mx/flashremoting/white_papers.html

http://www.flash-remoting.com
http://www.macromedia.com/software/flashremoting/downloads/
http://webforums.macromedia.com/jrun/categories.cfm?catid=252
http://www.macromedia.com/desdev/mx/flashremoting
http://www.macromedia.com/software/flashremoting
http://webforums.macromedia.com/flash/categories.cfm?catid=250
http://www.macromedia.com/support/flash_remoting/releasenotes/mx/releasenotes_updater.html
http://livedocs.macromedia.com/cfmxdocs/Developing_ColdFusion_MX_Applications_with_CFML/Java.jsp
http://livedocs.macromedia.com/frdocs/Using_Flash_Remoting_MX/contents.htm
http://www.macromedia.com/support/flash/flashremoting/using_serverside_actions
http://www.macromedia.com/cfusion/exchange/index.cfm?view=sn110
http://www.macromedia.com/devnet/mx/blueprint/articles/flashbp.html
http://www.macromedia.com/devnet/mx/flashremoting/white_papers.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.1.2 Open Source Flash Remoting Projects

FLAP, an open source project adding Flash Remoting to Perl

http://www.simonf.com/flap
AMFPHP, an open source project for Flash Remoting using PHP-based servers

http://www.amfphp.org
OpenAMF, an open source project for Flash Remoting using Java

http://www.openamf.org

B.1.3 Articles, Blogs, and Utilities

Andrew Muller has posted some good Flash Remoting tutorials in the Tips and Tricks section

http://www.daemon.com.au/index.cfm?objectid=615224B1-D0B7-4CD6-F9ED2333AA0EB068
Blog from the Flash Community Manager, Mike Chambers

http://www.macromedia.com/go/blog_mchambers
Connecting to the Amazon.com web service using ASP.NET

http://www.oreillynet.com/pub/a/javascript/2003/01/09/flash.html
Documentation for the <cflogin> tag

http://livedocs.macromedia.com/cfmxdocs/Developing_ColdFusion_MX_Applications_with_CFML/appSecurity.jsp
Good article on Flash Remoting for J2EE, including details on datatypes

http://www.onjava.com/pub/a/onjava/2003/02/26/flash_remoting.html
Interesting weblog that deals with Java issues in Flash Remoting

http://radio.weblogs.com/0113514/
The ASTranslator utility, which aids in transferring Java objects to ActionScript

http://carbonfive.sourceforge.net/astranslator

[Team LiB]

http://www.simonf.com/flap
http://www.amfphp.org
http://www.openamf.org
http://www.daemon.com.au/index.cfm?objectid=615224B1-D0B7-4CD6-F9ED2333AA0EB068
http://www.macromedia.com/go/blog_mchambers
http://www.oreillynet.com/pub/a/javascript/2003/01/09/flash.html
http://livedocs.macromedia.com/cfmxdocs/Developing_ColdFusion_MX_Applications_with_CFML/appSecurity.jsp
http://www.onjava.com/pub/a/onjava/2003/02/26/flash_remoting.html
http://radio.weblogs.com/0113514/
http://carbonfive.sourceforge.net/astranslator
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

B.2 Flash and ActionScript Resources

B.2.1 Books

ActionScript for Flash MX: The Definitive Guide, Second Edition

by Colin Moock (O'Reilly)
ActionScript Cookbook

by Joey Lott (O'Reilly)
Object-Oriented Programming with ActionScript

by Branden Hall and Samuel Wan (New Riders)

B.2.2 Links

Branden Hall's blog on ActionScript, Flash MX, and related stuff

http://www.waxpraxis.org
A community of developers focused on the MX family of products, including Flash

http://www.communitymx.com
Tutorials and more

http://www.flashguru.co.uk
Great place for Flash components

http://www.flashcomponents.net
Tutorial on building your own component

http://www.flashcomponents.net/tutorials/triangle/triangle.html
More component tutorials

http://www.macromedia.com/devnet/flashmx

[Team LiB]

http://www.waxpraxis.org
http://www.communitymx.com
http://www.flashguru.co.uk
http://www.flashcomponents.net
http://www.flashcomponents.net/tutorials/triangle/triangle.html
http://www.macromedia.com/devnet/flashmx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

B.3 Other Books of Interest

B.3.1 Dreamweaver

Dreamweaver MX: The Complete Reference

by Ray West and Tom Muck (McGraw-Hill Osborne Media)
Dreamweaver MX: The Missing Manual

by David McFarland (Pogue Press/O'Reilly)

B.3.2 ASP.NET

Programming ASP.NET

by Dan Hurwitz and Jesse Liberty (O'Reilly)
ASP.NET in a Nutshell, Second Edition

by G. Andrew Duthie and Matthew MacDonald (O'Reilly)
Programming C#, Third Edition

by Jesse Liberty (O'Reilly)
Programming Visual Basic .NET, Second Edition

by Dave Grundgeiger (O'Reilly)

B.3.3 Java

Head First Java

by Kathy Sierra and Bert Bates (O'Reilly)
Learning Java, Second Edition

by Patrick Niemeyer and Jonathan Knudsen (O'Reilly)
Java in a Nutshell, Fourth Edition

by David Flanagan (O'Reilly)
Database Programming with JDBC and Java, Second Edition

by George Reese (O'Reilly)
Java Web Services

by David Chappell and Tyler Jewell (O'Reilly)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java Servlet Programming, Second Edition

by Jason Hunter with William Crawford (O'Reilly)
JavaServer Pages, Second Edition

by Hans Bergsten (O'Reilly)

B.3.4 ColdFusion

Programming ColdFusion MX

by Rob Brooks-Bilson (O'Reilly)
Macromedia ColdFusion MX: Web Application Construction Kit

by Ben Forta, Nate Weiss, Leon Chalnick, and Angela Buraglia (Peachpit Press)

B.3.5 Web Services

Programming Web Services with SOAP

by Pavel Kulchenko, James Snell, and Doug Tidwell (O'Reilly)
Web Services Essentials

by Ethan Cerami (O'Reilly)

B.3.6 SQL

SQL in a Nutshell

by Kevin Kline (O'Reilly)
Transact-SQL Cookbook

by Jonathan Gennick and Ales Spetic (O'Reilly)
Sams Teach Yourself SQL in 10 Minutes

by Ben Forta (Sams Publishing)

B.3.7 XML

XML in a Nutshell, Second Edition

by Elliotte Rusty Harold and W. Scott Means (O'Reilly)

B.3.8 PHP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming PHP

by Rasmus Lerdorf and Kevin Tatroe (O'Reilly)
Web Database Applications with PHP & MySQL

by David Lane and Hugh E. Williams (O'Reilly)

B.3.9 Other Technologies

JavaScript: The Definitive Guide, Second Edition

by David Flanagan (O'Reilly)
Mastering Regular Expressions, Fourth Edition

by Jeffrey E. F. Friedl (O'Reilly)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

B.4 Other Links of Interest

B.4.1 ASP.NET

Microsoft's main ASP.NET site, including downloads for the Web Matrix tool

http://www.asp.net
O'Reilly's site for all things .NET

http://dotnet.oreilly.com
Respected site for ASP and ASP.NET developers

http://www.4guysfromrolla.com
Basics and more

http://www.asp101.com
Microsoft's developer site

http://msdn.microsoft.com

B.4.2 ColdFusion

Macromedia's developer site

http://www.macromedia.com/devnet
Publishers of ColdFusion Developer's Journal

http://www.sys-con.com/coldfusion
Community site full of tutorials and other content

http://www.communitymx.com

B.4.3 XML

O'Reilly's XML site

http://xml.oreilly.com

B.4.4 Web Services

O'Reilly's site for web services and SOAP

http://www.asp.net
http://dotnet.oreilly.com
http://www.4guysfromrolla.com
http://www.asp101.com
http://msdn.microsoft.com
http://www.macromedia.com/devnet
http://www.sys-con.com/coldfusion
http://www.communitymx.com
http://xml.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://webservices.oreilly.com

B.4.5 PHP

Main PHP site, with downloads and documentation

http://www.php.net/
PHP tutorials and articles

http://www.phpbuilder.com

B.4.6 Java

Main Java site with Java downloads and information

http://java.sun.com
Sun's online documentation and tutorial

http://java.sun.com/docs/books/tutorial
O'Reilly's Java site

http://java.oreilly.com

B.4.7 Database Links

Microsoft SQL Server home page

http://www.microsoft.com/sql
Home page for Oracle's line of database products

http://www.oracle.com/ip/deploy/database/index.html
Official home page for MySQL

http://www.mysql.com/
Home page for PostgreSQL

http://www.postgresql.org/index.html
IBM DB2 information

http://www-4.ibm.com/software/data/db2

B.4.8 Other Technologies

Information on the Rhino parser, the basis of Server-Side ActionScript

http://www.mozilla.org/rhino

http://webservices.oreilly.com
http://www.php.net/
http://www.phpbuilder.com
http://java.sun.com
http://java.sun.com/docs/books/tutorial
http://java.oreilly.com
http://www.microsoft.com/sql
http://www.oracle.com/ip/deploy/database/index.html
http://www.mysql.com/
http://www.postgresql.org/index.html
http://www-4.ibm.com/software/data/db2
http://www.mozilla.org/rhino
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Appendix C. Specification and
Implementation for a Real-World
Application
This appendix includes details of the user interface specification and implementation of the real-world
script repository application demonstrated in Chapter 14. It is instructive insofar as it shows how you
might specify your application for the UI designer. It also shows how a good UI designer can improve
the specification based on appropriate considerations and then implement it accordingly. Notes from
the designer are shown in italics.

Screens

The application is a Script Repository that allows users to paste scripts into a text field and
stores them in a central repository database. Users can download scripts, and registered users
can add scripts to the database.

The UI should be one screen, with subscreens that pop up depending on the activity of the user.
For example, if a user clicks Login, he is presented with a dialog box with a Submit button that
asks for his username and password. If a user clicks Register, he is presented with a
registration box.

The Flash movie size should be about 800 x 600 so that it fills the entire browser window.

1.

Main

The main screen should always be in view and show all options available.

The main screen is composed of two sections: the main area, where all the screens appear and
which occupies 90% of the screen, and the navigation bar, at the bottom of the screen. The
navigation bar is composed of an administrative section (on the left) and a main navigation
section (which automatically disappears when not in use). When the application loads, the main
navigation section appears for one second to catch user's attention.

All the buttons (both in the content section and navigation) are displayed on a black
background so they can be distinguished with ease.

The whole application is made with vector graphics so that it can be easily scaled to any
dimensions.

2.

Login

(y pos: 1635 px) (y pos indicates position of movie clip symbol off stage; see designer notes at
end of this appendix.)

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Allows a user to log in.

The Login screen should have the following components and fields, or equivalents:
username_txt, password_txt, login_btn

A fake login routine has been implemented. To activate the grayed-out buttons on the main
navigation, you first have to log in on the login section.

Register

(y pos: 2180 px)

Allows a new user to register, with personal information and username/password combination.

The registration screen should have the following components and fields, or equivalents:
firstname_txt, lastname_txt, email_txt, username_txt, password_txt,
passwordconfirm_txt, hintquestion_txt, hintanswer_txt, register_btn.

4.

Failed login

A simple message box that alerts a user if the login failed.

Implemented as custom message box.

5.

Failed registration

A simple message box that alerts a user if the registration failed (username exists, etc.).

Implemented as custom message box.

6.

About box

(y pos: 3270 px)

A simple screen that displays information about the company. The About screen should have the
following components and fields, or equivalents:

Company Name: aboutname_txt (single line)

Company Description: aboutdesc_txt (multiline)

7.

View Scripts

(y pos: 0 px)

A simple listing of scripts in a Tree component to allow all users to view the scripts available and
drill down to a View Script page for a particular script. The View Scripts screen should have the
following components and fields, or equivalents: search_txt, search_btn, scripttree_tree

(Tree component).

8.

View Script

(merged with previous item, "View Scripts")

9.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A page with details of an individual script. This also contains a link to allow a script to be
downloaded and a send-to-a-friend link to send this detail page link to an email address. The
View Script screen should have the following components and fields, or equivalents:

Name of the script: scriptname_txt (single line)

Description: scriptdesc_txt (multiline) + scriptdesc_sb (added ScrollBar component)

Code: scriptcode_txt (multiline) + scriptcode_sb (added ScrollBar component)

Language: scriptlanguage_cb (ComboBox component)

Category: scriptcategory_cb (ComboBox component)

Date uploaded: scriptdateuploaded_txt (single line)

Date modified: scriptdatemodified_txt (single line)

Version number: scriptversion_txt (single line)

Author of script: scriptuser_cb (ComboBox component)

Download button: scriptdownload_btn

9.

Send to a friend

(merged with previous item, "View Script")

Simple form to allow a user to send a View Script page to a friend. The Send to a friend screen
should have the following components and fields, or equivalents:

Script URL: sendurl_txt (Not implemented visually; should be hidden)

Script Name: sendname_txt (Not implemented visually; should be hidden)

Send to: sendto_txt

Send button: send_btn

10.

Upload Script

(y pos: 545 px)

A blank form to allow a registered user to upload a script to the database. Interface can be
identical to the View Script interface, however all fields should allow user input.

Upload button: scriptupload_btn

Note: User must be logged-in to see this page; therefore, the "Author of script" field from the
View Script screen should be hidden on the Upload screen and has not been enclosed as
dynamic field.

11.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Modify Script

(y pos: 1090 px)

A form that mimics the Upload Script form that is pre-filled in with information about a script
that needs to be updated.

Drop-down list of scripts: scriptname_cb (ComboBox component)

Modify button: scriptmodify_btn

Note: User must be logged to see this page; therefore, the "Author of script" field should be
hidden and has not been enclosed as dynamic field.

12.

Contact Form

(y pos: 2725 px)

Allow a user to contact the site administrator. The Contact form screen should have the
following components and fields, or equivalents:

Message to send: message_txt

Submit button: contact_btn

13.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

C.1 Notes from the Designer

A fake login routine has been implemented. To activate the grayed-out buttons on the main
navigation, you first have to log in on the login section.

All the content's movie clips are contained on the Library's content_main_mc symbol. If you need to

change their instance names, first move them onto the visible area and, once renamed, move them
again to their original position (all the positions are indicated on this document near the name of the
section). If the Property inspector won't accept those pixel values, you should use the keyboard to
return the movie clips to their original positions.

The following are the hexadecimal values of the tints used on the application:

EEFDE1

D9EFB4

8BB60A

618901

They have been added as swatches to the .fla source file and can be accessed from the Color
Swatches panel.

The fonts used in the movie are the following:

URW++ Neuzeit Grotesk T Regular

URW++ Neuzeit Grotesk T Black

http://www.myfonts.com/fonts/urw/neuzeit-grotesk/

Note that all fonts have been embedded due to large use of masks (MM technote:
http://www.macromedia.com/support/flash/ts/documents/maskprintembed.htm)

The following Flash components are used on the application:

Tree-Flash UI Components Set 2

ScrollBar-Flash UI Components Set 1

ComboBox-Flash UI Components Set 1

[Team LiB]

http://www.myfonts.com/fonts/urw/neuzeit-grotesk/
http://www.macromedia.com/support/flash/ts/documents/maskprintembed.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal featured on the cover of Flash Remoting: The Definitive Guide is a cuttlefish. Cuttlefish
(Sepia officinalis) are commonly found in the eastern Atlantic from England to North Africa and
throughout the Mediterranean Sea. This soft-bodied marine creature belongs to the Cephalopoda
class and, like all cephalopods, has a large head ringed by arms. Cuttlefish have eight arms, plus two
long tentacles with suckers on their ends. Cuttlefish are usually about a foot long, and they move
through the water by rippling a skirt of fins. They are sometimes called the chameleons of the sea
because they can easily change their striped skin color to hide from predators or communicate with
other cuttlefish.

In addition to the camouflage offered by their ability to change color, threatened cuttlefish use ink to
defend themselves. Their ink glands produce a foul-smelling dark brown ink that distracts enemies
such as sharks, larger fish, and even other cuttlefish. They can then fill the ink funnel with water,
expel it, and propel themselves to safety. Cuttlefish ink (also called sepia) was once used to color
photographs; however, they are no longer fished for this purpose, and cuttlefish caught in trawl nets
usually wind up on a dinner table.

Cuttlefish are also well-known for the one bone in their body, called the cuttlebone. This bone is
made up of porous calcium carbonate that allows the cuttlefish to control its buoyancy by changing
the proportions of liquid to air within chambers of the bone. Cuttlebones often wash ashore and are
the only remains of a cuttlefish after its death. These bones are often sold as bill-sharpeners for
captive birds or are ground up and offered as a source of calcium for other pets.

Genevieve d'Entremont was the production editor for Flash Remoting: The Definitive Guide. Brian
Sawyer proofread the book. Emily Quill and Claire Cloutier provided quality control. Mary Agner,
Jamie Peppard, and James Quill provided production assistance. Octal Publishing, Inc. wrote the
index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from Cuvier's Animals. Emma Colby produced the cover layout
with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Andrew Savikas and Julie
Hawks to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil
Walls, and Mike Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the
heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed.
The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by
Christopher Bing. This colophon was written by Philip Dangler.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

<cfargument> tag

<cfcomponent> tag

<cffunction> tag

<cfhttp> tag

<cflogin> tag

<cfloginuser> tag

<cflogout> tag

<Default Para Font>custom classes

 ASObject

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Access databases

Action menu (Flash Remoting), installing

Action Message Format [See AMF]

ActionScript code

 C# datatype conversion

 callback functions

 client-side 2nd 3rd

 ColdFusion MX datatype conversion

 debugging

 hints

 Java

 converting from

 converting to

 datatype conversion

 PHP

 datatype conversion

 resources

 server-side

 servlet services

 SOAP datatype conversion

 SSAS

 CF object

 CF.query() method

 datatype conversions

 extending with Java

 overview of

 services

 try/catch/finally() construct

 text fields

 Visual Basic datatype conversion

ActionScript datatypes

ActionScript programmers

adapters [See gateways]

adding validation to text fields

ADO.NET

 databases

 XML

AdvancedMessageBox component 2nd

AMF (Action Message Format)

AMFPHP

 classes

 installing 2nd

 web services

 applying with

 configuring for

API (application programming interface)

 entry headings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

applications

 ASP.NET support

 code

 managing

 modules 2nd

 project requirements

 project specifications

 ColdFusion

 databinding

 debugging 2nd

 trapping errors

 error handling

 errors

 event-driven

 Flash

 ColdFusion MX

 invoking ColdFusion pages

 Flash Remoting

 AMF

 authoring tools

 components

 gateways 2nd

 requirements

 tools

 functionality

 Java

 architecture

 platforms

 saving state

 optimizing

 PEAR

 PHP

 processes

 scripts

 server-proofing

 session management

 trace debugging

applying

 NetConnection Debugger

 OOP

 timeout arguments

architecture

 Flash Player/Flash Remoting

 Java

 service authentication

 SOA

arguments 2nd

 accessing 2nd

 CF.query() method

 Flash Remoting

 named

 sql

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 timeout

ArrayDataProvider class

arrays

 AMF

 binding

 literals, initializing with

 .NET

 receiving

 sending

 passing

 PHP

 web services

articles

ASBroadcaster class

ascending sorts

ASObject

ASP.NET

 code behind

 connecting

 datatype conversion

 debugging

 implementing

 installing

 objects registration

 recordsets

 resources 2nd

 server-side code

 servers

 state management

 Web Matrix

 web services 2nd

assemblies

 .NET

 referencing

associative arrays

ASType property

attributes

 FLASH.PARAMS

 FLASH.RESULT

authentication

 ColdFusion MX

 homegrown systems

 services

 tags

 user

Authenticator.login() method

authoring environments

 Flash

 Flash Remoting

authoring tools

 Text Tools

automatic conversion [See also conversion]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 between Java and ActionScript objects

automatic validation, ColdFusion MX

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

BabelFish web services

best practices

 API

 caching

 ColdFusion recordsets

 components

 loops

 OOP

 separation of functionality

 server-proofing applications

 team environments

bin directory

binary POST

binding [See also databinding]

 arrays

 data to interface controls

 UI components

blocks

 code

 try/catch 2nd

blogs

bottlenecks

broadcasters 2nd

browsers [See interfaces]

building interfaces 2nd

built-in variables, Flash scope

Business Delegates

business logic

 connecting

business services, SOA

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

C#

 datatype conversion

 proxies for web services

caching

 queries

Calendar component

Call Stack (Flash ActionScript Debugger)

callback functions

 creating

 OOP

 searching

calling

 getService() method

 NetConnection.getService() method

 services

calls

 client testing

 debugging

 Flash Remoting

 creating callback functions

 creating connections

 creating service objects

 initializing variables

 responses

 server-side code

 responder functions

catching errors

Categories tables 2nd

CF.http() method

CF.query() method, JRun 4

CFCs (ColdFusion Components)

 comparing to ColdFusion pages

 Flash Remoting Services as

 introspection

 invoking

 organizing

 role-based security

 sending email

 structure of

 wrapping Java classes

CFML (ColdFusion Markup Language)

charset property

charts, gluing

CheckBox component

checked exceptions

classes

 ArrayDataProvider

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ASBroadcaster

 DataGlue 2nd

 DataProviderClass

 FUIComponent

 Java

 invoking service methods

 services

 wrapping

 libraries

 LoadVars

 NetConnection

 NetDebug

 NetServiceProxy

 NetServiceProxyResponder

 NetServices

 PHP

 RecordSet 2nd 3rd 4th

 optimizing interactivity

 TextField

classloaders

 installing

client-side ActionScript code 2nd 3rd

client-side code databases

client-side recordsets

client-side security implementation, ColdFusion MX

clients

 AMFPHP

 calls

 EJB services

 pageable recordsets

 separation of functionality

code

 ActionScript

 blocks

 C#, proxies for web services

 code behind (ASP.NET)

 completion

 consistency

 debugging

 editors

 hints

 managing

 modularity

 modules

 structure

 OOP/procedural programming

 PHP

 project requirements

 project specifications

 re-use

 server-side

 Flash Remoting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 testing

 speed of

 SQL

 user interfaces

ColdFusion Components [See CFCs]

ColdFusion Markup Language (CFML)

ColdFusion MX 2nd

 CF object

 components [See components]

 datatype conversion

 debugging

 Flash applications

 Variable scope

 installing

 objects registration

 overview of

 pages

 platforms

 queries

 RecordSet class

 recordsets

 resources 2nd

 security, user authentication

 Server Developer Edition

 Server Enterprise Edition

 Server Professional Edition

 server-side code 2nd

 service name mappings

 web services

collisions, naming services

ComboBox component 2nd

ComboBoxes

 methods, optimizing with

 values

 defaults

 selecting in

comments, Flash Remoting

communication

 between Flash and ColdFusion

 Flash Player

Compatibility Analyzer (ColdFusion MX Server)

compiling assemblies

completion, code

complex datatypes

 .NET

 receiving from

 sending to

 web services, passing

components

 AdvancedMessageBox 2nd

 best practices

 Calendar

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Checkbox

 ColdFusion [See CFCs]

 ComboBox

 optimizing

 DataGrid

 gluing

 DraggablePane

 Dynamic Chart Components

 Flash Remoting

 installing

 IconButton

 ListBox

 LoadingBox

 MessageBox 2nd

 metadata

 PHP

 ProgressBar

 PromptBox

 PushButton

 RadioButton

 ScrollBar

 ScrollPane

 speed of

 SplitView

 Ticker

 Tooltip

 Tree

 UI [See UI components]

configuration

 Actions menu

 AMFPHP

 current records

 databases 2nd

 directories

 Flash MX extensions

 J2EE Application server

 ListBoxes

 log levels

 Property inspector

 proxies, remote services

 RecordSet objects

 responder functions

 service objects

connections

 ASP.NET

 assemblies

 creating

 datasource names

 DCK

 debugging

 errors

 Flash, AMFPHP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 gateways

 NetConnection class [See NetConnection class]

 troubleshooting

consistency, code

constructors, RecordSet objects

constructs, try/catch/finally

container-managed security

controls

 interfaces, binding data to

 optimizing

 servers, connecting ASP.NET

conventions, naming

conversion

 connected ResultSet <Default Para Font)objects to disconnected>

 custom classes

 datatypes

 ASP.NET

 C#

 ColdFusion MX 2nd

 Java 2nd

 PHP 2nd

 SOAP

 SSAS

 Visual Basic

 web services

cookies, requests

credentials [See authentication]

current records

 configuring

 functionality

custom classes

 declaring

custom responder objects

customization of exception objects

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Data Connection Kit (DCK)

data loading

databases

 ADO.NET 2nd

 Categories table

 creating

 errors 2nd

 Flash Remoting

 modifying

 PHP

 programmers

 queries

 resources

 results

 modifying

 retrieving

 scripts

databinding

DataGlue class 2nd

 UI components

DataGlue object

DataGlue.bindFormatFunction() method

DataGlue.bindFormatStrings() method

DataGrid component

 gluing

DataProviderClass class

datasource names

datatypes

 ASP.NET, converting

 ColdFusion MX, converting

 complex, passing to/from web services

 converting

 C#

 ColdFusion MX

 Java

 PHP 2nd

 SOAP

 Visual Basic

 web services

 Java, converting

 SSAS, converting

DCK (Data Connection Kit)

debugging 2nd 3rd

 applications

 trapping errors

 ASP.NET

 ColdFusion MX

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 connections

 Flash ActionScript Debugger

 Java

 method calls

 NetConnection class

 NetConnection Debugger 2nd

 NetDebug.as file

 server-side code

 SQL

 SSAS

 swf decompilers

 trace

 VS.NET

declaration of custom classes

decompilers, swf

defaults, values in ComboBoxes

defining

 method tables

 server-side services

delegation

deleting

 data from databases

 files

 results

deployment

descending sorts

design

 Java

 MVC

designers

detection, trapping server-side errors

Developer Resource Kits [See DRK]

development

 Flash Remoting

 Action menu

 installation options

 tools

 RDS

directories

 bin

 creating

 Flash Remoting

 JNDI

 lists

 services

disconnections, objects

dispatches, response hierarchies

documentation

 ColdFusion MX

 WSDL

DraggablePane component

Dreamweaver MX

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 resources

 skeleton code

DRK (Developer Resource Kits)

 DataGrid control

 UI Components Set 3

Dynamic Chart Components, gluing

dynamic text fields

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

editors

 code

 .NET

EJBs (Enterprise JavaBeans)

 methods

 services

elements, Flash variable scope

email

 retrieving

 sending

 ColdFusion components

 SSAS

Enterprise JavaBeans [See EJBs]

entry headings, API

errors [See also troubleshooting]

 catching

 databases

 .NET

 SSAS

 system

 trapping

 trapping server-side

 types of

event-driven applications

events, AMF packets

exceptions

 checked

 custom objects

 Flash

 Java service methods

execution, code 2nd

Extensible Markup Language [See XML]

extensions

 Flash MX

 Flash Remoting

 JMX

 objects

 PEAR

 SSAS with Java

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

feature creep

fetchall mode

fields

 text 2nd

file systems errors

filecontent property

files [See also SSAS]

 deleting

 moving

 renaming

 SSAS

firstRow property

Flash

 AMFPHP

 applications (ColdFusion MX) 2nd

 authoring environments

 databinding

 datatype conversion

 exceptions

 page size

 PHP

 RecordSet class

 resources

 timeline

 UI components

 variable scope

Flash ActionScript Debugger

Flash Charting Controls

Flash Exchange

Flash MX

 extensions, creating

 forms, building

 user interface code

Flash Player

 AMF

 communication

 gateways

 NetConnection class

Flash Remoting

 AMF

 API entry headings

 authoring environments

 benefits of

 calls

 creating callback functions

 creating connections

 creating service objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 initializing variables

 responses

 server-side code

 code

 editors

 error handling

 gateways 2nd

 installing

 Action menu

 ASP.NET

 ColdFusion MX

 Components

 J2EE-compatible servers

 Java

 JRun 4

 options

 PHP with AMFPHP

 tools

 windows

 NetConnection class [See NetConnection class]

 OOP

 platforms

 ColdFusion MX

 J2EE application servers

 Java servlet engines

 JRun 4

 Microsoft ASP.NET servers

 programmers

 RecordSet class [See RecordSet class]

 requirements

 authoring tools

 components

 gateways

 resources

 services

 as ColdFusion components

 creating directories

 naming

 references

 session management

 testing

 web services

Flash.Pagesize variable

Flash.Params attribute

Flash.Result attribute

FlashGatekeeper

formatting

 databases 2nd

 directories

 dynamic text fields

 Flash MX extensions

 ListBoxes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 proxy remote services

 RecordSet objects

 responder functions

 service objects

forms, building

FUIComponentClass class

functionality

 current records

 implementing

 MVC

 separation of

 SOA

functions

 callback 2nd 3rd

 searching

 Flash Remoting

 GetAuthUser()

 IsUserInRole("role")

 naming

 onResult()

 onStatus()

 responder

 services

 tags

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

gateways 2nd

 AMFPHP

 connections

 Flash Remoting

 AMF

 components

 installation

 Java

 OpenAMF

 services

 invoking methods

 searching

general public users

GetAuthUser() function

getService() method 2nd 3rd

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

harnesses, test

headers

 AMF

 properties

headings, entry (API)

Help menu

hidden items, viewing

hierarchies, response dispatch

highlighting syntax

hints, code

homegrown authentication systems

homegrown security systems

HomeSite+

hot-deployment technology

HTML (Hypertext Markup Language)

 benefits of Flash Remoting

 developers

HTTP (Hypertext Transfer Protocol)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

IconButton component

icons, creating ListBoxes with

identifiers, service gateways

identifying services

implementation

 ASP.NET

 code behind

 caching

 client-side ActionScript code

 client-side security (ColdFusion MX)

 databases, connecting

 functionality

 Java

 class services

 EJB

 JMX

 servlets

 OOP

 pageable recordsets

 to clients

 to servers

 ScriptService service

 server-side services

 SiteService service

 UserService service

incrementally loaded data, managing

InitialContext object

initialization of array literals

input text fields

inserting

 data in databases

 records

 results

installation

 AMFPHP

 classloaders

 Flash Remoting

 Action menu

 ASP.NET

 ColdFusion MX

 components 2nd

 gateways

 J2EE-compatible servers

 Java

 JRun 4

 options

 PHP with AMFPHP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 tools

 windows

 PHP

 AMFPHP

 Tomcat

installers

Instance name, configuring

integration

 databinding

 UDDI 2nd

interactivity, RecordSet class

interfaces

 API

 entry headings

 building

 code

 ColdFusion MX, loading query data incrementally

 components [See UI components]

 components, best practices

 controls

 binding data to

 optimizing

 databases, accessing

 Flash Remoting

 gateways

 JNDI

 objects, building

 specification

 text fields

 UI Components Set 3

introspection

 ColdFusion components

 JavaBean

invoking

 ColdFusion

 components 2nd

 from Flash

 Java service methods

 JavaBean services

 methods, EJB services

 servlet services

IsUserInRole("role") function

items

 sorting

 viewing

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

J2EE Application server

 ColdFusion MX

 configuring

 recordsets

 server-side code

 web services

J2EE-compatible servers, installing

Java

 application platforms

 architecture

 class wrapping

 databinding

 datatype conversion 2nd

 debugging

 Flash Remoting gateways

 logging

 objects

 registering

 OpenAMF

 requests

 resources

 security

 services

 classes

 EJB

 invoking methods

 JavaBean

 JMX

 lookup

 servlets

 SSAS

 session

 SSAS, extending with

 state, saving

Java Management extensions (JMX)

Java Naming and Directory Interface (JNDI)

Java requests/sessions

Java servlet engines

JavaBeans

 introspection, converting using

 services

 methods

 saving session state

JMX (Java Management Extensions)

JNDI (Java Naming and Directory Interface)

JRun 4

 CF.query() method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Flash Remoting

 installing

 recordsets

 web services

JRunRecordset object

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

languages

 Flash Remoting

 PHP

 WSDL 2nd

Languages table

lastRow property

libraries, classes

limitations of Flash Remoting

Linux, installing Flash Remoting

ListBox component

lists, retrieving directories from servers

ListsBoxes, creating

literals, initializing arrays

loading

 data

 query data incrementally (ColdFusion MX)

LoadingBox component

LoadVars class

local copy of application servers

Locals window (Flash ActionScript Debugger)

logical errors

LoginServletService.service() method

logs

 Java

 servers 2nd

lookup services

 Java

loops, troubleshooting

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Macintosh, installing ColdFusion MX

Macromedia resources

managed bean (MBean)

management

 code

 modules 2nd

 project requirements

 project specifications

 ColdFusion Components

 Flash Remoting

 benefits of

 session

 incrementally loaded data

 JMX

 state (ASP.NET)

mapping service names (ColdFusion MX)

MBean (managed bean)

 invoking

mechanisms, test

memory, saving state

menus

 Action

 Help

MessageBox component 2nd

metadata components

methods

 accessing

 Add()

 Authenticator.login()

 callback

 calls

 CF.http()

 CF.query() 2nd

 ComboBoxes, optimizing with

 DataGlue.bindFormatFunction()

 DataGlue.bindFormatStrings()

 displayList()

 EJB services, invoking

 getContact()

 getDirectory()

 getLoggedInUser()

 getSearchResult()

 getService() 2nd 3rd

 getTemp()

 getTwoOfTheSame()

 glue()

 InsertBook

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 isUserLoggedIn()

 listFiles()

 LoginServletService.service

 mirroring

 move()

 NetConnection.addHeader()

 NetConnection.call()

 NetConnection.clone()

 NetConnection.close()

 NetConnection.connect()

 NetConnection.getDebugConfig()

 NetConnection.getDebugID()

 NetConnection.getService() 2nd

 NetConnection.ReplaceGatewayUrl()

 NetConnection.RequestPersistentHeader()

 NetConnection.setCredentials() 2nd

 NetConnection.setDebugId()

 NetConnection.trace()

 NetDebug.trace()

 NetDebugConfig.getDebug()

 NetDebugConfig.setDebug()

 NetServices.createGatewayConnection() 2nd 3rd

 NetServices.getVersion()

 NetServices.setDefaultGateway()

 Object.registerClass() 2nd

 onResult() responder functions 2nd

 onStatus() responder functions

 pickLabel()

 pickValue()

 recordChanged()

 RecordSet.addItem() 2nd

 RecordSet.addItemAt() 2nd

 RecordSet.addView() 2nd

 RecordSet.filter() 2nd

 RecordSet.getColumnNames() 2nd

 RecordSet.getItemAt() 2nd

 RecordSet.getItemID() 2nd

 RecordSet.getLength() 2nd 3rd

 RecordSet.getNumberAvailable() 2nd

 RecordSet.isFullyPopulated()

 RecordSet.isLocal()

 RecordSet.removeAll() 2nd

 RecordSet.removeItemAt() 2nd

 RecordSet.replaceItemAt() 2nd

 RecordSet.setDeliveryMode() 2nd

 RecordSet.setField() 2nd

 RecordSet.sort()

 RecordSet.sortItemsBy() 2nd

 SayHelloWorld()

 service()

 ServiceFlashServlet.service()

 services, invoking Java

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 setCredentials()

 setCurrentRecord()

 setDefault()

 setDescriptor()

 setValidationType()

 tables, defining

 updateProducts()

 validate()

Microsoft .NET server

Microsoft ASP.NET servers

Microsoft SQL Server databases

migration of ODBC

mimetype property

mirroring methods

Model/View/Controller (MVC)

modeling

modification of PHP gateways

modularity

modules

 structure

moving files

multi-record datatypes

multiline text, formatting

multiple text lines, formatting

MVC (Model/View/Controller)

MySQL databases 2nd

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

named parameters, passing data

named responder functions

naming

 conventions

 datasources

 functions

 JNDI

 objects

 services

native array objects

native array objects, accessing

native types

.NET

 arrays

 receiving

 sending

 assemblies

 connecting

 implementing database connections

 complex datatypes

 receiving from

 sending to

 editors

NetConnection class

NetConnection Debugger 2nd

NetConnection object 2nd

 methods

NetConnection.addHeader() method

NetConnection.call() method

NetConnection.clone() method

NetConnection.close() method

NetConnection.connect() method

NetConnection.getDebugConfig() method

NetConnection.getDebugID() method

NetConnection.getService() method

NetConnection.ReplaceGatewayUrl() method

NetConnection.RequestPersistentHeader() method

NetConnection.setCredentials() method 2nd

NetConnection.setDebugId() method

NetConnection.trace() method

NetDebug class

NetDebug object

NetDebug.trace() method

NetDebugConfig object

NetDebugConfig.getDebug() method

NetDebugConfig.setDebug() method

NetServiceProxy class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NetServiceProxyResponder class

NetServiceProxyResponder object

NetServices class

NetServices object

NetServices.as file

NetServices.createGatewayConnection() method 2nd 3rd

NetServices.getVersion() method

NetServices.setDefaultGateway() method

nuSOAP

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

object-oriented programming (OOP) 2nd

 implementing

Object.registerClass() method 2nd

objects

 ActionScript, accessing properties

 binding

 Book

 Business Delegates

 CF

 creating

 custom exception

 custom responder

 DataGlue

 debugging

 extending

 forms, building in Flash MX

 InitialContext

 interfaces, building

 Java

 JRunRecordSet

 naming

 native array, accessing

 NetConnection 2nd

 methods

 NetDebug

 NetDebugConfig

 NetServiceProxyResponder

 NetServices

 OleDbDataAdapter

 PageableResultSet

 PHP

 Query, returning

 RecordSet 2nd

 updating

 registering

 responder functions 2nd

 ResultSet

 returning

 RSOs

 services

 creating 2nd

 formatting

 ServletContext

 static

 StringReverser

 text

 TextField

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ODBC, migrating

OleDbDataAdapter object

ondemand mode

onResult() method

 responder functions

onResult()method

 responder functions

onStatus() method

 responder functions

OOP (object-oriented programming) 2nd

 implementing

open source Flash Remoting resources

open source languages

OpenAMF

operating systems

optimization

 applications

 caching

 code

 ComboBoxes

 components

 with methods

 queries

 RecordSet class for interactivity

 recordsets

 standard controls

options

 installing

 menus/windows

order of service lookup

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

packages

 ColdFusion components, organizing

 Flash Remoting, creating

packets

 AMF

 SOAP

page mode

page size, passing dynamically

pageable recordsets

 to clients, implementing

 to servers, implementing

PageableResultSet object

pages (ASP.NET)

 assemblies

 connecting

 converting datatypes

 implementing

parameters

 arrays, passing

 named, passing data

parsing Flash Remoting

pass by value strategy

passing

 arrays

 data back to servers

 data between Flash and ColdFusion

 organized data to servers

 page size dynamically

 responder objects

passing complex datatypes

PEAR (PHP Extension and Application Repository)

PHP

 AMFPHP

 applying with web services

 classes

 configuring for web services

 installing

 databases

 datatype conversion 2nd

 Flash

 objects, registering

 recordsets

 resources

 server-side code

 web services

PHP classes

PHP Extension and Application Repository (PEAR)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

platforms

 ColdFusion MX

 J2EE Application server

 Flash Remoting

 ColdFusion MX

 J2EE application servers

 Java servlet engines

 JRun 4

 Microsoft ASP.NET servers

 Java applications

presentation logic

primitive datatypes

procedural programming

 OOP

 result handlers

processes, applications

programming

 consistency

 Flash Remoting

 Hello World

 ActionScript

 server-side

 OOP

 implementing

 procedural

 OOP

 result handlers

ProgressBar component

projects

 debugging

 optimizing

 requirements

 specifications

PromptBox component

properties

 accessing

 ASType

 CF.query() method

 charset

 filecontent

 firstRow

 header

 lastRow

 mimetype

 responseheader

 statuscode

 text

 text fields

Property inspector

 components

protocols

 AMF

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HTTP

proxies

 remote services

 web services

public users

PushButton component

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

queries

 caching

 CF.query() method

 ColdFusion MX

 loading incrementally

 optimization

 retrying

Query object, returning

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

RadioButton component

RDS (Remote Development Security)

re-use

 code

 ColdFusion MX

receiving

 arrays from .NET

 complex datatypes from .NET

recordChanged() method

records [See also databases]

 current

 configuring

 functionality

 inserting

 services, passing automatically to

RecordSet class 2nd 3rd 4th

RecordSet object, updating

RecordSet.addItem() method 2nd

RecordSet.addItemAt() method 2nd

RecordSet.addView() method 2nd

RecordSet.filter() method 2nd

RecordSet.getColumnNames() method 2nd

RecordSet.getItemAt() method 2nd

RecordSet.getItemID() method 2nd

RecordSet.getLength() method 2nd 3rd

RecordSet.getNumberAvailable() method 2nd

RecordSet.isFullyPopulated() method

RecordSet.isLocal() method

RecordSet.removeAll() method 2nd

RecordSet.removeItemAt() method 2nd

RecordSet.replaceItemAt() method 2nd

RecordSet.setDeliveryMode() method 2nd

RecordSet.setField() method 2nd

RecordSet.sort() method

RecordSet.sortItemsBy() method 2nd

recordsets

 client-side, creating

 ColdFusion

 optimizing

 pageable

 implementing to clients

 implementing to servers

 updating

references

 assemblies

 Flash Remoting

 Java requests/sessions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

registration

 custom classes

 objects

 users

reinstallation [See also installation]

 ColdFusion MX

relationships, tables

Remote Development Security (RDS)

remote services 2nd

 calls

 creating callback functions

 creating connections

 creating service objects

 initializing variables

 responses

 server-side code

 ColdFusion MX

 Flash, accessing

 getService() method

 JRun 4

 packages, creating

 PHP

 proxies

 responder functions

remote shared objects (RSOs)

renaming files

repeated operations

repositories

 PEAR

 UDDI 2nd

requests

 AMF

 cookies

 Java, referencing

 SOAP

requirements

 Flash Remoting

 authoring tools

 components

 gateways

 projects

resources

 ActionScript code

 ASP.NET 2nd

 ColdFusion MX 2nd

 databases

 Dreamweaver

 Flash

 Flash Remoting

 Java

 Macromedia

 open source Flash Remoting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 PHP

 SQL

 web services 2nd

 XML

responder functions

 creating

 types of

responder objects

response handlers

responseheader property

responses 2nd 3rd

 AMF

 dispatch hierarchies

restriction of service access

results

 databases

 modifying

 retrieving

 procedural programming

 SOAP

ResultSet object

retrieving

 database results

 directory lists from servers

 email (SSAS)

returning

 data to Flash from ColdFusion

 objects

 Query objects

 ResultSet objects

role-based security, ColdFusion components

rows, properties

RSOs (remote shared objects)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

saving state (Java)

scope, Flash variable

Script Repository

scripts

 adding

Scripts table

ScriptService service

 implementing

ScrollBar component

ScrollPane component

searching

 callback functions

 service lookup

 services

security

 ColdFusion MX user authentication

 container-managed

 Flash Remoting

 homegrown systems

 Java

 RDS

 user authentication

SELECT statement

selection

 data with ADO.NET

 of responder functions

 values in ComboBoxes

sending

 arrays to .NET

 complex datatypes to .NET

 email

 ColdFusion components

 SSAS

serialization

 Java, converting objects

server-proofing applications

Server-Side ActionScript [See SSAS]

server-side code

 benefits of Flash Remoting

 databases, accessing

 Flash Remoting

 testing

server-side errors, trapping

server-side programmers

server-side services

 defining

 implementing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

servers

 ColdFusion MX

 Flash Remoting

 security

 controls, connecting ASP.NET

 databases

 databinding

 debugging

 directories, retrieving lists from

 Flash Remoting 2nd

 benefits of

 gateways

 session management

 J2EE Application

 ColdFusion MX

 configuring

 Java

 classes

 EJB

 JavaBean

 JMX

 servlets

 SSAS

 JRun 4

 logs 2nd

 Microsoft .NET

 Microsoft ASP.NET

 pageable recordsets, implementing to

 passing organized to

 separation of functionality

 updating

Service Browser

 Flash authoring environments, viewing

 panel

service() method

service-oriented (SO)

service-oriented architecture (SOA)

ServiceFlashServlet.service() method

services

 access, restricting

 adding

 authentication

 calling

 ColdFusion MX

 consumer

 Flash Remoting

 ColdFusion components as

 creating directories

 naming

 references

 functions

 identifying

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Java

 classes

 EJB

 invoking methods

 JavaBean

 JMX

 lookup

 servlets

 SSAS

 JavaBeans, saving session state

 lookup

 name mappings (ColdFusion MX)

 objects

 creating 2nd

 formatting

 records, passing to automatically

 remote

 accessing from Flash

 calls 2nd

 ColdFusion MX

 getService() method

 JRun 4

 PHP

 proxies

 responder functions

 responses

 server-side code

 restriction of

 ScriptService

 implementing

 searching

 server-side

 defining

 implementing

 SiteService

 implementing

 SSAS

 UserService

 implementing

 skeleton code

 testing

 web

 applying AMFPHP with

 ASP.NET 2nd

 BabelFish

 ColdFusion MX

 complex datatypes

 configuring AMFPHP for

 creating Flash MX extensions

 datatype conversions

 Flash Remoting

 J2EE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JRun 4 2nd

 passing simple arrays

 PHP

 resources 2nd

 SOAP

 tracing

 UDDI

 WSDL

 XML

ServletContext object

servlets

 Flash Remoting

 Java

 invoking service methods

 saving session state

 services

sessions

 debugging

 Java, referencing

 management

 state, saving

setCredentials() method

sharing state (Java)

simple arrays, passing

single text lines, formatting

SiteService service

 implementing

sizing, Actions menu

skeleton code

 displayList() <Default Para Font>method

 Dreamweaver MX

 UserService service

Sleep function

SO (service-oriented)

SOA (service-oriented architecture)

SOAP

 AMFPHP, configuring for web services

 datatype conversion

 trace tool

Solaris, installing

sorting items

specifications

 interfaces

 projects

speed of components

SplitView component

SQL

 debugging

 resources

sql argument

SSAS (Server-Side ActionScript)

 CF object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CF.query() method

 datatype conversions

 J2EE application servers

 Java, extending with

 overview of

 recordsets

 services

 try/catch/finally construct

stacks, Call Stack (Flash ActionScript Debugger)

standard controls, optimizing

state

 ASP.NET

 Java, saving

statements, SELECT

static objects

static text fields

statuscode property

structure

 code

 of ColdFusion components

subsets of recordsets [See pages]

support

 ASP.NET

 pages

 state management

 multirecord datatypes

swf decompile

syntax

 errors 2nd

 highlighting

system errors

system requirements

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

tables

 Categories 2nd

 Company Info

 Languages

 methods, defining

 relationships

 Scripts

 User

tags

 authentication

 functions

TCP trace tool

 SOAP

team environments

test mechanisms

testing

 applications, server-proofing

 client calls

 Flash Remoting

 installing

 server-side code

 Tomcat

 UserService service

text

 fields, adding validation to

 properties

TextField class

TextField object

Ticker component

timeline

timeout arguments

Tomcat, installing

tools

 Flash Remoting, installing

 Property inspector

 TCP trace

 SOAP

 Text

 wsdl2java

Tooltip components

trace debugging

trace tools

 SOAP

translation, requests/responses

trapping errors 2nd

Tree component

triggers, remote service calls

http://lib.ommolketab.ir
http://lib.ommolketab.ir

troubleshooting

 catching errors

 code consistency

 ColdFusion MX, installing

 connections

 debugging

 Flash Remoting Help menu

 JRun 4, installing

 loops

 .NET

 resources [See resources]

 server-proofing applications

 SSAS

 TCP trace tool

 SOAP

try/catch blocks 2nd

try/catch/finally construct

types

 of errors 2nd

 of responder functions

 of users

typographical errors

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

UDDI (Universal Description, Discovery, and Integration) 2nd

UI components [See also components]2nd 3rd

 binding

 DataGlue

 DataProviderClass class

 DRK

 UI Components Set 3

 DropDownList

 Flash

 objects, extending

 principles

 user components

updating

 databases

 J2EE application servers

 results

 servers

upgrading ColdFusion MX

user authentication 2nd [See also security]

 ColdFusion MX

user data, validating

user interfaces [See also interfaces]

 code

 components [See UI components]

Users table

UserService service

 implementing

 skeleton code

 testing

utilities

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

validate() method

validation

 ColdFusion MX

 text fields, adding to

 user data

values

 ComboBoxes, selecting in

 defaults

variables

 Flash scope

 Flash.Pagesize

viewing

 Flash authoring environments

 hidden items

Visual Basic datatype conversion

Visual Studio .NET (VS.NET) 2nd

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Watch window (Flash ActionScript Debugger)

web services 2nd

 AMFPHP

 applying with

 configuring for

 arrays, passing

 ASP.NET 2nd

 BabelFish

 ColdFusion MX

 complex datatypes

 datatype conversions

 Flash MX, creating extensions

 Flash Remoting

 J2EE

 JRun 4 2nd

 PHP

 resources 2nd

 SOAP

 tracing

 UDDI

 Whois

 WSDL

 XML

Whois web service

 accessing

 JavaBean wrapper code for

windows

 Flash Remoting

 Locals (Flash ActionScript Debugger)

 Watch (Flash ActionScript Debugger)

Windows, installing Flash Remoting

wrapping

 Java classes

 web services

writing

 services

 to XML files

WSDL (Web Services Description Language) 2nd

wsdl2java tool

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

XML (Extensible Markup Language)

 ADO.NET

 benefits of Flash Remoting

 resources

 web services 2nd

 SOAP

 UDDI

 WSDL

 writing to

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Main Page
	Table of content
	Copyright
	Dedication
	Preface
	Remoting: More Than Just a Name
	What Is Remoting Used For?
	What This Book Contains
	What This Book Is Not
	The Book at a Glance
	We'd Like to Hear from You
	Future Versions of Flash
	Acknowledgments

	Part I: Remoting Fundamentals
	Chapter 1. Introduction to Flash Remoting
	1.1 What Is Flash Remoting?
	1.2 How Does Flash Remoting Work?
	1.3 Benefits
	1.4 Flash Remoting Requirements
	1.5 Supported Platforms
	1.6 Hello World
	1.7 Workflow Example
	1.8 Architecture for Flash Remoting Applications
	1.9 Wrapping Up

	Chapter 2. Installing, Configuring, and Using Flash Remoting
	2.1 Installing Flash Remoting
	2.2 Naming Your Services
	2.3 The Authoring Environment
	2.4 Sequence of Events in Flash
	2.5 Making a Remote Call
	2.6 Wrapping Up

	Chapter 3. Client/Server Interaction, UI Components, and RecordSets
	3.1 User Interface Components
	3.2 Flash UI Components Set 2 and Flash Charting Controls
	3.3 Macromedia's DRK
	3.4 Text Objects
	3.5 Building Forms in Flash MX
	3.6 The RecordSet Class
	3.7 DataGlue
	3.8 Wrapping Up

	Chapter 4. Flash Remoting Internals
	4.1 The NetConnection Class
	4.2 Using NetServices
	4.3 Creating Responder Functions
	4.4 RecordSet Object
	4.5 The Timeline
	4.6 Catching Errors
	4.7 Registering Objects
	4.8 Wrapping Up

	Part II: The Server-Side Languages
	Chapter 5. Flash Remoting and ColdFusion MX
	5.1 Introduction to ColdFusion MX
	5.2 How ColdFusion Fits into Flash Applications
	5.3 Service Name Mappings
	5.4 ColdFusion Pages Versus ColdFusion Components
	5.5 Loading Query Data Incrementally
	5.6 ColdFusion Security: Authenticating Users
	5.7 Updating Data on the Server
	5.8 Wrapping Up

	Chapter 6. Server-Side ActionScript
	6.1 What Is Server-Side ActionScript?
	6.2 The CF Object
	6.3 When to Use Server-Side ActionScript
	6.4 Datatype Conversions
	6.5 Handling Errors with try/catch
	6.6 Extending Server-Side ActionScript with Java
	6.7 Wrapping Up

	Chapter 7. Flash Remoting and Java
	7.1 The Flash Remoting Gateway
	7.2 Supported Platforms
	7.3 Setting Up Flash Remoting for J2EE
	7.4 Service Types
	7.5 Datatype Conversions
	7.6 Service Lookup
	7.7 Invoking Service Methods
	7.8 Architecture and Design
	7.9 Referencing the Request and Session
	7.10 Saving and Sharing State
	7.11 Databinding
	7.12 Security
	7.13 OpenAMF
	7.14 Wrapping Up

	Chapter 8. Flash Remoting and .NET
	8.1 Overview of .NET
	8.2 Connecting to .NET
	8.3 Datatype Conversions
	8.4 Database Access with ADO.NET
	8.5 State Management
	8.6 Error Handling in Flash Remoting with .NET
	8.7 Wrapping Up

	Chapter 9. Flash Remoting and PHP
	9.1 Introduction to PHP
	9.2 Installing AMFPHP
	9.3 Datatype Conversions
	9.4 Using AMFPHP with Web Services
	9.5 Using AMFPHP with PHP Classes
	9.6 Working with a Database
	9.7 Wrapping Up

	Part III: Advanced Flash Remoting
	Chapter 10. Calling Web Services from Flash Remoting
	10.1 What Is a Web Service?
	10.2 Why Use Flash Remoting?
	10.3 Web Services from a ColdFusion Server
	10.4 Web Services from an ASP.NET Server
	10.5 Wrapping J2EE and JRun Web Services
	10.6 Web Services from PHP
	10.7 BabelFish Web Service
	10.8 Datatype Conversions
	10.9 Creating a Flash MX Web Service Extension
	10.10 Wrapping Up

	Chapter 11. Extending Objects and UI Controls
	11.1 Principles Behind UI Components
	11.2 DataProviderClass and DataGlue
	11.3 Enhancing a Standard Control
	11.4 Enhancing the RecordSet Class for Interactivity
	11.5 Adding Validation to a TextField
	11.6 Wrapping Up

	Chapter 12. Flash Remoting Best Practices
	12.1 Separation of Tasks
	12.2 Separation of Functionality
	12.3 Server-Proofing the Application
	12.4 Component Use
	12.5 Clean API
	12.6 Loops and Repeated Operations
	12.7 OOP or Not OOP
	12.8 ColdFusion RecordSets
	12.9 Implementing Caching
	12.10 What to Walk Away With
	12.11 Wrapping Up

	Chapter 13. Testing and Debugging
	13.1 Debugging Flash Remoting Applications
	13.2 Trapping Errors
	13.3 The Flash ActionScript Debugger
	13.4 NetConnection Debugger
	13.5 NetDebug.as
	13.6 Trace Debugging
	13.7 Testing Server-Side Code
	13.8 Using a TCP Trace Utility
	13.9 Debugging SQL Code
	13.10 Wrapping Up

	Chapter 14. Real-World Application
	14.1 General Considerations
	14.2 Requirements
	14.3 Specifications
	14.4 The Modules
	14.5 Flash Remoting Code
	14.6 Testing and Debugging
	14.7 Completed Application
	14.8 Future Expansion
	14.9 Wrapping Up

	Chapter 15. Flash Remoting API
	15.1 Entry Headings
	DataGlue Object
	DataGlue.bindFormatFunction()
	DataGlue.bindFormatStrings()
	NetConnection Class
	NetConnection.addHeader()
	NetConnection.call()
	NetConnection.clone()
	NetConnection.close()
	NetConnection.connect()
	NetConnection.getDebugConfig()
	NetConnection.getDebugId()
	NetConnection.getService()
	NetConnection.ReplaceGatewayUrl()
	NetConnection.RequestPersistentHeader()
	NetConnection.setCredentials()
	NetConnection.setDebugId()
	NetConnection.trace()
	NetDebug Object
	NetDebug.trace()
	NetDebugConfig Class
	NetDebugConfig.getDebug()
	NetDebugConfig.setDebug()
	NetServices Object
	NetServices.createGatewayConnection()
	NetServices.getVersion()
	NetServices.setDefaultGateway()
	RecordSet Class
	RecordSet.addItem()
	RecordSet.addItemAt()
	RecordSet.addView()
	RecordSet.filter()
	RecordSet.getColumnNames()
	RecordSet.getItemAt()
	RecordSet.getItemID()
	RecordSet.getLength()
	RecordSet.getNumberAvailable()
	RecordSet.isFullyPopulated()
	RecordSet.isLocal()
	RecordSet.removeAll()
	RecordSet.removeItemAt()
	RecordSet.replaceItemAt()
	RecordSet.setDeliveryMode()
	RecordSet.setField()
	RecordSet.sort()
	RecordSet.sortItemsBy()

	Part IV: Appendixes
	Appendix A. ActionScript Datatype Conversion
	A.1 ColdFusion Datatype Conversion
	A.2 Java Datatype Conversion
	A.3 C# Datatype Conversion
	A.4 Visual Basic Datatype Conversion
	A.5 PHP Datatype Conversion
	A.6 SOAP Datatype Conversion

	Appendix B. Books and Online Resources
	B.1 Flash Remoting Resources
	B.2 Flash and ActionScript Resources
	B.3 Other Books of Interest
	B.4 Other Links of Interest

	Appendix C. Specification and Implementation for a Real-World Application
	C.1 Notes from the Designer

	Colophon
	Index
	Index SYMBOL
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index J
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index X

